
Chapter 1

Introduction

1.1 Statement of the Problem

The aim of this book is the study of the pullback equation

ϕ∗ (g) = f . (1.1)

More precisely, we want to find a map ϕ : Rn →R
n; preferably we want this map to

be a diffeomorphism that satisfies the above equation, where f and g are differential
k-forms, 0 ≤ k ≤ n. Most of the time we will require these two forms to be closed.
Before going further, let us examine the exact meaning of (1.1). We write

g(x) = ∑
1≤i1<···<ik≤n

gi1···ik (x)dxi1 ∧·· ·∧dxik

and similarly for f . The meaning of (1.1) is that

∑
1≤i1<···<ik≤n

gi1···ik ◦ϕ dϕ i1 ∧·· ·∧dϕ ik = ∑
1≤i1<···<ik≤n

fi1···ik dxi1 ∧·· ·∧dxik ,

where

dϕ i =
n

∑
j=1

∂ϕ i

∂x j
dx j.

This turns out to be a nonlinear (if 2 ≤ k ≤ n) homogeneous of degree k (in the
derivatives) first-order system of

(n
k

)
partial differential equations. Let us see the

form that the equation takes when k = 0,1,2,n.

Case: k = 0. Equation (1.1) reads as

g(ϕ (x)) = f (x)

while
dg = 0 ⇔ gradg = 0.
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2 1 Introduction

We will be, only marginally, interested in this elementary case, which is trivial for
closed forms. In any case, (1.1) is not, when k = 0, a differential equation.

Case: k = 1. The form g, and analogously for f , can be written as

g(x) =
n

∑
i=1

gi (x)dxi.

Equation (1.1) then becomes

n

∑
i=1

gi (ϕ (x))dϕ i =
n

∑
i=1

fi (x)dxi

while

dg = 0 ⇔ curlg = 0 ⇔ ∂gi

∂x j
− ∂g j

∂xi
= 0, 1 ≤ i < j ≤ n.

Writing

dϕ i =
n

∑
j=1

∂ϕ i

∂x j
dx j

and substituting into the equation, we find that (1.1) is equivalent to

n

∑
j=1

g j (ϕ (x))
∂ϕ j

∂xi
(x) = fi (x) , 1 ≤ i ≤ n.

This is a system of
(n

1

)
= n first-order linear (in the first derivatives) partial differ-

ential equations.
Case: k = 2. The form g, and analogously for f , can be written as

g = ∑
1≤i< j≤n

gi j (x)dxi ∧dx j

while

dg = 0 ⇔ ∂gi j

∂xk
− ∂gik

∂x j
+

∂g jk

∂xi
= 0, 1 ≤ i < j < k ≤ n.

The equation ϕ∗ (g) = f becomes

∑
1≤p<q≤n

gpq (ϕ (x))dϕ p ∧dϕq = ∑
1≤i< j≤n

fi j (x)dxi ∧dx j.

We get, as before, that (1.1) is equivalent, for every 1 ≤ i < j ≤ n, to

∑
1≤p<q≤n

gpq (ϕ (x))
(

∂ϕ p

∂xi

∂ϕq

∂x j
− ∂ϕ p

∂x j

∂ϕq

∂xi

)
(x) = fi j (x) ,

which is a nonlinear homogeneous of degree 2 (in the derivatives) system of
(n

2

)
=

n(n−1)
2 first-order partial differential equations.
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Case: k = n. In this case we always have d f = dg = 0. By abuse of notations,
if we identify volume forms and functions, we get that the equation ϕ∗ (g) = f
becomes

g(ϕ (x))det∇ϕ (x) = f (x) .

It is then a nonlinear homogeneous of degree n (in the derivatives) first-order partial
differential equation.smallskip

The main questions that we will discuss are the following.

1) Local existence. This is the easiest question. We will handle fairly completely the
case of closed 2-forms, which is the case of the Darboux theorem. The cases of
1 and (n−1)-forms as well as the case of n-forms will also be dealt with. It will
turn out that the case 3 ≤ k ≤ n−2 is much more difficult and we will be able to
handle only closed k-forms with special structure.

2) Global existence. This is a much more difficult problem. We will obtain results
in the case of volume forms and of closed 2-forms.

3) Regularity. A special emphasis will be given on getting sharp regularity results.
For this reason we will have to work with Hölder spaces Cr,α , 0 < α < 1, not
with spaces Cr. Apart from the linear problems considered in Part II, we will not
deal with Sobolev spaces. In the present context the reason is that Hölder spaces
form an algebra contrary to Sobolev spaces (with low exponents).

1.2 Exterior and Differential Forms

In Chapter 2 we have gathered some algebraic results about exterior forms that are
used throughout the book.

1.2.1 Definitions and Basic Properties of Exterior Forms

Let 1 ≤ k ≤ n be an integer. An exterior k-form will be denoted by

f = ∑
1≤i1<···<ik≤n

fi1···ik ei1 ∧·· ·∧ eik .

The set of exterior k-forms over Rn is a vector space and is denoted Λ k(Rn) and its
dimension is

dim(Λ k(Rn)) =
(n

k

)
.

If k = 0, we set

Λ 0(Rn) = R.
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By abuse of notations, we will, when convenient and in order not to burden the
notations, identify k-forms with vectors in R

(n
k).

(i) The exterior product of f ∈ Λ k(Rn) with g ∈ Λ l(Rn), denoted by f ∧ g, is
defined as usual (cf. Definition 2.2) and it belongs to Λ k+l(Rn). The scalar product
between two k-forms f and g is denoted by

〈g; f 〉= ∑
1≤i1<···<ik≤n

gi1···ik fi1···ik .

The Hodge star operator (cf. Definition 2.9) associates to f ∈Λ k(Rn) a form (∗ f )∈
Λ n−k(Rn). We define (cf. Definition 2.11) the interior product of f ∈ Λ k(Rn) with
g ∈ Λ l(Rn) by

g� f = (−1)n(k−l) ∗ (g∧ (∗ f )) .

These definitions are linked through the following elementary facts (cf. Proposition
2.16). For every f ∈ Λ k(Rn), g ∈ Λ k+1(Rn) and h ∈ Λ 1(Rn),

|h|2 f = h�(h∧ f )+h∧ (h� f ),

〈h∧ f ;g〉= 〈 f ;h�g〉 .

