
Chapter 13
Fluid Approximations to Markov Decision
Processes with Local Transitions

Alexey Piunovskiy and Yi Zhang

13.1 Introduction

Markov decision processes (MDPs) model many practical problems that arise from
queueing systems, telecommunication, inventories, and so on, see [6, 7, 15]. The
fundamental results about an MDP model are the existence of an optimal policy and
the sufficiency of the deterministic stationary policies out of the more general class
of randomized history-dependent ones. On the other hand, from practical point of
view, it is at least of equal importance to know how to obtain an optimal or nearly
optimal policy. It is known that practically, the policy iteration and value iteration
procedures fail to cope with MDP models with large state and action spaces. So for
random walks, it is often the case that a deterministic continuous model is taken for
analysis even when the underlying problem is in stochastic nature. This is called a
fluid approximation.

Fluid approximations are widely used to solve practical problems; examples
in the contexts of epidemiology and telecommunication can be found in [11, 16],
respectively. In inventory control, the well-known (deterministic) economic-order
quantity model can be viewed as a fluid approximation, too, cf. [14]. On the
one hand, such fluid models can often be solved much more easily than the
corresponding stochastic models. On the other hand, in most cases, they are applied
without formal analytical justifications, or the justification focuses on the trajectory
level, by showing the trajectory of a scaled stochastic model converges in some
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sense to the one of the fluid model, and this is mainly considered for a continuous-
time model, see [8–10] and the references therein. For the justification on the
objective level, we refer the reader to [3, 4, 13] and the references therein.

In this chapter, we justify (at the level of objective functions) fluid approxi-
mations to a discrete-time MDP model with an undiscounted total cost criterion.
This is done for an uncontrolled discrete-time model in [12] under more restrictive
conditions. The argument is based on [1, 12, 13].

The rest of this chapter is organized as follows. We describe the concerned
MDP model in Sect. 13.2 and formulate the main statements in Sect. 13.3, where
two sections are devoted to the standard fluid approximation and the refined fluid
approximation. We finish this chapter with a conclusion.

13.2 MDP Model

The MDP model under consideration is defined by the following elements:

• X = {0,1,2, . . .} is the state space.
• A is the action space, which can be an arbitrary non-empty Borel space, whose

topology is omitted from the explicit presentation.
• p(z|x,a) is the one-step transition probability, a stochastic kernel on X given

X ×A and (Borel) measurable in a ∈ A.
• r(x,a) is the one-step cost, which is (Borel) measurable in a ∈ A.

Assume that the real measurable functions q+(y,a),q−(y,a) and ρ(y,a) on
[0,∞)×A are given such that q+(0,a) = q−(0,a) = ρ(0,a) = 0, and on (0,∞)×A,
q+(y,a) > 0, q−(y,a) > 0, and q+(y,a) + q−(y,a) ≤ 1. Then we make the MDP
model with the absorbing state zero and local transitions only by defining the one-
step transition probability and cost via

p(z|x,a) =

⎧
⎪⎪⎨

⎪⎪⎩

q+(x,a), if z = x+ 1;
q−(x,a), if z = x− 1;
1− q+(x,a)− q−(x,a), if z = x;
0 otherwise,

r(x,a) = ρ(x,a).
Let ϕ : X →A be a deterministic stationary policy. For any fixed initial state x and

policy ϕ , the standard canonical construction gives a strategic measure Pϕ
x on the

space of histories in the form of x0,a0,x1,a1, . . . , and the corresponding expectation
is denoted by Eϕ

x , see [7]. We denote the controlled process by {Xt , t = 0,1, . . .}
and the action process by {At , t = 0,1, . . .}. Then the MDP model is the following
optimization problem, which is well defined after we impose some conditions
below:

V ϕ (x) := Eϕ
x

[
∞

∑
t=0

r(Xt ,At)

]

→ inf
ϕ
,



13 Fluid Approximations to Markov Decision Processes with Local Transitions 227

where the infimum is taken over the class of deterministic stationary policies only
for simplicity and that under very general conditions, they suffice for the underlying
optimization problem, see [1] for more details.

