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Foreword

Professor Onésimo Hernández-Lerma has made a great number of fundamental
contributions in the field of stochastic control systems during the last 30 years. He
has contributed to the development of this theory in many aspects, which include
adaptive control, parametric estimation, recursive algorithms, infinite dimensional
linear programming, ergodic properties of Markov processes, measure theory,
discrete- and continuous-time controlled Markov processes, and game theory. Also,
his research work has been concerned with important applications to the areas of
queuing systems, control of population, and management sciences.

He has authored more than 140 papers, some of which still have a great influence
in the study of controlled stochastic systems, since he was the first to mathematically
formalize many fundamental results. He recently received the Scopus Prize (2008)
and the Thomson Reuters Award (2009), recognizing the influence and importance
of his work.

Professor Hernández-Lerma has written or coauthored 11 books or monographs
on different topics. In the field of stochastic control, his book Adaptive Markov
Control Processes (1989) soon became a reference for researchers and graduate
students, and today it is considered a classic. In 1996 and 1999 he jointly wrote with
J. B. Lasserre the books Discrete-Time Markov Control Processes: Basic Optimality
Criteria and Further Topics on Discrete-Time Markov Control Processes, giving
a systematic and deep study to controlled Markov processes on Borel spaces
with several optimality criteria. The techniques required to deal with discrete- and
continuous-time models are different, but in many aspects the general intuition from
one can be applied to the other. This intuition was firmly grounded in his most recent
books Continuous-Time Markov Decision Processes: Theory and Applications (with
X. P. Guo) and Selected Topics on Continuous-Time Controlled Markov Chains and
Markov Games (with T. Prieto-Rumeau).

Among the diverse optimality criteria analyzed in the work of Professor
Hernández-Lerma, one of the most important is the average or ergodic index,
where the asymptotic behavior of the controlled stochastic process needs to be well
understood to verify the existence of solutions of the optimal control problem and
to characterize the value function in terms of the optimality equation. The book
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viii Foreword

Markov Chains and Invariant Probabilities, written jointly with J. B. Lasserre and
published in 2003, is precisely a well-established work on the ergodic behavior
of Markov chains in metric spaces. Average optimality represents an interesting
combination of ergodic theory and stochastic optimal control and requires effective
techniques and clever ideas to deal with problems from adaptive control, partially
observed processes, linear programming and approximating procedures, among
others, and on this topic we can find a good number of papers by Professor
Hernández-Lerma. A complete list of his publications is given below.

Professor Hernández-Lerma received his Ph.D. from Brown University in 1978,
and since then he has been a regular faculty member of the Mathematics Department
at the Centro de Investigación y de Estudios Avanzados (Cinvestav) of the Instituto
Politécnico Nacional, where he has carried out most of his research and teaching
activities. His work had a pioneering character in Mexico, where he was the first
expert in stochastic control. Groups of mathematicians in Mexico were quite small
in those years and only few people could see the potential of having a strong group
in the field of stochastic optimal control.

At Cinvestav he has always been recognized by his students for his excellent
ability to lecture on many topics such as real analysis, probability theory, Markov
processes, and stochastic calculus. Up to now he has graduated 17 Ph.D. students,
a record among Mexican mathematicians, and his former students recognize his
generosity, sensitivity, and his ability to propose cutting-edge research projects.
The results of most of those Ph.D. theses have been published in well-established
international journals. Since 1986 he has regularly organized the Workshop on
Stochastic Control, which is an important forum for the group of stochastic control
in Mexico to present new research and to interact with experts from other countries.
This group has an intense research activity thanks to the inspiration of Professor
Hernández-Lerma, who has also influenced a significant number of other young
mathematicians and visiting postdoctoral fellows who have visited Cinvestav in
these years.

He has participated in numerous editorial boards, for journals like the SIAM
Journal on Control and Optimization, International Journal on Stochastic Analysis,
and Journal of Dynamics and Games. He has also served as a guest editor of special
volumes in top journals. Additionally, Professor Hernández-Lerma has always
showed a genuine interest in probability and statistics education in Mexico and has
written two monographs in on these topics.

The contributions of Professor Hernández-Lerma to the development of applied
mathematics in his country were recognized by the Government of Mexico in
2001, when he received the Sciences and Arts National Award, being the third
mathematician to obtain such a high distinction. Also, in 2003 he received a doctor
honoris causa from the Universidad de Sonora, and in 2008 he was honored with
the Medalla Lázaro Cárdenas by the Instituto Politécnico Nacional.

Guanajuato, México Daniel Hernández-Hernández
Guanajuato, México J. Adolfo Minjárez-Sosa



Preface

This volume presents a collection of papers by friends and colleagues of Professor
Onésimo Hernández-Lerma in his honor. The first idea to compile the book arose
during Onésimo’s Fest Symposium held in San Luis Potosı́, Mexico, during March
16–18, 2011, to honor the 65th birthday of Professor Onésimo Hernández-Lerma,
who has been an important contributor to stochastic optimal control.

Thereafter, a group of colleagues whose research interests are in the areas
of stochastic optimal control, optimization theory, and probability were invited
to collaborate on this project. As a result, 33 authors from all over the world
have contributed 18 chapters to the book. All papers have been peer-reviewed
and give a general view on the state-of-the-art of the art of several topics on the
covered fields. In particular, the book presents recent developments on discrete-
time Markov control or decision processes under different contexts: discounted and
average criterion as well as sample-path and constrained optimality; continuous-
time controlled problems for diffusion processes, jump Markov processes, and
semi-Markov processes; optimal stopping problems; global optimization; and the
existence of solutions of stochastic partial differential equations. Additionally the
book contains important applications to inventory control problems and financial
systems. Chapters are presented in alphabetical order by first author.

We express our deep gratitude to all the people who have collaborated to make
this special volume a success. Mainly, we thank all the authors for their excellent
and important contributions, as well as all the reviewers for their time and effort.
We would also like to thank the Centro de Investigación en Matemáticas (CIMAT)
and the Departamento de Matemáticas, Universidad de Sonora.

Guanajuato, México Daniel Hernández-Hernández
Guanajuato, México J. Adolfo Minjárez-Sosa
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D.F., México
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Héctor Jasso Fuentes CINVESTAV 2007
Armando F. Mendoza Pérez CINVESTAV 2008
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1979; 2nd. printing, 1982.
3. Adaptive Markov Control Processes. Springer–Verlag, New York, 1989.
4. Annals of Operations Research Special Volumes 28 and 29 (1991) on Markov

Decision Processes, with J.B. Lasserre, Guest Editors.
5. Lectures on Continuous–Time Markov Control Processes. Aportaciones
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List of Publications by Onésimo Hernández-Lerma xxi

22. Adaptive policies for discrete–time stochastic control systems with unknown
disturbance distribution, Syst. Control Lett. 9 (1987), pp. 307–315, with S.I.
Marcus.
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51. Average cost Markov control processes with weighted norms: value iteration.
Appl. Math. (Warsaw) 23 (1995), 219–237, with E. Gordienko.

52. Average cost Markov control processes with weighted norms: existence of
canonical policies. Appl. Math. (Warsaw) 23 (1995), 199–218, with E.
Gordienko.

53. Linear programming and infinite horizon problems of deterministic control
theory. Bol. Soc. Mat. Mex. (3rd series) 1 (1995), 59–72, with D. Hernández–
Hernández.

54. Numerical aspects of monotone approximations in convex stochastic control
problems. Ann. Oper. Res. 56 (1995), 135–156, with C. Piovesan and W.J.
Runggaldier.

55. Conditions for average optimality in Markov control processes with un-
bounded costs and controls, J. Math. Syst., Estimation, and Control 5 (1995),
459–477, with R. Montes de Oca.

56. A counterexample on the semicontinuity of minima. Proc. Amer. Math. Soc.
123 (1995), 3175–3176, with F. Luque Vásquez.



List of Publications by Onésimo Hernández-Lerma xxiii
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List of Publications by Onésimo Hernández-Lerma xxvii

132. Nonstationary discrete–time deterministic and stochastic control systems with
infinite horizon, International Journal of Control 83 (2010), 1751–1757, with
X.P. Guo and A. Hernández–del–Valle.

133. Asymptotic normality of discrete–time Markov control processes. J. Applied
Probab. 47 (2010), 778–795, with A.F. Mendoza–Pérez.
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version published: 29 September 2011. DOI:10.1080/10236198.2011.613596.

139. Bias and overtaking equilibria for zero–sum stochastic differential games.
J. Optim. Theory Appl., with B.A. Escobedo–Trujillo and J.D. López–
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Chapter 1
On the Policy Iteration Algorithm
for Nondegenerate Controlled Diffusions
Under the Ergodic Criterion

Ari Arapostathis

Dedicated to Onésimo Hernández-Lerma on the occasion of his
65th birthday.

1.1 Introduction

The policy iteration algorithm (PIA) for controlled Markov chains has been known
since the fundamental work of Howard [2]. For controlled Markov chains on Borel
state spaces, most studies of the PIA rely on blanket Lyapunov conditions [9].
A study of the PIA that treats the model of near-monotone costs can be found in
[11], some ideas of which we follow closely. An analysis of the PIA for piecewise
deterministic Markov processes has appeared in [6].

In this chapter we study the PIA for controlled diffusion processes
X = {Xt , t ≥ 0}, taking values in the d-dimensional Euclidean space R

d , and
governed by the Itô stochastic differential equation

dXt = b(Xt ,Ut)dt +σ(Xt)dWt . (1.1)

All random processes in (1.1) live in a complete probability space (Ω,F,P).
The process W is a d-dimensional standard Wiener process independent of the initial
condition X0. The control process U takes values in a compact, metrizable set U, and
Ut(ω) is jointly measurable in (t,ω) ∈ [0,∞)×Ω. Moreover, it is nonanticipative:
for s < t, Wt −Ws is independent of

Fs := the completion of σ{X0,Ur,Wr, r ≤ s} relative to (F,P) .
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2 A. Arapostathis

Such a process U is called an admissible control, and we let U denote the set of all
admissible controls.

We impose the following standard assumptions on the drift b and the diffusion
matrix σ to guarantee existence and uniqueness of solutions to (1.1).

(A1) Local Lipschitz continuity: The functions

b =
[
b1, . . . ,bd]T : Rd ×U �→ R

d and σ=
[
σi j] : Rd �→ R

d×d

are locally Lipschitz in x with a Lipschitz constant KR depending on R > 0.
In other words, if BR denotes the open ball of radius R centered at the origin
in R

d , then for all x,y ∈ BR and u ∈ U,

|b(x,u)− b(y,u)|+ ‖σ(x)−σ(y)‖ ≤ KR|x− y| ,

where ‖σ‖2 := trace
(
σσT

)
.

(A2) Affine growth condition: b and σ satisfy a global growth condition of the form

|b(x,u)|2 + ‖σ(x)‖2 ≤ K1
(
1+ |x|2) , ∀(x,u) ∈ R

d ×U .

(A3) Local nondegeneracy: For each R > 0, there exists a positive constant κR such
that

d

∑
i, j=1

ai j(x)ξiξ j ≥ κR|ξ |2 , ∀x ∈ BR ,

for all ξ = (ξ1, . . . ,ξd) ∈ R
d , where a := 1

2σσ
T.

We also assume that b is continuous in (x,u).
In integral form, (1.1) is written as

Xt = X0 +

∫ t

0
b(Xs,Us)ds+

∫ t

0
σ(Xs)dWs . (1.2)

The second term on the right-hand side of (1.2) is an Itô stochastic integral. We say
that a process X = {Xt(ω)} is a solution of (1.1) if it is Ft-adapted, continuous in t,
defined for all ω ∈Ω and t ∈ [0,∞), and satisfies (1.2) for all t ∈ [0,∞) at once a.s.

With u ∈ U treated as a parameter, we define the family of operators Lu :
C 2(Rd) �→ C (Rd) by

Lu f (x) =∑
i, j

ai j(x)
∂ 2 f

∂xi∂x j
(x)+∑

i
bi(x,u)

∂ f
∂xi

(x) , u ∈ U . (1.3)

We refer to Lu as the controlled extended generator of the diffusion.
Of fundamental importance in the study of functionals of X is Itô’s formula. For

f ∈ C 2(Rd) and with Lu as defined in (1.3),

f (Xt ) = f (X0)+

∫ t

0
LUs f (Xs)ds+Mt , a.s., (1.4)
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where

Mt :=
∫ t

0

〈
∇ f (Xs),σ(Xs)dWs

〉

is a local martingale. Krylov’s extension of the Itô formula [10, p. 122] extends (1.4)
to functions f in the Sobolev space W 2,p

loc (Rd).
Recall that a control is called stationary Markov if Ut = v(Xt) for a measurable

map v : Rd �→U. Correspondingly, the equation

Xt = x0 +

∫ t

0
b
(
Xs,v(Xs)

)
ds+

∫ t

0
σ(Xs)dWs (1.5)

is said to have a strong solution if given a Wiener process (Wt ,Ft) on a complete
probability space (Ω,F,P), there exists a process X on (Ω,F,P), with X0 = x0 ∈R

d ,
which is continuous, Ft-adapted, and satisfies (1.5) for all t at once, a.s. A strong
solution is called unique, if any two such solutions X and X ′ agree P-a.s. when
viewed as elements of C

(
[0,∞),Rd

)
. It is well known that under Assumptions (A1)–

(A3), for any stationary Markov control v, (1.5) has a unique strong solution [8].
Let USM denote the set of stationary Markov controls. Under v∈USM, the process

X is strong Markov, and we denote its transition function by Pv(t,x, ·). It also follows
from the work of [5, 12] that under v ∈ USM, the transition probabilities of X have
densities which are locally Hölder continuous. Thus Lv defined by

Lv f (x) =∑
i, j

ai j(x)
∂ 2 f

∂xi∂x j
(x)+∑

i
bi(x,v(x))

∂ f
∂xi

(x) , v ∈ USM ,

for f ∈ C 2(Rd) is the generator of a strongly continuous semigroup on Cb(R
d),

which is strong Feller. We let P
v
x denote the probability measure and E

v
x the

expectation operator on the canonical space of the process under the control v ∈
USM, conditioned on the process X starting from x ∈ R

d at t = 0.
In Sect. 1.2 we define our notation. Sect. 1.3 reviews the ergodic control problem

for near-monotone costs and the basic properties of the PIA. Sect. 1.4 is dedicated
to the convergence of the algorithm.

1.2 Notation

The standard Euclidean norm in R
d is denoted by | · |, and 〈·, ·〉 stands for the inner

product. The set of nonnegative real numbers is denoted by R+, N stands for the set
of natural numbers, and I denotes the indicator function. We denote by τ(A) the first
exit time of the process {Xt} from the set A ⊂ R

d , defined by

τ(A) := inf {t > 0 : Xt 
∈ A} .
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The open ball of radius R in R
d , centered at the origin, is denoted by BR, and we let

τR := τ(BR), and τ̆R := τ(Bc
R).

The term domain in R
d refers to a nonempty, connected open subset of the

Euclidean space R
d . We introduce the following notation for spaces of real-valued

functions on a domain D ⊂R
d . The space L p(D), p ∈ [1,∞), stands for the Banach

space of (equivalence classes) of measurable functions f satisfying
∫

D| f (x)|p dx <
∞, and L ∞(D) is the Banach space of functions that are essentially bounded in
D. The space C k(D) (C ∞(D)) refers to the class of all functions whose partial
derivatives up to order k (of any order) exist and are continuous, and C k

c (D) is the
space of functions in C k(D) with compact support. The standard Sobolev space of
functions on D whose generalized derivatives up to order k are in L p(D), equipped
with its natural norm, is denoted by W k,p(D), k ≥ 0, p ≥ 1.

In general if X is a space of real-valued functions on D, Xloc consists of all
functions f such that fϕ ∈ X for every ϕ ∈ C ∞

c (D). In this manner we obtain the
spaces L p

loc(D) and W 2,p
loc (D).

Let h ∈ C (Rd) be a positive function. We denote by O(h) the set of functions
f ∈ C (Rd) having the property

limsup
|x|→∞

| f (x)|
h(x)

< ∞ , (1.6)

and by o(h) the subset of O(h) over which the limit in (1.6) is zero.

We adopt the notation ∂i := ∂
∂xi

and ∂i j := ∂ 2

∂xi∂x j
. We often use the standard

summation rule that repeated subscripts and superscripts are summed from 1
through d. For example,

ai j∂i jϕ+ bi∂iϕ :=
d

∑
i, j=1

ai j ∂ 2ϕ
∂xi∂x j

+
d

∑
i=1

bi ∂ϕ
∂xi

.

1.3 Ergodic Control and the PIA

Let c : Rd ×U→R be a continuous function bounded from below. As well known,
the ergodic control problem, in its almost sure (or pathwise) formulation, seeks to
a.s. minimize over all admissible U ∈ U

limsup
t→∞

1
t

∫ t

0
c(Xs,Us)ds . (1.7)

A weaker, average formulation seeks to minimize

limsup
t→∞

1
t

∫ t

0
E

U[c(Xs,Us)
]

ds . (1.8)



1 On the Policy Iteration Algorithm for Nondegenerate Controlled Diffusions 5

We let ρ∗ denote the infimum of (1.8) over all admissible controls. We assume that
ρ∗ < ∞.

We assume that the cost function c : Rd ×U → R+ is continuous and locally
Lipschitz in its first argument uniformly in u ∈ U. More specifically, for some
function Kc : R+ → R+,

∣∣c(x,u)− c(y,u)
∣∣≤ Kc(R)|x− y| ∀x,y ∈ BR , ∀u ∈ U ,

and all R > 0.
An important class of running cost functions arising in practice for which the

ergodic control problem is well behaved is the near-monotone cost functions.
Let M∗ ∈ R+∪{∞} be defined by

M∗ := liminf
|x|→∞

min
u∈U

c(x,u) .

The running cost function c is called near-monotone if ρ∗ < M∗. Note that
inf-compact functions c are always near-monotone.

We adopt the following abbreviated notation. For a function g : Rd ×U→R and
v ∈ USSM we let

gv(x) := g
(
x,v(x)

)
, x ∈ R

d .

The ergodic control problem for near-monotone cost functions is characterized
as follows

Theorem 1.3.1. There exists a unique function V ∈ C 2(Rd) which is bounded
below in R

d and satisfies V (0) = 0 and the Hamilton–Jacobi–Bellman (HJB)
equation

min
u∈U

[
LuV (x)+ c(x,u)

]
= ρ∗ , x ∈ R

d .

The control v∗ ∈ USM is optimal with respect to the criteria (1.7) and (1.8) if and
only if it satisfies

min
u∈U

[
d

∑
i=1

bi(x,u)
∂V
∂xi

(x)+ c(x,u)

]

=
d

∑
i=1

bi
v∗(x)

∂V
∂xi

(x)+ cv∗(x)

a.e. in R
d. Moreover, with τ̆r = τ(Bc

r), r > 0, we have

V (x) = limsup
r↓0

inf
v∈USSM

E
v
x

[∫ τ̆r

0

(
cv(Xt)−ρ∗

)
dt

]
, x ∈R

d .

A control v∈ USM is called stable if the associated diffusion is positive recurrent.
We denote the set of such controls by USSM. Also we let μv denote the unique
invariant probability measure on R

d for the diffusion under the control v ∈ USSM.
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Recall that v∈USSM if and only if there exists an inf-compact function V ∈C 2(Rd),
a bounded domain D ⊂ R

d , and a constant ε > 0 satisfying

LvV (x)≤−ε ∀x ∈ Dc . (1.9)

It follows that the optimal control v in Theorem 1.3.1 is stable. For v ∈ USSM we
define

ρv := limsup
t→∞

1
t

∫ t

0
E

v[cv(Xs)
]

ds .

A difficulty in synthesizing an optimal control v ∈ USM via the HJB equation lies
in the fact that the optimal cost ρ∗ is not known. The PIA provides an iterative
procedure for obtaining the HJB equation at the limit. In order to describe the
algorithm we, first need to review some properties of the Poisson equation

LvV (x)+ cv(x) = ρ , x ∈R
d . (1.10)

We need the following definition.

Definition 1.3.1. For v ∈ USSM, and provided ρv < ∞, define

Ψv(x) := lim
r↓0

E
v
x

[∫ τ̆r

0

(
cv(Xt)−ρv

)
dt

]
, x 
= 0 .

For v ∈ USM and α > 0, let Jv
α denote the α-discounted cost

Jv
α(x) := E

v
x

[∫ ∞

0
e−αtcv(Xt)dt

]
, x ∈R

d .

We borrow the following result from [1, Lemma 7.4]. If v ∈ USSM and ρv < ∞, then
there exists, a function V ∈ W 2,p

loc (Rd), for any p > 1, and a constant ρ ∈ R which
satisfies (1.10) a.e. in R

d and such that, as α ↓ 0, αJv
α (0)→ ρ and Jv

α − Jv
α(0)→V

uniformly on compact subsets of Rd . Moreover,

ρ = ρv and V (x) =Ψv(x).

We refer to the function V (x) =Ψv(x) ∈ W 2,p
loc (Rd) as the canonical solution of the

Poisson equation LvV + cv = ρv in R
d .

It can be shown that the canonical solution V to the Poisson equation is the unique
solution in W 2,p

loc (Rd) which is bounded below and satisfies V (0) = 0. Note also that
(1.9) implies that any control v satisfying ρv < M∗ is stable.

The PIA takes the following familiar form:

Algorithm (PIA).

1. Initialization. Set k = 0 and select any v0 ∈ USM such that ρv0 < M∗.

2. Value determination. Obtain the canonical solution Vk =Ψvk ∈W 2,p
loc (Rd), p> 1,

to the Poisson equation
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LvkVk + cvk = ρvk

in R
d.

3. If vk(x) ∈ Argminu∈U
[
bi(x,u)∂iVk(x)+ c(x,u)

]
x-a.e., return vk.

4. Policy improvement. Select an arbitrary vk+1 ∈ USM which satisfies

vk+1(x) ∈ Argmin
u∈U

[
d

∑
i=1

bi(x,u)
∂Vk

∂xi
(x)+ c(x,u)

]

, x ∈R
d .

Since ρv0 <M∗ it follows that v0 ∈USSM. The algorithm is well defined, provided
vk ∈USSM for all k ∈N. This follows from the next lemma which shows that ρvk+1 ≤
ρvk , and in particular that ρvk < M∗, for all k ∈ N.

Lemma 1.3.1. Suppose v ∈ USSM satisfies ρv < M∗. Let V ∈ W 2,p
loc (Rd), p > 1, be

the canonical solution to the Poisson equation

LvV + cv = ρv , in R
d .

Then any measurable selector v̂ from the minimizer

Argmin
u∈U

[
bi(x,u)∂iV (x)+ c(x,u)

]

satisfies ρv̂ ≤ ρv. Moreover, the inequality is strict unless v satisfies

LvV (x)+ cv(x) = min
u∈U

[LuV (x)+ c(x,u)] = ρv, for almost all x. (1.11)

Proof. Let V be a Lyapunov function satisfying LvV (x) ≤ k0 − g(x), for some
inf-compact g such that cv ∈ o(g) (see [1, Lemma 7.1]). For n ∈ N, define

v̂n(x) =

⎧
⎨

⎩

v̂(x) if x ∈ Bn

v(x) if x ∈ Bc
n .

Clearly, v̂n → v̂ as n → ∞ in the topology of Markov controls (see [1, Section 3.3]).
It is evident that V is a stochastic Lyapunov function relative to v̂n, i.e., there exist
constants kn such that Lv̂nV (x)≤ kn−g(x), for all n∈N. Since V ∈ o(V ), it follows
that (see [1, Lemma 7.1])

1
t
E

v̂n
x [V (Xt)]−−→

t→∞
0 (1.12)

Let

h(x) := ρv −min
u∈U

[LuV (x)+ c(x,u)] , x ∈R
d .
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Also, by definition of v̂n, for all m ≤ n, we have

Lv̂nV (x)+ cv̂n(x)≤ ρv − h(x)IBm(x) . (1.13)

By Itô’s formula we obtain from (1.13) that

1
t

(
E

v̂n
x [V (Xt)]−V(x)

)
+

1
t
E

v̂n
x

[∫ t

0
cv̂n(Xs)ds

]

≤ ρv − 1
t
E

v̂n
x

[∫ t

0
h(Xs)IBm(Xs)ds

]
, (1.14)

for all m ≤ n. Taking limits in (1.14) as t → ∞ and using (1.12), we obtain

ρv̂n ≤ ρv −
∫

Rd
h(x)IBm(x)μv̂n(dx) . (1.15)

Note that v �→ ρv is lower semicontinuous. Therefore, taking limits in (1.15) as
n → ∞, we have

ρv̂ ≤ ρv− limsup
n→∞

∫

Rd
h(x)IBm(x)μv̂n(dx) . (1.16)

Since c is near-monotone and ρv̂n ≤ ρv < M∗, there exists R̂ > 0 and δ > 0, such
that μv̂n(BR̂)≥ δ for all n ∈N. Then with ψv̂n denoting the density of μv̂n Harnack’s
inequality [7, Theorem 8.20, p. 199] implies that there exists a constant CH =CH(R)
such that for every R > R̂, with |BR| denoting the volume of BR ⊂ R

d , it holds that

inf
BR

ψv̂n ≥
δ

CH |BR| , ∀n ∈ N.

By (1.16) this implies that ρv̂ < ρv unless h = 0 a.e. �

1.4 Convergence of the PIA

We start with the following lemma.

Lemma 1.4.2. The sequence {Vk} of the PIA has the following properties:

(i) For some constant C0 =C0(ρv0) we have inf
Rd Vk >C0 for all k ≥ 0.

(ii) Each Vk attains its minimum on the compact set

K (ρv0) :=
{

x ∈R
d : min

u∈U
c(x,u)≤ ρv0

}
.

(iii) For any p > 1, there exists a constant C̃0 = C̃0(R,ρv0 , p) such that

∥
∥Vk

∥
∥

W 2,p(BR)
≤ C̃0 ∀R > 0 .
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(iv) There exist positive numbers αk and βk, k ≥ 0, such that αk ↓ 1 and βk ↓ 0 as
k → ∞ and

αk+1Vk+1(x)+βk+1 ≤ αkVk +βk ∀k ≥ 0 .

Proof. Parts (i) and (ii) follow directly from [3, Lemmas 3.6.1 and 3.6.4].
For part (iii) note first that the near-monotone assumption implies that

μvk

(
K

(
M∗+ρvk

2

))
≥ M∗ −ρvk

M∗+ρvk

∀k ≥ 0 .

Consequently,

μvk

(
K

(
M∗+ρv0

2

))
≥ M∗ −ρv0

M∗+ρv0

∀k ≥ 0 .

uniformly on compact subsets of R
d . Hence, since Jvk

α − Jvk
α (0) → Vk weakly in

W 2,p(BR) for any R > 0, (iii) follows from [3, Theorem 3.7.4].
Part (iv) follows as in [11, Theorem 4.4]. 1 �

As the corollary below shows, the PIA always converges.

Corollary 1.4.1. There exist a constant ρ̂ and a function V̂ ∈ C 2(Rd) with V̂ (0) =
0, such that, as k → ∞, ρvk ↓ ρ̂ and Vk → V̂ weakly in W 2,p(BR), p > 1, for any
R > 0. Moreover, (V̂ , ρ̂) satisfies the HJB equation

min
u∈U

[
LuV̂ (x)+ c(x,u)

]
= ρ̂ , x ∈ R

d . (1.17)

Proof. By Lemma 1.3.1, ρvk is decreasing monotonically in k and hence converges
to some ρ̂ ≥ ρ∗. By Lemma 1.4.2 (iii), the sequence Vk is weakly compact in
W 2,p(BR), p > 1, for any R > 0, while by Lemma 1.4.2 (iv), any weakly convergent
subsequence has the same limit V̂ . Also repeating the argument in the proof of
Lemma 1.3.1, with

hk(x) := ρvk−1 −min
u∈U

[LuVk−1(x)+ c(x,u)] , x ∈ R
d ,

we deduce that for any R > 0 there exists some constant K(R) such that

∫

BR

hk(x)dx ≤ K(R)
(
ρvk−1 −ρvk

) ∀k ∈ N .

1Theorem 4.4 in [11] applies to Markov chains on Borel state spaces. Also the model in [11]
involves only inf-compact running costs. Nevertheless, the essential arguments can be followed to
adapt the proof to controlled diffusions. We skip the details.
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Therefore, hk → 0 weakly in L 1(D) as k → ∞ for any bounded domain D. Taking
limits in the equation

min
u∈U

[LuVk−1(x)+ c(x,u)] = ρvk−1 − hk(x)

and using [3, Lemma 3.5.4] yields (1.17). �

It is evident that v ∈ USM is an equilibrium of the PIA if it satisfies ρv < M∗ and

min
u∈U

[
LuΨv(x)+ c(x,u)

]
= ρv , x ∈ R

d . (1.18)

For one-dimensional diffusions, one can show that (1.18) has a unique solution, and
hence, this is the optimal solution with ρv = ρ∗. For higher dimensions, to the best
of our knowledge there is no such result. There is also the possibility that the PIA
converges to v̂ ∈ USSM which is not an equilibrium. This happens if (1.17) satisfies

Lv̂V̂ (x)+ cv̂(x) = min
u∈U

[
LuV̂ (x)+ c(x,u)

]
= ρ̂ > ρv̂, x ∈ R

d . (1.19)

This is in fact the case with the example in [4]. In this example the controlled
diffusion takes the form dXt = Ut dt + dWt , with U = [−1,1] and running cost
c(x) = 1− e−|x|. If we define

ξρ := log
3
2
+ log(1−ρ) , ρ ∈ [1/3,1)

and

Vρ(x) := 2
∫ x

−∞
e2|y−ξρ |dy

∫ y

−∞
e−2|z−ξρ |(ρ− c(z)

)
dz, x ∈ R,

then direct computation shows that

1
2V ′′

ρ (x)−|V ′
ρ(x)|+ c(x) = ρ ∀ρ ∈ [1/3,1) ,

and so the pair (Vρ ,ρ) satisfies the HJB. The stationary Markov control correspond-
ing to this solution of the HJB is wρ(x) = −sign(x− ξρ). The controlled process
under wρ has invariant probability density ϕρ(x) = e−2|x−ξρ |. A simple computation
shows that

∫ ∞

−∞
c(x)ϕρ(x)dx = ρ− 9

8 (1−ρ)(3ρ− 1)< ρ , ∀ρ ∈ (1/3,1) .

Thus, if ρ > 1/3, then Vρ is not a canonical solution of the Poisson equation
corresponding to the stable control wρ . Therefore, this example satisfies (1.19) and
shows that in general we cannot preclude the possibility that the limiting value of
the PIA is not an equilibrium of the algorithm.
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In [11, Theorem 5.2], a blanket Lyapunov condition is imposed to guarantee
convergence of the PIA to an optimal control. Instead, we use Lyapunov analysis to
characterize the domain of attraction of the optimal value.

We need the following definition.

Definition 1.4.2. Let v∗ be an optimal control as characterized in Theorem 1.3.1.
Let V denote the class of all nonnegative functions V ∈ C 2(Rd) satisfying Lv∗V ≤
k0 − h(x) for some nonnegative, inf-compact h ∈ C (Rd) and a constant k0. We
denote by o(V) the class of inf-compact functions g satisfying g ∈ o(V ) for some
V ∈V.

The theorem below asserts that if the PIA is initialized at a v0 ∈ USSM whose
associated canonical solution to the Poisson equation lies in o(V) then it converges
to an optimal v∗ ∈ USSM.

Theorem 1.4.2. If v0 ∈ USSM satisfies Ψv0 ∈ o(V), then ρvk → ρ∗ as k → ∞.

Proof. The proof is straightforward. By Lemma 1.4.2 (iv), V̂ ∈ o(V). Also by
(1.17), we have

Lv∗V̂ (x)+ cv∗(x)≥ ρ̂ , x ∈R
d ,

and applying Dynkin’s formula, we obtain

1
t

(
E

v∗
x

[
V̂ (Xt)

]−V(x)
)
+

1
t
E

v∗
x

[∫ t

0
cv∗(Xs)ds

]
≥ ρ̂ , (1.20)

Since V̂ ∈ o(V), by [1, Lemma 7.1] we have

1
t
E

v∗
x

[
V̂ (Xt)

]−−→
t→∞

0

and thus taking limits as t → ∞ in (1.20), we obtain ρ∗ ≥ ρ̂ . Therefore, we must
have ρ̂ = ρ∗. �

1.5 Concluding Remarks

We have concentrated on the model of controlled diffusions with near-monotone
running costs. The case of stable controls with a blanket Lyapunov condition is
much simpler. If, for example, we impose the assumption that there exist a constant
k0 > 0 and a pair of nonnegative, inf-compact functions (V ,h) ∈ C 2(Rd)×C (Rd)
satisfying 1+ c ∈ o(h) and such that

LuV (x)≤ k0 − h(x,u) ∀(x,u) ∈ R
d ×U ,

then the PIA always converges to the optimal solution.
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Chapter 2
Discrete-Time Inventory Problems with
Lead-Time and Order-Time Constraint

Lankere Benkherouf and Alain Bensoussan

2.1 Introduction

Demand uncertainty of the various items in the supply chain plays an important
role in the control of material flow. Moreover, information on the suppliers mode
of deliveries is key in selecting appropriate policies for inventory management.
In some situations, orders for products cannot be placed while waiting for a
delivery of previous orders. Thus placing an order-time constraint on deliveries.
This applies where production capacity at the supplier side is limited. This situation
may also arise in certain organizations where transportation capacity is limited: see
Bensoussan, Çakanyidirim, and Moussaoui [4].

This chapter considers the basic inventory model of Scarf [16] and modifies it
by including lead time with order-time constraints of the type mentioned above.
It is well known that an (s,S) policy is optimal for Scarf’s model for the infinite
horizon stationary model: see Igelhart [10], Veinott [18], Beyer and Sethi [6], and
Benkherouf [3]. Also, (s,S) policies remain optimal in the presence of lead time:
see [18]. This chapter shows that (s,S) policies are still optimal with the additional
constraints on order time. A result, which seems to follow straightforwardly from
existing results in the literature, turned out to be delicate and needing some care.
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A related model to this chapter’s is discussed in [4] for a discrete-state,
continuous-time inventory model with infinite horizon where the demand process
is assumed to be generated by some Poisson process.

The main ingredients for the problem under consideration in this chapter are
given below:

The demand process is assumed to be composed of a sequence of i.i.d variables,

D1, . . . ,Dn, . . . ,

constructed on a probability space (Ω ,A ,P), where Dn represents the demand at
time n. Let F n =σ(D1, . . . ,Dn) be the σ−algebra generated by the demand process
and F 0 = (Ω , /0).

An ordering policy V is composed of a sequence of ordering times

τ1, . . . ,τ j, . . . ,

with τ j being F τ j−1 measurable. To each ordering time τ j , one associates a quantity
vτ j which represents the amount ordered. The new element here is that the usual
condition τ j ≤ τ j+1 is replaced with the constraint

τ j+1 ≥ τ j +L , (2.1)

in which L is the lead time, L ≥ 1, and integer.
The inventory evolves as follows:

yn+1 = yn + vn−Dn,

with y1 = x, vn = 0, if n 
= τ j , for some j ≥ L, and yn is the inventory level at time n.
To define the objective function, we introduce the cost in a single period. It is

composed of a cost on the inventory

l(x) = hx++ px−, (2.2)

and an order cost

C(v) = K1v>0 + cv, (2.3)

where h, p, K, c are strictly positive known constants and x+ = max{0,x}, x− =
−min{0,x}, with

1v>0 =

{
1, If v > 0
0, otherwise

.

Costs are assumed to be additive and discounted geometrically at a known rate α ,
0 < α < 1, and that unmet demand is completely backlogged.

The objective function is given by the formula

Jx(V ) =
∞

∑
n=1

αn−1(E[l(yn)+C(vn)]), (2.4)
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and the value function is

u(x) = inf
V

Jx(V ), (2.5)

where E is the usual expectation operator.
Inventory models with deterministic lead time can be found in [18], Archibald

[1], Sahin [13, 14], and Fegergruen and Schechner [7]. These papers, but [18],
are concerned with the computations of system performance measures for (s,S)
policies. The closest to the present work is [1], where at most one outstanding
order is permitted. This is equivalent to constraint (2.1). However, no proof of the
optimality of (s,S) policies was provided. In fact the notion of policies with at most
one outstanding order is not new. It can be found in Hadley and Within [9], where it
was discussed in the context of lost sales models: see also Kim and Park [11]. This
chapter, unlike those that deals with order-time constraint, but [4], provides a proof
of the optimality of (s,S) policies.

In the next section, we shall derive the Bellman equation associated to u(x).
Section 2.3 is concerned with ground preparation for showing the derivation of
(s,S) policies. Section 2.4 deals with existence and derivation of the pair (s,S). The
optimality of (s,S) policies is shown, under some technical conditions, in Sect. 2.5.
Section 2.6 treats the special case where the demand in each period is exponentially
distributed. Further, this section contains some general remarks and a conclusion.

2.2 Dynamic Programming

It is easy to figure out the Bellman equation, considering the possibilities at the
initial time. If there is no order at time 0, then (by (2.5) and (2.4)) the best which
can be achieved over an infinite planning horizon is

l(x)+αEu(x−D).

On the other hand if an order of size v is made at time 0, which is possible since
there is no pending order, then the inventory evolves as follows:

y1 = x,
y2 = x−D1,

· · ·
yL+1 = x− (D1 + · · ·+DL)+ v,

and the best which can be achieved is

K + cv+ l(x)+
L

∑
j=2

α j−1El(x− (D1 + · · ·+D j−1))

+αLEu(x+ v− (D1+ · · ·+DL)).
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From these considerations, we can easily derive Bellman equation

u(x) =min

{

l(x)+αEu(x−D),

K− cx+
L−1

∑
j=0

α jEl(x−D( j))+ inf
η>x

[cη+αLEu(η−D(L))]

}

, (2.6)

in which we use the notation

D( j) =

{
D1 + · · ·+D j, if j ≥ 1
0, if j = 0

.

In the next section, we shall recast the function u given in (2.6) in a form which we
shall find useful later on in our analysis.

2.3 (s,S) Policy

We first transform equation (2.6), by introducing a constant s ∈ R, and changing
u(x) into Hs(x), using the formula

u(x) =−cx+
L−1

∑
j=0

α jEl(x−D( j))+Cs +Hs(x), (2.7)

where Cs will be defined below. In fact, let

g(x) = (1−α)cx+αLEl(x−D(L)), (2.8)

then we take

Cs =
g(s)+αcD̄

1−α
,

where D̄ is the expected value of D, with 0 < D̄ < ∞.
We note the formula

L−1

∑
j=0

α jEg(x−D( j))

= cx(1−αL)−αcD̄
1−αL

1−α
+αLcD̄L+

L−1

∑
j=0

α j+LEl(x−D( j+L)).
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We then check that Hs(x) is the solution of

Hs(x) = min

{

g(x)− g(s)+αEHs(x−D),

K + inf
η>x

[
L−1

∑
j=0

α jE(g(η−D( j))− g(s))+αLEHs(η−D(L))

]}

. (2.9)

On the other hand, for any s we define

Hs(x) =

{
g(x)− g(s)+αEHs(x−D), x ≥ s
0, x < s

. (2.10)

A solution Hs satisfying (2.10) exists, is unique, and is continuous in R.
We have used the same notation Hs(x) between (2.9) and (2.10), because we want

to find s so that the solution of (2.10) is also a solution of (2.9).
Let us set

gs(x) = (g(x)− g(s))1x≥s,

then the solution of (2.10) satisfies, for all x,

Hs(x) = gs(x)+αEHs(x−D). (2.11)

From this relation we deduce, after iterating that

Hs(x) =
L−1

∑
j=0

α jEgs(x−D( j))+αLEHs(x−D(L)),

therefore also

L−1

∑
j=0

α jE(g(x−D( j))− g(s))+αLEHs(x−D(L))

= Hs(x)+
L−1

∑
j=0

α jE(g(x−D( j))− g(s))1x−D( j)<s.

Define

Ψs(x) = Hs(x)+
L−1

∑
j=0

α jE(g(x−D( j))− g(s))1x−D( j)<s, (2.12)
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then if we want Hs(x) to satisfy (2.9), we must have

Hs(x) = min

{
g(x)− g(s)+αEHs(x−D),K + inf

η>x
Ψs(η)

}
. (2.13)

This relation motivates the choice of s. We want to find s so that

K + inf
η>s

Ψs(η) = 0. (2.14)

If such an s exists, we define S = S(s) as the point where the infimum is attained.

inf
η>s

Ψs(η) =Ψs(S(s)). (2.15)

Note, from (2.13), thatΨs(x) coincides with Hs(x), for x > s, when L = 1.
In the next section we shall show the existence of the pair (s,S) satisfying (2.14)

and (2.15).

2.4 Existence and Characterization of the Pair (s,S)

Let F(L)(x) and f (L)(x) be the cumulative distribution and the density function
of D(L) respectively and F̄ (L)(x) = 1−F (L)(x), with F (0)(x) = 1. Then (2.8) and
(2.2) give

g(x) = (1−α)cx+αLh
∫ x

0
(x− ξ ) f (L)(ξ )dξ +αL p

∫ ∞

x
(ξ − x) f (L)(ξ )dξ .

It follows that μ(x) = g′(x) is given by

μ(x) = (1−α)c+αLh−αL(h+ p)F̄(L)(x). (2.16)

We assume that

(1−α)c−αLp < 0. (2.17)

There exists a unique s̄ > 0 such that

μ(x)≤ 0, if x ≤ s̄
μ(x)≥ 0, if x ≥ s̄

. (2.18)

Note that if L = 0, (2.17) reduces to the classical condition of optimality of (s,S)
policies with no lead time.
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Lemma 2.4.1. The solution Hs of (2.10) satisfies for s ≤ x,

Hs(x)+
L−1

∑
j=0

α j
∫ x

s
F̄ ( j)(x− ξ )μ(ξ )dξ

=
1−αL

1−α
(g(x)− g(s))+

∞

∑
j=L

α j
∫ x

s
F ( j)(x− ξ )μ(ξ )dξ .

Furthermore, the equation is still valid for s > x by dropping the integral term on
the right-hand side.

Proof. The proof follows immediately by recalling the definition of μ in (2.16) and
checking that Hs given by

Hs(x) =
∞

∑
j=0

α j
∫ x

s
F( j)(x− ξ )μ(ξ )dξ , (2.19)

solves (2.10). �

Lemma 2.4.2. The functionΨs defined in (2.12) is given by

Ψs(x) =
1−αL

1−α
(g(x)− g(s))+

∞

∑
j=L

α j
∫ x

s
F ( j)(x− ξ )μ(ξ )dξ

−((1−α)c+αLh)D̄
L−1

∑
j=1

jα j

+αL(h+ p)
L−1

∑
j=1

α j
∫ +∞

0
F̄ ( j)(ζ )F̄ (L)(x− ζ )dζ . (2.20)

Proof. Note that

E(g(x−D( j))− g(s))1x−D( j)<s

=−E1D( j)>x−s

(∫ s

x−D( j)
μ(ξ )dξ

)

=−
∫ +∞

x−s

(∫ s

x−ζ
μ(ξ )dξ

)
dF( j)(ζ )

=−
∫ +∞

x−s
F̄( j)(ζ )μ(x− ζ )dζ

=−
∫ s

−∞
F̄ ( j)(x− ξ )μ(ξ )dξ

=−
∫ x

−∞
F̄ ( j)(x− ξ )μ(ξ )dξ +

∫ x

s
F̄ ( j)(x− ξ )μ(ξ )dξ .
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The Lemma is now immediate from further direct computations on
∫ x
−∞ F̄ ( j)(x−

ξ )μ(ξ )dξ , (2.16), Lemma 2.4.1, and the definition ofΨs. This finishes the proof.�

It is easy to deduce from Lemma 2.4.2 thatΨs(x) is bounded below and tends to +∞
as x →+∞. Therefore the infimum over x ≥ s is attained and we can define S(s) as
the smallest infimum.

Proposition 2.4.1. We assume that (2.17) holds, then one has

1.

Ψs(S(s))→−((1−α)c+αLh)D̄
L−1

∑
j=1

jα j , as s →+∞. (2.21)

2.
max

s
Ψs(S(s)) =Ψs̄(S(s̄))≥ 0, (2.22)

3.
Ψs(S(s))→−∞, as s →−∞, (2.23)

4. There exists one and only one solution of (2.14) such that s ≤ s̄.

Proof. We compute, by Lemma 2.4.2,

Ψ ′
s (x) =

1−αL

1−α
μ(x)+

∞

∑
j=L

α j
∫ x

s
f ( j)(x− ξ )μ(ξ )dξ

−αL(h+ p)
L−1

∑
j=1

α j
∫ x

0
F̄ ( j)(ζ ) f (L)(x− ζ )dζ , (2.24)

which can also be written as

Ψ ′
s (x) = γ(x)+

∞

∑
j=L

α j
∫ x

s
f ( j)(x− ξ )μ(ξ )dξ , (2.25)

with

γ(x) =
1−αL

1−α
((1−α)c−αLp)+αL(h+ p)

L−1

∑
j=0

α j
∫ x

0
F( j)(x− ξ ) f (L)(ξ )dξ .

(2.26)

The function γ is increasing in x and

γ(x) =
1−αL

1−α
((1−α)c−αLp)< 0, for x ≤ 0,

γ(∞) =
1−αL

1−α
((1−α)c+αLh),
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therefore there exists a unique s∗ such that

γ(x)< 0, for x < s∗,

γ(x)> 0, for x > s∗,

γ(s∗) = 0, s∗ > 0.

Note that

1−αL

1−α
μ(x)− γ(x) = αL(h+ p)

L−1

∑
j=0

α j
∫ x

0
F̄ ( j)(x− ξ ) f (L)(ξ )dξ . (2.27)

The quantity on the right-hand side of the above equality vanishes for x≤ 0 or L = 1.
Otherwise

1−αL

1−α
μ(x)− γ(x)> 0, for x > 0, L ≥ 2.

Since γ(s∗) = 0, we have using (2.18), μ(s∗)> 0, hence 0 < s̄ < s∗.
Next, if s ≥ s∗,Ψ ′

s (x)≥ 0; for x ≥ s by (2.25); hence S(s) = s. Therefore, we get
by (2.20) that

Ψs(S(s)) =−((1−α)c+αLh)D̄
L−1

∑
j=1

jα j

+αL(h+ p)
L−1

∑
j=1

α j
∫ +∞

0
F̄ ( j)(ζ )F̄ (L)(s− ζ )dζ , (2.28)

this function decreases in s and converges to −((1− α)c + αLh)D̄∑L−1
j=1 jα j as

s →+∞. This proves part (1).
Consider now s̄ < s < s∗. We note that

Ψ ′
s (s) = γ(s) < 0,

Ψ ′
s (s

∗) =
∞

∑
j=L

α j
∫ s∗

s
f ( j)(s∗ − ξ )μ(ξ )dξ > 0,

hence in this case

s̄ < s < S(s)< s∗.

If s < s̄, then we can claim that

s < s̄ < S(s).

Indeed, for s < x < s̄, we can see from formula (2.25) and (2.18) that Ψ ′
s (x) < 0.

However, we cannot compare S(s) with s∗ in this case.
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We then study the behavior of Ψs(S(s)). We have already seen that, for s >
s∗ the function Ψs(S(s)) is decreasing to the negative constant −((1 − α)c +
αLh)D̄∑L−1

j=1 jα j . In this case, it follows from (2.24) that

d
ds
Ψs(S(s)) =−αL(h+ p)

L−1

∑
j=1

α j
∫ s

0
F̄( j)(ζ ) f (L)(s− ζ )dζ , s > s∗. (2.29)

Note that s > 0. If s < s∗, then s < S(s); therefore

d
ds
Ψs(S(s)) =

∂Ψs

∂ s
(S(s)),

hence

d
ds
Ψs(S(s)) =−μ(s)

[
1−αL

1−α
+

∞

∑
j=L

α jF ( j)(S(s)− s)

]

. (2.30)

Note that at s = s∗ the two formulas in (2.29) and (2.30) coincide, since

−1−αL

1−α
μ(s∗) =−αL(h+ p)

L−1

∑
j=1

α j
∫ s∗

0
F̄ ( j)(ζ ) f (L)(s∗ − ζ )dζ ,

which can be easily checked by remembering the definition of s∗(γ(s∗) = 0), and
(2.27). It follows clearly thatΨs(S(s)) decreases on (s̄,s∗) and increases on (−∞, s̄).
Finally Ψs(S(s)) decreases on (s̄,+∞) and increases on (−∞, s̄). So it attains its
maximum at s̄. From the formula for Ψs̄(x);Hs̄(x); for x > s̄ and the fact that s̄ is
the minimum of g, we get immediately thatΨs̄(S(s̄))≥ 0. This shows part (2) of the
proposition.

Finally, for s < 0 we have

Ψs(S(s))≤Ψs(0)

=
1−αL

1−α
(g(0)− g(s))+

∞

∑
j=L

α j
∫ 0

s
F( j)(−ξ )dξ

− ((1−α)c−αLh)D̄
L−1

∑
j=1

jα j ,

which tends to be −∞ as s →−∞. This proves (3). ThereforeΨs(S(s)) is increasing
from −∞ to a positive number as s grows from −∞ to s̄. Therefore there is one and
only one s < s̄ satisfying (2.14). The proof has been completed. �
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2.5 Solution as an (s,S) Policy

It remains to see whether the solution Hs of equation (2.10) where s is the solution
of (2.14) is indeed a solution of (2.13). It is useful to use, instead ofΨs(x) a different
function, namely

Φs(x) = Hs(x)+
L−1

∑
j=1

α jE(g(x−D( j))− g(s))1x−D( j)<s, (2.31)

which differs fromΨs(x) by simply deleting the term corresponding to j = 0.
Clearly

Φs(x) =Ψs(x), for x ≥ s.

However, when x < s,

Ψs(x) =Φs(x)+ g(x)− g(s),

Note that in finding S it is indifferent to work with one or the other function. Note
also that, when L = 1, Φs(x) = Hs(x), for all x. Now we claim that

inf
η>x

Ψs(η) = inf
η>x

Φs(η).

This equality is obvious when x > s, since the functions are identical. If x < s we
have

inf
η>x

Ψs(η) = inf
η>x

Φs(η) = inf
η>s

Φs(η) =−K.

Indeed,

inf
η>x

Ψs(η) = min

[
inf
η>s

Ψs(η), inf
x<η<s

Ψs(η)
]
,

and infη>sΨs(η) =−K, whereas (2.10) and (2.13) give

inf
x<η<s

Ψs(η) = inf
x<η<s

L−1

∑
j=0

α jE(g(η−D( j))− g(s))1x−D( j)<s > 0,

hence the claim is true. Therefore (2.13) becomes

Hs(x) = min

{
g(x)− g(s)+αEHs(x−D),K + inf

η>x
Φs(η)

}
. (2.32)

For x < s, this relation reduces to

0 = min[g(x)− g(s),0],
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which is true since g(x) is decreasing for x < s.We then consider x > s. Since Hs(x)
is equal to the first term of the bracket. Therefore, what we have to prove is

Hs(x)≤ K + inf
η>x

Φs(η), for x > s. (2.33)

In fact, we have not been able to prove (2.33) for all values of L. We know it is true
for L = 1. We will prove it afterwards for exponential demands. For general demand
distributions we have:

Proposition 2.5.2. We assume

αL((1−α)c−αLp)(L− 1)D̄+(1−α)K ≥ 0, (2.34)

then property (2.33) is satisfied.

Proof. We note that this result includes the case L = 1 in which the condition is
automatically satisfied. The proof is similar to that of the case L = 1.

We recall from (2.10) that

Hs(x)−αEHs(x−D) = gs(x), for all x. (2.35)

We then find a similar equation for Φs(x). This is where it is important to consider
Φs(x) and notΨs(x), since we write the equation for any x and not just for x > s. It
is easy to verify, using (2.31), that Φs(x) is the solution of

Φs(x)−αEΦs(x−D)

= gs(x)+αE(g(x−D)− g(s))1x−D<s

−αLE(g(x−D(L))− g(s))1x−D(L)<s, (2.36)

and again we check that this equation coincides with (2.35) when L = 1. Going back
to (2.33) we recall that

K + inf
η>x

Φs(η)≥ K + inf
η>s

Φs(η) = 0, for all x > s. (2.37)

So it is sufficient to prove (2.33) for x > x0 > s, where x0 is the first value x such that
Hs(x) ≥ 0. We necessarily have Hs(x0) = 0. We have s < s̄ < x0. Let us fix ξ > 0
and consider the domain x ≥ x0− ξ . We can write, using (2.35), that for all x

Hs(x)−αEHs(x−D)1x−D≥x0−ξ ≤ gs(x), (2.38)

using the fact that

EHs(x−D)1x−D<x0−ξ ≤ 0.
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Define next

Ms(x) =Φs(x+ ξ )+K.

We note that Ms(x)> 0 for all x. We then state, by (2.37), that

Ms(x)−αEMs(x−D)

= gs(x+ ξ )+αE(g(x+ ξ−D)− g(s))1x+ξ−D<s

−αLE(g(x+ ξ −D(L))− g(s))1x+ξ−D(L)<s +(1−α)K,

and using the positivity of M we can assert that

Ms(x)−αEMs(x−D)1x−D≥x0−ξ

≥ gs(x+ ξ )+αE(g(x+ ξ−D)− g(s))1x+ξ−D<s

−αLE(g(x+ ξ −D(L))− g(s))1x+ξ−D(L)<s +(1−α)K. (2.39)

We now consider the difference Ys(x) = Hs(x)−Ms(x), in the domain x ≥ x0 − ξ .
We have by (2.38) and (2.39) that

Ys(x)−αEYs(x−D)1x−D≥x0−ξ
≤ gs(x)− gs(x+ ξ )−αE(g(x+ ξ−D)− g(s))1x+ξ−D<s

+αLE(g(x+ ξ −D(L))− g(s))1x+ξ−D(L)<s− (1−α)K. (2.40)

We first check easily, that

gs(x+ ξ )− gs(x)≥ 0, for all x ≥ x0− ξ . (2.41)

Consider next the function

χs(y) = αE(g(y−D)− g(s))1y−D<s−αLE(g(y−D(L))− g(s))1y−D(L)<s,

for y ≥ x0. We check that

χs(y) =
∫ s

−∞

(∫ +∞

y−ζ

(
−α f (η)+αL f (L)(η)

)
dη

)
μ(ζ )dζ ,

so in fact

χs(y) =
∫ s

−∞
(−αF̄(y− ζ )+αLF̄(L)(y− ζ ))μ(ζ )dζ . (2.42)
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Note that in the integral, μ(ζ )< 0, since s < s̄. We deduce that

χs(y)≥ α
∫ s

−∞
(F̄ (L)(y− ζ )− F̄(y− ζ ))μ(ζ )dζ .

Further, note that F̄ (L)(y − ζ )− F̄(y − ζ ) ≥ 0, and μ(ζ ) ≥ ((1 − α)c − αL p).
Therefore

χs(y)≥ αL((1−α)c−αLp)
∫ s

−∞
(F̄ (L)(y− ζ )− F̄(y− ζ ))dζ .

It follows that for y ≥ s,

χs(y) ≥ αL((1−α)c−αLp)
∫ y

−∞
(F̄ (L)(y− ζ )− F̄(y− ζ ))dζ

= αL((1−α)c−αLp)
∫ ∞

0
(F̄ (L)(u)− F̄(u))du

= αL((1−α)c−αLp)(L− 1)D̄.

Thanks to assumption (2.34) we can assert from (2.40) and (2.42) that

Ys(x)−αEYs(x−D)1x−D≥x0−ξ ≤ 0, for all x ≥ x0 − ξ .

Also

Ys(x0 − ξ )≤−Φs(x0)−K ≤−K,

since Φs(x0)≥ Hs(x0) = 0. It follows that

Ys(x)≤ 0, for allx ≥ x0− ξ ,

which is the desired result. �

2.6 The Exponential Case

In this section, we shall examine the special case when the demand D is exponen-
tially distributed. That is,

f (x) =

{
β exp(−βx), if x ≥ 0,
0, otherwise

, (2.43)

for some β > 0. The next proposition shows that property (2.33) automatically holds
in this case.
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Proposition 2.6.3. We assume that the demand is distributed according to an
exponential distribution, then (2.33) holds.

Before we proceed to the proof of Proposition 2.6.3, the following result is needed.

Lemma 2.6.3. For s≤ s̄, the solution Hs of (2.10) satisfies the following properties:

1. Is constant on (−∞,s],
2. Strictly decreasing on (s, s̄],
3. Hs(x)→ ∞, as x → ∞

Proof. It clear that (1) follows from (2.10). Property (2) can be easily deduced from
(2.18) and (2.19).
We claim that

Hs(x)≥ 1
1−α

(g(s̄)− g(s)). (2.44)

Assume otherwise and define

As = {x ∈R, s ≤ x ≤ s̄}.

Let

x∗ = min

{
x ∈ As : Hs(x

∗) =
1

1−α
(g(s̄)− g(s))

}
.

If follows from (2.10), the definitions of g, x∗ and (2) that

Hs(x
∗) = g(x∗)− g(s)+αEHs(x

∗ −D)> (g(s̄)− g(s))+αHs(x
∗).

Hence,

Hs(x
∗)>

1
1−α

(g(s̄)− g(s)).

This is in contradiction with the definition of x∗. Therefore (2.44) is true. This leads
by (2.10) to

Hs(x)≥ g(x)− g(s))+α
1

1−α
(g(s̄)− g(s)).

It is then immediate to see that (3) holds. This finishes the proof. �

Proof (Proposition 2.6.3). We are going to show that

H ′
s(x)≥ 0, if x ≥ x0, (2.45)

then (2.33) will follow immediately, since for x ≥ x0

Hs(x)≤ Hs(x+ ξ )≤Φs(x+ ξ )≤Φs(x+ ξ )+K, for ξ ≥ 0.
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It can be shown using integration by parts that if f is given (2.43), then Hs is the
solution of the differential equation

(1−α)βHs(x)+H ′
s(x) = G(x), (2.46)

where Hs(s) = 0 and G(x) = β (g(x)− g(s)) + μ(x). In fact the function Hs can
be written explicitly. However, we content ourselves with (2.46) since this will be
sufficient to proceed further in the proof.

We claim that Hs has a unique minimum point.
Indeed, Lemma 2.6.3 implies Hs attains a minimum belonging to the interval

(s̄,∞). Further, Hs has a local minimum on (s,x0). Moreover, it is easy to show that
Hs is twice differentiable on (s,∞). Assume now that Hs has two minima x1 and x2,
with x1 < x2. It is clear that we can select x1 such that s < x1 < x0. It follows that
there exists an x∗ ∈ (x1,x2) such that x∗ is a local maximum. Therefore, H ′(x∗) = 0,
and H ′′(x∗)≤ 0. Differentiating both sides of (2.46), we get that

H ′′
s (x

∗) = G′(x∗) = β (μ(x∗)+ μ ′(x∗)).

The definition of μ in (2.16) with (2.18) and the fact x∗ > s̄ imply that H ′′
s (x

∗)> 0.
This leads to a contradiction. Therefore, Hs has a unique minimum and this
minimum belongs to the interval (s,x0). Consequently, (2.45) is true. The result
has been proven. �

In this chapter a discrete-time continuous-state inventory model, with a fixed
lead time of several periods, was considered. Orders for products cannot be placed
while waiting for a delivery of previous orders. It was shown that the policy which
minimizes the total expected inventory costs over an infinite planning horizon is of
an (s,S) type: see Propositions 2.5.2 and 2.6.3.

It seems natural to ask if (s,S) policies are still optimal for continuous-state,
continuous-time models for inventory models with constraint (2.1). A possible
starting point for such investigation is the work of Bensoussan, Liu, and Sethi
[5]: see also Benkherouf and Bensoussan [2]. The answer to this question remains
open. Another interesting problem is to see if requirement (2.34) can be weakened.
Moreover, since the present work seems to be among the first attempts at examining
the optimality of (s,S) policies for inventory models with lead-time and order-
time constraints and has only dealt with the basic stationary model of Scarf, then
it may be worthwhile to look at possible extensions of the present work to the large
body of existing inventory models in the literature. These may include models with
Markovian demand as discussed in Sethi and Feng [15], or demand dependent on
the environment as found in Song and Zipkin [17], or models with two suppliers as
treated in Fox, Metters, and Semple [8].
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Chapter 3
Sample-Path Optimality in Average Markov
Decision Chains Under a Double Lyapunov
Function Condition

Rolando Cavazos-Cadena and Raúl Montes-de-Oca

3.1 Introduction

This note concerns discrete-time Markov decision processes (MDPs) evolving on
a denumerable state space. The performance index of a control policy is an (long
run) average criterion, and besides standard continuity compactness conditions, the
main structural assumption on the model is that (a) the (possibly unbounded) cost
function has a Lyapunov function �(·) and (b) a power of order larger than 2 of � also
admits a Lyapunov function [14]. Within this context, the main purpose of the paper
is to analyze the sample-path average optimality of some policies whose expected
optimality is well known. More specifically, the main results in this direction are as
follows:

(i) The stationary policy f obtained by optimizing the right-hand side of the
optimality equation is sample-path optimal in the strong sense, that is, under the
action of f , the observed average costs in finite times converge almost surely
to the optimal expected average cost g, whereas if the system is driven by any
other policy, then with probability 1, the inferior limit of those averages is at
least g.

(ii) The Markovian policies obtained from procedures frequently used to
approximate a solution of the optimality equation, like the vanishing discount
or the successive approximations methods, are sample-path average optimal in
the strong sense.
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The expected average criteria have been intensively studied, and a fairly complete
account of the theory can be found in [9, 12, 13]; see also [1]. In this last paper,
it was shown that, for a general MDP, if the optimality equation has a bounded
solution, then the stationary policy f referred to in the point (i) above is optimal in
the sample-path sense. In [3, 4], a similar conclusion was obtained for models with
denumerable state space if the cost function has an almost monotone (or penalized)
structure, in the sense that the costs are sufficiently large outside a compact set; such
a conclusion was extended to models on Borel spaces by [10,16,20]. More recently,
for models with denumerable state space and finite actions sets, the sample-path
average criterion was studied in [15] under the uniform ergodicity assumption. On
the other hand, the first result described above is an extension of Theorem 4.1 in [6],
where the sample-path optimality of the policy f mentioned above was established
in a weaker sense than the one used in the present work.

The approach of this note relies on basic probabilistic ideas, like Kolmogorov’s
inequality and the first Borel-Cantelli lemma, and was motivated by the elementary
analysis of the strong law of large numbers as presented in [2].

The organization of the subsequent material is as follows: In Sect. 3.2, the
decision model is presented and the conditions to obtain an (expected) average
optimal stationary policy from a solution of the optimality equation are briefly
described. Next, in Sect. 3.3, the idea of Lyapunov function is introduced and
some of its elementary properties are established, whereas in Sect. 3.4, the basic
structural restriction on the model, namely, the double Lyapunov function condition,
is formulated as Assumption 3.4.1, and the main result of the chapter, solving
problem (i) above, is stated as Theorem 3.4.1. The argument to establish this
result relies on some properties of the sequence of innovations associated with the
sequence of optimal relative costs, which are presented in Sect. 3.5, and then, the
main theorem is proved in Sect. 3.6. Next, the result on the sample-path optimality
of Markovian policies is stated as Theorem 3.7.1 in Sect. 3.7, and the necessary
technical tools to prove that result, concerning tightness of the sequence of empirical
measures and uniform integrability of the cost function, are established in Sect. 3.8.
Finally, the exposition concludes with the proof of Theorem 3.7.1 in Sect. 3.9.

Notation. Throughout the remainder, IN stands for the set of all nonnegative
integers and the indicator function of a set A is denoted by IA, so that IA(x) = 1
if x ∈ A and IA(x) = 0 when x /∈ A. On the other hand, for a topological space IK,
the class of all continuous functions defined on IK and the Borel σ -field of IK are
denoted by C (IK) and B(IK), respectively, whereas IP(IK) stands for the class of all
probability measures defined in B(IK). Finally, for an event G, the corresponding
indicator function is denoted by I[G].
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3.2 Decision Model

Let M = (S,A,{A(x)}x∈S,C,P) be an MDP, where the state space S is a denumer-
able set endowed with the discrete topology and the action set A is a metric space.
For each x ∈ S, A(x) ⊂ A is the nonempty subset of admissible actions at x and,
defining the class of admissible pairs by IK: = {(x,a) |a∈A(x),x∈ S}, the mapping
C : IK → IR is the cost function, whereas P = [pxy(·)] is the controlled transition
law on S given IK, that is, for all (x,a) ∈ IK and y ∈ S, the relations pxy(a) ≥ 0
and ∑y∈S pxy(a) = 1 are satisfied. This model M is interpreted as follows: At
each time t ∈ IN, the decision maker observes the state of a dynamical system, say
Xt = x ∈ S, and selects an action (control) At = a ∈ A(x) incurring a cost C(x,a).
Then, regardless of the previous states and actions, the state at time t + 1 will be
Xt+1 = y ∈ S with probability pxy(a); this is the Markov property of the decision
process.

Assumption 3.2.1

(i) For each x ∈ S, A(x) is a compact subset of A.
(ii) For every x,y ∈ S, the mappings a �→C(x,a) and a �→ pxy(a) are continuous in

a ∈ A(x).

Policies. The space IHt of possible histories up to time t ∈ IN is defined by IH0 : = S
and IHt : = IKt × S for t ≥ 1, whereas a generic element of IHt is denoted by ht =
(x0,a0, . . . ,xi,ai, . . . ,xt), where ai ∈ A(xi). A policy π = {πt} is a special sequence
of stochastic kernels: For each t ∈ IN and ht ∈ IHt , πt(·|ht) is a probability measure
on B(A) concentrated on A(xt), and for each Borel subset B ⊂ A, the mapping
ht �→ πt(B|ht), ht ∈ IHt , is Borel measurable. The class of all policies is denoted by
P and when the controller chooses actions according to π , the control At applied at
time t belongs to B⊂A with probability πt(B|ht), where ht is the observed history of
the process up to time t. Given the policy π being used for choosing actions and the
initial state X0 = x, the distribution of the state-action process {(Xt ,At)} is uniquely
determined [9], and such a distribution and the corresponding expectation operator
are denoted by Pπ

x and Eπ
x , respectively. Next, define F : =∏x∈S A(x) and notice

that F is a compact metric space, which consists of all functions f : S → A such
that f (x) ∈ A(x) for each x ∈ S. A policy π is Markovian if there exists a sequence
{ ft}⊂F such that the probability measure πt(·|ht) is always concentrated at ft (xt),
and if ft ≡ f for every t, the Markovian policy π is is referred to as stationary.
The classes of stationary and Markovian policies are naturally identified with F
and M : =∏∞

t=0 F , respectively, and with these conventions F ⊂ M ⊂ P .

Performance Criteria. Suppose that the cost function C(·, ·) is such that

Eπ
x [|C(Xt ,At)|]< ∞, x ∈ S, π ∈P , t ∈ IN. (3.1)
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In this case, the (long-run superior limit) average cost corresponding to π ∈ P at
state x ∈ S is defined by

J(x,π) := limsup
k→∞

1
k

Eπ
x

[
k−1

∑
t=0

C(Xt ,At)

]

, (3.2)

and the corresponding optimal value function is specified by

J∗(x) := inf
π∈P

J(x,π), x ∈ S; (3.3)

a policy π∗ ∈ P is (superior limit) average optimal if J(x,π∗) = J∗(x) for every
x∈ S. The criterion (3.2) evaluates the performance of a policy in terms of the largest
among the limit points of the expected average costs in finite times. In contrast, the
following index assesses a policy in terms of the smallest of such limit points:

J−(x,π) := liminf
k→∞

1
k

Eπ
x

[
k−1

∑
t=0

C(Xt ,At)

]

(3.4)

is the (long run) inferior limit average criterion associated with π ∈ P at a state x,
whereas the optimal value function associated with this criterion is given by

J∗−(x) := inf
π∈P

J−(x,π), x ∈ S. (3.5)

From these specifications, it follows that

J∗−(·)≤ J∗(·), (3.6)

and within the context described below, it will be shown that the equality holds in
this last relation.

Optimality Equation. A basic instrument to analyze the above average criteria is
the following optimality equation:

g+ h(x) = inf
a∈A(x)

[

C(x,a)+∑
y∈S

pxy(a)h(y)

]

, x ∈ S, (3.7)

where g ∈ IR and h ∈ C (S) are given functions, and it is supposed that

Eπ
x [|h(Xn)|]< ∞, x ∈ S, π ∈ P , n ∈ IN.

Under this condition and (3.1), a standard induction argument combining (3.7) and
the Markov property yields that, for every nonnegative integer n,
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(n+ 1)g+ h(x)≤ Eπ
x

[
n

∑
t=0

C(Xt ,At)+ h(Xn+1)

]

, x ∈ S, π ∈ P .

Moreover, if f ∈ F satisfies that

g+ h(x) =C(x, f (x))+∑
y∈S

pxy( f (x))h(y), x ∈ S, (3.8)

then

(n+ 1)g+ h(x) = E f
x

[
n

∑
t=0

C(Xt ,At)+ h(Xn+1)

]

, x ∈ S.

Therefore, assuming that the condition

lim
n→∞

Eπ
x [h(Xn+1)]

n+ 1
= 0 (3.9)

holds for every x ∈ S and π ∈ P , it follows that the relation

lim
n→∞

1
n+ 1

E f
x

[
n

∑
t=0

C(Xt ,At)

]

= g ≤ liminf
n→∞

1
n+ 1

Eπ
x

[
n

∑
t=0

C(Xt ,At)

]

(3.10)

is always valid, and then, (3.2)–(3.6) immediately yield that

J∗−(x) = J∗(x) = g = lim
n→∞

1
n+ 1

E f
x

[
n

∑
t=0

C(Xt ,At)

]

, x ∈ S, (3.11)

so that:

(i) The superior and inferior limit average criteria render the same optimal value
function,

(ii) A stationary policy f satisfying (3.8) is average optimal, and
(iii) The optimal average cost is constant and is equal to g.

3.3 Lyapunov Functions

In this section, a structural condition on the model M will be introduced under
which (a) the basic condition (3.1) holds, (b) the optimality equation (3.7) has a
solution (g,h(·)) such that the convergence (3.9) occurs, and (c) a policy f ∈ F
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satisfying (3.8) exists, so that the conclusions (i)–(iii) stated above hold. Throughout
the rest of this chapter

z ∈ S is a fixed state

and T stands for the first return time to state z, that is,

T : = min{n > 0 |Xn = z}, (3.12)

where, as usual, the minimum of the empty set is ∞. The following idea was
introduced in [14] and was analyzed in [5]:

Definition 3.3.1. Let D∈C (IK) and � : S→ [1,∞) be given functions. The function
� is a Lyapunov function for D, or “D has the Lyapunov function �”, if the following
conditions (i)–(iii) hold:

(i) 1+ |D(x,a)|+∑y
=z pxy(a)�(y)≤ �(x) for all (x,a) ∈ IK.

(ii) For each x ∈ S, the mapping f �→ ∑y pxy( f (x))�(y) = E f
x [�(X1)] is continuous

in f ∈ F .
(iii) For each f ∈ F and x ∈ S, E f

x [�(Xn)I[T > n]]→ 0 as n → ∞.

The sentence “D admits a Lyapunov function” means that there exists a function
� : S → [1,∞) such that conditions (i)–(iii) above hold.

The following simple lemma will be useful.

Lemma 3.3.1. Suppose that C has the Lyapunov function �(·). In this case the
assertions (i) and (ii) below are valid.

(i) For every n ∈ IN and π ∈P ,

1
n+ 1

Eπ
x

[
n

∑
t=0

(1+ |C(Xt ,At)|)+ �(Xn+1)

]

≤ B(x) : = �(x)+ �(z), x ∈ S;

in particular, the basic condition (3.1) holds.

(ii) lim
n→∞

1
n

Eπ
x [�(Xn)]→ 0.

Proof. Notice that the inequality 1 + |C(x,a)|+∑y∈S pxy(a)�(y) ≤ �(x) + �(z) is
always valid, by Definition 3.3.1(i), and then, an induction argument using the
Markov property yields that for arbitrary x ∈ S and π ∈P ,

Eπ
x

[
n

∑
t=0

(1+ |C(Xt ,At)|)+ �(Xn+1)

]

≤ �(x)+ (n+ 1)�(z), n ∈ IN,

a relation that immediately yields part (i); a proof of the second assertion can be
found in Lemma 3.2 of [6]. ��
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The following lemma, originally established by [14], shows that the existence
of a Lyapunov function has important implications for the analysis of the average
criteria in (3.2) and (3.4).

Lemma 3.3.2. Suppose that the cost function C has a Lyapunov function �. In this
case, there exists a unique pair (g,h(·)) ∈ IR × C (S) such that the following
assertions (i)–(v) hold:

(i) g = J∗(x) for each x ∈ S.
(ii) h(z) = 0 and |h(x)| ≤ (1+ �(z)) ·�(x) for all x ∈ S. Therefore, by Lemma 3.3.1

(ii), the convergence (3.9) holds.
(iii) The pair (g,h(·)) satisfies the optimality equation (3.7).
(iv) For each x ∈ S, the mapping a �→ ∑y∈S pxy(a)h(y) is continuous in a ∈ A(x).
(v) An optimal stationary policy exists: For each x ∈ S, the term within brackets in

the right-hand side of (3.7) has a minimizer f (x)∈A(x), and the corresponding
policy f ∈ F is optimal. Moreover, (3.11) holds.

A proof of this result can be essentially found in Chapter 5 of [14]; see also
Lemma 3.1 in [6] for a proof of the inequality in part (ii).

Remark 3.3.1. Notice that g in Lemma 3.3.2 is uniquely determined, since it
is the optimal (expected) average cost at every state. The function h(·) in the
above lemma is also unique, as established in Lemma A.2(iv) in [7]. Indeed,
defining the relative cost function as C(·, ·)− g, the function h(·) is the optimal
total relative cost incurred before the first return time to state z; more explicitly,
h(x) = infπ∈P Eπ

x

[
∑T−1

t=0 [C(Xt ,At)− g]
]

for all x ∈ S.

This section concludes with some simple but useful properties of Lyapunov
functions stated in Lemma 3.3.3 below, whose statement involves the following
notation.

Definition 3.3.2. The class L (�) consists of all functions D ∈ C (IK) such that a
positive multiple of � is a Lyapunov function for D, that is, D ∈ L (�) if and only if

for some c > 0, 1+ |D(x,a)|+∑
y
=z

pxy(a)[c�(y)]≤ c�(x), (x,a) ∈ IK.

Notice that the function c�(·) inherits the properties (ii) and (iii) of the function �(·)
in Definition 3.3.1.

Lemma 3.3.3. Suppose that � : S → [1,∞) is a Lyapunov function for a function
D̃ ∈ C (IK):

(i) If D0 ∈C (IK) is such that |D0| ≤ |D̃|, then � is also a Lyapunov function for D0.
(ii) With the notation in Definition 3.3.2, the following properties (a) and (b)

hold:

(a) L (�) is a vector space that contains the constant functions.
(b) If D1,D2 ∈ L (�), then max{D1,D2} and min{D1,D2} also belong to

L (�).
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Proof. The first part follows directly from Definition 3.3.1. To establish part (ii),
first notice that L (�) is nonempty since D̃ ∈ L (�). Next, suppose that D1,D2 ∈
L (�) and observe that

1+ |Di(x,a)|+∑
y
=z

pxy(a)[ci �(y)]≤ ci �(x), (x,a) ∈ IK, i = 1,2,

where c1 and c2 are positive constants. If d1 and d2 are real numbers, multiplying
both sides of the above equality by 1+ |di|, it follows that, for every (x,a) ∈ IK,

([1+ |di|)+ (1+ |di|)|Di(x,a)|+∑
y
=z

pxy(a)[(1+ |di|)ci �(y)]≤ (1+ |di|)ci �(x),

and then,

1+ |diDi(x,a)|+∑
y
=z

pxy(a)[(1+ |di|)ci �(y)]≤ (1+ |di|)ci �(x), i = 1,2.

these inequalities, it follows that

1+[1+ |d1D1(x,a)|+ |d2D2(x,a)|]+∑
y
=z

pxy(a)[(1+ |d1|)c1 +(1+ |d2|)c2]�(y)

≤ [(1+ |d1|)c1 +(1+ |d2|)c2]�(x),

showing that

1+ |d1D1|+ |d2D2| ∈ L (�),

and because the function in the left-hand side of this inclusion dominates |d1D1 +
d2D2| and 1, part (i) yields that (a) d1D1 + d2D2 ∈ L (�) and 1 ∈ L (�), so
that L (�) is a vector space that contains the constant functions. Finally, since
|max{D1,D2}|, |min{D1,D2}|≤ |D1|+ |D2|, the above displayed inclusion and part
(i) together imply that (b) max{D1,D2},min{D1,D2} ∈L (�). ��

3.4 A Double Lyapunov Function Condition
and Sample-Path Optimality

In this section, a notion of sample-path average optimality is introduced, and using
the idea of Lyapunov function, a structural condition on the decision model M is
formulated. Under such an assumption, it is stated in Theorem 3.4.1 below that, in
addition to being expected average optimal, a stationary policy f satisfying the (3.8)
is also average optimal in the sample-path sense.
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Definition 3.4.1. A policy π∗ ∈ P is sample-path average optimal with optimal
value g∗ ∈ IR if the following conditions (i) and (ii) are valid:

(i) For each state x ∈ S, lim
n→∞

1
n

n−1

∑
t=0

C(Xt ,At) = g∗ Pπ∗
x -a.s. ;

(ii) For every π ∈ P and x ∈ S, liminf
n→∞

1
n

n−1

∑
t=0

C(Xt ,At)≥ g∗ Pπ
x -a.s..

The existence and construction of sample-path optimal policies will be studied
under the following structural condition on the model M .

Assumption 3.4.1 [Double Lyapunov function condition]

(i) The cost function C(·, ·) has a Lyapunov function �.
(ii) For some β > 2, the mapping �β admits a Lyapunov function.

A simple class of models satisfying this assumption is presented below.

Example 3.4.1. For each t ∈ IN, let Xt ∈ S = IN be the number of customers waiting
for a service at a time t in a single-server station. To describe the evolution of {Xt},
let the action set A be a compact metric space and set A(x) = A for every x. Next,
let {Δt(a) | t ∈ IN,a ∈ A} and {ξt(a) | t ∈ IN,a ∈ A} be two families of independent
and identically distributed random variables taking values in the set IN, and suppose
that the following conditions hold:

(i) For each k ∈ IN, the mappings a �→ P[Δt(a) = k], a �→ P[ξt(a) = k], and a �→
E[ξt(a)r] ∈ (0,∞), 1 ≤ r ≤ 2m+3, are continuous, where m ∈ IN\{0} is fixed.

(ii) P[Δt(a) = 1] = μ(a) = 1−P[Δt(a) = 0] and E[ξt(a)]− μ(a)≤−ρ < 0 for all
a ∈ A.

