
Chapter 14
Minimizing Ruin Probabilities by Reinsurance
and Investment: A Markovian Decision
Approach

Rosario Romera and Wolfgang Runggaldier

14.1 Introduction

Consider a classical Cramér-Lundberg model

Xt = x− ct −
Nt

∑
i=1

Yi, (14.1)

where the claim number process {Nt} is a Poisson process with intensity λ , and the
claim payment {Yt } is a sequence of independent and identically distributed (i.i.d.)
positive random variables independent of {Nt} and with support on the positive half
line. Let c be the constant premium rate (income) paid by the insurer. We assume
the safety loading condition c > λ E[Y ].

One of the key quantities in the classical risk model is the ruin probability, as a
function of the initial reserve x,

ψ(x) = Pr{Xt < 0 for some t > 0}.
In general, it is very difficult to derive explicit and closed expressions for the ruin
probability. The pioneering works on approximations to the ruin probability were
achieved by Cramér and Lundberg as early as the 1930s under Cramér-Lundberg
condition. This condition is to assume that there exists a constant κ > 0 called
adjustment coefficient, satisfying the following Lundberg equation:

∫ ∞

0
eκyF̄(y)dy =

c
λ
,
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with F(y) = Pr{Y ≤ y}. Under this condition, the Cramér-Lundberg asymptotic
formula states that if ∫ ∞

0
yeκydP(y)< ∞,

where P(y) = 1
E[Y ]

∫ y
0 F̄(s)ds is the equilibrium distribution of F, then

ψ(x)≤ e−κx,x ≥ 0. (14.2)

The insurer has now the possibility to reinsure the claims. In the case of
proportional reinsurance Schmidli [22] showed that there exists an optimal strategy
that can be derived from the corresponding Hamilton-Jacobi-Bellman equation.
Hipp and Vogt [15] derived by similar methods the same result for excess of loss
reinsurance. In Schäl [21], the control problem of controlling ruin by investment
in a financial market is studied. The insurance business is described by the usual
Cramér-Lundberg-type model, and the risk driver of the financial market is a
compound Poisson process. Conditions for investment to be profitable are derived
by means of discrete-time dynamic programming. Moreover, Lundberg bounds
are established for the controlled model. Diasparra and Romera [3, 4] consider a
discrete-time process driven by proportional reinsurance and an interest rate process
which behaves as a Markov chain. To reduce the risk of ruin, the insurer may
reinsure a part or even all of the reserve. Recursive and integral equations for
the ruin probabilities are given, and generalized Lundberg inequalities for the ruin
probabilities are derived.

We consider a discrete-time insurance risk/reserve process which can be con-
trolled by reinsurance and investment in the financial market, and we study the ruin
probability problem in the finite-horizon case. Although controlling a risk/reserve
process is a very active area of research (see [2, 6, 16, 24, 26], and references
therein), obtaining explicit optimal solutions minimizing the ruin probability is in
general a difficult task even for the classical Cramér-Lundberg risk process. Thus,
an alternative method commonly used in ruin theory is to derive inequalities for
ruin probabilities. The inequalities can be used to obtain upper bounds for the
ruin probabilities [8, 23, 27], and this is the approach followed in this chapter. The
basis of this approach is the well-known fact that in the classical Cramér-Lundberg
model, if the claim sizes have finite exponential moments, then the ruin probability
decays exponentially as the initial surplus increases (see for instance the book by
Asmussen [1]). For the heavy-tailed claims’ case, it is also shown to decay with
a rate depending on the distribution of the claim size (see, e.g., [7]). Paulsen [18]
reviews general processes for the ruin problem when the insurance company invests
in a risky asset. Xiong and Yang [25] give conditions for the ruin probability to be
equal to 1 for any initial endowment and without any assumption on the distribution
of the claim size as long as it is not identically zero.

Control problems for risk/reserve processes are commonly formulated in contin-
uous time. Schäl [20] introduces a formulation of the problem where events (arrivals
of claims and asset price changes) occur at discrete points in time that may be
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deterministic or random, but their total number is fixed. Diasparra and Romera [3]
consider a similar formulation in discrete time. Having a fixed total number of events
implies that in the case of random time points the horizon is random as well.

