
Chapter 11

The Case Without Sign Hypothesis on f

11.1 Main Result

The aim of this chapter is to solve the problem{
g(ϕ(x))det∇ϕ(x) = f (x), x ∈ Ω ,

ϕ(x) = x, x ∈ ∂Ω ,

equivalently written as {
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω ,
(11.1)

with g > 0 in R
n but with no sign restriction on f . Of course, the solution cannot be

a diffeomorphism; nevertheless, if f ≥ 0 and under further restrictions, it can be a
homeomorphism (see Theorem 11.1(iii)).

The main result of this chapter, established by Cupini, Dacorogna and Kneuss
[25], is the following. In the sequel, we denote by BR the open ball of radius R
centered at the origin.

Theorem 11.1. Let n ≥ 2 and r ≥ 1 be integers and Ω a bounded open set in R
n

such that Ω is Cr+1-diffeomorphic to B1 . Let g ∈Cr(Rn) with g > 0 and f ∈Cr(Ω)
be such that ∫

Ω
g =

∫
Ω

f .

Then for every ε > 0, there exists ϕ = ϕε ∈Cr(Ω ;Rn) satisfying (11.1), namely{
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω

and

Ω ⊂ ϕ
(
Ω
)⊂ Ω +Bε .
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212 11 The Case Without Sign Hypothesis on f

Moreover, the three following properties hold:
(i) If either f > 0 on ∂Ω or f ≥ 0 in Ω , then ε can be taken to be 0. In other

words, there exists ϕ ∈Cr(Ω ;Ω) satisfying (11.1).
(ii) If supp(g− f )⊂ Ω , then ϕ can be chosen such that

ϕ ∈Cr(Ω ;Ω) and supp(ϕ − id)⊂ Ω .

(iii) If f ≥ 0 in Ω and f−1(0)∩Ω is countable, then ϕ can be chosen such that

ϕ ∈Cr(Ω ;Ω)∩Hom(Ω ;Ω).

Remark 11.2. (i) Note that, in view of (19.2), we always have Ω ⊂ ϕ(Ω) as soon as
ϕ = id on ∂Ω .

(ii) In general, without further hypothesis on f as the extra statement (i), it is not
possible to find a solution that remains in Ω . In fact, if f is negative in some part of
∂Ω , then any solution must go out of Ω (cf. Proposition 11.3).

(iii) The above theorem is also valid in Hölder spaces.

The proof of the theorem will be discussed in Section 11.3, but we want to explain
the two main steps. First, observe that the fact that f is not strictly positive precludes
the use of either the flow method or the fixed point method developed in Chapter 10;
the proof will be more constructive. Here are the main steps for Ω the unit ball. The
idea is to look for radial solutions of the problem; however, to achieve this, we have
to rearrange f in an appropriate way. We therefore will look for solutions of the
form

ϕ = ψ ◦χ−1

with ψ = χ = id on ∂Ω .

— First, we rearrange f with a diffeomorphism χ, so that

f1 = χ∗( f )

satisfies f1 (0)> 0 and has nice symmetry properties, for instance, among others,∫ r

0
sn−1 f1

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1].

This will be the most difficult part of our proof and will be achieved in Section 11.6
(with the help of Section 11.5). Note that in view of Proposition 11.6 the function
f1 cannot therefore be strictly positive if f is not strictly positive.

— We then find a map ψ so that

ψ∗(g) = f1 .

This will be achieved using Section 11.4 and Chapter 10. Note that the map ψ cannot
be a diffeomorphism if f1 vanishes even at a single point.
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11.2 Remarks and Related Results

In this section Ω will be a bounded open set in R
n. We start by showing that if f < 0

in some parts of ∂Ω , then any solution of{
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω
(11.2)

must go out of Ω—more precisely,

Ω ⊂
�=

ϕ
(
Ω
)
.

We recall, using (19.2), that we necessarily have

Ω ⊂ ϕ(Ω).

Proposition 11.3. Let Ω be a bounded open C1 set in R
n and ϕ ∈ C1(Ω ;Rn) with

ϕ = id on ∂Ω . If there exists x ∈ ∂Ω such that det∇ϕ(x)< 0, then

Ω ⊂
�=

ϕ(Ω). (11.3)

Proof. We divide the proof into two steps.

Step 1 (simplification). Since Ω is C1 (cf. Definition 16.5), there exists ψ ∈
Diff1(B1;ψ(B1)) with ψ(0) = x and

ψ(B1 ∩{xn = 0})⊂ ∂Ω ,

ψ(B1 ∩{xn > 0})⊂ Ω ,

ψ(B1 ∩{xn < 0})⊂ (Ω)c.

Therefore, using that ϕ(x) = x, we can choose ε > 0 small enough so that

ϕ̃ : Bε ∩{xn ≥ 0}→ R
n with ϕ̃(x) = ψ−1(ϕ(ψ(x)))

is well defined. We observe that ϕ̃ satisfies

ϕ̃ = id on Bε ∩{xn = 0} and det∇ϕ̃(0) = det∇ϕ(x)< 0. (11.4)

To prove (11.3) it is enough to show that

ϕ̃(Bε ′ ∩ {xn > 0})⊂ {xn < 0} (11.5)

for a certain 0 < ε ′ ≤ ε.
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Step 2. We finally show (11.5). Using (11.4), we immediately obtain

∂ ϕ̃n

∂xn
(0) = det∇ϕ̃(0)< 0,

and therefore, by continuity, there exists 0 < ε ′ ≤ ε such that

∂ ϕ̃n

∂xn
< 0 in Bε ′ ∩ {xn > 0} . (11.6)

Combining (11.6) and the fact that ϕ̃n(0) = 0 (by (11.4)), we get (11.5). �


We now discuss the special case n = 1 in the context g > 0 and with no sign
restriction on f .

Proposition 11.4. Let n = 1, r ≥ 0, Ω = (a,b), g ∈ Cr(R) with g > 0 and f ∈
Cr([a,b]). Let

F (x) =
∫ x

a
f (t)dt and G(x) =

∫ x

a
g(t)dt.

Then there exists ϕ ∈Cr+1([a,b];R) a solution of (11.2) if and only if

F(b) = G(b) and F([a,b])⊂ G(R).

Remark 11.5. Let F and G be as in the proposition with F(b) = G(b). Then the
following statements are verified:

(i) We always have

G([a,b])⊂ F([a,b]).

Moreover, when f ≥ 0, the previous inclusion is an equality.

(ii) In general,

F([a,b])⊂
�=

G([a,b]).

This is for example always the case when f (a)< 0 or f (b)< 0.

(iii) The inclusion

F([a,b])⊂ G(R)

is not always fulfilled.

Proof. Step 1. First, note that Problem (11.2) becomes{
G(ϕ (x)) = F (x) , x ∈ (a,b) ,

G(b) = F (b) .
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Indeed, (11.2) is equivalent to{
[G(ϕ (x))]′ = F ′ (x) if x ∈ (a,b) ,

ϕ (a) = a and ϕ (b) = b.

We therefore get
G(ϕ (x)) = F (x)+ c.

Since ϕ (a) = a and G(a) = F (a) , we deduce that c = 0 and thus our claim.
Step 2. Since G is strictly monotone (because g > 0), the solution ϕ (if it exists)

is given by
ϕ(x) = G−1(F(x)).

Therefore, the conclusion easily follows. �

We now show that Problem (11.2) is not symmetric in g and f .

Proposition 11.6. Let g ∈C0(Rn) with g−1(0)∩Ω �= /0 and f ∈C0(Ω) with f > 0
in Ω . Then no ϕ ∈C1(Ω ;Rn) can satisfy (11.2).

Proof. We proceed by contradiction. Assume that ϕ ∈ C1(Ω ;Rn) is a solution of
(11.2). Since ϕ = id on ∂Ω , then (see (19.2) below)

ϕ(Ω)⊃ Ω .

Thus, there exists z ∈ Ω such that ϕ(z) ∈ Ω and g(ϕ(z)) = 0, which is the desired
contradiction, since

g(ϕ(z))det∇ϕ(z) = f (z)> 0.

The proposition is therefore proved. �

In the following proposition, we state a necessary condition (see (11.7) below)

for the existence of a one-to-one solution of (11.2). Moreover, we show that not all
solutions of (11.2), verifying (11.7), are one-to-one.

Proposition 11.7. Let

g ∈C0(Rn), g > 0 in R
n, f ∈C0(Ω) and

∫
Ω

f =
∫

Ω
g.

Then the following claims hold true:
(i) If ϕ ∈C1(Ω ;Rn) is a one-to-one solution of (11.2), then ϕ ∈ Hom(Ω ;Ω) and

f ≥ 0 and int( f−1(0)) = /0. (11.7)

(ii) There exists f satisfying (11.7) such that not all solutions ϕ ∈ C1(Ω ;Rn) of
(11.2) are one-to-one.

Proof. (i) By Lemma 19.11, we have that ϕ ∈ Hom(Ω ;Ω). Applying Proposition
19.14, we have the claim.
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(ii) We provide a counterexample in two dimensions. Let f ∈C1(B1) be such that
f ≥ 0,

f−1(0) = {(t,0) : t ∈ [1/2,3/4]}, f ≡ 1 in a neighborhood of 0

and, for every x �= 0, ∫ 1

0
s f

(
s

x
|x|

)
ds =

1
2
.

Define next α : B1 → [0,1], through α (0) = 0 and, for 0 < |x| ≤ 1,

α(x)2

2
=

∫ α(x)

0
sds =

∫ |x|

0
s f

(
s

x
|x|

)
ds.

As in Step 2 of the proof of Lemma 11.11 (with g = 1), the map

ϕ(x) = α(x)
x
|x|

is in C1(B1;B1), with

ϕ∗(1) = f and ϕ = id on ∂B1 .

Since ϕ(1/2,0) = ϕ(3/4,0), ϕ is not one-to-one. �

The next proposition can be proved with the same technique as the one developed

in this chapter and we refer to [60] for details.

Proposition 11.8. Let r ≥ 1 and n ≥ 2 be integers. Let g ∈Cr(Rn) with g > 0 in R
n,

f ∈Cr(B1) satisfying ∫
B1

g =
∫

B1

f .

