Chapter 13
The Casesk=0and k =1

13.1 The Case of 0-Forms and of Closed 1-Forms

13.1.1 The Case of 0-Forms

We start with O-forms. We begin our study with a local existence theorem.

Theorem 13.1. Let r > 1 be an integer, xo € R" and f and g be C” functions in a
neighborhood of xy such that f (xo) = g (xo),

Vf(x0)#0 and Vg(xo)#0.

Then there exist a neighborhood U of xo and ¢ € Diff" (U; ¢ (U)) such that ¢(xo) =
xo and

Furthermore, if

d 0
3—£<xo>-a—i<xo>¢o

fora certain 1 <i < n, then ¢ can be chosen of the form
O(x) = (X1, X1, @ (X), Xi 1y Xn).
Proof. Without loss of generality we may assume that xo = 0. We split the proof

into two steps.

Step 1. We prove the main statement. Since Vf (0) # 0 and Vg (0) # 0, we can
find
As,...,Ap,By,....B, €R"

such that letting
Fx) = (f(x), (A2:x),..., (An;x)) and G (x) = (8(x), (B2x), .., (Buix)),
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268 13 The Casesk=0and k=1
then
detVF(0) #0 and detVG(0) #DO0.
Hence, since F(0) = G(0), we deduce that
F eDiff' (U;F(U)), GeDiff (U;GU)) and G 'oF eDiff"(U;(G 'oF)(U))

for a neighborhood U of 0 small enough. Therefore, ¢ = G~ o F has all of the
desired properties.

Step 2. We now prove the extra property. Define
F (x) = (-x17 sy Xiel 7f('x)7xi+17 cee axn)7

G()C) = (xla' .. 7xi71ag(x)7xi+1a' .. ,)Cn)

and note that ¢ = G~! o F has all of the required properties. The proof is therefore
complete. O

We now have the following global result.

Theorem 13.2. Let  C R" be a bounded open Lipschitz set. Let r > 1 be an integer
and f and g € C" (Q) with f = g on dQ and

df dg

aTci'TxfO’”Q (13.1)

for a certain 1 <i < n. Then there exists a diffeomorphism ¢ € Diff"” (5;5) of the
form

(p(x) = (X],- . 'axi717(pi(x)7xi+l7' "axn)

satisfying
¢ (g)=goo=f inQ,
o=id on dQ.

Proof. Let e; be the ith vector of the Euclidean basis of R". We will find ¢ of the
form @(x) = x+u(x)e;, where u : Q — R. Since € is Lipschitz, we can extend
(according to Theorem 16.11) f and g to C"(R") functions. We therefore also have

==-5= >0 inaneighborhood of Q. (13.2)

By compactness, for every x € €, there exist sy,#, € R with s, < 0 < £, such that
x+sye,x+te; €9Q and (x+sce;,x+1te;) C Q.
Define 7: R" xR — R by

h(x,v) = g(x+vei) = f(x).
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We claim that there exists u € C"(Q) such that

u

h(x,u(x)) =0, forx€ Q, u=00ndQ and ]+8
Xi

(x) > 0forx € Q.

(i) For every x € €, let u(x) = 0 and note that i(x,u(x)) = h(x,0) = g(x) —
f(x) =0since f =g on dQ.

(ii) Let x € Q. Since f = g on dQ, we have
h(x,sy) = f(x+sce;) — f(x) and h(x,ty) = f(x+1ce;) — f(x).
Hence, recalling that d f(x)/dx; # 0 for every x € Q, we get
h(x,sx) - h(x, 1) <O0.
Note that v — h(x,v) is monotone. Therefore, there exists a unique u(x) € (sy,t)

verifying A (x,u(x)) = 0.

(iii) Using the implicit function theorem and (13.2), we immediately deduce that

u € C"() and that

du _af(x)(ag

! + 8x,- (X) o 87x, ax,»

-1
(x—I—u(x))) >0 foreveryxc Q.

This proves the claim. Finally, letting @(x) = x+u(x)e;, we get that go @ = f in Q,
¢ € C'(;R"), detVe > 0in Q and ¢ = id on Q. Hence, using Theorem 19.12,
we have ¢ € Diff"(;Q), which concludes the proof. O

13.1.2 The Case of Closed 1-Forms

We get as immediate corollaries similar results for closed 1-forms. Recall that
1-forms are written as

n n
f=Y fidx' and g=) gidx'.
i=1 i=1
We start first with the local version.