In this chapter, we follow an approach inspired by Edoli and Runggaldier [5]
who claim that a more natural way to formulate the problem in case of random time
points is to consider a given fixed time horizon so that also the number of event
times becomes random, and this makes the problem nonstandard. Accordingly, it is
reasonable to assume that also the control decisions (level of reinsurance and amount
invested) correspond to these random time points. Notice that this formulation can
be seen equivalently in discrete or continuous time. The stochastic elements that
affect the evolution of the risk/reserve process are thus the timing and size of the
claims, as well as the dynamics of the prices of the assets in which the insurer is
investing. This evolution is controlled by the sequential choice of the reinsurance
and investment levels. Claims occur at random points in time and also their sizes
are random, while asset price evolutions are usually modeled as continuous-time
processes. On small time scales, prices actually change at discrete random time
points and vary by tick size. In the proposed model, we let also asset prices change
only at discrete random time points with their sizes being random as well. This
will allow us to consider the timing of the events, namely, the arrivals of claims
and the changes of the asset prices, to be triggered by a same continuous-time semi-
Markov process (SMP), that is, a stochastic process where the embedded jump chain
(the discrete process registering what values the process takes) is a Markov chain,
and where the holding times (time between jumps) are random variables, whose
distribution function may depend on the two states between which the move is made.
Since between event times the situation for the insurer does not change, we shall
consider controls only at event times.

Under this setting, we construct a methodology to achieve an optimal solution
that minimizes the bounds of the ruin probability previously derived. Admissible
strategies ranging in a compact set are in fact reinsurance levels and investment
positions. From a general perspective, and due to the Markovian feature of the risk
process, it seems quite natural to look at the minimization of the ruin probability as
a Markov decision problem (MDP) for which suitable MDP techniques may hold.
Although this is not a standard approach in actuarial risk models, we present in
this chapter a connection between our optimization problem and the use of MDP
techniques. Many of the most relevant contributions in the literature related to MDP
techniques have been developed by Onesimo Hernández-Lerma and his coauthors,
and some of them have inspired the optimization part of this chapter [9–14].

The rest of the chapter is organized as follows: Section 14.2 describes the
elements of the considered model and introduces the formulation of the risk process.
Section 14.3 presents the previous recursive relations on ruin probabilities needed to
derived our main contributions on the exponential bounds for the ruin probabilities.
In Sect. 14.4, the derivation of the reinsurance and investment policy that minimizes
an exponential bound is described in connection with MDP techniques, namely,
policy improvement and value iteration.
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14.2 The Risk Process

We start this section by fixing the elements of the model studied in this chapter.
According to the model proposed in Romera and Runggaldier [19], we consider a
finite time horizon T > 0. More precisely, to model the timing of the events (arrival
of claims and asset price changes), inspired by Schäl [21], we introduce the process
{Kt}t>0 for t ≤ T , a continuous-time SMP on {0, 1}, where Kt = 0 holds for the
arrival of a claim, and Kt = 1 for a change in the asset price. The embedded Markov
chain, that is, the jump chain associated to the SMP {Kt}t>0, evolves according to
a transition probability matrix P =

∥∥pi j
∥∥

i, j∈{0,1} that is supposed to be given, and
the holding times (time between jumps) are random variables whose probability
distribution function may depend on the two states between which the move is made.

Let Tn be the random time of the n− th event, n ≥ 1, and let the counting process
Nt denote the number of events having occurred up to time t defined as follows:

Nt =
∞

∑
j=1

1{Tj≤t} (14.3)

and so

Tn = min{t ≥ 0|Nt = n}. (14.4)

We introduce now the dynamics of the controlled risk process Xt for t ∈ [0,T ]
with T a given fixed horizon. For this purpose, let Yn be the n − th (n ≥ 1)
claim payment represented by a sequence of i.i.d. random variables with common
probability distribution function (p.d.f.) F(y). Let Zn be the random variable
denoting the time between the occurrence of the n− 1st and nth (n ≥ 1) jumps
of the SMP {Kt}t>0. We assume that {Zn} is a sequence of i.i.d. random variables
with p.d.f. G(.). From this, we may consider that the transition probabilities of the
SMP {Kt}t>0 are

P{KTn+1 = j,Zn+1 ≤ s|KTn = i}= pi jG(s).

