Chapter 14
The Case k =2

14.1 Notations

We recall, from Chapter 2, some notations that we will use throughout the present
chapter. As usual, when necessary, we identify in a natural way 1-forms with vectors
in R".

() Ifu € A" (R") and f € A2 (R"), then (cf. Proposition 2.12)

usf=Yy dx’ € A'(R").
j=1

n
Y fijui
i=1

(ii) Given f € A2 (R"), the matrix f € R™" (denoted in Notation 2.30 as £
is defined, by abuse of notations, as

fu=u_f foreveryuc Al (R") =~ R".
(iii) The rank of f € A? (R") is defined (cf. Proposition 2.32(i)) by

rank [f] = rank (f) .

We also recall that in the present chapter we denote by rank what was denoted by
rank; in Chapter 2. In particular, if rank [f] = n, then f is invertible and

1

v=u.f S u=(f) v

(iv) When n is even, identifying n-forms with O-forms, we have (cf. Proposition
2.37(iii))

—1/2 1
ldet7]'* = 2
(n/2)!
where [ = fA---Af.
N———r
m times
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286 14 The Case k =2

(v) Let r > 0 be an integer and 0 < a < 1. Let f € A%(R") with rank [f] = n
(thus, in particular, n is even). In view of Corollary 16.30 and of the previous point,
if ¢ > 0 is such that ‘

then there exists a constant C = C (c,r,£2) > 0 such that

1

|| o [ fllco <ec,

co

1P llera < Cllfllgna -

(vi) Finally, we recall the notion of harmonic fields with a vanishing tangential
part (cf. Section 6.1). If 2 C R" is a bounded open smooth set, then

Hr (A7) = {0 € C*(Q;A%) :dw=0, 50 =0in Q2 and vA® =0 0ndQ}.
Recall that if Q is contractible, then
Mt (Q;A%) ={0} ifn>3.
In terms of the components of

= Z co,-jdx"/\a’xj7

1<i<j<n
we have
0w;; Jdwy Jw;
do=0 e 2L Z5 Tk g vi<i<j<k<n,

axk 8xj (9)6,’
el

so=0« Y =2 =0,VI<i<n,
=1 9%

VA® =0 & Vi — @pV;+ ;v =0, Vi<i<j<k<n.

14.2 Local Result for Forms with Maximal Rank

The following result is the classical Darboux theorem for closed 2-forms but
with optimal regularity. This is a delicate point and it has been obtained by
Bandyopadhyay and Dacorogna [8]. The other existing results provide solutions that

are only in C"%*, whereas in the theorem below we find a solution which belongs to
Cr+1,lx.

Theorem 14.1 (Darboux theorem with optimal regularity). Let r > 0 and n =
2m > 4 be integers. Let 0 < o < 1 and xy € R". Let @, be the standard symplectic
form of rank 2m,

W, = AP A dR

m

i=1
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Let @ be a 2-form. The two following statements are then equivalent:

(i) The 2-form @ is closed, is in C*%* in a neighborhood of xq, and verifies
rank [@ (xp)] = n.
(ii) There exist a neighborhood U of xo and ¢ € Diff™ 1% (U; @ (U)) such that
0" (On) =0 inU and @(xp)=xp.

Remark 14.2. (i) When r = 0, the hypothesis d® = 0 is to be understood in the sense
of distributions.

(ii) The theorem is still valid when n = 2, but it is then the result of Dacorogna
and Moser [33] (cf. Theorem 10.3).

Proof. The necessary part is obvious and we discuss only the sufficient part. We
divide the proof into four steps.

Step 1. Without loss of generality we take xg = 0. We can, according to Proposi-
tion 2.24(ii), also always assume that

®(0) = o, .

Step 2. Our theorem will follow from Theorem 18.1. So we need to define the
spaces and the operators and then check all of the hypotheses.

1) We choose V a sufficiently small ball centered at 0 and we define the sets
X, =CY(V;R") and Y, =C%%(V;A?),
X, =CTNNVRY) and  Ya = {b € C"*(V;A%) :db=0inV}.

Using Proposition 16.23, we immediately deduce that (Hyy) of Theorem 18.1 is
fulfilled.

2) Define L : X, — 1> by
La=dla®y) =b.

We will show that there exists L' : ¥, — X5 a linear right inverse of L and a constant
C) =Ci(r,a,V) such that

|L7'b||x, < C1||b||y, forevery b€ Yo andi=1,2.

Once shown this, (Hy) of Theorem 18.1 will be satisfied. First, using Theorem 8.3,
find w € C"*1%(V;Al) and C; = Cy (r, @, V) > 0 such that

dw=b inV,

Wllerira <Cil[bllcra and  [wllcra < Ci [[b]|coa-
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Moreover, the correspondence b — w can be chosen to be linear. Next, define a €
CrJrl,OC (V,Rn) by

-1 =wy and ag=-—wy—1, 1<i<m,
and note that
a1y, =w.
Finally, defining L~! : ¥» — X, by L~!(b) = a, we easily check that L~! is linear,
LL'=id onY,
and
|L~'b||x, < C1||b|ly, foreverybecYsandi=1,2.
So (Hp,) of Theorem 18.1 is satisfied.
3) We then let Q be defined by
O(u) = @y — (id+u) o +d [u10y).

Since
[dw?™ ' Ndx +dx T NduT]

|

d [u 2 a)m]

O(u)=— Z"dubhf1 Adu.

4) Note that Q (0) =0 and dQ(u) = 0in V. Appealing to Theorem 16.28 (a similar
but more involved estimate can be found in LEmma 14.8), there exists a constant
Cy = C, (1, V) such that for every u,v € C"*1:%(Q;R"), the following estimates hold:

3

[10(u) — OV)||coe < ||du2"71 Adu? — dv?! /\deiHCO.a
i—1

<Y |[du® ! A (du® — dv*) || o

s

I
-

m
+Y (v —du* ) NdvH || o
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and

m
[Q(w)l|cre < Y [|du* ™" Adu||cre
i=1

m
<CY [ldw* Hicral|du®|lco + du || cre || du* | o]
i=1

=

< Colfullcrallullerra -
We therefore see that property (Hp) is valid for every p and we choose p = 1/(2n),
c1(rs)=Cy(r+s) and c(r,s)=Cars.
5) Setting ¢ = id+u, we can rewrite the equation ¢* (®,,) = ® as

Lu=duswy,] =o— (id+u)* o, +d[u_s o)
=0— 0+ [0 — (1d+u) @, +d 10,
=0— o, +0(u).
Step 3. We may now apply Theorem 18.1 and get that there exists y € C"+1:¢ (V; ]R")
such that y* (@,) = @ in V with [|[Vy —1I||0 < 1/(2n), provided

1
< .
- 2C; max{4C1 G, 1}

[l — @ 0.0 (14.1)

Setting ¢ (x) = v (x) — ¥ (0) , we have indeed proved that there exists ¢ € C" 1% (V;R")
satisfying

¢ (@) =0inV, [Vo-llw<s and 9(0)=0
Step 4. We may now conclude the proof of the theorem.
Step 4.1. Let 0 < € < 1 and define
0 (x) = o (ex).
Observe that wf € C"%(V;A?), dof =0, of (0) = @, and
|w® — wm”co-a(v) —0 ase—0.

