
Chapter 10
A Survey of Some Model-Based Methods
for Global Optimization

Jiaqiao Hu, Yongqiang Wang, Enlu Zhou, Michael C. Fu,
and Steven I. Marcus

10.1 Introduction

Global optimization aims at characterizing and computing global optimal solutions
to problems with nonconvex, multimodal, or badly scaled objective functions; it
has applications in many areas of engineering and science. In general, due to the
absence of structural information and the presence of many local extrema, global
optimization problems are extremely difficult to solve exactly. There are many
different types of methods in the literature on global optimization, which can be
categorized based on different criteria. For instance, they can be classified either
based on the properties of problems to be solved (combinatorial or continuous,
nonlinear, linear, convex, etc.) or by the properties of algorithms that search
for new candidate solutions such as deterministic or random search algorithms.
Random search algorithms can further be classified as instance-based or model-
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based algorithms according to the mechanism of generating new candidate solutions
[46].

Instance-based algorithms maintain a single solution or population of candidate
solutions, and the construction of new generate of candidate solutions depends
explicitly on the previously generated solutions. Some well-known instance-based
algorithms include simulated annealing [25], genetic algorithms [16,36], tabu search
[15], nested partitions [35], generalized hill climbing [22, 23], and evolutionary
programming [12]. Model-based search algorithms are a class of new solution
techniques and were introduced only in recent years [18, 27, 32–34, 42]. In model-
based algorithms, new solutions are generated via an intermediate probabilistic
model that is updated or induced from the previously generated solutions. Thus,
there is only an implicit/indirect dependency among the solutions generated at
successive iterations of the algorithm. Specific model-based algorithms include
annealing adaptive search (AAS) [31, 41], the cross-entropy (CE) method [32–
34], and estimation of distribution algorithms (EDAs) [27, 42]. Instance-based
algorithms have been extensively studied in past decades. After briefly reviewing
some model-based algorithms, this chapter focuses on several model-based methods
that have been developed recently.

10.2 Global Optimization and Previous Work

10.2.1 Problem Statement

In many engineering design and optimization applications, we are concerned with
finding parameter values that achieve the optimum of an objective function. Such
problems can be mathematically stated in the generic form:

x∗ ∈ arg max
x∈X

H(x), (10.1)

where x is a vector of n decision variables, the solution space X is a nonempty
(often compact) subset of ℜn, and the objective function H : X → ℜ is a bounded
deterministic function.

Throughout this chapter, we assume that there exists a global optimal solution
to (10.1), i.e., ∃x∗ ∈ X such that H(x) ≤ H(x∗) ∀x �= x∗, x ∈ X. In practice,
this assumption can be justified under fairly general conditions. For example, for
continuous optimization problems with compact solution spaces, the existence of
an x∗ is guaranteed by the well-known Weierstrass theorem, whereas in discrete
optimization, the assumption holds trivially when X is a (nonempty) finite set.
Note that no further structural assumptions, such as convexity or differentiability,
are imposed on the objective function, and there may exist many locally optimal
solutions. In other words, our focus is on general global optimization problems with
little known structure. This setting arises in many complex systems of interest, e.g.,
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when the explicit form of H is not readily available and the objective function values
can only be assessed via “black-box” evaluations.

10.2.2 Previous Work on Random Search Methods

In this section, we review a class of global optimization algorithms collectively
known as random search methods. A random search method usually refers to an
algorithm that is iterative in nature, and uses some sort of randomized mechanism
to generate a sequence of iterates, e.g., candidate solutions or probabilistic models,
in order to successively approximate the optimal solution. What type of iterates
an algorithm produces and how these iterates are generated are what differentiates
approaches. A major advantage of stochastic search methods is that they are robust
and easy to implement, because they typically only rely on the objective function
values rather than structural information such as convexity and differentiability. This
feature makes these algorithms especially prominent in optimization of complex
systems with little structure.

From an algorithmic point of view, a random search algorithm can further be
classified as being either instance-based or model-based [46]. In instanced-based
algorithms, an iterate comprises a single or a set/population of candidate solution(s),
and the construction of new candidate solutions depends explicitly on previously
generated solutions. Such algorithms can be represented abstractly by the following
framework:

1. Given a set/population of candidate solutions Y (k) (which might be a singleton
set), generate a set of new candidate solutions X (k) according to a specified
random mechanism.

2. Update the current population Y (k+1) based on population Y (k) and candidate
solutions in X (k); increase the iteration counter k by 1 and reiterate from Step 1.

Thus the two major steps in an instance-based algorithm are the generation step
that produces a set of candidate solutions, and the selection/update step that
determines whether a newly generated solution in X (k) should be included in the next
generation. Over the past few decades, a significant amount of research effort has
been centered around instance-based methods, with numerous algorithms proposed
in the literature and their behaviors relatively well studied and understood. Some
well-known examples include simulated annealing [25], genetic algorithms [16,36],
tabu search [15], nested partitions [35], generalized hill climbing [22, 23], and
evolutionary programming [12].

We focus on model-based methods, which differ from instance-based approaches
in that candidate solutions are generated at each iteration by sampling from an
intermediate probability distribution model over the solution space. The idea is to
iteratively modify the distribution model based on the sampled solutions to bias
the future search toward regions containing high-quality solutions. In its most basic
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from, a model-based algorithm typically consists of the following two steps: let gk

be a probability distribution on X at the kth iteration of an algorithm:

1. Randomly generate a set/population of candidate solutions X (k) from gk.
2. Update gk based on the sampled solutions in X (k) to obtain a new distribution

gk+1; increase k by 1 and reiterate from step 1.

The underlying idea is to construct a sequence of iterates (probability distributions)
{gk} with the hope that gk → g∗ as k → ∞, where g∗ is a limiting distribution
that assigns most of its probability mass to the set of optimal solutions. So it is
the probability distribution (as opposed to candidate solutions as in instance-based
algorithms) that is propagated from one iteration to the next.

Clearly, the two key questions one needs to address in a model-based algorithm
are how to generate samples from a given distribution gk and how to construct the
distribution sequence {gk}. In order to address these questions, we provide brief
descriptions of three model-based algorithms: annealing adaptive search (AAS)
[31, 41], the cross-entropy (CE) method [32–34], and estimation of distribution
algorithms (EDAs) [27, 42].

