
Chapter 17
A Direct Approach to the Solution of Optimal
Multiple-Stopping Problems∗

Richard H. Stockbridge and Chao Zhu

17.1 Introduction

With the deregulation of the energy markets in the United States, options to purchase
electricity for a preset price have become an important risk-management tool; many
of these options allow the holder the opportunity to exercise it each day during the
contract period. In the world of water usage, rather than negotiate permanent sales
of water rights, owners negotiate contracts in which the other party may divert a
certain amount of water for other usage (such as from agricultural to urban), and
these contracts often allow more than one diversion. Some employee compensation
packages include stock options with the possibility of a number of reloads before
expiration. A common feature of these various contracts is the opportunity for a
decision-maker to act a finite number of times and receive some reward for each
action. Rather than tie our presentation to a particular application, we examine a
general formulation.

This chapter considers a broad class of optimal multiple-stopping problems, a
natural extension to optimal (single-) stopping problems. Though the extension
seems natural, there are nevertheless significant challenges to determining the value
and optimal stopping policies. Our objective is to demonstrate a tractable method of
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solution for models in which the distribution of the process is known. To establish
the problem, we assume X is a solution of the stochastic differential equation

dX(t) = μ(X(t))dt +σ(X(t))dW(t), X(0) = x (17.1)

in which W is a standard Brownian motion process and the drift and diffusion
coefficients are such that X takes values in an interval (x�,xr) ⊂ R. The decision-
maker may select up to N times (with N fixed) at which to receive a reward.
However, after each decision time, a lag of at least δ > 0 units of time (the refraction
period) must pass before the next decision to receive a reward is made; this time lag
increases the complexity of the problem. We assume the time horizon is T = ∞;
that is, there is no imposed limit on the time by which decisions must be made. Let
{τn : n = 1, . . . ,N} denote the decision times. Throughout this chapter, the subscript
will denote the number of remaining decisions, so τ1 is the last decision and τN is
the first. Note that for each i = 1, . . . ,N − 1, τi+1 < τi+1 + δ ≤ τi on the set where
τi+1 is finite. For i = 1, . . . ,N, let Ri : (x�,xr)→R denote the payoff function for the
ith last decision. Letting α > 0 denote the discount rate, the objective is to maximize
the expected payoff

N

∑
i=1

E
[
e−ατi I{τi<∞}Ri(X(τi))

]
(17.2)

over all decision times τ1, . . . ,τN satisfying the refraction period condition.
As indicated in the first paragraph, recent interest in multiple-stopping problems

has developed due to deregulation and new types of options, though multiple-
stopping problems have previously been studied in sequential analysis (see, e.g.,
Haggstrom [7]). Villinski [14] discusses contracts involving multiple decisions for
water rights from an economic point of view and describes a dynamic programming
formulation for the valuation of these contracts. From a more mathematical point of
view, Thompson [13] examines a discrete-time binomial tree model for the evolution
of the process and concentrates on developing a Monte Carlo method to value a path-
dependent contingent claim. Zeghal and Mnif [15] consider the valuation of swing
options for Lévy models using Snell envelopes and illustrates this approach using
Monte Carlo techniques on a put option having a maturity time of 1. Carmona and
Touzi [4] analyze the valuation of a perpetual put swing option with infinitely many
exercises in a continuous-time Black-Scholes market. The paper independently
develops a theoretical foundation to the solution using Snell envelopes and obtains
exercise rules by discrete approximation. The paper by Carmona and Dayanik [3]
examines the same type of problem for a more general one-dimensional diffusion
model having a more general reward function and determines the solution using
a generalized convex function approach. Dai and Kwok [5] examine the pricing
of reload and shout options in which the refraction period models the time until
the employee is vested. The paper uses a Black-Scholes model having continuous
dividend rate, approaches the solution using a variational inequality which is then
approximately solved using a binomial tree model and dynamic programming.
Interestingly, the authors relate the reload option to a lookback feature of the
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stock price process. Aleksandrov and Hambly [1] use a dual approach to analyze
multiple exercise options under constraints, though the formulation allows multiple
exercises at the same time (no refraction period). The authors solve the problem
by considering the marginal value of one additional exercise time. Kobylanski and
Quenez [12] discuss the general theory of multiple-stopping time problems using
Snell envelopes.

This paper seeks a numerically tractable approach to the solution of multiple-
stopping problems. It considers the same model and general reward as Carmona
and Dayanik [3] though it approaches the analysis of the problem using a quite
different method. As in several of the aforementioned papers, the multiple-stopping
problem is reduced to an iterated sequence of N single-stopping problems through
a conditioning argument. This paper then utilizes the results in Helmes and
Stockbridge [8] to characterize the value of each single-stopping problem in two
ways. This characterization enables the value function for each single-stopping
problem to be determined in closed form for many payoff functions. We also employ
the argument in Helmes and Stockbridge [9] in which we first obtain an upper
bound on the value and then identify a stopping rule which achieves the bound.
The problem formulation in terms of stochastic processes is given in Sect. 17.2
along with the reduction to the sequence of single-stopping problems. Section 17.3
then summarizes the approaches to determining the value function of Helmes and
Stockbridge [8, 9]. The tractability of this method is then illustrated in Sect. 17.4.