In this chapter, we shall actually scale the above described MDP model such that
for any fixed scaling parameter n = 1,2, . . . , the elements of the n-MDP model are
as follows:

• X = {0,1,2, . . .} and A remain as the state and action spaces.
•

n p(z|x,a) =

⎧
⎪⎪⎨

⎪⎪⎩

q+(x/n,a), if z = x+ 1;
q−(x/n,a), if z = x− 1;
1− q+(x/n,a)− q−(x/n,a), if z = x;
0 otherwise

is the one-step transition probability.
• nr(x,a) = ρ(x/n,a)

n is the one-step cost, which is measurable in a ∈ A.

The n-MDP model reads

nV ϕ(x) := Eϕ
x

[
∞

∑
t=0

nr(Xt ,At)

]

→ inf
ϕ
.

Below, we impose some conditions to guarantee that the n-MDP model under
consideration is absorbing in the sense of [1]. To be exact, that means given any
initial state x, Eϕ

x [T0] < ∞, where T0 := inf{t > 0 : Xt = 0}. Here and below, the
context always makes it clear what the scaling parameter is so that the controlled
and action processes in the n-MDP model are still denoted by {Xt , t = 0,1, . . .} and
{At , t = 0,1, . . .} for brevity.

The above scaling is called the fluid scaling. Its intuitive meaning together
with its importance is now explained via the following example, where an un-
controlled situation is considered for simplicity. Accordingly, simpler denotations
are employed. We remark that the example is better understood in the context
of telecommunication, where fluid models are widely used to solve satisfactorily
practical problems of stochastic nature, see [2, 16] and the reference therein.

Example 13.2.1. Suppose information packets, 1 kilobit (KB) each, arrive at a
router (switch) at the (constant) rate q+ > 0 megabit/second (MB/s), and are served
at the (constant) rate q− > q+ MB/s, where q+ + q− ≤ 1. We observe the process
up to the moment when the router buffer is empty. Let the holding cost be h per
MB per second, so that ρ(y) = hy, where y is the amount of information (MB).
For simplicity, we consider the uncontrolled model so that the denotation of the
policy ϕ does not appear. One can consider batch arrivals and batch services of
1,000 packets every second; then n = 1 and r(x) = hx = ρ(x).

On the other hand, it would be more accurate to consider particular packets; then
probabilities q+ and q− will be the same, but the time unit is 1

1000 s, so that the
arrival and service rates (MB/s) remain the same. Remembering that, we consider
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information up to the individual packets (cf. batches) and the time unit is 1
1000 s,

the cost function for the n-model will obviously change: nr(x) = hx
1000

1
1000 = ρ(x/n)

n ,
where n = 1,000. �

The goal of this chapter is to estimate (from the above) the differences between

nV ϕ (nX0) := Eϕ
nX0

[
∞

∑
t=0

nr(Xt ,At)

]

and the objective functions of two related deterministic continuous models, namely,
the standard fluid model and the refined fluid model, which are simpler to solve. So
they are regarded and used as the fluid approximations to the original (stochastic)
MDP model, see [11,16] for examples. In greater detail, under some conditions, we
provide explicit upper boundary estimates of the absolute differences between the
objective functions of the stochastic and the corresponding fluid models in the initial
data, which are understood as the level of accuracy of such fluid approximations. In
a nutshell, under the imposed conditions, the absolute differences go to zero as fast
as 1

n , with n being the scaling parameter.

13.3 Main Statements

13.3.1 Standard Fluid Approximation

Firstly, we motivate the standard fluid model by using Example 13.2.1. Then we give
its formal definition and obtain its level of accuracy in approximating the n-MDP
model.