The annealing adaptive search algorithm was originally introduced in Romeijn
and Smith [18] as a means to understand the behavior of simulated annealing.
The algorithm generates candidate solutions by sampling from a sequence of
Boltzmann distributions parameterized by time-dependent temperatures. As the
temperature decreases to zero, the sequence of Boltzmann distributions becomes
more concentrated on the set of optimal solutions, so that a solution sampled at
later iterations will be close to the global optimum with high probability. For the
class of Lipschitz optimization problems, it is shown that the expected number
of iterations required by AAS to achieve a given level of precision increases at
most linearly in the problem dimension [31, 41]. However, the idealized AAS is
not intended to be a practically useful algorithm, because the problem of sampling
exactly from a given Boltzmann distribution is known to be extremely difficult. This
implementation issue has motivated a number of algorithms that approximate AAS,
where a primary focus has been on the design and refinement of Markov chain-based
sampling techniques embedded within the AAS framework [40, 41].

The CE method was motivated by an adaptive algorithm for estimating proba-
bilities of rare events in complex stochastic networks [32], which involves variance
minimization. It was later realized [33] that the method can be modified to solve
combinatorial and continuous optimization problems. The CE method uses a family
of parameterized probability distributions on the solution space and tries to find
the parameter of the distribution that assigns maximum probability to the set of
optimal solutions. Implicit in CE is an optimal importance sampling distribution
concentrated only on the set of optimal solutions. The key idea is to use an
iterative scheme to successively estimate the optimal parameter that minimizes the
Kullback-Leibler (KL) divergence between the optimal distribution and the family
of parameterized distributions. Although there have been extensive developments
regarding implementation and successful practical applications of CE (see [34]),
the literature analyzing the convergence properties of the CE method is relatively
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sparse, with most of the existing results limited to specific settings (see, e.g., [17]
for a convergence proof of a variational version of CE in the context of estimation
of rare event probabilities, and [7] for probability one convergence proofs of CE for
discrete optimization problems). General convergence and asymptotic rate results
for CE were recently obtained in [21] by relating the algorithm to recursions of
stochastic approximation type (see Sect. 10.6).

EDAs were first introduced in the field of evolutionary computation. They inherit
the spirit of the well-known genetic algorithms (GAs), but eliminate the crossover
and mutation operators to avoid the disruption of partial solutions. In EDAs, a new
population of candidate solutions are generated according to the probability distri-
bution induced or estimated from the promising solutions selected from the previous
generation. Unlike CE, EDAs often take into account the interrelations between the
underlying decision variables needed to represent the individual candidate solutions.
At each iteration of the algorithm, a high-dimensional probabilistic model that better
represents the interdependencies between the decision variables is induced; this step
constitutes the most crucial and difficult part of the method. We refer the reader to
[27] for a review of the way in which different probabilistic models are used as
EDA instantiations. A proof of convergence of a class of EDAs, under the idealized
infinite population assumption, can be found in [42].

There are many other model-based algorithms proposed for global optimization.
Some interesting examples include ant colony optimization (ACO) [9], probability
collectives (PCs) [39], and particle swarm optimization (PSO) [24]. We do not
provide a comprehensive description of all of them, but instead present some re-
cently developed frameworks and approaches that allow us to view these algorithms
in a unified setting. These approaches, including model reference adaptive search
(MRAS) [18], the particle-filtering (PF) approach [43], the evolutionary games
approach [38], and the stochastic approximation gradient approach [20, 21], will
be discussed in detail in the following sections.

10.3 Model Reference Adaptive Search

As we have seen from Sect. 10.2, model-based algorithms differ from each other
in the choices of the distribution sequence {gk}. Examples of the {gk} sequence
include (a) Boltzmann distributions, used in AAS; (b) optimal importance sampling
measure, primarily used in the CE method; and (c) proportional selection schemes,
used in EDAs, ACOs, and PCs.

However, in all the above cases, the construction of gk often depends on the
objective function H, whose explicit form may not be available. In addition, since
gk may not have any special structure, sampling exactly from the distribution is in
general intractable. To address these computational challenges arising in model-
based methods, we have formalized in [18] a general approach called model
reference adaptive search (MRAS), where the basic idea is to use a convenient
parametric distribution as a surrogate to approximate gk and then sample candidate
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solutions from the surrogate distribution. More specifically, the method starts by
specifying a family of parameterized distributions { fθ , θ ∈ Θ} (with Θ being
the parameter space) and then projects gk onto the family to obtain a sampling
distribution fθk , where the projection is implemented at each iteration by finding an
optimal parameter θk that minimizes the Kullback-Leibler (KL) divergence between
gk and the parameterized family [34], i.e.,

θk = arg min
θ∈Θ

D(gk, fθ ) := arg min
θ∈Θ

(∫
X

ln
gk(x)
fθ (x)

gk(dx)

)
. (10.2)

The idea is that the parameterized family is specified with some structure (e.g.,
family of normal distributions parameterized by means and variances) so that once
its parameter is specified, sampling from the corresponding distribution can be
performed relatively easily and efficiently. Another advantage is that the task of
constructing the entire surrogate distribution now simplifies to the task of finding its
associated parameters. Roughly speaking, each sampling distribution fθk obtained
via (10.2) can be viewed as a compact approximation of gk, and consequently
the entire sequence { fθk} may (hopefully) retain some nice properties of the
distribution sequence {gk}. Thus, to ensure the convergence of the MRAS method,
it is intuitively clear that the sequence {gk} should be chosen in a way so that it
can be shown to converge to a limiting distribution concentrated only on the set of
optimal solutions. Since the distribution gk is primarily used to guide the parameter
updating process and to express the desired properties of the MRAS method, it is
called the reference distribution.

We now provide a summary of the MRAS method:

0. Select a sequence of reference distributions {gk} with desired convergence
properties and choose a parameterized family { fθ}.

1. Given θk, sample N candidate solutions X1
k , . . . ,X

N
k from fθk .

2. Update the parameter θk+1 by minimizing the KL divergence

θk+1 = arg min
θ

D(gk+1, fθ );

increase k by 1 and reiterate from step 1.

Note that the algorithm above assumes that the expectation/integral involved in the
KL divergence (cf. (10.2)) can be evaluated exactly. In practice, it is often estimated
by an empirical average based on samples obtained at step 1.