The current paper is similar to Helmes and Stockbridge [10] in that both papers
consider a finite number of decision times at which a reward is earned and analyze a
sequence of single-stopping problems by solving nonlinear optimization problems.
The significant difference is the requirement in this paper that successive decisions
to stop must wait at least the length of the refraction period. The time lag increases
the complexity of the analysis in a nontrivial way.

17.2 Problem Formulation

We begin with a precise formulation of the class of multiple-stopping problems
examined in this chapter. We assume the coefficients μ and σ of (17.1) are con-
tinuous and are such that X takes values in some interval (x�,xr) ⊆ R. The process
X has generator A given by A f (x) = (1/2)σ2(x) f ′′(x) + μ(x) f ′(x)) operating on
f ∈ C2(x�,xr) (see [2, II.9, p. 17] for sufficient conditions).Further assume X is a
weak solution of (17.1) while X(t) ∈ (x�,xr) (see Ethier and Kurtz [6, Sect. 5.3,
p. 291] for details) and that the solution to (17.1) is unique in distribution. This
existence and uniqueness imply that the martingale problem for A is well posed and
hence that X is a strong Markov process (see [6, Theorem 4.4.2, p. 184]). We denote
the filtration for the weak solution by {Ft}. Throughout this chapter we assume
x� < x < xr. We emphasize that x will always represent the initial position for the
multiple-stopping problem in this chapter.

A key additional assumption on the coefficients is required, which we separate
out for later reference.
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Condition 17.2.1. The eigenvalue problem A f (·) = α f (·) has both a positive,
strictly decreasing solution φ and a nonnegative, strictly increasing solution ψ .

The conditions assumed in this paper are sufficient to imply Condition 17.2.1 (see
Borodin and Salminen [2, II.10, p. 18,19]). The functions φ and ψ depend on
the discount factor α; since we assume the discount factor is fixed, we omit this
dependence from the notation.

Before proceeding further, we briefly digress to consider the boundary points.
We restrict the models to those for which x� is either an entrance-not-exit boundary
point or a natural boundary point [2, II.10, p. 14–19]. The analysis also applies when
x� is an exit boundary point, but the expressions are slightly more complicated, so we
have chosen this restriction on the type of boundary point for clarity of presentation.
When x� is either an entrance or natural boundary, X will almost surely never reach
x� in finite time.The distinction between entrance and natural boundaries is that the
process will immediately enter the interval (x�,xr) when x = x� is an entrance point
(we assume x > x�), after which it will never return to the boundary, and thus x�
is in the state space of the process. This behavior does not happen with a natural
boundary point so such an x� will not be in the state space of X . We place the same
restrictions on the model for xr. In the event either x� = −∞ or xr = ∞, we require
these to be natural boundary points with the implication that the process X will not
“explode to ∞ or −∞” in finite time.

The importance of the type of boundary points for this chapter is the properties
that ψ(x�)≥ 0 and φ(x�+)=∞ [2, pp. 14–19]. When x� =−∞, the natural boundary
point assumption implies φ(−∞) = ∞ and ψ(−∞) = 0. Symmetric properties hold
for xr with the roles of φ and ψ reversed.

The reward earned by the decision-maker is the sum of the expected discounted
payoffs at each decision time given in (17.2). Denote the optimal value by V (N)(x),
in which the superscript indicates the number of decisions. We assume that for
each i = 1, . . . ,N, the reward function Ri : (x�,xr) 
→ R is upper-semicontinuous,
is positive for some y ∈ (x�,xr), and satisfies

lim
y↘x�

Ri(y)
φ(y)

= 0, and lim
y↗xr

Ri(y)
ψ(y)

= 0. (17.3)

We further assume that τ1, . . . ,τN are {Ft}-stopping times satisfying 0≤ τN , and for
each i = 1, . . . ,N −1, on the set {τi+1 < ∞} the stopping times satisfy τi+1 < τi+1 +
δ ≤ τi. Let AN denote the set of these N-tuples of stopping times. Since the multiple-
stopping problem will be reduced to a sequence of single-stopping problems, it will
be beneficial to denote the set of nonnegative (single-) stopping times by A1, in
which the subscript denotes that the set consists of stopping times and not N-tuples
of stopping times.