Choose € sufficiently small so that

1
ot — o a(y) < .
[ mlleoe(v) < 3¢ max{4CiC,,1}

Apply Step 3 to find y € C"+1.¢ (V; R") satisfying

. 1
Ve (o) =0 inV, |[|[Vye—I|o0 < o and v, (0) =0.
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Step 4.2. Let
X
Xe (x) = c
and define
Q=EYe0Xe.

Define U = €V. It is easily seen that ¢ € C""1-%(TU;R"),
0 (0y)=0 inU and ¢(0)=0.

Note in particular that

1
Ve ~Ilico) = IV¥e ~Illcow) < 5

and therefore detV¢ > 0 in U. Hence, restricting U, if necessary, we can assume
that ¢ € Diff"*1%(U; @(U)). This concludes the proof of the theorem. O

14.3 Local Result for Forms of Nonmaximal Rank

The main result of the present section is to obtain the Darboux theorem for degen-
erate closed 2-forms. We will provide, following Bandyopadhyay, Dacorogna and
Kneuss [9], two proofs of the theorem. The standard proof uses the Frobenius the-
orem to reduce the dimension so that the forms have maximal rank and then apply
the classical Darboux theorem. We will follow this path but using the more sophis-
ticated Theorem 14.1. Our theorem will provide a solution in C"%, whereas in the
existing literature solutions are found only in C"~1:¢%,

We will also give a completely different proof; it will use an argument based on
the flow method. Still a different proof can be found in [8] when n = 2m + 1.

14.3.1 The Theorem and a First Proof

Theorem 14.3. Let n > 3, r,m > 1 be integers and 0 < a < 1. Let xo € R" and oy,
be the standard symplectic form with rank [@,] = 2m < n, namely
W, = APV A dR
i=1
Let @ be a C"* closed 2-form such that
rank (@] = 2m in a neighborhood of xg .
Then there exist a neighborhood U of xy and ¢ € Diff"*(U; @ (U)) such that

¢ (W) =winU and @ (xo) = xo.
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Remark 14.4. The theorem is standard in the C* case. In all proofs that we have
seen, the regularity that is established is, at best, that if @ € C"*%, then ¢ € crbe,
However, our result asserts that @ and ¢ have the same regularity in Holder spaces.
This is, of course, better but still not optimal, as in the nondegenerate case of Theo-
rem 14.1.

Proof. Step 1. Without loss of generality, we can assume xy = 0. We first find, ap-
pealing to Theorem 4.5, a neighborhood V C R” of 0 and y € Diff"*(V; y (V)) with
y(0) =0and

V(@) (X1, %) = O (X1, Xom) = Z ;j (X1, ., X0 ) dx' ANdx!.
1<i<j<2m

Therefore, y* (®) = @ € C"~"** in a neighborhood of 0 in R*" and rank @ = 2m in
a neighborhood of 0.

Step 2. We then apply Theorem 14.1 to @ find a neighborhood W C R?" of 0 and
x € Diff"*(W; x (W)), with x (0) = 0, such that

2 (0y) =@ inW.

We set

X (X) =X (xlw ey X2my X2mA4-15 - - 7xn) - (X (xlv cee ,)sz) s X2m4-1y .-+ ,Xn) .
We then choose V smaller, if necessary, so that
VCW xRV,

We finally have that U = y (V) and ¢ = ¥ o w~! have all of the desired properties.
O

14.3.2 A Second Proof

We now provide a second proof of Theorem 14.3 under the extra assumption that @
is in C™. It seems that the present proof is more appropriate if one wants to look for
global results.

Proof. As usual, we consider, without loss of generality, that xy = 0.
Step 1. Define, for a sufficiently small neighborhood U; of 0,

h(t,x) = h(x) = o (tx).

Then the homotopy / is such that h € C*([0, 1] x U;;A?) and for every ¢ € [0, 1], the
following identities hold in U;:

dh, =0, K"#0 and K"™'=0 (14.2)
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(recall that the last two conditions are equivalent to rank [#,;] = 2m) and
hy=®(0) and h =®.
Step 2. Since (14.2) holds and

oh 1 ont!
WA = = ———— =0,
ot m+1 ot

we can apply Theorem 8.22. We can therefore find a neighborhood U, C Uj of
0 and w € C=([0,1] x Uy;R"), w(t,x) = wy(x), satisfying, for every r € [0,1],
w;(0) =0 and
dhy " .
dw,:—y and w;AR"=0 inU;.
We then apply Proposition 2.50 to find u € C*([0, 1] x U2; R"), u(t,x) = u,(x), with
Uy Jh[ = W and Uy (0) = O

Step 3. We next find the flow, associated to the vector field u; ,

d
E(Pt:ulo(l)t» OSISL
@o =id.
Theorem 12.8 gives that ¢; is a diffeomorphism in a neighborhood Uz C U, of 0

such that
(pik(/’l]) =hpinU; and (0] (0) =0.

Step 4. Since hy is constant, we can use Proposition 2.24(ii) to find a diffeomor-
phism v of the form y (x) = Ax with A € GL(n) so that
m . .
v (hy) = On = dez’_l Adx*

i=1

Letting ¢ = y~' o @, !, we have the claim. O

14.4 Global Result with Dirichlet Data

14.4.1 The Main Result

We now state our main theorem. It has been obtained under slightly more restrictive
hypotheses by Bandyopadhyay and Dacorogna [8]; as stated, it is due to Dacorogna
and Kneuss [32]. We will provide two proofs of the theorem in Sections 14.4.5
and 14.4.6.
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Theorem 14.5. Let n > 2 be even and £ C R" be a bounded open smooth set with
exterior unit normal v. Let 0 < o« < 1 and r > 1 be an integer. Let f,g € C"%* (Q;Az)
satisfying df =dg=0in Q,

VAf,VAgeC Tl (8!2;/\3) and VAf=VAgondQ,
| rwiai= [ (gw)ds foreveryy e (@A) (143)
and, for everyt € [0,1],
rank[tg+ (1 —1) f] =n in Q.
Then there exists @ € Diff 1 (ﬁﬁ) such that
0" (g)=finQ and ¢=id ondQ.

Remark 14.6. (i) As already mentioned, we can consider, in a similar way, a general
homotopy f; with fo = f, fi =g,

df, =0, VAfi=VAfoondQ and rank[f;]=ninQ,
/(f,;l//>dx:/ (fo;w)dx foreverywe%(ﬂuﬁ).
Q Q

Note that the nondegeneracy condition rank [ f; | = n implies (identifying, as usual,
volume forms with functions)

%.¢"? >0 in Q.
(i1) The nondegeneracy condition
rank[rg+ (1 —1) f]=n foreverys € [0,1]

. . - . =\ —1 .
is equivalent to the condition that the matrix (g) ( f ) has no negative eigenvalues.

(iii) If Q is contractible, then .77 (.Q;Az) = {0} and, therefore, (14.3) is auto-
matically satisfied.