The MRAS framework accommodates many algorithms aforementioned in
Sect. 10.2. For example, when Boltzmann distributions are used as reference mod-
els, the resulting algorithm becomes AAS with an additional projection step. The
algorithm instantiation considered in [18] uses the following recursive procedure to
construct the gk sequence:

gk+1(x) =
H(x)gk(x)∫

X H(x)gk(dx)
, (10.3)
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where g0(x) is a given initial distribution on X and we have assumed for simplicity
that H(x)> 0 for all x ∈ X to prevent negative probabilities. This form of reference
distributions has also been used in a class of EDAs with proportional selection
schemes. It weights the new distribution gk+1 by the value of the objective function
H(x), so that each iteration of (10.3) improves the expected performance in the sense
that

Egk+1 [H(X)] :=
∫

X
H(x)gk+1(dx) =

∫
X H2(x)gk(dx)∫
X H(x)gk(dx)

≥ Egk [H(X)],

so solutions with better performance are given more probability under gk+1. This
results in a {gk} sequence that converges to a degenerate distribution at the optimal
solution. Furthermore, it is shown in [18] that the CE method can also be recovered
by replacing gk in the right-hand side of (10.3) with fθk . In other words, there is a
sequence of reference distributions implicit in CE that takes the form

gk+1(x) =
H(x) fθk (x)∫

X H(x) fθk (dx)
. (10.4)

Since gk+1 in (10.4) is obtained by tilting the sampling distribution fθk with the
objective function H, it improves the expected performance of fθk , i.e.,

Egk+1 [H(X)] =

∫
X H2(x) fθk (dx)∫
X H(x) fθk (dx)

≥
∫

X
H(x) fθk (dx) := Eθk [H(X)].

Therefore, it is reasonable to expect that the projection of gk+1 on the parameterized
family, fθk+1 , also improves fθk , i.e., Eθk+1 [H(X)] ≥ Eθk [H(X)]. This view of CE
leads to an important monotonicity property of the method, generalizing that of
[34], which is only proved for the one-dimensional case.

10.3.1 Convergence Result

For the family of natural exponential distributions (NEFs), the optimization problem
involved at step 2 of the MRAS method can be solved analytically in closed form,
which makes the approach very convenient to implement in practice. We recall the
definition of NEFs.

Definition 10.3.1. A parameterized family { fθ ,θ ∈ Θ ⊆ ℜd} is said to belong
to the natural exponential family if there exist mappings Γ : ℜn → ℜd and
K : ℜd → ℜ such that each fθ in the family can be represented in the form
fθ (x) = exp

(
θ T Γ (x)−K(θ )

)
, where K(θ ) is a normalization constant given by

K(θ ) = ln
∫

X exp(θ T Γ (x))dx.
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The function K(θ ) plays an important role in the theory of NEFs. It is strictly
convex in the interior of Θ with gradient ∇θ K(θ ) = Eθ [Γ (X)] and Hessian matrix
Covθ [Γ (X)]. We define the mean vector function

m(θ ) := Eθ [Γ (X)].

Since the Jacobian of m(θ ) is strictly positive definite, we have from the inverse
function theorem that m(θ ) is a one-to-one invertible function of θ . Generally
speaking, m(θ ) can be viewed as a transformed version of the sufficient statistic
Γ (x), whose value contains all necessary information to estimate the parameter
θ . For example, for the univariate normal distribution N(μ ,σ2) with mean μ
and variance σ2, it can be seen that Γ (x) = (x,x2)T and θ = ( μ

σ 2 ,− 1
2σ 2 )

T . Thus,

m(θ ) = Eθ [Γ (X)] becomes (μ ,σ2 +μ2)T , which can be uniquely solved for μ and
σ2 given the value of m(θ ).

When NEFs are used as the parameterized family, we have the following
convergence theorem for the instantiation of MRAS considered in [18].

Theorem 10.3.1. When {gk} in (10.3) are used as reference distributions in MRAS,
let {θk} be the sequence of parameters generated by the algorithm based on the
sampled candidate solutions. Under appropriate assumptions (see [18]),

lim
k→∞

m(θk) = Γ (x∗) w.p.1.

The interpretation of Theorem 10.3.1 relies on the parameterized family used in
MRAS and, in particular, on the specific form of the sufficient statistic Γ (x). We
consider two special cases of Theorem 10.3.1. (a) In continuous optimization when
multivariate normal distributions with mean vector μ and covariance matrix Σ are
used as the parameterized family, then it is easy to show that Theorem 10.3.1
implies limk→∞ μk = x∗ and limk→∞ Σk = 0n×n w.p.1, where 0n×n represents an
n-by-n zero matrix. In other words, the sequence of sampling distributions { fθk}
will converge to a delta distribution with all probability mass concentrated on x∗. (b)
For a discrete optimization problem with feasible domain X that contains l distinct
values denoted by x1, . . . ,xl , the parameterized family can be specified in terms of
an l-by-1 probability vector Q, whose ith entry qi represents the probability that a
(random) solution will take the ith value xi. A probability mass function on X, when
parameterized by Q, can thus be expressed as

fθ (x) =
l

∏
i=1

qI{x=xi}
i := eθ T Γ (x),

where I{·} is the indicator function, θ = [lnq1, . . . , lnql ]
T , and the sufficient

statistic Γ (x) = [I{x = x1}, . . . , I{x = xl}]T . Therefore, a simple application of
Theorem 10.3.1 yields

lim
k→∞ ∑

x∈X

l

∏
i=1

(qk
i )

I{x=xi}I{x = x j}= I{x∗ = x j} ∀ j w.p.1,



10 A Survey of Some Model-Based Methods for Global Optimization 165

where qk
i is the ith entry of the probability vector Qk obtained at the kth iteration

of the algorithm. This in turn implies that limk→∞ qk
i = I{x∗ = xi} w.p.1., i.e., the

sequence of Qk will convergence to a degenerate probability vector assigning unit
mass to x∗.

We remark that Theorem 10.3.1 does not address the convergence rate of the
algorithm. Moreover, the proof techniques used in [18] cannot be directly carried
over to analyze other algorithms such as CE, due to the dependency of gk on the
parameterized family (cf. (10.4)). In Sect. 10.6, we show that with some appropriate
modifications of the MRAS method, we can arrive at a general framework linking
model-based methods to recursive algorithms of stochastic approximation type,
which makes the convergence and convergence rate analysis of these algorithms
more tractable.

10.4 Particle-Filtering Approach

Filtering refers to the estimation of an unobserved state in a dynamical system based
on noisy observations that arrive sequentially in time (c.f. [8] for an introduction).
The idea behind the particle-filtering approach is to transform the optimization
problem into a filtering problem. Using a novel interpretation, the distribution
sequence {gk} in model-based optimization corresponds to the sequence of condi-
tional distributions of the unobserved state given the observation history in filtering,
and hence, {gk} is updated from a Bayesian perspective. A class of simulation-
based filtering techniques called particle filtering can then be employed to sample
from {gk}, leading to a framework for model-based optimization algorithms.

