
Chapter 15
The Case 3≤ k≤ n−1

The results that will be discussed in this chapter are strongly based on
Bandyopadhyay, Dacorogna and Kneuss [9]. For related results see Turiel [97–102].

15.1 A General Theorem for Forms of Rank = k

Our first result concerns k-forms of minimal nonzero rank.

Theorem 15.1. Let 2≤ k ≤ n, r ≥ 1 be integers, 0 < α < 1 and x0 ∈ R
n. Let f and

g be two Cr,α k-forms verifying, in a neighborhood of x0 ,

d f = dg = 0 and rank [ f ] = rank [g] = k.

Then there exist a neighborhood U of x0 and

ϕ ∈
{

Diffr,α(U ;ϕ(U)) if k < n

Diffr+1,α(U ;ϕ(U)) if k = n

such that ϕ(x0) = x0 and

ϕ∗ (g) = f in U.

In particular, if g = dx1∧·· ·∧dxk, then

f = ∇ϕ1∧·· ·∧∇ϕk in U.

Remark 15.2. (i) The case k = n− 1 is therefore completely solved (cf. Theo-
rem 15.3).

(ii) We recall that the rank of a form is given in Definition 2.28 and Remark 2.31;
see also Proposition 2.37.
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320 15 The Case 3≤ k ≤ n−1

(iii) Throughout this chapter we will often use the following elementary fact. In
order to solve ϕ∗(g) = f , it is enough to solve, for some h,

ϕ∗1 (h) = g, ϕ∗2 (h) = f

and let ϕ = ϕ−1
1 ◦ϕ2 .

Proof. With no loss of generality, we can assume x0 = 0 and (see Remark 15.2(iii))
g = dx1∧·· ·∧dxk. We split the proof into two steps.

Step 1. We first prove the case k = n. Since f = f1···n dx1 ∧ ·· · ∧ dxn and since
rank[ f ] = n > 0 in a neighborhood of 0, there exists a sufficiently small ball U
centered at 0 such that f1···n(x) �= 0 for every x ∈ U . Using Theorem 10.1, there
exists ϕ1 ∈ Diffr+1,α(U ;U) such that ϕ1 = id on ∂U and

ϕ∗1 (cdx1∧·· ·∧dxn) = f1···n dx1∧·· ·∧dxn in U ,

where

c =
1

measU

∫
U

f1···n .

Finally, let

ϕ2(x) = x−ϕ1 (0)

and

ϕ3(x) = ϕ3(x1, . . . ,xn) = (x1, . . . ,xn−1,cxn).

The map ϕ = ϕ3 ◦ϕ2 ◦ϕ1 has all of the desired properties.

Step 2. We next suppose that k < n. Using Theorem 4.5, there exist a neighbor-
hood V of 0 and ϕ1 ∈ Diffr,α(V ;ϕ1(V )) such that ϕ1(0) = 0 and

ϕ∗1 ( f )(x1, . . . ,xn) = a(x1, . . . ,xk)dx1∧·· ·∧dxk in V ,

where a ∈Cr−1,α in a neighborhood of 0 in R
k. Using the fact that rank[ f ] = k and

Proposition 17.1, there exists W, a sufficiently small ball in R
k centered at 0, such

that a(x) �= 0 for every x ∈W . Using Step 1, there exists ϕ2 ∈ Diffr,α(W ;ϕ2(W ))
such that ϕ2(0) = 0 and

ϕ∗2 (dx1∧·· ·∧dxk) = adx1∧·· ·∧dxk.

Finally, defining ϕ̃2 ∈ Diffr,α(W ×R
n−k;ϕ2(W )×R

n−k) by

ϕ̃2(x) = (ϕ2(x1, . . . ,xk),xk+1, . . . ,xn),

we get that ϕ = ϕ̃2 ◦ϕ−1
1 has all of the desired properties. This concludes the proof.
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15.2 The Case of (n−1)-Forms

15.2.1 The Case of Closed (n−1)-Forms

The case of closed (n−1)-forms is a direct consequence of the results of Section
15.1 (see also Martinet [71]).