Corollary 13.3. Let r > 0 be an integer, xyo € R" and f and g be C" closed 1-forms
in a neighborhood of xy such that

F(xo)#0 and g(x) 0.

Then there exist a neighborhood U of xo and @ € Diff ™! (U; @ (U)) such that
O (x0) = xo and
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Furthermore, if

fi (x0) - 8i (x0) # 0

Jfor a certain 1 <i < n,then ¢ can be chosen of the form

(P(x) = (.Xl,. .- axi—la(Pi(‘x)axl'+17' "axn)-

Remark 13.4. When r = 0, the fact that a 1-form ® is closed has to be understood
in the sense of distributions.

Proof. Using Corollary 8.6, there exist a small ball V centered at xg and F,G €
C™1(V) such that
dF =f and dG=g inV.

Adding, if necessary, a constant, we can also assume that F'(xy) = G(x¢). Note that
if fi(x0) - gi(x0) # O for a certain 1 < i < n, then

o () S o) £0.

i

We are then in a position to apply Theorem 13.1 to get U C V, a neighborhood of
xo and @ € Diff" ™! (U; @ (U)) such that @(xo) = xo and

which implies

and concludes the proof. O

We now conclude with the global version obtained in Bandyopadhyay and
Dacorogna [8].

Corollary 13.5. Let Q C R" be a bounded simply connected smooth open set. Let
r > 0 be an integer and f,g € C" (Q;A 1) be closed and such that
VAf=VAgondQ and fi-gi>0inQ

for a certain 1 <i < n. Then there exists a diffeomorphism ¢ € Diff ! (ﬁ,ﬁ) of
the form

(P(x) = (xl yoeesXi—1, (pi(x)axi+1 PR 7xn)
satisfying
¢ (g)=f inQ,
o =id on dQ.
Proof. We first claim that there exist F,G € C""!(Q) such that F,G € C""! (©) and

dF =f,dG=ginQ and F=GondQ.
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Indeed, by Theorem 8.16 and the remark following it and recalling that #7 (2,A') =
{0} since  is simply connected (see Remark 6.6), there exists H € C"+1(Q;A!)
such that

dH=f—ginQ and H=0o0ndQ.

Then, using Corollary 8.6, there exists G € C"*!(Q) such that dG = g in Q. Letting
F = H + G, we have the claim. In particular, note that

37)1: : 37?1 >0in Q.

Finally, apply Theorem 13.2 to get ¢ € Diff"*! (Q; Q) of the desired form so that
0*(G)=F inQ,

which implies

¢*(dG) =dF inQ.

The proof is therefore complete. O

13.2 Darboux Theorem for 1-Forms

13.2.1 Main Results

The following result is classical and due to Darboux [34]; see, for example Bryant
et al. [18], Olver [80], or Sternberg [93]. This result is equivalent to the Darboux
theorem (cf. the remark below) for closed 2-forms.

Theorem 13.6. Let r > 3 and 2 < 2m < n be integers. Let 0 < a0 < 1, xo € R" and
w be a C"* 1-form such that

rank[dw] =2m in a neighborhood of x .

Then there exist a neighborhood U of xy and

Diff"*(U;@ (U))  if2m=n
Diff " *(U; 9 (U)) if2m<n

such that @(xo) = xo and

m
o*(w) = sz,;ldxz’ +dS inU,
i=1

=
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with

crhU)  if2m<n.

Remark 13.7. (1) The above result is equivalent to the Darboux theorem for closed
2-forms. This last theorem reads (see Theorems 14.1 and 14.3) as follows. Let n >
2m, xo € R" and f be a C"% closed 2-form satisfying

Se{ Cr%(U)  if2m=n

rank[f] =2m in a neighborhood of x .

Then there exist a neighborhood U of xy and

Diff (U@ (U))  ifn=2m
Diff"*(U;@ (U))  ifn>2m

such that ¢(xo) = xo and

m
0" (f) = dez’;l Adx* inU.

i=1
The fact that the Darboux theorem for 2-forms implies the one for 1-forms is pre-
cisely the proof of Theorem 13.6 below. The other implication follows immediately,
once it has been observed that we can choose, for example, U to be a ball so that,
f being closed in U, we can find (cf. Theorem 8.3) w € C"*1%(U;A'") such that
f = dw. We then apply the theorem to w, getting

0" () = 9" (dw) = dg* (w) = ¥ ¥ Ade?.
i=1

(ii) The hypothesis r > 3 can be weakened if we use a weak version of the fourth
statement of Theorem 3.10. Indeed, it is enough to assume r > 1 if n =2m and r > 2
if n > 2m (cf. Csat6 [23]).