When the action a ∈ A is chosen, (the Bernoulli variable) Δt(a) and ξt(a) represent
the number of service completions and arrivals in [t, t + 1), respectively, and the
evolution of the state process is determined by

Xt+1 = Xt + ξt(a)−Δt(a)IIN\{0}(Xt) if At = a, t ∈ IN, (3.13)

an equation that allows to obtain the transition law and to show that pxy(a) is
a continuous function of a ∈ A, by the first of the conditions presented above.
In the third part of the following proposition, a class of cost functions satisfying
Assumption 3.4.1 is identified. ��
Proposition 3.4.1. In the context of Example 3.4.1, the following assertions hold
when z = 0 and T is the first return time in (3.12):

(i) For each r = 1,2, . . . ,2m+2, there exist positive constants br and cr such that
the function �r+1 ∈ C (S) given by

�r+1(x) = xr+1 + brx+ cr, x ∈ S, (3.14)
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satisfies

ρxr + 1+E[�r+1(Xt+1) |Xt = x,At = a]≤ �r+1(x), x ∈ S, (3.15)

where ρ > 0 is the number in condition (ii) stated in Example 3.4.1. Moreover,
for each x ∈ S,

a �→ E[�r+1(Xt+1) |Xt = x,At = a], a ∈ A, is continuous, (3.16)

and for every π ∈ P ,

lim
n→∞

Eπ
x [(1+ρXr

n)I[T > n]] = 0. (3.17)

Consequently,
(ii) For j = 1,2, . . . ,2m+1, the above mapping � j+1(·) is a Lyapunov function for

the cost function

Cj(x) : = ρx j, x ∈ S.

(iii) Suppose that, for some integer j = 1,2, . . . ,m−1, the cost function C ∈ C (IK)
is such that

max
a∈A

|C(x,a)| ≤ b1x j + b0, x ∈ S,

where b0 and b1 are positive constants. In this case, the function C satisfies
Assumption 3.4.1.

Proof. (i) For Xt = x 
= 0 and 1 ≤ r ≤ 2m + 2, the evolution equation (3.13)
yields that

E[(Xt+1)
r+1|Xt = x,At = a] = E[(x+ ξt(a)−Δt(a))

r+1]

≤ xr+1 − (r+ 1)ρxr +R(x,a), (3.18)

where supa∈A |R(x,a)|= O(xr−1); thus, there exists a constant b > 0 such that
R(x,a)≤ ρxr + b for every x 
= 0, and it follows that

ρxr − b+E[(Xt+1)
r+1|Xt = x,At = a]≤ xr+1.

When r = 0, the term R(x,a) in (3.18) is null, so that ρ+E[Xt+1|Xt = x,At =
a] ≤ x; multiplying both sides of this relation by a sufficiently large constant
br such that ρbr > b+ 1 and combining the resulting inequality with the one
displayed above, it follows that

ρxr + 1+E[(Xt+1)
r+1 + brXt+1|Xt = x,At = a]≤ xr+1 + brx, x ∈ S \ {0}.

Defining cr : = 1+maxa∈A E[ξt(a)r+1 + brξt(a)], it follows that the function
�r+1 in (3.14) satisfies the inequality (3.15), whereas (3.16) follows from the
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continuity properties of the distributions of the departure and arrival streams in
Example 3.4.1. On the other hand, (3.15) yields that the inequality Eπ

x [ρXr
0 +

1+ �r+1(X1)I[T > 1]] ≤ �r+1(x) is always valid, and an induction argument
using the Markov property leads to

Eπ
x

[
n−1

∑
t=0

(ρXr
t + 1)I[T > t]+ �r+1(Xn)I[T > n]

]

≤ �r+1(x), n ∈ IN;

taking the limit as n goes to +∞, this implies that Eπ
x [∑∞

t=0(ρXr
t +1)I[T > t]]≤

�r+1(x), and (3.17) follows.
(ii) The relations (3.15) and (3.16) immediately show that � j+1 satisfies the

requirements (i) and (ii) in Definition 3.3.1 of a Lyapunov function for Cj.
Next, observe that � j+1 ≤ c0x j+1 + c1 for some constants c0 and c1, and then,
(3.17) with j+1(≤m+2) instead of r implies that � j+1 also satisfies the third
property in Definition 3.3.1.

(iii) Observe that the condition on the functionC(·, ·) can be written as |C| ≤ b1Cj+
b0, and then, it is sufficient to show that Cj satisfies Assumption 3.4.1, since in
this case the corresponding conclusion for C follows from Lemma 3.3.3. Let
the integer j between 1 and m− 1 be arbitrary and notice that part (ii) yields
that � j+1 is a Lyapunov function for Cj. Next, set β = (2 j + 3)/( j + 1) > 2
and observe that (3.14) implies that there exist positive constants c0 and c1

such that �βj+1(x) ≤ c1x2 j+3 + c0 = c1C2 j+3(x) + c0; since 2 j + 3 ≤ 2m+ 1,

part (ii) shows that C2 j+3 has a Lyapunov function, and then, �βj+1 also admits
a Lyapunov function, by Lemma 3.3.3.

��
The following result establishes the existence of sample-path average optimal

stationary polices.

Theorem 3.4.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold, and let (g,h(·))
be the solution of the optimality equation guaranteed by Lemma 3.3.2. In this case,
if the stationary policy f satisfies (3.8), then f is sample-path average optimal with
the optimal value g. More explicitly, for each x ∈ S and π ∈ P ,

lim
n→∞

1
n

n−1

∑
t=0

C(Xt ,At) = g P f
x -a.s. (3.19)

and

liminf
n→∞

1
n

n−1

∑
t=0

C(Xt ,At)≥ g Pπ
x -a.s. (3.20)

Remark 3.4.1. This theorem is related to Theorem 4.1 in [6] where MDPs with
average reward criteria were considered. In the context of the present work, Theorem
4.1 in that paper establishes that, under Assumption 3.2.1, if the cost function has
the Lyapunov function �, then limsupn→∞ n−1∑n−1

t=0 C(Xt ,At)≥ g Pπ
x -a.s. for each
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π ∈ P and x ∈ S and that the equality holds if π = f satisfies (3.8). In the present
Theorem 3.4.1, the additional condition in Assumption 3.4.1(ii) is incorporated, and
in this context, the stronger conclusions (3.19) and (3.20) are obtained.

A proof of Theorem 3.4.1 will be given after presenting the necessary prelimi-
naries in the following section:

3.5 Innovations of the Sequence of Optimal Relative Costs

This section contains the main technical tool that will be used to establish Theorem
3.4.1. The necessary result concerns properties of the sequence of innovations
associated to {h(Xt)} which is introduced below. Throughout the remainder of this
chapter Assumptions 3.2.1 and 3.4.1 are supposed to be valid even without explicit
reference, and (g,h(·)) ∈ IR×C (S) stands for the pair satisfying the optimality
equation (3.7) as described in Lemma 3.3.2. Next, for each positive integer n, let
Fn be the σ -field generated by the states observed and actions applied up to time n:

Fn : = σ(Xt ,At , 0 ≤ t ≤ n), n = 1,2,3, . . . , (3.21)

and observe that for each initial state x and π ∈ P , the Markov property of the
decision process yields that

Eπ
x [h(Xn) |Fn−1] =∑

y∈S

pXn−1 y(An−1)h(y). (3.22)

Definition 3.5.1. The process of {Yk,k ≥ 1} of innovations associated to the
sequence of observed optimal relative costs {h(Xk),k ≥ 1} is given by

Yn = h(Xn)−∑
y∈S

pXn−1,y(An−1)h(y), n = 1,2,3, . . . .

Now, let x ∈ S and π ∈ P be arbitrary but fixed, and notice that combining the
definition above with (3.21) and (3.22), it follows that (i) Yn is Fn measurable, and
(ii) the innovations Yn can be written as

Yn = h(Xn)−Eπ
x [h(Xn) |Fn−1], (3.23)

and then, Yn is uncorrelated with the σ -field Fn−1 with respect to Pπ
x , that is,

Eπ
x [YnW ] = 0 if W is Fn−1 measurable and YnW is Pπ

x integrable (3.24)

([2]). The following is the main result of this section.

Theorem 3.5.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold and let the pair
(g,h(·)) ∈ IR×C (S) be as in Lemma 3.3.2. In this context, for each initial state
x ∈ S and π ∈ P , the following convergences hold:
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lim
n→∞

h(Xn)

n
= 0 Pπ

x -a.s. (3.25)

and

lim
n→∞

1
n

n

∑
k=1

Yk = 0 Pπ
x -a.s. (3.26)

This theorem will be established using two elementary facts stated in the
following lemmas. The first one is a criterion for almost sure convergence, which is
a consequence of the first Borel-Cantelli lemma [2].

Lemma 3.5.1. Let {Wn} be a sequence of random variables defined on a proba-
bility space (Ω ,F ,P). In this case, if ∑∞

n=1 P[|Wn| > ε] < ∞ for each ε > 0, then
limn→∞Wn = 0 P-a.s. .

The second result involved in the proof of Theorem 3.5.1 is the following
inequality by Kolmogorov.

Lemma 3.5.2. If n and k are two positive integers such that n > k, then for every
α > 0

Pπ
x

[

max
r:k≤r≤n

∣
∣
∣
∣
∣

r

∑
t=k

Yt

∣
∣
∣
∣
∣
≥ α

]

≤ 1
α2

n

∑
t=k

Eπ
x [Y

2
t ].

This classical result is established as Theorem 22.4 in [2] for the case in which
the Yn’s are independent. In the present context, from the relations (3.27)–(3.29)
below, it follows that Eπ

x [Y
2
n ] is always finite, and then, (3.24) yields that, if n > k,

then Eπ
x [YnYkI[G]] = 0 for every G ∈ Fk; from this last observation, the same

arguments in the aforementioned book allow to establish Lemma 3.5.2. Now, let
� be a Lyapunov function for the cost function C such that �β admits a Lyapunov
function for some β > 2, as ensured by Assumption 3.4.1. Applying Lemma 3.3.1
to the cost function �β , it follows that there exists a function b : S → (0,∞) such that

1
n+ 1

Eπ
x

[
n

∑
t=0

�2(Xt)

]

≤ 1
n+ 1

Eπ
x

[
n

∑
t=0

�β (Xt)

]

≤ b(x), x ∈ S, (3.27)

where the first inequality is due to the fact that �(·)≥ 1.

Proof of Theorem 3.5.1. Let ε > 0 be arbitrary and notice that, by Lemma 3.3.2(ii),

|h(·)| ≤ c�(·), (3.28)

where c = 1+ �(z). Combining this relation with Markov’s inequality, it follows
that, for each positive integer n,

Pπ
x [|h(Xn)/n|> ε]≤ Eπ

x [|h(Xn)|β ]
nβ εβ

≤ cβEπ
x [�(Xn)

β ]

nβ εβ
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and then, (3.27) yields that

Pπ
x [|h(Xn)/n|> ε]≤ cβ (n+ 1)b(x)

nβ εβ
≤ 2

cβb(x)

nβ−1εβ
;

since β > 2, it follows that ∑∞
n=1 Pπ

x [|h(Xn)/n| > ε] < ∞, and the convergence
(3.25) follows from Lemma 3.5.1. Next, using that the (unconditional) variance of
a random variable is an upper bound for the expectation of its conditional variance
[19], from (3.23), it follows that

Eπ
x [Y

2
t ] = Eπ

x [(h(Xt)−Eπ
x [h(Xt)|Ft−1])

2]

≤ Eπ
x [(h(Xt)−Eπ

x [h(Xt)])
2]

≤ Eπ
x [h(Xt)

2]

≤ c2Eπ
x [�(Xt)

2]; (3.29)

see (3.28) for the last inequality. This fact and Lemma 3.5.2 together lead to

Pπ
x

[

max
r:k≤r≤n

∣
∣∣
∣
∣

r

∑
t=k

Yt

∣
∣∣
∣
∣
> α

]

≤ c2

α2

n

∑
t=k

Eπ
x [�(Xt)

2],

and then, (3.27) yields that

Pπ
x

[

max
r:k≤r≤n

∣∣
∣
∣
∣

r

∑
t=k

Yt

∣∣
∣
∣
∣
> α

]

≤ c2(n+ 1)b(x)
α2 , α > 0, n > k ≥ 1. (3.30)

Using this relation with k = 1, n = m2, and α = εm2, it follows that

qm : = Pπ
x

[

m−2

∣
∣
∣
∣∣

m2

∑
t=1

Yt

∣
∣
∣
∣∣
> ε

]

≤ Pπ
x

[

max
r:1≤r≤m2

∣
∣
∣
∣∣

r

∑
t=1

Yt

∣
∣
∣
∣∣
> m2ε

]

≤ c2(m2 + 1)b(x)
ε2m4 .

Therefore, ∑∞
m=1 qm < ∞, and recalling that ε > 0 is arbitrary, an application of

Lemma 3.5.1 implies that

lim
m→∞

1
m2

m2

∑
t=1

Yt = 0 Pπ
x -a.s. (3.31)

On the other hand, given a positive integer m, from the inclusion
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[

max
j:0≤ j≤2m

∣∣
∣
∣
∣
(m2 + j)−1

m2+ j

∑
t=m2

Yt

∣∣
∣
∣
∣
≥ ε

]

⊂
[

max
j:0≤ j≤2m

∣∣
∣
∣
∣

m2+ j

∑
t=m2

Yt

∣∣
∣
∣
∣
≥ m2ε

]

,

it follows that

pm : = Pπ
x

[

max
j:0≤ j≤2m

∣
∣
∣
∣∣
(m2 + j)−1

m2+ j

∑
t=m2

Yt

∣
∣
∣
∣∣
≥ ε

]

≤ Pπ
x

[

max
j:0≤ j≤2m

∣
∣
∣∣
∣

m2+ j

∑
t=m2

Yt

∣
∣
∣∣
∣
≥ m2ε

]

= Pπ
x

[

max
r:m2≤r≤(m+1)2−1

∣
∣∣
∣
∣

r

∑
t=m2

Yt

∣
∣∣
∣
∣
≥ m2ε

]

≤ c2(m+ 1)2b(x)
ε2m4,

where the last inequality was obtained from (3.30) with n = (m+ 1)2− 1, k = m2,
and α = m2ε . Thus, ∑∞

m=1 pm < ∞, and then, Lemma 3.5.1 implies that

lim
m→∞

{

max
j:0≤ j≤2m

∣∣
∣
∣
∣
(m2 + j)−1

m2+ j

∑
t=m2

Yt

∣∣
∣
∣
∣

}

= 0 Pπ
x -a.s. (3.32)

To conclude, let n be a positive integer and let m be the integral part of
√

n, so that

n = m2 + i, 0 ≤ i ≤ 2m.

Assume that i is positive and notice that in this case

∣
∣∣
∣
∣
1
n

n

∑
t=1

Yt

∣
∣∣
∣
∣
≤ m2

n

∣
∣∣
∣
∣

1
m2

m2

∑
t=1

Yt

∣
∣∣
∣
∣
+

1
m2 + i

∣
∣∣
∣
∣

m2+i

∑
t=m2+1

Yt

∣
∣∣
∣
∣
,

and then,

∣
∣
∣
∣∣
1
n

n

∑
t=1

Yt

∣
∣
∣
∣∣
≤
∣
∣
∣
∣∣

1
m2

m2

∑
t=1

Yt

∣
∣
∣
∣∣
+ max

j:0≤ j≤2m

{
1

m2 + j

∣
∣
∣
∣∣

m2+ j

∑
t=m2+1

Yt

∣
∣
∣
∣∣

}

,

a relation that is also valid when i = 0, that is, if n = m2. Taking the limit when m
goes to +∞ in both sides of this last inequality, the convergences in (3.31) and (3.32)
together imply that (3.26) holds. ��
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3.6 Proof of Theorem 3.4.1

In this section, a criterion for the sample-path average optimality of a policy will be
derived from Theorem 3.5.1 and that result will be used to establish Theorem 3.4.1.
The arguments use the following notation:

Definition 3.6.1. The discrepancy function Φ : IK → IR associated to the pair
(g,h(·)) in Lemma 3.3.2 is defined by

Φ(x,a) : =C(x,a)+∑
y∈S

pxy(a)h(y)− h(x)− g.

Notice that Φ is a continuous mapping, by Assumption 3.2.1 and Lemma
3.3.2(iv). Also, observe that the optimality equation (3.7) yields that

Φ(x,a)≥ 0, (x,a) ∈ IK.

Lemma 3.6.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold. In this context, a
policy π∗ ∈ P is sample-path average optimal if and only if

lim
n→∞

1
n

n−1

∑
t=0

Φ(Xt ,At) = 0 Pπ∗
x -a.s. (3.33)

Proof. It will be verified that for all x ∈ S and π ∈ P ,

lim
n→∞

1
n

n−1

∑
t=0

[C(Xt ,At)− g−Φ(Xt ,At)] = 0 Pπ
x -a.s. (3.34)

Assuming that this relation holds, the desired conclusion can be established as
follows: Observing that

1
n

n−1

∑
t=0

C(Xt ,At) =
1
n

n−1

∑
t=0

[C(Xt ,At)− g−Φ(Xt ,At)]+ g+
1
n

n−1

∑
t=0

Φ(Xt ,At),

and taking the inferior limit as n goes to ∞ in both sides of this equality, the
nonnegativity of the discrepancy function and (3.34) together imply that the relation

liminf
n→∞

1
n

n−1

∑
t=0

C(Xt ,At)≥ g, Pπ
x -a.s.

is always valid. Thus, by Definition 3.4.1, π∗ ∈ P is sample-path average optimal
if and only if

lim
n→∞

1
n

n−1

∑
t=0

C(Xt ,At) = g Pπ∗
x -a.s. , x ∈ S,

a property that, by (3.34) with π∗ instead of π , is equivalent to the criterion (3.33).
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Thus, to conclude the argument, it is sufficient to verify the statement (3.34).
To achieve this goal, notice that the definition of the discrepancy function yields
that following equality is always valid for t ≥ 1:

C(Xt−1)− g−Φ(Xt−1,At−1) = h(Xt−1)−∑
y∈S

pXt−1,y(At−1)h(y),

a relation that, via the specification of the innovation Yt in Definition 3.5.1, leads to

C(Xt−1)− g−Φ(Xt−1,At−1) = h(Xt−1)− h(Xt)+Yt .

Therefore,

n

∑
t=1

[C(Xt−1)− g−Φ(Xt−1,At−1)] = h(X0)− h(Xn)+
n

∑
t=1

Yt ,

and then, for every initial state X0 = x and π ∈ P ,

1
n

n

∑
t=1

[C(Xt−1)− g−Φ(Xt−1,At−1)] =
h(x)

n
− h(Xn)

n
+

1
n

n

∑
t=1

Yt , Pπ
x -a.s. ,

where the equality Pπ
x [X0 = x] = 1 was used; from this point, (3.34) follows directly

from Theorem 3.5.1. ��
Proof of Theorem 3.4.1. From Definitions 3.6.1 and (3.8), it follows thatΦ(x, f (x))=
0 for every state x. Thus, using that At = f (Xt ) when the system is running under
the policy f , it follows that, for every initial state x and t ∈ IN, the equality
Φ(Xt ,At) =Φ(Xt , f (Xt )) = 0 holds with probability 1 with respect to P f

x . Therefore,
the criterion (3.33) is satisfied by f , and then, Lemma 3.6.1 yields that the policy f
is sample-path average optimal. ��

3.7 Approximations Schemes and Sample-Path Optimality

In the remainder of this chapter the sample-path optimality of Markovian policies is
analyzed. The interest in this problem stems from the fact that an explicit solution
(g,h(·)) of the optimality equation (3.7) is seldom available, and in this case,
the sample-path average optimal policy f in (3.8) cannot be determined. When
a solution of the optimality equation is not at hand, an iterative approximation
procedure is implemented and (i) approximations {(gn,hn(·))}n∈IN for (g,h(·))
are generated, and (ii) a stationary policy fn is obtained from (gn,hn(·)). Such a
policy fn is “‘nearly optimal”’ in the sense that, for each fixed x, the convergence
Φ(x, fn(x))→ 0 occurs as n → ∞, and the next objective is to establish the sample-
path average optimality of the Markovian policy { fn}.
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Remark 3.7.1. Two procedures that can be used to approximate the solution of the
optimality equation and to generate a Markovian policy { fn} such that the fn’s are
nearly optimal are briefly described below; for details see, for instance, [1,9,11–13],
or [17].

(i) The discounted method. For each α ∈ (0,1), the total expected α-discounted
cost at the state x under π ∈ P is given by Vα(x,π) : = Eπ

x [∑∞
t=0αtC(Xt ,At)],

whereas V ∗
α (x) : = infπ∈P Vα(x,π), x ∈ S, is the α-optimal value function,

which satisfies the optimality equation

Vα(x) = inf
a∈A(x)

[

C(x,a)+α ∑
y∈S

pxy(a)Vα(y)

]

, x ∈ S.

Now let {αn} ⊂ (0,1) be a sequence increasing to 1, and define

(gn,hn) : = ((1−αn)Vαn(z),Vαn(·)−Vαn(z))

and let the policy fn be such that

Vαn(x) =C(x, fn(x))+αn ∑
y∈S

pxy( fn(x))Vαn(y), x ∈ S. (3.35)

(ii) Value iteration. This procedure approximates the solution (g,h(·)) of the opti-
mality equation (3.7) using the total cost criterion over a finite horizon. For each
n∈ IN\{0} let Jn(x,π) be the total cost incurred when the system runs during n
steps under policy π starting at x, that is, Jn(x,π) : = Eπ

x

[
∑n−1

t=0 C(Xt ,At)
]
, and

let J∗n (x) : = infπ∈P Jn(x,π) be the corresponding optimal value function; the
sequence {J∗n(·)} satisfies the relation

J∗n (x) = inf
a∈A(x)

[

C(x,a)+∑
y∈S

pxy(a)J
∗
n−1(y)

]

, x∈ S, n= 1,2,3, . . . , (3.36)

where J∗0 (·) = 0, so that the functions J∗n (·) are determined recursively, which is
an important feature of the method. The approximations to (g,h(·)) are given by

(gn,hn(·)) : = (J∗n (z)− J∗n−1(z), J∗n (·)− J∗n(z)),

whereas the policy fn is such that fn(x) is a minimizer of the term within
brackets in (3.36):

J∗n (x) =C(x, fn(x))+∑
y∈S

pxy( fn(x))J
∗
n−1(y), x ∈ S, n = 1,2,3, . . .

Under Assumptions 3.2.1 and 3.4.1(i), the approximations (gn,hn(·)) generated
by the discounted method converge pointwise to (g,h(·)), and the policies fn in
(3.35) are nearly optimal in the sense that Φ(x, fn(x))→ 0 as n → ∞. Similar



3 Sample-Path Optimality in Markov Decision Chains 49

conclusions hold for the value iteration scheme if, additionally, the transition
law satisfies that

pxx(a)> 0, a ∈ A(x), x ∈ S;

this requirement can be avoided if the transformation by Schewitzer (1971) is
applied to the transition law and the value iteration method is applied to the
transformed model; see, for instance, [7] or [8].

The following theorem establishes a sufficient condition for the sample-path
optimality of a Markovian policy.

Theorem 3.7.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold, and let f = { ft}
be a Markov policy such that

lim
n→∞

Φ(x, fn(x)) = 0, x ∈ S, (3.37)

where Φ is the discrepancy function introduced in Definition 3.6.1. In this case, the
policy f is sample-path average optimal; see Definition 3.4.1.

The proof of this result relies on some consequences of Theorem 3.4.1 which
will be analyzed below.

3.8 Tightness and Uniform Integrability

This section contains the technical preliminaries that will be used to establish
Theorem 3.7.1. The necessary results are concerned with properties of the sequence
of empirical measures, which is now introduced.

Definition 3.8.1. The random sequence {νn} of empirical measures associated with
the state-action process {(Xt ,At)} is defined by

νn(B) : =
1
n

n−1

∑
t=0

δ(Xt ,At)(B), B ∈ B(IK), n = 1,2,3, . . . ,

where δk stands for the Dirac measure concentrated at k, that is, δk(B) = 1 if k ∈ B
and δk(B) = 0 when k 
∈ B.

Notice that this specification yields that, for each positive integer n and
D ∈ C (IK),

νn(D) : =

∫

IK
D(k)νn(dk) =

1
n

n

∑
t=1

D(Xt ,At) .
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The main result of this section concerns the asymptotic behavior of {νn} and
involves the following notation: Given a set S̃ ⊂ S, for each D ∈ C (IK), defines
the new function DS̃ ∈ C (IK) as follows:

DS̃(x,a) : = max{|D(x,a)|,1}IS̃(x), (x,a) ∈ IK. (3.38)

Theorem 3.8.1. Suppose that Assumptions 3.2.1 and 3.4.1 hold and let x ∈ S and
π ∈ P be arbitrary but fixed. In this context, for each ε > 0, there exists a finite set
Fε ⊂ S such that

limsup
n→∞

νn(CS\Fε )≤ ε Pπ
x -a.s.; (3.39)

see (3.38).

Remark 3.8.1. For a positive integer r, let F1/r be the set corresponding to ε = 1/r
in the above theorem and define the event Ω ∗ by

Ω ∗ : =
∞⋂

r=1

[
limsup

n→∞
νn(CS\F1/r

)≤ 1/r

]
.

(i) Let the set IKr ⊂ IK be given by

IKr = {(x,a) ∈ IK |x ∈ F1/r}. (3.40)

With this notation, IKr is a compact set, since F1/r is finite, and (3.38) yields
that CS\F1/r

(x,a)≥ 1 for (x,a) ∈ IK\ IKr, so that

νn(IK\ IKr)≤
∫

IK
CS\F1/r

(k)νn(dk) = νn(CS\F1/r
),

and then,

limsup
n→∞

νn(IK\ IKr)≤ limsup
n→∞

νn(CS\F1/r
).

Consequently, along a sample trajectory {(Xt ,At)} in Ω ∗ the corresponding
sequence {νn} satisfies limsupn→∞ νn(IK \ IKr) ≤ 1/r for every r > 0 so that
{νn} is tight.

(ii) Given a probability measure μ defined in B(IK), a function D ∈ C (IK) is
integrable with respect to μ if, and only if, for each positive integer r, there
exists a compact set ĨKr such that

∫

IK\ĨKr

|D(k)|μ(dk)≤ 1/r.
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Notice now that (3.38) and (3.40) yield that CS\F1/r
(x,a)≥ |C(x,a)| for (x,a)∈

IK\ IKr, so that

∫

IK\IKr

|C(k)|νn(dk)≤
∫

IK\IKr

CS\F1/r
(k)νn(dk) = νn(CS\F1/r

).

Thus,

limsup
n→∞

∫

IK\IKr

|C(k)|νn(dk)≤ limsup
n→∞

νn(CS\F1/r
),

and then, along a sample trajectory in Ω ∗,

limsup
n→∞

∫

IK\IKr

|C(k)|νn(dk)≤ 1/r, r = 1,2,3, . . . ,

showing that the cost function C is uniformly integrable with respect to the
family {νn} of empirical measures.

(iii) Since Theorem 3.8.1 yields that Pπ
x [Ω ∗] = 1 for every x ∈ S and π ∈ P , the

previous discussion can be summarized as follows: Regardless of the initial
state and the policy used to drive the system, the following assertions hold
with probability 1: (a) The sequence {νn} is tight and (b) the cost function is
uniformly integrable with respect to {νn}.

The proof of Theorem 3.8.1 relies on the following lemma.

Lemma 3.8.1. Let ε > 0 be arbitrary, and suppose that Assumptions 3.2.1 and 3.4.1
hold, and let gS\F be the optimal expected average cost associated with the cost
function −CS\F, that is,

gS\F : = inf
π∈P

J(x,π ,−CS\F), (3.41)

where J(x,π ,−CS\F) is given by the right-hand side of (3.2) with the function−CS\F
instead of C. With this notation, there exists a finite set F ⊂ S such that

gS\F ≥−ε . (3.42)

Proof. Let {Fk} be a sequence of finite subsets of S such that

Fk ⊂ Fk+1, k = 1,2,3, . . . , and
∞⋃

k=1

Fk = S; (3.43)

from (3.38), it follows that −CS\Fk
↗ 0 as k ↗ ∞, a property that via (3.41)

immediately yields that

gS\Fk
≤ gS\Fk+1

≤ 0, k = 1,2,3, . . . ,
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so that {gS\Fk
} is a convergent sequence; set

ḡ : = lim
k→∞

gS\Fk
. (3.44)

To establish the desired conclusion, it is sufficient to show that

ḡ = 0,

since in this case (3.42) occurs when F is replaced by Fk with k large enough.
To verify the above equality, let � be a Lyapunov function for the function C
and notice that Lemma 3.3.3 yields that, for some constant c > 0, the mapping
c� is a Lyapunov function for −CS\Fk

, and then, this last function also satisfies
Assumption 3.4.1. Thus, from Lemma 3.3.2 applied to the cost function CS\Fk

, it
follows that there exists a function hk : S → IR as well as a policy fk ∈ F such that

gS\Fk
+ hk(x) =−CS\Fk

(x, fk(x))+∑
y∈S

pxy( fk(x))hk(y), x ∈ S, (3.45)

where hk(·)≤ c�(·), that is,

hk(·) ∈∏
x∈S

[c�(x), c�(x)]. (3.46)

Using the fact that the right-hand side of this inclusion as well as F are compact
metric spaces, it follows that there exists a sequence {kr} of positive integers
increasing to ∞ such that the following limits exist:

f̄ (x) : = lim
r→∞

fkr (x), h̄(x) : = lim
r→∞

hkr(x), x ∈ S.

Next, observe that (3.38) and (3.43) together yield that for each state x,

CS\Fk
(x, fk(x)) = 0 when k is large enough,

whereas, via Proposition 2.18 in p. 232 of [18], the continuity property in Definition
3.3.1(ii) and (3.46) leads to

lim
r→∞∑

y∈S

pxy( fkr (x))hkr(y) =∑
y∈S

pxy( f̄ (x))h̄(y).

Replacing k by kr in (3.45) and taking the limit as r goes to ∞ in both sides of the
resulting equation, (3.44) and the three last displays allow to write that

ḡ+ h̄(x) =∑
y∈S

pxy( f̄ (x))h̄(y), x ∈ S.
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Starting from this relation, an induction argument yields that (n + 1)ḡ + h̄(x) =

E f̄
x [h̄(Xn+1)] for every x ∈ S and n ∈ IN, that is,

ḡ =
1

n+ 1
E f̄

x [h̄(Xn+1)]− h̄(x)
n+ 1

,

and taking the limit as n goes to∞, the inclusion (3.46) and Lemma 3.3.1(ii) together
imply that ḡ = 0; as already mentioned, this completes the proof of the lemma. ��
Proof of Theorem 3.8.1. Recalling that Assumption 3.4.1 is in force, let � be a
Lyapunov function for the cost function C such that �β admits a Lyapunov function
for some β > 2. As already noted, for some constant c > 0, the function c� is a
Lyapunov function for −CS\F , a fact that immediately implies that this last function
also satisfies Assumption 3.4.1. Therefore, applying Theorem 3.4.1 with the cost
function −CS\F instead of C, it follows that for every x ∈ S and π ∈ P ,

liminf
n→∞

νn(−CS\F)≥ gS\F , Pπ
x -a. s. ,

and selecting F as the finite set in Lemma 3.8.1, it follows that

liminf
n→∞

νn(−CS\F)≥−ε, Pπ
x -a. s. ,

a statement that is equivalent to (3.39). ��

3.9 Proof of Theorem 3.7.1

In this section a proof of the sample-path average optimality of a Markovian
policy satisfying condition (3.37) will be presented. The argument combines
Theorem 3.8.1 with the following lemma.

Lemma 3.9.1. Let the Markovian policy f = { ft} be such that (3.37) holds, and
consider a fixed sample trajectory {(Xt ,At)} along which properties (i) and (ii)
below hold:

(i) The sequence {νn} of empirical measures is tight.
(ii) At = f (Xt) for all t ∈ N.

In this context, if ν∗ is a limit point of the sequence {νn} in the weak
convergence topology, then ν∗ is supported on

IK∗ = {(x,a) ∈ IK |Φ(x,a) = 0}, (3.47)

that is,

ν∗(IK∗) = 1.
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Proof. For each x ∈ S and ε > 0 defines the set

IK(x,ε) = {(x,a) |a ∈ A(x) and Φ(x,a)> ε},

which is an open subset of IK, since the function Φ is continuous and S is endowed
with the discrete topology. In this case,

δ(Xt ,At )(IK(x,ε)) = δ(Xt , ft (Xt ))(IK(x,ε)) = 1 ⇐⇒ Xt = x and Φ(x, ft (x))> ε.

Therefore, using condition (3.37), it follows that there exists an integer N > 0
such that

δ(Xt ,At)(IK(x,ε)) = 0, t > N,

so that

νn(IK(x,ε)) =
1
n

n−1

∑
t=0

δ(Xt ,At )(IK(x,ε)) =
1
n

N

∑
t=0

δ(Xt , ft (Xt ))(IK(x,ε)), n > N,

by Definition 3.8.1, and it follows that νn(IK(x,ε)) → 0 as n → ∞. Therefore,
recalling that IK(x,ε) is an open subset of IK, the fact that ν∗ is a limit point of
the sequence {νn} implies that

ν∗(IK(x,ε)) ≤ limsup
n→∞

νn(IK(x,ε)) = 0, x ∈ S, ε > 0

[2]. Finally, using that IK\ IK∗ =
⋃

x∈S, r∈IN IK(x,1/r) (because of the nonnegativity
of Φ), the above inequality leads to ν∗(IK\ IK∗) = 0. ��
Proof of Theorem 3.7.1. It will be proved that

the discrepancy function Φ satisfies Assumption 3.4.1. (3.48)

Assuming that this assertion holds, the conclusion of Theorem 3.7.1 can be obtained
as follows: Let f = { ft} be a Markovian policy satisfying the property (3.37) and,
for S̃ ⊂ S, define

Φ(S̃)(x,a) : =Φ(x,a)IS̃(x), (x,a) ∈ IK, (3.49)

so that the equality

Φ =Φ(S̃) +Φ(S\S̃) (3.50)

is always valid. Next, given ε > 0, observe the following facts (a) and (b):

(a) The property (3.48) allows to apply Theorem 3.8.1 with the cost function C
replaced by Φ to conclude that there exists a finite set Fε ⊂ S such that for each
x ∈ S, the relation limsupn→∞ νn(ΦS\Fε ) ≤ ε occurs almost surely with respect
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to Pf
x; since (3.49) and (3.38) together imply that Φ(S\Fε) ≤ΦS\Fε , it follows that

limsup
n→∞

νn(Φ(S\Fε ))≤ ε Pf
x-a.s. (3.51)

(b) Let {(Xt ,At)} be a fixed sample trajectory along which

(i) {νn} is tight, and
(ii) At = ft (Xt).

Now select a sequence {nk} of positive integers such that limk→∞ nk = ∞ and

lim
k→∞

νnk(Φ(Fε )) = limsup
n→∞

νn(Φ(Fε )).

Because of the tightness of {νn}, taking a subsequence—if necessary—it can
be assumed that {νnk} converges weakly to some ν∗ ∈ IP(IK), and in this case,
observing that Φ(Fε ) is continuous and has compact support (since Fε ⊂ S is finite),
it follows that

lim
k→∞

νnk(Φ(Fε )) = ν∗(Φ(Fε ));

on the other hand, using that ν∗ is supported in the set IK∗ specified in (3.47), by
Lemma 3.9.1, and that ΦFε is null on that set (see (3.47) and (3.49)), it follows
that ν∗(ΦFε ) = 0. Combining this equality with the two last displays, it follows
that limsupn→∞ νn(Φ(Fε )) = 0 along a sample-path satisfying conditions (i) and
(ii) above. Observing that condition (i) holds almost surely with respect to Pf

x , by
Remark 3.8.1, and that Pf

x[At = ft (Xt)] = 1 for all t, it follows that

limsup
n→∞

νn(Φ(Fε )) = 0 Pf
x-a.s. ,

a relation that, combined with (3.50), (3.51) and the nonnegativity of Φ , yields that
the convergence limn→∞ νn(Φ) = 0 occurs with probability 1 with respect to Pf

x ,
and then, the policy f is sample-path average optimal, by Lemma 3.6.1. Thus, to
conclude the argument, it is sufficient to verify (3.48). To achieve this goal, let � be
a Lyapunov function for the cost functionC such that �β admits a Lyapunov function
for some β > 2, and recall that the solution (g,h(·)) of the optimality Equation (3.7)
satisfies

|h(·)| ≤ c�(·) (3.52)

for some c > 0, as well as h(z) = 0. Combining this last equality with the
specification of the discrepancy function, it follows that, for all (x,a) ∈ IK,

h(x) =C(x,a)− g−Φ(x,a)+∑
y
=z

pxy(a)h(y). (3.53)
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On the other hand, Lemma 3.3.3 yields that |C(·)− g| admits a Lyapunov function
of the form c1 � where c1 > 0 so that

c1 �(x)≥ |C(x,a)− g|+ 1+ ∑
y∈S, y
=z

pxy(a)c1 �(y);

multiplying both sides of this relation by a constant c2 satisfying

c2 c1 > c and c2 > 1, (3.54)

it follows that

c2c1 �(x)≥ c2|C(x,a)− g|+ c2+ ∑
y∈S, y
=z

pxy(a)c2c1 �(y),

and then,

c2c1 �(x)≥ |C(x,a)− g|+ 1+ ∑
y∈S, y
=z

pxy(a)c2c1 �(y).

Combining this inequality with (3.53), it is not difficult to obtain that

�̃(x)≥ 1+Φ(x,a)+ ∑
y∈S, y
=z

pxy(a)�̃(y), (x,a) ∈ IK, (3.55)

where �̃(·) : = c1c2�(·)−h(·)≥ 0 and the inequality follows from (3.52) and (3.54).
Recalling that Φ is nonnegative, the above display yields that that �̃ takes values in
[1,∞) and that �̃ satisfies the first requirement for being a Lyapunov function for
Φ; setting c̃ : = c1c2 + c > 0, (3.53) implies that �̃(·) ≤ c̃ �, and then, �̃ inherits the
second and third properties in Definition 3.3.1 from the corresponding ones of �.
Thus, �̃ is a Lyapunov function for Φ , and using that �̃β ≤ c̃β �β , it follows that �̃β

also admits a Lyapunov function, by Lemma 3.3.3. Thus, the statement (3.48) holds,
and as already mentioned, this concludes the proof of Theorem 3.7.1. ��
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Chapter 4
Approximation of Infinite Horizon Discounted
Cost Markov Decision Processes

François Dufour and Tomás Prieto-Rumeau

4.1 Introduction

Markov decision processes (MDPs) constitute a general family of controlled
stochastic processes suitable for the modeling of sequential decision-making prob-
lems. They appear in many fields such as, for instance, engineering, computer
science, economics, operations research, etc. A significant list of references on
discrete-time MDPs may be found in the survey [2] and the books [1,4,8,10,11,17,
18]. The analysis of MDPs leads to a large variety of interesting mathematical and
computational problems. The corresponding theory has reached a rather high degree
of maturity although the classical tools, such as value iteration, policy iteration,
linear programming, and their various extensions, are generally hardly applicable in
practice. Hence, solving MDPs numerically is an awkward and important problem
mainly because MDPs are generally very large due to their inherent structure, and
so, solving the associated dynamic programming equation leads to the well known
curse of dimensionality. In order to meet this challenge, different approaches have
emerged, which can be roughly classified in three classes of techniques: they are
based on:

(i) The approximation of the control model via state aggregation or discretization
so as to provide a simpler model

(ii) The approximation of the value function through adaptation of classical
techniques (such as dynamic programming or value iteration)
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(iii) The approximation of the optimal policy by developing efficient policy
improvement steps

This chapter belongs to class (i) of the methods described above. Our objective
is to present an approximation procedure which transforms an infinite horizon
discounted cost MDP with general state and action spaces, and possibly unbounded
cost function, into a simpler model (with finite state and action spaces, and,
consequently, bounded cost function). We show that the optimal value function
and the optimal policies of the MDP under consideration can be approximated
by the corresponding optimal value function and the optimal policies of the
finite MDP. Most interestingly, explicit bounds on the approximation errors are
derived. Moreover, it is well known that for infinite horizon discounted cost MDPs,
the optimal policy is deterministic and stationary. It must be pointed out that
our approximation procedure preserves this important property by providing a
suboptimal deterministic stationary policy with guaranteed approximation error.

There exists a huge literature regarding the approaches related to items (ii) and
(iii), for example, reinforcement learning, neuro-dynamic programming, approxi-
mate dynamic programs, and simulation-based techniques, to name just a few. With-
out attempting to present an exhaustive panorama on numerical methods for MDPs,
we suggest that the interested reader consults the survey [20] and the books [5,6,16,
19] and the references therein, to get a rather complete view of this research field.

It is important to stress the fact that the technique developed herein is rather
different to those described in (ii) and (iii) above. Indeed, the approaches related
to items (ii) and (iii) are related to probabilistic approximation techniques, whereas
those of item (i) are related to numerical approximation methods. Moreover, the
methods of items (ii) and (iii) mainly deal with MDPs with finite state and/or
finite action spaces, and, more importantly, with bounded cost functions; see, for
example, the books [5, 6, 16, 19]. These two classes of approximation techniques
can be roughly described as follows:

(a) Numerical approximation techniques, which give actual bounds or approxi-
mations. To fix ideas, suppose that V ∗ is the optimal value that we want to
approximate. In a numerical approximation scheme, given some ε > 0, we find
some (number) V̂ such that |V ∗ − V̂ | < ε . Such techniques can be found in, for
example, [9, 12, 14, 21].

(b) Probabilistic approximation techniques, which provide approximations that
converge in a suitable probabilistic sense, or bounds that are satisfied with
probability “close” to 1. They are usually based on simulating sample paths of
the controlled process. In this setting, for given ε > 0, we find a random variable
V such that E|V ∗−V |< ε (convergence in L1), or such that P{|V ∗−V |> ε}< δ
for some small δ (convergence in probability). We note that, in practice, we do
not obtain V , but, rather, we observe a realization of the random variable V .

The probabilistic techniques in (b) are usually more efficient—in computational
terms—than the numerical methods in (a), and they even succeed to break the
curse of dimensionality. The price to pay, however, is that we approximate a given
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value, say V ∗, by a random observation V . Depending on the application under
consideration, the fact that the methods in (a) provide a deterministic estimate with
guaranteed bounds can be more attractive than the stochastic estimates with bounds
valid in mean given by the approaches (b). Clearly, the techniques in (a) and (b) are
of a different nature and, so, hard to compare mainly because the approximation is
deterministic in case (a) and stochastic in (b).

The discretization procedure (or state aggregation) to convert an MDP into a
simpler optimization problem can be traced back to the middle of the 1970s; see
[15, Sect. 2.3] for a rather complete account of the works developed at that time.
In particular, the discretization procedure has been analyzed in a general context in
[12,14,21] and for specific MDPs in [3,9]. It is important to point out the differences
between the results obtained in our work and those presented in the literature. In
[14], the author studies the approximation of the original decision model by means
of a sequence of MDPs. Under mild hypotheses, such as continuous convergence
of the data, a convergence result is established. However, as pointed in [14, p. 494],
no rates of convergence are given mainly due to the fact that the problem under
study is fairly general. The approximation of dynamic programs in the general
framework of monotone contraction operator models is developed in [12, 21]; the
analysis is then particularized to a classical MDP model. In [21], the author focuses
on infinite horizon problems, while in [12], the author addresses the problem of
finite-stage models. This approach is based on the construction of partitions of the
state and action spaces. The corresponding convergence results and the error bounds
are established under general hypotheses. As mentioned in [21, p. 236], however,
this approach is “of limited practical value because the optimal return function
is used” for the corresponding construction. Moreover, and more importantly, the
convergence of the optimal value functions associated to the approximating models
depends heavily on an appropriate and relevant choice of the partitions. In [12],
the problem of how to construct the approximating decision model (and, therefore,
the associated partitions) is not discussed. Nevertheless, it is mentioned that this
is an important problem and that a theoretical guideline should be provided (see
the introduction of [12, Sect. 4]). In [21], this problem is emphasized too, and
under continuity and compactness assumptions, a convergence result is obtained
(Theorem 5.2). In [3, 9], the discretization procedure of the classical MDP model is
addressed under the hypothesis that the state and action spaces are compact, and the
cost function is bounded. Their approaches are constructive in the sense that they
are applicable in practice.

Our framework here is clearly more general than the one studied in [3,9]. Indeed,
we deal with an MDP with general state space (namely, a locally compact Borel
space) and compact action sets, while the cost function is allowed to be unbounded.
Such extensions are clearly not straightforward to obtain, and they need a careful
and sharp analysis of the partitioning of the state and action spaces. Compared to
[12, 14, 21], we impose stronger conditions though, as opposed to [14], we are able
to derive explicit error bounds for our approximation scheme. Furthermore, rather
than embedding our MDP into the general theory of monotone contraction operators
as in [12,21], our idea is to take into account the characteristic features of the MDP
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under consideration so as to provide a more constructive solution (with the important
property that it is applicable in practice). In particular, our approach provides an
explicit construction of the partitions of the state and action spaces. As mentioned
before, this important problem is not discussed in [12] and it is just briefly studied in
[21] for a very specific model (with compact state and action spaces). Consequently,
our results are different, and complementary, to those obtained in [12,21]. Moreover,
the analysis in [12, 21] is done by assuming that the cost function is bounded,
whereas it is briefly explained how the results could be extended to the unbounded
case. We claim, however, that these extensions are not straightforward and they
depend again on an appropriate and relevant choice of the partitions of the state and
action spaces.

The rest of the chapter is organized as follows. In Sect. 4.2, we introduce the
MDP model we are interested in and state our main assumptions. Some useful
preliminary results are proved in Sect. 4.3. We give our first main result in Sect. 4.4,
on the approximation of the optimal value function. An approximation of a discount
optimal policy is presented in Sect. 4.5. Our conclusions are stated in Sect. 4.6.

4.2 Definition of the Control Model

In this section, we introduce the discrete-time Markov control model we are
concerned with and state our main assumptions. We follow closely the notation
of Chap. 2 in [10]. Let us consider the five tuple for a Markov control model
M = (X ,A,(A(x),x ∈ X),P,c), where:

(a) The state space X is a locally compact Borel space. The metric on X and the
family of the Borel subsets of X will be respectively denoted by dX and B(X).

(b) The action space A is a locally compact Borel space. The metric on A will
be denoted by dA. In the family of closed subsets of A, we will consider the
Hausdorff metric, defined as

dH(C1,C2) := sup
a∈C1

inf
b∈C2

{dA(a,b)}∨ sup
b∈C2

inf
a∈C1

{dA(a,b)}

= sup
a∈C1

{dA(a,C2)}∨ sup
b∈C2

{dA(C1,b)}

for closed C1,C2 ⊆ A (where ∨ stands for “maximum”). We know that dH is a
metric, except that it might not be finite. By B(A), we will denote the family of
Borel subsets of A.

(c) The set of feasible actions at state x ∈ X is A(x), assumed to be a nonempty
measurable subset of X . We also suppose that

IK := {(x,a) ∈ X ×A : a ∈ A(x)}
is a measurable subset of X × A, which contains the graph of a measurable
function from X to A.
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(d) The transition probability function, which is given by the stochastic kernel P
on X given IK. This means that B �→ P(B|x,a) is a probability measure on
(X ,B(X)) for every (x,a) ∈ IK and, in addition, that (x,a) �→ P(B|x,a) is
measurable on IK for every B ∈ B(X).

(e) The measurable cost-per-stage function c : IK → IR.

The family of stochastic kernels ϕ on A given X such that ϕ(A(x)|x) = 1 for all
x ∈ X is denoted by Φ . Let F be the family of measurable functions f : X → A
satisfying that f (x) ∈ A(x) for all x ∈ X . (By (c) above, the set F is nonempty.)

In our next definition, we introduce the class of admissible policies for the
decision-maker. We use the notation IN, which stands for the set of nonnegative
integers.

Definition 4.2.1. Let H0 := X and Hn := IK×Hn−1 for n ≥ 1. A control policy
is a sequence π = {πn}n∈IN of stochastic kernels πn on A given Hn satisfying that
πn(A(xn)|hn) = 1 for all hn ∈ Hn and n ∈ IN, where hn := (x0,a0, . . . ,xn−1,an−1,xn)
(note that, on Hn, we are considering the product σ -algebra). Let Π be the class of
all policies.

A policy π = {πn}n∈IN is said to be deterministic if there exists a sequence { fn}
in F such that πn(·|hn) = δ fn(xn)(·) for all n ∈ IN and hn ∈ Hn, where δa denotes the
Dirac probability measure supported on a ∈ A.

Finally, if the deterministic policy π = {πn}n∈IN is such that πn(·|hn) = δ f (xn)(·)
for some f ∈ F , then we say that π is a deterministic stationary policy. The set of
such policies is identified with F .

Let (Ω ,F ) be the canonical space consisting of the set of all sample paths Ω =
(X ×A)∞ = {(xt ,at)}t∈IN and the associated product σ -algebra F . Here, {xt}t∈IN is
the state process and {at}t∈IN stands for the action process. For every policy π ∈ Π
and any initial distribution ν on X , there exists a unique probability measure Pπ

ν on
(Ω ,F ) such that, for any B ∈ B(X), C ∈ B(A), and ht ∈ Ht with t ∈ IN,

Pπ
ν (x0 ∈B) = ν(B), Pπ

ν (at ∈C|ht) = πt(C|ht), Pπ
ν (xt+1 ∈B|ht ,at) =P(B|xt ,at).

(For such a construction, see, e.g., [10, Chap. 2].) The expectation with respect to Pπ
ν

is denoted by Eπ
ν . If ν = δx for some x ∈ X , then we will write Pπ

x and Eπ
x in lieu of

Pπ
ν and Eπ

ν , respectively.
Next, we define our infinite horizon discounted cost Markov control problem.

Suppose that 0 < α < 1 is a given discount factor. For any initial state x ∈ X , the
total expected discounted cost (or discounted cost, for short) of a control policy
π ∈Π is

J(x,π) := Eπ
x

[ ∞

∑
t=0

αt c(xt ,at)
]
.

(In the sequel, we will impose conditions ensuring that this discounted cost is finite.)
The optimal discounted cost function is then defined as

J(x) := inf
π∈Π

J(x,π) for x ∈ X ,
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and we say that a policy π∗ ∈Π is discount optimal if J(x,π) = J(x) for every x∈X .
We introduce some more notation. Given t ≥ 1, an initial state x ∈ X , and a control
policy π ∈Π , let

Jt(x,π) := Eπ
x

[ t−1

∑
k=0

αkc(xk,ak)
]
,

that is, Jt(x,π) is the discounted cost of the policy π on the first t decision epochs.
Also, let

Jt(x) := inf
π∈Π

Jt(x,π) for x ∈ X .

Our assumptions on the control model use the notion of Lipschitz continuity.
Given two metric spaces (X1,ρ1) and (X2,ρ2), and a function g : X1 → X2, we
say that g is L-Lipschitz continuous on X1 (for some so-called Lipschitz constant
L > 0) if

ρ2(g(x),g(y))≤ L ·ρ1(x,y) for every x and y in X1.

Typically, we will denote the Lipschitz constant of a Lipschitz continuous function g
by Lg. If X1 is the product of two metric spaces: (X11,ρ11) and (X12,ρ12), then, when
referring to Lipschitz continuity on X1 := X11×X12, the metric considered in X1 is
the sum of ρ11 and ρ12.

We state our assumptions on the control model.

Assumption A.

(A1) as:4:A1For each state x ∈ X, the action set A(x) is compact.
(A2) The multifunction Ψ from X to A, defined as Ψ(x) := A(x), is LΨ -Lipschitz

continuous with respect to the Hausdorff metric, i.e., for some constant LΨ > 0
and every x,y ∈ X,

dH(A(x),A(y)) ≤ LΨ ·dX(x,y).

(The sets A(x) being closed—Assumption (A1)—,the Hausdorff metric is
indeed well defined.)

(A3) There exists a continuous function w : X → [1,∞) and a positive constant c
such that |c(x,a)| ≤ cw(x) for all (x,a) ∈ IK. Moreover, the cost function c is
Lc-Lipschitz continuous on IK.

Before proceeding with our assumptions, we introduce some more notation.
Given a function v : X → IR, we define Pv : IK → IR as

Pv(x,a) :=
∫

X
v(y)P(dy|x,a) for (x,a) ∈ IK,

provided that the corresponding integrals are well defined and finite. The class of
measurable functions v : X → IR such that ||v||w := supx∈X {|v(x)|/w(x)} is finite,
with w as in Assumption (A3), denoted by Bw(X), is a Banach space and || · ||w is
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indeed a norm (called the w-norm). Let Lw(X) be the family of functions in Bw(X)
which, in addition, are Lipschitz continuous. We proceed with Assumption A.

(A4.i) The function Pw is continuous on IK. In addition, there exists d > 0 such
that Pw(x,a)≤ dw(x) for all (x,a) ∈K.

(A4.ii) The stochastic kernel P is weakly continuous, meaning that Pv is continuous
on IK for every bounded and continuous function v on X.

(A4.iii) There exists a constant LP > 0 such that for every (x,a) and (y,b) in IK,
and v ∈ Lw(X), with Lipschitz constant Lv,

|Pv(x,a)−Pv(y,b)| ≤ LPLv[dX(x,y)+ dA(a,b)].

In this case, the stochastic kernel P is said to be LP-Lipschitz continuous.
(A5) The discount factor α satisfies αd < 1 and αLP(1+LΨ )< 1.

Remark 4.2.1. Lipschitz continuity of Ψ in Assumption (A2) and the fact that
the action sets are compact (Assumption (A1)) imply that Ψ is a continuous
multifunction from X to A; see Lemma 2.6 in [7].

Given x ∈ X and f ∈ F , the notation

c(x, f ) := c(x, f (x)), P(·|x, f ) := P(·|x, f (x)), and Pv(x, f ) := Pv(x, f (x))

will be used in the sequel.

4.3 Preliminary Results

In this section, we state some technical lemmas that will be useful in the rest of the
chapter. First, we derive some properties of the Bellman operator.

Lemma 4.3.1. Suppose that Assumption A is satisfied, and define the operator T as

Tu(x) := min
a∈A(x)

[
c(x,a)+α

∫

X
u(y)P(dy|x,a)

]
for x ∈ X ,

where u ∈ Lw(X).

(i) If u ∈ Lw(X), then Tu ∈ Lw(X) and LTu = (Lc +αLPLu)(1+LΨ ).
(ii) The operator T is a contraction mapping with modulus αd.

(iii) T has a unique fixed point u∗ ∈ Lw(X), with ||u∗||w ≤ c/(1−αd). The fixed
point u∗ is the limit (in the w-norm) of {T nu0}n≥1 for every u0 ∈ Lw(X).

Proof. Part (i). Given x and y in X , we have that

|Tu(x)−Tu(y)| ≤ sup
b∈B(y)

inf
a∈A(x)

|Δ(x,a,y,b)| ∨ sup
a∈A(x)

inf
b∈B(y)

|Δ(x,a,y,b)|,
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where Δ(x,a,y,b) := c(x,a)− c(y,b)+α(Pu(x,a)−Pu(y,b)) for (x,a)
and (y,b) in IK. By Lipschitz continuity of the cost function c and the
stochastic kernel P, we obtain

|Δ(x,a,y,b)| ≤ (Lc +αLPLu) · (dX(x,y)+ dA(a,b)).

Finally, recalling the definition of the Hausdorff metric, we conclude that

|Tu(x)−Tu(y)| ≤ (Lc +αLPLu) · (dX(x,y)+ dH(A(x),A(y)))

≤ [(Lc +αLPLu)(1+LΨ )] ·dX(x,y).

Hence, Tu ∈ Lw(X) and its Lipschitz constant is (Lc +αLPLu)(1+LΨ ).
Part (ii). Proceeding as in Part (i), given u,v ∈ Lw(X), and x ∈ X , we have

|Tu(x)−Tv(x)| ≤ α sup
a∈A(x)

P|u− v|(x,a)

≤ α||u− v||w sup
a∈A(x)

Pw(x,a)≤ αd||u− v||ww(x),

by Assumption (A4.i), and the stated result follows.
Part (iii). Based on Banach’s fixed point theorem, it is easily seen that, given

arbitrary u0 ∈ Lw(X), the sequence {T nu0}n∈IN is Cauchy in the w-norm.
Hence, it converges to some u∗ ∈ Bw(X). Observe now that, as a
consequence of Part (i) and Assumption (A5), the Lipschitz constant Ln

of T nu0 verifies

lim
n→∞

Ln =
Lc(1+LΨ)

1−αLP(1+LΨ )
.

Hence, since for every n∈ IN and x,y∈ X we have |T nu0(x)−T nu0(y)| ≤
LndX(x,y), it follows that

|u∗(x)− u∗(y)| ≤ Lc(1+LΨ )
1−αLP(1+LΨ)

·dX(x,y),

so that u∗ ∈ Lw(X). The fact that u∗ is the unique fixed point of T
in Bw(X) follows from standard arguments. Finally, letting u0 ≡ 0, by
Assumption (A3), we have that ||Tu0||w ≤ c, and so we obtain

||u∗||w ≤ ||u∗ −Tu0||w + ||Tu0||w ≤ αd||u∗||w + c,

and ||u∗||w ≤ c/(1−αd) follows. �

Under Assumption A, the Assumptions 8.5.1, 8.5.2, and 8.5.3 in [11] are
satisfied. Then, as a direct consequence of Lemma 4.3.1 and the results in
[11, Sect. 8.3.B], we derive the following facts. The Lipschitz continuity of the
optimal discounted cost functions, established below, can be found also in [13,
Theorem 4.1].
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Theorem 4.3.1. If Assumption A is satisfied, then the following statements hold.

(i) For every t ≥ 1, the optimal discounted cost Jt in the first t decision epochs is
T t0 (that is, the t-times composition of T with itself starting from J0 ≡ 0). In
particular, Jt ∈ Lw(X) with

LJt =
Lc(1+LΨ)(1− (αLP(1+LΨ ))t)

1−αLP(1+LΨ )
≤ Lc(1+LΨ )

1−αLP(1+LΨ )

and ||Jt ||w ≤ c(1− (αd)t)/(1−αd).
(ii) The optimal discounted cost function J is in Lw(X), and it is the unique fixed

point of the operator T in Bw(X); its Lipschitz constant is

LJ =
Lc(1+LΨ )

1−αLP(1+LΨ )
(4.1)

and ||J||w ≤ c/(1−αd).
(iii) The sequence {Jt}t∈IN converges to J in the w-norm. In addition,

||Jt − J||w ≤ c(αd)t/(1−αd) for every t ≥ 0.

Our next result is a well-known fact, and it will be useful in the forthcoming.

Lemma 4.3.2. Suppose that Assumption A is verified, and let f ∈F and v∈Bw(X)
be such that

v(x)≥ c(x, f )+α
∫

X
v(y)P(dy|x, f ) for all x ∈ X . (4.2)

Then v(x)≥ J(x, f ) for every x ∈ X.

Proof. Integrating, recursively, the inequality (4.2) with respect to P(dy|x, f ), we
obtain, for every n ≥ 1,

v(x)≥ Jn(x, f )+αnE f
x [v(xn)] for x = x0 ∈ X . (4.3)

Now, on the one hand, |E f
x [v(xn)]| ≤ ||v||wd nw(x) by Assumption (A4.i), and thus,

since αd < 1,

lim
n→∞

αnE f
x [v(xn)] = 0.

On the other hand,

∣
∣
∣E f

x

[
∑
t≥n

αt c(xt ,at)
]∣∣
∣≤ cw(x)∑

t≥n
(αd)t ,

and consequently, limn→∞ Jn(x, f ) = J(x, f ). Taking the limit as n → ∞ in (4.3), we
obtain the desired result. �
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The proof of our next result can be found in Lemma 2.9 in [7].

Lemma 4.3.3. We suppose that Assumption A holds. Let K0 be an arbitrary
compact subset of X and fix ε > 0. There exists a sequence {Kt}t∈IN of compact
subsets of X such that, for all t ∈ IN,

sup
(x,a)∈IKt

∫

Kc
t+1

w(y)P(dy|x,a)≤ ε,

where IKt := {(x,a) ∈ X ×A : x ∈ Kt ,a ∈ A(x)}.

4.4 Approximation of the Optimal Discounted Cost Function

In this section, we propose an approximation of the optimal discounted cost
function J by using the fact that J is the fixed point of the operator T . Our main
result is presented in Theorem 4.4.2.

Suppose that (Z,ρ) is a compact metric space and fix a constant η > 0. A finite
subset Γ := {z1, . . . ,zr} of Z is said to be associated to an η-partition of Z if
there exists a finite measurable partition {Z1, . . . ,Zr} of Z which satisfies the two
conditions below.

(i) We have zi ∈ Zi for all 1 ≤ i ≤ r. The projection operator pΓ : Z → Γ is then
defined as pΓ (z) := zi if z ∈ Zi.

(ii) For every z ∈ Z, it is ρ(z, pΓ (z)) ≤ η .

Clearly, such partitions exist because Z is compact.
Fix now arbitrary positive constants ε , β , and δ . In what follows, the constants

ε , β , and δ remain fixed and, so, they will not be explicit in the notation.
For ε > 0, consider the sequence of compact sets {Kt}t∈IN that was constructed

in Lemma 4.3.3. For every t ∈ IN, let Γt be a finite subset of Kt associated to a
β -partition of Kt . Now, given x ∈ Γt for t ∈ IN, let Θt(x) be a finite subset of A(x)
associated to a δ -partition of the compact metric action space A(x).

Fix a time horizon N ≥ 1. The functions ĴN,t on Γt , for 0 ≤ t ≤ N, are given by
ĴN,N(x) := 0 for x ∈ ΓN and, for 0 ≤ t < N, by

ĴN,t(x) := min
a∈Θt(x)

[
c(x,a)+α ∑

y∈Γt+1

ĴN,t+1(y)P(p−1
Γt+1

{y}|x,a)
]

for x ∈ Γt . (4.4)

The functions ĴN,t are extended to Kt by letting ĴN,t(x) := ĴN,t(pΓt (x))) for x ∈ Kt .
Therefore, ĴN,N(x) = 0 for all x ∈ KN , and (4.4) becomes

ĴN,t (x) = min
a∈Θt(x)

[
c(x,a)+α

∫

Kt+1

ĴN,t+1(y)P(dy|x,a)
]

for x ∈ Γt .
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Lemma 4.4.4. If Assumption A holds, then, for every N ≥ 1 and 0 ≤ t ≤ N,

sup
x∈Kt

|ĴN,t(x)− JN−t(x)| ≤ 1
1−α

·
(

Lc(1+LΨ )
1−αLP(1+LΨ )

· (β + δ )+
αc

1−αd
· ε
)
.

Proof. Throughout this proof, the integer N ≥ 1 remains fixed. To simplify the
notation, in what follows, we will write HN,t := supx∈Kt

|ĴN,t (x)− JN−t(x)| for
0 ≤ t ≤ N and we note that HN,N = 0.

For 0 ≤ t < N and z ∈ Γt , we have

ĴN,t (z) = min
a∈Θt(z)

[
c(z,a)+α

∫

Kt+1

ĴN,t+1(y)P(dy|z,a)
]
,

JN−t(z) = min
b∈A(z)

[
c(z,b)+α

∫

X
JN−t−1(y)P(dy|z,b)

]
.

Consequently, |ĴN,t(z)− JN−t(z)| is bounded above by

max
a∈Θt(z)

inf
b∈A(z)

|Δ(z,a,b)| ∨ sup
b∈A(z)

min
a∈Θt(z)

|Δ(z,a,b)|,

where

Δ(z,a,b) = c(z,a)− c(z,b)+α
∫

Kt+1

ĴN,t+1(y)P(dy|z,a)−αPJN−t−1(z,b).

Now, given z ∈ Γt , a ∈Θt(z) and b ∈ A(z), we observe the following: Firstly,

|c(z,a)− c(z,b)| ≤ Lc ·dA(a,b). (4.5)

Secondly,

|PJN−t−1(z,b)−PJN−t−1(z,a)| ≤ LPLJN−t−1 ·dA(a,b). (4.6)

Finally, |∫Kt+1
ĴN,t+1(y)P(dy|z,a)−PJN−t−1(z,a)| is less than or equal to

||JN−t−1||w
∫

Kc
t+1

w(y)P(dy|z,a)+
∫

Kt+1

|ĴN,t+1(y)− JN−t−1(y)|P(dy|z,a),

which, by Lemma 4.3.3 and the fact that (z,a) ∈ IKt , is in turn bounded above by

||JN−t−1||w · ε+ sup
y∈Kt+1

|ĴN,t+1(y)− JN−t−1(y)|= ||JN−t−1||w · ε+HN,t+1. (4.7)

Combining (4.5)–(4.7) yields that |Δ(z,a,b)| is bounded above by

(Lc +αLPLJN−t−1) ·dA(a,b)+
αc

1−αd
· ε+αHN,t+1,
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where we have used the fact that ||JN−t−1||w ≤ c/(1−αd); see Theorem 4.3.1(i).
On the other hand, also by Theorem 4.3.1 and recalling Lemma 4.3.1(i) and (4.1),

(Lc +αLPLJN−t−1)≤ (Lc +αLPLJN−t−1)(1+LΨ ) = LJN−t ≤ LJ.

Finally, by the definition ofΘt(z),

max
a∈Θt(z)

inf
b∈A(z)

dA(a,b) ∨ sup
b∈A(z)

min
a∈Θt(z)

dA(a,b)≤ δ ,

so that, for all z ∈ Γt ,

|ĴN,t(z)− JN−t(z)| ≤ LJ ·δ + αc

1−αd
· ε+αHN,t+1.

Suppose now that x ∈ Kt , and let z = pΓt (x) ∈ Γt . We have that

|ĴN,t(x)− JN−t(x)| = |ĴN,t (z)− JN−t(x)|
≤ |ĴN,t (z)− JN−t(z)|+ |JN−t(z)− JN−t(x)|,

where

|JN−t(z)− JN−t(x)| ≤ LJN−t dX(z,x) ≤ LJ ·β .
We conclude that, for 0 ≤ t < N,

HN,t ≤ LJ · (δ +β )+
αc

1−αd
· ε+αHN,t+1,

with HN,N = 0. The bound on HN,t readily follows by induction: indeed, it holds for
t = N, and we can prove recursively that it is satisfied for t = N− 1, . . . ,1,0. �

To alleviate the notation, we will write

H :=
1

1−α
·
( Lc(1+LΨ )

1−αLP(1+LΨ )
· (β + δ )+

αc

1−αd
· ε
)
. (4.8)

(As already mentioned, the constants β , δ , and ε are assumed to be fixed and, hence,
we do not make them explicit in the notation H above.)

Theorem 4.4.2. Suppose that the control model M satisfies Assumption A. Given
arbitrary positive constants β , δ , and ε , consider the functions ĴN,t constructed
above. For every N ≥ 1 and x ∈ K0,

|ĴN,0(x)− J(x)| ≤ H +
c(αd)N

1−αd
·w(x).
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Proof. By Theorem 4.3.1(iii), for every x ∈ K0, we have

|JN(x)− J(x)| ≤ c(αd)N

1−αd
·w(x).

The stated result is now a direct consequence of Lemma 4.4.4, with t = 0. �

As a consequence of Theorem 4.4.2, we have the following: Suppose that x0 ∈ X
is an arbitrary initial state x0 ∈ X , and let η > 0 be a given precision. Letting K0 =
{x0}, we can, a priori and explicitly, determine β , δ , ε , and N such that

1
1−α

·
( Lc(1+LΨ )

1−αLP(1+LΨ )
· (β + δ )+

αc

1−αd
· ε
)
+

c(αd)N

1−αd
·w(x0)< η .

Indeed, all the constants involved in the above inequality are known (they depend on
the Lipschitz constants of the control model M and on other constants introduced in
Assumption A). Once we determine β , δ , ε , and N, we proceed with the constructive
procedure described in this section and we compute explicitly ĴN,0(x0) such that
|ĴN,0(x0)− J(x0)|< η .

4.5 Approximation of a Discount Optimal Policy

In the previous section, we provided an approximation of the optimal discounted
cost function J. In this section, we are concerned with the approximation of a
discount optimal policy. There is a straightforward naive approach (that we discard):
for N large enough, consider an approximation of the optimal policy of the finite
horizon discounted control problem; see [7]. Then, for the first N periods, use this
policy, and from time N, choose arbitrary actions. This policy is close to discount
optimality, but it is not stationary.

We know, however, that there exists a deterministic stationary policy that is
discount optimal. Such a policy is obtained, loosely speaking, as the minimizer in
the fixed point equation J = TJ. From the point of view of the decision-maker, it
is more interesting to have at hand a deterministic stationary policy that is close
to discount optimality, instead of a nonstationary one. Hence, our goal here is to
provide such a deterministic stationary policy, based on our finite approximations
scheme.

Given N ≥ 1, 0 ≤ t < N, and z ∈ Γt , we have

ĴN,t(z) = min
a∈Θt(z)

[
c(z,a)+α

∫

Kt+1

ĴN,t+1(y)P(dy|z,a)
]

= c(z, ãN,t (z))+α
∫

Kt+1

ĴN,t+1(y)P(dy|z, ãN,t (z))
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for some ãN,t(z) ∈Θt(z). We define f̃N,t ∈ F as follows: Suppose that fΔ ∈ F is a
fixed deterministic stationary policy. Let

f̃N,t (x) :=

⎧
⎨

⎩

arg min
a∈A(x)

dA(a, ãN,t(pΓt (x))), if x ∈ Kt ;

fΔ (x), if x /∈ Kt .

(In particular, f̃N,t (z) = ãN,t(z) if z ∈ Γt .) We derive from Proposition D.5 in [10]
that such f̃N,t exists and that it is indeed measurable.

Lemma 4.5.5. Suppose Assumption A holds. For every N ≥ 1, 0 ≤ t < N,
and x ∈ Kt ,

J(x)+
2c(αd)N−t

1−αd
·w(x)+ 2εcα

1−αd
+LJβ + 2H

≥ c(x, f̃N,t )+α
∫

Kt+1

J(y)P(dy|x, f̃N,t ).

Proof. Throughout this proof, N ≥ 1 and 0 ≤ t < N remain fixed. Given x ∈ Kt , by
Theorem 4.3.1(iii) and Lemma 4.4.4,

J(x)≥ JN−t(x)− c(αd)N−t

1−αd
·w(x)≥ ĴN,t(x)− c(αd)N−t

1−αd
·w(x)−H, (4.9)

where we use the notation introduced in (4.8). Letting z = pΓt (x), observe that
ĴN,t(x) = ĴN,t(z) and also that

ĴN,t (z) = c(z, f̃N,t )+α
∫

Kt+1

ĴN,t+1(y)P(dy|z, f̃N,t ),

where, for y ∈ Kt+1, it is ĴN,t+1(y)≥ JN−t−1(y)−H, so that

ĴN,t(z) ≥ c(z, f̃N,t )+α
∫

Kt+1

JN−t−1(y)P(dy|z, f̃N,t )−H. (4.10)

We define the function G on X as G(x) := c(x, f̃N,t (x))+αPJN−t−1(x, f̃N,t (x)).
By the Lipschitz continuity of c, JN−t−1, and the stochastic kernel P, given x ∈ Kt

and letting z = pΓt (x), we obtain

|G(x)−G(z)| ≤ (Lc +αLPLJN−t−1) · (dX(x,z)+ dA( f̃N,t (x), f̃N,t (z))).
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By definition,

dA( f̃N,t (x), f̃N,t (z)) = inf
a∈A(x)

dA(a, f̃N,t (z))

≤ sup
b∈A(z)

inf
a∈A(x)

dA(a,b)

≤ dH(A(x),A(z))≤ LΨ ·dX(x,z).

Hence, recalling that dX(x,z)≤ β , this yields that

|G(x)−G(z)| ≤ (Lc +αLPLJN−t−1)(1+LΨ )β

≤ (Lc +αLPLJ)(1+LΨ )β = LJβ . (4.11)

Note also that, for all x ∈ Kt ,
∣
∣
∣c(x, f̃N,t )+α

∫

Kt+1

JN−t−1(y)P(dy|x, f̃N,t )−G(x)
∣
∣
∣≤ εcα

1−αd
(4.12)

because ||JN−t−1||w ≤ c/(1−αd) (Theorem 4.3.1(i)). Adding and subtracting G(x)
and G(z) in (4.10), we obtain from (4.11) and (4.12) that

ĴN,t (z)+LJβ +
2εcα

1−αd
+H ≥ c(x, f̃N,t )+α

∫

Kt+1

JN−t−1(y)P(dy|x, f̃N,t ). (4.13)

Recalling that ||JN−t−1 − J||w ≤ c(αd)N−t−1/(1 − αd), the stated result is now
derived from (4.9). �

Let C0 := K0, and for t ≥ 1, let

Ct := Kc
0 ∩·· ·∩Kc

t−1 ∩Kt .

Also, we define C∞ :=
⋂

t∈IN Kc
t . In plain words, if x ∈ ⋃

t∈IN Kt , then x ∈ Ct when
t is the first index for which x ∈ Kt . We have Kt ⊆ C0 ∪ ·· · ∪Ct . Then, C∞ is the
complement of

⋃
t∈IN Ct =

⋃
t∈IN Kt . Clearly, C∞ and {Ct}n∈IN form a measurable

partition of the state space X .
Given N ≥ 1, we define the following deterministic stationary policy f̃N ∈ F . If

x∈Ct for some t ∈ IN, then f̃N(x) := f̃N+t,t (x), while if x ∈C∞, then f̃N(x) := fΔ (x),
where fΔ ∈ F is a fixed policy. Also, we define the function J ∈ Bw(X) as

J(x) :=

{
J(x), if x ∈⋃

t∈IN Ct ;
cw(x)/(1−αd), if x ∈C∞.

Since, by Theorem 4.3.1(ii), ||J||w ≤ c/(1−αd), it should be clear that

J(x)≤ J(x)≤ cw(x)/(1−αd) for every x ∈ X , (4.14)
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and also that
∫

Kc
t+1

J(y)P(dy|x,a)≤ εc

1−αd
for x ∈ Kt and a ∈ A(x). (4.15)

Lemma 4.5.6. Suppose that Assumption A holds and fix N ≥ 1. If x∈⋃
t∈IN Ct , then

J(x)+
2c(αd)N

1−αd
·w(x)+ 3εcα

1−αd
+LJβ + 2H ≥ c(x, f̃N)+α

∫

X
J(y)P(dy|x, f̃N),

while if x ∈C∞, then

J(x)≥ c(x, f̃N)+α
∫

X
J(y)P(dy|x, f̃N).

Proof. Suppose that x ∈ Ct for some t ∈ IN. Since x ∈ Kt , it follows from
Lemma 4.5.5 applied to the pair N + t, t that

J(x)+
2c(αd)N

1−αd
·w(x)+ 2εcα

1−αd
+LJβ + 2H

≥ c(x, f̃N+t,t )+α
∫

Kt+1

J(y)P(dy|x, f̃N+t,t ).

Recall now that, by definition, f̃N+t,t (x) = f̃N(x). Note also that J(x) = J(x) for
x ∈Ct and J(y) = J(y) when y ∈ Kt+1 ⊆C0 ∪·· ·∪Ct+1. Consequently,

J(x)+
2c(αd)N

1−αd
·w(x)+ 2εcα

1−αd
+LJβ + 2H ≥ c(x, f̃N)+α

∫

Kt+1

J(y)P(dy|x, f̃N).

Finally, the first statement of the lemma follows from (4.14) and (4.15).
The inequality when x ∈ C∞ is derived from the bound (4.14) after some

straightforward calculations. �

Theorem 4.5.3. Suppose that the control model M satisfies Assumption A. Given
arbitrary positive constants β , δ , and ε , and N ≥ 1, consider the policy f̃N

constructed above. For every x ∈ ⋃
t∈IN Ct =

⋃
t∈IN Kt , we have

0 ≤ J(x, f̃N)− J(x)≤ 2c(αd)N

(1−αd)2
·w(x)+ 3εcα

(1−αd)(1−α)
+

LJβ + 2H
1−α

.

Proof. As a consequence of Lemma 4.5.6,

J(x)+
2c(αd)N

1−αd
·w(x)+ 3εcα

1−αd
+LJβ + 2H ≥ c(x, f̃N)+α

∫

X
J(y)P(dy|x, f̃N)
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for every x ∈ X . Hence, letting

J̃(x) := J(x)+
2c(αd)N

(1−αd)2
·w(x)+ 3εcα

(1−αd)(1−α)
+

LJβ + 2H
1−α

for x ∈ X ,

a direct calculation shows that the function J̃ ∈ Bw(X) satisfies J̃(x) ≥ c(x, f̃N)+

αPJ̃(x, f̃N) for all x ∈ X . The stated result now follows from Lemma 4.3.2. �

As for Theorem 4.4.2, given some precision η > 0, we can—explicitly and a
priori—determine constants β , δ , and ε , as well as N ≥ 1, such that

2c(αd)N

(1−αd)2
·w(x0)+

3εcα
(1−αd)(1−α)

+
LJβ + 2H

1−α
< η

for some fixed initial state x0 ∈ X . In this case, the deterministic stationary policy f̃N

is such that |J(x0, f̃N)− J(x0)|< η .

4.6 Conclusions

In this chapter, we have proposed approximations of the optimal discounted cost
and a discount optimal policy of an infinite horizon MDP. Our approach uses a state
and action discretization procedure, taking advantage of the Lipschitz continuity of
the elements of the control model.

An important feature of our approach is that the approximation errors are given
explicit bounds, so that it can be used to solve numerically an infinite horizon
discounted MDP, as has been done in [7] for finite horizon MDPs by following a
similar approach.

There remain, however, some interesting open issues. On the one hand, the
approximation of the optimal discounted cost in Theorem 4.4.2 indeed allows the
explicit calculation of ĴN,0(x), which is close to J(x) for all x in a given compact
subset of the state space. On the other hand, to compute in practice the policy f̃N ,
one has to determine the policies f̃N+t,t for all t ≥ 0. The reason is that, when the
system is in state x0 ∈ K0, we use the policy f̃N,0 (which has been obtained by
computation of ĴN,N , . . . , ĴN,0). Then, with a “high” probability, the system makes
a transition to some state x1 ∈ K1. The policy that we use in x1 is not f̃N,1 but
f̃N+1,1, which requires the computation of ĴN+1,N+1, . . . , ĴN+1,0. This makes that the
approximation of a discount optimal policy poses some computational problems.
It would be very interesting to find an approximation of an optimal policy which
requires less computational effort.

Finally, after having studied finite horizon MDPs in [7], and infinite horizon
discounted MDPs in this chapter, it is natural to wonder whether our techniques
herein can be used to obtain approximations of long-run average reward MDPs.
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Chapter 5
Reduction of Discounted Continuous-Time
MDPs with Unbounded Jump and Reward
Rates to Discrete-Time Total-Reward MDPs

Eugene A. Feinberg

5.1 Introduction

It is a great pleasure to devote this chapter to Professor Hernández-Lerma, an
outstanding scholar and one of the major contributors to the theory of Markov deci-
sion processes (MDPs). Among many wonderful studies and discoveries, Professor
Hernández-Lerma made profound contributions to the theory of continuous-time
Markov decision processes (CTMDPs). He wrote two monographs [12,15], a survey
[13], and a large number of research papers on CTMDPs. References to most of
these papers can be found in [12].