Theorem 15.3. Let r ≥ 1 be an integer, 0 < α < 1 and x0 ∈ R
n. Let f and g be two

closed Cr,α (n−1)-forms verifying

f (x0) �= 0 and g(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈Diffr,α(U ;ϕ(U)) such that ϕ(x0)=
x0 and

ϕ∗(g) = f in U.

In particular, if g = dx1∧·· ·∧dxn−1, then

f = ∇ϕ1∧·· ·∧∇ϕn−1 in U.

Proof. Recall first that a nonzero (n−1)-form has always (cf. Remark 2.38(i)) its
rank equal to n−1. Therefore, the hypothesis

f (x0) �= 0 and g(x0) �= 0

is equivalent to

rank [ f ] = rank [g] = n−1 in a neighborhood of x0 .

Applying Theorem 15.1, we have the result. 	


Theorem 15.3 reads in a more analytical way when k = n−1 (cf. also Barbarosie
[11]), since the exterior derivative of an (n−1)-form is then essentially the classical
divergence operator.

Corollary 15.4. Let r ≥ 1 be an integer, 0 < α < 1 and x0 ∈ R
n. Let f be a Cr,α

vector field satisfying

f (x0) �= 0 and div f = 0 in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and ϕ ∈Diffr,α(U ;ϕ(U)) such that ϕ(x0)=
x0 and

f = ∗(∇ϕ1∧·· ·∧∇ϕn−1) in U.
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15.2.2 The Case of Nonclosed (n−1)-Forms

We conclude with the case of nonclosed (n−1)-forms.

Theorem 15.5. Let x0 ∈ R
n and f a C∞ (n−1)-form verifying

f (x0) �= 0.

Then there exist a neighborhood U of x0 and

ϕ ∈C∞(U ;ϕ (U))

such that

f = ϕn ∇ϕ1∧·· ·∧∇ϕn−1 in U .

If, moreover, d f (x0) �= 0 then, up to restricting U, in addition to the previous equa-
tion, ϕ can be assumed in Diff∞(U ;ϕ(U)).

Remark 15.6. (i) If f ∈ Cr, then ϕn ∈ Cr−1 and ϕ i ∈ Cr, 1 ≤ i ≤ n− 1. Moreover,
another way to read the conclusion is

ϕ∗(xn dx1∧·· ·∧dxn−1) = f .

(ii) If d f = 0 in a neighborhood of x0 , then we have a better result (cf. Theo-
rem 15.3).

(iii) Note that we cannot, in general, ensure that ϕ(x0) = x0 ; for a similar result,
see Remark 13.11(ii).

Proof. We split the proof into two steps. In the sequel, ∗ f ∈C∞(
R

n;Λ 1
)

will some-
times be identified with a vector field (see Definition 2.9 for the notation).

Step 1. We prove the main assertion. Since f (x0) �= 0, using Remark 4.3(ii), there
exist a neighborhood V ⊂ R

n of x0 and ϕ1 ∈ Diff∞(V ;ϕ1(V )) such that ϕ1(x0) =
x0 and

∂ϕ1

∂xn
= (∗ f )◦ϕ1 in V . (15.1)

Using Definition 2.11 and the fact that (∗ f )∧ (∗ f ) = 0 (since ∗ f is a 1-form), we
deduce that (∗ f )� f = 0. Thus, using (15.1), Theorem 3.10 and Proposition 3.11,
we obtain

0 = ϕ∗1 ((∗ f )� f ) = ϕ�
1(∗ f )�ϕ∗1 ( f ) = dxn �ϕ∗1 ( f ).

From the previous equation we immediately deduce

ϕ∗1 ( f )(x) = a(x1, . . . ,xn)dx1∧·· ·∧dxn−1, x ∈V ,
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where a ∈C∞(V ). Letting U = ϕ1(V ) and

ϕ = (ϕ1, . . . ,ϕn) = ((ϕ−1
1 )1, . . . ,(ϕ−1

1 )n−1,a◦ϕ−1),

we have the main assertion, namely

f = ϕn∇ϕ1∧·· ·∧∇ϕn−1.

Step 2. We prove the extra assertion. Let ϕ1 be the diffeomorphism obtained in
Step 1. It verifies, in particular,

ϕ∗1 ( f )(x) = a(x1, . . . ,xn)dx1∧·· ·∧dxn−1, x ∈V .