More specifically, the optimization problem (10.1) can be transformed into
a filtering problem by choosing an appropriate state-space model, such as the
following:

Xk = Xk−1, k = 1,2, . . . ,

Yk = H(Xk)−Vk, k = 1,2, . . . , (10.5)

where Xk ∈ ℜn is the unobserved state, Yk ∈ ℜ is the observation, and {Vk,k =
1,2, . . .} is an i.i.d. sequence of nonnegative random variables that have a p.d.f. ϕ .
A prior distribution on X0 is denoted by g0. The goal of filtering is to compute
the conditional density gk of the unobserved state Xk given the past observations
{Y1 = y1, . . . ,Yk = yk} for k = 1,2, . . .. Let F denote the σ -field of Borel sets of ℜn.
Then the conditional density gk satisfies

P(Xk ∈ A|Y1:k = y1:k) =

∫
A

gk(x)dx, ∀A ∈ F ,
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where Y1:k = {Y1, . . . ,Yk}, and y1:k = {y1, . . . ,yk}. Using Bayes rule, the evolution of
gk(x) can be derived as follows:

gk(x) = p(x|y0:k−1,yk)

=
p(yk|x)p(x|y0:k−1)

p(yk|y0:k−1)

=
ϕ(H(x)− yk)gk−1(x)∫
ϕ(H(x)− yk)gk−1(x)dx

, (10.6)

where the last line uses the density functions induced by (10.5).
The intuition of (10.5) and (10.6) and their connection with optimization can

be explained as follows: the unobserved state {Xk} is constant with the underlying
value being the optimum x∗, which needs to be estimated; the observations {yk}
are noisy observations of the optimal function value H(x∗) and come from the
sample function values in an optimization algorithm; the conditional density gk is
a density estimate of the optimum x∗ at iteration k based on the sample function
values {y1, . . . ,yk}. Equation (10.6) implies that gk is tuned the more promising
area where H(x) is greater than yk since ϕ(H(x)− yk) is positive if H(x) ≥ yk and
is zero otherwise. Hence, randomization in the optimization algorithm is brought
in by the randomness of Vk, and the choice of the p.d.f. of Vk, ϕ , results in
different sample selection or weighting schemes in the algorithm. In order to ensure
the resultant optimization algorithm monotonically approaches the optimum, the
following general condition (C) on ϕ is imposed:

(C) The p.d.f. ϕ(·) is positive, strictly increasing, and continuous on its support
[0,∞).

It is shown in [45] that if ϕ satisfies the condition, then for an arbitrary,
fixed observation sequence {y1,y2, . . .}, the estimate of the function value is
monotonically increasing, i.e.,

Egk+1 [H(X)]≥ Egk [H(X)].

Hence, it has the same monotonicity property as MRAS and CE. Furthermore, the
estimate of the optimal function value asymptotically converges to the true optimal
function value as stated in the following theorem that is also shown in [45].

Theorem 10.4.2. Suppose the following conditions hold:

(i) For all H(x) < H(x∗), the set {z ∈ X : H(z) ≥ H(x)} has strictly positive
measure with respect to the initial sampling distribution, i.e.,

∫
{z∈X:H(z)≥H(x)}

g0(x)dx > 0.
(ii) There is a unique optimum x∗, and H(x) is continuous at x∗.

(iii) ϕ satisfies the condition (C).

Then for an arbitrary, fixed observation sequence {y1,y2, . . .},

lim
k→∞

Egk [H(X)] = H(x∗).
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The conditions (i) and (ii) ensure that any neighborhood of the optimum always has
a positive probability to be sampled. The result implies that the samples drawn from
gk in the limit will be concentrated on the optimum.

10.4.1 Algorithms

The distribution sequence {gk} in general does not have a closed-form solution.
Various numerical filtering methods (cf. [5] for a recent survey) are available to
numerically approximate {gk}. However, the most akin to model-based optimization
algorithms is the particle-filtering technique, which is a more recent class of approx-
imate filtering methods based on Sequential Monte Carlo (SMC) simulation (cf. the
tutorial [1] and the more recent tutorial [11] for a quick reference and the book [10]
for a more comprehensive account). Despite its abundant successful applications in
many areas, particle filtering has rarely been explored in optimization.

The basic particle filter is a sequential importance sampling resampling algo-
rithm, each iteration of which is composed of an importance sampling step to
propagate the particles (i.e., samples) from the previous iteration to the current, a
Bayes updating step to update the weights of the particles, and a resampling step
to generate new particles in order to prevent sample degeneracy. Applying it to
the distribution sequence {gk} specified in (10.6) leads to the particle filtering for
optimization (PFO) framework as follows:

0. Initialization. Specify g0, and draw i.i.d. samples {Xi
1}N1

i=1 from g0. Set k = 1.
1. Bayes updating. Take yk to be a sample function value H(Xi

k) according to a
certain rule. Compute the weight wi

k for sample Xi
k according to

wi
k ∝ ϕ(H(Xi

k)− yk), i = 1,2, . . . ,Nk,

and normalize the weights such that they sum up to 1.
2. Resampling. Generate i.i.d. samples {Xi

k+1}Nk+1
i=1 from the weighted samples

{wi
k,X

i
k}Nk

i=1 using regularized method, density projection method, or resample-
move method.

3. Stopping. If a stopping criterion is satisfied, then stop; else, increase k by 1 and
reiterate from step 1.

Note that the simple method of sampling with replacement cannot be used in
the resampling step since it does not generate new values for the samples and
hence does not explore new candidate solutions for the purpose of optimization.
Several other known resampling methods can be used to generate new candidate
solutions and can also be easily implemented, including the regularized method
[28], the density projection method [44], and the resample-move method [13]. The
regularized method draws new i.i.d. samples from a continuous mixture distribution,
where each continuous kernel of the mixture distribution is centered at each sample
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Xi
k and the weight of that kernel is equal to the probability mass wi

k of Xi
k. The density

projection method resembles MRAS and CE in finding a parameterized density fθk

by minimizing the KL divergence between the discrete distribution {wi
k,X

i
k} and the

parameterized family. The resample-move method applies a Markov chain Monte
Carlo (MCMC) step to move the particles after they are generated by sampling with
replacement. Depending on the resampling methods, the convergence properties of
the different instantiations of PFO are also slightly different, but all readily follow
from the existing convergence results of the corresponding particle filters in the
literature [6, 14, 44] under suitable assumptions.