(ii) Let A ∈ R
n×n be a matrix and let f ∈ Λ k(Rn) be given by

f = ∑
1≤i1<···<ik≤n

fi1···ik ei1 ∧·· ·∧ eik .

We define (cf. Definition 2.17) the pullback of f by A, denoted A∗( f ), by

A∗( f ) = ∑
1≤i1<···<ik≤n

fi1···ik Ai1 ∧·· ·∧Aik ∈ Λ k(Rn),

where A j is the jth row of A and is identified by

A j =
n

∑
k=1

A j
kek ∈ Λ 1(Rn).

If k = 0, we then let

A∗( f ) = f .

The present definition is consistent with the one given at the beginning of the chap-
ter; just set ϕ (x) = Ax in (1.1).

(iii) We next define the notion of rank (also called rank of order 1 in Chapter 2)
of f ∈ Λ k (Rn) . We first associate to the linear map

g ∈ Λ 1 (Rn)→ g� f ∈ Λ k−1 (Rn)
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a matrix f ∈ R

( n
k−1

)
×n such that, by abuse of notations,

g� f = f g for every g ∈ Λ 1 (Rn) .

In this case, we have

g� f

= ∑
1≤ j1<···< jk−1≤n

(
k

∑
γ=1

(−1)γ−1 ∑
jγ−1<i< jγ

f j1··· jγ−1i jγ ··· jk−1 gi

)
e j1 ∧·· ·∧ e jk−1 .

More explicitly, using the lexicographical order for the columns (index below) and
the rows (index above) of the matrix f , we have

( f ) j1··· jk−1
i = fi j1··· jk−1

for 1 ≤ i ≤ n and 1 ≤ j1 < · · ·< jk−1 ≤ n. The rank of the k-form f is then the rank
of the

( n
k−1

)×n matrix f (or similarly the rank of the map g → g� f ). We then write
(in Chapter 2, we write rank1 [ f ] , but in the remaining part of the book we write
only rank [ f ])

rank [ f ] = rank
(

f
)
.

Note that only when k = 2 or k = n, the matrix f is a square matrix. We will get our
best results precisely in these cases and when the matrix f is invertible.

We then have the following elementary result (cf. Proposition 2.37).

Proposition 1.1. Let f ∈ Λ k (Rn) , f �= 0.

(i) If k = 1, then the rank of f is always 1.

(ii) If k = 2, then the rank of f is even. The forms

ωm =
m

∑
i=1

e2i−1 ∧ e2i

are such that rank [ωm] = 2m. Moreover, rank [ f ] = 2m if and only if

f m �= 0 and f m+1 = 0,

where f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

.

(iii) If 3 ≤ k ≤ n, then

rank [ f ] ∈ {k,k+2, . . . ,n}

and any of the values in {k,k+2, . . . ,n} can be achieved by the rank of a k-form. In
particular, if k = n−1, then rank [ f ] = n−1, whereas if k = n, then rank [ f ] = n.
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Remark 1.2 (cf. Propositions 2.24 and 2.33). The rank is an invariant for the pull-
back equation. More precisely, if there exists A ∈ GL(n) (i.e., A is an invertible
n×n matrix) such that

A∗(g) = f ,

then
rank [g] = rank [ f ] .

Conversely, when k = 1,2,n−1,n, if rank [g] = rank [ f ] , then there exists A∈GL(n)
such that

A∗(g) = f .

However, the converse is not true, in general, if 3 ≤ k ≤ n− 2. For example (cf.
Example 2.36), when k = 3, the forms

f = e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6,

g = e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5 + e2 ∧ e4 ∧ e6 + e3 ∧ e5 ∧ e6

have both rank = 6, but there is no A ∈ GL(6) so that

A∗ (g) = f .

Similarly and more strikingly (cf. Example 2.35), when k = 4 and

f = e1 ∧ e2 ∧ e3 ∧ e4 + e1 ∧ e2 ∧ e5 ∧ e6 + e3 ∧ e4 ∧ e5 ∧ e6,

there is no A ∈ GL(6) such that

A∗( f ) =− f .

1.2.2 Divisibility

We then discuss the notion of divisibility for exterior forms. Given two integers
1 ≤ l ≤ k ≤ n, a k-form f and a l-form g, we want to know if we can find a (k− l)-
form u so that

f = g∧u.

This is an important question in the theory of Grassmann algebras. A well-known
result is the so called Cartan lemma (cf. Theorem 2.42).

Theorem 1.3 (Cartan lemma). Let 1 ≤ k ≤ n and f ∈ Λ k (Rn) with f �= 0. Let
1 ≤ l ≤ k and g1, . . . ,gl ∈ Λ 1(Rn) be such that

g1 ∧·· ·∧gl �= 0.

Then there exists u ∈ Λ k−l(Rn) verifying

f = g1 ∧·· ·∧gl ∧u



1.2 Exterior and Differential Forms 7

if and only if
f ∧g1 = · · ·= f ∧gl = 0.

Remark 1.4. In the same spirit, the following facts can easily be proved (cf. Propo-
sition 2.43):

(i) The form f ∈Λ k(Rn) is totally divisible, meaning that there exist f1, · · · , fk ∈
Λ 1 (Rn) such that

f = f1 ∧·· ·∧ fk

if and only if
rank[ f ] = k.

(ii) If k is odd and if f ∈Λ k(Rn) with rank[ f ] = k+2, then there exist u∈Λ 1(Rn)
and g ∈ Λ k−1(Rn) such that

f = g∧u.

Our main result (cf. Theorem 2.45 for a more general statement) will be the
following theorem obtained by Dacorogna–Kneuss [31]. It generalizes the Cartan
lemma.

Theorem 1.5. Let 0 ≤ l ≤ k ≤ n be integers. Let g ∈ Λ l(Rn) and f ∈ Λ k(Rn). The
following statements are then equivalent:

(i) There exists u ∈ Λ k−l(Rn) verifying

f = g∧u.

(ii) For every h ∈ Λ n−k(Rn), the following implication holds:

[h∧g = 0] ⇒ [h∧ f = 0].

1.2.3 Differential Forms

In Chapter 3 we have gathered the main notations concerning differential forms.

Definition 1.6. Let Ω ⊂ R
n be open and f ∈C1

(
Ω ;Λ k

)
, namely

f = ∑
1≤i1<···<ik≤n

f i1···ik dxi1 ∧·· ·∧dxik .

