
Chapter 14
The Case k = 2

14.1 Notations

We recall, from Chapter 2, some notations that we will use throughout the present
chapter. As usual, when necessary, we identify in a natural way 1-forms with vectors
in R

n.

(i) If u ∈ Λ 1 (Rn) and f ∈ Λ 2 (Rn) , then (cf. Proposition 2.12)

u� f =
n

∑
j=1

[
n

∑
i=1

fi j ui

]
dx j ∈ Λ 1 (Rn) .

(ii) Given f ∈ Λ 2 (Rn) , the matrix f ∈ R
n×n (denoted in Notation 2.30 as f �,1)

is defined, by abuse of notations, as

f u = u� f for every u ∈ Λ 1 (Rn)≈ R
n.

(iii) The rank of f ∈ Λ 2 (Rn) is defined (cf. Proposition 2.32(i)) by

rank [ f ] = rank
(

f
)
.

We also recall that in the present chapter we denote by rank what was denoted by
rank1 in Chapter 2. In particular, if rank [ f ] = n, then f is invertible and

v = u� f ⇔ u =
(

f
)−1 v.

(iv) When n is even, identifying n-forms with 0-forms, we have (cf. Proposition
2.37(iii)) ∣∣det f

∣∣1/2
=

1
(n/2) !

∣∣∣ f n/2
∣∣∣ ,

where f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

.
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286 14 The Case k = 2

(v) Let r ≥ 0 be an integer and 0 ≤ α ≤ 1. Let f ∈ Λ 2 (Rn) with rank [ f ] = n
(thus, in particular, n is even). In view of Corollary 16.30 and of the previous point,
if c > 0 is such that ∥∥∥∥ 1

f n/2

∥∥∥∥
C0

, ‖ f‖C0 ≤ c,

then there exists a constant C =C (c,r,Ω)> 0 such that

‖( f
)−1 ‖Cr,α ≤C‖ f‖Cr,α .

(vi) Finally, we recall the notion of harmonic fields with a vanishing tangential
part (cf. Section 6.1). If Ω ⊂ R

n is a bounded open smooth set, then

HT
(
Ω ;Λ 2)= {ω ∈C∞(Ω ;Λ 2) : dω = 0, δω = 0 in Ω and ν ∧ω = 0 on∂Ω}.

Recall that if Ω is contractible, then

HT
(
Ω ;Λ 2)= {0} if n ≥ 3.

In terms of the components of

ω = ∑
1≤i< j≤n

ωi j dxi ∧dx j,

we have

dω = 0 ⇔ ∂ωi j

∂xk
− ∂ωik

∂x j
+

∂ω jk

∂xi
= 0, ∀1 ≤ i < j < k ≤ n,

δω = 0 ⇔
n

∑
j=1

∂ωi j

∂x j
= 0, ∀1 ≤ i ≤ n,

ν ∧ω = 0 ⇔ ωi jνk −ωikν j +ω jkνi = 0, ∀1 ≤ i < j < k ≤ n.

14.2 Local Result for Forms with Maximal Rank

The following result is the classical Darboux theorem for closed 2-forms but
with optimal regularity. This is a delicate point and it has been obtained by
Bandyopadhyay and Dacorogna [8]. The other existing results provide solutions that
are only in Cr,α , whereas in the theorem below we find a solution which belongs to
Cr+1,α .

Theorem 14.1 (Darboux theorem with optimal regularity). Let r ≥ 0 and n =
2m ≥ 4 be integers. Let 0 < α < 1 and x0 ∈ R

n. Let ωm be the standard symplectic
form of rank 2m,

ωm =
m

∑
i=1

dx2i−1 ∧dx2i.
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Let ω be a 2-form. The two following statements are then equivalent:

(i) The 2-form ω is closed, is in Cr,α in a neighborhood of x0, and verifies

rank [ω (x0)] = n.

(ii) There exist a neighborhood U of x0 and ϕ ∈ Diffr+1,α(U ;ϕ (U)) such that

ϕ∗ (ωm) = ω in U and ϕ (x0) = x0 .

Remark 14.2. (i) When r = 0, the hypothesis dω = 0 is to be understood in the sense
of distributions.

(ii) The theorem is still valid when n = 2, but it is then the result of Dacorogna
and Moser [33] (cf. Theorem 10.3).

Proof. The necessary part is obvious and we discuss only the sufficient part. We
divide the proof into four steps.

Step 1. Without loss of generality we take x0 = 0. We can, according to Proposi-
tion 2.24(ii), also always assume that

ω (0) = ωm .

Step 2. Our theorem will follow from Theorem 18.1. So we need to define the
spaces and the operators and then check all of the hypotheses.

1) We choose V a sufficiently small ball centered at 0 and we define the sets

X1 =C1,α(V ;Rn) and Y1 =C0,α(V ;Λ 2),

X2 =Cr+1,α(V ;Rn) and Y2 = {b ∈Cr,α(V ;Λ 2) : db = 0 in V}.
Using Proposition 16.23, we immediately deduce that (HXY ) of Theorem 18.1 is
fulfilled.

2) Define L : X2 → Y2 by

La = d[a�ωm] = b.

We will show that there exists L−1 : Y2 →X2 a linear right inverse of L and a constant
C1 =C1(r,α,V ) such that

‖L−1b‖Xi ≤C1‖b‖Yi for every b ∈ Y2 and i = 1,2.

Once shown this, (HL) of Theorem 18.1 will be satisfied. First, using Theorem 8.3,
find w ∈Cr+1,α(V ;Λ 1) and C1 =C1 (r,α,V )> 0 such that

dw = b in V ,

‖w‖Cr+1,α ≤C1 ‖b‖Cr,α and ‖w‖C1,α ≤C1 ‖b‖C0,α .
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Moreover, the correspondence b → w can be chosen to be linear. Next, define a ∈
Cr+1,α(V ;Rn) by

a2i−1 = w2i and a2i =−w2i−1, 1 ≤ i ≤ m,

and note that

a�ωm = w.

Finally, defining L−1 : Y2 → X2 by L−1(b) = a, we easily check that L−1 is linear,

LL−1 = id on Y2

and

‖L−1b‖Xi ≤C1‖b‖Yi for every b ∈ Y2 and i = 1,2.

So (HL) of Theorem 18.1 is satisfied.

3) We then let Q be defined by

Q(u) = ωm − (id+u)∗ωm +d [u�ωm] .

Since

d [u�ωm] =
m

∑
i=1

[
du2i−1 ∧dx2i +dx2i−1 ∧du2i] ,

ωm − (id+u)∗ωm =
m

∑
i=1

[
dx2i−1 ∧dx2i − (dx2i−1 +du2i−1)∧ (dx2i +du2i)] ,

we get

Q(u) =−
m

∑
i=1

du2i−1 ∧du2i.

4) Note that Q(0)= 0 and dQ(u)= 0 in V. Appealing to Theorem 16.28 (a similar
but more involved estimate can be found in Lemma 14.8), there exists a constant
C2 =C2 (r,V ) such that for every u,v∈Cr+1,α(Ω ;Rn), the following estimates hold:

‖Q(u)−Q(v)‖C0,α ≤
m

∑
i=1

‖du2i−1 ∧du2i −dv2i−1 ∧dv2i‖C0,α

≤
m

∑
i=1

‖du2i−1 ∧ (du2i −dv2i)‖C0,α

+
m

∑
i=1

‖(dv2i−1 −du2i−1)∧dv2i‖C0,α

≤C2(‖u‖C1,α +‖v‖C1,α )‖u− v‖C1,α
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and

‖Q(u)‖Cr,α ≤
m

∑
i=1

‖du2i−1 ∧du2i‖Cr,α

≤C
m

∑
i=1

[‖du2i−1‖Cr,α‖du2i‖C0 +‖du2i‖Cr,α‖du2i−1‖C0
]

≤C2‖u‖C1,α‖u‖Cr+1,α .

We therefore see that property (HQ) is valid for every ρ and we choose ρ = 1/(2n),

c1 (r,s) =C2 (r+ s) and c2 (r,s) =C2 r s.

5) Setting ϕ = id+u, we can rewrite the equation ϕ∗ (ωm) = ω as

Lu = d [u�ωm] = ω − (id+u)∗ωm +d [u�ωm]

= ω −ωm +[ωm − (id+u)∗ωm +d [u�ωm]]

= ω −ωm +Q(u).

Step 3. We may now apply Theorem 18.1 and get that there exists ψ ∈Cr+1,α(V ;Rn
)

such that ψ∗ (ωm) = ω in V with ‖∇ψ − I‖C0 ≤ 1/(2n), provided

‖ω −ωm‖C0,α ≤ 1
2C1 max{4C1C2 ,1} . (14.1)

Setting ϕ (x)=ψ (x)−ψ (0) , we have indeed proved that there exists ϕ ∈Cr+1,α(V ;Rn
)

satisfying

ϕ∗ (ωm) = ω in V, ‖∇ϕ − I‖C0 ≤ 1
2n

and ϕ (0) = 0.

Step 4. We may now conclude the proof of the theorem.

Step 4.1. Let 0 < ε < 1 and define

ωε (x) = ω (εx) .

Observe that ωε ∈Cr,α(V ;Λ 2), dωε = 0, ωε (0) = ωm and

‖ωε −ωm‖C0,α(V) → 0 as ε → 0.

