
Chapter 11
Constrained Optimality for First Passage
Criteria in Semi-Markov Decision Processes

Yonghui Huang and Xianping Guo

11.1 Introduction

In the field of Markov decision problems (MDPs), the control horizon is usually a
fixed finite interval [0,T ] or the infinite interval [0,+∞). In many real applications,
however, the control horizon may be a random duration [0,τ], where the terminal
time τ is a random variable at which the state of the controlled system changes
critically and the control beyond τ may no longer be meaningful or necessary. For
example, in the insurance systems [27], the control after the time when the company
is bankrupt becomes unnecessary. Therefore, it makes better sense to consider the
problem in [0,τ], where τ represents the bankruptcy time of the company. Such
situations motivate first passage problems in MDPs [13,15,19,21,22,28], for which
one generally aims at maximizing/minimizing the expected reward/cost over a first
passage time to some target set.

This chapter is devoted to studying constrained optimality for first passage
criteria, for which the dynamic of a system is described by semi-Markov decision
processes (SMDPs). The state space is assumed to be denumerable, while the action
set is general. Both reward and cost rates are possibly unbounded. A key feature of
our model is that the discount rate is state-action dependent, and furthermore, the
undiscounted case is allowed. This feature makes our model more general since the
state-action-dependent discount rate exactly characterizes the practical cases such
as the interest rate in economic and financial systems [2,9,17,23,26], which can be
adjusted according to the real circumstances. We aim to maximize the expected
reward obtained during a first passage time to some target set, subject to that
the associated expected cost over this first passage time does not exceed a given
constraint. An interesting special case is that in which the reward rates are uniformly
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equal to one, which corresponds to a stochastic time optimal control problem with
a target set; see Remark 11.2.4(d) for details.

Previously, Beutler and Ross [3] consider constrained SMDPs with the long-
run average criteria. They suppose that the state space of the SMDP is finite, and
the action space compact metric. A Lagrange multiplier formulation involving a
dynamic programming equation is utilized to relate the constrained optimization
to an unconstrained optimization parametrized by the multiplier. This approach
leads to a proof for the existence of a semi-simple optimal constrained policy.
That is, there is at most one state for which the action is randomized between
two possibilities; at all other states, an action is uniquely chosen for each state.
Feinberg [4] further investigates constrained average reward SMDPs with finite
state and action sets. They develop a technique of state-action renewal intensities
and provide linear programming algorithms for the computation of optimal policies.
On the other hand, Feinberg [5] deals with constrained infinite horizon discounted
SMDPs. Compared with the existing works above, however, our main interest in this
chapter is to analyze the constrained optimality for first passage criteria in SMDPs,
which, to best of our knowledge, is an issue not yet explored.

To obtain the existence of a constrained first passage optimal policy, we first give
suitable conditions and then employ the so-called Lagrange multiplier technique
to analyze the constrained control problem. Based on the Lagrange multiplier
technique, we transform the constrained control problem to an unconstrained one,
prove that a constrained optimal policy exists, and show that the constrained optimal
policy randomizes between two stationary policies differing in at most one state.

The rest of this chapter is organized as follows. In Sect. 11.2, we formulate
the control model, followed by the optimality conditions and the main results
on the existence of constrained optimal policies. In Sect. 11.3, some technique
preliminaries are given, and the proof of the main result is presented in Sect. 11.4.

11.2 The Control Model

The model of constrained SMDPs considered in this chapter is specified by the eight
objects

{E,B,(A(i)⊂ A, i ∈ E),Q(·, · | i,a),r(i,a),c(i,a),α(i,a),γ}, (11.1)

where E is the state space, a denumerable set; B ⊂ E is the given target set, such as
the set of all bad states or of good states of a system; A is the action space, a Borel
space endowed with the Borel σ -field A ; and A(i) ∈ A is the set of admissible
actions at state i ∈ E . The transition mechanism of the SMDPs is defined by the
semi-Markov kernel Q(·, ·|i,a) on R+×E given K, where R+ = [0,+∞), and K =
{(i,a) | i ∈ E,a ∈ A(i)} is the set of feasible state-action pairs. It is assumed that (1)
Q(·, j|i,a) (for any fixed j ∈ E and (i,a) ∈ K) is a nondecreasing, right continuous
real function on R+ such that Q(0, j|i,a) = 0; (2) Q(t, ·|·, ·) (for each fixed t ∈ R+)
is a sub-stochastic kernel on E given K; and (3) P(·|·, ·) := Q(∞, ·|·, ·) is a stochastic
kernel on E given K. If action a ∈ A(i) is selected in state i, then Q(t, j | i,a) is the
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joint probability that the sojourn time in state i is not greater than t ∈ R+, and the
next state is j. Moreover, r(i,a) and c(i,a) in (11.1) denote the reward and cost rate
functions on K valued in R = (−∞,+∞), respectively, which are both assumed to be
measurable on A(i) for each fixed i ∈ E . In addition, α(i,a) represents the discount
rate, which is a measurable function from K to R+. Finally, γ is a given constraint
constant.

Remark 11.2.1. Compared with the models of the standard constrained discounted
and average criteria [3–5], in this model (11.1), we introduce a target set B ⊂ E of
the controlled system, and furthermore, the discount rate α(i,a) here is state-action
dependent and may be equal to zero (i.e., the undiscounted case is allowed).

To state the constrained SMDPs we are concerned with, we need to introduce the
classes of policies. For each n ≥ 0, let Hn be the family of admissible histories up to
the nth jump (decision epoch), that is, Hn = (R+×K)n × (R+×E), for n = 0,1, . . ..

Definition 11.2.1. A randomized history-dependent policy, or simply a policy, is a
sequence π = {πn,n ≥ 0} of stochastic kernels πn on A given Hn satisfying

πn(A(in) | hn) = 1 ∀ hn = (t0, i0,a0, . . . , tn−1, in−1,an−1, tn, in) ∈ Hn, n = 0,1, . . . .