We now present the key conditioning argument which reduces (17.2) to a
sequence of single-stopping problems. The argument uses the strong Markov
property so it is helpful to designate the expectation relative to the initial position of
the process X using a subscript. It is necessary to develop some additional notation.
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Set Ṽ (1)
0 ≡ 0 and define the “modified” payoff function R̃1 = R1 = R1 + Ṽ (1)

0 for
the reward received upon making the final decision. Define the corresponding value

function V (1)
1 by

V (1)
1 (y) = sup

τ∈A1

Ey[e−ατI{τ<∞}R̃1(X(τ))], y ∈ (x�,xr).

Proceeding recursively, for i = 2, . . . ,N and y ∈ (x�,xr), define Ṽ (1)
i (y) = Ey

[e−αδV (1)
i (X(δ ))], the modified payoff function R̃i = Ri + Ṽ (1)

i−1 and

V (1)
i (y) = sup

τ∈A1

Ey[e−ατ I{τ<∞}R̃i(X(τ))]. (17.4)

Theorem 17.2.1. The value of optimal multiple-stopping problem of maximiz-
ing (17.2) over decision times (τ1, . . . ,τN) ∈ AN at which to stop the process X
satisfying (17.1) is obtained through recursion by solving the N single-stopping

problems; that is, V (N)(x) =V (1)
N (x).

Proof. Consider a single generic term of the form

Ex
[
e−ατi I{τi<∞}g(X(τi))

]
,

in which g is some measurable function such that the integrand is integrable
and τi is one of the stopping times in an N-tuple (τ1, . . . ,τN) ∈ AN in which
i ∈ {1, . . . ,N − 1}. On the set {τi+1 < ∞}, notice that τi ≥ τi+1 +δ so we can define
τ̃i = τi − τi+1 − δ and have τ̃i ∈ A1, where the stopping times are relative to the
filtration {Gt} =

{
Fτi+1+t

}
. Using the strong Markov property of X in the third

equality below yields

Ex
[
e−ατi I{τi<∞}g(X(τi))

]

= Ex

[
Ex

[
e−ατi I{τi<∞}g(X(τi))

∣∣
∣
∣Fτi+1+δ

]]

= Ex

[
e−α(τi+1+δ )I{τi+1<∞}Ex

[
e−ατ̃i I{τ̃i<∞}g(X(τi+1 + δ + τ̃i))

∣
∣
∣∣Fτi+1+δ

]]

= Ex

[
e−α(τi+1+δ )I{τi+1<∞}EX(τi+1+δ )

[
e−ατ̃i I{τ̃i<∞}g(X(τ̃i))

]]
.

The key to the tractability of the problem lies in a second conditioning argument.
Observe that for any integrable random variable Y ,

Ex
[
EX(τi+1+δ )[Y ]

]
= Ex

[
Ex[EX(τi+1+δ )[Y ]|Fτi+1 ]

]
= Ex

[
EX(τi+1)[EX(δ )[Y ]]

]
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and thus

Ex
[
e−ατi I{τi<∞}g(X(τi))

]

= Ex

[
e−ατi+1I{τi+1<∞}EX(τi+1)

[
e−αδ

EX(δ )
[
e−ατ̃i I{τ̃i<∞}g(X(τ̃i))

]]]
.

Now specify i = 1 and g = R1. For i = 1, . . . ,N, define the set
AN,i = {τi : (τ1, . . . ,τN) ∈ AN}. Taking the supremum over τ1 ∈ AN,1 of the left-
hand side and then over τ2 ∈ AN,2 and τ̃1 ∈ A1 on the right-hand side produces
one inequality, whereas taking the suprema in the opposite order yields the opposite
inequality and hence

sup
τ1∈AN,1

Ex
[
e−ατ1I{τ1<∞}R1(X(τ1))

]

= sup
τ2∈AN,2

Ex

[
e−ατ2I{τ2<∞}EX(τ2)

[
e−αδV (1)

1 (X(δ ))
]]

= sup
τ2∈AN,2

Ex

[
e−ατ2I{τ2<∞}Ṽ

(1)
1 (X(τ2))

]
. (17.5)

An important reduction occurs when we consider the two successive terms
of (17.2) involving τ1 and τ2. Observe

sup
τ1 ∈ AN,1,

τ2 ∈ AN,2

Ex

[
e−ατ2I{τ2<∞}R2(X(τ2))+ e−ατ1I{τ1<∞}R1(X(τ1))

]

= sup
τ2∈AN,2

Ex
[
e−ατ2I{τ2<∞}

(
R2(X(τ2))+ Ṽ1(X(τ2))

)]

= sup
τ2∈AN,2

Ex
[
e−ατ2I{τ2<∞}R̃2(X(τ2))

]

in which we recall R̃2(y) = R2(y)+ Ṽ1(y). Using induction, we obtain

V (N)(x) = sup
(τ1,...,τN )∈AN

N

∑
i=1

Ex[e
−ατi I{τi<∞}Ri(X(τi))]