Example 13.2.1 continued. Consider the situation in Example 13.2.1. The total
holding cost of the n-model nV (x) up to the absorption at the state zero satisfies
the equation (cf.[12, (10)])

ρ( x
n)

n
+ q+ nV (x+ 1)+ q− nV (x− 1)− (q++ q−) nV (x) = 0,

x = 1,2, . . . ;nV (0) = 0. (13.1)

Since we measure information in MB, it is reasonable to introduce the function v̂(y)
such that nV (x) = v̂(x/n), where v̂(y) is the total holding cost up to the absorption
given the initial queue was y MB. After the obvious rearrangements of (13.1), we
obtain that v̂(x/n) satisfies

ρ
( x

n

)
+

q+
{

v̂
(

x
n +

1
n

)− v̂
(

x
n

)}

1
n

+
q−

{
v̂
(

x
n − 1

n

)− v̂
(

x
n

)}

1
n

= 0,
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This is a version of the Euler method for solving the differential equation

ρ(y)+ (q+− q−)
dv(y)

dy
= 0. (13.2)

Thus, we expect that nV (x) = v̂(x/n)≈ v(x/n) at least for a big value of n. �

The above example reveals that as far as the objective function is concerned, the
n-MDP model can be approximated by a deterministic continuous model specified
by a differential equation, at least for a big value of n. This gives the rise to the
following standard fluid model.

The standard fluid model:

vψ(y0) :=
∫ ∞

0
ρ(y(τ),ψ(y(τ)))dτ → inf

ψ

subject to
dy
dτ

= q+(y,ψ(y))− q−(y,ψ(y)), with the given initial state y(0).

Here, ψ is a measurable mapping from [0,∞) to A. Later, we often omit the argument
τ from y(τ) for brevity. Under the conditions of Theorem 13.3.1 below, it can be
seen that

vψ(y) =
∫ y

0

ρ(z,ψ(z))
q−(z,ψ(z))− q+(z,ψ(z))

dz, (13.3)

cf. (13.2).

Theorem 13.3.1 (cf. Theorem 1 in [12]). Let n = 1,2, . . . and a policy ψ for the
fluid model be fixed, and ϕ̂ be given by ϕ̂(x) := ψ(x/n). Suppose

q−(y,ψ(y)) > q > 0, inf
y>0

q−(y,ψ(y))
q+(y,ψ(y))

≥ η̃ > 1, sup
y>0

|ρ(y,ψ(y))|
ηy < ∞,

where q > 0 is a constant, and η ∈ (1, η̃). Then:

(a) supx=1,2,...
|nV ϕ̂ (x)|

ηx/n < ∞, i.e., nV ϕ̂ (·) is nη-bounded, where nη(x) := ηx/n.

(b) If additionally the functions q+(y,ψ(y)), q−(y,ψ(y)), ρ(y,ψ(y)) are piecewise
continuously differentiable, then for an arbitrarily fixed ŷ ≥ 0

lim
n→∞

sup
x∈{0,1,...,[nŷ]}

| nV ϕ̂ (x)− vψ(x/n)|= 0,

where the function [·] takes the integer part of its argument.
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(c) If furthermore functions ρ(y,ψ(y)), q−(y,ψ(y)), q+(y,ψ(y)) are continuously

differentiable with uniformly bounded derivatives so that supy>0

∣
∣
∣

d2vψ (y)
dy2

∣
∣
∣ :=

C < ∞, then for any arbitrarily fixed ŷ ≥ 0,

sup
x∈{0,1,...,[nŷ]}

∣
∣
∣
nV ϕ̂(x)− vψ(x/n)

∣
∣
∣≤ C(3η̃ + 1)

2γη̃
(ŷ+ 1)η̃ ŷ

n
.

The detailed proof of the above theorem can be found in [12], see the proof of
Theorem 1 therein.

The next example shows that the condition supy>0
|ρ(y,ψ(y))|

ηy < ∞ in the above
theorem is important.

Example 13.3.2 (cf. Example 3 in [12]). Let A = [1,2], q+(y,a) = ad+, q−(y,a) =
ad− for y > 0, where d− > d+ > 0 are fixed numbers such that 2(d++d−)≤ 1. Put
ρ(y,a) = a2γy2

, where γ > 1 is a constant. So η̃ = d−
d+ > 1.