The class of all policies is denoted by Π . To distinguish the subclasses of Π , we
let Φ be the family of all stochastic kernels ϕ on A given E such that ϕ(A(i) | i) = 1
for all i∈ E , and F the set of all functions f : E →A such that f (i) is in A(i) for every
i∈ E . A policy π = {πn} ∈ Π is said to be randomized Markov if there is a sequence
{ϕn} of ϕn ∈ Φ such that πn(· | hn) = ϕn(· | in) for every hn ∈ Hn and n ≥ 0. We
denote such a policy by π = {ϕn}. A randomized Markov policy π = {ϕn} is said
to be randomized stationary if every ϕn is independent of n. In this case, we write
π = {ϕ ,ϕ , . . .} as ϕ for simplicity. Further, a randomized Markov policy π = {ϕn}
is said to be deterministic Markov if there is a sequence { fn} of fn ∈ F such that
ϕn(· | i) is the Dirac measure at fn(i) for all i ∈ E and n ≥ 0. We write such a
policy as π = { fn}. In particular, a deterministic Markov policy π = { fn} is said
to be (deterministic) stationary if fn are all independent of n. Similarly, we write
π = { f , f , . . .} as f for simplicity. We denote by ΠRM, ΠRS,ΠDM, and ΠDS the
families of all randomized Markov, randomized stationary, deterministic Markov,
and stationary policies, respectively. Obviously, Φ = ΠRS ⊂ ΠRM ⊂ Π and F =
ΠDS ⊂ ΠDM ⊂ Π .

Let P(E) denote the set of all the probability measures on E . For each (s,μ) ∈
R+ × P(E) and π ∈ Π , by the well-known Tulcea’s theorem ([10, Proposition
C.10]), there exist a unique probability space (Ω ,F , Pπ

(s,μ)) and a stochastic process
{Tn,Jn,An,n ≥ 0} such that, for each i, j ∈ E, t ∈ R+,C ∈ A and n ≥ 0,

Pπ
(s,μ)(T0 = s,J0 = i) = μ(i), (11.2)

Pπ
(s,μ)(An ∈C | hn) = πn(C | hn), (11.3)

Pπ
(s,μ)(Tn+1 −Tn ≤ t,Jn+1 = j | hn,an) = Q(t, j | in,an), (11.4)
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where Tn,Jn, and An denote the nth decision epoch, the state, and the action chosen
at the nth decision epoch, respectively. The expectation operator with respect to
Pπ
(s,μ) is denoted by Eπ

(s,μ). In particular, if μ is the Dirac measure δi(·) concentrated
at some state i ∈ E , we write Pπ

(s,μ) and Eπ
(s,μ) as Pπ

(s,i) and Eπ
(s,i), respectively. For

simplicity, Pπ
(0,μ) and Eπ

(0,μ) is denoted by Pπ
μ and Eπ

μ , respectively. Without loss
of generality, in the following, we always set the initial decision epoch T0 = 0
and omit it.

Remark 11.2.2. (a) The construction of the probability measure space (Ω ,F ,
Pπ
(s,μ)) and the above properties (11.2)–(11.4) follow from those in Limnios and

Oprisan [18, p.33] and Puterman [24, p.534–535].
(b) Let X0 := 0, Xn := Tn −Tn−1 (n ≥ 0) denote the sojourn times between decision

epochs (jumps). Then, the stochastic process {Tn,Jn,An,n≥ 0}may be rewritten
as the one {Xn,Jn,An,n ≥ 0}.

To avoid the possibility of an infinite number of decision epochs within finite
time, we make the following assumption that the system does not have accumulation
points.

Assumption 11.2.1 For all μ ∈ P(E) and π ∈ Π , Pπ
μ ({ lim

n→∞
Tn = ∞}) = 1.

To verify Assumption 11.2.1, we can use a sufficient condition below.

Condition 11.2.2 There exist constants δ > 0 and ε > 0 such that

Q(δ ,E | i,a)≤ 1− ε ∀(i,a) ∈ K.

Remark 11.2.3. In fact, Condition 11.2.2 is the standard regular condition widely
used in SMDPs [5, 16, 20, 24, 25], which exactly implies Assumption 11.2.1 above.

Under Assumption 11.2.1, we define an underlying continuous-time state-action
process {Z(t),W (t), t ∈ R+} corresponding to the stochastic process {Tn,Jn,An} by

Z(t) = Jn, W (t) = An, for Tn ≤ t < Tn+1, t ∈ R+ and n ≥ 0.

Definition 11.2.2. The stochastic process {Z(t),W (t)} is called a (continuous-
time) SMDP.

For the target set B ⊂ E , we consider the random variable

τB := inf{t ≥ 0 | Z(t) ∈ B} (with inf /0 := ∞),

which is the first passage time into the set B of the process {Z(t), t ∈ R+}. Now, fix
an initial distribution μ ∈ P(E). For each π ∈ Π , the expected first passage reward
and cost criteria are defined as follows:

Vr(μ ,π) := Eπ
μ

[∫ τB

0
e−

∫ t
0 α(Z(u),W(u))dur(Z(t),W (t))dt

]
, (11.5)

Vc(μ ,π) := Eπ
μ

[∫ τB

0
e−

∫ t
0 α(Z(u),W(u))duc(Z(t),W (t))dt

]
. (11.6)
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To introduce the constrained problem, for the constraint constant γ in (11.1), let

U := {π ∈ Π |Vc(μ ,π)≤ γ}
be the set of “constrained” policies. We assume that U �= /0 throughout the following.
Then, the optimization problem we are interested in is to maximize the expected first
passage reward Vr(μ ,π) over the set U , and our goal is to find a constrained optimal
policy as defined below.

Definition 11.2.3. A policy π∗ ∈U is called constrained optimal if

Vr(μ ,π∗) = sup
π∈U

Vr(μ ,π).

Remark 11.2.4. (a) It is worthwhile to point out that the expected first passage
reward criterion Vr(μ ,π) defined in (11.5) is different from the usual discounted
reward criteria [11, 12, 24] and the total reward criteria without discount
[6, 11, 24]. In fact, the former concerns with the performance of the system
during a first passage time to some target set, while the latter concern with
the performance of the system over an infinite horizon. However, if the target
set B = /0 (and thus τB ≡ ∞) and, furthermore, the discount factor α(i,a) is
state-action independent (say, α(i,a) ≡ α), then the expected first passage
reward criterion (11.5) above will be directly reduced to the standard infinite
horizon expected discounted reward criteria or expected total reward criteria
[6, 11, 12, 14, 24].

(b) Note that the case without discount, that is, α(i,a)≡ 0, is allowed in the context
of this chapter; see Remark 11.2.5 for further details.

(c) When the constraint constant γ in (11.1) is sufficiently large so that U =Π , then
the constrained first passage optimization problem (recall Definition 11.2.3) is
reduced to the usual unconstrained first passage optimization problems [13, 15,
19, 21, 22, 28].