Choose ε sufficiently small so that

‖ωε −ωm‖C0,α(V) ≤
1

2C1 max{4C1C2 ,1} .

Apply Step 3 to find ψε ∈Cr+1,α(V ;Rn
)

satisfying

ψ∗
ε (ωm) = ωε in V, ‖∇ψε − I‖C0 ≤ 1

2n
and ψε (0) = 0.
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Step 4.2. Let
χε (x) =

x
ε

and define
ϕ = ε ψε ◦χε .

Define U = εV. It is easily seen that ϕ ∈Cr+1,α(U ;Rn),

ϕ∗(ωm) = ω in U and ϕ(0) = 0.

Note in particular that

‖∇ϕ − I‖C0(U) = ‖∇ψε − I‖C0(V ) ≤
1

2n

and therefore det∇ϕ > 0 in U . Hence, restricting U, if necessary, we can assume
that ϕ ∈ Diffr+1,α(U ;ϕ(U)). This concludes the proof of the theorem. ��

14.3 Local Result for Forms of Nonmaximal Rank

The main result of the present section is to obtain the Darboux theorem for degen-
erate closed 2-forms. We will provide, following Bandyopadhyay, Dacorogna and
Kneuss [9], two proofs of the theorem. The standard proof uses the Frobenius the-
orem to reduce the dimension so that the forms have maximal rank and then apply
the classical Darboux theorem. We will follow this path but using the more sophis-
ticated Theorem 14.1. Our theorem will provide a solution in Cr,α , whereas in the
existing literature solutions are found only in Cr−1,α .

We will also give a completely different proof; it will use an argument based on
the flow method. Still a different proof can be found in [8] when n = 2m+1.

14.3.1 The Theorem and a First Proof

Theorem 14.3. Let n ≥ 3, r,m ≥ 1 be integers and 0 < α < 1. Let x0 ∈ R
n and ωm

be the standard symplectic form with rank [ωm] = 2m < n, namely

ωm =
m

∑
i=1

dx2i−1 ∧dx2i.

Let ω be a Cr,α closed 2-form such that

rank [ω] = 2m in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr,α(U ;ϕ (U)) such that

ϕ∗ (ωm) = ω in U and ϕ (x0) = x0.
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Remark 14.4. The theorem is standard in the C∞ case. In all proofs that we have
seen, the regularity that is established is, at best, that if ω ∈ Cr,α , then ϕ ∈ Cr−1,α .
However, our result asserts that ω and ϕ have the same regularity in Hölder spaces.
This is, of course, better but still not optimal, as in the nondegenerate case of Theo-
rem 14.1.

Proof. Step 1. Without loss of generality, we can assume x0 = 0. We first find, ap-
pealing to Theorem 4.5, a neighborhood V ⊂R

n of 0 and ψ ∈Diffr,α(V ;ψ (V )) with
ψ (0) = 0 and

ψ∗ (ω)(x1, . . . ,xn) = ω̃ (x1, . . . ,x2m) = ∑
1≤i< j≤2m

ω̃i j (x1, . . . ,x2m)dxi ∧dx j.

Therefore, ψ∗ (ω) = ω̃ ∈Cr−1,α in a neighborhood of 0 in R
2m and rank ω̃ = 2m in

a neighborhood of 0.
Step 2. We then apply Theorem 14.1 to ω̃ find a neighborhood W ⊂R

2m of 0 and
χ ∈ Diffr,α(W ; χ (W )), with χ (0) = 0, such that

χ∗ (ωm) = ω̃ in W.

We set

χ̃ (x) = χ̃ (x1, . . . ,x2m,x2m+1, . . . ,xn) = (χ (x1, . . . ,x2m) ,x2m+1, . . . ,xn) .

We then choose V smaller, if necessary, so that

V ⊂W ×R
n−2m.

We finally have that U = ψ (V ) and ϕ = χ̃ ◦ψ−1 have all of the desired properties.
��

14.3.2 A Second Proof

We now provide a second proof of Theorem 14.3 under the extra assumption that ω
is in C∞. It seems that the present proof is more appropriate if one wants to look for
global results.

Proof. As usual, we consider, without loss of generality, that x0 = 0.
Step 1. Define, for a sufficiently small neighborhood U1 of 0 ,

h(t,x) = ht(x) = ω (tx) .

Then the homotopy h is such that h ∈C∞([0,1]×U1;Λ 2) and for every t ∈ [0,1], the
following identities hold in U1:

dht = 0, hm
t �= 0 and hm+1

t = 0 (14.2)
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(recall that the last two conditions are equivalent to rank [ht ] = 2m) and

h0 = ω (0) and h1 = ω.

Step 2. Since (14.2) holds and

hm
t ∧ ∂ht

∂ t
=

1
m+1

∂hm+1
t

∂ t
= 0,

we can apply Theorem 8.22. We can therefore find a neighborhood U2 ⊂ U1 of
0 and w ∈ C∞([0,1]×U2;Rn), w(t,x) = wt(x), satisfying, for every t ∈ [0,1],
wt(0) = 0 and

dwt =−∂ht

∂ t
and wt ∧hm

t = 0 in U2 .

We then apply Proposition 2.50 to find u ∈C∞([0,1]×U2;Rn), u(t,x) = ut(x), with

ut �ht = wt and ut(0) = 0.

Step 3. We next find the flow, associated to the vector field ut ,⎧⎨⎩
d
dt

ϕt = ut ◦ϕt , 0 ≤ t ≤ 1,

ϕ0 = id .

Theorem 12.8 gives that ϕ1 is a diffeomorphism in a neighborhood U3 ⊂ U2 of 0
such that

ϕ∗
1 (h1) = h0 in U3 and ϕ1(0) = 0 .

Step 4. Since h0 is constant, we can use Proposition 2.24(ii) to find a diffeomor-
phism ψ of the form ψ (x) = Ax with A ∈ GL(n) so that

ψ∗(h0) = ωm =
m

∑
i=1

dx2i−1 ∧dx2i.

Letting ϕ = ψ−1 ◦ϕ−1
1 , we have the claim. ��

14.4 Global Result with Dirichlet Data

14.4.1 The Main Result

We now state our main theorem. It has been obtained under slightly more restrictive
hypotheses by Bandyopadhyay and Dacorogna [8]; as stated, it is due to Dacorogna
and Kneuss [32]. We will provide two proofs of the theorem in Sections 14.4.5
and 14.4.6.
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Theorem 14.5. Let n > 2 be even and Ω ⊂ R
n be a bounded open smooth set with

exterior unit normal ν . Let 0<α < 1 and r ≥ 1 be an integer. Let f ,g∈Cr,α(Ω ;Λ 2
)

satisfying d f = dg = 0 in Ω ,

ν ∧ f ,ν ∧g ∈Cr+1,α (∂Ω ;Λ 3) and ν ∧ f = ν ∧g on ∂Ω ,∫
Ω
〈 f ;ψ〉dx =

∫
Ω
〈g;ψ〉dx for every ψ ∈ HT

(
Ω ;Λ 2) (14.3)

and, for every t ∈ [0,1] ,

rank [tg+(1− t) f ] = n in Ω .

Then there exists ϕ ∈ Diffr+1,α (Ω ;Ω
)

such that

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω .

Remark 14.6. (i) As already mentioned, we can consider, in a similar way, a general
homotopy ft with f0 = f , f1 = g,

d ft = 0, ν ∧ ft = ν ∧ f0 on ∂Ω and rank [ ft ] = n in Ω ,∫
Ω
〈 ft ;ψ〉dx =

∫
Ω
〈 f0;ψ〉dx for every ψ ∈ HT

(
Ω ;Λ 2).

Note that the nondegeneracy condition rank [ ft ] = n implies (identifying, as usual,
volume forms with functions)

f n/2 ·gn/2 > 0 in Ω .

(ii) The nondegeneracy condition

rank [tg+(1− t) f ] = n for every t ∈ [0,1]

is equivalent to the condition that the matrix (g)
(

f
)−1 has no negative eigenvalues.

(iii) If Ω is contractible, then HT
(
Ω ;Λ 2

)
= {0} and, therefore, (14.3) is auto-

matically satisfied.
(iv) Note that the extra regularity on f and g holds only on the boundary and

only for their tangential parts. More precisely, recall that for x ∈ ∂Ω , we denote by
ν = ν (x) the exterior unit normal to Ω . By

ν ∧ f ∈Cr+1,α(∂Ω ;Λ 3)
we mean that the tangential part of f is in Cr+1,α , namely the 3-form F defined by

F (x) = ν (x)∧ f (x)

is such that
F ∈Cr+1,α(∂Ω ;Λ 3).
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14.4.2 The Flow Method

We now state and prove a weaker version, from the point of view of regularity, of
Theorem 14.5. It has, however, the advantage of having a simple proof. It has been
obtained by Bandyopadhyay and Dacorogna [8].

Theorem 14.7. Let n > 2 be even and Ω ⊂ R
n be a bounded open smooth set with

exterior unit normal ν . Let r ≥ 1 be an integer, 0 < α < 1 and f ,g ∈ Cr,α(Ω ;Λ 2
)

satisfy
d f = dg = 0 in Ω , ν ∧ f = ν ∧g on ∂Ω ,∫

Ω
〈 f ;ψ〉dx =

∫
Ω
〈g;ψ〉dx for every ψ ∈ HT

(
Ω ;Λ 2),

rank [tg+(1− t) f ] = n in Ω and for every t ∈ [0,1] .