(i) The exterior derivative of f denoted d f belongs to C0
(
Ω ;Λ k+1

)
and is

defined by

d f = ∑
1≤i1<···<ik≤n

n

∑
m=1

∂ fi1···ik
∂xm

dxm ∧dxi1 ∧·· ·∧dxik .

If k = n, then d f = 0.
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(ii) The interior derivative or codifferential of f denoted δ f belongs to C0
(
Ω ;

Λ k−1
)

and is defined by

δ f = (−1)n(k−1) ∗ (d (∗ f )) .

Remark 1.7. (i) If k = 0, then the operator d can be identified with the gradient
operator, while δ f = 0 for any f .

(ii) If k = 1, then the operator d can be identified with the curl operator and the
operator δ is the divergence operator.

We next gather some well-known properties of the operators d and δ (cf. Theo-
rems 3.5 and 3.7).

Theorem 1.8. Let f ∈C2(Ω ;Λ k). Then

dd f = 0, δδ f = 0 and dδ f +δd f = Δ f .

We also need the following definition. In the sequel we will denote the exterior
unit normal of ∂Ω by ν .

Definition 1.9. The tangential component of a k-form f on ∂Ω is the (k+1)-form

ν ∧ f ∈ Λ k+1.

The normal component of a k-form f on ∂Ω is the (k−1)-form

ν � f ∈ Λ k−1.

We easily deduce the following properties (cf. Theorem 3.23).

Proposition 1.10. Let 0 ≤ k ≤ n and f ∈C1
(
Ω ;Λ k

)
; then

ν ∧ f = 0 on ∂Ω ⇒ ν ∧d f = 0 on ∂Ω ,

ν � f = 0 on ∂Ω ⇒ ν �δ f = 0 on ∂Ω .

We will constantly use the integration by parts formula (cf. Theorem 3.28).

Theorem 1.11. Let 1 ≤ k ≤ n, f ∈C1
(
Ω ;Λ k−1

)
and g ∈C1

(
Ω ;Λ k

)
. Then∫

Ω
〈d f ;g〉+

∫
Ω
〈 f ;δg〉=

∫
∂Ω

〈ν ∧ f ;g〉=
∫

∂Ω
〈 f ;ν �g〉.

We will adopt the following notations.

Notation 1.12. Let Ω ⊂ R
n be open, r ≥ 0 be an integer and 0 ≤ α ≤ 1 ≤ p ≤ ∞.

Spaces with vanishing tangential or normal component will be denoted in the fol-
lowing way:
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Cr,α
T

(
Ω ;Λ k)= { f ∈Cr,α(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

Cr,α
N

(
Ω ;Λ k)= { f ∈Cr,α(Ω ;Λ k) : ν � f = 0 on ∂Ω},

W r+1,p
T

(
Ω ;Λ k)= { f ∈W r+1,p(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

W r+1,p
N

(
Ω ;Λ k)= { f ∈W r+1,p(Ω ;Λ k) : ν � f = 0 on ∂Ω}.

The different sets of harmonic fields will be denoted by

H
(
Ω ;Λ k)= { f ∈W 1,2(Ω ;Λ k) : d f = 0 and δ f = 0 in Ω},

HT
(
Ω ;Λ k)= { f ∈ H

(
Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

HN
(
Ω ;Λ k)= { f ∈ H

(
Ω ;Λ k) : ν � f = 0 on ∂Ω}.

We now list (cf. Section 6.1) some properties of the harmonic fields.

Theorem 1.13. Let Ω ⊂ R
n be an open set. Then

H
(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Moreover if Ω is bounded and smooth, then the next statements are valid.
(i) The following inclusion holds:

HT
(
Ω ;Λ k)∪HN

(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Furthermore, if r ≥ 0 is an integer and 0 ≤ α ≤ 1, then there exists C = C(r,Ω)
such that for every ω ∈ HT

(
Ω ;Λ k

)∪HN
(
Ω ;Λ k

)
,

‖ω‖W r,2 ≤C‖ω‖L2 and ‖ω‖Cr,α ≤C‖ω‖C0 .

(ii) The spaces HT
(
Ω ;Λ k

)
and HN

(
Ω ;Λ k

)
are finite dimensional and closed

in L2
(
Ω ;Λ k

)
.

(iii) Furthermore, if Ω is contractible (cf. Definition 6.1), then

HT
(
Ω ;Λ k)= {0} if 0 ≤ k ≤ n−1,

HN
(
Ω ;Λ k)= {0} if 1 ≤ k ≤ n.

(iv) If k = 0 or k = n and h ∈ H
(
Ω ;Λ k

)
, then h is constant on each connected

component of Ω . In particular, HT
(
Ω ;Λ 0

)
= {0} and HN (Ω ;Λ n) = {0}.

Remark 1.14. If k = 1 and assuming that Ω is smooth, then the sets HT and HN
can be rewritten, as usual by abuse of notations, as

HT
(
Ω ;Λ 1)=

{
f ∈C∞ (

Ω ;Rn) :

[
curl f = 0 and div f = 0

fiν j − f jνi = 0, ∀1 ≤ i < j ≤ n

}
,

HN
(
Ω ;Λ 1)=

{
f ∈C∞ (

Ω ;Rn) :

[
curl f = 0 and div f = 0

∑n
i=1 fiνi = 0

}
.
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Moreover, if Ω is simply connected, then

HT
(
Ω ;Λ 1)= HN

(
Ω ;Λ 1)= {0}.

1.3 Hodge–Morrey Decomposition and Poincaré Lemma

1.3.1 A General Identity and Gaffney Inequality

In the proof of Morrey of the Hodge decomposition, one of the key points to get
compactness is the following inequality (cf. Theorem 5.16).

Theorem 1.15 (Gaffney inequality). Let Ω ⊂ R
n be a bounded open smooth set.

Then there exists a constant C =C(Ω)> 0 such that

‖ω‖2
W 1,2 ≤C

(‖dω‖2
L2 +‖δω‖2

L2 +‖ω‖2
L2

)
for every ω ∈W 1,2

T (Ω ;Λ k)∪W 1,2
N (Ω ;Λ k).