(d) In real situations, the target set B usually represents the set of failure states of a
system, and thus τB denotes the working life (functioning life) of the system.
Therefore, our aim is to maximize the expected rewards Vr(μ ,π) obtained
before the system fails, subject to the associated costs Vc(μ ,π) incurred before
the failure of the system is not more than some constraint constant γ . In
particular, if the reward function rate r(i,a)≡ 1 and the discount factor α(i,a)≡
0, our aim is then reduced to maximizing the expected working life of the
system, subject to the associated costs Vc(μ ,π) incurred before the failure of
the system are not more than some constraint constant γ .

To obtain the existence of a constrained optimal policy, we need several sets of
conditions.

Assumption 11.2.3 There exist constants M > 0, 0 < β < 1, and a weight function
w ≥ 1 on E such that for every i ∈ Bc := E −B,

(a) supa∈A(i) |r̃(i,a)| ≤Mw(i), and supa∈A(i) |c̃(i,a)| ≤Mw(i) for all a∈A(i), where
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r̃(i,a) : = r(i,a)
∫ ∞

0
e−α(i,a)t(1−D(t | i,a))dt,

c̃(i,a) : = c(i,a)
∫ ∞

0
e−α(i,a)t(1−D(t | i,a))dt, and

D(t | i,a) : = Q(t,E | i,a).

(b) supa∈A(i)∑ j∈Bc w( j)m( j | i,a)≤ β w(i), where m( j | i,a) :=
∫ ∞

0 e−α(i,a)tQ(dt, j |
i,a).

Remark 11.2.5. (a) In fact, Assumption 11.2.3 is a condition that ensures the first
passage criteria (11.5) and (11.6) to be finite and the dynamic programming
operators to be contracting; see Lemmas 11.3.1–11.3.2 below.

(b) Assumption 11.2.3(a) shows that the cost function is allowed to have neither
upper nor lower bounds, while the ones in the existing works [3–5, 7, 8, 12] for
the standard constrained expected discount criteria are assumed to be bounded
or nonnegative (bounded below).

(c) Note that the case without discount, that is, “α(i,a) ≡ 0”, is allowed in
Assumption 11.2.3. In this case, Assumption 11.2.3(b) is reduced to that there
exists a constant 0 < β < 1 such that

sup
a∈A(i)

∑
j∈Bc

w( j)P( j | i,a)≤ β w(i) ∀ i ∈ Bc (with P( j | i,a) := Q(∞, j | i,a)),

(11.7)

which can be still verified. This fact is due to that the restrictions in Assumption
11.2.3(b) are imposed on the data of the set Bc rather than the entire space E .
However, if the restrictions in Assumption 11.2.3(b) are imposed on the data of
the entire space E , that is, there exists a constant 0 < β < 1 such that

sup
a∈A(i)

∑
j∈E

w( j)P( j | i,a)≤ β w(i) ∀ i ∈ E, (11.8)

then (11.8) fails to hold itself. Indeed, by taking infi w(i) in the two sides of
(11.8), we can conclude from (11.8) that “β ≥ 1”, which leads to a contradiction
with “0 < β < 1”.

Assumption 11.2.4 (a) For each i ∈ Bc, A(i) is compact.
(b) The functions r̃(i,a), c̃(i,a), and m( j | i,a) defined in Assumption 11.2.3 are

continuous in a ∈ A(i) for each fixed i, j ∈ Bc, respectively.
(c) The function ∑ j∈Bc w( j)m( j | i,a) is continuous in a ∈ A(i), with w as in

Assumption 11.2.3.

Remark 11.2.6. Assumption 11.2.4 is the compactness-continuity conditions for
the first passage criteria, which is similar to the standard compactness-continuity
conditions for discount and average criteria; see, for instance, Beutler and Ross
[3], Guo and Hernández-Lerma [7, 8]. The difference between them lies in that the
former only imposes restrictions on the data of the set Bc, while the latter focus on
the data of the entire space E .
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Assumption 11.2.5 (a) ∑ j∈Bc w( j)μ( j) < ∞.
(b) U0 := {π ∈ Π |Vc(μ ,π)< γ} �= /0.

Remark 11.2.7. (a) Assumption 11.2.5(a) is a condition on the “tails” of the initial
distribution μ , whereas Assumption 11.2.5(b) is a Slater-like hypothesis, typical
for constrained problems; see, for instance, Beutler and Ross [3], Guo and
Hernández-Lerma [7, 8], and Zhang and Guo [29].

(b) It should be noted that the conditions in Assumptions 11.2.3–11.2.5 are all
imposed on the data of the set Bc rather than the entire space E and thus can
be fulfilled in greater generality.

Our main result is stated as following.

Theorem 11.2.1. Suppose that Assumptions 11.2.1–11.2.5 hold. Then there exists
a constrained optimal policy that may be a stationary policy or a randomized
stationary policy which differ in at most one state; that is, there exist two stationary
policies f 1, f 2, a state i∗ ∈ Bc, and a number p ∈ [0,1] such that f 1(i) = f 2(i) for
all i �= i∗ and, in addition, the randomized stationary policy ϕ p(· | i) is constrained
optimal, where

ϕ p(a | i) =

⎧⎨
⎩

p, if a = f 1(i∗),
1− p, if a = f 2(i∗),
1, if a = f 1(i) = f 2(i), i �= i∗.

(11.9)

Proof. See Sect. 11.4. �

11.3 Technical Preliminaries

This section provides some technical preliminaries necessary for the proof of
Theorem 11.2.1 in Sect. 11.4.

To begin with, we define the w-norm for every real-valued function u on E by

‖u‖w := sup
i∈E

|u(i)|/w(i),

where w is the so-called weight function on E as in Assumption 11.2.3. Let

Bw(E) := {u : ‖u‖w < ∞}
be the space of w-bounded functions on E .

Lemma 11.3.1. Suppose that Assumptions 11.2.1 and 11.2.3 hold. Then:

(a) For each i ∈ E and π ∈ Π ,

|Vr(i,π)| ≤ Mw(i)/(1−β ), |Vc(i,π)| ≤ Mw(i)/(1−β ).

Hence, Vr(·,π) ∈ Bw(E), and Vc(·,π) ∈ Bw(E).
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(b) For all i ∈ E, π ∈ Π , and u ∈ Bw(E),

lim
n→∞

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}u(Jn)

]
= 0,

where 1D is the indicator function on a set D.