Then there exist δ = δ (n,r,g, f ) and γ = γ(n,r,g, f ) such that for every g1,g2 ∈
Cr(Rn), f1, f2 ∈Cr(B1) satisfying, for i = 1,2,∫

B1

gi =
∫

B1

fi , ‖ fi − f‖Cr(B1) ≤ δ and ‖gi −g‖Cr(B2) ≤ δ ,

there exist ϕi ∈Cr(B1;B2), i = 1,2, such that for every 0 ≤ k ≤ r−1,

ϕ∗
i (gi) = fi in B1 , ϕi = id on ∂B1,

‖ϕ1 −ϕ2‖Ck(B1)
≤ γ(‖ f1 − f2‖Ck(B1)

+‖g1 −g2‖Ck(B2)
),

‖ϕi‖Cr(B1)
≤ γ.

Remark 11.9. We can make the conclusion of the proposition more precise. In the
sense that for every ε > 0, by letting δ and γ depending of ε we can replace B2
above by B1+ε .
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11.3 Proof of the Main Result

We can now discuss the proof of the main theorem. For the sake of simplicity, we
will split it into two proofs. First, we establish the main statement of the theorem
and then we show its three extra statements.

Proof. We divide the proof into five steps and we fix ε > 0.

Step 1 (transfer of the problem into the ball). Since Ω is Cr+1-diffeomorphic
to B1 , there exists ϕ1 ∈ Diffr+1(B1;Ω). With no loss of generality we can as-
sume that det∇ϕ1 > 0. Indeed, if det∇ϕ1 < 0 (note that since ϕ1 is a diffeomor-
phism, then det∇ϕ1 �= 0 everywhere), then replace ϕ1(x) by ϕ1(−x1,x2, . . . ,xn).
Using Corollary 16.15, we extend ϕ1 and choose ε1 > 0 small enough so that
ϕ1 ∈ Diffr+1(B1+ε1 ;ϕ1(B1+ε1)) with

ϕ1(B1+ε1)⊂ Ω +Bε .

Define
f1 = ϕ∗

1 ( f ) ∈Cr(B1) and g1 = ϕ∗
1 (g) ∈Cr(B1+ε1).

By the change of variables formula, we have that∫
B1

f1 =
∫

Ω
f =

∫
Ω

g =
∫

B1

g1 > 0 . (11.8)

Step 2 (positive radial integration). Since (11.8) holds, we may apply Lemma
11.21 to f1 . Therefore, there exists ϕ2 ∈ Diff∞(B1;B1) with

supp(ϕ2 − id)⊂ B1

such that, letting f2 = ϕ∗
2 ( f1) ∈Cr(B1), we have f2 (0)> 0 and∫ r

0
sn−1 f2

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1]

∫ 1

r
sn−1 f2

(
s

x
|x|

)
ds >−

∫
B1+ε1

g1 −
∫

B1

g1

n meas(B1)
for every x �= 0 and r ∈ [0,1].

The change of variables formula and (11.8) lead to∫
B1

f2 =
∫

B1

ϕ∗
2 ( f1) =

∫
B1

f1 =
∫

B1

g1 . (11.9)

Step 3 (radial solution). By the previous step, f2 satisfies all of the hypotheses of
Lemma 11.10 (with m =

∫
B1+ε1

g1). Therefore, there exist g2 ∈Cr(Rn) with g2 > 0
in R

n and ∫
B1+ε1

g2 =
∫

B1+ε1

g1
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and ϕ3 ∈Cr(B1;B1+ε1) verifying{
ϕ∗

3 (g2) = f2 in B1,

ϕ3 = id on ∂B1 .

Note that, using (19.3), ∫
B1

g2 =
∫

B1

f2

and therefore, by (11.9), ∫
B1

g2 =
∫

B1

g1 .

Step 4 (positive resolution). Since g1,g2 ∈Cr(B1+ε1), g1,g2 > 0 in B1+ε1 ,∫
B1

g1 =
∫

B1

g2 and
∫

B1+ε1

g1 =
∫

B1+ε1

g2 ,

there exists, using Corollary 10.8, ϕ4 ∈ Diffr(B1+ε1 ;B1+ε1) such that{
ϕ∗

4 (g1) = g2 in B1+ε1 ,

ϕ4 = id on ∂B1 ∪∂B1+ε1 .

Step 5 (conclusion). By the above steps, we have that

ϕ = ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1
2 ◦ϕ−1

1 ∈Cr(Ω ;Rn)

satisfies
Ω ⊂ ϕ(Ω)⊂ Ω +Bε ,{

ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω .

Indeed, for x ∈ ∂Ω , since ϕ1(∂B1) = ∂Ω (see Theorem 19.6) and ϕi = id on ∂B1 ,
i = 2,3,4, we have

ϕ(x) = ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1
2 ◦ϕ−1

1 (x)

= ϕ1(ϕ−1
1 (x)) = x.

Thus, using (19.2), we have that Ω ⊂ ϕ(Ω). Noticing that

ϕ−1
1 (Ω) = B1 , ϕ−1

2 (B1) = B1 , ϕ3(B1)⊂ B1+ε1 ,

ϕ4(B1+ε1) = B1+ε1 and ϕ1(B1+ε1)⊂ Ω +Bε ,

we have
ϕ(Ω)⊂ Ω +Bε .
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Eventually, using several times the third statement in Theorem 3.10,

ϕ∗(g) =
(
ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1

2 ◦ϕ−1
1

)∗
(g)

= (ϕ−1
1 )∗

(
(ϕ−1

2 )∗ (ϕ∗
3 (ϕ

∗
4 (ϕ

∗
1 (g))))

)
= (ϕ−1

1 )∗
(
(ϕ−1

2 )∗ (ϕ∗
3 (ϕ

∗
4 (g1)))

)
= (ϕ−1

1 )∗
(
(ϕ−1

2 )∗ (ϕ∗
3 (g2))

)
= (ϕ−1

1 )∗
(
(ϕ−1

2 )∗( f2)
)

= (ϕ−1
1 )∗( f1) = f ,

which concludes the proof. �

We now prove the three extra statements of Theorem 11.1.

Proof. We divide the proof into seven steps.
Step 1 (transfer of the problem into the ball). Since Ω is Cr+1-diffeomorphic

to B1 , there exists ϕ1 ∈ Diffr+1(B1;Ω). With no loss of generality we can assume
that det∇ϕ1 > 0. Indeed, if det∇ϕ1 < 0, then replace ϕ1(x) by ϕ1(−x1,x2, . . . ,xn).
Define

f1 = ϕ∗
1 ( f ) ∈Cr(B1) and g1 = ϕ∗

1 (g) ∈Cr(B1).

From the change of variables formula, we get∫
B1

f1 =
∫

Ω
f =

∫
Ω

g =
∫

B1

g1 > 0. (11.10)

We notice the following facts:
(i) If f > 0 on ∂Ω , then

f1 > 0 on ∂B1 (11.11)

since ϕ1(∂B1) = ∂Ω by the invariance of domain theorem (see Theorem 19.6).
(ii) If supp(g− f )⊂ Ω , then

supp(g1 − f1)⊂ B1 . (11.12)

(iii) If f ≥ 0 in Ω , then
f1 ≥ 0 in B1 (11.13)

since det∇ϕ1 > 0 in B1 .

(iv) If f ≥ 0 in Ω and f−1(0)∩Ω is countable, then

f1 ≥ 0 in B1 and f−1
1 (0)∩B1 is countable. (11.14)

Step 2 (positive radial integration). Applying Corollary 11.23 to f1 , which is
justified by (11.10) and (11.11) if f > 0 on ∂Ω and by (11.10) and (11.13) if f ≥ 0
in Ω , we can find ϕ2 ∈ Diff∞(B1;B1) with

supp(ϕ2 − id)⊂ B1
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such that, letting f2 = ϕ∗
2 ( f1) ∈Cr(B1), we have f2 (0)> 0 and∫ r

0
sn−1 f2

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1],

∫ 1

r
sn−1 f2

(
s

x
|x|

)
ds ≥ 0, for every x �= 0 and r ∈ [0,1].

Moreover, using the change of variables formula and (11.10), we obtain∫
B1

f2 =
∫

B1

ϕ∗
2 ( f1) =

∫
B1

f1 =
∫

B1

g1 . (11.15)

Finally, we notice the two following facts:

(i) If supp(g− f )⊂ Ω , then by (11.12) and since supp(ϕ2 − id)⊂ B1 , we have

supp(g1 − f2)⊂ B1 . (11.16)

(ii) If f ≥ 0 in Ω and f−1(0)∩Ω is countable, then by (11.14), we get that

f2 ≥ 0 in B1 and f−1
2 (0)∩B1 is countable. (11.17)

Step 3 (radial solution). Since f2 satisfies all the hypotheses of Lemma 11.11,
there exist g2 ∈Cr(B1) with g2 > 0 in B1 and ϕ3 ∈Cr(B1;B1) verifying{

ϕ∗
3 (g2) = f2 in B1,

ϕ3 = id on ∂B1 .

Note that using (19.3), ∫
B1

g2 =
∫

B1

f2

and therefore, using (11.15), ∫
B1

g2 =
∫

B1

g1 .

We, moreover, have the two following facts:

(i) If supp(g− f ) ⊂ Ω (which implies, in particular, by (11.16) that f2 > 0 on
∂B1), the first extra statement of Lemma 11.11 implies that g2 and ϕ3 can be chosen
so that

supp(g2 − f2)⊂ B1 and supp(ϕ3 − id)⊂ B1 . (11.18)

(ii) If f ≥ 0 in Ω and f−1(0)∩Ω is countable (which implies by (11.17) that f2 ≥
0 in B1 and f−1

2 (0)∩B1 is countable), the second extra statement of Lemma 11.11
implies that ϕ3 can be chosen so that

ϕ3 ∈ Hom(B1;B1). (11.19)
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Step 4 (positive resolution). Since g1,g2 ∈Cr(B1), g1,g2 > 0 in B1 and∫
B1

g1 =
∫

B1

g2 ,

using Theorem 10.7, we can find ϕ4 ∈ Diffr(B1;B1) such that{
ϕ∗

4 (g1) = g2 in B1,

ϕ4 = id on ∂B1 .

We, moreover, have the following fact: If supp(g− f ) ⊂ Ω , then by (11.16) and
(11.18) we get that supp(g1 −g2)⊂ B1 . Therefore, using Theorem 10.11 instead of
Theorem 10.7, we can furthermore assume that

supp(ϕ4 − id)⊂ B1 . (11.20)

Step 5 (conclusion). Using the above steps, we have that

ϕ = ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1
2 ◦ϕ−1

1 ∈Cr(Ω ;Ω)

satisfies {
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω .

Indeed, for x ∈ ∂Ω , since ϕ1(∂B1) = ∂Ω (see Theorem 19.6) and ϕi = id on ∂B1,
i = 2,3,4, we have

ϕ(x) = ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1
2 ◦ϕ−1

1 (x)

= ϕ1(ϕ−1
1 (x)) = x.

Since ϕ−1
1 (Ω) = B1, (ϕ2)

−1(B1) = B1, ϕ4(B1) = B1, ϕ3(B1) = B1 (by (19.2)) and
ϕ1(B1) = Ω , we have that

ϕ(Ω) = Ω .

Finally, exactly as in Step 5 of the previous proof, we prove that

ϕ∗(g) = f in Ω ,

which shows the first extra statement.

Step 6. We show the second extra assertion. If supp(g− f )⊂ Ω , then (11.18) and
(11.20) imply the result, since

supp(ϕ2 − id), supp(ϕ3 − id), supp(ϕ4 − id)⊂ B1 .

Step 7. Finally, we show the third extra assertion. If f ≥ 0 in Ω and f−1(0)∩Ω
is countable, then (11.19) implies the assertion since ϕ1,ϕ2 and ϕ4 are diffeomor-
phisms. �
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11.4 Radial Solution

In this section we give sufficient conditions on f in order to have a positive g and a
radial solution ϕ of (11.2) in the unit ball (i.e., a solution of the form α(x)x/|x| with
α : B1 → R). For the sake of simplicity, we split the discussion into two lemmas.

Lemma 11.10. Let r ≥ 1 be an integer, m > 0 and f ∈Cr(B1) be such that

f (0)> 0, m >
∫

B1

f ,

∫ r

0
sn−1 f

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1], (11.21)

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds >−

m−
∫

B1

f

n meas(B1)
for every x �= 0 and r ∈ [0,1]. (11.22)

Then for every ε > 0, there exist g = gm,ε ∈Cr(Rn) with g > 0 in R
n and∫

B1+ε
g = m

and ϕ = ϕm,ε ∈Cr(B1;B1+ε) such that{
ϕ∗(g) = f in B1,

ϕ = id on ∂B1 .

Proof. We split the proof into two steps. Fix ε > 0.

Step 1 (construction of g). In this step we construct a function g ∈ Cr(Rn) with
the following properties:

g > 0 in R
n, g = f in a neighborhood of 0,

∫
B1+ε

g = m,

∫ 1

0
sn−1g

(
s

x
|x|

)
ds =

∫ 1

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0, (11.23)

∫ 1+ε

0
sn−1g

(
s

x
|x|

)
ds >

∫ r

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0 and r ∈ [0,1] .

(11.24)

Step 1.1 (preliminaries). Since f (0)> 0 and (11.21) and (11.22) hold, there exists
δ > 0 small enough such that

f > 0 in Bδ , min
x �=0

∫ 1

δ
sn−1 f

(
s

x
|x|

)
ds > 0, (11.25)
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∫ 1

r
sn−1 f

(
s

x
|x|

)
ds >−

m−
∫

B1

f

n meas(B1)
+δ for every x �= 0 and r ∈ [0,1]. (11.26)

Let η ∈C∞([0,∞); [0,1]) be such that

η(s) =

{
1 if 0 ≤ s ≤ δ/2

0 if δ ≤ s.

Define then h : Rn \{0}→ R by

h(x) =

∫ 1

0
sn−1(1−η(s)) f

(
s x
|x|
)

ds∫ 1

0
sn−1(1−η(s))ds

.

It is easily seen that h ∈Cr(Rn \{0}),

h(x) = h(λx) for every λ > 0,

and, using (11.25),
h > 0, in R

n \{0}.
Now define, for x ∈ R

n,

h(x) = η(|x|) f (x)+(1−η(|x|))h(x).

Using the definition of h and η , we have that⎧⎨⎩
h ∈Cr(Rn), h > 0 in R

n, h = f in Bδ/2,∫ 1

0
sn−1h

(
s

x
|x|

)
ds =

∫ 1

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0.

(11.27)

For every 0 < μ < ε, let ρμ ∈C∞(Rn; [0,1]) be such that

ρμ =

{
1 in B1,

0 in (B1+μ)
c

and define

cμ =

m−
∫

B1+ε
ρμ h∫

B1+ε
(1−ρμ)

.

Integrating the last equation of (11.27) on the unit sphere, we obtain that∫
B1

h =
∫

B1

f
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and, thus, we get

lim
μ→0

cμ =

m−
∫

B1

h

meas(B1+ε \B1)
=

m−
∫

B1

f

meas(B1+ε \B1)
=

m−
∫

B1

f

[(1+ ε)n −1]meas(B1)
.

This implies

lim
μ→0

(1+ ε)n − (1+μ)n

n
cμ =

(1+ ε)n −1
n

lim
μ→0

cμ =

m−
∫

B1

f

n meas(B1)

and therefore, by (11.26) we can choose μ1 small enough such that cμ1 > 0 and∫ 1

r
sn−1 f

(
s

x
|x|

)
ds >− (1+ ε)n − (1+μ1)

n

n
cμ1 , for every x �= 0 and r ∈ [0,1].

(11.28)
Step 1.2 (conclusion). Let us show that the function

g = ρμ1h+(1−ρμ1)cμ1 ∈Cr(Rn)

has all of the desired properties. Indeed, since h > 0 in R
n and cμ1 > 0, we have that

g > 0 in R
n. By definition of cμ1 , we see that∫

B1+ε
g = m .

Using the last equation of (11.27) and the fact that g = h in B1 , we get (11.23). We
finally show (11.24). Using (11.23), this is equivalent to showing∫ 1+ε

1
sn−1g

(
s

x
|x|

)
ds >−

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds for every x �= 0 and r ∈ [0,1].

Let x �= 0 and r ∈ [0,1]. We have, since g = cμ1 in B1+ε \B1+μ1 and (11.28) holds,∫ 1+ε

1
sn−1g

(
s

x
|x|

)
ds >

∫ 1+ε

1+μ1

sn−1g
(

s
x
|x|

)
ds =

∫ 1+ε

1+μ1

sn−1cμ1ds

=
(1+ ε)n − (1+μ1)

n

n
cμ1 >−

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds

and therefore the assertion.

Step 2 (construction of ϕ). We will construct a solution ϕ of the form

ϕ(x) = α(x)
x
|x| ,

where α : B1 → R.
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Step 2.1 (definition of α). Let α : B1 → R be such that α (0) = 0 and, for 0 <
|x| ≤ 1, ∫ α(x)

0
sn−1g

(
s

x
|x|

)
ds =

∫ |x|

0
sn−1 f

(
s

x
|x|

)
ds. (11.29)

Since g > 0, using (11.21) and (11.24), we get, for every x ∈ B1 \{0}, that α(x) is
well defined and verifies 0 < α(x)< 1+ ε. Since g = f in a neighborhood of 0, we
obtain that

α(x) = |x| in the same neighborhood of 0.

By (11.23), we immediately have

α(x) = 1 on ∂B1 .

Therefore, by the implicit function theorem, which can be used since α > 0 and
g > 0, we have that α ∈Cr(B1 \{0}). Moreover, since α(x) = |x| in a neighborhood
of 0, the function x → α(x)/|x| is Cr(B1).

Step 2.2 (conclusion). We finally show that

ϕ(x) =
α(x)
|x| x

is in Cr(B1;B1+ε) and verifies{
ϕ∗(g) = f in B1,

ϕ = id on ∂B1 .

In fact, by the properties of α, it is obvious that ϕ ∈ Cr(B1;B1+ε) and that ϕ = id
on ∂B1 . Using Lemma 11.12, we obtain

det∇ϕ(x) =
αn−1(x)
|x|n

n

∑
i=1

xi
∂α
∂xi

(x) . (11.30)

Computing the derivative of (11.29) with respect to xi , we get

αn−1(x)g(ϕ(x))
∂α
∂xi

(x)+
n

∑
j=1

∫ α(x)

0
sn ∂g

∂x j

(
s

x
|x|

)( |x|δi j − xix j
|x|

|x|2
)

ds

= |x|n−1 f (x)
xi

|x| +
n

∑
j=1

∫ |x|

0
sn ∂ f

∂x j

(
s

x
|x|

)( |x|δi j − xix j
|x|

|x|2
)

ds,

where δi j = 1 if i = j and δi j = 0 otherwise. Multiplying the above equality by xi,
adding up the terms with respect to i and using

n

∑
i=1

xi

( |x|δi j − xix j
|x|

|x|2
)

= 0, 1 ≤ j ≤ n,
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we obtain

αn−1(x)g(ϕ(x))
n

∑
i=1

xi
∂α
∂xi

(x) = |x|n f (x).

This equality, together with (11.30), implies ϕ∗(g) = f , which shows the assertion.
�


Lemma 11.11. Let r ≥ 1 be an integer, f ∈Cr(B1) be such that f (0)> 0 and∫ r

0
sn−1 f

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1], (11.31)

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds ≥ 0 for every x �= 0 and r ∈ [0,1]. (11.32)

Then there exists g ∈Cr(B1) with g > 0 in B1 and ϕ ∈Cr(B1;B1) such that{
ϕ∗(g) = f in B1,

ϕ = id on ∂B1 .

Furthermore, the following two extra properties hold:
(i) If f > 0 on ∂B1 , then g and ϕ can be chosen so that

supp(g− f )⊂ B1 and supp(ϕ − id)⊂ B1 .

(ii) If f ≥ 0 in B1 and

f−1(0)∩B1 is countable,

then ϕ can be chosen in Hom(B1;B1).

Proof. The proof is essentially the same as the previous one. We split the proof into
two steps.

Step 1 (construction of g). In this step we construct a function g∈Cr(B1) with the
following properties: g > 0 in B1 , g = f in a neighborhood of 0 (and also supp(g−
f )⊂ B1 if f > 0 on ∂B1),∫ 1

0
sn−1g

(
s

x
|x|

)
ds =

∫ 1

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0, (11.33)

∫ 1

0
sn−1g

(
s

x
|x|

)
ds ≥

∫ r

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0 and r ∈ [0,1] .

(11.34)
Step 1.1 (preliminaries). Since f (0) > 0 and (11.31) holds, there exists δ > 0

small enough such that

f > 0 in Bδ and min
x �=0

∫ 1

δ
sn−1 f

(
s

x
|x|

)
ds > 0. (11.35)
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Let η ∈C∞([0,∞); [0,1]) be such that

η(s) =

{
1 if 0 ≤ s ≤ δ/2

0 if δ ≤ s.