Notice that for a full SMP model, the distribution function G(.) depends also
on i and j. While the results derived below go through in the same way also for a
Gi j(.)depending on i, j, we restrict ourselves to independent G(.). A specific form
of SMP arises, for example, as follows: let N1

t and N2
t be independent Poisson

processes with intensities λ 1 and λ 2, respectively. We may think of N1
t as counting

the number of claims and N2
t that of price changes and we have that Nt = N1

t +N2
t

is again a Poisson process with intensity λ = λ 1 +λ 2. It then follows easily that

⎧⎪⎨
⎪⎩

pi j = λ j

λ := p j , ∀i,

G(s) =
[
1− e−λ s

]
.
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The risk process is controlled by reinsurance and investment. In general, this
means that we may choose adaptively at the event times TNt (they correspond to
the jump times of Nt ) the retention level (or proportionality factor or risk exposure)
bNt of a reinsurance contract as well as the amount δNt to be invested in the risky
asset, namely, in SNt with St denoting discounted prices. For the values b that the
various bNt may take, we assume that b ∈ (bmin,1] ⊂ (0,1], where bmin will be
introduced below, and for the values of δ for the various δNt , we assume δ ∈ [δ , δ̄ ]
with δ ≤ 0 and δ > 0 exogenously given. Notice that this condition allows also for
negative values of δ meaning that, see also [22], short selling of stocks is allowed.
On the other hand, with an exogenously given upper bound δ̄ , it might occasionally
happen that δNt >XNt , implying a temporary debt of the agent beyond his/her current
wealth in order to invest optimally in the financial market. By choosing a policy that
minimizes the ruin probability, this debt is however only instantaneous and with
high probability leads to a positive wealth already at the next event time.

Assume that prices change only according to

SNt+1 − SNt

SNt

=
(
eWNt+1 − 1

)
KTNt+1 , (14.5)

where Wn is a sequence of i.i.d. random variables taking values in [w, w̄] with
w < 0 < w̄, where one may also have w = −∞, w̄ = +∞ and with p.d.f. H(w).
For simplicity and without loss of generality, we consider only one asset to invest
in. An immediate generalization would be to allow for investment also in the money
market account.

Let c be the premium rate (income) paid by the customer to the company, fixed in
the contract. Since the insurer pays to the reinsurer a premium rate, which depends
on the retention level bNt chosen at the various event times TNt , we denote by C(bNt )
the net income rate of the insurer at time t ∈ [0,T ]. For b ∈ (bmin,1], we let h(b,Y )
represent the part of the generic claim Y paid by the insurer, and in what follows, we
take the function h(b,Y ) to be of the form h(b,Y ) = b ·Y (proportional reinsurance).
We shall call policy a sequence π = (bn,δn) of control actions. Control actions over
a single period will be denoted by φn = (bn,δn). According to the expected value
principle with safety loading θ of the reinsurer, for a given starting time t < T , the
function C(b) can be chosen as follows:

C(b) := c− (1+θ )
E{Y1− h(b,Y1)}
E{Z1∧ (T − t)} , 0 < t < T, (14.6)

We use Z1 and Y1 in the above formula since, by our i.i.d. assumption, the various
Zn and Yn are all independent copies of Z1 and Y1. Notice also that, in order to keep
formula (14.6) simple and possibly similar to standard usage, in the denominator of
the right-hand side, we have considered the random time Z1 between to successive
events, while more correctly, we should have taken the random time between two
successive claims, which is larger. For this, we can however play with the safety
loading factor. As explained in Romera and Runggaldier [19], we can now define
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bmin := min{b ∈ (0,1] | c ≥C(b)≥ c∗}, where c∗ ≥ 0 denotes the minimal value of
the premium considered by the insurer. We have to consider the following technical
restrictions:

Assumption 14.2.1. Let

(i) The random variables (Zn,Yn,Wn)n≥1 are, conditionally on Kt , mutually
independent.

(ii) E
{

erY1
}
<+∞ for r ∈ (0, r̄) with r̄ ∈ (0,∞).

(iii) c− (1+θ ) E{Y1}
E{Z1∧T} ≥ 0.

Notice that, since the support of Y1 is the positive half line, we have
limr↑r̄{E{erY1}}= ∞ (r̄ may be equal to +∞, e.g., if the support of Y1 is bounded).