Proof. Using Theorem 14.1 if 2m = n or Theorem 14.3 if 2m < n, there exist a
neighborhood U of xy and

Diff"*(U; 9 (U))  if2m=n
¢ Diff L (U@ (U)) if2m<n

such that ¢(xo) = xo and

Note that
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and 1 1
n . CH*U;AY)  if2m=n
W)=Y xp_dx €
¢ ( ) ; 2i—1 {C’z’“(U;AI) if 2m < n.

1

Thus, by Theorem 8.3, restricting U if necessary, there exists

CrU)  if2m=n
sed :
crh*U) if2m<n
such that .,
dS=o¢*(w)— ng,-_ldxzi,
i=1

which concludes the proof. O

The next two theorems refine the above result (cf. Bryant et al. [18] or Sternberg
[93]). In particular, the second one gives a sufficient condition ensuring that S = 0.

Theorem 13.8. Let r > 3 and 2 < 2m < n be integers. Let 0 < a0 < 1, xo € R" and
w be a C"* 1-form such that

rank[dw] =2m in a neighborhood of xo

and
wAdwA--- ANdw(xp) # 0.

m times

Then there exist a neighborhood U of xy and
¢ € Diff % (U; 9 (U))
such that @(xy) = xo and
m
o (w) = szl-,l A +dx*™ N nU.
i=1
Remark 13.9. Since w A (dw)™ is a (2m + 1)-form and since
wA (dw)™(xo) # 0,
we necessarily have 2m < n.

Proof. With no loss of generality, we can assume xy = 0. Since (according to Re-
mark 13.9) we necessarily have 2m < n, we get, using Theorem 13.6, a neighbor-
hood V of 0 and ¢; € Diff"~"%(V;¢;(V)) such that ¢;(0) =0 and

m
o (w) = Zx2i71dX21 +dS inV,
i=1
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with S € C"~1:%(V). Since, by hypothesis,
WA (dw)"(0) £0,
we get that since ¢;(0) =0,
@i (w) A (doi(w))"(0) # 0,

which is equivalent to
dSAdx' A--- ANdx*(0) # 0.

Permuting, if necessary, the coordinates x,,+1,. . . , X, we can therefore assume with
no loss of generality that
as
=22 (0) £0.
&x2m+ 1

Now, define, for x € V,
0 (x) = (X1, -, X2, S(x) = S(0), X042, - - - s Xn)-

Taking V smaller, if necessary, we obtain that @, € Diff™1"*(V;¢,(V)), ¢2(0) =0
and '
dx'  ifi#2m+1

*di _
93(dx) {dS ifi=2m+1.

Finally, letting U = ¢»(V) and @ = @ o () !, we easily obtain that ¢ € Diff" =% (U;
¢(U)), (0) = 0and

m
o (w) = szl;lde’ +dx”™! inuU,
i—1

which ends the proof. O
Theorem 13.10. Let 2 < 2m < n be an integer;, xo € R" and w a C* 1-form such that
rank|dw| =2m in a neighborhood of xy ,

w(xo) # 0 and

wAdwA---Ndw =0 inaneighborhood of x .
—_———

m times

Then there exist an open set U and
9 € DIff™ (U3 (1))
such that ¢ (U) is a neighborhood of xo and

m
Q" (w) = ng,;l dx* inU.
i=1
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Remark 13.11. (i) If w € C", the following proof shows in fact that ¢ € C"2"+1 if
2m=nand ¢ € C"~2"if 2m < n.

(ii) If we, moreover, want @ (xo) = X, then the conclusion becomes

(x2i—1 — Czi_l)dXZi inU

M-

¢ (w) =

L

for some ;1 € R, 1 <i <m. Note that the cp;_; cannot be arbitrary. For example,
the ¢y, can never verify ¢;_1 = (x0)2;—1 for every 1 <i < m. Indeed,

@ (W)(x0) = Y ((x0)2i-1 —€2i-1) dx*

on

Il
-

1

and thus we have the assertion since, recalling that ¢ (xp) = xp,

¢*(w)(x0) #0 < w(xg) # 0.