To solve the fluid model vψ(y) → infψ , we use the dynamic programming
approach. One can see that the Bellman function v∗(y) := infψ vψ(y) has the form

v∗(y) =
∫ y

0
inf
a∈A

{
ρ(u,a)

q−(u,a)− q+(u,a)

}

du,

and satisfies the Bellman equation

inf
a∈A

{
dv∗(y)

dy

[
q+(y,a)− q−(y,a)

]
+ρ(y,a)

}

= 0; v∗(0) = 0,

cf. [13, Lemma 2] and the “incidental” statement in its proof. Here, we remark
that the function infa∈A

ρ(u,a)
q−(u,a)−q+(u,a) is universally measurable, see [5, Chap. 7] for

more details. Hence, the function

v∗(y) = vψ∗
(y) =

∫ y

0

γu2

d−− d+
du

is well defined, and ψ∗(y)≡ 1 is the optimal policy.

We notice that the condition supy>0
|ρ(y,ψ∗(y))|

ηy < ∞ is not satisfied, while all the
other requirements of Theorem 13.3.1 are met.

On the other hand, for the policy given by ϕ̂(x) = ψ∗( x
n ) ≡ 1 and n = 1,2, . . . ,

nV ϕ̂(x) = nE ϕ̂ [∑∞
t=0

nr(Xt ,At)] satisfies the following equation

γ(
x
n )

2

n
+ d+ nV ϕ̂(x+ 1)+ d− nV ϕ̂(x− 1)− (d++ d−)nV ϕ̂(x) = 0; nV ϕ̂ (0) = 0,
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cf. (13.1). But then, this equation does not admit non-negative finitely valued
solutions, because if we put nV ϕ̂(0) = 0,nV ϕ̂ (1) = b, where b ∈ [0,∞) is a non-
negative constant, then for any x = 1,2, . . . ,

nV ϕ̂(x) = b
η̃x − 1
η̃ − 1

− 1
nd+(η̃ − 1)

x−1

∑
j=1

γ( j/n)2
(η̃x− j − 1),

and thus, for a big enough value of x, we obtain nV ϕ̂(x) < 0. Therefore,
Theorem 13.3.1 does not hold; nV ϕ̂(x) = ∞ for all x = 1,2, . . . . �

13.3.2 Refined Fluid Approximation

Under the conditions of Theorem 13.3.1 except for q−(y,ψ(y)) > q, (13.3) may
not hold, which in comparison with (13.2), suggests that the standard fluid approx-
imation may fail to be accurate in this case; since q−(y) can now approach zero,
and q+(y) < q−(y), it could happen that the standard fluid model does not get
absorbed at the state zero, while for any fixed n = 1,2, . . . , the stochastic process
{nXt , t = 0,1, . . .} indeed gets absorbed at the state zero, so that the standard fluid
model and the n-MDP model could behave qualitatively differently. Example 13.3.4
below illustrates this situation. Nevertheless, in this case, the refined fluid model
introduced below still approximates well the n-MDP model under the following
condition.

Let ψ(·) be a measurable mapping from [0,∞) to A. We formulate the following
condition.

Condition A. (a) infy>0
q−(y,ψ(y))
q+(y,ψ(y)) ≥ η̃ > 1, supy>0

|ρ(y,ψ(y))|
{q+(y,ψ(y))+q−(y,ψ(y))}ηy ≤C1 <

∞, where η ∈ (1, η̃).
(b) For any n, there exists an (n-dependent) constant K(n) such that

nlW (x) := K(n)q−(x/n,ψ(x/n))ηx/n − 1 > 0,x = 1,2, . . . ,

and

sup
x=1,2,...

|ρ(x/n,ψ(x/n))|
nlW (x)

= sup
x=1,2,...

|ρ(x/n,ψ(x/n))|
K(n)q−(x/n,ψ(x/n))ηx/n − 1

< ∞,

where η ∈ (1, η̃) comes from part (a) of this condition.
(c) There exist points y1,y2, . . . ,yl , . . . with yl → ∞ as l → ∞ such that on each of

the intervals (0,y1), (y1,y2), . . . , the function ρ(y,ψ(y))
q−(y,ψ(y))−q+(y,ψ(y)) is Lipschitz

continuous.