In the given setting, we obtain for the insurance risk process (surplus) X the
following one-step transition dynamics between the generic random times Tn and
Tn+1 when at Tn a control action φ =(b,δ ) is taken for a certain b∈ (bmin,1]⊂ (0,1],
and δ ∈ [δ , δ̄ ],

XTn+1 = XTn +C(b)Zn+1 − (1−KTn+1)h(b,Yn+1)+KTn+1δ (eWn+1 − 1). (14.7)

Definition 14.2.1. Letting U := [bmin,1]× [δ ,δ ], we shall say that a control action
φ = (b,δ ) is admissible if (b,δ ) ∈U . Notice that U is compact.

We want now to express the one-step dynamics in (14.7) when starting from
a generic time instant t < T with a capital x. For this purpose, note that if, for a
given t < T one has Nt = n, the time TNt is the random time of the n− th event and
Tn ≤ t ≤ Tn+1. Since, when standing at time t, we observe the time that has elapsed
since the last event in TNt , it is not restrictive to assume that t = TNt [see the comment
below after (14.8)]. Furthermore, since Zn,Yn,Wn are i.i.d., in the one-step random
dynamics for the risk process Xt , we may replace the generic (Zn+1,Yn+1,Wn+1) by
(Z1,Y1,W1). We may thus write

XNt+1 = x+C(b)Z1 − (1−KTNt+1)h(b,Y1)+KTNt+1δ (eW1 − 1) (14.8)

for 0 < t < T, T > 0 and with Xt = x ≥ 0 (recall that we assumed t = TNt ). Notice
that, if we had t 
= TNt and therefore t > TNt , the second term on the right in (14.8)
would become C(b)[Z1 − (t −TNt )], and (14.8) could then be rewritten as

XNt+1 = [x−C(b)(t −TNt )]+C(b)Z1 − (1−KTNt+1)h(b,Y1)+KTNt+1δ (eW1 − 1)

with the quantity [x−C(b)(t − TNt )], which is known at time t, replacing x. This
is the sense in which above, we mentioned that it is not restrictive to assume that
t = TNt . In what follows, we shall work with the risk process Xt , (or XNt ) as defined
by (14.8). For convenience, we shall denote by (bn,δn) the values of φ = (b,δ ) at
t = TNt . Accordingly, we shall also write (bNt ,δNt ) for

(
bTNt

,δTNt

)
.

Following [24], we shall also introduce an absorbing (cemetery) state κ , such
that if XNt < 0 or XNt = κ , then XNt+1 = κ , ∀t ≤ T. The state space is then R∪{κ}.
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14.3 Ruin Probabilities

We present first the general expression of the ruin probability corresponding to the
risk model (14.8). Thus, using the policy π , given the initial surplus x at time t and
initial event k ∈ {0,1} for the Markov chain Kt at time t, the ruin probability is
given by

ψπ(t,x;k) := Pπ

(
NT⋃

s=Nt+1

{Xs < 0 |XNt = x,Kt = k}
)
. (14.9)

Note that the finite-horizon character of the considered model imposes a specific
definition for the ruin probabilities. In order to obtain recursive relations for the
ruin probability, we specify some notation and introduce the basic definitions
concerning the finite-horizon ruin probabilities when one or n intra-event periods
are considered.

Given a policy π , namely. a predictable process pair πt := (bt ,δt) with (bt ,δt) in
U [of which in the definitions below we need just to consider the generic individual
control action φ = (b,δ )], we introduce the following functions:

uπ(y,z,w,k) : = (1− k)by−C(b)z− kδ (ew− 1),

τπ(y,w,k,x) : =
(1− k)by− kδ (ew− 1)− x

C(b)
, (14.10)

so that uπ(y,z,w,k) < x ⇐⇒ z > τπ (y,w,k,x).
The ruin probability over one intra-event period (namely, the period between to

successive event times) when using the control action φ =(b,δ ) is, for a given initial
surplus x at time t ∈ (0,T ) and initial event KTNt

= k ∈ {0,1},

ψπ
1 (t,x;k) :=

1

∑
h=0

pk,h

∫ w̄

w

∫ ∞

0
G(τπ(y,w,h,x)∧ (T − t))dF(y)dH(w). (14.11)

We want to obtain a recursive relation for

ψπ
n (t,x;k) : = Pπ

⎧⎨
⎩

(Nt+n)∧NT⋃
k=Nt+1

{Xk < 0}|XNt = x,KTNt
= k

⎫⎬
⎭

: = Pπ
x,k

⎧⎨
⎩

(Nt+n)∧NT⋃
k=Nt+1

{Xk < 0}
⎫⎬
⎭ , (14.12)

namely, for the ruin probability when at most n events are considered in the interval
[t,T ] and a policy π is adopted.