The first studies of CTMDPs were conducted by Bellman [2, Chap. 11],
Howard [18], Zachrisson [36], Rykov [30], and Marin-Löf [26]. Miller [27, 28]
studied CTMDPs with finite state and action sets controlled by Markov policies,
and Kakumanu [20] studied such processes with countable state spaces.

In general, an important basic question for MDPs is how to define policies
and, what is more important, how to define stochastic processes associated with
policies and initial distributions? For discrete time, this is usually done via the
Ionescu Tulcea theorem (see Hernández-Lerma and Lasserre [16, Appendix C]) that
sequentially defines the probability measure on a sequence of states and actions.
For CTMDPs, Miller [27, 28] used the Kolmogorov forward equation to define a
stochastic process corresponding to a Markov policy and initial distribution of states.
Since then, most of the publications on CTMDPs considered Markov policies as the
most general class of policies.

E.A. Feinberg (�)
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The following two natural questions have been addressed in the literature: is it
possible to consider (i) randomized policies and (ii) more general history-dependent
policies than Markov policies? Let us start with randomized policies.

In discrete time, it is possible to implement randomization procedures at each
time epoch. This is not the case in continuous time. Let us consider the simplest
case: there is only one state, no dynamics, and two actions, a and b, are available
in this state. The decision maker wants to use these actions independently at
each time instance with probabilities 0.5. In this case, Kolmogorov’s consistency
theorem implies that there is a stochastic process a(t) with independent values such
that P{a(t) = a} = P{a(t) = b} = 0.5. However, as explained in Kallianpur [22,
Example 1.2.5], almost all trajectories of a(t) are not measurable. This implies that
the corresponding expected rewards cannot be defined even if the reward rates r(a)
and r(b) are given.

Hordijk and van der Duyn Schouten [17] introduced the notion of randomized
Markov policies. Such policies are defined as convex extensions of original actions.
Let an action a define transition rates qa and reward rates ra. The notion of
randomized Markov policies is based on using convex hulls of all qa and ra for
all actions a at each state. Intuitively, this means that, for any actions a and b and for
any constant λ ∈ (0,1), there is an action c = c(λ ) with qc = λqa +(1−λ )qb and
r(c) = λ r(a)+(1−λ )r(b).Markov policies with respect to such a convex extension
were called randomized Markov in [17]. This term is broadly used in the literature,
and it appears to be confusing, because this construction does not implement any
randomization procedures. It simply relaxes the control sets. We think that the term
“relaxed” is more appropriate, and we shall call such policies relaxed. In particular,
the policies introduced by Hordijk and van der Duyn Schouten [17] will be called
relaxed Markov in this chapter.

Yushkevich [35] introduced general policies with decisions depending on the
history up to time t, not only on the current time and state as for Markov policies.
Yushkevich [35] defined a trajectory as a sequence (tn,xn)n=0,1,..., where tn is
the time of nth jump (t0 = 0) and xn is the state immediately after the jump.
Yushkevich [35] defined a policy as a function of the previous states, previous
jump epochs, and the time passed since the last jump. By using the Ionescu Tulcea
theorem, for a given policy and a given initial state distribution, Yushkevich [35]
constructed the corresponding probability distribution on the set of trajectories.

For marked point processes, Jacod [19] introduced the notion of a compensator,
originally called in [19] a predictable projection and sometimes called a dual pre-
dictable projection. In particular, any marked point process defines its compensator;
[19, Theorem 2.1]. If the sample space is the set of sequences x0, t1,x1, t2, . . ., the
compensator and the initial state distribution uniquely define the unique marked
point process (tn,xn), n = 0,1, . . . ; [19, Theorem 3.6].

Kitaev [23, 24] observed that a policy for a CTMDP defines in a natural way a
compensator. Though this construction is equivalent to the construction introduced
by Yushkevich [35], it leads to the direct definition of a stochastic process defined by
a policy without using the Ionescu Tulcea theorem. Though past-dependent policies
were introduced long ago, most of the studies of CTMDPs are still limited to Markov
policies.
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Early studies of CTMDPs, except Bather [1], were limited to problems with
uniformly bounded jump rates. Such problems can be reduced to discrete time
[21, 25, 33]. One of such reductions is uniformization. Another reduction method
is based on the equivalence of optimality equations in discrete and continuous time.
Neither of these methods is directly applicable to CTMDPs with unbounded jump
rates. This topic is discussed in detail in the survey by Guo, Hernández-Lerma,
and Prieto-Rumeau [13] and in the comments to this survey published in the same
journal issue.

In order to study constrained discounted CTMDPs, Feinberg [10] introduced
another reduction of discounted CTMDPs to discounted MDPs. This reduction is
based on the fact that policies that control the process between jumps are equivalent
to policies that change actions only at jump epochs. Continuous-time controlled
stochastic models that allow action selection only at jump epochs are well-studied
in the literature. They are known under the name of semi-Markov decision processes
(SMDPs). If jump rates of a CTMDP are uniformly bounded, the equivalent SMDP
can be easily reduced to the discounted discrete-time MDP [10, Appendix].

If jump rates of a CTMDP are not bounded, the reduction to an SMDP still takes
place. Then, the corresponding SMDP can be reduced to a total-reward MDP as
described in [10, Appendix]. Though the total rewards for this MDP do not have a
representation in the form of total discounted rewards with some discount factor that
is less than 1, the analysis of this MDP leads to the description of optimal policies
of the original CTMDP with unbounded jump rates and to the methods of their
computation. For example, the value function satisfies the discrete-time optimality
equation, and can be computed by value iterations, and stationary optimal policies
exist under natural assumptions.

This chapter applies the reduction results from [10] to CTMDPs with unbounded
jump rates. The boundness of jump rates was not used in [10] to reduce a CTMDP
to an SMDP. It was used to show that the corresponding SMDP can be reduced to
a discounted MDP. This chapter describes in detail the reduction to a total-reward
MDP.

Now we present the general idea of the reduction of a CTMDP to an SMDP from
[10]. It is based on the property [8] of a nonstationary exponential distribution that
generalizes E[X] = λ−1 for an exponential random variable X with intensity λ > 0.

Let (A,A ) be a measurable space and X be a random variable with

P{X> t}= exp

(
−
∫ t

0
λ (φ(s))ds

)
,

where λ (a) is a nonnegative measurable function on A and φ is a measurable
mapping of [0,∞) to (A,A ). The interpretation of this formula is that we deal with
a fixed state, X is the time the process spends in this state until the jump (A,A ) is
the action set, and φ is a policy that selects an action φ(t), when the process spends
time t in the state since the last jump in this state.
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Define p(B) = P{φ(X) ∈ B}, B ∈ A , the probability that an action from set B
was used at jump epoch. Let

m(B) = E

[∫
X

0
1{φ(s) ∈ B}ds

]
, B ∈A ,

the expected time that actions from set B were used until the jump. According to
Feinberg [8, Theorem 1],

m(B) =
∫

B

p(da)
λ (a)

, B ∈ A . (5.1)

The measure m defines the expected total reward up to time X. If the reward rate
under an action a is r(a), where r is a measurable function, then the expected total
reward during the time interval [0,X] is

R =

∫

A
r(a)m(da). (5.2)

If, instead of selecting actions φ(t) at time t ∈ [0,X], an action is selected randomly
at time 0 according to the probability p and is followed until the jump epoch X, the
expected total time m(B), during which that actions a ∈ B are used, is also defined
by (5.1). Since the expected total rewards until jump and the distribution of an action
selected at jump epoch are the same for φ and for the policy that selects actions only
at time 0 according to the probability p, these two policies yield the same expected
total rewards. Of course, for multiple jumps, the analysis is more involved, and it
is carried in [10], where it is shown that the corresponding policies have the same
occupancy measures. This is done there without the assumption that the jump rates
are uniformly bounded.

We conclude the introduction with a terminological remark. We write “occu-
pancy measure,” instead of “occupation measure” frequently used in the literature
on MDPs, because the former provides a more adequate description of the corre-
sponding mathematical object.

5.2 Definition of a CTMDP

A CTMDP is defined by the multiplet {X ,A,A(x),q(·|x,a),r(x,a), R(x,a,y)},
where:

(i) X is the state space endowed with a σ -field X such that (X ,X ) is a standard
Borel space; that is, (X ,X ) is isomorphic to a Borel subset of a Polish space.

(ii) A is the action space endowed with a σ -field A such that (A,A ) is a standard
Borel space.
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(iii) A(x) are sets of actions available at x ∈ X . It is assumed that A(x) ∈ A for all
x∈X and the set of feasible state-action pairs Gr(A) = {(x,a) : x∈X ,a∈A(x)}
is a Borel subset of X ×A containing the graph of a Borel mapping from X to
A.

(iv) q(·|x,a) is a signed measure on (X ,X ) taking nonnegative finite values on
measurable subsets of X \ {x} and satisfying q(X |x,a) = 0, where (x,a) ∈
Gr(A). In addition, q(Γ |x,a) is a measurable function on Gr(A) for any
Γ ∈X . Let q(x,a)�−q({x}|x,a). Since q(X |x,a) = 0, then q(X \{x}|x,a) =
q(x,a) and 0≤ q(x,a)<∞ for all (x,a) ∈Gr(A) because 0≤ q(X \{x}|x,a)<
∞.

(v) r(x,a) is a real-valued reward rate function that is assumed to be measurable
on Gr(A); −∞≤ r(x,a)≤ ∞.

(vi) R(x,a,y) is the instantaneous reward collected if the process jumps from state
x to state y, where y 
= x, and an action a is chosen in state x at the jump epoch.
The function R(x,a,y) is assumed to be measurable; −∞≤ R(x,a,y)≤ ∞.

A signed measure is also called a kernel. A kernel q is called stable if q̄(x) �
supa∈A(x) q(x,a) < ∞, where q(x,a) � −q({x}|x,a), x ∈ X . Set q(·|x,a) � 0 for all
(x,a) /∈ Gr(A).

Everywhere in this chapter the following assumption holds.

Assumption 5.2.1 The transition kernel q is stable.

Assumption 5.2.1 is needed to define and analyze the following two models
considered in this chapter : the relaxed CTMDP and the MDP corresponding to
the relaxed CTMDPs. It is also needed for continuity assumption in Sect. 5.5.
Assumption 5.2.1 is not needed for Theorems 5.4.3 and 5.5.4, and for the statements
of Theorems 5.4.1 and 5.4.2, if the two models mentioned above are excluded from
their formulations.

Adjoin the isolated points x∞, a∞ to X and A, respectively, and define X∞ �
X ∪ {x∞},A∞ � A∪ {a∞} as well as the σ -fields X∞ = σ(X ,{x∞}) and A∞ =
σ(A ,{a∞}). Set A(x∞)� a∞ and q(x∞,a∞)� 0. Let R+ � (0,∞), R0

+ � [0,∞) and
R̄+ � (0,∞]. Let R+ and R̄+ be the Borel σ -fields of R+ and R̄+ respectively.
Define the basic measurable space (Ω ,F ), where Ω = (X × R̄+)

∞ and F =
(X × R̄+)

∞.
Following the construction of the jump Markov model in Kitaev [23], we briefly

describe the stochastic process under study. For ω = {x0,θ1,x1, . . .} ∈Ω , define the
random variables xn(ω) = xn, θn+1(ω) = θn+1, n≥ 0, t0 = 0, tn = θ1+θ2+ · · ·+θn,
n≥ 1, t∞ = limn→∞ tn. Let ωn = {x0,θ1, . . . ,θn,xn}, where n ≥ 0 (for n = 0, omit θ0)
denote the history up to and including the nth jump. The jump process of interest is
denoted by ξt(ω):

ξt(ω)� ∑
n≥0

I{tn ≤ t < tn+1}xn + I{t∞ ≤ t}x∞.

The function ξt(ω) is piecewise continuous. Thus, the values ξt− are well-defined
when t < t∞.
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A policy φ is defined by a sequence {φn, n = 0,1, . . .} of measurable mappings
of ((X ×R+)

n+1,(X ×R+)
n+1)→ (A,A ) such that φn(x0,θ1,x1, . . . ,θn,xn,s) ∈

A(xn), where x0 ∈ X , xi ∈ X , and θi ∈ R+, for all i = 1, . . . ,n, and s ∈ R+. A policy
φ selects actions

at � ∑
n≥0

I{tn < t ≤ tn+1}φn(x0,θ1, . . . ,θn,xn, t − tn)+ I{t∞ ≤ t}a∞, t > 0.

We say that a policy φ is simple if φn(x0,θ1, . . . ,θn,xn,s) = φn(xn). Here,
following the tradition, we slightly abuse notations by using the same notation φn

on both sides of the last equality. Our use of the term “simple” is consistent with its
use in Dynkin and Yushkevich [5], where it means a nonrandomized Markov policy
for discrete time.We use this term both for discrete and continuous time. A policy
is called switching simple if φn(x0,θ1, . . . ,xn,s) = φn(xn,s). A policy φ is called
deterministic if there exists a mapping φ : X → A such that φn(x0,θ1, . . . ,θn,xn,s) =
φ(xn), n = 0,1, . . ., for all xi ∈ X , where i = 0, . . . ,n, for all θi ∈ R+, where i =
1, . . . ,n, and for all s ∈ R+. Of course, φ is a measurable mapping and φ(x) ∈ A(x)
for all x ∈ X . The same is true for mappings φn for a simple policy φ .

Any policy φ defines the predictable random measure νφ on (R+×X ,R+×X )
defined by

νφ (ω ,(0, t]×Y) =
∫ t∧t∞

0
q(Y \ {ξs−}|ξs−,as)ds, t ∈R+, Y ∈ X .

According to Jacod [19, Theorem 3.6], this random measure and the initial
probability distribution γ of the initial state x0 ∈ X uniquely define a marked point
process x0,θ1,x1,θ2 . . . such that νφ is the compensator of its random measure. We
denote Pφ

γ and Eφ
γ the probabilities and expectations associated with this process. If

γ({x}) = 1 for some x ∈ X , we shall write Pφ
x and Eφ

x , respectively.
Let c+ =max{c,0} and c−=min{c,0} for any number c. For a positive discount

rate α , consider the expected total discounted rewards:

V+(x,φ) = Eφ
x

[∫ t∞

0
e−αt r+(ξt ,at)dt +

∞

∑
n=1

e−αtnR+(ξtn−1 ,atn ,ξtn)

]

and

V−(x,φ) = Eφ
x

[∫ t∞

0
e−αt r−(ξt ,at)dt +

∞

∑
n=1

e−αtn R−(ξtn−1 ,atn ,ξtn)

]

.

We follow the convention that (+∞) + (−∞) = −∞ throughout this chapter. For
almost all problems considered in the literature, the following assumption (the so-
called general convergence condition) holds:
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V+(x,φ) < ∞ for any policy φ and for any state x ∈ X . (5.3)

Everywhere in this chapter, we assume that the following weaker assumption holds.

Assumption 5.2.2 For any policy φ and for any initial state x∈X, either V+(x,φ)<
∞ or V−(x,φ)>−∞.

The total expected discounted rewards are defined as

V (x,φ) =V+(x,φ)+V−(x,φ) = Eφ
x

[∫ t∞

0
e−αt r(ξt ,at)dt+

∞

∑
n=1

e−αtnR(ξtn−1 ,atn ,ξtn)

]

= Eφ
x

[
∞

∑
n=1

{∫ tn

tn−1

e−αt r(ξt ,at)dt + e−αtnR(ξtn−1 ,atn ,ξtn)

}]

,

where the second and third equalities hold because of Assumption 5.2.2.
Let Π be the set of all policies and V (x) = supφ∈Π V (x,φ). A policy φ is called

optimal if V (x,φ) =V (x) for all x ∈ X .
Define

r∗(x,a) =
r(x,a)+

∫
X\{x} R(x,a,y)q(dy|x,a)
α+ q(x,a)

, x ∈ X , a ∈ A(x). (5.4)

Following Feinberg [10], consider the occupancy measures

M̃φ
x,n(Y,B) = Eφ

x

∫ tn+1

tn
e−αt I{ξt ∈ Y,at ∈ B}(α+ q(ξt ,at))dt, (5.5)

where n = 0,1, . . . , Y ∈ X , B ∈ A . Then, according to [10, Corollary 4.4 and
(4.20)],

V (x,φ) =
∞

∑
n=0

∫

X

∫

A
r∗(z,a)M̃φ

x,n(dz,da). (5.6)

In particular, (5.6) means that the introduced model is equivalent to the model
without instant rewards at jump epochs and with the reward rate function

r̂(x,a) = r(x,a)+
∫

X\{x}
R(x,a,y)q(dy|x,a), x ∈ X , a ∈ A(x). (5.7)

For a standard Borel space (E,E ), denote by P(E) the set of probability
measures on (E,E ). Let M (E) be the minimal σ -field on P(E) such that for any
C ∈ E the function μ(C) defined on P(E) is measurable. Then (P(E),M (E)) is a
standard Borel space. In particular, if (E,E ) is a Polish space, then (P(E),M (E))
is the Borel σ -field in the topology of weak convergence.
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Relaxed CTMDP and relaxed policies. Consider a CTMDP with a stable kernel
q. We relax the model by replacing the action set A with P(A), the action sets A(x)
with P(A(x)), x ∈ X ; the transition kernels q(Y |x,a) with

q̄(Y |x,μ)�
∫

A(x)
q(Y |x,a)μ(da),

where μ ∈ P(A(x)); and the reward functions r and R with the functions r̄ and
R̄(x,μ)≡ 0, respectively, where

r̄(x,μ)�
∫

A(x)
r̂(x,a)μ(da).

Let again q̄(x,μ) � −q̄(X \ {x}|x,μ). Since q is stable, q̄(x,μ) < ∞ for all x ∈ X
and μ ∈P(A(x)).

As shown in Feinberg [10], the relaxed CTMDP satisfies the same basic
assumptions (i)–(vi) as the original model. So, we can consider a policy π for this
CTMDP. A policy for the relaxed CTMDP is called a relaxed policy for the original
CTMDP. If a policy is simple in the relaxed CTMDP, it is called a relaxed simple
policy in the original CTMDP. Relaxed policies are usually called randomized
policies in the literature.

For a fixed initial state or initial distribution, a relaxed policy also defines a
stochastic process up to time t∞, and we denote by Pπ

x and Eπ
x the probabilities

and expectations for a relaxed policy π and initial state x. Let ΠR be the set of
all relaxed policies. If a relaxed policy π selects at any time instance and along
any trajectory a measure δat concentrated at one point, then it can be interpreted
as a usual policy. Following this interpretation, we write Π ⊆ ΠR. Let πt(da|ω)
be the probability distribution of actions that a relaxed policy π selects at time
t < t∞ along the trajectory ω . The corresponding measure is defined as πt(ω). Here
two different notations are used for the same objects because πt(B|ω) = πt(ω)(B)
for any B ∈ A . As above with the random variables ξt(ω), we will not write ω
explicitly whenever possible. Thus, we shall write πt(da) and πt instead of πt(da|ω)
and πt(ω), respectively.

The expected total discounted reward for a relaxed policy π and an initial state x
is the expected total discounted reward for the relaxed CTMDP. It can be written as

V (x,π) =V+(x,π)+V−(x,π).

Here we use for the relaxed CTMDP the notations introduced for the original
CTMDP. If either V+(x,π)< ∞ or V−(x,π)>−∞, then

V (x,π) = Eπ
x

[∫ t∞

0
e−αt r̄(ξt ,πt)dt

]
= Eπ

x

[
∞

∑
n=1

∫ tn

tn−1

e−αt r̄(ξt ,πt)dt

]

,
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or, in a more explicit form,

V (x,π) = Eπ
x

[∫ t∞

0
e−αt

∫

A
r̂(ξt ,a)πt(da)dt

]
= Eπ

x

[
∞

∑
n=1

∫ tn

tn−1

e−αt
∫

A
r̂(ξt ,a)πt(da)dt

]

.

We also recall that, following the convention in this chapter, V (x,π) = −∞ when
V+(x,π) = ∞ and V−(x,π) =−∞.

We also define V R(x) = supπ∈ΠR V (x,π). A relaxed policy π is called optimal if
V (x,π) =V R(x) for all x ∈ X .

5.3 Definition of a Discrete-Time Total-Reward MDP

A discrete-time MDP is defined by a multiplet {X ,A,A(x), p(Y |x,a), r̃(x,a)}, where
the state set X , action set A, and sets of available actions A(x), x ∈ X , have the same
properties as in CTMDPs; p(·|x,a) is the transition probability from Gr(A) to X ,
that is, p(·|x,a) is a probability distribution on (X ,X ) for any (x,a) ∈ Gr(A) and
p(Y |x,a) is a measurable function on Gr(A) for any Y ∈ X ; r̃(x,a) is the one-step
reward function measurable on Gr(A).

A trajectory is a sequence x0,a0,x1,a1, . . . from (X × A)∞. A policy σ is a
sequence of transition probabilitiesσn, n= 0,1, . . ., from (X×A)n×X to A such that
σn(A(xn)|x0,a0, . . . ,xn−1,an−1,xn) = 1. A policy σ is called randomized Markov
if σn(B|x0,a0, . . . ,xn−1,an−1,xn) = σn(B|xn), xn ∈ X , n = 0,1, . . . , for all B ∈ A .
A simple policy φ is defined as a sequence of measurable mappings φn : X → A,
n = 0,1, . . . such that φn(x) ∈ A(x), x∈ X . A deterministic (stationary deterministic)
policy is defined as a measurable mapping from X to A satisfying φ(x) ∈ A(x) for
all x ∈ X . This means that in state x, the action φ(x) is selected. Let Δ be the set of
all policies.

As usual, in view of the Ionesu Tulcea theorem [16], any initial state distribution
γ and policy σ define a probability measure Pσ

γ on the sequence of trajectories. We
denote by Eσ

γ the expectation with respect to Pσ
γ . We write Pσ

x and Eσ
x , x∈X , instead

of Pσ
γ and Eσ

γ , respectively, when γ({x}) = 1.
Let

W+(x,σ) = Eσ
x

∞

∑
n=0

r̃+(xn,an), W−(x,σ) = Eσ
x

∞

∑
n=0

r̃−(xn,an),

and

W (x,σ) =W+(x,σ)+W−(x,σ).

If either W+(x,σ) < ∞ or W−(x,σ)>−∞, then

W (x,σ) = Eσ
x

∞

∑
n=0

r̃(xn,an),

and W (x,σ) =−∞, if W+(x,σ) =∞ and W−(x,σ) =−∞.
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Similar to the continuous-time case, consider the value function W (x) = supσ∈Δ
W (x,σ). A policy σ is called optimal if W (x,σ) =W (x) for all x ∈ X .

We also consider occupancy measures for the MDP:

Mσ
x,n(Y,B)� Eσ

x I{xn ∈Y,an ∈ B}, n = 0,1, . . . , Y ∈ X , B ∈ A . (5.8)

Then, for x ∈ X and for σ ∈ Δ ,

W (x,σ) =
∞

∑
n=0

∫

X

∫

A
r̃(z,a)Mσ

x,n(dz,da). (5.9)

For any policy σ and for a fixed x ∈ X , consider a randomized Markov policy σ∗
such that

σ∗
n (B|xn) =

Pσ
x {dxn,an ∈ B)

Pσ
x {dxn} , Pσ

x − a.s. (5.10)

It is well known [34] that

Pσ∗
x {xn ∈Y,an ∈ B}= Pσ

x {xn ∈ Y,an ∈ B}, Y ∈ X , B ∈A .

This implies

Mσ∗
x,n = Mσ

x,n, n = 0,1, . . . , (5.11)

and, in view of (5.9), for any reward function r̃

W (x,σ∗) =W (x,σ). (5.12)

5.4 Main Results

For a total-reward discounted CTMDP defined by a multiplet {X ,A,A(x),q(·|x,a),
r(x,a), R(x,a,y)}, consider a discrete-time MDP defined by a multiplet {X∞,A∞,
A(x), p(·|x,a), r̃(x,a)}, where A(x∞) = {a∞},

p(Y |x,a) =

⎧
⎪⎪⎨

⎪⎪⎩

q(Y\{x}|x,a)
α+q(x,a) , if Y ∈ X ,x ∈ X ,a ∈ A(x),
α

α+q(x,a) , if Y = {x∞},x ∈ X ,a ∈ A(x),

1, if Y = {x∞},x = x∞,a = a∞,

(5.13)

and r̃(x,a) = r∗(x,a) (see (5.4)) and r̃(x∞,a∞) = 0.
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Thus, the original CTMDP {X ,A,A(x),q(·|x,a),r(x,a), R(x,a,y)} defines two
other models: the relaxed CTMDP {X ,P(A),P(A(x)), q̄(·|x,μ), r̄(x,μ), R̄(x,μ ,y)},
where μ ∈ P(A(x)), and the discrete-time MDP {X∞,A∞,A(x), p(·|x,a), r̃(x,a)}
with the transition probabilities and rewards defined in (5.4,5.13) and in the line
following (5.13). These three models have the sets of policies Π , ΠR, and Δ ,
respectively, where Π ⊆ ΠR. The objective criteria for the two CTMDPs are the
expected total discounted rewards, and the objective criterion for the discrete-time
MDP is the expected total reward.

In addition, we can consider the fourth model: the MDP corresponding to the
relaxed CTMDP. Let ΔR be the set of policies for this MDP; Δ ⊆ ΔR. Observe that
for x ∈ X and μ ∈ P(A(x)), the one-step reward for this MDP is

r̃(x,μ) =
r̂(x,μ)

α+ q̄(x,μ)
. (5.14)

Observe that the sets of states, actions, and transition rates define the structure of
the models and the sets of policies Π , ΠR, Δ , and ΔR, while the reward functions r
and R define the objective functions, which are functionals on these sets.

Theorem 5.4.1 Consider a CTMDP and its three associated models: the relaxed
CTMDP, the corresponding MDP, and the MDP corresponding to the relaxed
CTMDP. For any policy φ in the CTMDP and any state x ∈ X, in each of three
associated models, there exists a policy σ such that V (x,φ) = G(x,σ) and this
equality hold for all reward functions r and R, where G denotes the expected total
reward in the two associated MDPs and the expected total discounted reward in the
relaxed CTMDP.

Proof. (i) Consider the relaxed CTMDP. Since φ ∈Π ⊆ΠR, the policy φ itself is
the required policy in the relaxed CTMDP. Thus, we can set σ = φ .

(ii) Fix x ∈ X . Recall that M̃φ
x,n, n = 0,1, . . ., are occupancy measures for the

CTMDP defined in (5.5), when the initial state is x. Consider on (X ,X ) finite
nonnegative measures m̃φ

x,n, n = 0,1, . . .,

m̃φ
x,n(Y )� M̃φ

x,n(Y,A), Y ∈ X . (5.15)

For the corresponding MDP, consider a randomized Markov policy σ satisfy-
ing for each B ∈ A

σn(B|z) = M̃φ
x,n(dz,B)

m̃φ
x,n(dz)

, m̃φ
μ,n− a. e., n = 0,1, . . . . (5.16)

According to Feinberg [10, Theorem 4.5 and Lemma A.2], such a randomized
Markov policy σ exists and

Mσ
x,n = M̃φ

x,n, n = 0,1, . . . , (5.17)
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and therefore V (x,φ) =W (x,σ) for any reward functions r and R. We remark
that [10, Lemma A.2] deals with a SMDP. For a randomized Markov policy,
decisions depend on the current state and jump number. They do not depend on
the current or past values of the time parameter t. Therefore, these policies are
also randomized Markov policies for the MDP corresponding to the CTMDP;
see [10, Corollary A.4] with β̄ = 1, where the parameter β̄ is considered in
that corollary. We remark that β̄ < 1 is chosen in [10, Corollary A.4] to ensure
that the discount factor is less than 1. As shown in [10], the discount factor less
than 1 can be chosen if the jump rates are uniformly bounded. Since the jump
rates may be unbounded in the current chapter, it may be impossible to set the
discount factor β̄ < 1, but it is possible to set the discount factor β̄ = 1.

(iii) As shown in (i), a policy π belongs to the relaxed CTMDP. By applying (ii) to
the relaxed CTMDP, we obtain a Markov policy with the required properties
in the MDP corresponding to the relaxed CTMDP.

�

Definition 5.4.1 Consider a CTMDP and its three associated models: the relaxed
CTMDP, the corresponding MDP, and the MDP corresponding to the relaxed MDP.
Two of these four models are called equivalent, if for each state x∈ X, for any policy
in one of the models, there exists a policy in another model such that the values of
the total-reward criteria for these policies are equal in the corresponding models,
when the initial state x is fixed. If this is true for any reward functions r and R, then
the models are called strongly equivalent.

Theorem 5.4.2 Consider a CTMDP and its three associated models: the relaxed
CTMDP, the corresponding MDP, and the MDP corresponding to the relaxed
CTMDP. Then

(a) The following three models are strongly equivalent: the relaxed CTMDP, the
corresponding MDP, and the MDP corresponding to the relaxed CTMDP.

(b) If the set A is countable, then all four models are strongly equivalent.

We consider two lemmas needed for the proof of Theorem 5.4.2,

Lemma 5.4.1 Theorem 5.4.2 holds under the addition condition that the reward
functions r and R are nonnegative.

Proof. (a) Fix the initial state x ∈ X . Observe that Δ ⊆ ΔR and that, according
to Theorem 5.4.1, for any policy in the relaxed CTMDP there exists a policy
with the required property in the MDP corresponding to the relaxed CTMDP.
Thus, to show the strong equivalence of the MDP corresponding to the CTMDP
and the MDP corresponding to the relaxed CTMDP, it is sufficient to show
that for any policy in the MDP corresponding to the relaxed CTMDP, there
exists a policy in the MDP corresponding to the CTMDP such that these two
policies have equal objective functions and this is true for all nonnegative
reward functions r and R.

Observe that for an arbitrary state x ∈ X and for an arbitrary action μ ∈
P(A(x)) in the MDP corresponding to the relaxed CTMDP there exists a
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randomized action π ∈ P(A(x)) in the MDP corresponding to the CTMDP
such that these two actions yield the same transition probabilities and expected
one-step rewards. More precisely, for μ ∈P(A(x)), we define π ∈P(A(x)) by

π(da) =
α+ q(x,a)

α+
∫

A(x) q(x,a)μ(da)
μ(da). (5.18)

Indeed, if an action is selected according to the distribution π in the MDP
corresponding to the CTMDP, then the transition probability p and expected
one-step reward r̃ are

p(Y |x,π) =
∫

A(x)
p(Y |x,a)π(da) =

∫

A(x)

q(Y \ {x}|x,a)π(da)
α+ q(x,a)

, Y ∈ X ,

r̃(x,π) =
∫

A(x)

r̂(x,a)π(da)
α+ q(x,a)

.

If an action μ is selected in the MDP corresponding to the relaxed CTMDP,
then the transition probability p̄ and expected one-step reward r̄ are

p̄(Y |x,μ) =
∫

A(x) q(Y \ {x}|x,a)μ(da)

α+
∫

A(x) q(x,a)μ(da)
, Y ∈X ,

r̄(x,μ) =
∫

A(x) r̂(x,a)μ(da)

α+
∫

A(x) q(x,a)μ(da)
.

In view of (5.18), p(Y |x,π) = p̄(Y |x,μ) and r̃(x,π) = r̄(x,μ). This implies
that, if the initial state is fixed, for any randomized Markov policy in the MDP
corresponding to the relaxed CTMDP, there exists a randomized Markov policy
in the MDP corresponding to the CTMDP such that they objective functions
coincide. In addition, this is true for any nonnegative reward functions r and R.
Thus, the MDP corresponding to the CTMDP and the MDP corresponding to
the relaxed CTMDP are strongly equivalent.

According to cases (i) and (ii) in the proof of Theorem 5.4.1, for any policy
π in the relaxed CTMDP, there exists a policy with the same performance for
all reward functions in the MDP corresponding to the relaxed CTMDP. Now
consider a policy σ for the MDP corresponding to the CTMDP. Without loss of
generality [34], let σ be randomized Markov. The policy σ can be considered
as a policy that selects actions only at jump epochs and decisions depend only
on the state to which the process jumps in and the jump number. In other words,
σ is a policy for a SMDP defined by the underlying CTMDP model. Define the
relaxed switching simple policy π by

πn(da|z,s) = e−q(z,a)sσn(da|z)
∫

A e−q(z,a)sσn(da|z) , n = 0,1, . . . , z ∈ X , s ≥ 0. (5.19)
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The marked point processes defined by the policies σ and π have the same
sojourn-times distributions because for every n = 0,1, . . . they have the same
hazard rates after nth jump:

∫
A q(xn,a)e−q(xn,a)sσn(da|xn)∫

A e−q(xn,a)sσn(da|xn)
.

In addition, they have the same transition probabilities,

∫
A q(Y \ {x}|xn,a)e−q(xn,a)θn+1σn(da|xn)∫

A e−q(xn,a)θn+1σn(da|xn)
,

at jump epochs. The initial state x is fixed, and it is the same for marked point
processes defined by the policies σ and π . Thus, the policies σ and π define the
same marked point processes.

In addition, the reward rates are equal:

r̄(xn,πn(xn,s)) =

∫
A r(xn,a)e−q(xn,a)sσn(da|xn)∫

A e−q(xn,a)sσn(da|xn)
.

Thus, for any discount rate α ∈ [0,1], for any policy σ in the MDP correspond-
ing to the original CTMDP, there exist a relaxed policy π in the CTMDP such
that the expected total discounted rewards are equal for these two policies. We
remark that this correspondence is proved in Feinberg [10, (8.5), (8.6)] by using
compensators.

(b) Without loss of generality, let A = {1,2, . . .}. Fix x ∈ X and consider a
randomized Markov policy σ for the MDP corresponding to a CTMDP. For
n = 0,1, . . ., we set

θi(z,n) =−(α+q(z, i))−1 ln

(
1− σn(i|z)

∑∞
k=iσn(k|z)

)
, i = 1,2, . . . , z ∈ X , a ∈ A,

(5.20)

where 0
0 = 0 and ln(0) =−∞. We also set θ0(z,n) = 0, θi(z,n) =∑i

k=1 θk(z,n).
Consider a switching simple policy φ :

φn(z,s) = i for z ∈ X , n = 0,1, . . . , θi−1(z,n)≤ s < θi(z,n), i = 1,2, . . . .
(5.21)

According to [10, Theorem 5.2], σ satisfies (5.16) written for π = φ . In
addition, V (x,φ) = W (x,σ) for any nonnegative reward functions r and R. In
conclusion, we notice that technical conditions in Feinberg [10] and here are
different. Instead of Condition 5.1 from [10], we use the assumption that A
is countable. These conditions achieve the same goal: they guarantee that the
functions φn(z,s) are well defined in (5.21) and measurable in (z,s).

�
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Lemma 5.4.2 Assumption 5.2.2 implies that the following statements hold for all
x ∈ X :

(a) Either supφ∈Π V+(x,φ) < ∞ or infφ∈Π V−(x,φ) >−∞.
(b) Either supπ∈ΠR V+(x,π)< ∞ or infπ∈ΠR V−(x,π)>−∞.
(c) Either supσ∈Δ W+(x,σ)< ∞ or infσ∈Δ W−(x,σ) >−∞.
(d) Either supσ∗∈ΔR W+(x,σ∗)< ∞ or infσ∗∈ΔR W−(x,σ∗)>−∞.
Proof. (c) Fix x ∈ X . We shall prove that if statement (c) does not hold, then
Assumption 5.2.2 does not hold either. Let statement (c) does not hold. Define
the function r̂+ by (5.7) with the functions r and R replaced with the functions r+

and R+, respectively. Similarly, define the function r̂− by (5.7) with the functions
r and R replaced with the functions r− and R−, respectively. Then define the
functions r̃+ and r̃− by (5.14) with the function r̂ replaced with the functions r̂+
and r̂−, respectively. For σ ∈ Δ , let W++(x,σ) and W−−(x,σ) be the discrete-time
expected total rewards with the reward functions r̃+ and r̃−, respectively. Then
W++(x,σ) ≥ W+(x,σ) and W−−(x,σ) ≤ W−(x,σ) for all σ ∈ Δ . Thus, since (c)
does not hold,

sup
σ∈Δ

W++(x,σ) = ∞v (5.22)

and

inf
σ∈Δ

W−−(x,σ) =−∞. (5.23)

The rest of the proof shows that (5.22) and (5.23) imply that Assumption 5.2.2
does not hold. Equality (5.22) means that the value for a positive dynamic program-
ming problem is infinite. Thus, for every n = 1,2, . . ., there exists a deterministic
policy φn satisfying W++(x,φn) ≥ 2n. Similarly, for every n = 1,2, . . ., there exists
a deterministic policy ψn satisfying W−−(x,φn) ≤ −2n. Consider a policy σ ∈ Δ
that is defined in the following way: this policy independently selects one of the
policies {φ1,ψ1,φ2,ψ2, . . .}, and policy φn and each policy ψn are selected with the
probability 2−n+1, n = 1,2, . . . (here we apply the same method as in [5, p. 108]).
We have W++(x,σ) = ∞ and W−−(x,σ) =−∞.

We also have that W++(x,σ∗) = ∞ and W−−(x,σ∗) = −∞ for a randomized
Markov policy σ∗ satisfying (5.10). Since the policy σ∗ uses a countable number of
actions at any state z, for the policy φ for the CTMDP, defined by (5.21) with σ = σ∗
in (5.20), we have V+(x,φ) = ∞ and V−(x,φ) = −∞. Thus, Assumption 5.2.2 does
not hold.

(a) Theorem 5.4.1 implies that if statement (a) does not hold, then both (5.22) and
(5.23) hold. Therefore, Assumption 5.2.2 does not hold.

(b) Lemma 5.4.1 implies that if statement (b) does not hold, then both (5.22) and
(5.23) hold. Therefore, Assumption 5.2.2 does not hold.

(d) The proof is the same as for (b).
��
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Proof of Theorem 5.4.2. Lemma 5.4.1 implies the theorem under additional
conditions that either both r and R are nonnegative or they both are nonpositive.
Lemma 5.4.2 implies that this is also true for general functions r and R. ��

Let f : X →R
0
+. A policy φ is called f -optimal for a CTMDP if V (x,φ)≥V (x)−

f (x) for all x ∈ X . A policy φ is called f -optimal for an MDP if W (x,φ) ≥W (x)−
f (x) for all x ∈ X .

Theorem 5.4.3 (a) The function V is universally measurable and V (x) =V R(x) =
W (x) =W R(x) for all x ∈ X.

(b) If for a function f : X → R
0
+, a simple policy ϕ is f -optimal for the cor-

responding discrete-time MDP, it is also f -optimal for the original CTMDP.
In particular, a deterministic f -optimal policy for the discrete-time MDP is
f -optimal for the CTMDP.

Proof. (a) Fix arbitrary x ∈ X . According to Theorem 5.4.2, V R(x) = W (x) =
W R(x). Theorem 5.4.1 implies that W (x) ≥ V (x). Let σ be a policy in the MDP
corresponding to the CTMDP. According to Feinberg [6, Theorem 3], for any K > 0,
there exists a simple policy φ such that

W (x,φ)≥
{

W (x,σ), if W (x,σ)< ∞,
K, if W (x,σ) = ∞.

In addition, V (x)≥V (x,φ) =W (x,φ) for any simple policy φ . Thus, for any policy
σ in the CTMDP and for any K > 0,

V (x)≥
{

W (x,σ), if W (x,σ) < ∞,
K, if W (x,σ) = ∞.

This implies V (x)≥W (x). Thus, V (x) =W (x). Universal measurability of the func-
tion W follows from [7, Theorem 3.1.B]. Statement (b) follows from statement (a).

��

5.5 Applications: Value Iterations and Optimality
of Deterministic Policies

Theorems 5.4.1–5.4.3 can be used to prove the existence of optimal policies
for CTMDPs, describe the structure of optimal policies, and compute them. For
example, an optimal deterministic policy for the corresponding MDP is optimal
for the original CTMDP. These theorems also demonstrate that there is no need to
consider relaxed policies for CTMDPs, because they do not overperform standard
policies. We conjecture that the assumption that A is countable is not necessary for
the validity of Theorem 5.4.2.
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The classic results on the convergence of value iterations and on other properties
of positive dynamic programs [3,4,34] imply the following fact, which is a stronger
version of Piunovskiy and Zhang [29, Theorem 1], where the case R(x,a,y) = R(x)
was considered.

Theorem 5.5.4 Let the function r∗, defined in (5.4), be nonnegative. Then the
function V is the minimal nonnegative solution to the following Bellman equation

V (x) = sup
a∈A(x)

{
r∗(x,a)+

∫

X\{x}
q(dy|x,a)
α+ q(x,a)

V (y)

}
, x ∈ X , (5.24)

and can be computed by the value iteration procedure: Wk(x)↗V (x) when k → ∞,
where W0(x)� 0 and

Wk+1(x)� sup
a∈A(x)

{
r∗(x,a)+

∫

X\{x}
q(dy|x,a)
α+ q(x,a)

Wk(y)

}
, x ∈ X . (5.25)

Proof. Since the function r∗ is nonnegative, the corresponding MDP has nonnega-
tive one-step rewards and, according to [3, Proposition 9.14], its k-horizon values
Wk form a nondecreasing sequence converging to W. According to Theorem 5.4.3,
V =W. ��

As stated in Theorem 5.4.3, the function V is universally measurable and, more
precisely, it is upper semianalytic; see [5] or [3] for details. The same is true for
the k-horizon values Wk, k = 1,2, . . . , of the MDP corresponding to the CTMDP.
As the following theorem states, the function V satisfies the optimality equation
under broad conditions. However, optimal policies may not exist under conditions
of Theorem 5.5.4 even when the action set A is finite; see [4] or [9, Example 6.8].

Theorem 5.5.5 If V (x)< ∞ for all x ∈ X, then the function V satisfies the Bellman
equation (5.24). If, in addition, r∗(x,a) ≤ 0 for all (x,a) ∈ Gr(A), then V is the
maximal nonpositive function satisfying (5.24).

Proof. According to Theorem 5.4.3,V =W.The value function for an MDP satisfies
the optimality equation [5, Sect. 6.2], and W is its maximal solution when all one-
step rewards are nonpositive, [34] or [3, Proposition 9.10]. ��

Value iterations may not converge to the optimal value function, if the reward
function is not nonnegative [34, Example 6.1]. However, for MDPs with nonpositive
rewards, value iterations converge to the optimal value function under compactness
and continuity conditions introduced by Schäl [31, 32] for MDPs with compact
action sets. Extensions of these conditions to MDPs with noncompact action sets
are currently well-understood; see [16, Lemma 4.2.8] for MDPs with setwise
continuous transition probabilities and [11, Proposition 3.1] for MDPs with weakly
continuous transition probabilities, where discounting was considered. The same
is true for MDPs with nonpositive one-step rewards—so-called negative MDPs.
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These conditions also imply the existence of deterministic optimal policies for
discounted and for negative MDPs. We present below such conditions for CTMDPs.

Let q+(Y |x,a) � q(Y \ {x}|x,a), Y ∈ X . Observe that q+(X |x,a) = q(X \
{x}|x,a)< ∞. The definition (5.4) can be rewritten as

r∗(x,a) =
r(x,a)+

∫
X R(x,a,y)q+(dy|x,a)
α+ q(x,a)

, x ∈ X , a ∈ A(x). (5.26)

Condition (Sc).

(i) For each x ∈ X, the kernel q+(·|x,a) is setwise continuous in a ∈ A(x); that is,
the function

∫
X f (y)q+(dy|x,a) is continuous in (x,a) ∈Gr(A) for any bounded

measurable function f on X.
(ii) The reward function r∗(x,a) is bounded above on Gr(A), and for each x ∈ X, it

is sup-compact on A(x), that is, the set {a ∈ A(x)|r∗(x,a) ≥ c} is compact for
each finite constant c.

Condition (Wc).

(i) The kernel q+(·|x,a) is weakly continuous in (x,a)∈Gr(A); that is, the function∫
X f (y)q+(dy|x,a) is continuous in (x,a) ∈ Gr(A) for any bounded continuous

function f on X.
(ii) The reward function r∗(x,a) is sup-compact on Gr(A), that is, the set {(x,a) ∈

Gr(A)|r∗(x,a)≥ c} is compact for each finite constant c.
Observe that Condition (Sc)(i) implies that q(x,a) is continuous in a ∈

A(x) for each x ∈ X . This and the inequality α > 0 imply that the transition
probability p(·|x,a) is setwise continuous in a ∈ A(x) for each x ∈ X . Similarly,
Condition (Wc)(i) implies that q(x,a) is continuous in (x,a) ∈ Gr(A). This and
the inequality α > 0 imply that the transition probability p(·|x,a) is weakly
continuous in (x,a) ∈ Gr(A).

Thus, Conditions (Sc) and (Wc) imply respectively the validity of the
following conditions for the corresponding MDP. These conditions are the
versions of Schäl’s [31, 32] conditions (S) and (W) originally introduced for
compact action sets.

Condition (Su).

(i) For each x ∈ X, the transition probability kernel p(·|x,a) is setwise continuous
in a ∈ A(x).

(ii) Condition (Sc) (ii) holds.

Condition (Wu).

(i) The transition probability p(·|x,a) is weakly continuous in (x,a) ∈ A(x).
(ii) Condition (Wc) (ii) holds.

Theorem 5.5.6 Let r∗(x,a)≤ 0 for all (x,a) ∈ Gr(A). If Condition (Sc) holds, then
the value function V is measurable. If the Condition (Wc) holds, then the value
function V is sup-compact. In either case, the following statements hold:
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(a) There exists a deterministic optimal policy,
(b) A deterministic policy is optimal if and only if for all x ∈ X

V (x) =r∗(x,φ(x))+
∫

X\{x}
q(dy|x,φ(x))
α+ q(x,φ(x))

V (y) (5.27)

= max
a∈A(x)

{
r∗(x,a)+

∫

X\{x}
q(dy|x,a)
α+ q(x,a)

V (y)

}
. (5.28)

(c) The value function V can be computed by the value iteration procedure:
Wk(x)↘V (x) when k→∞, where W0(x)� 0 and Wk+1, k = 1,2, . . . , are defined
in (5.25).

Proof. If Conditions (Sc) or (Wc) hold for a CTMDP, then Conditions (Su) or
(Wu) hold for the corresponding MDP, respectively. For MDPs, the statements of
the theorem are standard facts. For example, similar facts are presented in [16,
Lemma 4.2.8] for MDPs satisfying Condition (Su) and in [11, Proposition 3.1] for
MDPs satisfying Condition (Wu). Though in [16] and in [11] a discount factor is
considered, the arguments from [16] and [11] are applicable when r is nonpositive
and conditions (Su) or (Wu) hold for the corresponding MDP. ��

If t∞ = ∞ (Pπ
x -a.s.) for all π and x, then the problem studied in this chapter

becomes an infinite-horizon problem in continuous time. Conditions for t∞ =∞ (Pπ
x -

a.s.) are described in the literature; see [12,14]. In addition, under certain conditions,
a policy π , for which the probability of t∞ < ∞ is positive, cannot be optimal. For
example, such a condition is R(x,a,y) < c < 0 for some number c. In this case,
V (x,π) = −∞ for any policy π with Pπ

x {t∞ < ∞} > 0. In conclusion, we formulate
the following statement.

Theorem 5.5.7 Let either Condition (Sc) or Condition (Wc) be satisfied. If the
following two assumptions hold:

(i) The function r̂, defined in (5.7), is bounded above,
(ii) For any initial state x ∈ X and for any policy π ∈ Π , the inequality V (x,π) >

−∞ implies t∞ = ∞ (Pπ
x -a.s.),

then there exists a deterministic optimal policy.

Proof. Let r̂(x,a) ≤ K < ∞ for some finite constant K > 0. Let us subtract K from
the reward rate r. Then the corresponding MDP will have nonpositive one-step
rewards. Therefore, Theorem 5.5.6 implies the existence of a deterministic optimal
policy for the CTMDP with the reduced reward rate. Assumption (ii) implies that
the expected total rewards V (x,π) will be reduced for any policy π and any for x∈X
by the constant K/α = K

∫ ∞
0 e−αtdt. Thus, an optimal policy for the CTMDP with

the reduced reward rates is also optimal for the original CTMDP. ��
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Chapter 6
Continuous-Time Controlled Jump Markov
Processes on the Finite Horizon

Mrinal K. Ghosh and Subhamay Saha

6.1 Introduction

This chapter studies continuous-time Markov decision processes and
continuous-time zero-sum stochastic dynamic games. In the continuous-time setup,
although the infinite horizon cases have been well studied, the corresponding
literature on finite horizon case is few and far between. Infinite horizon continuous-
time Markov decision processes have been studied by many authors (e.g. see [5] and
the references therein). In the finite horizon case, Pliska [7] has used a semi-group
approach to characterise the value function and the optimal control. But his approach
yields only existential results. In this chapter, we show that the value function is a
smooth solution of an appropriate dynamic programming equation. Our method of
proof gives algorithms for computing the value function and an optimal control.

The situation is analogous for continuous-time stochastic dynamic Markov
games. In this problem as well, the infinite horizon case has been studied in the
literature [6]. To our knowledge, the finite horizon case has not been studied. In
this chapter, we prove that the value of the game on the finite horizon exists and is
the solution of an appropriate Isaacs equation. This leads to the existence of saddle
point equilibrium.

The rest of our chapter is structured as follows. In Sect. 6.2 we analyse the finite
horizon continuous-time MDP. Section 6.3 deals with zero-sum stochastic dynamic
games. We conclude our chapter in Sect. 6.4 with a few remarks.

M.K. Ghosh (�) • S. Saha
Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
e-mail: mkg@math.iisc.ernet.in; subhamay@math.iisc.ernet.in
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6.2 Finite Horizon Continuous-Time MDP

Throughout this chapter the time horizon is T . The control model we consider is
given by

{X ,U,(λ (t,x,u), t ∈ [0,T ],x ∈ X ,u ∈U),Q(t,x,u,dz),c(t,x,u)}

where each element is described below.

The state space X . The state space X is the set of states of the process under
observation which is assumed to be a Polish space.

The action space U . The decision-maker dynamically takes his action from the
action space U . We assume that U is a compact metric space.

The instantaneous transition rate λ . λ : [0,T ]× X ×U → [0,∞) is a given
function satisfying the following assumption:

(A1) λ is continuous and there exists a constant M such that

sup
t,x,u

λ (t,x,u)≤ M.

The transition probability kernel Q. For a fixed t ∈ [0,T ],x ∈ X ,u ∈ U ,
Q(t,x,u, .) is a probability measure on X with Q(t,x,u,{x}) = 0. Q satisfies
the following:

(A2) Q is weakly continuous, i.e. if xn → x, tn → t, un → u, then for any f ∈Cb(X)

∫

X
f (z)Q(tn,xn,un,dz)→

∫

X
f (z)Q(t,x,u,dz).

The cost rate c. c : [0,T ]×X ×U → [0,∞) is a given function satisfying the
following assumption:

(A3) c is continuous and there exists a finite constant C̃ such that

sup
t,x,u

c(t,x,u)≤ C̃.

Next we give an informal description of the evolution of the controlled system.
Suppose that the system is in state x at time t ≥ 0 and the controller or the decision-
maker takes an action u ∈ U . Then the following happens on the time interval
[t, t + dt]:

1. The decision maker has to pay an infinitesimal cost c(t,x,u)dt, and
2. A transition from state x to a set A (not containing x) occurs with probability

λ (t,x,u)dt
∫

A
Q(t,x,u,dz)+ o(dt);
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or the system remains in state x with probability

1−λ (t,x,u)dt+ o(dt).

Now we describe the optimal control problem. To this end we first describe the
set of admissible controls. Let

u : [0,T ]×X →U

be a measurable function. Let U denote the set of all such measurable
functions which is the set of admissible controls. Such controls are called
Markov controls. For each u ∈ U , it can be shown that there exists is a strong
Markov process {Xt} (see [1, 3]) having the generator

A u
t f (x) =−λ (t,x,u(t,x)) f (x)+

∫

X
f (z)Q(t,x,u(t,x),dz)

where f is a bounded measurable function.

For each u ∈ U , define

V u(t,x) = E
u
t,x

[∫ T

t
c(s,Xs,u(s,Xs))ds+ g(XT )

]
(6.1)

where g : X → R+ is the terminal cost function which is assumed to be bounded,
continuous and E

u
t,x is the expectation operator under the control u with initial

condition Xt = x. The aim of the controller is to minimise V u over all u ∈U . Define

V (t,x) = inf
u∈U

E
u
t,x

[∫ T

t
c(s,Xs,u(s,Xs))ds+ g(XT )

]
. (6.2)

The function V is called the value function. If u∗ ∈U satisfies

V u∗(t,x) =V (t,x) ∀(t,x),

then u∗ is called an optimal control.
The associated dynamic programming equation is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dϕ
dt (t,x)+ infu∈U

[
c(t,x,u)−λ (t,x,u)ϕ(t,x)

+λ (t,x,u)
∫

X ϕ(t,z)Q(t,x,u,dz)
]
= 0

on X × [0,T) and

ϕ(T,x) = g(x).

(6.3)

The importance of (6.3) is illustrated by the following verification theorem.
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Theorem 6.2.1 If (6.3) has a solution ϕ in C1,0
b ([0,T ]×X), then ϕ = V, the value

function. Moreover, if u∗ is such that

[
c(t,x,u∗(t,x))−λ (t,x,u∗(t,x))ϕ(t,x)+λ (t,x,u∗(t,x))

∫

X
ϕ(t,z)Q(t,x,u∗(t,x),dz)

]

= inf
u∈U

[
c(t,x,u)−λ (t,x,u)ϕ(t,x)+λ (t,x,u)

∫

X
ϕ(t,z)Q(t,x,u,dz)

]
, (6.4)

then u∗ is an optimal control.

Proof. Using Ito-Dynkin formula to the solution ϕ of (6.3), we obtain

ϕ(t,x)≤ inf
u∈U

E
u
t,x

[∫ T

t
c(s,Xs,u(s,Xs))ds+ g(XT )

]
.

For u = u∗ as in the statement of the theorem, we get the equality

ϕ(t,x) = E
u∗
t,x

[∫ T

t
c(s,Xs,u∗(s,Xs))ds+ g(XT )

]
.

The existence of such a u∗ follows by a standard measurable selection theorem [2].
�

In view of the above theorem, it suffices to show that (6.3) has a solution in
C1,0

b ([0,T ]×X).

Theorem 6.2.2 Under (A1)–(A3), the dynamic programming equation (6.3) has a
unique solution in C1,0

b ([0,T ]×X).

Proof. Let ϕ(t,x) = e−γtψ(t,x) for some γ < ∞. Then from (6.3) we get,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e−γt dψ
dt (t,x)− γe−γtψ(t,x)+ inf

u∈U

[
c(t,x,u)−λ (t,x,u)e−γtψ(t,x)

+λ (t,x,u)
∫

X e−γtψ(t,z)Q(t,x,u,dz)
]
= 0

on X × [0,T) and

ψ(T,x) = eγT g(x).

Thus (6.3) has a solution if and only if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dψ
dt (t,x)− γψ(t,x)+ inf

u∈U

[
eγt c(t,x,u)−λ (t,x,u)ψ(t,x)

+λ (t,x,u)
∫

X ψ(t,z)Q(t,x,u,dz)
]
= 0

on X × [0,T ) and

ψ(T,x) = eγT g(x)
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has a solution. The above differential equation is equivalent to the following integral
equation:

ψ(t,x) = eγt g(x)+ eγt
∫ T

t
e−γs inf

u∈U

[
eγsc(s,x,u)−λ (s,x,u)ψ(s,x)

+λ (s,x,u)
∫

X
ψ(s,z)Q(s,x,u,dz)

]
ds .

Let Cunif
b ([0,T ]×X) be the space of bounded continuous functions ϕ on [0,T ]×X

with the additional property that given ε > 0 there exists δ > 0 such that

sup
x
|ϕ(t + h,x)−ϕ(t,x)|< ε whenever |h|< δ .

Suppose ϕn ∈Cunif
b ([0,T ]×X) and ϕn → ϕ uniformly. Then

|ϕ(t + h,x)−ϕ(t,x)| ≤ |ϕ(t + h,x)−ϕn(t + h,x)|+ |ϕn(t + h,x)−ϕn(t,x)|
|ϕn(t,x)−ϕ(t,x)| .

Given ε > 0, there exists n0 such that sup
t,x

|ϕn0(t,x)−ϕ(t,x)| < ε
3

, and for this n0,

there exists δ > 0 such that sup
x
|ϕn0(t + h,x)−ϕn0(t,x)| <

ε
3

whenever |h| < δ .

Putting n = n0, we get from the above inequality

sup
x
|ϕ(t + h,x)−ϕ(t,x)|< ε whenever |h|< δ .

Thus Cunif
b ([0,T ]×X) is a closed subspace of Cb([0,T ]×X), and hence it is a Banach

space.
Now for ϕ ∈Cunif

b ([0,T ]×X), it follows from the assumption on Q that
∫

X ϕ(t,z)
Q(t,x,u,dz) is continuous in t,x and u. Define

T : Cunif
b ([0,T ]×X)→Cunif

b ([0,T ]×X) by

T ψ(t,x) = eγt g(x)+ eγt
∫ T

t
e−γs inf

u∈U

[
eγsc(s,x,u)−λ (s,x,u)ψ(s,x)

+λ (s,x,u)
∫

X
ψ(s,z)Q(s,x,u,dz)

]
ds .

For ψ1,ψ2 ∈Cunif
b ([0,T ]×X), we have
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|T ψ1(t,x)−T ψ2(t,x)| ≤ eγt
∫ T

t
e−γs2M||ψ1 −ψ2||ds

=
2M
γ

eγt [e−γt − e−γT ]||ψ1−ψ2||

=
2M
γ

[1− e−γ(T−t)]||ψ1 −ψ2||

≤ 2M
γ
||ψ1−ψ2||.

Thus if we choose γ = 2M+1, then T is a contraction and hence has a fixed point.
Let ϕ be the fixed point. Then e−(2M+1)tϕ is the unique solution of (6.3). �

6.3 Zero-Sum Stochastic Game

In this section, we consider a zero-sum stochastic game. The control model we
consider here is given by

{X ,U,V,(λ (t,x,u,v), t ∈ [0,T ],x ∈ X ,u ∈U,v ∈V,Q(t,x,u,v,dz),r(t,x,u,v)}

where X is the state space as before; U and V are the action spaces for player I and
player II, respectively; λ and Q denote the rate and transition kernel, respectively,
which now depend on the additional parameter v; and r is the reward rate. The
dynamics of the game is similar to that of MDP with appropriate modifications.
Here player I receives a payoff from player II. The aim of player I is to maximise
his payoff, and player II seeks to minimise the payoff to player I.

Now we describe the strategies of the players. In order to solve the problem, we
will need to consider Markov relaxed strategies. We denote the space of strategies
of player I by U and that of player II by V where

U = {u |u : [0,T ]×X → P(U) measurable} ,

V = {v |v : [0,T ]×X → P(V ) measurable} .
Now corresponding to λ , Q and r, define

λ̃ (t,x,μ ,ν) =
∫

V

∫

U
λ (t,x,u,v)μ(du)ν(dv),

Q̃(t,x,μ ,ν) =
∫

V

∫

U
Q(t,x,u,v)μ(du)ν(dv),

r̃(t,x,μ ,ν) =
∫

V

∫

U
r(t,x,u,v)μ(du)ν(dv),
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where μ ∈P(U) and ν ∈P(V ). As in the previous section, we make the following
assumptions:

(A1′) λ is continuous and there exists a finite constant M such that

sup
t,x,u,v

λ (t,x,u,v)≤ M.

(A2′) Q is weakly continuous, i.e. if xn → x, tn → t, un → u and vn → v, then for
any f ∈Cb(X)

∫

X
f (z)Q(tn,xn,un,vn,dz)→

∫

X
f (z)Q(t,x,u,v,dz).

(A3′) r is continuous and there exists a finite constant C̃ such that

sup
t,x,u,v

r(t,x,u,v)≤ C̃.

If the players use strategies (u,v) ∈ U ×V , then the expected payoff to
player I is given by

E
u,v
t,x

[∫ T

t
r̃(s,Xs,u(s,Xs),v(s,Xs))ds+ g(XT )

]

where g is the terminal reward function which is assumed to be bounded and
continuous. Now we define the upper and lower values for our game. Define

V (t,x) = inf
v∈V

sup
u∈U

E
u,v
t,x

[∫ T

t
r̃(s,Xs,u(s,Xs),v(s,Xs))ds+ g(XT )

]
.

Also define

V (t,x) = sup
u∈U

inf
v∈V

E
u,v
t,x

[∫ T

t
r̃(s,Xs,u(s,Xs),v(s,Xs))ds+ g(XT )

]
.

The function V is called the upper value function of the game, and V is
called the lower value function of the game. In the game, player I is trying to
maximise his payoff and player II is trying to minimise the payoff of player I.
Thus V is the minimum payoff that player I is guaranteed to receive and V is
the guaranteed greatest amount that player II can lose to player I. In general
V ≤ V . If V (t,x) = V (t,x), then the game is said to have a value. A strategy
u∗ is said to be an optimal strategy for player I if

E
u∗,v
t,x

[∫ T

t
r̃(s,Xs,u∗(s,Xs),v(s,Xs))ds+ g(XT )

]
≥V (t,x)

for any t,x,v.
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Similarly, v∗ is called an optimal policy for player II if

E
u,v∗
t,x

[∫ T

t
r̃(s,Xs,u(s,Xs),v∗(s,Xs))ds+ g(XT )

]
≤V (t,x)

for any t,x,u. Such a pair (u∗,v∗), if it exists, is called a saddle point equilibrium.
Our aim is to find the value of the game and to find optimal strategies for both the
players. To this end, consider the following pair of Isaacs equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dϕ
dt (t,x)+ inf

ν∈P(V)
sup

μ∈P(U)

[
r̃(t,x,μ ,ν)− λ̃(t,x,μ ,ν)ϕ(t,x)

+λ̃ (t,x,μ ,ν)
∫

X ϕ(t,z)Q̃(t,x,μ ,ν,dz)
]
= 0

on X × [0,T) and

ϕ(T,x) = g(x).

(6.5)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dψ
dt (t,x)+ sup

μ∈P(U)

inf
ν∈P(V )

[
r̃(t,x,μ ,ν)− λ̃(t,x,μ ,ν)ψ(t,x)

+λ̃ (t,x,μ ,ν)
∫

X ψ(t,z)Q̃(t,x,μ ,ν,dz)
]
= 0

on X × [0,T) and

ϕ(T,x) = g(x).

(6.6)

By Fan’s minimax theorem [4], we have that if ϕ ∈ C1,0
b ([0,T ]×X) is a solution

of (6.5), then it is also a solution of (6.6) and vice versa. The importance of Isaacs
equations is illustrated by the following theorem.

Theorem 6.3.1 Let ϕ∗ ∈C1,0
b ([0,T ]×X) be a solution of (6.5) and (6.6). Then

(i) ϕ∗ is the value of the game.
(ii) Let (u∗,v∗) ∈U ×V be such that

inf
ν∈P(V )

[
r̃(t,x,u∗(t,x),ν)− λ̃ (t,x,u∗(t,x),ν)ϕ∗(t,x)+ λ̃(t,x,u∗(t,x),ν)

∫

X
ϕ∗(t,z)Q̃(t,x,u∗(t,x),ν,dz)

]

= sup
μ∈P(U)

inf
ν∈P(V )

[
r̃(t,x,μ ,ν)− λ̃(t,x,μ ,ν)ψ(t,x)+ λ̃ (t,x,μ ,ν)

∫

X
ψ(t,z)Q̃(t,x,μ ,ν,dz)

]
(6.7)
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and

sup
μ∈P(U)

[
r̃(t,x,μ ,v∗(t,x))− λ̃(t,x,μ ,v∗(t,x))ϕ∗(t,x)+ λ̃(t,x,μ ,v∗(t,x))

∫

X
ϕ∗(t,z)Q̃(t,x,μ ,v∗(t,x),dz)

]

= inf
ν∈P(V )

sup
μ∈P(U)

[
r̃(t,x,μ ,ν)− λ̃(t,x,μ ,ν)ϕ(t,x)+ λ̃ (t,x,μ ,ν)

∫

X
ϕ(t,z)Q̃(t,x,μ ,ν,dz)

]
. (6.8)

Then u∗ is an optimal policy for player I and v∗ is an optimal policy for
player II.

Proof. Let u∗ be as in (6.7) and v be any arbitrary strategy of player II. Then by
Ito-Dynkin formula applied to the solution ϕ , we obtain

ϕ∗(t,x)≤ E
u∗,v
t,x

[∫ T

t
r̃(s,Xs,u∗(s,Xs),v(s,Xs))ds+ g(XT )

]

≤ inf
v∈V

E
u∗,v
t,x

[∫ T

t
r̃(s,Xs,u∗(s,Xs),v(s,Xs))ds+ g(XT )

]

≤V (t,x) .

Now let v∗ be as in (6.8) and let u be any arbitrary strategy of player I. Then again
by Ito’s formula we obtain

ϕ∗(t,x)≥ E
u,v∗
t,x

[∫ T

t
r̃(s,Xs,u(s,Xs),v∗(s,Xs))ds+ g(XT )

]

≥ inf
v∈V

E
u,v∗
t,x

[∫ T

t
r̃(s,Xs,u(s,Xs),v∗(s,Xs))ds+ g(XT )

]

≥V (t,x) .

From the above two inequalities, it follows that

ϕ∗(t,x) =V (t,x) =V (t,x) .

Hence ϕ∗ is the value of the game. Moreover it follows that (u∗,v∗) is a saddle point
equilibrium. �

Now our aim is to find a solution of (6.5) (and hence of (6.6)) in C1,0
b ([0,T ]×X).

Our next theorem asserts the existence of such a solution.



108 M.K. Ghosh and S. Saha

Theorem 6.3.2 Under (A1′)–(A3′), equation (6.5) has a unique solution in
C1,0

b ([0,T ]×X).

Proof. Let ϕ(t,x) = e−γtψ(t,x) for some γ < ∞. Substituting in (6.5), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e−γt dψ
dt (t,x)− γe−γtψ(t,x)+ inf

ν∈P(V)
sup

μ∈P(U)

[
r̃(t,x,μ ,ν)− λ̃(t,x,μ ,ν)e−γtψ(t,x)

+λ̃(t,x,μ ,ν)
∫

X e−γtψ(t,z)Q̃(t,x,μ ,ν,dz)
]
= 0

on X × [0,T) and

ψ(T,x) = eγT g(x).

Thus (6.5) has a solution if and only if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dψ
dt (t,x)− γψ(t,x)+ inf

ν∈P(V)
sup

μ∈P(U)

[
eγt r̃(t,x,μ ,ν)− λ̃(t,x,μ ,ν)ψ(t,x)

+λ̃(t,x,μ ,ν)
∫

X ψ(t,z)Q̃(t,x,μ ,ν,dz)
]
= 0

on X × [0,T) and

ψ(T,x) = eγT g(x)

has a solution. The above differential equation is equivalent to the following integral
equation:

ψ(t,x) = eγt g(x)+ eγt
∫ T

t
e−γs inf

ν∈P(V )
sup

μ∈P(U)

[
eγsr̃(s,x,μ ,ν)− λ̃ (s,x,μ ,ν)ψ(s,x)

+ λ̃(s,x,μ ,ν)
∫

X
ψ(s,z)Q̃(s,x,μ , ,ν,dz)

]
ds .

Let Cunif
b ([0,T ]×X) be the same space as defined in the previous section. Define

T : Cunif
b ([0,T ]×X)→Cunif

b ([0,T ]×X) by

T ψ(t,x) = eγt g(x)+ eγt
∫ T

t
e−γs inf

ν∈P(V )
sup

μ∈P(U)

[
eγsr̃(s,x,μ ,ν)

− λ̃(s,x,μ ,ν)ψ(s,x)+ λ̃ (s,x,μ ,ν)
∫

X
ψ(s,z)Q̃(s,x,μ ,ν,dz)

]
ds .

For ψ1,ψ2 ∈Cunif
b ([0,T ]×X), we have
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|T ψ1(t,x)−T ψ2(t,x)| ≤ eγt
∫ T

t
e−γs2M||ψ1 −ψ2||ds

=
2M
γ

eγt [e−γt − e−γT ]||ψ1−ψ2||

=
2M
γ

[1− e−γ(T−t)]||ψ1 −ψ2||

≤ 2M
γ
||ψ1−ψ2||.

Thus if we choose γ = 2M+1, then T is a contraction and hence has a fixed point.
Let ϕ be the fixed point. Then e−(2M+1)tϕ is the unique solution of (6.5). �

6.4 Conclusion

In this chapter we have established smooth solutions of dynamic programming
equations for continuous-time controlled Markov chains on the finite horizon. This
has led to the existence of an optimal Markov strategy for continuous-time MDP and
saddle point equilibrium in Markov strategies for zero-sum games. We have used the
boundedness condition on the cost function c for simplicity. For continuous-time
MDP, if c is unbounded above, then we can show that V (t,x) is the minimal non-
negative solution of (6.3) by approximating the cost function c by c∧n for a positive
integer n and then letting n → ∞. If c is unbounded on both sides and it satisfies a
suitable growth condition, then again we can prove the existence of unique solutions
of dynamic programming equations in C1,0([0,T ]×X) with appropriate weighted
norm; see [5] and [6] for analogous results.
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Chapter 7
Existence and Uniqueness of Solutions
of SPDEs in Infinite Dimensions

T.E. Govindan

7.1 Introduction

In this chapter, we study a neutral stochastic partial differential equation in a real
Hilbert space of the form

d[x(t)+ f (t,x(ρ(t)))] = [Ax(t)+a(t,x(ρ(t)))]dt

+b(t,x(ρ(t)))dw(t), t > 0; (7.1)

x(t) = ϕ(t), t ∈ [−r,0] (0 ≤ r < ∞); (7.2)

where a : R+ ×C → X (R+ = [0,∞)), b : R+ ×C → L(Y,X), and f : R+ ×C →
D((−A)−α), 0 < α ≤ 1, are Borel measurable, and −A : D(−A) ⊂ X is the
infinitesimal generator of a strongly continuous semigroup {S(t), t ≥ 0} defined
on X . Here w(t) is a Y -valued Q-Wiener process, and the past stochastic process
{ϕ(t), t ∈ [−r,0]} has almost sure (a.s) continuous paths with E||ϕ ||pC < ∞, p ≥ 2.
The delay function ρ : [0,∞) → [−r,∞) is measurable, satisfying −r ≤ ρ(t) ≤
t, t ≥ 0.

To motivate this kind of equations, consider a semilinear equation with a finite
delay in the deterministic case; see Hernandez and Henriquez [7]:

dx(t)
dt

= Ax(t)+ f (xt)+Bu(t), t > 0, (7.3)

where x(t) ∈ X represents the state, u(t) ∈ Rm denotes the control, xt(s) = x(t + s),
−r≤ s≤ 0, A : X →X , and B : Rm →X . The feedback control u(t) will be defined by

u(t) = K0x(t)− d
dt

∫ t

−r
K1(t − s)x(s)ds, (7.4)

T.E. Govindan (�)
ESFM, Instituto Politécnico Nacional, México D.F. 07738, México
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where K0 : X → Rm is a bounded linear operator, and K1 : [0,∞)→ L(X ,Rm) is an
operator-valued map. The closed system corresponding to the control (7.4) takes the
form:

d
dt

[
x(t)+

∫ t

−r
K1(t − s)x(s)ds

]
= (A+BK0)x(t)+ f (xt), t > 0.

A special case of (7.1), see (7.6) below, was studied in Govindan [4, 5] and Luo
[8] by using Lipschitz conditions on all the nonlinear terms and in Govindan [6]
using local Lipschitz conditions on a(t,u) and b(t,u). In this chapter, our goal is
to study the existence and uniqueness problem for (7.1) and (7.2) using Lipschitz
conditions.

The rest of the chapter is organized as follows: In Sect. 7.2, we give the
preliminaries. For a general theory of stochastic differential equations in infinite
dimensions, we refer to the excellent texts of Ahmed [1] and Da Prato and
Zabczyk [2]. Since we work in the same framework as in Govindan [4] and
Taniguchi [10], we shall be quite brief here. In Sect. 7.3, we present our main result.
Some examples are given in Sect. 7.4.

7.2 Preliminaries

Let X ,Y be real separable Hilbert spaces and L(Y,X) be the space of bounded linear
operators mapping Y into X . We shall use the same notation | · | to denote norms
in X ,Y and L(Y,X). Let (Ω ,B,P,{Bt}t≥0) be a complete probability space with an
increasing right continuous family {Bt}t≥0 of complete sub-σ -algebras of B. Let
βn(t)(n = 1,2,3, . . .) be a sequence of real-valued standard Brownian motions mu-
tually independent defined on this probability space. Set w(t) = ∑∞

n=1

√
λnβn(t)en,

t ≥ 0, where λn ≥ 0 (n = 1,2,3, . . .) are nonnegative real numbers and {en} (n =
1,2,3, . . .) is a complete orthonormal basis in Y . Let Q ∈ L(Y,Y ) be an operator
defined by Qen = λnen. The above Y -valued stochastic processes w(t) is called a
Q-Wiener process. Let h(t) be an L(Y,X)-valued function and let λ be a sequence

{√λ1,
√
λ2, . . .}. Then we define |h(t)|λ =

{
∑∞

n=1 |
√
λnh(t)en|2

}1/2

. If |h(t)|2λ <∞,

then h(t) is called λ -Hilbert-Schmidt operator.
Next, we define the X-valued stochastic integral with respect to the Y -valued

Q-Wiener process w(t); see Taniguchi [10].

Definition 7.2.1. Let Φ : [0,∞)→ σ(λ )(Y,X) be a Bt -adapted process. Then, for
any Φ satisfying

∫ t
0 E|Φ(s)|2λ ds < ∞, we define the X-valued stochastic integral

∫ t
0 Φ(s)dw(s) ∈ X with respect to w(t) by

(∫ t

0
Φ(s)dw(s),h

)
=

∫ t

0
<Φ∗(s)h,dw(s) >, h ∈ X ,

where Φ∗ is the adjoint operator of Φ .
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A semigroup {S(t), t ≥ 0} is said to be exponentially stable if there exist positive
constants M and a such that ||S(t)|| ≤ M exp(−at), t ≥ 0, where || · || denotes the
operator norm in X . If M = 1, the semigroup is said to be a contraction.

Let C :=C([−r,0];X) denote the space of continuous functions ϕ : [−r,0]→ X
endowed with the norm ||ϕ ||C = sup

−r≤s≤0
|ϕ(s)|. Let BT = BT (ϕ) be the space of

measurable random processes φ(t,ω) with a.s. continuous paths; for each t ∈ [0,T ],
φ(t,ω) is measurable with respect to Bt and φ(s,ω) = ϕ(s,ω) for −r ≤ s ≤ 0
with the norm ||φ ||BT = (E||φ(.,ω)||pC)1/p, 1 ≤ p < ∞. BT is a Banach space, see
Govindan [4] and the references therein.

If {S(t), t ≥ 0} is an analytic semigroup with an infinitesimal generator −A such
that 0 ∈ ρ(−A) (the resolvent set of −A), then it is possible to define the fractional
power (−A)α , for 0 < α ≤ 1, as a closed linear operator on its domain D((−A)α).
Furthermore, the subspace D((−A)α) is dense in X and the expression

||x||α = |(−A)αx|, x ∈ D((−A)α),

defines a norm on D((−A)α).

Definition 7.2.2. A stochastic process {x(t), t ∈ [0,T ]}(0 < T <∞) is called a mild
solution of equation (7.1) if

(i) x(t) is Bt -adapted with
∫ T

0 |x(t)|2dt < ∞, a.s., and
(ii) x(t) satisfies the integral equation

x(t) = S(t)[ϕ(0)+ f (0,ϕ)]− f (t,x(ρ(t)))

−
∫ t

0
AS(t − s) f (s,x(ρ(s)))ds

+

∫ t

0
S(t − s)a(s,x(ρ(s)))ds

+

∫ t

0
S(t − s)b(s,x(ρ(s)))dw(s), a.s., t ∈ [0,T ]. (7.5)

For convenience of the reader, we will state below some results that will be
needed in the sequel.

Lemma 7.2.1. [3] Let WΦ
A (t) =

∫ t
0 S(t − s)Φ(s)dw(s), t ∈ [0,T ]. For any arbitrary

p > 2, there exists a constant c(p,T ) > 0 such that for any T ≥ 0 and a proper
modification of the stochastic convolution WΦ

A , one has

E sup
t≤T

|WΦ
A (t)|p ≤ c(p,T )sup

t≤T
||S(t)||pE

∫ T

0
|Φ(s)|pλ ds.
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Moreover if E
∫ T

0 |Φ(s)|pλds < ∞, then there exists a continuous version of the
process {WΦ

A , t ≥ 0}.

Lemma 7.2.2. [2, Theorem 6.10] Suppose −A generates a contraction semigroup.
Then the process WΦ

A (.) has a continuous modification and there exists a constant
κ > 0 such that

E sup
s∈[0,t]

|WΦ
A (s)|2 ≤ κE

∫ t

0
|Φ(s)|2λ ds, t ∈ [0,T ].

Theorem 7.2.1. [1, 9] Let −A be the infinitesimal generator of an analytic semi-
group {S(t), t ≥ 0}. If 0 ∈ ρ(A), then

(a) S(t) : X → Xα for every t > 0 and α ≥ 0.
(b) For every x ∈ Xα , we have

S(t)Aαx = AαS(t)x.

(c) For every t > 0, the operator AαS(t) is bounded and

||AαS(t)|| ≤ Mα t−αe−at , a > 0.

(d) Let 0 < α ≤ 1 and x ∈ D(Aα); then

||S(t)x− x|| ≤Cα tα ||Aαx||.

7.3 Existence and Uniqueness of a Mild Solution

In this section we study the existence and uniqueness of a mild solution of the
equation (7.1). But, before that, it shall be interesting to recall some recent existence
and uniqueness results for a mild solution of a simpler equation given by

d[x(t)+ f (t,xt)] = [Ax(t)+ a(t,xt)]dt + b(t,xt)dw(t), t > 0; (7.6)

x(t) = ϕ(t), t ∈ [−r,0] (0 ≤ r < ∞); (7.7)

where xt(s) = x(t + s), −r ≤ s ≤ 0, and all the other terms are as defined before.
To begin with, we present our first result for (7.6) from Luo [8].

Hypothesis (A):
Let the following assumptions hold a.s.:

(A1) −A is the infinitesimal generator of an analytic semigroup of bounded linear
operators {S(t), t ≥ 0} in X , and the semigroup is exponentially stable.

(A2) The mappings a(t,u) and b(t,u) satisfy the following Lipschitz and linear
growth conditions:
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|a(t,u)− a(t,v)| ≤ L1||u− v||C, L1 > 0,

|b(t,u)− b(t,v)|λ ≤ L2||u− v||C, L2 > 0,

|a(t,u)|2 + |b(t,u)|2λ ≤ L2
3(1+ ||u||2C), L3 > 0,

for all u,v ∈C.
(A3) f (t,u) is a function continuous in t and satisfies

|(−A)α f (t,u)− (−A)α f (t,v)| ≤ L4||u− v||C, L4 > 0,

|(−A)α f (t,u)| ≤ L5(1+ ||u||C), L5 > 0,

for all u,v ∈C.

