
Chapter 13
The Cases k = 0 and k = 1

13.1 The Case of 0-Forms and of Closed 1-Forms

13.1.1 The Case of 0-Forms

We start with 0-forms. We begin our study with a local existence theorem.

Theorem 13.1. Let r ≥ 1 be an integer, x0 ∈ R
n and f and g be Cr functions in a

neighborhood of x0 such that f (x0) = g(x0) ,

∇ f (x0) �= 0 and ∇g(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr (U ;ϕ (U)) such that ϕ(x0) =
x0 and

ϕ∗ (g)(x) = g(ϕ (x)) = f (x) .

Furthermore, if
∂ f
∂xi

(x0) · ∂g
∂xi

(x0) �= 0

for a certain 1 ≤ i ≤ n, then ϕ can be chosen of the form

ϕ(x) = (x1, . . . ,xi−1,ϕ i(x),xi+1, . . . ,xn).

Proof. Without loss of generality we may assume that x0 = 0. We split the proof
into two steps.

Step 1. We prove the main statement. Since ∇ f (0) �= 0 and ∇g(0) �= 0, we can
find

A2, . . . ,An,B2, . . . ,Bn ∈ R
n

such that letting

F (x) = ( f (x),〈A2;x〉, . . . ,〈An;x〉) and G(x) = (g(x),〈B2;x〉, . . . ,〈Bn;x〉),
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then

det∇F(0) �= 0 and det∇G(0) �= 0.

Hence, since F(0) = G(0), we deduce that

F ∈Diffr(U ;F(U)), G∈Diffr(U ;G(U)) and G−1◦F ∈Diffr(U ;(G−1◦F)(U))

for a neighborhood U of 0 small enough. Therefore, ϕ = G−1 ◦F has all of the
desired properties.

Step 2. We now prove the extra property. Define

F (x) = (x1, . . . ,xi−1, f (x),xi+1, . . . ,xn),

G(x) = (x1, . . . ,xi−1,g(x),xi+1, . . . ,xn)

and note that ϕ = G−1 ◦F has all of the required properties. The proof is therefore
complete. 
�

We now have the following global result.

Theorem 13.2. Let Ω ⊂R
n be a bounded open Lipschitz set. Let r ≥ 1 be an integer

and f and g ∈Cr
(
Ω

)
with f = g on ∂Ω and

∂ f
∂xi

· ∂g
∂xi

> 0 in Ω (13.1)

for a certain 1 ≤ i ≤ n. Then there exists a diffeomorphism ϕ ∈ Diffr (Ω ;Ω
)

of the
form

ϕ (x) = (x1, . . . ,xi−1,ϕ i(x),xi+1, . . . ,xn)

satisfying {
ϕ∗ (g) = g◦ϕ = f in Ω ,

ϕ = id on ∂Ω .

Proof. Let ei be the ith vector of the Euclidean basis of Rn. We will find ϕ of the
form ϕ(x) = x+ u(x)ei, where u : Ω → R. Since Ω is Lipschitz, we can extend
(according to Theorem 16.11) f and g to Cr(Rn) functions. We therefore also have

∂ f
∂xi

· ∂g
∂xi

> 0 in a neighborhood of Ω . (13.2)

By compactness, for every x ∈ Ω , there exist sx, tx ∈ R with sx < 0 < tx such that

x+ sxei,x+ txei ∈ ∂Ω and (x+ sxei,x+ txei)⊂ Ω .

Define h : Rn ×R→ R by

h(x,v) = g(x+ vei)− f (x).



13.1 The Case of 0-Forms and of Closed 1-Forms 269

We claim that there exists u ∈Cr(Ω) such that

h(x,u(x)) = 0, for x ∈ Ω , u = 0 on ∂Ω and 1+
∂u
∂xi

(x)> 0 for x ∈ Ω .

(i) For every x ∈ ∂Ω , let u(x) = 0 and note that h(x,u(x)) = h(x,0) = g(x)−
f (x) = 0 since f = g on ∂Ω .

(ii) Let x ∈ Ω . Since f = g on ∂Ω , we have

h(x,sx) = f (x+ sxei)− f (x) and h(x, tx) = f (x+ txei)− f (x).

