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Numbers and Sets

1.1 Numbers

Sets and Number Systems

All of discrete mathematics—and, in fact, all of mathematics—rests on the founda-
tions of set theory and numbers. We start this chapter by reminding you of some
basic definitions and notations and some further properties of numbers and sets.

A set is any collection of objects. The objects in the collection are called the
members or elements of the set. If x is a member of a set S, we write x ∈ S, and
x /∈ S means that x is not a member of S. One way of defining a set is to list all the
elements, usually between braces; thus if S is the set consisting of the numbers 0, 1,
and 3, we could write S = {0, 1, 3}.

Another method is to use the membership law of the set: for example, since the
numbers 0, 1, and 3 are precisely the numbers that satisfy the equation x3 − 4x2 +
3x = 0, we could write the set S as

S = {
x : x3 − 4x2 + 3x = 0

}

(which we read as “the set of all x such that x3 − 4x2 + 3x = 0”). Often we use a
vertical line instead of the colon in this expression, as in

S = {
x | x3 − 4x2 + 3x = 0

}
.

This form is sometimes called set-builder notation.

Sample Problem 1.1. Write three different expressions for the set with elements
1 and −1.

Solution. Three possibilities are {1,−1}, {x : x2 = 1}, and “the set of square
roots of 1”. There are others.
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Your Turn. Write three different expressions for the set with elements 1, 2,
and 3.

We define several sets of numbers, denoted N,Z,Q, and R, that we shall use
later. The set N of all positive integers or natural numbers is the first number system
we encounter; the natural numbers are used to count things. If one includes zero, to
account for the possibility of there being nothing to count, and negatives for subtrac-
tion, the result is the set Z of integers. It is useful to have a notation for the set of
all non-negative integers—that is, the members of N, together with 0. We shall write
Z

∗ for that set, but the reader should note that a minority of authors, particularly in
Computer Science, include 0 as a member of N.

We sometimes write N = {1, 2, 3, . . .} and Z={. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
The use of a string of dots (an ellipsis) is not precise, but is understood to mean that
the set continues without end. Such sets are called infinite (as opposed to finite sets
like {0, 1, 3}). We also write {1, 2, . . . , 20} to mean the set of all positive integers
from 1 to 20. A more precise notation for this set, borrowed from the computer
language Pascal, is (1..20).

The set Q of rational numbers consists of all fractions, the ratios p
q

, where p and
q are integers and q is not 0. In other words,

Q =
{

p

q
: p ∈ Z, q ∈ Z, q �= 0

}
.

In this notation, p is called the numerator of the fraction, and q is the denomina-
tor. An alternative definition is that Q is the set of all numbers with a repeating or
terminating decimal expansion. Examples are

1

2
= 0.5,

−12

5
= −2.4,

3

7
= 0.428571428571 . . . .

In the last example, the digit string 428571 repeats forever, and we usually indicate
this by writing

3

7
= 0.428571.

The denominator q cannot be zero. In fact, division by zero is never possible.
This is not a made-up rule, but rather it follows from the definition of division. When
we write x = p

q
, we mean “x is the number that, when multiplied by q, gives p”.

What would x = 2/0 mean? There is no number that, when multiplied by 0, gives 2.
Similarly, x = 0/0 would be meaningless. In this case, there are suitable numbers x,
in fact every number will give 0 when multiplied by 0, but we wanted a uniquely
defined answer.
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Different decimal expansions do not always mean different numbers. The ex-
ception is an infinite string of 9s. These can be rounded up: 0.9 = 1, 0.79 = 0.8,
and so on. Proving this requires some understanding of the theory of limits, but the
following discussion illustrates the ideas of the proof.

Suppose x is the number represented by 0.9. Then x = 0.9, and multiplying both
sides by 10, 10x = 9.9. If we subtract x from both sides, we get 9x = 10x − x =
10x − 0.9. So 9x = 9.9 − 0.9 = 9 and x = 1.

Integers are rational numbers, and in fact they are the rational numbers with
numerator 1. For example, 5 = 5/1.

Each rational number has infinitely many representations as a ratio:

1/2 = 2/4 = 3/6 = · · · .
The final number system we shall use is the set R of real numbers, consisting

of all numbers that are decimal expansions, all numbers that represent lengths. If n

is any natural number other than a perfect square (one of 1, 4, 9, 16, . . .), then
√

n

is not rational. Another important number that is not rational is the ratio π of the
circumference of a circle to its diameter.

Remember that every natural number is an integer; every integer is a rational
number; every rational number is a real number. Do not fall into the common error
of thinking that “rational number” excludes the integers, and so on. There are spe-
cial words that exclude: for example, real numbers that are not rational are called
irrational numbers.

This is not the end of number systems. For example, the set C of complex num-
bers is derived from the real numbers by including square roots of negative numbers,
plus all the sums of these square roots with real numbers. However, we do not en-
counter them in this book.

Intervals

The set of all real numbers between two bounds is called an interval. For example,
the set of all real numbers greater than −2 but smaller than 2, which we would write
as

S = {x : x ∈ R,−2 < x < 2},
is the interval from −2 to 2, exclusive. These intervals occur so often that there is a
special notation for them. The above example is written (−2, 2), where the parenthe-
sis (round bracket) indicates that the bound is not included. If the bound is included,
a square bracket is used. So

(−2, 2) = {x : x ∈ R,−2 < x < 2},
[−2, 2) = {x : x ∈ R,−2 ≤ x < 2},
(−2, 2] = {x : x ∈ R,−2 < x ≤ 2},
[−2, 2] = {x : x ∈ R,−2 ≤ x ≤ 2}.
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The set of all real numbers greater than 1 is denoted (1,∞), and the set of all real
numbers less than or equal to 3 is (−∞, 3]. Read the symbol ∞ as infinity.

Sample Problem 1.2. Write expressions for the following intervals:

{x : x ∈ R, 3 < x ≤ 4}, {x : x ∈ R, 0 ≤ x},
{x : x ∈ R, x < 2}, {x : x ∈ R, x ≥ 2}.

Solution. (3, 4], [0,∞), (−∞, 2), [2,∞).

Your Turn. Write expressions for the following intervals:

{x : x ∈ R, 0 < x}, {x : x ∈ R, 0 < x < 1},
{x : x ∈ R, 1 < x ≤ 4}, {x : x ∈ R, x < 3}.

Factors

When x and y are integers, we use the phrase “x divides y”, and write x | y, to
mean “ y

x
is an integer”, or alternatively “there is an integer z such that y = x · z”.

We say x is a divisor of y. If x | y is false, one can write x \| y. Thus 2 divides 6
(because 6

2 equals the integer 3), −2 divides 6 (because 6
−2 = −3), 2 divides −6

(because −6
2 = −3). Putting it the other way, the reasons are respectively, 6 = 2 · 3,

6 = (−2) · (−3), and −6 = 2 · (−3). In symbols, we would write 2 | 6 and −2 | 6.
As 4 does not divide 6, we write 4 \| 6.

Some students are confused by the case y = 0, but according to our definition
x divides 0 for any non-zero integer x. We define the factors of a positive integer x

to be the positive divisors of x (in our terminology, negative divisors are not called
factors so −2 is not a factor of 6).

If x divides both y and z, then we call x a common divisor of y and z. Among
the common divisors of y and z there is naturally a greatest one, called (not sur-
prisingly) the greatest common divisor of y and z, and denoted (y, z), or sometimes
gcd(y, z). If (y, z) = 1, y and z are called coprime or relatively prime. For example,
(4, 10) = 2, so 4 and 10 are not coprime; (4, 9) = 1, so 4 and 9 are coprime.

A prime number is a positive integer x other than 1 whose only factors are 1
and x. The first few primes are 2, 3, 5, 7, 11, and 13. The number 1 is excluded, and
is called a unit.

Sample Problem 1.3. What are the factors of 12, 22, and 17? What is (12, 22)?

Solution.

12 has factors 1, 2, 3, 4, 6, and 12.

22 has factors 1, 2, 11, and 22.

17 has factors 1 and 17.

The common factors of 12 and 22 are 1, 2, so (12, 22) = 2.
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Your Turn. What are the factors of 24, 15, and 13? What is (24,15)?

Suppose x is any positive integer. If x is not a prime we can find positive integers
y and z, neither equal to 1, such that x = yz. We could then break down y and z, if
possible, until finally we obtain

x = x1, x2, . . . , xk

where the xi are all primes. So every positive integer is the product of prime factors.
In fact, it can be shown that such a decomposition is unique (up to the order of the
factors): for example, if

2a3b5c = 2x3y7z,

it must be true that a = x, b = y, and c and z are both zero.

Exponents

If x is a positive integer, we know that bx is the product of x copies of b; in this
expression b is ellipsis called the base and x the exponent. It is easy to deduce such
properties as

bxby = bx+y,
(
bx

)y = bxy,

(ab)x = axbx.

Negative exponents are handled by defining b−x = 1
bx , and also b0 = 1 whenever

b is non-zero. The rule bxby = bx+y leads us to define b
1
x to be the xth root of b.

(When x is even, we take the positive root for positive b and say b
1
x is not defined

for negative b).

Sample Problem 1.4. Express the following in the simplest form, as decimal
numbers if possible:

(612)0,
(
x3)5

,
(
x4)0

, (−10)−4,
1

10−2
.

Solution. (612)0 = 1 (b0 = 1 for non-zero b); (x3)5 = x3·5 = x15; (x4)0 = 1
(again, b0 = 1 for any b, or you could also argue that (x4)0 = x4·0 = x0 = 1);
(−10)−4 = 1

(−10)4 = 1
(−1)4×104 = 1

104 = 0.0001; 1
10−2 = 102 = 100.

Your Turn. Do the same to

115, 05,
(
x−1)0

,
x6

x3
, (−2)−1,

1

5−2
.
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Sample Problem 1.5. Express in the simplest possible form, with positive expo-
nents:

1

x−4
,

u−2

v−3
,

(
3a2)(5a−3).

Solution.

1

x−4
= (

x−4)−1 = x(−4)·(−1) = x4;
u−2

v−3
= (

u−2)(v−3)−1 = u−2v3 = v3

u−2
;

(
3a2)(5a−3) = 3 · 5 · a2 · a−3 = 15a−1 = 15

a
.

Your Turn. Express in the simplest possible form, with positive exponents:

t−2

t−3
, y5−2,

(
4x−2)(3x4).

Absolute Value, Floor, and Ceiling

The absolute value or modulus of the number x, which is written |x|, is the positive
number equal to either x or −x. For example, |5.3| = 5.3, | − 7.2| = 7.2.

The floor 	x
 of x is the largest integer not greater than x. If x is an integer,
	x
 = x. Some other examples are 	6.1
 = 6, 	−6.1
 = −7. It is easy to deduce the
following properties:

(1) 	x
 = n if and only if n is an integer and n ≤ x < n + 1.