If f > 0 on ∂B1 , we modify the definition of δ and η as follows. We assume that

η(s) =

{
1 if 0 ≤ s ≤ δ/2 or 1−δ/2 ≤ s ≤ 1
0 if δ ≤ s ≤ 1−δ ,

where δ > 0 small enough is such that

f > 0 in Bδ ∪ (B1 \B1−δ ) and min
x �=0

∫ 1−δ

δ
sn−1 f

(
s

x
|x|

)
ds > 0. (11.36)

Define next h : Rn \{0}→ R by

h(x) =

∫ 1

0
sn−1(1−η(s)) f (s x

|x| )ds∫ 1

0
sn−1(1−η(s))ds

.

It is easily seen that h ∈Cr(Rn \{0}), that

h(x) = h(λx) for every λ > 0,

and, using (11.35) or (11.36), that

h > 0.

Step 1.2 (conclusion). Let us show that g defined by

g(x) = η(|x|) f (x)+(1−η(|x|))h(x), x ∈ B1,

has all of the required properties. Using the definition of h and η , we see that g ∈
Cr(B1) satisfies g > 0 in B1 , (11.33) and g = f in Bδ/2 (if, moreover, f > 0 on ∂B1 ,
then supp(g− f ) ⊂ B1). Finally, we show (11.34). Let x �= 0 and r ∈ [0,1]. Using
(11.32) and (11.33), we get∫ 1

0
sn−1g

(
s

x
|x|

)
ds =

∫ 1

0
sn−1 f

(
s

x
|x|

)
ds

=
∫ r

0
sn−1 f

(
s

x
|x|

)
ds+

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds

≥
∫ r

0
sn−1 f

(
s

x
|x|

)
ds,

which ends the construction of g.
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Step 2 (construction of ϕ). We will construct, as before, a solution ϕ of the form

ϕ(x) = α(x)
x
|x| ,

where α : B1 → R.

Step 2.1 (definition of α). Let α : B1 → R be such that α (0) = 0 and, for 0 <
|x| ≤ 1, ∫ α(x)

0
sn−1g

(
s

x
|x|

)
ds =

∫ |x|

0
sn−1 f

(
s

x
|x|

)
ds.

Since g > 0, using (11.31) and (11.34), we get for every x ∈ B1 \ {0} that α(x) is
well defined and verifies 0 < α(x) ≤ 1. Since g = f in a neighborhood of 0, we
obtain that

α(x) = |x| in the same neighborhood of 0.

By (11.33), we immediately have

α(x) = 1 on ∂B1 .

Moreover, if supp(g− f )⊂ B1 , then α also verifies

α(x) = |x| in a neighborhood of ∂B1 . (11.37)

Therefore, by the implicit function theorem, which can be used since α > 0 and
g > 0, we have that α ∈Cr(B1 \{0}). Moreover, since α(x) = |x| in a neighborhood
of 0, the map x → α(x)x/|x| is Cr(B1).

Step 2.2 (conclusion). We show that

ϕ(x) =
α(x)
|x| x

is in Cr(B1;B1) and verifies {
ϕ∗(g) = f in B1,

ϕ = id on ∂B1 .

In fact, by the properties of α, it is obvious that ϕ ∈Cr(B1;B1) and that ϕ = id on
∂B1 . Finally, proceeding exactly as in Step 2.2 of the proof of Lemma 11.10, we
obtain that

ϕ∗(g) = f in B1,

which concludes the proof of the main statement.
It remains to show the two extra statements.
(i) If f > 0 on ∂B1 , then we have supp(g− f ) ⊂ B1 . Hence, it follows from

(11.37) that
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supp(ϕ − id)⊂ B1,

which proves the first extra statement.

(ii) If f ≥ 0 and
f−1(0)∩B1 is countable,

we immediately obtain

α(x) �= α(rx) for every x ∈ B1 \{0} and r ∈ [0,1) ,

which implies that ϕ ∈ Hom(B1;B1) and establishes the second statement and ends
the proof. �


In the proof of Lemmas 11.10 and 11.11, we used the following elementary
result.

Lemma 11.12. Let λ ∈C1(B1) and ϕ ∈C1(B1;Rn) be such that ϕ(x)= λ (x)x. Then

det∇ϕ(x) = λ n(x)+λ n−1(x)
n

∑
i=1

xi
∂λ
∂xi

(x).

In particular, if λ (x) = α(x)/|x| for some α, then

det∇ϕ(x) =
αn−1(x)
|x|n

n

∑
i=1

xi
∂α
∂xi

(x).

Proof. Since ∇ϕ = λ Id+x⊗∇λ and x⊗∇λ is a rank-1 matrix, the first equality
holds true. The second one easily follows. �


11.5 Concentration of Mass

We start with an elementary lemma.

Lemma 11.13. Let c ∈C0([0,1];B1). Then for every ε > 0 such that

c([0,1])+Bε ⊂ B1 ,

there exists ϕε ∈ Diff∞(B1;B1) satisfying

ϕε(c(0)) = c(1) and supp(ϕε − id)⊂ c([0,1])+Bε .

Proof. Define ηε ∈C∞(Rn; [0,1]) such that

ηε =

{
1 in Bε/4

0 in
(
Bε/2

)c
.
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Set, for a ∈ R
n,

ηa,ε(x) = ηε(x−a).

We then have
δ‖∇ηa,ε‖C0 = δ‖∇ηε‖C0 < 1/(2n) (11.38)

for a suitable δ > 0. Let xi ∈ B1 , 1 ≤ i ≤ N, with x1 = c(0) and xN = c(1), be such
that

xi ∈ c([0,1]) for 1 ≤ i ≤ N and |xi+1 − xi|< δ for 1 ≤ i ≤ N −1

and define
ϕi(x) = x+ηxi,ε(x)(xi+1 − xi), 1 ≤ i ≤ N −1.

Since (11.38) holds and supp(ϕi − id)⊂ c([0,1])+Bε ⊂ B1 , we have

det∇ϕi > 0 and ϕi = id on ∂B1 .

Therefore, ϕi ∈ Diff∞(B1;B1) by Theorem 19.12. Moreover, ϕi(xi) = xi+1 . Then the
diffeomorphism

ϕε = ϕN−1 ◦ · · · ◦ϕ1

has all of the required properties. �

Before stating the main result of this section, we need some notations and ele-

mentary properties of pullbacks and connected components.

Notation 11.14. (i) Let Ω ⊂ R
n be a bounded open set. For f ∈ C0(Ω), we adopt

the following notations:

F+ = f−1((0,∞)) and F− = f−1((−∞,0)).

Moreover, if x ∈ F±, then

F±
x denotes the connected component of F± containing x.

(ii) Given a set A ⊂ R
n, we let

1A (x) =

{
1 if x ∈ A

0 otherwise.

In the following lemma we state an easy property of pullbacks.

Lemma 11.15. Let Ω ⊂ R
n be open and bounded and f ∈C0(Ω),

ϕ ∈ Diff1(Ω ;Ω) with det∇ϕ > 0,

x ∈ F+, y ∈ F−. If f̃ = ϕ∗( f ), then ϕ−1(F+) = F̃+ , ϕ−1(F−) = F̃− ,

ϕ−1(F+
x ) = F̃+

ϕ−1(x) and ϕ−1(F−
y ) = F̃−

ϕ−1(y) .
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The following lemma is a trivial result about the cardinality of the connected
components of super (sub)-level sets of continuous functions and we state it for the
sake of completeness.

Lemma 11.16. Let f ∈C0(B1). Let {F+
xi
}i∈I+ and {F−

y j
} j∈I− be the connected com-

ponents of F+, respectively of F−. Then I+ and I− are at most countable. Moreover,
if |I+|= ∞, respectively |I−|= ∞, then

lim
k→∞

meas
(

F+ \
k⋃

i=1

F+
xi

)
= 0, respectively lim

k→∞
meas

(
F− \

k⋃
j=1

F−
y j

)
= 0.

We now give the first main result of the present section.

Lemma 11.17 (Concentration of the positive mass). Let r ≥ 1 be an integer, f ∈
Cr(B1) and z ∈ F+. Let also Ai , 1 ≤ i ≤ M, be M closed sets pairwise disjoint of
positive measure such that

Ai ⊂ F+
z ∩B1 , 1 ≤ i ≤ M.

Then for every ε > 0 small enough, there exists ϕε, f ,{Ai} ∈ Diffr(B1;B1) (which will
be simply denoted ϕε ) satisfying the following properties:

supp(ϕε − id)⊂ F+
z ∩B1,

ϕ∗
ε ( f )≥

∫
F+

z

f

M meas(Ai)
− ε in Ai , 1 ≤ i ≤ M. (11.39)

Remark 11.18. Indeed, the above lemma allows one to concentrate the positive mass
of the connected component containing z into the union of the Ai . The conclusion
of the lemma immediately implies that

∫
F+

z

f =
∫

F+
z

ϕ∗
ε ( f )≥

M

∑
i=1

∫
Ai

ϕ∗
ε ( f )≥

∫
F+

z

f − ε
M

∑
i=1

meas(Ai).

Proof. We split the proof into three steps.
Step 1 (simplification). Using Theorem 10.11, it is sufficient to prove the exis-

tence of fε ∈Cr(B1), such that

fε > 0 in F+
z , supp( f − fε)⊂ F+

z ∩B1 and
∫

F+
z

fε =
∫

F+
z

f

satisfying also (11.39) with ϕ∗
ε ( f ) replaced by fε .

Step 2 (definition of fε and conclusion). Let K ⊂ F+
z ∩B1 be a closed set with

M⋃
i=1

Ai ⊂ intK ⊂ K ⊂ F+
z ∩B1



232 11 The Case Without Sign Hypothesis on f

and let, for every ε > 0 and 1 ≤ i ≤ M,

ηi,ε ∈C∞(B1; [0,1]) and ξε ∈C∞(B1; [0,1])

be such that

supp(ηi,ε)∩ supp(η j,ε) = /0 for i �= j, (11.40)

Ai ⊂ {x ∈ B1 : ηi,ε(x) = 1} ⊂ suppηi,ε ⊂ intK, (11.41)

K ⊂ {x ∈ B1 : ξε(x) = 1} ⊂ supp(ξε)⊂ F+
z ∩B1, (11.42)

lim
ε→0

ξε = 1F+
z ∩B1

and lim
ε→0

ηi,ε = 1Ai . (11.43)

Define fε , ε small, as

fε =

{
∑M

i=1 ηi,εC+
i,ε +(1−∑M

i=1 ηi,ε) · ε in K

ξε · ε +(1−ξε) f elsewhere,

where

C+
i,ε =

∫
F+

z

f

M meas(Ai)
, 1 ≤ i ≤ M−1, (11.44)

and C+
M,ε is the unique constant defined implicitly by the equation∫

F+
z

fε =
∫

F+
z

f .