(iv) Note that the extra regularity on f and g holds only on the boundary and
only for their tangential parts. More precisely, recall that for x € €2, we denote by
v = v (x) the exterior unit normal to Q. By

VA EeCTH(90Q;A%)
we mean that the tangential part of f is in C"+1*% namely the 3-form F defined by
Fx)=vx)Af(x)

is such that
F el (0Q;A%).
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14.4.2 The Flow Method

We now state and prove a weaker version, from the point of view of regularity, of
Theorem 14.5. It has, however, the advantage of having a simple proof. It has been
obtained by Bandyopadhyay and Dacorogna [8].

Theorem 14.7. Let n > 2 be even and 2 C R" be a bounded open smooth set with
exterior unit normal v. Let r > 1 be an integer, 0 < o0 < 1 and f,g € C"* (§;A2)
satisfy

df=dg=0inQ, VAf=VAg ondf,

/(f;l//>dx:/ (g v)dx foreverylllejiﬂr(.Q;Az)7
Q Q

rank [tg+ (1 —1) f] = n in Q and for every t € [0,1].
Then there exists @ € Diff"* (5;5) such that

0 (g)=finQ and ¢@=id ondQ.
Furthermore, if 0 < B < oo < 1 and if ¢ > 0 is such that

1
[tg+(1—1) f]"?

then there exists a constant C = C (c,r, o, ,0) > 0 such that

<c¢ foreveryt€|0,1],
c0

||f||cl ) H8||cl ) H

19 —idl|cra < C[[Ifllcra +llgllcra] 1f = gllcos +CIIf = gller-1a -

Proof. We solve (cf. Theorem 8.16)

dw=f—g inQ,
w=0 on dQ

and find w € C""1%(Q;A") and C; =C) (r,a, B, 2) > 0 such that

Wllera <Cillf =gllcr1a and Wil < Crllf =gllcos -

Since rank [tg+ (1 —t) f] = n, we can find u, € C"%(Q;R") so that

walig+(1=1)fl=w < u = [ig+(1-1)F] 'w.

Moreover (in view of Notation (v) in Section 14.1, Theorem 16.28 and Corol-
lary 16.30), we can find constants C; = C; (¢,r, o, 3,2) > 0, i = 2,3, such that

el cra < Co[[IF Nl cre + [lgllcral [[Wllco + Ca [l re
<G lIfllera +llglleral 1f = 8llcos +C3[lf = gller-1.a



14.4 Global Result with Dirichlet Data 295

and [[u;|| -1 < C3. We then apply Theorem 12.7 to u; and f; =g+ (1 —1) f to find
¢ satisfying
0 (g)=finQ and ¢@=idondQ.

The estimate follows from Theorem 12.1. The proof is therefore complete. O

14.4.3 The Key Estimate for Regularity

The following estimate will play a crucial role in getting the optimal regularity in
Theorem 14.10. We have encountered a result of the same type in the much simpler
case of volume forms (see Theorem 10.9) or in the local case (see Theorem 14.1).
We will state the theorem for k-forms, although we will use it only when k = 2.

Lemma 14.8. Let n > 2 and 2 C R" be a bounded open Lipschitz set. Let r > 1,
2 <k<nbeintegers,c>0and 0 <y<a<1.Letge crtla (Q;Ak) be closed,
u,v € C""HE(Q;R") and ¢ > 0 with

lullcrrs Vllery <
(id+tu) (2), (id+1v) (2) C 2, Vi €[0,1].
Set
Q(u) = g — (id+u)" (g) +dug].
Then there exists a constant C = C (c,r, Q) such that the following estimates hold:
1Q(u) = QW) lcor < Cllgllcar(l[ullcry + [Vlicr)llu—=vllerr,
Q@) [[cra < Cllgllcrera lullcr +Cllgller lullerve uller-

Remark 14.9. With essentially the same argument, we can replace the last estimate
by the following one. In addition to the hypotheses of the lemma, let 0 < o < B<1
andg e C" +1Lp (Q;Ak); then the last estimate takes the following form:

Q@) llcre < Cligllerns lul P~ +Clgllersrae lullerrve llulle
c
for every u,v € C"*1%(Q;R") with
lullcrr s IVllerr < e
(id+ru) (Q), (id+1v) (Q) C 2, Vi € [0,1].

Proof. We divide the proof into four steps. Since we will apply the result only when
k =2, we will always single out the formulas for this case. We also will constantly
use Theorem 16.28.
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Step 1. We start with some notations. The form g will be written as

g= ) gax'.

1€

We first need to write (id+u)*(g) in a different way. For this, we observe that we
have, for I € .7,

d(x+u) = (dx"' +du'V ) A+ A (dx't 4 du'*)
=dx'+ Y dX ndu¥

(J.,K)=I
I<|K|<k
=dx'+ Y dndu'+ Y dx) ndu®,
(J.i)=I (J.K)=I
1<i<n 2<|K|<k

where we have used the notation

k
Y dxd ndu' =Y (=1 axt A Adx Ndx A A di N duT
(J,i)=I y=1
1<i<n

and similarly for

Y, dx ndu®.
(J,K)=I
2<|K|<k

When k& = 2, we have

(dx+du)" = (dx' +du') A (dx’ +du’)
=dx' Ndx! + [dui/\dijrdxi/\duj] +du' Ndu! .

We can therefore write

(id+u)*(g) = Y gr(id+u)yax'+ Y g (id+u) Y —ax' nduf
1<% 1€, (J,K)=I
1<|K|<k

=g(id4+u)+ Y Y g (id+u)dx’ ndu'
1€, (J,i)=I
1<i<n

+Y Y slidtu)dd nduf
1€9, (J,K)=I
2<|K|<k

so that when k = 2, we find

(id+u)* (g) =g(id+u)+ Y gij(id+u) [du' Ndx! +dx' Adu)
1<i<j<n
+ Y gijid+u)du Adu’.

1<i<j<n
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We will also use, for I € 7,

dusdx'] =Y dx'nau,
which reads, when k =2, as
d [quxij] =d [Lu (dxi/\dxj)} =du' Ndx) +dx' Ndu .

Step 2. We have, since g is closed and according to Lemma 5.4, that

dlusgl= Y gid[usdx]+ Y (gradg;u)dx’

1€, 1€
= Z Z grdx’ Ndu' + Z (gradgy; u) dx’
1€ (J,i)=I 1€,
1<i<n

and hence, when k = 2,

dlusgl= Z gij[dui/\dijrdxi/\duj]Jr Z (gradg;j;u)dx' Ndx’.

