
Chapter 3
Sample-Path Optimality in Average Markov
Decision Chains Under a Double Lyapunov
Function Condition

Rolando Cavazos-Cadena and Raúl Montes-de-Oca

3.1 Introduction

This note concerns discrete-time Markov decision processes (MDPs) evolving on
a denumerable state space. The performance index of a control policy is an (long
run) average criterion, and besides standard continuity compactness conditions, the
main structural assumption on the model is that (a) the (possibly unbounded) cost
function has a Lyapunov function �(·) and (b) a power of order larger than 2 of � also
admits a Lyapunov function [14]. Within this context, the main purpose of the paper
is to analyze the sample-path average optimality of some policies whose expected
optimality is well known. More specifically, the main results in this direction are as
follows:

(i) The stationary policy f obtained by optimizing the right-hand side of the
optimality equation is sample-path optimal in the strong sense, that is, under the
action of f , the observed average costs in finite times converge almost surely
to the optimal expected average cost g, whereas if the system is driven by any
other policy, then with probability 1, the inferior limit of those averages is at
least g.

(ii) The Markovian policies obtained from procedures frequently used to
approximate a solution of the optimality equation, like the vanishing discount
or the successive approximations methods, are sample-path average optimal in
the strong sense.
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The expected average criteria have been intensively studied, and a fairly complete
account of the theory can be found in [9, 12, 13]; see also [1]. In this last paper,
it was shown that, for a general MDP, if the optimality equation has a bounded
solution, then the stationary policy f referred to in the point (i) above is optimal in
the sample-path sense. In [3, 4], a similar conclusion was obtained for models with
denumerable state space if the cost function has an almost monotone (or penalized)
structure, in the sense that the costs are sufficiently large outside a compact set; such
a conclusion was extended to models on Borel spaces by [10,16,20]. More recently,
for models with denumerable state space and finite actions sets, the sample-path
average criterion was studied in [15] under the uniform ergodicity assumption. On
the other hand, the first result described above is an extension of Theorem 4.1 in [6],
where the sample-path optimality of the policy f mentioned above was established
in a weaker sense than the one used in the present work.

The approach of this note relies on basic probabilistic ideas, like Kolmogorov’s
inequality and the first Borel-Cantelli lemma, and was motivated by the elementary
analysis of the strong law of large numbers as presented in [2].

The organization of the subsequent material is as follows: In Sect. 3.2, the
decision model is presented and the conditions to obtain an (expected) average
optimal stationary policy from a solution of the optimality equation are briefly
described. Next, in Sect. 3.3, the idea of Lyapunov function is introduced and
some of its elementary properties are established, whereas in Sect. 3.4, the basic
structural restriction on the model, namely, the double Lyapunov function condition,
is formulated as Assumption 3.4.1, and the main result of the chapter, solving
problem (i) above, is stated as Theorem 3.4.1. The argument to establish this
result relies on some properties of the sequence of innovations associated with the
sequence of optimal relative costs, which are presented in Sect. 3.5, and then, the
main theorem is proved in Sect. 3.6. Next, the result on the sample-path optimality
of Markovian policies is stated as Theorem 3.7.1 in Sect. 3.7, and the necessary
technical tools to prove that result, concerning tightness of the sequence of empirical
measures and uniform integrability of the cost function, are established in Sect. 3.8.
Finally, the exposition concludes with the proof of Theorem 3.7.1 in Sect. 3.9.

Notation. Throughout the remainder, IN stands for the set of all nonnegative
integers and the indicator function of a set A is denoted by IA, so that IA(x) = 1
if x ∈ A and IA(x) = 0 when x /∈ A. On the other hand, for a topological space IK,
the class of all continuous functions defined on IK and the Borel σ -field of IK are
denoted by C (IK) and B(IK), respectively, whereas IP(IK) stands for the class of all
probability measures defined in B(IK). Finally, for an event G, the corresponding
indicator function is denoted by I[G].
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3.2 Decision Model

Let M = (S,A,{A(x)}x∈S,C,P) be an MDP, where the state space S is a denumer-
able set endowed with the discrete topology and the action set A is a metric space.
For each x ∈ S, A(x) ⊂ A is the nonempty subset of admissible actions at x and,
defining the class of admissible pairs by IK: = {(x,a) |a∈A(x),x∈ S}, the mapping
C : IK → IR is the cost function, whereas P = [pxy(·)] is the controlled transition
law on S given IK, that is, for all (x,a) ∈ IK and y ∈ S, the relations pxy(a) ≥ 0
and ∑y∈S pxy(a) = 1 are satisfied. This model M is interpreted as follows: At
each time t ∈ IN, the decision maker observes the state of a dynamical system, say
Xt = x ∈ S, and selects an action (control) At = a ∈ A(x) incurring a cost C(x,a).
Then, regardless of the previous states and actions, the state at time t + 1 will be
Xt+1 = y ∈ S with probability pxy(a); this is the Markov property of the decision
process.

Assumption 3.2.1

(i) For each x ∈ S, A(x) is a compact subset of A.
(ii) For every x,y ∈ S, the mappings a �→C(x,a) and a �→ pxy(a) are continuous in

a ∈ A(x).

Policies. The space IHt of possible histories up to time t ∈ IN is defined by IH0 : = S
and IHt : = IKt × S for t ≥ 1, whereas a generic element of IHt is denoted by ht =
(x0,a0, . . . ,xi,ai, . . . ,xt), where ai ∈ A(xi). A policy π = {πt} is a special sequence
of stochastic kernels: For each t ∈ IN and ht ∈ IHt , πt(·|ht) is a probability measure
on B(A) concentrated on A(xt), and for each Borel subset B ⊂ A, the mapping
ht �→ πt(B|ht), ht ∈ IHt , is Borel measurable. The class of all policies is denoted by
P and when the controller chooses actions according to π , the control At applied at
time t belongs to B⊂A with probability πt(B|ht), where ht is the observed history of
the process up to time t. Given the policy π being used for choosing actions and the
initial state X0 = x, the distribution of the state-action process {(Xt ,At)} is uniquely
determined [9], and such a distribution and the corresponding expectation operator
are denoted by Pπ

x and Eπ
x , respectively. Next, define F : = ∏x∈S A(x) and notice

that F is a compact metric space, which consists of all functions f : S → A such
that f (x) ∈ A(x) for each x ∈ S. A policy π is Markovian if there exists a sequence
{ ft}⊂F such that the probability measure πt(·|ht) is always concentrated at ft (xt),
and if ft ≡ f for every t, the Markovian policy π is is referred to as stationary.
The classes of stationary and Markovian policies are naturally identified with F
and M : = ∏∞

t=0 F , respectively, and with these conventions F ⊂ M ⊂ P .