(2) If x is non-negative, then 	x
 equals the integer part of x. If x is negative and
non-integral then 	x
 is 1 less than the integer part of x.

(3) If n and k are integers, then k divides n if and only if n
k

= 	n
k

.

The ceiling �x� is defined analogously as the smallest integer not less than x.

Sample Problem 1.6. What are 	6.3
, �7.2�, �−2.4�, |3.4|, | − 3.4|?

Solution. 6, 8,−2, 3.4, 3.4.

Your Turn. What are 	2.6
, 	−1.7
, �4.8�, �−4�, |3.1|, | − 4, 4|?

Exercises 1.1 A

1. Is the given statement true or false?
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(i) 3 ∈ {2, 3, 4, 6}; (ii) 4 /∈ {2, 3, 4, 6};
(iii) 5 ∈ {2, 3, 4, 6}; (iv) {3, 2} = {2, 3};
(v) {1, 2} ∈ {1, 2, 3}; (vi) {1, 2} = {1, 2, 3};

(vii) 2 ∈ Z; (viii) {1, 2, 3, 4, 5} = {5, 4, 3, 2, 1};
(ix) R /∈ Z; (x) {4} ∈ {2, 4, 6}.

2. In each case, write the list of all members of the set.

(i) {x : x is an even positive integer less than 12};
(ii) {x : x is a color on the American flag};

(iii) {x : x is a day of the weekend}.
3. Which of the following are true?

(i) All natural numbers are integers.

(ii) All integers are natural numbers.

4. Give an example of a real number that is not a rational number.

5. For each of the following numbers, to which of the sets N,Z,Q,R does it be-
long?

(i) 1.308; (ii) 1.3; (iii) −7;

(iv)
√

3; (v) 10508; (vi) 1 − √
7.

6. Give three different expressions for the set with members 1, −1, and 0.

7. In each case, list all the factors of the number:

(i) 36; (ii) 48; (iii) 50;

(iv) 81; (v) 72; (vi) 61.

8. Decompose the following numbers into primes:

(i) 1044; (ii) 268;

(iii) 256; (iv) 333.

9. In each case, decompose the two numbers into primes, and then compute their
greatest common divisor:

(i) 88 and 132; (ii) 256 and 224;

(iii) 1080 and 855; (iv) 168 and 231.

10. Simplify the following expressions, writing the answers using positive exponents
only:

(i) t3t−3; (ii)
(
2x2y−3

)2;

(iii)
(xy)3

(xy)2
; (iv)

5624

103
;
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(v)
(
4b2

)2
(2b)−3; (vi) (x + y)−3;

(vii)

(
a−4

a−3

)−2

; (viii)
4p2q2

8p2q
.

11. Evaluate the following:

(i) 	117
; (ii) �44.3�;

(iii) 	28.4
; (iv) �−107.7�;

(v) |11.4|; (vi) �√3�;

(vii) | − 27|; (viii) 	−73
;

(ix) 	√2
; (x) 	−7.3
.

Exercises 1.1 B

1. Is the given statement true or false?

(i) 5 ∈ {1, 3, 4, 7}; (ii) 6 /∈ {1, 3, 4, 7};
(iii) 4 ∈ {1, 3, 4, 7}; (iv) {1, 3} = {1, 2, 3};
(v) 3 ∈ {1, 2, 3, 4, 5, 6}; (vi) R ⊆ Z;

(vii) 4 ⊆ {1, 3, 4, 5, 7}; (viii) {1, 2, 3, 4, 5} = {5, 4, 3, 2, 1, 0};
(ix) {1, 3, 2} = {1, 2, 3}; (x) {2, 3, 4} = {1, 2, 3}.

2. In each case, write the list of all members of the set:

(i) {x : x is a month whose name starts with J};
(ii) {x : x is an odd integer between −6 and 6};

(iii) {x : x is a letter in the word “Mississippi”}.
3. Which of the following are true?

(i) All rational numbers are real.

(ii) All real numbers are rational.

(iii) No irrational numbers are rational.

(iv) No irrational numbers are real.

4. For each of the following numbers, to which of the sets N,Z,Q,R does it be-
long?

(i) −2.13; (ii)
√

5; (iii)
√

4; (iv) 2π ;

(v) 1.834; (vi) 2 + √
2; (vii) 0; (viii)

√
2 + √

2.
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5. In each case, list all the factors of the number:

(i) 63; (ii) 24; (iii) 40; (iv) 28;

(v) 29; (vi) 66; (vii) 112; (viii) 70.

6. Give three different expressions for the set with members 0, 1, and 2.

7. Decompose the following numbers into primes:

(i) 96; (ii) 1029; (iii) 38 and 56; (iv) 112 and 54;

(v) 187; (vi) 588; (vii) 175; (viii) 127.

8. In each case, decompose the two numbers into primes, and then compute their
greatest common divisor:

(i) 240 and 84; (ii) 162 and 45;

(iii) 231 and 275; (iv) 444 and 629;

(v) 95 and 125; (vi) 462 and 252.

9. Simplify the following expressions, writing the answers using positive exponents
only:

(i) x4x−4;
(ii)

2632

63
;

(iii) (2xy)−2; (iv) 5y2z−3;

(v) (2x)2y3(xy)−2; (vi) (x − y)−2;

(vii)

(
x − 3

x − 2

)4

; (viii)
2x2y

4xy2
;

(ix) 6x2(3x)−2;
(x)

(2y)2x6

x4
;

(xi) (3xy)−2z;
(xii)

3x2

4x3
.

10. Evaluate the following:

(i) 	8.1
; (ii) 	−4.6
;

(iii) �308�; (iv) �77.7�;

(v) 	√5
; (vi) | − 7.6|;
(vii) �21.5�; (viii) �−7.3�;

(ix) |1.73|; (x) | − 5.2|;
(xi) �−105�; (xii) 	√2
;

(xiii) 	2π
; (xiv) �| − 9.6|�;

(xv) 		7.5

; (xvi) �	7.5
�.
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1.2 Equations and Inequalities

Equations

An equation is any expression of equality. Sometimes an equation simply expresses
a relation between numbers, such as 5−3 = 2. But more often we do not write down
the values of all the numbers concerned. For example, we might write x − 3 = 2.

In the expression x − 3 = 2, the quantity x is called a variable and can represent
any real number. Then x−3 = 2 is true when x = 5, and we say it is false otherwise.
We say x = 5 satisfies the equation, and we say 5 is the solution of the equation.

Sometimes equations can have more than one solution. For example, both x = 1
and x = 2 satisfy the equation x2 − 3x = −2, as you can easily check. We can also
show that there are no other solutions. The set of all solutions is called, naturally
enough, the solution set of the equation. The solution set of x2 − 3x = −2 is {1, 2}.
Two equations with the same solution set are called equivalent.

If a problem asks you to solve an equation, you should find all solutions, or in
other words find the solution set.

Equations are not restricted to one variable. For example, the equation x −y = 2
contains the two variables x and y, and we usually think of it as expressing the rela-
tionship between x and y. This equation has an infinitude of solutions. One example
is x = 3, y = 1, which can also be written (x, y) = (3, 1). We might also use this
equation to express one variable in terms of the other, as in y = x − 2.

Some equations are satisfied by every number; one such equation is (x − 1)2 =
x2 − 2x + 1. Such an equation is called an identity. There are also equations with no
solutions, and these are called inconsistent equations or contradictions.

Sample Problem 1.7. Which of the following are solutions of 2x + 3y = 1? (i)
x = 2, y = 3; (ii) x = −1, y = 1; (iii) x = 5, y = −3.

Solution. If we replace x by 2 and y by 3, the equation becomes 4 + 9 = 1,
which is false. The other two suggested solutions lead to −2 + 3 = 1 and
10 − 9 = 1, respectively, and both of these are true. So (ii) and (iii) are solu-
tions, but (i) is not.

Your Turn. Which of the following are solutions of 3x − 2y = 4?
(i) x = 2, y = 2; (ii) x = 4, y = 4; (iii) x = 3, y = 1.

When an equation is first presented to you, you know nothing about the variables.
When you solve an equation, you find out more about the variables. Assuming the
equation to be true, you know that the variables belong to the solution set. For this
reason, the variables are often called unknowns.
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Linear Equations with One Variable

The degree of an equation is the highest power of a variable that occurs in it. For
example, x − y = 2 is of degree 1, or first degree, while x2 − 3x = −2 is of
degree 2. The simplest equations are those of the first degree. These equations are
called linear because linear equations in two variables can be represented by straight
lines, as we shall see in Section 5.1.

We shall now discuss the solution of linear equations containing one variable,
such as 3x + 4 = 0, 2x = 3, and so on. These equations can be written in the form

ax = b,

which we shall call standard form. The symbols a and b may represent any numbers
provided a �= 0; they are constants, not variables, and in any particular equation their
values will be known.

To solve a linear equation with one variable, we first reduce it to standard form.
If any term on the right-hand side is a multiple of x, add its negative to both sides.
For example, given x + 2 = 1 − 2x, add 2x, the negative of −2x, to both sides. The
−2x cancels, leaving x + 2 + 2x = 1. If any constant is on the left, add its negative
to both sides. In the example, the new equation is x + 2x = 1 − 2. So you must
move all terms involving x to the left-hand side of the equation, and all other terms
to the right-hand side; but when you move a term from one side to the other, you
must change its sign, from positive to negative, or from negative to positive. Finally,
add all terms on each side of the new equation.

Once the equation is in standard form, its solution is immediate. As a is non-zero,
we can divide both sides by it, obtaining

x = b

a
,

and this is the only possible solution.

Sample Problem 1.8. Solve

3x − 4 = x + 2.

Solution. First we move all x terms to the left-hand side. The term x becomes
−x on the left, thus we have:

3x − 4 − x = 2.

Then move the −4. It becomes 4:

3x − x = 4 + 2.
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Next, gather terms, obtaining

2x = 6.

Finally, divide by 2:

x = 3.

Your Turn. Solve 3x + 5 = x + 7.

Sample Problem 1.9. Solve

x

2
− 4 = −5x

3
.

Solution. First move − 5x
3 to the left:

x

2
− 4 + 5x

3
= 0.

Then move the −4. It becomes 4:
x

2
+ 5x

3
= 4.

Next, gather terms. To simplify this equation, we multiply both sides by the com-
mon denominator 6:

3x + 10x = 24.

Finally, divide by 13:

x = 24

13
.

Your Turn. Solve
3x

2
− 5 = 2x

3
.

Equations in General

In solving linear equations with one variable, our procedure is to change the given
equation into a simpler equation that is equivalent to the original. This principle can
be applied to any equation. When we add terms to both sides of an equation, or
equivalently move terms to the other side of the equation, we are actually using the
following general property of equality:

If a, b and c are any quantities, then:

If a = b, then a + c = b + c;
If a = b, then a − c = b − c.
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The process of multiplying by a common denominator, and the process of dividing
by the coefficient of x, use:

If a, b and c are any quantities, then:

If a = b, then c × a = c × b;
If a = b, then

a

c
= b

c
, provided c �= 0.