Theorem 7.3.2. [8] Let Assumptions (A1)–(A3) hold. Then there exists a unique
mild solution {x(t),0 ≤ t ≤ T} of the problem (7.6) and (7.7) provided

L||(−A)−α ||+LM1−αΓ (α)/aα < 1,

where L = max{L4,L5} and Γ (·) is the Gamma function.

In Govindan [5], a new successive approximation procedure was introduced to
study the existence and uniqueness of a mild solution of equation (7.6) under the
following hypothesis.

Hypothesis (B):
Let the following assumptions hold a.s.:

(B1) Same as (A1).
(B2) For p ≥ 2, the functions a(t,u) and b(t,u) satisfy the Lipschitz and linear

growth conditions:

|a(t,u)− a(t,v)|p ≤ L6||u− v||pC, L6 > 0,

|b(t,u)− b(t,v)|pλ ≤ L7||u− v||pC, L7 > 0,

|a(t,u)|p + |b(t,u)|pλ ≤ L8(1+ ||u||pC), L8 > 0,

for all u,v ∈C.
(B3) Same as (A3).

Theorem 7.3.3. [5] Let Assumptions (B1)–(B3) hold. For p = 2, {S(t), t ≥ 0} is a
contraction. Then there exists a unique mild solution x(t) of the problem (7.6) and
(7.7) provided 1/p < α < 1, and

L||(−A)−α ||< 1,

where L = max{L4,L5}.
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Recently, Govindan [6] studied the existence and uniqueness problem for (7.6) by
using only a local Lipschitz condition. To consider this result, we need the following

Hypothesis (C):
Let the following assumptions hold a.s.:

(C1) Same as (A1) but now the semigroup is a contraction.
(C2) The functions a(t,u) and b(t,u) are continuous and that there exist positive

constants Mi = Mi(T ), i = 1,2 such that

|a(t,u)− a(t,v)| ≤ M1||u− v||C,
|b(t,u)− b(t,v)|λ ≤ M2||u− v||C,

for all t ∈ [0,T ] and u,v ∈C.
(C3) The function f (t,u) is continuous and that there exists a positive constant

M3 = M3(T ) such that

|| f (t,u)− f (t,v)||α ≤ M3||u− v||C,
for all t ∈ [0,T ] and u,v ∈C.

(C4) f (t,u) is continuous in the quadratic mean sense:

lim
(t,u)→(s,v)

E|| f (t,u)− f (s,v)||2α → 0.

Theorem 7.3.4. [6] Suppose that Assumptions (C1)–(C4) are satisfied. Then, there
exists a time 0 < tm = tmax ≤ ∞ such that (7.6) has a unique mild solution. Further,
if tm < ∞, then limt↑tm E|x(t)|2 = ∞.

Finally, we state the following hypothesis to consider the main result of the
chapter.

Hypothesis (D):
Let the following assumptions hold a.s.:

(D1) −A is the infinitesimal generator of an analytic semigroup of bounded linear
operators {S(t), t ≥ 0} in X , and the semigroup is exponentially stable.

(D2) For p ≥ 2, the functions a(t,u) and b(t,u) satisfy the Lipschitz and linear
growth conditions:

|a(t,u)− a(t,v)|p ≤ C1||u− v||pC, C1 > 0,

|b(t,u)− b(t,v)|pλ ≤ C2||u− v||pC, C2 > 0,

for all u,v ∈C.
There exist positive constants C3,P and δ > a and a continuous function ψ :
R+ → R+ satisfying |ψ(t)|2 < Pexp(−δ t), t ≥ 0 such that

|a(t,u)|p + |b(t,u)|pλ ≤C3||u||pC +ψ(t), t ≥ 0,

for all u ∈C.
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(D3) f (t,u) is a function continuous in t and satisfies

|(−A)α f (t,u)− (−A)α f (t,v)| ≤ L4||u− v||C, L4 > 0,

|(−A)α f (t,u)| ≤ L5(1+ ||u||C), L5 > 0,

for all u,v ∈C.

Theorem 7.3.5. Let Assumptions (D1)–(D3) hold. Suppose that for the case p = 2,
the semigroup {S(t), t ≥ 0} is a contraction. Then there exists a unique mild solution
x(t) of (7.1) provided

L||(−A)−α ||+LM1−αΓ (α)/aα < 1,

where L = max{L4,L5}.

To prove this theorem, let us introduce the following iteration procedure:
Define for each integer n = 1,2,3, . . .,

x(n)(t) = S(t)[ϕ(0)+ f (0,ϕ)]− f (t,x(n)(ρ(t)))

−
∫ t

0
AS(t − s) f (s,x(n)(ρ(s)))ds

+

∫ t

0
S(t − s)a(s,x(n−1)(ρ(s)))ds

+

∫ t

0
S(t − s)b(s,x(n−1)(ρ(s)))dw(s), t ∈ [0,T ], (7.8)

and for n = 0,

x(0)(t) = S(t)ϕ(0), t ∈ [0,T ], (7.9)

while for n = 0,1,2, . . .,

x(n)(t) = ϕ(t), t ∈ [−r,0]. (7.10)

Proof of Theorem 7.3.5. Let T be any fixed time with 0 < T <∞. Rewriting (7.8) as

x(n)(s) = S(s)ϕ(0)+ S(s)(−A)−α(−A)α f (0,ϕ)

− (−A)−α(−A)α f (x,x(n)(ρ(t)))

+
∫ s

0
(−A)1−αS(s− τ)(−A)α f (τ,x(n)(ρ(τ)))dτ

+

∫ s

0
S(s− τ)a(τ,x(n−1)(ρ(τ)))dτ

+
∫ s

0
S(s− τ)b(τ,x(n−1)(ρ(τ)))dw(τ), a.s. s ∈ [0,T ].
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By Theorem 7.2.1, Assumptions (D1) and (D3) and Luo [8], we get

|x(n)(s)| ≤ Me−as|ϕ(0)|+Me−as||(−A)−α ||L5(1+ ||ϕ ||C)
+L5||(−A)−α ||(1+ ||x(n)s ||C)

+

∫ s

0
L5

M1−αe−a(s−τ)

(s− τ)1−α (1+ ||x(n)τ ||C)dτ

+

∣∣
∣
∣

∫ s

0
S(s− τ)a(τ,x(n−1)(ρ(τ)))dτ

∣∣
∣
∣

+

∣
∣
∣∣

∫ s

0
S(s− τ)b(τ,x(n−1)(ρ(τ)))dw(τ)

∣
∣
∣∣ a.s..

Note that (−A)−α , for 0 < α ≤ 1 is a bounded operator, see Pazy [9, Lemma 6.3
p. 71]. An application of Lemma 7.2.1 (or Lemma 7.2.2 for p = 2) then yields

[
1−L5||(−A)−α ||−L5M1−αΓ (α)/aα

]p

E sup
0≤s≤t

|x(n)(s)|p

≤ 3p−1
{

E

[
M|ϕ(0)|+L5(1+ ||ϕ ||C)((M+ 1)||(−A)−α ||+M1−αΓ (α)/aα)

]p

+MpT p−1
∫ t

0
E|a(s,x(n−1)(ρ(s)))|pds

+Mpc(p,T )
∫ t

0
E|b(s,x(n−1)(ρ(s)))|pλds

}
.

Next, by Assumption (D2), we have

E sup
0≤s≤t

|x(n)(s)|p ≤ 3p−1

[1−L5||(−A)−α ||−L5M1−αΓ (α)/aα ]p

×
{

E

[
M|ϕ(0)|+L5(1+ ||ϕ ||C)((M + 1)||(−A)−α ||+M1−αΓ (α)/aα

]p

+Mp(T p−1 + c(p,T ))
∫ t

0
(C3E||x(n−1)

s ||pC +ψ(s))ds

}
, n = 1,2,3, . . . .

Since E||ϕ ||pC < ∞, it follows from the last inequality that

E sup
0≤s≤t

|x(n)(s)|p < ∞, for all n = 1,2,3, . . . and t ∈ [0,T ],

proving the boundedness of {x(n)(t)}n≥1.
Let us next show that {x(n)} is Cauchy in BT . For this, consider
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x(1)(s)− x(0)(s) = S(s) f (0,ϕ)− f (s,x(1)(ρ(s)))

+
∫ s

0
(−A)S(s− τ) f (τ,x(1)(ρ(τ)))dτ

+

∫ s

0
S(s− τ)a(τ,x(0)(ρ(τ)))dτ

+
∫ s

0
S(s− τ)b(τ,x(0)(ρ(τ)))dw(τ).

By Assumptions (D1) and (D3), we have

|x(1)(s)− x(0)(s)| ≤ M||(−A)−α ||L5(1+ ||ϕ ||C)+ ||(−A)−α ||L4||x(1)s − x(0)s ||C
+ ||(−A)−α ||L5(1+ ||x(0)s ||C)

+C3M1−α
Γ (α)

aα

(
1+ sup

0≤s≤t
||x(0)s ||C

)

+

∣
∣
∣
∣

∫ s

0
(−A)1−αS(s− τ)(−A)α [ f (τ,x(1)(ρ(τ)))

− f (τ,x(0)(ρ(τ)))]dτ
∣
∣∣
∣

+

∣
∣
∣
∣

∫ s

0
S(s− τ)a(τ,x(0)(ρ(τ)))dτ

∣
∣
∣
∣

+

∣∣
∣
∣

∫ s

0
S(s− τ)b(τ,x(0)(ρ(τ)))w(τ)

∣∣
∣
∣ a.s..

Next, using Lemma 7.2.1 (or Lemma 7.2.2 for p = 2) and Assumptions (D2) and
(D3), we have

E||x(1)t − x(0)t ||pC ≤ 3p−1
[

1−L4||(−A)−α ||−L4M1−αΓ (α)/aα
]−p

×
{

E

[
M||(−A)−α ||L5(1+ ||ϕ ||C)

+||(−A)−α ||L5(1+ sup
0≤s≤t

||x(0)s ||C)

+L5M1−α
Γ (α)

aα
(1+ sup

0≤s≤t
||x(0)s ||C)

]p

+Mp(T p−1 + c(p,T ))
∫ t

0
(C3E||x(0)s ||pC +ψ(s))ds

}
.
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Next, consider

x(n)(s)− x(n−1)(s) = f (s,x(n−1)(ρ(s)))− f (s,x(n)(ρ(s)))

−
∫ s

0
AS(s− τ)[ f (τ,x(n)(ρ(τ)))− f (τ,x(n−1)(ρ(τ)))]dτ

+

∫ s

0
S(s− τ)[a(τ,x(n−1)(ρ(τ)))− a(τ,x(n−2)(ρ(τ)))]dτ

+

∫ s

0
S(s− τ)[b(τ,x(n−1)(ρ(τ)))− b(τ,x(n−2)(ρ(τ)))]dw(τ).

Estimating as before, we have

[1−L4||(−A)−α ||−L4M1−αΓ (α)/aα ||]pE||x(n)t − x(n−1)
t ||pC

≤ 2p−1MpT p−1C1

∫ t

0
E||x(n−1)

s − x(n−2)
s ||pCds

+ 2p−1Mpc(p,T )C2

∫ t

0
E||x(n−1)

s − x(n−2)
s ||pCds.

Thus,

E||x(n)t − x(n−1)
t ||pC

≤ 2p−1Mp(C1T p−1 +C2c(p,T ))
[1−L4||(−A)−α ||−L4M1−αΓ (α)/aα ||]p

∫ t

0
E||x(n−1)

s − x(n−2)
s ||pCds.

Using the familiar Cauchy formula,

E||x(n)t − x(n−1)
t ||pC ≤ [2p−1Mp(C1T p−1 +C2c(p,T ))]n−1

[1−L4||(−A)−α ||−L4M1−αΓ (α)/aα ||](n−1)p

×
∫ t

0

(t − s)n−2

(n− 2)!
E||x(1)s − x(0)s ||pCds

≤ [2p−1Mp(C1T p−1 +C2c(p,T ))]n−1

[1−L4||(−A)−α ||−L4M1−αΓ (α)/aα ||](n−1)p

×E||x(1)s − x(0)s ||pC
T n−1

(n− 1)!
.

This shows that {xn} is Cauchy in BT . Then the standard Borel-Cantelli lemma
argument can be used to show that xn(t)→ x(t) as n → ∞ uniformly in t on [0,T ]
and x(t) is indeed a mild solution of equation (7.1).

Finally, to show the uniqueness, let x(t) and y(t) be two mild solutions of
equation (7.1). Consider
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x(s)− y(s) = f (s,y(ρ(s)))− f (s,x(ρ(s)))

−
∫ s

0
AS(s− τ)[ f (τ,x(ρ(τ)))− f (τ,y(ρ(τ)))]dτ

+

∫ s

0
S(s− τ)[a(τ,x(ρ(τ)))− a(τ,y(ρ(τ)))]dτ

+
∫ s

0
S(s− τ)[b(τ,x(ρ(τ)))− b(τ,y(ρ(τ)))]dw(τ).

Proceeding as before, we have

E||xt − yt ||pC ≤ 2p−1Mp(C1T p−1 +C2c(p,T ))
[1−L4||(−A)−α ||−L4M1−αΓ (α)/aα ||]p

∫ t

0
E||xs− ys||pCds.

Applying Gronwall’s lemma,

E||xt − yt ||pC = 0, t ∈ [0,T ],

and the uniqueness follows. This completes the proof. �

7.4 Applications

In this section, we consider two examples as applications of the results considered
in the previous section.

Example 7.4.1. Consider the neutral stochastic partial functional differential equa-
tion with finite delays r1,r2, and r3 (r > ri ≥ 0, i = 1,2,3):

d[z(t,x)+
�3(t)

||(−A)3/4||
∫ 0

−r3

z(t + u,x)du] =

[
∂ 2

∂x2 z(t,x)+ �1(t)
∫ 0

−r1

z(t + u,x)du

]
dt

+ �2(t)z(t − r2,x)dβ (t), t > 0,

(7.11)

�i : R+ → R+, i = 1,2,3; z(t,0) = z(t,π) = 0, t > 0,

z(s,x) = ϕ(s,x), ϕ(·,x) ∈C a.s.,

ϕ(s, ·) ∈ L2[0,π ], −r ≤ s ≤ 0, 0 ≤ x ≤ π ;

where β (t) is a standard one-dimensional Wiener process; �i(t), i = 1,2,3 is a
continuous function; and E||ϕ ||2C < ∞.
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Take X = L2[0,π ], Y = R1. Define −A : X → X by −A = ∂ 2/∂x2 with domain
D(−A) = {w ∈ X : w,∂w/∂x are absolutely continuous, ∂ 2w/∂x2 ∈ X , w(0) =
w(π) = 0}. Then

−Aw =
∞

∑
n=1

n2(w,wn)wn, w ∈ D(−A),

where wn(x) =
√

2/π sin nx, n = 1,2,3, . . ., is the orthonormal set of eigenvectors
of −A.

It is well-known that −A is the infinitesimal generator of an analytic semigroup
{S(t), t ≥ 0} in X and is given by

S(t)w =
∞

∑
n=1

e−n2t(w,wn)wn, w ∈ X ,

that satisfies ||S(t)|| ≤ exp(−π2t), t ≥ 0, and hence is a contraction semigroup.
Define now

f (t,zt ) = �3(t)
∫ 0

−r3

z(t + u,x)du,

a(t,zt) = �1(t)
∫ 0

−r1

z(t + u,x)du,

b(t,zt) = �2(t)z(t − r2,x).

Next,

|| f (t,zt)||3/4 =
�3(t)

||(−A)3/4||

∣
∣
∣
∣(−A)3/4

∫ 0

−r3

z(t + u,x)du

∣
∣
∣
∣

≤ �3(T )r3||zt ||C, a.s..

This shows that f : R+ ×C → D((−A)3/4) with C4(T ) = �3(T )r3. Similarly, a :
R+ ×C → X and b : R+ ×C → L(R,X). Thus, (7.11) can be expressed as (7.6)
with −A, f ,a, and b as defined above. Hence, there exists a unique mild solution by
Theorem 7.3.4.

The existence results Theorems 7.3.2 and 7.3.3 are not applicable to (7.11).

Example 7.4.2. Consider the stochastic partial differential equation with a variable
delay:

dz(t,x) =

[
∂ 2

∂x2 z(t,x)+F(t,z(ρ(t),x))
]

dt

+G(t,z(ρ(t),x))dβ (t), t > 0, (7.12)
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z(t,0) = z(t,π) = 0, t > 0,

z(s,x) = ϕ(s,x), ϕ(·,x) ∈C,

ϕ(s, ·) ∈ L2[0,π ], −r ≤ s ≤ 0, 0 ≤ x ≤ π ;

where β (t) is a standard one-dimensional Wiener process and E||ϕ ||2C < ∞.
Let us assume that F : R+×R → R and G : R+×R → R satisfy the conditions:
For t ≥ 0, there exists a constant k > 0 such that

|F(t,z1)−F(t,z2)|2 + |G(t,z1)−G(t,z2)|2 ≤ k|z1 − z2|2, z1,z2 ∈ R,

and there exist positive constants L,P,δ and a continuous function ψ : R+ → R+

satisfying |ψ(t)|2 ≤ Pexp(−δ t), for all t ≥ 0 such that

|F(t,z)|2 + |G(t,z)|2 ≤ L|z|2 +ψ(t), z ∈ R.

Take X = L2[0,π ], Y = R. Define −A : X →X by −A= ∂ 2/∂x2 with domain D(−A)
given as before in Example 7.4.1. So,−A is the infinitesimal generator of an analytic
semigroup {S(t), t ≥ 0} in X that satisfies ||S(t)|| ≤ exp(−π2t), t ≥ 0.

Define now

a(t,z(ρ(t))) = F(t,z(ρ(t),x)),

and
b(t,z(ρ(t))) = G(t,z(ρ(t),x)).

Next,

|a(t,z(ρ(t)))|2 + |b(t,z(ρ(t)))|2λ =

∫ π

0
[|F(t,z(ρ(t),x))|2 + |G(t,z(ρ(t),x))|2]dx

≤ π [L||z||2C +ψ(t)].

This shows that a : R+ ×C → X and b : R+ ×C → L(R,X). Thus, (7.12) can be
expressed as (7.1) with −A,a, and b as defined above and with f = 0. It can be
verified as above that

|a(t,z1(ρ(t)))−a(t,z2(ρ(t)))|2 + |b(t,z1(ρ(t)))−b(t,z2(ρ(t)))|2λ ≤ πk||z1− z2||2C.

Hence, (7.12) has a unique mild solution by Theorem 7.3.5.

Acknowledgements The author wishes to thank SIP and COFAA both from IPN, Mexico for
financial support.
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Chapter 8
A Constrained Optimization Problem
with Applications to Constrained MDPs

Xianping Guo, Qingda Wei, and Junyu Zhang

8.1 Introduction

Constrained optimization problems form an important aspect in control theory, for
instance, constrained Markov decision processes (MDPs) [2, 3, 10–13, 15–21, 24,
25, 27, 29–33, 35, 36], and constrained diffusion processes [4–9]. In this chapter,
we are concerned with a constrained optimization problem, in which the objective
function is defined on the product space of a linear space and a convex set. The
constrained optimization problem is to maximize the values of the function with
any fixed variable in the linear space, over a constrained subset of the convex set
which is given by the function with another fixed variable from the linear space and
with a given constraint. The basic idea for the constrained optimization problem
comes from the studies on the discounted and average optimality for discrete- and
continuous-time MDPs with a constraint. We aim to develop a unified approach to
dealing with such constrained MDPs. More precisely, for discrete- and continuous-
time MDPs with a constraint, the linear space can be taken as a set of some real-
valued functions such as reward and cost functions in such MDPs, and the convex set
can be chosen as the set of all randomized Markov policies, the set of all randomized
stationary policies, or the set of all the occupation measures according to a specified
case of MDPs with different criteria. The objective function can be taken as one of
the expected discounted (average) criteria, while the first variable in the objective
function can be taken as the reward/cost functions in MDPs and the second one as
a policy in a class of policies. Thus, MDPs with a constraint can be reduced to our
constrained optimization problem.
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A fundamental question on the constrained optimization problem is whether
there exists a constrained-optimal solution. The Lagrange multiplier technique is
a classical approach to proving the existence of a constrained-optimal solution
for such an optimization problem. There are several authors using the Lagrange
multiplier technique to study MDPs with a constraint; see, for instance, discrete-
time constrained MDPs with the discounted and average criteria [3, 32, 33] and
continuous-time constrained MDPs with the discounted and average criteria [18,
20,35]. All the aforementioned works [3,18,20,32,33,35] require the nonnegativity
assumption on the costs. We also apply this approach to analyze the constrained
optimization problem. Following the arguments in [3, 18, 20, 32, 33, 35], we give
conditions under which we prove the existence of a constrained-optimal solution
to the constrained optimization problem, and also give a characterization of a
constrained-optimal solution for a particular case.

Then, we apply our main results to discrete- and continuous-time constrained
MDPs with discounted and average criteria. More precisely, in Sect. 8.4.1, we use
the results to show the existence of a constrained-optimal policy for the discounted
discrete-time MDPs with a constraint in which the state space is a Polish space
and the rewards/costs may be unbounded from above and from below. To the
best of our knowledge, there are no any existing works dealing with constrained
discounted discrete-time MDPs in Borel spaces and with unbounded rewards/costs.
In Sect. 8.4.2, we investigate an application of the main results to constrained
discrete-time MDPs with state-dependent discount factors and extend the results in
[32] to the case in which discount factors can depend on states and rewards/costs
can be unbounded from above and from below. In Sects. 8.4.3 and 8.4.4, we
consider the average and discounted continuous-time MDPs with a constraint,
respectively. Removing the nonnegativity assumption on the cost function as in
[18,20,35], we prove that the results in [18,20,35] still hold using the results in this
chapter.

The rest of this chapter is organized as follows. In Sect. 8.2, we introduce the
constrained optimization problem under consideration and give some preliminary
facts needed to prove the existence of a constrained-optimal solution to the opti-
mization problem. In Sect. 8.3, we state and prove our main results on the existence
of a constrained-optimal solution. In Sect. 8.4, we provide some applications of our
main results to constrained MDPs with different optimality criteria.

8.2 A Constrained Optimization Problem

In this section, we state the constrained optimization problem under consideration
and give some preliminary results needed to prove the existence of a constrained-
optimal solution. To do so, we introduce some notation below:

1. Let C be a linear space and D a convex set.
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2. Suppose that G is a real-valued function on the product space C × D and
satisfies the following property:

G(k1c1 + k2c2,d) = k1G(c1,d)+ k2G(c2,d) (8.1)

for any c1,c2 ∈C, d ∈ D and any constants k1,k2 ∈ R := (−∞,+∞).
For any fixed c ∈C, let

U :=
{

d ∈ D : G(c,d)≤ ρ
}
,

which depends on the given c and a so-called constraint constant ρ .
Then, for another given r ∈ C, we consider a constrained optimization problem

below:

Maximize G(r, ·) over U. (8.2)

Definition 8.2.1. d∗ ∈U is said to be a constrained-optimal solution to the problem
(8.2) if d∗ maximizes G(r,d) over d ∈U, that is,

G(r,d∗) = sup
d∈U

G(r,d).

Remark 8.2.1. When D is a compact and convex metric space, and G(r,d) and
G(c,d) are continuous in d ∈ D, it follows from the Weierstrass theorem [1, p.40]
that there exists a constrained-optimal solution. In general, however, D may be
unmetrizable in some cases, such as the set of all randomized Markov policies in
continuous-time MDPs [20, p.10]; see continuous-time constrained MDPs with the
discounted criteria in Sect. 8.4.4. In order to solve (8.2), we assume that there exists
a subset D′ ⊆ D, which is assumed to be a compact metric space throughout this
chapter.

To analyze problem (8.2), we define the following unconstrained optimization
problem by introducing a Lagrange multiplier λ ≥ 0,

bλ := r−λc, G∗(bλ ) := sup
d∈D

G(bλ ,d), (8.3)

and then give the conditions below.

Assumption 8.2.1

(i) For each fixed λ ≥ 0, D∗
λ :=

{
dλ ∈ D′ | G(bλ ,dλ ) = G∗(bλ )

} 
= /0.
(ii) There exists a constant M > 0, such that max

{|G(r,d)|, |G(c,d)|}≤ M for all
d ∈ D.

(iii) G(r,d) and G(c,d) are continuous in d ∈ D′.
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Assumption 8.2.1(i) implies that there exists at least an element dλ ∈ D′ such
that G(bλ , ·) attains its maximum. In addition, the boundedness and continuity
hypotheses in Assumptions 8.2.1(ii) and (iii) are commonly used in optimization
control theory.

Assumption 8.2.2 For the given c ∈ C, there exists an element d′ ∈ D (depending
on c) such that G(c,d′)< ρ , which means that

{
d ∈ D | G(c,d)< ρ

} 
= /0.

Remark 8.2.2. Assumption 8.2.2 is a Slater-like hypothesis, typical for the con-
strained optimization problems; see, for instance, [3, 17, 18, 20, 32, 33, 35].

In order to prove the existence of a constrained-optimal solution, we need the
following preliminary lemmas.

Lemma 8.2.1. Suppose that Assumption 8.2.1(i) holds. Then, G(c,dλ ) is nonin-
creasing in λ ∈ [0,∞), where dλ ∈ D∗

λ is arbitrary but fixed for each λ ≥ 0.

Proof. For each d ∈ D, by (8.1) and (8.3), we have

G(bλ ,d) = G(r,d)−λG(c,d) for all λ ≥ 0.

Moreover, since G(bλ ,dλ ) = G∗(bλ ) for all λ ≥ 0 and dλ ∈ D∗
λ , we have, for any

h > 0,

−hG(c,dλ ) = G(bλ+h,dλ )−G(bλ ,dλ )

≤ G(bλ+h,dλ+h)−G(bλ ,dλ )

≤ G(bλ+h,dλ+h)−G(bλ ,dλ+h)

= −hG(c,dλ+h),

which implies that
G(c,dλ )≥ G(c,dλ+h).

Hence, G(c,dλ ) is nonincreasing in λ ∈ [0,∞). �

Remark 8.2.3. Under Assumption 8.2.1(i), it follows from Lemma 8.2.1 that the
following nonnegative constant

λ̃ := inf
{
λ ≥ 0 : G(c,dλ )≤ ρ ,dλ ∈ D∗

λ
}

(8.4)

is well defined.

Lemma 8.2.2. Suppose that Assumptions 8.2.1(i), (ii) and 8.2.2 hold. Then, the
constant λ̃ in (8.4) is finite; that is, λ̃ is in [0,∞).

Proof. Let κ := ρ−G(c,d
′
)> 0, with d′ as in Assumption 8.2.2. Since lim

λ→∞
2M
λ = 0

for the constant M as in Assumption 8.2.1(ii), there exists δ > 0 such that



8 A Constrained Optimization Problem with Applications to Constrained MDPs 129

2M
λ

−κ < 0 for all λ ≥ δ . (8.5)

Thus, for any dλ ∈ D∗
λ with λ ≥ δ , we have

G(r,dλ )−λG(c,dλ ) = G(bλ ,dλ )≥ G(bλ ,d
′
) = G(r,d

′
)−λG(c,d

′
).

That is,

G(r,dλ )−G(r,d
′
)

λ
+G(c,d

′
)−ρ ≥ G(c,dλ )−ρ ,

which, together with Assumption 8.2.1(ii) and (8.5), yields

G(c,dλ )−ρ ≤ |G(r,dλ )|+ |G(r,d
′
)|

λ
−κ ≤ 2M

λ
−κ < 0 for all λ ≥ δ . (8.6)

Hence, it follows from (8.6) that λ̃ ≤ δ < ∞. �

Lemma 8.2.3. Suppose that Assumptions 8.2.1(i) and (iii) hold. If lim
k→∞

λk = λ , and

dλk ∈ D∗
λk

(for each k ≥ 1) is such that lim
k→∞

dλk = d ∈ D′, then d ∈ D∗
λ .

Proof. As dλk ∈ D∗
λk

for all k ≥ 1, by (8.1) and (8.3), we have

G(r,dλk)−λkG(c,dλk) = G(bλk ,dλk)≥ G(bλk ,d) = G(r,d)−λkG(c,d) (8.7)

for all d ∈ D. Letting k → ∞ in (8.7) and using Assumption 8.2.1(iii), we get

G(bλ ,d) = G(r,d)−λG(c,d)≥ G(r,d)−λG(c,d) = G(bλ ,d) for all d ∈ D.

Thus, d ∈ D∗
λ . �

Lemma 8.2.4. If there exist λ0 ≥ 0 and d∗ ∈U such that

G(c,d∗) = ρ and G(bλ0 ,d∗) = G∗(bλ0),

then d∗ is a constrained-optimal solution to the problem (8.2).

Proof. For any d ∈U , since G(bλ0 ,d∗) = G∗(bλ0)≥ G(bλ0 ,d), we have

G(r,d∗)−λ0G(c,d∗)≥ G(r,d)−λ0G(c,d). (8.8)

As G(c,d∗) = ρ and G(c,d)≤ ρ (because d ∈U), from (8.8) we get

G(r,d∗)≥ G(r,d∗)+λ0(G(c,d)−ρ)≥ G(r,d) for all d ∈U,

which implies the desired result. �
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8.3 Main Results

In this section, we focus on the existence of a constrained-optimal solution. To do so,
in addition to Assumptions 8.2.1 and 8.2.2, we also impose the following condition.

Assumption 8.3.1

(i) For each θ ∈ [0,1], d1,d2 ∈ D∗
λ̃

, dθ := θd1 +(1− θ )d2 satisfies G(bλ̃ ,dθ ) =

G∗(bλ̃ ).
(ii) G(c,dθ ) is continuous in θ ∈ [0,1].

Remark 8.3.4. For each fixed c1 ∈C, if G(c1, ·) satisfies the following property

G(c1,dθ ) = θG(c1,d1)+ (1−θ )G(c1,d2)

for all d1,d2 ∈ D and θ ∈ [0,1], then Assumption 8.3.1 is obviously true.

Now we give our first main result on the problem (8.2).

Theorem 8.3.1. Under Assumptions 8.2.1, 8.2.2, and 8.3.1, the following state-
ments hold:

(a) If λ̃ = 0, then there exists a constrained-optimal solution d̃ ∈ D′.
(b) If λ̃ > 0, then a constrained-optimal solution d∗ ∈D exists, and moreover, there

exist a number θ ∗ ∈ [0,1] and d1,d2 ∈ D∗
λ̃

such that

G(c,d1)≥ ρ , G(c,d2)≤ ρ , and d∗ = θ ∗d1 +(1−θ ∗)d2.

Proof. (a) The case λ̃ = 0: By the definition of λ̃ , there exists a sequence dλk ∈
D∗
λk
⊂ D′ such that λk ↓ 0 as k → ∞. Because D′ is compact, without loss of

generality, we may assume that dλk → d̃ ∈ D′. Thus, by Lemma 8.2.1, we have
G(c,dλk) ≤ ρ for all k ≥ 1, and then it follows from Assumption 8.2.1(iii) that
d̃ ∈U . Moreover, for each d ∈U , we have G∗(bλk) = G(bλk ,dλk)≥ G(bλk ,d),
which, together with Assumption 8.2.1(ii), implies

G(r,dλk )−G(r,d)≥ λk(G(c,dλk)−G(c,d))≥−2λkM. (8.9)

Letting k → ∞ in (8.9), by Assumption 8.2.1(iii), we have

G(r, d̃)≥ G(r,d) for all d ∈U,

which means that d̃ is a constrained-optimal solution.
(b) The case λ̃ ∈ (0,∞): Since λ̃ is in (0,∞), there exist two sequences of positive

numbers {λk} and {δk} such that dλk ∈ D∗
λk

, dδk ∈ D∗
δk

, λk ↑ λ̃ , and δk ↓ λ̃
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as k → ∞. By the compactness of D′, we may suppose that dλk → d1 ∈ D′ and
dδk → d2 ∈D′. By Lemma 8.2.3, we have d1,d2 ∈D∗

λ̃
. By Assumption 8.2.1(iii)

and Lemma 8.2.1, we have

G(c,d1)≥ ρ and G(c,d2)≤ ρ . (8.10)

Define the following map:

θ �→ G(c,θd1 +(1−θ )d2) for each θ ∈ [0,1].

Thus, it follows from Assumption 8.3.1(ii) and (8.10) that there exists θ ∗ ∈ [0,1]
such that

G(c,θ ∗d1 +(1−θ ∗)d2) = ρ . (8.11)

Let d∗ := θ ∗d1+(1−θ ∗)d2. Then, by Assumption 8.3.1(i), we have G(bλ̃ ,d∗)=
G∗(bλ̃ ), which together with (8.11) and Lemma 8.2.4 yields that d∗ ∈ D is a
constrained-optimal solution. �

To further characterize a constrained-optimal solution, we next consider a
particular case of the problem (8.2).

A special case: Let X := {1,2, . . .}, Y be a metric space, and P(Y ) the set of
all probability measures on Y . For each i ∈ X , Y (i)⊂ Y is assumed to be a compact
metric space. Let D := {ψ | ψ : X → P(Y ) such that ψ(·|i) ∈ P(Y (i)) ∀ i ∈ X},
and D′ := {d| d : X → Y such that d(i) ∈Y (i) ∀ i ∈ X}.
Remark 8.3.5. (a) The set D is convex. That is, if ψk(k = 1,2) are in D, and

ψ p(·|i) := pψ1(·|i)+ (1− p)ψ2(·|i) for any p ∈ [0,1] and i ∈ X , then ψ p ∈ D.
(b) A function d ∈ D′ may be identified with the element ψ ∈ D, for which ψ(i) is

the Dirac measure at the point d(i) for all i ∈ X . Hence, we have D′ ⊂ D.
(c) Note that D′ can be written as the product space D′ =∏i∈X Y (i). Hence, by the

compactness of Y (i) and the Tychonoff theorem, D′ is a compact metric space.

In order to obtain the characterization of a constrained-optimal solution for this
particular case, we also need the following condition.

Assumption 8.3.2 For each λ ≥ 0, if d1,d2 ∈ D∗
λ , then d ∈ D∗

λ for each d ∈ {
d ∈

D′ : d(i) ∈ {d1(i),d2(i)} ∀ i ∈ X
}

.

Then, we have the second main result on the problem (8.2) as follows.

Theorem 8.3.2. (For the special case.) Suppose that Assumptions 8.2.1, 8.2.2,
8.3.1, and 8.3.2 hold for the special case. Then there exists a constrained-optimal
solution d∗, which is of one of the following two forms (i) and (ii): (i) d∗ ∈ D′
and (ii) there exist g1,g2 ∈ D∗

λ̃
, a point i∗ ∈ X, and a number θ0 ∈ [0,1] such that

g1(i) = g2(i) for all i 
= i∗, and, in addition,
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d∗(y|i) =
⎧
⎨

⎩

θ0 f or y = g1(i) when i = i∗,
1−θ0 f or y = g2(i) when i = i∗,
1 f or y = g1(i) when i 
= i∗.

Proof. Let λ̃ be as in (8.4). If λ̃ = 0, by Theorem 8.3.1 we have d∗ ∈ D′. Thus,
we only need to consider the other case λ̃ > 0. By Theorem 8.3.1(b), there exist
d1,d2 ∈D∗

λ̃
such that G(c,d1)≥ ρ and G(c,d2)≤ ρ . If G(c,d1) (or G(c,d2))= ρ , it

follows from Lemma 8.2.4 that d1 (or d2) is a constrained-optimal solution. Hence,
to complete the proof, we shall consider the following case:

G(c,d1)> ρ and G(c,d2)< ρ . (8.12)

Using d1 and d2, we construct a sequence {dn} as follows. For all n ≥ 1 and i ∈ X ,
let

dn(i) =

{
d1(i) i < n,
d2(i) i ≥ n.

Obviously, d1 = d2 and lim
n→∞

dn = d1. Since d1,d2 ∈ D∗
λ̃

, by Assumption 8.3.2, we

see that dn ∈ D∗
λ̃

for all n ≥ 1. As d1 = d2, by (8.12) we have G(c,d1)< ρ . If there

exists n∗ such that G(c,dn∗) = ρ , then dn∗ is a constrained-optimal solution (by
Lemma 8.2.4). Thus, in the remainder of the proof, we may assume that G(c,dn) 
= ρ
for all n ≥ 1. If G(c,dn)< ρ for all n ≥ 1, then by Assumption 8.2.1(iii), we have

lim
n→∞

G(c,dn) = G(c,d1)≤ ρ ,

which is a contradiction to (8.12). Hence, there exists some n > 1 such that
G(c,dn)> ρ , which, together with G(c,d1)< ρ , gives the existence of some ñ such
that

G(c,dñ)< ρ and G(c,dñ+1)> ρ . (8.13)

Obviously, dñ and dñ+1 differ in at most the point ñ.
Let g1 := dñ, g2 := dñ+1 and i∗ := ñ. For any θ ∈ [0,1], using g1 and g2, we

construct dθ ∈ D as follows. For each i ∈ X ,

dθ (y|i) =
⎧
⎨

⎩

θ for y = g1(i) when i = i∗,
1−θ for y = g2(i) when i = i∗,
1 for y = g1(i) when i 
= i∗.

Then, we have

dθ (·|i) = θδg1(i)(·)+ (1−θ )δg2(i)(·) (8.14)
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for all i ∈ X and θ ∈ [0,1], where δy(·) denotes the Dirac measure at any point y.
Hence, by (8.13), (8.14), and Assumption 8.3.1, there exists θ0 ∈ (0,1) such that

G(c,dθ0) = ρ and G(bλ̃ ,dθ0) = G∗(bλ̃ ),

which, together with Lemma 8.2.4, yield that dθ0 is a constrained-optimal solution.
Obviously, dθ0 randomizes between g1 and g2, which differ in at most the point i∗,
and so the theorem follows. �

8.4 Applications to MDPs with a Constraint

In this section, we show applications of the constrained optimization problem
to MDPs with a constraint. In Sect. 8.4.1, we use Theorem 8.3.1 to show the
existence of a constrained-optimal policy for the constrained discounted discrete-
time MDPs in a Polish space and with unbounded rewards/costs. In Sect. 8.4.2,
we investigate an application of Theorem 8.3.2 to discrete-time constrained MDPs
with state-dependent discount factors. In Sects. 8.4.3 and 8.4.4, we will improve the
corresponding results in [18, 20, 35] using Theorem 8.3.2 above.

8.4.1 Discrete-Time Constrained MDPs with Discounted
Criteria

The constrained discounted discrete-time MDPs with a constant discount factor
have been studied; see, for instance, [2, 11, 32] for the case of a countable state
space and [15, 16, 24, 27, 29] for the case of a Borel state space. Except [2] dealing
with the case in which the rewards may be unbounded from above and from below,
all the aforementioned works investigate the case in which rewards are assumed to
be bounded from above. To the best of our knowledge, in this subsection we first
deal with the case in which the state space is a Polish space and the rewards may be
unbounded from above and from below.

The model of discrete-time constrained MDPs under consideration is as follows
[22, 23]:

{
X ,A,(A(x),x ∈ X),Q(·|x,a),r(x,a),c(x,a),ρ}, (8.15)

where X and A are state and action spaces, which are assumed to be Polish spaces
with Borel σ -algebras B(X) and B(A), respectively. We denote by A(x) ∈ B(A)
the set of admissible actions at state x ∈ X . Let K := {(x,a)|x ∈ X ,a∈ A(x)}, which
is assumed to be a closed subset of X ×A. Furthermore, the transition law Q(·|x,a)
with (x,a) ∈ K is a stochastic kernel on X given K. Finally, the function r(x,a) on
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K denotes rewards, while the function c(x,a) on K and the number ρ denote costs
and a constraint, respectively. We assume that r(x,a) and c(x,a) are real-valued
Borel-measurable on K.

We denote by Π , Φ , and F the classes of all randomized history-dependent
policies, randomized stationary policies, and stationary policies, respectively; see
[22, 23] for details.

Let Ω := (X ×A)∞ and F the corresponding product σ -algebra. Then, for an
arbitrary policy π ∈ Π and an arbitrary initial distribution ν on X , the well-known
Tulcea theorem [22, p.178] gives the existence of a unique probability measure Pπ

ν
on (Ω ,F ) and a stochastic process {(xk,ak),k ≥ 0}. The expectation operator with
respect to Pπ

ν is denoted by Eπ
ν , and we write Eπ

ν as Eπ
x when ν({x}) = 1.

Fix a discount factor α ∈ (0,1) and an initial distribution ν on X . We define
the expected discounted reward V (r,π) and the expected discounted cost V (c,π) as
follows:

V (r,π) := Eπ
ν

[ ∞

∑
k=0

αkr(xk,ak)

]
and V (c,π) := Eπ

ν

[ ∞

∑
k=0

αkc(xk,ak)

]
for all π ∈Π .

Then, the constrained optimization problem for the model (8.15) is as follows:

Maximize V (r, ·) over U1 :=
{
π ∈Π | V (c,π)≤ ρ

}
. (8.16)

To solve (8.16), we consider the following conditions:

(B1) There exist a continuous function ω1 ≥ 1 on X and positive constants L1, m,
and β1 < 1 such that, for each (x,a) ∈ K,

|r(x,a)| ≤ L1ω1(x), |c(x,a)| ≤ L1ω1(x), and
∫

X
ω2

1 (y)Q(dy|x,a)≤ β1ω2
1 (x)+m.

(B2) The function ω1 is a moment function on K, that is, there exists a nonde-
creasing sequence of compact sets Kn ↑ K such that lim

n→∞
inf

{
ω1(x) : (x,a) /∈

Kn
}
= ∞.

(B3) ν(ω2
1 ) :=

∫
X ω2

1 (x)ν(dx)< ∞.
(B4) Q(·|x,a) is weakly continuous on K, that is, the function

∫
X u(y)Q(dy|x,a)

is continuous in (x,a) ∈ K for each bounded continuous function u on X .
(B5) The functions r(x,a) and c(x,a) are continuous on K.
(B6) There exists π ′ ∈Π such that V (c,π ′)< ρ .

Remark 8.4.6. (a) Condition (B1) is known as the statement of the Lyapunov-
like inequality and the growth condition on the rewards/costs. Conditions (B4)
and (B5) are the usual continuity conditions. Condition (B6) is the Slater-like
condition.

(b) Conditions (B1) and (B3) are used to guarantee the finiteness of the expected
discounted rewards/costs. The role of condition (B2) is to prove the compact-
ness of the set of all the discount occupation measures in the ω1-weak topology
(see Lemma 8.4.5).
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To state our main results of Sect. 8.4.1, we need to introduce some notation.
Let ω1 be as in condition (B1). We denote by Bω1(X) the Banach space of real-

valued measurable functions u on X with the finite norm ‖u‖ω1 := sup
x∈X

|u(x)|
ω1(x)

, that

is, Bω1(X) := {u| ‖u‖ω1 < ∞}. Moreover, we say that a function v on K belongs
to Bω1(K) if x �→ sup

a∈A(x)
|v(x,a)| is in Bω1(X). We denote by Cω1(K) the set of all

continuous functions on K which also belong to Bω1(K), and Mω1(K) stands for
the set of all measures μ on B(K) such that

∫
K ω1(x)μ(dx,da) < ∞. Moreover,

Mω1(K) is endowed with ω1-weak topology. Recall that the ω1-weak topology on
Mω1(K) is the coarsest topology for which all mappings μ �→ ∫

K v(x,a)μ(dx,da) are
continuous for each v ∈Cω1(K). Since X and A are both Polish spaces, by Corollary
A.44 in [14, p.423] we see that Mω1(K) is metrizable with respect to the ω1-weak
topology.

By Lemma 24 in [29, p.141], it suffices to consider the discount occupation
measures induced by randomized stationary policies in Φ . For each ϕ ∈ Φ , we
define the discount occupation measure by

ηϕ (B×E) :=
∞

∑
k=0

αkPϕ
ν (xk ∈ B,ak ∈ E) for all B ∈B(X) and E ∈ B(A).

The set of all the discount occupation measures is denoted by N , i.e., N := {ηϕ :
ϕ ∈Φ}. From the conditions (B1) and (B3), we have

∫

K
ω1(x)ηϕ (dx,da) =

∞

∑
k=0

αkEϕ
ν
[
ω1(xk)

] ≤ ν(ω2
1 )

1−α
+

m
(1−β1)(1−α)

< ∞

(8.17)

for all ϕ ∈Φ , which yields N ⊂ Mω1(K).
Then, the constrained optimization problem (8.16) is equivalent to the following

form:

Maximize
∫

K
r(x,a)η(dx,da) over

{
η ∈ N |

∫

K
c(x,a)η(dx,da)≤ ρ

}
=: Uo.

(8.18)

Now we provide a characterization of the discount occupation measures below.

Lemma 8.4.5. Under conditions (B1)–(B4), the following statements hold:

(a) If η ∈ Mω1(K), then η is in N if and only if

∫

K
u(x)η(dx,da) =

∫

X
u(x)ν(dx)+α

∫

K

∫

X
u(y)Q(dy|x,a)η(dx,da)

for each bounded continuous function u on X.
(b) N is convex and compact in the ω1-weak topology.
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Proof. (a) See Lemma 25 in [29, p.141] for the proof of part (a).
(b) The convexity property follows directly from part (a). To prove that N is

compact, we will first show that N is closed in the ω1-weak topology. Let{
ηϕn

} ⊂ N be a sequence converging to some measure η on X × A in the
ω1-weak topology. Thus, there exists a positive integer N1 such that for each
n ≥ N1, we have

∣
∣
∣
∣

∫

K
ω1(x)ηϕn(dx,da)−

∫

X×A
ω1(x)η(dx,da)

∣
∣
∣
∣≤ 1,

which together with (8.17) yields

∫

X×A
ω1(x)η(dx,da)≤ ν(ω2

1 )

1−α
+

m
(1−β1)(1−α)

+ 1 < ∞,

and so η ∈ Mω1(X ×A). Moreover, since K is assumed to be closed and ηϕn

weakly converges to η , by Theorem A.38 in [14, p.420] we have

0 = liminf
n→∞

ηϕn(Kc)≥ η(Kc)≥ 0,

which implies that η concentrates on K, where Kc denotes the complement of
K. In addition, by part (a) we have

∫

K
u(x)ηϕn(dx,da) =

∫

X
u(x)ν(dx)+α

∫

K

∫

X
u(y)Q(dy|x,a)ηϕn(dx,da)

for each bounded continuous function u on X , which together with condition
(B4) yields

∫

K
u(x)η(dx,da) =

∫

X
u(x)ν(dx)+α

∫

K

∫

X
u(y)Q(dy|x,a)η(dx,da).

Hence, by part (a) we see that η ∈N , and so N is closed.
To prove the compactness of N , it suffices to show that N is relatively compact

in the ω1-weak topology. By (8.17) we have

sup
η∈N

∫

K
ω1(x)η(dx,da) = sup

ϕ∈Φ

∫

K
ω1(x)ηϕ (dx,da)

≤ ν(ω2
1 )

1−α
+

m
(1−β1)(1−α)

<∞. (8.19)

On the other hand, from condition (B2), we see that ϖn := inf{ω1(x) : (x,a) /∈
Kn} ↑ ∞. Then, by conditions (B1) and (B3), we have

ϖn

∫

Kc
n

ω1(x)ηϕ (dx,da) ≤
∫

K
ω2

1 (x)η
ϕ (dx,da)

≤ ν(ω2
1 )

1−α
+

m
(1−β1)(1−α)

(8.20)
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for all ϕ ∈ Φ . Thus, by (8.20) we see that for any ε > 0, there exists an integer
N2 > 0 such that

sup
ϕ∈Φ

∫

Kc
N2

ω1(x)ηϕ (dx,da)≤ ε. (8.21)

Hence, by (8.19), (8.21), and Corollary A.46 in [14, p.424], we conclude that N
is relatively compact in the ω1-weak topology. Therefore, N is compact in the ω1-
weak topology. �

Under conditions (B1)–(B5), from Lemma 8.4.5 and (8.18), we define a real-
valued function G on C×D :=Cω1(K)×N as follows:

G(c,η) :=
∫

K
c(x,a)η(dx,da) for (c,η) ∈C×D =Cω1(K)×N . (8.22)

Obviously, the function G defined in (8.22) satisfies (8.1). Moreover, let D′ := N .
Now we provide our main result of Sect. 8.4.1 on the existence of constrained-

optimal policies for (8.16).

Proposition 8.4.1. Under conditions (B1)–(B6), there exists a constrained-optimal
policy ϕ∗ ∈Φ for the constrained MDPs in (8.16), that is, V (r,ϕ∗) = sup

π∈U1

V (r,π).

Proof. We first verify Assumption 8.2.1. From conditions (B1) and (B5), we see that
for each λ ≥ 0, the mapping ηϕ �→ ∫

K(r(x,a)−λc(x,a))ηϕ (dx,da) is continuous
on N . Thus, Assumption 8.2.1(i) follows from the compactness of N . Moreover,
by condition (B1) and (8.17), we have

max
{|G(r,η)|, |G(c,η)|} ≤ L1ν(ω2

1 )

1−α
+

mL1

(1−β1)(1−α)
=: M

for all η ∈ N , and so Assumption 8.2.1(ii) follows. By conditions (B1) and (B5),
we see that Assumption 8.2.1(iii) is obviously true.

Secondly, Assumption 8.2.2 follows from condition (B6) and Lemma 24 in [29,
p.141].

Finally, since G(c,θη1 +(1− θ )η2) = θG(c,η1)+ (1− θ )G(c,η2) for all θ ∈
[0,1] and η1,η2 ∈ N , Assumption 8.3.1 is obviously true.

Hence, Theorem 8.3.1 gives the existence of η∗ ∈ N such that

∫

K
r(x,a)η∗(dx,da) = sup

η∈Uo

∫

K
r(x,a)η(dx,da),

which together with Theorem 6.3.7 in [22] implies Proposition 8.4.1. �
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8.4.2 Constrained MDPs with State-Dependent Discount
Factors

In this subsection, we use discrete-time constrained MDPs with state-dependent
discount factors to present another application of the constrained optimization
problem. Discrete-time unconstrained MDPs with nonconstant discount factors are
studied in [26, 34]. Moreover, [36] deals with discrete-time constrained MDPs with
state-dependent discount factors in which the costs are assumed to be bounded from
below by a convex analytic approach, and here we use Theorem 8.3.1 above to deal
with the case in which the costs are allowed to be unbounded from above and from
below.

The model of discrete-time constrained MDPs with state-dependent discount
factors is as follows:

{
X ,A,(A(i), i ∈ X),Q(·|i,a),(α(i), i ∈ X),r(i,a),c(i,a),ρ

}
,

where the state space X is the set of all positive integers, α(i) ∈ (0,1) are given
discount factors depending on state i ∈ X , and the other components are the same as
in (8.15), with ik here in lieu of xk in Sect. 8.4.1.

Fix any initial distribution ν on X . The discounted criteria, W (r,π) and W (c,π),
are defined by

W (r,π) := Eπ
ν

[
r(i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)r(in,an)

]
,

W (c,π) := Eπ
ν

[
c(i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)c(in,an)

]
for all π ∈Π .

Then, the constrained optimization problem is as follows:

sup
π∈Π

W (r,π) subject to W (c,π)≤ ρ . (8.23)

To ensure the existence of a constrained-optimal policy π∗ for (8.23) (i.e.,
W (r,π∗) ≥ W (r,π) for all π such that W (c,π) ≤ ρ), we consider the following
conditions from [34]:

(C1) There exists a constant α ∈ (0,1) such that 0 < α(i)≤ α for all i ∈ X .
(C2) There exist constants L2 > 0 and β2, with 1 ≤ β2 <

1
α and a function ω2 ≥ 1

on X such that, for each (i,a) ∈ K,

|r(i,a)| ≤ L2ω2(i), |c(i,a)| ≤ L2ω2(i), and ∑
j∈X

ω2( j)Q( j|i,a) ≤ β2ω2(i).

(C3) ν(ω2) := ∑
i∈X

ω2(i)ν(i) < ∞.
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(C4) For each i ∈ X , A(i) is compact.
(C5) For each i, j ∈ X , the functions r(i,a), c(i,a), Q( j|i,a), and ∑

k∈X
ω2(k)Q(k|i,a)

are continuous in a ∈ A(i).
(C6) There exists π̃ ∈Π such that W (c, π̃)< ρ .

Remark 8.4.7. Conditions (C1)–(C3) are known as the finiteness conditions. Con-
ditions (C4) and (C5) are the usual continuity-compactness conditions. Condition
(C6) is the Slater-like condition.

Under conditions (C1)–(C5), we define a real-valued function G on C×D :=
Cω2(K)×Π as follows:

G(c,π) :=W (c,π) for (c,π) ∈C×D =Cω2(K)×Π . (8.24)

Obviously, since the set Π is convex, the function G defined in (8.24) satisfies (8.1).
Let D′ := F . Then, we state our main result of Sect. 8.4.2 on the existence of

constrained-optimal policies for (8.23).

Theorem 8.4.3. Suppose that conditions (C1)–(C6) hold. Then there exists a
constrained-optimal policy for (8.23), which is either a stationary policy or a
randomized stationary policy that randomizes between two stationary policies
differing in at most one state; that is, there exist two stationary policies f 1, f 2,
a state i∗ ∈ X, and a number p∗ ∈ [0,1] such that f 1(i) = f 2(i) for all i 
= i∗, and, in
addition, the randomized stationary policy π p∗(·|i) is constrained-optimal, where

π p∗(a|i) =
⎧
⎨

⎩

p∗ f or a = f 1(i) when i = i∗,
1− p∗ f or a = f 2(i) when i = i∗,
1 f or a = f 1(i) when i 
= i∗.

Remark 8.4.8. Theorem 8.4.3 extends the corresponding one in [32] for a constant
discount factor to the case of state-dependent discount factors. Moreover, we remove
the nonnegativity assumption on the costs as in [32].

We will prove Theorem 8.4.3 using Theorem 8.3.2. To do so, we introduce the
notation below.

For each ϕ ∈Φ, i ∈ X , and π ∈Π , define

Wr(i,π) := Eπ
i

[
r(i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)r(in,an)

]
,

Wc(i,π) := Eπ
i

[
c(i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)c(in,an)

]
,

bλ (i,a) := r(i,a)−λc(i,a) for all (i,a) ∈ K,
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Wλ (i,π) := Eπ
i

[
bλ (i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)bλ (in,an)

]
,

W ∗
λ (i) := sup

π∈Π
Wλ (i,π),

and

u(i,ϕ) :=
∫

A(i)
u(i,a)ϕ(da|i), for u(i,a) = bλ (i,a),r(i,a),c(i,a),

Q( j|i,ϕ) :=
∫

A(i)
Q( j|i,a)ϕ(da|i) for j ∈ X .

Then, we give three lemmas below, which are used to prove Theorem 8.4.3.

Lemma 8.4.6. Under conditions (C1)–(C5), the following assertions hold:

(a) |W (r,π)| ≤ L2ν(ω2)
1−αβ2

and |W (c,π)| ≤ L2ν(ω2)
1−αβ2

for all π ∈Π .

(b) For each fixed ϕ ∈Φ , Wu(·,ϕ) (u = r,c) is the unique solution in Bω2(X) to the
following equation:

v(i) = u(i,ϕ)+α(i)∑
j∈X

v( j)Q( j|i,ϕ) f or all i ∈ X .

(c) W (r, f ) and W (c, f ) are continuous in f ∈ F.

Proof. For the proofs of (a) and (b), see Theorem 3.1 in [34].
(c) We only prove the continuity of W (r, f ) in f ∈F because the other case is similar.
Let fn → f as n → ∞, and fix any i ∈ X . Choose any subsequence {Wr(i, fnm)} of
{Wr(i, fn)} converging to some point v(i) as m → ∞. Then, since X is denumerable,
the Tychonoff theorem, together with the part (a) and fn → f , gives the existence of
subsequence {Wr( j, fnk ), j ∈ X} of {Wr( j, fnm ), j ∈ X} such that

lim
k→∞

Wr( j, fnk ) =: v′( j), v′(i) = v(i), and lim
k→∞

fnk( j) = f ( j) for all j ∈ X . (8.25)

Furthermore, by Theorem 3.1 in [34], we have |v′( j)| ≤ L2ω2( j)
1−αβ2

for all j ∈ X , which

implies that v′ ∈ Bω2(X). On the other hand, for the given i ∈ X and all k ≥ 1, by
part (b) we have

Wr(i, fnk ) = r(i, fnk )+α(i)∑
j∈X

Wr( j, fnk )Q( j|i, fnk ). (8.26)

Then, it follows from (8.25), (8.26), condition (C5), and Lemma 8.3.7 in [23, p.48]
that

v′(i) = r(i, f )+α(i)∑
j∈X

v′( j)Q( j|i, f ).
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Hence, part (b) yields

v′(i) =Wr(i, f ). (8.27)

Thus, as the above subsequence {Wr(i, fnm)} and i ∈ X are arbitrarily chosen and
(by (8.27)) all such subsequences have the same limit Wr(i, f ), we have

lim
n→∞

Wr(i, fn) =Wr(i, f ) for all i ∈ X .

Therefore, from condition (C3) and Theorem A.6 in [22, p.171], we get

lim
n→∞

W (r, fn) = ∑
i∈X

[
lim
n→∞

Wr(i, fn)

]
ν(i) = ∑

i∈X
Wr(i, f )ν(i) =W (r, f ),

which gives the desired conclusion, W (r, fn)→W (r, f ) as n → ∞. �

Lemma 8.4.7. Suppose that conditions (C1), (C2), (C4), and (C5) hold. Then we
have

(a) W ∗
λ is the unique solution of the following equation in Bω2(X):

v(i) = sup
a∈A(i)

{
bλ (i,a)+α(i)∑

j∈X
v( j)Q( j|i,a)

}
for all i ∈ X . (8.28)

(b) There exists a function f ∗ ∈ F such that f ∗(i) ∈ A(i) attains the maximum in
(8.28) for each i ∈ X, that is,

W ∗
λ (i) = bλ (i, f ∗)+α(i)∑

j∈X

W ∗
λ ( j)Q( j|i, f ∗) for all i ∈ X , (8.29)

and f ∗ ∈ F is optimal. Conversely, if f ∗ ∈ F is optimal, it satisfies (8.29).

Proof. See Theorem 3.2 in [34]. �

Remark 8.4.9. Under conditions (C1), (C2), (C4), and (C5), for each λ ≥ 0,
let D∗

λ (e) :=
{

f ∈ F : Wλ (i, f ) = W ∗
λ (i) for all i ∈ X

}
. Then, it follows from

Lemma 8.4.7 that D∗
λ (e) 
= /0, and that f ∈ D∗

λ (e) if and only if f ∈ F satisfies
(8.29).

Lemma 8.4.8. Suppose that conditions (C1)–(C5) hold. Then, for each f1, f2 ∈
D∗
λ (e) (with any fixed λ ≥ 0), and 0 ≤ p ≤ 1, define a policy π p by π p(·|i) :=

pδ f1(i)(·)+ (1− p)δ f2(i)(·) for all i ∈ X. Then,

(a) W λ (i,π p) =W ∗
λ (i) for all i ∈ X.

(b) W (c,π p) is continuous in p ∈ [0,1].
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Proof. (a) Since

bλ (i,π p) = pbλ (i, f1)+ (1− p)bλ(i, f2), (8.30)

Q( j|i,π p) = pQ( j|i, f1)+ (1− p)Q( j|i, f2), (8.31)

by Lemma 8.4.7 and the definition of D∗
λ (e), we have

W ∗
λ (i) = bλ (i, fl)+α(i)∑

j∈X
W ∗
λ ( j)Q( j|i, fl ) for all i ∈ X and l = 1,2,

which together with (8.30) and (8.31) gives

W ∗
λ (i) = bλ (i,π p)+α(i)∑

j∈X
W ∗
λ ( j)Q( j|i,π p) for all i ∈ X . (8.32)

Therefore, by Lemma 8.4.6(b) and (8.32), we have Wλ (i,π p) = W ∗
λ (i) for all

i ∈ X , and so part (a) follows.
(b) For any p ∈ [0,1] and any sequence {pm} in [0,1] such that lim

m→∞
pm = p, by

Lemma 8.4.6, we have

Wc(i,π pm)=c(i,π pm)+α(i)∑
j∈X

Wc( j,π pm)Q( j|i,π pm) for all i ∈ X and m≥1.

(8.33)

Hence, as in the proof of Lemma 8.4.6, from (8.33), the definition of π pm and
Theorem A.6 in [22, p.171], we have

lim
m→∞

W (c,π pm) =W (c,π p),

and so W (c,π p) is continuous in p ∈ [0,1]. �

Proof of Theorem 8.4.3. By Lemmas 8.4.6–8.4.8 and (8.24), we see that As-
sumptions 8.2.1 and 8.3.1 hold. Moreover, Assumptions 8.2.2 and 8.3.2 follow
from condition (C6) and Lemma 8.4.7, respectively. Hence, by Theorem 8.3.2, we
complete the proof. �

8.4.3 Continuous-Time Constrained MDPs with Average
Criteria

In this subsection, removing the nonnegativity assumption on the cost function as
in [20, 35], we will prove that the corresponding results in [20, 35] still hold using
Theorem 8.3.2 above.

The model of continuous-time constrained MDPs is of the form [18, 20, 30, 35]:

{
X ,A,(A(i), i ∈ X),q(·|i,a),r(i,a),c(i,a),ρ}, (8.34)
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where X is assumed to be a denumerable set. Without loss of generality, we assume
that X is the set of all positive integers. Furthermore, the transition rates q( j|i,a),
which satisfy q( j|i,a) ≥ 0 for all (i,a) ∈ K and j 
= i. We also assume that the
transition rates q( j|i,a) are conservative, i.e., ∑

j∈X
q( j|i,a) = 0 for all (i,a) ∈ K, and

stable, which means that q∗(i) := sup
a∈A(i)

−q(i|i,a) < ∞ for all i ∈ X . In addition,

q( j|i,a) is measurable in a ∈ A(i) for each fixed i, j ∈ X . The other components are
the same as in (8.15), with a state i here in lieu of a state x in Sect. 8.4.1.

We denote by Πm, Φ and F the classes of all randomized Markov policies, ran-
domized stationary policies, and stationary policies, respectively; see [18,20,30,35]
for details.

To guarantee the regularity of the Q-process, we impose the following drift
condition from [30]:

(D1) There exists a nondecreasing function ω3 ≥ 1 on X such that lim
i→∞

ω3(i) = ∞.

(D2) There exist constants γ1 ≥ κ1 > 0 and a state i0 ∈ X such that

∑
j∈X

q( j|i,a)ω2
3 ( j)≤−κ1ω2

3 (i)+ γ1Ii0(i) for all (i,a) ∈ K,

where IB(·) denotes the indicator function of any set B.
Let T := [0,∞), and let (Ω ,B(Ω)) be the canonical product measurable space with
(X ×A)T being the set of all maps from T to X ×A. Fix an initial distribution ν on
X . Then, under conditions (D1) and (D2), by Theorem 2.3 in [20, p.14], for each
policy π ∈ Πm, there exist a unique probability measure Pπ

ν on (Ω ,B(Ω)) and a
stochastic process {(x(t),a(t)), t ≥ 0}. The expectation operator with respect to Pπ

ν
is denoted by Eπ

ν .
For each π ∈Πm, we define the expected average criteria, V (r,π) and V (c,π), as

follows:

V (r,π) : = liminf
T→∞

Eπ
ν

[
∫ T

0 r(x(t),a(t))dt

]

T
,

V (c,π) : = limsup
T→∞

Eπ
ν

[
∫ T

0 c(x(t),a(t))dt

]

T
.

Then, the constrained optimization problem for the average criteria is as follows:

sup
π∈Πm

V (r,π) subject to V (c,π)≤ ρ . (8.35)

To guarantee the existence of a constrained-optimal policy π∗ for (8.35) (i.e.,
V (r,π∗)≥V (r,π) for all π such that V (c,π)≤ ρ), we need the following conditions
from [20, 30, 35]:
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(D3) There exists a constant L3 > 0 such that

|r(i,a)| ≤ L3ω3(i) and |c(i,a)| ≤ L3ω3(i) for all (i,a) ∈ K.

(D4) For each i ∈ X , A(i) is compact.
(D5) For each i ∈ X , q∗(i)≤ ω3(i).
(D6) ν(ω2

3 ) := ∑
i∈X

ω2
3 (i)ν(i) < ∞.

(D7) For each i, j ∈ X , the functions r(i,a), c(i,a), q( j|i,a), and ∑
k∈X

ω3(k)q(k|i,a)
are continuous in a∈ A(i). (D8) For each ϕ ∈Φ , the corresponding Markov process
with transition rates q( j|i,ϕ) is irreducible, where q( j|i,ϕ) :=

∫
A(i) q( j|i,a)ϕ(da|i)

for all i, j ∈ X .
(D9) There exists ϕ ′ ∈Φ such that V (c,ϕ ′)< ρ .

From conditions (D1), (D2), and (D8), by Theorem 4.2 in [28], for each ϕ ∈Φ ,
the corresponding Markov process with transition rates q( j|i,ϕ) has a unique
invariant probability measure μϕ on X . Moreover, under conditions (D1)–(D4),
(D7), and (D8), by Theorem 7.2 in [30] we have

V (r,ϕ) = lim
T→∞

1
T

Eϕ
ν

[∫ T

0
r(x(t),a(t))dt

]
= ∑

i∈X
r(i,ϕ)μϕ (i) (8.36)

and

V (c,ϕ) = lim
T→∞

1
T

Eϕ
ν

[∫ T

0
c(x(t),a(t))dt

]
= ∑

i∈X
c(i,ϕ)μϕ(i), (8.37)

where

r(i,ϕ) :=
∫

A(i)
r(i,a)ϕ(da|i) and c(i,ϕ) :=

∫

A(i)
c(i,a)ϕ(da|i) for all i ∈ X .

For each ϕ ∈Φ , we define the average occupation measure μ̂ϕ by

μ̂ϕ ({i}×B) := μϕ(i)ϕ(B|i) for all i ∈ X and B ∈ B(A(i)).

The set of all the average occupation measures is denoted by N1, i.e., N1 := {μ̂ϕ :
ϕ ∈Φ}.

Then, we have the following result.

Lemma 8.4.9. Suppose that conditions (D1)–(D8) hold. Then, for any π ∈Πm with
V (c,π)≤ ρ , there exists μ̂ϕ0 ∈N1 such that V (r,ϕ0)≥V (r,π) and V (c,ϕ0)≤ ρ .

Proof. For each fixed π ∈ Πm with V (c,π) ≤ ρ and n ≥ 1, we define a measure
μn by

μn({i}×B) :=
1
n

∫ n

0
Eπ
ν
[
I{i}×B(x(t),a(t))

]
dt for all i ∈ X and B ∈ B(A(i)).

(8.38)
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Then, by conditions (D2) and (D6), Lemma 6.3 in [20, p.90], and (8.38), we have

∑
i∈X

∫

A(i)
ω2

3 (i)μn(i,da) =
1
n

∫ n

0
Eπ
ν
[
ω2

3 (x(t))
]
dt

≤ 1
n

∫ n

0
∑
i∈X

[
e−κ1tω2

3 (i)+
γ1

κ1
(1− e−κ1t)

]
ν(i)dt

≤ ν(ω2
3 )+

γ1

κ1
< ∞. (8.39)

On the other hand, from conditions (D1) and (D4), we see that the sets {(i,a) ∈ K :
ω2

3 (i) ≤ zω3(i)} are compact in K for each z ≥ 1. Hence, by (8.39) and Corollary
A.46 in [14, p.424], we conclude that the sequence {μn} is relatively compact in the
ω3-weak topology. Thus, there exist a subsequence {μnl} of {μn} and a probability
measure μ ∈Mω3(X ×A) such that μnl converges to μ in the ω3-weak topology. By
condition (D4), we see that K is closed. Then, since μnl weakly converges to μ , by
Theorem A.38 in [14, p.420], we have

0 = liminf
l→∞

μnl (K
c)≥ μ(Kc)≥ 0,

which implies μ(K) = 1. Moreover, for each bounded function v on X , a direct
calculation together with condition (D5), the Fubini theorem, the Kolmogorov
forward equation, and Theorem 2.3 in [20, p.14] gives

∑
i∈X

∫

A

[

∑
j∈X

q( j|i,a)v( j)

]
μnl (i,da)

=
1
nl

∫ nl

0
∑
i∈X

∫

A

[

∑
j∈X

q( j|i,a)v( j)

]
Pπ
ν (x(t) = i,a(t) ∈ da)dt

=
1
nl

∫ nl

0
∑
k∈X
∑
i∈X

∫

A

[

∑
j∈X

q( j|i,a)v( j)

]
Pπ

k (x(t) = i)πt(da|i)ν(k)dt

=
1
nl

∫ nl

0
∑
k∈X

∑
j∈X

v( j)

[

∑
i∈X

q( j|i,πt)pπ(0,k, t, i)

]
ν(k)dt

=
1
nl

∫ nl

0
∑
k∈X

∑
j∈X

v( j)
∂ pπ (0,k, t, j)

∂ t
ν(k)dt

=
1
nl
∑
k∈X

∑
j∈X

v( j)

[
pπ(0,k,nl , j)− pπ(0,k,0, j)

]
ν(k)

=
1
nl

Eπ
ν
[
v(x(nl))

]− 1
nl
∑
k∈X

v(k)ν(k), (8.40)
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where pπ(0, i, t, j) denotes the minimal transition function with transition rates
q( j|i,πt) :=

∫
A(i) q( j|i,a)πt(da|i) for all i, j ∈ X and t ≥ 0. Letting l → ∞ in (8.40),

by conditions (D5), (D7), and (8.39), we have

∑
i∈X

∫

A

[

∑
j∈X

q( j|i,a)v( j)

]
μ(i,da) = 0

for each bounded function v on X , which together with Lemma 4.6 in [30] yields
μ ∈ N1. Hence, there exists ϕ0 ∈ Φ such that μ = μ̂ϕ0 . Furthermore, by condition
(D3), (8.38), and (8.39), we have

V (c,π)≥ limsup
n→∞

∑
i∈X

∫

A
c(i,a)μn(i,da) and V (r,π)≤ liminf

n→∞ ∑
i∈X

∫

A
r(i,a)μn(i,da),

which together with conditions (D3) and (D7) yield

ρ ≥V (c,π)≥ ∑
i∈X

∫

A
c(i,a)μ̂ϕ0(i,da) =V (c,ϕ0),

and
V (r,π)≤ ∑

i∈X

∫

A
r(i,a)μ̂ϕ0(i,da) =V (r,ϕ0).

This completes the proof of the lemma. �

By Lemma 8.4.9 we see that the constrained optimization problem (8.35) is
equivalent to the following form:

sup
ϕ∈Φ

V (r,ϕ) subject to V (c,ϕ)≤ ρ . (8.41)

Under conditions (D1)–(D8), from (8.41) we define a real-valued function G on
C×D :=Cω3(K)×Φ as follows:

G(c,ϕ) :=V (c,ϕ) for (c,ϕ) ∈C×D =Cω3(K)×Φ. (8.42)

Then, by (8.36) and (8.37), we see that the function G defined in (8.42) satisfies
(8.1). Moreover, let D′ := F .

Now we state our main result of Sect. 8.4.3 on the existence of constrained-
optimal policies for (8.35).

Proposition 8.4.2. Suppose that conditions (D1)–(D9) hold. Then there exists a
constrained-optimal policy for (8.35), which may be a stationary policy or a
randomized stationary policy that randomizes between two stationary policies
differing in at most one state.
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Proof. It follows from Lemma 7.2, Theorem 7.8, and Lemma 12.5 in [20] that
Assumptions 8.2.1 and 8.3.2 hold. Obviously, condition (D9) implies Assump-
tion 8.2.2. Finally, from Lemma 12.6 and the proof of Theorem 12.4 in [20], we
see that Assumption 8.3.1 holds. Hence, by Theorem 8.3.2, we complete the proof.
�

Remark 8.4.10. Proposition 8.4.2 shows that the nonnegativity assumption on the
costs as in [20, 35] is not required.

8.4.4 Continuous-Time Constrained MDPs with Discounted
Criteria

In this subsection, we consider the following discounted criteria J(r,π) and J(c,π)
in (8.43) below for the model (8.34), in lieu of the average criteria above. Removing
the nonnegativity assumption on the cost function as in [18, 20], we will prove that
the corresponding results in [18, 20] still hold using Theorem 8.3.2 above.

With the same components as in the model (8.34), we consider the following drift
condition from [18, 20]:

(E1) There exists a function ω4 ≥ 1 on X and constants γ2 ≥ 0, κ2 
= 0, and L > 0
such that

q∗(i)≤ Lω4(i) and ∑
j∈X

ω4( j)q( j|i,a) ≤ κ2ω4(i)+ γ2 for all (i,a) ∈ K.

Fix a discount factor α > 0 and an initial distribution ν on X . For each π ∈Πm, we
define the discounted criteria, J(r,π) and J(c,π), as follows:

J(r,π) : =Eπ
ν

[∫ ∞

0
e−αt r(x(t),a(t))dt

]
, J(c,π) : =Eπ

ν

[∫ ∞

0
e−αt c(x(t),a(t))dt

]
.

(8.43)

Then, the constrained optimization problem for the discounted criteria is as follows:

sup
π∈Πm

J(r,π) subject to J(c,π)≤ ρ . (8.44)

To ensure the existence of a constrained-optimal policy π∗ for (8.44) (i.e., J(r,π∗)≥
J(r,π) for all π such that J(c,π) ≤ ρ), we consider the following conditions from
[18, 20]:
(E2) There exists a constant L4 > 0 such that

|r(i,a)| ≤ L4ω4(i) and |c(i,a)| ≤ L4ω4(i) for all (i,a) ∈ K.
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(E3) The positive discount factor α verifies that α > κ2, with κ2 as in (E1).
(E4) ν(ω4) := ∑

i∈X
ω4(i)ν(i) < ∞.

(E5) For each i ∈ X , A(i) is compact.
(E6) For each i, j ∈ X , the functions r(i,a), c(i,a), q( j|i,a) and ∑

k∈X
ω4(k)q(k|i,a)

are continuous in a ∈ A(i).
(E7) There exist a nonnegative function ω ′ on X and constants γ3 ≥ 0, κ3 > 0, and
L′ > 0 such that

q∗(i)ω4(i)≤ L′ω ′(i) and ∑
j∈X

ω ′( j)q( j|i,a) ≤ κ3ω ′(i)+ γ3 for all (i,a) ∈ K.

(E8) There exists π̂ ∈Πm such that J(c, π̂)< ρ .

Note that the set Πm is convex. That is, if π1 and π2 are in Πm, and for any
p ∈ [0,1], i ∈ X , and t ∈ [0,∞), π p

t (·|i) := pπ1
t (·|i)+ (1− p)π2

t (·|i), then π p ∈Π .
Under conditions (E1)–(E6), we define a real-valued function G on C×D :=

Cω4(K)×Πm as follows:

G(c,π) := J(c,π), for (c,π) ∈C×D =Cω4(K)×Πm. (8.45)

Obviously, the function G defined in (8.45) satisfies (8.1). Moreover, let D′ := F .
Now we state our main result of Sect. 8.4.4 on the existence of constrained-

optimal policies for (8.44).

Proposition 8.4.3. Suppose that conditions (E1)–(E8) hold. Then there exists a
constrained-optimal policy for (8.44), which may be a stationary policy or a
randomized stationary policy that randomizes between two stationary policies
differing in at most one state.

Proof. It follows from Theorems 6.5 and 6.10 and Lemma 11.6 in [20] that Assump-
tions 8.2.1 and 8.3.2 hold. Obviously, condition (E8) implies Assumption 8.2.2.
Finally, from Lemma 11.7 and the proof of Theorem 11.4 in [20], we see that
Assumption 8.3.1 holds. Hence, by Theorem 8.3.2, we complete the proof. �

Remark 8.4.11. Proposition 8.4.3 shows that the nonnegativity assumption on the
costs as in [18, 20] is not required.
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Chapter 9
Optimal Execution of Derivatives: A Taylor
Expansion Approach

Gerardo Hernandez-del-Valle and Yuemeng Sun

9.1 Introduction

The problem of optimal execution is a very general problem in which a trader who
wishes to buy or sell a large position K of a given asset S—for instance, wheat,
shares, derivatives, etc.—is confronted with the dilemma of executing slowly or as
quick as possible. In the first case, he/she would be exposed to volatility, and in the
second, to the laws of offer and demand. Thus, the trader must hedge between the
market impact (due to his trade) and the volatility (due to the market).

The main aim of this chapter is to study and characterize the so-called Markowitz-
optimal open-loop execution trajectory of contingent claims.

The problem of minimizing expected overall liquidity costs has been analyzed
using different market models by [1, 6, 8], and [2], just to mention a few. However,
some of these approaches miss the volatility risk associated with time delay.
Instead, [3, 4] suggested studying and solving a mean-variance optimization for
sales revenues in the class of deterministic strategies. Further on, [5] allowed
for intertemporal updating and proved that this can strictly improve the mean-
variance performance. Nevertheless, in [9], the authors study the original problem
of expected utility maximization with CARA utility functions. Their main result
states that for CARA investors there is surprisingly no added utility from
allowing for intertemporal updating of strategies. Finally, we mention that the
Hamilton-Jacobi-Bellman approach has also recently been studied in [7].
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D. Hernández-Hernández and A. Minjárez-Sosa (eds.), Optimization, Control, and
Applications of Stochastic Systems, Systems & Control: Foundations & Applications,
DOI 10.1007/978-0-8176-8337-5 9, © Springer Science+Business Media, LLC 2012

151



152 G. Hernandez-del-Valle and Y. Sun

The chapter is organized as follows: in Sect. 9.2, we state the optimal execution
contingent claim problem. Next, in Sect. 9.3, we provide its closed form solution. In
Sect. 9.4, a numerical example is studied, and finally we conclude in Sect. 9.5 with
some final remarks and comments.

9.2 The Problem

The Model. A trader wishes to execute K = k0+ · · ·+kn units of a contingent claim
C with underlying S by time T . The quantity to optimize is given by the so-called
execution shortfall, defined as

Y =
n

∑
j=0

k jCj −KC0,

and the problem is then to find k0, . . . ,kn such that attain the minimum

min
k0,...,kn

(E[Y ]+λV[Y ]) ,

for some λ > 0. Assuming the derivative C is smooth in terms of its underlying S, it
follows from the Taylor series expansion that

Cj = f (S0)+ f ′(S0)(S̃ j − S0)+
1
2

f ′′(S0)(S̃ j − S0)
2 +R3,

where S̃ is the effective price and R3 is the remainder which is o((S̃ j−S0)
3). Hence,

n

∑
j=0

k jCj =
n

∑
j=0

k j f (S0)+
n

∑
j=0

f ′(S0)k j(S̃ j − S0)+
1
2

f ′′(S0)
n

∑
j=0

k j(S̃ j − S0)
2 +

n

∑
j=0

k jR3

= KC0 + f ′(S0)

(
n

∑
j=0

k jS̃ j −KS0

)

s+
1
2

f ′′(S0)
n

∑
j=0

k j(S̃ j − S0)
2 +

n

∑
j=0

k jR3.

That is,

Y =
n

∑
j=0

k jCj −KC0

= f ′(S0)

(
n

∑
j=0

k jS̃ j −KS0

)

+
1
2

f ′′(S0)
n

∑
j=0

k j(S̃ j − S0)
2 +

n

∑
j=0

k jR3. (9.1)

Note that if we use only the first-order approximation, then our optimization
problem has already been solved and corresponds to [4] trading trajectory.
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9.3 Second-Order Taylor Approximation

In this section, we extend [4] market impact model for the case of a contingent
claim. We provide our main result which is the closed form objective function by
adapting a second order-Taylor approximation.