Since, by hypothesis, d f �= 0 in a neighborhood of x0 and ϕ1(x0) = x0 , we have

d(ϕ∗1 ( f )) = ϕ∗1 (d f ) �= 0 in a neighborhood of x0

and, thus,

∂a
∂xn

(x0) �= 0.

Define ϕ2 : V → R
n by

ϕ2(x) = (x1, . . . ,xn−1,a(x)).

Note that

ϕ∗2 (xn dx1∧·· ·∧dxn−1) = a(x)dx1∧·· ·∧dxn−1 in V

and that, taking V smaller if necessary, ϕ2 ∈ Diff∞(V ;ϕ2(V )). Letting ϕ = ϕ2 ◦
(ϕ1)

−1, it follows that ϕ ∈ Diff∞(ϕ1(V );ϕ2(V )) and has the desired property. The
proof is therefore complete. 	


As before, the previous theorem can be seen in a more analytical way (cf. also
Barbarosie [11]).
Corollary 15.7. Let x0 ∈ R

n and let f be a C∞ vector field satisfying

f (x0) �= 0.

Then there exist a neighborhood U of x0 and

ϕ ∈C∞(U ;ϕ (U))

such that

f = ∗(ϕn ∇ϕ1∧·· ·∧∇ϕn−1) in U.

If, moreover, div f (x0) �= 0, then, up to restricting U, in addition to the previous
equation, ϕ can be assumed in Diff∞(U ;ϕ(U)).
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15.3 Simultaneous Resolutions and Applications

15.3.1 Simultaneous Resolution for 1-Forms

We start with a simultaneous resolution of closed 1-forms; see also Cartan [21].

Proposition 15.8. Let r ≥ 0, 1≤ m≤ n be integers and x0 ∈ R
n. Let b1, . . . ,bm and

a1, . . . ,am be Cr closed 1-forms verifying

(b1∧·· ·∧bm)(x0) �= 0 and (a1∧·· ·∧am)(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr+1(U ;ϕ(U)) such that
ϕ (x0) = x0 and

ϕ∗
(
bi)= ai in U and for every 1≤ i≤ m.

Remark 15.9. (i) When r = 0, the fact that a 1-form ω is closed has to be understood
in the sense of distributions.

(ii) The result is also valid in Hölder spaces.
(iii) It is interesting to compare the above proposition and Theorem 15.1. In view

of Proposition 2.43, we know that any m-form f with rank [ f ] = m is a product of
1-forms a1, . . . ,am so that

f = a1∧·· ·∧am ;

however, we do not know, in general, that a1, . . . ,am are closed if f is closed (and
even that a1, . . . ,am ∈Cr if f ∈Cr). But, Theorem 15.1 shows that there does exist
a total decomposition with closed a1, . . . ,am; however, we have lost one degree of
regularity, namely a1, . . . ,am ∈Cr−1,α (unless m = n). Therefore, if we assume that
a1, . . . ,am are closed, then the above proposition is better from the point of view of
regularity than Theorem 15.1.

(iv) When m = n and f ∈C0, it is, in general, impossible (according to Burago
and Kleiner [19] and Mc Mullen [73]) to find closed 1-forms a1, . . . ,an ∈C0 so that

f = a1∧·· ·∧an ;

although, in view of Theorem 10.1, we can do so if f ∈ C0,α , finding even that
a1, . . . ,an ∈C0,α .

Proof. We split the proof into two steps.
Step 1. With no loss of generality, we can assume x0 = 0. Noticing that if m < n,

we can choose 1≤ km+1 < · · ·< kn ≤ n and 1≤ lm+1 < · · ·< ln ≤ n such that

(b1∧·· ·∧bm∧dxkm+1 ∧·· ·∧dxkn)(0) �= 0,

(a1∧·· ·∧am∧dxlm+1 ∧·· ·∧dxln)(0) �= 0.
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We can therefore assume that m= n, letting bi = dxki and ai = dxli for m+1≤ i≤ n.
Using Corollary 8.6, we can find a neighborhood V of 0 and, for 1≤ i≤ n, Bi,Ai ∈
Cr+1(V ) such that

dAi = ai and dBi = bi in V for every 1≤ i≤ n.