1<i<j<n 1<i<j<n
In order to get the right estimates, we rewrite Q(u), defined by
Q(u) = g— (id+u)" (g) +dugl,
in the following way:

Q) =g—g(id+u)— Y, Y g (id+u)dx’ Adu
1€ (J,i)=1
1<i<n

-Y Y g(dtu)dd ndu®+dlug]

1€, (J.K)=I
2<|K|<k
and thus
O(u)=g—g(id+u)— ). Y. grlid-+u)dx’ Adu'
1€ T, (Ti)=I
1<i<n
=Y Y a(id+uyax’ nau®
1€, (J.K)=I
2<|K[<k
+ Z Z gldx’/\dui+ Z <gradg1;u>dx1.
1€ (J,i)=I 1€,
1<i<n
We then let

0i(w)=Y Y lgr—g(id+u)][dx' ndu'l,
1€ (Ji)=I
1<i<n
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Ox(u) =Y [g1(id+u) — g1 — (grad gr;u)]dx’,

Ie I,
Os(u)=Y Y g(id+u)dx’ ndu¥
1€, (1K)=1

2<[K[<k
so that
O(u) = Q1(u) — Q2 (u) — Q3(u).
We therefore have, when k = 2, that

Qo)=Y [gijlid+u)—g;j— (grad g;j;u)dx’ Adx/,

1<i<j<n

Os(u)= Y gij(id+u)du' Adu.

1<i<j<n

Step 3. We now establish the first estimate for each of the Q,,, p = 1,2,3. So let
u,v € C7H¥(Q;R") with

lullcry, [[V][lcry < ¢ and  (id-+tu) (), (id+1v) () C 2, Vi €[0,1].

In the sequel, C; will denote constants that depend only on c and 2. Since in all cases
we will make the estimates component by component, we immediately drop the sum
signs. Before starting, we recall (cf. Theorems 16.31 and 16.36) that there exists a
constant Cy = C (¢, ) such that for every f € C'"7(Q) and every w,w € C' (Q; Q)
with [wllcr . [#er < e.

£ ewlicor < Cullfllcor,
[fow=Fowlco <Cillfllerw—wllco
1Fow—Fowlcoy <Crllfllcrylw—wllcor-
Estimate for Q1. We have

101 () = Q1 (v)l|coxr
= | [g1(id) — gr(id+u)] [dx” Adu'] — [g;(id) — g/ (id +v)] [dx” AdV'] || o
< |gr(id+v) — gr(id+u)] [dx' Aadv'] || cor
+ || lgr(id +u) — g7(id)] [dx” A [@v' — du']] || o -

We therefore get

101() = Q1 (V)| cor < Col[gr(id+v) — gr(id+u)][|col[vlicrr
+Cal[gr(id+v) = gr(id+u)] [ cor [Vl
+Col [gr(id+u) — i (id)]l|colu = vl|c1y
+Collfgr(id+u) — gr(id)] [l o[l = vl cr-
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Hence (bearing in mind that ||u||c1y, ||v|lc1y < c), we get

1Q1(u) = Q1 (V) o
<Gligller v =ullcollvlicry + Csligllcrr v — ullcor vl
+Gllgllcr llulleollu— vy +Csliglicrrllullcorllu—vller -

We thus have

101() = Q1 (V)| cor < Cligllerr(llullcry + [Vl e =viierr -

Estimate for Q, . For O, we proceed in the following way. We first observe that
Ld
0s(1) = [ 2 [(er(id=+1u) —1{grad g (id)iu)) ') ds
= /01 [(grad g;(id +ru) — grad g;(id); u) dx’] dr.
We therefore obtain
102(u) = Q2(v)l|cox
< /01 [{grad g;(id +tu) — grad g; (id); u)
— (grad g;(id +tv) — grad g;(id); v) || co.y dt
< [ {leradgiGa-+10) ~ sradg (a4 o
+ ||(grad g;(id +1v) — grad g;(id); u — v)|| o } dt
and, hence,
[Q2(u) — Q2(v)|lcor

1
<G /0 (|| erad g (id +u) — grad gy (id-+v) | o |l co

+ [ grad g;(id +7u) — grad g; (id +1v) | col [ul| cor
+ [l grad g;(id-+#v) — grad g;(id) | cor[|u — vlco
+ | grad g;(id+2v) — grad g (id)[| o lu = vl| o } dt.

This leads to (recall that ||ul|c1y, ||v]| ey <€)

102(u) = Q2 (v) | oy
< Gsllgllcarllu = vllcorllullco + Callgllcallu = vilcollullcor
+GllgllcarlVllcorllu=vilco +Csligllcalvilcollu = viicox-

We therefore have the estimate

[02() — Q2(v)llco.r < Cllgllcar ([l cor + VIl cor )1t = vl co-
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Estimate for Qs . It remains to prove the estimate for Q3. We get

1Q3(u) — Q3(v) || coxr
= ||lgs(id+v) dx! AdvE — g (id+u) dx’ Adu|| oy
<||gr(id+v) (dx’ A (aV — duX))]| cor
+ | (gr(id+v) — gr(id+u)) dx’ A du¥ || cos,

which leads to (recalling that ||ul|c1y, ||v]|c1y < ¢ and |K| > 2, just as in (10.19))

103(u) = Q3 (v)llcor < Gsllgllcor ([[ullcry +[IVllerr)lu=vicry
+Gllgllerrllu—vlicorllullcrr

and, thus,

103(u) = Q3(v) | cor < Cllgllcrallullcry + [IVllera) 1 = vllerr,

proving the estimate for Q3.

Step 4. We next establish the second estimate for each of the 0, p = 1,2,3. So
let u € C"1%(Q;R") with

lullcry <c and  (id+mu) (Q) CcQ, Vtelo,1].

As before, C; will denote constants that depend only on ¢, r and £2. Since in all cases
we will make the estimates component by component, we drop the sum signs. We
recall (cf. Theorem 16.31) that there exists a constant C; = Cj (¢, r, 22) such that for
every f € C"%(Q) and every w € C"*(Q; Q) with |w||-1 <c,

[f ewlicra < Cillfllcre +Cull fller [wlener -
We also claim that
g o (id+u) —goid||cra < Crllgllcriralluller +Crligler lullerra
for every u € C"1-%(Q;R"), with
ullet <c and  (id+u) (2) C Q.
Indeed, from Theorem 16.36, we have

g (id-+u) — goid]cra < Co lgllerra ullco +Cs lgllea 11+ ] o
+Cllglr e

and from Corollary 16.27, we get
8llc2 lullcra < Calllgllersra lluller +[lgller lullerira] - (14.4)

Combining the two estimates, we have our claim.
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Estimate for Q1. We have

101 () cre = || [1(id) — g1 (id +u)] [dx’ Adu'] ||cre
< Col|[gr(id+u) — gr(id)][|col[ullcrv1.a
+ Cal[gr(id +u) — g1 (id)][| cre|ullc1 -

We therefore get (bearing in mind that ||u|| 1y < ¢)

121(@)llcre < Csllgllcr[[ullcollullrre
2
+Gllgllerrra llullcr +Csllgller llullorre l[ullcr

and, thus,

[Q1(w)llcre < Cllgllcrrra lluller + Cligler lullerive luller -

Estimate for Q, . As before, we have that
ld . .
0s(1) = [ 2 [(er(id+10) —1(grad g (id)iu)) ') ds
1
= / [(grad g (id +tu) — grad g/ (id); u)dx'] dt.
0
We therefore obtain
1
|Qa(u)ere < Co | {erad g (id+11) — rad g i) v o
+ || grad g (id +1u) — grad g;(id) | co |l | cre }dt
and, hence,
1 .
[Q2(u)|cre < Cz/O {[ll grad g;(id+1u)||cre + || grad gr|cre] [|ull co
+ || grad g/ (id +tu) — grad g; (id) || co [|ul | crec } dt.
This leads to (recall that |u[|o1y < )
[1Q2(u)llcre < C3[llgllcrria + I8l c2 lullcra] llullco + C3ligll 2wl collul|cner -