Hence, recalling that ∂ f (x)/∂xi �= 0 for every x ∈ Ω , we get

h(x,sx) ·h(x, tx)< 0.

Note that v → h(x,v) is monotone. Therefore, there exists a unique u(x) ∈ (sx, tx)
verifying h(x,u(x)) = 0.

(iii) Using the implicit function theorem and (13.2), we immediately deduce that
u ∈Cr(Ω) and that

1+
∂u
∂xi

(x) =
∂ f
∂xi

(x)
(

∂g
∂xi

(x+u(x))
)−1

> 0 for every x ∈ Ω .

This proves the claim. Finally, letting ϕ(x) = x+u(x)ei, we get that g◦ϕ = f in Ω ,
ϕ ∈Cr(Ω ;Rn), det∇ϕ > 0 in Ω and ϕ = id on ∂Ω . Hence, using Theorem 19.12,
we have ϕ ∈ Diffr(Ω ;Ω), which concludes the proof. 
�

13.1.2 The Case of Closed 1-Forms

We get as immediate corollaries similar results for closed 1-forms. Recall that
1-forms are written as

f =
n

∑
i=1

fi dxi and g =
n

∑
i=1

gi dxi .

We start first with the local version.

Corollary 13.3. Let r ≥ 0 be an integer, x0 ∈ R
n and f and g be Cr closed 1-forms

in a neighborhood of x0 such that

f (x0) �= 0 and g(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr+1 (U ;ϕ (U)) such that
ϕ(x0) = x0 and

ϕ∗(g) = f in U.
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Furthermore, if

fi (x0) ·gi (x0) �= 0

for a certain 1 ≤ i ≤ n, then ϕ can be chosen of the form

ϕ(x) = (x1, . . . ,xi−1,ϕ i(x),xi+1, . . . ,xn).

Remark 13.4. When r = 0, the fact that a 1-form ω is closed has to be understood
in the sense of distributions.

Proof. Using Corollary 8.6, there exist a small ball V centered at x0 and F,G ∈
Cr+1(V ) such that

dF = f and dG = g in V .

Adding, if necessary, a constant, we can also assume that F(x0) = G(x0). Note that
if fi(x0) ·gi(x0) �= 0 for a certain 1 ≤ i ≤ n, then

∂F
∂xi

(x0) · ∂G
∂xi

(x0) �= 0.

We are then in a position to apply Theorem 13.1 to get U ⊂ V , a neighborhood of
x0 and ϕ ∈ Diffr+1(U ;ϕ(U)) such that ϕ(x0) = x0 and

ϕ∗ (G) = F,

which implies
ϕ∗ (dG) = dF

and concludes the proof. 
�
We now conclude with the global version obtained in Bandyopadhyay and

Dacorogna [8].

Corollary 13.5. Let Ω ⊂ R
n be a bounded simply connected smooth open set. Let

r ≥ 0 be an integer and f ,g ∈Cr
(
Ω ;Λ 1

)
be closed and such that

ν ∧ f = ν ∧g on ∂Ω and fi ·gi > 0 in Ω

for a certain 1 ≤ i ≤ n. Then there exists a diffeomorphism ϕ ∈ Diffr+1 (Ω ;Ω
)

of
the form

ϕ(x) = (x1, . . . ,xi−1,ϕ i(x),xi+1, . . . ,xn)

satisfying {
ϕ∗ (g) = f in Ω ,

ϕ = id on ∂Ω .

Proof. We first claim that there exist F,G ∈Cr+1(Ω) such that F,G ∈Cr+1
(
Ω

)
and

dF = f , dG = g in Ω and F = G on ∂Ω .
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Indeed, by Theorem 8.16 and the remark following it and recalling that HT (Ω ,Λ 1)=
{0} since Ω is simply connected (see Remark 6.6), there exists H ∈ Cr+1(Ω ;Λ 1)
such that

dH = f −g in Ω and H = 0 on ∂Ω .

Then, using Corollary 8.6, there exists G ∈Cr+1(Ω) such that dG = g in Ω . Letting
F = H +G, we have the claim. In particular, note that

∂F
∂xi

· ∂G
∂xi

> 0 in Ω .

Finally, apply Theorem 13.2 to get ϕ ∈ Diffr+1(Ω ;Ω) of the desired form so that

ϕ∗(G) = F in Ω ,

which implies

ϕ∗(dG) = dF in Ω .