Performance Criteria. Suppose that the cost function C(·, ·) is such that

Eπ
x [|C(Xt ,At)|]< ∞, x ∈ S, π ∈ P , t ∈ IN. (3.1)
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In this case, the (long-run superior limit) average cost corresponding to π ∈ P at
state x ∈ S is defined by

J(x,π) := limsup
k→∞

1
k

Eπ
x

[
k−1

∑
t=0

C(Xt ,At)

]
, (3.2)

and the corresponding optimal value function is specified by

J∗(x) := inf
π∈P

J(x,π), x ∈ S; (3.3)

a policy π∗ ∈ P is (superior limit) average optimal if J(x,π∗) = J∗(x) for every
x∈ S. The criterion (3.2) evaluates the performance of a policy in terms of the largest
among the limit points of the expected average costs in finite times. In contrast, the
following index assesses a policy in terms of the smallest of such limit points:

J−(x,π) := liminf
k→∞

1
k

Eπ
x

[
k−1

∑
t=0

C(Xt ,At)

]
(3.4)

is the (long run) inferior limit average criterion associated with π ∈ P at a state x,
whereas the optimal value function associated with this criterion is given by

J∗−(x) := inf
π∈P

J−(x,π), x ∈ S. (3.5)

From these specifications, it follows that

J∗−(·)≤ J∗(·), (3.6)

and within the context described below, it will be shown that the equality holds in
this last relation.

Optimality Equation. A basic instrument to analyze the above average criteria is
the following optimality equation:

g+ h(x) = inf
a∈A(x)

[
C(x,a)+ ∑

y∈S

pxy(a)h(y)

]
, x ∈ S, (3.7)

where g ∈ IR and h ∈ C (S) are given functions, and it is supposed that

Eπ
x [|h(Xn)|]< ∞, x ∈ S, π ∈ P , n ∈ IN.

Under this condition and (3.1), a standard induction argument combining (3.7) and
the Markov property yields that, for every nonnegative integer n,
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(n+ 1)g+ h(x)≤ Eπ
x

[
n

∑
t=0

C(Xt ,At)+ h(Xn+1)

]
, x ∈ S, π ∈ P .

Moreover, if f ∈ F satisfies that

g+ h(x) =C(x, f (x))+ ∑
y∈S

pxy( f (x))h(y), x ∈ S, (3.8)

then

(n+ 1)g+ h(x) = E f
x

[
n

∑
t=0

C(Xt ,At)+ h(Xn+1)

]
, x ∈ S.

Therefore, assuming that the condition

lim
n→∞

Eπ
x [h(Xn+1)]

n+ 1
= 0 (3.9)

holds for every x ∈ S and π ∈ P , it follows that the relation

lim
n→∞

1
n+ 1

E f
x

[
n

∑
t=0

C(Xt ,At)

]
= g ≤ liminf

n→∞

1
n+ 1

Eπ
x

[
n

∑
t=0

C(Xt ,At)

]
(3.10)

is always valid, and then, (3.2)–(3.6) immediately yield that

J∗−(x) = J∗(x) = g = lim
n→∞

1
n+ 1

E f
x

[
n

∑
t=0

C(Xt ,At)

]
, x ∈ S, (3.11)

so that:

(i) The superior and inferior limit average criteria render the same optimal value
function,

(ii) A stationary policy f satisfying (3.8) is average optimal, and
(iii) The optimal average cost is constant and is equal to g.

3.3 Lyapunov Functions

In this section, a structural condition on the model M will be introduced under
which (a) the basic condition (3.1) holds, (b) the optimality equation (3.7) has a
solution (g,h(·)) such that the convergence (3.9) occurs, and (c) a policy f ∈ F
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satisfying (3.8) exists, so that the conclusions (i)–(iii) stated above hold. Throughout
the rest of this chapter

z ∈ S is a fixed state

and T stands for the first return time to state z, that is,

T : = min{n > 0 |Xn = z}, (3.12)

where, as usual, the minimum of the empty set is ∞. The following idea was
introduced in [14] and was analyzed in [5]:

Definition 3.3.1. Let D∈C (IK) and � : S→ [1,∞) be given functions. The function
� is a Lyapunov function for D, or “D has the Lyapunov function �”, if the following
conditions (i)–(iii) hold:

(i) 1+ |D(x,a)|+∑y
=z pxy(a)�(y)≤ �(x) for all (x,a) ∈ IK.

(ii) For each x ∈ S, the mapping f �→ ∑y pxy( f (x))�(y) = E f
x [�(X1)] is continuous

in f ∈ F .
(iii) For each f ∈ F and x ∈ S, E f

x [�(Xn)I[T > n]]→ 0 as n → ∞.

The sentence “D admits a Lyapunov function” means that there exists a function
� : S → [1,∞) such that conditions (i)–(iii) above hold.

The following simple lemma will be useful.

Lemma 3.3.1. Suppose that C has the Lyapunov function �(·). In this case the
assertions (i) and (ii) below are valid.

(i) For every n ∈ IN and π ∈ P ,

1
n+ 1

Eπ
x

[
n

∑
t=0

(1+ |C(Xt ,At)|)+ �(Xn+1)

]
≤ B(x) : = �(x)+ �(z), x ∈ S;

in particular, the basic condition (3.1) holds.

(ii) lim
n→∞

1
n

Eπ
x [�(Xn)]→ 0.

Proof. Notice that the inequality 1 + |C(x,a)|+∑y∈S pxy(a)�(y) ≤ �(x) + �(z) is
always valid, by Definition 3.3.1(i), and then, an induction argument using the
Markov property yields that for arbitrary x ∈ S and π ∈ P ,

Eπ
x

[
n

∑
t=0

(1+ |C(Xt ,At)|)+ �(Xn+1)

]
≤ �(x)+ (n+ 1)�(z), n ∈ IN,

a relation that immediately yields part (i); a proof of the second assertion can be
found in Lemma 3.2 of [6]. ��
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The following lemma, originally established by [14], shows that the existence
of a Lyapunov function has important implications for the analysis of the average
criteria in (3.2) and (3.4).

Lemma 3.3.2. Suppose that the cost function C has a Lyapunov function �. In this
case, there exists a unique pair (g,h(·)) ∈ IR × C (S) such that the following
assertions (i)–(v) hold:

(i) g = J∗(x) for each x ∈ S.
(ii) h(z) = 0 and |h(x)| ≤ (1+ �(z)) ·�(x) for all x ∈ S. Therefore, by Lemma 3.3.1

(ii), the convergence (3.9) holds.
(iii) The pair (g,h(·)) satisfies the optimality equation (3.7).
(iv) For each x ∈ S, the mapping a �→ ∑y∈S pxy(a)h(y) is continuous in a ∈ A(x).
(v) An optimal stationary policy exists: For each x ∈ S, the term within brackets in

the right-hand side of (3.7) has a minimizer f (x)∈A(x), and the corresponding
policy f ∈ F is optimal. Moreover, (3.11) holds.

A proof of this result can be essentially found in Chapter 5 of [14]; see also
Lemma 3.1 in [6] for a proof of the inequality in part (ii).

Remark 3.3.1. Notice that g in Lemma 3.3.2 is uniquely determined, since it
is the optimal (expected) average cost at every state. The function h(·) in the
above lemma is also unique, as established in Lemma A.2(iv) in [7]. Indeed,
defining the relative cost function as C(·, ·)− g, the function h(·) is the optimal
total relative cost incurred before the first return time to state z; more explicitly,
h(x) = infπ∈P Eπ

x

[
∑T−1

t=0 [C(Xt ,At)− g]
]

for all x ∈ S.

This section concludes with some simple but useful properties of Lyapunov
functions stated in Lemma 3.3.3 below, whose statement involves the following
notation.

Definition 3.3.2. The class L (�) consists of all functions D ∈ C (IK) such that a
positive multiple of � is a Lyapunov function for D, that is, D ∈ L (�) if and only if

for some c > 0, 1+ |D(x,a)|+∑
y
=z

pxy(a)[c�(y)]≤ c�(x), (x,a) ∈ IK.