These ideas can be used in general.

Sample Problem 1.10. Use the equation 4x2 + 3y = y + 6 to express y in terms
of x.

Solution. Even though x is a variable, we move it to the right-hand side because
we want to find an expression for y. So,

3y = y + 6 − 4x2.

All y terms belong on the left:

3y − y = 6 − 4x2.

Now we simplify:

2y = 6 − 4x2,

y = 3 − 2x2.

Your Turn. Use the equation x2 − 2y = 2y − 8 to express y in terms of x.

Inequalities

An inequality is similar to an equation, with one of the signs <, >, ≤, or ≥ replacing
the equality. Solving inequalities is similar to solving equations. Again there will be
a solution set, and inequalities with the same solution set are called equivalent. The
solution sets of inequalities usually involve intervals. A linear inequality is one with
only constants and first powers of variables.

The most important difference between solving inequalities and solving equa-
tions is the effect of multiplying both sides by a constant. If a < b, and c is a positive
constant, then c × a < c × b, but if d is a negative constant, then d × a > d × b. If
the sign is ≤, then multiplication by a positive constant leaves the sign unchanged,
while multiplication by a negative constant changes ≤ to ≥.

Sample Problem 1.11. Solve the following inequality for x:

4x − 3 ≤ 2x + 1.
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Solution. We first rewrite the inequality as:

4x − 2x ≤ 3 + 1

or

2x ≤ 4.

Dividing both sides by 2, we obtain x ≤ 2, or solution set (−∞, 2).

Your Turn. Solve for x: 2x + 3 ≤ x + 6.

Sample Problem 1.12. Solve the following inequality for x:

3x − 2 > 5x + 4.

Solution. We first rewrite the inequality as:
3x − 5x > 2 + 4

or
−2x > 6.

Dividing both sides by −2, we obtain x < −3. Observe the change in the in-
equality sign.

Your Turn. Solve for x: 2x + 3 ≤ 4x + 5.

Sample Problem 1.13. Use the following inequality to express y in terms of x:

3x − 4y > 2(x + y) − 3.

Solution. We first rewrite the inequality with all y terms on the left and all other
terms on the right:

−4y − 2y > 2x − 3x − 3

or
−6y > −x − 3.

Dividing both sides by −6, we obtain y < 1
6x + 1

2 .

Exercises 1.2 A

1. In each case, are the indicated values a solution to the equation?

(i) Equation 3x + y = 4; solution x = 3, y = −5;

(ii) Equation 3x + y = 4; solution x = 4, y = −7;
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(iii) Equation 2x + 3y = 8; solution x = 3, y = 1;

(iv) Equation 2x − 5y = −1; solution x = 2, y = 1;

(v) Equation x2 + y2 = 4; solution x = 2, y = 0;

(vi) Equation x2 + y2 = 1; solution x = 1, y = 1.

2. Solve these equations for x:

(i) 2x − 7 = 5; (ii) x + 3 = 3 − x;

(iii) 3x − 5 = x − 3; (iv) 3(x − 1) = 2(x + 1);

(v) 14 = 4 − 5x; (vi) 3(x − 1) + 2x = 7;

(vii)
1

2
x − 1 = 2; (viii)

3

2
x + 1 = 5 − 4

3
x;

(ix) 2x + 2 = −1 − 4x; (x) 3 − 3x = 4 − 2x;

(xi) 4x − 8 = 7x − 14; (xii) 2(3 + x) = 4x − 7.

3. Use the following equations to express y in terms of x:

(i) 4x − 6y = 9; (ii) 2x + 2y = 6;

(iii) 3x + y = 4y + 6; (iv) x2 − 2y = y − 3.

4. Solve these inequalities for x:

(i) 2x − 5 < 7x − 2; (ii) 3x + 1 > 5 − x;

(iii) 2x + 4 ≥ 4x; (iv) x − 4 ≥ 2 − 4x;

(v) 3 − x ≥ x + 5; (vi) 3x − 3 < 2 + x;

(vii) 5 − 3x ≤ x + 3; (viii) 2x + 3 > 3 − x;

(ix) 2 − 2x > 3 + x; (x) 4(1 − x) < 2(x + 4).

5. Use the following inequalities to express y in terms of x:

(i) 4x + 2y ≤ 4; (ii) x + y ≤ 3 − x;

(iii) x + 3y > 2y + 5x; (iv) 3x − 2y < 2x + 3;

(v) x + 3y + 2 ≥ 3x − y − 6; (vi) 3 − 2x > 5 − 2y.

Exercises 1.2 B

1. In each case, are the indicated values a solution to the equation?

(i) Equation 3x + y = 4; solution x = 1, y = 1;

(ii) Equation 3x + y = 4; solution x = 2, y = 2;

(iii) Equation 4x − 2y = 3; solution x = 2, y = 2.5;

(iv) Equation 4x − 2y = 6; solution x = 3, y = 3;

(v) Equation 2x + 3y = 5; solution x = 1, y = −1;

(vi) Equation x2 + 2x = y; solution x = 3, y = −5;

(vii) Equation x2 + y2 = 3; solution x = 2, y = 1;

(viii) Equation x2 = y2; solution x = 1, y = −1.
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2. Solve these equations for x:

(i) 2x − 4 = 2; (ii) 6x − 3 = 9;

(iii) 8 − 6x = 2; (iv) 2x + 7 = 5;

(v) 6x − 2 = 4x − 4; (vi) 3 + x = 2x + 1;

(vii) 7x − 3 = 2 − 4x; (viii) 2 − 6x = 3x − 7.

3. Solve these equations for x:

(i) 5x − 4 = −4; (ii) 2x − 3 = 5;

(iii) 4 − 2x = 3; (iv) 3x + 7 = 6;

(v) 2x − 4 = 3x − 3; (vi) 3 − x = 3x + 1;

(vii) 5x − 3 = 7 − 2x; (viii) 2 − 3x = 3x + 7;

(ix) 3x + 7 = −1 − 5x; (x) 3 − 3x = 2 − 4x;

(xi) 3x − 2 = 7x − 14; (xii) 2(2 + x) = 3x − 7;

(xiii) 2(x + 3) = 1 − 3x; (xiv) 5 − x = 2(1 − 2x);

(xv) 2x − 5 = 7x − 17; (xvi) 3(x − 1) = 4x − 2.

4. Use the following equations to express y in terms of x:

(i) 3x + 2y = x + 4; (ii) 3 − 2x − 2y = x + y;

(iii) 2(x + y) = 5 − (x − y); (iv) 3 + 3x = 7 + 2y;

(v) 2x − 1

3
= y − 1

2
; (vi) 3x − y = x − 3y.

5. Solve these inequalities for x:

(i) 3 − 4x ≤ 2; (ii) 3x − 5 < 5x − 3;

(iii) 5x + 2 > 8 − x; (iv) 4x + 6 ≤ 2x;

(v) x + 10 ≥ 12 − 3x; (vi) 2 − x ≤ 2x + 5;

(vii) 3x − 3 < 2 + 2x; (viii) 3(x + 1) ≤ 3(1 − 2x).

6. Solve these inequalities for x:

(i) 3 − 2x ≤ 1; (ii) 5x − 5 < 7x − 3;

(iii) 4x + 2 > 7 − x; (iv) 2x + 6 ≤ 4x;

(v) x + 8 ≥ 12 − 5x; (vi) 3 − x ≤ 3x + 1;

(vii) 7x − 3 < 2 + 4x; (viii) 2(x + 1) ≤ 3(1 − x);

(ix) 4 − 7x > 2 + x; (x) 3(1 − 2x) < 2(x + 3);

(xi) 2(x − 3) ≥ 1 + x; (xii) 3x + 2 ≤ 3(3 − x);

(xiii) 1 − 5x > 2(3 − 4x); (xiv) 3(1 + x) < 5(x − 3).
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7. Use the following inequalities to express y in terms of x:

(i) 2x + 2y ≤ 2; (ii) 6x − 3y + 12 < 0;

(iii) 2x + 2y ≤ 1 − 2x; (iv) x − 3y ≤ 3 − 2x;

(v) 4x + 3y > 2y + 5x + 3; (vi) 2x − 5y < x + y − 3;

(vii) 4x + 3y − 2 ≥ 2(x + y); (viii) 6 + 3x > x + 2y;

(ix) 5(x + 1) ≥ 3x + 2y + 1; (x) 3(1 − x) < 2(x − y).

8. Use the following inequalities to express x in terms of y:

(i) 2x + y ≤ 3; (ii) 4x − 2y + 2 < 0;

(iii) 2x + 2y ≤ 2 − 4x; (iv) x − y ≤ 2x − 3;

(v) 2x + 3y > y + 6x + 4; (vi) 6x − 4y < x + y − 3;

(vii) 3x + y − 2 ≥ 4(x − y); (viii) 2 + 3y > 2x + 2y;

(ix) 5(x + 1) ≥ 2x + 3y + 2; (x) 4(1 − x) < 2(x + y).

1.3 Sums

Sigma Notation

Suppose you want to write the sum of the first 16 positive integers. You could write

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16

but, instead of this clumsy form, it is more usual to write 1 + 2 + · · · + 16, assuming
that the reader will take the three dots to mean “continue in this fashion until you
reach the last number shown” (and, more importantly, hoping it is clear that each
number in the sum is obtained by adding 1 to the preceding number).

There is a standard mathematical notation for long sums, which uses the Greek
capital letter sigma, or

∑
. We write the above sum as

16∑

i=1

i

which means we take the sum of all the values i = 1, i = 2, . . . , up to i = 16. In the
same way,

6∑

i=1

i2 = 12 + 22 + 32 + 42 + 52 + 62;

the notation, called sigma notation, means “first evaluate the expression after the
∑

(that is, i2) when i = 1, then when i = 2, . . . , then when i = 6, and add the results”.
More generally, suppose a1, a2, a3, and a4 are any four numbers. (This use of a
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subscript on a letter, like the 1, 2, . . . on a, is common in mathematics—otherwise
we would run out of symbols!) Then

4∑

i=1

ai = a1 + a2 + a3 + a4.

The definition of a set does not allow for ordering of its elements, or for repeti-
tion of its elements. For example, {1, 2, 3}, {1, 3, 2}, and {1, 2, 3, 1} all represent the
same set (which could be written {x | x ∈ N and x ≤ 3}, or {x ∈ N | x ≤ 3}).
However, ordering is often useful, so we define a sequence to be an ordered set. Se-
quences can be denoted by parentheses; (1, 3, 2) is the sequence with first element 1,
second element 3 and third element 2, and is different from (1, 2, 3). Sequences can
contain repetitions, and (1, 2, 1, 3) is quite different from (1, 2, 3); the two occur-
rences of object 1 are distinguished by the fact that they lie in different positions
in the ordering. Formally, a sequence (ai) of length n is a collection of n objects
{a1, a2, . . . , an}, or {ai : 1 ≤ i ≤ n} together with an ordering: a1 is first, a2 is
second, and so on. Entry ai , where i is any one of the positive integers 1, 2, . . . , n, is
called the ith member of the sequence. Two members can have the same value, but
are counted as different if they are in different positions. For example, (1, 2, 1, 3) is
a sequence of length 4, but if we ignore the ordering then its elements form the set
{1, 2, 3} of order 3, called the underlying set of the sequence.