The proof is therefore complete. 
�

13.2 Darboux Theorem for 1-Forms

13.2.1 Main Results

The following result is classical and due to Darboux [34]; see, for example Bryant
et al. [18], Olver [80], or Sternberg [93]. This result is equivalent to the Darboux
theorem (cf. the remark below) for closed 2-forms.

Theorem 13.6. Let r ≥ 3 and 2 ≤ 2m ≤ n be integers. Let 0 < α < 1, x0 ∈ R
n and

w be a Cr,α 1-form such that

rank[dw] = 2m in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and

ϕ ∈
{

Diffr,α(U ;ϕ (U)) if 2m = n

Diffr−1,α(U ;ϕ (U)) if 2m < n

such that ϕ(x0) = x0 and

ϕ∗(w) =
m

∑
i=1

x2i−1dx2i +dS in U ,
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with

S ∈
{

Cr,α(U) if 2m = n

Cr−1,α(U) if 2m < n.

Remark 13.7. (i) The above result is equivalent to the Darboux theorem for closed
2-forms. This last theorem reads (see Theorems 14.1 and 14.3) as follows. Let n ≥
2m, x0 ∈ R

n and f be a Cr,α closed 2-form satisfying

rank[ f ] = 2m in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and

ϕ ∈
{

Diffr+1,α(U ;ϕ (U)) if n = 2m

Diffr,α(U ;ϕ (U)) if n > 2m

such that ϕ(x0) = x0 and

ϕ∗( f ) =
m

∑
i=1

dx2i−1 ∧dx2i in U .

The fact that the Darboux theorem for 2-forms implies the one for 1-forms is pre-
cisely the proof of Theorem 13.6 below. The other implication follows immediately,
once it has been observed that we can choose, for example, U to be a ball so that,
f being closed in U, we can find (cf. Theorem 8.3) w ∈ Cr+1,α(U ;Λ 1) such that
f = dw. We then apply the theorem to w, getting

ϕ∗( f ) = ϕ∗(dw) = dϕ∗(w) =
m

∑
i=1

dx2i−1 ∧dx2i.

(ii) The hypothesis r ≥ 3 can be weakened if we use a weak version of the fourth
statement of Theorem 3.10. Indeed, it is enough to assume r ≥ 1 if n = 2m and r ≥ 2
if n > 2m (cf. Csató [23]).

Proof. Using Theorem 14.1 if 2m = n or Theorem 14.3 if 2m < n, there exist a
neighborhood U of x0 and

ϕ ∈
{

Diffr,α(U ;ϕ (U)) if 2m = n

Diffr−1,α(U ;ϕ (U)) if 2m < n

such that ϕ(x0) = x0 and

ϕ∗(dw) =
m

∑
i=1

dx2i−1 ∧dx2i in U.

Note that

d

[
ϕ∗(w)−

m

∑
i=1

x2i−1dx2i

]
= 0 in U
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and

ϕ∗(w)−
m

∑
i=1

x2i−1dx2i ∈
{

Cr−1,α(U ;Λ 1) if 2m = n

Cr−2,α(U ;Λ 1) if 2m < n.

Thus, by Theorem 8.3, restricting U if necessary, there exists

S ∈
{

Cr,α(U) if 2m = n

Cr−1,α(U) if 2m < n

such that

dS = ϕ∗(w)−
m

∑
i=1

x2i−1dx2i,

which concludes the proof. 
�

The next two theorems refine the above result (cf. Bryant et al. [18] or Sternberg
[93]). In particular, the second one gives a sufficient condition ensuring that S = 0.

Theorem 13.8. Let r ≥ 3 and 2 ≤ 2m ≤ n be integers. Let 0 < α < 1, x0 ∈ R
n and

w be a Cr,α 1-form such that

rank[dw] = 2m in a neighborhood of x0

and
w∧dw∧·· ·∧dw︸ ︷︷ ︸

m times

(x0) �= 0.

Then there exist a neighborhood U of x0 and

ϕ ∈ Diffr−1,α(U ;ϕ (U))

such that ϕ(x0) = x0 and

ϕ∗(w) =
m

∑
i=1

x2i−1 dx2i +dx2m+1 in U.