Notice that the function c�(·) inherits the properties (ii) and (iii) of the function �(·)
in Definition 3.3.1.

Lemma 3.3.3. Suppose that � : S → [1,∞) is a Lyapunov function for a function
D̃ ∈ C (IK):

(i) If D0 ∈C (IK) is such that |D0| ≤ |D̃|, then � is also a Lyapunov function for D0.
(ii) With the notation in Definition 3.3.2, the following properties (a) and (b)

hold:

(a) L (�) is a vector space that contains the constant functions.
(b) If D1,D2 ∈ L (�), then max{D1,D2} and min{D1,D2} also belong to

L (�).
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Proof. The first part follows directly from Definition 3.3.1. To establish part (ii),
first notice that L (�) is nonempty since D̃ ∈ L (�). Next, suppose that D1,D2 ∈
L (�) and observe that

1+ |Di(x,a)|+∑
y
=z

pxy(a)[ci �(y)]≤ ci �(x), (x,a) ∈ IK, i = 1,2,

where c1 and c2 are positive constants. If d1 and d2 are real numbers, multiplying
both sides of the above equality by 1+ |di|, it follows that, for every (x,a) ∈ IK,

([1+ |di|)+ (1+ |di|)|Di(x,a)|+ ∑
y
=z

pxy(a)[(1+ |di|)ci �(y)]≤ (1+ |di|)ci �(x),

and then,

1+ |diDi(x,a)|+ ∑
y
=z

pxy(a)[(1+ |di|)ci �(y)]≤ (1+ |di|)ci �(x), i = 1,2.

these inequalities, it follows that

1+[1+ |d1D1(x,a)|+ |d2D2(x,a)|]+ ∑
y
=z

pxy(a)[(1+ |d1|)c1 +(1+ |d2|)c2]�(y)

≤ [(1+ |d1|)c1 +(1+ |d2|)c2]�(x),

showing that

1+ |d1D1|+ |d2D2| ∈ L (�),

and because the function in the left-hand side of this inclusion dominates |d1D1 +
d2D2| and 1, part (i) yields that (a) d1D1 + d2D2 ∈ L (�) and 1 ∈ L (�), so
that L (�) is a vector space that contains the constant functions. Finally, since
|max{D1,D2}|, |min{D1,D2}|≤ |D1|+ |D2|, the above displayed inclusion and part
(i) together imply that (b) max{D1,D2},min{D1,D2} ∈ L (�). ��

3.4 A Double Lyapunov Function Condition
and Sample-Path Optimality

In this section, a notion of sample-path average optimality is introduced, and using
the idea of Lyapunov function, a structural condition on the decision model M is
formulated. Under such an assumption, it is stated in Theorem 3.4.1 below that, in
addition to being expected average optimal, a stationary policy f satisfying the (3.8)
is also average optimal in the sample-path sense.
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Definition 3.4.1. A policy π∗ ∈ P is sample-path average optimal with optimal
value g∗ ∈ IR if the following conditions (i) and (ii) are valid:

(i) For each state x ∈ S, lim
n→∞

1
n

n−1

∑
t=0

C(Xt ,At) = g∗ Pπ∗
x -a.s. ;

(ii) For every π ∈ P and x ∈ S, liminf
n→∞

1
n

n−1

∑
t=0

C(Xt ,At)≥ g∗ Pπ
x -a.s..

The existence and construction of sample-path optimal policies will be studied
under the following structural condition on the model M .

Assumption 3.4.1 [Double Lyapunov function condition]

(i) The cost function C(·, ·) has a Lyapunov function �.
(ii) For some β > 2, the mapping �β admits a Lyapunov function.

A simple class of models satisfying this assumption is presented below.

Example 3.4.1. For each t ∈ IN, let Xt ∈ S = IN be the number of customers waiting
for a service at a time t in a single-server station. To describe the evolution of {Xt},
let the action set A be a compact metric space and set A(x) = A for every x. Next,
let {Δt(a) | t ∈ IN,a ∈ A} and {ξt(a) | t ∈ IN,a ∈ A} be two families of independent
and identically distributed random variables taking values in the set IN, and suppose
that the following conditions hold:

(i) For each k ∈ IN, the mappings a �→ P[Δt(a) = k], a �→ P[ξt(a) = k], and a �→
E[ξt(a)r] ∈ (0,∞), 1 ≤ r ≤ 2m+3, are continuous, where m ∈ IN\{0} is fixed.

(ii) P[Δt(a) = 1] = μ(a) = 1−P[Δt(a) = 0] and E[ξt(a)]− μ(a)≤−ρ < 0 for all
a ∈ A.

When the action a ∈ A is chosen, (the Bernoulli variable) Δt(a) and ξt(a) represent
the number of service completions and arrivals in [t, t + 1), respectively, and the
evolution of the state process is determined by

Xt+1 = Xt + ξt(a)−Δt(a)IIN\{0}(Xt) if At = a, t ∈ IN, (3.13)

an equation that allows to obtain the transition law and to show that pxy(a) is
a continuous function of a ∈ A, by the first of the conditions presented above.
In the third part of the following proposition, a class of cost functions satisfying
Assumption 3.4.1 is identified. ��
Proposition 3.4.1. In the context of Example 3.4.1, the following assertions hold
when z = 0 and T is the first return time in (3.12):

(i) For each r = 1,2, . . . ,2m+2, there exist positive constants br and cr such that
the function �r+1 ∈ C (S) given by

�r+1(x) = xr+1 + brx+ cr, x ∈ S, (3.14)
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satisfies

ρxr + 1+E[�r+1(Xt+1) |Xt = x,At = a]≤ �r+1(x), x ∈ S, (3.15)

where ρ > 0 is the number in condition (ii) stated in Example 3.4.1. Moreover,
for each x ∈ S,

a �→ E[�r+1(Xt+1) |Xt = x,At = a], a ∈ A, is continuous, (3.16)

and for every π ∈ P ,

lim
n→∞

Eπ
x [(1+ρXr

n)I[T > n]] = 0. (3.17)

Consequently,
(ii) For j = 1,2, . . . ,2m+1, the above mapping � j+1(·) is a Lyapunov function for

the cost function

Cj(x) : = ρx j, x ∈ S.

(iii) Suppose that, for some integer j = 1,2, . . . ,m−1, the cost function C ∈ C (IK)
is such that

max
a∈A

|C(x,a)| ≤ b1x j + b0, x ∈ S,

where b0 and b1 are positive constants. In this case, the function C satisfies
Assumption 3.4.1.

Proof. (i) For Xt = x 
= 0 and 1 ≤ r ≤ 2m + 2, the evolution equation (3.13)
yields that

E[(Xt+1)
r+1|Xt = x,At = a] = E[(x+ ξt(a)−Δt(a))

r+1]

≤ xr+1 − (r+ 1)ρxr +R(x,a), (3.18)

where supa∈A |R(x,a)|= O(xr−1); thus, there exists a constant b > 0 such that
R(x,a)≤ ρxr + b for every x 
= 0, and it follows that

ρxr − b+E[(Xt+1)
r+1|Xt = x,At = a]≤ xr+1.