Remark 1.16. When k = 1, the inequality says, identifying 1-forms with vector
fields,

‖ω‖2
W 1,2 ≤C

(‖curlω‖2
L2 +‖divω‖2

L2 +‖ω‖2
L2

)
for every ω ∈W 1,2(Ω ;Rn) satisfying either one of the following two conditions:

ν ∧ω = 0 ⇔ ωiν j −ω jνi = 0, ∀1 ≤ i < j ≤ n,

ν �ω = 〈ν ;ω〉=
n

∑
i=1

ωiνi = 0.

The inequality, as stated above, has been proved by Morrey [76, 77], generalizing
results of Gaffney [44, 45]. We will prove in Section 5.3 the inequality appealing to
a very general identity (see Theorem 5.7) proved by Csató and Dacorogna [24].

Theorem 1.17 (A general identity). Let 0 ≤ k ≤ n and let Ω ⊂ R
n be a bounded

open smooth set and with exterior unit normal ν . Then every α,β ∈ C1(Ω ;Λ k)
satisfy the equation∫

Ω
(〈dα;dβ 〉+ 〈δα;δβ 〉−〈∇α;∇β 〉)

=−
∫

∂Ω
(〈ν ∧d(ν �α);ν ∧β 〉+ 〈ν �δ (ν ∧α);ν �β 〉)

+
∫

∂Ω
(〈Lν(ν ∧α);ν ∧β 〉+ 〈Kν(ν �α);ν �β 〉) .

The operators Lν and Kν (cf. Definition 5.1) can be seen as matrices acting on
(k+1)-forms and (k−1)-forms respectively (identifying, as usual, a k-form with
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a
(n

k

)
vector). They depend only on the geometry of Ω and on the degree k of the

form. They can easily be calculated explicitly for general k-forms and, when Ω is a
ball of radius R (cf. Corollary 5.9), it turns out that

Lν(ν ∧ω) =
k
R

ν ∧ω and Kν (ν �ω) =
n− k

R
ν �ω

and, thus,

〈Lν(ν ∧ω);ν ∧ω〉= k
R
|ν ∧ω|2 and 〈Kν(ν �ω);ν �ω〉= n− k

R
|ν �ω|2.

In the case of a 1-form and for general open sets Ω (cf. Proposition 5.11), it can
be shown that Kν is a scalar and it is a multiple of κ, the mean curvature of the
hypersurface ∂Ω , namely

Kν = (n−1)κ.

Summarizing the results for a 1-form ω in R
n (cf. Corollary 5.12) with vanishing

tangential component (i.e., ν ∧ω = 0 on ∂Ω ), we have∫
Ω

(
|curlω|2 + |divω|2 −|∇ω|2

)
= (n−1)

∫
∂Ω

κ [〈ν ;ω〉]2 ,

where κ is the mean curvature of the hypersurface ∂Ω and 〈.; .〉 denotes the scalar
product in R

n.

1.3.2 The Hodge–Morrey Decomposition

We now turn to the celebrated Hodge–Morrey decomposition (cf. Theorem 6.9).

Theorem 1.18 (Hodge–Morrey decomposition). Let Ω ⊂ R
n be a bounded open

smooth set. Let 0 ≤ k ≤ n and f ∈ L2
(
Ω ;Λ k

)
. Then there exist

α ∈W 1,2
T

(
Ω ;Λ k−1), β ∈W 1,2

T

(
Ω ;Λ k+1),

h ∈ HT
(
Ω ;Λ k) and ω ∈W 2,2

T

(
Ω ;Λ k)

such that, in Ω ,

f = dα +δβ +h, α = δω and β = dω.

Remark 1.19. (i) We have quoted only one of the three decompositions (cf. Theorem
6.9 for details). Another one, completely similar, is by replacing T by N and the
other one mixing both T and N.

(ii) If k ≤ n−1 and if Ω is contractible, then h = 0.
(iii) If k = 0, then the theorem reads as

f = δβ = δdω = Δω in Ω with ω = 0 on ∂Ω .
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(iv) When k = 1 and n = 3, the decomposition reads as follows. Let ν be the
exterior unit normal. For any f ∈ L2(Ω ;R3), there exist

ω ∈W 2,2 (Ω ;R3) with ωiν j −ω jνi = 0 on ∂Ω , ∀1 ≤ i < j ≤ 3

α ∈W 1,2
0 (Ω) and α = divω,

β ∈W 1,2 (Ω ;R3) with β =−curlω and 〈ν ;β 〉= 0 on ∂Ω

h ∈
{

h ∈C∞ (
Ω ;R3) :

[
curlh = 0 and divh = 0

hiν j −h jνi = 0, ∀1 ≤ i < j ≤ 3

}

such that
f = gradα + curlβ +h in Ω .

Furthermore, if Ω is simply connected, then h = 0.

(v) If f is more regular than in L2, then α,β and ω are in the corresponding class
of regularity (cf. Theorem 6.12). More precisely if, for example, r ≥ 0 is an integer,
0 < q < 1 and f ∈Cr,q(Ω ;Λ k), then

α ∈Cr+1,q(Ω ;Λ k−1), β ∈Cr+1,q(Ω ;Λ k+1) and ω ∈Cr+2,q(Ω ;Λ k).
(vi) The proof of Morrey (cf. Theorem 6.7) uses the direct methods of the calcu-

lus of variations. One minimizes

D f (ω) =
∫

Ω

(
1
2
|dω|2 + 1

2
|δω|2 + 〈 f ;ω〉

)

in an appropriate space, Gaffney inequality giving the coercivity of the integral.

1.3.3 First-Order Systems of Cauchy–Riemann Type

It turns out that the Hodge–Morrey decomposition is in fact equivalent (cf. Proposi-
tion 7.9) to solving the first-order system{

dω = f and δω = g in Ω ,

ν ∧ω = ν ∧ω0 on ∂Ω

or the similar one, {
dω = f and δω = g in Ω ,

ν �ω = ν �ω0 on ∂Ω .

Both systems are discussed in Theorems 7.2 and 7.4. We here state a simplified
version of the first one.
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Theorem 1.20. Let r ≥ 0 and 1 ≤ k ≤ n− 2 be integers, 0 < q < 1 and Ω ⊂ R
n

be a bounded contractible open smooth set and with exterior unit normal ν . Let
g ∈Cr,q

(
Ω ;Λ k−1

)
and f ∈Cr,q

(
Ω ;Λ k+1

)
be such that

δg = 0 in Ω , d f = 0 in Ω and ν ∧ f = 0 on ∂Ω .