Moreover, adding, if necessary, a constant, we can assume that Ai(0) = Bi(0) = 0
for 1 ≤ i ≤ n. Finally, define A,B ∈ Cr+1(U ;Rn) by A = (A1, . . . ,An) and B =
(B1, . . . ,Bn). Since A(0) = B(0) = 0 and since, identifying n-forms with 0-forms,

det∇A(0) = (a1∧·· ·∧an)(0) �= 0 and det∇B(0) = (b1∧·· ·∧bn)(0) �= 0,

it follows that A ∈ Diffr+1(U ;A(U)), B ∈ Diffr+1(U ;B(U)) and

B−1 ◦A ∈ Diffr+1(U ;(B−1 ◦A)(U))

for a neighborhood U of 0 small enough. Noticing that for 1≤ i≤ n,

A∗(dxi) = ai and B∗(dxi) = bi in U ,

we deduce that

(B−1 ◦A)∗(bi) = A∗((B−1)∗(bi)) = A∗(dxi) = ai in U .

Therefore, ϕ = B−1 ◦A has all of the desired properties and this concludes the proof.
	


It is interesting to see that the above proposition can also be global.

Proposition 15.10. Let Ω ⊂ R
n be a bounded open smooth set with exterior unit

normal ν . Let r ≥ 0 and 1 ≤ m ≤ n be integers. Let b1, . . . ,bm ∈ Cr
(
Ω ;Λ 1

)
be

closed in Ω and such that

b1∧·· ·∧bm∧dxm+1∧·· ·∧dxn �= 0 in Ω ,

ν ∧bi = ν ∧dxi on ∂Ω for every 1≤ i≤ m,∫
Ω
〈bi; χ〉=

∫
Ω
〈dxi; χ〉 for every χ ∈HT

(
Ω ;Λ 1) and every 1≤ i≤ m.

Then there exists ϕ ∈ Diffr+1 (Ω ;Ω
)

satisfying ϕ = id on ∂Ω , and in Ω ,{
ϕ∗

(
bi
)
= dxi, 1≤ i≤ m,

ϕ∗
(
dxi

)
= dxi, m+1≤ i≤ n.

Remark 15.11. If Ω is simply connected (cf. Remark 6.6), then HT
(
Ω ;Λ 1

)
= {0}

and hence the last condition on the bi is automatically fulfilled.

Proof. Using Theorem 8.16 and the remark following it, we can find, for 1≤ i≤m,
Ai ∈Cr+1(Ω) such that
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dAi = bi−dxi in Ω ,

Ai = 0 on ∂Ω .

Next, define B ∈Cr+1(Ω ;Rn) by

B(x) = (x1 +A1(x), . . . ,xm +Am(x),xm+1, . . . ,xn).

Since B = id on ∂Ω and since

det∇B(x) = (b1∧·· ·∧bm∧dxm+1∧·· ·∧dxn)1···n(x) �= 0

for every x∈Ω , we immediately deduce from Theorem 19.12 that B∈Diffr+1(Ω ;Ω).
Note that for 1 ≤ i ≤ m, B∗(dxi) = dBi = d(xi +Ai) = bi. Therefore, ϕ = B−1 ∈
Diffr+1(Ω ;Ω) has all of the required properties. This concludes the proof. 	


15.3.2 Applications to k-Forms

We next generalize Proposition 15.8 by mixing 1-forms and 2-forms.

Theorem 15.12. Let m, l ≥ 0 be integers and x0 ∈ R
n. Let b1, . . . ,bm and a1, . . . ,am

be closed C∞ 1-forms. Let g1, . . . ,gl and f1, . . . , fl be closed C∞ 2-forms such that,
in a neighborhood of x0 ,

rank [gi] = rank [ fi] = 2si , 1≤ i≤ l,

rank
[
g1∧·· ·∧gl ∧b1∧·· ·∧bm]= rank

[
f1∧·· ·∧ fl ∧a1∧·· ·∧am]

= 2(s1 + · · ·+ sl)+m.

Then there exist a neighborhood U of x0 and ϕ ∈Diff∞(U ;ϕ(U)) such that ϕ (x0) =
x0 and, in U, {

ϕ∗ (gi) = fi, 1≤ i≤ l,

ϕ∗
(
bi
)
= ai, 1≤ i≤ m.