= sup
τN∈AN,N

Ex[e−ατN I{τN<∞}R̃N(X(τN))]

= V (1)
N (x). �

The implications of Theorem 17.2.1 is that the N-stopping problem can be solved
using an iteration of three steps. First, obtain the value Vi for the successor stopping
time as a function of the initial position y; that is, determine the successor value



17 A Direct Approach to the Solution of Optimal Multiple-Stopping Problems 289

function. Next, find the expected discounted value (discounted by the refraction
time δ ) of this function evaluated at the new position X(δ ) of the process. Finally,
add this function to the predecessor (more decisions to make) payoff function Ri+1

to form a new payoff function for the predecessor stopping problem, leading again
to a single-stopping problem.

Thus, the main tasks to solve the multiple-stopping problem are to determine
the sequence of single-step value functions and to utilize the distribution of X(δ ),
parametrized by an arbitrary initial position y ∈ (x�,xr).

17.3 Solution Approaches for Single-Stopping Problems

The single-stopping problem seeks to maximize

J(τ;x) := Ex[e−ατ I{τ<∞}R(X(τ))] (17.6)

over the set of all {Ft}-stopping times τ in which X is a weak solution of (17.1). Let
A denote this set of stopping times and define V (x) = supτ∈A J(τ;x). This section
briefly states the line of reasoning in Helmes and Stockbridge [9] and then recalls
the results in Helmes and Stockbridge [8]. The first method of solution identifies
an upper bound on the value with the goal of identifying a stopping time that
achieves this value. The second approach involves maximizing the expected reward
over all two-point stopping rules, whereas the final technique utilizes duality theory.
We wish to emphasize that the optimal stopping problem is solved for a single initial
value x, rather than seeking the value function, though the structure of the values is
such that the value function can often be determined.

17.3.1 Linear Programming Imbedding

A common imbedding of the stochastic problem underlies these methods. We briefly
describe the derivation of the linear program and then, in the next sections, utilize
this in two related ways. Applying Itô’s formula to e−αt f (X(t)) for f ∈ C2

c (x�,xr)
yields

e−αt f (X(t)) = f (x)+
∫ t

0
e−αs[A f −α f ](X(s))ds+

∫ t

0
e−αs f ′(X(s))dW (s).

For any τ ∈ A , the optional sampling theorem indicates that

e−α(t∧τ) f (X(t ∧ τ))− f (x)−
∫ t∧τ

0
e−αs[A f −α f ](X(s))ds
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is a mean 0 martingale, so taking expectations then letting t → ∞ establishes
Dynkin’s formula

E[e−ατ I{τ<∞} f (X(τ))]−E

[∫ τ

0
e−αs[A f −α f ](X(s))ds

]
= f (x). (17.7)

Defining ντ to be the discounted (stopping) distribution of X(τ) and μ0 to be the
expected, discounted occupation measure of X over the interval [0,τ], (17.7) can be
written as

∫
f dντ −

∫
[A f −α f ]dμ0 = f (x) and the single-stopping objective func-

tion (17.6) becomes
∫

Rdντ . The optimal stopping problem is therefore imbedded
in the infinite-dimensional linear program

⎧
⎪⎨

⎪⎩

Maximize
∫

Rdντ

Subject to
∫

f dντ −
∫
[A f −α f ]dμ0 = f (x), ∀ f ∈C2

c (x�,xr).
(17.8)

We note that the variables in this linear program are the measures ντ and μ0 and that
ντ arises from the stopping time τ so is the decision variable.

17.3.2 Achieving an Upper Bound

A first auxiliary linear program is obtained by limiting the constraints to a single
test function. One implication is that the feasible set of measures may be larger and
hence the value of the auxiliary problem gives an upper bound for (17.8). We may
take f = ψ in (17.8) (see [9] for details justifying the use of ψ as a test function
since ψ �∈C2

c (x�,xr)). The benefit of this choice is that Aψ −αψ ≡ 0 so the integral
with respect to the occupation measure μ0 drops from the constraints. Notice the
constraint can be written as

∫
ψ/ψ(x)dντ = 1,

so the integrand forms the density for a probability measure ν̃τ on (x�,xr).

Proposition 17.3.1. Assume X is a weak solution of (17.1) and Condition 17.2.1 is
satisfied. Let R satisfy the conditions in Sect. 17.2. Then

V (x)≤ sup
y∈(x�,xr)

R(y)
ψ(y)

·ψ(x).

In addition, if limy↘x� R(y)/ψ(y) = 0, then there exists a maximizer y∗ and τy∗ is an
optimal stopping rule when x ≤ y∗.