If (ai) is a sequence of length n or longer, then
∑n

i=1 ai is defined by the rules

1∑

i=1

ai = a1,

n∑

i=1

ai =
(

n−1∑

i=1

ai

)

+ an.

The use of ai to mean a “general” or “typical” member of {a1, a2, . . . , an} is
very common. When a set of numbers {a1, a2, . . . , an} is being discussed, we say a
property is true “for all ai” when we mean it is true for each member of the set.

Usually, the sigma notation is used with a formula involving i for the term fol-
lowing

∑
, as in the following examples. Notice that the range need not start at 1; we

can write
∑n

i=j when j and n are any integers, provided j < n.

Sample Problem 1.14. Write out the following as sums and evaluate them:

4∑

i=1

i2;
6∑

i=3

i(i + 1).
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Solution.
4∑

i=1

i2 = 12 + 22 + 32 + 42

= 1 + 4 + 9 + 16

= 30;
6∑

i=3

i(i + 1) = 3·4 + 4·5 + 5·6 + 6·7

= 12 + 20 + 30 + 42

= 104.

Your Turn. Write out the following as sums and evaluate them:

5∑

i=3

i(i − 1);
6∑

i=2

i.

Sample Problem 1.15. Write the following in sigma notation:

2 + 6 + 10 + 14; 1 + 16 + 81.

Solution.

4∑

i=1

(4i − 2);
3∑

i=1

i4.

Your Turn. Write the following in sigma notation:

1 + 3 + 5 + 7 + 9; 8 + 27 + 64 + 125.

Some properties of sums

It is easy to see that the following properties of sums are true:

(1) If c is any given number, then
n∑

i=1

c = nc.

(2) If c is any given number and (ai) is any sequence of length n, then

n∑

i=1

(cai) = c·
(

n∑

i=1

ai

)

.
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(3) If (ai) and (bi) are any two sequences, both of length n, then
n∑

i=1

(ai + bi) =
(

n∑

i=1

ai

)

+
(

n∑

i=1

bi

)

.

(4) If (ai) is any sequence of length n, 1 ≤ j < n, then

n∑

i=1

ai =
j∑

i=1

ai +
n∑

i=j+1

ai.

The following is a standard result on sums.

Theorem 1. The sum of the first n positive integers is 1
2n(n + 1), or

n∑

i=1

i = n(n + 1)

2
.

Proof. Let us write s for the answer. Then s = ∑n
i=1 i. We shall define two very

simple sequences of length n. Write ai = i and bi = n + 1 − i. Then (ai) is
the sequence (1, 2, . . . , n) and (bi) is (n, n − 1, . . . , 1). They both have the same
elements, although they are written in different order, so they have the same sum,

s =
n∑

i=1

ai =
n∑

i=1

bi.

So

2s =
n∑

i=1

ai +
n∑

i=1

bi

=
n∑

i=1

(ai + bi)

=
n∑

i=1

(
i + (n + 1 − i)

)

=
n∑

i=1

(n + 1)

= n·(n + 1).

Therefore, dividing by 2, we get s = n(n + 1)/2. �
Since adding 0 does not change a sum, this result could also be stated as

n∑

i=0

i = n(n + 1)

2
.

That form is sometimes more useful.
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Sample Problem 1.16. Find the sum of the numbers from 11 to 30 inclusive.

Solution.
∑30

i=11 i is required. Now:

30∑

i=1

i =
10∑

i=1

i +
30∑

i=11

i,

and, using the theorem and substituting, we have:

30·31

2
= 10·11

2
+

30∑

i=11

i,

465 = 55 +
30∑

i=11

i,

so
∑30

i=11 i = 465 − 55 = 410.

Sample Problem 1.17. Find 2 + 6 + 10 + 14 + 18 + 22 + · · · + 122.

Solution. This is the sum of the terms 2 + 4i, where i goes from 0 to 30.

30∑

i=0

(2 + 4i) =
(

30∑

i=0

2

)

+
(

30∑

i=0

4i

)

=
(

30∑

i=0

2

)

+ 4·
(

30∑

i=0

(i)

)

= 31·2 + 4· 30·31

2
= 62 + 1860

= 1922.

Your Turn. Find 3 + 7 + · · · + 43.

Two other standard results, that will be proven in the exercises, are:

Theorem 2.

n∑

i=1

i2 = n(n + 1)(2n + 1)

6
.

Theorem 3.

n∑

i=0

xi = xn+1 − 1

x − 1
unless x = 1.
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Exercises 1.3 A

1. Write each of the following as sums and evaluate them:

(i)
6∑

i=1

i2 + 1; (ii)
3∑

i=1

1

10i
;

(iii)
9∑

i=3

i(i − 3); (iv)
5∑

i=2

1

i
;

(v)
4∑

i=2

(−2)i ; (vi)
4∑

i=1

1 + (−1)i ;

(vii)
5∑

i=2

1

i − 1
; (viii)

6∑

i=1

1 + 3i.

2. Write each of the following sums in sigma notation:

(i) 1 + 4 + 7 + 10 + 13;

(ii) 2 + 6 + 10;

(iii) 1 − 4 + 7 − 10 + 13;

(iv) 0 − 1 + 4 − 9 + 16;

(v) 3 + 7 + 3 + 7 + 3 + 7;

(vi) 0 + 3 + 8 + 15.

3. Suppose ai = i2, so that a1 = 1, a2 = 4, a3 = 9, and so on.

(i) Say bi = i3 − (i − 1)3. Prove that
∑n

i=1 bi = n3.

(ii) Prove that bi = 3i2 − 3i + 1, and therefore
n∑

i=1

bi = 3
n∑

i=1

i2 − 3
n∑

i=1

i + n.

(iii) Use this to prove that
n∑

i=1

i2 = n(n + 1)(2n + 1)

6
.

4. Suppose
∑n

i=1 ai = A and
∑n

i=1 bi = B. Evaluate
∑n

i=1 ci in each of the
following cases:

(i) ci = 2ai + 1; (ii) ci = 3ai − bi ;

(iii) ci = ai + bi + 2; (iv) ci = ai + bi + (−1)n.

5. Use the standard results of Theorems 1, 2, and 3 and the four properties of sums
to evaluate the following expressions:
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(i)
12∑

i=7

(i − 3); (ii)
8∑

i=3

(5i2 − 4);

(iii)
6∑

i=2

2i ; (iv)
n∑

i=1

(i2 + 1);

(v)
n∑

i=1

3i ; (vi)
n∑

i=1

(6i2 − 1);

(vii)
n∑

i=1

i(i − 2); (viii)
n∑

i=1

1

2i
.

6. Prove that
n∑

i=1

2n − 1 = n2

(in other words, the sum of the first n odd positive whole numbers is n2).

Exercises 1.3 B

1. Write the following as sums and evaluate them:

(i)
4∑

i=1

i2; (ii)
5∑

i=1

1 + (−1)i ;

(iii)
6∑

i=3

1 − i; (iv)
15∑

i=6

4;

(v)
6∑

i=3

i(i − 1); (vi)
4∑

i=2

1

i2
.

2. Write the following as sums and evaluate them:

(i)
3∑

i=1

i3; (ii)
6∑

i=1

(−1)i ;

(iii)
4∑

i=2

√
i; (iv)

5∑

i=1

1 + i

2
;
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(v)
6∑

i=3

i(i − 2); (vi)
5∑

i=1

(−1)i+1i2;

(vii)
15∑

i=12

i + 1

i
; (viii)

5∑

i=2

i + (−1)i ;

(ix)
5∑

i=2

i2 − 3; (x)
5∑

i=2

i2 − 4i.

3. Write each of the following sums in sigma notation:

(i) 1 + 4 + 9 + 16 + 25;

(ii) 2 + 5 + 8 + 11;

(iii) −1 + 2 − 3 + 4;

(iv) 6 + 5 + 4 + 3 + 2 + 1;

(v) 1 + 3 + 9 + 27 + 81;

(vi) 4 − 6 + 8 − 10 + 12 − 14;

(vii) 2 + 4 + 10 + 28 + 82;

(viii) 4 + 8 + 12 + 16 + 20;

(ix) −1 − 2 − 3 − 4 − 5 − 6;

(x) 11 + 17 + 23.

4. Suppose a1 = 1, a2 = x, a3 = x2, and, in general, ai = xi−1.

(i) Prove that
∑n+1

i=2 ai = x
∑n

i=1 ai ;

(ii) Use this to show that
∑n

i=1 ai = 1 + x
∑n

i=1 ai − xn;

(iii) Use part (ii) to find the value of
∑n

i=1 ai when x �= 1;

(iv) Why did we have to require “x �= 1” in the preceding part?

5. Suppose
∑n

i=1 ai = A and
∑n

i=1 bi = B. Evaluate
∑n

i=1 ci in each of the
following cases:

(i) ci = 5ai ; (ii) ci = 2ai − bi ;

(iii) ci = ai + 2bi ; (iv) ci = ai + bi − 1;

(v) ci = 2ai + bi ; (vi) ci = 2 − bi .

6. Use that standard results of Theorems 1, 2, and 3 in the text and the four proper-
ties of sums to evaluate the following expressions:
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(i)
6∑

i=1

(2i − 5); (ii)
10∑

i=1

(
2i2);

(iii)
20∑

i=1

(
i2 − 3i

)
; (iv)

5∑

i=0

(
1

2

)i

;

(v)
12∑

i=1

i2 − 5i − 1; (vi)
n∑

i=1

2i + 1.

7. Use that standard results of Theorems 1, 2, and 3 and the four properties of sums
to evaluate the following expressions:

(i)
20∑

i=5

(2i + 1); (ii)
n∑

i=1

(
i2 − i

)
;

(iii)
10∑

i=4

(
i2 + 1

)
; (iv)

n∑

i=1

(1 + i)2;

(v)
9∑

i=1

2−i ; (vi)
n∑

i=0

2−i .

1.4 Elements of Set Theory

More About Sets

We defined the notation

s ∈ S

to mean “s belongs to S” or “s is an element of S”. If S and T are two sets, we shall
write T ⊆ S to mean that every member of T is also a member of S. In other words,
“If s is any element of T then s is a member of S”, or

s ∈ T ⇒ s ∈ S,

where ⇒ is shorthand for implies. When T ⊆ S we say T is a subset of S. Sets S

and T are equal, S = T , if and only if S ⊆ T and T ⊆ S are both true. If necessary,
we can represent the situation where T is a subset of S but S is not equal to T , that
is, there is at least one member of S that is not a member of T , by writing S ⊂ T ,
and we call T a proper subset of S.