Remark 15.13. (i) When m = 0, respectively l = 0, the theorem is to be understood
as a statement only on 2-forms, respectively only on 1-forms (in this last case, see
Proposition 15.8).

(ii) When 0 < α < 1, gi, fi ∈ Cr,α and b j,a j ∈ Cr,α , the proof will give ϕ ∈
Diffr−l+1,α .

(iii) Of course, the theorem applies to k-forms, k = 2l +m, of the type

G = g1∧·· ·∧gl ∧b1∧·· ·∧bm and F = f1∧·· ·∧ fl ∧a1∧·· ·∧am.
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We therefore obtain that there exists a diffeomorphism ϕ such that

ϕ∗ (G) = F,

generalizing a result obtained by Bandyopadhyay and Dacorogna [8].
Proof. We establish the result by induction on l. When l = 0, we are in the situation
of Proposition 15.8, which has already been proved. Let us suppose that the theorem
is true for l−1 and prove it for l.

Step 1. Using Remark 15.2(iii), we can assume that

f j =
s1+···+s j

∑
i=(s1+···+s j−1)+1

dx2i−1∧dx2i, 1≤ j ≤ l,

ai = dx2(s1+···+sl)+i for every 1≤ i≤ m.

Note that these particular f j and ai satisfy all of the hypotheses of the theorem. We
find, using Theorem 14.3, a neighborhood U1 of x0 and ϕ1 ∈Diff∞(U1;ϕ1(U1)) such
that ϕ1(x0) = x0 and

ϕ∗1 (g1) = f1 =
s1

∑
i=1

dx2i−1∧dx2i in U1 .

Step 2. We claim that, in a neighborhood of x0 ,

rank[ϕ∗1 (g2)∧·· ·∧ϕ∗1 (gl)∧dx1∧·· ·∧dx2s1 ∧ϕ∗1 (b
1)∧·· ·∧ϕ∗1 (b

m)]

= 2(s2 + · · ·+ sl)+(2s1 +m). (15.2)

Indeed, first note using Proposition 17.1 that, in a neighborhood of x0 ,

rank
[
ϕ∗1 (g1)∧·· ·∧ϕ∗1 (gl)∧ϕ∗1 (b

1)∧·· ·∧ϕ∗1 (b
m)
]

= rank
[
ϕ∗1 (g1∧·· ·∧gl ∧b1∧·· ·∧bm)

]
= rank

[
g1∧·· ·∧gl ∧b1∧·· ·∧bm]= 2(s1 + · · ·+ sl)+m.

Setting
h = ϕ∗1 (g2)∧·· ·∧ϕ∗1 (gl)∧ϕ∗1 (b

1)∧·· ·∧ϕ∗1 (b
m)

and using Proposition 2.37(iv), we obtain

2(s1 + · · ·+ sl)+m≤ 2s1 + rank [h]−dim
(
Λ 1

ϕ∗1 (g1)
∩Λ 1

h
)
.

On the other hand, a successive application of the same proposition gives

rank [h]≤ 2(s2 + · · ·+ sl)+m.

Combining the two previous inequalities, we get

rank [h] = 2(s2 + · · ·+ sl)+m and Λ 1
ϕ∗1 (g1)

∩Λ 1
h = {0}.
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Finally, noticing that, in a neighborhood of x0 ,

Λ 1
ϕ∗1 (g1)

= span{dx1, . . . ,dx2s1}= Λ 1
dx1∧···∧dx2s1 ,

we have the claim (15.2) using again Proposition 2.37(iv). Note also that

rank
[

f2∧·· ·∧ fl ∧dx1∧·· ·∧dx2s1 ∧a1∧·· ·∧am]
= 2(s2 + · · ·+ sl)+(2s1 +m).

Step 3. Therefore, using the induction hypothesis, there exist a neighborhood U2
of x0 and ϕ2 ∈ Diff∞(U2;ϕ2(U2)) such that ϕ2(x0) = x0 and for every 2 ≤ i ≤ l,
1≤ j ≤ 2s1 and 1≤ k ≤ m, the following identities hold in U2:

ϕ∗2 (ϕ
∗
1 (gi)) = fi , ϕ∗2 (dx j) = dx j and ϕ∗2 (ϕ

∗
1 (b

k)) = ak.