Then there exists ϕ ∈ Diffr,α (Ω ;Ω
)

such that

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω .

Furthermore, if 0 < β ≤ α < 1 and if c > 0 is such that

‖ f‖C1 , ‖g‖C1 ,

∥∥∥∥∥ 1

[ tg+(1− t) f ]n/2

∥∥∥∥∥
C0

≤ c for every t ∈ [0,1] ,

then there exists a constant C =C (c,r,α,β ,Ω)> 0 such that

‖ϕ − id‖Cr,α ≤C [‖ f‖Cr,α +‖g‖Cr,α ]‖ f −g‖C0,β +C‖ f −g‖Cr−1,α .

Proof. We solve (cf. Theorem 8.16){
dw = f −g in Ω ,

w = 0 on ∂Ω

and find w ∈Cr+1,α(Ω ;Λ 1
)

and C1 =C1 (r,α,β ,Ω)> 0 such that

‖w‖Cr,α ≤C1 ‖ f −g‖Cr−1,α and ‖w‖C1,β ≤C1 ‖ f −g‖C0,β .

Since rank [ tg+(1− t) f ] = n, we can find ut ∈Cr,α(Ω ;Rn) so that

ut � [ tg+(1− t) f ] = w ⇔ ut =
[

tg+(1− t) f
]−1 w.

Moreover (in view of Notation (v) in Section 14.1, Theorem 16.28 and Corol-
lary 16.30), we can find constants Ci =Ci (c,r,α,β ,Ω)> 0, i = 2,3, such that

‖ut‖Cr,α ≤C2 [‖ f‖Cr,α +‖g‖Cr,α ]‖w‖C0 +C2 ‖w‖Cr,α

≤C3 [‖ f‖Cr,α +‖g‖Cr,α ]‖ f −g‖C0,β +C3 ‖ f −g‖Cr−1,α
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and ‖ut‖C1 ≤ C3 . We then apply Theorem 12.7 to ut and ft = tg+(1− t) f to find
ϕ satisfying

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω .

The estimate follows from Theorem 12.1. The proof is therefore complete. ��

14.4.3 The Key Estimate for Regularity

The following estimate will play a crucial role in getting the optimal regularity in
Theorem 14.10. We have encountered a result of the same type in the much simpler
case of volume forms (see Theorem 10.9) or in the local case (see Theorem 14.1).
We will state the theorem for k-forms, although we will use it only when k = 2.

Lemma 14.8. Let n ≥ 2 and Ω ⊂ R
n be a bounded open Lipschitz set. Let r ≥ 1,

2 ≤ k ≤ n be integers, c > 0 and 0 ≤ γ ≤ α ≤ 1. Let g ∈Cr+1,α(Ω ;Λ k
)

be closed,
u,v ∈Cr+1,α(Ω ;Rn

)
and c > 0 with

‖u‖C1,γ ,‖v‖C1,γ ≤ c,

(id+tu)
(
Ω
)
,(id+tv)

(
Ω
)⊂ Ω , ∀ t ∈ [0,1] .

Set

Q(u) = g− (id+u)∗ (g)+d [u�g] .

Then there exists a constant C =C (c,r,Ω) such that the following estimates hold:

‖Q(u)−Q(v)‖C0,γ ≤C‖g‖C2,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ ,

‖Q(u)‖Cr,α ≤C‖g‖Cr+1,α ‖u‖C1 +C‖g‖C1 ‖u‖Cr+1,α ‖u‖C1 .

Remark 14.9. With essentially the same argument, we can replace the last estimate
by the following one. In addition to the hypotheses of the lemma, let 0 ≤ α < β ≤ 1
and g ∈Cr+1,β (Ω ;Λ k

)
; then the last estimate takes the following form:

‖Q(u)‖Cr,α ≤C‖g‖Cr+1,β ‖u‖1+β−α
C1 +C‖g‖Cr+1,α ‖u‖Cr+1,α ‖u‖C1

for every u,v ∈Cr+1,α(Ω ;Rn
)

with

‖u‖C1,γ ,‖v‖C1,γ ≤ c,

(id+tu)
(
Ω
)
,(id+tv)

(
Ω
)⊂ Ω , ∀ t ∈ [0,1] .

Proof. We divide the proof into four steps. Since we will apply the result only when
k = 2, we will always single out the formulas for this case. We also will constantly
use Theorem 16.28.
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Step 1. We start with some notations. The form g will be written as

g = ∑
I∈Tk

gI dxI .

We first need to write (id+u)∗(g) in a different way. For this, we observe that we
have, for I ∈ Tk ,

d (x+u)I =
(
dxi1 +dui1

)∧·· ·∧ (dxik +duik
)

= dxI + ∑
(J,K)=I
1≤|K|≤k

dxJ ∧duK

= dxI + ∑
(J,i)=I
1≤i≤n

dxJ ∧dui + ∑
(J,K)=I
2≤|K|≤k

dxJ ∧duK ,

where we have used the notation

∑
(J,i)=I
1≤i≤n

dxJ ∧dui =
k

∑
γ=1

(−1)k+γ dxi1 ∧·· ·∧dxiγ−1 ∧dxiγ+1 ∧·· ·∧dxik ∧duiγ

and similarly for
∑

(J,K)=I
2≤|K|≤k

dxJ ∧duK .

When k = 2, we have

(dx+du)i j = (dxi +dui)∧ (dx j +du j)

= dxi ∧dx j +
[
dui ∧dx j +dxi ∧du j]+dui ∧du j.

We can therefore write

(id+u)∗ (g) = ∑
I∈Tk

gI (id+u)dxI + ∑
I∈Tk

gI (id+u) ∑
(J,K)=I
1≤|K|≤k

dxJ ∧duK

= g(id+u)+ ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI (id+u)dxJ ∧dui

+ ∑
I∈Tk

∑
(J,K)=I
2≤|K|≤k

gI (id+u)dxJ ∧duK

so that when k = 2, we find

(id+u)∗ (g) = g(id+u)+ ∑
1≤i< j≤n

gi j(id+u)
[
dui ∧dx j +dxi ∧du j]

+ ∑
1≤i< j≤n

gi j(id+u)dui ∧du j.
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We will also use, for I ∈ Tk ,

d
[
u�dxI]= ∑

(J,i)=I
1≤i≤n

dxJ ∧dui,

which reads, when k = 2, as

d
[
u�dxi j]= d

[
u�
(
dxi ∧dx j)]= dui ∧dx j +dxi ∧du j.

Step 2. We have, since g is closed and according to Lemma 5.4, that

d [u�g] = ∑
I∈Tk

gI d
[
u�dxI]+ ∑

I∈Tk

〈gradgI ;u〉dxI

= ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI dxJ ∧dui + ∑
I∈Tk

〈gradgI ;u〉dxI

and hence, when k = 2,

d [u�g] = ∑
1≤i< j≤n

gi j
[
dui ∧dx j +dxi ∧du j]+ ∑

1≤i< j≤n

〈
gradgi j;u

〉
dxi ∧dx j.

In order to get the right estimates, we rewrite Q(u), defined by

Q(u) = g− (id+u)∗ (g)+d [u�g] ,

in the following way:

Q(u) = g−g(id+u)− ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI (id+u)dxJ ∧dui

− ∑
I∈Tk

∑
(J,K)=I
2≤|K|≤k

gI (id+u)dxJ ∧duK +d [u�g]

and thus

Q(u) = g−g(id+u)− ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI (id+u)dxJ ∧dui

− ∑
I∈Tk

∑
(J,K)=I
2≤|K|≤k

gI (id+u)dxJ ∧duK

+ ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI dxJ ∧dui + ∑
I∈Tk

〈gradgI ;u〉dxI .

We then let
Q1(u) = ∑

I∈Tk

∑
(J,i)=I
1≤i≤n

[gI −gI(id+u)]
[
dxJ ∧dui] ,
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Q2(u) = ∑
I∈Tk

[gI(id+u)−gI −〈gradgI ;u〉]dxI ,

Q3(u) = ∑
I∈Tk

∑
(J,K)=I
2≤|K|≤k

gI (id+u)dxJ ∧duK

so that
Q(u) = Q1(u)−Q2(u)−Q3(u).

We therefore have, when k = 2, that

Q1(u) = ∑
1≤i< j≤n

[gi j −gi j(id+u)]
[
dui ∧dx j +dxi ∧du j] ,

Q2(u) = ∑
1≤i< j≤n

[gi j(id+u)−gi j −〈gradgi j;u〉]dxi ∧dx j,

Q3(u) = ∑
1≤i< j≤n

gi j(id+u)dui ∧ du j.

Step 3. We now establish the first estimate for each of the Qp , p = 1,2,3. So let
u,v ∈Cr+1,α(Ω ;Rn) with

‖u‖C1,γ ,‖v‖C1,γ ≤ c and (id+tu)
(
Ω
)
,(id+tv)

(
Ω
)⊂ Ω , ∀ t ∈ [0,1] .

In the sequel, Ci will denote constants that depend only on c and Ω . Since in all cases
we will make the estimates component by component, we immediately drop the sum
signs. Before starting, we recall (cf. Theorems 16.31 and 16.36) that there exists a
constant C1 =C1 (c,Ω) such that for every f ∈C1,γ(Ω) and every w, w̃ ∈C1(Ω ;Ω)
with ‖w‖C1 ,‖w̃‖C1 ≤ c,

‖ f ◦w‖C0,γ ≤C1‖ f‖C0,γ ,

‖ f ◦w− f ◦ w̃‖C0 ≤C1 ‖ f‖C1 ‖w− w̃‖C0 ,

‖ f ◦w− f ◦ w̃‖C0,γ ≤C1 ‖ f‖C1,γ ‖w− w̃‖C0,γ .