Proof. (a) By the definition of Vr(i,π), we see that Vr(i,π) can be expressed as
below:

Vr(i,π)

= Eπ
i

[∫ τB

0
e−

∫ t
0 α(Z(u),W(u))dur(Z(t),W (t))dt

]

= Eπ
i

[∫ ∞

0
e−

∫ t
0 α(Z(u),W(u))du1{τB>t}r(Z(t),W (t))dt

]

= Eπ
i

[ ∞

∑
n=0

∫ Tn+1

Tn

e−
∫ t

0 α(Z(u),W(u))dudt1{J0∈Bc,...,Jn∈Bc}r(Jn,An)

]

= Eπ
i

[ ∞

∑
n=0

∫ Xn+1

0
e−

∫ Tn+t
0 α(Z(u),W(u))dudt1{J0∈Bc,...,Jn∈Bc}r(Jn,An)

]

= Eπ
i

[
∞

∑
n=0

e−
∫ Tn

0 α(Z(u),W(u))du1{J0∈Bc,...,Jn∈Bc}r(Jn,An)

∫ Xn+1

0
e−

∫ Tn+t
Tn

α(Z(u),W(u))dudt

]

= Eπ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r(Jn,An)

∫ Xn+1

0
e−α(Jn,An)tdt

]

= Eπ
i

[ ∞

∑
n=0

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r(Jn,An)

×
∫ Xn+1

0
e−α(Jn,An)tdt|X0,J0,A0, . . . ,Xn,Jn,An

]]

= Eπ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r(Jn,An)

×Eπ
i

[∫ Xn+1

0
e−α(Jn,An)tdt|X0,J0,A0, . . . ,Xn,Jn,An

]]

= Eπ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r(Jn,An)
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×
∫ ∞

0
e−α(Jn,An)t(1−D(t | Jn,An))dt

]

= Eπ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r̃(Jn,An)

]
, (11.10)

where the third equality follows from Assumption 11.2.1 and the ninth equality
is due to the property (11.4).

We now show that for each n = 0,1, . . .,

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

]
≤ β nw(i). (11.11)

Indeed, (11.11) is trivial for n = 0. Now, for n ≥ 1, it follows from the property
(11.4) and Assumption 11.2.3(b) that

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

]

= Eπ
i

[
Eπ

i

[
n−1

∏
k=0

e−α(Jk ,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

| T0,J0,A0, . . . ,Tn−1,Jn−1,An−1]]

= Eπ
i

[ n−2

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn−1∈Bc}Eπ
i

[
e−α(Jn−1,An−1)Xn1{Jn∈Bc}w(Jn)

| T0,J0,A0, . . . ,Tn−1,Jn−1,An−1

]]

= Eπ
i

[ n−2

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn−1∈Bc}

× ∑
j∈Bc

∫ ∞

0
e−α(Jn−1,An−1)tw( j)Q(dt, j | Jn−1,An−1)

]

= Eπ
i

[ n−2

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn−1∈Bc} ∑
j∈Bc

w( j)m( j | Jn−1,An−1)

]

≤ β Eπ
i

[ n−2

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn−1∈Bc}w(Jn−1)

]
. (11.12)

Iterating (11.12) yields (11.11).
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Moreover, observe that Assumption 11.2.3(a) and (11.11) gives

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}|r̃(Jn,An)|
]

≤ MEπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

]

≤ Mβ nw(i),

which together with (11.10) yields

|Vr(i,π)| ≤
∞

∑
n=0

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}|r̃(Jn,An)|
]

≤
∞

∑
n=0

Mβ nw(i) = Mw(i)/(1−β ).

Thus, we get

sup
i∈E

|Vr(i,π)|/w(i)≤ Mw(i)/(1−β ),

which shows that Vr(·,π) ∈ Bw(E).
Similarly, the conclusion for Vc(·,π) can be obtained.

(b) Since |u(i)| ≤ ‖u‖ww(i) for all i ∈ E , it follows from (11.11) above that

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}|u(Jn)|
]

≤ ‖u‖wEπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

]
≤ ‖u‖wβ nw(i),

and so part (b) follows. �

Remark 11.3.8. In fact, Lemma 11.3.1 here for first passage criteria in SMDPs is
similar to Lemma 3.1 in Huang and Guo [15]. The main difference between them is
due to that the discount factor α(i,a) here is state-action dependent, and the reward
rate here is possibly unbounded (while the ones in Huang and Guo [15] are not).

For ϕ ∈ Φ , we define the dynamic programming operators Hϕ and H on Bw(E)
as follows: for u ∈ Bw(E), if i ∈ Bc,
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Hϕu(i) :=
∫

a∈A(i)

[
r̃(i,a)+ ∑

j∈Bc
u( j)m( j | i,a)

]
ϕ(da | i), (11.13)

Hu(i) := sup
a∈A(i)

[
r̃(i,a)+ ∑

j∈Bc
u( j)m( j | i,a)

]
, (11.14)

and if i ∈ B, Hϕu(i) = Hu(i) := 0.

Lemma 11.3.2. Suppose that Assumptions 11.2.1 and 11.2.3 hold. Then:

(a) For each ϕ ∈ Φ , Vr(·,ϕ) is the unique solution in Bw(E) to the equation

Vr(i,ϕ) = HϕVr(i,ϕ) ∀i ∈ E.

(b) If, in addition, Assumption 11.2.4 also holds, V ∗
r (i) := supπ∈Π Vr(i,π) is the

unique solution in Bw(E) to equation

V ∗
r (i) = HV ∗

r (i) ∀i ∈ E.

Moreover, there exists an f ∗ ∈ F such that V ∗
r (i) = H f ∗V ∗

r (i), and such a policy
f ∗ ∈ F satisfies Vr(i, f ∗) =V ∗

r (i) for every i ∈ E.