Simple sufficient conditions for Condition A(b) are given below: see Proposition
13.3.1 and its proof.
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Refined fluid model:

∫ ∞

0

ρ(y,ψ(y))
q+(y,ψ(y))+ q−(y,ψ(y))

du → inf
ψ

subject to
dy
du

=
q+(y,ψ(y))− q−(y,ψ(y))
q+(y,ψ(y))+ q−(y,ψ(y))

, with a given initial state y(0).

One can show under Condition A that

ṽψ(y0) :=
∫ ∞

0

ρ(y,ψ(y))
q+(y,ψ(y))+ q−(y,ψ(y))

dτ =

∫ y0

0

ρ(z,ψ(z))
q−(z,ψ(z))− q+(z,ψ(z))

dz.

Note that q+(y,ψ(y))−q−(y,ψ(y))
q+(y,ψ(y))+q−(y,ψ(y)) ≤ 1−η̃

1+η̃ < 0, so that y(·) in the fluid model is absorbed
at the state zero in finite time.

Theorem 13.3.2. Let n= 1,2, . . . and ŷ> 0 be fixed, ψ a measurable mapping from
[0,∞) to A, and ϕ̂(·) given by ϕ̂(x) := ψ(x/n). Suppose Condition A is satisfied

for ψ so that there exist an integer L such that the function ρ(y,ψ(y))
q−(y,ψ(y))−q+(y,ψ(y)) is

Lipschitz continuous with the common Lipschitz constant D on the intervals (0,y1),
(y1,y2), . . . , (yL−1,yL), (yl ,yL+1) with yL < ŷ+ 1 ≤ yL+1. Then

sup
x∈{0,1,...,[ŷn]}

∣
∣
∣

nV ϕ̂(x)− ṽψ(x/n)
∣
∣
∣≤ ε(n)

2
.

Here and below, we put

ε(n) :=
2K1

n
+

2K2

η̃n + 2K3(η1/n − 1),

K1 :=
η̃ + 1
η̃ − 1

[D(ŷ+ 1)+ 3C1Lη ŷ+1],

K2 :=
η̃ + 1
η̃ − 1

C1

[

1+
2(η̃ + 1)

(η̃ − 1) lnη

]
η ŷ+1η̃2

η̃ −η
,

K3 :=

(
η̃ + 1
η̃ − 1

)2 3C1Lη ŷ+1

lnη
.

Proof. Consider an n-birth-and-death process model whose birth rate is nq+

(x/n, ϕ̂(x)), death rate is nq−(x/n, ϕ̂(x)) and cost rate is ρ(x/n, ϕ̂(x)). The under-
lying process is denoted by {Yt , t ≥ 0}. Then we have

nW ϕ̂ (x) := E ϕ̂
x

[∫ ∞

0
ρ(Yt/n, ϕ̂(Yt))dt

]

= nV ϕ̂(x), x = 0,1, . . . .
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Indeed, both V ϕ̂ (x) and nW ϕ̂ (x) are given by the unique nη-bounded solution to the
equation

0 = ρ(x/n, ϕ̂(x))+V (x+ 1)nq+(x/n, ϕ̂(x))+ nq−(x/n, ϕ̂(x))V (x− 1)

−n(q+(x/n, ϕ̂(x))+ q−(x/n, ϕ̂(x)))V (x),x = 1,2, . . . ;

0 = V (0)

by Remark 13.3.1, [12, Lem. 1, Lem. 2, Lem. 4] and [13, Lem. 1]. See also
[1, Chap. 7].

It remains to apply [13, Thm.1]. �

For any n= 1,2, . . . , let us consider a subclass of deterministic stationary policies
nΠ whose elements are ϕ such that the following are satisfied:

inf
x=1,2,...

q−(x/n,ϕ(x))
q+(x/n,ϕ(x))

≥ η̃ > 1,

sup
x=1,2,...

|ρ(x/n,ϕ(x))|
{q+(x/n,ϕ(x))+ q−(x/n,ϕ(x))}ηx ≤C1 < ∞,

where η ∈ (1, η̃), and there exists an (ϕ ,n-dependent) constant Kϕ(n) satisfying

Kϕ(n)q−(x/n,ϕ(x))ηx/n − 1 > 0, x = 1,2, . . . ,

and

sup
x=1,2,...

|ρ(x/n,ϕ(x))|
Kϕ (n)q−(x/n,ϕ(x))ηx/n − 1

< ∞.