We claim that fε has, up to rescaling ε, all of the required properties. Using (11.41)
and (11.42), we get that

fε ∈Cr(B1), supp( fε − f )⊂ F+
z ∩B1 ,

∫
F+

z

fε =
∫

F+
z

f .

We claim that

lim
ε→0

C+
i,ε =

∫
F+

z

f

M meas(Ai)
, 1 ≤ i ≤ M. (11.45)

By (11.44), it is obviously sufficient to prove the assertion for i = M. Using (11.43),
(11.44), and the dominated convergence theorem, we get

∫
F+

z

f = lim
ε→0

∫
F+

z

fε =
M−1

∑
i=1

∫
F+

z

1Ai

∫
F+

z
f

M meas(Ai)
+

∫
F+

z

1AM lim
ε→0

C+
M,ε

=
M−1

M

∫
F+

z

f +meas(AM) lim
ε→0

C+
M,ε

and thus the assertion holds. By the definition of fε , (11.40) and (11.45), we get
that, for ε small,
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fε > 0 in F+
z .

Finally, since, by (11.41),

fε =C+
i,ε in Ai, 1 ≤ i ≤ M,

(11.45) directly implies, up to rescaling ε, (11.39), which ends the proof. �

We now give a similar result for the negative mass.

Lemma 11.19 (Concentration of the negative mass). Let r ≥ 1 be an integer, f ∈
Cr(B1) and y ∈ F−. Let also Ai , 1 ≤ i ≤ M, be M closed sets pairwise disjoint of
positive measure such that

Ai ⊂ F−
y ∩B1 and meas(∂Ai) = 0, 1 ≤ i ≤ M. (11.46)

Then for every ε > 0 small enough, there exists ϕε, f ,{Ai} ∈ Diffr(B1;B1) (simply
denoted ϕε ) satisfying the following properties:

supp(ϕε − id)⊂ F−
y ∩B1,∫

F−
y

f

M meas(Ai)
− ε ≤ ϕ∗

ε ( f )< 0 in Ai , 1 ≤ i ≤ M, (11.47)∫ 1

0
sn−1(1F−

y \(∪M
i=1Ai)ϕ∗

ε ( f ))
(

s
x
|x|

)
ds ≥−ε, x �= 0. (11.48)

Remark 11.20. Integrating the last inequality over the unit sphere, we indeed obtain
that the negative mass of the connected component containing y is concentrated into
the union of the Ai .

Proof. We split the proof into three steps.
Step 1 (simplification). Using Theorem 10.11, it is sufficient to prove the exis-

tence of fε ∈Cr(B1), such that

fε < 0 in F−
y , supp( f − fε)⊂ F−

y ∩B1 and
∫

F−
y

fε =
∫

F−
y

f

satisfying also (11.47) and (11.48) with ϕ∗
ε ( f ) replaced by fε .

Step 2 (preliminaries). It is easily seen that the family of closed sets Kε , ε small,
defined by

Kε = {x ∈ F−
y ∩B1−ε : f (x)≤−ε}

has the following properties:

Kε ⊂ Kε ′ if ε ′ < ε and
⋃
ε>0

Kε = F−
y ∩B1, (11.49)

f |(F−
y ∩B1−ε )\Kε

>−ε. (11.50)
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Let ξε ∈C∞(B1; [0,1]) be such that

ξε = 1 in Kε and suppξε ⊂ F−
y ∩B1 . (11.51)

Using (11.49) and (11.51), we immediately deduce that

lim
ε→0

ξε = 1F−
y ∩B1

and
M⋃

i=1

Ai ⊂ int(Kε) for ε small. (11.52)

Finally, for every 1 ≤ i ≤ M and ε small enough, let ηi,ε ∈ C∞(B1; [0,1]) be such
that

supp(ηi,ε)⊂ int(Ai) and lim
ε→0

ηi,ε = 1int(Ai), 1 ≤ i ≤ M. (11.53)

Step 3 (definition of fε and conclusion). Define fε , ε small, as

fε =

{
∑M

i=1 ηi,εC−
i,ε +(1−∑M

i=1 ηi,ε) · (−ε) in
⋃M

i=1 Ai

ξε · (−ε)+(1−ξε) f elsewhere,

where

C−
i,ε =

∫
F−

y

f

M meas(Ai)
, 1 ≤ i ≤ M−1, (11.54)

and C−
M,ε is the unique constant defined implicitly by the equation∫

F−
y

fε =
∫

F−
y

f .

We claim that, up to rescaling ε, fε has all the required properties. Using (11.51)–
(11.53), we obtain that

fε ∈Cr(B1), supp( f − fε)⊂ F−
y ∩B1 ,

∫
F−

y

fε =
∫

F−
y

f .

We assert that

lim
ε→0

C−
i,ε =

∫
F−

y

f

M meas(Ai)
, 1 ≤ i ≤ M. (11.55)

By (11.54), it is obviously sufficient to prove (11.55) for i = M. Using (11.52)
and (11.53) and noticing (using (11.46))

meas(Ai) = meas(int(Ai)),
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we get, by the dominated convergence theorem,

∫
F−

y

f = lim
ε→0

∫
F−

y

fε =
M−1

∑
i=1

∫
F−

y

1int(Ai)

∫
F−

y
f

M meas(Ai)
+

∫
F−

y

1int(AM) lim
ε→0

C−
M,ε

=
M−1

M

∫
F−

y

f +meas(AM) lim
ε→0

C−
M,ε

and, thus, the assertion is verified. Equation (11.55) immediately implies fε < 0 in
F−

y for ε small and also, rescaling ε if necessary, (11.47).

It remains to prove (11.48). First, we claim that

fε |(F−
y ∩B1−ε )\(∪M

i=1Ai)≥−ε, (11.56)

fε ≥−D (11.57)

for some D > 0 independent of ε. In fact, (11.56) is obtained combining the fact that
(by definition of fε )

fε =−ε in Kε \
(∪M

i=1Ai
)

and, by (11.50) and the definition of fε ,

fε |(F−
y ∩B1−ε )\Kε

≥−ε.

Equation (11.57) is an immediate consequence of (11.55) and the definition of fε .
Using (11.56) and (11.57) we get, for ε small and every x �= 0,∫ 1

0
sn−1(1F−

y \(∪M
i=1Ai) fε)

(
s

x
|x|

)
ds ≥

∫ 1

0
(1F−

y \(∪M
i=1Ai) fε)

(
s

x
|x|

)
ds

=
∫ 1−ε

0
(1F−

y \(∪M
i=1Ai) fε)

(
s

x
|x|

)
ds+

∫ 1

1−ε
(1F−

y \(∪M
i=1Ai) fε)

(
s

x
|x|

)
ds

≥
∫ 1−ε

0
−εds+

∫ 1

1−ε
(−D)ds ≥−ε − εD =−(D+1)ε.

Replacing ε by ε/(D+1) , we have shown (11.48) while still conserving the in-
equality (11.47). This ends the proof. �


11.6 Positive Radial Integration

Lemma 11.21 is the central part of the proof of Theorem 11.1. We show how to
modify the mass distribution f ∈C0(B1) satisfying

∫
B1

f > 0, in order to have strictly
positive integrals on every radius starting from 0 and almost positive integrals on
every radius starting from any point of the boundary (see Lemma 11.21). Moreover,
if f is strictly positive on the boundary or if f ≥ 0 in B1, we will be able to modify
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the mass of f in order to have strictly positive integrals on every radius starting
either from 0 or from any point of the boundary (see Corollary 11.23).

Lemma 11.21 (Positive radial integration). Let f ∈C0(B1) be such that∫
B1

f > 0. (11.58)

Then for every σ > 0, there exists ϕ = ϕσ ∈ Diff∞(B1;B1) such that

supp(ϕ − id)⊂ B1 , ϕ∗( f )(0)> 0,∫ r

0
sn−1ϕ∗( f )

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1], (11.59)

∫ 1

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds >−σ for every x �= 0 and r ∈ [0,1]. (11.60)

Remark 11.22. (i) If f ≥ 0, the proof is straightforward (see Corollary 11.23).
(ii) If f1 satisfies ϕ∗( f1)(0) > 0, (11.59) and (11.60), for a certain ϕ as in the

lemma, then every f ≥ f1 also satisfies ϕ∗( f )(0)> 0, (11.59) and (11.60) with the
same ϕ. Indeed, we clearly have

ϕ∗( f1)(x) = f1(ϕ(x))det∇ϕ(x)︸ ︷︷ ︸
>0

≤ f (ϕ(x))det∇ϕ(x) = ϕ∗( f )(x).

(iii) Integrating (11.59) over the sphere with r = 1, we get
∫

B1
ϕ∗( f ) > 0 and,

therefore, (11.58) is necessary using the change of variables formula.
(iv) In general, (11.60) cannot be assumed to be positive or 0 for every x and r.

This is, for example, always the case when f (x) < 0 for some x ∈ ∂B1. Indeed,
noting that

ϕ∗( f )(x) = f (x)det∇ϕ(x)< 0,

we have that (11.60) will be strictly negative for x = x and r sufficiently close to 1.
(v) We could have replaced, without any changes, the unit ball by any ball cen-

tered at 0.

As a corollary, we have the following result.

Corollary 11.23. Let f ∈C0(B1) be such that∫
B1

f > 0 (11.61)

and

either f > 0 on ∂B1 or f ≥ 0 in B1 .
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Then there exists ϕ ∈ Diff∞(B1;B1) such that

supp(ϕ − id)⊂ B1 , ϕ∗( f )(0)> 0,∫ r

0
sn−1ϕ∗( f )

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1], (11.62)∫ 1

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds ≥ 0 for every x �= 0 and r ∈ [0,1]. (11.63)

Proof (Corollary 11.23). We split the proof into two parts.