Then there exists ω ∈Cr+1,q
(
Ω ;Λ k

)
, such that{

dω = f and δω = g in Ω ,

ν ∧ω = 0 on ∂Ω .

Remark 1.21. (i) It turns out that the sufficient conditions are also necessary (cf.
Theorems 7.2 and 7.4).

(ii) When k = n−1, the result is valid provided∫
Ω

f = 0.

Note that in this case the conditions d f = 0 and ν∧ f = 0 are automatically fulfilled.

(iii) Completely analogous results are given in Theorems 7.2 and 7.4 for Sobolev
spaces.

(iv) If Ω is not contractible, then additional necessary conditions have to be
added.

(v) When k= 1 and n= 3, the theorem reads as follows. Let Ω ⊂R
3 be a bounded

contractible smooth open set, g ∈Cr,q
(
Ω
)

and f ∈Cr,q
(
Ω ;R3

)
be such that

div f = 0 in Ω and 〈 f ;ν〉= 0 on ∂Ω .

Then there exists ω ∈Cr+1,q
(
Ω ;R3

)
such that{

curlω = f and divω = g in Ω ,

ωiν j −ω jνi = 0 ∀1 ≤ i < j ≤ 3 on ∂Ω .

1.3.4 Poincaré Lemma

We start with the classical Poincaré lemma (cf. Theorem 8.1).

Theorem 1.22 (Poincaré lemma). Let r ≥ 1 and 0 ≤ k ≤ n− 1 be integers and
Ω ⊂ R

n be an open contractible set. Let g ∈Cr
(
Ω ;Λ k+1

)
with dg = 0 in Ω . Then

there exists G ∈Cr
(
Ω ;Λ k

)
such that

dG = g in Ω .
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With the help of the Hodge–Morrey decomposition, the result can be improved
(cf. Theorem 8.3) in two directions. First, one can consider general sets Ω , not
only contractible sets. Moreover, one can get sharp regularity in Hölder and in
Sobolev spaces. We quote here only the case of Hölder spaces. We also give the
theorem with the d operator. Analogous results are also valid for the δ operator; see
Theorem 8.4.

Theorem 1.23. Let r ≥ 0 and 0 ≤ k ≤ n− 1 be integers, 0 < α < 1 and Ω ⊂ R
n

be a bounded open smooth set. Let f : Ω → Λ k+1. The following statements are
equivalent:

(i) Let f ∈Cr,α (
Ω ;Λ k+1

)
be such that

d f = 0 in Ω and
∫

Ω
〈 f ;ψ〉= 0 for every ψ ∈ HN

(
Ω ;Λ k+1).

(ii) There exists ω ∈Cr+1,α (
Ω ;Λ k

)
such that

dω = f in Ω .

Remark 1.24. (i) When k = n−1, there is no restriction on the solvability of dω = f .

(ii) Recall that if Ω is contractible and 0 ≤ k ≤ n−1, then

HN
(
Ω ;Λ k+1)= {0}.

We finally consider the boundary value problems{
dω = f in Ω ,

ω = ω0 on ∂Ω
and

{
δω = g in Ω ,

ω = ω0 on ∂Ω .

We give a result for the first one and for ω0 = 0 (cf. Theorem 8.16 for general
ω0), but a similar one (cf. Theorem 8.18) exists for the second problem. We only
discuss the case of Hölder spaces, but the result is also valid in Sobolev spaces (see
Theorems 8.16 and 8.18 for details).

Theorem 1.25. Let r ≥ 0 and 0 ≤ k ≤ n− 1 be integers, 0 < α < 1 and Ω ⊂ R
n

be a bounded open smooth set and with exterior unit normal ν . Then the following
statements are equivalent:

(i) Let f ∈Cr,α (
Ω ;Λ k+1

)
satisfy

d f = 0 in Ω , ν ∧ f = 0 on ∂Ω ,

and, for every χ ∈ HT
(
Ω ;Λ k+1

)
,∫

Ω
〈 f ; χ〉= 0.
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(ii) There exists ω ∈Cr+1,α (
Ω ;Λ k

)
such that{

dω = f in Ω ,

ω = 0 on ∂Ω .

1.4 The Case of Volume Forms

1.4.1 Statement of the Problem

In Part III, we will discuss the following problem. Given Ω a bounded open set
in R

n and f ,g : Rn → R, we want to find ϕ : Ω → R
n verifying{

g(ϕ(x))det∇ϕ(x) = f (x) x ∈ Ω ,

ϕ(x) = x x ∈ ∂Ω .
(1.2)

Writing the functions f and g as volume forms through the straightforward
identification

g = g(x)dx1 ∧·· ·∧dxn and f = f (x)dx1 ∧·· ·∧dxn,

problem (1.2) can be written as{
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω ,

where ϕ∗(g) is the pullback of g by ϕ.
The following preliminary remarks are in order.

(i) The case n = 1 is completely elementary and is discussed in Section 1.4.2.

(ii) When n ≥ 2, the equation in (1.2) is a nonlinear first-order partial differential
equation homogeneous of degree n in the derivatives. It is underdetermined, in the
sense that we have n unknowns (the components of ϕ) and only one equation. Re-
lated to this observation, we have that if there exists a solution to our problem, then
there are infinitely many ones. Indeed, for example, if n = 2, Ω is the unit ball and
f = g = 1, the maps ϕm (written in polar and in Cartesian coordinates) defined by

ϕm (x) = ϕm (x1,x2) =

(
r cos

(
θ +2mπr2

)
r sin

(
θ +2mπr2

)
)

=

(
x1 cos

(
2mπ

(
x2

1 + x2
2
))− x2 sin

(
2mπ

(
x2

1 + x2
2
))

x2 cos
(
2mπ

(
x2

1 + x2
2
))

+ x1 sin
(
2mπ

(
x2

1 + x2
2
))

)

satisfy (1.2) for every m ∈ Z.
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(iii) An integration by parts, or, what amounts to the same thing, an elementary
topological degree argument (see (19.3)), immediately gives the necessary condition
(independently of the fact that ϕ is a diffeomorphism or not and of the fact that
ϕ (Ω) contains strictly or not Ω ) ∫

Ω
f =

∫
Ω

g. (1.3)

In most of our analysis, it will turn out that this condition is also sufficient.