Remark 13.9. Since w∧ (dw)m is a (2m+1)-form and since

w∧ (dw)m(x0) �= 0,

we necessarily have 2m < n.

Proof. With no loss of generality, we can assume x0 = 0. Since (according to Re-
mark 13.9) we necessarily have 2m < n, we get, using Theorem 13.6, a neighbor-
hood V of 0 and ϕ1 ∈ Diffr−1,α(V ;ϕ1(V )) such that ϕ1(0) = 0 and

ϕ∗
1 (w) =

m

∑
i=1

x2i−1 dx2i +dS in V ,
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with S ∈Cr−1,α(V ). Since, by hypothesis,

w∧ (dw)m(0) �= 0,

we get that since ϕ1(0) = 0,

ϕ∗
1 (w)∧ (dϕ∗

1 (w))
m(0) �= 0,

which is equivalent to
dS∧dx1 ∧·· ·∧dx2m(0) �= 0.

Permuting, if necessary, the coordinates x2m+1, . . . ,xn, we can therefore assume with
no loss of generality that

∂S
∂x2m+1

(0) �= 0.

Now, define, for x ∈V,

ϕ2(x) = (x1, . . . ,x2m,S(x)−S(0),x2m+2, . . . ,xn).

Taking V smaller, if necessary, we obtain that ϕ2 ∈ Diffr−1,α(V ;ϕ2(V )), ϕ2(0) = 0
and

ϕ∗
2 (dxi) =

{
dxi if i �= 2m+1
dS if i = 2m+1.

Finally, letting U =ϕ2(V ) and ϕ =ϕ1◦(ϕ2)
−1, we easily obtain that ϕ ∈Diffr−1,α(U ;

ϕ(U)), ϕ(0) = 0 and

ϕ∗(w) =
m

∑
i=1

x2i−1dx2i +dx2m+1 in U,

which ends the proof. 
�
Theorem 13.10. Let 2 ≤ 2m ≤ n be an integer, x0 ∈R

n and w a C∞ 1-form such that

rank[dw] = 2m in a neighborhood of x0 ,

w(x0) �= 0 and

w∧dw∧·· ·∧dw︸ ︷︷ ︸
m times

= 0 in a neighborhood of x0 .

Then there exist an open set U and

ϕ ∈ Diff∞(U ;ϕ (U))

such that ϕ (U) is a neighborhood of x0 and

ϕ∗(w) =
m

∑
i=1

x2i−1 dx2i in U .
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Remark 13.11. (i) If w ∈ Cr, the following proof shows in fact that ϕ ∈ Cr−2m+1 if
2m = n and ϕ ∈Cr−2m if 2m < n.

(ii) If we, moreover, want ϕ(x0) = x0 , then the conclusion becomes

ϕ∗(w) =
m

∑
i=1

(x2i−1 − c2i−1)dx2i in U

for some c2i−1 ∈R, 1 ≤ i ≤ m. Note that the c2i−1 cannot be arbitrary. For example,
the c2i−1 can never verify c2i−1 = (x0)2i−1 for every 1 ≤ i ≤ m. Indeed,

ϕ∗(w)(x0) =
m

∑
i=1

((x0)2i−1 − c2i−1)dx2i

and thus we have the assertion since, recalling that ϕ(x0) = x0 ,

ϕ∗(w)(x0) �= 0 ⇔ w(x0) �= 0.

Proof. We split the proof into two steps. With no loss of generality, we can assume
that x0 = 0.

Step 1 (simplification). Let us first prove that we can assume that n = 2m.
Applying Theorem 14.3 to dw, we can find a neighborhood U of 0 and ψ ∈
Diff∞(U ;ψ(U)) such that ψ(0) = 0 and

ψ∗(dw) =
m

∑
i=1

dx2i−1 ∧dx2i in U. (13.3)

Note that since ψ(0) = 0, we have, restricting U if necessary,

ψ∗(w)(0) �= 0 and ψ∗(w)∧ (d(ψ∗(w)))m = 0 in U. (13.4)

The last equation being equivalent to

ψ∗(w)∧dx1 ∧·· ·∧dx2m = 0 in U,

we immediately deduce

[ψ∗(w)]i = 0 in U for every 2m+1 ≤ i ≤ n

and, hence,

ψ∗(w)(x) =
2m

∑
i=1

bi(x)dxi in U.