Note that if there exists a ψ satisfying Condition A, then the set nΠ is non-empty
as ϕ̂(x) := ψ(x/n) ∈ nΠ for all n = 1,2, . . . . Under Condition B below, for any
n = 1,2, . . . , nΠ coincides with the whole class of deterministic stationary policies,
see Proposition 13.3.1 below.

Remark 13.3.1. For any fixed n = 1,2, . . . , one can verify that under a fixed policy
ϕ ∈ nΠ , the n-MDP model admits a Lyapunov function

nlL(x) := Dηx/n,x = 1,2, . . . ,nlL(0) := 2,

where D ≥ 1 is a big enough constant, and a weight function

nlW (x) := Kϕ(n)q−(x/n,ϕ(x))ηx/n − 1,x = 1,2, . . . ,nl2(0) := 1,

cf. [1, Chap.7] and [12, Con.1].
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Condition B. (a) infy>0,a∈A
q−(y,a)
q+(y,a) ≥ η̃ > 1, supy>0,a∈A

|ρ(y,a)|
(q+(y,a)+q−(y,a))ηy ≤C1 <∞,

where η ∈ (1, η̃).
(b) liminfy→∞ infa∈A q−(y,a)> 0.

Proposition 13.3.1. Suppose Condition B is satisfied. Then for any deterministic
stationary policy ϕ , it holds that ϕ ∈ nΠ for all n = 1,2, . . . .

Proof. Let n = 1,2, . . . be fixed and consider an arbitrarily fixed ϕ . Then under
Condition B, there exists a ζ > 0 such that q−(x/n,ϕ(x))> ζ , x = 1,2, . . . . So there
exists a constant Kϕ(n) > 0 such that q−(x/n,ϕ(x))ηx/n − 1

Kϕ (n) > ζ̃ ,x = 1,2, . . .

where ζ̃ > 0. Thus,

Kϕ(n)q−(x/n,ϕ(x))ηx/n − 1 > 0,

and

sup
x=1,2,...

|ρ( x
n ,ϕ(x))|

Kϕ(n)q−( x
n ,ϕ(x))η

x
n − 1

=
1

Kϕ(n)
sup

x=1,2,...

|ρ( x
n ,ϕ(x))|

q−( x
n ,ϕ(x))η

x
n − 1

Kϕ (n)

≤ 1
Kϕ(n)

sup
x=1,2,...

|ρ(x/n,ϕ(x))|
(q+(x/n,ϕ(x))+ q−(x/n,ϕ(x)))ηx/n

× sup
x=1,2,...

2q−(x/n,ϕ(x))ηx/n

q−(x/n,ϕ(x))ηx/n − 1
Kϕ (n)

≤ 2C1

Kϕ(n)
sup

x=1,2,...

q−(x/n,ϕ(x))ηx/n

q−(x/n,ϕ(x))ηx/n − 1
Kϕ (n)

< ∞.

The other requirements for a policy to be in mΠ are satisfied by ϕ is evident. �

Theorem 13.3.3. Suppose the policy ψ∗ solves the refined fluid model and satisfies
Condition A. Then for any fixed n = 1,2, . . . ,

sup
x∈{0,1,...,[nŷ]}

∣
∣
∣
∣
nV ϕ∗

(x)− inf
ϕ∈nΠ

nV ϕ(x)

∣
∣
∣
∣ ≤ ε(n),

where ϕ∗(x) := ψ∗(x/n),x = 0,1,2, . . . .