When r = 0, the term R(x,a) in (3.18) is null, so that ρ +E[Xt+1|Xt = x,At =
a] ≤ x; multiplying both sides of this relation by a sufficiently large constant
br such that ρbr > b+ 1 and combining the resulting inequality with the one
displayed above, it follows that

ρxr + 1+E[(Xt+1)
r+1 + brXt+1|Xt = x,At = a]≤ xr+1 + brx, x ∈ S \ {0}.

Defining cr : = 1+maxa∈A E[ξt(a)r+1 + brξt(a)], it follows that the function
�r+1 in (3.14) satisfies the inequality (3.15), whereas (3.16) follows from the
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continuity properties of the distributions of the departure and arrival streams in
Example 3.4.1. On the other hand, (3.15) yields that the inequality Eπ

x [ρXr
0 +

1+ �r+1(X1)I[T > 1]] ≤ �r+1(x) is always valid, and an induction argument
using the Markov property leads to

Eπ
x

[
n−1

∑
t=0

(ρXr
t + 1)I[T > t]+ �r+1(Xn)I[T > n]

]
≤ �r+1(x), n ∈ IN;

taking the limit as n goes to +∞, this implies that Eπ
x [∑∞

t=0(ρXr
t +1)I[T > t]]≤

�r+1(x), and (3.17) follows.
(ii) The relations (3.15) and (3.16) immediately show that � j+1 satisfies the

requirements (i) and (ii) in Definition 3.3.1 of a Lyapunov function for Cj.
Next, observe that � j+1 ≤ c0x j+1 + c1 for some constants c0 and c1, and then,
(3.17) with j+1(≤ m+2) instead of r implies that � j+1 also satisfies the third
property in Definition 3.3.1.

(iii) Observe that the condition on the functionC(·, ·) can be written as |C| ≤ b1Cj+
b0, and then, it is sufficient to show that Cj satisfies Assumption 3.4.1, since in
this case the corresponding conclusion for C follows from Lemma 3.3.3. Let
the integer j between 1 and m− 1 be arbitrary and notice that part (ii) yields
that � j+1 is a Lyapunov function for Cj. Next, set β = (2 j + 3)/( j + 1) > 2
and observe that (3.14) implies that there exist positive constants c0 and c1

such that �β
j+1(x) ≤ c1x2 j+3 + c0 = c1C2 j+3(x) + c0; since 2 j + 3 ≤ 2m+ 1,

part (ii) shows that C2 j+3 has a Lyapunov function, and then, �β
j+1 also admits

a Lyapunov function, by Lemma 3.3.3.
��

The following result establishes the existence of sample-path average optimal
stationary polices.

Theorem 3.4.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold, and let (g,h(·))
be the solution of the optimality equation guaranteed by Lemma 3.3.2. In this case,
if the stationary policy f satisfies (3.8), then f is sample-path average optimal with
the optimal value g. More explicitly, for each x ∈ S and π ∈ P ,

lim
n→∞

1
n

n−1

∑
t=0

C(Xt ,At) = g P f
x -a.s. (3.19)

and

liminf
n→∞

1
n

n−1

∑
t=0

C(Xt ,At)≥ g Pπ
x -a.s. (3.20)

Remark 3.4.1. This theorem is related to Theorem 4.1 in [6] where MDPs with
average reward criteria were considered. In the context of the present work, Theorem
4.1 in that paper establishes that, under Assumption 3.2.1, if the cost function has
the Lyapunov function �, then limsupn→∞ n−1 ∑n−1

t=0 C(Xt ,At)≥ g Pπ
x -a.s. for each
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π ∈ P and x ∈ S and that the equality holds if π = f satisfies (3.8). In the present
Theorem 3.4.1, the additional condition in Assumption 3.4.1(ii) is incorporated, and
in this context, the stronger conclusions (3.19) and (3.20) are obtained.

A proof of Theorem 3.4.1 will be given after presenting the necessary prelimi-
naries in the following section:

3.5 Innovations of the Sequence of Optimal Relative Costs

This section contains the main technical tool that will be used to establish Theorem
3.4.1. The necessary result concerns properties of the sequence of innovations
associated to {h(Xt)} which is introduced below. Throughout the remainder of this
chapter Assumptions 3.2.1 and 3.4.1 are supposed to be valid even without explicit
reference, and (g,h(·)) ∈ IR ×C (S) stands for the pair satisfying the optimality
equation (3.7) as described in Lemma 3.3.2. Next, for each positive integer n, let
Fn be the σ -field generated by the states observed and actions applied up to time n:

Fn : = σ(Xt ,At , 0 ≤ t ≤ n), n = 1,2,3, . . . , (3.21)

and observe that for each initial state x and π ∈ P , the Markov property of the
decision process yields that

Eπ
x [h(Xn) |Fn−1] = ∑

y∈S

pXn−1 y(An−1)h(y). (3.22)

Definition 3.5.1. The process of {Yk,k ≥ 1} of innovations associated to the
sequence of observed optimal relative costs {h(Xk),k ≥ 1} is given by

Yn = h(Xn)− ∑
y∈S

pXn−1,y(An−1)h(y), n = 1,2,3, . . . .

Now, let x ∈ S and π ∈ P be arbitrary but fixed, and notice that combining the
definition above with (3.21) and (3.22), it follows that (i) Yn is Fn measurable, and
(ii) the innovations Yn can be written as

Yn = h(Xn)−Eπ
x [h(Xn) |Fn−1], (3.23)

and then, Yn is uncorrelated with the σ -field Fn−1 with respect to Pπ
x , that is,

Eπ
x [YnW ] = 0 if W is Fn−1 measurable and YnW is Pπ

x integrable (3.24)

([2]). The following is the main result of this section.

Theorem 3.5.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold and let the pair
(g,h(·)) ∈ IR×C (S) be as in Lemma 3.3.2. In this context, for each initial state
x ∈ S and π ∈ P , the following convergences hold:
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lim
n→∞

h(Xn)

n
= 0 Pπ

x -a.s. (3.25)

and

lim
n→∞

1
n

n

∑
k=1

Yk = 0 Pπ
x -a.s. (3.26)

This theorem will be established using two elementary facts stated in the
following lemmas. The first one is a criterion for almost sure convergence, which is
a consequence of the first Borel-Cantelli lemma [2].

Lemma 3.5.1. Let {Wn} be a sequence of random variables defined on a proba-
bility space (Ω ,F ,P). In this case, if ∑∞

n=1 P[|Wn| > ε] < ∞ for each ε > 0, then
limn→∞ Wn = 0 P-a.s. .

The second result involved in the proof of Theorem 3.5.1 is the following
inequality by Kolmogorov.

Lemma 3.5.2. If n and k are two positive integers such that n > k, then for every
α > 0

Pπ
x

[
max

r:k≤r≤n

∣∣∣∣∣
r

∑
t=k

Yt

∣∣∣∣∣≥ α

]
≤ 1

α2

n

∑
t=k

Eπ
x [Y

2
t ].