Estimate for Q1. We have

‖Q1(u)−Q1(v)‖C0,γ

= ‖ [gI(id)−gI(id+u)]
[
dxJ ∧dui]− [gI(id)−gI(id+v)]

[
dxJ ∧dvi]‖C0,γ

≤ ‖[gI(id+v)−gI(id+u)]
[
dxJ ∧dvi]‖C0,γ

+‖[gI(id+u)−gI(id)]
[
dxJ ∧ [dvi −dui]]‖C0,γ .

We therefore get

‖Q1(u)−Q1(v)‖C0,γ ≤C2‖[gI(id+v)−gI(id+u)]‖C0‖v‖C1,γ

+C2‖[gI(id+v)−gI(id+u)]‖C0,γ‖v‖C1

+C2‖[gI(id+u)−gI(id)]‖C0‖u− v‖C1,γ

+C2‖[gI(id+u)−gI(id)]‖C0,γ‖u− v‖C1 .
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Hence (bearing in mind that ‖u‖C1,γ ,‖v‖C1,γ ≤ c), we get

‖Q1(u)−Q1(v)‖C0,γ

≤C3‖g‖C1‖v−u‖C0‖v‖C1,γ +C3‖g‖C1,γ‖v−u‖C0,γ‖v‖C1

+C3‖g‖C1‖u‖C0‖u− v‖C1,γ +C3‖g‖C1,γ‖u‖C0,γ‖u− v‖C1 .

We thus have

‖Q1(u)−Q1(v)‖C0,γ ≤C‖g‖C1,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ .

Estimate for Q2 . For Q2 we proceed in the following way. We first observe that

Q2(u) =
∫ 1

0

d
dt

[
(gI(id+tu)− t〈gradgI(id);u〉)dxI]dt

=
∫ 1

0

[〈gradgI(id+tu)−gradgI(id);u〉dxI]dt.

We therefore obtain

‖Q2(u)−Q2(v)‖C0,γ

≤
∫ 1

0
‖〈gradgI(id+tu)−gradgI(id);u〉

−〈gradgI(id+tv)−gradgI(id);v〉‖C0,γ dt

≤
∫ 1

0
{‖〈gradgI(id+tu)−gradgI(id+tv);u〉‖C0,γ

+ ‖〈gradgI(id+tv)−gradgI(id);u− v〉‖C0,γ}dt

and, hence,

‖Q2(u)−Q2(v)‖C0,γ

≤C2

∫ 1

0
{‖gradgI(id+tu)−gradgI(id+tv)‖C0,γ‖u‖C0

+‖gradgI(id+tu)−gradgI(id+tv)‖C0‖u‖C0,γ

+‖gradgI(id+tv)−gradgI(id)‖C0,γ‖u− v‖C0

+ ‖gradgI(id+tv)−gradgI(id)‖C0‖u− v‖C0,γ}dt.

This leads to (recall that ‖u‖C1,γ ,‖v‖C1,γ ≤ c)

‖Q2(u)−Q2(v)‖C0,γ

≤C3‖g‖C2,γ‖u− v‖C0,γ‖u‖C0 +C3‖g‖C2‖u− v‖C0‖u‖C0,γ

+C3‖g‖C2,γ‖v‖C0,γ‖u− v‖C0 +C3‖g‖C2‖v‖C0‖u− v‖C0,γ .

We therefore have the estimate

‖Q2(u)−Q2(v)‖C0,γ ≤C‖g‖C2,γ (‖u‖C0,γ +‖v‖C0,γ )‖u− v‖C0,γ .
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Estimate for Q3 . It remains to prove the estimate for Q3 . We get

‖Q3(u)−Q3(v)‖C0,γ

= ‖gI(id+v)dxJ ∧dvK −gI(id+u)dxJ ∧duK‖C0,γ

≤ ‖gI(id+v)(dxJ ∧ (dvK −duK))‖C0,γ

+‖(gI(id+v)−gI(id+u))dxJ ∧duK‖C0,γ ,

which leads to (recalling that ‖u‖C1,γ ,‖v‖C1,γ ≤ c and |K| ≥ 2, just as in (10.19))

‖Q3(u)−Q3(v)‖C0,γ ≤C3‖g‖C0,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ

+C3‖g‖C1,γ‖u− v‖C0,γ‖u‖C1,γ

and, thus,

‖Q3(u)−Q3(v)‖C0,γ ≤C‖g‖C1,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ ,

proving the estimate for Q3 .

Step 4. We next establish the second estimate for each of the Qp , p = 1,2,3. So
let u ∈Cr+1,α(Ω ;Rn) with

‖u‖C1,γ ≤ c and (id+tu)
(
Ω
)⊂ Ω , ∀ t ∈ [0,1].

As before, Ci will denote constants that depend only on c, r and Ω . Since in all cases
we will make the estimates component by component, we drop the sum signs. We
recall (cf. Theorem 16.31) that there exists a constant C1 =C1 (c,r,Ω) such that for
every f ∈Cr,α(Ω) and every w ∈Cr,α(Ω ;Ω) with ‖w‖C1 ≤ c,

‖ f ◦w‖Cr,α ≤C1‖ f‖Cr,α +C1‖ f‖C1‖w‖Cr,α .

We also claim that

‖g◦ (id+u)−g◦ id‖Cr,α ≤C1 ‖g‖Cr+1,α ‖u‖C1 +C1 ‖g‖C1 ‖u‖Cr+1,α

for every u ∈Cr+1,α(Ω ;Rn), with

‖u‖C1 ≤ c and (id+u)
(
Ω
)⊂ Ω .

Indeed, from Theorem 16.36, we have

‖g◦ (id+u)−g◦ id‖Cr,α ≤C2 ‖g‖Cr+1,α ‖u‖C0 +C2 ‖g‖C2 [1+‖u‖Cr,α ]‖u‖C0

+C2 ‖g‖C1 ‖u‖Cr,α ,

and from Corollary 16.27, we get

‖g‖C2 ‖u‖Cr,α ≤C3 [‖g‖Cr+1,α ‖u‖C1 +‖g‖C1‖u‖Cr+1,α ] . (14.4)

Combining the two estimates, we have our claim.
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Estimate for Q1 . We have

‖Q1(u)‖Cr,α = ‖ [gI(id)−gI(id+u)]
[
dxJ ∧dui]‖Cr,α

≤C2‖[gI(id+u)−gI(id)]‖C0‖u‖Cr+1,α

+C2‖[gI(id+u)−gI(id)]‖Cr,α‖u‖C1 .

We therefore get (bearing in mind that ‖u‖C1,γ ≤ c)

‖Q1(u)‖Cr,α ≤C3‖g‖C1‖u‖C0‖u‖Cr+1,α

+C3 ‖g‖Cr+1,α ‖u‖2
C1 +C3 ‖g‖C1 ‖u‖Cr+1,α ‖u‖C1

and, thus,

‖Q1(u)‖Cr,α ≤C‖g‖Cr+1,α ‖u‖C1 +C‖g‖C1 ‖u‖Cr+1,α ‖u‖C1 .

Estimate for Q2 . As before, we have that

Q2(u) =
∫ 1

0

d
dt

[
(gI(id+tu)− t〈gradgI(id);u〉)dxI]dt

=
∫ 1

0

[〈gradgI(id+tu)−gradgI(id);u〉dxI]dt.

We therefore obtain

‖Q2(u)‖Cr,α ≤C2

∫ 1

0
{‖gradgI(id+tu)−gradgI(id)‖Cr,α‖u‖C0

+‖gradgI(id+tu)−gradgI(id)‖C0‖u‖Cr,α}dt

and, hence,

‖Q2(u)‖Cr,α ≤C2

∫ 1

0
{[‖gradgI(id+tu)‖Cr,α +‖gradgI‖Cr,α ]‖u‖C0

+ ‖gradgI(id+tu)−gradgI(id)‖C0‖u‖Cr,α}dt.

This leads to (recall that ‖u‖C1,γ ≤ c)

‖Q2(u)‖Cr,α ≤C3 [‖g‖Cr+1,α +‖g‖C2‖u‖Cr,α ]‖u‖C0 +C3‖g‖C2‖u‖C0‖u‖Cr,α .

From (14.4) we get

‖Q2(u)‖Cr,α ≤C‖g‖Cr+1,α ‖u‖C1 +C3‖g‖C1‖u‖Cr+1,α‖u‖C1 .

Estimate for Q3 . We immediately have

‖Q3(u)‖Cr,α = ‖gI(id+u)dxJ ∧duK‖Cr,α

≤C2‖g(id+u)‖Cr,α‖duK‖C0 +C2‖g‖C0‖duK‖Cr,α .
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Since |K| ≥ 2 and ‖u‖C1,γ ≤ c, we get

‖Q3(u)‖Cr,α ≤C3 [‖g‖Cr,α +‖g‖C1‖u‖Cr,α ]‖u‖|K|
C1

+C3‖g‖C0‖u‖|K|−1
C1 ‖u‖Cr+1,α

and, thus, since ‖u‖C1,γ ≤ c,

‖Q3(u)‖Cr,α ≤C‖g‖Cr,α‖u‖C1 +C‖g‖C1‖u‖Cr+1,α‖u‖C1 .