9.3.1 Effective Price Process

Let ξ1,ξ2, . . . be a sequence of i.i.d. Gaussian random variables with mean zero and
variance 1, and let the execution times be equally spaced, that is, τ := T/n. Then,
the price and “effective” processes are respectively defined as

S j = S j−1− τg

(
k j

τ

)
+στ1/2ξ j,

S̃ j = S j − h

(
k j

τ

)
,

and the permanent and temporary market impact will be modeled, for simplicity, as

g

(
k j

τ

)
= α

k j

τ
, h

(
k j

τ

)
= β

k j

τ
,

for some constant α and β . Hence, letting

x j := K−
j

∑
m=0

km and

Wj :=
j

∑
m=1

ξm, i.e. Wj ∼ N(0, j), Cov(Wj ,Wi) = min(i, j),

it follows that

S̃ j − S0 = στ1/2Wj −α(K− x j)− β
τ

k j. (9.2)

9.3.2 Second-Order Approximation

From (9.1) and (9.2), the second-order approximation of the execution shortfall Y is
given by
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Y ≈ f ′(S0)
n

∑
j=0

k j

(
στ1/2Wj −α(K− x j)− β

τ
k j

)

+
1
2

f ′′(S0)
n

∑
j=0

k j

(
στ1/2Wj −α(K− x j)− β

τ
k j

)2

. (9.3)

Next, expanding the squared term, we get

(
στ1/2Wj −α(K− x j)− β

τ
k j

)2

= σ2τW 2
j +α2(K− x j)

2 +
β 2

τ2 k2
j − 2

βσ
τ1/2

k jWj

− 2αστ1/2(K− x j)Wj + 2
αβ
τ

k j(K− x j),

Thus the expected value of Y is approximately

E[Y ] = f ′(S0)
n

∑
j=0

k j

(
−α(K− x j)− β

τ
k j

)

+
1
2

f ′′(S0)
n

∑
j=0

k j

[

σ2τ j+α2(K− x j)
2 +

β 2

τ2 k2
j + 2

αβ
τ

k j(K− x j)

]

,

(9.4)

to compute the variance V of Y we rearrange (9.3) as

Y ≈
n

∑
j=0

ν jk jWj +
n

∑
j=0

η jk jW
2
j +D,

where D are all the deterministic terms and

ν j := f ′(S0)στ1/2 − f ′′(S0)

[
αστ1/2(K− x j)+

βσ
τ1/2

k j

]

η j :=
1
2

f ′′(S0)σ2τ.

It follows that the variance of Y is

V[Y ] = V

[
n

∑
j=0

ν jk jWj

]

+V

[
n

∑
j=0

η jk jW
2
j

]

+ 2Cov

(
n

∑
j=0

ν jk jWj,
n

∑
j=0

η jk jW
2
j

)

=
n

∑
j=0

v2
j k

2
j j+ 2 ∑

0≤i< j≤n

vikiv jk ji+
n

∑
j=0

η2
j k2

j ·2 j2 + 2 ∑
0≤i< j≤n

ηikiη jk j ·2i2

(9.5)

and the last term equals zero.



9 Optimal Execution of Derivatives 155

9.3.3 Optimal Trading Schedule for the Second-Order
Approximation

To find the optimal trading schedule for the second-order approximation of Y , we
need find the sequence of k0, . . . ,kn such that

E[Y ]+λV[Y ]

is minimized for a given λ and where E[Y ] and V[Y ] are as in (9.4) and (9.5),
respectively. After some simplification,

E[Y ]+λV[Y ] = f ′(S0)
n

∑
j=0

k j

[
α(x j −K)− β

τ
k j

]

+
1
2

f ′′(S0)
n

∑
j=0

k j

[
σ2τ j+α2(K− x j)

2 +
β 2

τ2 k2
j +

2αβ
τ

(K− x j)k j

]

+λ
n

∑
j=0

jk j

[

v2
jk j + 2 jk jη2

j + 2v j

n

∑
m= j+1

vmkm + 4 jη j

n

∑
m= j+1

ηmkm

]

.

9.4 Numerical Solution

For Y as in (9.3), the optimization problem we aim to solve is

min
k0,k1,...,kn

(E[Y ]+λV[Y ])

subject to

n

∑
j=0

k j = K.

We solve the problem using fmincon in the Matlab.

Example 9.4.1. For this example let

n = 2; K = 1000; α = 0.1; β = 0.5; λ = 0.4; τ = 1;

δ = f ′(S0) = 0.5; γ = f ′(S0) = 0.2; σ = 0.5,

the optimal trading strategy is

k0 = 333.3348, k1 = 333.3336, k2 = 333.3316,

and the optimal objective function is 5.5736× 108.
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Remark 9.4.1. The trading trajectory has a downward trend. Intuitively, and on
contrast to executing a large size at a single transaction, our result suggests to split
the overall position in almost even trades. The linear assumption that we made on the
temporary and the permanent impacts seems to explain the almost equal execution
quantities.

9.5 Concluding Remarks

In this work, we study the Markowitz-optimal execution trajectory of contingent
claims. In order to do so, we use a second-order Taylor approximation with respect
to the contingent claim C evaluated at the initial value of the underlying S. We obtain
the closed form objective function given a risk averse criterion. Our approach allows
us to obtain the explicit numerical solution and we provide an example.

Acknowledgements The authors were partially supported by Algorithmic Trading Management
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Chapter 10
A Survey of Some Model-Based Methods
for Global Optimization

Jiaqiao Hu, Yongqiang Wang, Enlu Zhou, Michael C. Fu,
and Steven I. Marcus

10.1 Introduction

Global optimization aims at characterizing and computing global optimal solutions
to problems with nonconvex, multimodal, or badly scaled objective functions; it
has applications in many areas of engineering and science. In general, due to the
absence of structural information and the presence of many local extrema, global
optimization problems are extremely difficult to solve exactly. There are many
different types of methods in the literature on global optimization, which can be
categorized based on different criteria. For instance, they can be classified either
based on the properties of problems to be solved (combinatorial or continuous,
nonlinear, linear, convex, etc.) or by the properties of algorithms that search
for new candidate solutions such as deterministic or random search algorithms.
Random search algorithms can further be classified as instance-based or model-
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based algorithms according to the mechanism of generating new candidate solutions
[46].

Instance-based algorithms maintain a single solution or population of candidate
solutions, and the construction of new generate of candidate solutions depends
explicitly on the previously generated solutions. Some well-known instance-based
algorithms include simulated annealing [25], genetic algorithms [16,36], tabu search
[15], nested partitions [35], generalized hill climbing [22, 23], and evolutionary
programming [12]. Model-based search algorithms are a class of new solution
techniques and were introduced only in recent years [18, 27, 32–34, 42]. In model-
based algorithms, new solutions are generated via an intermediate probabilistic
model that is updated or induced from the previously generated solutions. Thus,
there is only an implicit/indirect dependency among the solutions generated at
successive iterations of the algorithm. Specific model-based algorithms include
annealing adaptive search (AAS) [31, 41], the cross-entropy (CE) method [32–
34], and estimation of distribution algorithms (EDAs) [27, 42]. Instance-based
algorithms have been extensively studied in past decades. After briefly reviewing
some model-based algorithms, this chapter focuses on several model-based methods
that have been developed recently.

10.2 Global Optimization and Previous Work

10.2.1 Problem Statement

In many engineering design and optimization applications, we are concerned with
finding parameter values that achieve the optimum of an objective function. Such
problems can be mathematically stated in the generic form:

x∗ ∈ arg max
x∈X

H(x), (10.1)

where x is a vector of n decision variables, the solution space X is a nonempty
(often compact) subset of ℜn, and the objective function H : X → ℜ is a bounded
deterministic function.

Throughout this chapter, we assume that there exists a global optimal solution
to (10.1), i.e., ∃x∗ ∈ X such that H(x) ≤ H(x∗) ∀x 
= x∗, x ∈ X. In practice,
this assumption can be justified under fairly general conditions. For example, for
continuous optimization problems with compact solution spaces, the existence of
an x∗ is guaranteed by the well-known Weierstrass theorem, whereas in discrete
optimization, the assumption holds trivially when X is a (nonempty) finite set.
Note that no further structural assumptions, such as convexity or differentiability,
are imposed on the objective function, and there may exist many locally optimal
solutions. In other words, our focus is on general global optimization problems with
little known structure. This setting arises in many complex systems of interest, e.g.,
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when the explicit form of H is not readily available and the objective function values
can only be assessed via “black-box” evaluations.

10.2.2 Previous Work on Random Search Methods

In this section, we review a class of global optimization algorithms collectively
known as random search methods. A random search method usually refers to an
algorithm that is iterative in nature, and uses some sort of randomized mechanism
to generate a sequence of iterates, e.g., candidate solutions or probabilistic models,
in order to successively approximate the optimal solution. What type of iterates
an algorithm produces and how these iterates are generated are what differentiates
approaches. A major advantage of stochastic search methods is that they are robust
and easy to implement, because they typically only rely on the objective function
values rather than structural information such as convexity and differentiability. This
feature makes these algorithms especially prominent in optimization of complex
systems with little structure.

From an algorithmic point of view, a random search algorithm can further be
classified as being either instance-based or model-based [46]. In instanced-based
algorithms, an iterate comprises a single or a set/population of candidate solution(s),
and the construction of new candidate solutions depends explicitly on previously
generated solutions. Such algorithms can be represented abstractly by the following
framework:

1. Given a set/population of candidate solutions Y (k) (which might be a singleton
set), generate a set of new candidate solutions X (k) according to a specified
random mechanism.

2. Update the current population Y (k+1) based on population Y (k) and candidate
solutions in X (k); increase the iteration counter k by 1 and reiterate from Step 1.

Thus the two major steps in an instance-based algorithm are the generation step
that produces a set of candidate solutions, and the selection/update step that
determines whether a newly generated solution in X (k) should be included in the next
generation. Over the past few decades, a significant amount of research effort has
been centered around instance-based methods, with numerous algorithms proposed
in the literature and their behaviors relatively well studied and understood. Some
well-known examples include simulated annealing [25], genetic algorithms [16,36],
tabu search [15], nested partitions [35], generalized hill climbing [22, 23], and
evolutionary programming [12].

We focus on model-based methods, which differ from instance-based approaches
in that candidate solutions are generated at each iteration by sampling from an
intermediate probability distribution model over the solution space. The idea is to
iteratively modify the distribution model based on the sampled solutions to bias
the future search toward regions containing high-quality solutions. In its most basic
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from, a model-based algorithm typically consists of the following two steps: let gk

be a probability distribution on X at the kth iteration of an algorithm:

1. Randomly generate a set/population of candidate solutions X (k) from gk.
2. Update gk based on the sampled solutions in X (k) to obtain a new distribution

gk+1; increase k by 1 and reiterate from step 1.

The underlying idea is to construct a sequence of iterates (probability distributions)
{gk} with the hope that gk → g∗ as k → ∞, where g∗ is a limiting distribution
that assigns most of its probability mass to the set of optimal solutions. So it is
the probability distribution (as opposed to candidate solutions as in instance-based
algorithms) that is propagated from one iteration to the next.

Clearly, the two key questions one needs to address in a model-based algorithm
are how to generate samples from a given distribution gk and how to construct the
distribution sequence {gk}. In order to address these questions, we provide brief
descriptions of three model-based algorithms: annealing adaptive search (AAS)
[31, 41], the cross-entropy (CE) method [32–34], and estimation of distribution
algorithms (EDAs) [27, 42].

The annealing adaptive search algorithm was originally introduced in Romeijn
and Smith [18] as a means to understand the behavior of simulated annealing.
The algorithm generates candidate solutions by sampling from a sequence of
Boltzmann distributions parameterized by time-dependent temperatures. As the
temperature decreases to zero, the sequence of Boltzmann distributions becomes
more concentrated on the set of optimal solutions, so that a solution sampled at
later iterations will be close to the global optimum with high probability. For the
class of Lipschitz optimization problems, it is shown that the expected number
of iterations required by AAS to achieve a given level of precision increases at
most linearly in the problem dimension [31, 41]. However, the idealized AAS is
not intended to be a practically useful algorithm, because the problem of sampling
exactly from a given Boltzmann distribution is known to be extremely difficult. This
implementation issue has motivated a number of algorithms that approximate AAS,
where a primary focus has been on the design and refinement of Markov chain-based
sampling techniques embedded within the AAS framework [40, 41].

The CE method was motivated by an adaptive algorithm for estimating proba-
bilities of rare events in complex stochastic networks [32], which involves variance
minimization. It was later realized [33] that the method can be modified to solve
combinatorial and continuous optimization problems. The CE method uses a family
of parameterized probability distributions on the solution space and tries to find
the parameter of the distribution that assigns maximum probability to the set of
optimal solutions. Implicit in CE is an optimal importance sampling distribution
concentrated only on the set of optimal solutions. The key idea is to use an
iterative scheme to successively estimate the optimal parameter that minimizes the
Kullback-Leibler (KL) divergence between the optimal distribution and the family
of parameterized distributions. Although there have been extensive developments
regarding implementation and successful practical applications of CE (see [34]),
the literature analyzing the convergence properties of the CE method is relatively
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sparse, with most of the existing results limited to specific settings (see, e.g., [17]
for a convergence proof of a variational version of CE in the context of estimation
of rare event probabilities, and [7] for probability one convergence proofs of CE for
discrete optimization problems). General convergence and asymptotic rate results
for CE were recently obtained in [21] by relating the algorithm to recursions of
stochastic approximation type (see Sect. 10.6).

EDAs were first introduced in the field of evolutionary computation. They inherit
the spirit of the well-known genetic algorithms (GAs), but eliminate the crossover
and mutation operators to avoid the disruption of partial solutions. In EDAs, a new
population of candidate solutions are generated according to the probability distri-
bution induced or estimated from the promising solutions selected from the previous
generation. Unlike CE, EDAs often take into account the interrelations between the
underlying decision variables needed to represent the individual candidate solutions.
At each iteration of the algorithm, a high-dimensional probabilistic model that better
represents the interdependencies between the decision variables is induced; this step
constitutes the most crucial and difficult part of the method. We refer the reader to
[27] for a review of the way in which different probabilistic models are used as
EDA instantiations. A proof of convergence of a class of EDAs, under the idealized
infinite population assumption, can be found in [42].

There are many other model-based algorithms proposed for global optimization.
Some interesting examples include ant colony optimization (ACO) [9], probability
collectives (PCs) [39], and particle swarm optimization (PSO) [24]. We do not
provide a comprehensive description of all of them, but instead present some re-
cently developed frameworks and approaches that allow us to view these algorithms
in a unified setting. These approaches, including model reference adaptive search
(MRAS) [18], the particle-filtering (PF) approach [43], the evolutionary games
approach [38], and the stochastic approximation gradient approach [20, 21], will
be discussed in detail in the following sections.

10.3 Model Reference Adaptive Search

As we have seen from Sect. 10.2, model-based algorithms differ from each other
in the choices of the distribution sequence {gk}. Examples of the {gk} sequence
include (a) Boltzmann distributions, used in AAS; (b) optimal importance sampling
measure, primarily used in the CE method; and (c) proportional selection schemes,
used in EDAs, ACOs, and PCs.

However, in all the above cases, the construction of gk often depends on the
objective function H, whose explicit form may not be available. In addition, since
gk may not have any special structure, sampling exactly from the distribution is in
general intractable. To address these computational challenges arising in model-
based methods, we have formalized in [18] a general approach called model
reference adaptive search (MRAS), where the basic idea is to use a convenient
parametric distribution as a surrogate to approximate gk and then sample candidate
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solutions from the surrogate distribution. More specifically, the method starts by
specifying a family of parameterized distributions { fθ , θ ∈ Θ} (with Θ being
the parameter space) and then projects gk onto the family to obtain a sampling
distribution fθk , where the projection is implemented at each iteration by finding an
optimal parameter θk that minimizes the Kullback-Leibler (KL) divergence between
gk and the parameterized family [34], i.e.,

θk = arg min
θ∈Θ

D(gk, fθ ) := arg min
θ∈Θ

(∫

X
ln

gk(x)
fθ (x)

gk(dx)

)
. (10.2)

The idea is that the parameterized family is specified with some structure (e.g.,
family of normal distributions parameterized by means and variances) so that once
its parameter is specified, sampling from the corresponding distribution can be
performed relatively easily and efficiently. Another advantage is that the task of
constructing the entire surrogate distribution now simplifies to the task of finding its
associated parameters. Roughly speaking, each sampling distribution fθk obtained
via (10.2) can be viewed as a compact approximation of gk, and consequently
the entire sequence { fθk} may (hopefully) retain some nice properties of the
distribution sequence {gk}. Thus, to ensure the convergence of the MRAS method,
it is intuitively clear that the sequence {gk} should be chosen in a way so that it
can be shown to converge to a limiting distribution concentrated only on the set of
optimal solutions. Since the distribution gk is primarily used to guide the parameter
updating process and to express the desired properties of the MRAS method, it is
called the reference distribution.

We now provide a summary of the MRAS method:

0. Select a sequence of reference distributions {gk} with desired convergence
properties and choose a parameterized family { fθ}.

1. Given θk, sample N candidate solutions X1
k , . . . ,X

N
k from fθk .

2. Update the parameter θk+1 by minimizing the KL divergence

θk+1 = arg min
θ

D(gk+1, fθ );

increase k by 1 and reiterate from step 1.

Note that the algorithm above assumes that the expectation/integral involved in the
KL divergence (cf. (10.2)) can be evaluated exactly. In practice, it is often estimated
by an empirical average based on samples obtained at step 1.

The MRAS framework accommodates many algorithms aforementioned in
Sect. 10.2. For example, when Boltzmann distributions are used as reference mod-
els, the resulting algorithm becomes AAS with an additional projection step. The
algorithm instantiation considered in [18] uses the following recursive procedure to
construct the gk sequence:

gk+1(x) =
H(x)gk(x)∫

X H(x)gk(dx)
, (10.3)
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where g0(x) is a given initial distribution on X and we have assumed for simplicity
that H(x)> 0 for all x ∈ X to prevent negative probabilities. This form of reference
distributions has also been used in a class of EDAs with proportional selection
schemes. It weights the new distribution gk+1 by the value of the objective function
H(x), so that each iteration of (10.3) improves the expected performance in the sense
that

Egk+1 [H(X)] :=
∫

X
H(x)gk+1(dx) =

∫
X H2(x)gk(dx)
∫

X H(x)gk(dx)
≥ Egk [H(X)],

so solutions with better performance are given more probability under gk+1. This
results in a {gk} sequence that converges to a degenerate distribution at the optimal
solution. Furthermore, it is shown in [18] that the CE method can also be recovered
by replacing gk in the right-hand side of (10.3) with fθk . In other words, there is a
sequence of reference distributions implicit in CE that takes the form

gk+1(x) =
H(x) fθk (x)∫

X H(x) fθk (dx)
. (10.4)

Since gk+1 in (10.4) is obtained by tilting the sampling distribution fθk with the
objective function H, it improves the expected performance of fθk , i.e.,

Egk+1 [H(X)] =

∫
X H2(x) fθk (dx)
∫

X H(x) fθk (dx)
≥

∫

X
H(x) fθk (dx) := Eθk [H(X)].

Therefore, it is reasonable to expect that the projection of gk+1 on the parameterized
family, fθk+1 , also improves fθk , i.e., Eθk+1 [H(X)] ≥ Eθk [H(X)]. This view of CE
leads to an important monotonicity property of the method, generalizing that of
[34], which is only proved for the one-dimensional case.

10.3.1 Convergence Result

For the family of natural exponential distributions (NEFs), the optimization problem
involved at step 2 of the MRAS method can be solved analytically in closed form,
which makes the approach very convenient to implement in practice. We recall the
definition of NEFs.

Definition 10.3.1. A parameterized family { fθ ,θ ∈ Θ ⊆ ℜd} is said to belong
to the natural exponential family if there exist mappings Γ : ℜn → ℜd and
K : ℜd → ℜ such that each fθ in the family can be represented in the form
fθ (x) = exp

(
θTΓ (x)−K(θ )

)
, where K(θ ) is a normalization constant given by

K(θ ) = ln
∫

X exp(θTΓ (x))dx.
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The function K(θ ) plays an important role in the theory of NEFs. It is strictly
convex in the interior of Θ with gradient ∇θK(θ ) = Eθ [Γ (X)] and Hessian matrix
Covθ [Γ (X)]. We define the mean vector function

m(θ ) := Eθ [Γ (X)].

Since the Jacobian of m(θ ) is strictly positive definite, we have from the inverse
function theorem that m(θ ) is a one-to-one invertible function of θ . Generally
speaking, m(θ ) can be viewed as a transformed version of the sufficient statistic
Γ (x), whose value contains all necessary information to estimate the parameter
θ . For example, for the univariate normal distribution N(μ ,σ2) with mean μ
and variance σ2, it can be seen that Γ (x) = (x,x2)T and θ = ( μ

σ2 ,− 1
2σ2 )

T . Thus,

m(θ ) = Eθ [Γ (X)] becomes (μ ,σ2 +μ2)T , which can be uniquely solved for μ and
σ2 given the value of m(θ ).

When NEFs are used as the parameterized family, we have the following
convergence theorem for the instantiation of MRAS considered in [18].

Theorem 10.3.1. When {gk} in (10.3) are used as reference distributions in MRAS,
let {θk} be the sequence of parameters generated by the algorithm based on the
sampled candidate solutions. Under appropriate assumptions (see [18]),

lim
k→∞

m(θk) = Γ (x∗) w.p.1.

The interpretation of Theorem 10.3.1 relies on the parameterized family used in
MRAS and, in particular, on the specific form of the sufficient statistic Γ (x). We
consider two special cases of Theorem 10.3.1. (a) In continuous optimization when
multivariate normal distributions with mean vector μ and covariance matrix Σ are
used as the parameterized family, then it is easy to show that Theorem 10.3.1
implies limk→∞ μk = x∗ and limk→∞ Σk = 0n×n w.p.1, where 0n×n represents an
n-by-n zero matrix. In other words, the sequence of sampling distributions { fθk}
will converge to a delta distribution with all probability mass concentrated on x∗. (b)
For a discrete optimization problem with feasible domain X that contains l distinct
values denoted by x1, . . . ,xl , the parameterized family can be specified in terms of
an l-by-1 probability vector Q, whose ith entry qi represents the probability that a
(random) solution will take the ith value xi. A probability mass function on X, when
parameterized by Q, can thus be expressed as

fθ (x) =
l

∏
i=1

qI{x=xi}
i := eθ

TΓ (x),

where I{·} is the indicator function, θ = [lnq1, . . . , lnql ]
T , and the sufficient

statistic Γ (x) = [I{x = x1}, . . . , I{x = xl}]T . Therefore, a simple application of
Theorem 10.3.1 yields

lim
k→∞ ∑x∈X

l

∏
i=1

(qk
i )

I{x=xi}I{x = x j}= I{x∗ = x j} ∀ j w.p.1,



10 A Survey of Some Model-Based Methods for Global Optimization 165

where qk
i is the ith entry of the probability vector Qk obtained at the kth iteration

of the algorithm. This in turn implies that limk→∞ qk
i = I{x∗ = xi} w.p.1., i.e., the

sequence of Qk will convergence to a degenerate probability vector assigning unit
mass to x∗.

We remark that Theorem 10.3.1 does not address the convergence rate of the
algorithm. Moreover, the proof techniques used in [18] cannot be directly carried
over to analyze other algorithms such as CE, due to the dependency of gk on the
parameterized family (cf. (10.4)). In Sect. 10.6, we show that with some appropriate
modifications of the MRAS method, we can arrive at a general framework linking
model-based methods to recursive algorithms of stochastic approximation type,
which makes the convergence and convergence rate analysis of these algorithms
more tractable.

10.4 Particle-Filtering Approach

Filtering refers to the estimation of an unobserved state in a dynamical system based
on noisy observations that arrive sequentially in time (c.f. [8] for an introduction).
The idea behind the particle-filtering approach is to transform the optimization
problem into a filtering problem. Using a novel interpretation, the distribution
sequence {gk} in model-based optimization corresponds to the sequence of condi-
tional distributions of the unobserved state given the observation history in filtering,
and hence, {gk} is updated from a Bayesian perspective. A class of simulation-
based filtering techniques called particle filtering can then be employed to sample
from {gk}, leading to a framework for model-based optimization algorithms.

More specifically, the optimization problem (10.1) can be transformed into
a filtering problem by choosing an appropriate state-space model, such as the
following:

Xk = Xk−1, k = 1,2, . . . ,

Yk = H(Xk)−Vk, k = 1,2, . . . , (10.5)

where Xk ∈ ℜn is the unobserved state, Yk ∈ ℜ is the observation, and {Vk,k =
1,2, . . .} is an i.i.d. sequence of nonnegative random variables that have a p.d.f. ϕ .
A prior distribution on X0 is denoted by g0. The goal of filtering is to compute
the conditional density gk of the unobserved state Xk given the past observations
{Y1 = y1, . . . ,Yk = yk} for k = 1,2, . . .. Let F denote the σ -field of Borel sets of ℜn.
Then the conditional density gk satisfies

P(Xk ∈ A|Y1:k = y1:k) =

∫

A
gk(x)dx, ∀A ∈ F ,
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where Y1:k = {Y1, . . . ,Yk}, and y1:k = {y1, . . . ,yk}. Using Bayes rule, the evolution of
gk(x) can be derived as follows:

gk(x) = p(x|y0:k−1,yk)

=
p(yk|x)p(x|y0:k−1)

p(yk|y0:k−1)

=
ϕ(H(x)− yk)gk−1(x)∫
ϕ(H(x)− yk)gk−1(x)dx

, (10.6)

where the last line uses the density functions induced by (10.5).
The intuition of (10.5) and (10.6) and their connection with optimization can

be explained as follows: the unobserved state {Xk} is constant with the underlying
value being the optimum x∗, which needs to be estimated; the observations {yk}
are noisy observations of the optimal function value H(x∗) and come from the
sample function values in an optimization algorithm; the conditional density gk is
a density estimate of the optimum x∗ at iteration k based on the sample function
values {y1, . . . ,yk}. Equation (10.6) implies that gk is tuned the more promising
area where H(x) is greater than yk since ϕ(H(x)− yk) is positive if H(x) ≥ yk and
is zero otherwise. Hence, randomization in the optimization algorithm is brought
in by the randomness of Vk, and the choice of the p.d.f. of Vk, ϕ , results in
different sample selection or weighting schemes in the algorithm. In order to ensure
the resultant optimization algorithm monotonically approaches the optimum, the
following general condition (C) on ϕ is imposed:

(C) The p.d.f. ϕ(·) is positive, strictly increasing, and continuous on its support
[0,∞).

It is shown in [45] that if ϕ satisfies the condition, then for an arbitrary,
fixed observation sequence {y1,y2, . . .}, the estimate of the function value is
monotonically increasing, i.e.,

Egk+1 [H(X)]≥ Egk [H(X)].

Hence, it has the same monotonicity property as MRAS and CE. Furthermore, the
estimate of the optimal function value asymptotically converges to the true optimal
function value as stated in the following theorem that is also shown in [45].

Theorem 10.4.2. Suppose the following conditions hold:

(i) For all H(x) < H(x∗), the set {z ∈ X : H(z) ≥ H(x)} has strictly positive
measure with respect to the initial sampling distribution, i.e.,

∫
{z∈X:H(z)≥H(x)}

g0(x)dx > 0.
(ii) There is a unique optimum x∗, and H(x) is continuous at x∗.

(iii) ϕ satisfies the condition (C).

Then for an arbitrary, fixed observation sequence {y1,y2, . . .},

lim
k→∞

Egk [H(X)] = H(x∗).
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The conditions (i) and (ii) ensure that any neighborhood of the optimum always has
a positive probability to be sampled. The result implies that the samples drawn from
gk in the limit will be concentrated on the optimum.

10.4.1 Algorithms

The distribution sequence {gk} in general does not have a closed-form solution.
Various numerical filtering methods (cf. [5] for a recent survey) are available to
numerically approximate {gk}. However, the most akin to model-based optimization
algorithms is the particle-filtering technique, which is a more recent class of approx-
imate filtering methods based on Sequential Monte Carlo (SMC) simulation (cf. the
tutorial [1] and the more recent tutorial [11] for a quick reference and the book [10]
for a more comprehensive account). Despite its abundant successful applications in
many areas, particle filtering has rarely been explored in optimization.

The basic particle filter is a sequential importance sampling resampling algo-
rithm, each iteration of which is composed of an importance sampling step to
propagate the particles (i.e., samples) from the previous iteration to the current, a
Bayes updating step to update the weights of the particles, and a resampling step
to generate new particles in order to prevent sample degeneracy. Applying it to
the distribution sequence {gk} specified in (10.6) leads to the particle filtering for
optimization (PFO) framework as follows:

0. Initialization. Specify g0, and draw i.i.d. samples {Xi
1}N1

i=1 from g0. Set k = 1.
1. Bayes updating. Take yk to be a sample function value H(Xi

k) according to a
certain rule. Compute the weight wi

k for sample Xi
k according to

wi
k ∝ ϕ(H(Xi

k)− yk), i = 1,2, . . . ,Nk,

and normalize the weights such that they sum up to 1.
2. Resampling. Generate i.i.d. samples {Xi

k+1}Nk+1
i=1 from the weighted samples

{wi
k,X

i
k}Nk

i=1 using regularized method, density projection method, or resample-
move method.

3. Stopping. If a stopping criterion is satisfied, then stop; else, increase k by 1 and
reiterate from step 1.

Note that the simple method of sampling with replacement cannot be used in
the resampling step since it does not generate new values for the samples and
hence does not explore new candidate solutions for the purpose of optimization.
Several other known resampling methods can be used to generate new candidate
solutions and can also be easily implemented, including the regularized method
[28], the density projection method [44], and the resample-move method [13]. The
regularized method draws new i.i.d. samples from a continuous mixture distribution,
where each continuous kernel of the mixture distribution is centered at each sample
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Xi
k and the weight of that kernel is equal to the probability mass wi

k of Xi
k. The density

projection method resembles MRAS and CE in finding a parameterized density fθk

by minimizing the KL divergence between the discrete distribution {wi
k,X

i
k} and the

parameterized family. The resample-move method applies a Markov chain Monte
Carlo (MCMC) step to move the particles after they are generated by sampling with
replacement. Depending on the resampling methods, the convergence properties of
the different instantiations of PFO are also slightly different, but all readily follow
from the existing convergence results of the corresponding particle filters in the
literature [6, 14, 44] under suitable assumptions.

We end this section with a final remark that the PFO framework provides a
new perspective on CE and MRAS. We will use the truncated selection scheme
for sample selection as an illustration. Suppose that the objective function H(x) is
bounded by H1 ≤ H(x) ≤ H2. In the state-space model (10.5), let the observation
noise Vk follow a uniform distribution U(0,H2 −H1), and then ϕ , the p.d.f. of Vk,
satisfies

ϕ(u) =

{
1

H2−H1
, if 0 ≤ u ≤ H2−H1;

0, otherwise.
(10.7)

Since yk is a sample function value, the inequality H(x)− yk ≤ H2−H1 holds with
probability 1, so substituting (10.7) into (10.6) yields

gk(x) =
I{H(x)≥ yk}gk−1(x)∫
I{H(x)≥ yk}gk−1(x)dx

.

The standard CE method can be viewed as PFO with the above choice of distribution
sequence {gk} and the density projection method for resampling, so the samples
{Xi

k} are generated from fθk−1 and the weights of the samples are computed
according to wi

k ∝ I{H(Xi
k) ≥ yk}. However, the approximation of gk−1 by fθk−1

introduces an approximation error, which is accumulated to the next iteration. This
approximation error can be corrected by taking fθk−1 as an importance density and
hence can be taken care of by the weights of the samples. That is, in the case of
MRAS or CE in which the sequence {yk} is monotonically increasing, the weights
are computed according to

wi
k =

gk(Xi
k)

fθk−1(X
i
k)

∝
I{H(Xi

k)≥ yk}
fθk−1(X

i
k)

.

This instantiation of PFO coincides with an instantiation of MRAS. More details on
a unifying perspective on EDAs, CE, and MRAS are given in [45].
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10.5 Evolutionary Games Approach

The main idea of the evolutionary games approach is to formulate the global opti-
mization problem as an evolutionary game and to use dynamics from evolutionary
game theory to study the evolution of the candidate solutions. Searching for the
optimal solution is carried out through the dynamics of reaching equilibrium points
in evolutionary games. Specifically, we establish a connection between evolutionary
game theory and optimization by formulating the global optimization problem as
an evolutionary game with continuous strategy spaces. We show that there is a
strong connection between a particular equilibrium set of the replicator dynamics
and the global optimal solutions. By using Lyapunov theory, we also show that
the particular equilibrium set is asymptotically stable under mild conditions. Based
on the connection between the equilibrium points and global optimal solutions, we
develop a model-based evolutionary optimization (MEO) algorithm.

First, we set up an evolutionary game with a continuous strategy space. Let B
be the Borel σ -field on X, the strategy space of the game; for each t, let Pt be
a probability measure defined on (X,B). Let Δ denote set of all the strategies
(probability measures) on X. Each point x ∈ X can be viewed as a pure strategy.
Roughly speaking, the fraction of agents playing the pure strategy x at time t is
Pt(dx). An agent playing the pure strategy x obtains a fitness φ(H(x)), where
φ(·) : ℜ → ℜ+ is a strictly increasing function. An appropriate chosen φ(·) can
facilitate the expression of the model updating rule presented later. Let X be a
random variable with probability distribution Pt . The fractions of agents adopting
different strategies in the continuous game is described by the probability measure
Pt defined on the strategy space X, so the average payoff of the whole population is
given by

EPt [φ(H(X))] =

∫

X
φ(H(x))Pt (dx).

In evolutionary game theory [29], the evolution of this probability measure is
governed by some dynamics such as the so-called replicator dynamics. Let A be a
measurable set in X. If the replicator dynamics with a continuous strategy space is
adopted, we have

Ṗt(A ) =

∫

A
(φ(H(x))−EPt [φ(H(X))])Pt (dx). (10.8)

From (10.8), we can see that if φ(H(x)) outperforms EPt [φ(H(X))] at x, the
probability measure around x will increase. If there exists a probability density
function pt , such that Pt(dx) = ptμ(dx), where μ(·) is the Lebesgue measure
defined on (X,B), then (10.8) becomes

ṗt(x) = (φ(H(x))−EPt [φ(H(X))])pt (x), (10.9)
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which governs the evolution of the probability density function on the continuous
strategy space. When pt(x) is used as our model to generate candidate solutions
for the global optimization problem (10.1), the differential equation (10.9) can be
used to update the model pt(x), with the final goal of making the probability density
function pt(x) converge to a small set containing the global optimal solution. Then,
the global optimization problem can be easily solved by sampling from the obtained
probability density function.

10.5.1 Convergence Analysis

In this section, we study the properties of the equilibrium points of (10.8) and
their connection with the global optimal solutions for the optimization problem,
by employing the tools of equilibrium analysis in game theory and stability analysis
in dynamic systems.

Assume that the optimization problem (10.1) has m global optimal solutions
{x�i , i = 1, . . . ,m}. It is easy to see that P

(x) = δ (x − x�i ) for i = 1, . . . ,m are
equilibrium points of (10.8), and we might guess there is a strong connection
between the equilibrium points of (10.8) and the optimal solutions of the global
optimization problem (10.1). We enforce the following assumption on function φ .

Assumption 10.5.1 φ(·) is a continuous and strictly increasing function; there exist
constants L and M such that L ≤ φ(H(x)) ≤ M for all x ∈ X.

The following theorem shows that the overall fitness of the strategy (probability
measure) Pt is monotonically increasing over time.

Theorem 10.5.3. Let Pt be a solution of the replicator dynamics (10.8). Under
Assumption 10.5.1, the average payoff of the entire population EPt [φ(H(X))] is
monotonically increasing with time t. If Pt is not an equilibrium point of (10.8),
then EPt [φ(H(X))] is strictly increasing with time t.

To further study the properties of the equilibrium points of the replicator
dynamics (10.8), the Prokhorov metric is used to measure the distance between
different strategies (probability measures):

ρ(P,Q) := inf{ε > 0 : Q(A )≤ P(A ε )+ ε and P(A )≤Q(A ε)+ ε, ∀A ∈ B},

where A ε := {x : ∃ỹ ∈ A ,d(ỹ,x)< ε}, in which d is a metric defined on X. Then,
the convergence of ρ(Qn,Q)→ 0 is equivalent to the weak convergence of Qn to Q

[3].

Definition 10.5.2. Let E be a set in Δ . For a point P ∈ Δ , define the distance
between P and E as ρ(P,E ) = inf{ρ(P,Q),∀Q ∈ E }. E is called Lyapunov stable
if for all ε > 0, there exists η > 0 such that ρ(P0,E ) < η =⇒ ρ(Pt ,E ) < ε for all
t > 0.
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Definition 10.5.3. Let E be a set in Δ . E is called asymptotically stable if E is
Lyapunov stable and there exists η > 0 such that ρ(P0,E ) < η =⇒ ρ(Pt ,E )→ 0
as t → ∞.

Definition 10.5.4. Δ0 ⊂ Δ is the set containing all P0 for which there exists a x�k
such that P0( ˜A )> 0 for any set ˜A ∈B that contains x�k and has a positive Lebesgue
measure μ( ˜A )> 0. Let C = {P� : P� = limt→∞Pt starting from some P0 ∈ Δ0}.

To present the main convergence result, we also need the following assumption.

Assumption 10.5.2 There is a finite number of global optimal solutions {x�1, . . . ,x
�
m}

for the optimization problem (10.1), where m is a positive integer.

Theorem 10.5.4. If Assumptions 10.5.1 and 10.5.2 hold, then for any P� ∈C , there
exist αi ≥ 0, for i = 1, . . . ,m with ∑m

i=1αi = 1 such that P(x) =∑m
i=1αiδ (x− x�i ); the

set C can be represented as C = {P� : P(x) =∑m
i=1αiδ (x− x�i ), for some ∑m

i=1αi =
1,αi ≥ 0,∀ i = 1, . . . ,m}, and in addition, the set C is asymptotically stable.

10.5.2 Model-Based Evolutionary Optimization

From the above analysis, we know that the global optimal solutions can be obtained
by generating samples from equilibrium distributions of the replicator dynamics
(10.8); these equilibrium distributions can be approached by following trajectories
of (10.8) starting from P0 ∈ Δ0. Note that by Theorem 10.5.4, the equilibrium points
obtained by starting from P0 ∈ Δ0 are of the form P

(x) = ∑m
i=1αiδ (x− x�i ), where

∑m
i=1αi = 1 and αi ≥ 0 for i = 1, . . . ,m, which suggests using a sum of Dirac

functions to approximate pt . Assume a group of candidate solutions {yi
t}N

i=1 is
generated from pt ; then the probability density function pt can be approximated
by p̂t(x) = ∑N

i=1 wi
tδ (x− xi

t), where δ denotes the Dirac function and {wi
t}N

i=1 are
weights satisfying ∑N

i=1 wi
t = 1. If we use this approximation p̂t as our probabilistic

model and substitute it into (10.9), we have

∂wi
t

∂ t
=
(
φ(H(xi

t))−
N

∑
j=1

wj
t φ(H(x j

t ))
)

wi
t , ∀i = 1, . . . ,N. (10.10)

The corresponding discrete-time version of (10.10) is

wi
k+1 =

φ(H(xi
k))

∑N
j=1 wj

kφ(H(x j
k))

wi
k, ∀i = 1, . . . ,N. (10.11)

We can let φ(·) be an exponential function so that the denominator of the right-hand
side of (10.11) is not equal to zero. Although an updated density approximation
p̂k+1(x) =∑N

i=1 wi
k+1δ (x−xi

k) is obtained, it cannot be used directly to generate new
candidate solutions. We construct a new continuous density to approximate p̂k+1,
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which is done by projecting p̂k+1 onto some parameterized family of distributions
gθ . The idea of projection onto a parameterized family has also been used in CE and
MRAS, as discussed above. Specifically, we minimize the KL divergence between
the parameterized distribution gθ and p̂k+1:

θk+1 = argmin
θ∈Θ

D
(

p̂k+1,gθ
)
, (10.12)

where Θ is the domain of θ . After some algebraic operations, we can show that
solving (10.12) is equivalent to: maxθ∈Θ ∑N

i=1 wi
k+1 lngθ (yi

k).
All the above analysis is carried out when replicator dynamics, e.g., (10.8) and

(10.9), are used. There are some other dynamics in evolutionary game theory such
as imitation dynamics, logit dynamics, and Brown-von Neumann-Nash dynamics
that can be used to update the weights {wi

k}. To present the algorithm in a more
general setting, the updating of weights is denoted as

wi
k = Dd

(
φ(H(xi

k−1))I{H(xi
k−1)≥γk−1},

N

∑
j=1

wj
k−1φ(H(x j

k−1))I{H(x j
k−1)≥γk−1},w

i
k−1

)
,

(10.13)

where γk−1 is a constant that is used to select good candidate solutions; Dd is
a function of three variables, which is used to represent the updating rule. For
example, when Dd is derived from replicator dynamics, we have

wi
k =

1
N φ(H(xi

k−1))I{H(xi
k−1)≥γk−1}

∑N
j=1

1
N φ(H(x j

k−1))I{H(x j
k−1)≥γk−1}

wi
k−1, ∀i = 1, . . . ,N.

Based on the above analysis, a Monte Carlo simulation version of the MEO
algorithm is given as follows.

Model-Based Evolutionary Optimization Algorithm (MEO)

0. Initialization. Specify N as the total number of candidate solutions generated
at each iteration. Choose ρ ∈ (0,1] and an initial gθ0 defined on X. Set k = 0,
wi

0 = 1/N for i = 1, . . . ,N, and γ0 =−∞.
1. Quantile calculation. Generate N candidate solutions {xi

k}N
i=1 from gθk . Calculate

the 1−ρ quantile γk of {xi
k}N

i=1. If γk < γk−1 and k > 1, set γk = γk−1 and wi
k−1 =

1/N for i = 1, . . . ,N. Set k = k+ 1 and go to Step 2.
2. Updating the probabilistic model. The discrete approximation of the model is

p̂k(x) = ∑N
i=1 wi

kδ (x− xi
k−1), where {wi

k} are updated according to (10.13).
3. Density projection. Construct gθ by projecting the density p̂k = ∑N

i=1 wi
kδ (x−

xi
k−1) onto gθ : θk = argmaxθ∈Θ ∑N

i=1 wi
k lngθ (xi

k−1).
4. Stop if some stopping criterion is satisfied; otherwise go to Step 1.
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Generally, it is not easy to solve the optimization problem (10.12), which depends
on the choice of gθ . However, for gθ in an exponential family, analytical solutions
can be obtained. A comprehensive exposition of the evolutionary games approach
is given in [37, 38].

10.6 Stochastic Approximation Approach

In this section, we present a stochastic approximation framework to study model-
based algorithms [21]. The framework is based on the MRAS method presented in
Sect. 10.3 and is intended to combine the robust features of model-based algorithms
encountered in practice with rigorous convergence guarantees. Specifically, by
exploiting a natural connection between model-based algorithms and the well-
known stochastic approximation (SA) method [2,4,26,30], we show that, regardless
of the type of decision variables involved in (10.1), algorithms conforming to the
framework can be equivalently formulated in the form of a generalized stochastic
approximation procedure on a transformed continuous parameter space for solving
a sequence of stochastic optimization problems with differentiable structures. This
viewpoint, which is new to this type of random search algorithms, allows us to study
the asymptotic convergence and rate properties of these algorithms by using existing
theory and tools from SA.

The key idea that leads to the proposed framework is based on replacing
the reference sequence {gk} in the original MRAS method by a more general
distribution sequence in the recursive form:

ĝk+1(x) = αkgk+1(x)+ (1−αk) fθk (x), αk ∈ (0,1) ∀k, (10.14)

which is a mixture of the reference distribution gk+1 and the sampling distribution
fθk obtained at the kth iteration. Such a mixture ĝk+1 retains the properties of gk+1

while, on the other hand, ensures that its difference from fθk is only incremental.
Thus, the intuition is that if one were to replace gk+1 with ĝk+1 in minimizing the KL
divergence D(ĝk+1, fθ ), then the new sampling distribution fθk+1 obtained would
also stay close to the current sampling distribution fθk .

When {ĝk} instead of {gk} is used at step 2 of MRAS to minimize the KL
divergence, the following lemma reveals a key link between the two successive mean
vector functions of the projected probability distributions [21].

Lemma 10.6.1. If fθ belongs to NEFs and the new parameter θk+1 obtained via
minimizing D(ĝk+1, fθ ) is an interior point of the parameter spaceΘ for all k, then

m(θk+1)−m(θk) =−αk∇θD(gk+1, fθ )|θ=θk . (10.15)

Basically, Lemma 10.6.1 states that regardless of the specific form of gk, the mean
vector function m(θk) (i.e., a one-to-one transformation of θk) is updated at each step
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along the gradient descent direction of the time-varying objective function for the
minimization problem minθ D(gk+1, fθ ). In particular, in the case of the CE method,

i.e., when gk+1 in (10.15) takes the form gk+1(x) =
H(x) fθk

(x)
∫

X H(x) fθk
(dx) (cf. (10.4)), it can

be seen that recursion (10.15) becomes

m(θk+1)−m(θk) = αk∇θ lnEθ [H(X)]|θ=θk . (10.16)

Hence, m(θk) is updated along the gradient direction of the objective function for
the maximization problem maxθ lnEθ [H(X)], the optimal solution to which is a
sampling distribution fθ∗ that assigns maximum probability to the set of optimal
solutions of (10.1). Note that the parameter sequence {αk} turns out to be the gain
sequence for the gradient iteration, so that the special case αk ≡ 1 corresponds
to the original MRAS method. This suggests that all model-based algorithms
that fall under the MRAS framework can be equivalently viewed as gradient-
based recursions on the parameter space Θ for solving a sequence of optimization
problems with differentiable structures. This new interpretation of model-based
algorithms provides a key insight to understand how these algorithms address hard
optimization problems with little structure.

In actual implementation, when integrals/expectations are replaced by sample
averages based on Monte Carlo sampling, (10.15) and (10.16) become recursive
algorithms of stochastic approximation type with direct gradient estimation. Thus,
it is clear that the rich body of tools and results from stochastic approximation can
be incorporated into the framework to analyze model-based algorithms.

10.6.1 Convergence of the CE Method

The convergence of the CE algorithm has recently been studied in [19,21] by casting
a Monte Carlo version of recursion (10.16) in the form of a generalized Robbins-
Monro algorithm in terms of the true gradient, bias, and an error term due to random
sampling and then following the arguments of the ordinary differential equation
(ODE) approach [2,4]. The main convergence results are summarized below, where
for notational convenience, we define η := m(θ ) and ηk := m(θk).

Theorem 10.6.5. (Convergence of CE) Under some regularity conditions (see
[21]), the sequence of iterates {ηk} generated by the CE algorithm converges w.p.1
to a compact connected internally chain recurrent set of the ODE

dη(t)
dt

= L(η), t ≥ 0, (10.17)

where L(η) := ∇θ lnEθ [H(X)]|θ=m−1(η).
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Theorem 10.6.5 indicates that the long-run behavior (e.g., local/global convergence)
of CE is primarily governed by the asymptotic solution of an underlying ODE. This
result formalizes our prior observation in [18], which provides counterexamples
indicating that CE and its variants are in general local improvement methods. Under
the more stringent assumption that the convergence of {ηk} occurs to a unique
limiting point η∗, the following asymptotic normality result was obtained in [21].

Theorem 10.6.6. (Asymptotic normality of CE) Under some appropriate condi-
tions (see Theorem 4.1 of [21]),

k
τ
2 (ηk −η∗) dist−−−→ N

(
0,Σ

)
as k → ∞,

where τ ∈ (0,1) is some appropriate constant and Σ is a positive definite covariance
matrix.

10.6.2 Model-Based Annealing Random Search

To further illustrate the stochastic approximation approach, we present an algo-
rithm instantiation of the framework called model-based annealing random search
(MARS) [20]. MARS can essentially be viewed as an implementable version of
the annealing adaptive search (AAS) algorithm, in that it provides an alternative
approach to address the implementation difficulty of AAS (cf. Sect. 10.2). The
basic idea is to use a sequence of NEF distributions to approximate the target
Boltzmann distributions and then use the sequence as surrogate distributions to
generate candidate points. Thus, by treating Boltzmann distributions as reference
distributions, candidate solutions are drawn at each iteration of MARS indirectly
from a Boltzmann distribution by sampling exactly from its approximation. This is
in contrast to Markov chain-based techniques [41] that aim to directly sample from
the Boltzmann distributions.

The MARS algorithm is conceptually very simple and is summarized below:

0. Choose a parameterized family { fθ}, an annealing schedule used in the Boltz-
mann distribution, and a gain sequence {αk}.

1. Given θk, sample N candidate solutions X1
k , . . . ,X

N
k from fθk .

2. Update the parameter θk+1 = argθ minD(g̃k+1, fθ ); increase k by 1 and reiterate
from step 1.

At Step 2 of MARS, the reference distribution is given by g̃k+1(x) = αkḡk+1(x)+
(1−αk) fθk (x), where ḡk+1 is an empirical estimate of the true Boltzmann distri-

bution gk+1(x) := eH(x)/Tk∫
X eH(x)/Tk dx

based on the sampled solutions X1
k , . . . ,X

N
k , and {Tk}

is a sequence of decreasing temperatures that controls how fast the sequence of
Boltzmann distributions will degenerate.



176 J. Hu et al.

Under its equivalent gradient interpretation, Lemma 10.6.1 shows that the mean
vector function m(θk+1) of the new distribution fθk+1 obtained at step 2 of MARS
can be viewed as an iterate generated by a gradient descent algorithm for solving the
iteration-varying minimization problem minθ D(ḡk+1, fθ ) on the parameter space
Θ , i.e.,

m(θk+1)−m(θk) =−αk∇θD(ḡk+1, fθ )|θ=θk . (10.18)

Note that since the reference distribution ḡk+1 may change shape with k, a primary
difference between MARS and CE is that the gradient in (10.18) is time-varying
vs. stationary in (10.16). Stationarity in general only guarantees local convergence,
whereas the time-varying feature of MARS provides a viable way to ensure that
the algorithm escapes from local optima, leading to global convergence. By the
properties of NEFs, recursion (10.18) can be further written as

m(θk+1)−m(θk) =−αk
(
m(θk)−Egk+1[Γ (X)]+Egk+1[Γ (X)]−Eḡk+1[Γ (X)]

)

=−αk∇θD(gk+1, fθ )|θ=θk −αk
(
Egk+1 [Γ (X)]−Eḡk+1[Γ (X)]

)
.

This becomes a Robbins-Monro-type stochastic approximation algorithm in terms
of the true gradient and a noise term due to the approximation error between gk+1

and ḡk+1. Thus, in light of the existing theories from stochastic approximation, the
convergence analysis of MARS essentially boils down to the issue of inspecting
whether the Boltzmann distribution gk+1 can be closely approximated by its
empirical estimate ḡk+1. The following results are obtained in [20].

Theorem 10.6.7. (Global convergence of MARS) Under some appropriate condi-
tions (see Theorem 3.1 of [20]),

lim
k→∞

m(θk) = Γ (x∗) w.p.1.

Theorem 10.6.8. (Asymptotic normality of MARS) Let αk = a/kα and the sample
size be polynomially increasing Nk = ckβ for constants a > 0, c > 0, α ∈ ( 1

2 ,1), and
β > α . Under some additional conditions on {Tk},

k
α+β

2
(
m(θk)−Γ (x∗)

) dist−−−→ N(0,Σ) as k → ∞,

where Σ is some positive definite covariance matrix.

Numerical results on high-dimensional multi-extremal benchmark problems
reported in [20] show that MARS may yield high-quality solutions within a modest
number of function evaluations and provide superior performance over some of the
existing algorithms.
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10.7 Conclusions

We reviewed several recent contributions to model-based methods for global
optimization, including algorithms and convergence results for model reference
adaptive search, the particle-filtering approach, the evolutionary games approach,
and the stochastic approximation gradient approach. These approaches analyze
model-based methods from different perspectives, providing useful tools to explore
properties of the updating mechanism of probabilistic models and to facilitate proofs
of convergence of model-based algorithms.
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Chapter 11
Constrained Optimality for First Passage
Criteria in Semi-Markov Decision Processes

Yonghui Huang and Xianping Guo

11.1 Introduction

In the field of Markov decision problems (MDPs), the control horizon is usually a
fixed finite interval [0,T ] or the infinite interval [0,+∞). In many real applications,
however, the control horizon may be a random duration [0,τ], where the terminal
time τ is a random variable at which the state of the controlled system changes
critically and the control beyond τ may no longer be meaningful or necessary. For
example, in the insurance systems [27], the control after the time when the company
is bankrupt becomes unnecessary. Therefore, it makes better sense to consider the
problem in [0,τ], where τ represents the bankruptcy time of the company. Such
situations motivate first passage problems in MDPs [13,15,19,21,22,28], for which
one generally aims at maximizing/minimizing the expected reward/cost over a first
passage time to some target set.

This chapter is devoted to studying constrained optimality for first passage
criteria, for which the dynamic of a system is described by semi-Markov decision
processes (SMDPs). The state space is assumed to be denumerable, while the action
set is general. Both reward and cost rates are possibly unbounded. A key feature of
our model is that the discount rate is state-action dependent, and furthermore, the
undiscounted case is allowed. This feature makes our model more general since the
state-action-dependent discount rate exactly characterizes the practical cases such
as the interest rate in economic and financial systems [2,9,17,23,26], which can be
adjusted according to the real circumstances. We aim to maximize the expected
reward obtained during a first passage time to some target set, subject to that
the associated expected cost over this first passage time does not exceed a given
constraint. An interesting special case is that in which the reward rates are uniformly
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equal to one, which corresponds to a stochastic time optimal control problem with
a target set; see Remark 11.2.4(d) for details.

Previously, Beutler and Ross [3] consider constrained SMDPs with the long-
run average criteria. They suppose that the state space of the SMDP is finite, and
the action space compact metric. A Lagrange multiplier formulation involving a
dynamic programming equation is utilized to relate the constrained optimization
to an unconstrained optimization parametrized by the multiplier. This approach
leads to a proof for the existence of a semi-simple optimal constrained policy.
That is, there is at most one state for which the action is randomized between
two possibilities; at all other states, an action is uniquely chosen for each state.
Feinberg [4] further investigates constrained average reward SMDPs with finite
state and action sets. They develop a technique of state-action renewal intensities
and provide linear programming algorithms for the computation of optimal policies.
On the other hand, Feinberg [5] deals with constrained infinite horizon discounted
SMDPs. Compared with the existing works above, however, our main interest in this
chapter is to analyze the constrained optimality for first passage criteria in SMDPs,
which, to best of our knowledge, is an issue not yet explored.

To obtain the existence of a constrained first passage optimal policy, we first give
suitable conditions and then employ the so-called Lagrange multiplier technique
to analyze the constrained control problem. Based on the Lagrange multiplier
technique, we transform the constrained control problem to an unconstrained one,
prove that a constrained optimal policy exists, and show that the constrained optimal
policy randomizes between two stationary policies differing in at most one state.

The rest of this chapter is organized as follows. In Sect. 11.2, we formulate
the control model, followed by the optimality conditions and the main results
on the existence of constrained optimal policies. In Sect. 11.3, some technique
preliminaries are given, and the proof of the main result is presented in Sect. 11.4.

11.2 The Control Model

The model of constrained SMDPs considered in this chapter is specified by the eight
objects

{E,B,(A(i)⊂ A, i ∈ E),Q(·, · | i,a),r(i,a),c(i,a),α(i,a),γ}, (11.1)

where E is the state space, a denumerable set; B ⊂ E is the given target set, such as
the set of all bad states or of good states of a system; A is the action space, a Borel
space endowed with the Borel σ -field A ; and A(i) ∈ A is the set of admissible
actions at state i ∈ E . The transition mechanism of the SMDPs is defined by the
semi-Markov kernel Q(·, ·|i,a) on R+×E given K, where R+ = [0,+∞), and K =
{(i,a) | i ∈ E,a ∈ A(i)} is the set of feasible state-action pairs. It is assumed that (1)
Q(·, j|i,a) (for any fixed j ∈ E and (i,a) ∈ K) is a nondecreasing, right continuous
real function on R+ such that Q(0, j|i,a) = 0; (2) Q(t, ·|·, ·) (for each fixed t ∈ R+)
is a sub-stochastic kernel on E given K; and (3) P(·|·, ·) := Q(∞, ·|·, ·) is a stochastic
kernel on E given K. If action a ∈ A(i) is selected in state i, then Q(t, j | i,a) is the
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joint probability that the sojourn time in state i is not greater than t ∈ R+, and the
next state is j. Moreover, r(i,a) and c(i,a) in (11.1) denote the reward and cost rate
functions on K valued in R = (−∞,+∞), respectively, which are both assumed to be
measurable on A(i) for each fixed i ∈ E . In addition, α(i,a) represents the discount
rate, which is a measurable function from K to R+. Finally, γ is a given constraint
constant.

Remark 11.2.1. Compared with the models of the standard constrained discounted
and average criteria [3–5], in this model (11.1), we introduce a target set B ⊂ E of
the controlled system, and furthermore, the discount rate α(i,a) here is state-action
dependent and may be equal to zero (i.e., the undiscounted case is allowed).

To state the constrained SMDPs we are concerned with, we need to introduce the
classes of policies. For each n ≥ 0, let Hn be the family of admissible histories up to
the nth jump (decision epoch), that is, Hn = (R+×K)n× (R+×E), for n = 0,1, . . ..

Definition 11.2.1. A randomized history-dependent policy, or simply a policy, is a
sequence π = {πn,n ≥ 0} of stochastic kernels πn on A given Hn satisfying

πn(A(in) | hn) = 1 ∀ hn = (t0, i0,a0, . . . , tn−1, in−1,an−1, tn, in) ∈ Hn, n = 0,1, . . . .

The class of all policies is denoted by Π . To distinguish the subclasses of Π , we
let Φ be the family of all stochastic kernels ϕ on A given E such that ϕ(A(i) | i) = 1
for all i∈ E , and F the set of all functions f : E →A such that f (i) is in A(i) for every
i∈ E . A policy π = {πn} ∈Π is said to be randomized Markov if there is a sequence
{ϕn} of ϕn ∈ Φ such that πn(· | hn) = ϕn(· | in) for every hn ∈ Hn and n ≥ 0. We
denote such a policy by π = {ϕn}. A randomized Markov policy π = {ϕn} is said
to be randomized stationary if every ϕn is independent of n. In this case, we write
π = {ϕ ,ϕ , . . .} as ϕ for simplicity. Further, a randomized Markov policy π = {ϕn}
is said to be deterministic Markov if there is a sequence { fn} of fn ∈ F such that
ϕn(· | i) is the Dirac measure at fn(i) for all i ∈ E and n ≥ 0. We write such a
policy as π = { fn}. In particular, a deterministic Markov policy π = { fn} is said
to be (deterministic) stationary if fn are all independent of n. Similarly, we write
π = { f , f , . . .} as f for simplicity. We denote by ΠRM, ΠRS,ΠDM, and ΠDS the
families of all randomized Markov, randomized stationary, deterministic Markov,
and stationary policies, respectively. Obviously, Φ = ΠRS ⊂ ΠRM ⊂ Π and F =
ΠDS ⊂ΠDM ⊂Π .

Let P(E) denote the set of all the probability measures on E . For each (s,μ) ∈
R+ × P(E) and π ∈ Π , by the well-known Tulcea’s theorem ([10, Proposition
C.10]), there exist a unique probability space (Ω ,F , Pπ

(s,μ)) and a stochastic process
{Tn,Jn,An,n ≥ 0} such that, for each i, j ∈ E, t ∈ R+,C ∈ A and n ≥ 0,

Pπ
(s,μ)(T0 = s,J0 = i) = μ(i), (11.2)

Pπ
(s,μ)(An ∈C | hn) = πn(C | hn), (11.3)

Pπ
(s,μ)(Tn+1−Tn ≤ t,Jn+1 = j | hn,an) = Q(t, j | in,an), (11.4)
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where Tn,Jn, and An denote the nth decision epoch, the state, and the action chosen
at the nth decision epoch, respectively. The expectation operator with respect to
Pπ
(s,μ) is denoted by Eπ

(s,μ). In particular, if μ is the Dirac measure δi(·) concentrated
at some state i ∈ E , we write Pπ

(s,μ) and Eπ
(s,μ) as Pπ

(s,i) and Eπ
(s,i), respectively. For

simplicity, Pπ
(0,μ) and Eπ

(0,μ) is denoted by Pπ
μ and Eπ

μ , respectively. Without loss
of generality, in the following, we always set the initial decision epoch T0 = 0
and omit it.

Remark 11.2.2. (a) The construction of the probability measure space (Ω ,F ,
Pπ
(s,μ)) and the above properties (11.2)–(11.4) follow from those in Limnios and

Oprisan [18, p.33] and Puterman [24, p.534–535].
(b) Let X0 := 0, Xn := Tn−Tn−1 (n ≥ 0) denote the sojourn times between decision

epochs (jumps). Then, the stochastic process {Tn,Jn,An,n≥ 0}may be rewritten
as the one {Xn,Jn,An,n ≥ 0}.

To avoid the possibility of an infinite number of decision epochs within finite
time, we make the following assumption that the system does not have accumulation
points.

Assumption 11.2.1 For all μ ∈ P(E) and π ∈Π , Pπ
μ ({ lim

n→∞
Tn = ∞}) = 1.

To verify Assumption 11.2.1, we can use a sufficient condition below.

Condition 11.2.2 There exist constants δ > 0 and ε > 0 such that

Q(δ ,E | i,a)≤ 1− ε ∀(i,a) ∈ K.

Remark 11.2.3. In fact, Condition 11.2.2 is the standard regular condition widely
used in SMDPs [5, 16, 20, 24, 25], which exactly implies Assumption 11.2.1 above.

Under Assumption 11.2.1, we define an underlying continuous-time state-action
process {Z(t),W (t), t ∈ R+} corresponding to the stochastic process {Tn,Jn,An} by

Z(t) = Jn, W (t) = An, for Tn ≤ t < Tn+1, t ∈ R+ and n ≥ 0.

Definition 11.2.2. The stochastic process {Z(t),W (t)} is called a (continuous-
time) SMDP.

For the target set B ⊂ E , we consider the random variable

τB := inf{t ≥ 0 | Z(t) ∈ B} (with inf /0 := ∞),

which is the first passage time into the set B of the process {Z(t), t ∈ R+}. Now, fix
an initial distribution μ ∈ P(E). For each π ∈ Π , the expected first passage reward
and cost criteria are defined as follows:

Vr(μ ,π) := Eπ
μ

[∫ τB

0
e−

∫ t
0 α(Z(u),W(u))dur(Z(t),W (t))dt

]
, (11.5)

Vc(μ ,π) := Eπ
μ

[∫ τB

0
e−

∫ t
0 α(Z(u),W(u))duc(Z(t),W (t))dt

]
. (11.6)
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To introduce the constrained problem, for the constraint constant γ in (11.1), let

U := {π ∈Π |Vc(μ ,π)≤ γ}
be the set of “constrained” policies. We assume that U 
= /0 throughout the following.
Then, the optimization problem we are interested in is to maximize the expected first
passage reward Vr(μ ,π) over the set U , and our goal is to find a constrained optimal
policy as defined below.

Definition 11.2.3. A policy π∗ ∈U is called constrained optimal if

Vr(μ ,π∗) = sup
π∈U

Vr(μ ,π).

Remark 11.2.4. (a) It is worthwhile to point out that the expected first passage
reward criterion Vr(μ ,π) defined in (11.5) is different from the usual discounted
reward criteria [11, 12, 24] and the total reward criteria without discount
[6, 11, 24]. In fact, the former concerns with the performance of the system
during a first passage time to some target set, while the latter concern with
the performance of the system over an infinite horizon. However, if the target
set B = /0 (and thus τB ≡ ∞) and, furthermore, the discount factor α(i,a) is
state-action independent (say, α(i,a) ≡ α), then the expected first passage
reward criterion (11.5) above will be directly reduced to the standard infinite
horizon expected discounted reward criteria or expected total reward criteria
[6, 11, 12, 14, 24].

(b) Note that the case without discount, that is, α(i,a)≡ 0, is allowed in the context
of this chapter; see Remark 11.2.5 for further details.

(c) When the constraint constant γ in (11.1) is sufficiently large so that U =Π , then
the constrained first passage optimization problem (recall Definition 11.2.3) is
reduced to the usual unconstrained first passage optimization problems [13, 15,
19, 21, 22, 28].

(d) In real situations, the target set B usually represents the set of failure states of a
system, and thus τB denotes the working life (functioning life) of the system.
Therefore, our aim is to maximize the expected rewards Vr(μ ,π) obtained
before the system fails, subject to the associated costs Vc(μ ,π) incurred before
the failure of the system is not more than some constraint constant γ . In
particular, if the reward function rate r(i,a)≡ 1 and the discount factor α(i,a)≡
0, our aim is then reduced to maximizing the expected working life of the
system, subject to the associated costs Vc(μ ,π) incurred before the failure of
the system are not more than some constraint constant γ .

To obtain the existence of a constrained optimal policy, we need several sets of
conditions.

Assumption 11.2.3 There exist constants M > 0, 0 < β < 1, and a weight function
w ≥ 1 on E such that for every i ∈ Bc := E −B,

(a) supa∈A(i) |r̃(i,a)| ≤Mw(i), and supa∈A(i) |c̃(i,a)| ≤Mw(i) for all a∈A(i), where
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r̃(i,a) : = r(i,a)
∫ ∞

0
e−α(i,a)t(1−D(t | i,a))dt,

c̃(i,a) : = c(i,a)
∫ ∞

0
e−α(i,a)t(1−D(t | i,a))dt, and

D(t | i,a) : = Q(t,E | i,a).

(b) supa∈A(i)∑ j∈Bc w( j)m( j | i,a)≤ βw(i), where m( j | i,a) :=
∫ ∞

0 e−α(i,a)tQ(dt, j |
i,a).

Remark 11.2.5. (a) In fact, Assumption 11.2.3 is a condition that ensures the first
passage criteria (11.5) and (11.6) to be finite and the dynamic programming
operators to be contracting; see Lemmas 11.3.1–11.3.2 below.

(b) Assumption 11.2.3(a) shows that the cost function is allowed to have neither
upper nor lower bounds, while the ones in the existing works [3–5, 7, 8, 12] for
the standard constrained expected discount criteria are assumed to be bounded
or nonnegative (bounded below).

(c) Note that the case without discount, that is, “α(i,a) ≡ 0”, is allowed in
Assumption 11.2.3. In this case, Assumption 11.2.3(b) is reduced to that there
exists a constant 0 < β < 1 such that

sup
a∈A(i)

∑
j∈Bc

w( j)P( j | i,a)≤ βw(i) ∀ i ∈ Bc (with P( j | i,a) := Q(∞, j | i,a)),

(11.7)

which can be still verified. This fact is due to that the restrictions in Assumption
11.2.3(b) are imposed on the data of the set Bc rather than the entire space E .
However, if the restrictions in Assumption 11.2.3(b) are imposed on the data of
the entire space E , that is, there exists a constant 0 < β < 1 such that

sup
a∈A(i)

∑
j∈E

w( j)P( j | i,a)≤ βw(i) ∀ i ∈ E, (11.8)

then (11.8) fails to hold itself. Indeed, by taking infi w(i) in the two sides of
(11.8), we can conclude from (11.8) that “β ≥ 1”, which leads to a contradiction
with “0 < β < 1”.

Assumption 11.2.4 (a) For each i ∈ Bc, A(i) is compact.
(b) The functions r̃(i,a), c̃(i,a), and m( j | i,a) defined in Assumption 11.2.3 are

continuous in a ∈ A(i) for each fixed i, j ∈ Bc, respectively.
(c) The function ∑ j∈Bc w( j)m( j | i,a) is continuous in a ∈ A(i), with w as in

Assumption 11.2.3.

Remark 11.2.6. Assumption 11.2.4 is the compactness-continuity conditions for
the first passage criteria, which is similar to the standard compactness-continuity
conditions for discount and average criteria; see, for instance, Beutler and Ross
[3], Guo and Hernández-Lerma [7, 8]. The difference between them lies in that the
former only imposes restrictions on the data of the set Bc, while the latter focus on
the data of the entire space E .
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Assumption 11.2.5 (a) ∑ j∈Bc w( j)μ( j) < ∞.
(b) U0 := {π ∈Π |Vc(μ ,π)< γ} 
= /0.

Remark 11.2.7. (a) Assumption 11.2.5(a) is a condition on the “tails” of the initial
distribution μ , whereas Assumption 11.2.5(b) is a Slater-like hypothesis, typical
for constrained problems; see, for instance, Beutler and Ross [3], Guo and
Hernández-Lerma [7, 8], and Zhang and Guo [29].

(b) It should be noted that the conditions in Assumptions 11.2.3–11.2.5 are all
imposed on the data of the set Bc rather than the entire space E and thus can
be fulfilled in greater generality.

Our main result is stated as following.

Theorem 11.2.1. Suppose that Assumptions 11.2.1–11.2.5 hold. Then there exists
a constrained optimal policy that may be a stationary policy or a randomized
stationary policy which differ in at most one state; that is, there exist two stationary
policies f 1, f 2, a state i∗ ∈ Bc, and a number p ∈ [0,1] such that f 1(i) = f 2(i) for
all i 
= i∗ and, in addition, the randomized stationary policy ϕ p(· | i) is constrained
optimal, where

ϕ p(a | i) =

⎧
⎨

⎩

p, if a = f 1(i∗),
1− p, if a = f 2(i∗),
1, if a = f 1(i) = f 2(i), i 
= i∗.

(11.9)

Proof. See Sect. 11.4. �

11.3 Technical Preliminaries

This section provides some technical preliminaries necessary for the proof of
Theorem 11.2.1 in Sect. 11.4.

To begin with, we define the w-norm for every real-valued function u on E by

‖u‖w := sup
i∈E

|u(i)|/w(i),

where w is the so-called weight function on E as in Assumption 11.2.3. Let

Bw(E) := {u : ‖u‖w < ∞}
be the space of w-bounded functions on E .

Lemma 11.3.1. Suppose that Assumptions 11.2.1 and 11.2.3 hold. Then:

(a) For each i ∈ E and π ∈Π ,

|Vr(i,π)| ≤ Mw(i)/(1−β ), |Vc(i,π)| ≤ Mw(i)/(1−β ).

Hence, Vr(·,π) ∈ Bw(E), and Vc(·,π) ∈ Bw(E).
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(b) For all i ∈ E, π ∈Π , and u ∈ Bw(E),

lim
n→∞

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}u(Jn)

]
= 0,

where 1D is the indicator function on a set D.

Proof. (a) By the definition of Vr(i,π), we see that Vr(i,π) can be expressed as
below:

Vr(i,π)

= Eπ
i

[∫ τB

0
e−

∫ t
0 α(Z(u),W(u))dur(Z(t),W (t))dt

]

= Eπ
i

[∫ ∞

0
e−

∫ t
0 α(Z(u),W(u))du1{τB>t}r(Z(t),W (t))dt

]

= Eπ
i

[ ∞

∑
n=0

∫ Tn+1

Tn

e−
∫ t

0 α(Z(u),W(u))dudt1{J0∈Bc,...,Jn∈Bc}r(Jn,An)

]

= Eπ
i

[ ∞

∑
n=0

∫ Xn+1

0
e−

∫ Tn+t
0 α(Z(u),W(u))dudt1{J0∈Bc,...,Jn∈Bc}r(Jn,An)

]

= Eπ
i

[
∞

∑
n=0

e−
∫ Tn

0 α(Z(u),W(u))du1{J0∈Bc,...,Jn∈Bc}r(Jn,An)

∫ Xn+1

0
e−

∫ Tn+t
Tn

α(Z(u),W(u))dudt

]

= Eπ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r(Jn,An)

∫ Xn+1

0
e−α(Jn,An)tdt

]

= Eπ
i

[ ∞

∑
n=0

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r(Jn,An)

×
∫ Xn+1

0
e−α(Jn,An)tdt|X0,J0,A0, . . . ,Xn,Jn,An

]]

= Eπ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r(Jn,An)

×Eπ
i

[∫ Xn+1

0
e−α(Jn,An)tdt|X0,J0,A0, . . . ,Xn,Jn,An

]]

= Eπ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r(Jn,An)
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×
∫ ∞

0
e−α(Jn,An)t(1−D(t | Jn,An))dt

]

= Eπ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r̃(Jn,An)

]
, (11.10)

where the third equality follows from Assumption 11.2.1 and the ninth equality
is due to the property (11.4).

We now show that for each n = 0,1, . . .,

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

]
≤ β nw(i). (11.11)

Indeed, (11.11) is trivial for n = 0. Now, for n ≥ 1, it follows from the property
(11.4) and Assumption 11.2.3(b) that

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

]

= Eπ
i

[
Eπ

i

[
n−1

∏
k=0

e−α(Jk ,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

| T0,J0,A0, . . . ,Tn−1,Jn−1,An−1]]

= Eπ
i

[ n−2

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn−1∈Bc}Eπ
i

[
e−α(Jn−1,An−1)Xn1{Jn∈Bc}w(Jn)

| T0,J0,A0, . . . ,Tn−1,Jn−1,An−1

]]

= Eπ
i

[ n−2

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn−1∈Bc}

× ∑
j∈Bc

∫ ∞

0
e−α(Jn−1,An−1)tw( j)Q(dt, j | Jn−1,An−1)

]

= Eπ
i

[ n−2

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn−1∈Bc} ∑
j∈Bc

w( j)m( j | Jn−1,An−1)

]

≤ βEπ
i

[ n−2

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn−1∈Bc}w(Jn−1)

]
. (11.12)

Iterating (11.12) yields (11.11).
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Moreover, observe that Assumption 11.2.3(a) and (11.11) gives

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}|r̃(Jn,An)|
]

≤ MEπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

]

≤ Mβ nw(i),

which together with (11.10) yields

|Vr(i,π)| ≤
∞

∑
n=0

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}|r̃(Jn,An)|
]

≤
∞

∑
n=0

Mβ nw(i) = Mw(i)/(1−β ).

Thus, we get

sup
i∈E

|Vr(i,π)|/w(i)≤ Mw(i)/(1−β ),

which shows that Vr(·,π) ∈ Bw(E).
Similarly, the conclusion for Vc(·,π) can be obtained.

(b) Since |u(i)| ≤ ‖u‖ww(i) for all i ∈ E , it follows from (11.11) above that

Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}|u(Jn)|
]

≤ ‖u‖wEπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}w(Jn)

]
≤ ‖u‖wβ nw(i),

and so part (b) follows. �

Remark 11.3.8. In fact, Lemma 11.3.1 here for first passage criteria in SMDPs is
similar to Lemma 3.1 in Huang and Guo [15]. The main difference between them is
due to that the discount factor α(i,a) here is state-action dependent, and the reward
rate here is possibly unbounded (while the ones in Huang and Guo [15] are not).

For ϕ ∈Φ , we define the dynamic programming operators Hϕ and H on Bw(E)
as follows: for u ∈ Bw(E), if i ∈ Bc,
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Hϕu(i) :=
∫

a∈A(i)

[
r̃(i,a)+ ∑

j∈Bc
u( j)m( j | i,a)

]
ϕ(da | i), (11.13)

Hu(i) := sup
a∈A(i)

[
r̃(i,a)+ ∑

j∈Bc
u( j)m( j | i,a)

]
, (11.14)

and if i ∈ B, Hϕu(i) = Hu(i) := 0.

Lemma 11.3.2. Suppose that Assumptions 11.2.1 and 11.2.3 hold. Then:

(a) For each ϕ ∈Φ , Vr(·,ϕ) is the unique solution in Bw(E) to the equation

Vr(i,ϕ) = HϕVr(i,ϕ) ∀i ∈ E.

(b) If, in addition, Assumption 11.2.4 also holds, V ∗
r (i) := supπ∈Π Vr(i,π) is the

unique solution in Bw(E) to equation

V ∗
r (i) = HV ∗

r (i) ∀i ∈ E.

Moreover, there exists an f ∗ ∈ F such that V ∗
r (i) = H f ∗V ∗

r (i), and such a policy
f ∗ ∈ F satisfies Vr(i, f ∗) =V ∗

r (i) for every i ∈ E.

Proof. (a) From Lemma 11.3.1, it is clear that Vr(·,ϕ) ∈ Bw(E). We now establish
the equation Vr(i,ϕ) = HϕVr(i,ϕ). It is obviously true when i ∈ B, and for i ∈
Bc, by (11.10), we have

Vr(i,ϕ)

= Eϕ
i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc} r̃(Jn,An)

]

= Eϕ
i

[
Eϕ

i

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r̃(Jn,An) | T0,J0,A0,T1,J1

]]

= Eϕ
i

[
1{J0∈Bc}r̃(J0,A0)+ e−α(J0,A0)X11{J0∈Bc,J1∈Bc}Eϕ

i

[ ∞

∑
n=1

n−1

∏
k=1

e−α(Jk,Ak)Xk+1

1{J2∈Bc,...,Jn∈Bc} r̃(Jn,An) | T0,J0,A0,T1,J1

]]

=
∫

a∈A(i)
ϕ(da | i)

[
r̃(i,a)+ ∑

j∈Bc

∫ ∞

0
e−α(i,a)tQ(dt, j | i,a)Eϕ

i

[ ∞

∑
n=1

n−1

∏
k=1

e−α(Jk,Ak)Xk+1

1{J0∈Bc,...,Jn∈Bc}r̃(Jn,An) | T0 = 0,J0 = i,A0 = a,T0 = t,J1 = j

]]
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=

∫

a∈A(i)
ϕ(da | i)

[
r̃(i,a)+ ∑

j∈Bc
m( j | i,a)Eϕ

j

[ ∞

∑
n=0

n−1

∏
k=0

e−α(Jk,Ak)Xk+1

1{J0∈Bc,...,Jn∈Bc}r̃(Jn,An)

]

=

∫

a∈A(i)
ϕ(da | i)

[
r̃(i,a)+ ∑

j∈Bc
m( j | i,a)Vr( j,ϕ)

]
,

where the fifth equality is due to the properties (11.2)–(11.4) and that policy ϕ
is Markov. Hence, we obtain that Vr(i,ϕ) = HϕVr(i,ϕ), i ∈ E .