(iv) We will always assume that g> 0. If g is not strictly positive, then hypotheses
other than (1.3) are necessary; for example, f cannot be strictly positive. Indeed if,
for example, f ≡ 1 and g is allowed to vanish even at a single point, then no C1

solution of our problem exists (cf. Proposition 11.6). However, in a very special
case (cf. Lemma 11.21), we will deal with functions f and g that both change sign.

(v) We will, however, allow f to change sign, but the analysis is very different if
f > 0 or if f vanishes, even at a single point, let alone if it becomes negative. The
first problem will be discussed in Chapter 10, whereas the second one will be dealt
with in Chapter 11. One of the main differences is that in the first case, any solution
of (1.2) is necessarily a diffeomorphism (cf. Theorem 19.12), whereas this is never
true in the second case.

(vi) It is easy to see (cf. Corollary 19.4) that any solution of (1.2) satisfies

ϕ(Ω)⊃ Ω and ϕ(Ω)⊃ Ω . (1.4)

If f > 0, we have, since ϕ is a diffeomorphism, that (cf. Theorem 19.12)

ϕ(Ω) = Ω and ϕ(Ω) = Ω .

If this is not the case, then, in general, the inclusions can be strict. We will discuss
in Chapter 11 this matter in details.

(vii) Problem (1.2) admits a weak formulation. Indeed, if ϕ is a diffeomorphism,
we can write (cf. Theorem 19.7) the equation g(ϕ)det∇ϕ = f as∫

ϕ(E)
g =

∫
E

f for every open set E ⊂ Ω

or, equivalently, ∫
Ω

gζ
(
ϕ−1)= ∫

Ω
f ζ for every ζ ∈C∞

0 (Ω) .

We observe that both new writings make sense if ϕ is only a homeomorphism.

(viii) The problem can be seen as a question of mass transportation. Indeed, we
want to transport the mass distribution g to the mass distribution f without moving
the points of the boundary of Ω . In this context, the equation is usually written as
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E

g =
∫

ϕ−1(E)
f for every open set E ⊂ Ω .

The problem of optimal mass transportation has received considerable attention.
We should point out that our analysis is not in this framework. The two main strong
points of our analysis are that we are able to find smooth solutions, sometimes with
the optimal regularity and to deal with fixed boundary data.

1.4.2 The One-Dimensional Case

As already stated, the case n = 1 is completely elementary (cf. Proposition 11.4),
but it exhibits some striking differences with the case n ≥ 2. However, it may shed
some light on some issues that we will discuss in the higher-dimensional case. Let
Ω = (a,b) ,

F (x) =
∫ x

a
f (t)dt and G(x) =

∫ x

a
g(t)dt.

Then problem (1.2) becomes{
G(ϕ (x)) = F (x) if x ∈ (a,b) ,

ϕ (a) = a and ϕ (b) = b.

If G is invertible and this happens if, for example, g > 0 and if

F ([a,b])⊂ G(R) , (1.5)

and this happens if, for example, g ≥ g0 > 0, then the problem has the solution

ϕ (x) = G−1 (F (x)) .

The necessary condition (1.3)

∫ b

a
f =

∫ b

a
g

ensures that

ϕ (a) = a and ϕ (b) = b.

This very elementary analysis leads to the following conclusions:

1) Contrary to the case n ≥ 2, the necessary condition (1.3) is not sufficient. We
need the extra condition (1.5); see Proposition 11.4 for details.

2) The problem has a unique solution, contrary to the case n ≥ 2.

3) If f and g are in the space Cr, then the solution ϕ is in Cr+1.
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4) If f > 0, then ϕ is a diffeomorphism from [a,b] onto itself.
5) If f is allowed to change sign, then, in general,

[a,b]⊂
�=

ϕ ([a,b]) .

For example, this always happens if f (a)< 0 or f (b)< 0.

1.4.3 The Case f ·g > 0

In Chapter 10 we will study problem (1.2) when f ·g > 0. It will be seen that (1.3)
is sufficient to solve (1.2) and that any solution is in fact a diffeomorphism from Ω
to Ω (see Theorem 19.12). This last observation implies, in particular, a symmetry
in f and g and allows us to restrict ourselves, without loss of generality, to the case
g ≡ 1. Our main result (cf. Theorem 10.3) will be the following.

Theorem 1.26 (Dacorogna–Moser theorem). Let r ≥ 0 be an integer and 0 < α <
1. Let Ω ⊂ R

n be a bounded connected open smooth set. Then the two following
statements are equivalent:

(i) The function f ∈Cr,α (
Ω
)
, f > 0 in Ω and satisfies∫

Ω
f = measΩ .

(ii) There exists ϕ ∈ Diffr+1,α (
Ω ;Ω

)
satisfying{

det∇ϕ (x) = f (x) x ∈ Ω ,

ϕ (x) = x x ∈ ∂Ω .

Furthermore, if c > 0 is such that∥∥∥∥ 1
f

∥∥∥∥
C0

, ‖ f‖C0,α ≤ c,

then there exists a constant C =C (c,r,α,Ω)> 0 such that

‖ϕ − id‖Cr+1,α ≤C‖ f −1‖Cr,α .

The study of this problem originated in the seminal work of Moser [78]. The
above optimal theorem was obtained by Dacorogna and Moser [33]. Burago and
Kleiner [19] and Mc Mullen [73], independently, proved that the result is false
if r = α = 0, suggesting that the gain of regularity is to be expected only when
0 < α < 1.

In Section 10.5 (cf. Theorem 10.11), we present a different approach proposed
by Dacorogna and Moser [33] to solve our problem. This method is constructive and
does not use the regularity of elliptic differential operators; in this sense, it is more
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elementary. The drawback is that it does not provide any gain of regularity, which
is the strong point of the above theorem. However, the advantage is that it is much
more flexible. For example, if we assume in (1.2) that

supp( f −g)⊂ Ω ,

then we will be able to find ϕ such that

supp(ϕ − id)⊂ Ω .

This type of result, unreachable by the method of elliptic partial differential equa-
tions, will turn out to be crucial in Chapter 11.

1.4.4 The Case with No Sign Hypothesis on f

In Chapter 11, we discuss the case where the function f is allowed to change sign
and we will follow Cupini, Dacorogna and Kneuss [25]. As already pointed out, we
will however (apart from a very special case) assume that g > 0. In fact, contrary to
the case f ·g > 0, the problem is no longer symmetric in f and g.