Suppose R ⊆ S and S ⊆ T are both true. Any member of R will also be a
member of S, which means it is a member of T . So R ⊆ T . This sort of rule is called
a transitive law.

It is important not to confuse the two symbols ∈ and ⊆, or their meanings:
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Sample Problem 1.18. Suppose S = {0, 1}. Which of the following are true:
0 ∈ S, {0} ∈ S, 0 ⊂ S, {0} ⊂ S, 0 ⊆ S, {0} ⊆ S, S ∈ S, S ⊂ S, S ⊆ S?

Solution. 0 is a member of S, but {0} and S are not, so 0 ∈ S is true but {0} ∈ S,
and S ∈ S are false. As 0 is a member of S, {0} ⊂ S and {0} ⊆ S are true. But
0 is not a set of elements of S, so 0 ⊂ S and 0 ⊆ S are false. Finally, S ⊆ S is
true, but S ⊂ S would imply S �= S, so it is false.

Among the standard number sets, many subset relationships exist. Every natural
number is an integer, every integer is a rational number, and every rational number
is a real number, so N ⊆ Z, Z ⊆ Q, Q ⊆ R. We could write all these relationships
down in one expression:

N ⊆ Z ⊆ Q ⊆ R.

In fact, we know that no two of these sets are equal, so we could write

N ⊂ Z ⊂ Q ⊂ R.

Some special sets of numbers are given special names: we have already used Z
∗ to

denote the set of all non-negative integers, and similarly we could write R
∗ for the

set of all non-negative real numbers. The notation + is often used for the set of all
positive members of a number set; in particular, Z+ is another name for N.

An important concept is the empty set, or null set, which has no elements. This
set, denoted by ∅, is unique and is a subset of every other set.

In all the discussions of sets in this book, we shall assume (usually without both-
ering to mention the fact) that all the sets we are dealing with are subsets of some
given universal set, U . The set U may be chosen to be as large as necessary in any
problem we deal with; in many of our discussions we can choose U = Z or U = R.
The universal set can often be chosen to be a finite set.

The Basic Operations on Sets

Given sets S and T , we define three operations: the union of S and T is the set

S ∪ T = {
x : x ∈ S or x ∈ T (or both)

};
the intersection of S and T is the set

S ∩ T = {x : x ∈ S and x ∈ T };
the relative complement of T with respect to S (or alternatively the set-theoretic
difference or relative difference between S and T ) is the set

S\T = {x : x ∈ S and x �∈ T }.
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In particular, the relative complement U\T with respect to the universal set U is
denoted by T and called the complement of T .

We may write R\S = R ∩ S, since each of these sets consists of the elements
belonging to R but not to S. Hence we see that R ⊆ S if and only if R\S = ∅. If S

is any set, S\S will equal ∅.

There is also a special relationship between the other operations and subsets. If
S is any subset of T , then S ∩ T = S and S ∪ T = T .

Sample Problem 1.19. If E is the set of all even integers and Π is the set of all
prime numbers, what are E ∪ Π , E ∩ Π , E\Π , and Z ∪ N, Z∗\Π?

Solution. E∪Π contains all primes and all even numbers. (2 is the only number
we have described twice.) E ∩ Π contains only the common element 2, the only
even prime. E\Π contains all the even numbers except 2. All natural numbers
are integers, so N ⊆ Z and Z ∪ N = Z. Z∗\Π contains all the positive numbers
that are not primes, and zero. In symbols,

E ∪ Π = {. . . ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, 8, 10, 11, . . .},
E ∩ Π = {2},
E\Π = {. . . ,−8,−6,−4,−2, 0, 4, 6, 8, . . .},
Z ∪ N = Z,

Z
∗\Π = {0, 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, . . .}.

Your Turn. What are Z\Z∗, Z ∩ N, (N\E) ∪ Π?

If two sets, S and T , have no common element, so that S ∩ T = ∅, then we say
that S and T are disjoint. Observe that S\T and T must be disjoint sets; in particular,
T and T are disjoint.

Sample Problem 1.20. In each case, are the sets S and T disjoint? If not, what
is their intersection?

(i) S is the set of perfect squares, T = R\R∗.

(ii) S is the set of perfect squares, T = R\R+.

(iii) S is the set of all multiples of 5, T is the set of all multiples of 7.

Solution.

(i) The sets are disjoint.

(ii) They are not disjoint, because 0 is a perfect square (0 = 02); S ∩ T = {0}.
(iii) They are not disjoint. S ∩ T is the set of all multiples of 35.
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Your Turn. In each case, are the sets S and T disjoint? If not, what is their
intersection?

(i) S = Π,T is the set of even integers.

(ii) S = {1, 3, 5, 7, 9}, T = {2, 4, 6, 8, 10}.

Properties of the Operations

We now investigate some of the easier properties of the operations ∪, ∩, and \; for
the more difficult problems, we shall introduce some techniques in the next section.

Union and intersection both satisfy idempotence laws: for any set S,

S ∪ S = S ∩ S = S.

Both operations satisfy commutative laws; in other words,

S ∪ T = T ∪ S

and

S ∩ T = T ∩ S,

for any sets S and T . Similarly, the associative laws

R ∪ (S ∪ T ) = (R ∪ S) ∪ T

and

R ∩ (S ∩ T ) = (R ∩ S) ∩ T

are always satisfied. The associative law means that we can omit brackets in a
string of unions (or a string of intersections); expressions like (A ∪ B) ∪ (C ∪ D),
((A ∪ B) ∪ C) ∪ D, and (A∪ (B ∪C))∪D are all equal, and we usually omit all the
parentheses and simply write A ∪ B ∪ C ∪ D. But be careful not to mix operations.
(A ∪ B) ∩ C and A ∪ (B ∩ C) are quite different. Combining these two laws, we see
that any string of unions can be rewritten in any order: for example,

(D ∪ B) ∪ (C ∪ A) = (
C ∪ (

B ∪ (A ∪ D)
)) = (A ∪ B ∪ C ∪ D).

Sample Problem 1.21. Prove that (A ∪ B) ∩ C = A ∪ (B ∩ C) is not always
true.

Solution. To prove that a general rule is not true, it suffices to find just one case
in which it is false. As an example we take the case A = R, B = Z, C = {0}.
Then (A ∪ B) ∩ C = {0}, while A ∪ (B ∩ C) = R.
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Cartesian Product

We define the Cartesian product (or cross product) S × T of sets S and T to be the
set of all ordered pairs (s, t) where s ∈ S and t ∈ T :

S × T = {
(s, t) : s ∈ S, t ∈ T

}
.

There is no requirement that S and T should be disjoint; in fact, it is often useful to
consider S × S.

The number of elements of S × T is |S| · |T |.

Sample Problem 1.22. Suppose S = {0, 1} and T = {1, 2}. What is S × T ?

Solution. S×T = {(0, 1), (0, 2), (1, 1), (1, 2)}, the set of all four of the possible
ordered pairs.

Your Turn. What is S × T if S = {1, 2} and T = {1, 4, 5}?

The sets (R × S) × T and R × (S × T ) are not equal; one consists of an ordered
pair whose first element is itself an ordered pair, and the other of pairs in which the
second is an ordered pair. So there is no associative law, and no natural meaning for
R × S × T . On the other hand, it is sometimes natural to talk about ordered triples
of elements, so we define

R × S × T = {
(r, s, t) : r ∈ R, s ∈ S, t ∈ T

}
.

This notation can be extended to ordered collections of any length.

Exercises 1.4 A

1. In each case, list all elements of the set described:

(i) The set of all odd numbers between 2 and 10;

(ii) The set of all days in a week;

(iii) The set of all positive multiples of 3 between 10 and 20;

(iv) The set of all prime numbers smaller than 10;

(v) The set of all even prime numbers;

(vi) The set of all positive factors of 36.

2. Write brief descriptions of the following sets. (There will often be many correct
answers.)
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(i) {3, 6, 9}; (ii) {3, 6, 9, . . .};
(iii) {1,−10}; (iv) {1, 4, 9};
(v) {1, 3}.

3. Suppose

A = {a, b, c, d, e}, B = {a, c, e, g, i}, C = {c, f, i, e, o}.
Write down the elements of the following sets:

(i) A ∪ B; (ii) A ∩ C;

(iii) A\B; (iv) A ∪ (B\C).

4. Suppose

A = {1, 2, 4, 5, 6, 7}, B = {1, 3, 5, 7, 9}, C = {2, 4, 6, 7, 8, 9}.
Write down the elements of the following sets:

(i) A ∪ B ∪ C; (ii) A ∪ (B ∩ C);

(iii) A\C; (iv) A ∩ (B\C).

5. Suppose

A = {1, 3, 5, 6, 7}, B = {1, 2, 3, 4, 5}, C = {5, 6, 7, 8}.
Write down the elements of the following sets:

(i) A ∩ B; (ii) A ∩ C;

(iii) A\(B ∩ C); (iv) A ∪ B ∪ C;

(v) A\(B ∪ C); (vi) (A ∪ B)\C.

6. Consider the sets

S1 = Π,

S2 = {2, 4, 6, 8},
S3 = {2, 3, 5, 7},
S4 = {x : x is a prime divisor of 30},
S5 = {x ∈ N : x is a power of 2}.

(i) For which i and j , if any, is Si ⊆ Sj ? For which i and j , if any, is Si = Sj ?

(ii) Write down the elements of Si ∩ Sj for every case where i < j .

7. In each case, are the sets S and T disjoint? If not, what is their intersection?

(i) S is the set of all multiples of 5; T is the set of all perfect squares.
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(ii) S is the set of all students in your class; T is the set of all students in your
college.

8. In each case, list all elements of S × T :

(i) S = {a, b, c}, T = {a, c, f };
(ii) S = {x | x2 = 4}, T = {2, 3, 4, 5};

(iii) S = {x | x is a prime less than 4}, T = {4, 5}.
9. In each case, list all elements of R × S × T :

(i) R = {1, 2}, S = {3, 4}, T = {5, 6};
(ii) R = {x, y}, S = {z}, T = {1, 2}.

Exercises 1.4 B

1. In each case, list all elements of the set described:

(i) The set of all integers between two and ten inclusive;

(ii) The set of all months in a year;

(iii) The set of odd positive multiples of 5, less than 50;

(iv) The set of all positive factors of 24;

(v) The set of all factors of 24;

(vi) The set of perfect squares smaller than 20;

(vii) The set of all vowels in English;

(viii) The set of all even integers between two and ten inclusive;

(ix) The set of all seasons in a year;

(x) The set of positive multiples of 5, less than 30.