To complete the proof, we need only show that Hϕ is a contraction from
Bw(E) to Bw(E), and thus Hϕ has a unique fixed point in Bw(E). Indeed, for an
arbitrary function u ∈ Bw(E), by Assumption 11.2.3 it is clear that

|Hϕu(i)|

=

∣
∣
∣
∣
∣

∫

a∈A(i)

[
r̃(i,a)+ ∑

j∈Bc
u( j)m( j | i,a)

]
ϕ(da | i)

∣
∣
∣
∣
∣

≤
∫

a∈A(i)

[
|r̃(i,a)|+ ∑

j∈Bc
|u( j)|m( j | i,a)

]
ϕ(da | i)

≤
∫

a∈A(i)

[
Mw(i)+ ‖u‖wβw(i)

]
ϕ(da | i)

= (M +β‖u‖w)w(i) ∀i ∈ Bc,

which implies that Hϕu ∈ Bw(E), that is, Hϕ maps Bw(E) to itself. Moreover,
for any u,u′ ∈ Bw(E), we have

|Hϕu(i)−Hϕu′(i)|

=

∣
∣∣
∣
∣

∫

a∈A(i)

[

∑
j∈Bc

(u( j)− u′( j))m( j | i,a)

]
ϕ(da | i)

∣
∣∣
∣
∣

≤
∫

a∈A(i)

[

∑
j∈Bc

|u( j)− u′( j)|m( j | i,a)

]
ϕ(da | i)

≤
∫

a∈A(i)

[
‖u− u′‖wβw(i)

]
ϕ(da | i)

= β‖u− u′‖ww(i) ∀i ∈ Bc.

Hence, ‖Hϕu−Hϕu′‖w ≤ β‖u−u′‖w, and thus Hϕ is a contraction fromBw(E)
to itself. By Banach’s Fixed Point Theorem, Hϕ has a unique fixed point in
Bw(E), and so the proof is achieved.
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(b) Under Assumption 11.2.4, using a similar manner to the proof of part (a) yields
that H is a contraction from Bw(E) to itself, and thus, by Banach’s Fixed Point
Theorem, H has a unique fixed point u∗ in Bw(E), that is, Hu∗ = u∗. Hence, to
prove part (b), we need to show that: (b1) V ∗

r ∈ Bw(E), with w-norm ‖V ∗
r ‖ ≤

M/(1−β ). (b2) V ∗
r = u∗.

In fact, (b1) is an immediate result of Lemma 11.3.1(a). Thus, it remains to prove
(b2). To this end, we show that u∗ ≤ V ∗

r and u∗ ≥ V ∗
r as below, respectively. It is

clear that u∗(i) =V ∗
r (i) = 0 for every i ∈ B. Hence, in the following, we restrict our

argument to the case of i ∈ Bc.

(i) This part is to show that u∗ ≤V ∗
r . By the equality u∗ = Hu∗ and the measurable

selection theorem [10, Proposition D.5, p.182], there exists an f ∈ F such that

u∗(i) = r̃(i, f )+ ∑
j∈Bc

u∗( j)m( j | i, f ) ∀i ∈ Bc. (11.15)

Iteration of (11.15) yields

u∗(i) = E f
i

[ n−1

∑
m=0

m−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jm∈Bc}r̃(Jm, f )

]

+E f
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}u∗(Jn)

]
∀i ∈ Bc, n = 1,2 . . . ,

and letting n → ∞ we get, by Lemma 11.3.1(b),

u∗(i) = E f
i

[ ∞

∑
m=0

m−1

∏
k=0

e−α(Jk ,Ak)Xk+11{J0∈Bc,...,Jm∈Bc}r̃(Jm, f )

]
=Vr(i, f ) ∀i ∈ Bc.

Thus, by the definition of V ∗
r , we see that u∗ ≤V ∗

r .
(ii) This part is to show that u∗ ≥V ∗

r . Note that u∗ = Hu∗ implies that

u∗(i)≥ r̃(i,a)+ ∑
j∈Bc

u∗( j)m( j | i,a) ∀i ∈ Bc, a ∈ A(i), (11.16)

which gives

1{Jn∈Bc}u∗(Jn)≥ 1{Jn∈Bc}r̃(Jn,An)+1{Jn∈Bc} ∑
j∈Bc

u∗( j)m( j | Jn,An) ∀n ≥ 0.

(11.17)

Hence, for any initial state i ∈ Bc and policy π ∈ Π , using properties (11.2)–
(11.4) yields
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1{Jn∈Bc}u∗(Jn) ≥ Eπ
i

[
1{Jn∈Bc}r̃(Jn,An)+ e−α(Jn,An)Xn+11{Jn∈Bc,Jn+1∈Bc}

×u∗(Jn+1) | T0,J0,A0, . . . ,Tn,Jn,An

]
∀n = 0,1 . . . ,

which gives

n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}u∗(Jn)

≥ Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}r̃(Jn,An)

+
n

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn+1∈Bc}u∗(Jn+1) | T0,J0,A0, . . . ,Tn,Jn,An

]

∀n = 0,1 . . . .

Therefore, taking expectation Eπ
i and summing over m = 0,1 . . . ,n − 1, we

obtain

u∗(i) ≥ Eπ
i

[ n−1

∑
m=0

m−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jm∈Bc}r̃(Jm,Am)

]

+Eπ
i

[ n−1

∏
k=0

e−α(Jk,Ak)Xk+11{J0∈Bc,...,Jn∈Bc}u∗(Jn)

]
, ∀n = 1,2 . . . .

Finally, letting n → ∞ in the latter inequality and using Lemma 11.3.1(b), it
follows that

u∗(i)≥Vr(i,π)
so that, as i and π were arbitrary, we conclude that u∗ ≥V ∗

r .

Combining (i) with (ii) yields that u∗ =V ∗
r , and thus we have V ∗

r = HV ∗
r .

Finally, it follows from V ∗
r = HV ∗

r and the measurable selection theorem that
there exists an f ∗ ∈ F such that V ∗

r = H f ∗V ∗
r . This fact together with part (a) implies

that V f ∗
r =V ∗

r . �

Remark 11.3.9. Note that Lemma 11.3.2 also holds for the case of the expected first
passage cost Vc accordingly.

Note that F can be written as the product space F = ∏i∈E A(i). Hence, by
Assumption 11.2.4(a) and Tychonoff’s theorem, F is a compact metric space.

Lemma 11.3.3. Suppose that Assumptions 11.2.1–11.2.4 and 11.2.5(a) hold. Then
the functions Vr(μ , f ) and Vc(μ , f ) are continuous in f ∈ F.

Proof. We only prove the continuity of Vr(μ , f ) in f ∈ F because the other case is
similar. Let fn → f as n → ∞ and fix any i ∈ E . Let v(i) := limsupn→∞Vr(i, fn).
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Then, by Theorem 4.4 in [1], there exists a subsequence {Vr(i, fnm)} (depending on
i) of {Vr(i, fn)} such that Vr(i, fnm)→ v(i) as m → ∞. Then, by Lemma 11.3.1(a),
we have Vr( j, fnm) ∈ [−Mw( j)/(1− β ),Mw( j)/(1− β )] for all j ∈ E and m ≥ 1,
and so Vr(·, fnm) is in the product space ∏ j∈E [−Mw( j)/(1− β ),Mw( j)/(1− β )]
for each m ≥ 1. Since E is denumerable, the Tychonoff theorem shows that
the space ∏ j∈E [−Mw( j)/(1 − β ),Mw( j)/(1 − β )] is compact, and thus there
exists a subsequence {Vr(·, fnk )} of {Vr(·, fnm)} converging to some point u in
∏ j∈E [−Mw( j)/(1− β ),Mw( j)/(1 − β )], that is, limk→∞Vr( j, fnk ) = u( j) for all
j ∈ E, which, together with fn → f and limm→∞Vr(i, fnm) = v(i), implies that

v(i) = u(i), lim
k→∞

Vr( j, fnk ) = u( j), and lim
k→∞

fnk( j) = f ( j), for all j ∈ E. (11.18)

Moreover, by Lemma 11.3.1(a), we have

|u( j)| ≤ Mw( j)/(1−β ), for all j ∈ E, (11.19)

which implies that u ∈ Bw(E).
On the other hand, for k ≥ 1 and the given i ∈ Bc, by Lemma 11.3.2(a), we have

Vr(i, fnk ) = r̃(i, fnk )+ ∑
j∈Bc

Vr( j, fnk )m( j | i, fnk ). (11.20)

Then, under Assumptions 11.2.3 and 11.2.4, from (11.18)–(11.20) and Lemma 8.3.7
(i.e., the Generalized Dominated Convergence Theorem) in [11], we get

u(i) = r̃(i, f )+ ∑
j∈Bc

u( j)m( j | i, f ). (11.21)

Thus, by Lemma 11.3.2(a) and (11.18), we conclude that

limsup
n→∞

Vr(i, fn) = v(i) = u(i) =Vr(i, f ). (11.22)

Similarly, we can prove that

liminf
n→∞

Vr(i, fn) =Vr(i, f ),

which together with (11.22) implies that

limsup
n→∞

Vr(i, fn) = liminf
n→∞

Vr(i, fn) =Vr(i, f ),

and so

lim
n→∞

Vr(i, fn) =Vr(i, f ). (11.23)
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Moreover, noting that Vr(i, fn) = Vr(i, f ) = 0 for every i ∈ B and n ≥ 0, it follows
from Assumption 11.2.5(a) and Lemma 8.3.7 in [11] again that

lim
n→∞

Vr(μ , fn) = lim
n→∞∑

i∈E
[Vr(i, fn)]μ(i) = lim

n→∞ ∑
i∈Bc

[Vr(i, fn)]μ(i)

= ∑
i∈Bc

[ lim
n→∞

Vr(i, fn)]μ(i) = ∑
i∈Bc

Vr(i, f )μ(i) =Vr(μ , f ), (11.24)

which gives the stated result: Vr(μ , fn)→Vr(μ , f ), as n → ∞. �

To analyze the constrained control problem (recall Definition 11.2.3), we intro-
duce a Lagrange multiplier λ ≥ 0 as follows. For each i ∈ E and a ∈ A(i), let

bλ (i,a) := r(i,a)−λc(i,a). (11.25)

Furthermore, for each policy π ∈Π and i ∈ E , let

Vbλ (i,π) := Eπ
i

[∫ τB

0
e−

∫ t
0 α(Z(u),W(u))dubλ (Z(t),W (t))dt

]
, (11.26)

Vbλ (μ ,π) := ∑
j∈E

Vbλ ( j,π)μ( j), (11.27)

V ∗
bλ
(i) := sup

π∈Π
Vbλ (i,π),V

∗
bλ
(μ) := sup

π∈Π
Vbλ (μ ,π). (11.28)

Remark 11.3.10. Notice that, for each i ∈ B, Vbλ (i,π) = 0. Therefore, we have

Vbλ (μ ,π) = ∑
j∈Bc

Vbλ ( j,π)μ( j), V ∗
bλ
(μ) = ∑

j∈Bc
V ∗

bλ
( j)μ( j).

Under Assumptions 11.2.1–11.2.4, by Lemma 11.3.2(b), we have

V ∗
bλ
(i) =

⎧
⎨

⎩

0, for i ∈ B,

sup
a∈A(i)

[
b̃λ (i,a)+ ∑

j∈Bc
V ∗

bλ
( j)m( j | i,a)

]
, for i ∈ Bc,

(11.29)

where b̃λ (i,a) := bλ (i,a)
∫ ∞

0 e−αt(1−D(t | i,a))dt. Moreover, for each i ∈ E , the
maximum in (11.29) is realized by some a ∈ A(i), that is,

A∗
λ (i) :=

⎧
⎨

⎩

A(i), for i ∈ B,{
a ∈ A(i) |V ∗

bλ
(i) = b̃λ (i,a)+∑ j∈Bc V ∗

bλ
( j)m( j | i,a)

}
, for i ∈ Bc

(11.30)
is nonempty. In other words, the following sets
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F
∗
λ :=

{
f ∈ F | f (i) ∈ A∗

λ (i) ∀i ∈ E

}
(11.31)

and

Φλ :=

{
ϕ ∈Φ | ϕ(A∗

λ (i) | i) = 1 ∀i ∈ E

}
(11.32)

are nonempty.
Next lemma reveals that Φλ is convex.

Lemma 11.3.4. Under Assumptions 11.2.1–11.2.4, the set Φλ is convex.

Proof. For each ϕ1,ϕ2 ∈Φλ , and p ∈ [0,1], let

ϕ p(· | i) := pϕ1(· | i)+ (1− p)ϕ2(· | i), ∀i ∈ E. (11.33)

Hence, ϕ p(A∗
λ (i) | i) = pϕ1(A∗

λ (i) | i) + (1 − p)ϕ2(A∗
λ (i) | i) = 1, and so Φλ is

convex. �

Notation. For each λ ≥ 0, we take an arbitrary, but fixed policy f λ ∈ F
∗
λ ,

and denote Vr(μ , f λ ), Vc(μ , f λ ), and Vbλ (μ , f λ ) by Vr(λ ), Vc(λ ), and Vb(λ ),
respectively. By Lemma 11.3.2, we have that Vbλ (i, f ) = V ∗

bλ
(i) for all i ∈ E and

f ∈ F
∗
λ . Hence, Vb(λ ) =Vbλ (μ , f λ ) =V ∗

bλ
(μ).

Lemma 11.3.5. If Assumptions 11.2.3–11.2.4 and 11.2.5(a) hold, then Vc(λ ) is
nonincreasing in λ ∈ [0,∞).

Proof. By (11.5), (11.6), and (11.25)–(11.26) for each π ∈Π , we obtain

Vbλ (μ ,π) =Vr(μ ,π)−λVc(μ ,π) ∀λ ≥ 0.

Moreover, noting that Vb(λ ) =Vbλ (μ , f λ ) =V ∗
bλ
(μ) for all λ ≥ 0 and f λ ∈ F

∗
λ , we

have, for any h > 0,

−hVc(λ ) = Vbλ+h(μ , f λ )−Vb(λ )

≤ Vb(λ + h)−Vb(λ )

≤ Vb(λ + h)−Vbλ (μ , f λ+h) =−hVc(λ + h),

which gives that

−hVc(λ )≤−hVc(λ + h).

Hence, Vc(λ ) is nonincreasing in λ ∈ [0,∞). �

Lemma 11.3.6. Suppose that Assumptions 11.2.1–11.2.4 hold. If lim
k→∞

λk = λ , and

f λk ∈ F
∗
λk

is such that lim
k→∞

f λk = f , then f ∈ F
∗
λ .
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Proof. Since f λk ∈ F
∗
λk

, for each i ∈ Bc and π ∈Π , we have

V ∗
bλk

(i) =Vr(i, f λk )−λkVc(i, f λk )≥Vbλk (i,π) =Vr(i,π)−λkVc(i,π). (11.34)

Letting k → ∞ in (11.34) and by Lemma 11.3.3, we obtain

Vbλ (i, f ) ≥Vbλ (i,π) ∀i ∈ Bc and π ∈Π ,

which together with the fact that A∗
λ (i) = A(i) for each i ∈ B implies that f ∈ F

∗
λ . �

Under Assumptions 11.2.1–11.2.4 and 11.2.5(a), it follows from Lemma 11.3.5
that the following nonnegative constant

λ := inf{λ ≥ 0 |Vc(λ )≤ γ} (11.35)

is well defined.

Lemma 11.3.7. Suppose that Assumptions 11.2.1–11.2.5 hold. Then the constant
λ in (11.35) is finite, that is, λ ∈ [0,∞).

Proof. Suppose that λ = ∞. By Assumption 11.2.5(b), there exists a policy π ′ ∈ Π
such that Vc(μ ,π ′)< γ . Let d := γ−Vc(μ ,π ′)> 0. Then, for any λ > 0, we have

Vbλ (μ ,π
′) =Vr(μ ,π ′)−λVc(μ ,π ′) =Vr(μ ,π ′)−λ (γ− d). (11.36)

As λ = ∞, by (11.35) and Lemma 11.3.5, we obtain Vc(λ ) > γ for all λ >
0. Therefore, Vb(λ ) = Vr(λ )− λVc(λ ) < Vr(λ )− λγ . Since Vb(λ ) = V ∗

bλ
(μ) ≥

Vbλ (μ ,π
′), from (11.36), we have

Vr(λ )−λγ >Vb(λ )≥Vbλ (μ ,π
′) =Vr(μ ,π ′)−λ (γ− d) ∀λ > 0, (11.37)

which gives

Vr(λ )>Vr(μ ,π ′)+λd ∀λ > 0. (11.38)

On the other hand, by Lemma 11.3.1 and Assumption 11.2.5(a), we have

max
{
|Vr(μ ,π ′)|, |Vr(λ )|

}
≤ M

[
∑
j∈Bc

w( j)μ( j)
]
/(1−β ) := M̃ < ∞ (11.39)

for all λ > 0. The latter inequality together with (11.38) gives that

2M̃ > λd ∀λ > 0, (11.40)

which is clearly a contradiction; for instance, take λ = 3M̃/d > 0. Hence, λ is
finite. �
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11.4 Proof of Theorem 11.2.1

In this section, we prove Theorem 11.2.1 by using the Lagrange approach and the
following lemma.

Lemma 11.4.8. If there exist λ0 ≥ 0 and π∗ ∈U such that

Vc(μ ,π∗) = γ and Vbλ0 (μ ,π
∗) =V ∗

bλ0
(μ),

then π∗ is constrained optimal.

Proof. For any π ∈U , since Vbλ0 (μ ,π
∗) =V ∗

bλ0
(μ)≥Vbλ0 (μ ,π), we have

Vr(μ ,π∗)−λ0Vc(μ ,π∗)≥Vr(μ ,π)−λ0Vc(μ ,π). (11.41)

Noting that Vc(μ ,π∗) = γ and Vc(μ ,π)≤ γ (by π ∈U), from (11.41), we get

Vr(μ ,π∗)≥Vr(μ ,π)+λ0(γ−Vc(μ ,π))≥Vr(μ ,π) ∀π ∈U,

which means that π∗ is constrained optimal. �

Proof of Theorem 11.2.1. By Lemma 11.3.7, the constant λ ∈ [0,∞). Thus, we shall
consider the two cases: λ = 0 and λ > 0.

The case of λ = 0: By (11.35), there exists a sequence f λk ∈ F
∗
λk

such that λk ↓ 0

as k → ∞. Because F is compact, we may assume that f λk → f̃ without loss of
generality. Thus, by Lemma 11.3.5, we have Vc(μ , f λk ) ≤ γ for all k ≥ 1, and then
it follows from Lemma 11.3.3 that f̃ ∈U . Moreover, for each π ∈U , we have that
Vb(λk) =Vbλk (μ , f λk )≥Vbλk (μ ,π). Hence, by Lemma 11.3.1(a) and (11.39),

Vr(μ , f λk )−Vr(μ ,π)≥ λk[Vc(μ , f λk )−Vc(μ ,π)]≥−2λkM̃. (11.42)

Letting k → ∞ in (11.42), by Lemma 11.3.3, we have

Vr(μ , f̃ )−Vr(μ ,π)≥ 0 ∀π ∈U,

which means that f̃ is a constrained optimal stationary policy.

The case of λ > 0: First, if there is some λ ′ ∈ (0,∞) satisfying Vc(λ ′) = γ , then
there exist an associated f λ

′ ∈ F
∗
λ ′ such that Vc(λ ′) =Vc(μ , f λ

′
) = γ , and V ∗

bλ ′ (μ) =
Vbλ ′ (μ , f λ

′
). Thus, by Lemma 11.4.8, f λ

′
is a constrained optimal stationary policy.

Now, suppose that Vc(λ ) 
= γ for all λ ∈ (0,∞). Then, as λ is in (0,∞), there exist
two nonnegative sequences {λk} and {δk} such that λk ↑ λ and δk ↓ λ , respectively.
Since F is compact, we may take f λk ∈F

∗
λk

and f δk ∈F
∗
δk

such that f λk → f 1 ∈F and

f δk → f 2 ∈ F, without loss of generality. By Lemma 11.3.6, we have that f 1, f 2 ∈
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F
∗
λ

. By Lemmas 11.3.3 and 11.3.4, we obtain that Vc(μ , f 1)≥ γ and Vc(μ , f 2)≤ γ .

If Vc(μ , f 1) = γ ( or Vc(μ , f 2) = γ), by Lemma 11.4.8, we have that f 1 (or f 2)
is a constrained optimal stationary policy. Hence, to complete the proof, we shall
consider the following case:

Vc(μ , f 1)> γ and Vc(μ , f 2)< γ. (11.43)

Now using f 1 and f 2, we construct a sequence of stationary policies { fn} as
follows. For each n ≥ 1 and i ∈ E , let

fn(i) :=

{
f 1(i), if i < n;
f 2(i), if i ≥ n,

where, without loss of generality, the denumerable state space is assumed to be
the set {1,2, . . .}. Obviously, f1 = f 2 and lim

n→∞
fn = f 1. Hence, by Lemma 11.3.3,

lim
n→∞

Vc(μ , fn) = Vc(μ , f 1). Since f 1, f 2 ∈ F
∗
λ

(just mentioned), by (11.31), we see

that fn ∈ F
∗
λ

for all n ≥ 1. As f1 = f 2, by (11.43), we have Vc(μ , f1) < γ . If
there exists n∗ such that Vc(μ , fn∗) = γ , then by Lemma 11.4.8 and fn ∈ F

∗
λ

, fn∗
a constrained optimal stationary policy. Thus, in the remainder of this section,
we may assume that Vc(μ , fn) 
= γ for all n ≥ 1. If Vc(μ , fn) < γ for all n ≥ 1,
lim
n→∞

Vc(μ , fn) =Vc(μ , f 1)≤ γ , which is a contradiction to (11.43). Thus, there exists

some n ≥ 1 such that Vc(μ , fn) > γ , which together with Vc(μ , f1) < γ gives the
existence of some ñ such that

Vc(μ , fñ)< γ and Vc(μ , fñ+1)> γ. (11.44)

Obviously, the stationary policies fñ and fñ+1 differ in at most the state ñ. Here, it
should be pointed out that ñ must be in Bc. Indeed, if ñ ∈ B, we have Vc(ñ, fñ) =
Vc(ñ, fñ+1) = 0, which implies that Vc(μ , fñ) = Vc(μ , fñ+1) and thus leads to a
contradiction to (11.44).

For any p ∈ [0,1], using the stationary policies fñ and fñ+1, we construct a
randomized stationary policy ϕ p as follows. For each i ∈ E ,

ϕ p(a | i) =

⎧
⎨

⎩

p, if a = fñ(ñ) when i = ñ,
1− p, if a = fñ+1(ñ) when i = ñ,
1, if a = fñ(i) when i 
= ñ.

(11.45)

Since fñ, fñ+1 ∈ F
∗
λ

, by Lemma 11.3.4, we have V
bλ
(μ ,ϕ p) = V ∗

bλ
(μ) for all

p ∈ [0,1]. We also have that Vc(μ ,ϕ p) is continuous in p ∈ [0,1]. Indeed, for any
p ∈ [0,1] and any sequence {pm} in [0,1] such that lim

n→∞
pm = p, as in the proof of

Lemma 11.3.2, we have
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Vc(i,ϕ pm) = ∑
a∈A(i)

ϕ pm(a | i)

[
c̃(i,a)+ ∑

j∈Bc
Vc( j,ϕ pm)m( j | i,a)

]
∀i ∈ Bc. (11.46)

Hence, as in the proof of Lemma 11.3.3, from (11.45) and (11.46), we obtain

lim
n→∞

Vc(μ ,ϕ pm) =Vc(μ ,ϕ p),

and so Vc(μ ,ϕ p) is continuous in p ∈ [0,1].
Finally, let p0 = 0 and p1 = 1. Then, Vc(μ ,ϕ p0) = Vc(μ , fñ+1) > γ and

Vc(μ ,ϕ p1) = Vc(μ , fñ) < γ . Therefore, by the continuity of Vc(μ ,ϕ p) in p ∈ [0,1]
there exists a p∗ ∈ (0,1) such that Vc(μ ,ϕ p∗) = γ . Since V

bλ
(μ ,ϕ p∗) =V ∗

bλ
(μ), by

Lemma 11.4.8, we have that ϕ p∗ is a constrained optimal stationary policy, which
randomizes between the two stationary policies fñ and fñ+1 that differ in at most the
state ñ ∈ Bc. �
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Chapter 12
Infinite-Horizon Optimal Control Problems
for Hybrid Switching Diffusions

Héctor Jasso-Fuentes and George Yin

12.1 Introduction

Owing to the emerging applications arising in manufacturing and production
planning, biological and ecological systems, communication networks, and financial
engineering, resurgent attention has been drawn to the study of regime-switching
diffusion systems, their asymptotic properties, and the associated control and
optimization problems. In such processes, continuous dynamics and discrete events
coexist and interact. The use of these hybrid models stems from their ability to
provide more realistic formulation for real-world applications in which the usual
stochastic differential equation models alone are no longer adequate. The regime-
switching diffusions blend both continuous and discrete characteristics, where the
discrete event process is modeled as a random switching process to represent
random environment and other random influences. In this chapter, we focus on
controlled dynamic systems whose dynamics are given by the aforementioned
switching diffusion processes. We focus on optimal controls of such systems in an
infinite horizon. This chapter is dedicated to Professor Onésimo Hernández-Lerma
on the occasion of his 65th birthday, who has made many important contributions
to infinite-horizon optimal controlled diffusions.

Before proceeding further, we briefly review some relevant literature. Discounted
and average reward optimality has been extensively studied for different classes of
dynamic systems: for Markov decision processes (MDPs), see [20, 43, 45] and the

H. Jasso-Fuentes (�)
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references therein. For continuous-time Markov chains, we can mention the works
[16, 17]. In [52, 53], the authors treated singularly perturbed MDPs in discrete and
continuous time. Concerning continuous time, in [19, 40], the analysis was given
for general controlled Markov processes, whereas the papers in [2, 4–6, 30, 31, 49]
considered controlled diffusion process, and [14, 15] for switching diffusions.
Dealing with bias optimality, discrete-time MDPs were treated in [21, 22, 57].
From another angle, [38], studied this criterion in the context of continuous-time
Markov chains. Other related papers are [26, 27], where the authors considered
controlled diffusion processes. The recent papers [12, 29] study this criteria for
switching diffusions. Strong overtaking optimality was originally introduced in [44].
This notion was relaxed in [1] and in [51]. Many classes of controlled systems
both deterministic and/or stochastic were considered subsequently; see [7, 55] for
an overview. Other related papers of overtaking optimality include [9, 21, 33] for
discrete-time problems, [38] for continuous-time MDP, [47, 48] for continuous-
time deterministic systems, and [26, 34] for controlled diffusion processes. For
switching diffusions, the recent papers [12, 29] are the first works dealing with bias
and overtaking optimality for this class of dynamic systems. Blackwell optimality
was introduced in [3]. This concept has been studied extensively for MDPs by
[8,10,11,24,25,32,50]. For continuous-time models, there exists only a handful of
papers. For instance, [28,42] deal with controlled diffusion processes, whereas [39]
consider continuous-time controlled Markov chains. To the best of our knowledge,
the only paper dealing with hybrid switching diffusions is [29].

In this chapter, we begin with the so-called basic criteria including discounted
reward and average reward per unit time criteria. Nevertheless, it is known that the
basic criteria have drawbacks. The discounted rewards ignore the future activities
and actions, whereas average reward per unit time pays no attention to finite
horizons. Thus, the so-called advanced criteria become popular. Not only is the
consideration of advance criteria interesting from a mathematical point of view,
but it is a practically useful consideration. It would be ideal to document the
results obtained so that it will be beneficial to both researchers and practitioners.
Since the initiation of the study of stochastic control, there have been numerous
papers published in this subject concentrating on infinite horizon control systems.
Nevertheless, the results for advanced criteria are still scarce. There have been
only a handful of papers focusing on advanced criteria. The rest of this chapter
is organized as follows: Sect. 12.2 introduces the control model together with
the main assumptions and ergodicity. Section 12.3 concerns the study of basic
optimality criteria including the ρ-discounted reward criterion and the ergodic
criterion. Section 12.4 focuses on the advanced or selective criteria, including
bias optimality, overtaking optimality, and sensitive discount optimality. Finally,
Sect. 12.5 concludes this chapter.
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12.2 Controlled Switching Diffusions and Ergodicity

Suppose that W (·) is a d-dimensional Wiener process and that α(·) is a continuous-
time Markov chain with a finite state space M = {1,2, . . . , l} and a generator Q =
(qi j). Throughout this chapter, as a standing assumption, we assume that α(·) and
W (·) are independent and that α(·) is irreducible. Let b : Rn ×M ×U → R

n and
σ : Rn×M → R

n×d . Consider the controlled hybrid diffusion process given by

dx(t) = b(x(t),α(t),u(t))dt +σ(x(t),α(t))dW (t), (12.1)

with x(0) = x, α(0) = i, and t ≥ 0. The set U ⊂ R
m is called the control (or action)

set, and u(·) is a U-valued stochastic process representing the controller’s action at
each time t ≥ 0.

Notation. For vectors and matrices, we use the usual Euclidean norms |x|2 :=∑i x2
i

and |A|2 := Tr(AA′) = ∑i, j A2
i j, where A′ is the transpose of A = (Ai j) and Tr(B)

denotes the trace of the square matrix B, respectively. As usual, the gradient and
the Hessian matrix of a function ϕ are represented by ∇ϕ and Hϕ , respectively. The
following assumption ensures the existence of a unique strong solution of (12.1).

Assumption 12.2.1. (a) The control set U is compact.
(b) For each i ∈ M, b(·, i, ·) and σ(·, i) are continuous on R

n ×U and on R
n,

respectively. Moreover, there exist positive constants Ki,1 and Ki,2 such that for
each x and y in R

n,

sup
u∈U

|b(x, i,u)− b(y, i,u)| ≤ Ki,1|x− y| (12.2)

and
|σ(x, i)−σ(y, i)| ≤ Ki,2|x− y|. (12.3)

(c) There exists a positive constant Ki,3 such that for each i ∈ M, the matrix a :=
σσ ′ satisfies

x′a(y, i)x ≥ Ki,3|x|2 for all x,y ∈R
n (uniform ellipticity). (12.4)

Control Policies and Extended Generator. Throughout this chapter, we consider
only (non-randomized) Markov control policies, also named simply Markov poli-
cies, which consist of all of U-valued measurable functions on [0,∞)×R

n ×M.
A special case of this class is the so-called stationary Markov policy or simply
stationary policy consisting of all U-valued measurable functions on R

n × M.
Observe that a control policy u(t), t ≥ 0 in (12.1) becomes u(t) := f (t,x(t),α(t)) (or
u(t) := f (x(t),α(t)), when we consider Markov (or stationary) policies. By a slight
abuse of terminology, we call f itself a Markov policy (or stationary policy). We
will denote by M and by F the families of Markov and stationary control policies,
respectively.
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Let C2(Rn ×M) be the space of real-valued function h on R
n ×M, such that

h(x, i)∈C2(Rn) for each i ∈M. For each x∈R
n, i∈M, u∈U , and h∈C2(Rn×M),

let Qh(x, i) := ∑l
k=1 qikh(x,k), and

Luh(x, i) := 〈b(x, i,u),∇h(x, i)〉+ 1
2

Tr [Hh(x, i)a(x, i)]+Qh(x, i). (12.5)

Moreover, for each f ∈ F, x ∈ R
n, and i ∈ M, we define

Lf h(x, i) := Lf (x,i)h(x, i). (12.6)

Existence and Uniqueness of Solutions. Under Assumption 12.2.1, for each
Markov policy f ∈ M, there exists a unique strong solution (x f (·),α(·)), which
is a Markov-Feller process. For f ∈ F, the operator in (12.6) corresponds to
the infinitesimal generator for (x f (·),α(·)), and its corresponding transition prob-
ability and conditional expectation are given by P f

x,i(t,B) := P((x f (t),α(t)) ∈
B|x f (0) = x,α(0) = i), for every Borel set B ⊂ R

n ×M, and x ∈ R
n, i ∈ M, and

E f
x,i[ϕ(x(t),α(t))] := ∑l

k=1

∫
Rn ϕ(y,k)P f

x,i (t,dy×{k}), respectively, where ϕ is a

real-valued function on R
n ×M such that E f

x,i[ϕ ] < ∞ (for more details of all these
statements, we refer [36, 54]). As was in the previous paragraphs, we sometimes
write (x f (·),α(·)) instead of (x(·),α(·)) to emphasize the dependence of f on the
system (12.1).

Positive Recurrence and Ergodicity. We begin by providing conditions that
guarantee positive recurrence and exponential ergodicity of the controlled process.

Assumption 12.2.2. There exists a function w ≥ 1 in C2(Rn ×M) and constants
d ≥ c > 0 such that for each i ∈ M,

(a) lim|x|→∞ w(x, i) = +∞.
(b) For all x ∈ R

n, and u ∈U,

Luw(x, i)≤−cw(x, i)+ d. (12.7)

Based on [13,37,56], Assumption 12.2.2 ensures that, for each f ∈ F, the hybrid
diffusion (x f (·),α(·)) is Harris positive recurrent with a unique invariant probability
measure μ f for which

μ f (w) :=
l

∑
k=1

∫

Rn
w(y,k)μ f (dy,k) < ∞. (12.8)

We now introduce the concept of a w-weighted norm, where w is the function in
Assumption 12.2.2.

Definition 12.2.3. Denote by Bw(R
n ×M) the normed linear space of real-valued

measurable functions v on R
n × M with finite w-norm defined as ‖ v ‖w:=
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supi∈M supx∈Rn
|v(x,i)|
w(x,i) . Use Mw(R

n ×M) to denote the normed linear space of finite
signed measures μ on R

n ×M such that

‖ μ ‖w:=
l

∑
k=1

∫

Rn
w(y,k) |μ(dy,k)|< ∞, (12.9)

where |μ | := μ++ μ− denotes the total variation of μ .

The next result provides a bound of E f
x w(x(t),α(t)) in the sense of (12.10); see

Propositions 2.5 and 2.7 in [29] and also [12, 26, 27].

Proposition 12.2.4. Suppose that Assumption 12.2.2(b) holds. Then:

(a) For every f ∈ F, x ∈R
n, i ∈ M, and t ≥ 0,

E f
x,iw(x(t),α(t)) ≤ e−ctw(x, i)+

d
c
(1− e−ct). (12.10)

(b) For every v ∈ Bw(R
n ×M), x ∈ R

n, i ∈ M, and f ∈ F,

lim
T→∞

1
T

E f
x,i [v(x(T ),α(T ))] = 0. (12.11)

Assumption 12.2.5 concerns w-exponential ergodicity for the process (x(·),α(·)).
Sufficient conditions for Assumption 12.2.5 are given, for instance, in [12, 29].

Assumption 12.2.5. For each f ∈ F, the process (x f (·),α(·)) is w-exponentially
ergodic, that is, there exist positive constants η and δ such that

sup
f∈F

∣
∣
∣E f

x,iv(x(t),α(t))− μ f (v)
∣
∣
∣≤ ηe−δ t ‖ v ‖w w(x, i) (12.12)

for all x ∈ R
n, i ∈ M, v ∈ Bw(R

n ×M), and t ≥ 0, where μ f (v) := ∑l
k=1

∫
Rn v(y,k)

μ f (dy,k).

12.3 Basic Optimality Criteria

Basic optimality criteria consists of the ρ-discounted criterion and the ergodic (or
average) reward criterion. For related references, see for instance, [4, 14, 16, 19, 20,
30,43,45,49,52,53] for the discounted case and [5,6,15,17,19,20,31,43,45,52,53]
for the ergodic case.

In this section, we give a brief account of this two basic criteria. All of our
results are based mainly from the following papers [12, 14, 15, 29]. For the average
reward criterion, our main tool is the dynamic programming method, based on the
Hamilton–Jacobi–Bellman equations (12.24) and (12.25).
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Discounted Reward. Define the reward rate r as a real-valued function on R
n ×

M ×U , whose properties are detailed in Assumption 12.3.1 below. Define the set
BR := {x ∈ R

n | |x|< R, R > 0} and denote by B̄R its closure.

Assumption 12.3.1. (a) For each i ∈ M, the reward rate r(x, i,u) is continuous on
R

n ×U, locally Lipschitz in x, and uniformly in u ∈U; that is, for each R > 0,
there exists a constant Ki(R) such that

sup
u∈U

|r(x, i,u)− r(y, i,u)| ≤ Ki(R)|x− y| for all |x|, |y| ≤ R. (12.13)

(b) r(·, ·,u) is in Bw(R
n ×M) uniformly in u; that is, there exists C > 0 such that,

for all x ∈ R
n,

sup
u∈U

|r(x, i,u)| ≤Cw(x, i). (12.14)

For each Markov policy f ∈M, t ≥ 0, x ∈ R
n, and i ∈ M, we write r(t,x, i, f ) :=

r(x, i, f (t,x, i)), which reduces to r(x, i, f ) := r(x, i, f (x, i)) if f ∈ F. Using this
notation, we define the expected ρ-discounted reward as follows.

Definition 12.3.2. Given the discount factor ρ > 0, let

Vρ(x, i, f ) := E f
x,i

[∫ ∞

0
e−ρt r(t,x(t),α(t), f )dt

]
(12.15)

be the ρ-discounted reward using the policy f ∈M, given the initial data x ∈ R
n

and i ∈ M. The corresponding optimal value function is defined by V ∗
ρ (x, i) :=

sup f∈MVρ(x, i, f ), and a policy f ∗ ∈ M is said to be ρ-discounted optimal if
Vρ(x, i, f ∗) =V ∗

ρ (x, i) for all x ∈R
n and i ∈ M.

The next proposition establishes that Vρ is bounded in an appropriate sense; see
[29, Proposition 3.3] for a proof.

Proposition 12.3.3. Suppose that Assumptions 12.2.1, 12.2.2, 12.2.5, and 12.3.1
are satisfied. Then Vρ(·, ·, f ) is in Bw(R

n×M) for all f ∈ F, in fact, for every x ∈R
n

and i ∈ M,

sup
f∈F

Vρ(x, i, f ) ≤ C̄w(x, i), with C̄ := C(ρ+d)
ρc . (12.16)

The following theorem concerns the existence of ρ-discounted optimal policies;
see [14] for a proof.

Theorem 12.3.4. Suppose that conditions 12.2.1, 12.2.2, 12.2.5, 12.3.1 are satis-
fied. Then, for fixed ρ > 0, the set of ρ-discounted optimal policies is nonempty.

Ergodic Reward. From Sect. 12.2, for each stationary policy, f ∈ F, (x f (·),α(·))
is positive recurrent and has a unique invariant measure μ f . The next definition is
concerned with the ergodic criterion together with average optimal policies.
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Definition 12.3.5. For each f ∈M, x ∈ R
n, i ∈ M, and T > 0, let

JT (x, i, f ) := E f
x,i

[∫ T

0
r(t,x(t),α(t), f )dt

]
. (12.17)

The long-run average reward, also known as ergodic reward or gain of f , given the
initial conditions x(0) = x and α(0) = i, is

J(x, i, f ) := liminf
T→∞

1
T

JT (x, i, f ). (12.18)

The function

J∗(x, i) := sup
f∈M

J(x, i, f ) for x ∈ R
n, i ∈ M (12.19)

is referred to as the optimal gain or optimal average reward. If there is a policy
f ∗ ∈ M for which J(x, i, f ∗) = J∗(x, i) for all x ∈ R

n and i ∈ M, then f ∗ is called
average optimal.

Denote by Fao the set of all average optimal policies; later on, we will see that
this set is nonempty. Given f ∈ F, we define

r̄( f ) := μ f (r(·, f )) =
l

∑
k=1

∫

Rn
r(y,k, f )μ f (dy,k). (12.20)

The following result shows that, under our ergodic results, the gain in (12.18)
becomes a constant and that it is uniformly bounded; see Proposition 3.6 in [29]
for a proof (see also [12]).

Proposition 12.3.6. Under Assumptions 12.2.1, 12.2.2, 12.2.5, and 12.3.1, we
have:

(a) J(x, i, f ) = r̄( f ), for all x ∈R
n, i ∈ M.

(b) r̄( f ) is uniformly bounded by

r̄( f ) ≤C
d
c
, (12.21)

where c, d, and C are the constants in (12.7) and in (12.14), respectively.
Therefore,

r∗ := sup
f∈F

r̄( f ) < ∞. (12.22)

To find average optimal policies, we restrict ourselves to the set F instead of
considering the whole space M. The reason is that the optimal gain (12.19) is
attained in the set F of stationary policies, which also coincides with the constant r∗
in (12.22), that is,

sup
f∈M

J(x, i, f ) = sup
f∈F

J(x, i, f ) = r∗ for all x ∈ R
n, i ∈ M. (12.23)



210 H. Jasso-Fuentes and G. Yin

For more details, see [6, 34, 35] for the diffusion case and [15] for the hybrid
switching diffusion case. The following theorem, established in [29], provides the
existence and uniqueness of a solution of the average reward HJB equation defined
in (12.24).

Theorem 12.3.7. If Assumptions 12.2.1, 12.2.2, 12.2.5, and 12.3.1 are satisfied,
then the following assertions hold:

(a) There exists a unique pair (r∗,h) consisting of the constant r∗ in (12.22) and of
a function h of class C2(Rn ×M)∩Bw(R

n ×M), with h(0, i0) = 0, such that it
satisfies the average reward HJB equation

r∗ = max
u∈U

[r(x, i,u)+Luh(x, i)] for all x ∈ R
n and i ∈ M. (12.24)

(b) There exists a policy f ∈ F which attains the maximum in (12.24), that is,

r∗ = r(x, i, f )+Lf h(x, i) for all x ∈ R
n and i ∈ M, (12.25)

this class of policies are so-called canonical policies.
(c) A policy is average optimal if and only if it is canonical.
(d) There exists an average optimal policy.

12.4 Advanced Criteria

We have mentioned in the introduction that the average reward in (12.18) is
undesirable in that it practically ignores the finite-horizon total reward. To overcome
this difficulty, we need to consider more selective criteria. In this section, we
study bias optimality including some of its characterizations and sensitive discount
optimality which allows us to avoid the problem that average reward criteria face.
We will give conditions for the existence and characterizations of bias and m-
discount optimal policies for −1 ≤ m ≤ +∞. We also give further characterizations
of these policies. Our characterizations lead to the relation with the concept of
overtaking optimality. This concept was defined separately and independently.

Remark 12.4.1. Throughout the rest of this chapter, we assume that Assumptions
12.2.1, 12.2.2, 12.2.5 and 12.3.1 hold.

Bias Optimality. In this section, we study bias optimality and some of its character-
izations which lead to the concept of overtaking optimality. Our approach to work is
the well-known dynamic programming method. All of the results established here
will be only stated. Their correspondent proofs can be seen in the following two
papers [12, 29].
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We next establish the concept of bias of each stationary policy. For each f ∈ F,
we define the bias of f as the function

h f (x, i) := E f
x,i

[∫ ∞

0
[r(x(t),α(t), f )− r̄( f )]dt

]
for all x ∈ R

n and i ∈ M. (12.26)

Note that we can interpret the bias as the expected total difference between the
immediate reward r(x(t),α(t), f ) and the ergodic reward r̄( f ).

Remark 12.4.2. It is easy to see that h f is in Bw(R
n ×M) for each f ∈ F. Namely,

by the exponential ergodicity property in (12.12), we have

∣
∣h f (x, i)

∣
∣ ≤ ‖r(·, ·, f )‖ww(x, i)η

∫ ∞

0
e−δ tdt

≤ δ−1Cw(x, i)η (by (12.14)). (12.27)

The following lemma establishes that the pair (r̄( f ),h f ) consisting of the
constant r̄( f ) in (12.20) and the bias (12.26) is the solution of the so-called Poisson
equation; see [18, 29].

Lemma 12.4.3. For each f ∈ F, the pair (r̄( f ),h f ) is the unique solution of the
Poisson equation

r̄( f ) = r(x, i, f )+Lf h f (x, i) for all x ∈ R
n and i ∈ M, (12.28)

with the condition
l

∑
k=1

∫

Rn
h f (y,k)μ f (dy,k) = 0. (12.29)

Moreover, h f belongs to the space C2(Rn×M)∩Bw(R
n ×M).

The following proposition relates the bias h f to the solution h of the average
reward HJB equation (12.24) when f is average optimal; see Proposition 4.5 in [29].

Proposition 12.4.4. If a policy f̂ ∈ F is average optimal, then its bias h f̂ and any
function h in the HJB equation (12.24) coincide up to an additive constant. In fact,

h f̂ (x, i) = h(x, i)− μ f̂ (h) for all x ∈ R
n and i ∈ M. (12.30)

Fixed (x, i) ∈ R
n×M, we define the set

U0(x, i) := {u ∈U | r∗ = r(x, i,u)+Luh(x, i)} . (12.31)

Remark 12.4.5. (i) From Theorem 12.3.7, U0 is well defined.
(ii) It is easy to see that f ∈ Fao if and only if f (x, i) ∈U0(x, i) for all x ∈ R

n and
i ∈ M.
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The following result establishes some properties of U0. A complete guide of
multifunctions and selectors is given, for instance, in [20, Appendix D].

Proposition 12.4.6. Under Assumptions 12.2.1 and 12.3.1, the multifunction (x, i)
�−→U0(x, i) satisfies the following properties:

(a) For each (x, i) ∈ R
n×M, U0(x, i) is a nonempty compact set.

(b) For each i ∈ M, U0(·, i) is continuous.
(c) U0(·, i) is Borel measurable, for each i ∈ M.

The proofs of (a) and (b) follow from the continuity of u �−→ r(x, i,u)+ Luh(x, i)
and from the compactness of U , whereas a proof of part (c) is given, for instance, in
[23, 46].

Existence of Bias Optimal Policies. The main objective of this part is to show
the existence of bias optimal policies, defined in (12.33). We will use the dynamic
programming method based on the bias optimality HJB equations described in
(12.36)–(12.37), below. To begin with, we state the concept of bias optimality as
follows.

Definition 12.4.7. Consider the function ĥ(x, i) ∈C2(Rn ×M) defined by

ĥ(x, i) := sup
f∈Fao

h f (x, i) for all x ∈ R
n and i ∈ M. (12.32)

Then ĥ is called the optimal bias function. Moreover, if there exists a policy f ∗ ∈ Fao

for which
h f ∗(x, i) = ĥ(x, i) for all x ∈ R

n and i ∈ M, (12.33)

then f ∗ is referred to as a bias optimal policy.

Remark 12.4.8. (a) Definition 12.4.7 above suggests to maximize the bias h f

defined in (12.26) over the class of stationary policies f ∈ F. This definition
seems not to be useful at first sight since we are maximizing a kind of error!—
see expression (12.26). It will help us, however, to obtain this class of policies
in order to get another family of policies so-called overtaking optimal policies
that we are going to analyze later on.

(b) Denote by Fbias the set of all bias optimal policies. Suppose that Fbias is
nonempty. Then Lemma 12.4.3 ensures that the optimal bias function ĥ belongs
to C2(Rn×M)∩Bw(R

n ×M).

Using (12.30), we can rewrite (12.32) by

ĥ(x, i) = h(x, i)+ sup
f∈Fao

μ f (−h) for all x ∈ R
n and i ∈ M. (12.34)

This last relation indicates that to search for bias optimal policies, we need only
look for policies f ∈ Fao that maximizes the second term on the right-hand side
of (12.34). If we define a new control problem, which is referred to as the “bias
problem” with:
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• The control system (12.1)
• The action set U0(·, ·) defined in (12.31)
• The reward rate r̃(x, i,u) :=−h(x, i) for all x ∈ R

n and i ∈ M

⎫
⎬

⎭
(12.35)

then, to find bias optimal policies, we need only solve the bias problem (12.35) with
average criterion given by μ f (−h).

Our next theorem, whose proof is provided, for instance, in [29, Theorem 4.11]
or in [12, Theorem 7.2], ensures both the existence of solutions to (12.36)–(12.37)
and the existence of a policy f ∈ Fao that maximizes the right-hand side of these
equations. This result is based on the dynamic programming method that uses the
bias optimal HJB equations (12.36)–(12.37).

Theorem 12.4.9. (a) The triplet (r∗, ĥ,φ) consisting of the constant (12.22), the
optimal bias function (12.32), and some function φ ∈ C2(Rn ×M) solves the
bias optimal HJB equation

r∗ = max
u∈U

{r(x, i,u)+Luh(x, i)} , and (12.36)

h(x, i) = max
u∈U0(x,i)

{Luφ(x, i)} . (12.37)

(b) There exists a policy f ∈ Fao that maximizes the right-hand side of (12.36)–
(12.37). That is,

r∗ = r(x, i, f )+Lf h(x, i), and (12.38)

h(x, i) = Lf φ(x, i). (12.39)

(c) A policy f satisfies (12.38)–(12.39) if and only if it is bias optimal.
(d) The set of optimal bias policies is nonempty.

Bias Optimality vs Overtaking Optimality. One of the most important features
of bias optimality is its closed relation with overtaking optimality, also known as
catching up optimality. This concept was introduced in [44] and later through the
papers [1, 51]. The idea of overtaking optimality arose from problems of economic
growth or capital accumulations. Nowadays, there has been a considerable work
dealing with this concept by using different type of dynamic models; see, for
instance, [1,12,26,29,38,41,47,48]. An overview of results can be found in [7,55].
Let us define now the concept of overtaking optimality.

Definition 12.4.10. A policy f ∗ is said to be overtaking optimal in M if for every
ε > 0, x ∈ R

n, i ∈ M, and f ∈M, there exists Tε = Tε(x, i, f ∗, f ) such that

JT (x, i, f ∗)≥ JT (x, i, f )− ε, for all T ≥ Tε . (12.40)

If ε = 0, then f ∗ is said to be strongly overtaking optimal in M.
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By using Ito’s formula for hybrid switching diffusions [36] combined with
(12.28), we can easily obtain the relation

JT (x, i, f ) = T r̄( f )+ h f (x, i)−E f
x,ih f (x(T ),α(T )) (12.41)

for each f ∈ F, x∈R
n, i∈M, and T > 0. Also, the w-exponential ergodicity (12.12)

implies

E f
x,ih f (x(T ),α(T ))→ μ f (h f ) = 0. (12.42)

These two facts in (12.41)–(12.42) are key points for the equivalence of bias
optimality and overtaking optimality. The following theorem establishes this fact.
For more details, we refer [29, Theorem 4.10] or [12, Theorem 6.4].

Theorem 12.4.11. A policy f ∗ ∈ F is bias optimal if and only if it is overtaking
optimal.

Sensitive Discount Optimality. We have studied the concept of bias optimality
and its equivalence with overtaking optimality. Each of these concepts constitutes
a refinement on the set of average optimal policies because any (stationary) policy
corresponding to some of these criteria (e.g., bias and overtaking) turns out to be
average optimal, and, in addition, it has some other special feature, depending on
what context we are dealing with. In this section, we introduce another refinement
of the average reward criterion called sensitive discount optimality, which includes
m-discount optimality for m ≥ −1, and Blackwell optimality for the case m =
+∞. Sensitive discount optimality is a very useful tool since it gives interesting
connections to some of the optimality criterion we have analyzed so far. Its
characterizations are given by means of a nested system of “bias-like” optimal HJB
equations.

m-Discounted Optimality. We begin this part by recalling the ρ-discounted
reward Vρ given in Definition 12.3.2. Indeed, for ρ > 0, x∈R

n, i∈M, and f ∈M, we

have defined Vρ(x, i, f ) := E f
x,i [

∫ ∞
0 e−ρt r(t,x(t),α(t), f )dt] and its associated value

function by V ∗
ρ (x, i) = sup f∈MVρ(x, i, f ). The following definition introduces the

concept of m-discount optimality for each m ≥−1.

Definition 12.4.12. Let m ≥ −1 be an integer. A policy f ∗ ∈ M is said to be m-
discount optimal if for all x ∈ R

n, i ∈ M, and f ∈M,

liminf
ρ↓0

ρ−m [Vρ(x, i, f ∗)−Vρ(x, i, f )
] ≥ 0. (12.43)

We now proceed to generalize the basic criteria (12.15) and (12.18) by using
reward rates different from the function r in Assumption 12.3.1. We do need, how-
ever, functions satisfying a growth rate similar to Assumption 12.3.1(b). A formal
statement of this functions is given next.
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Definition 12.4.13. Let w be the function defined in Assumption 12.2.2. We define
Bw(R

n×M×U) as the space of real-valued functions v on R
n ×M×U such that

sup
u∈U

{v(x, i,u)} ≤Cvw(x, i), (12.44)

where Cv is a positive constant dependent on v.

Remark 12.4.14. (a) Observe that Bw(R
n ×M) is a subset of Bw(R

n ×M ×U)
because we can write v ∈ Bw(R

n ×M) as v(x, i) = v(x, i,u) for all u ∈U .
(b) By Assumption 12.3.1(b), the reward rate r is in Bw(R

n ×M×U).

For each f ∈ M, we shall write v(t,x, i, f ) := v(x, i, f (t,x, i)). Similarly,
v(x, i, f ) := v(x, i, f (x, i)) for f ∈ F. The following definition is a generalization of
the basic criteria (12.15) and (12.18) when we use v rather than r.

Definition 12.4.15. Given f ∈ M, x ∈ R
n, i ∈ M, and v ∈ Bw(R

n ×M ×U), we
define:

(a) For each ρ > 0, the ρ-discounted v-reward by

Vρ(x, i, f ,v) := E f
x,i

[∫ ∞

0
e−ρt v(t,x(t),α(t), f )dt

]
. (12.45)

(b) The v-gain of f is given by

J(x, i, f ,v) := liminf
T→∞

1
T

E f
x,i

[∫ T

0
v(t,x(t),α(t), f )dt

]
. (12.46)

Also, given f ∈ F⊂M, we define the constant

v̄( f ) := μ f (v(·, ·, f )) =
l

∑
k=1

∫

Rn
v(y,k, f )μ f (dy,k), (12.47)

where μ f is the invariant probability measure of (x f (·),α(·)). Under Assumptions
12.2.1, 12.2.2, 12.2.5, and 12.3.1, for v ∈ Bw(R

n×M×U), we can follow the same
analysis as given in [29, Proposition 3.6] to conclude that the v-gain (12.46) turns

out to be the constant (12.47); i.e., liminfT→∞
1
T E f

x,i

[∫ T
0 v(x(t),α(t), f )dt

]
= v̄( f ),

for f ∈ F. Furthermore, as in the proof of Proposition 3.6 (b) in [29], we can verify
that v̄ is uniformly bounded; in fact, sup f∈F v̄( f ) ≤Cv

d
c .

For each f ∈ F, consider the operator A f on Bw(R
n×M×U) defined as follows:

A f v(x, i) :=
∫ ∞

0

[
E f

x,iv(x(t),α(t), f )− v̄( f )
]

dt, (12.48)

where v̄ is the constant in (12.47) (compare with the bias h f in (12.26)).
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By (12.12), the operator A f is bounded by

∣
∣A f v(x, i)

∣
∣≤ δ−1ηCvw(x, i); (12.49)

in other words, A f is uniformly bounded in the norm ‖ · ‖w in that

∥
∥A f v

∥
∥

w ≤ δ−1ηCv. (12.50)

Also observe that for each f ∈ F, A f maps the space Bw(R
n × M ×U) into

Bw(R
n×M).

On the other hand, by using the properties of the invariant measure μ f , we can
easily deduce that

μ f (A f v) = 0, for all f ∈ F and v ∈ Bw(R
n×M×U). (12.51)

Moreover, for any v ∈ Bw(R
n ×M×U), f ∈ F, and k = 0,1, . . . , we define the

function hk
f v ∈ Bw(R

n ×M) by

hk
f v(x, i) := (−1)kAk+1

f v(x, i) for all x ∈R
n, i ∈ M, (12.52)

where Ak+1
f is the (k + 1) composition of A f with itself. In addition, we consider

the special case when v ≡ r. In this case, we simply write hk
f r := hk

f . Hence, the

definition of the bias function in (12.26) coincides with the term h0
f in (12.52).

Furthermore, h1
f =A f (−h0

f ) becomes the bias when the reward rate is−h0
f (compare

with the “bias” problem (12.35)). By using induction, it can be proven that (12.52)
is equivalent to

hk
f = A f (−hk−1

f ). (12.53)

Finally, from (12.51), we can easily deduce that

μ f (h
k
f ) = 0, for all f ∈ F, k = 0,1, . . . . (12.54)

Poisson Equation and Average Reward HJB Equation. The concept of m-
discount optimality can be associated to the solution of a system of m average reward
HJB equations, defined in (12.58)–(12.60). In this section, we show the existence
and uniqueness of a solution to this system of equations. Our approach is based
on another auxiliary system of equations the so-called −1th, 0th, . . . , mth Poisson
equations, which are defined as follows.

Definition 12.4.16. Given f ∈ F, and m ≥ −1, we define the −1th, 0th,. . . ,mth
Poisson equations by

g = r(x, i, f )+Lf h0(x, i) for all x ∈ R
n and i ∈ M. (12.55)
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h0(x, i) = Lf h1(x, i) for all x ∈ R
n and i ∈ M. (12.56)

· · · · · ·
hm(x, i) = Lf hm+1(x, i) for all x ∈ R

n and i ∈ M. (12.57)

The following result is concerned with the existence and uniqueness of a solution
for (12.55)–(12.57). See [29, Theorem 5.7].

Theorem 12.4.17. Fix m ≥ −1. Then the constant g ∈ R and the functions h0,
h1, . . . , hm in C2(Rn × M) ∩ Bw(R

n × M) are solutions to the Poisson equa-
tion (12.55)–(12.57) if and only if g = r̄( f ), hk = hk

f , for 0 ≤ k ≤ m, and hm+1 =

hm+1
f + z for z ∈ R.

Definition 12.4.18. For all x ∈ R
n, i ∈ M, and some fixed m ≥ −1, we define the

−1th, 0th,. . . , mth average reward HJB equation by

g = max
u∈U

[r(x, i,u)+Luh0(x, i)], (12.58)

h0(x, i) = max
u∈U0(x,i)

[Luh1(x, i)], (12.59)

· · · · · ·
hm(x, i) = max

u∈Um(x,i)
[Luhm+1(x, i)], (12.60)

where, if we denote U−1(x, i) :=U for all x∈R
n and i∈M, then the set Uk(x, i), for

0≤ k ≤m, consists of the elements (controls) u∈Uk−1(x, i) attaining the maximum
in the (k− 1)th average reward HJB equation.

Remark 12.4.19. From Assumptions 12.2.1 and 12.3.1, we can prove by induction
that for each m ≥ 0, the set Um(x, i) is compact for each x ∈ R

n and i ∈ M.
Furthermore, for each i ∈ M, the mapping x �−→ Um(x, i) is upper semicontinuous
and Borel measurable (see also Proposition 12.4.6).

Definition 12.4.20. For a fixed integer m ≥ −1, let us denote by Fm the set of
stationary policies f ∈ F such that f (x, i) ∈Um+1(x, i) for each x ∈ R

n, i ∈ M; that
is, f ∈ Fm if and only if it attains the maximum in the −1th, 0th, . . . , mth average
reward HJB equations (12.58)–(12.60).

Our next result determines the existence and uniqueness of solutions to the
average reward HJB equations defined above. In addition, it shows the existence
of stationary policies f ∈ F that maximize the right-hand side of such equations.
See [29, Theorem 5.11].

Theorem 12.4.21. Fixed m ≥−1:

(a) There exists a unique solution g∈R h0, . . . , hm+1 satisfying the average reward
HJB equations (12.58)–(12.60), where hm+1 is unique up to additive constants.

(b) The set Fm is nonempty.
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(c) If f ∈ Fm, then the solution of (12.58)–(12.60) turns out g = r̄( f ), h0 = h0
f , . . . ,

hm+1 = hm+1
f + z, for some constant z.

Laurent series. In this section, we prove that the expected ρ-discounted v-reward
defined in (12.45) can be expressed in terms of a Laurent series. This property will
be a key point for the existence of m-discount optimal policies. Recall that Ak

f is the
k-composition of the operator A f in (12.48) by itself. We now establish our main
result of this section with the constant δ given in (12.12). See [29, Theorem 5.12].

Theorem 12.4.22. Fix f ∈ F and v ∈ Bw(R
n×M). Then, for all x ∈R

n, and i ∈M,
the ρ-discounted v-reward (12.45) can be expressed through the following Laurent
series:

Vρ(x, i, f ,v) =
1
ρ

v̄( f )+
∞

∑
k=0

(−ρ)kAk+1
f v(x, i). (12.61)

Moreover, this series converges in the w-norm for all 0 < ρ < δ .

The following definition is associated with the residual terms of the Laurent
series (12.61).

Definition 12.4.23. For each v ∈ Bw(R
m ×M ×U), f ∈ F, and k = 0,1, . . . , we

define the k-residual of the Laurent series (12.61) by

Ψk( f ,v,ρ) :=
∞

∑
j=k

(−ρ) jA j+1
f v. (12.62)

Our next result shows that the above residual terms are bounded in the w-norm. See
[29, Proposition 4.14].

Proposition 12.4.24. Consider a positive constant γ < δ , where δ is the constant
in (12.12). Then, for all ρ ≤ γ , and k ≥ 0,

sup
f∈F

‖Ψk( f ,v,ρ)‖w ≤ Cvη
δ k(δ − γ)

ρk. (12.63)

A special case of (12.61) is v≡ r. In this case, the ρ-discounted reward in (12.15)
is expressed by

Vρ(x, i, f ) =
1
ρ

r̄( f )+
∞

∑
k=0

ρkhk
f (x, i) (12.64)

for all f ∈ F, x ∈ R
n, i ∈ M, hk

f as in (12.53) and ρ satisfying the condition of
Theorem 12.4.22.

Existence and Characterizations of m-Discounted Optimal Policies. In this part,
we show the existence of m-discount optimal policies for m ≥ −1. To this end,
we mainly use the results developed in this section, which lead us to state the
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characterizations of m-discount optimality. Before stating our main results, we shall
introduce an important concept concerned with a lexicographical order.

Definition 12.4.25. For any two vectors a and b in R
n, we say that a is lexicograph-

ical greater than or equal to b, denoted by a ! b, if the first nonzero component of
a− b is positive. We also write a " b when a ! b and a 
= b.

The following theorem provides some characterizations of m-discount optimal
policies. See [29, Theorem 5.16].

Theorem 12.4.26. Fixed m ≥−1, the following statements are equivalents:

(a) f lexicographically maximizes the terms r̄( f ), h0
f , . . . , hm

f of the Laurent series
(12.64).

(b) f belongs to Fm.
(c) f is m-discount optimal.

The next corollary is a straightforward consequence of Theorems 12.4.21 and
12.4.26.

Corollary 12.4.27. For each m ≥−1, there exists an m-discount optimal policy.

Blackwell Optimality. In the last sections, we analyzed m-discount optimality for
any arbitrary m≥−1. In this section, we focus on the study of Blackwell optimality,
which is based on m-discount optimality. Blackwell optimality was introduced by
[3]. Later on, the concept of Blackwell optimality was studied for different classes
of control systems; see for instance, [8, 10, 11, 24, 25, 32] for discrete-time MDPs,
[39] for continuous-time controlled Markov chains, [28,42] for controlled diffusion
processes, and [29] for switching diffusions. To proceed, the definition of Blackwell
optimality is given next.

Definition 12.4.28. A policy f ∈M is called Blackwell optimal if and only if, for
any other policy f̂ ∈M, and any initial states x ∈ R

n, i ∈ M, there exists a positive
constant ρ∗ = ρ∗(x, i, f̂ ) such that

Vρ(x, i, f ) ≥Vρ(x, i, f̂ ), for all 0 < ρ ≤ ρ∗. (12.65)

We now introduce some preliminary results necessary for our analysis; see [29,
Proposition 5.27].

Proposition 12.4.29. (a) Consider the set Um(·, ·) in Definition 12.4.18. Then, the
sequence {Um}m is decreasing. Furthermore, for each x ∈ R

n and i ∈ M,

U∞(x, i) :=
∞⋂

m=1

Um(x, i) = lim
m→∞

Um(x, i) (12.66)

is a nonempty set.
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(b) Consider the set Fm in Definition 12.4.20. Hence, there exists a policy f ∈ F

contained in

F∞ :=
∞⋂

m=1

Fm = lim
m→∞

Fm. (12.67)

We now establish sufficient and necessary conditions for a policy f ∈ F to be
Blackwell optimal; see [29, Theorem 5.28].

Theorem 12.4.30. A policy f ∈ F is Blackwell optimal if and only if it is contained
in F∞ defined in (12.67).

Theorem 12.4.30 and the definition of F∞ in (12.67) lead to the existence of
Blackwell optimal policies, as established in the following corollary.

Corollary 12.4.31. The set of Blackwell optimal policies is nonempty.

12.5 Concluding Remarks

In this chapter, we have studied several classes of infinite-horizon optimal control
problems for a general class of hybrid switching diffusions. The analysis was done
by using different infinite-horizon criteria, namely, basic and advanced criteria. The
motivation for studying advanced criteria stems from the objective of improving the
basic criteria.

Our analysis provides a summary for the existence and characterizations of
optimal control policies related to a wide variety of infinite-horizon problems.
We can extend the results to the study for more advanced criteria, for instance,
the problem of finding average optimal policies that, in addition, minimize the
asymptotic variance. Currently, as an ongoing project, we are studying zero-sum
and non-zero-sum stochastic hybrid differential games. One of the disadvantages of
our approach is the assumption of uniform ellipticity hypothesis, which excludes
singular systems (e.g., piecewise deterministic systems). The degenerate cases and
singular systems deserve further thoughts and careful considerations.
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Chapter 13
Fluid Approximations to Markov Decision
Processes with Local Transitions

Alexey Piunovskiy and Yi Zhang

13.1 Introduction

Markov decision processes (MDPs) model many practical problems that arise from
queueing systems, telecommunication, inventories, and so on, see [6, 7, 15]. The
fundamental results about an MDP model are the existence of an optimal policy and
the sufficiency of the deterministic stationary policies out of the more general class
of randomized history-dependent ones. On the other hand, from practical point of
view, it is at least of equal importance to know how to obtain an optimal or nearly
optimal policy. It is known that practically, the policy iteration and value iteration
procedures fail to cope with MDP models with large state and action spaces. So for
random walks, it is often the case that a deterministic continuous model is taken for
analysis even when the underlying problem is in stochastic nature. This is called a
fluid approximation.

Fluid approximations are widely used to solve practical problems; examples
in the contexts of epidemiology and telecommunication can be found in [11, 16],
respectively. In inventory control, the well-known (deterministic) economic-order
quantity model can be viewed as a fluid approximation, too, cf. [14]. On the
one hand, such fluid models can often be solved much more easily than the
corresponding stochastic models. On the other hand, in most cases, they are applied
without formal analytical justifications, or the justification focuses on the trajectory
level, by showing the trajectory of a scaled stochastic model converges in some
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sense to the one of the fluid model, and this is mainly considered for a continuous-
time model, see [8–10] and the references therein. For the justification on the
objective level, we refer the reader to [3, 4, 13] and the references therein.

In this chapter, we justify (at the level of objective functions) fluid approxi-
mations to a discrete-time MDP model with an undiscounted total cost criterion.
This is done for an uncontrolled discrete-time model in [12] under more restrictive
conditions. The argument is based on [1, 12, 13].

The rest of this chapter is organized as follows. We describe the concerned
MDP model in Sect. 13.2 and formulate the main statements in Sect. 13.3, where
two sections are devoted to the standard fluid approximation and the refined fluid
approximation. We finish this chapter with a conclusion.

13.2 MDP Model

The MDP model under consideration is defined by the following elements:

• X = {0,1,2, . . .} is the state space.
• A is the action space, which can be an arbitrary non-empty Borel space, whose

topology is omitted from the explicit presentation.
• p(z|x,a) is the one-step transition probability, a stochastic kernel on X given

X ×A and (Borel) measurable in a ∈ A.
• r(x,a) is the one-step cost, which is (Borel) measurable in a ∈ A.

Assume that the real measurable functions q+(y,a),q−(y,a) and ρ(y,a) on
[0,∞)×A are given such that q+(0,a) = q−(0,a) = ρ(0,a) = 0, and on (0,∞)×A,
q+(y,a) > 0, q−(y,a) > 0, and q+(y,a) + q−(y,a) ≤ 1. Then we make the MDP
model with the absorbing state zero and local transitions only by defining the one-
step transition probability and cost via

p(z|x,a) =

⎧
⎪⎪⎨

⎪⎪⎩

q+(x,a), if z = x+ 1;
q−(x,a), if z = x− 1;
1− q+(x,a)− q−(x,a), if z = x;
0 otherwise,

r(x,a) = ρ(x,a).
Let ϕ : X →A be a deterministic stationary policy. For any fixed initial state x and

policy ϕ , the standard canonical construction gives a strategic measure Pϕ
x on the

space of histories in the form of x0,a0,x1,a1, . . . , and the corresponding expectation
is denoted by Eϕ

x , see [7]. We denote the controlled process by {Xt , t = 0,1, . . .}
and the action process by {At , t = 0,1, . . .}. Then the MDP model is the following
optimization problem, which is well defined after we impose some conditions
below:

Vϕ (x) := Eϕ
x

[
∞

∑
t=0

r(Xt ,At)

]

→ inf
ϕ
,
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where the infimum is taken over the class of deterministic stationary policies only
for simplicity and that under very general conditions, they suffice for the underlying
optimization problem, see [1] for more details.

In this chapter, we shall actually scale the above described MDP model such that
for any fixed scaling parameter n = 1,2, . . . , the elements of the n-MDP model are
as follows:

• X = {0,1,2, . . .} and A remain as the state and action spaces.
•

n p(z|x,a) =

⎧
⎪⎪⎨

⎪⎪⎩

q+(x/n,a), if z = x+ 1;
q−(x/n,a), if z = x− 1;
1− q+(x/n,a)− q−(x/n,a), if z = x;
0 otherwise

is the one-step transition probability.
• nr(x,a) = ρ(x/n,a)

n is the one-step cost, which is measurable in a ∈ A.

The n-MDP model reads

nVϕ(x) := Eϕ
x

[
∞

∑
t=0

nr(Xt ,At)

]

→ inf
ϕ
.

Below, we impose some conditions to guarantee that the n-MDP model under
consideration is absorbing in the sense of [1]. To be exact, that means given any
initial state x, Eϕ

x [T0] < ∞, where T0 := inf{t > 0 : Xt = 0}. Here and below, the
context always makes it clear what the scaling parameter is so that the controlled
and action processes in the n-MDP model are still denoted by {Xt , t = 0,1, . . .} and
{At , t = 0,1, . . .} for brevity.

The above scaling is called the fluid scaling. Its intuitive meaning together
with its importance is now explained via the following example, where an un-
controlled situation is considered for simplicity. Accordingly, simpler denotations
are employed. We remark that the example is better understood in the context
of telecommunication, where fluid models are widely used to solve satisfactorily
practical problems of stochastic nature, see [2, 16] and the reference therein.

Example 13.2.1. Suppose information packets, 1 kilobit (KB) each, arrive at a
router (switch) at the (constant) rate q+ > 0 megabit/second (MB/s), and are served
at the (constant) rate q− > q+ MB/s, where q+ + q− ≤ 1. We observe the process
up to the moment when the router buffer is empty. Let the holding cost be h per
MB per second, so that ρ(y) = hy, where y is the amount of information (MB).
For simplicity, we consider the uncontrolled model so that the denotation of the
policy ϕ does not appear. One can consider batch arrivals and batch services of
1,000 packets every second; then n = 1 and r(x) = hx = ρ(x).

On the other hand, it would be more accurate to consider particular packets; then
probabilities q+ and q− will be the same, but the time unit is 1

1000 s, so that the
arrival and service rates (MB/s) remain the same. Remembering that, we consider
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information up to the individual packets (cf. batches) and the time unit is 1
1000 s,

the cost function for the n-model will obviously change: nr(x) = hx
1000

1
1000 = ρ(x/n)

n ,
where n = 1,000. �

The goal of this chapter is to estimate (from the above) the differences between

nVϕ (nX0) := Eϕ
nX0

[
∞

∑
t=0

nr(Xt ,At)

]

and the objective functions of two related deterministic continuous models, namely,
the standard fluid model and the refined fluid model, which are simpler to solve. So
they are regarded and used as the fluid approximations to the original (stochastic)
MDP model, see [11,16] for examples. In greater detail, under some conditions, we
provide explicit upper boundary estimates of the absolute differences between the
objective functions of the stochastic and the corresponding fluid models in the initial
data, which are understood as the level of accuracy of such fluid approximations. In
a nutshell, under the imposed conditions, the absolute differences go to zero as fast
as 1

n , with n being the scaling parameter.

13.3 Main Statements

13.3.1 Standard Fluid Approximation

Firstly, we motivate the standard fluid model by using Example 13.2.1. Then we give
its formal definition and obtain its level of accuracy in approximating the n-MDP
model.

Example 13.2.1 continued. Consider the situation in Example 13.2.1. The total
holding cost of the n-model nV (x) up to the absorption at the state zero satisfies
the equation (cf.[12, (10)])

ρ( x
n)

n
+ q+ nV (x+ 1)+ q− nV (x− 1)− (q++ q−) nV (x) = 0,

x = 1,2, . . . ;nV (0) = 0. (13.1)

Since we measure information in MB, it is reasonable to introduce the function v̂(y)
such that nV (x) = v̂(x/n), where v̂(y) is the total holding cost up to the absorption
given the initial queue was y MB. After the obvious rearrangements of (13.1), we
obtain that v̂(x/n) satisfies

ρ
( x

n

)
+

q+
{

v̂
(

x
n +

1
n

)− v̂
(

x
n

)}

1
n

+
q−

{
v̂
(

x
n − 1

n

)− v̂
(

x
n

)}

1
n

= 0,
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This is a version of the Euler method for solving the differential equation

ρ(y)+ (q+− q−)
dv(y)

dy
= 0. (13.2)

Thus, we expect that nV (x) = v̂(x/n)≈ v(x/n) at least for a big value of n. �

The above example reveals that as far as the objective function is concerned, the
n-MDP model can be approximated by a deterministic continuous model specified
by a differential equation, at least for a big value of n. This gives the rise to the
following standard fluid model.

The standard fluid model:

vψ(y0) :=
∫ ∞

0
ρ(y(τ),ψ(y(τ)))dτ → inf

ψ

subject to
dy
dτ

= q+(y,ψ(y))− q−(y,ψ(y)), with the given initial state y(0).

Here,ψ is a measurable mapping from [0,∞) to A. Later, we often omit the argument
τ from y(τ) for brevity. Under the conditions of Theorem 13.3.1 below, it can be
seen that

vψ(y) =
∫ y

0

ρ(z,ψ(z))
q−(z,ψ(z))− q+(z,ψ(z))

dz, (13.3)

cf. (13.2).

Theorem 13.3.1 (cf. Theorem 1 in [12]). Let n = 1,2, . . . and a policy ψ for the
fluid model be fixed, and ϕ̂ be given by ϕ̂(x) := ψ(x/n). Suppose

q−(y,ψ(y)) > q > 0, inf
y>0

q−(y,ψ(y))
q+(y,ψ(y))

≥ η̃ > 1, sup
y>0

|ρ(y,ψ(y))|
ηy < ∞,

where q > 0 is a constant, and η ∈ (1, η̃). Then:

(a) supx=1,2,...
|nV ϕ̂ (x)|
ηx/n < ∞, i.e., nV ϕ̂ (·) is nη-bounded, where nη(x) := ηx/n.

(b) If additionally the functions q+(y,ψ(y)), q−(y,ψ(y)), ρ(y,ψ(y)) are piecewise
continuously differentiable, then for an arbitrarily fixed ŷ ≥ 0

lim
n→∞

sup
x∈{0,1,...,[nŷ]}

| nV ϕ̂ (x)− vψ(x/n)|= 0,

where the function [·] takes the integer part of its argument.
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(c) If furthermore functions ρ(y,ψ(y)), q−(y,ψ(y)), q+(y,ψ(y)) are continuously

differentiable with uniformly bounded derivatives so that supy>0

∣
∣
∣ d2vψ (y)

dy2

∣
∣
∣ :=

C < ∞, then for any arbitrarily fixed ŷ ≥ 0,

sup
x∈{0,1,...,[nŷ]}

∣
∣
∣nV ϕ̂(x)− vψ(x/n)

∣
∣
∣≤ C(3η̃+ 1)

2γη̃
(ŷ+ 1)η̃ ŷ

n
.

The detailed proof of the above theorem can be found in [12], see the proof of
Theorem 1 therein.

The next example shows that the condition supy>0
|ρ(y,ψ(y))|

ηy < ∞ in the above
theorem is important.

Example 13.3.2 (cf. Example 3 in [12]). Let A = [1,2], q+(y,a) = ad+, q−(y,a) =
ad− for y > 0, where d− > d+ > 0 are fixed numbers such that 2(d++d−)≤ 1. Put
ρ(y,a) = a2γy2

, where γ > 1 is a constant. So η̃ = d−
d+ > 1.

To solve the fluid model vψ(y) → infψ , we use the dynamic programming
approach. One can see that the Bellman function v∗(y) := infψ vψ(y) has the form

v∗(y) =
∫ y

0
inf
a∈A

{
ρ(u,a)

q−(u,a)− q+(u,a)

}
du,

and satisfies the Bellman equation

inf
a∈A

{
dv∗(y)

dy

[
q+(y,a)− q−(y,a)

]
+ρ(y,a)

}
= 0; v∗(0) = 0,

cf. [13, Lemma 2] and the “incidental” statement in its proof. Here, we remark
that the function infa∈A

ρ(u,a)
q−(u,a)−q+(u,a) is universally measurable, see [5, Chap. 7] for

more details. Hence, the function

v∗(y) = vψ
∗
(y) =

∫ y

0

γu2

d−− d+
du

is well defined, and ψ∗(y)≡ 1 is the optimal policy.

We notice that the condition supy>0
|ρ(y,ψ∗(y))|

ηy < ∞ is not satisfied, while all the
other requirements of Theorem 13.3.1 are met.

On the other hand, for the policy given by ϕ̂(x) = ψ∗( x
n ) ≡ 1 and n = 1,2, . . . ,

nV ϕ̂(x) = nE ϕ̂ [∑∞
t=0

nr(Xt ,At)] satisfies the following equation

γ(
x
n )

2

n
+ d+ nV ϕ̂(x+ 1)+ d− nV ϕ̂(x− 1)− (d++ d−)nV ϕ̂(x) = 0; nV ϕ̂ (0) = 0,
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cf. (13.1). But then, this equation does not admit non-negative finitely valued
solutions, because if we put nV ϕ̂(0) = 0,nV ϕ̂ (1) = b, where b ∈ [0,∞) is a non-
negative constant, then for any x = 1,2, . . . ,

nV ϕ̂(x) = b
η̃x − 1
η̃− 1

− 1
nd+(η̃− 1)

x−1

∑
j=1

γ( j/n)2
(η̃x− j − 1),

and thus, for a big enough value of x, we obtain nV ϕ̂(x) < 0. Therefore,
Theorem 13.3.1 does not hold; nV ϕ̂(x) = ∞ for all x = 1,2, . . . . �

13.3.2 Refined Fluid Approximation

Under the conditions of Theorem 13.3.1 except for q−(y,ψ(y)) > q, (13.3) may
not hold, which in comparison with (13.2), suggests that the standard fluid approx-
imation may fail to be accurate in this case; since q−(y) can now approach zero,
and q+(y) < q−(y), it could happen that the standard fluid model does not get
absorbed at the state zero, while for any fixed n = 1,2, . . . , the stochastic process
{nXt , t = 0,1, . . .} indeed gets absorbed at the state zero, so that the standard fluid
model and the n-MDP model could behave qualitatively differently. Example 13.3.4
below illustrates this situation. Nevertheless, in this case, the refined fluid model
introduced below still approximates well the n-MDP model under the following
condition.

Let ψ(·) be a measurable mapping from [0,∞) to A. We formulate the following
condition.