Combining the previous equation with (13.3), we get that

bi(x) = bi(x1, . . . ,x2m) in a neighborhood of 0, for every 1 ≤ i ≤ 2m.

We thus have the claim, replacing ψ∗(w) by w.
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Step 2 (conclusion). Applying Lemma 13.12 to w, we can find a neighborhood V
of 0 in R

2m and ϕ1 ∈ Diff∞(V ;ϕ1(V )) such that ϕ1(0) = 0 and

ϕ∗
1 (w) =

m

∑
i=1

b2i−1(x1, . . . ,x2m)dx2i−1 in V (13.5)

for some b2i−1 ∈C∞(V ). Since

rank[d(ϕ∗
1 (w))(0)] = rank[dw(0)] = 2m,

we know that (dϕ∗
1 (w))

m(0) �= 0, which is equivalent to, using (13.5),

dx1 ∧dx3 ∧·· ·∧dx2m−1 ∧db1 ∧db3 ∧·· ·∧db2m−1(0) �= 0. (13.6)

Now, define, for x ∈V,

ϕ2(x) = (b1(x),x1,b3(x),x3, . . . ,b2m−1(x),x2m−1).

Using (13.6), we obtain that ϕ2 ∈ Diff∞(V ;ϕ2(V )), taking V smaller if neces-
sary. Finally, letting U = ϕ2(V ) and ϕ = ϕ1 ◦ (ϕ2)

−1, we easily obtain that ϕ ∈
Diff∞(U ;ϕ(U)) and

ϕ∗(w) =
m

∑
i=1

x2i−1 dx2i in U,

which ends the proof. 
�

13.2.2 A Technical Result

We still need to prove the following lemma.

Lemma 13.12. Let m ≥ 1 be an integer, x0 ∈ R
2m and w be a C∞ 1-form defined in

a neighborhood of x0 such that w(x0) �= 0 and

rank[dw(x0)] = 2m.

Then there exist a neighborhood U of x0 and

ϕ ∈ Diff∞(U ;ϕ(U))

such that ϕ(x0) = x0 and

[ϕ∗(w)]2i = 0 in U for every 1 ≤ i ≤m. (13.7)

Remark 13.13. If w ∈Cr, then the following proof gives ϕ ∈Cr−2(m−1).

For the proof of the lemma we will need the two following elementary results,
the first of which is purely algebraic.



13.2 Darboux Theorem for 1-Forms 277

Lemma 13.14. Let f ∈ Λ 2(R2m) with rank[ f ] = 2m and

a =
2m−1

∑
i=1

aiei ∈ Λ 1(R2m)

with a �= 0. Then there exists A ∈ GL(2m) of the form

A =

⎛⎜⎜⎜⎝
0

B
...
0

0 · · · 0 1

⎞⎟⎟⎟⎠ ,

where B ∈ GL(2m−1) and such that

∑
1≤i< j≤2m−1

(A∗( f ))i jei ∧ e j =
m−1

∑
i=1

e2i−1 ∧ e2i and
2m−2

∑
i=1

(A∗(a))iei �= 0.

Proof. Step 1. Using Proposition 2.24(ii), there exists Ã ∈ GL(2m) such that

Ã∗( f ) =
m

∑
i=1

e2i−1 ∧ e2i and Ã∗(e2m) = e2m.

Note that the condition Ã∗(e2m) = e2m is equivalent to

Ã =

⎛⎜⎜⎜⎝
Ã1

2m

B̃
...

Ã2m−1
2m

0 · · · 0 1

⎞⎟⎟⎟⎠ ,

where B̃ ∈ GL(2m−1) is given by B̃i
j = Ãi

j . Define

A =

⎛⎜⎜⎜⎝
0

B̃
...
0

0 · · · 0 1

⎞⎟⎟⎟⎠
and observe that for 1 ≤ i < j ≤ 2m−1,

(A∗( f ))i j =

(
∑

1≤p<q≤2m
fpqAp ∧Aq

)
i j

= ∑
1≤p<q≤2m

fpq

(
Ap

i Aq
j −Ap

j Aq
i

)
= ∑

1≤p<q≤2m
fpq

(
Ãp

i Ãq
j − Ãp

j Ãq
i

)
= (Ã∗( f ))i j .
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We therefore have

∑
1≤i< j≤2m−1

(A∗( f ))i jei ∧ e j = ∑
1≤i< j≤2m−1

(Ã∗( f ))i jei ∧ e j =
m−1

∑
i=1

e2i−1 ∧ e2i.