Proof. (a) From Lemma 11.3.1, it is clear that Vr(·,ϕ) ∈ Bw(E). We now establish
the equation Vr(i,ϕ) = HϕVr(i,ϕ). It is obviously true when i ∈ B, and for i ∈
Bc, by (11.10), we have

Vr(i,ϕ)

= Eϕ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc} r̃(Jn,An)

]

= Eϕ
i

[
Eϕ

i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r̃(Jn,An) | T0,J0,A0,T1,J1

]]

= Eϕ
i

[
1{J0∈Bc}r̃(J0,A0)+ e−α(J0,A0)X11{J0∈Bc,J1∈Bc}Eϕ

i

[ ∞

∑
n=1

n−1

∏
k=1

e−α(Jk,Ak)Xk+1

1{J2∈Bc,...,Jn∈Bc} r̃(Jn,An) | T0,J0,A0,T1,J1

]]

=
∫

a∈A(i)
ϕ(da | i)

[
r̃(i,a)+ ∑

j∈Bc

∫ ∞

0
e−α(i,a)tQ(dt, j | i,a)Eϕ

i

[ ∞

∑
n=1

n−1

∏
k=1

e−α(Jk,Ak)Xk+1

1{J0∈Bc,...,Jn∈Bc}r̃(Jn,An) | T0 = 0,J0 = i,A0 = a,T0 = t,J1 = j

]]
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=

∫
a∈A(i)

ϕ(da | i)

[
r̃(i,a)+ ∑

j∈Bc
m( j | i,a)Eϕ

j

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+1

1{J0∈Bc,...,Jn∈Bc}r̃(Jn,An)

]

=

∫
a∈A(i)

ϕ(da | i)

[
r̃(i,a)+ ∑

j∈Bc
m( j | i,a)Vr( j,ϕ)

]
,

where the fifth equality is due to the properties (11.2)–(11.4) and that policy ϕ
is Markov. Hence, we obtain that Vr(i,ϕ) = HϕVr(i,ϕ), i ∈ E .

To complete the proof, we need only show that Hϕ is a contraction from
Bw(E) to Bw(E), and thus Hϕ has a unique fixed point in Bw(E). Indeed, for an
arbitrary function u ∈ Bw(E), by Assumption 11.2.3 it is clear that

|Hϕ u(i)|

=

∣∣∣∣∣
∫

a∈A(i)

[
r̃(i,a)+ ∑

j∈Bc
u( j)m( j | i,a)

]
ϕ(da | i)

∣∣∣∣∣
≤

∫
a∈A(i)

[
|r̃(i,a)|+ ∑

j∈Bc
|u( j)|m( j | i,a)

]
ϕ(da | i)

≤
∫

a∈A(i)

[
Mw(i)+ ‖u‖wβ w(i)

]
ϕ(da | i)

= (M +β‖u‖w)w(i) ∀i ∈ Bc,

which implies that Hϕu ∈ Bw(E), that is, Hϕ maps Bw(E) to itself. Moreover,
for any u,u′ ∈ Bw(E), we have

|Hϕu(i)−Hϕu′(i)|

=

∣∣∣∣∣
∫

a∈A(i)

[
∑
j∈Bc

(u( j)− u′( j))m( j | i,a)

]
ϕ(da | i)

∣∣∣∣∣
≤

∫
a∈A(i)

[
∑
j∈Bc

|u( j)− u′( j)|m( j | i,a)

]
ϕ(da | i)

≤
∫

a∈A(i)

[
‖u− u′‖wβ w(i)

]
ϕ(da | i)

= β‖u− u′‖ww(i) ∀i ∈ Bc.

Hence, ‖Hϕu−Hϕu′‖w ≤ β‖u−u′‖w, and thus Hϕ is a contraction fromBw(E)
to itself. By Banach’s Fixed Point Theorem, Hϕ has a unique fixed point in
Bw(E), and so the proof is achieved.



11 Constrained Optimality in Semi-Markov Decision Processes 193

(b) Under Assumption 11.2.4, using a similar manner to the proof of part (a) yields
that H is a contraction from Bw(E) to itself, and thus, by Banach’s Fixed Point
Theorem, H has a unique fixed point u∗ in Bw(E), that is, Hu∗ = u∗. Hence, to
prove part (b), we need to show that: (b1) V ∗

r ∈ Bw(E), with w-norm ‖V ∗
r ‖ ≤

M/(1−β ). (b2) V ∗
r = u∗.

In fact, (b1) is an immediate result of Lemma 11.3.1(a). Thus, it remains to prove
(b2). To this end, we show that u∗ ≤ V ∗

r and u∗ ≥ V ∗
r as below, respectively. It is

clear that u∗(i) =V ∗
r (i) = 0 for every i ∈ B. Hence, in the following, we restrict our

argument to the case of i ∈ Bc.

(i) This part is to show that u∗ ≤V ∗
r . By the equality u∗ = Hu∗ and the measurable

selection theorem [10, Proposition D.5, p.182], there exists an f ∈ F such that

u∗(i) = r̃(i, f )+ ∑
j∈Bc

u∗( j)m( j | i, f ) ∀i ∈ Bc. (11.15)

Iteration of (11.15) yields

u∗(i) = E f
i

[ n−1

∑
m=0

m−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jm∈Bc}r̃(Jm, f )

]

+E f
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}u∗(Jn)

]
∀i ∈ Bc, n = 1,2 . . . ,

and letting n → ∞ we get, by Lemma 11.3.1(b),

u∗(i) = E f
i

[ ∞

∑
m=0

m−1

∏
k=0

e−α(Jk ,Ak)Xk+11{J0∈Bc,...,Jm∈Bc}r̃(Jm, f )

]
=Vr(i, f ) ∀i ∈ Bc.

Thus, by the definition of V ∗
r , we see that u∗ ≤V ∗

r .
(ii) This part is to show that u∗ ≥V ∗

r . Note that u∗ = Hu∗ implies that

u∗(i)≥ r̃(i,a)+ ∑
j∈Bc

u∗( j)m( j | i,a) ∀i ∈ Bc, a ∈ A(i), (11.16)

which gives

1{Jn∈Bc}u∗(Jn)≥ 1{Jn∈Bc}r̃(Jn,An)+1{Jn∈Bc} ∑
j∈Bc

u∗( j)m( j | Jn,An) ∀n ≥ 0.

(11.17)

Hence, for any initial state i ∈ Bc and policy π ∈ Π , using properties (11.2)–
(11.4) yields
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1{Jn∈Bc}u∗(Jn) ≥ Eπ
i

[
1{Jn∈Bc}r̃(Jn,An)+ e−α(Jn,An)Xn+11{Jn∈Bc,Jn+1∈Bc}

×u∗(Jn+1) | T0,J0,A0, . . . ,Tn,Jn,An

]
∀n = 0,1 . . . ,

which gives

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}u∗(Jn)

≥ Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r̃(Jn,An)

+
n

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn+1∈Bc}u∗(Jn+1) | T0,J0,A0, . . . ,Tn,Jn,An

]

∀n = 0,1 . . . .

Therefore, taking expectation Eπ
i and summing over m = 0,1 . . . ,n − 1, we

obtain

u∗(i) ≥ Eπ
i

[ n−1

∑
m=0

m−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jm∈Bc}r̃(Jm,Am)

]

+Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}u∗(Jn)

]
, ∀n = 1,2 . . . .