We end this section with a final remark that the PFO framework provides a
new perspective on CE and MRAS. We will use the truncated selection scheme
for sample selection as an illustration. Suppose that the objective function H(x) is
bounded by H1 ≤ H(x) ≤ H2. In the state-space model (10.5), let the observation
noise Vk follow a uniform distribution U(0,H2 −H1), and then ϕ , the p.d.f. of Vk,
satisfies

ϕ(u) =

{
1

H2−H1
, if 0 ≤ u ≤ H2 −H1;

0, otherwise.
(10.7)

Since yk is a sample function value, the inequality H(x)− yk ≤ H2 −H1 holds with
probability 1, so substituting (10.7) into (10.6) yields

gk(x) =
I{H(x)≥ yk}gk−1(x)∫
I{H(x)≥ yk}gk−1(x)dx

.

The standard CE method can be viewed as PFO with the above choice of distribution
sequence {gk} and the density projection method for resampling, so the samples
{Xi

k} are generated from fθk−1 and the weights of the samples are computed
according to wi

k ∝ I{H(Xi
k) ≥ yk}. However, the approximation of gk−1 by fθk−1

introduces an approximation error, which is accumulated to the next iteration. This
approximation error can be corrected by taking fθk−1 as an importance density and
hence can be taken care of by the weights of the samples. That is, in the case of
MRAS or CE in which the sequence {yk} is monotonically increasing, the weights
are computed according to

wi
k =

gk(Xi
k)

fθk−1(X
i
k)

∝
I{H(Xi

k)≥ yk}
fθk−1(X

i
k)

.

This instantiation of PFO coincides with an instantiation of MRAS. More details on
a unifying perspective on EDAs, CE, and MRAS are given in [45].
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10.5 Evolutionary Games Approach

The main idea of the evolutionary games approach is to formulate the global opti-
mization problem as an evolutionary game and to use dynamics from evolutionary
game theory to study the evolution of the candidate solutions. Searching for the
optimal solution is carried out through the dynamics of reaching equilibrium points
in evolutionary games. Specifically, we establish a connection between evolutionary
game theory and optimization by formulating the global optimization problem as
an evolutionary game with continuous strategy spaces. We show that there is a
strong connection between a particular equilibrium set of the replicator dynamics
and the global optimal solutions. By using Lyapunov theory, we also show that
the particular equilibrium set is asymptotically stable under mild conditions. Based
on the connection between the equilibrium points and global optimal solutions, we
develop a model-based evolutionary optimization (MEO) algorithm.

First, we set up an evolutionary game with a continuous strategy space. Let B
be the Borel σ -field on X, the strategy space of the game; for each t, let Pt be
a probability measure defined on (X,B). Let Δ denote set of all the strategies
(probability measures) on X. Each point x ∈ X can be viewed as a pure strategy.
Roughly speaking, the fraction of agents playing the pure strategy x at time t is
Pt(dx). An agent playing the pure strategy x obtains a fitness φ(H(x)), where
φ(·) : ℜ → ℜ+ is a strictly increasing function. An appropriate chosen φ(·) can
facilitate the expression of the model updating rule presented later. Let X be a
random variable with probability distribution Pt . The fractions of agents adopting
different strategies in the continuous game is described by the probability measure
Pt defined on the strategy space X, so the average payoff of the whole population is
given by

EPt [φ(H(X))] =

∫
X

φ(H(x))Pt (dx).

In evolutionary game theory [29], the evolution of this probability measure is
governed by some dynamics such as the so-called replicator dynamics. Let A be a
measurable set in X. If the replicator dynamics with a continuous strategy space is
adopted, we have

Ṗt(A ) =

∫
A
(φ(H(x))−EPt [φ(H(X))])Pt (dx). (10.8)

From (10.8), we can see that if φ(H(x)) outperforms EPt [φ(H(X))] at x, the
probability measure around x will increase. If there exists a probability density
function pt , such that Pt(dx) = pt μ(dx), where μ(·) is the Lebesgue measure
defined on (X,B), then (10.8) becomes

ṗt(x) = (φ(H(x))−EPt [φ(H(X))])pt (x), (10.9)
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which governs the evolution of the probability density function on the continuous
strategy space. When pt(x) is used as our model to generate candidate solutions
for the global optimization problem (10.1), the differential equation (10.9) can be
used to update the model pt(x), with the final goal of making the probability density
function pt(x) converge to a small set containing the global optimal solution. Then,
the global optimization problem can be easily solved by sampling from the obtained
probability density function.

10.5.1 Convergence Analysis

In this section, we study the properties of the equilibrium points of (10.8) and
their connection with the global optimal solutions for the optimization problem,
by employing the tools of equilibrium analysis in game theory and stability analysis
in dynamic systems.

Assume that the optimization problem (10.1) has m global optimal solutions
{x�i , i = 1, . . . ,m}. It is easy to see that P

(x) = δ (x − x�i ) for i = 1, . . . ,m are
equilibrium points of (10.8), and we might guess there is a strong connection
between the equilibrium points of (10.8) and the optimal solutions of the global
optimization problem (10.1). We enforce the following assumption on function φ .

Assumption 10.5.1 φ(·) is a continuous and strictly increasing function; there exist
constants L and M such that L ≤ φ(H(x)) ≤ M for all x ∈ X.

The following theorem shows that the overall fitness of the strategy (probability
measure) Pt is monotonically increasing over time.

Theorem 10.5.3. Let Pt be a solution of the replicator dynamics (10.8). Under
Assumption 10.5.1, the average payoff of the entire population EPt [φ(H(X))] is
monotonically increasing with time t. If Pt is not an equilibrium point of (10.8),
then EPt [φ(H(X))] is strictly increasing with time t.

To further study the properties of the equilibrium points of the replicator
dynamics (10.8), the Prokhorov metric is used to measure the distance between
different strategies (probability measures):

ρ(P,Q) := inf{ε > 0 : Q(A )≤ P(A ε )+ ε and P(A )≤Q(A ε)+ ε, ∀A ∈ B},

where A ε := {x : ∃ỹ ∈ A ,d(ỹ,x)< ε}, in which d is a metric defined on X. Then,
the convergence of ρ(Qn,Q)→ 0 is equivalent to the weak convergence of Qn to Q

[3].

Definition 10.5.2. Let E be a set in Δ . For a point P ∈ Δ , define the distance
between P and E as ρ(P,E ) = inf{ρ(P,Q),∀Q ∈ E }. E is called Lyapunov stable
if for all ε > 0, there exists η > 0 such that ρ(P0,E ) < η =⇒ ρ(Pt ,E ) < ε for all
t > 0.
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Definition 10.5.3. Let E be a set in Δ . E is called asymptotically stable if E is
Lyapunov stable and there exists η > 0 such that ρ(P0,E ) < η =⇒ ρ(Pt ,E )→ 0
as t → ∞.