In Romera and Runggaldier [19], the following recursive relation is obtained:
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Proposition 14.3.1. For an initial surplus x at a given time t ∈ [0,T ], as well as an
initial event KTNt

= k and a given policy π , one has

ψπ
n (t,x,k)

= P{NT −Nt > 0}∑1
h=0 pk,h

∫ w̄

w

∫ ∞

0
G(τπ(y,w,h,x)∧ (T − t))dF(y)dH(w)

+P{NT −Nt > 1}∑1
h=0 pk,h

·
∫ w̄

w

∫ ∞

0

∫ T−t

τπ (y,w,h,x)
ψπ

n−1(t + z,x− uπ(y,z,w,h),h)dG(z)dF(y)dH(w)

(14.13)
from which it immediately also follows that

ψπ
1 (t,x,k) = P{NT −Nt = 1}

1

∑
h=0

pk,h

∫ w̄

w

∫ ∞

0
G(τπ (y,w,h,x)∧ (T − t))dF(y)dH(w)

(14.14)

since in the case of at most one jump, one has that P{NT − Nt > 0} =
P{NT −Nt = 1} and P{NT −Nt > 1}= 0.

14.4 Minimizing the Bounds

In the following, we base ourselves on results in Diasparra and Romera [3,4] that are
here extended to the general setup of this chapter to obtain the exponential bounds
and then to minimize them.

To stress the fact that the process X defined in (14.7) corresponds to the choice
of a specific policy π , in what follows, we shall use the notation Xπ .

Given a policy πt = (bt ,δt)and defining for t ∈ [0,T ], the random variable

V π
t :=C(b)(Z1 ∧ (T − t))− 1{Z1≤T−t}

[
(1−KTNt+1)bY1 +KTNt +1δ

(
eW1 − 1

)]
,

(14.15)

where b = bt and δ = δt let, for r ∈ (0, r̄) and k ∈ {0,1},

lπ
r (t,k) := Et,k{e−rV π

t }− 1, (14.16)

where, for reasons that should become clear below, we distinguish the dependence
of lπ on r from that on (t,k).

Remark 14.4.1. Notice that, by its definition, lπ
r (t,k) is, for given π and r ∈ (0, r̄), a

bounded function of (t,k) ∈ [0,T ]×{0,1}.Given its continuity in r, it is uniformly
bounded on any compact subset of (0, r̄), for example, on [η , r̄−η ] for η ∈ (0, r̄).
Having fixed η > 0,denote this bound by L, that is,

sup
(t,k)∈[0,T ]×{0,1}, r∈[η,r̄−η]

|lπ
r (t,k)| ≤ L. (14.17)
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Definition 14.4.2. We shall call a policy π admissible and denote their set by A if
at each t ∈ [0,T ], the corresponding control action (bt ,δt) ∈U , and for any t ∈ [0,T ]
and k ∈ {0,1}, Et,k{V π

t }> 0 ∀π ∈ A.

Notice that A is nonempty since (see Assumption 14.2.1, (iii) it contains at least
the stationary policy (bNt ,δNt )≡ (bmin,0).

According to Romera and Runggaldier [19], we obtain the following result:

Proposition 14.4.2. For each (t,k) and each π ∈ A, we have that:

(a) As a function of r ∈ (0, r̄), lπ
r (t,k) is convex with a negative slope at r = 0.

(b) The equation lπ
r (t,k) = 0 has a unique positive root in (0, r̄) that we simply

denote by Rπ so that the defining relation for Rπ is

lπ
Rπ (t,k) = 0. (14.18)

Notice that Rπ actually depends also on (t,k), but for simplicity of notation, we
denote it just by Rπ .