Condition A. (a) infy>0
q−(y,ψ(y))
q+(y,ψ(y)) ≥ η̃ > 1, supy>0

|ρ(y,ψ(y))|
{q+(y,ψ(y))+q−(y,ψ(y))}ηy ≤C1 <

∞, where η ∈ (1, η̃).
(b) For any n, there exists an (n-dependent) constant K(n) such that

nlW (x) := K(n)q−(x/n,ψ(x/n))ηx/n− 1 > 0,x = 1,2, . . . ,

and

sup
x=1,2,...

|ρ(x/n,ψ(x/n))|
nlW (x)

= sup
x=1,2,...

|ρ(x/n,ψ(x/n))|
K(n)q−(x/n,ψ(x/n))ηx/n− 1

< ∞,

where η ∈ (1, η̃) comes from part (a) of this condition.
(c) There exist points y1,y2, . . . ,yl , . . . with yl → ∞ as l → ∞ such that on each of

the intervals (0,y1), (y1,y2), . . . , the function ρ(y,ψ(y))
q−(y,ψ(y))−q+(y,ψ(y)) is Lipschitz

continuous.

Simple sufficient conditions for Condition A(b) are given below: see Proposition
13.3.1 and its proof.
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Refined fluid model:

∫ ∞

0

ρ(y,ψ(y))
q+(y,ψ(y))+ q−(y,ψ(y))

du → inf
ψ

subject to
dy
du

=
q+(y,ψ(y))− q−(y,ψ(y))
q+(y,ψ(y))+ q−(y,ψ(y))

, with a given initial state y(0).

One can show under Condition A that

ṽψ(y0) :=
∫ ∞

0

ρ(y,ψ(y))
q+(y,ψ(y))+ q−(y,ψ(y))

dτ =
∫ y0

0

ρ(z,ψ(z))
q−(z,ψ(z))− q+(z,ψ(z))

dz.

Note that q+(y,ψ(y))−q−(y,ψ(y))
q+(y,ψ(y))+q−(y,ψ(y)) ≤ 1−η̃

1+η̃ < 0, so that y(·) in the fluid model is absorbed
at the state zero in finite time.

Theorem 13.3.2. Let n= 1,2, . . . and ŷ> 0 be fixed,ψ a measurable mapping from
[0,∞) to A, and ϕ̂(·) given by ϕ̂(x) := ψ(x/n). Suppose Condition A is satisfied

for ψ so that there exist an integer L such that the function ρ(y,ψ(y))
q−(y,ψ(y))−q+(y,ψ(y)) is

Lipschitz continuous with the common Lipschitz constant D on the intervals (0,y1),
(y1,y2), . . . , (yL−1,yL), (yl ,yL+1) with yL < ŷ+ 1 ≤ yL+1. Then

sup
x∈{0,1,...,[ŷn]}

∣
∣
∣ nV ϕ̂(x)− ṽψ(x/n)

∣
∣
∣≤ ε(n)

2
.

Here and below, we put

ε(n) :=
2K1

n
+

2K2

η̃n + 2K3(η1/n− 1),

K1 :=
η̃+ 1
η̃− 1

[D(ŷ+ 1)+ 3C1Lη ŷ+1],

K2 :=
η̃+ 1
η̃− 1

C1

[
1+

2(η̃+ 1)
(η̃− 1) lnη

]
η ŷ+1η̃2

η̃−η
,

K3 :=

(
η̃+ 1
η̃− 1

)2 3C1Lη ŷ+1

lnη
.

Proof. Consider an n-birth-and-death process model whose birth rate is nq+

(x/n, ϕ̂(x)), death rate is nq−(x/n, ϕ̂(x)) and cost rate is ρ(x/n, ϕ̂(x)). The under-
lying process is denoted by {Yt , t ≥ 0}. Then we have

nW ϕ̂ (x) := E ϕ̂
x

[∫ ∞

0
ρ(Yt/n, ϕ̂(Yt))dt

]
= nV ϕ̂(x), x = 0,1, . . . .
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Indeed, both V ϕ̂ (x) and nW ϕ̂ (x) are given by the unique nη-bounded solution to the
equation

0 = ρ(x/n, ϕ̂(x))+V (x+ 1)nq+(x/n, ϕ̂(x))+ nq−(x/n, ϕ̂(x))V (x− 1)

−n(q+(x/n, ϕ̂(x))+ q−(x/n, ϕ̂(x)))V (x),x = 1,2, . . . ;

0 = V (0)

by Remark 13.3.1, [12, Lem. 1, Lem. 2, Lem. 4] and [13, Lem. 1]. See also
[1, Chap. 7].

It remains to apply [13, Thm.1]. �

For any n= 1,2, . . . , let us consider a subclass of deterministic stationary policies
nΠ whose elements are ϕ such that the following are satisfied:

inf
x=1,2,...

q−(x/n,ϕ(x))
q+(x/n,ϕ(x))

≥ η̃ > 1,

sup
x=1,2,...

|ρ(x/n,ϕ(x))|
{q+(x/n,ϕ(x))+ q−(x/n,ϕ(x))}ηx ≤C1 < ∞,

where η ∈ (1, η̃), and there exists an (ϕ ,n-dependent) constant Kϕ(n) satisfying

Kϕ(n)q−(x/n,ϕ(x))ηx/n − 1 > 0, x = 1,2, . . . ,

and

sup
x=1,2,...

|ρ(x/n,ϕ(x))|
Kϕ (n)q−(x/n,ϕ(x))ηx/n − 1

< ∞.

Note that if there exists a ψ satisfying Condition A, then the set nΠ is non-empty
as ϕ̂(x) := ψ(x/n) ∈ nΠ for all n = 1,2, . . . . Under Condition B below, for any
n = 1,2, . . . , nΠ coincides with the whole class of deterministic stationary policies,
see Proposition 13.3.1 below.

Remark 13.3.1. For any fixed n = 1,2, . . . , one can verify that under a fixed policy
ϕ ∈ nΠ , the n-MDP model admits a Lyapunov function

nlL(x) := Dηx/n,x = 1,2, . . . ,nlL(0) := 2,

where D ≥ 1 is a big enough constant, and a weight function

nlW (x) := Kϕ(n)q−(x/n,ϕ(x))ηx/n − 1,x = 1,2, . . . ,nl2(0) := 1,

cf. [1, Chap.7] and [12, Con.1].
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Condition B. (a) infy>0,a∈A
q−(y,a)
q+(y,a) ≥ η̃ > 1, supy>0,a∈A

|ρ(y,a)|
(q+(y,a)+q−(y,a))ηy ≤C1 <∞,

where η ∈ (1, η̃).
(b) liminfy→∞ infa∈A q−(y,a)> 0.

Proposition 13.3.1. Suppose Condition B is satisfied. Then for any deterministic
stationary policy ϕ , it holds that ϕ ∈ nΠ for all n = 1,2, . . . .

Proof. Let n = 1,2, . . . be fixed and consider an arbitrarily fixed ϕ . Then under
Condition B, there exists a ζ > 0 such that q−(x/n,ϕ(x))> ζ , x = 1,2, . . . . So there
exists a constant Kϕ(n) > 0 such that q−(x/n,ϕ(x))ηx/n − 1

Kϕ (n) > ζ̃ ,x = 1,2, . . .

where ζ̃ > 0. Thus,

Kϕ(n)q−(x/n,ϕ(x))ηx/n − 1 > 0,

and

sup
x=1,2,...

|ρ( x
n ,ϕ(x))|

Kϕ(n)q−( x
n ,ϕ(x))η

x
n − 1

=
1

Kϕ(n)
sup

x=1,2,...

|ρ( x
n ,ϕ(x))|

q−( x
n ,ϕ(x))η

x
n − 1

Kϕ (n)

≤ 1
Kϕ(n)

sup
x=1,2,...

|ρ(x/n,ϕ(x))|
(q+(x/n,ϕ(x))+ q−(x/n,ϕ(x)))ηx/n

× sup
x=1,2,...

2q−(x/n,ϕ(x))ηx/n

q−(x/n,ϕ(x))ηx/n − 1
Kϕ (n)

≤ 2C1

Kϕ(n)
sup

x=1,2,...

q−(x/n,ϕ(x))ηx/n

q−(x/n,ϕ(x))ηx/n − 1
Kϕ (n)

< ∞.

The other requirements for a policy to be in mΠ are satisfied by ϕ is evident. �

Theorem 13.3.3. Suppose the policy ψ∗ solves the refined fluid model and satisfies
Condition A. Then for any fixed n = 1,2, . . . ,

sup
x∈{0,1,...,[nŷ]}

∣
∣∣
∣
nVϕ∗(x)− inf

ϕ∈nΠ
nVϕ(x)

∣
∣∣
∣ ≤ ε(n),

where ϕ∗(x) := ψ∗(x/n),x = 0,1,2, . . . .

Proof. It can be shown that ∀ ϕ ∈ nΠ , nVϕ(x) ≥ ṽψ
∗
(x/n)− ε(n)

2 . The proof is
similar to the one of Theorem 13.3.2. On the other hand, from Theorem 13.3.2, we
have infϕ∈nΠ

nVϕ(x)≤ nVϕ∗ ≤ ṽψ
∗
(x/n)+ ε(n)

2 ≤ infϕ∈nΠ
nVϕ(x)+ ε(n). �

The above theorem asserts that if one solves the refined fluid model and obtains
the optimal policy ψ∗, then the policy given by ϕ∗(x) = ψ∗(x/n) is ε(n)-optimal in
the underlying n-MDP, and ε(n) goes to zero as n grows large.

The next proposition comes from [13, Lem.3].
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Proposition 13.3.2. Under Condition B, assume that there exist finite intervals
(0,y′1), (y

′
1,y

′
2), . . . , with lim j→∞ y′j = ∞, such that on each of them, the function

ρ(y,a)
q−(y,a)−q+(y,a) is Lipschitz continuous with respect to y for each a ∈ A, and the
Lipschitz constants are a-independent. Then for any fixed ŷ > 0, there exists an
ψ∗ satisfying Condition A and solving the refined fluid model on [0, ŷ].

Now, we give an example where the main results (Theorems 13.3.2 and 13.3.3)
of this work are applicable. In fact, by Propositions 13.3.1 and 13.3.2, it suffices to
verify Condition B and the other condition of Proposition 13.3.2.

Example 13.3.3. Consider a discrete-time single-server queueing system, where
during each time step, the probability of having an arrival is given by the function
q+(y,a) = a

2y+2+a , and the probability of having a service completion (given there

is at least one job) is given by the function q−(y,a) = 2y+2
2y+2+a , where y > 0 and

a∈ A := [ 1
2 ,1]. Suppose the cost function is given by ρ(y,a) = 2y−a, which means

that we aim at minimizing the holding cost, which is incurred at a rate of 2£ per
time step, while admitting more jobs is encouraged. The state zero is taken as the
absorbing state, so that q−(0,0) = q+(0,0) = ρ(0,0) = 0.

It is easy to see that

inf
y>0,a∈[ 1

2 ,1]

q−(y,a)
q+(y,a)

= inf
y>0,a∈[ 1

2 ,1]

2+ 2y
a

= 2 =: η̃ > 1,

sup
y>0,a∈[ 1

2 ,1]

|ρ(y,a)|
(q+(y,a)+ q−(y,a))(1.5)y =

|ρ(y,a)|
(1.5)y < ∞,

1 < η := 1.5 < η̃ ,

liminf
y→∞

inf
a∈[ 1

2 ,1]
q−(y,a)> 0,

and the function given by

ρ(y,a)
q−(y,a)− q+(y,a)

=
(2y− a)(2y+ 2+ a)

2y+ 2− a
= 2y+ a− 4a

2y+ 2− a

is obviously Lipschitz in y > 0 for any a ∈ [ 1
2 ,1]. Hence, Condition B and the other

condition of Proposition 13.3.2 are satisfied by this example. �

The next example indicates that the condition q−(y,ψ(y)) > q > 0 is important
for the standard fluid model to approximate the underlying MDP model accurately.
It also illustrates that the standard and the refined fluid models can behave
qualitatively differently.
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Fig. 13.1 The graph of q−(y)

Example 13.3.4 (cf. Example 1 in [13]). For brevity, we deal with an uncontrolled
model, i.e., A is taken as a singleton, so that denotations such as q−(y),q+(y)ρ(y)
are used for brevity. We put

q−(y) = 0.1I{y ∈ (0,1]}+ 0.125(y− 1)2I{y ∈ (1,3]}+ 0.5I{y> 3},
q+(y) = 0.2q−(y), ρ(y) = 8q−(y).

Clearly, q−(y) is not separated from zero, see Fig. 13.1, while Condition A is
satisfied.

For the original fluid model, we have dy
dτ =−0.1 (y− 1)2, and, if the initial state

y0 = 2, then y(τ) = 1+ 10
τ+10 , so that limτ→∞ y(τ) = 1.

On the other hand, since q−(y),q+(y)> 0 for y > 0, and there is a negative trend,
the state process Xt in the n-stochastic model starting from nX0/n = y0 = 2 will be
absorbed at zero, see [1, Lem. 7.2, Def. 7.4], while the moment of the absorbtion is
postponed for later and later as n → ∞ because the process spends more and more
time in the neighborhood of 1, see Figs. 13.2 and 13.3.

When using the original fluid model, we have

v(2) =
∫ ∞

0
ρ(y(τ))dτ = 10 = lim

T→∞
lim
n→∞

E2n

[
∞

∑
t=1

I{t/n≤ T} nr(Xt−1,At)

]

.

When using the refined fluid model, we can calculate ρ(y)
q+(y)+q−(y) =

8
1.2 for y > 0

and y(u) = 2− 2
3 u, so that the process in the refined fluid model is absorbed at the

state zero at the time moment u = 3. Therefore,

lim
n→∞

nV (2n) = ṽ(2) =
∫ ∞

0
ρ̂(y(u))du =

∫ 3

0

8
1.2

du = 20

= lim
n→∞

lim
T→∞

E2n

[
∞

∑
t=1

I{t/n ≤ T} nr(Xt−1,At)

]


= v(2).

So the standard fluid model fails to be accurate in this example. �
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Fig. 13.2 The state process in the n-stochastic model and its fluid approximation, n = 7
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Fig. 13.3 The state process in the n-stochastic model and its fluid approximation, n = 15
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13.4 Conclusion

In this chapter, the convergence of the objective function of a scaled absorbing MDP
model, with a total undiscounted cost, to the one of the (standard and refined) fluid
model is shown. The upper boundary estimate of the rate of convergence is presented
based on the initial data, which is of order 1

n , where n is the scaling parameter.
Hence, the level of accuracy of the fluid approximation is obtained. By examples,
we also show that the standard fluid model may fail to approximate the n-MDP
model, while the refined fluid model is still accurate.

Acknowledgements Mr. Mantas Vykertas kindly helped us improve the English presentation of
this chapter. We thank the referee for valuable comments, too.
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Chapter 14
Minimizing Ruin Probabilities by Reinsurance
and Investment: A Markovian Decision
Approach

Rosario Romera and Wolfgang Runggaldier

14.1 Introduction

Consider a classical Cramér-Lundberg model

Xt = x− ct−
Nt

∑
i=1

Yi, (14.1)

where the claim number process {Nt} is a Poisson process with intensity λ , and the
claim payment {Yt } is a sequence of independent and identically distributed (i.i.d.)
positive random variables independent of {Nt} and with support on the positive half
line. Let c be the constant premium rate (income) paid by the insurer. We assume
the safety loading condition c > λE[Y ].

One of the key quantities in the classical risk model is the ruin probability, as a
function of the initial reserve x,

ψ(x) = Pr{Xt < 0 for some t > 0}.
In general, it is very difficult to derive explicit and closed expressions for the ruin
probability. The pioneering works on approximations to the ruin probability were
achieved by Cramér and Lundberg as early as the 1930s under Cramér-Lundberg
condition. This condition is to assume that there exists a constant κ > 0 called
adjustment coefficient, satisfying the following Lundberg equation:

∫ ∞

0
eκyF̄(y)dy =

c
λ
,
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with F(y) = Pr{Y ≤ y}. Under this condition, the Cramér-Lundberg asymptotic
formula states that if

∫ ∞

0
yeκydP(y)< ∞,

where P(y) = 1
E[Y ]

∫ y
0 F̄(s)ds is the equilibrium distribution of F, then

ψ(x)≤ e−κx,x ≥ 0. (14.2)

The insurer has now the possibility to reinsure the claims. In the case of
proportional reinsurance Schmidli [22] showed that there exists an optimal strategy
that can be derived from the corresponding Hamilton-Jacobi-Bellman equation.
Hipp and Vogt [15] derived by similar methods the same result for excess of loss
reinsurance. In Schäl [21], the control problem of controlling ruin by investment
in a financial market is studied. The insurance business is described by the usual
Cramér-Lundberg-type model, and the risk driver of the financial market is a
compound Poisson process. Conditions for investment to be profitable are derived
by means of discrete-time dynamic programming. Moreover, Lundberg bounds
are established for the controlled model. Diasparra and Romera [3, 4] consider a
discrete-time process driven by proportional reinsurance and an interest rate process
which behaves as a Markov chain. To reduce the risk of ruin, the insurer may
reinsure a part or even all of the reserve. Recursive and integral equations for
the ruin probabilities are given, and generalized Lundberg inequalities for the ruin
probabilities are derived.

We consider a discrete-time insurance risk/reserve process which can be con-
trolled by reinsurance and investment in the financial market, and we study the ruin
probability problem in the finite-horizon case. Although controlling a risk/reserve
process is a very active area of research (see [2, 6, 16, 24, 26], and references
therein), obtaining explicit optimal solutions minimizing the ruin probability is in
general a difficult task even for the classical Cramér-Lundberg risk process. Thus,
an alternative method commonly used in ruin theory is to derive inequalities for
ruin probabilities. The inequalities can be used to obtain upper bounds for the
ruin probabilities [8, 23, 27], and this is the approach followed in this chapter. The
basis of this approach is the well-known fact that in the classical Cramér-Lundberg
model, if the claim sizes have finite exponential moments, then the ruin probability
decays exponentially as the initial surplus increases (see for instance the book by
Asmussen [1]). For the heavy-tailed claims’ case, it is also shown to decay with
a rate depending on the distribution of the claim size (see, e.g., [7]). Paulsen [18]
reviews general processes for the ruin problem when the insurance company invests
in a risky asset. Xiong and Yang [25] give conditions for the ruin probability to be
equal to 1 for any initial endowment and without any assumption on the distribution
of the claim size as long as it is not identically zero.

Control problems for risk/reserve processes are commonly formulated in contin-
uous time. Schäl [20] introduces a formulation of the problem where events (arrivals
of claims and asset price changes) occur at discrete points in time that may be
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deterministic or random, but their total number is fixed. Diasparra and Romera [3]
consider a similar formulation in discrete time. Having a fixed total number of events
implies that in the case of random time points the horizon is random as well.

In this chapter, we follow an approach inspired by Edoli and Runggaldier [5]
who claim that a more natural way to formulate the problem in case of random time
points is to consider a given fixed time horizon so that also the number of event
times becomes random, and this makes the problem nonstandard. Accordingly, it is
reasonable to assume that also the control decisions (level of reinsurance and amount
invested) correspond to these random time points. Notice that this formulation can
be seen equivalently in discrete or continuous time. The stochastic elements that
affect the evolution of the risk/reserve process are thus the timing and size of the
claims, as well as the dynamics of the prices of the assets in which the insurer is
investing. This evolution is controlled by the sequential choice of the reinsurance
and investment levels. Claims occur at random points in time and also their sizes
are random, while asset price evolutions are usually modeled as continuous-time
processes. On small time scales, prices actually change at discrete random time
points and vary by tick size. In the proposed model, we let also asset prices change
only at discrete random time points with their sizes being random as well. This
will allow us to consider the timing of the events, namely, the arrivals of claims
and the changes of the asset prices, to be triggered by a same continuous-time semi-
Markov process (SMP), that is, a stochastic process where the embedded jump chain
(the discrete process registering what values the process takes) is a Markov chain,
and where the holding times (time between jumps) are random variables, whose
distribution function may depend on the two states between which the move is made.
Since between event times the situation for the insurer does not change, we shall
consider controls only at event times.

Under this setting, we construct a methodology to achieve an optimal solution
that minimizes the bounds of the ruin probability previously derived. Admissible
strategies ranging in a compact set are in fact reinsurance levels and investment
positions. From a general perspective, and due to the Markovian feature of the risk
process, it seems quite natural to look at the minimization of the ruin probability as
a Markov decision problem (MDP) for which suitable MDP techniques may hold.
Although this is not a standard approach in actuarial risk models, we present in
this chapter a connection between our optimization problem and the use of MDP
techniques. Many of the most relevant contributions in the literature related to MDP
techniques have been developed by Onesimo Hernández-Lerma and his coauthors,
and some of them have inspired the optimization part of this chapter [9–14].

The rest of the chapter is organized as follows: Section 14.2 describes the
elements of the considered model and introduces the formulation of the risk process.
Section 14.3 presents the previous recursive relations on ruin probabilities needed to
derived our main contributions on the exponential bounds for the ruin probabilities.
In Sect. 14.4, the derivation of the reinsurance and investment policy that minimizes
an exponential bound is described in connection with MDP techniques, namely,
policy improvement and value iteration.
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14.2 The Risk Process

We start this section by fixing the elements of the model studied in this chapter.
According to the model proposed in Romera and Runggaldier [19], we consider a
finite time horizon T > 0. More precisely, to model the timing of the events (arrival
of claims and asset price changes), inspired by Schäl [21], we introduce the process
{Kt}t>0 for t ≤ T , a continuous-time SMP on {0, 1}, where Kt = 0 holds for the
arrival of a claim, and Kt = 1 for a change in the asset price. The embedded Markov
chain, that is, the jump chain associated to the SMP {Kt}t>0, evolves according to
a transition probability matrix P =

∥∥pi j
∥∥

i, j∈{0,1} that is supposed to be given, and
the holding times (time between jumps) are random variables whose probability
distribution function may depend on the two states between which the move is made.

Let Tn be the random time of the n− th event, n ≥ 1, and let the counting process
Nt denote the number of events having occurred up to time t defined as follows:

Nt =
∞

∑
j=1

1{Tj≤t} (14.3)

and so

Tn = min{t ≥ 0|Nt = n}. (14.4)

We introduce now the dynamics of the controlled risk process Xt for t ∈ [0,T ]
with T a given fixed horizon. For this purpose, let Yn be the n − th (n ≥ 1)
claim payment represented by a sequence of i.i.d. random variables with common
probability distribution function (p.d.f.) F(y). Let Zn be the random variable
denoting the time between the occurrence of the n− 1st and nth (n ≥ 1) jumps
of the SMP {Kt}t>0. We assume that {Zn} is a sequence of i.i.d. random variables
with p.d.f. G(.). From this, we may consider that the transition probabilities of the
SMP {Kt}t>0 are

P{KTn+1 = j,Zn+1 ≤ s|KTn = i}= pi jG(s).

Notice that for a full SMP model, the distribution function G(.) depends also
on i and j. While the results derived below go through in the same way also for a
Gi j(.)depending on i, j, we restrict ourselves to independent G(.). A specific form
of SMP arises, for example, as follows: let N1

t and N2
t be independent Poisson

processes with intensities λ 1 and λ 2, respectively. We may think of N1
t as counting

the number of claims and N2
t that of price changes and we have that Nt = N1

t +N2
t

is again a Poisson process with intensity λ = λ 1 +λ 2. It then follows easily that

⎧
⎪⎨

⎪⎩

pi j = λ j

λ := p j , ∀i,

G(s) =
[
1− e−λ s

]
.
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The risk process is controlled by reinsurance and investment. In general, this
means that we may choose adaptively at the event times TNt (they correspond to
the jump times of Nt ) the retention level (or proportionality factor or risk exposure)
bNt of a reinsurance contract as well as the amount δNt to be invested in the risky
asset, namely, in SNt with St denoting discounted prices. For the values b that the
various bNt may take, we assume that b ∈ (bmin,1] ⊂ (0,1], where bmin will be
introduced below, and for the values of δ for the various δNt , we assume δ ∈ [δ , δ̄ ]
with δ ≤ 0 and δ > 0 exogenously given. Notice that this condition allows also for
negative values of δ meaning that, see also [22], short selling of stocks is allowed.
On the other hand, with an exogenously given upper bound δ̄ , it might occasionally
happen that δNt >XNt , implying a temporary debt of the agent beyond his/her current
wealth in order to invest optimally in the financial market. By choosing a policy that
minimizes the ruin probability, this debt is however only instantaneous and with
high probability leads to a positive wealth already at the next event time.

Assume that prices change only according to

SNt+1− SNt

SNt

=
(
eWNt+1 − 1

)
KTNt+1 , (14.5)

where Wn is a sequence of i.i.d. random variables taking values in [w, w̄] with
w < 0 < w̄, where one may also have w = −∞, w̄ = +∞ and with p.d.f. H(w).
For simplicity and without loss of generality, we consider only one asset to invest
in. An immediate generalization would be to allow for investment also in the money
market account.

Let c be the premium rate (income) paid by the customer to the company, fixed in
the contract. Since the insurer pays to the reinsurer a premium rate, which depends
on the retention level bNt chosen at the various event times TNt , we denote by C(bNt )
the net income rate of the insurer at time t ∈ [0,T ]. For b ∈ (bmin,1], we let h(b,Y )
represent the part of the generic claim Y paid by the insurer, and in what follows, we
take the function h(b,Y ) to be of the form h(b,Y ) = b ·Y (proportional reinsurance).
We shall call policy a sequence π = (bn,δn) of control actions. Control actions over
a single period will be denoted by φn = (bn,δn). According to the expected value
principle with safety loading θ of the reinsurer, for a given starting time t < T , the
function C(b) can be chosen as follows:

C(b) := c− (1+θ )
E{Y1− h(b,Y1)}
E{Z1∧ (T − t)} , 0 < t < T, (14.6)

We use Z1 and Y1 in the above formula since, by our i.i.d. assumption, the various
Zn and Yn are all independent copies of Z1 and Y1. Notice also that, in order to keep
formula (14.6) simple and possibly similar to standard usage, in the denominator of
the right-hand side, we have considered the random time Z1 between to successive
events, while more correctly, we should have taken the random time between two
successive claims, which is larger. For this, we can however play with the safety
loading factor. As explained in Romera and Runggaldier [19], we can now define
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bmin := min{b ∈ (0,1] | c ≥C(b)≥ c∗}, where c∗ ≥ 0 denotes the minimal value of
the premium considered by the insurer. We have to consider the following technical
restrictions:

Assumption 14.2.1. Let

(i) The random variables (Zn,Yn,Wn)n≥1 are, conditionally on Kt , mutually
independent.

(ii) E
{

erY1
}
<+∞ for r ∈ (0, r̄) with r̄ ∈ (0,∞).

(iii) c− (1+θ ) E{Y1}
E{Z1∧T} ≥ 0.

Notice that, since the support of Y1 is the positive half line, we have
limr↑r̄{E{erY1}}= ∞ (r̄ may be equal to +∞, e.g., if the support of Y1 is bounded).

In the given setting, we obtain for the insurance risk process (surplus) X the
following one-step transition dynamics between the generic random times Tn and
Tn+1 when at Tn a control action φ =(b,δ ) is taken for a certain b∈ (bmin,1]⊂ (0,1],
and δ ∈ [δ , δ̄ ],

XTn+1 = XTn +C(b)Zn+1− (1−KTn+1)h(b,Yn+1)+KTn+1δ (e
Wn+1 − 1). (14.7)

Definition 14.2.1. Letting U := [bmin,1]× [δ ,δ ], we shall say that a control action
φ = (b,δ ) is admissible if (b,δ ) ∈U . Notice that U is compact.

We want now to express the one-step dynamics in (14.7) when starting from
a generic time instant t < T with a capital x. For this purpose, note that if, for a
given t < T one has Nt = n, the time TNt is the random time of the n− th event and
Tn ≤ t ≤ Tn+1. Since, when standing at time t, we observe the time that has elapsed
since the last event in TNt , it is not restrictive to assume that t = TNt [see the comment
below after (14.8)]. Furthermore, since Zn,Yn,Wn are i.i.d., in the one-step random
dynamics for the risk process Xt , we may replace the generic (Zn+1,Yn+1,Wn+1) by
(Z1,Y1,W1). We may thus write

XNt+1 = x+C(b)Z1− (1−KTNt+1)h(b,Y1)+KTNt+1δ (e
W1 − 1) (14.8)

for 0 < t < T, T > 0 and with Xt = x ≥ 0 (recall that we assumed t = TNt ). Notice
that, if we had t 
= TNt and therefore t > TNt , the second term on the right in (14.8)
would become C(b)[Z1 − (t−TNt )], and (14.8) could then be rewritten as

XNt+1 = [x−C(b)(t−TNt )]+C(b)Z1− (1−KTNt+1)h(b,Y1)+KTNt+1δ (e
W1 − 1)

with the quantity [x−C(b)(t − TNt )], which is known at time t, replacing x. This
is the sense in which above, we mentioned that it is not restrictive to assume that
t = TNt . In what follows, we shall work with the risk process Xt , (or XNt ) as defined
by (14.8). For convenience, we shall denote by (bn,δn) the values of φ = (b,δ ) at
t = TNt . Accordingly, we shall also write (bNt ,δNt ) for

(
bTNt

,δTNt

)
.

Following [24], we shall also introduce an absorbing (cemetery) state κ , such
that if XNt < 0 or XNt = κ , then XNt+1 = κ , ∀t ≤ T. The state space is then R∪{κ}.
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14.3 Ruin Probabilities

We present first the general expression of the ruin probability corresponding to the
risk model (14.8). Thus, using the policy π , given the initial surplus x at time t and
initial event k ∈ {0,1} for the Markov chain Kt at time t, the ruin probability is
given by

ψπ(t,x;k) := Pπ

(
NT⋃

s=Nt+1

{Xs < 0 |XNt = x,Kt = k}
)

. (14.9)

Note that the finite-horizon character of the considered model imposes a specific
definition for the ruin probabilities. In order to obtain recursive relations for the
ruin probability, we specify some notation and introduce the basic definitions
concerning the finite-horizon ruin probabilities when one or n intra-event periods
are considered.

Given a policy π , namely. a predictable process pair πt := (bt ,δt) with (bt ,δt) in
U [of which in the definitions below we need just to consider the generic individual
control action φ = (b,δ )], we introduce the following functions:

uπ(y,z,w,k) : = (1− k)by−C(b)z− kδ (ew− 1),

τπ(y,w,k,x) : =
(1− k)by− kδ (ew− 1)− x

C(b)
, (14.10)

so that uπ(y,z,w,k) < x ⇐⇒ z > τπ (y,w,k,x).
The ruin probability over one intra-event period (namely, the period between to

successive event times) when using the control action φ =(b,δ ) is, for a given initial
surplus x at time t ∈ (0,T ) and initial event KTNt

= k ∈ {0,1},

ψπ
1 (t,x;k) :=

1

∑
h=0

pk,h

∫ w̄

w

∫ ∞

0
G(τπ(y,w,h,x)∧ (T − t))dF(y)dH(w). (14.11)

We want to obtain a recursive relation for

ψπ
n (t,x;k) : = Pπ

⎧
⎨

⎩

(Nt+n)∧NT⋃

k=Nt+1

{Xk < 0}|XNt = x,KTNt
= k

⎫
⎬

⎭

: = Pπ
x,k

⎧
⎨

⎩

(Nt+n)∧NT⋃

k=Nt+1

{Xk < 0}
⎫
⎬

⎭
, (14.12)

namely, for the ruin probability when at most n events are considered in the interval
[t,T ] and a policy π is adopted.

In Romera and Runggaldier [19], the following recursive relation is obtained:
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Proposition 14.3.1. For an initial surplus x at a given time t ∈ [0,T ], as well as an
initial event KTNt

= k and a given policy π , one has

ψπ
n (t,x,k)

= P{NT −Nt > 0}∑1
h=0 pk,h

∫ w̄

w

∫ ∞

0
G(τπ(y,w,h,x)∧ (T − t))dF(y)dH(w)

+P{NT −Nt > 1}∑1
h=0 pk,h

·
∫ w̄

w

∫ ∞

0

∫ T−t

τπ (y,w,h,x)
ψπ

n−1(t + z,x− uπ(y,z,w,h),h)dG(z)dF(y)dH(w)

(14.13)
from which it immediately also follows that

ψπ
1 (t,x,k) = P{NT −Nt = 1}

1

∑
h=0

pk,h

∫ w̄

w

∫ ∞

0
G(τπ (y,w,h,x)∧ (T − t))dF(y)dH(w)

(14.14)

since in the case of at most one jump, one has that P{NT − Nt > 0} =
P{NT −Nt = 1} and P{NT −Nt > 1}= 0.

14.4 Minimizing the Bounds

In the following, we base ourselves on results in Diasparra and Romera [3,4] that are
here extended to the general setup of this chapter to obtain the exponential bounds
and then to minimize them.

To stress the fact that the process X defined in (14.7) corresponds to the choice
of a specific policy π , in what follows, we shall use the notation Xπ .

Given a policy πt = (bt ,δt)and defining for t ∈ [0,T ], the random variable

V π
t :=C(b)(Z1∧ (T − t))− 1{Z1≤T−t}

[
(1−KTNt+1)bY1 +KTNt +1δ

(
eW1 − 1

)]
,

(14.15)

where b = bt and δ = δt let, for r ∈ (0, r̄) and k ∈ {0,1},

lπr (t,k) := Et,k{e−rVπ
t }− 1, (14.16)

where, for reasons that should become clear below, we distinguish the dependence
of lπ on r from that on (t,k).

Remark 14.4.1. Notice that, by its definition, lπr (t,k) is, for given π and r ∈ (0, r̄), a
bounded function of (t,k) ∈ [0,T ]×{0,1}.Given its continuity in r, it is uniformly
bounded on any compact subset of (0, r̄), for example, on [η , r̄−η ] for η ∈ (0, r̄).
Having fixed η > 0,denote this bound by L, that is,

sup
(t,k)∈[0,T ]×{0,1}, r∈[η,r̄−η]

|lπr (t,k)| ≤ L. (14.17)
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Definition 14.4.2. We shall call a policy π admissible and denote their set by A if
at each t ∈ [0,T ], the corresponding control action (bt ,δt) ∈U , and for any t ∈ [0,T ]
and k ∈ {0,1}, Et,k{V π

t }> 0 ∀π ∈ A.

Notice that A is nonempty since (see Assumption 14.2.1, (iii) it contains at least
the stationary policy (bNt ,δNt )≡ (bmin,0).

According to Romera and Runggaldier [19], we obtain the following result:

Proposition 14.4.2. For each (t,k) and each π ∈ A, we have that:

(a) As a function of r ∈ (0, r̄), lπr (t,k) is convex with a negative slope at r = 0.
(b) The equation lπr (t,k) = 0 has a unique positive root in (0, r̄) that we simply

denote by Rπ so that the defining relation for Rπ is

lπRπ (t,k) = 0. (14.18)

Notice that Rπ actually depends also on (t,k), but for simplicity of notation, we
denote it just by Rπ .

In view of the main result of this section, namely, Theorem 14.4.1 below, we first
obtain [19]:

Lemma 14.4.1. Given a surplus x > 0 at a given initial time t ∈ [0,T ] and an initial
event k ∈ {0,1}, we have

ψπ
1 (t,x,k) ≤ e−Rπx (14.19)

for each π ∈ A, where Rπ is the unique positive root of (14.18) that depends on t
and k but is independent of x.

Lemma 14.4.2. For given (t,x,k), we have

ψπ
n (t,x,k)≤ γne−Rπx (14.20)

for all n ∈ N,π ∈ A, where Rπ is the unique positive solution with respect to r of
lπr (t,k) = 0 (see (14.18)), and γn is defined recursively b

γ1 = 1,

γn = γn−1P{NT −Nt > 1}+P{NT −Nt = 1}. (14.21)

Remark 14.4.2. Due to the defining relations (14.21), it follows immediately that
γn ≤ 1 for all n ∈ N. In fact, using forward induction, we see that the inequality is
true for n = 1, and assuming it true for n− 1, we have

γn = γn−1P{NT −Nt > 1}+P{NT −Nt = 1} ≤ P{NT −Nt > 0} ≤ 1. (14.22)

We come now to our main result in this section, namely, Theorem 14.4.1 whose
proof follows immediately from Lemma 14.4.2 noticing that, see Remark 14.4.2,
one has γn ≤ 1.
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Theorem 14.4.1. Given an initial surplus x > 0 at a given time t ∈ [0,T ], we have,
for all n ∈ N and any initial event k ∈ {0,1} and for all π ∈ A,

ψπ
n (t,x,k) ≤ e−Rπx

with Rπ that may depend on (t,k) in [0,T ]×{0,1}.

14.4.1 Minimizing the Bounds by a Policy Improvement
Procedure

As mentioned previously, it is in general a difficult task to obtain an explicit
solution to the given reinsurance-investment problem in order to minimize the ruin
probability and this even for a classical risk process. We shall thus choose the
reinsurance level and the investment in order to minimize the bounds that we have
derived. By Theorem 14.4.1, this amounts to choosing a strategy π ∈ A such that, for
each pair (t,k), the value of Rπ is as large as possible. This strategy will thus depend
in general also on t and k but not on the level x of wealth. By Proposition 14.4.2,
this Rπ is, for each π ∈ A, the unique positive solution of the equation lπr (t,k)) = 0,
where lπr (t,k) is, as a function of r ∈ [0, r̄] (and for every fixed (t,k)), convex with
a negative slope at r = 0. To obtain, for a given (t,k), the largest value of Rπ , it
thus suffices to choose π ∈ A that minimizes lπr (t,k) just at r = Rπ . This, in fact,
appeals also to intuition since, according to the definition in (14.16), minimizing
lπr (t,k) amounts to penalizing negative values of Xπ

t = x+V π
t , thereby minimizing

the possibility of ruin.
Concerning the minimization of lπr (t,k) at r = Rπ , notice that decisions concern-

ing the control actions φ = (b,δ ) have to be made only at the event times Tn. The
minimization of lπr (t,k) with respect to π ∈ A has thus to be performed only for
pairs (t,k) corresponding to event times, namely, those of the form (Tn,KTn), thus
leading to a policy π with individual control actions φTn = (bTn ,δTn).

Our problem to determine an investment and insurance policy to minimize
the bounds on the ruin probability may thus be solved by solving the following
subproblems:

1. For a given policy, π̄ ∈ A determine lπ̄r (t,k) for pairs (t,k) of the form (Tn,KTn).
2. Determine Rπ̄(Tn,KTn ) that is solution with respect to r of lπ̄r (Tn,KTn) = 0.
3. Improve the policy by minimizing lπ

Rπ̄
(Tn,KTn) with respect to π ∈ A.

This leads to a policy improvement-type approach, more precisely, one can
proceed as follows:

• Start from a given policy π0 (e.g., the one requiring minimal reinsurance and no
investment in the financial market).

• Determine Rπ0
corresponding to π0 for the various (Tn,KTn).
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• For r = Rπ0
, determine π1 that minimizes lπ

Rπ0 (Tn,KTn).
• Repeat the procedure until a stopping criterion is met (notice that by the above

procedure Rπn
> Rπn−1

).

One crucial step in this procedure is determining the function lπr (t,k) correspond-
ing to a given π ∈ A, and this will be discussed in the next section.

14.4.2 Computing the Value Function in the Policy
Improvement Procedure

Recall again that the decisions have to be made only at the event times over a given
finite horizon, and consequently, the function lπr (t,k) has to be computed only for
pairs of the form (Tn,KTn). The number of these events is however random and may
be arbitrarily large; furthermore, the timing of these events is random as well. On
the other hand, notice that if we can represent the function lπr (t,k) to be minimized
as the fixed point of a contraction operator involving expectations of functions of
a Markov process, then the computation can be performed iteratively as in value
iteration algorithms.

For this purpose, recalling that Zn are i.i.d. random variables with probability
distribution function G(.) and that, for given π ∈ A and r ∈ [η , r̄−η ],the functions
lπr (t,k) are bounded by some L (see Remark 14.4.1), we start with the following:

Definition 14.4.3. For given π ∈ A, define T π as the operator acting on bounded
functions v(t,k) of (t,k) in the following way:

Tπ(v(t,k))

= 1{t≤T}Eπ
t,k

{
1{t+Z1≤T}v(t +Z1,Kt+Z1 )+ 1{t≤T≤t+Z1}

[
e−rC(b)(T−t)− 1

]}

=
1

∑
h=0

pk,h

{∫ T−t

0
v(t + z,h)dG(z)+ Ḡ(T − t)

[
e−rC(b)(T−t)− 1

]}

with Ḡ(z) = 1−G(z) and where, given πt = (bt ,δt), the value of b is b = bt .

The following lemma is now rather straightforward:

Lemma 14.4.3. For a given π ∈ A and any value of the parameter r ∈ [η , r̄−η ],
the function lπr (.) is a fixed point of T π , that is,

lπr (t,k) = T π(lπr )(t,k). (14.23)

On the basis of the above definitions and results, we may now consider the
following recursive relations:

lπ ,0r (Tn,k) = Ḡ(T −Tn)[e
−rC(bn)(T−Tn)− 1],

lπ ,mr (Tn,k) = T π(lπ ,m−1
r )(Tn,k) f or m = 1,2, .. (14.24)
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that we may view as a value iteration algorithm. Since between any event time
Tn and the terminal time T there may be any number of events occurring, to obtain
lπr (.), the recursions in (14.24) would have to be iterated an infinite number of times.
If however the mappings T π are contracting in the sense that

‖T π(v1)−Tπ(v2)‖ ≤ γ ‖v1− v2‖ (14.25)

for bounded functions v1(.) and v2(.) and with γ < 1, then lπ ,mr (Tn,k) approximates
lπr (Tn,k) arbitrarily well in the sup-norm, provided m is sufficiently large.

The above assumption can be seen to be satisfied in various cases of practical
interest [19].

14.4.2.1 Reduction of Dimensionality and Particular Cases

For the policy improvement and value iteration-type procedure in the previous
section, the “Markovian state” was seen to be the tuple (Tn,KTn), which makes
the problem two dimensional. It is shown in Romera and Runggaldier [19] that
in the particular case when the inter-event time and the claim size distributions
are (negative) exponential, a case that has been most discussed in the literature
under different settings, then the state space can be further reduced to only the time
variable t (the sequence of event times Tn is then in fact a Markov process by itself),
and so, the optimal policy becomes dependent only on the event time. This particular
case can also be shown [19] to be a concrete example where the mappings T π are
contracting as assumed in (14.25). Always for this particular case, it can furthermore
be shown (see again [19]) that the fixed point lπr of the mapping Tπ which, as
discussed above, depends here only on t, can be computed as a semianalytic solution
involving a Volterra integral equation.

We conclude this section by pointing out that, although by our procedure, we
minimize only an upper bound on the ruin probability, the optimal upper bound can
also be used as a benchmark with respect to which other standard policies may be
evaluated.

Finally, as explained in Romera and Runggaldier [19], our procedure allows also
to obtain some qualitative insight into the impact that investment in the financial
market may have on the ruin probability. It turns in fact out that, in line with some
of the findings in the more recent literature (see e.g., [17]), the choice of investing
also in the financial market has little impact on the ruin probability unless, as we do
here, one allows also for reinsurance.
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Chapter 15
Estimation of the Optimality Deviation
in Discounted Semi-Markov Control Models

Luz del Carmen Rosas-Rosas

15.1 Introduction

Semi-Markov control models (SMCMs) is a class of continuous-time stochastic
control models where the distribution of the times between consecutive decision
epochs (holding or sojourn times) is arbitrary and the actions or controls are selected
at the transition times. Its evolution is as follows: At time of the nth decision epoch
Tn, the system is in the state xn = x and the controller chooses a control an = a.
Then, the system remains in the state x during a nonnegative random time δn+1 with
distribution F (· | x,a), and the following happens: (1) an immediate cost D(x,a) is
incurred; (2) the system jumps to a new state xn+1 = y according to a transition law
Q(· | x,a); and (3) a cost rate d (x,a) is imposed until the transition occurs. Once
the transition to state y occurs, the process is repeated. The actions are selected
according to rules π known as control policies, and the costs are accumulated
throughout the evolution of the system in an infinite horizon using a discounted
cost criterion, where total cost under the policy π and initial stated x is denoted by
Vα (x,π). Thus, the control problem is to find a policy π∗ such that

Vα (x,π∗) = inf
π∈Π

Vα (x,π) .

However, there exist situations where the holding time distribution F is unknown
by the controller; and therefore, it is necessary to implement approximation
procedures together with control schemes to obtain nearly optimal policies.

Let us assume that it is possible to get an approximate distribution F̃ (· | x,a).
Under this setting, considering the control problem for F̃ and the corresponding
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total cost Ṽα , we can obtain a policy π̃ minimizing Ṽα . Then, if the controller uses
π̃ to control the original semi-Markov process, our main objective is to estimate the
optimality deviation of the control policy π̃ defined as

D (x, π̃) := Vα (x, π̃)− inf
π∈Π

Vα (x,π) .

Specifically, our main result states that

D (x, π̃)≤ ψ
(
d
(
F, F̃

))
,

where ψ : [0,∞)→ [0,∞) is a function such that ψ (s)→ 0 as s → 0, and d is some
“distance” between F and F̃ .

Moreover, our result can be used to construct asymptotically discounted optimal
(ADO) policies as is shown in [7]. Indeed, if we consider the particular case when
F has an unknown density g independent of the state-actions pairs, and the holding
times are observable, it is possible to apply some statistical density estimation
method to obtain a consistent estimator gn. Then, using gn as the approximate
holding time distribution, the resulting policy π̃ = { fn} will be ADO for the original
SMCM (see Sect. 15.3).

Similar estimation problems of the deviation of optimality have been studied
by several authors but for Markov control processes and/or controlled diffusion
processes, and under different names, namely, robustness, perturbation, or stability
index, (see, e.g., [1, 2, 4, 10–12]). In addition, asymptotic optimality implementing
estimation and control procedures has been analyzed, for instance in [3, 6, 9].

The chapter is organized as follows: Section 15.2 contains the SMCM and the
required assumptions, whereas in Sect. 15.2, the main result and a special case of
asymptotic optimality are introduced. Finally, the proofs are presented in Sect. 15.4.

15.2 Semi-Markov Control Models

A SMCM is defined by the collection

M = (X,A,{A(x) : x ∈ X} ,Q,F,D,d),

where X is the state space and A is the control (or action) space; both are assumed
to be Borel spaces. For each x∈X, we associate a nonempty measurable subset A(x)
of A, whose elements are the admissible controls for the controller when the system
is in state x. The set K = {(x,a) : x ∈ X,a ∈ A(x)} of admissible state-action pairs
is assumed to be a Borel subset of X×A. The transition law Q(· | ·) is a stochastic
kernel on X given K, and F(· | x,a) is the distribution function of the holding time
at state x ∈X when the control a ∈ A(x) is chosen. Finally, the cost functions D and
d are possibly unbounded and measurable real-valued functions on K.

On the other hand, we assume that the costs are continuously discounted, that
is, for a discount factor α > 0, a cost K incurred at time t is equivalent to a
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cost K exp(−αt) at time 0. In this sense, according to points (1) and (3) of the
interpretation of the SMCM given in the introduction, the one-stage cost takes the
form

c(x,a) := D(x,a)+ d (x,a)

∞∫

0

t∫

0

e−αsdsF (dt | x,a) , (x,a) ∈K,

which it is not difficult to see that may be rewritten as

c(x,a) = D(x,a)+ τα (x,a)d (x,a) , (x,a) ∈K, (15.1)

where,

τα (x,a) :=
1−βα (x,a)

α
and βα (x,a) :=

∞∫

0

e−αtF (dt | x,a) , (x,a) ∈K.

(15.2)

Optimality Criterion. We denote by Π the set of all admissible control policies,
and by F⊂Π the subset of stationary policies (see, for instance, [5] for definitions).
As usual, each stationary policy π ∈ F is identified with a measurable function f :
X→A such that f (x) ∈ A(x), x ∈X, so that π is of the form π = { f , f , . . .}. In this
case, we denote π by f .

For each x ∈X and π ∈Π , we define the total expected discounted cost as

Vα (x,π) := Eπ
x

[
∞

∑
n=0

e−αTn c(xn,an)

]

.

Hence, a policy π∗ ∈Π is said to be optimal if for all x ∈ X,

Vα (x) :=Vα (x,π∗) = inf
π∈Π

Vα (x,π) ,

and Vα (x) is called the optimal value function for the model M .

Assumptions. We shall require two sets of assumptions. The first one ensures
that in a bounded time interval, there are at most a finite number of transitions
of the process. Assumption 15.2.2 contains standard continuity and compactness
conditions to guarantee the existence of minimizers.

Assumption 15.2.1 There exists positive constants ζ and ε , such that for every
(x,a) ∈K,

F (ζ | x,a)≤ 1− ε.

Remark 15.2.1. As was noted in [7], Assumption 15.2.1 implies that

ρα := sup
(x,a)∈K

βα (x,a)< 1.
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Assumption 15.2.2 (a) The function F (t | x,a) is continuous on a∈A(x) for every
x ∈ X and t ∈R.

(b) For each x∈X, A(x) is a compact set, and the cost functions D(x,a) and d (x,a)
are lower semicontinuous (l.s.c.) on A(x). Moreover, there exist a measurable
function W : X→ [1,∞) and positive constants b, c̄1, and c̄2 such that 1 ≤ b <

(ρα)−1 and

sup
a∈A(x)

|D(x,a)| ≤ c̄1W (x) , sup
a∈A(x)

|d (x,a)| ≤ c̄2W (x) ∀x ∈ X, (15.3)

∫

X

W (y)Q(dy | x,a)≤ bW (x) , x ∈ X, a ∈ A(x) . (15.4)

(c) For each x ∈X,

a �→
∫

X

W (y)Q(dy | x,a)

is a continuous function on A(x).
(d) For every bounded and continuous function u on X,

a �→
∫

X

u(y)Q(dy | x,a)

is a bounded and continuous function on A(x).

We denote by BW the normed linear space of all measurable functions u : X→ R

with norm

‖u‖W := sup
x∈X

|u(x)|
W (x)

< ∞. (15.5)

15.3 Optimality Deviation

Let F̃ (· | x,a) be a distribution function that approximates the holding time distri-
bution F (· | x,a), (x,a) ∈K. We consider the SMCM

M̃ = (X,A,{A(x) : x ∈ X} ,Q, F̃ ,D,d),

where X, A, A(x), Q, D and d are as the model M . The functions c̃, τ̃α , β̃α ,
Ṽα (x,π), Ṽα (x), and ρ̃α are defined accordingly. Furthermore, we assume that
the Assumptions 15.2.1 and 15.2.2 are satisfied for the model M̃ . Hence, as a
consequence, we have the following result (see, e.g., [7, 8]):

Proposition 15.3.1. Suppose that Assumptions 15.2.1 and 15.2.2 hold. Then:

(a) There exist stationary optimal policies f ∗ and f̃ for the models M and M̃ ,
respectively.
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(b) The value functions Vα and Ṽα satisfy the corresponding optimality equation,
that is,

Vα (x) = min
a∈A(x)

{
c(x,a)+βα (x,a)

∫

X

Vα (y)Q(dy | x,a)

}
, x ∈ X,

and

Ṽα (x) = min
a∈A(x)

{
c̃(x,a)+ β̃α (x,a)

∫

X

Ṽα (y)Q(dy | x,a)

}
, x ∈ X.

According to the Proposition 15.3.1, we have that for x ∈ X,

Vα (x) = inf
π∈Π

Vα (x,π) =Vα (x, f ∗)

and
Ṽα (x) = inf

π∈Π
Ṽα (x,π) = Ṽα

(
x, f̃

)
.

Hence, our objective is to estimate the optimality deviation of the stationary policy
f̃ . Then, we can state our main result as follows:

Theorem 15.3.1. Under Assumptions 15.2.1 and 15.2.2,

D
(
x, f̃

)
:=Vα

(
x, f̃

)−Vα (x)≤ M∗ ∥∥F̃ −F
∥
∥W (x) ∀x ∈ X, (15.6)

for some positive constant M∗, where

∥
∥F̃ −F

∥
∥ := sup

(x,a)∈K

∞∫

0

e−αt
∣
∣μF̃ (· | x,a)−μF (· | x,a)

∣
∣(dt) ,

whereas |μF̃ (· | x,a)−μF (· | x,a) | represents the total variation of the signed mea-

sure μF̃ (· | x,a)−μF (· | x,a), being μF̃ and μF the measures induced, respectively,
by the distribution functions F̃ and F for every fixed pair (x,a) ∈K.

15.3.1 Asymptotic Optimality

As in [7], we consider the special case where the distributions F and F̃ have densities
g and g̃, respectively, which are independent of the state-action pairs (x,a). That is,

F (t | x,a) =

t∫

0

g(s)ds, and F̃ (t | x,a) =

t∫

0

g̃(s)ds.
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Then, clearly, βα and τα , as well as β̃α and τ̃α are independent of (x,a). That is,

βα (x,a) := βα =

∞∫

0

e−αsg(s)ds,

τα (x,a) := τα =
1−βα
α

,

and similarly for β̃α and τ̃α .
Furthermore, note that

β̃α −βα =

∞∫

0

e−αs {g̃(s)− g(s)}ds,

and in such case, (15.6) becomes

D
(
x, f̃

)≤ M∗ ‖g̃− g‖W (x) ∀x ∈ X, (15.7)

where

‖g̃− g‖ :=

∞∫

0

e−αs
∣∣g̃(s)−g(s)

∣∣ds.

In particular, assuming that the holding times are observable, let δ1, . . . ,δn be
independent realizations (observed up to the moment of the nth decision epoch) of
random variables with the unknown density g, and gn (s) := gn (s;δ1, . . . ,δn), s∈R+

be an arbitrary estimator of g such that

E

⎡

⎣
∞∫

0

∣
∣gn (s)−g(s)

∣
∣ds

⎤

⎦→ 0 as n → ∞ (15.8)

being gn a density.
Letting

fn := f gn
n (15.9)

the optimal stationary policy corresponding to the density gn, where the minimiza-
tion is done almost sure (a.s.) with respect to the probability measure induced by the
common distribution of the random variables δ1, . . . ,δn, and applying (15.7) with gn

instead of g̃, but observing that gn is a random variable, we obtain

E [D (x, fn)]≤ M∗E [‖g− gn‖]W (x)→ 0 as n → ∞, x ∈ X.

Moreover, it is possible to prove that this fact yields the following result:
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Theorem 15.3.2. The policy π̃ = { fn} is (pointwise) asymptotically discounted
optimal, which means that for each x ∈ X,

E [Φ (x, fn)]→ 0 as n → ∞,

where for each (x,a) ∈K,

Φ (x,a) := c(x,a)+βα
∫

X

Vα (y)Q(dy| x,a)−Vα (x) , (15.10)

is the well-known discrepancy function.

15.4 Proofs

We will use repeatedly the following inequalities: For u ∈ BW and (x,a) ∈K,

|u(x)| ≤ ‖u‖W W (x) (15.11)

and
∫

X

u(y)Q(dy | x,a)≤ b‖u‖W W (x) . (15.12)

The relation (15.11) is a consequence of the definition of ‖u‖W in (15.5), whereas
(15.12) follows from (15.4). Furthermore, from Assumption 15.2.2(b), and follow-
ing a straightforward calculation (see, e.g., [3, 5]), we can prove that, for all x ∈ X

and π ∈Π ,
sup
n≥0

Eπ
x [W (xn)]< ∞,

which in turn implies that there exist positive constants M and M̃, such that, for all
π ∈Π ,

Vα (x)≤Vα (x,π)≤ MW (x) (15.13)

and, similarly,

Ṽα (x)≤ Ṽα (x,π)≤ M̃W (x) .

On the other hand, observe that for all (x,a) ∈K,

∣
∣β̃α (x,a)−βα (x,a)

∣
∣≤ ∥

∥F̃ −F
∥
∥ .

Hence, from (15.3) and the definition of the costs c and c̃ [see (15.1) and (15.2)], we
obtain

|c(x,a)− c̃(x,a)| ≤ c̄2

α
∥
∥F̃ −F

∥
∥W (x) , ∀(x,a) ∈K. (15.14)
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In addition, for any function u ∈ BW , we have

∣
∣β̃α (x,a)−βα (x,a)

∣
∣
∫

X

u(y)Q(dy | x,a)≤ b‖u‖W

∥
∥F̃ −F

∥
∥W (x) (15.15)

and

βα (x,a)
∫

X

u(y)Q(dy | x,a)≤ b‖u‖W ραW (x) (15.16)

for all (x,a)∈K, where ρα is defined in Remark 15.2.1 (similarly, we obtain (15.15)
and (15.16) substituting βα and ρα by β̃α and ρ̃α , respectively).

Thus, denoting u1 (x) := Vα
(
x, f̃

)
, where f̃ is the optimal policy for the model

M̃ , from (15.11), we obtain

β̃α
(
x, f̃

)∫

X

∣
∣Vα

(
y, f̃

)− Ṽα
(
y, f̃

)∣∣Q
(
dy | x, f̃

)

= β̃α
(
x, f̃

)∫

X

∣∣u1 (y)− Ṽα (y)
∣∣Q

(
dy | x, f̃

)

≤ bρ̃α
∥∥u1− Ṽα

∥∥
W W (x) , x ∈ X. (15.17)

Lemma 15.4.1. For all x ∈ X, there exist positive constants M∗
1 and M∗

2 , such that

∥
∥u1− Ṽα

∥
∥

W ≤ M∗
1

∥
∥F̃ −F

∥
∥ (15.18)

and
∥∥Ṽα −Vα

∥∥
W ≤ M∗

2

∥∥F̃ −F
∥∥ . (15.19)

Proof. First observe that from the Markov property, for any stationary policy f ∈ F

and for each x ∈ X

Vα (x, f ) = c(x, f )+βα (x, f )
∫

X

Vα (y, f )Q(dy | x, f ) .

Similarly for Ṽα . Then,

∣
∣u1 (x)− Ṽα (x)

∣
∣=

∣
∣Vα

(
x, f̃

)− Ṽα
(
x, f̃

)∣∣

≤
∣
∣
∣
∣

{
c
(
x, f̃

)
+βα

(
x, f̃

)∫

X

Vα
(
y, f̃

)
Q
(
dy | x, f̃

)
}

−
{

c̃
(
x, f̃

)
+ β̃α

(
x, f̃

)∫

X

Ṽα
(
y, f̃

)
Q
(
dy | x, f̃

)
}∣∣∣
∣ .

Adding and subtracting the term

β̃α
(
x, f̃

)
,

∫

X

Vα
(
y, f̃

)
Q
(
dy | x, f̃

)
,
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we obtain, for all x ∈ X,

∣
∣u1 (x)− Ṽα (x)

∣
∣≤ ∣

∣c
(
x, f̃

)− c̃
(
x, f̃

)∣∣

+
∣
∣∣βα

(
x, f̃

)− β̃α
(
x, f̃

)∣∣∣
∫

X

∣∣Vα
(
y, f̃

)∣∣Q
(
dy | x, f̃

)

+β̃α
(
x, f̃

)∫

X

∣
∣Vα

(
y, f̃

)− Ṽα
(
y, f̃

)∣∣Q
(
dy | x, f̃

)
.

Hence, from (15.14), (15.15), and (15.17), we have (recall W (·)≥ 1),

∥
∥u1− Ṽα

∥
∥

W ≤ c̄2

α
∥
∥F̃ −F

∥
∥+ b‖u1‖W

∥
∥F̃ −F

∥
∥+ bρ̃α

∥
∥u1− Ṽα

∥
∥

W .

Now, since bρ̃α < 1 (see Assumption 15.2.2(b) ), we get

∥
∥u1− Ṽα

∥
∥

W ≤ M∗
1

∥
∥F̃ −F

∥
∥ ,

where

M∗
1 :=

c̄2
α + b‖u1‖W

1− bρ̃α
,

which proves (15.18).
On the other hand, to prove (15.19), we have from Proposition 15.3.1(b),

∣
∣Ṽα (x)−Vα (x)

∣
∣=

∣
∣
∣
∣ min
a∈A(x)

{
c̃(x,a)+ β̃α (x,a)

∫

X

Ṽα (y)Q(dy | x,a)

}

− min
a∈A(x)

{
c(x,a)+βα (x,a)

∫

X

Vα (y)Q(dy | x,a)

}∣∣
∣
∣

≤ sup
a∈A(x)

{∣
∣c̃(x,a)− c(x,a)

∣
∣+

∣
∣
∣
∣β̃α (x,a)

∫

X

Ṽα (y)Q(dy | x,a)

−βα (x,a)
∫

X

Vα (y)Q(dy | x,a)

∣∣
∣
∣

}
.

Now, it is easy to see that, by adding and subtracting the term

βα (x,a)
∫

X

Ṽα (y)Q(dy | x,a)

and by applying similar arguments as the proof of (15.18), we get

∣
∣Ṽα (x)−Vα (x)

∣
∣≤ c̄2

α
∥
∥F̃ −F

∥
∥W (x)+ b

∥
∥Ṽα

∥
∥

W

∥
∥F̃ −F

∥
∥W (x)

+bρα
∥
∥Ṽα −Vα

∥
∥

W W (x) .
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Since W (·)≥ 1, this relation implies

∥
∥Ṽα −Vα

∥
∥

W ≤ c̄2

α
∥
∥F̃ −F

∥
∥+ b

∥
∥Ṽα

∥
∥

W

∥
∥F̃ −F

∥
∥+ bρα

∥
∥Ṽα −Vα

∥
∥

W ,

which yields
∥
∥Ṽα −Vα

∥
∥

W ≤ M∗
2

∥
∥F̃ −F

∥
∥ ,

where

M∗
2 :=

c̄2
α + b

∥
∥Ṽα

∥
∥

W

1− bρα
.

�

15.4.1 Proof of Theorem 15.3.1

In order to prove the main result, first observe that

Ṽα
(
x, f̃

)
= Ṽα (x) , x ∈ X.

Then,

D
(
x, f̃

)
=Vα

(
x, f̃

)−Vα (x)

=

{
Vα

(
x, f̃

)−Ṽα
(
x, f̃

)
}
+

{
Ṽα (x)−Vα (x)

}
, x ∈ X.

Hence, from (15.11), Lemma 15.4.1 yields

D
(
x, f̃

)≤ ∣
∣Vα

(
x, f̃

)−Ṽα
(
x, f̃

) ∣∣+
∣
∣Ṽα (x)−Vα (x)

∣
∣

≤ M∗ ∥∥F̃ −F
∥
∥W (x) ∀x ∈ X,

where

M∗ := M∗
1 +M∗

2 .

�

15.4.2 Proof of Theorem 15.3.2

First, for every n∈N, we define (see (15.10)) the approximate discrepancy function

Φn (x,a) := cn(x,a)+βn

∫

X

Vn (y)Q(dy| x,a)−Vn (x) , (x,a) ∈K, (15.20)



15 Estimation of the Optimality Deviation in Semi-Markov Models 263

where, for each n ∈N,

cn(x,a) := D(x,a)+ τnd(x,a), (x,a) ∈K,

τn :=
1−βn

α
,

βn :=

∞∫

0

e−αsgn (s)ds,

Vn (x) := inf
π∈Π

Vn (x,π) ,

Vn (x,π) := Eπ
x

[
∞

∑
k=0

e−αTk cn(xk,ak)

]

.

Note that, for each n ∈ N, (15.9), (15.20), and Proposition 15.3.1 imply that

Φn (x, fn) = 0, a.s., x ∈ X.

Hence, and since Φn is a nonnegative function, for each n ∈ N, we can write the
following:

Φ (x, fn) =
∣
∣Φ (x, fn)−Φn (x, fn)

∣
∣

≤ sup
a∈A(x)

∣
∣Φ (x,a)−Φn (x,a)

∣
∣ a.s. ∀x ∈ X. (15.21)

In particular observe that from (15.10) and (15.20), for each n ∈ N, we have

∣
∣Φ (x,a)−Φn (x,a)

∣
∣≤ ∣

∣c(x,a)− cn (x,a)
∣
∣+

∣
∣Vα (x)−Vn (x)

∣
∣

+

∣∣
∣
∣βα

∫

X

Vα (y)Q(dy| x,a) −βn

∫

X

Vn (y)Q(dy| x,a)

∣∣
∣
∣ a.s.

Then, by adding and subtracting the term

βα
∫

X

Vn (y)Q(dy| x,a) ,

we get

∣
∣Φ (x,a)−Φn (x,a)

∣
∣≤ ∣

∣c(x,a)− cn (x,a)
∣
∣+

∣
∣Vα (x)−Vn (x)

∣
∣

+βα
∫

X

|Vα (y)−Vn (y)|Q(dy| x,a)

+ |βα −βn|
∫

X

|Vα (y)|Q(dy| x,a) a.s.
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Therefore, using (15.11), (15.14), (15.15), (15.17), and (15.19), it follows that for
every n ∈N,

∣
∣Φ (x,a)−Φn (x,a)

∣
∣≤ c̄2

α
∥
∥gn−g

∥
∥W (x)+M∗

2

∥
∥gn−g

∥
∥W (x)

+bρnM∗
2

∥
∥gn−g

∥
∥W (x)+ b‖Vα‖W

∥
∥gn−g

∥
∥W (x) a.s.

Hence, considering that bρn < 1 a.s., and from (15.21), for each x ∈ X, we obtain
the following,

E [Φ (x, fn)]≤ M∗
0W (x)E[‖gn−g‖] ∀n ∈N,

where

M∗
0 :=

c̄2

α
+ 2M∗

2 + b‖Vn‖W .

Consequently, since Φ (·, ·)≥ 0, from (15.8), we obtain, for every x ∈X,

E [Φ (x, fn)]→ 0 as n → ∞. �

References

1. Abbad, M.; Filar, J.A. Perturbation and stability theory for Markov control processes. IEEE
Trans. Automat. Control. 1992, 37: 1415–1420.

2. Gordienko, E.; Lemus-Rodrı́guez, E. Estimation of robustness for controlled diffusion
processes. Stochastics. 1999, 17: 421–441.
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Chapter 16
Discrete Time Approximations of Continuous
Time Finite Horizon Stopping Problems

Lukasz Stettner

16.1 Introduction

We assume that on a locally compact metric space E , we are given a right continuous
standard Markov process (x(t)) with weakly Feller transition operator (Pt), i.e.,
with transition operator Pt that for t ≥ 0 transforms the class C0(E) of continuous
functions on E vanishing at infinity into itself (see [3] for the properties of such
Markov processes). Let C([0,T ]× E) denote the class of continuous bounded
functions on [0,T ]×E . For a given functions f ,g,h ∈C([0,T ]×E) and a discount
factor α > 0, consider the value function the of following continuous time cost
functional:

w(s,x) = sup
τ≤T−s

Esx

{∫ τ

0
e−αu f (s+ u,x(u))du+ χτ<T−se−ατg(s+ τ,x(τ))

+χτ=T−se−α(T−s)h(T,x(T − s))

}
, (16.1)

where supremum is taken over all stopping times which do not exceed the final
horizon T − s. As is pointed out in [14], in the case of finite horizon stopping
problems with bounded functionals, by suitable redefinition of the functions in the
functional, we can neglect discount factor α > 0. Therefore, the assumption α > 0
is made for simplicity of the presentation only. In the chapter, we consider two
methods to approximate the value function w. The first one will be based on a
solution to a suitable penalty equation. For a given β > 0, we shall find a solution
wβ to the following equation,

L. Stettner (�)
Institute of Mathematics Polish Academy of Sciences, 00-956 Warsaw, Poland
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wβ (s,x) = Esx

{∫ T−s

0
e−αu[ f (s+ u,x(u))+β (g(s+ u,x(u))

−wβ (s+ u,x(u)))+
]
du+ e−α(T−s)h(T,x(T − s))

}
, (16.2)

and then shall approximate its intensity version using discretized intensities. The
second method consists in direct discretization of stopping times. For a given small
Δ , we consider the family of stopping times TΔ of the discretized Markov process
(x(nΔ)) taking values in {0,Δ ,2Δ , . . . ,nΔ , . . .}. Assuming that s is a multiplicity of
Δ , we define a discrete time optimal stopping problem

wΔ (s,x) = sup
TΔ#τ≤T−s

Esx

⎧
⎨

⎩

τ
Δ −1

∑
i=0

e−iΔ f̄Δ (s+ iΔ ,x(iΔ))+ χτ<T−se−ατg(s+ τ,x(τ))

+χτ=T−se−α(T−s)h(T,x(T − s))

⎫
⎬

⎭
(16.3)

with f̄Δ (s,x) = Esx{
∫ Δ

0 e−αu f (s+ u,x(u))du}.
The value function wΔ of the above of discrete time stopping problem can be

approximated using either Bellman’s equation or by a discrete time penalty equation
of the form

wb
Δ (s,x) = f̄Δ (s,x)+

b
1− b

(g(s,x)−wb
Δ (s,x))

+ + e−αΔ
∫

E
wb
Δ (s+Δ ,y)PΔ(x,dy)

(16.4)

or by a deterministic pathwise stopping which is in particular convenient for Monte
Carlo methods. Discrete time penalty equation seems to be new. Continuous time
penalty equation was studied in the case of diffusion processes in [1, 6] and for
Feller Markov processes in [9, 10, 13, 14]. Time discretization is a natural way
to approximate optimal stopping problems of general Markov processes. In this
chapter, we approximate this way, both value functions and optimal stopping times.
We provide also errors of such approximation.

16.2 Discrete Time Optimal Stopping: Bellman Equation,
Penalty Equation and Deterministic Approach

We assume now that (x(n)) is a discrete time Markov process with transition
operator P(x,dy) on a given Borel measurable state space E . In this section, we
consider a deterministic terminal time T , which is a positive integer and solve
optimal stopping problem for discrete time Markov process (x(n)) over finite time
horizon T . We shall also assume that time parameter s takes only nonnegative integer
values. Consider the following value function of discrete time optimal stopping
problem:



16 Approximation of Stopping Problems 267

w(s,x) = sup
τ≤T−s

Esx

{
τ−1

∑
i=0

γ i f (s+ i,x(i))+ χτ<T−sγτg(s+ τ,x(τ))

+χτ=T−sγT−sh(T,x(T − s))

}

. (16.5)

We assume that γ ∈ (0,1). Notice that by [4]

Lemma 16.2.1. w is a solution to the following system of Bellman equations
w(T,x) = h(T,x) and for s < T

w(s,x) = max

{
f (s,x)+ γ

∫

E
w(s+ 1,y)P(x,dy),g(s,x)

}
(16.6)

and the optimal stopping time τ̂(s) for (16.5) is of the form

τ̂(s) = inf{i ≥ 0 : w(s+ i,x(i)) = g(s+ i,x(i))}∧ (T − s).

Let b be a parameter taking values from the interval (0,1). We consider the
following equation for nonnegative integer s < T :

wb(s,x) = f (s,x)+
b

1− b
(g(s,x)−wb(s,x))+ + γ

∫

E
wb(s+ 1,y)P(x,dy) (16.7)

with wb(T,x) = h(T,x).

Theorem 16.2.1. For b ∈ (0,1) and bounded measurable functions f ,g,h, there is
a unique bounded solution wb to (16.7). Moreover, wb for s < T is also a solution to

wb(s,x) = max
0≤b(s,x)≤b

(1− b(s,x)) f (s,x)+ b(s,x)g(s,x)

+(1− b(s,x))γ
∫

E
wb(s+ 1,y)P(x,dy), (16.8)

where b(s,x) takes values from the interval [0,b] and maximum is attained for b(s,x)
with values from {0,b}. Furthermore, we also have that

wb(s,x) = sup
τ≤T−s

Esx

{
τ−1

∑
i=0

γ i f (s+ i,x(i))+ χτ<T−sγτ (g(s+ τ,x(τ))

−(g(s+ τ,x(τ))−wb(s+ τ,x(τ)))+)+ χτ=T−sγT−sh(T,x(T − s))

}

.

(16.9)

Moreover, wb converges uniformly to w as b → 1.
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Proof. Multiplying (16.7) by (1− b) and rearranging the terms, we obtain

wb(s,x) = (1− b) f (s,x)+ b
(
(g(s,x)−wb(s,x))+ +wb(s,x)

)

+γ(1− b)
∫

E
wb(s+ 1,y)P(x,dy). (16.10)

Denote by Fbw(s,x) the right-hand side of (16.10). For two bounded functions w1

and w2, we have

|Fbw1(s,x)−Fbw2(s,x)| ≤ b|w1(s,x)−w2(s,x)|+ γ(1− b)‖w1−w2‖
≤ (1− (1− b)(1− γ))‖w1 −w2‖ (16.11)

with ‖·‖ standing for the supremum norm. Therefore, Fb is a contraction in the class
of bounded measurable functions, and there is a unique fixed point wb, which is the
unique solution to (16.10) and (16.7). Multiplying (16.7) by (1−b(s,x)) after small
rearrangement, we obtain

wb(s,x) = (1− b(s,x)) f (s,x)+
b(1− b(s,x))

1− b
(g(s,x)−wb(s,x))+

+b(s,x)wb(s,x)+(1−b(s,x))γ
∫

E
wb(s+1,y)P(x,dy). (16.12)

Note that for 0 ≤ b(s,x)≤ b,

b(1− b(s,x))
1− b

(g(s,x)−wb(s,x))+ + b(s,x)wb(s,x) ≥ b(s,x)g(s,x) (16.13)

with equality for b(s,x) = 0 when wb(s,x) ≥ g(s,x) and b(s,x) = b otherwise.
Consequently, we have (16.8). Now, iterating (16.7) for any stopping time τ ≤ T −s,
we obtain

wb(s,x) = Esx

{
τ−1

∑
i=0

γ i
(

f (s+ i,x(i))+
b

1− b
(g(s+ i,x(i)−wb(s+ i,x(i)))+

)

+γτwb(s+ τ,x(τ))

}

. (16.14)

Note that for τ < T − s,

wb(s+ τ,x(τ))≥ g(s+ τ,x(τ))− (g(s+ τ,x(τ))−wb(s+ τ,x(τ)))+ (16.15)
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so that

wb(s,x) ≥ Esx

{
τ−1

∑
i=0

γ i f (s+ i,x(i))+ χτ<T−sγτ (g(s+ τ,x(τ))

−(g(s+ τ,x(τ))−wb(s+ τ,x(τ)))+)+χτ=T−sγT−sh(T,x(T − s))

}

(16.16)

with equality for τ = inf
{

i ≥ s : g(s+ i,x(i))≥ wb(s+ i,x(i))
} ∧ (T − s), which

completes the proof of (16.9). It remains to show the convergence of wb to w when
b → 1. For this purpose, note first that

g(s,x) = Esx

{
T−s−1

∑
i=0

γ i(g(s+ i,x(i))−γPg(s+ i+ 1,x(i)))+γT−sg(T,x(T − s))

}

(16.17)

with Pg(s,x) =
∫

E g(s+ 1,y)P(x,dy). For ŵb(s,x) = wβ (s,x)− g(s,x) from (16.7),
we therefore have

ŵb(s,x) = Esx

{
T−s−1

∑
i=0

γ i
(

f (s+ i,x(i))− g(s+ i,x(i))+ γPg(s+ i+ 1,x(i))

+
b

1− b
(0− ŵb(s+ i,x(i)))+

)
+γT−s(h(T,x(T − s))−g(T,x(T − s))

}

,

(16.18)

which means that ŵb is a solution to the penalty equation (16.7) with f (s,x) replaced
by f (s,x)− g(s,x)+ γPg(s+ 1,x), g by 0, and h by h− g. Consequently, a suitable
version of (16.8) holds and

ŵb(s,x)≥ (1− b)( f (s,x)− g(s,x)+ γPg(s+ 1,x)))+ (1− b)γPŵb(s+ 1,x)

(16.19)

from which by iteration we obtain

ŵb(s,x) ≥ Esx

{
T−s−1

∑
i=0

γ i(1− b)i+1 ( f (s+ i,x(i))− g(s+ i,x(i))

+γPg(s+i+1,x(i)))+γT−s(1−b)T−s(h(T,x(T−s))−g(T,x(T−s))

}

.
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Since in (16.17) without loss of generality, we could choose g(T,x) = h(T,x) from
(16.9), we finally obtain for s < T

w(s,x)− g(s,x)≥−
T−s−1

∑
i=0

γ i(1− b)i+1‖ f − g+ γPg‖≥ − (1− b)‖ f − g+ γPg‖
1− γ(1− b)

,

(16.20)

and the right-hand side converges uniformly in s and x to 0, as b increases to 1. From
(16.9), we now immediately obtain that wb converges uniformly to w as b → 1. ��

An alternative method to approximate the discrete time optimal stopping value
function is to solve the deterministic optimal stopping problem following [2, 5],
which in particular is convenient for the use of Monte Carlo methods.

Proposition 16.2.1 For n = 0,1, . . . ,T − s, we have

w(s+ n,x(n)) = sup
0≤i≤T−(s+n)

{
i−1

∑
j=0

γ j f (s+ n+ j,x(n+ j))+ γ ig(s+ n+ i,x(n+ i))

−
i−1

∑
j=0

γ j+1 (w(s+ n+ j,x(n+ j))−Pw(s+ n+ j+1,x(n+ j)))

}

(16.21)

and consequently

w(s+ n,x(n)) =
1

1− γ
sup

0≤i≤T−(s+n)

{
i−1

∑
j=0

γ j f (s+ n+ j,x(n+ j))

+γ ig(s+ n+ i,x(n+ i))−
i−1

∑
j=1

γ j+1 (w(s+ n+ j,x(n+ j))

−Pw(s+n+ j+1,x(n+ j)))+γPw(s+n+1,x(n)

}

. (16.22)

Proof. Note first that w(s + n + j,x( j)) − f (s + n + j,x( j)) − γPw(s + n + j +
1,x( j))≥ 0 and

γ iw(s+ n+ i,x(i))+
i−1

∑
j=0

γ j f (s+ n+ j,x( j))−
i−1

∑
j=0

γ j+1 (w(s+ n+ j+ 1,x( j+ 1))

−Pw(s+ n+ j+ 1,x( j))) = w(s+ n,x(0))−
i−1

∑
j=0

γ j (w(s+ n+ j,x( j))

− f (s+ n+ j,x( j))− γPw(s+ n+ j+ 1,x( j))) (16.23)
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and ∑i−1
j=0 γ

j+1 (w(s+ n+ j+ 1,x( j+ 1))−Pw(s+ n+ j+1,(x( j))) is a martin-
gale. Therefore,

w(s+ n,x(n)) = sup
0≤τ≤T−s−n

Es+n,x(n)

{
τ−1

∑
j=0

γ j f (s+ n+ j,x( j))

+γτg(s+ n+ τ,x(τ))−
τ−1

∑
j=0

γ j+1 (w(s+ n+ j+ 1,x( j+ 1))

−Pw(s+ n+ j+ 1,(x( j)))

}

≤ Es+n,x(n)

{

sup
0≤i≤T−s−n

(
i−1

∑
j=0

γ j f (s+ n+ j,x( j))

+γ ig(s+ n+ i,x(i))−
i−1

∑
j=0

γ j+1 (w(s+ n+ j+ 1,x( j+ 1))

−Pw(s+ n+ j+ 1,(x( j))))

}

≤ Es+n,x(n)

{

sup
0≤i≤T−s−n

(
i−1

∑
j=0

γ j f (s+ n+ j,x( j))

+γ iw(s+ n+ i,x(i))−
i−1

∑
j=0

γ j+1 (w(s+ n+ j+ 1,x( j+ 1))

−Pw(s+ n+ j+ 1,(x( j))))

}

≤ Es+n,x(n)

{

sup
0≤i≤T−s−n

(w(s+ n,x(0))

−
i−1

∑
j=0

γ j (w(s+ n+ j,x( j))− f (s+ n+ j,x( j))− γPw(s+ n+ j+ 1,x( j))))

}

≤ Es+n,x(n){w(s+ n,x(0))}= w(s+ n,x(n)).