This classical result is established as Theorem 22.4 in [2] for the case in which
the Yn’s are independent. In the present context, from the relations (3.27)–(3.29)
below, it follows that Eπ

x [Y
2
n ] is always finite, and then, (3.24) yields that, if n > k,

then Eπ
x [YnYkI[G]] = 0 for every G ∈ Fk; from this last observation, the same

arguments in the aforementioned book allow to establish Lemma 3.5.2. Now, let
� be a Lyapunov function for the cost function C such that �β admits a Lyapunov
function for some β > 2, as ensured by Assumption 3.4.1. Applying Lemma 3.3.1
to the cost function �β , it follows that there exists a function b : S → (0,∞) such that

1
n+ 1

Eπ
x

[
n

∑
t=0

�2(Xt)

]
≤ 1

n+ 1
Eπ

x

[
n

∑
t=0

�β (Xt)

]
≤ b(x), x ∈ S, (3.27)

where the first inequality is due to the fact that �(·)≥ 1.

Proof of Theorem 3.5.1. Let ε > 0 be arbitrary and notice that, by Lemma 3.3.2(ii),

|h(·)| ≤ c�(·), (3.28)

where c = 1+ �(z). Combining this relation with Markov’s inequality, it follows
that, for each positive integer n,

Pπ
x [|h(Xn)/n|> ε]≤ Eπ

x [|h(Xn)|β ]
nβ εβ ≤ cβ Eπ

x [�(Xn)
β ]

nβ εβ
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and then, (3.27) yields that

Pπ
x [|h(Xn)/n|> ε]≤ cβ (n+ 1)b(x)

nβ εβ ≤ 2
cβ b(x)

nβ−1εβ ;

since β > 2, it follows that ∑∞
n=1 Pπ

x [|h(Xn)/n| > ε] < ∞, and the convergence
(3.25) follows from Lemma 3.5.1. Next, using that the (unconditional) variance of
a random variable is an upper bound for the expectation of its conditional variance
[19], from (3.23), it follows that

Eπ
x [Y

2
t ] = Eπ

x [(h(Xt)−Eπ
x [h(Xt)|Ft−1])

2]

≤ Eπ
x [(h(Xt)−Eπ

x [h(Xt)])
2]

≤ Eπ
x [h(Xt)

2]

≤ c2Eπ
x [�(Xt)

2]; (3.29)

see (3.28) for the last inequality. This fact and Lemma 3.5.2 together lead to

Pπ
x

[
max

r:k≤r≤n

∣∣∣∣∣
r

∑
t=k

Yt

∣∣∣∣∣> α

]
≤ c2

α2

n

∑
t=k

Eπ
x [�(Xt)

2],

and then, (3.27) yields that

Pπ
x

[
max

r:k≤r≤n

∣∣∣∣∣
r

∑
t=k

Yt

∣∣∣∣∣> α

]
≤ c2(n+ 1)b(x)

α2 , α > 0, n > k ≥ 1. (3.30)

Using this relation with k = 1, n = m2, and α = εm2, it follows that

qm : = Pπ
x

[
m−2

∣∣∣∣∣
m2

∑
t=1

Yt

∣∣∣∣∣> ε

]
≤ Pπ

x

[
max

r:1≤r≤m2

∣∣∣∣∣
r

∑
t=1

Yt

∣∣∣∣∣> m2ε

]

≤ c2(m2 + 1)b(x)
ε2m4 .

Therefore, ∑∞
m=1 qm < ∞, and recalling that ε > 0 is arbitrary, an application of

Lemma 3.5.1 implies that

lim
m→∞

1
m2

m2

∑
t=1

Yt = 0 Pπ
x -a.s. (3.31)

On the other hand, given a positive integer m, from the inclusion
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[
max

j:0≤ j≤2m

∣∣∣∣∣(m2 + j)−1
m2+ j

∑
t=m2

Yt

∣∣∣∣∣≥ ε

]
⊂
[

max
j:0≤ j≤2m

∣∣∣∣∣
m2+ j

∑
t=m2

Yt

∣∣∣∣∣≥ m2ε

]
,

it follows that

pm : = Pπ
x

[
max

j:0≤ j≤2m

∣∣∣∣∣(m2 + j)−1
m2+ j

∑
t=m2

Yt

∣∣∣∣∣≥ ε

]

≤ Pπ
x

[
max

j:0≤ j≤2m

∣∣∣∣∣
m2+ j

∑
t=m2

Yt

∣∣∣∣∣≥ m2ε

]

= Pπ
x

[
max

r:m2≤r≤(m+1)2−1

∣∣∣∣∣
r

∑
t=m2

Yt

∣∣∣∣∣≥ m2ε

]

≤ c2(m+ 1)2b(x)
ε2m4,

where the last inequality was obtained from (3.30) with n = (m+ 1)2 − 1, k = m2,
and α = m2ε . Thus, ∑∞

m=1 pm < ∞, and then, Lemma 3.5.1 implies that

lim
m→∞

{
max

j:0≤ j≤2m

∣∣∣∣∣(m2 + j)−1
m2+ j

∑
t=m2

Yt

∣∣∣∣∣
}

= 0 Pπ
x -a.s. (3.32)

To conclude, let n be a positive integer and let m be the integral part of
√

n, so that

n = m2 + i, 0 ≤ i ≤ 2m.

Assume that i is positive and notice that in this case

∣∣∣∣∣1
n

n

∑
t=1

Yt

∣∣∣∣∣≤ m2

n

∣∣∣∣∣ 1
m2

m2

∑
t=1

Yt

∣∣∣∣∣+ 1
m2 + i

∣∣∣∣∣
m2+i

∑
t=m2+1

Yt

∣∣∣∣∣ ,
and then,

∣∣∣∣∣1
n

n

∑
t=1

Yt

∣∣∣∣∣≤
∣∣∣∣∣ 1
m2

m2

∑
t=1

Yt

∣∣∣∣∣+ max
j:0≤ j≤2m

{
1

m2 + j

∣∣∣∣∣
m2+ j

∑
t=m2+1

Yt

∣∣∣∣∣
}
,

a relation that is also valid when i = 0, that is, if n = m2. Taking the limit when m
goes to +∞ in both sides of this last inequality, the convergences in (3.31) and (3.32)
together imply that (3.26) holds. ��
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3.6 Proof of Theorem 3.4.1

In this section, a criterion for the sample-path average optimality of a policy will be
derived from Theorem 3.5.1 and that result will be used to establish Theorem 3.4.1.
The arguments use the following notation:

Definition 3.6.1. The discrepancy function Φ : IK → IR associated to the pair
(g,h(·)) in Lemma 3.3.2 is defined by

Φ(x,a) : =C(x,a)+ ∑
y∈S

pxy(a)h(y)− h(x)− g.

Notice that Φ is a continuous mapping, by Assumption 3.2.1 and Lemma
3.3.2(iv). Also, observe that the optimality equation (3.7) yields that

Φ(x,a)≥ 0, (x,a) ∈ IK.