Definition 10.5.4. Δ0 ⊂ Δ is the set containing all P0 for which there exists a x�k
such that P0( ˜A )> 0 for any set ˜A ∈B that contains x�k and has a positive Lebesgue
measure μ( ˜A )> 0. Let C = {P� : P� = limt→∞ Pt starting from some P0 ∈ Δ0}.

To present the main convergence result, we also need the following assumption.

Assumption 10.5.2 There is a finite number of global optimal solutions {x�1, . . . ,x
�
m}

for the optimization problem (10.1), where m is a positive integer.

Theorem 10.5.4. If Assumptions 10.5.1 and 10.5.2 hold, then for any P� ∈C , there
exist αi ≥ 0, for i = 1, . . . ,m with ∑m

i=1 αi = 1 such that P(x) = ∑m
i=1 αiδ (x− x�i ); the

set C can be represented as C = {P� : P(x) = ∑m
i=1 αiδ (x− x�i ), for some ∑m

i=1 αi =
1,αi ≥ 0,∀ i = 1, . . . ,m}, and in addition, the set C is asymptotically stable.

10.5.2 Model-Based Evolutionary Optimization

From the above analysis, we know that the global optimal solutions can be obtained
by generating samples from equilibrium distributions of the replicator dynamics
(10.8); these equilibrium distributions can be approached by following trajectories
of (10.8) starting from P0 ∈ Δ0. Note that by Theorem 10.5.4, the equilibrium points
obtained by starting from P0 ∈ Δ0 are of the form P

(x) = ∑m
i=1 αiδ (x− x�i ), where

∑m
i=1 αi = 1 and αi ≥ 0 for i = 1, . . . ,m, which suggests using a sum of Dirac

functions to approximate pt . Assume a group of candidate solutions {yi
t}N

i=1 is
generated from pt ; then the probability density function pt can be approximated
by p̂t(x) = ∑N

i=1 wi
tδ (x− xi

t), where δ denotes the Dirac function and {wi
t}N

i=1 are
weights satisfying ∑N

i=1 wi
t = 1. If we use this approximation p̂t as our probabilistic

model and substitute it into (10.9), we have

∂wi
t

∂ t
=
(

φ(H(xi
t))−

N

∑
j=1

wj
t φ(H(x j

t ))
)

wi
t , ∀i = 1, . . . ,N. (10.10)

The corresponding discrete-time version of (10.10) is

wi
k+1 =

φ(H(xi
k))

∑N
j=1 wj

kφ(H(x j
k))

wi
k, ∀i = 1, . . . ,N. (10.11)

We can let φ(·) be an exponential function so that the denominator of the right-hand
side of (10.11) is not equal to zero. Although an updated density approximation
p̂k+1(x) =∑N

i=1 wi
k+1δ (x−xi

k) is obtained, it cannot be used directly to generate new
candidate solutions. We construct a new continuous density to approximate p̂k+1,
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which is done by projecting p̂k+1 onto some parameterized family of distributions
gθ . The idea of projection onto a parameterized family has also been used in CE and
MRAS, as discussed above. Specifically, we minimize the KL divergence between
the parameterized distribution gθ and p̂k+1:

θk+1 = argmin
θ∈Θ

D
(

p̂k+1,gθ
)
, (10.12)

where Θ is the domain of θ . After some algebraic operations, we can show that
solving (10.12) is equivalent to: maxθ∈Θ ∑N

i=1 wi
k+1 lngθ (yi

k).
All the above analysis is carried out when replicator dynamics, e.g., (10.8) and

(10.9), are used. There are some other dynamics in evolutionary game theory such
as imitation dynamics, logit dynamics, and Brown-von Neumann-Nash dynamics
that can be used to update the weights {wi

k}. To present the algorithm in a more
general setting, the updating of weights is denoted as

wi
k = Dd

(
φ(H(xi

k−1))I{H(xi
k−1)≥γk−1},

N

∑
j=1

wj
k−1φ(H(x j

k−1))I{H(x j
k−1)≥γk−1},w

i
k−1

)
,

(10.13)

where γk−1 is a constant that is used to select good candidate solutions; Dd is
a function of three variables, which is used to represent the updating rule. For
example, when Dd is derived from replicator dynamics, we have

wi
k =

1
N φ(H(xi

k−1))I{H(xi
k−1)≥γk−1}

∑N
j=1

1
N φ(H(x j

k−1))I{H(x j
k−1)≥γk−1}

wi
k−1, ∀i = 1, . . . ,N.

Based on the above analysis, a Monte Carlo simulation version of the MEO
algorithm is given as follows.

Model-Based Evolutionary Optimization Algorithm (MEO)

0. Initialization. Specify N as the total number of candidate solutions generated
at each iteration. Choose ρ ∈ (0,1] and an initial gθ0 defined on X. Set k = 0,
wi

0 = 1/N for i = 1, . . . ,N, and γ0 =−∞.
1. Quantile calculation. Generate N candidate solutions {xi

k}N
i=1 from gθk . Calculate

the 1−ρ quantile γk of {xi
k}N

i=1. If γk < γk−1 and k > 1, set γk = γk−1 and wi
k−1 =

1/N for i = 1, . . . ,N. Set k = k+ 1 and go to Step 2.
2. Updating the probabilistic model. The discrete approximation of the model is

p̂k(x) = ∑N
i=1 wi

kδ (x− xi
k−1), where {wi

k} are updated according to (10.13).
3. Density projection. Construct gθ by projecting the density p̂k = ∑N

i=1 wi
kδ (x−

xi
k−1) onto gθ : θk = argmaxθ∈Θ ∑N

i=1 wi
k lngθ (xi

k−1).
4. Stop if some stopping criterion is satisfied; otherwise go to Step 1.
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Generally, it is not easy to solve the optimization problem (10.12), which depends
on the choice of gθ . However, for gθ in an exponential family, analytical solutions
can be obtained. A comprehensive exposition of the evolutionary games approach
is given in [37, 38].

10.6 Stochastic Approximation Approach

In this section, we present a stochastic approximation framework to study model-
based algorithms [21]. The framework is based on the MRAS method presented in
Sect. 10.3 and is intended to combine the robust features of model-based algorithms
encountered in practice with rigorous convergence guarantees. Specifically, by
exploiting a natural connection between model-based algorithms and the well-
known stochastic approximation (SA) method [2,4,26,30], we show that, regardless
of the type of decision variables involved in (10.1), algorithms conforming to the
framework can be equivalently formulated in the form of a generalized stochastic
approximation procedure on a transformed continuous parameter space for solving
a sequence of stochastic optimization problems with differentiable structures. This
viewpoint, which is new to this type of random search algorithms, allows us to study
the asymptotic convergence and rate properties of these algorithms by using existing
theory and tools from SA.