The combination of the three estimates gives the proof of the lemma. ��

14.4.4 The Fixed Point Method

The first proof of Theorem 14.5 relies on the following key theorem (obtained by
Bandyopadhyay and Dacorogna [8] under more restrictive hypotheses; as stated, it
is due to Dacorogna and Kneuss [32]).

Theorem 14.10. Let n > 2 be even and Ω ⊂ R
n be a bounded open smooth set. Let

r ≥ 1 be an integer and 0 < γ ≤ α < 1. Let g ∈Cr+1,α(Ω ;Λ 2
)

and f ∈Cr,α(Ω ;Λ 2
)

be such that
d f = dg = 0 in Ω , ν ∧ f = ν ∧g on ∂Ω ,∫

Ω
〈 f ;ψ〉dx =

∫
Ω
〈g;ψ〉dx for every ψ ∈ HT

(
Ω ;Λ 2),

rank [g] = n in Ω .

Let c > 0 be such that

‖g‖C0 ,

∥∥∥∥∥ 1

[g ]n/2

∥∥∥∥∥
C0

≤ c

and define

θ (g) =
1

‖g‖2
C1,γ

min
{
‖g‖C1,γ ,

1
‖g‖C2,γ

,
1

‖g‖Cr+1,α

}
.

There exists C =C(c,r,α,γ,Ω)> 0 such that if

‖ f −g‖C0,γ ≤Cθ (g) and ‖ f −g‖C0,γ ≤C
‖ f −g‖Cr,α

‖g‖C1,γ ‖g‖Cr+1,α
, (14.5)

then there exists ϕ ∈ Diffr+1,α (Ω ;Ω
)

verifying

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω . (14.6)
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Furthermore, there exists C̃ = C̃(c,r,α,γ,Ω)> 0 such that

‖ϕ − id‖Cr+1,α ≤ C̃‖g‖Cr+1,α‖ f −g‖Cr,α .

Remark 14.11. (i) Note that since g ∈Cr+1,α(Ω ;Λ 2) and ν ∧ f = ν ∧g on ∂Ω , then
ν ∧ f ∈Cr+1,α(∂Ω ;Λ 3).

(ii) With essentially the same proof, but replacing the last estimate of Lemma
14.8 by the corresponding one in Remark 14.9, we get the following result. In addi-
tion to the hypotheses of the theorem, let 0 < γ ≤ α < β < 1, g ∈ Cr+1,β (Ω ;Λ 2

)
,

f ∈Cr,α(Ω ;Λ 2
)

and c > 0 be such that

d f = dg = 0 in Ω , ν ∧ f = ν ∧g on ∂Ω ,∫
Ω
〈 f ;ψ〉dx =

∫
Ω
〈g;ψ〉dx for every ψ ∈ HT

(
Ω ;Λ 2),

rank [g] = n in Ω ,

‖g‖C0 ,

∥∥∥∥∥ 1

[g ]n/2

∥∥∥∥∥
C0

≤ c.

Define

θ (g) =
1

‖g‖C1,γ
min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ,

1
‖g‖C1,γ‖g‖C2,γ

,
1

‖g‖2
Cr+1,α

,

[
1

‖g‖C1,γ‖g‖Cr+1,β

] 1
β−α

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

There exist C = C(c,r,α,β ,γ,Ω) > 0 and C̃ = C̃(c,r,α,β ,γ,Ω) > 0 such that if
(compare with (14.5))

‖ f −g‖C0,γ ≤Cθ (g) ,

then there exists ϕ ∈ Diffr+1,α (Ω ;Ω
)

verifying

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω

and
‖ϕ − id‖Cr+1,α ≤ C̃‖g‖Cr+1,α‖ f −g‖Cr,α .

Proof. The theorem will follow from Theorem 18.1. We divide the proof into five
steps; the first four to verify the hypotheses of the theorem and the last one to con-
clude.

Step 1. We define the spaces as follows:

X1 =C1,γ(Ω ;Rn) and Y1 =C0,γ(Ω ;Λ 2),
X2 = {a ∈Cr+1,α(Ω ;Rn) : a = 0 on ∂Ω},

Y2 =

{
b ∈Cr,α(Ω ;Λ 2) :

[
db = 0 in Ω , ν ∧b = 0 on ∂Ω ,∫

Ω 〈b;ψ〉dx = 0, ∀ψ ∈ HT
(
Ω ;Λ 2

) } .
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It is easily seen that they satisfy Hypothesis (HXY ) of Theorem 18.1 (see Proposi-
tion 16.23).

Step 2. Define L : X2 → Y2 by

La = d[a�g] = b.

We will show that there exist L−1 : Y2 → X2, a linear right inverse of L and a constant
K1 = K1(c,r,α,γ,Ω) such that, defining

k1 = K1‖g‖C1,γ and k2 = K1‖g‖Cr+1,α ,

we get
‖L−1b‖Xi ≤ ki‖b‖Yi for every b ∈ Y2 and i = 1,2.

Once this is shown, (HL) of Theorem 18.1 will be satisfied.

Step 2.1. Indeed, we first solve, using Theorem 8.16, the equation{
dw = b in Ω ,

w = 0 on ∂Ω

and find w ∈Cr+1,α(Ω ;Λ 1
)

and C1 =C1 (r,α,γ,Ω)> 0 such that

‖w‖Cr+1,α ≤C1 ‖b‖Cr,α and ‖w‖C1,γ ≤C1 ‖b‖C0,γ .

Moreover, the correspondence b → w can be chosen to be linear.

Step 2.2. Since rank [g] = n, we can find a unique a ∈Cr+1,α(Ω ;Rn
)

so that

a�g = w,

which is equivalent to
a = [g ]−1 w.

Define L−1 : Y2 → X2 by L−1(b) = a. First, note that L−1 is linear and that

LL−1 = id on Y2 .

Moreover, using Theorem 16.28, Corollary 16.30 and Step 2.1, we can find con-
stants Ci =Ci (c,r,α,γ,Ω) , i = 2,3,4, such that

‖a‖Cr+1,α ≤C2
∥∥(g)−1∥∥

Cr+1,α ‖w‖C0 +C2
∥∥(g)−1∥∥

C0 ‖w‖Cr+1,α

≤C3 ‖g‖Cr+1,α ‖b‖C0,γ +C3 ‖g‖C0 ‖b‖Cr,α

≤C4 ‖g‖Cr+1,α ‖b‖Cr,α

and, similarly,
‖a‖C1,γ ≤C4 ‖g‖C1,γ ‖b‖C0,γ .

Thus, the claim of Step 2 is valid.
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Step 3. We define

Q(u) = g− (id+u)∗ (g)+d [u�g] .

We will verify that Property (HQ) of Theorem 18.1 holds with ρ = 1/(2n) . The fact
that Q(0) = 0 is evident.

Step 3.1. According to Lemma 14.8, there exists a constant K2 = K2 (r,Ω) such
that the following estimates hold:

‖Q(u)−Q(v)‖C0,γ ≤ K2‖g‖C2,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ ,

‖Q(u)‖Cr,α ≤ K2 ‖g‖Cr+1,α ‖u‖C1 +K2 ‖g‖C1 ‖u‖Cr+1,α ‖u‖C1

for every u,v ∈Cr+1,α(Ω ;Rn), with

‖u‖C1,γ ,‖v‖C1,γ ≤ 1/(2n) ,

(id+tu)
(
Ω
)
,(id+tv)

(
Ω
)⊂ Ω , ∀ t ∈ [0,1] .

We finally let
c1 (t1, t2) = K2‖g‖C2,γ (t1 + t2) ,

c2 (t1, t2) = K2‖g‖Cr+1,α t1 +K2 ‖g‖C1 t1t2 .

Note that if
F (t,x) = x+ tu(x) and ‖u‖C1 ≤ 1/(2n) ,

then for every t ∈ [0,1] ,

det∇xF (t,x) = det(I + t ∇u(x))> 0, x ∈ Ω .

Therefore, if u = 0 on ∂Ω , then, appealing to Theorem 19.12, we get that

F (t,x) ∈ Ω for every (t,x) ∈ [0,1]×Ω .

Thus, (18.1) and (18.2) have been verified.

Step 3.2. Let us check that

Q : {u ∈ X2 : ‖u‖X1 ≤ 1/(2n)}→ Y2

is well defined. We have to prove that

dQ(u) = 0 in Ω , ν ∧Q(u) = 0 on ∂Ω ,∫
Ω
〈Q(u);ψ〉dx = 0, ∀ψ ∈ HT

(
Ω ;Λ 2).

(i) The first condition follows immediately since dg = 0 and

dQ(u) = dg− (id+u)∗ (dg)+dd [u�g] .
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(ii) The second one is true since u= 0 on ∂Ω . Indeed, clearly (using the notations
Qi used in the proof of Lemma 14.8),

Q1(u) = Q2(u) = 0 on ∂Ω .

Since u = 0 on ∂Ω , each of gradui and gradu j is parallel to the normal ν . Thus,
dui ∧du j = 0 on ∂Ω for every i < j, which implies that

Q3(u) = 0 on ∂Ω .

Thus, we have, in fact, proved that Q(u) = 0 on ∂Ω .