2. Write brief descriptions of the following sets. (There will often be many correct
answers.)

(i) {2, 4, 6, 8};
(ii) {2, 4, 6, 8, . . .};

(iii) {2, 3, 5};
(iv) {−1,−2,−3, . . .};
(v) {0, 1}.

3. Write at least two different brief descriptions of the set {2, 3, 5, 7}.
4. Consider the sets

A1 = {1, 2, 3, 4},
A2 = {1, 2, 3, 4, 5, 6, 7, 8},
A3 = {3, 4, 5, 8, 9},
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A4 = {4, 3, 2, 1},
A5 = {2, 4, 6, 8}.

(i) For which i and j , if any, is Ai ⊆ Aj ? For which i and j , if any, is Ai = Aj ?

(ii) Write down the elements of Ai ∩ Aj for every case where i < j .

5. Consider the sets
A1 = {1, 2, 4},
A2 = {1, 2, 3, 4, 5},
A3 = {1, 3, 4, 6},
A4 = {4, 2, 1}.

(i) For which i and j , if any, is Ai ⊆ Aj ? For which i and j , if any, is Ai = Aj ?

(ii) Write down the elements of Ai ∩ Aj for every case where i < j .

6. Suppose A = {2, 3, 5, 6, 8, 9}, B = {1, 2, 3, 4, 5}, C = {5, 6, 7, 8, 9}. Write
down the elements of

(i) A ∩ B; (ii) A ∪ C;

(iii) A\(B ∩ C); (iv) (A ∪ B)\C.

7. Suppose A = {1, 2, 3, 4, 5}, B = {2, 3, 5, 7, 8}, C = {2, 4, 6, 7, 8, 9}. Write
down the elements of

(i) (A ∩ B) ∪ C; (ii) A ∪ (B ∩ C);

(iii) A\C; (iv) A ∩ B ∩ C.

8. Suppose A = Π,B = {2, 4, 6, 7, 9}, C = {1, 2, 3, 4, 5, 6}. Write down the
elements of

(i) A ∩ B; (ii) C\A;

(iii) A ∩ (B\C); (iv) A ∩ (B ∪ C).

9. Suppose A = Z
+, B = {−4,−2, 1, 3, 5, 7}, C = {x | x2 = 1}. Write down the

elements of

(i) (A ∩ B) ∪ C; (ii) A ∩ B ∩ C;

(iii) C\A; (iv) A ∩ (B\C).

10. Suppose A = {1, 2, 3, 5, 7}, B = {1, 2, 3, 4, 5, 6, 8}, C = {2, 4, 5, 6, 7}. Write
down

(i) A ∩ B; (ii) A ∩ C;

(iii) A ∪ B; (iv) A ∪ C;

(v) A\(B ∩ C); (vi) A\(B ∪ C);
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(vii) (A ∪ B)\C; (viii) A ∩ B ∩ C.

11. Consider the sets

S1 = {2, 5},
S2 = {1, 2, 4},
S3 = {1, 2, 4, 5, 10},
S4 = {x ∈ N : x is a divisor of 20},
S5 = {x ∈ N : x is a power of 2 and a divisor of 20}.

(i) For which i and j , if any, is Si ⊆ Sj ? For which i and j , if any, is Si = Sj ?

(ii) Write down the elements of Si ∩ Sj for every case where i < j .

12. In each case, are the sets S and T disjoint? If not, what is their intersection?

(i) S = {1, 2, 3, 4, 5}, T = {6, 7, 8, 9, 10};
(ii) S = {1, 2, 3, 4, 5}, T = {5, 6, 7, 8, 9};

(iii) S = {1, 3, 5, 7, 9}, T = {2, 4, 6, 8, 10};
(iv) S = {1, 2, 3, 4, 5}; T = {2, 4, 6, 8, 10}.

13. In each case, are the sets S and T disjoint? If not, what is their intersection?

(i) S is the set of squares 1, 4, 9, . . . and T is the set of cubes 1, 8, 27, . . . of
positive integers.

(ii) S is the set of perfect squares; T = R\R+.

(iii) S is the set of perfect squares 1, 4, 9, . . .; T is the set Π of primes.

14. In each case, list all elements of S × T :

(i) S = {1, 3}, T = {1, 5};
(ii) S = {0, 1, 2}, T = {2, 3, 4};

(iii) S = {1, 3, 5, 7}, T = {1, 2, 3};
(iv) S = {1, 3, 4}, T = {red, blue};
(v) S = {x | x2 = 1}, T = {y | y2 = 4};

(vi) S = {x | x ∈ Π, x < 10}, T = {1, 2};
(vii) S = {1, 2}, T = {3, 4};

(viii) S = {1, 2}, T = {2, 3};
(ix) S = {1, 7}, T = {1, 2, 3};
(x) S = {x | x2 = 1}, T = {y | y2 = 1}.

15. In each case, list all elements of R × S × T :

(i) R = {1, 2}, S = {1, 3}, T = {2, 3};
(ii) R = {12, 13, 14}, S = {1}, T = {1, 2, 3}.
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16. In each case, list all elements of R × S × T :

(i) R = {1, 2, 3}, S = {1, 3}, T = {2};
(ii) R = {2, 3}, S = {1, 3}, T = {1, 2}.

17. In each case, find the sets A ∩ (B ∪ C) and (A ∩ B) ∪ C:

(i) A = {1, 2, 3, 4}, B = {1, 3, 5, 7}, C = {5, 6, 7, 8};
(ii) A = {1, 2, 3, 4}, B = {1, 3, 4, 6}, C = {2, 3, 7, 8}.

18. (i) If S = ∅, T �= ∅, what is S × T ?

(ii) If S × T = T × S, what can you say about S and T ?

19. (i) If A ⊆ S,B ⊆ T , show that A × B ⊆ S × T .

(ii) Find an example of sets A,B, S, T , such that A × B ⊆ S × T and B ⊆ T ,
but A �⊆ S.

1.5 Venn Diagrams

Venn Diagrams

It is common to illustrate sets and operations on sets by diagrams. A set A is repre-
sented by a circle, and it is assumed that the elements of A correspond to the points
(or some of the points) inside the circle. The universal set is usually shown as a rect-
angle enclosing all the other sets; if it is not needed, the universal set is sometimes
omitted. Such an illustration is called a Venn diagram.1

For example, suppose the universal set consists of the nine integers {1, 2, 3, 4, 5,

6, 7, 8, 9}. Then the diagram will be enclosed in a rectangle, and the numbers 1, 2,
3, 4, 5, 6, 7, 8, and 9 will be represented by points in the rectangle. If A is the set
{1, 2, 3, 4}, then a circle will be drawn inside the rectangle, with 1, 2, 3, and 4 inside
it and the other numbers outside:

1 Similar diagram methods were first used by Leibniz and Euler. George Venn used the dia-
grams extensively. Some textbooks use the name “Euler diagram” for the case where not all
possible regions are represented, but we think it more appropriate simply to say “Venn dia-
gram” because Venn formalized and unified diagram methods. For some reason, Leibniz has
escaped credit.
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If B = {3, 4, 5, 6, 7} then A and B can be shown on the same diagram as follows,
with the common elements of A and B in the area common to the two circles:

This same method can be used to represent more general sets. The following
figures show Venn diagrams representing A ∪ B, A ∩ B, A, and A\B; in each case,
the set represented is shown by the shaded area. The universal set is shown in each
figure. Of course, we do not know the individual members of the sets, but they could
be represented by points in the diagram if they were known.

Two sets are equal if and only if they have the same Venn diagram. In order to
illustrate this, consider the set equation

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ),

where R, S, and T can be any sets. The Venn diagram for R ∪ (S ∩ T ) is constructed
in Figure 1.1, and that for (R ∪ S) ∩ (R ∪ T ) is constructed in Figure 1.2. The two
are obviously identical.

This rule is called a distributive law, and it should remind you of the distributive
law

a(b + c) = ab + ac

for numbers. There are in fact two distributive laws for sets; the second is:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

To prove A ⊆ B, it is sufficient to show that all the shaded areas in the diagram
for A are also shaded in B. We illustrate this idea with another set law.
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Fig. 1.1. R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T )

Fig. 1.2. R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T )

Sample Problem 1.23. Use Venn diagrams to prove that

A ∩ B ∩ C ⊆ B ∩ (A ∪ C).

Solution.

Your Turn. Use Venn diagrams to prove that

A ∩ C ⊆ (A ∩ B) ∪ C.

Sometimes we draw a Venn diagram so as to represent some properties of sets.
For example, if A and B are disjoint sets, the diagram can be drawn with A and
B shown as disjoint circles. If A ⊆ B, the circle for A is entirely inside the circle
for B.
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Counting the Elements

Venn diagrams can also be used to calculate the numbers of elements in sets. We
write the numbers of elements in the areas of the diagram, instead of the elements
themselves.

Sample Problem 1.24. There are 40 students in Dr. Brown’s Finite Mathematics
course and 50 in his Calculus section. If these are his only classes, and if 20
of the students are taking both subjects, how many students does he have alto-
gether? Represent the data in a Venn diagram.

Solution. We use the notation F for the set of students in the finite class and
C for Calculus. There are four areas in the Venn diagram: the set of students
in both classes (the center area, F ∩ C) has 20 members; the set of students in
Finite Mathematics only (the left-hand enclosed area) has 20 members—subtract
20 from 40; the area corresponding to Calculus-only students, has 50 − 20 = 30
members; and the outside area has no members (only Dr. Brown’s students are
being considered). So Dr. Brown has 70 students; the diagram is

Your Turn. A survey shows that 12 newspaper readers buy the morning edition
and seven buy the evening edition; three of these also bought the morning paper.
Represent the data in a Venn diagram. How many readers were surveyed?

This method can be used to find the number of elements in the set represented by
any of the areas or unions of areas, provided there is enough information.

Sample Problem 1.25. 100 people were surveyed to find out whether newspaper
advertisements or flyers were more efficacious in advertising supermarket spe-
cials. 20 of them said they pay no attention to either medium. 50 said they read
the flyers, and 15 of those said they also check the newspapers. How many use
the newspaper ads, in total?

Solution. We do not know how many people read the newspaper advertisements
but not the flyers. Suppose there are X of them. Then we get the Venn diagram
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In order for the total to add to 100, X = 30, so the total who use the newspaper
ads is X + 15 = 45.

These methods can be applied to three or more sets.

Sample Problem 1.26. 500 people were asked about their morning vitamin in-
take. It was found that 150 take vitamin B, 200 take vitamin C, 165 take vitamin E,
57 take both B and C, 125 take both B and E, 82 take both C and E, and 52 take
all three vitamins. How many take both B and E but do not take C? How many
take none of these vitamins?

Solution. We start with the diagram

From the data, v = 52, and u+v = 57, so u = 5. Similarly, w = 73 and y = 30.
Now t + u + v + w = 150, so t = 20. The other sizes are calculated similarly,
and we get the diagram

The cell corresponding to “B and E but not C” has 73 elements. There are 303
elements in total, so there are 197 people who take none.