Proof. Examining the objective function, we have

∫
R(y)ντ (dy) =

∫
[R(y)ψ(x)/ψ(y)] ν̃τ(dy)≤ sup

y∈(x�,xr)

(R(y)/ψ(y)) ·ψ(x).
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The conditions on R imply the existence of a maximizer y∗ of R(y)/ψ(y). It is well
known (see [2]) that Ex[e

−ατy∗ ] = ψ(x)/ψ(y∗) when x ≤ y∗, so this stopping rule
achieves the upper bound. �

It will be helpful to note that when R is differentiable, an interior optimizer for
the function R(y)/ψ(y) occurs where ψ(y)R′(y)−ψ ′(y)R(y) = 0. This necessary
optimality condition implies the elasticities of the function ψ , and the payoff
function R must be the same at an optimizing level.

17.3.3 Maximization Over Two-Point Hitting Rules

The previous approach is sufficient when the structure of the problem is such that
stopping to the right of the initial position is optimal. A second auxiliary problem
provides a general solution and is also obtained from (17.8), this time by limiting
the test functions to the pair φ and ψ .

Consider points a and b such that x� < a ≤ x ≤ b < xr but a < b. Define τa =
inf{t ≥ 0 : X(t) = a} and τb similarly. Define τa,b = τa ∧ τb. The payoff associated
with the decision rule τa,b is

J(τa,b;x) = R(a) · φ(x)ψ(b)−φ(b)ψ(x)
φ(a)ψ(b)−φ(b)ψ(a) +R(b) · φ(a)ψ(x)−φ(x)ψ(a)

φ(a)ψ(b)−φ(b)ψ(a)

= R(a)ψ(b)−R(b)ψ(a)
φ(a)ψ(b)−φ(b)ψ(a) ·φ(x)+ R(b)φ(a)−R(a)φ(b)

φ(a)ψ(b)−φ(b)ψ(a) ·ψ(x). (17.9)

Several observations are helpful. First, the fractional terms in the first expressions
of (17.9) are the masses of ντa,b . Next, when x = a, the expression for J(τa,b;x) =
R(a) and similarly for x = b. This agrees with one’s intuition that stopping occurs
immediately resulting in a non-discounted payoff. Also when holding b > x fixed
and letting a → x�, the fractional terms in the first expression converge to 0 and
ψ(x)/ψ(b) = E[e−ατb ], respectively, and hence J(τa,b;x) → J(τb;x). Similarly,
when b → xr with a fixed, J(τa,b;x) → J(τa;x). Finally, by examining the second
expression of (17.9), one observes that, as a function of x, the value of J(τa,b;x) is
continuous on (a,b).

Proposition 17.3.2. Assume X is a weak solution of (17.1) and Condition 17.2.1 is
satisfied. Let R satisfy the conditions in Sect. 17.2. Then

V (x) = sup
a≤x≤b

J(τa,b;x).

Moreover, there exist a∗,b∗ ∈ [x�,xr] such that J(τa∗,b∗ ;x) = V (x); that is, τa∗,b∗ is
an optimal stopping rule.

When a∗ = x�, the two-point hitting rule is actually a one-point hitting rule
at b∗ and hence τb∗ is an optimal stopping time. Similar comments apply when
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b∗ = xr. We observe that it will never occur that both a∗ = x� and b∗ = xr since, by
assumption on the model, the process will never hit either x� or xr so the “stopping”
time τx�,xr = ∞ a.s. and the value is 0, but a positive value can be obtained by
choosing to stop at a point where R is strictly positive.

17.3.4 Minimization of α-Harmonic Functions

As indicated previously, to establish the optimality of a two-point hitting rule in
[8], the stochastic problem is imbedded in an infinite-dimensional linear program,
and an upper bound is obtained by restricting the constraints (and increasing the
feasible set). A dual linear program to this auxiliary linear program is also derived
for which it is easy to prove a weak duality result between the values of the linear
programs, with more involved arguments establishing strong duality [8]. As a result,
the optimal value can be obtained by solving the following two-dimensional linear
program:

⎧
⎨

⎩

Minimize c1φ(x)+ c2ψ(x)
c1φ(y)+ c2ψ(y)≥ R(y), ∀y ∈ (xl ,xr),

Subject to c1,c2 unrestricted.
(17.10)

We note that this problem involves minimizing a linear combination of the functions
φ and ψ of Condition 17.2.1 evaluated at the initial position of the process. To be
feasible, this linear combination is required to majorize the payoff function R.

A further observation will be helpful. As in Proposition 17.3.2, take a∗ and b∗
to be maximizers. Section 4.3 of [8] proves that when the payoff function R is
continuously differentiable in a neighborhood of a∗ and in a neighborhood of b∗,
then these are points which satisfy the principle of smooth pasting; namely,

{
c1φ(a) + c2ψ(a) = R(a)
c1φ ′(a) + c2ψ ′(a) = R′(a)

and

{
c1φ(b) + c2ψ(b) = R(b)
c1φ ′(b) + c2ψ ′(b) = R′(b).