Since by (16.23) and w(s+ n+ j,x(n+ j))− f (s+ n+ j,x(n+ j))− γPw(s+ n+
j+ 1,x(n+ j))≥ 0 again

sup
0≤i≤T−(s+n)

{
i−1

∑
j=0

γ j f (s+ n+ j,x(n+ j))+ γ ig(s+ n+ i,x(n+ i))

−
i−1

∑
j=0

γ j+1 (w(s+ n+ j,x(n+ j))−Pw(s+ n+ j+1,x(n+ j)))

}

≤ sup
0≤i≤T−(s+n)

{
i−1

∑
j=0

γ j f (s+ n+ j,x(n+ j))+ γ iw(s+ n+ i,x(n+ i))

−
i−1

∑
j=0

γ j+1 (w(s+ n+ j,x(n+ j))−Pw(s+ n+ j+1,x(n+ j)))

}
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≤ sup
0≤i≤T−(s+n)

{

w(s+ n,x(n))+
i−1

∑
j=0

γ j (w(s+ n+ j,x(n+ j))

− f (s+ n+ j,x(n+ j))− γPw(s+ n+ j+ 1,x(n+ j)))

}

≤ w(s+ n,x(n)), (16.24)

we obtain (16.21). The formula (16.22) follows directly from (16.21). ��
Remark 16.2.2 Notice that the formula (16.21) follows from the dual representa-
tion of the value function taking into account an explicit form of the martingale in
the Doob-Meyer decomposition of the discrete time Snell envelope (for details, see
formula (1.1) of [11] and formula (2.4) of [12]).

16.3 Continuous Time Penalty Equation

In this section, we assume that (xt) is a right continuous standard Markov process
introduced in Sect. 16.1. Assuming that the functions f , g, and h are continuous
bounded, we summarize below the results concerning the use of penalty method for
continuous time optimal stopping problems [9, 14].

Theorem 16.3.2. For β > 0, there is a unique solution wβ to (16.2), which is a
continuous bounded function and also has the form

wβ (s,x) = sup
(b(t))∈Mβ

Esx

{∫ T−s

0
e−

∫ u
0 (α+b(s+r))dr( f (s+ u,x(u)))

+b(s+ u)g(s+ u,x(u))du+ e−
∫T−s
0 (α+b(s+u))duh(T,x(T − s))

}
,

(16.25)

where Mβ is the set of progressively measurable processes (b(t)) with values from

the interval [0,β ]. The optimal value b̂β (s+ t) in (16.25) is of the form b̂β (s+ t) = β
whenever g(s+ t,x(t))> wβ (s+ t,x(t)) and b̂β (s+ t) = 0 otherwise. Furthermore,
wβ (s,x) converges increasing to w(s,x) (defined in (16.1)) uniformly on compact
subsets of [0,T ]×E. Moreover, whenever the function g is of the form

g(s,x) = Esx

{∫ ∞

0
e−αtφ(s+ t,x(t))dt

}
(16.26)

with φ ∈C([0,∞)×E), then we have the uniform estimate

w(s,x)−wβ (s,x) ≤ ‖ f −φ‖
α+β

+ e−αT‖(h− g)+‖ (16.27)
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with ( f −φ)+ standing for a positive part of f −φ . Finally, the stopping time τβ (s)
defined as

τβ (s) := inf
{

t ≥ 0 : wβ (s+ t,x(t))≤ g(s+ t,x(t))
}
∧ (T − s) (16.28)

increases , as β → ∞ to the stopping time τ̂(s)

τ̂(s) = inf{t ≥ 0 : w(s+ t,x(t)) = g(s+ t,x(t))}∧ (T − s), (16.29)

which in the case when g ≤ h is an optimal stopping time for (16.1).

16.4 Discrete Time Semigroup Approximation

In this section,for s and T being multiplicities of Δ , we shall approximate stopping
times τ ≤ T − s by stopping times of the family TΔ defined in Sect. 16.1. Namely,
let τΔ = kΔ , whenever τ ∈ ((k− 1)Δ ,kΔ ], for k = 1,2, . . .. We have

Lemma 16.4.2. For a stopping time τ and its discrete approximation τΔ , we have
the following estimation;

|Esx {χτ<T−s (g(s+ τ,x(τ))− g(s+ τΔ ,x(τΔ )))}|

≤ Esx

{

sup
u≤Δ

|Pug(s+ τ,x(τ))− g(s+ τ,x(τ))|
}

(16.30)

with Pug(s,x) =
∫

E g(s+ u,y)Pu(x,dy).

Proof. We use strong Markov property of (x(t)). We have

Esx {χτ<T−sg(s+ τ,x(τ)− g(s+ τΔ ,x(τΔ ))}
= Esx

{
χτ<T−sEs+τ,x(τ) {g(s+ τ,x)− g(s+ τ,x(τΔ − τ))}}

≤ Esx

{

χτ<T−s sup
u≤Δ

(g(s+ τ,x(τ))−Pug(s+ τ,x(τ)))

}

from which (16.30) immediately follows. �

Let
rΔ (s,x) = sup

u≤Δ
|Pug(s,x)− g(s,x)|. (16.31)



274 L. Stettner

We have the following:

Lemma 16.4.3. rΔ converges uniformly on compact subsets of [0,T ]×E to 0 as
Δ → 0. When g ∈C0([0,T ]×E), the convergence is uniform.

Proof. By Theorem T1 Chap. XIII in [7] for g ∈ C0([0,T ]× E), the function rΔ
converges uniformly to 0 as Δ → 0. Using Proposition 2.1 of [8] for a given ε > 0
and a compact set K ⊂ E , we have for a sufficiently large R

sup
K

Px
{∃s∈[0,T ]ρ(x(s),x)≥ R

}≤ ε, (16.32)

where ρ is a metric compatible with the topology of E . We approximate function
g outside of the ball with radius R and center in the set K by a function g′ ∈
C([0,T ]× E). Clearly

sup
x∈K

|Pug(s,x)− g(s,x)| ≤ ε(‖g‖+ ‖g′‖)+ |Pug′(s,x)− g′(s,x)|,

and the last term converges to 0 as Δ → 0, which completes the proof. �

Summarizing Lemmas 16.4.2 and 16.4.3, we obtain

Theorem 16.4.3. For s being a multiplicity of Δ assuming that g ≤ h, we have

0 ≤ w(s,x)−wΔ (s,x) ≤ Δ‖ f‖+ sup
τ

Esx {rΔ (s+ τ,x(τ))} . (16.33)

Whenever g ∈ C0([0,T ]×E) the convergence wΔ to w, as Δ → 0, is uniform, and
stopping time

τ̂Δ (s) = inf{iΔ : wΔ (s+ iΔ ,x(iΔ)) = g(s+ iΔ ,x(iΔ)}∧ (T − s) (16.34)

is
(
Δ‖ f‖+ supu≤Δ ‖Pug− g‖) optimal.

Proof. By the definition of (16.1) and (16.3), it is clear that w(s,x) ≥ wΔ (s,x). For
any stopping time τ , taking into account that g ≤ h, we have

Esx

{∫ τ

0
e−αu f (s+ u,x(u))du+ χτ<T−se−ατg(s+ τ,x(τ))

+χτ=T−se
−α(T−s)h(T,x(T − s))

}
≤ Esx

{∫ τΔ

0
e−αu f (s+ u,x(u))du+Δ‖ f‖

+χτ<T−se
−ατΔ g(s+ τΔ ,x(τΔ ))+ rΔ (s+ τ,x(τ))

+χτ=T−se−α(T−s)h(T,x(T − s))

}
≤ Esx

{∫ τΔ

0
e−αu f (s+ u,x(u))du

+χτΔ<T−se−ατΔ g(s+ τΔ ,x(τΔ ))+ χτΔ=T−se−α(T−s)h(T,x(T − s))

}

+Δ‖ f‖+Esx{rΔ (s+ τ,x(τ))} .
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Now by Lemma 16.2.1, an optimal stopping for Δ discretized problem is within
the class of TΔ . Consequently (16.33) follows. When g ∈ C0([0,T ]× E) using
Lemmas 16.4.2 and 16.4.3 and (16.33), we have that

‖w−wΔ‖ ≤ Δ‖ f‖+ sup
u≤Δ

‖Pug− g‖.

Therefore, since by Lemma 16.2.1, τ̂Δ (s) is optimal for the stopping problem (16.3),
we obtain

w(s,x) ≤ wΔ (s,x)+ ‖w−wΔ‖ = Esx

{∫ τ̂Δ (s)

0
e−αu f (s+ u,x(u))du

+χτ̂Δ (s)<T−se
−ατ̂Δ (s)g(s+ τ̂Δ(s),x(τ̂Δ (s)))

+χτ̂Δ (s)=T−se
−α(T−s)h(T,x(T−s))

}
+‖w−wΔ‖,

which means that τ̂Δ (s) is ‖w−wΔ‖ optimal. �

16.5 Discrete Time Intensity of Stopping Approximation

Assume now that T is a multiplicity of Δ > 0. Let Ptg(s,x) = Esx {g(s,x(t))}, for
t ≥ 0 and a bounded Borel measurable function g.

Define a sequence of equations for the function w̃β
Δ defined successively in the

intervals [(n− 1)Δ ,nΔ ] with n = 0,1, . . . , T
Δ . For s ∈ [T −Δ ,T ], let

w̃β
Δ (s,x) =

∫ T−s

0
e−αu

(
Pu f (s+ u,x)+β

(
Pug−Puw̃β

Δ

)+
(s+ u,x)

)
du

+e−α(T−s)PT−sh(T,x) (16.35)

and inductively for s ∈ [(n− 1)Δ ,nΔ ]

w̃β
Δ (s,x) =

∫ nΔ−s

0
e−αu

(
Pu f (s+ u,x)+β

(
Pug−Puw̃β

Δ

)+
(s+ u,x)

)
du

+e−α(nΔ−s)PnΔ−sw̃
β
Δ (nΔ ,x). (16.36)

Proposition 16.5.1 There is a unique continuous bounded function w̃β
Δ satisfying

(16.35) and (16.36). Moreover, this solution is of the form for s ∈ [T −Δ ,T ]

w̃β
Δ (s,x) = sup

b∈DΔ
β

[∫ T−s

0
e−

∫ u
0 (α+b(s+r))dr (Pu f (s+ u,x)

+β (s+u)Pug(s+u,x))du+e−
∫ T−s

0 (α+b(s+r))drPT−sh(T,x)

]

(16.37)
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and inductively for s ∈ [(n− 1)Δ ,nΔ ]

w̃β
Δ (s,x) = sup

b∈DΔ
β

[∫ nΔ−s

0
e−

∫ u
0 (α+b(s+r))dr (Pu f (s+ u,x)

+β (s+ u)Pug(s+ u,x))du+ e−
∫ nΔ−s
0 (α+b(s+r))drPnΔ−sw̃

β
Δ (nΔ ,x)

]

(16.38)

with DΔ
β the class of processes that are deterministic in the intervals [T −Δ ,T ] and

[(n− 1)Δ ,nΔ ] respectively and take values from the interval [0,β ].

Proof. Using Lemma 1 of [14], we obtain the following equivalent formulae for
(16.35) and (16.36)):

w̃β
Δ (s,x) =

∫ T−s

0
e−(α+β )u

(

Pu f (s+ u,x)+β
(

Pug−Puw̃β
Δ

)+
(s+ u,x)

+βPuw̃β
Δ (s+ u,x)

)

du+ e−(α+β )(T−s)PT−sh(T,x) (16.39)

and inductively for s ∈ [(n− 1)Δ ,nΔ ]

w̃β
Δ (s,x) =

∫ nΔ−s

0
e−(α+β )u

(
Pu f (s+ u,x)+β

(
Pug−Puw̃β

Δ

)+
(s+ u,x)

+βPuw̃β
Δ (s+ u,x)

)
du+ e−(α+β )(nΔ−s)PnΔ−sw̃

β
Δ (nΔ ,x). (16.40)

Since
(

Pug−Puw̃β
Δ

)+
(s+u,x)+Puw̃β

Δ (s+u,x)=max
{

Pug(s+u,x),Puw̃β
Δ (s+u,x)

}
,

the right-hand sides of (16.39) and (16.40) define contractive operators in the class
of continuous bounded functions defined on the time intervals [T −Δ ,T ] or [(n−
1)Δ ,nΔ ], respectively. Consequently, we have the existence of unique continuous
bounded solutions to (16.35) and (16.36). To show the formulae (16.36) and (16.37),
we use Lemma 1 of [14] again. For ((b(s))∈DΔ

β , we obtain from (16.35) and (16.36)
for s ∈ [T −Δ ,T ]

w̃β
Δ (s,x) =

∫ T−s

0
e−

∫ T−s
0 (α+b(s+r)dr

(

Pu f (s+ u,x)+β
(

Pug−Puw̃β
Δ

)+
(s+ u,x)

+β (s+ u)Puw̃β
Δ (s+ u,x)

)

du+ e−
∫T−s
0 (α+b(s+r))drPT−sw̃

β
Δ (T,x)

(16.41)
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and inductively for s ∈ [(n− 1)Δ ,nΔ ]

w̃β
Δ (s,x) =

∫ nΔ−s

0
e−

∫ nΔ−s
0 (α+b(s+r))dr

(
Pu f (s+ u,x)

+β
(

Pug−Puw̃β
Δ

)+
(s+ u,x)+β (s+ u)Puw̃β

Δ (s+ u,x)
)

du

+e−
∫ nΔ−s

0 (α+b(s+r))drPnΔ−sw̃
β
Δ (nΔ ,x). (16.42)

Note now that
∫ T−s

0
e−

∫ T−s
0 (α+b(s+r)dr

(
Pu f (s+ u,x)+β

(
Pug−Puw̃β

Δ

)+
(s+ u,x)

+β (s+ u)Puw̃β
Δ (s+ u,x)

)
du ≥

∫ T−s

0
e−

∫ T−s
0 (α+b(s+r)dr (Pu f (s+ u,x)

+β (s+ u)Pug(s+ u,x))du

with equality for b(u) = 0, whenever Puw̃β
Δ ((s+ u,x)≥ Tug(s+ u,x) and b(u) = β

for Puw̃β
Δ (s+u,x)< Tug(s+u,x). Therefore we obtain (16.37), and in a similar way,

we also have (16.38). ��
Let

ŵβ
Δ (s,x) = sup

b∈Dc,Δ
β

[∫ T−s

0
e−

∫ u
0 (α+b(s+r))dr (Pu f (s+ u,x)

+b(s+ u)Pug(s+ u,x))du+ e−
∫T−s
0 (α+b(s+r))drPT−sh(T,x)

]
(16.43)

and inductively for s ∈ [(n− 1)Δ ,nΔ ]

ŵβ
Δ (s,x) = sup

b∈Dc,Δ
β

[∫ nΔ−s

0
e−

∫ u
0 (α+b(s+r))dr (Pu f (s+ u,x)

+b(s+ u)Pug(s+ u,x))du+ e−
∫ nΔ−s
0 (α+b(s+r))drPnΔ−sŵ

β
Δ (nΔ ,x)

]

(16.44)

with Dc,Δ
β the class of processes that are constant in the intervals [T −Δ ,T ] and [(n−

1)Δ ,nΔ ] respectively and take values from the interval [0,β ]. Clearly, ŵβ
Δ (T,x) =

h(T,x), and for s ≤ T −Δ being multiplicity of Δ , we have

ŵβ
Δ (s,x) = sup

b∈[0,β ]

[∫ nΔ

0
e−(α+b)u (Pu f (s+ u,x)

+bPug(s+ u,x))du+ e−(α+b)ΔPΔ ŵβ
Δ (Δ ,x)

]
. (16.45)
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Lemma 16.5.4. For s being a multiplicity of Δ , we have that w(s,x) ≥ w̃β
Δ (s,x) ≥

ŵβ
Δ (s,x) and

lim
β→∞

ŵβ
Δ (s,x) ≥ wΔ (s,x) (16.46)

with wΔ (s,x) defined in (16.3).

Proof. The fact that w(s,x) ≥ w̃β
Δ (s,x) follows directly from (16.25), (16.37), and

(16.38). Note that for s ∈ [(n− 1)Δ ,nΔ ],

ŵβ
Δ (s,x) ≥ max

[∫ nΔ−s

0
e−αuPu f (s+ u,x)du+ e−α(nΔ−s)PnΔ−sŵ

β
Δ (nΔ ,x),

∫ nΔ−s

0
e−(α+β )u (Pu f (s+ u,x)+βPug(s+ u,x))du

+e−(α+β )(nΔ−s)PnΔ−sŵ
β
Δ (nΔ ,x)

]
(16.47)

and letting β → ∞, we obtain for ŵ∞
Δ

ŵ∞
Δ (s,x) ≥ max

[∫ nΔ−s

0
e−αuPu f (s+ u,x)du+ e−α(nΔ−s)PnΔ−sŵ

∞
Δ (nΔ ,x),g(s,x)

]

(16.48)

from which we easily obtain that ŵ∞
Δ (s,x) ≥ wΔ (s,x). ��

In what follows, we are going to show that ŵβ
Δ (s,x) approximate wβ (s,x), provided

that Δ is sufficiently small. For this purpose, we first prove the following Lemma

Lemma 16.5.5. Let b̂βΔ (t) = β whenever nΔ ≤ t < (n+ 1)Δ and b̂β (t) = β , and

b̂βΔ (t) = 0 otherwise, with b̂β defined in Theorem 16.3.2. For fixed β > 0, we have
that ∫ T−s

0
|b̂βΔ (s+ u)− b̂β(s+ u)|du → 0 (16.49)

Psx a.e. as Δ → 0.

Proof. Notice first that because of the continuity of wβ and g and right continuity
of (x(t)) when b̂β (t) = β then also b̂β (t +u) = β for a sufficiently small positive u.
Consequently, the set

{
t : b̂β (t) = β

}
consists of at most countable disjoint in-

tervals. If to each interval of the set
{

t : b̂β (t) = β
}

we add adjacent intervals
in which b̂β = 0, the sum of such intervals shall form a countable covering of
the interval [0,T ]. For any ε > 0, there is a finite family of disjoint intervals Ik,
k = 1,2, . . . ,N from the above-mentioned family such that L ([0,T ]\∪N

i=1Ik)≤ ε
2β ,
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where L stands for Lebesgue measure. Note that on each set Ik the value of
|b̂βΔ (s+ u)− b̂β(s+ u)|= 0 outside of at most two small subintervals of the length
Δ on the right- and left-hand sides of the suitable interval where b̂β = β . Let now
Δ < ε

4Nβ . Then

∫ T−s

0
|b̂βΔ (s+ u)− b̂β(s+ u)|du≤ β

ε
2β

+
N

∑
k=1

∫

Ik
|b̂βΔ (s+ u)− b̂β(s+ u)|du≤ ε

from which (16.49) easily follows. �

Corollary 16.5.2 For each β > 0, we have

ŵβ
Δ (s,x)→ wβ (s,x) (16.50)

as Δ → 0 uniformly in (s,x) from compact subsets of [0,T ]×E.

Proof. Comparing (16.43) and (16.44) with (16.25), we clearly have that ŵβ
Δ (s,x)≤

wβ (s,x). Since

wβ (s,x) = Esx

{∫ T−s

0
e−

∫ u
0 (α+b̂β (s+r))dr( f (s+ u,x(u))

+b̂β (s+ u)g(s+ u,x(u)))du+ e−
∫T−s
0 (α+b̂β (s+u))duh(T,x(T − s))

}

by Lemma 16.5.5 and the dominated convergence theorem, we obtain that

Esx

{∫ T−s

0
e−

∫ u
0 (α+b̂βΔ (s+r))dr( f (s+ u,x(u))+ b̂βΔ(s+ u)g(s+ u,x(u)))du

+ e−
∫ T−s

0 (α+b̂βΔ (s+u))duh(T,x(T − s))

}
→ wβ (s,x)

as Δ → 0. Consequently, we obtain that ŵβ
2−nΔ (s,x)→ wβ (s,x) as n →∞, and since

both functions ŵβ
Δ and wβ are continuous and the convergence is monotonic by Dini

lemma, we obtain uniform convergence on compact sets. �

For s being a multiplicity of Δ , let

w̄β
Δ (s,x) = sup

b∈[0,β ]

[
e−bΔ

∫ Δ

0
e−αuPu f (s+ u,x)du

+(1− e−bΔ)g(s,x)+ e−(α+b)ΔPΔ w̄β
Δ (s+Δ ,x)

]
(16.51)

with w̄β
Δ (T,x) = h(T,x).
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Proposition 16.5.3 For n < T
Δ , we have

∣
∣
∣ŵβ

Δ (nΔ ,x)−w̄β
Δ (nΔ ,x)

∣
∣
∣≤(1−e−βΔ )

(∫ T

nΔ
e−α(u−nΔ )‖Pu f‖du+GΔ

e−nΔ − e−αT

1− e−αΔ

)

(16.52)

with ‖F‖ := sup(s,x)∈[0,T ]×E |F(s,x)| and GΔ := supt≤T−Δ ,u∈[0,Δ ],x∈E |e−αuPug(t +
u,x)− g(t,x)|.
Proof. Since by (16.45)

ŵβ
Δ (T −Δ ,x) = sup

b∈[0,β ]

[∫ Δ

0
e−(α+β )u (Pu f (T −Δ + u,x)+ bPug(s+ u,x)))du

+e−(α+β )ΔPΔh(T,x)

]

and

w̄β
Δ (T −Δ ,x) = sup

b∈[0,β ]

[
e−bΔ

∫ Δ

0
e−αuPu f (T −Δ + u,x)du

+(1− e−bΔ)g(T −Δ ,x)+ e−(α+b)ΔPΔh(T,x)
]
,

we have

|ŵβ
Δ (T −Δ ,x)− w̄β

Δ(T −Δ ,x)| ≤ (1− e−βΔ)

(∫ Δ

0
e−αu‖Pu f‖du

+ sup
u∈[0,Δ ]

|e−αuPug(T−Δ+u,x)−g(T−Δ ,x)|
)

.

(16.53)

By (16.45) and (16.51), we have

|ŵβ
Δ (nΔ ,x)− w̄β

Δ (nΔ ,x)| ≤ (1− e−βΔ)

(∫ Δ

0
e−αu‖Pu f‖du

+ sup
u∈[0,Δ ]

|e−αuPug(T −Δ + u,x)− g(T −Δ ,x)|
)

+e−αΔ |PΔ ŵβ
Δ ((n+ 1)Δ ,x)−PΔ w̄β

Δ ((n+ 1)Δ ,x)|,
and using inductively (16.53) to the last term, we obtain (16.52). ��
Note that by (16.8), w̄β

Δ coincides with the solution to the penalty equation (16.4)

with b = 1− e−βΔ . It is just immediate from Theorem 16.2.1 that w̄β
Δ converges

uniformly to wΔ letting β → ∞.
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Theorem 16.5.4. We have that w̄β
Δ (s,x) converges to w(s,x) as β → ∞ and Δ → 0

and the convergence is uniform on compact subsets of [0,T ]×E. Furthermore, the
stopping time, defined when s is a multiplicity of Δ ,

τ̄βΔ (s) = inf
{

nΔ : w̄β
Δ (s+ nΔ ,x(nΔ))≤ g(s+ nΔ ,x(nΔ))

}
∧ (T − s) (16.54)

is |wβ
Δ (s,x)−w(s,x)| optimal for the process (x(t)) starting from x at time s.

Proof. Clearly, w̄β
Δ2−n is increasing in β and in n. Therefore, we are allowed to

change the order of limits. Letting β → ∞, we have that w̄β
Δ2−n converges to

wΔ2−n uniformly, and by Lemma 16.4.2 and Theorem 16.4.3, we obtain uniform
convergence on compact set of wΔ2−n to w. Consequently, we have a uniform
on compact sets convergence of w̄β

Δ2−n to w as β → ∞ and n → ∞.The case
with different Δ gives the same limit, and by Lemmas 16.4.2 and 16.4.3 and
Theorem 16.4.3 for Δ and Δ ′, the difference between wΔ2−n and wΔ ′2−n diminishes
to 0, uniformly on compact sets as n → ∞. To show near optimality of τ̄βΔ (s), notice
that iterating the penalty equation (16.4) we have obtain

w̄β
Δ (s,x) = Esx

{∫ τ̄ βΔ (s)

0
e−αu f (s+u,x(u))du+e−ατ̄

β
Δ (s)w̄β

Δ (s+τ̄
β
Δ (s),x(τ̄

β
Δ (s))

}

≤ Esx

{∫ τ̄ βΔ (s)

0
e−αu f (s+u,x(u))du+χτ̄βΔ (s)<T−s

e−ατ̄
β
Δ (s)g(s+τ̄βΔ (s),x(τ̄

β
Δ (s))

+χτ̄βΔ (s)=T−s
e−α(T−s)h(T,x(T − s))

}

. (16.55)

Since w(s,x) ≤ w̄β
Δ (s,x)+ |w(s,x)− w̄β

Δ (s,x)| by (16.55), we complete the proof of
Theorem 16.5.4. �
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Chapter 17
A Direct Approach to the Solution of Optimal
Multiple-Stopping Problems∗

Richard H. Stockbridge and Chao Zhu

17.1 Introduction

With the deregulation of the energy markets in the United States, options to purchase
electricity for a preset price have become an important risk-management tool; many
of these options allow the holder the opportunity to exercise it each day during the
contract period. In the world of water usage, rather than negotiate permanent sales
of water rights, owners negotiate contracts in which the other party may divert a
certain amount of water for other usage (such as from agricultural to urban), and
these contracts often allow more than one diversion. Some employee compensation
packages include stock options with the possibility of a number of reloads before
expiration. A common feature of these various contracts is the opportunity for a
decision-maker to act a finite number of times and receive some reward for each
action. Rather than tie our presentation to a particular application, we examine a
general formulation.

This chapter considers a broad class of optimal multiple-stopping problems, a
natural extension to optimal (single-) stopping problems. Though the extension
seems natural, there are nevertheless significant challenges to determining the value
and optimal stopping policies. Our objective is to demonstrate a tractable method of
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Hernández-Lerma’s 65th birthday. He has made many contributions to the stochastic control of
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DOI 10.1007/978-0-8176-8337-5 17, © Springer Science+Business Media, LLC 2012
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solution for models in which the distribution of the process is known. To establish
the problem, we assume X is a solution of the stochastic differential equation

dX(t) = μ(X(t))dt +σ(X(t))dW(t), X(0) = x (17.1)

in which W is a standard Brownian motion process and the drift and diffusion
coefficients are such that X takes values in an interval (x�,xr) ⊂ R. The decision-
maker may select up to N times (with N fixed) at which to receive a reward.
However, after each decision time, a lag of at least δ > 0 units of time (the refraction
period) must pass before the next decision to receive a reward is made; this time lag
increases the complexity of the problem. We assume the time horizon is T = ∞;
that is, there is no imposed limit on the time by which decisions must be made. Let
{τn : n = 1, . . . ,N} denote the decision times. Throughout this chapter, the subscript
will denote the number of remaining decisions, so τ1 is the last decision and τN is
the first. Note that for each i = 1, . . . ,N − 1, τi+1 < τi+1 + δ ≤ τi on the set where
τi+1 is finite. For i = 1, . . . ,N, let Ri : (x�,xr)→R denote the payoff function for the
ith last decision. Letting α > 0 denote the discount rate, the objective is to maximize
the expected payoff

N

∑
i=1

E
[
e−ατi I{τi<∞}Ri(X(τi))

]
(17.2)

over all decision times τ1, . . . ,τN satisfying the refraction period condition.
As indicated in the first paragraph, recent interest in multiple-stopping problems

has developed due to deregulation and new types of options, though multiple-
stopping problems have previously been studied in sequential analysis (see, e.g.,
Haggstrom [7]). Villinski [14] discusses contracts involving multiple decisions for
water rights from an economic point of view and describes a dynamic programming
formulation for the valuation of these contracts. From a more mathematical point of
view, Thompson [13] examines a discrete-time binomial tree model for the evolution
of the process and concentrates on developing a Monte Carlo method to value a path-
dependent contingent claim. Zeghal and Mnif [15] consider the valuation of swing
options for Lévy models using Snell envelopes and illustrates this approach using
Monte Carlo techniques on a put option having a maturity time of 1. Carmona and
Touzi [4] analyze the valuation of a perpetual put swing option with infinitely many
exercises in a continuous-time Black-Scholes market. The paper independently
develops a theoretical foundation to the solution using Snell envelopes and obtains
exercise rules by discrete approximation. The paper by Carmona and Dayanik [3]
examines the same type of problem for a more general one-dimensional diffusion
model having a more general reward function and determines the solution using
a generalized convex function approach. Dai and Kwok [5] examine the pricing
of reload and shout options in which the refraction period models the time until
the employee is vested. The paper uses a Black-Scholes model having continuous
dividend rate, approaches the solution using a variational inequality which is then
approximately solved using a binomial tree model and dynamic programming.
Interestingly, the authors relate the reload option to a lookback feature of the
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stock price process. Aleksandrov and Hambly [1] use a dual approach to analyze
multiple exercise options under constraints, though the formulation allows multiple
exercises at the same time (no refraction period). The authors solve the problem
by considering the marginal value of one additional exercise time. Kobylanski and
Quenez [12] discuss the general theory of multiple-stopping time problems using
Snell envelopes.

This paper seeks a numerically tractable approach to the solution of multiple-
stopping problems. It considers the same model and general reward as Carmona
and Dayanik [3] though it approaches the analysis of the problem using a quite
different method. As in several of the aforementioned papers, the multiple-stopping
problem is reduced to an iterated sequence of N single-stopping problems through
a conditioning argument. This paper then utilizes the results in Helmes and
Stockbridge [8] to characterize the value of each single-stopping problem in two
ways. This characterization enables the value function for each single-stopping
problem to be determined in closed form for many payoff functions. We also employ
the argument in Helmes and Stockbridge [9] in which we first obtain an upper
bound on the value and then identify a stopping rule which achieves the bound.
The problem formulation in terms of stochastic processes is given in Sect. 17.2
along with the reduction to the sequence of single-stopping problems. Section 17.3
then summarizes the approaches to determining the value function of Helmes and
Stockbridge [8, 9]. The tractability of this method is then illustrated in Sect. 17.4.

The current paper is similar to Helmes and Stockbridge [10] in that both papers
consider a finite number of decision times at which a reward is earned and analyze a
sequence of single-stopping problems by solving nonlinear optimization problems.
The significant difference is the requirement in this paper that successive decisions
to stop must wait at least the length of the refraction period. The time lag increases
the complexity of the analysis in a nontrivial way.

17.2 Problem Formulation

We begin with a precise formulation of the class of multiple-stopping problems
examined in this chapter. We assume the coefficients μ and σ of (17.1) are con-
tinuous and are such that X takes values in some interval (x�,xr) ⊆ R. The process
X has generator A given by A f (x) = (1/2)σ2(x) f ′′(x) + μ(x) f ′(x)) operating on
f ∈ C2(x�,xr) (see [2, II.9, p. 17] for sufficient conditions).Further assume X is a
weak solution of (17.1) while X(t) ∈ (x�,xr) (see Ethier and Kurtz [6, Sect. 5.3,
p. 291] for details) and that the solution to (17.1) is unique in distribution. This
existence and uniqueness imply that the martingale problem for A is well posed and
hence that X is a strong Markov process (see [6, Theorem 4.4.2, p. 184]). We denote
the filtration for the weak solution by {Ft}. Throughout this chapter we assume
x� < x < xr. We emphasize that x will always represent the initial position for the
multiple-stopping problem in this chapter.

A key additional assumption on the coefficients is required, which we separate
out for later reference.
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Condition 17.2.1. The eigenvalue problem A f (·) = α f (·) has both a positive,
strictly decreasing solution φ and a nonnegative, strictly increasing solution ψ .

The conditions assumed in this paper are sufficient to imply Condition 17.2.1 (see
Borodin and Salminen [2, II.10, p. 18,19]). The functions φ and ψ depend on
the discount factor α; since we assume the discount factor is fixed, we omit this
dependence from the notation.

Before proceeding further, we briefly digress to consider the boundary points.
We restrict the models to those for which x� is either an entrance-not-exit boundary
point or a natural boundary point [2, II.10, p. 14–19]. The analysis also applies when
x� is an exit boundary point, but the expressions are slightly more complicated, so we
have chosen this restriction on the type of boundary point for clarity of presentation.
When x� is either an entrance or natural boundary, X will almost surely never reach
x� in finite time.The distinction between entrance and natural boundaries is that the
process will immediately enter the interval (x�,xr) when x = x� is an entrance point
(we assume x > x�), after which it will never return to the boundary, and thus x�
is in the state space of the process. This behavior does not happen with a natural
boundary point so such an x� will not be in the state space of X . We place the same
restrictions on the model for xr. In the event either x� = −∞ or xr = ∞, we require
these to be natural boundary points with the implication that the process X will not
“explode to ∞ or −∞” in finite time.

The importance of the type of boundary points for this chapter is the properties
thatψ(x�)≥ 0 and φ(x�+)=∞ [2, pp. 14–19]. When x� =−∞, the natural boundary
point assumption implies φ(−∞) = ∞ and ψ(−∞) = 0. Symmetric properties hold
for xr with the roles of φ and ψ reversed.

The reward earned by the decision-maker is the sum of the expected discounted
payoffs at each decision time given in (17.2). Denote the optimal value by V (N)(x),
in which the superscript indicates the number of decisions. We assume that for
each i = 1, . . . ,N, the reward function Ri : (x�,xr) �→ R is upper-semicontinuous,
is positive for some y ∈ (x�,xr), and satisfies

lim
y↘x�

Ri(y)
φ(y)

= 0, and lim
y↗xr

Ri(y)
ψ(y)

= 0. (17.3)

We further assume that τ1, . . . ,τN are {Ft}-stopping times satisfying 0≤ τN , and for
each i = 1, . . . ,N−1, on the set {τi+1 < ∞} the stopping times satisfy τi+1 < τi+1 +
δ ≤ τi. Let AN denote the set of these N-tuples of stopping times. Since the multiple-
stopping problem will be reduced to a sequence of single-stopping problems, it will
be beneficial to denote the set of nonnegative (single-) stopping times by A1, in
which the subscript denotes that the set consists of stopping times and not N-tuples
of stopping times.

We now present the key conditioning argument which reduces (17.2) to a
sequence of single-stopping problems. The argument uses the strong Markov
property so it is helpful to designate the expectation relative to the initial position of
the process X using a subscript. It is necessary to develop some additional notation.
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Set Ṽ (1)
0 ≡ 0 and define the “modified” payoff function R̃1 = R1 = R1 + Ṽ (1)

0 for
the reward received upon making the final decision. Define the corresponding value

function V (1)
1 by

V (1)
1 (y) = sup

τ∈A1

Ey[e−ατI{τ<∞}R̃1(X(τ))], y ∈ (x�,xr).

Proceeding recursively, for i = 2, . . . ,N and y ∈ (x�,xr), define Ṽ (1)
i (y) = Ey

[e−αδV (1)
i (X(δ ))], the modified payoff function R̃i = Ri + Ṽ (1)

i−1 and

V (1)
i (y) = sup

τ∈A1

Ey[e−ατ I{τ<∞}R̃i(X(τ))]. (17.4)

Theorem 17.2.1. The value of optimal multiple-stopping problem of maximiz-
ing (17.2) over decision times (τ1, . . . ,τN) ∈ AN at which to stop the process X
satisfying (17.1) is obtained through recursion by solving the N single-stopping

problems; that is, V (N)(x) =V (1)
N (x).

Proof. Consider a single generic term of the form

Ex
[
e−ατi I{τi<∞}g(X(τi))

]
,

in which g is some measurable function such that the integrand is integrable
and τi is one of the stopping times in an N-tuple (τ1, . . . ,τN) ∈ AN in which
i ∈ {1, . . . ,N− 1}. On the set {τi+1 < ∞}, notice that τi ≥ τi+1 +δ so we can define
τ̃i = τi − τi+1 − δ and have τ̃i ∈ A1, where the stopping times are relative to the
filtration {Gt} =

{
Fτi+1+t

}
. Using the strong Markov property of X in the third

equality below yields

Ex
[
e−ατi I{τi<∞}g(X(τi))

]

= Ex

[
Ex

[
e−ατi I{τi<∞}g(X(τi))

∣∣
∣
∣Fτi+1+δ

]]

= Ex

[
e−α(τi+1+δ )I{τi+1<∞}Ex

[
e−ατ̃i I{τ̃i<∞}g(X(τi+1 + δ + τ̃i))

∣
∣
∣∣Fτi+1+δ

]]

= Ex

[
e−α(τi+1+δ )I{τi+1<∞}EX(τi+1+δ )

[
e−ατ̃i I{τ̃i<∞}g(X(τ̃i))

]]
.

The key to the tractability of the problem lies in a second conditioning argument.
Observe that for any integrable random variable Y ,

Ex
[
EX(τi+1+δ )[Y ]

]
= Ex

[
Ex[EX(τi+1+δ )[Y ]|Fτi+1 ]

]
= Ex

[
EX(τi+1)[EX(δ )[Y ]]

]
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and thus

Ex
[
e−ατi I{τi<∞}g(X(τi))

]

= Ex

[
e−ατi+1I{τi+1<∞}EX(τi+1)

[
e−αδEX(δ )

[
e−ατ̃i I{τ̃i<∞}g(X(τ̃i))

]]]
.

Now specify i = 1 and g = R1. For i = 1, . . . ,N, define the set
AN,i = {τi : (τ1, . . . ,τN) ∈AN}. Taking the supremum over τ1 ∈ AN,1 of the left-
hand side and then over τ2 ∈ AN,2 and τ̃1 ∈ A1 on the right-hand side produces
one inequality, whereas taking the suprema in the opposite order yields the opposite
inequality and hence

sup
τ1∈AN,1

Ex
[
e−ατ1I{τ1<∞}R1(X(τ1))

]

= sup
τ2∈AN,2

Ex

[
e−ατ2I{τ2<∞}EX(τ2)

[
e−αδV (1)

1 (X(δ ))
]]

= sup
τ2∈AN,2

Ex

[
e−ατ2I{τ2<∞}Ṽ

(1)
1 (X(τ2))

]
. (17.5)

An important reduction occurs when we consider the two successive terms
of (17.2) involving τ1 and τ2. Observe

sup
τ1 ∈ AN,1,

τ2 ∈ AN,2

Ex

[
e−ατ2I{τ2<∞}R2(X(τ2))+ e−ατ1I{τ1<∞}R1(X(τ1))

]

= sup
τ2∈AN,2

Ex
[
e−ατ2I{τ2<∞}

(
R2(X(τ2))+ Ṽ1(X(τ2))

)]

= sup
τ2∈AN,2

Ex
[
e−ατ2I{τ2<∞}R̃2(X(τ2))

]

in which we recall R̃2(y) = R2(y)+ Ṽ1(y). Using induction, we obtain

V (N)(x) = sup
(τ1,...,τN )∈AN

N

∑
i=1

Ex[e
−ατi I{τi<∞}Ri(X(τi))]

= sup
τN∈AN,N

Ex[e−ατN I{τN<∞}R̃N(X(τN))]

= V (1)
N (x). �

The implications of Theorem 17.2.1 is that the N-stopping problem can be solved
using an iteration of three steps. First, obtain the value Vi for the successor stopping
time as a function of the initial position y; that is, determine the successor value
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function. Next, find the expected discounted value (discounted by the refraction
time δ ) of this function evaluated at the new position X(δ ) of the process. Finally,
add this function to the predecessor (more decisions to make) payoff function Ri+1

to form a new payoff function for the predecessor stopping problem, leading again
to a single-stopping problem.

Thus, the main tasks to solve the multiple-stopping problem are to determine
the sequence of single-step value functions and to utilize the distribution of X(δ ),
parametrized by an arbitrary initial position y ∈ (x�,xr).

17.3 Solution Approaches for Single-Stopping Problems

The single-stopping problem seeks to maximize

J(τ;x) := Ex[e−ατ I{τ<∞}R(X(τ))] (17.6)

over the set of all {Ft}-stopping times τ in which X is a weak solution of (17.1). Let
A denote this set of stopping times and define V (x) = supτ∈A J(τ;x). This section
briefly states the line of reasoning in Helmes and Stockbridge [9] and then recalls
the results in Helmes and Stockbridge [8]. The first method of solution identifies
an upper bound on the value with the goal of identifying a stopping time that
achieves this value. The second approach involves maximizing the expected reward
over all two-point stopping rules, whereas the final technique utilizes duality theory.
We wish to emphasize that the optimal stopping problem is solved for a single initial
value x, rather than seeking the value function, though the structure of the values is
such that the value function can often be determined.

17.3.1 Linear Programming Imbedding

A common imbedding of the stochastic problem underlies these methods. We briefly
describe the derivation of the linear program and then, in the next sections, utilize
this in two related ways. Applying Itô’s formula to e−αt f (X(t)) for f ∈ C2

c (x�,xr)
yields

e−αt f (X(t)) = f (x)+
∫ t

0
e−αs[A f −α f ](X(s))ds+

∫ t

0
e−αs f ′(X(s))dW (s).

For any τ ∈ A , the optional sampling theorem indicates that

e−α(t∧τ) f (X(t ∧ τ))− f (x)−
∫ t∧τ

0
e−αs[A f −α f ](X(s))ds
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is a mean 0 martingale, so taking expectations then letting t → ∞ establishes
Dynkin’s formula

E[e−ατ I{τ<∞} f (X(τ))]−E

[∫ τ

0
e−αs[A f −α f ](X(s))ds

]
= f (x). (17.7)

Defining ντ to be the discounted (stopping) distribution of X(τ) and μ0 to be the
expected, discounted occupation measure of X over the interval [0,τ], (17.7) can be
written as

∫
f dντ −

∫
[A f −α f ]dμ0 = f (x) and the single-stopping objective func-

tion (17.6) becomes
∫

Rdντ . The optimal stopping problem is therefore imbedded
in the infinite-dimensional linear program

⎧
⎪⎨

⎪⎩

Maximize
∫

Rdντ

Subject to
∫

f dντ −
∫
[A f −α f ]dμ0 = f (x), ∀ f ∈C2

c (x�,xr).
(17.8)

We note that the variables in this linear program are the measures ντ and μ0 and that
ντ arises from the stopping time τ so is the decision variable.

17.3.2 Achieving an Upper Bound

A first auxiliary linear program is obtained by limiting the constraints to a single
test function. One implication is that the feasible set of measures may be larger and
hence the value of the auxiliary problem gives an upper bound for (17.8). We may
take f = ψ in (17.8) (see [9] for details justifying the use of ψ as a test function
since ψ 
∈C2

c (x�,xr)). The benefit of this choice is that Aψ−αψ ≡ 0 so the integral
with respect to the occupation measure μ0 drops from the constraints. Notice the
constraint can be written as

∫
ψ/ψ(x)dντ = 1,

so the integrand forms the density for a probability measure ν̃τ on (x�,xr).

Proposition 17.3.1. Assume X is a weak solution of (17.1) and Condition 17.2.1 is
satisfied. Let R satisfy the conditions in Sect. 17.2. Then

V (x)≤ sup
y∈(x�,xr)

R(y)
ψ(y)

·ψ(x).

In addition, if limy↘x� R(y)/ψ(y) = 0, then there exists a maximizer y∗ and τy∗ is an
optimal stopping rule when x ≤ y∗.

Proof. Examining the objective function, we have

∫
R(y)ντ (dy) =

∫
[R(y)ψ(x)/ψ(y)] ν̃τ(dy)≤ sup

y∈(x�,xr)

(R(y)/ψ(y)) ·ψ(x).
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The conditions on R imply the existence of a maximizer y∗ of R(y)/ψ(y). It is well
known (see [2]) that Ex[e

−ατy∗ ] = ψ(x)/ψ(y∗) when x ≤ y∗, so this stopping rule
achieves the upper bound. �

It will be helpful to note that when R is differentiable, an interior optimizer for
the function R(y)/ψ(y) occurs where ψ(y)R′(y)−ψ ′(y)R(y) = 0. This necessary
optimality condition implies the elasticities of the function ψ , and the payoff
function R must be the same at an optimizing level.

17.3.3 Maximization Over Two-Point Hitting Rules

The previous approach is sufficient when the structure of the problem is such that
stopping to the right of the initial position is optimal. A second auxiliary problem
provides a general solution and is also obtained from (17.8), this time by limiting
the test functions to the pair φ and ψ .

Consider points a and b such that x� < a ≤ x ≤ b < xr but a < b. Define τa =
inf{t ≥ 0 : X(t) = a} and τb similarly. Define τa,b = τa ∧ τb. The payoff associated
with the decision rule τa,b is

J(τa,b;x) = R(a) · φ(x)ψ(b)−φ(b)ψ(x)
φ(a)ψ(b)−φ(b)ψ(a) +R(b) · φ(a)ψ(x)−φ(x)ψ(a)

φ(a)ψ(b)−φ(b)ψ(a)

= R(a)ψ(b)−R(b)ψ(a)
φ(a)ψ(b)−φ(b)ψ(a) ·φ(x)+ R(b)φ(a)−R(a)φ(b)

φ(a)ψ(b)−φ(b)ψ(a) ·ψ(x). (17.9)

Several observations are helpful. First, the fractional terms in the first expressions
of (17.9) are the masses of ντa,b . Next, when x = a, the expression for J(τa,b;x) =
R(a) and similarly for x = b. This agrees with one’s intuition that stopping occurs
immediately resulting in a non-discounted payoff. Also when holding b > x fixed
and letting a → x�, the fractional terms in the first expression converge to 0 and
ψ(x)/ψ(b) = E[e−ατb ], respectively, and hence J(τa,b;x) → J(τb;x). Similarly,
when b → xr with a fixed, J(τa,b;x) → J(τa;x). Finally, by examining the second
expression of (17.9), one observes that, as a function of x, the value of J(τa,b;x) is
continuous on (a,b).

Proposition 17.3.2. Assume X is a weak solution of (17.1) and Condition 17.2.1 is
satisfied. Let R satisfy the conditions in Sect. 17.2. Then

V (x) = sup
a≤x≤b

J(τa,b;x).

Moreover, there exist a∗,b∗ ∈ [x�,xr] such that J(τa∗,b∗ ;x) = V (x); that is, τa∗,b∗ is
an optimal stopping rule.

When a∗ = x�, the two-point hitting rule is actually a one-point hitting rule
at b∗ and hence τb∗ is an optimal stopping time. Similar comments apply when
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b∗ = xr. We observe that it will never occur that both a∗ = x� and b∗ = xr since, by
assumption on the model, the process will never hit either x� or xr so the “stopping”
time τx�,xr = ∞ a.s. and the value is 0, but a positive value can be obtained by
choosing to stop at a point where R is strictly positive.

17.3.4 Minimization of α-Harmonic Functions

As indicated previously, to establish the optimality of a two-point hitting rule in
[8], the stochastic problem is imbedded in an infinite-dimensional linear program,
and an upper bound is obtained by restricting the constraints (and increasing the
feasible set). A dual linear program to this auxiliary linear program is also derived
for which it is easy to prove a weak duality result between the values of the linear
programs, with more involved arguments establishing strong duality [8]. As a result,
the optimal value can be obtained by solving the following two-dimensional linear
program:

⎧
⎨

⎩

Minimize c1φ(x)+ c2ψ(x)
c1φ(y)+ c2ψ(y)≥ R(y), ∀y ∈ (xl ,xr),

Subject to c1,c2 unrestricted.
(17.10)

We note that this problem involves minimizing a linear combination of the functions
φ and ψ of Condition 17.2.1 evaluated at the initial position of the process. To be
feasible, this linear combination is required to majorize the payoff function R.

A further observation will be helpful. As in Proposition 17.3.2, take a∗ and b∗
to be maximizers. Section 4.3 of [8] proves that when the payoff function R is
continuously differentiable in a neighborhood of a∗ and in a neighborhood of b∗,
then these are points which satisfy the principle of smooth pasting; namely,

{
c1φ(a) + c2ψ(a) = R(a)
c1φ ′(a) + c2ψ ′(a) = R′(a)

and

{
c1φ(b) + c2ψ(b) = R(b)
c1φ ′(b) + c2ψ ′(b) = R′(b).

(17.11)

To obtain this result, one analyzes the maximization over two-point stopping rules
and shows how to optimally select c1 and c2. Notice there are four equations in the
four variables a, b, c1, and c2.

It will be helpful to consider a particular case of smooth pasting more extensively.
Consider the situation in which it is optimal to stop immediately at the initial time;
this means that the smooth pasting conditions must be satisfied when a = x. In this
case, the coefficients c1 and c2 are easily determined to be

c1 =
ψ ′(x)R(x)−ψ(x)R′(x)
φ(x)ψ ′(x)−φ ′(x)ψ(x)

and c2 =
φ(x)R′(x)−φ ′(x)R(x)
φ(x)ψ ′(x)−φ ′(x)ψ(x)

. (17.12)
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Notice, in particular, that c2 is always positive when R is positive and increasing and
similarly that c1 is always positive when R is positive and decreasing. Considering
further the case that R is positive and increasing, observe that the denominator of c1

in (17.12) is always positive, so c1 is positive when ψ ′(x)R(x)−ψ(x)R′(x)> 0, and
equals 0 when the same elasticity condition as in Sect. 17.3.2 is satisfied. Moreover,
comparing the numerator of c1 in (17.12) with the numerator of (R/ψ)′, we see that
c1 will be positive whenever R/ψ is strictly decreasing. A similar comment holds
for c2 when R is positive and decreasing by analyzing (R/φ)′.

Finally, recall that the optimal stopping problem is solved for a single initial value
x, rather than seeking the value function. But the structure of this approach typically
determines the value for initial positions in regions, and hence the value function
can be typically obtained through a limited number of optimizations. In fact, to
determine the value function, it is often easiest to use different methods for x in
different regions.

17.4 Drifted Brownian Motion

The process X satisfies dX(t) = μ dt +σ dW (t); that is, X(t) = x+ μt +σW (t), in
which μ ∈ R and σ ∈ R+ and the process takes values in R. It is easily verified

that φ(y) = eγ1y and ψ(y) = eγ2y, where γ1 = − μ
σ2 −

√
μ2

σ4 +
2α
σ2 and γ2 = − μ

σ2 +√
μ2

σ4 +
2α
σ2 . We note that γ1 < 0 < γ2 and that these values are in fact the roots of the

quadratic equation (σ2/2)y2 + μy−α = 0.
We consider a triple-stopping problem so assume N = 3 and we take Ri(y) =

y+ for i = 1,2,3; recall throughout the paper, the subscript denotes the number of
decisions that remain to be made. Proceeding in a recursive manner with the final

stopping decision, we must first determine the value function V (1)
1 (x).

Consider first the minimization approach to determining the value of this last
stopping problem. To be feasible, the α-harmonic function c1φ + c2ψ must lie
above the payoff function R1(y) = y+. For y 
= 0, R1 is differentiable, and hence
we can apply the smooth pasting argument. Since both φ and ψ are strictly positive
functions, R1(x) = 0 for x < 0, and it is not possible to find a linear combination
c1φ + c2ψ which has c1φ(x) + c2ψ(x) = 0 and majorizes R1. Thus, the optimal
value is not 0, a fact that also follows directly from the observation that using a
stopping rule of τy0 , where R1(y0)> 0, yields a strictly positive value.

We next investigate whether it is possible to have a feasible α-harmonic function
that equals the payoff function at x when x > 0. The coefficients c1 and c2 must
satisfy

{
eγ1xc1 + eγ2xc2 = x,
γ1eγ1xc1 + γ2eγ2xc2 = 1.
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The solution to this linear system is

c1 =
γ2x− 1

(γ2− γ1)eγ1x and c2 =
1− γ1x

(γ2 − γ1)eγ2x . (17.13)

Since R1 ≥ 0 and φ(y) = eγ1y and ψ(y) = eγ2y are both positive functions, to be
feasible the coefficients c1 and c2 must both be nonnegative. The coefficient c2 is
always positive since γ1 < 0 and x > 0. The coefficient c1, however, is only non-
negative when the initial value satisfies x ≥ 1/γ2. Thus, for x in this range, the value

of the single-optimal stopping problem is V (1)
1 (x) = x, and an optimal stopping rule

is to stop immediately, τ̃∗1 = τx.
Now consider an initial position x with x < 1/γ2. First we note that the

function c∗1φ(y) + c∗2ψ(y) := (γ2e)−1eγ2y, which is obtained using the coeffi-
cients (17.13) with x= 1/γ2, is feasible for the minimization problem. Now consider
c1,c2 > 0 such that c1φ(x) + c2ψ(x) < c∗2ψ(x). Simple algebra demonstrates that
c1φ(x)/ψ(x) < c∗2 − c2 and hence c∗2 − c2 > 0. Moreover, the inequality can
be rearranged to show c1 < (c∗2 − c2)ψ(x)/φ(x), and thus evaluating the new
α-harmonic function at 1/γ2, we have

c1φ(1/γ2)+ c2ψ(1/γ2) < (c∗2− c2)
ψ(x)φ(1/γ2)

φ(x)
+ c2ψ(1/γ2)

= (c∗2− c2)
[
φ(1/γ2)
φ(x) ψ(x)−ψ(1/γ2)

]
+ c∗2ψ(1/γ2)

< R1(1/γ2);

the final inequality follows from the facts that φ is strictly decreasing and ψ is
strictly increasing along with the observation that c∗2ψ(1/γ2) = R1(1/γ2). From this,
we see that no linear combination with positive coefficients and c1φ(x)+ c2ψ(x)<
c∗2ψ(x) is feasible for the minimization problem.

The above argument utilizes the minimization approach in both regions. Con-
sider now the upper bound method of Sect. 17.3.2. Maximizing h(y) := y+/ψ(y)
immediately results in a unique maximizer at y∗1 = 1/γ2 and a corresponding upper
bound of (γ2e)−1eγ2x. As noted in Proposition 17.3.1, this upper bound is achieved
by the stopping rule τ(1/γ2) when x ≤ 1/γ2.

The value function is therefore

V (1)
1 (x) =

{
(1/γ2)eγ2x−1, for x ≤ 1/γ2,

x, for x ≥ 1/γ2.

This value function is displayed in Fig. 17.1along with the payoff function R̃1(y) =
y+ (dotted). We also display the ratio R̃1/ψ ; notice one is able to observe the
ratio achieves its maximum at the location of the maximizer 1/γ2 ≈ 20.5 and the
function is strictly decreasing above this maximizer, confirming graphically that the
coefficient c1 of (17.12) will be positive and that it is optimal to stop immediately.
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TheFunction V1
(1)(x) TheFunction R1/y

a b

Fig. 17.1 The value function and ratio for final stopping problem; μ = σ = δ = 1, α = 0.05

The next stopping decision is the point at which one must take into account the

refraction period. Since we have V (1)
1 in explicit form, we can determine the function

Ṽ (1)
1 . Notice that, with initial position y, X(δ ) is N(y+μδ ,σ2δ )-distributed. Let Φ

denote the standard normal distribution function and set Φ = 1−Φ . Now, recalling
that (σ2/2)γ2

2 + μγ2−α = 0,

Ṽ (1)
1 (y) = Ey[e

−αδV (1)
3 (X(δ ))]

=
∫ 1/γ2

−∞
(1/γ2)e

γ2z−1−αδ · (2πσ2δ )−1/2e−(z−y−μδ )2/(2σ2δ ) dz

+

∫ ∞

1/γ2

ze−αδ · (2πσ2δ )−1/2e−(z−y−μδ )2/(2σ2δ ) dz

= (1/γ2)e
γ2y−1 Φ

(
−y− μδ− γ2σ2δ + γ−1

2

σ
√
δ

)

+e−αδ (σ
√
δ/(2π)) e−(y+μδ−γ−1

2 )2/(2σ2δ )

+e−αδ (y+ μδ )Φ

(
−y− μδ+ γ−1

2

σ
√
δ

)

.

It is easy to show that Ṽ (1)
1 (y)→ 0 as y →−∞ and that Ṽ (1)

1 is asymptotic to the line
z = e−αδ (y+ μδ ) as y goes to ∞.
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Now recall R̃2(y) = R2(y)+ Ṽ (1)
1 (y), and the second last decision time is chosen

to satisfy

J2(τ∗2 ;y) = sup
τ∈A1

Ey
[
e−ατ I{τ<∞}R̃2(X(τ))

]
.

The value of the modified payoff function R̃2(y) is asymptotic to (1/(γ2e))eγ2y as
y → −∞ (and hence converges to 0) and is asymptotically linear as y → ∞ with
asymptote z = (1+ e−αδ)y+ μδe−αδ . Examining the value R̃2(1/γ2), we have

R̃2(1/γ2)

ψ(1/γ2)
= (1/(γ2e))+ e−1Ṽ (1)

1 (1/γ2)> 1/(γ2e),

which implies the existence of some y∗2 ∈ (x�,xr) at which R̃2(y)/ψ(y) achieves
its maximum. Observe that since y∗2 is an interior maximizer, ψ(y∗2)R̃

′
2(y

∗
2) −

ψ ′(y∗2)R̃2(y∗2) = 0. Using the upper bound approach of Sect. 17.3.2 therefore implies

that for x ≤ y∗2, V (1)
2 (x) = eγ2(x−y∗2)R̃2(y∗2) and an optimal stopping rule is given

by τy∗2 .

We believe that when x > y∗2, an optimal value is obtained by stopping immedi-
ately. One way to verify this claim would be to show the existence of feasible c1 and
c2 such that the smooth pasting conditions (17.11) are satisfied with x= a. Recalling
the values c1 and c2 in (17.12), feasibility requires that ψ ′(x)R̃2(x)−ψ(x)R̃′

2(x)> 0
for x > y∗2, and since ψ ′(x) = γ2ψ(x), we must examine the function

γ2R̃2(y)− R̃′
2(y) = −e−αδ

[
(1− γ2y) eαδ +(1− γ2y− γ2αδ )Φ

(
y+μδ−γ−1

2
σ
√
δ

)

−γ2σ
√
δ/(2π) e−(y+μδ−γ−1

2 )2/(2σ2δ )
]
. (17.14)

Note that γ2R̃(y
∗
2)− R̃′

2(y
∗
2) = 0 since y∗2 is an interior maximizer. At this point, the

dependence of the expression (17.14) on y is such that a general proof is not clear,
so numerical tractability becomes advantageous. Figure 17.2 displays the function
γ2R̃2− R̃′

2 for a particular choice of parameters. Notice, in particular, for y > y∗2 the
values are positive and hence the value of c1 is also positive resulting in a feasible
solution to the minimization problem which has value R̃2(x). The value function

V (1)
2 is displayed in Fig. 17.2 as well for this choice of parameters.

Summarizing, the optimal value for the second last single-stopping problem is

V (1)
2 (x) =

{
R̃2(y∗2)e

γ2(x−y∗2), x ≤ y∗2,
R̃2(x), x > y∗2.

(17.15)

At this point, it is clear that determining closed-form expressions for the
maximizer and the value function is not possible. However, some progress can be
made theoretically, and one may also continue to employ numerical and graphical
techniques for particular parameters. The analysis of the third single-stopping
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The Function The Function V2 (x)
(1)

8

a b

Fig. 17.2 γ2R̃2 − R̃′
2 and V (1)

1 for the second stopping problem; μ = σ = δ = 1, α = 0.05

The Function R3 / y˜ The Function g2R3 – R3˜ ˜

a b

Fig. 17.3 Checking for optimality; μ = 1, σ = 1, α = 0.05

problem follows along the same line as for the second. In particular, one may show
that R̃3 is asymptotic to R̃2(y∗2)e

γ2(y−y∗2) as y →−∞ and has a linear asymptote as
y → ∞. Moreover, R̃3(y∗2)/ψ(y∗2) > R̃2(y∗2)e

−γ2y∗2 which implies the existence of
some finite y∗3 at which R̃3/ψ achieves its maximum. Therefore, the upper bound
approach establishes that the value function is R̃3(y∗3)e

γ2(y−y∗3) for y≤ y∗3. Figure 17.3
displays graphs of the ratio R̃3/ψ and the function γ2R̃3 − R̃′

3 to graphically verify
that the form of the value function is the same as (17.15).
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Fig. 17.4 Comparison of

value functions: V (1)
1 (dotted);

V (1)
2 (dashed); V (1)

3 (solid);
μ = 1, σ = 1, α = 0.05

All three value functions are displayed in Fig. 17.4 for comparison purposes.
In particular, one can notice the increase in the value functions as the number of
available decisions increases. Finally, we identify optimal decision times for the
original triple-stopping problem:

τ∗3 = inf{t ≥ 0 : X(t) ∈ [y∗3,∞)} ,
τ∗2 = inf{t ≥ τ∗3 + δ : X(t) ∈ [y∗2,∞)} ,
τ∗1 = inf{t ≥ τ∗2 + δ : X(t) ∈ [y∗1,∞)} ,

where the critical values of the stopping locations are y∗3 = 19.346, y∗3 = 19.888, and
y∗3 = 20.488, when μ = σ = δ = 1 and α = 0.05.

17.5 Concluding Remarks

This chapter demonstrates that multiple-stopping problems of one-dimensional
diffusions in the presence of refraction periods reduce to a sequence of single-
stopping problems in which the reward for an earlier action must include the optimal
payoff for the subsequent action. The presence of the refraction period introduces
the need to evaluate the expectation of the value function for a later action according
to the distribution of the process at a time dependent on the length of the refraction
period. This becomes numerically tractable when this distribution is known. Three
solution approaches to the single-stopping problems are briefly discussed based on
an imbedding of the original stochastic problem in an infinite-dimensional linear
program; a similar linear programming approach to stochastic control of discrete-
time processes has been studied by O. Hernańdez-Lerma (e.g., [11]). Tractability of
these type of problems is illustrated in detail for a particular example.
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Chapter 18
On the Regularity Property of Semi-Markov
Processes with Borel State Spaces

Óscar Vega-Amaya

18.1 Introduction

A semi-Markov process (SMP) combines the probabilistic structure of a Markov
chain and a renewal process as follows: it makes transitions according to a Markov
chain, but the times spent between successive transitions are random variables
whose distribution functions depend on the “present” state of the system. Observe
that a continuous-time Markov chain is a SMP with exponentially distributed
transition times. Thus, it is raised the question of whether the SMP experiences
finite or infinitely many transitions in bounded time periods. If the former property
holds, the SMP is said to be regular (or nonexplosive), and irregular (or explosive)
otherwise.

A natural way to obtain the regularity property is to impose conditions that
guarantee that transitions do not take place too quickly, and the most popular
condition to do this is that used by Ross [7, Proposition 5.1, p. 88] and Çinlar
[2, Chap. 10, Proposition 3.19, p. 327]. Roughly speaking, this condition requires
the transition times to be greater than some γ > 0 with a probability of at least
ε > 0, independently of the present state of the system [see (18.6) below]. Under
this condition, both authors obtain the regularity of the SMP for the countable
state space case only, but using a key remark of Bhattacharya and Majumdar [1]
(see Remark 18.3.1, below), this result can also be proved for Borel spaces (see
Theorem 18.3.2). It is worth mentioning that Çinlar’s proof [2, Chap. 10, Proposition
3.19, p. 327] also extends directly to the general case of Borel spaces.

Moreover, for the countable state space case, Ross [7, Proposition 5.1, p. 88] and
Çinlar [2, Chap. 10, Corollary 3.17, p. 327] prove that the regularity property holds
whenever the “embedded” Markov chain reaches a recurrent state with probability

Ó. Vega-Amaya (�)
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one for every initial state. Thus, in particular, the regularity property holds if the
embedded Markov chain is recurrent. However, their proofs cannot be extended, or
at least not directly, to the case of Borel state space because they rely on the renewal
process formed by the successive times at which a recurrent state is visited, which
typically involves events of probability zero if the state space is uncountable. In fact,
to the best of our knowledge, there is no counterpart of these results for Borel spaces.

The aim of this note is to fill this gap by extending the latter results to SMP with
Borel state space. More precisely, imposing a fairly weak condition on the sojourn or
holding time distribution, we show that the regularity property holds under each one
of the following conditions: (a) the embedded Markov chain is Harris recurrent;
(b) the embedded Markov chain is recurrent and the “recurrent part” of the state
space is reached with probability one for each initial state; (c) the embedded Markov
chain has a unique invariant probability measure. Under the latter condition, the
regularity property is only ensured for almost all initial state with respect to the
invariant probability measure.

18.2 Preliminary Concepts

This section briefly introduces the SMPs. The readers are referred to Limnios and
Oprişan [5] for a rigorous and detailed description. Next, we have some notation
which is used through the note. Let (X,B) be a measurable space where X is a
Borel space and B is its Borel σ -algebra. We denote by R+ and N0 the sets of
nonnegative real numbers and nonnegative integers, respectively, while N stands
for the positive integers. Set Ω := (X×R+)

∞ and denote by F the corresponding
product σ -algebra.

Consider a fixed stochastic kernel Q(·, ·|·) on X×R+ given X. Then, for each
“initial” state x ∈ X, there exists a probability measure Px and a Markov chain
{(Xn,δn+1) : n ∈N0} defined on the canonical measurable space (Ω ,F ) such that

Px[X0 = x] = 1, (18.1)

Px[Xn+1 ∈ B,δn+1 ≤ t|Xn = y] = Q(B, [0, t]|y) (18.2)

for all B∈ B, t ∈R+,y ∈X.

The process {(Xn,δn+1) : n ∈ N0} is called Markov renewal process and usually
thought of as a model of a stochastic system evolving as follows: it is observed at
time t = 0 in some initial state X0 = x ∈X in which it remains up to a (nonnegative)
random time δ1. The distribution function of δ1 is given by

F(t|x) := Q(X, [0, t]|x) ∀t ∈ R+,x ∈ X,
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which is called the sojourn or holding time distribution in the state x. Thus, the mean
sojourn or holding time function is defined as

τ(x) :=
∫

R+

tF(dt|x)≥ 0, x ∈ X.

Next, at time δ1, the system jumps to a new state, say X1 = y ∈ X, according to the
probability measure

P(B|x) := Q(B,R+|x), B ∈B,x ∈X.

Once the transition occurs, the system remains in the new state X1 = y up to a
(nonnegative) random time δ2, and so on.

The state of the systems is tracked in continuous time by the process

Zt := Xn if Tn ≤ t < Tn+1

where

Tn+1 := Tn + δn+1, n ∈ N0, and T0 := 0.

The continuous-time process {Zt : t ∈ R+} is called semi-Markov process (SMP)
with (semi-Markov) kernel Q(·, ·|·).

Note, by (18.2), that the process {Xn : x ∈N0} is a Markov chain on X with one-
step transition probability P(·|·). Thus, it is called the embedded Markov chain in
the SMP {Zt : t ∈R+}.

Now observe that the kernel Q(·, ·|·) can be “disintegrated” as

Q(B, [0, t]|x) =
∫

B
G(t|x,y)P(dy|x) ∀B ∈ B, t ∈ R+,x ∈ X,

where G(·|x,y) is a distribution function on R+ for all x,y ∈ X, while G(t|·, ·) is a
measurable function on X×X for each t ∈R+. Thus,

G(t|z,y) = Px[δ n+1 ≤ t|Xn = z,Xn+1 = y] ∀x,y,z ∈ X, t ∈ R+. (18.3)

Then, using the Markov property of the Markov renewal process and (18.3), it is
easy to prove that the random variables {δn : n∈N} are (conditionally) independent
given the state process {Xn : n ∈N0} and also that

Px[δ 1 ≤ t1, . . . ,δn ≤ tn|X0,X1, . . . ,Xn] =
n

∏
k=1

G(tk|Xk−1,Xk). (18.4)
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18.3 The Regularity Property, Recurrence and Invariant
Measures

Let {(Xn,δn+1) : n∈N0} be a Markov renewal process with stochastic kernel Q(·, ·|·)
on X×R+ given X.

Definition 18.3.1. A state x ∈ X is said to be regular if

lim
n→∞

Tn = ∞ Px-a.s.

The SMP is said to be regular if every state x ∈ X is regular.

Define

Δ(x) :=
∫

R+

exp(−t)F(dt|x), x ∈ X.

and observe that 0 < Δ(·) ≤ 1. Also note that

Δ(x) = 1 ⇔ F(0|x) = 1 ⇔ τ(x) = 0. (18.5)

Clearly, to guarantee the regularity property holds, it is required to exclude this
degenerate case occurs for all or “almost all” states. The most popular way to do
this is by means of the following assumption: there exist positive constants γ and
ε < 1 such that

1−F(γ|x)> ε ∀x ∈ X. (18.6)

Ross [7, Proposition 5.1, p. 88] and Çinlar [2, Chap. 10, Proposition 3.19,
p. 327] prove that the SMP is regular assuming condition (18.6) holds. Here, for
the sake of completeness, we provide other proof based in the following remark due
to Bhattacharya and Majumdar [1].

Remark 18.3.1. It follows from the conditional independence of the random vari-
ables {δn : n ∈N} and (18.4) that

Ex[exp(−Tn+1)|X0,X1, · · · ,Xn] = Δ(X0) · · ·Δ(Xn) ∀n ∈ N0. (18.7)

Hence,
Tn → ∞⇔ [Δ(X0) · · ·Δ(Xn)]→ 0. (18.8)

This follows directly from (18.7) after noting that Zn := exp(−Tn) and Wn :=
Δ(X0) · · ·Δ(Xn),n ∈ N, are bounded and nonincreasing sequences.

Theorem 18.3.1. If condition (18.6) holds, then the SMP is regular.
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Proof of Theorem 18.3.1. This follows directly from (18.8) after noting that
condition (18.6) implies that

sup
x∈X

Δ(x)≤ (1− ε)+ ε exp(−γ)< 1.
�

The regularity can also be guaranteed asking condition (18.6) holds only for
states in a proper subset C ⊂ X provided it is accompanied by an appropriate
“recurrence” property [see Remark 18.3.6(b) below].

Next, we prove the regularity of the SMP holds under some “recurrence”
conditions which seems to be the weakest possible ones. To state these assumptions,
we need several concepts and results from Markov chain theory which are collected
from Hernández-Lerma and Lasserre[3] and Meyn and Tweedie [6].

A Markov chain {Yn : n ∈N0} with state space X is said to be irreducible if there
exists a nontrivial σ -finite measure ν(·) on (X,B) such that

T (x,B) := Ex

∞

∑
n=1

IB(Yn)> 0 ∀x ∈ X,

whenever ν(B) > 0, B ∈ B; in this case, ν(·) is called an irreducibility measure.
If the Markov chain {Yn : n∈N0} is irreducible, there exists a maximal irreducibility
measure ψ(·), which means that ψ(·) is an irreducibility measure and that any other
irreducibility measure ν(·) is absolutely continuous with respect to ψ(·). Moreover,
if ψ(B) = 0, then

ψ({y ∈ X : T (y,B)> 0}) = 0, (18.9)

which means that the set of initial states for which the Markov chain enters to a
ψ-null set is also a ψ-null set [6, Proposition 4.2.2, p. 88].

Let {Yn : n∈N0} be an irreducible Markov chain andψ(·) a maximal irreducibil-
ity measure. The Markov chain {Yn : n ∈N0} is said to be recurrent if

Ex

∞

∑
n=0

IA(Yn) = ∞ ∀x ∈ X,A ∈ B+, (18.10)

where B+ := {B ∈ B : ψ(B) > 0}. Note that B+ is well defined because all
maximal irreducibility measures are equivalent. If instead of condition (18.10) we
have

∞

∑
n=0

IA(Yn) = ∞ Px-a.s. ∀x ∈ A,A ∈ B+,

then the Markov chain is said to be Harris recurrent. It is proved in Meyn and
Tweedie [6, Theorem 9.1.4, p. 204] that a Harris recurrent Markov chain satisfies
the (apparently) stronger condition

∞

∑
n=0

IA(Yn) = ∞ Px-a.s. ∀x ∈ X,A ∈ B+.
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We now come back to the discussion of the regularity property with the following
remark.

Remark 18.3.2. Suppose the embedded Markov chain {Xn : n ∈ N0} is irreducible.
If the SMP is regular, due to property (18.8), the Markov chain {Xn : n ∈ N0} visits
the set

L := {x ∈X : Δ(x) < 1}

infinitely often Px-a.s for every initial state x ∈ X. Moreover, the set L belongs to
B+; otherwise, by (18.9),

ψ(X) = ψ({y ∈ X : T (y,L) > 0}) = 0,

which obviously is a contradiction.

Remark 18.3.3. Suppose the embedded Markov chain {Xn : n ∈ N0} is irreducible.
Then, L ∈ B+ if and only if Bα := {x ∈ X : Δ(x) ≤ α} ∈ B+ for some α ∈ (0,1).
This claim follows noting that L=∪∞

n=1 Bn where Bn := {x ∈ X : Δ(x) ≤ αn} and
αn ↑ 1.

We now state the first result of this note.

Theorem 18.3.2. Suppose the embedded Markov chain is Harris recurrent. Then,
the SMP is regular if and only if L ∈ B+.

Proof of Theorem 18.3.2. Note that the “only if” part is proved in Remark 18.3.2.
To prove the other part, take Bα as in Remark 18.3.3 and for each n ∈N define

σ(1) := inf{k > 0 : Xk ∈ Bα}, σ(n+ 1) := inf{k > σ(n) : Xk ∈ Bα}

and

Sn :=
n

∑
k=1

IBα (Xk).

Now observe that

Δ(X0) · · ·Δ(Xn)≤ Δ(Xσ(1))Δ(Xσ(2)) · · ·Δ(Xσ(Sn))≤ αSn

on the set [Sn 
= 0]. Thus, since the embedded Markov chain {Xn : n ∈ N0} is Harris
recurrent and ψ(Bα)> 0, Sn → ∞ Px-a.s. for all x ∈ X; hence,

Δ(X0) · · ·Δ(Xn)→ 0 Px-a.s. for all x ∈ X,

which, by (18.8), proves that the process is regular. �
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The regularity property of the SMP can also be obtained assuming that the
embedded Markov chain {Xn : n ∈ N0} is recurrent. However, as in Ross [7,
Proposition 5.1, p. 88] and Çinlar [2, Chap. 10, Corollary 3.17, p. 327], we need
to assume additionally that the “recurrent part” of the state space is reached with
probability one for every initial state. To state this condition precisely, we require the
following important result (see, e.g., Hernández-Lerma and Lasserre [3, Proposition
4.2.12, p. 50] or Meyn and Tweedie [6, Theorem 9.0.1, p. 201]).

Remark 18.3.4. If the embedded Markov chain{Xn : n ∈ N0} is recurrent, then

X=H ∪N,

where the measurable set H is full and absorbing (i.e., ψ(N) = 0 and P(H|x) = 1
for all x ∈ H, respectively). Moreover, the Markov chain restricted to H is Harris
recurrent, that is,

∞

∑
n=0

IA(Xn) = ∞ Px-a.s. ∀x ∈ H,A ⊂ H,A ∈ B+.

Theorem 18.3.3. If the embedded Markov chain is recurrent, L ∈ B+ and

σ := inf{n ∈N0 : Xn ∈ H}<∞ Px-a.s. ∀x ∈ X,

then the SMP is regular.

Proof of Theorem 18.3.3. The proof follows the same arguments given in the proof
of Theorem 18.3.2 but considering Bα := Bα ∩H instead of the set Bα . �

Note that Theorems 18.3.2 and 18.3.3 state that the regularity property holds for
all initial state x ∈ X under a recurrence condition independently of whether the
embedded Markov chain admits an invariant probability measure μ(·), that is, a
probability measure satisfying the condition

μ(B) =
∫

X

P(B|x)μ(dx) ∀B ∈ B.

Recurrence (and then Harris recurrence) may be dispensed if one supposes the
existence of a unique invariant probability measure with the cost that the regularity
property will be ensured only for almost all initial states (see Theorem 18.3.4
below). The proof uses a pathwise ergodic theorem which is borrowed from
Hernández-Lerma and Lasserre [3, Corollary 2.5.2]. To state this result, we need
the following notation: for a measurable function v(·) and measure λ (·) on (X,B),
let

λ (v) :=
∫

X

v(y)λ (dy),
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whenever the integral is well defined. Moreover, denote by L1(λ ) the class of
measurable functions v(·) on X such that λ (|v|)< ∞.

Remark 18.3.5. (a) Suppose that {Xn : n ∈ N0} has a unique invariant probability
measure μ(·). Then, for each function v∈ L1(μ), there exists a set Bv ∈B, with
μ(Bv) = 1, such that

1
n

n−1

∑
k=0

v(Xn)→ μ(v) Px-a.s. ∀x ∈ Bv. (18.11)

(b) If in addition the Markov chain is Harris recurrent, then (18.11) holds for all
x ∈ X (see Hernández-Lerma and Lasserre [3, Theorem 4.2.13, p.51]).

Theorem 18.3.4. Suppose the following conditions hold: (a) the embedded Markov
chain has a unique invariant probability measure μ(·); (b) μ(Δ) =

∫
X
Δ(x)μ(dx)

< 1. Then, the SMP is regular for μ-almost all x ∈ X. If in addition the embedded
Markov chain is Harris recurrent, then the regularity property holds for all x ∈ X.

Proof of Theorem 18.3.4. Observe that

[Δ(X0) · · ·Δ(Xn)]
1/(n+1) ≤ 1

n+ 1

n

∑
k=0

Δ(Xk) ∀n ∈ N0.

Thus, by condition (a) and Remark 18.3.5(a), there exists a set BΔ ∈ B such that

1
n+ 1

n

∑
k=0

Δ(Xk)→ μ(Δ)< 1 Px-a.s. ∀x ∈ BΔ ,

with μ(BΔ ) = 1. Therefore,

Δ(X0) · · ·Δ(Xn)→ 0 Px-a.s. for μ-almost all x ∈ X.

The second statement of the theorem follows from Theorem 18.3.2 because the
property μ(Δ)< 1 implies that L ∈ B+. �

Remark 18.3.6. (a) Let μ be a probability measure on (X,B). Observe that (18.5)
implies that {x ∈ X : τ(x)> 0}= {x ∈ X : Δ(x)< 1}. Then

μ(τ)> 0 ⇔ μ(Δ)< 1.

Thus, the conclusions in Theorem 18.3.4 remain valid if condition (b) is
replaced by the condition μ(τ)> 0.

(b) Schäl [8] and Jaśkiewicz [4] considered the following weakened version of
condition (18.6): there exist positive constants γ, ε < 1, and a subset C ∈ B
such that

1−F(γ|x)> ε ∀x ∈C.
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This condition by itself does not imply the regularity of the SMP (see the
example in Ross [7, p. 87]); however, it does provided that C ∈ B+, and a
suitable recurrence condition holds, e.g., the embedded Markov chain is Harris
recurrent. To see this is true, note that

sup
x∈C

Δ(x)≤ (1− ε)+ ε exp(−γ)< 1,

which implies that L = {x∈X :Δ(x)< 1} ∈B+. Hence, from Theorem 18.3.2,
the SMP is regular.
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