The key idea that leads to the proposed framework is based on replacing
the reference sequence {gk} in the original MRAS method by a more general
distribution sequence in the recursive form:

ĝk+1(x) = αkgk+1(x)+ (1−αk) fθk (x), αk ∈ (0,1) ∀k, (10.14)

which is a mixture of the reference distribution gk+1 and the sampling distribution
fθk obtained at the kth iteration. Such a mixture ĝk+1 retains the properties of gk+1

while, on the other hand, ensures that its difference from fθk is only incremental.
Thus, the intuition is that if one were to replace gk+1 with ĝk+1 in minimizing the KL
divergence D(ĝk+1, fθ ), then the new sampling distribution fθk+1 obtained would
also stay close to the current sampling distribution fθk .

When {ĝk} instead of {gk} is used at step 2 of MRAS to minimize the KL
divergence, the following lemma reveals a key link between the two successive mean
vector functions of the projected probability distributions [21].

Lemma 10.6.1. If fθ belongs to NEFs and the new parameter θk+1 obtained via
minimizing D(ĝk+1, fθ ) is an interior point of the parameter space Θ for all k, then

m(θk+1)−m(θk) =−αk∇θ D(gk+1, fθ )|θ=θk . (10.15)

Basically, Lemma 10.6.1 states that regardless of the specific form of gk, the mean
vector function m(θk) (i.e., a one-to-one transformation of θk) is updated at each step
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along the gradient descent direction of the time-varying objective function for the
minimization problem minθ D(gk+1, fθ ). In particular, in the case of the CE method,

i.e., when gk+1 in (10.15) takes the form gk+1(x) =
H(x) fθk

(x)∫
X H(x) fθk

(dx) (cf. (10.4)), it can

be seen that recursion (10.15) becomes

m(θk+1)−m(θk) = αk∇θ lnEθ [H(X)]|θ=θk . (10.16)

Hence, m(θk) is updated along the gradient direction of the objective function for
the maximization problem maxθ lnEθ [H(X)], the optimal solution to which is a
sampling distribution fθ∗ that assigns maximum probability to the set of optimal
solutions of (10.1). Note that the parameter sequence {αk} turns out to be the gain
sequence for the gradient iteration, so that the special case αk ≡ 1 corresponds
to the original MRAS method. This suggests that all model-based algorithms
that fall under the MRAS framework can be equivalently viewed as gradient-
based recursions on the parameter space Θ for solving a sequence of optimization
problems with differentiable structures. This new interpretation of model-based
algorithms provides a key insight to understand how these algorithms address hard
optimization problems with little structure.

In actual implementation, when integrals/expectations are replaced by sample
averages based on Monte Carlo sampling, (10.15) and (10.16) become recursive
algorithms of stochastic approximation type with direct gradient estimation. Thus,
it is clear that the rich body of tools and results from stochastic approximation can
be incorporated into the framework to analyze model-based algorithms.

10.6.1 Convergence of the CE Method

The convergence of the CE algorithm has recently been studied in [19,21] by casting
a Monte Carlo version of recursion (10.16) in the form of a generalized Robbins-
Monro algorithm in terms of the true gradient, bias, and an error term due to random
sampling and then following the arguments of the ordinary differential equation
(ODE) approach [2,4]. The main convergence results are summarized below, where
for notational convenience, we define η := m(θ ) and ηk := m(θk).

Theorem 10.6.5. (Convergence of CE) Under some regularity conditions (see
[21]), the sequence of iterates {ηk} generated by the CE algorithm converges w.p.1
to a compact connected internally chain recurrent set of the ODE

dη(t)
dt

= L(η), t ≥ 0, (10.17)

where L(η) := ∇θ lnEθ [H(X)]|θ=m−1(η).
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Theorem 10.6.5 indicates that the long-run behavior (e.g., local/global convergence)
of CE is primarily governed by the asymptotic solution of an underlying ODE. This
result formalizes our prior observation in [18], which provides counterexamples
indicating that CE and its variants are in general local improvement methods. Under
the more stringent assumption that the convergence of {ηk} occurs to a unique
limiting point η∗, the following asymptotic normality result was obtained in [21].

Theorem 10.6.6. (Asymptotic normality of CE) Under some appropriate condi-
tions (see Theorem 4.1 of [21]),

k
τ
2 (ηk −η∗) dist−−−→ N

(
0,Σ

)
as k → ∞,

where τ ∈ (0,1) is some appropriate constant and Σ is a positive definite covariance
matrix.

10.6.2 Model-Based Annealing Random Search

To further illustrate the stochastic approximation approach, we present an algo-
rithm instantiation of the framework called model-based annealing random search
(MARS) [20]. MARS can essentially be viewed as an implementable version of
the annealing adaptive search (AAS) algorithm, in that it provides an alternative
approach to address the implementation difficulty of AAS (cf. Sect. 10.2). The
basic idea is to use a sequence of NEF distributions to approximate the target
Boltzmann distributions and then use the sequence as surrogate distributions to
generate candidate points. Thus, by treating Boltzmann distributions as reference
distributions, candidate solutions are drawn at each iteration of MARS indirectly
from a Boltzmann distribution by sampling exactly from its approximation. This is
in contrast to Markov chain-based techniques [41] that aim to directly sample from
the Boltzmann distributions.

The MARS algorithm is conceptually very simple and is summarized below:

0. Choose a parameterized family { fθ}, an annealing schedule used in the Boltz-
mann distribution, and a gain sequence {αk}.

1. Given θk, sample N candidate solutions X1
k , . . . ,X

N
k from fθk .