Lemma 3.6.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold. In this context, a
policy π∗ ∈ P is sample-path average optimal if and only if

lim
n→∞

1
n

n−1

∑
t=0

Φ(Xt ,At) = 0 Pπ∗
x -a.s. (3.33)

Proof. It will be verified that for all x ∈ S and π ∈ P ,

lim
n→∞

1
n

n−1

∑
t=0

[C(Xt ,At)− g−Φ(Xt ,At)] = 0 Pπ
x -a.s. (3.34)

Assuming that this relation holds, the desired conclusion can be established as
follows: Observing that

1
n

n−1

∑
t=0

C(Xt ,At) =
1
n

n−1

∑
t=0

[C(Xt ,At)− g−Φ(Xt ,At)]+ g+
1
n

n−1

∑
t=0

Φ(Xt ,At),

and taking the inferior limit as n goes to ∞ in both sides of this equality, the
nonnegativity of the discrepancy function and (3.34) together imply that the relation

liminf
n→∞

1
n

n−1

∑
t=0

C(Xt ,At)≥ g, Pπ
x -a.s.

is always valid. Thus, by Definition 3.4.1, π∗ ∈ P is sample-path average optimal
if and only if

lim
n→∞

1
n

n−1

∑
t=0

C(Xt ,At) = g Pπ∗
x -a.s. , x ∈ S,

a property that, by (3.34) with π∗ instead of π , is equivalent to the criterion (3.33).
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Thus, to conclude the argument, it is sufficient to verify the statement (3.34).
To achieve this goal, notice that the definition of the discrepancy function yields
that following equality is always valid for t ≥ 1:

C(Xt−1)− g−Φ(Xt−1,At−1) = h(Xt−1)− ∑
y∈S

pXt−1,y(At−1)h(y),

a relation that, via the specification of the innovation Yt in Definition 3.5.1, leads to

C(Xt−1)− g−Φ(Xt−1,At−1) = h(Xt−1)− h(Xt)+Yt .

Therefore,

n

∑
t=1

[C(Xt−1)− g−Φ(Xt−1,At−1)] = h(X0)− h(Xn)+
n

∑
t=1

Yt ,

and then, for every initial state X0 = x and π ∈ P ,

1
n

n

∑
t=1

[C(Xt−1)− g−Φ(Xt−1,At−1)] =
h(x)

n
− h(Xn)

n
+

1
n

n

∑
t=1

Yt , Pπ
x -a.s. ,

where the equality Pπ
x [X0 = x] = 1 was used; from this point, (3.34) follows directly

from Theorem 3.5.1. ��
Proof of Theorem 3.4.1. From Definitions 3.6.1 and (3.8), it follows that Φ(x, f (x))=
0 for every state x. Thus, using that At = f (Xt ) when the system is running under
the policy f , it follows that, for every initial state x and t ∈ IN, the equality
Φ(Xt ,At) =Φ(Xt , f (Xt )) = 0 holds with probability 1 with respect to P f

x . Therefore,
the criterion (3.33) is satisfied by f , and then, Lemma 3.6.1 yields that the policy f
is sample-path average optimal. ��

3.7 Approximations Schemes and Sample-Path Optimality

In the remainder of this chapter the sample-path optimality of Markovian policies is
analyzed. The interest in this problem stems from the fact that an explicit solution
(g,h(·)) of the optimality equation (3.7) is seldom available, and in this case,
the sample-path average optimal policy f in (3.8) cannot be determined. When
a solution of the optimality equation is not at hand, an iterative approximation
procedure is implemented and (i) approximations {(gn,hn(·))}n∈IN for (g,h(·))
are generated, and (ii) a stationary policy fn is obtained from (gn,hn(·)). Such a
policy fn is “‘nearly optimal”’ in the sense that, for each fixed x, the convergence
Φ(x, fn(x))→ 0 occurs as n → ∞, and the next objective is to establish the sample-
path average optimality of the Markovian policy { fn}.
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Remark 3.7.1. Two procedures that can be used to approximate the solution of the
optimality equation and to generate a Markovian policy { fn} such that the fn’s are
nearly optimal are briefly described below; for details see, for instance, [1,9,11–13],
or [17].

(i) The discounted method. For each α ∈ (0,1), the total expected α-discounted
cost at the state x under π ∈ P is given by Vα(x,π) : = Eπ

x [∑∞
t=0 αtC(Xt ,At)],

whereas V ∗
α (x) : = infπ∈P Vα(x,π), x ∈ S, is the α-optimal value function,

which satisfies the optimality equation

Vα(x) = inf
a∈A(x)

[
C(x,a)+α ∑

y∈S

pxy(a)Vα(y)

]
, x ∈ S.

Now let {αn} ⊂ (0,1) be a sequence increasing to 1, and define

(gn,hn) : = ((1−αn)Vαn(z),Vαn(·)−Vαn(z))

and let the policy fn be such that

Vαn(x) =C(x, fn(x))+αn ∑
y∈S

pxy( fn(x))Vαn(y), x ∈ S. (3.35)

(ii) Value iteration. This procedure approximates the solution (g,h(·)) of the opti-
mality equation (3.7) using the total cost criterion over a finite horizon. For each
n ∈ IN\{0} let Jn(x,π) be the total cost incurred when the system runs during n
steps under policy π starting at x, that is, Jn(x,π) : = Eπ

x

[
∑n−1

t=0 C(Xt ,At)
]
, and

let J∗n (x) : = infπ∈P Jn(x,π) be the corresponding optimal value function; the
sequence {J∗n(·)} satisfies the relation

J∗n (x) = inf
a∈A(x)

[
C(x,a)+ ∑

y∈S

pxy(a)J
∗
n−1(y)

]
, x∈ S, n= 1,2,3, . . . , (3.36)

where J∗0 (·) = 0, so that the functions J∗n (·) are determined recursively, which is
an important feature of the method. The approximations to (g,h(·)) are given by

(gn,hn(·)) : = (J∗n (z)− J∗n−1(z), J∗n (·)− J∗n(z)),

whereas the policy fn is such that fn(x) is a minimizer of the term within
brackets in (3.36):

J∗n (x) =C(x, fn(x))+ ∑
y∈S

pxy( fn(x))J
∗
n−1(y), x ∈ S, n = 1,2,3, . . .

Under Assumptions 3.2.1 and 3.4.1(i), the approximations (gn,hn(·)) generated
by the discounted method converge pointwise to (g,h(·)), and the policies fn in
(3.35) are nearly optimal in the sense that Φ(x, fn(x)) → 0 as n → ∞. Similar
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conclusions hold for the value iteration scheme if, additionally, the transition
law satisfies that

pxx(a)> 0, a ∈ A(x), x ∈ S;

this requirement can be avoided if the transformation by Schewitzer (1971) is
applied to the transition law and the value iteration method is applied to the
transformed model; see, for instance, [7] or [8].

The following theorem establishes a sufficient condition for the sample-path
optimality of a Markovian policy.

Theorem 3.7.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold, and let f = { ft}
be a Markov policy such that

lim
n→∞

Φ(x, fn(x)) = 0, x ∈ S, (3.37)

where Φ is the discrepancy function introduced in Definition 3.6.1. In this case, the
policy f is sample-path average optimal; see Definition 3.4.1.

The proof of this result relies on some consequences of Theorem 3.4.1 which
will be analyzed below.

3.8 Tightness and Uniform Integrability

This section contains the technical preliminaries that will be used to establish
Theorem 3.7.1. The necessary results are concerned with properties of the sequence
of empirical measures, which is now introduced.

Definition 3.8.1. The random sequence {νn} of empirical measures associated with
the state-action process {(Xt ,At)} is defined by

νn(B) : =
1
n

n−1

∑
t=0

δ(Xt ,At)(B), B ∈ B(IK), n = 1,2,3, . . . ,

where δk stands for the Dirac measure concentrated at k, that is, δk(B) = 1 if k ∈ B
and δk(B) = 0 when k 
∈ B.