Your Turn. In a survey of 150 moviegoers, it was found that 80 like horror
movies, 75 like police procedurals, and 60 like romances. In total, 35 like both
horror and procedurals, 25 like horror and romance, and 30 like procedurals and
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romance. 15 like all three types of movie. Represent these data in a Venn diagram.
How many like horror and police procedural movies, but do not like romances?
How many like romances only? How many like none of these three types?

Exercises 1.5 A

1. Represent the following sets in a Venn diagram:
(i) R ∪ S ∪ T ;

(iii) (R ∩ S)\(S ∩ T );

(ii) R ∪ (S ∩ T );

(iv) (R\S) ∩ T .

2. Use Venn diagrams to prove the commutative and associative laws for ∪:

(i) (R ∪ S) = (S ∪ R);

(ii) ((R ∪ S) ∪ T ) = (R ∪ (S ∪ T )).

3. Prove the following rules using Venn diagrams:

(i) S ∩ T = S ∪ T ;

(ii) (S ∩ T ) ⊆ S.

4. 1865 voters were surveyed about a new highway. Of them, 805 were in favor
financing it with a new tax, 627 favored tolls on the highway, while 438 said
they would vote in favor of either measure.

(i) How many favor taxes but not tolls?

(ii) How many favor tolls but not taxes?

(iii) How many would vote against either form of funding?

5. Some shoppers buy bread, butter, and coffee. Ten buy bread, 15 buy butter, and
14 buy coffee. The number buying both bread and butter, both bread and coffee,
and both butter and coffee are four, five, and eight, respectively. Three buy all
three products. How many shoppers were there (assuming all bought at least one
of the three)?

6. 18 people are interviewed. Of these, seven dislike the Republican party, ten dis-
like the Democrats, and 11 dislike the Green party. Moreover, five dislike both
Democrats and Republicans, five dislike both Republicans and Greens, while
six dislike both Democrats and Greens. And four dislike all three types of politi-
cians, on principle. How many like all three?

7. In a survey at Dave’s Bagel Barn, 75 customers were asked about their prefer-
ences. It was found that 35 like poppy seed bagels, 33 like onion bagels, and 26
like chocolate bagels. There were 18 who like both poppy seed and onion, and
nine who like both poppy seed and chocolate, while 12 enjoyed only chocolate
from the three being discussed.

(i) How many customers enjoy onion and chocolate but do not like poppy
seed?



40 1 Numbers and Sets

(ii) How many liked onion but neither of the others?

(iii) How many did not like any of those flavors?

(iv) Can you tell how many liked all three?

8. Elizabeth’s Chocolate Company sells milk chocolates, dark chocolates, and
white chocolates. On one day, 164 customers bought chocolates. 120 of them
purchased a selection that included milk chocolates, 114 included dark choco-
lates in their order, and 84 included white chocolates. There were 80 who bought
both dark and milk and 64 who bought both white and milk, while 40 bought all
three varieties. Draw a Venn diagram to represent these data.

(i) How many bought both dark and white chocolate but no milk chocolate?

(ii) How many bought a milk and white assortment that included no dark
chocolate?

(iii) How many bought white chocolate only?

9. A shopping mall contains K-Mart, Wal-Mart, and Target stores. In a survey of
100 shoppers, it is found that

(a) 47 shopped at Wal-Mart;

(b) 61 shopped at K-Mart;

(c) 52 shopped at Target;

(d) 32 shopped at both Wal-Mart and K-Mart;

(e) 35 shopped at both K-Mart and Target;

(f) 22 shopped at both Wal-Mart and Target;

(g) 12 shopped at all three stores.

(i) How many of those surveyed shopped only at Wal-Mart?

(ii) How many shopped at Wal-Mart and K-Mart, but not at Target?

(iii) How many shopped at exactly one of the stores?

(iv) How many shopped at none of the three stores?

Exercises 1.5 B

1. Represent the following sets in a Venn diagram.

(i) R ∪ S ∪ T ;

(iii) R ∩ (S\T );

(ii) (R ∩ S) ∩ T ;

(iv) (R ∪ T )\(S ∩ T ).

2. Prove: R = (R ∪ S) ∪ (R ∩ S).

3. Find a simpler expression for S ∪ ((R ∪ S) ∩ R).

4. Use Venn diagrams to prove the commutative and associative laws for ∩:
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(i) (R ∩ S) = (S ∩ R);

(ii) ((R ∩ S) ∩ T ) = (R ∩ (S ∩ T )).

5. Use Venn diagrams to prove the distributive law

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

6. Prove the following rules using Venn diagrams:

(i) S ∩ S = ∅;

(ii) S ∪ T = S ∩ T ;

(iii) S ⊆ (S ∪ T ).

7. For any sets R and S, prove R ∩ (R ∪ S) = R.

8. Among 1000 personal computer users it was found that 375 have a scanner and
450 have a DVD player attached to their computer. Moreover, 150 had both
devices.

(i) How many had either a scanner or a DVD player?

(ii) How many had neither device?

9. A survey was carried out. It was found that ten of the people surveyed were
drinkers, while five were smokers; only two both drank and smoked, but seven
did neither. How many people were interviewed?

10. 50 people were asked about their book purchases. 20 said they had bought at
least one fiction book in the last week, 30 had bought at least one non-fiction
book, and ten had bought no books. Assuming that any book can be classified
as either fiction or non-fiction, how many of the people interviewed had bought
both fiction and non-fiction during the week?

11. 60 people were asked about news magazines. It was found that 32 read Newsweek
regularly, 25 read Time, and 20 read U.S. News and World Report. Nine read both
Time and U.S. News and World Report, 11 read both Newsweek and Time, and
eight read both Newsweek and U.S. News and World Report. Eight of the people
do not read any of the magazines.

(i) How many read all three magazines?

(ii) Represent the data in a Venn diagram.

(iii) How many people read exactly one of the three magazines?

12. Of 100 high school students, 45 were currently enrolled in Mathematics courses,
38 were enrolled in Science, and 21 were enrolled in Geography. There were 18
in both Math and Science and nine in both Math and Geography, while 12 were
taking Geography but neither of the other subjects. Exactly five students were
taking all three subjects, and there were 23 not currently enrolled in any of the
three subjects. Represent these figures in a Venn diagram. How many students
were taking precisely one of the three subjects? How many were taking precisely
two?
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13. Of 100 personal computer users surveyed, 27 use Dell, 35 use Gateway, and 35
use Hewlett-Packard. Ten of them use both Dell and Gateway, eight use both
Dell and Hewlett-Packard, and 12 use both Gateway and Hewlett-Packard. Four
use all three.

(i) How many use exactly one of these brands?

(ii) How many only use other brands?

14. Freshmen at New College are required to attend at least one orientation lec-
ture. Three lectures are held. Of the 450 freshmen, 136 attended the morning
lecture, 185 the afternoon lecture, and 127 the evening lecture. There were 20
who attended both morning and afternoon, 20 who attended both afternoon and
evening, and five who attended both morning and evening. A total of 41 students
attended more than one lecture.

(i) How many students attended all three lectures?

(ii) How many students failed to attend any lecture?

15. Researchers at IBM were surveyed about their qualifications in computer sci-
ence. It was found that 214 have a Bachelor’s degree, 123 have a Master’s de-
gree, and 99 have a Ph.D. It was further found that 57 have both Bachelor’s and
Master’s degrees, 74 have both Master’s and Ph.D., and 22 have both Bachelor’s
and Ph.D. degrees.

(i) Show that at least eight of the researchers have all three degrees.

(ii) Suppose that all of the researchers with both a Bachelor’s degree and a Ph.D.
also hold a Master’s degree in the field. How many have all three degrees?
How many came into computer science from another field: that is, they have
either a Master’s or a Ph.D., but no Bachelor’s degree?

16. A survey of students found that:

(a) 62 were enrolled in Calculus;

(b) 71 were enrolled in Algebra;

(c) 67 were enrolled in Discrete Mathematics;

(d) 37 were enrolled in both Calculus and Algebra;

(e) 32 were enrolled in both Calculus and Discrete Mathematics;

(f) 40 were enrolled in both Algebra and Discrete Mathematics;

(g) 12 were enrolled in all three subjects;

(h) 44 were enrolled in none of the three.

(i) How many were enrolled in both Calculus and Algebra but not in Discrete
Mathematics?

(ii) How many were enrolled in exactly one of the three subjects?

(iii) How many students were surveyed?
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17. A pet store surveyed 120 of its customers. It was found that 55 of them owned
dogs, 50 owned cats, and 40 owned goldfish. Further, 20 own both dogs and cats,
15 own both dogs and goldfish, and 12 own both cats and goldfish. Draw a Venn
diagram to represent these data.

(i) How many customers own dogs and cats but do not own goldfish?

(ii) How many own none of these three kinds of pets?

18. Prove, using Venn diagrams, that (R\S)\T = R\(S\T ) does not hold for all
choices of sets R, S and T . In other words, show that there are some choices for
R, S and T such that the equation is not true.

1.6 Averages

Central Tendency

Suppose you measure the noon temperature in your home town on ten summer days.
The Fahrenheit temperature readings, arranged in ascending order, might be

F = {76, 79, 80, 81, 83, 83, 84, 84, 84, 86}.
If somebody asked you what is a typical noon summer temperature, there are

three logical answers.

First, you might add the ten readings and divide by 10, giving the answer 82◦.
This is called the mean or average temperature.

Second, you might say 84◦ because that is the most common answer. It came up
three times. This is called the mode of F .

Finally, the median or half-way point is the reading at the midpoint of the list
(after it has been put in ascending or descending order). As F has ten elements, the
midpoint lies between the fifth and sixth readings. Each equals 83, so the median is
83◦.

All three measures are attempts to answer the question, “what is the center of
the collection of temperatures?” For this reason the mean, mode, and median are all
called measures of central tendency.

Sample Problem 1.27. What are the mean, mode, and median of the following
collections?

S = {13, 13, 11, 14, 15},
T = {8, 13, 12, 15, 10, 26}.
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Solution. S has sum 66, so the mean is 66/5 = 13.2. The mode is 13, the only
reading to appear twice. To find the median, first write the readings in ascending
order: 11, 13, 13, 14, 15. The “center” reading is 13, so the median is 13.

T has sum 84, so its mean is 14. Its median is 12.5 (after the readings are re-
ordered as 8, 10, 12, 13, 15, 26, the two “center” values are 12 and 13; when they
are unequal, take the average of the two). There is no mode because no reading
occurs more frequently than any other.

Your Turn. What are the means, modes, and medians of the following collec-
tions?

U = {7, 9, 2, 3, 6, 7, 15},
V = {14, 22, 24, 17, 21, 19}.