2. Update the parameter θk+1 = argθ minD(g̃k+1, fθ ); increase k by 1 and reiterate
from step 1.

At Step 2 of MARS, the reference distribution is given by g̃k+1(x) = αkḡk+1(x)+
(1−αk) fθk (x), where ḡk+1 is an empirical estimate of the true Boltzmann distri-

bution gk+1(x) := eH(x)/Tk∫
X eH(x)/Tk dx

based on the sampled solutions X1
k , . . . ,X

N
k , and {Tk}

is a sequence of decreasing temperatures that controls how fast the sequence of
Boltzmann distributions will degenerate.
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Under its equivalent gradient interpretation, Lemma 10.6.1 shows that the mean
vector function m(θk+1) of the new distribution fθk+1 obtained at step 2 of MARS
can be viewed as an iterate generated by a gradient descent algorithm for solving the
iteration-varying minimization problem minθ D(ḡk+1, fθ ) on the parameter space
Θ , i.e.,

m(θk+1)−m(θk) =−αk∇θ D(ḡk+1, fθ )|θ=θk . (10.18)

Note that since the reference distribution ḡk+1 may change shape with k, a primary
difference between MARS and CE is that the gradient in (10.18) is time-varying
vs. stationary in (10.16). Stationarity in general only guarantees local convergence,
whereas the time-varying feature of MARS provides a viable way to ensure that
the algorithm escapes from local optima, leading to global convergence. By the
properties of NEFs, recursion (10.18) can be further written as

m(θk+1)−m(θk) =−αk
(
m(θk)−Egk+1[Γ (X)]+Egk+1[Γ (X)]−Eḡk+1[Γ (X)]

)
=−αk∇θ D(gk+1, fθ )|θ=θk −αk

(
Egk+1 [Γ (X)]−Eḡk+1[Γ (X)]

)
.

This becomes a Robbins-Monro-type stochastic approximation algorithm in terms
of the true gradient and a noise term due to the approximation error between gk+1

and ḡk+1. Thus, in light of the existing theories from stochastic approximation, the
convergence analysis of MARS essentially boils down to the issue of inspecting
whether the Boltzmann distribution gk+1 can be closely approximated by its
empirical estimate ḡk+1. The following results are obtained in [20].

Theorem 10.6.7. (Global convergence of MARS) Under some appropriate condi-
tions (see Theorem 3.1 of [20]),

lim
k→∞

m(θk) = Γ (x∗) w.p.1.

Theorem 10.6.8. (Asymptotic normality of MARS) Let αk = a/kα and the sample
size be polynomially increasing Nk = ckβ for constants a > 0, c > 0, α ∈ ( 1

2 ,1), and
β > α . Under some additional conditions on {Tk},

k
α+β

2
(
m(θk)−Γ (x∗)

) dist−−−→ N(0,Σ) as k → ∞,

where Σ is some positive definite covariance matrix.

Numerical results on high-dimensional multi-extremal benchmark problems
reported in [20] show that MARS may yield high-quality solutions within a modest
number of function evaluations and provide superior performance over some of the
existing algorithms.
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10.7 Conclusions

We reviewed several recent contributions to model-based methods for global
optimization, including algorithms and convergence results for model reference
adaptive search, the particle-filtering approach, the evolutionary games approach,
and the stochastic approximation gradient approach. These approaches analyze
model-based methods from different perspectives, providing useful tools to explore
properties of the updating mechanism of probabilistic models and to facilitate proofs
of convergence of model-based algorithms.
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27. Larrañaga, P., Lozano, J. (eds.): Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer Academic Publisher, Boston, MA (2002)

28. Musso, C., Oudjane, N., Gland, F.L.: Sequential Monte Carlo Methods in Practice. Springer-
Verlag, New York (2001)

29. Oechssler, J., Riedel, F.: On the dynamics foundation of evolutionary stability in continuous
models. Journal of Economic Theory 107, 223–252 (2002)

30. Robbins, H., Monro, S.: A stochastic approximation method. Annals of Mathematical Statistics
22, 400–407 (1951)

31. Romeijn, H., Smith, R.: Simulated annealing and adaptive search in global optimization.
Probability in the Engineering and Informational Sciences 8, 571–590 (1994)

32. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. European
Journal of Operations Research 99, 89–112 (1997)

33. Rubinstein, R.Y.: The cross-entropy method for combinatorial and continuous optimization.
Methodology and Computing in Applied Probability 2, 127–190 (1999)

34. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combina-
torial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer, New York, NY
(2004)

35. Shi, L., Olafsson, S.: Nested partitions method for global optimization. Operations Research
48(3), 390–407 (2000)

36. Srinivas, M., Patnaik, L.M.: Genetic algorithms: A survey. IEEE Computer 27, 17–26 (1994)
37. Wang Y., Fu, M.C., Marcus, S.I.: Model-based evolutionary optimization. In Proceedings of

the 2010 Winter Simulation Conference. IEEE Press, Piscataway, NJ, pp. 1199–1210 (2010)
38. Wang, Y., Fu, M.C., Marcus, S.I.: An evolutionary game approach for model-based optimiza-

tion. Working paper (2011)
39. Wolpert, D.H. Finding bounded rational equilibria part i: Iterative focusing. In Proceedings

of the Eleventh International Symposium on Dynamic Games and Applications, T. Vincent
(Editor), Tucson AZ, USA (2004)

40. Zabinsky, Z., Smith, R., McDonald, J., Romeijn, H., Kaufman, D.: Improving hit-and-run for
global optimization. Journal of Global Optimization 3, 171–192 (1993)

41. Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization. Kluwer, The Netherlands
(2003)



10 A Survey of Some Model-Based Methods for Global Optimization 179

42. Zhang, Q., Mühlenbein, H.: On the convergence of a class of estimation of distribution
algorithm. IEEE Trans. on Evolutionary Computation 8, 127–136 (2004)

43. Zhou, E., Fu, M.C., Marcus, S.I.: A particle filtering framework for randomized optimization
algorithms. In Proceedings of the 2008 Winter Simulation Conference. IEEE Press, Piscataway,
NJ, pp. 647–654 (2008)

44. Zhou, E., Fu, M.C., Marcus, S.I.: Solving continuous-state POMDPs via density projection.
IEEE Transactions on Automatic Control 55(5), 1101–1116 (2010)

45. Zhou, E., Fu, M.C., Marcus, S.I.: Particle filtering framework for a class of randomized
optimization algorithms. Under review (2012)

46. Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-based search for combinatorial
optimization: A critical survey. Annals of Operations Research 131, 373–395 (2004)


	Chapter
10 A Survey of Some Model-Based Methods for Global Optimization
	10.1 Introduction
	10.2 Global Optimization and Previous Work
	10.2.1 Problem Statement
	10.2.2 Previous Work on Random Search Methods

	10.3 Model Reference Adaptive Search
	10.3.1 Convergence Result

	10.4 Particle-Filtering Approach
	10.4.1 Algorithms

	10.5 Evolutionary Games Approach
	10.5.1 Convergence Analysis
	10.5.2 Model-Based Evolutionary Optimization

	10.6 Stochastic Approximation Approach
	10.6.1 Convergence of the CE Method
	10.6.2 Model-Based Annealing Random Search

	10.7 Conclusions
	References