Notice that this specification yields that, for each positive integer n and
D ∈ C (IK),

νn(D) : =

∫
IK

D(k)νn(dk) =
1
n

n

∑
t=1

D(Xt ,At) .
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The main result of this section concerns the asymptotic behavior of {νn} and
involves the following notation: Given a set S̃ ⊂ S, for each D ∈ C (IK), defines
the new function DS̃ ∈ C (IK) as follows:

DS̃(x,a) : = max{|D(x,a)|,1}IS̃(x), (x,a) ∈ IK. (3.38)

Theorem 3.8.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold and let x ∈ S and
π ∈ P be arbitrary but fixed. In this context, for each ε > 0, there exists a finite set
Fε ⊂ S such that

limsup
n→∞

νn(CS\Fε )≤ ε Pπ
x -a.s.; (3.39)

see (3.38).

Remark 3.8.1. For a positive integer r, let F1/r be the set corresponding to ε = 1/r
in the above theorem and define the event Ω ∗ by

Ω ∗ : =
∞⋂

r=1

[
limsup

n→∞
νn(CS\F1/r

)≤ 1/r

]
.

(i) Let the set IKr ⊂ IK be given by

IKr = {(x,a) ∈ IK |x ∈ F1/r}. (3.40)

With this notation, IKr is a compact set, since F1/r is finite, and (3.38) yields
that CS\F1/r

(x,a)≥ 1 for (x,a) ∈ IK\ IKr, so that

νn(IK\ IKr)≤
∫

IK
CS\F1/r

(k)νn(dk) = νn(CS\F1/r
),

and then,

limsup
n→∞

νn(IK\ IKr)≤ limsup
n→∞

νn(CS\F1/r
).

Consequently, along a sample trajectory {(Xt ,At)} in Ω ∗ the corresponding
sequence {νn} satisfies limsupn→∞ νn(IK \ IKr) ≤ 1/r for every r > 0 so that
{νn} is tight.

(ii) Given a probability measure μ defined in B(IK), a function D ∈ C (IK) is
integrable with respect to μ if, and only if, for each positive integer r, there
exists a compact set ĨKr such that

∫
IK\ĨKr

|D(k)|μ(dk)≤ 1/r.
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Notice now that (3.38) and (3.40) yield that CS\F1/r
(x,a)≥ |C(x,a)| for (x,a)∈

IK\ IKr, so that

∫
IK\IKr

|C(k)|νn(dk)≤
∫

IK\IKr

CS\F1/r
(k)νn(dk) = νn(CS\F1/r

).

Thus,

limsup
n→∞

∫
IK\IKr

|C(k)|νn(dk)≤ limsup
n→∞

νn(CS\F1/r
),

and then, along a sample trajectory in Ω ∗,

limsup
n→∞

∫
IK\IKr

|C(k)|νn(dk)≤ 1/r, r = 1,2,3, . . . ,

showing that the cost function C is uniformly integrable with respect to the
family {νn} of empirical measures.

(iii) Since Theorem 3.8.1 yields that Pπ
x [Ω ∗] = 1 for every x ∈ S and π ∈ P , the

previous discussion can be summarized as follows: Regardless of the initial
state and the policy used to drive the system, the following assertions hold
with probability 1: (a) The sequence {νn} is tight and (b) the cost function is
uniformly integrable with respect to {νn}.

The proof of Theorem 3.8.1 relies on the following lemma.

Lemma 3.8.1. Let ε > 0 be arbitrary, and suppose that Assumptions 3.2.1 and 3.4.1
hold, and let gS\F be the optimal expected average cost associated with the cost
function −CS\F, that is,

gS\F : = inf
π∈P

J(x,π ,−CS\F), (3.41)

where J(x,π ,−CS\F) is given by the right-hand side of (3.2) with the function−CS\F
instead of C. With this notation, there exists a finite set F ⊂ S such that

gS\F ≥−ε . (3.42)

Proof. Let {Fk} be a sequence of finite subsets of S such that

Fk ⊂ Fk+1, k = 1,2,3, . . . , and
∞⋃

k=1

Fk = S; (3.43)

from (3.38), it follows that −CS\Fk
↗ 0 as k ↗ ∞, a property that via (3.41)

immediately yields that

gS\Fk
≤ gS\Fk+1

≤ 0, k = 1,2,3, . . . ,
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so that {gS\Fk
} is a convergent sequence; set

ḡ : = lim
k→∞

gS\Fk
. (3.44)

To establish the desired conclusion, it is sufficient to show that

ḡ = 0,

since in this case (3.42) occurs when F is replaced by Fk with k large enough.
To verify the above equality, let � be a Lyapunov function for the function C
and notice that Lemma 3.3.3 yields that, for some constant c > 0, the mapping
c� is a Lyapunov function for −CS\Fk

, and then, this last function also satisfies
Assumption 3.4.1. Thus, from Lemma 3.3.2 applied to the cost function CS\Fk

, it
follows that there exists a function hk : S → IR as well as a policy fk ∈ F such that

gS\Fk
+ hk(x) =−CS\Fk

(x, fk(x))+ ∑
y∈S

pxy( fk(x))hk(y), x ∈ S, (3.45)

where hk(·)≤ c�(·), that is,

hk(·) ∈ ∏
x∈S

[c�(x), c�(x)]. (3.46)

Using the fact that the right-hand side of this inclusion as well as F are compact
metric spaces, it follows that there exists a sequence {kr} of positive integers
increasing to ∞ such that the following limits exist:

f̄ (x) : = lim
r→∞

fkr (x), h̄(x) : = lim
r→∞

hkr(x), x ∈ S.

Next, observe that (3.38) and (3.43) together yield that for each state x,

CS\Fk
(x, fk(x)) = 0 when k is large enough,

whereas, via Proposition 2.18 in p. 232 of [18], the continuity property in Definition
3.3.1(ii) and (3.46) leads to

lim
r→∞ ∑

y∈S

pxy( fkr (x))hkr(y) = ∑
y∈S

pxy( f̄ (x))h̄(y).

Replacing k by kr in (3.45) and taking the limit as r goes to ∞ in both sides of the
resulting equation, (3.44) and the three last displays allow to write that

ḡ+ h̄(x) = ∑
y∈S

pxy( f̄ (x))h̄(y), x ∈ S.
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Starting from this relation, an induction argument yields that (n + 1)ḡ + h̄(x) =

E f̄
x [h̄(Xn+1)] for every x ∈ S and n ∈ IN, that is,

ḡ =
1

n+ 1
E f̄

x [h̄(Xn+1)]− h̄(x)
n+ 1

,

and taking the limit as n goes to ∞, the inclusion (3.46) and Lemma 3.3.1(ii) together
imply that ḡ = 0; as already mentioned, this completes the proof of the lemma. ��
Proof of Theorem 3.8.1. Recalling that Assumption 3.4.1 is in force, let � be a
Lyapunov function for the cost function C such that �β admits a Lyapunov function
for some β > 2. As already noted, for some constant c > 0, the function c� is a
Lyapunov function for −CS\F , a fact that immediately implies that this last function
also satisfies Assumption 3.4.1. Therefore, applying Theorem 3.4.1 with the cost
function −CS\F instead of C, it follows that for every x ∈ S and π ∈ P ,

liminf
n→∞

νn(−CS\F)≥ gS\F , Pπ
x -a. s. ,

and selecting F as the finite set in Lemma 3.8.1, it follows that

liminf
n→∞

νn(−CS\F)≥−ε, Pπ
x -a. s. ,

a statement that is equivalent to (3.39). ��

3.9 Proof of Theorem 3.7.1

In this section a proof of the sample-path average optimality of a Markovian
policy satisfying condition (3.37) will be presented. The argument combines
Theorem 3.8.1 with the following lemma.