We start by observing that if f vanishes even at a single point, then the solution ϕ
cannot be a diffeomorphism, although it can be a homeomorphism. In any case, if f
is negative somewhere, it can never be a homeomorphism (see Proposition 19.14).
Furthermore, if f is negative in some parts of the boundary, then any solution ϕ
must go out of the domain (see Proposition 11.3); more precisely,

Ω ⊂
�=

ϕ(Ω).

A special case of our theorem (cf. Theorem 11.1) is the following.

Theorem 1.27. Let n ≥ 2 and r ≥ 1 be integers. Let B1 ⊂ R
n be the open unit ball.

Let f ∈Cr(B1) be such that ∫
B1

f = measB1 .

Then there exists ϕ ∈Cr(B1;Rn) satisfying{
det∇ϕ (x) = f (x) x ∈ B1,

ϕ (x) = x x ∈ ∂B1 .

Furthermore, the following conclusions also hold:
(i) If either f > 0 on ∂B1 or f ≥ 0 in B1 , then ϕ can be chosen so that

ϕ(B1) = B1 .

(ii) If f ≥ 0 in B1 and f−1(0)∩ B1 is countable, then ϕ can be chosen as a
homeomorphism from B1 onto B1 .
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1.5 The Case 0 ≤ k ≤ n−1

Having dealt with the case k = n, we now discuss the equation

ϕ∗ (g) = f

when 0 ≤ k ≤ n− 1. The cases k = 0,1,n− 1 are the simplest ones. The most im-
portant results of Part IV are for the case k = 2, where we obtain not only a local
result but also a global one; we, moreover, obtain sharp regularity results for both
cases. The case 3 ≤ k ≤ n−2 is considerably harder, even at the algebraic level and
we will be able to obtain results only for forms having a special structure.

We first point out the following necessary conditions (cf. Proposition 17.1).

Proposition 1.28. Let Ω ⊂ R
n be a bounded open smooth set and ϕ ∈ Diff1 (Ω ;

ϕ
(
Ω
))
. Let 1 ≤ k ≤ n, f ∈C1

(
Ω ;Λ k

)
and g ∈C1

(
ϕ
(
Ω
)
;Λ k

)
be such that

ϕ∗ (g) = f in Ω .

(i) For every x ∈ Ω ,

rank [g(ϕ (x))] = rank [ f (x)] and rank [dg(ϕ (x))] = rank [d f (x)] .

In particular,

dg = 0 in ϕ (Ω) ⇔ d f = 0 in Ω .

(ii) If ϕ (x) = x for x ∈ ∂Ω , then

ν ∧ f = ν ∧g on ∂Ω ,

where ν is the exterior unit normal to Ω .

If we drop the condition that ϕ is a diffeomorphism, then the rank is, in general,
not conserved. We have already seen such a phenomenon when k = n in Theo-
rem 1.27.

1.5.1 The Flow Method

One of the simplest and most elegant tools that we will use for the pullback equation
is Theorem 12.7 and it was first established by Moser in [78], who, however, dealt
only with manifolds without boundary. Its main drawback is that it does not provide
the expected gain in regularity.

Theorem 1.29. Let r ≥ 1 and 0 ≤ k ≤ n be integers, 0 ≤ α ≤ 1, T > 0 and Ω ⊂R
n

be a bounded open Lipschitz set. Let
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u ∈Cr,α([0,T ]×Ω ;Rn), u = u(t,x) = ut(x),

f ∈Cr,α([0,T ]×Ω ;Λ k), f = f (t,x) = ft(x)

be such that for every t ∈ [0,T ],

ut = 0 on ∂Ω , d ft = 0 in Ω and d(ut � ft) =− d
dt

ft in Ω .

Then for every t ∈ [0,T ], the solution ϕt of⎧⎨
⎩

d
dt

ϕt = ut ◦ϕt , 0 ≤ t ≤ T

ϕ0 = id

belongs to Diffr,α (
Ω ;Ω

)
, satisfies ϕt = id on ∂Ω and

ϕ∗
t ( ft) = f0 in Ω .

1.5.2 The Cases k=0 and k=1

We start with the case k = 0, which is particularly elementary. We have for example
the following local result (cf. Theorem 13.1). For a global result, see Theorem 13.2.

Theorem 1.30. Let r ≥ 1 be an integer, x0 ∈ R
n and f ,g ∈Cr in a neighborhood of

x0 and such that f (x0) = g(x0) ,

∇ f (x0) �= 0 and ∇g(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr (U ;ϕ (U)) such that

ϕ∗ (g) = f in U and ϕ (x0) = x0 .

The results for k = 0 extend in a straightforward way to the case of closed 1-forms
(cf. Corollaries 13.3 and 13.5).

We now give a theorem (cf. Theorems 13.8 and 13.10) for nonclosed 1-forms. It
can be considered as the 1-form version of the Darboux theorem. We will see below
that it is equivalent to the Darboux theorem for closed 2-forms.

Theorem 1.31. Let 2 ≤ 2m ≤ n be integers, x0 ∈R
n and ω be a C∞ 1-form such that

ω(x0) �= 0 and
rank[dω] = 2m in a neighborhood of x0 .

Then there exist an open set U and

ϕ ∈ Diff∞(U ;ϕ (U))
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such that ϕ (U) is a neighborhood of x0 and

ϕ∗(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

∑
i=1

x2i−1dx2i if ω ∧ (dω)m = 0 in a neighborhood of x0

m

∑
i=1

x2i−1dx2i +dx2m+1 if ω ∧ (dω)m �= 0 in a neighborhood of x0 .

Remark 1.32. (i) In the theorem, we have adopted the notation

(dω)m = dω ∧·· ·∧dω︸ ︷︷ ︸
m times

.

(ii) Note that if n = 2m, then ω ∧ (dω)m ≡ 0.

1.5.3 The Case k = 2

Our best results besides the ones for volume forms are in the case k = 2.
We start with two local results. The first one is the celebrated Darboux theorem,

but as stated it is due to Bandyopadhyay and Dacorogna [8] (cf. Theorem 14.1). The
difference between the following theorem and all of the classical ones is in terms
of regularity of the diffeomorphism. We provide the optimal possible regularity in
Hölder spaces; the other ones give only that if ω ∈Cr,α , then ϕ ∈Cr,α .

Theorem 1.33. Let r ≥ 0 and n = 2m ≥ 4 be integers. Let 0 < α < 1 and x0 ∈ R
n.