In view of the main result of this section, namely, Theorem 14.4.1 below, we first
obtain [19]:

Lemma 14.4.1. Given a surplus x > 0 at a given initial time t ∈ [0,T ] and an initial
event k ∈ {0,1}, we have

ψπ
1 (t,x,k) ≤ e−Rπx (14.19)

for each π ∈ A, where Rπ is the unique positive root of (14.18) that depends on t
and k but is independent of x.

Lemma 14.4.2. For given (t,x,k), we have

ψπ
n (t,x,k)≤ γne−Rπ x (14.20)

for all n ∈ N,π ∈ A, where Rπ is the unique positive solution with respect to r of
lπ
r (t,k) = 0 (see (14.18)), and γn is defined recursively b

γ1 = 1,

γn = γn−1P{NT −Nt > 1}+P{NT −Nt = 1}. (14.21)

Remark 14.4.2. Due to the defining relations (14.21), it follows immediately that
γn ≤ 1 for all n ∈ N. In fact, using forward induction, we see that the inequality is
true for n = 1, and assuming it true for n− 1, we have

γn = γn−1P{NT −Nt > 1}+P{NT −Nt = 1} ≤ P{NT −Nt > 0} ≤ 1. (14.22)

We come now to our main result in this section, namely, Theorem 14.4.1 whose
proof follows immediately from Lemma 14.4.2 noticing that, see Remark 14.4.2,
one has γn ≤ 1.
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Theorem 14.4.1. Given an initial surplus x > 0 at a given time t ∈ [0,T ], we have,
for all n ∈ N and any initial event k ∈ {0,1} and for all π ∈ A,

ψπ
n (t,x,k) ≤ e−Rπx

with Rπ that may depend on (t,k) in [0,T ]×{0,1}.

14.4.1 Minimizing the Bounds by a Policy Improvement
Procedure

As mentioned previously, it is in general a difficult task to obtain an explicit
solution to the given reinsurance-investment problem in order to minimize the ruin
probability and this even for a classical risk process. We shall thus choose the
reinsurance level and the investment in order to minimize the bounds that we have
derived. By Theorem 14.4.1, this amounts to choosing a strategy π ∈ A such that, for
each pair (t,k), the value of Rπ is as large as possible. This strategy will thus depend
in general also on t and k but not on the level x of wealth. By Proposition 14.4.2,
this Rπ is, for each π ∈ A, the unique positive solution of the equation lπ

r (t,k)) = 0,
where lπ

r (t,k) is, as a function of r ∈ [0, r̄] (and for every fixed (t,k)), convex with
a negative slope at r = 0. To obtain, for a given (t,k), the largest value of Rπ , it
thus suffices to choose π ∈ A that minimizes lπ

r (t,k) just at r = Rπ . This, in fact,
appeals also to intuition since, according to the definition in (14.16), minimizing
lπ
r (t,k) amounts to penalizing negative values of Xπ

t = x+V π
t , thereby minimizing

the possibility of ruin.
Concerning the minimization of lπ

r (t,k) at r = Rπ , notice that decisions concern-
ing the control actions φ = (b,δ ) have to be made only at the event times Tn. The
minimization of lπ

r (t,k) with respect to π ∈ A has thus to be performed only for
pairs (t,k) corresponding to event times, namely, those of the form (Tn,KTn), thus
leading to a policy π with individual control actions φTn = (bTn ,δTn).

Our problem to determine an investment and insurance policy to minimize
the bounds on the ruin probability may thus be solved by solving the following
subproblems:

1. For a given policy, π̄ ∈ A determine lπ̄
r (t,k) for pairs (t,k) of the form (Tn,KTn).

2. Determine Rπ̄(Tn,KTn ) that is solution with respect to r of lπ̄
r (Tn,KTn) = 0.

3. Improve the policy by minimizing lπ
Rπ̄ (Tn,KTn) with respect to π ∈ A.

This leads to a policy improvement-type approach, more precisely, one can
proceed as follows:

• Start from a given policy π0 (e.g., the one requiring minimal reinsurance and no
investment in the financial market).

• Determine Rπ0
corresponding to π0 for the various (Tn,KTn).
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• For r = Rπ0
, determine π1 that minimizes lπ

Rπ0 (Tn,KTn).
• Repeat the procedure until a stopping criterion is met (notice that by the above

procedure Rπn
> Rπn−1

).