(iii) Choosing F (t,x) = x+ tu(x) in Remark 17.4, we find that there exists Φ
such that {

dΦ = g− (id+u)∗ (g) in Ω ,

Φ = 0 on ∂Ω .

Since Ψ = Φ +u�g satisfies{
dΨ = Q(u) in Ω ,

Ψ = 0 on ∂Ω ,

we have the claim, namely∫
Ω
〈Q(u);ψ〉dx = 0, ∀ψ ∈ HT

(
Ω ;Λ 2).

Step 4. With the definition of L and Q in hand, we now rewrite (14.6) as follows.
Setting ϕ = id+u, the equation ϕ∗ (g) = f becomes

Lu = d [u�g] = f − (id+u)∗ (g)+d [u�g]

= f −g+[g− (id+u)∗ (g)+d [u�g]]

= f −g+Q(u).

In order to apply Theorem 18.1, it remains to see how the hypotheses

2k1‖ f −g‖C0,γ ≤ 1/(2n) ,

2k1c1(2k1‖ f −g‖C0,γ ,2k1‖ f −g‖C0,γ )≤ 1,
c2(2k1‖ f −g‖C0,γ ,2k2‖ f −g‖Cr,α )≤ ‖ f −g‖Cr,α

(14.7)

translate in our context.

(i) The first one leads to

‖ f −g‖C0,γ ≤ 1
4nK1‖g‖C1,γ

.
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(ii) The second one gives

‖ f −g‖C0,γ ≤ 1
8K2

1 K2‖g‖2
C1,γ‖g‖C2,γ

.

(iii) The third condition reads as

K2‖g‖Cr+1,α (2K1‖g‖C1,γ‖ f −g‖C0,γ )

+K2 ‖g‖C1 (2K1‖g‖C1,γ‖ f −g‖C0,γ )(2K1‖g‖Cr+1,α‖ f −g‖Cr,α )

≤ ‖ f −g‖Cr,α .

Note that the third condition is verified if

2K1K2‖g‖Cr+1,α‖g‖C1,γ‖ f −g‖C0,γ ≤ 1
2
‖ f −g‖Cr,α

and

4K2
1 K2 ‖g‖C1 ‖g‖C1,γ ‖g‖Cr+1,α ‖ f −g‖C0,γ‖ f −g‖Cr,α ≤ 1

2
‖ f −g‖Cr,α .

The first one leads to

‖ f −g‖C0,γ ≤ ‖ f −g‖Cr,α

4K1K2‖g‖Cr+1,α‖g‖C1,γ

and the second one is verified if

‖ f −g‖C0,γ ≤ 1
8K2

1 K2 ‖g‖Cr+1,α ‖g‖2
C1,γ

.

Combining the four conditions, we have just obtained, letting

θ (g) =
1

‖g‖2
C1,γ

min
{
‖g‖C1,γ ,

1
‖g‖C2,γ

,
1

‖g‖Cr+1,α

}
,

that there exists C = C(c,r,α,γ,Ω) > 0 such that the inequalities (14.7) are satis-
fied if

‖ f −g‖C0,γ ≤Cθ (g) and ‖ f −g‖C0,γ ≤C
‖ f −g‖Cr,α

‖g‖C1,γ ‖g‖Cr+1,α
.

Step 5. The hypotheses of Theorem 18.1 having been verified, we conclude that
there exists u ∈Cr+1,α(Ω ;Rn), with ‖u‖C1,γ ≤ 1/(2n) , satisfying u = 0 on ∂Ω and

Lu = d [u�g] = f −g+Q(u) = f − (id+u)∗ (g)+d [u�g] .

Letting ϕ = id+u, we therefore have found that

ϕ∗ (g) = f in Ω .
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Since u = 0 on ∂Ω , we have that ϕ = id on ∂Ω . Since ‖u‖C1 ≤ 1/(2n) , we deduce
that

det∇ϕ > 0 in Ω ,

and therefore, according to Theorem 19.12, we find that ϕ ∈ Diffr+1,α (Ω ;Ω
)
.

Moreover, by construction (cf. (18.5)),

‖u‖Cr+1,α ≤ 2k2‖ f −g‖Cr,α ,

which implies the desired estimate, namely

‖ϕ − id‖Cr+1,α ≤ C̃‖g‖Cr+1,α‖ f −g‖Cr,α .

The proof is thus complete. ��

14.4.5 A First Proof of the Main Theorem

We first prove Theorem 14.5 for special f and general g with extra regularity and
under a smallness assumption.

Proposition 14.12. Let Ω ⊂ R
n be a bounded open smooth set, r ≥ 1, 0 < α <

β < 1 and g ∈Cr,β (Ω ;Λ 2
)

with

ν ∧g ∈Cr+1,α(∂Ω ;Λ 3), dg = 0 and rank[g] = n in Ω .

Then for every ε small, there exist gε ∈ Cr+1,α(Ω ;Λ 2
)

and ϕε ∈ Diffr+1,α (Ω ;Ω
)

such that {
ϕ∗

ε (gε) = g in Ω ,

ϕε = id on ∂Ω ,

dgε = 0, ν ∧gε = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 , ∀ψ ∈ HT

(
Ω ;Λ 2),

lim
ε→0

‖gε −g‖Cr,α (Ω) = 0.

Moreover, there exists C = C(r,α,β ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0), such that for every ε
small,

‖ϕε − id‖Cr+1,α (Ω) ≤C
εβ−α

β −α
‖g‖Cr,β (Ω) +C ε‖ν ∧g‖Cr+1,α (∂Ω) . (14.8)

Proof. For the sake of alleviating the notations we will write in the present proof,
for example, ‖g‖Cr,β instead of ‖g‖Cr,β (Ω). However, when we will be considering
norms on the boundary of Ω , we will keep the notation ‖g‖Cr,β (∂Ω).
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Step 1 (definition of gε ). Apply Theorem 16.49 and Remark 16.50(v) and get,
for every ε ∈ (0,1], that there exist gε ∈ Cr+1,α(Ω ;Λ 2

)
and a constant C1 =

C1(r,α,β ,Ω) such that

dgε = 0 in Ω , ν ∧gε = ν ∧g on ∂Ω , (14.9)∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈ HT

(
Ω ;Λ 2), (14.10)

‖gε‖Cr+1,α ≤ C1

ε1+α−β ‖g‖Cr,β +C1‖ν ∧g‖Cr+1,α (∂Ω), (14.11)

‖gε −g‖Cr,α ≤C1εβ−α‖g‖Cr,β , (14.12)∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

≤C1‖g‖C1,α and
∥∥∥∥ d

dε
gε

∥∥∥∥
Cr,α

≤C1εβ−α−1‖g‖Cr,β . (14.13)

Moreover, defining G : (0,1]×Ω → Λ 2 by G(ε,x) = gε(x), we have

G ∈Cr+1,α((0;1]×Ω ;Λ 2) and
∂

∂ε
G ∈C∞((0;1]×Ω ;Λ 2). (14.14)

Since rank[g] = n in Ω (which is equivalent to gn/2(x) �= 0 for every x ∈ Ω ) and
since (14.12) holds, there exists ε ≤ 1 such that for every ε ∈ (0,ε],

‖gε‖C0 ≤ 2‖g‖C0 , ‖gε‖C1 ≤ 2‖g‖C1 ,

‖1/(gε)
n/2‖C0 ≤ 2‖1/gn/2‖C0 .

(14.15)

Hence, combining (14.15) and Notation (v) in Section 14.1, we deduce that for every
ε ∈ (0,ε],

‖(gε)
−1‖C1 ≤C2‖gε‖C1 and ‖(gε)

−1‖Cr+1,α ≤C2‖gε‖Cr+1,α , (14.16)

where C2 =C2(r,Ω ,‖g‖C0 ,‖1/gn/2‖C0).

Step 2. In this step we will show that for every ε ∈ (0,ε], there exist uε ∈
Cr+1,α(Ω ;Λ 1

)
and a constant C3 = C3(r,α,β ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0) such that

uε = 0 on ∂Ω and

d(uε�gε) =− d
dε

gε in Ω , (14.17)

‖uε‖Cr+1,α ≤ C3

ε1+α−β ‖g‖Cr,β +C3‖ν ∧g‖Cr+1,α (∂Ω), (14.18)

‖uε‖C1 ≤C3 . (14.19)

Moreover, defining u : (0,ε]×Ω → Λ 1 by u(ε,x) = uε(x), we will show that u ∈
Cr+1,α((0,ε]×Ω ;Λ 1

)
.

Step 2.1. Since (14.9), (14.10) and (14.14) hold, using Theorem 8.16 we can find,
for every ε ∈ (0,ε], wε ∈C∞(Ω ;Λ 1

)
and a constant C4 =C4(r,α,Ω) such that

dwε =− d
dε

gε in Ω , wε = 0 on ∂Ω



310 14 The Case k = 2

and, for every integer q ≤ r,

‖wε‖Cq+1,α ≤C4

∥∥∥∥ d
dε

gε

∥∥∥∥
Cq,α

. (14.20)

Moreover, defining w : (0,ε]×Ω →Λ 1 by w(ε,x) = wε(x), we have, using (14.14),
w ∈C∞((0,ε]×Ω ;Λ 1

)
.

Step 2.2. Since by (14.15), we have, for every ε ∈ (0,ε], rank[gε ] = n in Ω , there
exists a unique uε : Ω → Λ 1 verifying

uε�gε = wε .