Proof. We split the proof into two steps. With no loss of generality, we can assume
that xo = 0.

Step 1 (simplification). Let us first prove that we can assume that n = 2m.
Applying Theorem 14.3 to dw, we can find a neighborhood U of 0 and y €
Diff”(U; y(U)) such that y(0) =0 and

m
yr(dw) =Y dx*" ' Ndx* inU. (13.3)
=1

Note that since y(0) = 0, we have, restricting U if necessary,
v w)(0)#0 and Yy (W)A(d(y*(w)))"=0 inU. (13.4)
The last equation being equivalent to
VW) Adx' A Ad¥®™ =0 inU,
we immediately deduce
[v*w)[i=0 inU forevery2m+1<i<n

and, hence,
2m

v (w)(x) = Z bi(x)dx' inU.
i=1
Combining the previous equation with (13.3), we get that
bi(x) = bi(xy,...,x2,) in aneighborhood of 0, forevery 1 <i<2m.

We thus have the claim, replacing y*(w) by w.
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Step 2 (conclusion). Applying Lemma 13.12 to w, we can find a neighborhood V
of 0 in R¥" and ¢, € Diff”(V;¢;(V)) such that ¢;(0) = 0 and

m
@ (w) =Y boi_1(x1,...,x0m)dx*"" inV (13.5)
i=1

for some by, € C*(V). Since
rank[d (@] (w))(0)] = rank[dw(0)] = 2m,

we know that (d@; (w))™(0) # 0, which is equivalent to, using (13.5),

dx' Ndx3 Ao NdXP" U Ndby Adby A -+ Adbyy—1(0) # 0. (13.6)
Now, define, forx € V,

0 (x) = (b1(x),x1,b3(x),x3, ..., bom—1(x), X2m—1)-
Using (13.6), we obtain that ¢, € Diff*(V;@,(V)), taking V smaller if neces-
sary. Finally, letting U = ¢2(V) and @ = ¢ o (¢2)~', we easily obtain that ¢ €
Diff”(U; ¢(U)) and
0" (w) = ixg,;ldx% inU,
i=1

which ends the proof. O

13.2.2 A Technical Result

We still need to prove the following lemma.

Lemma 13.12. Let m > 1 be an integer; xo € R*™ and w be a C* 1-form defined in
a neighborhood of x such that w(xy) # 0 and

rank[dw(xg)] = 2m.
Then there exist a neighborhood U of xy and
¢ € Diff"(U; 9(U))
such that @(xo) = xo and
[0 (W)]2i =0 inU forevery 1 <i<m. (13.7)

Remark 13.13. If w € C”, then the following proof gives ¢ € C"2(m=1),

For the proof of the lemma we will need the two following elementary results,
the first of which is purely algebraic.
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Lemma 13.14. Let f € A*(R*") with rank[f] = 2m and

2m—1 )
a= Z aie' € A(R?™)
i=1

with a # 0. Then there exists A € GL(2m) of the form

0
A= B ,
0
0--- 01
where B € GL(2m — 1) and such that
m—1 2m—2

Y @ ne =Y F NG and Y (A% (@) £0.

1<i<j<2m—1 i=1 i=1

Proof. Step 1. Using Proposition 2.24(ii), there exists Ae GL(2m) such that

6217] /\eZl and A*(eZm) _ eZm'

™=

AN(f) =

Note that the condition A*(¢2™) = ¢2™ is equivalent to

A
i— B :
0O ---0 1

where B € GL(2m — 1) is given by §§, :g’] Define

and observe that for 1 <i< j<2m—1,

1<p<q<2m 1<p<q<2m

(A*(f))if_< Y quA”AAq> = Y S (Aral-ara?)
ij

= L S (APAT AR = (B (1)

1<p<q<2m

277
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We therefore have
A* N A* ije inNel = ezl PAEH.
( J
1<i<j<2m—1 1<i<j<2m—1
Note that the previous equation is equivalent to
m—1 )
A (f) =Y A +hne™ (13.8)
i=1
for a certain h = Y7 ' e € A (R?™).