From (14.4) we get

1Q2(u)|cre < Cligllcreraluller + Caligller lullorerallullr -

Estimate for Q3. We immediately have

1103 (w) || croe = || g7 (id +u) dx’ A du||cra
< Gllg(id+u)||cre || duX || co + Callglcol| du” || e -
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Since |K| > 2 and ||u||q1.y < ¢, we get

K
103 () lcra < Cs [llgllcree + gl lullcnec] ] A

K|—1
+Csllgllcolull 5 lullror

and, thus, since ||u||o1y <,
103(w)lcre < Cliglicrelullcr +Cllglcr [[ullcrveluller -

The combination of the three estimates gives the proof of the lemma. O

14.4.4 The Fixed Point Method

The first proof of Theorem 14.5 relies on the following key theorem (obtained by
Bandyopadhyay and Dacorogna [8] under more restrictive hypotheses; as stated, it
is due to Dacorogna and Kneuss [32]).

Theorem 14.10. Let n > 2 be even and 2 C R" be a bounded open smooth set. Let
r>1beanintegerand 0 < y< o0 < 1. Let g € C'+1:% (5;/\2) and f € Ch* (5;/\2)
be such that

df=dg=0inQ, VAf=VAg ondQ,

/(f;l//)dx:/ (g w)dx foreverylllejiﬂr(.(2;./\2)7
Q Q

rank [g] =nin Q.
Let ¢ > 0 be such that

[g)"/?

8llco

co
and define

1 1 1
6(g)— min{||g| S }
e, " gleer” Telormre

There exists C = C(c,r, o, Y,Q) > 0 such that if

If — gllcre

I f—gllcoy <CO(g) and | f—gllcoy <Cr———vo
lgllcry llglleria

, (14.5)

then there exists ¢ € Diff 1% (Q; Q) verifying

0" (g)=finQ and ¢=id ondQ. (14.6)
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Furthermore, there exists C = 5(6, rna,y,Q) > 0 such that

1 —id|lcrra < Cligllcrriellf = gllene -

Remark 14.11. (i) Note that since g € C""1"%(Q;A?) and VA f = v Agon R, then
VAFECTI¥9Q;A3).

(ii) With essentially the same proof, but replacing the last estimate of Lemma
14.8 by the corresponding one in Remark 14.9, we get the following result. In addi-
tion to the hypotheses of the theorem, let 0 < y < & < B < 1, g € C"*1P(Q;A2),
fecr® (§;A2) and ¢ > 0 be such that

df =dg=01inQ, VAf=VAg ondQ,
/(f;l,l/>dx:/ (g:w)dx forevery y € 77 (Q;A%),
Q Q

rank [g] =n in Q,

1
lIgllco T2 =
[g] c0
Define | |
17 b 2 b
I Igllcrligllczr ™ |gllgrita
0(g) = ——min .
llgllcty { 1 ra
gllcrrllgllerie

There exist C = C(c,r, o, 3,7,2) > 0 and C= 5(c,r,a,[3,y,_(2) > 0 such that if
(compare with (14.5))
1f —gllcor <CO(g),

then there exists ¢ € Diff ¢ (5;5) verifying
0 (g)=finQ and ¢@=id ondQ
and

1o —id|[crera < Cllgllerriellf = gllene -

Proof. The theorem will follow from Theorem 18.1. We divide the proof into five
steps; the first four to verify the hypotheses of the theorem and the last one to con-
clude.

Step 1. We define the spaces as follows:

X1:Cl*7(§;R”) and Y1:C077’(§;A2)7
X, ={acC*(Q;R") :a=00n0dQ},
db=0inQ, VvAb=0ondLQ, }

Y=1Jp o E.AZ .
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It is easily seen that they satisfy Hypothesis (Hyy) of Theorem 18.1 (see Proposi-
tion 16.23).

Step 2. Define L : X, — Y» by
La=dla.g]=0b.

We will show that there exist L~ : ¥ — X5, a linear right inverse of L and a constant
K1 = Ki(c,r,a,v,) such that, defining

ki=Kilgllcryr and k= Ki[gllcrra,

we get
|IL~'b||x, < ki||b|ly, forevery b€ Ysandi=1,2.

Once this is shown, (H) of Theorem 18.1 will be satisfied.

Step 2.1. Indeed, we first solve, using Theorem 8.16, the equation

dw=b>b inQ,
w=0 ondQ

and find w € C"71%(Q;A") and Cy = Cy (r,at,7,2) > 0 such that

Wllerira < Cil[bllcra and [wllcry < Ci[[bl|coy -

Moreover, the correspondence b — w can be chosen to be linear.
Step 2.2. Since rank [g] = n, we can find a unique a € C""1%(Q;R") so that
aisg=w,

which is equivalent to
—1-1
a=[g] w

Define L~! : ¥, — X, by L™!(b) = a. First, note that L™ is linear and that
LL™'=id onY,.

Moreover, using Theorem 16.28, Corollary 16.30 and Step 2.1, we can find con-
stants C; = C; (¢,r, &, Y, Q) , i = 2,3,4, such that

lallcrira <G H(?)fl| crita [Wllco +C2 H@yl HCO [Wllcr+ta
< Gsllgllcrra [|bllcor +Cs llgllco [10]] o
< CGullgllersra bl cra
and, similarly,
lallcry < Callgllery 1Dllcoy -
Thus, the claim of Step 2 is valid.
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Step 3. We define
Q(u) =g — (id+u)" (g) +d [ug].

We will verify that Property (Hp) of Theorem 18.1 holds with p =1/ (2n) . The fact
that Q (0) = 0 is evident.

Step 3.1. According to Lemma 14.8, there exists a constant K, = K (r, Q) such
that the following estimates hold:

10(u) = Q) llcor < Kallgll v (lullcry + [Vl crn) e = vy,
10(w)|[cre < Kalgllcrerelluller + K2 llgller [[ullorire [lull e
for every u,v € C"*1:%(Q;R"), with
lullcrr, [[V]lcry <1/ (2n),

(id+tu) (2), (id+1v) (2) C 2, Vi €[0,1].

We finally let
c1(t1,12) = Ka|gllcar (11 +12),

e (ti) = Ka|lgllcriratt + K2 [|gllcr 122

Note that if
F(t,x)=x+tu(x) and |ul|x <1/(2n),

then for every 7 € [0, 1],
detV,F (t,x) = det(I+tVu(x)) >0, x€ Q.
Therefore, if u = 0 on €, then, appealing to Theorem 19.12, we get that
F(t,x) € Q forevery (t,x) € [0,1] x Q.

Thus, (18.1) and (18.2) have been verified.