Note that the previous equation is equivalent to

A∗( f ) =
m−1

∑
i=1

e2i−1 ∧ e2i +h∧ e2m (13.8)

for a certain h = ∑2m−1
i=1 hiei ∈ Λ 1(R2m).

Step 2. Since a �= 0, we have A∗(a) = ∑2m−1
i=1 A∗(a)iei �= 0 and thus there exists

1 ≤ i ≤ 2m− 1 such that A∗(a)i �= 0. If 1 ≤ i ≤ 2m− 2, the matrix A has all of the
required properties. If A∗(a)i = 0 for 1 ≤ i ≤ 2m−2, we proceed as follows. Define

P =

⎛⎜⎜⎜⎝
1 0 · · · 0

0
. . . 0

...
1 0 1 0
0 · · · 0 1

⎞⎟⎟⎟⎠ ⇔ Pi
j =

⎧⎪⎨⎪⎩
1 if i = j

1 if i = 2m−1 and j = 1
0 otherwise

and let us show that AP ∈ GL(2m) has all the claimed properties. Indeed, first note
that AP has the desired form. Since

P∗(ei) =

{
ei if i �= 2m−1

e1 + e2m−1 if i = 2m−1,

we deduce that, using (13.8),

(AP)∗( f ) = P∗(A∗( f )) =
m−1

∑
i=1

e2i−1 ∧ e2i +P∗ (h)∧ e2m.

We therefore get

∑
1≤i< j≤2m−1

((AP)∗( f ))i jei ∧ e j =
m−1

∑
i=1

e2i−i ∧ e2i.

Note also that

((AP)∗(a))1 = (P∗(A∗(a)))1 = (A∗(a))2m−1 �= 0.

The proof is therefore complete. 
�

We now give the second result.

Lemma 13.15. Let U ⊂ R
n be an open set, n ≥ 2 and w ∈C∞(

U ;Λ 1
)

be such that

(dxn)�dw = w in U. (13.9)
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Then ⎧⎪⎪⎪⎨⎪⎪⎪⎩
w = exn

n−1

∑
i=1

bin (x1, . . . ,xn−1)dxi,

dw =−exn ∑
1≤i< j≤n

bi j (x1, . . . ,xn−1)dxi ∧dx j

for some bi j ∈C∞.

Proof. We first write

dw = ∑
1≤i< j≤n

ai j dxi ∧dx j

and observe that, as a direct consequence of (13.9), we have

w =−
n−1

∑
i=1

ain dxi. (13.10)

We finally show that for every 1 ≤ i < j ≤ n and x = (x1, . . . ,xn) ∈U,

ai j(x) =−exnbi j (x1, . . . ,xn−1)

for some bi j ∈C∞. For this, it is enough to prove that for every 1 ≤ i < j ≤ n,

ai j =
∂ai j

∂xn
.

Let 1 ≤ i < j ≤ n. First, since ddw = 0 and hence, in particular, (ddw)i jn = 0, we
have (with the convention that ann = 0)

∂a jn

∂xi
− ∂ain

∂x j
+

∂ai j

∂xn
= 0.

Using (13.10) and the previous equation, we obtain

ai j = (dw)i j =−
(

∂a jn

∂xi
− ∂ain

∂x j

)
=

∂ai j

∂xn
,

which concludes the proof. 
�

Finally, we prove Lemma 13.12.

Proof. With no loss of generality we can assume x0 = 0. In the sequel, U will be a
generic neighborhood of 0. We prove the lemma by induction on m and we split the
proof into three steps.

Step 1. We start by introducing some notations. Let

x = (x1, . . . ,x2m−2,x2m−1,x2m) ∈ R
n.
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For every (x2m−1,x2m) ∈ R
2, define i(x2m−1,x2m) : R2m−2 → R

2m by

i(x2m−1,x2m)(x1, . . . ,x2m−2) = x.