Step 2. Since a # 0, we have A*(a) = Y2 ' A*(a);e' # 0 and thus there exists
1 <i<2m—1 suchthat A*(a); #0. If | <i<2m—2, the matrix A has all of the
required properties. If A*(a); = 0 for 1 <i < 2m—2, we proceed as follows. Define

bo -0 1 ifi=j

p=10". 0 : @pjli: 1 ifi=2m—1landj=1
1o 1.0 0 otherwise
0. 0 1

and let us show that AP € GL(2m) has all the claimed properties. Indeed, first note
that AP has the desired form. Since

P*(ei):{ei ifi #2m—1

el +e2m 1 ifi=2m—1,

we deduce that, using (13.8),

(AP)*(f) =P (A*(f)) = Y ¥ " A& +P* (h) e

We therefore get

Z ((AP)*(f) ,]e iNel = Z o2 A Q2

1<i<j<2m—1
Note also that
((AP)*(a))1 = (P*(A™(a)))1 = (A"(@))2m—1 # 0.
The proof is therefore complete. O
We now give the second result.
Lemma 13.15. Let U C R" be an open set, n > 2 and w € C* (U;A 1) be such that

(dx")sdw=w inU. (13.9)
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Then

n—1
w=e" Z Din (X1, -+, x0—1) dx",
i=1

dw = —e™ Z bi_;(xl,...,xn,l)dxi/\dxj
1<i<j<n

for some b;; € C*.
Proof. We first write

dw = Z a,-jdxi/\dxj

1<i<j<n

and observe that, as a direct consequence of (13.9), we have
n—1 )
w=—Y apdx (13.10)
i=1

We finally show that for every 1 <i< j <nandx= (x,...,x,) €U,
al-j(x) = 7€X”b,’j (xl, . ,anl)
for some b;; € C™. For this, it is enough to prove that for every 1 <i < j <n,

_ dai;
T ox,

a; j
Let 1 <i < j < n. First, since ddw = 0 and hence, in particular, (ddw);;, = 0, we
have (with the convention that a,,, = 0)

Bajn 8a,~n 8aij

dx;  Ox; + dx, =0

Using (13.10) and the previous equation, we obtain

da;,, dai, da;;
aij = (dw)ij = _< o axj) =

which concludes the proof. O

Finally, we prove Lemma 13.12.

Proof. With no loss of generality we can assume xo = 0. In the sequel, U will be a
generic neighborhood of 0. We prove the lemma by induction on m and we split the
proof into three steps.

Step 1. We start by introducing some notations. Let

X = (xl, cee 7x2m727x2mflvx2m) e R
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For every (xom—1,%2m) € R?, define i :R¥"=2 5 R¥™ by

X2m—1 7-x2m)
Uyt o) (X155 X2m—2) = X.
Let1 <k <nand
8= Y 8iy iy XA+ AdX € CO(RP™ AR (RP™)).

1<ij<---<ix <2m
Then for every (x2,—1,%m) € R2, we have

it (g) c C()(R2m—2;Ak(R2m—2))

(x2m—l sx2m)
and, explicitly,

o1 o) (8) (K15 Xom—2) = Z iy (X)dXT A - A dxE,
lgil <-~-<ik§2m72

Step 2 (the case m = 1). In that case, we have
w(x) =w; (xl,xz)dxl +wa(x1,x2) dx*.

Since, by hypothesis, (w;(0),w2(0)) # (0,0), there exist, applying Remark 4.3(ii),
a neighborhood U of 0 and ¢ € Diff”(U; ¢(U)) such that ¢(0) =0 and

92— (“walg)wmi(9) U
X2

We thus get, using the above equation,

@ (w) =wi(@)de' +wy(9)d¢?

= (@) 5+ wato)
= {m(w)gj’; +W2((P)} dx',

which is the desired assertion.

Step 3 (induction). We assume that the lemma has been proved for m — 1 and
prove it for m.

Step 3.1 (preliminaries). In this step we show the existence of a neighbor-
hood U of 0 and y € Diff”(U; y(U)) with y(0) = 0 such that for every x =

(X105 X2m—2,X2m—1,X2m) €U,

i )(‘V* (W) (x1,...,x2m—2) #0, (13.11)

(X2m—1:X2m

i
(X2m—1%2m

rank [d('* W)X 2) | = 2m =2, (13.12)
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2m—1 )
v w)(x) =2 Y ci(xi,... . xom1)dx  inU (13.13)

for some ¢; € C*(U).

(i) Since rank[dw] = 2m in a neighborhood of 0 and Proposition 2.50 holds, we
can find a neighborhood U of 0 and a unique v € C*(U;A") such that

vadw=w inU.