(17.11)

To obtain this result, one analyzes the maximization over two-point stopping rules
and shows how to optimally select c1 and c2. Notice there are four equations in the
four variables a, b, c1, and c2.

It will be helpful to consider a particular case of smooth pasting more extensively.
Consider the situation in which it is optimal to stop immediately at the initial time;
this means that the smooth pasting conditions must be satisfied when a = x. In this
case, the coefficients c1 and c2 are easily determined to be

c1 =
ψ ′(x)R(x)−ψ(x)R′(x)
φ(x)ψ ′(x)−φ ′(x)ψ(x)

and c2 =
φ(x)R′(x)−φ ′(x)R(x)
φ(x)ψ ′(x)−φ ′(x)ψ(x)

. (17.12)



17 A Direct Approach to the Solution of Optimal Multiple-Stopping Problems 293

Notice, in particular, that c2 is always positive when R is positive and increasing and
similarly that c1 is always positive when R is positive and decreasing. Considering
further the case that R is positive and increasing, observe that the denominator of c1

in (17.12) is always positive, so c1 is positive when ψ ′(x)R(x)−ψ(x)R′(x)> 0, and
equals 0 when the same elasticity condition as in Sect. 17.3.2 is satisfied. Moreover,
comparing the numerator of c1 in (17.12) with the numerator of (R/ψ)′, we see that
c1 will be positive whenever R/ψ is strictly decreasing. A similar comment holds
for c2 when R is positive and decreasing by analyzing (R/φ)′.

Finally, recall that the optimal stopping problem is solved for a single initial value
x, rather than seeking the value function. But the structure of this approach typically
determines the value for initial positions in regions, and hence the value function
can be typically obtained through a limited number of optimizations. In fact, to
determine the value function, it is often easiest to use different methods for x in
different regions.

17.4 Drifted Brownian Motion

The process X satisfies dX(t) = μ dt +σ dW (t); that is, X(t) = x+ μt +σW (t), in
which μ ∈ R and σ ∈ R+ and the process takes values in R. It is easily verified

that φ(y) = eγ1y and ψ(y) = eγ2y, where γ1 = − μ
σ 2 −

√
μ2

σ 4 +
2α
σ 2 and γ2 = − μ

σ 2 +√
μ2

σ 4 +
2α
σ 2 . We note that γ1 < 0 < γ2 and that these values are in fact the roots of the

quadratic equation (σ2/2)y2 + μy−α = 0.
We consider a triple-stopping problem so assume N = 3 and we take Ri(y) =

y+ for i = 1,2,3; recall throughout the paper, the subscript denotes the number of
decisions that remain to be made. Proceeding in a recursive manner with the final

stopping decision, we must first determine the value function V (1)
1 (x).

Consider first the minimization approach to determining the value of this last
stopping problem. To be feasible, the α-harmonic function c1φ + c2ψ must lie
above the payoff function R1(y) = y+. For y �= 0, R1 is differentiable, and hence
we can apply the smooth pasting argument. Since both φ and ψ are strictly positive
functions, R1(x) = 0 for x < 0, and it is not possible to find a linear combination
c1φ + c2ψ which has c1φ(x) + c2ψ(x) = 0 and majorizes R1. Thus, the optimal
value is not 0, a fact that also follows directly from the observation that using a
stopping rule of τy0 , where R1(y0)> 0, yields a strictly positive value.

We next investigate whether it is possible to have a feasible α-harmonic function
that equals the payoff function at x when x > 0. The coefficients c1 and c2 must
satisfy

{
eγ1xc1 + eγ2xc2 = x,

γ1eγ1xc1 + γ2eγ2xc2 = 1.
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The solution to this linear system is

c1 =
γ2x− 1

(γ2 − γ1)eγ1x and c2 =
1− γ1x

(γ2 − γ1)eγ2x . (17.13)

Since R1 ≥ 0 and φ(y) = eγ1y and ψ(y) = eγ2y are both positive functions, to be
feasible the coefficients c1 and c2 must both be nonnegative. The coefficient c2 is
always positive since γ1 < 0 and x > 0. The coefficient c1, however, is only non-
negative when the initial value satisfies x ≥ 1/γ2. Thus, for x in this range, the value

of the single-optimal stopping problem is V (1)
1 (x) = x, and an optimal stopping rule

is to stop immediately, τ̃∗1 = τx.
Now consider an initial position x with x < 1/γ2. First we note that the

function c∗1φ(y) + c∗2ψ(y) := (γ2e)−1eγ2y, which is obtained using the coeffi-
cients (17.13) with x= 1/γ2, is feasible for the minimization problem. Now consider
c1,c2 > 0 such that c1φ(x) + c2ψ(x) < c∗2ψ(x). Simple algebra demonstrates that
c1φ(x)/ψ(x) < c∗2 − c2 and hence c∗2 − c2 > 0. Moreover, the inequality can
be rearranged to show c1 < (c∗2 − c2)ψ(x)/φ(x), and thus evaluating the new
α-harmonic function at 1/γ2, we have

c1φ(1/γ2)+ c2ψ(1/γ2) < (c∗2 − c2)
ψ(x)φ(1/γ2)