Note that uε ∈Cr+1,α(Ω ;Λ 1
)

and that uε = 0 on ∂Ω . Moreover, defining u : (0,ε]×
Ω → Λ 1 by u(ε,x) = uε(x), we have u ∈Cr+1,α((0,ε]×Ω ;Λ 1

)
.

Step 2.3. To show Step 2, it only remains to prove (14.18) and (14.19). Using
Theorem 16.28, (14.15), (14.16) and (14.20), it follows that

‖uε‖Cr+1,α = ‖(gε)
−1wε‖Cr+1,α

≤C5‖(gε)
−1‖Cr+1,α‖wε‖C0 +C5‖(gε)

−1‖C0‖wε‖Cr+1,α

≤C6‖gε‖Cr+1,α‖wε‖C1,α +C6‖wε‖Cr+1,α

≤C7‖gε‖Cr+1,α

∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

+C7

∥∥∥∥ d
dε

gε

∥∥∥∥
Cr,α

and thus, invoking (14.11) and (14.13),

‖uε‖Cr+1,α

≤C8

(
1

ε1+α−β ‖g‖Cr,β +‖ν ∧g‖Cr+1,α (∂Ω)

)
‖g‖C1,α +

C8

ε1+α−β ‖g‖Cr,β

≤ C9

ε1+α−β ‖g‖Cr,β +C9‖ν ∧g‖Cr+1,α (∂Ω),

where Ci =Ci(r,α,β ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0). We similarly obtain

‖uε‖C1 = ‖(gε)
−1wε‖C1 ≤C10‖(gε)

−1‖C1‖wε‖C1

≤C11 ‖g‖C1

∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

≤C12 ‖g‖C1 ‖g‖C1,α ≤C13,

where Ci =Ci(r,α,β ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0). This shows the assertion.

Step 3. We can now conclude the proof.

Step 3.1. Since u ∈Cr+1,α((0,ε]×Ω : Rn), uε = 0 on ∂Ω and by (14.18),∫ ε

0
‖uε‖Cr+1,α dε < ∞,
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we deduce, using Theorem 12.1, that the solution ϕ : [0,ε]×Ω → Ω , ϕ(ε,x) =
ϕε(x), of ⎧⎨⎩

d
dε

ϕε = uε ◦ϕε , 0 < ε ≤ ε,

ϕ0 = id

verifies

ϕ ∈Cr+1,α([0,ε]×Ω ;Ω) (14.21)

and that for every ε ∈ [0,ε],

ϕε ∈ Diffr+1,α(Ω ;Ω) and ϕε = id on ∂Ω .

Finally, inserting (14.18) and (14.19) in (12.3), we immediately deduce (14.8).
Step 3.2. Since (14.17) holds, we deduce, using Theorem 12.7, that for every

0 < ε1 ≤ ε2 ≤ ε,
ϕ∗

ε2
(gε2) = ϕ∗

ε1
(gε1) in Ω .

Since, using (14.12) and (14.21),

lim
ε→0

‖gε −g‖C0 = 0 and lim
ε→0

‖ϕε −ϕ0‖C1 = 0,

we immediately infer that for every ε ∈ (0,ε],

ϕ∗
ε (gε) = ϕ∗

0 (g) = g .

The proof is therefore complete. ��
We can now go back to the first proof of Theorem 14.5 using an iteration scheme

involving appropriate regularization.

Proof. We split the proof into three steps.
Step 1 (approximation of g and f ). Choose γ ∈ (0,α) and δ > 0 with 2δ ≤ α −γ

and α + 2δ < 1. We next regularize g and f with the help of Theorem 16.49 (and
Remark 16.50(v)) and construct for every ε ∈ (0,1], gε , fε ∈ Cr+1,α (Ω ;Λ 2

)
such

that
dgε = d fε = 0, ν ∧gε = ν ∧g = ν ∧ f = ν ∧ fε on ∂Ω ,∫

Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉=

∫
Ω
〈 f ;ψ〉=

∫
Ω
〈 fε ;ψ〉 , ∀ψ ∈ HT

(
Ω ;Λ 2),

‖gε −g‖C0,γ ≤Cεr+α−γ ‖g‖Cr,α ,

‖gε −g‖C1,γ ≤Cεr−1+α−γ ‖g‖Cr,α ,

‖gε‖Cr+1,α ≤ C
ε
‖g‖Cr,α +C‖ν ∧g‖Cr+1,α (∂Ω) ,
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‖gε‖Cr,α+2δ ≤ C
ε2δ ‖g‖Cr,α +C‖ν ∧g‖Cr,α+2δ (∂Ω) ,

‖gε‖C2,γ ≤ C
ε
‖g‖C1,γ +C‖ν ∧g‖C2,γ (∂Ω) ,

where C =C (r,α,γ,δ ,Ω) > 0 and similarly for f and fε . Note that using the first
inequality above, there exists ε such that for every ε1,ε2 ≤ ε, we have that

rank [tgε1 +(1− t) fε2 ] = n in Ω and for every t ∈ [0,1] .

Step 2. In this step we show that there exist ε1,ε2 ≤ ε and ϕ1 ,ϕ3 ∈Diffr+1,α (Ω ;Ω
)

such that {
ϕ∗

1 (gε1) = g in Ω ,

ϕ1 = id on ∂Ω
and

{
ϕ∗

3 ( fε2) = f in Ω ,

ϕ3 = id on ∂Ω .

For this we will use a combination of Theorem 14.10 and Proposition 14.12. We
only show the assertion for g, the one with f being proved exactly in the same way.

Step 2.1. We start with some preliminary estimates. Using the second inequality
in Step 1, we deduce that for every ε small enough, recalling that r ≥ 1 and γ < α,

1
2
‖gε‖C1,γ ≤ ‖g‖C1,γ ≤ 2‖gε‖C1,γ and

∥∥∥∥ 1
[gε ]n/2

∥∥∥∥
C0

≤ 2
∥∥∥∥ 1
[g]n/2

∥∥∥∥
C0

.

In what follows, ε will always be assumed small enough. Combining the left-hand
side of the previous inequality with the third and fifth inequalities in Step 1, we
deduce that there exists D1 > 0, a constant independent of ε , such that, defining

θ (gε) =
1

‖gε‖2
C1,γ

min
{
‖gε‖C1,γ ,

1
‖gε‖C2,γ

,
1

‖gε‖Cr+1,α

}
,

we have
θ (gε)≥ D1ε.

Hence, since ‖gε −g‖C0,γ ≤Cεr+α−γ , r ≥ 1 and γ < α, we immediately deduce

lim
ε→0

‖gε −g‖C0,γ

θ (gε)
= 0. (14.22)

Note also that there exists D2 > 0, a constant independent of ε, such that

‖gε‖C0 ,

∥∥∥∥ 1
[gε ]n/2

∥∥∥∥
C0

≤ D2 .

Step 2.2. Let C = C (D2,r,α,γ,Ω) be the constant given in (14.5) of Theo-
rem 14.10. Due to (14.22), the first inequality of (14.5) is satisfied for every ε ≤ ε̃
and for some ε̃ ≤ ε. We show the assertion by considering two cases. In the first
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one, we use Theorem 14.10 to obtain the assertion and in the second one, we use
Proposition 14.12.

(i) Suppose that for some ε ≤ ε̃ , the second inequality of (14.5) is also satisfied,
namely

‖gε −g‖C0,γ ≤C (D2,r,α,γ,Ω)
‖gε −g‖Cr,α

‖gε‖C1,γ ‖gε‖Cr+1,α
.

Hence, we have the claim of Step 2 using Theorem 14.10.

(ii) Suppose that the first case does not hold true. Hence, for all ε ≤ ε̃

‖gε‖C1,γ ‖gε‖Cr+1,α ‖gε −g‖C0,γ >C (D2,r,α,γ,Ω)‖gε −g‖Cr,α .

Using the first and third inequality of Step 1, the fact that ‖gε‖C1,γ ≤ 2‖g‖C1,γ , we
obtain, recalling that r ≥ 1 and that 2δ ≤ α − γ,

‖gε −g‖Cr,α ≤ D3ε2δ for every 0 < ε ≤ ε̃,

where D3 is independent of ε. Combining the above equation with the fact that, by
the fourth inequality in Step 1 (where D4 > 0 is independent of ε),

‖gε‖Cr,α+2δ ≤ D4

ε2δ ,

we immediately deduce from Proposition 16.45 that g ∈ Cr,α+δ (Ω ;Λ 2
)
. The

assertion then follows directly from Proposition 14.12 once noticed, using
Remark 16.50(v), that the gε constructed in Proposition 14.12 are the same as the
ones defined in Step 1.

Step 3. Since⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dgε1 = d fε2 = 0 in Ω ,

ν ∧gε1 = ν ∧ fε2 on ∂Ω ,∫
Ω
〈gε1 ;ψ〉=

∫
Ω
〈 fε2 ;ψ〉 for every ψ ∈ HT

(
Ω ;Λ 2

)
,

rank [tgε1 +(1− t) fε2 ] = n in Ω and for every t ∈ [0,1],

we can apply Theorem 14.7 to find ϕ2 ∈ Diffr+1,α (Ω ;Ω
)

such that{
ϕ∗

2 (gε1) = fε2 in Ω ,

ϕ2 = id on ∂Ω .

The claimed solution is then given by

ϕ = ϕ−1
1 ◦ϕ2 ◦ϕ3 .