Note, in particular, that ϕ∗2 (ϕ
∗
1 (g1)) = ϕ∗2 ( f1) = f1 . Setting, choosing if necessary

a smaller U2,
ϕ = ϕ1 ◦ϕ2,

we have ϕ ∈ Diff∞(U2;ϕ(U2)) with the claimed properties. 	

It is interesting to contrast the algebraic result of Proposition 2.43(iii) with the an-

alytical result of the above theorem, where it is essential to require that the 1-forms
and the 2-forms be closed. Although every constant 3-form of rank = 5 is a linear
pullback (combining Proposition 2.43(iii) and Proposition 2.24(ii)) of

(dx1∧dx2 +dx3∧dx4)∧dx5,

we have the following result.

Proposition 15.14. There exists F ∈C∞(R5;Λ 3) with

dF = 0 and rank[F ] = 5 in R
5,

which cannot be pulled back locally by a diffeomorphism to the canonical 3-form of
rank 5:

(dx1∧dx2 +dx3∧dx4)∧dx5.

Proof. We will show that F = f ∧a, where

f =
1

(x3)
4 +1

dx1∧dx5 +dx3∧dx4 and a = ((x3)
2 +1)dx1 +((x3)

4 +1)dx2

has all of the desired properties. First, note that dF = 0 and rank[F ] = 5 in R
5. We

split the proof of the last assertion of the proposition into three steps.
Step 1. We claim that any 1-divisor c of F must be of the form c = λa, where λ

is a scalar function. Indeed, if this is not the case, we have that the 1-form c(x0) is
linearly independent of a(x0) for a certain point x0 ∈ R

5. We therefore have
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F (x0)∧a(x0) = F (x0)∧ c(x0) = 0 and c(x0)∧a(x0) �= 0.

Appealing to Theorem 2.42, we deduce that F (x0) is totally divisible and, hence
(see again Proposition 2.43(ii)), rank [F (x0)] = 3, a contradiction.

Step 2. We show that if there exist an open set U and λ ∈C1(U) such that

d(λa) = 0 in U ,

then we necessarily have λ ≡ 0. Indeed, if d(λa) = 0 in U, then, in particular,

(d(λa))13 = (d(λa))23 = 0

and, hence,
∂ (λ (x)(x2

3 +1))
∂x3

=
∂ (λ (x)(x4

3 +1))
∂x3

= 0.

However, this implies the existence of u,v ∈C1(U) with

u(x1,x2,x3,x4,x5) = u(x1,x2,x4,x5),

v(x1,x2,x3,x4,x5) = v(x1,x2,x4,x5)

such that

λ (x) =
u(x1,x2,x4,x5)

x2
3 +1

=
v(x1,x2,x4,x5)

x4
3 +1

,

which is possible only if u = v = 0 in U, which proves the claim.

Step 3. We now conclude. If there exists a local diffeomorphism ϕ satisfying

F = ϕ∗((dx1∧dx2 +dx3∧dx4)∧dx5) = ϕ∗(dx1∧dx2 +dx3∧dx4)∧ϕ∗(dx5),

it follows from Step 1 that
ϕ∗(dx5) = λa.

However, this leads to a contradiction, because the form on the left-hand side is
closed and nonzero, whereas (cf. Step 2) the form on the right-hand side is either
not closed or identically 0. 	


We end this chapter with the following result, a particular case of which was
proved in Bandyopadhyay and Dacorogna [8].

Theorem 15.15. Let 4 ≤ 2m ≤ n be integers. Let x0 ∈ R
n, f and g be C∞ closed

2-forms, and a and b be C∞ closed 1-forms such that, in a neighborhood of x0 ,

rank[ f ] = rank[g] = 2m and rank[g∧b] = rank[ f ∧a] = 2m−1.

Then there exist a neighborhood U of x0 and ϕ ∈Diff∞(U ;ϕ(U)) such that ϕ(x0) =
x0 and

ϕ∗(g) = f and ϕ∗(b) = a in U.



330 15 The Case 3≤ k ≤ n−1

Remark 15.16. Note that if rank[g] = 2m= n≥ 4 and b �= 0, then g∧b �= 0; otherwise
by Theorem 2.42 there would exist c a 1-form such that

g = b∧ c

and, hence, rank[g] = 2, which is a contradiction. We therefore have, by Proposi-
tion 2.37(v), that

rank[g∧b] = 2m−1.