Lemma 3.9.1. Let the Markovian policy f = { ft} be such that (3.37) holds, and
consider a fixed sample trajectory {(Xt ,At)} along which properties (i) and (ii)
below hold:

(i) The sequence {νn} of empirical measures is tight.
(ii) At = f (Xt) for all t ∈ N.

In this context, if ν∗ is a limit point of the sequence {νn} in the weak
convergence topology, then ν∗ is supported on

IK∗ = {(x,a) ∈ IK |Φ(x,a) = 0}, (3.47)

that is,

ν∗(IK∗) = 1.
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Proof. For each x ∈ S and ε > 0 defines the set

IK(x,ε) = {(x,a) |a ∈ A(x) and Φ(x,a)> ε},

which is an open subset of IK, since the function Φ is continuous and S is endowed
with the discrete topology. In this case,

δ(Xt ,At )(IK(x,ε)) = δ(Xt , ft (Xt ))(IK(x,ε)) = 1 ⇐⇒ Xt = x and Φ(x, ft (x))> ε.

Therefore, using condition (3.37), it follows that there exists an integer N > 0
such that

δ(Xt ,At)(IK(x,ε)) = 0, t > N,

so that

νn(IK(x,ε)) =
1
n

n−1

∑
t=0

δ(Xt ,At )(IK(x,ε)) =
1
n

N

∑
t=0

δ(Xt , ft (Xt ))(IK(x,ε)), n > N,

by Definition 3.8.1, and it follows that νn(IK(x,ε)) → 0 as n → ∞. Therefore,
recalling that IK(x,ε) is an open subset of IK, the fact that ν∗ is a limit point of
the sequence {νn} implies that

ν∗(IK(x,ε)) ≤ limsup
n→∞

νn(IK(x,ε)) = 0, x ∈ S, ε > 0

[2]. Finally, using that IK\ IK∗ =
⋃

x∈S, r∈IN IK(x,1/r) (because of the nonnegativity
of Φ), the above inequality leads to ν∗(IK\ IK∗) = 0. ��
Proof of Theorem 3.7.1. It will be proved that

the discrepancy function Φ satisfies Assumption 3.4.1. (3.48)

Assuming that this assertion holds, the conclusion of Theorem 3.7.1 can be obtained
as follows: Let f = { ft} be a Markovian policy satisfying the property (3.37) and,
for S̃ ⊂ S, define

Φ(S̃)(x,a) : = Φ(x,a)IS̃(x), (x,a) ∈ IK, (3.49)

so that the equality

Φ = Φ(S̃) +Φ(S\S̃) (3.50)

is always valid. Next, given ε > 0, observe the following facts (a) and (b):

(a) The property (3.48) allows to apply Theorem 3.8.1 with the cost function C
replaced by Φ to conclude that there exists a finite set Fε ⊂ S such that for each
x ∈ S, the relation limsupn→∞ νn(ΦS\Fε ) ≤ ε occurs almost surely with respect
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to Pf
x; since (3.49) and (3.38) together imply that Φ(S\Fε) ≤ΦS\Fε , it follows that

limsup
n→∞

νn(Φ(S\Fε ))≤ ε Pf
x-a.s. (3.51)

(b) Let {(Xt ,At)} be a fixed sample trajectory along which

(i) {νn} is tight, and
(ii) At = ft (Xt).

Now select a sequence {nk} of positive integers such that limk→∞ nk = ∞ and

lim
k→∞

νnk(Φ(Fε )) = limsup
n→∞

νn(Φ(Fε )).

Because of the tightness of {νn}, taking a subsequence—if necessary—it can
be assumed that {νnk} converges weakly to some ν∗ ∈ IP(IK), and in this case,
observing that Φ(Fε ) is continuous and has compact support (since Fε ⊂ S is finite),
it follows that

lim
k→∞

νnk(Φ(Fε )) = ν∗(Φ(Fε ));

on the other hand, using that ν∗ is supported in the set IK∗ specified in (3.47), by
Lemma 3.9.1, and that ΦFε is null on that set (see (3.47) and (3.49)), it follows
that ν∗(ΦFε ) = 0. Combining this equality with the two last displays, it follows
that limsupn→∞ νn(Φ(Fε )) = 0 along a sample-path satisfying conditions (i) and
(ii) above. Observing that condition (i) holds almost surely with respect to Pf

x , by
Remark 3.8.1, and that Pf

x[At = ft (Xt)] = 1 for all t, it follows that

limsup
n→∞

νn(Φ(Fε )) = 0 Pf
x-a.s. ,

a relation that, combined with (3.50), (3.51) and the nonnegativity of Φ , yields that
the convergence limn→∞ νn(Φ) = 0 occurs with probability 1 with respect to Pf

x ,
and then, the policy f is sample-path average optimal, by Lemma 3.6.1. Thus, to
conclude the argument, it is sufficient to verify (3.48). To achieve this goal, let � be
a Lyapunov function for the cost functionC such that �β admits a Lyapunov function
for some β > 2, and recall that the solution (g,h(·)) of the optimality Equation (3.7)
satisfies

|h(·)| ≤ c�(·) (3.52)

for some c > 0, as well as h(z) = 0. Combining this last equality with the
specification of the discrepancy function, it follows that, for all (x,a) ∈ IK,

h(x) =C(x,a)− g−Φ(x,a)+∑
y
=z

pxy(a)h(y). (3.53)
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On the other hand, Lemma 3.3.3 yields that |C(·)− g| admits a Lyapunov function
of the form c1 � where c1 > 0 so that

c1 �(x)≥ |C(x,a)− g|+ 1+ ∑
y∈S, y
=z

pxy(a)c1 �(y);

multiplying both sides of this relation by a constant c2 satisfying

c2 c1 > c and c2 > 1, (3.54)

it follows that

c2c1 �(x)≥ c2|C(x,a)− g|+ c2+ ∑
y∈S, y
=z

pxy(a)c2c1 �(y),

and then,

c2c1 �(x)≥ |C(x,a)− g|+ 1+ ∑
y∈S, y
=z

pxy(a)c2c1 �(y).

Combining this inequality with (3.53), it is not difficult to obtain that

�̃(x)≥ 1+Φ(x,a)+ ∑
y∈S, y
=z

pxy(a)�̃(y), (x,a) ∈ IK, (3.55)

where �̃(·) : = c1c2�(·)−h(·)≥ 0 and the inequality follows from (3.52) and (3.54).
Recalling that Φ is nonnegative, the above display yields that that �̃ takes values in
[1,∞) and that �̃ satisfies the first requirement for being a Lyapunov function for
Φ; setting c̃ : = c1c2 + c > 0, (3.53) implies that �̃(·) ≤ c̃ �, and then, �̃ inherits the
second and third properties in Definition 3.3.1 from the corresponding ones of �.
Thus, �̃ is a Lyapunov function for Φ , and using that �̃β ≤ c̃β �β , it follows that �̃β

also admits a Lyapunov function, by Lemma 3.3.3. Thus, the statement (3.48) holds,
and as already mentioned, this concludes the proof of Theorem 3.7.1. ��
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