φ(x)
+ c2ψ(1/γ2)

= (c∗2 − c2)
[

φ(1/γ2)
φ(x) ψ(x)−ψ(1/γ2)

]
+ c∗2ψ(1/γ2)

< R1(1/γ2);

the final inequality follows from the facts that φ is strictly decreasing and ψ is
strictly increasing along with the observation that c∗2ψ(1/γ2) = R1(1/γ2). From this,
we see that no linear combination with positive coefficients and c1φ(x)+ c2ψ(x)<
c∗2ψ(x) is feasible for the minimization problem.

The above argument utilizes the minimization approach in both regions. Con-
sider now the upper bound method of Sect. 17.3.2. Maximizing h(y) := y+/ψ(y)
immediately results in a unique maximizer at y∗1 = 1/γ2 and a corresponding upper
bound of (γ2e)−1eγ2x. As noted in Proposition 17.3.1, this upper bound is achieved
by the stopping rule τ(1/γ2) when x ≤ 1/γ2.

The value function is therefore

V (1)
1 (x) =

{
(1/γ2)eγ2x−1, for x ≤ 1/γ2,

x, for x ≥ 1/γ2.

This value function is displayed in Fig. 17.1along with the payoff function R̃1(y) =
y+ (dotted). We also display the ratio R̃1/ψ ; notice one is able to observe the
ratio achieves its maximum at the location of the maximizer 1/γ2 ≈ 20.5 and the
function is strictly decreasing above this maximizer, confirming graphically that the
coefficient c1 of (17.12) will be positive and that it is optimal to stop immediately.
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TheFunction V1
(1)(x) TheFunction R1/y

a b

Fig. 17.1 The value function and ratio for final stopping problem; μ = σ = δ = 1, α = 0.05

The next stopping decision is the point at which one must take into account the

refraction period. Since we have V (1)
1 in explicit form, we can determine the function

Ṽ (1)
1 . Notice that, with initial position y, X(δ ) is N(y+μδ ,σ2δ )-distributed. Let Φ

denote the standard normal distribution function and set Φ = 1−Φ . Now, recalling
that (σ2/2)γ2

2 + μγ2 −α = 0,

Ṽ (1)
1 (y) = Ey[e

−αδV (1)
3 (X(δ ))]

=
∫ 1/γ2

−∞
(1/γ2)e

γ2z−1−αδ · (2πσ2δ )−1/2e−(z−y−μδ )2/(2σ 2δ ) dz

+

∫ ∞

1/γ2

ze−αδ · (2πσ2δ )−1/2e−(z−y−μδ )2/(2σ 2δ ) dz

= (1/γ2)e
γ2y−1 Φ

(
−y− μδ − γ2σ2δ + γ−1

2

σ
√

δ

)

+e−αδ (σ
√

δ/(2π)) e−(y+μδ−γ−1
2 )2/(2σ 2δ )

+e−αδ (y+ μδ ) Φ

(
−y− μδ + γ−1

2

σ
√

δ

)

.

It is easy to show that Ṽ (1)
1 (y)→ 0 as y →−∞ and that Ṽ (1)

1 is asymptotic to the line
z = e−αδ (y+ μδ ) as y goes to ∞.
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Now recall R̃2(y) = R2(y)+ Ṽ (1)
1 (y), and the second last decision time is chosen

to satisfy

J2(τ∗2 ;y) = sup
τ∈A1

Ey
[
e−ατ I{τ<∞}R̃2(X(τ))

]
.

The value of the modified payoff function R̃2(y) is asymptotic to (1/(γ2e))eγ2y as
y → −∞ (and hence converges to 0) and is asymptotically linear as y → ∞ with
asymptote z = (1+ e−αδ)y+ μδe−αδ . Examining the value R̃2(1/γ2), we have

R̃2(1/γ2)

ψ(1/γ2)
= (1/(γ2e))+ e−1Ṽ (1)

1 (1/γ2)> 1/(γ2e),

which implies the existence of some y∗2 ∈ (x�,xr) at which R̃2(y)/ψ(y) achieves
its maximum. Observe that since y∗2 is an interior maximizer, ψ(y∗2)R̃

′
2(y

∗
2) −

ψ ′(y∗2)R̃2(y∗2) = 0. Using the upper bound approach of Sect. 17.3.2 therefore implies

that for x ≤ y∗2, V (1)
2 (x) = eγ2(x−y∗2)R̃2(y∗2) and an optimal stopping rule is given

by τy∗2 .