Finally, letting n → ∞ in the latter inequality and using Lemma 11.3.1(b), it
follows that

u∗(i)≥Vr(i,π)
so that, as i and π were arbitrary, we conclude that u∗ ≥V ∗

r .

Combining (i) with (ii) yields that u∗ =V ∗
r , and thus we have V ∗

r = HV ∗
r .

Finally, it follows from V ∗
r = HV ∗

r and the measurable selection theorem that
there exists an f ∗ ∈ F such that V ∗

r = H f ∗V ∗
r . This fact together with part (a) implies

that V f ∗
r =V ∗

r . �

Remark 11.3.9. Note that Lemma 11.3.2 also holds for the case of the expected first
passage cost Vc accordingly.

Note that F can be written as the product space F = ∏i∈E A(i). Hence, by
Assumption 11.2.4(a) and Tychonoff’s theorem, F is a compact metric space.

Lemma 11.3.3. Suppose that Assumptions 11.2.1–11.2.4 and 11.2.5(a) hold. Then
the functions Vr(μ , f ) and Vc(μ , f ) are continuous in f ∈ F.

Proof. We only prove the continuity of Vr(μ , f ) in f ∈ F because the other case is
similar. Let fn → f as n → ∞ and fix any i ∈ E . Let v(i) := limsupn→∞ Vr(i, fn).
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Then, by Theorem 4.4 in [1], there exists a subsequence {Vr(i, fnm)} (depending on
i) of {Vr(i, fn)} such that Vr(i, fnm) → v(i) as m → ∞. Then, by Lemma 11.3.1(a),
we have Vr( j, fnm) ∈ [−Mw( j)/(1− β ),Mw( j)/(1− β )] for all j ∈ E and m ≥ 1,
and so Vr(·, fnm) is in the product space ∏ j∈E [−Mw( j)/(1− β ),Mw( j)/(1 − β )]
for each m ≥ 1. Since E is denumerable, the Tychonoff theorem shows that
the space ∏ j∈E [−Mw( j)/(1 − β ),Mw( j)/(1 − β )] is compact, and thus there
exists a subsequence {Vr(·, fnk )} of {Vr(·, fnm)} converging to some point u in
∏ j∈E [−Mw( j)/(1 − β ),Mw( j)/(1 − β )], that is, limk→∞ Vr( j, fnk ) = u( j) for all
j ∈ E, which, together with fn → f and limm→∞ Vr(i, fnm) = v(i), implies that

v(i) = u(i), lim
k→∞

Vr( j, fnk ) = u( j), and lim
k→∞

fnk( j) = f ( j), for all j ∈ E. (11.18)

Moreover, by Lemma 11.3.1(a), we have

|u( j)| ≤ Mw( j)/(1−β ), for all j ∈ E, (11.19)

which implies that u ∈ Bw(E).
On the other hand, for k ≥ 1 and the given i ∈ Bc, by Lemma 11.3.2(a), we have

Vr(i, fnk ) = r̃(i, fnk )+ ∑
j∈Bc

Vr( j, fnk )m( j | i, fnk ). (11.20)

Then, under Assumptions 11.2.3 and 11.2.4, from (11.18)–(11.20) and Lemma 8.3.7
(i.e., the Generalized Dominated Convergence Theorem) in [11], we get

u(i) = r̃(i, f )+ ∑
j∈Bc

u( j)m( j | i, f ). (11.21)

Thus, by Lemma 11.3.2(a) and (11.18), we conclude that

limsup
n→∞

Vr(i, fn) = v(i) = u(i) =Vr(i, f ). (11.22)

Similarly, we can prove that

liminf
n→∞

Vr(i, fn) =Vr(i, f ),

which together with (11.22) implies that

limsup
n→∞

Vr(i, fn) = liminf
n→∞

Vr(i, fn) =Vr(i, f ),

and so

lim
n→∞

Vr(i, fn) =Vr(i, f ). (11.23)
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Moreover, noting that Vr(i, fn) = Vr(i, f ) = 0 for every i ∈ B and n ≥ 0, it follows
from Assumption 11.2.5(a) and Lemma 8.3.7 in [11] again that

lim
n→∞

Vr(μ , fn) = lim
n→∞ ∑

i∈E
[Vr(i, fn)]μ(i) = lim

n→∞ ∑
i∈Bc

[Vr(i, fn)]μ(i)

= ∑
i∈Bc

[ lim
n→∞

Vr(i, fn)]μ(i) = ∑
i∈Bc

Vr(i, f )μ(i) =Vr(μ , f ), (11.24)

which gives the stated result: Vr(μ , fn)→Vr(μ , f ), as n → ∞. �

To analyze the constrained control problem (recall Definition 11.2.3), we intro-
duce a Lagrange multiplier λ ≥ 0 as follows. For each i ∈ E and a ∈ A(i), let

bλ (i,a) := r(i,a)−λ c(i,a). (11.25)

Furthermore, for each policy π ∈ Π and i ∈ E , let

Vbλ (i,π) := Eπ
i

[∫ τB

0
e−

∫ t
0 α(Z(u),W(u))dubλ (Z(t),W (t))dt

]
, (11.26)

Vbλ (μ ,π) := ∑
j∈E

Vbλ ( j,π)μ( j), (11.27)

V ∗
bλ (i) := sup

π∈Π
Vbλ (i,π),V ∗

bλ (μ) := sup
π∈Π

Vbλ (μ ,π). (11.28)

Remark 11.3.10. Notice that, for each i ∈ B, Vbλ (i,π) = 0. Therefore, we have

Vbλ (μ ,π) = ∑
j∈Bc

Vbλ ( j,π)μ( j), V ∗
bλ (μ) = ∑

j∈Bc
V ∗

bλ ( j)μ( j).

Under Assumptions 11.2.1–11.2.4, by Lemma 11.3.2(b), we have

V ∗
bλ (i) =

⎧⎨
⎩

0, for i ∈ B,

sup
a∈A(i)

[
b̃λ (i,a)+ ∑

j∈Bc
V ∗

bλ ( j)m( j | i,a)

]
, for i ∈ Bc,

(11.29)

where b̃λ (i,a) := bλ (i,a)
∫ ∞

0 e−αt(1−D(t | i,a))dt. Moreover, for each i ∈ E , the
maximum in (11.29) is realized by some a ∈ A(i), that is,

A∗
λ (i) :=

⎧⎨
⎩

A(i), for i ∈ B,{
a ∈ A(i) |V ∗

bλ (i) = b̃λ (i,a)+∑ j∈Bc V ∗
bλ ( j)m( j | i,a)

}
, for i ∈ Bc

(11.30)
is nonempty. In other words, the following sets
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F
∗
λ :=

{
f ∈ F | f (i) ∈ A∗

λ (i) ∀i ∈ E

}
(11.31)

and

Φλ :=

{
ϕ ∈ Φ | ϕ(A∗

λ (i) | i) = 1 ∀i ∈ E

}
(11.32)

are nonempty.
Next lemma reveals that Φλ is convex.