Proof. As usual, we may assume that x0 = 0 and, using Remark 15.2(iii), that

f = ωm =
m

∑
i=1

dx2i−1∧dx2i and a = dx1

(note that these particular f and a satisfy all of the hypotheses of the theorem, in
view of Proposition 2.37(v)). We split the proof into three steps.

Step 1. Let us show that, with no loss of generality, we can assume

g =
m

∑
i=1

dx2i−1∧dx2i = ωm and b =
2m

∑
i=1

bi(x1, . . . ,x2m)dxi

and, thus, we can assume that 2m = n. Since dg = 0 and rank[g] = 2m in a neigh-
borhood of 0, we can apply Theorem 14.3 to find a neighborhood U1 of 0 and
ϕ1 ∈ Diff∞(U1;ϕ(U1)) such that ϕ1(0) = 0 and

ϕ∗1 (g) =
m

∑
i=1

dx2i−1∧dx2i = ωm in U1 .

We claim that

ϕ∗1 (b)(x1, . . . ,xn) = c(x1, . . . ,x2m) =
2m

∑
i=1

ci(x1, . . . ,x2m) dxi.

Once this is shown, we will have the assertion of Step 1. Let us prove the claim.
Note that, in a neighborhood of 0,

rank [ωm] = rank [ϕ∗1 (g)] = rank [g] = 2m,

rank [c∧ωm] = rank [ϕ∗1 (b∧g)] = rank [b∧g] = 2m−1.

Hence, using Proposition 2.37(v), we get, in a neighborhood of 0,

c ∈Λ 1
ωm = span

{
dx1, . . . ,dx2m}

and, thus,
ci(x) = 0 for 2m+1≤ i≤ n.

Finally, combining the previous equation with the fact that dc = 0, we immediately
deduce that for every 1≤ i≤ m and every x in a neighborhood of 0,
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ci(x1, . . . ,xn) = ci(x1, . . . ,x2m),

which proves the claim.
Step 2. Using Theorem 8.1, we can find a C∞ function (in a small ball Bε centered

at 0) ρ such that
dρ = b(0)−b.

With no loss of generality, we can assume that ρ(0) = 0. Let bt(x) ∈ C∞([0,1]×
Bε ;Λ 1

)
be defined by

bt(x) = (1− t)b(0)+ tb(x).

Since for every t ∈ [0,1], bt(0) = b(0) �= 0, there exist 1≤ i≤ n and a neighborhood
of 0 in which

[bt �ωm]i = [ωm bt ]i �= 0 for every t ∈ [0,1].

Hence, we can apply Remark 8.21 and find a neighborhood U2 of 0 and w ∈
C∞([0,1]×U2;Λ 1

)
, w(t,x) = wt(x) such that for every t ∈ [0,1], wt(0) = 0 and

dwt = 0 and 〈wt ;ωmbt〉= ρ in U2 .

Finally, define u ∈C∞([0,1]×U2;Λ 1), u = u(t,x) = ut(x), as

ut = ω−1
m wt ⇔ ut �ωm = wt .

Note that for every t ∈ [0,1], ut(0) = 0 and in U2 , d (ut�ωm) = dwt = 0 and since
ωm ∈ O(n),

d(ut �bt) = d(〈ut ;bt〉) = d (〈wt ;ωmbt〉) = dρ =−dbt

dt
.

Hence, we deduce from Theorem 12.8 that for every t ∈ [0,1], the solution φt of⎧⎨⎩
d
dt

φt = ut ◦φt , 0≤ t ≤ 1,

φ0 = id

exists in a neighborhood U3 of 0 and verifies φt ∈ Diff∞(U3;φt(U3)) and

φ ∗t (ωm) = ωm , φ ∗t (bt) = b(0) in U3 .

Step 3. Finally, recalling that b(0) ∈ Λ 1
ωm , there exists, using Proposition 2.24,

A ∈ GL(n) such that

A∗(ωm) = ωm and A∗(b(0)) = dx1.

Letting ψ(x) = Ax and ϕ = φ1 ◦ψ, we get the result and this concludes the proof.
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