Part 1. We prove the corollary when f ≥ 0 in B1 . By (11.61) there exists a ∈ B1
with f (a)> 0. Using Lemma 11.13, there exists ϕ ∈ Diff∞(B1;B1) such that

supp(ϕ − id)⊂ B1 and ϕ(0) = a.

Since ϕ∗( f )(0) = f (ϕ(0))det∇ϕ(0)> 0 and ϕ∗( f )≥ 0 in B1 , it is immediate that
ϕ has all of the required properties.

Part 2. We prove the corollary when f > 0 on ∂B1 .

Part 2.1. By (11.61), there exist 0 < η < 1 and ε > 0 such that∫
Bη

f > 0 and f > ε on B1 \Bη .

Using Lemma 11.21 with Bη instead of B1 , there exists ϕ ∈Diff∞(Bη ;Bη) verifying

supp(ϕ − id)⊂ Bη , ϕ∗( f )(0)> 0,∫ r

0
sn−1ϕ∗( f )

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,η ], (11.64)∫ η

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds >−ε(1−ηn)

n
for every x �= 0 and r ∈ [0,η ]. (11.65)

Part 2.2. Let us show that ϕ (extended by the identity to B1) has all of the required
properties. Trivially, ϕ ∈ Diff∞(B1;B1),

ϕ∗( f )(0)> 0 and supp(ϕ − id)⊂ Bη ⊂ B1 .

Since ϕ∗( f ) = f > 0 in B1 \Bη , (11.64) directly implies (11.62). Finally, we show
(11.63). Using again that ϕ∗( f ) = f > 0 in B1 \Bη , it is obvious that (11.63) is
verified for every r ∈ [η ,1]. Suppose that r ∈ [0,η). Combining the fact that ϕ∗( f )=
f > ε in B1 \Bη and (11.65), we obtain for every x �= 0,∫ 1

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds =

∫ 1

η
sn−1ϕ∗( f )

(
s

x
|x|

)
ds+

∫ η

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds

>
∫ 1

η
sn−1ε ds− ε(1−ηn)

n
= 0.

The proof is therefore complete. �
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Finally, we give the proof of Lemma 11.21.

Proof. Since the proof is rather long, we divide it into five steps. The three following
facts will be crucial.

(i) For fixed a,b ∈ B1 , there exists, from Lemma 11.13, ϕ ∈ Diff∞(B1;B1) such
that ϕ(a) = b. This will be used in Step 1.3 and Step 3.1.

(ii) From Lemmas 11.17 and 11.19, we concentrate the mass contained in con-
nected components of F+ and F− in sectors of cones. This will be achieved in
Step 4.

(iii) From Remark 11.22(ii), it is sufficient to prove the result for a function
f1 ≤ f . This will be used in Steps 1.1, 1.2 and 1.4.

Step 1. We show that we can, without loss of generality, assume that

f ∈C∞(B1), F− connected, f (0)> 0 and
∫

B1\F+
0

f > 0, (11.66)

recalling that F+
0 is the connected component of F+ = f−1 ((0,∞)) containing 0.

Step 1.1. We start by showing that we can assume f ∈C∞(B1). First, using The-
orem 16.11, we extend f so that f ∈C0(Rn). Then we choose δ > 0 small enough
such that ∫

B1

f > δ meas(B1).

By continuity of f , there exists fδ ∈C∞(Rn) such that

fδ (x)< f (x)< fδ (x)+δ for every x ∈ B1 .

Note that ∫
B1

fδ >
∫

B1

f −δ meas(B1)> 0.

Using Remark 11.22(ii), we have the assertion. From now on, we write f instead of
fδ and we can therefore assume that f ∈C∞(B1).

Step 1.2. We show that we can, without loss of generality, assume that F− is
connected.

Step 1.2.1 (preliminaries). For every ε > 0 there exist M ∈ N, a1, . . . ,aM ∈ B1
and δ1, . . . ,δM > 0 (depending all on ε) such that

M⋃
i=1

Bδi(ai)⊂ F+∩B1

Bδi(ai)∩Bδ j(a j) = /0 for every i �= j,

meas
(
F+ \ (∪M

i=1Bδi(ai)
))

< ε.
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Using the last equation and since∫
B1

f =
∫

F+
f +

∫
F−

f > 0,

we can choose ε > 0 (and, therefore, also M, ai and δi) small enough so that∫
∪M

i=1Bδi
(ai)

f +
∫

F−
f > 0.

We then choose δ > 0 small enough such that

M⋃
i=1

Bδi+4δ (ai)⊂ F+∩B1,

Bδi+4δ (ai)∩Bδ j+4δ (a j) = /0 for every i �= j,∫
∪M

i=1Bδi
(ai)

f +
∫

F−
f > δ meas(B1). (11.67)

Let ξ ∈C∞(B1; [0,1]) be such that

ξ = 1 in
M⋃

i=1

(
Bδi+3δ (ai)\Bδi+δ (ai)

)
,

suppξ ⊂
M⋃

i=1

(
Bδi+4δ (ai)\Bδi(ai)

)
,

{x ∈ B1 \
(∪M

i=1Bδi+2δ (ai)
)

: ξ (x)< 1} is connected. (11.68)

Using Theorem 16.11, we extend f so that f ∈C∞(Rn). Define f̃ : Rn → R by

f̃ (x) = min{ f (x),0}.

By continuity of f̃ , there exists hδ ∈C∞(Rn) such that

hδ (x)< f̃ (x)< hδ (x)+δ for every x ∈ B1 . (11.69)

In particular, note that

hδ < 0 in B1 .

Step 1.2.2 (conclusion). Let fδ : B1 → R be defined by

fδ =

{
(1−ξ ) f in

⋃M
i=1Bδi+2δ (ai)

(1−ξ )hδ in B1 \⋃M
i=1Bδi+2δ (ai).

(11.70)
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It is easily seen that fδ is of class C∞ and satisfies the following properties:

fδ (x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= hδ (x)< min{ f (x),0} ≤ f (x) if x ∈ B1 \⋃M
i=1Bδi+4δ (ai)

≤ 0 < f (x) if x ∈⋃M
i=1(Bδi+4δ (ai)\Bδi+3δ (ai))

= 0 < f (x) if x ∈⋃M
i=1(Bδi+3δ (ai)\Bδi+δ (ai))

≤ f (x) if x ∈⋃M
i=1(Bδi+δ (ai)\Bδi(ai))

= f (x) if x ∈⋃M
i=1Bδi(ai).

In particular, fδ ≤ f . We, moreover, have, since hδ < 0 and

fδ ≥ 0 in
M⋃

i=1

Bδi+2δ (ai),

that

F−
δ = {x ∈ B1 : fδ (x)< 0}= {x ∈ B1 \∪M

i=1Bδi+2δ (ai) : fδ (x)< 0}
= {x ∈ B1 \∪M

i=1Bδi+2δ (ai) : (1−ξ (x))hδ (x)< 0}
= {x ∈ B1 \∪M

i=1Bδi+2δ (ai) : ξ (x)< 1},

which is a connected set by (11.68). We thus have that

F−
δ ⊂ B1 \⋃M

i=1Bδi+2δ (ai) and F−
δ is connected.

Observe next that∫
F−

δ

fδ =
∫

F−
δ

(1−ξ )hδ ≥
∫

F−
δ

hδ >
∫

F−
δ

(
f̃ −δ

)
≥

∫
F−

δ

f̃ −δ meas(B1)

=
∫

F−
δ ∩F−

f̃ +
∫

F−
δ \F−

f̃ −δ meas(B1) =
∫

F−
δ ∩F−

f̃ −δ meas(B1)

=
∫

F−
δ ∩F−

f −δ meas(B1)≥
∫

F−
f −δ meas(B1).

This leads to∫
B1

fδ =
∫

F+
δ

fδ +
∫

F−
δ

fδ ≥
∫
∪M

i=1Bδi
(ai)

fδ +
∫

F−
δ

fδ =
∫
∪M

i=1Bδi
(ai)

f +
∫

F−
δ

fδ

>
∫
∪M

i=1Bδi
(ai)

f +
∫

F−
f −δ meas(B1)> 0,

where we have used (11.67) in the last inequality. From now on, we write f in place
of fδ , since fδ ≤ f and Remark 11.22(ii) holds. We may therefore assume, in the
remaining part of the proof, that f ∈C∞ (

B1
)

and F− is connected.
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Step 1.3. Let us prove that we can assume that f (0) > 0. In fact, suppose that
f (0) ≤ 0. We prove that there exists a diffeomorphism ϕ1 such that ϕ∗

1 ( f )(0) > 0.
Indeed, since

∫
B1

f > 0, there exists a ∈ B1 such that f (a) > 0. By Lemma 11.13,
there exists ϕ1 ∈ Diff∞(B1;B1) such that

supp(ϕ1 − id)⊂ B1 and ϕ1(0) = a.

Since ϕ∗
1 ( f )(0) = f (a)det∇ϕ1(0) > 0, we have the result. Note that, using the

change of variables formula, ∫
B1

ϕ∗
1 ( f ) =

∫
B1

f > 0.

Note also that ϕ∗
1 ( f ) ∈C∞ (

B1
)

and, using Lemma 11.15,

(ϕ∗
1 ( f ))−1 ((−∞,0)) = ϕ−1

1 (F−) is connected.

From now on, we write f in place of ϕ∗
1 ( f ) and thus we can assume, without loss

of generality, that f ∈C∞ (
B1

)
, F− is connected and f (0)> 0.

Step 1.4. We finally show that we can assume that∫
B1\F+

0

f > 0.

In fact, since f (0)> 0 and
∫

B1
f > 0, if δ1 > 0 is small enough, we have that B4δ1 ⊂

F+
0 and ∫

B1\B4δ1

f > 0. (11.71)

Let η ∈C∞([0,1]; [0,1]) be such that

η (r) =

{
1 if r ≤ δ1 or 4δ1 ≤ r ≤ 1

0 if 2δ1 ≤ r ≤ 3δ1 .

Let h ∈C∞(B1) defined by h(x) = η(|x|) f (x). We then have

h(0)> 0, H− = F− connected and Bδ1 ⊂ H+
0 ⊂ B2δ1 .

Using (11.71), we get ∫
B1\H+

0

h ≥
∫

B1\B4δ1

h =
∫

B1\B4δ1

f > 0.

Since h ≤ f , we may, according to Remark 11.22(ii), proceed replacing f with h =
η f . The proof of Step 1 is therefore complete.