Lemma 11.3.4. Under Assumptions 11.2.1–11.2.4, the set Φλ is convex.

Proof. For each ϕ1,ϕ2 ∈ Φλ , and p ∈ [0,1], let

ϕ p(· | i) := pϕ1(· | i)+ (1− p)ϕ2(· | i), ∀i ∈ E. (11.33)

Hence, ϕ p(A∗
λ (i) | i) = pϕ1(A∗

λ (i) | i) + (1 − p)ϕ2(A∗
λ (i) | i) = 1, and so Φλ is

convex. �

Notation. For each λ ≥ 0, we take an arbitrary, but fixed policy f λ ∈ F
∗
λ ,

and denote Vr(μ , f λ ), Vc(μ , f λ ), and Vbλ (μ , f λ ) by Vr(λ ), Vc(λ ), and Vb(λ ),
respectively. By Lemma 11.3.2, we have that Vbλ (i, f ) = V ∗

bλ (i) for all i ∈ E and

f ∈ F
∗
λ . Hence, Vb(λ ) =Vbλ (μ , f λ ) =V ∗

bλ (μ).

Lemma 11.3.5. If Assumptions 11.2.3–11.2.4 and 11.2.5(a) hold, then Vc(λ ) is
nonincreasing in λ ∈ [0,∞).

Proof. By (11.5), (11.6), and (11.25)–(11.26) for each π ∈ Π , we obtain

Vbλ (μ ,π) =Vr(μ ,π)−λVc(μ ,π) ∀λ ≥ 0.

Moreover, noting that Vb(λ ) =Vbλ (μ , f λ ) =V ∗
bλ (μ) for all λ ≥ 0 and f λ ∈ F

∗
λ , we

have, for any h > 0,

−hVc(λ ) = Vbλ+h(μ , f λ )−Vb(λ )

≤ Vb(λ + h)−Vb(λ )

≤ Vb(λ + h)−Vbλ (μ , f λ+h) =−hVc(λ + h),

which gives that

−hVc(λ )≤−hVc(λ + h).

Hence, Vc(λ ) is nonincreasing in λ ∈ [0,∞). �

Lemma 11.3.6. Suppose that Assumptions 11.2.1–11.2.4 hold. If lim
k→∞

λk = λ , and

f λk ∈ F
∗
λk

is such that lim
k→∞

f λk = f , then f ∈ F
∗
λ .
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Proof. Since f λk ∈ F
∗
λk

, for each i ∈ Bc and π ∈ Π , we have

V ∗
bλk

(i) =Vr(i, f λk )−λkVc(i, f λk )≥Vbλk (i,π) =Vr(i,π)−λkVc(i,π). (11.34)

Letting k → ∞ in (11.34) and by Lemma 11.3.3, we obtain

Vbλ (i, f ) ≥Vbλ (i,π) ∀i ∈ Bc and π ∈ Π ,

which together with the fact that A∗
λ (i) = A(i) for each i ∈ B implies that f ∈ F

∗
λ . �

Under Assumptions 11.2.1–11.2.4 and 11.2.5(a), it follows from Lemma 11.3.5
that the following nonnegative constant

λ := inf{λ ≥ 0 |Vc(λ )≤ γ} (11.35)

is well defined.

Lemma 11.3.7. Suppose that Assumptions 11.2.1–11.2.5 hold. Then the constant
λ in (11.35) is finite, that is, λ ∈ [0,∞).

Proof. Suppose that λ = ∞. By Assumption 11.2.5(b), there exists a policy π ′ ∈ Π
such that Vc(μ ,π ′)< γ . Let d := γ −Vc(μ ,π ′)> 0. Then, for any λ > 0, we have

Vbλ (μ ,π ′) =Vr(μ ,π ′)−λVc(μ ,π ′) =Vr(μ ,π ′)−λ (γ − d). (11.36)

As λ = ∞, by (11.35) and Lemma 11.3.5, we obtain Vc(λ ) > γ for all λ >
0. Therefore, Vb(λ ) = Vr(λ )− λVc(λ ) < Vr(λ )− λ γ . Since Vb(λ ) = V ∗

bλ (μ) ≥
Vbλ (μ ,π ′), from (11.36), we have

Vr(λ )−λ γ >Vb(λ )≥Vbλ (μ ,π ′) =Vr(μ ,π ′)−λ (γ − d) ∀λ > 0, (11.37)

which gives

Vr(λ )>Vr(μ ,π ′)+λ d ∀λ > 0. (11.38)

On the other hand, by Lemma 11.3.1 and Assumption 11.2.5(a), we have

max
{
|Vr(μ ,π ′)|, |Vr(λ )|

}
≤ M

[
∑
j∈Bc

w( j)μ( j)
]
/(1−β ) := M̃ < ∞ (11.39)

for all λ > 0. The latter inequality together with (11.38) gives that

2M̃ > λ d ∀λ > 0, (11.40)

which is clearly a contradiction; for instance, take λ = 3M̃/d > 0. Hence, λ is
finite. �
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11.4 Proof of Theorem 11.2.1

In this section, we prove Theorem 11.2.1 by using the Lagrange approach and the
following lemma.

Lemma 11.4.8. If there exist λ0 ≥ 0 and π∗ ∈U such that

Vc(μ ,π∗) = γ and Vbλ0 (μ ,π
∗) =V ∗

bλ0
(μ),

then π∗ is constrained optimal.

Proof. For any π ∈U , since Vbλ0 (μ ,π
∗) =V ∗

bλ0
(μ)≥Vbλ0 (μ ,π), we have

Vr(μ ,π∗)−λ0Vc(μ ,π∗)≥Vr(μ ,π)−λ0Vc(μ ,π). (11.41)

Noting that Vc(μ ,π∗) = γ and Vc(μ ,π)≤ γ (by π ∈U), from (11.41), we get

Vr(μ ,π∗)≥Vr(μ ,π)+λ0(γ −Vc(μ ,π))≥Vr(μ ,π) ∀π ∈U,

which means that π∗ is constrained optimal. �

Proof of Theorem 11.2.1. By Lemma 11.3.7, the constant λ ∈ [0,∞). Thus, we shall
consider the two cases: λ = 0 and λ > 0.