One crucial step in this procedure is determining the function lπ
r (t,k) correspond-

ing to a given π ∈ A, and this will be discussed in the next section.

14.4.2 Computing the Value Function in the Policy
Improvement Procedure

Recall again that the decisions have to be made only at the event times over a given
finite horizon, and consequently, the function lπ

r (t,k) has to be computed only for
pairs of the form (Tn,KTn). The number of these events is however random and may
be arbitrarily large; furthermore, the timing of these events is random as well. On
the other hand, notice that if we can represent the function lπ

r (t,k) to be minimized
as the fixed point of a contraction operator involving expectations of functions of
a Markov process, then the computation can be performed iteratively as in value
iteration algorithms.

For this purpose, recalling that Zn are i.i.d. random variables with probability
distribution function G(.) and that, for given π ∈ A and r ∈ [η , r̄−η ],the functions
lπ
r (t,k) are bounded by some L (see Remark 14.4.1), we start with the following:

Definition 14.4.3. For given π ∈ A, define T π as the operator acting on bounded
functions v(t,k) of (t,k) in the following way:

T π(v(t,k))

= 1{t≤T}Eπ
t,k

{
1{t+Z1≤T}v(t +Z1,Kt+Z1 )+ 1{t≤T≤t+Z1}

[
e−rC(b)(T−t)− 1

]}

=
1

∑
h=0

pk,h

{∫ T−t

0
v(t + z,h)dG(z)+ Ḡ(T − t)

[
e−rC(b)(T−t)− 1

]}

with Ḡ(z) = 1−G(z) and where, given πt = (bt ,δt), the value of b is b = bt .

The following lemma is now rather straightforward:

Lemma 14.4.3. For a given π ∈ A and any value of the parameter r ∈ [η , r̄ −η ],
the function lπ

r (.) is a fixed point of T π , that is,

lπ
r (t,k) = T π(lπ

r )(t,k). (14.23)

On the basis of the above definitions and results, we may now consider the
following recursive relations:

lπ ,0
r (Tn,k) = Ḡ(T −Tn)[e

−rC(bn)(T−Tn)− 1],

lπ ,m
r (Tn,k) = T π(lπ ,m−1

r )(Tn,k) f or m = 1,2, .. (14.24)
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that we may view as a value iteration algorithm. Since between any event time
Tn and the terminal time T there may be any number of events occurring, to obtain
lπ
r (.), the recursions in (14.24) would have to be iterated an infinite number of times.

If however the mappings T π are contracting in the sense that

‖T π(v1)−T π(v2)‖ ≤ γ ‖v1 − v2‖ (14.25)

for bounded functions v1(.) and v2(.) and with γ < 1, then lπ ,m
r (Tn,k) approximates

lπ
r (Tn,k) arbitrarily well in the sup-norm, provided m is sufficiently large.

The above assumption can be seen to be satisfied in various cases of practical
interest [19].

14.4.2.1 Reduction of Dimensionality and Particular Cases

For the policy improvement and value iteration-type procedure in the previous
section, the “Markovian state” was seen to be the tuple (Tn,KTn), which makes
the problem two dimensional. It is shown in Romera and Runggaldier [19] that
in the particular case when the inter-event time and the claim size distributions
are (negative) exponential, a case that has been most discussed in the literature
under different settings, then the state space can be further reduced to only the time
variable t (the sequence of event times Tn is then in fact a Markov process by itself),
and so, the optimal policy becomes dependent only on the event time. This particular
case can also be shown [19] to be a concrete example where the mappings T π are
contracting as assumed in (14.25). Always for this particular case, it can furthermore
be shown (see again [19]) that the fixed point lπ

r of the mapping T π which, as
discussed above, depends here only on t, can be computed as a semianalytic solution
involving a Volterra integral equation.

We conclude this section by pointing out that, although by our procedure, we
minimize only an upper bound on the ruin probability, the optimal upper bound can
also be used as a benchmark with respect to which other standard policies may be
evaluated.

Finally, as explained in Romera and Runggaldier [19], our procedure allows also
to obtain some qualitative insight into the impact that investment in the financial
market may have on the ruin probability. It turns in fact out that, in line with some
of the findings in the more recent literature (see e.g., [17]), the choice of investing
also in the financial market has little impact on the ruin probability unless, as we do
here, one allows also for reinsurance.
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