Notice the use of the word “collection” rather than “set” because often the data
or observations will not form sets; there will be repetitions. Also observe from the
examples that neither the mean nor the median need be members of the collection.
In fact, all the collections we looked at were integers, but the mean and median were
not always integers.

The Mean

The mean mX of an n-element collection X = {x1, x2, . . . , xn} is defined by the
formula

mX =
∑n

i=1 xi

n
.

If only one set is involved, the subscript X is often omitted.

Suppose a new collection Y = {y1, y2, . . . , yn} is defined by the rule

yi = a + xi.

Then

mY =
∑n

i=1 yi

n
=

∑n
i=1 a + xi

n
= na + ∑n

i=1 xi

n
= a + mX.

So we have the rule:

If the members of Y are obtained by adding a to each member of X, then
the mean of Y is obtained by adding a to the mean of X.

The number a can be positive or negative. This rule is useful in practice, as the
following example shows.
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Sample Problem 1.28. Find the mean of

X = {1051, 1053, 1054, 1055, 1059}.

Solution. We define Y by the rule “yi = xi − 1050”. Then Y = {1, 3, 4, 5, 9};
mY = 22/5 = 4.4, so mX = 4.4 + 1050 = 1054.4.

Your Turn. Use this method to find the mean of

{833, 834, 836, 837, 841, 841}.

When the collection of data is large, there will sometimes be several copies of
the same value. If there are f members all equal to the same value x, then f is called
the frequency of x. For example, the collection F of temperatures that we discussed
at the beginning of this section might be described by saying

76, 79, 80, 81, and 86 each have frequency 1; 83 has frequency 2; 84 has
frequency 3.

If we wish, we can also say that 77, 78, 82, and 85 (and all values outside the range)
have frequency 0.

If the collection X consists of elements {x1, x2, . . . , xk}, where x1 has frequency
f1, x2 has frequency f2, and so on, then its mean is

mX =
∑k

i=1 xifi
∑k

i=1 fi

.

Sample Problem 1.29. The scores in a quiz are integers ranging from 0 to 5. The
frequencies of the scores are:

x 0 1 2 3 4 5
f 2 0 10 14 4 1

.

What is the mean score?

Solution. The sum of the terms xifi is

0 × 2 + 1 × 0 + 2 × 10 + 3 × 14 + 4 × 4 + 5 × 1 = 83

while the sum of the frequencies is

2 + 0 + 10 + 14 + 4 + 1 = 31

so the mean is 83/31 = 2.6774 . . . or about 2.68. In practice we would say the
mean is “about 2.7”, or even “between 2 and 3”, because fractional scores were
not given.
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Your Turn. Find the mean of the following data:

x 2 3 4 5 6 7 8
f 1 3 7 11 12 4 1

.

Instead of a table, data like this is often represented graphically in a histogram,
a diagram with a column for each possible value, where the height of the column
is proportional to the frequency of that value. Here is the histogram for the data of
Sample Problem 1.29.

Measures of Variation

Even when you have decided which measure of central tendency to use, and calculate
it, you do not know all about your collection of readings. For example, consider two
towns. Placidville has similar weather on most summer days; the temperatures on 11
consecutive days were

P = {78, 79, 80, 81, 82, 83, 83, 84, 84, 84, 84}.
In Wildtown the weather is far more extreme, with sudden cold and hot changes;
over eleven days, the recorded temperatures were

W = {69, 71, 75, 81, 82, 83, 84, 84, 89, 91, 93}.
In both cities, the mean, mode and median were 82◦, 84◦, and 83◦, respectively.
However, there is far more temperature variation in Wildtown than in Placidville.

Several measures of variation, or spread, are used. We shall define the standard
deviation.

The Standard Deviation

If a set of observations has mean m, the deviation of an observation x from m is
x − m. At first it seems that the average of the deviations would be a good measure
of variation. However, the mean deviation is always zero! The negative and positive
contributions cancel each other out.
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Better measures can be found by averaging the absolute values of the deviations.
Given an n-element collection X = {x1, x2, . . . , xn} with mean mX, we consider the
values

|x1 − mX|, |x2 − mX|, . . . , |xm − mX|.
For technical reasons, the most reliable measure is found by averaging the squares of
the deviations and taking the square root of this average. So we define the standard
deviation sX of the set X to be

sX =
√∑n

i=1(xi − mX)2

n
.

The quantity s2
X, which must be calculated before the square root is taken, is the

variance of the set X.

Sample Problem 1.30. Calculate the standard deviation of the daily tempera-
tures in Wildtown and Placidville.

Solution. The mean for Wildtown is 82, so the variance is
[
(69 − 82)2 + (71 − 82)2 + (75 − 82)2 + (81 − 82)2 + (82 − 82)2

+ (83 − 82)2 + (84 − 82)2 + (84 − 82)2 + (89 − 82)2 + (91 − 82)2

+ (93 − 82)2]/11

= [169 + 121 + 49 + 1 + 0 + 1 + 4 + 4 + 49 + 81 + 121]/11

= 599/11 = 54.4545 . . .

and the standard deviation is about 7.2. The mean for Placidville is again 82, so
its variance is

[
(78 − 82)2 + (79 − 82)2 + (80 − 82)2 + (81 − 82)2 + (82 − 82)2

+ (83 − 82)2 + (83 − 82)2 + (84 − 82)2 + (84 − 82)2 + (84 − 82)2

+ (84 − 82)2]/11

= [16 + 9 + 4 + 1 + 0 + 1 + 1 + 4 + 4 + 4 + 4]/11

= 48/11 = 4.3636 . . .

and the standard deviation is about 2.1.

The standard deviation of a set of observations will be unchanged if any con-
stant is added to, or subtracted from, each observation. For example, in discussing
Placidville, we could just as easily have subtracted 80 from each reading, and found
the standard deviation of {−2,−1, 0, 1, 2, 3, 3, 4, 4, 4, 4}.
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If the collection X consists of elements {x1, x2, . . . , xk}, where x1 has frequency
f1, x2 has frequency f2, and so on, then its standard deviation is

sX =
∑k

i=1 xi − mX
2fi

∑k
i=1 fi

.

A Formula for Standard Deviation

The formula for variance can be rewritten as

ns2
X =

n∑

i=1

(xi − mX)2

=
n∑

i=1

(
x2
i − 2ximX + m2

X

)

=
(

n∑

i=1

x2
i

)

− 2

(
n∑

i=1

ximX

)

+
(

n∑

i=1

m2
X

)

=
(

n∑

i=1

x2
i

)

− 2mX

(
n∑

i=1

xi

)

+ nm2
X.

Now
∑n

i=1 xi = nmX (this is just the equation for mX, multiplied on both sides
by n), so

2mX

(
n∑

i=1

xi

)

= 2nm2
X,

and

ns2
X =

(
n∑

i=1

x2
i

)

− 2nm2
X + nm2

X =
(

n∑

i=1

x2
i

)

− nm2
X,

giving the formula

sX =
√

(
∑n

i=1 x2
i ) − nm2

X

n
.

This formula is often more convenient for calculations, as the following (very small)
example shows.

Sample Problem 1.31. Find the standard deviation of the data set {1, 1, 1, 2, 3,

3, 5}.
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Solution. The data add to 16, so the mean is 16
7 = 2.285714. Using the original

standard deviation formula, each calculation must include several decimal places
in order to ensure accuracy. However, using the new formula, we find

7s2
X = [

12 + 12 + 12 + 22 + 32 + 32 + 52] − 7

(
16

7

)2

= [1 + 1 + 1 + 4 + 9 + 9 + 25] − 256

7
= 50 − 36.5714 = 13.4286

so s2
X = 1.91837, and sX = 1.39 (correct to two decimal places).

Your Turn. Find the standard deviation of the data {1, 1, 2, 2, 3, 4, 4}.

Exercises 1.6 A

1. Find the mean and median of the following sets of data:

(i) {17, 19, 23, 30};
(ii) {8, 13, 20, 12, 29};

(iii) {14, 15, 23, 22, 24, 19}.
2. Find the mean, mode, and median of the following sets of data:

(i) {3, 16, 10, 1, 4, 2, 6, 2};
(ii) {−3, 5, 8, 1,−4, 6, 6, 6};

(iii) {2, 10, 10, 1, 1, 2, 7, 9, 11, 12}.
3. Find the mean of the data {2, 3, 5, 2, 7, 9, 7}, and list the deviations of the data

from the mean. Verify that the mean deviation is zero.

4. For each set of data in Exercise 2, what is the standard deviation?

5. Find the mean and standard deviation of the following data. Under each score is
listed its frequency

x 1 2 3 4 5 6
f 5 2 4 4 7 4

.

6. Draw a histogram representing the data in the preceding exercise.

Exercises 1.6 B

1. Find the mean and median of the following collections of data:

(i) {15, 17, 28, 21};
(ii) {14, 13, 18, 12, 24};
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(iii) {17, 25, 13, 22, 14, 29};
(iv) {12, 13, 19, 20, 16};
(v) {11, 20, 15, 21, 14, 28, 17}.

2. Find the mean, mode, and median of the following collections of data:

(i) {5, 3, 4, 7, 7};
(ii) {8, 11, 5, 4, 9};

(iii) {8, 12, 10, 4, 4, 7, 6, 11};
(iv) {−3,−5, 6, 4,−4, 6, 6, 8};
(v) {9, 10, 7, 9, 1, 2, 7, 9, 11, 7};

(vi) {73, 77, 72, 70, 77, 83, 86, 84};
(vii) {43, 46, 50, 43, 47, 53, 46, 44};

(viii) {1081, 1083, 1088, 1086, 1087};
(ix) {944, 942, 940, 947, 949}.

3. Find the mean of the data {6, 3, 4, 2, 7, 3, 3}, and list the deviations of the data
from the mean. Verify that the mean deviation is zero.

4. For each set of data in Exercise 2, what is the standard deviation?

5. Find the mean, mode, median, and standard deviation of the following collec-
tions of data:

(i) {2, 4, 8, 3, 8};
(ii) {7, 11, 2, 4, 6, 6};

(iii) {−2,−2, 3, 1, 4, 2, 4,−2};
(iv) {−3,−2, 1, 1,−2, 3, 5, 5};
(v) {2,−2, 5,−3, 3, 7};

(vi) {27, 25, 28, 30, 30};
(vii) {−5,−6, 4, 14, 17,−7, 6, 4, 3,−5};

(viii) {21, 23, 23, 25, 23}.
6. In the following data, under each score is listed its frequency. In each case:

(a) Draw a histogram representing the data;

(b) Find the mean and standard deviation:

(i)
x 1 2 3 4 5 7 9
f 2 1 3 2 4 5 3

;
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(ii)
x 27 28 30 31 33 35
f 1 2 3 1 2 1

;

(iii)
x 1 2 3 4 5 6 7 8 9
f 3 3 2 3 5 4 3 2 3

;

(iv)
x 17 18 19 20 21 22 23 24
f 2 3 3 2 4 8 4 3

.
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