Let 1 ≤ k ≤ n and

g = ∑
1≤i1<···<ik≤2m

gi1···ik dxi1 ∧·· ·∧dxik ∈C0(
R

2m;Λ k(R2m)
)
.

Then for every (x2m−1,x2m) ∈ R
2, we have

i∗(x2m−1,x2m)
(g) ∈C0(

R
2m−2;Λ k(R2m−2)

)
and, explicitly,

i∗(x2m−1,x2m)
(g)(x1, . . . ,x2m−2) = ∑

1≤i1<···<ik≤2m−2
gi1···ik(x)dxi1 ∧·· ·∧dxik .

Step 2 (the case m = 1). In that case, we have

w(x) = w1(x1,x2)dx1 +w2(x1,x2)dx2 .

Since, by hypothesis, (w1(0),w2(0)) �= (0,0), there exist, applying Remark 4.3(ii),
a neighborhood U of 0 and ϕ ∈ Diff∞(U ;ϕ(U)) such that ϕ(0) = 0 and

∂ϕ
∂x2

= (−w2(ϕ),w1(ϕ)) in U .

We thus get, using the above equation,

ϕ∗(w) = w1(ϕ)dϕ1 +w2(ϕ)dϕ2

=

[
w1(ϕ)

∂ϕ1

∂x1
+w2(ϕ)

∂ϕ2

∂x1

]
dx1 +

[
w1(ϕ)

∂ϕ1

∂x2
+w2(ϕ)

∂ϕ2

∂x2

]
dx2

=

[
w1(ϕ)

∂ϕ1

∂x1
+w2(ϕ)

∂ϕ2

∂x1

]
dx1,

which is the desired assertion.
Step 3 (induction). We assume that the lemma has been proved for m− 1 and

prove it for m.

Step 3.1 (preliminaries). In this step we show the existence of a neighbor-
hood U of 0 and ψ ∈ Diff∞(U ;ψ(U)) with ψ(0) = 0 such that for every x =
(x1, . . . ,x2m−2,x2m−1,x2m) ∈U,

i∗(x2m−1,x2m)
(ψ∗ (w))(x1, . . . ,x2m−2) �= 0, (13.11)

rank
[
d(i∗(x2m−1,x2m)

(ψ∗(w)))(x1, . . . ,x2m−2)
]
= 2m−2, (13.12)
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ψ∗(w)(x) = ex2m
2m−1

∑
i=1

ci(x1, . . . ,x2m−1)dxi in U (13.13)

for some ci ∈C∞(U).

(i) Since rank[dw] = 2m in a neighborhood of 0 and Proposition 2.50 holds, we
can find a neighborhood U of 0 and a unique v ∈C∞(U ;Λ 1) such that

v�dw = w in U .

Note that v(0) �= 0 since w(0) �= 0. Hence, using Remark 4.3(ii), there exist a neigh-
borhood U of 0 and χ ∈ Diff∞(U ; χ(U)) such that χ(0) = 0 and

∂ χ
∂x2m

= v◦χ in U .

Using Theorem 3.10 and Proposition 3.11, we thus get

χ∗(w) = χ∗(v�dw) = dx2m�dχ∗(w) in U .

Therefore, applying Lemma 13.15, we have

dχ∗(w)(x) =−ex2m ∑
1≤i< j≤2m

bi j(x1, . . . ,x2m−1)dxi ∧dx j for every x ∈U ,

χ∗(w)(x) = ex2m
2m−1

∑
i=1

bi(2m)(x1, . . . ,x2m−1)dxi for every x ∈U (13.14)

for some bi j ∈C∞.

(ii) Apply Lemma 13.14 to

f = dχ∗(w)(0) ∈ Λ 2(R2m) and a = χ∗(w)(0) ∈ Λ 1(R2m)

to get A ∈ GL(n) of the form

A =

⎛⎜⎜⎜⎝
0

B
...
0

0 · · · 0 1

⎞⎟⎟⎟⎠
such that

∑
1≤i< j≤2m−1

(A∗( f ))i jei ∧ e j =
m−1

∑
i=1

e2i−1 ∧ e2i,

2m−2

∑
i=1

(A∗(a))iei �= 0.