Proof. It can be shown that ∀ ϕ ∈ nΠ , nV ϕ(x) ≥ ṽψ∗
(x/n)− ε(n)

2 . The proof is
similar to the one of Theorem 13.3.2. On the other hand, from Theorem 13.3.2, we
have infϕ∈nΠ

nV ϕ(x)≤ nV ϕ∗ ≤ ṽψ∗
(x/n)+ ε(n)

2 ≤ infϕ∈nΠ
nV ϕ(x)+ ε(n). �

The above theorem asserts that if one solves the refined fluid model and obtains
the optimal policy ψ∗, then the policy given by ϕ∗(x) = ψ∗(x/n) is ε(n)-optimal in
the underlying n-MDP, and ε(n) goes to zero as n grows large.

The next proposition comes from [13, Lem.3].
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Proposition 13.3.2. Under Condition B, assume that there exist finite intervals
(0,y′1), (y

′
1,y

′
2), . . . , with lim j→∞ y′j = ∞, such that on each of them, the function

ρ(y,a)
q−(y,a)−q+(y,a) is Lipschitz continuous with respect to y for each a ∈ A, and the
Lipschitz constants are a-independent. Then for any fixed ŷ > 0, there exists an
ψ∗ satisfying Condition A and solving the refined fluid model on [0, ŷ].

Now, we give an example where the main results (Theorems 13.3.2 and 13.3.3)
of this work are applicable. In fact, by Propositions 13.3.1 and 13.3.2, it suffices to
verify Condition B and the other condition of Proposition 13.3.2.

Example 13.3.3. Consider a discrete-time single-server queueing system, where
during each time step, the probability of having an arrival is given by the function
q+(y,a) = a

2y+2+a , and the probability of having a service completion (given there

is at least one job) is given by the function q−(y,a) = 2y+2
2y+2+a , where y > 0 and

a ∈ A := [ 1
2 ,1]. Suppose the cost function is given by ρ(y,a) = 2y−a, which means

that we aim at minimizing the holding cost, which is incurred at a rate of 2£ per
time step, while admitting more jobs is encouraged. The state zero is taken as the
absorbing state, so that q−(0,0) = q+(0,0) = ρ(0,0) = 0.

It is easy to see that

inf
y>0,a∈[ 1

2 ,1]

q−(y,a)
q+(y,a)

= inf
y>0,a∈[ 1

2 ,1]

2+ 2y
a

= 2 =: η̃ > 1,

sup
y>0,a∈[ 1

2 ,1]

|ρ(y,a)|
(q+(y,a)+ q−(y,a))(1.5)y =

|ρ(y,a)|
(1.5)y < ∞,

1 < η := 1.5 < η̃ ,

liminf
y→∞

inf
a∈[ 1

2 ,1]
q−(y,a)> 0,

and the function given by

ρ(y,a)
q−(y,a)− q+(y,a)

=
(2y− a)(2y+ 2+ a)

2y+ 2− a
= 2y+ a− 4a

2y+ 2− a

is obviously Lipschitz in y > 0 for any a ∈ [ 1
2 ,1]. Hence, Condition B and the other

condition of Proposition 13.3.2 are satisfied by this example. �

The next example indicates that the condition q−(y,ψ(y)) > q > 0 is important
for the standard fluid model to approximate the underlying MDP model accurately.
It also illustrates that the standard and the refined fluid models can behave
qualitatively differently.



236 A. Piunovskiy and Yi Zhang

Fig. 13.1 The graph of q−(y)

Example 13.3.4 (cf. Example 1 in [13]). For brevity, we deal with an uncontrolled
model, i.e., A is taken as a singleton, so that denotations such as q−(y),q+(y)ρ(y)
are used for brevity. We put

q−(y) = 0.1I{y ∈ (0,1]}+ 0.125(y− 1)2I{y ∈ (1,3]}+ 0.5I{y> 3},
q+(y) = 0.2q−(y), ρ(y) = 8q−(y).

Clearly, q−(y) is not separated from zero, see Fig. 13.1, while Condition A is
satisfied.

For the original fluid model, we have dy
dτ =−0.1 (y− 1)2, and, if the initial state

y0 = 2, then y(τ) = 1+ 10
τ+10 , so that limτ→∞ y(τ) = 1.