Step 2. In this step we start by selecting N connected components of F+ \F+
0 .

Then we select an appropriate amount of points in each of them.
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Step 2.1 (selection of N connected components of F+ \ F+
0 ). Let F+

xi
, i ∈ I+,

xi ∈ B1 \F+
0 , be the pairwise disjoint connected components of F+ \F+

0 . Notice
that I+ is not empty by Step 1.4 and is at most countable; see Lemma 11.16. We
claim that there exists N ∈ N such that∫

∪N
i=1F+

xi

f +
∫

F−
f > 0. (11.72)

In fact, suppose that I+ is infinite (otherwise the assertion is trivial because of the
fourth statement in (11.66)). Since, by the fourth statement in (11.66),∫

F+\F+
0

f +
∫

F−
f > 0

and since, using Lemma 11.16,

lim
N→∞

∫
∪N

i=1F+
xi

f =
∫

F+\F+
0

f ,

we have (11.72) for N large enough.

Step 2.2 (selection of Mi points in F+
xi
, 1 ≤ i ≤ N and of M1 + · · ·+ MN − 1

points in F−). We start by defining the integers Mi. We claim that there exist M1, . . . ,
MN ∈ N such that∫

F+
xi

f

Mi
+

∫
F−

f

(∑N
j=1 Mj)−1

> 0 for every 1 ≤ i ≤ N. (11.73)

In order to simplify the notations, let

m+
i =

∫
F+

xi

f , 1 ≤ i ≤ N and m− =
∫

F−
f .

We claim that for an integer ν large enough,

M1 = ν and Mi =

[
m+

i

m+
1

ν
]
, 2 ≤ i ≤ N,

where [x] stands for the integer part of x, satisfy (11.73). Indeed, let 1 ≤ i ≤ N; then
since

m+
i

m+
1

ν −1 < Mi <
m+

i

m+
1

ν +1, 1 ≤ i ≤ N,

we deduce

m+
i

Mi
+

m−

(∑N
j=1 Mj)−1

≥ m+
i

m+
i

m+
1

ν +1
+

m−

∑N
j=1 m+

j

m+
1

ν −N −1
.
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Therefore, since, by (11.72),

N

∑
j=1

m+
j +m− > 0,

we get

lim
ν→∞

[
ν

(
m+

i
Mi

+
m−

(∑N
j=1 Mj)−1

)]
≥ m+

1

(
1+

m−

∑N
j=1 m+

j

)
> 0.

This proves the assertion.

Finally, choose M1 distinct points

z1, . . . ,zM1 ∈ F+
x1
.

Then choose M2 distinct points

zM1+1, . . . ,zM1+M2 ∈ F+
x2

and so on, and finally choose MN distinct points

zM1+···+MN−1+1, . . . ,zM1+···+MN ∈ F+
xN
.

Similarly, choose M1 + · · ·+MN −1 distinct points

y1, . . . ,yM1+···+MN−1 ∈ F−.

We define
M = M1 + · · ·+MN .

In particular, we have

f (zk)> 0, 1 ≤ k ≤ M and f (y j)< 0, 1 ≤ j ≤ M−1.

Step 3. In this step we move the 2M−1 points selected in the above step so that
they are on the same radial axis and well ordered; moreover, we define some cone
sectors.

Step 3.1 (displacement of the points zk and y j). Choose (2M−1) points, z̃1, . . . , z̃M
and ỹ1, . . . , ỹM−1 such that

0 < |z̃1|< |ỹ1|< |z̃2|< |ỹ2|< · · ·< |z̃M−1|< |ỹM−1|< |z̃M|< 1,

z̃k

|z̃k| =
ỹ j

|ỹ j| for every 1 ≤ k ≤ M, 1 ≤ j ≤ M−1.

Then choose ε1 small enough and

cl ∈C0([0,1];B1), 1 ≤ l ≤ 2M−1,
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such that the sets

cl([0,1])+Bε1 are pairwise disjoint and contained in B1 \{0},{
cl(0) = z̃l cl(1) = zl if 1 ≤ l ≤ M,

cl(0) = ỹl−M cl(1) = yl−M if M+1 ≤ l ≤ 2M−1.

Applying, for 1 ≤ l ≤ 2M − 1, Lemma 11.13 with ε = ε1 and c = cl , we get ψl ∈
Diff∞(B1;B1) with

ψl(cl(0)) = cl(1) and supp(ψl − id)⊂ cl([0,1])+Bε1 ⊂ B1 \{0}.

Thus, defining ϕ2 =ψ1◦· · ·◦ψ2M−1, we get that supp(ϕ2− id)⊂B1\{0} (and thus,
in particular ϕ2(0) = 0) and

ϕ2(z̃k) = zk , 1 ≤ k ≤ M and ϕ2(ỹ j) = y j , 1 ≤ j ≤ M−1.

To complete, we also define

x̃i = ϕ−1
2 (xi) 1 ≤ i ≤ N.

Step 3.2 (definition of cone sectors). For 0 < δ < 1, let Kδ be the closed cone
having vertex 0 and axis R+ỹ1 and such that

meas(Kδ ∩B1) = δ measB1 .

This immediately implies that

meas(Kδ ∩Br) = δ measBr for every r > 0. (11.74)

Define
f̃ = ϕ∗

2 ( f ).

By the properties of f and ϕ2 we get that

f̃ (0)> 0, f̃ (z̃k)> 0, 1 ≤ k ≤ M and f̃ (ỹ j)< 0, 1 ≤ j ≤ M−1.

Therefore, there exists δ > 0 small enough such that⎧⎪⎪⎨⎪⎪⎩
f̃ > δ in Bδ ,

Kδ ∩
(
B|z̃k|+δ \B|z̃k|−δ

)⊂ F̃+∩B1, 1 ≤ k ≤ M,

Kδ ∩
(

B|ỹ j |+δ \B|ỹ j |−δ

)
⊂ F̃− ∩B1, 1 ≤ j ≤ M−1;

in particular,

δ < |z̃1|−δ < |z̃1|+δ < |ỹ1|−δ < |ỹ1|+δ < |z̃2|−δ < |z̃2|+δ
< · · ·< |ỹM−1|−δ < |ỹM−1|+δ < |z̃M|−δ < |z̃M|+δ < 1.
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Using Lemma 11.15 and (11.72), we get that f̃ ∈ C∞ (
B1

)
is such that F̃− is con-

nected and ∫
∪N

i=1F̃+
x̃i

f̃ +
∫

F̃−
f̃ > 0.

From now on, we write f , xi , zk and y j instead of f̃ = ϕ∗
2 ( f ), x̃i , z̃k and ỹ j , respec-

tively. Define ⎧⎨⎩ S+k = Kδ ∩
(
B|zk|+δ \B|zk|−δ

)
, 1 ≤ k ≤ M,

S−j = Kδ ∩
(

B|y j |+δ \B|y j |−δ

)
, 1 ≤ j ≤ M−1,

in particular,

δ < |z1|−δ < |z1|+δ < |y1|−δ < |y1|+δ < |z2|−δ < |z2|+δ
< · · ·< |yM−1|−δ < |yM−1|+δ < |zM|−δ < |zM|+δ < 1.

Choosing δ even smaller, we can assume, without loss of generality, that

δ n+1

n
< σ , (11.75)

where σ is the σ in the statement of the lemma. Note that f has the following
properties:

S+k ⊂ F+
xt(k)

,

where t(k) is defined by

t(k) =

⎧⎪⎪⎨⎪⎪⎩
1 if 1 ≤ k ≤ M1

...
...

N if M1 + · · ·+MN−1 +1 ≤ k ≤ M,

f > δ in Bδ ⊂ F+
0 , F− is connected and∫

∪N
i=1F+

xi

f +
∫

F−
f > 0. (11.76)

Step 4. In this step we concentrate the positive and the negative mass in the cone
sectors defined in the previous step.

Step 4.1 (concentration of the positive mass in S+k , 1 ≤ k ≤ M). Using (11.73),
we can find ε1 small enough such that∫

F+
xi

f

Mi
−2ε1 measB1 +

∫
F−

f

M−1
> 0, 1 ≤ i ≤ N. (11.77)
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Applying, for 1 ≤ i ≤ N, Lemma 11.17 to f , z = xi , ε = ε1 and

A1 = S+
1+∑i−1

j=1Mj
, . . . ,AMi = S+

∑i
j=1Mj

,

we get ψi ∈ Diff∞(B1;B1) with supp(ψi − id)⊂ F+
xi
∩B1 and

(ψi)
∗( f )≥

∫
F+

xi

f

Mi measS+k
− ε1 in S+k , 1+

i−1

∑
j=1

Mj ≤ k ≤
i

∑
j=1

Mj .

Letting ϕ3 = ψ1 ◦ · · · ◦ψN ∈ Diff∞(B1;B1), we obtain that

supp(ϕ3 − id)⊂
N⋃

j=1

(F+
x j
∩B1)⊂ B1 \F+

0 ,

ϕ∗
3 ( f ) = f > δ in Bδ ,

and, for every 1 ≤ i ≤ N,

ϕ∗
3 ( f )≥

∫
F+

xi

f

Mi measS+k
− ε1 in S+k , 1+

i−1

∑
j=1

Mj ≤ k ≤
i

∑
j=1

Mj .

We define, for 1 ≤ k ≤ M,

C+
k =

∫
F+

xi

f

Mi measS+k
− ε1 if 1+

i−1

∑
j=1

Mj ≤ k ≤
i

∑
j=1

Mj

and we replace ϕ∗
3 ( f ) by f . We therefore have, using (11.77) and the fact that

meas(S+k )≤ meas(B1),⎧⎪⎪⎨⎪⎪⎩
f ≥C+

k in S+k , 1 ≤ k ≤ M, f > δ in Bδ ,

C+
k meas(S+k )+

∫
F−

f

M−1
− ε1 meas(B1)> 0, 1 ≤ k ≤ M.

(11.78)

We also have
M⋃

k=1

S+k ⊂ F+ \F+
0 .

Step 4.2 (concentration of the negative mass in S−j , 1 ≤ j ≤ M − 1). Using
Lemma 11.19, recalling that F− is connected, with A j = S−j , 1 ≤ j ≤ M−1, and

ε = min{ε1,δ n+1/n},
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where δ has been defined in Step 3.2, we get ϕ4 ∈ Diff∞(B1;B1) with supp(ϕ4 −
id)⊂ F− ∩B1 and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
F−

f

(M−1)measS−j
− ε1 ≤ ϕ∗

4 ( f )< 0 in S−j , 1 ≤ j ≤ M−1,

∫ 1

0
sn−1(1

F−\
(
∪M−1

j=1 S−j
)ϕ∗

4 ( f ))
(

s
x
|x|

)
ds ≥−δ n+1

n
, x �= 0.