Step 3.2. Let us check that
Q:{ueXo:|lullx, <1/2n)} =Y

is well defined. We have to prove that

dQO(u)=01inQ2, vAQu)=0o0n0dQ,

/ (O y)dx =0, Yy € A (Q:A2).
Q
(i) The first condition follows immediately since dg = 0 and

dQ(u) =dg— (id+u)" (dg)+dd[u_g].
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(ii) The second one is true since u = 0 on d2. Indeed, clearly (using the notations
Q; used in the proof of Lemma 14.8),

Ql(u) = Qz(u) =0 ondQ.

Since u = 0 on 9, each of gradu’ and gradu/ is parallel to the normal v. Thus,
du' Ndu/ = 0 on 9Q for every i < j, which implies that

03(u) =0 on 9Q.
Thus, we have, in fact, proved that Q(u) =0 on 9 Q.

(iii) Choosing F (t,x) = x+tu(x) in Remark 17.4, we find that there exists @
such that

dP =g—(id4+u)*(g) inLQ,
P=0 on dQ.

Since ¥ = & + u g satisfies

d¥ =Qu) inQ,
¥Y=0 on d<2,

we have the claim, namely
/XQ@ywmx:QVwe;ﬁ@LA%.
Q
Step 4. With the definition of L and Q in hand, we now rewrite (14.6) as follows.
Setting @ = id+u, the equation ¢* (g) = f becomes

Lu=du.gl=f—({d+u)" (g)+dug
=f—g+g—(ild+u)"(g)+d[uagl]
=f—g+0(u).

In order to apply Theorem 18.1, it remains to see how the hypotheses

2k || f = gllcor < 1/(2n),
2kic1 (ki || f — gllcor, 2k || f — gllcor) < 1, (14.7)
c2(2kt || f = gllcors 2ka || f — gllcra) < || f —gl|cre

translate in our context.

(i) The first one leads to

1
f—glleoy < ——.
17 =glleor < Gy
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(i1) The second one gives

1

lgliZllglcer

- <
||f gHCOwY = 8K12K2

(iii) The third condition reads as

K llgllcrera 2Killgllcrrllf = 8llcor)
+Kalgller CKillgllcr7 1 f = gllcor) CKillgllcrerallf = gllere)
<|f gl

Note that the third condition is verified if
1
2K K> |8l crerallgllcrallf — gllcor < 511f —gllcre

and

1
4KPKs |gllcr llgler s lIglcrva LS = gllcorllf = gliera < SI1f =gl

The first one leads to

LS = gllera
Kallgllererallgllery

— <
17~ gllcor < g

and the second one is verified if

1
coy < .
8KTK> |8l creter 1811y

If—zll

Combining the four conditions, we have just obtained, letting

1 ) {” H 1 1 }
= ———minq ||&||cly
lgllEry S gy lIgllerine S

that there exists C = C(c,r,a,7¥,£) > 0 such that the inequalities (14.7) are satis-
fied if

0 (g)

|f — gllcre

[f—gllcoy <CO(g) and |f—gllcoy <Cr—rr—.
||gHC1~Y ||8||cr+1,a

Step 5. The hypotheses of Theorem 18.1 having been verified, we conclude that
there exists u € C"*1%(Q;R"), with ||u||c14 < 1/ (2n), satisfying u = 0 on dQ and

Lu=dusgl=f—g+Q(u)=f—(id+u)" (g) +duag].

Letting ¢ = id +u, we therefore have found that

¢*(g)=f inQ.
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Since u =0 on €2, we have that ¢ =id on 9. Since ||u||1 < 1/(2n), we deduce
that o
detVo >0 in (2,

and therefore, according to Theorem 19.12, we find that ¢ € Diff 1 (5;5).
Moreover, by construction (cf. (18.5)),

[ullerera < 2ko|lf —gllcre,
which implies the desired estimate, namely

1 —id|[crera <Cllgllerriellf = gllene -

The proof is thus complete. O

14.4.5 A First Proof of the Main Theorem

We first prove Theorem 14.5 for special f and general g with extra regularity and
under a smallness assumption.

Proposition 14.12. Ler © C R" be a bounded open smooth set, r > 1, 0 < o0 <
B < 1 and g € C"P (Q;A?) with

VAgECT(9Q;A%), dg=0 and ranklg]=n inQ.
Then for every € small, there exist ge € C"1%(Q;A?) and @, € Diff 1% (Q; Q)

such that
P:(8e) =g inQ,
Qe =id ondQ,

dge =0, VAge=VAg ondQ,
/Q<ge;ll/>=/g<g;w>7VWG%(Q;AZ),

él_r)r(l) llge — chna(ﬁ) =0.

Moreover; there exists C = C(r,at, B, 2, ||gl|c1.e, | 1/8"/>

small,

llco), such that for every €

B—a

aHchnﬁ(ﬁ)+C8||V/\g‘|cr+1~a(ag)- (14.8)

. £
[Pe —id|crira@) <C =

Proof. For the sake of alleviating the notations we will write in the present proof,
for example, ||g||p instead of [[g[|rp ). However, when we will be considering

norms on the boundary of £, we will keep the notation [|g[|c-g (50)-
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Step 1 (definition of g¢). Apply Theorem 16.49 and Remark 16.50(v) and get,
for every € € (0,1], that there exist g¢ € crtla (Q;Az) and a constant C| =
Ci(r,a,f,Q) such that

dge=0 inQ, VAge=VAg ondQ, (14.9)

/Q (ge: W) = /!2 (g:) forevery w € 4 (Q;A%), (14.10)
(&

llgellcrera < mﬂg\\crﬁ +CillvAglleriraga), (14.11)

Ige — gllcre < C1eP~%||g|cup. (14.12)

<CieP o Ngllps.  (14.13)
cna

d d
Hdgge 0o SCillglcra and Hdggg

Moreover, defining G : (0,1] x Q — A? by G(&,x) = ge(x), we have

GeCT (O BAY . JOCC (O x@AY). 419

Since rank[g] = n in Q (which is equivalent to g"/?(x) # 0 for every x € Q) and
since (14.12) holds, there exists € < 1 such that for every € € (0, €],
I8ellco <2l18llco,  Ngeller <2llgller s
11/ (ge)"*lco < 21[1/8"lco -

Hence, combining (14.15) and Notation (v) in Section 14.1, we deduce that for every
€ €(0,¢],

IEe) e < Callgeller and - [[(8e) ™ lerere < Callgellrene, (14.16)

where C; = G2 (1,2, gl 0,111/8"?[| c0)-

Step 2. In this step we will show that for every & € (0,€], there exist ue €
C+1%(Q;AY) and a constant C3 = C3(r, ¢, B,2, gl c1.a [|1/8"?||c0) such that
ue =0 on dQ and

(14.15)

d .
d(uguge) = ~ s in Q, (14.17)
G
l[uellcrita < m”g\\cr,ﬁ +G|vAglleriiepa) (14.18)
uellcr < Cs. (14.19)

Moreover, defining u : (0,€] x Q — Al by u(e,x) = ue(x), we will show that u €
Che((0,8] x Q;A1).