We believe that when x > y∗2, an optimal value is obtained by stopping immedi-
ately. One way to verify this claim would be to show the existence of feasible c1 and
c2 such that the smooth pasting conditions (17.11) are satisfied with x= a. Recalling
the values c1 and c2 in (17.12), feasibility requires that ψ ′(x)R̃2(x)−ψ(x)R̃′

2(x)> 0
for x > y∗2, and since ψ ′(x) = γ2ψ(x), we must examine the function

γ2R̃2(y)− R̃′
2(y) = −e−αδ

[
(1− γ2y) eαδ +(1− γ2y− γ2αδ )Φ

(
y+μδ−γ−1

2
σ
√

δ

)

−γ2σ
√

δ/(2π) e−(y+μδ−γ−1
2 )2/(2σ 2δ )

]
. (17.14)

Note that γ2R̃(y
∗
2)− R̃′

2(y
∗
2) = 0 since y∗2 is an interior maximizer. At this point, the

dependence of the expression (17.14) on y is such that a general proof is not clear,
so numerical tractability becomes advantageous. Figure 17.2 displays the function
γ2R̃2 − R̃′

2 for a particular choice of parameters. Notice, in particular, for y > y∗2 the
values are positive and hence the value of c1 is also positive resulting in a feasible
solution to the minimization problem which has value R̃2(x). The value function

V (1)
2 is displayed in Fig. 17.2 as well for this choice of parameters.

Summarizing, the optimal value for the second last single-stopping problem is

V (1)
2 (x) =

{
R̃2(y∗2)e

γ2(x−y∗2), x ≤ y∗2,
R̃2(x), x > y∗2.

(17.15)

At this point, it is clear that determining closed-form expressions for the
maximizer and the value function is not possible. However, some progress can be
made theoretically, and one may also continue to employ numerical and graphical
techniques for particular parameters. The analysis of the third single-stopping
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The Function The Function V2 (x)
(1)

8

a b

Fig. 17.2 γ2R̃2 − R̃′
2 and V (1)

1 for the second stopping problem; μ = σ = δ = 1, α = 0.05

The Function R3 / y˜ The Function g2R3 – R3˜ ˜

a b

Fig. 17.3 Checking for optimality; μ = 1, σ = 1, α = 0.05

problem follows along the same line as for the second. In particular, one may show
that R̃3 is asymptotic to R̃2(y∗2)e

γ2(y−y∗2) as y → −∞ and has a linear asymptote as
y → ∞. Moreover, R̃3(y∗2)/ψ(y∗2) > R̃2(y∗2)e

−γ2y∗2 which implies the existence of
some finite y∗3 at which R̃3/ψ achieves its maximum. Therefore, the upper bound
approach establishes that the value function is R̃3(y∗3)e

γ2(y−y∗3) for y≤ y∗3. Figure 17.3
displays graphs of the ratio R̃3/ψ and the function γ2R̃3 − R̃′

3 to graphically verify
that the form of the value function is the same as (17.15).
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Fig. 17.4 Comparison of

value functions: V (1)
1 (dotted);

V (1)
2 (dashed); V (1)

3 (solid);
μ = 1, σ = 1, α = 0.05

All three value functions are displayed in Fig. 17.4 for comparison purposes.
In particular, one can notice the increase in the value functions as the number of
available decisions increases. Finally, we identify optimal decision times for the
original triple-stopping problem:

τ∗3 = inf{t ≥ 0 : X(t) ∈ [y∗3,∞)} ,
τ∗2 = inf{t ≥ τ∗3 + δ : X(t) ∈ [y∗2,∞)} ,
τ∗1 = inf{t ≥ τ∗2 + δ : X(t) ∈ [y∗1,∞)} ,

where the critical values of the stopping locations are y∗3 = 19.346, y∗3 = 19.888, and
y∗3 = 20.488, when μ = σ = δ = 1 and α = 0.05.

17.5 Concluding Remarks

This chapter demonstrates that multiple-stopping problems of one-dimensional
diffusions in the presence of refraction periods reduce to a sequence of single-
stopping problems in which the reward for an earlier action must include the optimal
payoff for the subsequent action. The presence of the refraction period introduces
the need to evaluate the expectation of the value function for a later action according
to the distribution of the process at a time dependent on the length of the refraction
period. This becomes numerically tractable when this distribution is known. Three
solution approaches to the single-stopping problems are briefly discussed based on
an imbedding of the original stochastic problem in an infinite-dimensional linear
program; a similar linear programming approach to stochastic control of discrete-
time processes has been studied by O. Hernańdez-Lerma (e.g., [11]). Tractability of
these type of problems is illustrated in detail for a particular example.
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