This achieves the proof of the theorem. ��
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14.4.6 A Second Proof of the Main Theorem

We first show Theorem 14.5 for special f and general g with extra regularity only
on the boundary and under a smallness assumption.

Proposition 14.13. Let Ω ⊂ R
n be a bounded open smooth set, r ≥ 1 and 0 < δ <

α < α +δ < 1. Let g ∈Cr,α(Ω ;Λ 2
)

with

ν ∧g ∈Cr+1,α+δ (∂Ω ;Λ 3), dg = 0 and rank[g] = n in Ω .

Then for every ε small, there exist

gε ∈Cr+1,α+δ (Ω ;Λ 2) and ϕε ∈ Diffr+1,α (Ω ;Ω
)

such that {
ϕ∗

ε (gε) = g in Ω ,
ϕε = id on ∂Ω ,

dgε = 0, ν ∧gε = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈ HT

(
Ω ;Λ 2),

lim
ε→0

‖gε −g‖Cr,α−δ (Ω) = 0.

Proof. We adopt the same simplification in the notations of the norms as in the proof
of Proposition 14.12.

Step 1 (definition of gε ). Apply Theorem 16.49 and Remark 16.50(v)–16.50(vi).
Therefore, for every ε ∈ (0,1], there exist gε ∈ Cr+1,α+δ (Ω ;Λ 2

)
and a constant

C1 =C1(r,α,δ ,Ω) such that for every γ ∈ [α −δ ,α +δ ],

dgε = 0 in Ω , ν ∧gε = ν ∧g on ∂Ω , (14.23)∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈ HT (Ω ;Λ 2), (14.24)

‖gε‖Cr+1,γ ≤ C1

ε1+γ−α ‖g‖Cr,α +C1‖ν ∧g‖Cr+1,γ (∂Ω), (14.25)

‖gε −g‖Cr,α−δ ≤C1εδ‖g‖Cr,α , (14.26)∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

≤C1‖g‖C1,α and
∥∥∥∥ d

dε
gε

∥∥∥∥
Cr,γ

≤ C1

ε1+γ−α ‖g‖Cr,α . (14.27)

Moreover, defining G : (0,1]×Ω → Λ 2 by G(ε,x) = gε(x), we have

G ∈Cr+1,α+δ ((0;1]×Ω ;Λ 2) and
∂

∂ε
G ∈C∞((0;1]×Ω ;Λ 2). (14.28)
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Since rank[g] = n in Ω (which is equivalent to gn/2(x) �= 0 for every x ∈ Ω ) and
since (14.26) holds, there exists ε ≤ 1 such that for every ε ∈ (0,ε],

‖gε‖C0 ≤ 2‖g‖C0 and ‖1/(gε)
n/2‖C0 ≤ 2‖1/gn/2‖C0 . (14.29)

Hence, combining (14.29) and Notation (v) in Section 14.1, we deduce that for every
ε ∈ (0,ε] and every γ ∈ [α −δ ,α +δ ],

‖(gε)
−1‖Cr+1,γ ≤C2‖gε‖Cr+1,γ , (14.30)

where C2 =C2(r,Ω ,‖g‖C0 ,‖1/gn/2‖C0).

Step 2. In this step we will show that for every ε ∈ (0,ε], there exist uε ∈
Cr+1,α+δ (Ω ;Λ 1

)
and a constant C3 =C3(r,α,δ ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0) such that

uε = 0 on ∂Ω and

d(uε�gε) =− d
dε

gε in Ω (14.31)

and, for every γ ∈ [α −δ ,α +δ ],

‖uε‖Cr+1,γ ≤ C3

ε1+γ−α ‖g‖Cr,α +C3‖ν ∧g‖Cr+1,α+δ (∂Ω) . (14.32)

Moreover, defining u : (0,ε]×Ω → Λ 1 by u(ε,x) = uε(x), we will show that u ∈
Cr+1,α+δ ((0,ε]×Ω ;Λ 1

)
.

Step 2.1. Since (14.23), (14.24) and (14.28) hold, using Theorem 8.16, we can
find for every ε ∈ (0,ε], wε ∈ C∞(Ω ;Λ 1) and a constant C4 = C4(r,α,δ ,Ω) such
that

dwε =− d
dε

gε in Ω , wε = 0 on ∂Ω

and, for every integer q ≤ r and every γ ∈ [α −δ ,α +δ ],

‖wε‖Cq+1,γ ≤C4

∥∥∥∥ d
dε

gε

∥∥∥∥
Cq,γ

. (14.33)

Moreover, defining w : (0,ε]×Ω →Λ 1 by w(ε,x) = wε(x), we have, using (14.28),
w ∈C∞((0,ε]×Ω ;Λ 1

)
.

Step 2.2. Since, by (14.29), we have for every ε ∈ (0,ε], rank[gε ] = n in Ω , that
there exists a unique uε : Ω → Λ 1 verifying

uε�gε = wε .

Note that uε ∈ Cr+1,α+δ (Ω ;Λ 1
)

and that uε = 0 on ∂Ω . Moreover, defining u :
(0,ε]×Ω → Λ 1 by u(ε,x) = uε(x), we have u ∈Cr+1,α+δ ((0,ε]×Ω ;Λ 1

)
.
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Step 2.3. To show Step 2, it only remains to prove (14.32). Using Theorem 16.28,
(14.29), (14.30) and (14.33), it follows that

‖uε‖Cr+1,γ = ‖(gε)
−1wε‖Cr+1,γ

≤C5‖(gε)
−1‖Cr+1,γ‖wε‖C0 +C5‖(gε)

−1‖C0‖wε‖Cr+1,γ

≤C6‖gε‖Cr+1,γ‖wε‖C1,α +C6‖wε‖Cr+1,γ

≤C7‖gε‖Cr+1,γ

∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

+C7

∥∥∥∥ d
dε

gε

∥∥∥∥
Cr,γ

and hence, appealing to (14.25) and (14.27),

‖uε‖Cr+1,γ

≤C8

(
1

ε1+γ−α ‖g‖Cr,α +‖ν ∧g‖Cr+1,γ (∂Ω)

)
‖g‖C1,α +

C8

ε1+γ−α ‖g‖Cr,α

≤ C9

ε1+γ−α ‖g‖Cr,α +C9‖ν ∧g‖Cr+1,α+δ (∂Ω),

where Ci =Ci(r,α,δ ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0). This shows the assertion.

Step 3. We can now conclude the proof.

Step 3.1. Since u ∈Cr+1,α+δ ((0,ε]×Ω : Rn), uε = 0 on ∂Ω and (14.32) holds,
we deduce, using Theorem 12.4, that the solution ϕ : [0,ε]×Ω → Ω , ϕ(ε,x) =
ϕε(x), of ⎧⎨⎩

d
dε

ϕε = uε ◦ϕε , 0 < ε ≤ ε,

ϕ0 = id

verifies
ϕ ∈Cr+1([0,ε]×Ω ;Ω) (14.34)

and that for every ε ∈ [0,ε],

ϕε ∈ Diffr+1,α(Ω ;Ω) and ϕε = id on ∂Ω .

Step 3.2. Since (14.31) holds, we deduce, using Theorem 12.7, that for every
0 < ε1 ≤ ε2 ≤ ε,

ϕ∗
ε2
(gε2) = ϕ∗

ε1
(gε1) in Ω .

Since, using (14.26) and (14.34),

lim
ε→0

‖gε −g‖C0 = 0 and lim
ε→0

‖ϕε −ϕ0‖C1 = 0,

we immediately deduce that for every ε ∈ (0,ε],

ϕ∗
ε (gε) = ϕ∗

0 (g) = g .

This concludes the proof. ��



14.4 Global Result with Dirichlet Data 317

We now turn to our second proof of Theorem 14.5. We will do it under the
stronger assumption that there exists 0 < α < β < 1 so that

ν ∧ f , ν ∧g ∈Cr+1,β (∂Ω ;Λ 3) .
Proof. Step 1. Let δ > 0 small enough so that [α − δ ,α + δ ] ⊂ (0,β ). Applying
Proposition 14.13 to f and g, there exist for every ε small,

fε ,gε ∈Cr+1,α+δ (Ω ;Λ 2) and ϕ1,ε ,ϕ2,ε ∈ Diffr+1,α (Ω ;Ω
)

such that {
ϕ∗

1,ε( fε) = f , ϕ∗
2,ε(gε) = g in Ω ,

ϕ1,ε = ϕ2,ε = id on ∂Ω ,

lim
ε→0

‖ fε − f‖Cr,α−δ = lim
ε→0

‖gε −g‖Cr,α−δ = 0.

Using the previous equation, there exists ε0 > 0 small enough so that for every
t ∈ [0,1],

rank[tgε0 +(1− t) fε0 ] = n in Ω .

Moreover, fε and gε satisfy

dgε = d fε = 0, ν ∧gε = ν ∧ fε = ν ∧ f = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉=

∫
Ω
〈 fε ;ψ〉=

∫
Ω
〈 f ;ψ〉 , ∀ψ ∈ HT

(
Ω ;Λ 2).

Step 2. Using Theorem 14.7, we find ϕ3 ∈Cr+1,α+δ (Ω) verifying{
ϕ∗

3 (gε0) = fε0 in Ω ,
ϕ3 = id on ∂Ω .

Finally, the diffeomorphism ϕ = ϕ−1
2,ε0

◦ϕ3 ◦ϕ1,ε0 has all of the required properties.
��
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