Step 2.1. Since (14.9), (14.10) and (14.14) hold, using Theorem 8.16 we can find,
for every € € (0,€], we € C*(2;A') and a constant C4 = C4(r, o, Q) such that

d .
dwg:—%g‘E inQ, we=0 ondQR
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and, for every integer g < r,

[welcg+1.0 < Ca (14.20)

4
degs

ca-
Moreover, defining w: (0,€] x 2 — A' by w(€,x) = we(x), we have, using (14.14),
w e C((0,8] x 2;A).

Step 2.2. Since by (14.15), we have, for every € € (0,€], rank[ge] = n in @, there
exists a unique u, : Q — A! verifying

Ug 18 = We.

Note that ug € C"t1*(Q; A') and that ue = 0 on dQ. Moreover, defining u : (0,€] x
Q — Al by u(€,x) = ug(x), we have u € C"71#((0,8] x Q;Al).

Step 2.3. To show Step 2, it only remains to prove (14.18) and (14.19). Using
Theorem 16.28, (14.15), (14.16) and (14.20), it follows that

el crra = 1[(8e) " wellcrva

< Csl|(Be) llerrrallwellco +Csll(Ze) ™ llcollwellerra
< Gsllgellcr+r.alwellcre + Collwe [l cr+1.a

+C
CO,a

4 4
dggg degs

< C7||88||C'+1~a
C'ZOC

and thus, invoking (14.11) and (14.13),
Hl/l8||cr+l.lx
1 Cg
<G m”g”cr«ﬁ + v Agllerraga) ) lgllere + m”g”crﬂ
Co
< mllg\laﬁ +Co|vAglleriiepa):
where C; = Ci(r, o, B, 2, gl ¢, [|1/8"/?|| o). We similarly obtain
luellcr = 11(8e) ™ weller < Croll(8e) ™" llct Iwe e

d
<Cn ||8||Cl %gs

<CulgllctIgllcre < Ci,
COa

where C; = Ci(r, &, B, 2, ||gll oo, |[1/€"/?]| o) This shows the assertion.
Step 3. We can now conclude the proof.

Step 3.1. Since u € C"1*((0,€] x Q : R"), ug = 0 on dQ and by (14.18),

€
/0 lelg||cr+14,adg <°°,
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we deduce, using Theorem 12.1, that the solution ¢ : [0,€] x 2 — Q, ¢(g,x) =
@¢(x), of

d _

%%2%0%, 0<e<E,

@y =id

verifies

@ ChY(0,2] x 2: Q) (14.21)
and that for every € € [0, €],

@: €Diff T (Q;Q) and  @e =id on 9Q.

Finally, inserting (14.18) and (14.19) in (12.3), we immediately deduce (14.8).

Step 3.2. Since (14.17) holds, we deduce, using Theorem 12.7, that for every
0<e <g<E,
(sz(g&) = (Pgl (gsl) in Q.

Since, using (14.12) and (14.21),
;g% lge —8llco =0 and ;13(1) l[Pe — @ollcr =0,
we immediately infer that for every € € (0,€],

Pe(ge) = 9o (8) = &-
The proof is therefore complete. ]

We can now go back to the first proof of Theorem 14.5 using an iteration scheme
involving appropriate regularization.

Proof. We split the proof into three steps.

Step 1 (approximation of g and f). Choose y € (0,c¢) and 0 >0 with26 < a—y
and o +26 < 1. We next regularize g and f with the help of Theorem 16.49 (and
Remark 16.50(v)) and construct for every € € (0,1], ge, fe € C""* (2;A?) such
that

dgg:dfg:(), V/\g8:V/\g:V/\f:V/\f50naQ,

| tseswr= [ ww= [ )= [ v vw et (2:a2),

lIge = gllcor < C™ 7 gllcras

ge —8llcty < Ce gl e

C
Igellcrita < P lgllcra +C IV Agllertiaaq)
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C
ng||Cr,a+26 < 875 ”g”CW JFCHV/\g”Cr,aJrZS(aQ) )

C
lgellcar < - 8llcty +C IV Agllezraa)

where C =C (r,,7,6,8) > 0 and similarly for f and f, . Note that using the first
inequality above, there exists € such that for every €1,& < €, we have that

rank [1ge, + (1 —1) fe,] =n in Q and for every ¢ € [0, 1].

Step 2. In this step we show that there exist €1, & < €and ¢, @3 € Diff 1« (Eﬁ)
such that

¢ (8e) =8 InQ, and 03 (fe,) =f inQ,
¢ =1id on dQ 03 =id on dQ.

For this we will use a combination of Theorem 14.10 and Proposition 14.12. We
only show the assertion for g, the one with f being proved exactly in the same way.

Step 2.1. We start with some preliminary estimates. Using the second inequality
in Step 1, we deduce that for every € small enough, recalling that > 1 and ¥y <

1 1
sleelrs < lellwr <2leelerr ana |

1

<2
0 H [g]"/?

co .
In what follows, € will always be assumed small enough. Combining the left-hand

side of the previous inequality with the third and fifth inequalities in Step 1, we
deduce that there exists D; > 0, a constant independent of &, such that, defining

I 1 1
0 (56) = g min { el | b
||88HC1.y 8ellczr ™ lIgellcrra

we have
0 (gg) >De.

Hence, since ||ge — gl|coy < Ce€T* 7, r>1and y < o, we immediately deduce

lim ||g£ _g”COY

tim ) =0. (14.22)

Note also that there exists D, > 0, a constant independent of €, such that

gl |0 =%

cO

gellco

Step 2.2. Let C = C(Ds,r,t,7,Q) be the constant given in (14.5) of Theo-
rem 14.10. Due to (14.22), the first inequality of (14.5) is satisfied for every € < €
and for some € < €. We show the assertion by considering two cases. In the first
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one, we use Theorem 14.10 to obtain the assertion and in the second one, we use
Proposition 14.12.

(i) Suppose that for some € < €, the second inequality of (14.5) is also satisfied,
namely

llge — gllcre
gellcrr llgellerr.a -

Hg&‘ _gHCO!Y S C(D27r7a,'}/,Q)

Hence, we have the claim of Step 2 using Theorem 14.10.

(i) Suppose that the first case does not hold true. Hence, for all € <&

lgellcry llgellcria [lge — 8llcor > C (D2, 10,7, 2) ||ge — gllcre -

Using the first and third inequality of Step 1, the fact that ||ge||c1y < 2[/g]|c1y, We
obtain, recalling that » > 1 and that 26 < o — 7,

lge —gllcre < D3e*  for every 0 < € <€,

where Dj is independent of €. Combining the above equation with the fact that, by
the fourth inequality in Step 1 (where D4 > 0 is independent of €),

Dy
||g€HC£a+25 S STB 9

we immediately deduce from Proposition 16.45 that g € C"**9(Q;A?). The
assertion then follows directly from Proposition 14.12 once noticed, using
Remark 16.50(v), that the g constructed in Proposition 14.12 are the same as the
ones defined in Step 1.

Step 3. Since

dge, =dfe, =0 in Q,
VAZe =VAfg ondQ,

/Q<ggl;w> = /Q<fez;w> for every y € 7 (Q;A%),
rank [tge, + (1 —1) fe,] =n in Q and for every ¢ € [0, 1],

we can apply Theorem 14.7 to find ¢, € Diff" ™% (Q; Q) such that

(Pik(g{il):fé'z inQ»
0 =id on dQ.