Defining

C−
j =

∫
F−

f

(M−1)measS−j
− ε1 , 1 ≤ j ≤ M−1,

we thus get, using the second inequality of (11.78),⎧⎪⎪⎪⎨⎪⎪⎪⎩
C−

j ≤ ϕ∗
4 ( f )< 0 in S−j , 1 ≤ j ≤ M−1,

C+
k measS+k +C−

j measS−j > 0, 1 ≤ j ≤ M−1, 1 ≤ k ≤ M,∫ 1

0
sn−1(1

F−\
(
∪M−1

j=1 S−j
)ϕ∗

4 ( f ))
(

s
x
|x|

)
ds ≥−δ n+1

n
, x �= 0.

Note that ϕ∗
4 ( f ) = f in F+. Finally, as usual, we replace ϕ∗

4 ( f ) by f . We therefore
obtain, using (11.78) and recalling (by (11.75)) that δ n+1

n < σ ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f > δ in Bδ ⊂ F+
0 ,

f ≥C+
k in S+k ⊂ F+ \F+

0 , 1 ≤ k ≤ M,

f ≥C−
j in S−j ⊂ F−, 1 ≤ j ≤ M−1,

C+
k measS+k +C−

j measS−j > 0, 1 ≤ k ≤ M, 1 ≤ j ≤ M−1,∫ 1

0
sn−1(1

F−\
(
∪M−1

j=1 S−j
) f )

(
s

x
|x|

)
ds ≥−δ n+1

n
>−σ , x �= 0.

(11.79)
Step 4.3 (summary of the properties of f ). We claim that f has the following

properties:
f > δ in Bδ ⊂ F+

0 , (11.80)

M⋃
k=1

S+k ⊂ F+ \F+
0 ,

M−1⋃
j=1

S−j ⊂ F−, (11.81)

∫ 1

0
sn−1(1

F−\
(
∪M−1

j=1 S−j
) f )

(
s

x
|x|

)
ds ≥−δ n+1

n
>−σ if x �= 0 (11.82)

and for every x �= 0 and 1 ≤ k ≤ M, 1 ≤ j ≤ M−1,∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−j

f )
(

s
x
|x|

)
ds > 0. (11.83)
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In fact, (11.80)–(11.82) are just the first, second and fifth inequalities of (11.79),
respectively. Let us show (11.83). Fix 1 ≤ k ≤ M and 1 ≤ j ≤ M−1. Recall that

S+k = Kδ ∩ (B|zk|+δ \B|zk|−δ ) and S−j = Kδ ∩ (B|y j |+δ \B|y j |−δ ),

where Kδ is a cone with vertex 0 and aperture δ . Thus, according to (11.74),

measS+k = δ [(|zk|+δ )n − (|zk|−δ )n]measB1,

measS−j = δ [(|y j|+δ )n − (|y j|−δ )n]measB1 .

Then, using (11.79), we get∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−j

f )
(

s
x
|x|

)
ds

≥
∫ |zk|+δ

|zk|−δ
sn−1C+

k ds+
∫ |y j |+δ

|y j |−δ
sn−1C−

j ds

=C+
k
(|zk|+δ )n − (|zk|−δ )n

n
+C−

j
(|y j|+δ )n − (|y j|−δ )n

n

=C+
k

measS+k
nδ measB1

+C−
j

measS−j
nδ measB1

> 0,

which is the claim.

Step 5 (conclusion). Let

ϕ = ϕ1 ◦ϕ2 ◦ϕ3 ◦ϕ4 .

Note that, by construction, supp(ϕ − id) ⊂ B1 . Because of all of the successive
replacements of f in Steps 1–4 by a new f , the lemma has to be proved for ϕ = id .

Step 5.1. First, note that f (0)> 0 by (11.80).

Step 5.2. We now show (11.59). We divide the discussion into three steps.

Step 5.2.1. If r ≤ δ , (11.80) directly implies the assertion.

Step 5.2.2. We now suppose that either x �∈ Kδ and r ∈ (δ ,1] or x ∈ Kδ and
r ∈ (δ , |y1|−δ ) and thus, in particular,[

0,r
x
|x|

]⋂(⋃M−1

j=1
S−j

)
= /0.

Observe that (11.80) and (11.82) then imply∫ r

0
sn−1 f

(
s

x
|x|

)
ds ≥

∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F− f )

(
s

x
|x|

)
ds

=
∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds
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>
∫ δ

0
sn−1δ ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

≥
∫ δ

0
sn−1δ ds+

∫ 1

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds ≥ 0

and the assertion is proved.

Step 5.2.3. It only remains to show the assertion when x∈Kδ and r ∈ [ |y1|−δ ,1] .
We get ∫ r

0
sn−1 f

(
s

x
|x|

)
ds

=
∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds

+
∫ r

0
sn−1(1F− f )

(
s

x
|x|

)
ds

and thus∫ r

0
sn−1 f

(
s

x
|x|

)
ds

=
∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

+
∫ r

0
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds.

Since r ≥ |y1| − δ ≥ |z1|+ δ ≥ δ , (11.80) holds, and f < 0 in F− \∪M−1
j=1 S−j , we

obtain ∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

≥
∫ δ

0
sn−1δ ds+

∫ 1

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds.

and hence, according to (11.82),∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds ≥ 0.

We therefore find, using (11.81), that∫ r

0
sn−1 f

(
s

x
|x|

)
ds ≥

∫ r

0
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

≥
M−1

∑
k=1

{∫ r

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}
.



250 11 The Case Without Sign Hypothesis on f

Define

A =
M−1

∑
k=1

{∫ r

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}
.

In order to conclude the proof of Step 5.2.3 and thus of Step 5.2, it is sufficient to
show that A > 0. We consider several cases.

Case 1: r ∈ [ |y1|−δ , |z2|+δ ). We then have

A =
∫ r

0
sn−1(1S+2

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S+1

f )
(

s
x
|x|

)
ds

+
∫ r

0
sn−1(1S−1

f )
(

s
x
|x|

)
ds

and thus, recalling that r ≥ |y1|−δ > |z1|+δ ,

A ≥
∫ r

0
sn−1(1S+1

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S−1

f )
(

s
x
|x|

)
ds

≥
∫ 1

0
sn−1(1S+1

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−1

f )
(

s
x
|x|

)
ds,

which is positive, according to (11.83).

Case 2: r ∈ [ |zi|+δ , |zi+1|+δ ), 2 ≤ i ≤ M−1. We therefore find

A =
i+1

∑
k=1

∫ r

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

i

∑
k=1

∫ r

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds

≥
i

∑
k=1

{∫ r

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}

≥
i

∑
k=1

{∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}

which is positive, in view of (11.83).

Case 3: r ∈ [ |zM|+δ ,1]. We now have

A =
M−1

∑
k=1

{∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}
,

which is positive, according to (11.83).

Step 5.3. We finally prove (11.60) and we divide the proof into two steps.

Step 5.3.1. First, suppose that either x �∈ Kδ or

x ∈ Kδ and r ∈ ( |yM−1|+δ ,1]
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and thus, in particular, [
r

x
|x| ,

x
|x|

]⋂(⋃M−1

j=1
S−j

)
= /0.

Inequality (11.82) then implies∫ 1

r
sn−1 f

(
s

x
|x|

)
ds ≥

∫ 1

r
sn−1(1F− f )

(
s

x
|x|

)
ds

=
∫ 1

r
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

≥
∫ 1

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds >−σ ,

which proves the assertion.

Step 5.3.2. It only remains to show the assertion when x ∈Kδ and r ∈ [0, |yM−1|+
δ ]. We get, using the fact that f < 0 in F−, (11.81) and f > 0 in F+

0 , that∫ 1

r
sn−1 f

(
s

x
|x|

)
ds =

∫ 1

r
sn−1(1F− f )

(
s

x
|x|

)
ds+

∫ 1

r
sn−1(1F+ f )

(
s

x
|x|

)
ds

≥
∫ 1

r
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

+
∫ 1

r
sn−1(1∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

+
∫ 1

r
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds

and hence, appealing to (11.82) and since f > 0 in S+1 ,∫ 1

r
sn−1 f

(
s

x
|x|

)
ds >−σ +

∫ 1

r
sn−1(1∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

+
∫ 1

r
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds

≥−σ +
M

∑
k=2

∫ 1

r
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds

+
M

∑
k=2

∫ 1

r
sn−1(1S+k

f )
(

s
x
|x|

)
ds.

Define

B =
M

∑
k=2

{∫ 1

r
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

r
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds
}
.
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In order to obtain the claim, it remains to prove that B > 0. This is obtained exactly
as in Step 5.2.3.

Case 1: r ∈ [ |zM−1|−δ , |yM−1|+δ ]. We then have

B =
∫ 1

r
sn−1(1S+M

f )
(

s
x
|x|

)
ds+

∫ 1

r
sn−1(1S+M−1

f )
(

s
x
|x|

)
ds

+
∫ 1

r
sn−1(1S−M−1

f )
(

s
x
|x|

)
ds

and thus, recalling that r ≤ |yM−1|+δ < |zM|−δ ,

B ≥
∫ 1

r
sn−1(1S+M

f )
(

s
x
|x|

)
ds+

∫ 1

r
sn−1(1S−M−1

f )
(

s
x
|x|

)
ds

≥
∫ 1

0
sn−1(1S+M

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−M−1

f )
(

s
x
|x|

)
ds,

which leads to B > 0, in view of (11.83).
Case 2: r ∈ [ |zi−1|−δ , |zi|−δ ), 2 ≤ i ≤ M−1. We thus deduce

B =
M

∑
k=i−1

∫ 1

r
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

M

∑
k=i

∫ 1

r
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds

≥
M

∑
k=i

{∫ 1

r
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

r
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds
}

≥
M

∑
k=i

{∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds
}

and, using (11.83), we get that B > 0.
Case 3: r ∈ [0, |z1|−δ ). We therefore find

B =
M

∑
k=2

{∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds
}

;

using once more (11.83), we get that B > 0. This concludes the proof of the lemma.
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