Note that v(0) # 0 since w(0) # 0. Hence, using Remark 4.3(ii), there exist a neigh-
borhood U of 0 and y € Diff”(U; x(U)) such that % (0) = 0 and

Ix
d X2m

=voy inU.

Using Theorem 3.10 and Proposition 3.11, we thus get
25 (w) = x*(vadw) = dx*"adyx*(w) inU.
Therefore, applying Lemma 13.15, we have

dy*(w)(x) = —e™m Z bij(X1,.. ., Xom—1)dx' Adx/  forevery x € U,
1<i<j<2m

2m—1
X (w)(x) =e™m Z biom) (X1, -, X2m—1)dx"  forevery x €U (13.14)
i=1

for some b;; € C.
(i1) Apply Lemma 13.14 to

f=dx'(w)(0) € A>(R*) and a =y (w)(0) € A'(R*™)

to get A € GL(n) of the form

such that

(A*(f))ije' Nel = Z A n e
1<i<j<2m—1

. (13.15)
Z )iel #0.

(iii) Let 6(x) = A-x. We now prove that y = y o 0 has all of the desired properties
claimed by Step 3.1. In the following, we will frequently use (cf. Remark 3.9) that
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for any ¢ € C' (R™;RY), any k-form ¢, and any fixed x € RY,

¢ (o) (x) = (Vo (x))" [t (9 (x))]-

First, note that y(0) = 0 since (0) = 6(0) = 0. We now show (13.11). Restricting if
necessary U, it is enough to show the property for x = 0. Using the second statement
in (13.15), we deduce

2m—2

i?0,0)(W* (W))(Ov v ,O) = ; A* (a)iei 75 0,

which proves the claim. We next prove (13.12). As before, restricting if necessary
U, it is enough to prove the assertion for x = 0. Using the first equality in (13.15),
we obtain

il o) (W ()(0,....,0) = ifg ) (W* (@) (0,....,0)

m—1
= Y  @)ene =Y, PN

1<i<j<2m—2 i=1

This establishes the claim. Finally, using (13.14) and since

9<x) = (el(xlv' . 7x2m—1); . .762”’!*] (x17' . >x2m—1)ax2m);

we have

= ¢"m Z bi(2m) [91 (xl, ... ,szfl), ey g1 (xl, ... ,mefl)} do!
i=1
2m—1 .
= " Z ci(x1,...,xom—1)dx';, x€eU,
i=1
for some ¢; € C*; therefore, (13.13) is fulfilled.
Step 3.2 (conclusion). Using (13.11) and (13.12), we get that

iﬁ(ﬁxszl Xom) (¥ (w))

satisfies the induction hypothesis for m — 1, for x,,—1,x2,, small. Moreover, note
that using (13.13),

2m—2

i?x2m717x2m) (W* (W))()C] P ,X2m72) = ex2m Z C[()Ch <o X2m—1 ) d'xi'
i=1

Hence, by the induction hypothesis and thanks to the special form of the coeffi-
cients of

iz‘xzm,l ,xzm) (W* (W))
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with respect to xo, , thqe exist a Eei ghborhood U of 0in R2m2 and, for every xp,,—1
small, ¢, , € Diff*(U;¢y,, ,(U)), verifying

((q)m_,)*(igmihw(q/*(w))>2i:0 nU, 1<i<m—1.  (13.16)

Furthermore, since the construction is smooth in the parameters, we have in fact
(x1 s ,X2m,1) — (szmq (X] g ,)sz,Q) isC™.

Define, for a neighborhood U of 0 small enough, ¢ € Diff*(U;¢(U)) by

Ox) =0 (x1,...,x0m) = (Pryy | (X153 X20—2), X2m—1,X2m) -

Slnce (P © l(x2m71 7x2m) = l(x2m71 -,X2m) © ¢X2m71 » We Obtaln

(Dx2 1) (g i) (W W))) =0,y (07 (W7 (W)
Note also that for every 1 < s < 2m —2 and for every 1-form g,

gt ) (8) (F15- szfz)]s = [g (¥t -, X2m—2,X2m—1, X2m) ] -

Therefore, combining (13.16) with the above two equations, one gets
[0 (v (W)]2i=0 inU, 1<i<m-—1.

Moreover, since the first (2m — 1) components of ¢ do not depend on x,,,, we ob-
tain, using (13.13),

[0 (W' (W)2n =0 inU.
Finally, letting ¢ = y o ¢, we have indeed found the desired diffeomorphism. O
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