On the other hand, since q−(y),q+(y)> 0 for y > 0, and there is a negative trend,
the state process Xt in the n-stochastic model starting from nX0/n = y0 = 2 will be
absorbed at zero, see [1, Lem. 7.2, Def. 7.4], while the moment of the absorbtion is
postponed for later and later as n → ∞ because the process spends more and more
time in the neighborhood of 1, see Figs. 13.2 and 13.3.

When using the original fluid model, we have

v(2) =
∫ ∞

0
ρ(y(τ))dτ = 10 = lim

T→∞
lim
n→∞

E2n

[
∞

∑
t=1

I{t/n ≤ T} nr(Xt−1,At)

]

.

When using the refined fluid model, we can calculate ρ(y)
q+(y)+q−(y) =

8
1.2 for y > 0

and y(u) = 2− 2
3 u, so that the process in the refined fluid model is absorbed at the

state zero at the time moment u = 3. Therefore,

lim
n→∞

nV (2n) = ṽ(2) =
∫ ∞

0
ρ̂(y(u))du =

∫ 3

0

8
1.2

du = 20

= lim
n→∞

lim
T→∞

E2n

[
∞

∑
t=1

I{t/n ≤ T} nr(Xt−1,At)

]

�= v(2).

So the standard fluid model fails to be accurate in this example. �
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Fig. 13.2 The state process in the n-stochastic model and its fluid approximation, n = 7
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Fig. 13.3 The state process in the n-stochastic model and its fluid approximation, n = 15
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13.4 Conclusion

In this chapter, the convergence of the objective function of a scaled absorbing MDP
model, with a total undiscounted cost, to the one of the (standard and refined) fluid
model is shown. The upper boundary estimate of the rate of convergence is presented
based on the initial data, which is of order 1

n , where n is the scaling parameter.
Hence, the level of accuracy of the fluid approximation is obtained. By examples,
we also show that the standard fluid model may fail to approximate the n-MDP
model, while the refined fluid model is still accurate.
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this chapter. We thank the referee for valuable comments, too.
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6. Jacko, P., Sansó, B.: Optimal anticipative congestion control of flows with time-varying input

stream. Perform. Evaluation. 69, 86–101 (2012)
7. Hernández-Lerma, O., Lasserre, J.: Discrete-time Markov Control Processes. Springer-Verlag,

NY (1996)
8. Dai, J.: On positive Harris recurrence of multiclass queueing networks: a unified approach via

fluid limit models. Ann. Appl. Prob. 5, 49–77 (1995)
9. Foss, S., Kovalevskii, A.: A stability criterion via fluid limits and its application to a Polling

system. Queueing. Syst. 32, 131–168 (1999)
10. Mandelbaum, A., Pats, G.: State-dependent queues: approximations and applications. In Kelly,

F., Williams, R. (eds.) Stochastic Networks, pp. 239–282. Springer, NY (1995)
11. Piunovskiy, A., Clancy, D.: An explicit optimal intervention policy for a deterministic epidemic

model. Optim. Contr. Appl. Met. 29, 413–428 (2008)
12. Piunovskiy, A.: Random walk, birth-and-death process and their fluid approximations: absorb-

ing case. Math. Meth. Oper. Res. 70, 285–312 (2009)
13. Piunovskiy, A., Zhang, Y.: Accuracy of fluid approximations to controlled Birth-and-Death

processes: absorbing case. Math. Meth. Oper. Res. 73, 159–187 (2011)
14. Piunovskiy, A., Zhang, Y.: On the fluid approximations of a class of general inventory level-

dependent EOQ and EPQ models. Adv. Oper. Res. (2011) doi: 10.1155/2011/301205
15. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,

NY (1994)
16. Zhang, Y., Piunovskiy, A., Ayesta, U., Avrachenkov, K.: Convergence of trajectories and

optimal buffer sizing for MIMD congestion control. Com. Com. 33, 149–159 (2010)


	Chapter
13 Fluid Approximations to Markov Decision Processeswith Local Transitions
	13.1 Introduction
	13.2 MDP Model
	13.3 Main Statements
	13.3.1 Standard Fluid Approximation
	13.3.2 Refined Fluid Approximation

	13.4 Conclusion
	References