The claimed solution is then given by
P=9¢; opro0;.

This achieves the proof of the theorem. O
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14.4.6 A Second Proof of the Main Theorem

We first show Theorem 14.5 for special f and general g with extra regularity only
on the boundary and under a smallness assumption.

Proposition 14.13. Let Q C R" be a bounded open smooth set, r > 1 and 0 < & <
o< a+8<1. Let g € Cr*(Q;A?) with

VAGECTI(9OAY), dg=0 and rank[g]=n inQ.
Then for every € small, there exist
g € CHLTO(QA%) and  @e € Diff T (2 0)
such that .
(Pg (g&') =8 mn Qa
Q. =1id ondQ,
dge =0, VAge=VAg onodQ,

/<g£§W>:/ (g:w) for every y € 57 (Q2:A),
Q Q

glg(l) llge — g”cmfﬁ(ﬁ) =0.

Proof. We adopt the same simplification in the notations of the norms as in the proof
of Proposition 14.12.

Step 1 (definition of g¢). Apply Theorem 16.49 and Remark 16.50(v)-16.50(vi).
Therefore, for every € € (0,1], there exist g¢ € C'*1**9(Q;A?) and a constant
C, =Ci(r,a,8,Q) such that for every y € [a@ — §,a + 8],

dge=0 inQ, VAg.=VAg ondQ, (14.23)
/!'2<g£;y/> = /Q(g; y) forevery y € #7(Q;A?), (14.24)
Ci
18elleriy < m”g”a“ +CilvAglleivaa), (14.25)
Ige — gllcra-s < C1€°%|Igllcre, (14.26)
e, <o s | fee| < fglelen.  as2m

Moreover, defining G : (0,1] x Q — A2 by G(&,x) = ge(x), we have

G e ((0,1] x 2;A%)  and ;—EGEC”((O;I]XE;AZ). (14.28)
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Since rank[g] = n in Q (which is equivalent to g"/(x) # 0 for every x € ) and
since (14.26) holds, there exists € < 1 such that for every € € (0, €],

lgellco <2liglico and  [[1/(ge)"llco < 211/8"?llco- (14.29)

Hence, combining (14.29) and Notation (v) in Section 14.1, we deduce that for every
e € (0,€] andevery y € [@ — 6,00+ 3],

1&e) ey < Callgellerenys (14.30)

where C> = Co(r, 2, ||g|co, 11/8"?]|c0)-

Step 2. In this step we will show that for every € € (0,€], there exist ue €
Cr+10+9 (Al and a constant C; = C3(r, 0, 8,2, ||g||c1.a, [|1/8"|| o) such that
ug =0 on dQ and

d

d(unge) :7£gg in Q (14.31)
and, for every y € [¢ — 8, ¢+ 8],
G

lellcrrr < =g llgllcre + CllVAglcrras g - (14.32)

Moreover, defining u : (0,€] x & — A by u(e,x) = ue(x), we will show that u €
Cr+l,0£+5(<07§] % Q;A]).

Step 2.1. Since (14.23), (14.24) and (14.28) hold, using Theorem 8.16, we can
find for every € € (0,€], we € C*(Q;A!) and a constant Cy = C4(r, o, §,) such
that

d .
dwe = ~ese inQ, we=0 ondQ

and, for every integer ¢ < r and every y € [@ — §,a + 8],

(14.33)

4
d(—jgs

[Wellca+1y < Ca
caY

Moreover, defining w : (0,€] x 2 — A' by w(€,x) = we(x), we have, using (14.28),
w e C™((0,8] x 2;A).

Step 2.2. Since, by (14.29), we have for every € € (0,€], rank[ge] = n in Q, that
there exists a unique ue : Q — A verifying

Ug 18 = We.

Note that uz € C'T1-a+d (Q2;A') and that ue = 0 on 9. Moreover, defining u :
(0,8] x @ — A" by u(e,x) = ue(x), we have u € C™+1:79((0,8] x Q;A1).
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Step 2.3. To show Step 2, it only remains to prove (14.32). Using Theorem 16.28,
(14.29), (14.30) and (14.33), it follows that

luellcrerr = 1Ee) ™ wellererr

— -1 — -1
<Gsl[(8e) llerrirlwellco +Csll(8e) ™ lcollwell ey
< Collgellcrr1rlIwellcra + Collwe || cre1y

4 4
dgge dé‘ge

<C7l\gell iy +G
0.0

cry

and hence, appealing to (14.25) and (14.27),
[ute || crivy

1 &
<G | sima lsllere + v Agllerinaa) | lglere + =g gl

Gy
< pyEE llgllcre + Col|v /\chr+l~a+5(aQ)’

where C; = Ci(r,, 8,2, ||gl|ct.a, || 1/8"?]| co)- This shows the assertion.
Step 3. We can now conclude the proof.

Step 3.1. Since u € C"*1:%+3((0,€] x Q : R"), ue = 0 on 92 and (14.32) holds,
we deduce, using Theorem 12.4, that the solution ¢ : [0,€] x Q — Q, ¢(g,x) =

Qe (x), of y
%(Pszusofpea 0<e<eE,
@ =1id

verifies -
@ cC(0,8] x 2; Q) (14.34)

and that for every € € [0, €],
@ € Diff *1%(Q:Q) and @ =id on Q.

Step 3.2. Since (14.31) holds, we deduce, using Theorem 12.7, that for every
0<eg < <E,
¥z, (8e,) = @z, (8e,) in Q.

Since, using (14.26) and (14.34),
lim flge —gllco =0 and  lim |ge — @ollcr =,
we immediately deduce that for every € € (0, €],

?:(ge) = 95(8) =g-

This concludes the proof. O
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We now turn to our second proof of Theorem 14.5. We will do it under the
stronger assumption that there exists 0 < @ < f§ < 1 so that

VAL, VAgEe TP (9Q;A%).

Proof. Step 1. Let 0 > 0 small enough so that [a — §,a + 6] C (0,). Applying
Proposition 14.13 to f and g, there exist for every € small,

ferge €CTHUTO(QA%) and  @1e, ¢r € DIff 1Y (Q; Q)

such that

q)r,s(f&‘):f7 (,Of,g(gs)zg in Q,
Pre=Pe=1d ondQ,

ll_%nfs —[fllera—s = ll_r{(l)HgS —8llcra-s =0.

Using the previous equation, there exists & > 0 small enough so that for every
re0,1], o
rank([tge, + (1 —1)fg,] =n in Q.

Moreover, fe and g, satisfy

dge =dfe =0, VAge=VAfe=VAf=VAg ondQ,
L tesv) = [tww) = [ ey = [ (fw), vye ot (@:a2).
Q Q Q Q
Step 2. Using Theorem 14.7, we find @3 € C"+1%+9(Q) verifying

(p;(g&‘g):fg{) il’l.Q,
@3 =id on dQ.

Finally, the diffeomorphism ¢ = ¢, 810 0 (30 Q1 ¢, has all of the required properties.
' |
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