(13.15)

(iii) Let θ(x) =A ·x. We now prove that ψ = χ ◦θ has all of the desired properties
claimed by Step 3.1. In the following, we will frequently use (cf. Remark 3.9) that
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for any ϕ ∈C1
(
R

M;RN
)
, any k-form α , and any fixed x ∈ R

M ,

ϕ∗ (α)(x) = (∇ϕ (x))∗ [α (ϕ (x))] .

First, note that ψ(0)= 0 since χ(0)= θ(0)= 0. We now show (13.11). Restricting if
necessary U, it is enough to show the property for x = 0. Using the second statement
in (13.15), we deduce

i∗(0,0)(ψ
∗(w))(0, . . . ,0) =

2m−2

∑
i=1

A∗(a)iei �= 0,

which proves the claim. We next prove (13.12). As before, restricting if necessary
U , it is enough to prove the assertion for x = 0. Using the first equality in (13.15),
we obtain

di∗(0,0)(ψ
∗(w))(0, . . . ,0) = i∗(0,0)(ψ

∗(dw))(0, . . . ,0)

= ∑
1≤i< j≤2m−2

(A∗( f ))i jei ∧ e j =
m−1

∑
i=1

e2i−1 ∧ e2i.

This establishes the claim. Finally, using (13.14) and since

θ(x) = (θ 1(x1, . . . ,x2m−1), . . . ,θ 2m−1(x1, . . . ,x2m−1),x2m),

we have

θ ∗(χ∗(w))(x)

= ex2m
2m−1

∑
i=1

bi(2m)

[
θ 1(x1, . . . ,x2m−1), . . . ,θ 2m−1(x1, . . . ,x2m−1)

]
dθ i

= ex2m
2m−1

∑
i=1

ci(x1, . . . ,x2m−1)dxi, x ∈U ,

for some ci ∈C∞; therefore, (13.13) is fulfilled.
Step 3.2 (conclusion). Using (13.11) and (13.12), we get that

i∗(x2m−1,x2m)
(ψ∗ (w))

satisfies the induction hypothesis for m− 1, for x2m−1,x2m small. Moreover, note
that using (13.13),

i∗(x2m−1,x2m)
(ψ∗(w))(x1, . . . ,x2m−2) = ex2m

2m−2

∑
i=1

ci(xi, . . . ,x2m−1)dxi.

Hence, by the induction hypothesis and thanks to the special form of the coeffi-
cients of

i∗(x2m−1,x2m)
(ψ∗(w))
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with respect to x2m , there exist a neighborhood Û of 0 in R
2m−2 and, for every x2m−1

small, φx2m−1 ∈ Diff∞(Û ;φx2m−1(Û)), verifying(
(φx2m−1)

∗(i∗(x2m−1,x2m)
(ψ∗ (w))

)
2i
= 0 in U , 1 ≤ i ≤ m−1. (13.16)

Furthermore, since the construction is smooth in the parameters, we have in fact

(x1, . . . ,x2m−1)→ φx2m−1(x1, . . . ,x2m−2) is C∞.

Define, for a neighborhood U of 0 small enough, φ ∈ Diff∞(U ;φ(U)) by

φ(x) = φ(x1, . . . ,x2m) = (φx2m−1(x1, . . . ,x2m−2),x2m−1,x2m).

Since φ ◦ i(x2m−1,x2m) = i(x2m−1,x2m) ◦φx2m−1 , we obtain

(φx2m−1)
∗(i∗(x2m−1,x2m)

(ψ∗(w))) = i∗(x2m−1,x2m)
(φ ∗(ψ∗(w))) .

Note also that for every 1 ≤ s ≤ 2m−2 and for every 1-form g,[
i∗(x2m−1,x2m)

(g)(x1, . . . ,x2m−2)
]

s
= [g(x1, . . . ,x2m−2,x2m−1,x2m)]s .

Therefore, combining (13.16) with the above two equations, one gets

[φ ∗(ψ∗(w))]2i = 0 in U , 1 ≤ i ≤ m−1.

Moreover, since the first (2m−1) components of φ do not depend on x2m , we ob-
tain, using (13.13),

[φ ∗(ψ∗(w))]2m = 0 in U .

Finally, letting ϕ = ψ ◦φ , we have indeed found the desired diffeomorphism. 
�
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