The case of λ = 0: By (11.35), there exists a sequence f λk ∈ F
∗
λk

such that λk ↓ 0

as k → ∞. Because F is compact, we may assume that f λk → f̃ without loss of
generality. Thus, by Lemma 11.3.5, we have Vc(μ , f λk ) ≤ γ for all k ≥ 1, and then
it follows from Lemma 11.3.3 that f̃ ∈ U . Moreover, for each π ∈ U , we have that
Vb(λk) =Vbλk (μ , f λk )≥Vbλk (μ ,π). Hence, by Lemma 11.3.1(a) and (11.39),

Vr(μ , f λk )−Vr(μ ,π)≥ λk[Vc(μ , f λk )−Vc(μ ,π)]≥−2λkM̃. (11.42)

Letting k → ∞ in (11.42), by Lemma 11.3.3, we have

Vr(μ , f̃ )−Vr(μ ,π)≥ 0 ∀π ∈U,

which means that f̃ is a constrained optimal stationary policy.

The case of λ > 0: First, if there is some λ ′ ∈ (0,∞) satisfying Vc(λ ′) = γ , then
there exist an associated f λ ′ ∈ F

∗
λ ′ such that Vc(λ ′) =Vc(μ , f λ ′

) = γ , and V ∗
bλ ′ (μ) =

Vbλ ′ (μ , f λ ′
). Thus, by Lemma 11.4.8, f λ ′

is a constrained optimal stationary policy.

Now, suppose that Vc(λ ) �= γ for all λ ∈ (0,∞). Then, as λ is in (0,∞), there exist
two nonnegative sequences {λk} and {δk} such that λk ↑ λ and δk ↓ λ , respectively.
Since F is compact, we may take f λk ∈F

∗
λk

and f δk ∈F
∗
δk

such that f λk → f 1 ∈F and

f δk → f 2 ∈ F, without loss of generality. By Lemma 11.3.6, we have that f 1, f 2 ∈
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F
∗
λ

. By Lemmas 11.3.3 and 11.3.4, we obtain that Vc(μ , f 1)≥ γ and Vc(μ , f 2)≤ γ .

If Vc(μ , f 1) = γ ( or Vc(μ , f 2) = γ), by Lemma 11.4.8, we have that f 1 (or f 2)
is a constrained optimal stationary policy. Hence, to complete the proof, we shall
consider the following case:

Vc(μ , f 1)> γ and Vc(μ , f 2)< γ. (11.43)

Now using f 1 and f 2, we construct a sequence of stationary policies { fn} as
follows. For each n ≥ 1 and i ∈ E , let

fn(i) :=

{
f 1(i), if i < n;
f 2(i), if i ≥ n,

where, without loss of generality, the denumerable state space is assumed to be
the set {1,2, . . .}. Obviously, f1 = f 2 and lim

n→∞
fn = f 1. Hence, by Lemma 11.3.3,

lim
n→∞

Vc(μ , fn) = Vc(μ , f 1). Since f 1, f 2 ∈ F
∗
λ

(just mentioned), by (11.31), we see

that fn ∈ F
∗
λ

for all n ≥ 1. As f1 = f 2, by (11.43), we have Vc(μ , f1) < γ . If
there exists n∗ such that Vc(μ , fn∗) = γ , then by Lemma 11.4.8 and fn ∈ F

∗
λ

, fn∗
a constrained optimal stationary policy. Thus, in the remainder of this section,
we may assume that Vc(μ , fn) �= γ for all n ≥ 1. If Vc(μ , fn) < γ for all n ≥ 1,
lim
n→∞

Vc(μ , fn) =Vc(μ , f 1)≤ γ , which is a contradiction to (11.43). Thus, there exists

some n ≥ 1 such that Vc(μ , fn) > γ , which together with Vc(μ , f1) < γ gives the
existence of some ñ such that

Vc(μ , fñ)< γ and Vc(μ , fñ+1)> γ. (11.44)

Obviously, the stationary policies fñ and fñ+1 differ in at most the state ñ. Here, it
should be pointed out that ñ must be in Bc. Indeed, if ñ ∈ B, we have Vc(ñ, fñ) =
Vc(ñ, fñ+1) = 0, which implies that Vc(μ , fñ) = Vc(μ , fñ+1) and thus leads to a
contradiction to (11.44).

For any p ∈ [0,1], using the stationary policies fñ and fñ+1, we construct a
randomized stationary policy ϕ p as follows. For each i ∈ E ,

ϕ p(a | i) =

⎧⎨
⎩

p, if a = fñ(ñ) when i = ñ,
1− p, if a = fñ+1(ñ) when i = ñ,
1, if a = fñ(i) when i �= ñ.

(11.45)

Since fñ, fñ+1 ∈ F
∗
λ

, by Lemma 11.3.4, we have V
bλ (μ ,ϕ p) = V ∗

bλ (μ) for all

p ∈ [0,1]. We also have that Vc(μ ,ϕ p) is continuous in p ∈ [0,1]. Indeed, for any
p ∈ [0,1] and any sequence {pm} in [0,1] such that lim

n→∞
pm = p, as in the proof of

Lemma 11.3.2, we have
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Vc(i,ϕ pm) = ∑
a∈A(i)

ϕ pm(a | i)

[
c̃(i,a)+ ∑

j∈Bc
Vc( j,ϕ pm)m( j | i,a)

]
∀i ∈ Bc. (11.46)

Hence, as in the proof of Lemma 11.3.3, from (11.45) and (11.46), we obtain

lim
n→∞

Vc(μ ,ϕ pm) =Vc(μ ,ϕ p),

and so Vc(μ ,ϕ p) is continuous in p ∈ [0,1].
Finally, let p0 = 0 and p1 = 1. Then, Vc(μ ,ϕ p0) = Vc(μ , fñ+1) > γ and

Vc(μ ,ϕ p1) = Vc(μ , fñ) < γ . Therefore, by the continuity of Vc(μ ,ϕ p) in p ∈ [0,1]
there exists a p∗ ∈ (0,1) such that Vc(μ ,ϕ p∗) = γ . Since V

bλ (μ ,ϕ p∗) =V ∗
bλ (μ), by

Lemma 11.4.8, we have that ϕ p∗ is a constrained optimal stationary policy, which
randomizes between the two stationary policies fñ and fñ+1 that differ in at most the
state ñ ∈ Bc. �
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