Let ωm be the standard symplectic form of rank[ωm] = 2m = n,

ωm =
m

∑
i=1

dx2i−1 ∧dx2i.

Let ω be a 2-form. The two following statements are then equivalent:

(i) The 2-form ω is closed, is in Cr,α in a neighborhood of x0 and verifies

rank [ω (x0)] = n.

(ii) There exist a neighborhood U of x0 and ϕ ∈ Diffr+1,α(U ;ϕ (U)) such that

ϕ∗ (ωm) = ω in U and ϕ (x0) = x0 .

One possible proof of the theorem could be to use Theorem 1.31 with n = 2m
(cf. Remark 13.7 for details). We, however, will go the other way around and prove
Theorem 1.31 using Theorem 1.33.

We next discuss the case of forms of lower rank. This is also well known in the
literature. However, our theorem (cf. Theorem 14.3, proved in [9] by Bandyopad-
hyay, Dacorogna and Kneuss) provides, as the previous theorem, one class higher
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degree of regularity than the other results. Indeed, in all other theorems it is proved
that if ω ∈ Cr,α , then ϕ ∈ Cr−1,α . It may appear that the theorem below is still not
optimal, since it only shows that ϕ ∈Cr,α when ω ∈Cr,α . However, since there are
some missing variables, it is probably the best possible regularity.

Theorem 1.34. Let n ≥ 3, r,m ≥ 1 be integers and 0 < α < 1. Let x0 ∈ R
n and ωm

be the standard symplectic form of rank [ωm] = 2m < n, namely

ωm =
m

∑
i=1

dx2i−1 ∧dx2i.

Let ω be a Cr,α closed 2-form such that

rank [ω] = 2m in a neighborhood of x0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr,α(U ;ϕ (U)) such that

ϕ∗ (ωm) = ω in U and ϕ (x0) = x0 .

We now turn to a global result (cf. Theorem 14.5). It has been obtained under
slightly more restrictive hypotheses by Bandyopadhyay and Dacorogna [8] and as
stated by Dacorogna and Kneuss [32]. The theorem provides the first global result
on manifolds with boundary. It is also nearly optimal.

Theorem 1.35. Let n > 2 be even and Ω ⊂ R
n be a bounded open smooth set with

exterior unit normal ν . Let 0<α < 1 and r ≥ 1 be an integer. Let f ,g∈Cr,α(Ω ;Λ 2)
satisfying d f = dg = 0 in Ω ,

ν ∧ f ,ν ∧g ∈Cr+1,α (
∂Ω ;Λ 3) , ν ∧ f = ν ∧g on ∂Ω ,∫

Ω
〈 f ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈ HT

(
Ω ;Λ 2) (1.6)

and, for every t ∈ [0,1] ,

rank [tg+(1− t) f ] = n in Ω .

Then there exists ϕ ∈ Diffr+1,α (
Ω ;Ω

)
such that{

ϕ∗ (g) = f in Ω ,

ϕ = id on ∂Ω .

Remark 1.36. (i) In a similar way, we can consider a general homotopy ft with f0 =
f , f1 = g, provided

d ft = 0, ν ∧ ft = ν ∧ f0 on ∂Ω and rank [ ft ] = n in Ω ,∫
Ω
〈 ft ;ψ〉=

∫
Ω
〈 f0;ψ〉 for every ψ ∈ HT

(
Ω ;Λ 2).
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(ii) If Ω is contractible, then HT
(
Ω ;Λ 2

)
= {0} and, therefore, (1.6) is automat-

ically satisfied.

1.5.4 The Case 3 ≤ k ≤ n−1

The presentation in Chapter 15 follows closely the results of Bandyopadhyay,
Dacorogna and Kneuss [9]. We start with the case k = n− 1. We have as a con-
sequence of Theorems 15.3 and 15.5 the following result.

Theorem 1.37. Let x0 ∈ R
n and f be a (n−1)-form such that f ∈ C∞ in a neigh-

borhood of x0 and f (x0) �= 0. Then there exist a neighborhood U of x0 and

ϕ ∈ Diff∞(U ;ϕ (U))

such that ϕ satisfies one of the two following equations in U:
(i) If d f = 0 in a neighborhood of x0, then

f = ∇ϕ1 ∧·· ·∧∇ϕn−1 = ϕ∗ (dx1 ∧·· ·∧dxn−1) .
(ii) If d f (x0) �= 0, then

f = ϕn (∇ϕ1 ∧·· ·∧∇ϕn−1)= ϕ∗ (xn dx1 ∧·· ·∧dxn−1) .
Remark 1.38. (i) The present theorem, when d f = 0, is a consequence of Theorem
15.1, which is valid for k-forms of rank k.

(ii) With our usual abuse of notations, identifying a (n−1)-form with a vector
field and observing that the d operator can then be essentially identified with the
divergence operator, we can rewrite the theorem as follows (cf. Corollaries 15.4 and
15.7). For any C∞ vector field f such that f (x0) �= 0, there exist an open set U and

ϕ ∈ Diff∞(U ;ϕ (U))

such that ϕ (U) is a neighborhood of x0 and

f =

{
∗(∇ϕ1 ∧·· ·∧∇ϕn−1

)
if div f = 0

∗(ϕn
(
∇ϕ1 ∧·· ·∧∇ϕn−1

))
if div f �= 0,

where ∗ denotes the Hodge ∗ operator.

We now turn to the case 3 ≤ k ≤ n−2, which is, as already said, much more dif-
ficult. This is so already at the algebraic level, since there are no known canonical
forms. Additionally, even when the algebraic setting is simple, the analytical situa-
tion is more complicated than in the cases k = 0,1,2,n−1,n (see Proposition 15.14
for such an example). The only cases that we will be able to study in Chapter 15
are those that are combinations of 1 and 2-forms that we can handle separately.
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For 1-forms, we easily obtain local (cf. Proposition 15.8) as well as global results
(cf. Proposition 15.10). We now give a simple theorem (a more general statement
can be found in Theorem 15.15) that deals with 3-forms obtained by product of a
1-form and a 2-form (in the same spirit, Theorem 15.12 allows to deal with some
k-forms that are product of 1 and 2-forms).

Theorem 1.39. Let n = 2m ≥ 4 be integers, x0 ∈ R
n and f be a C∞ symplectic (i.e.,

closed and with rank[ f ] = n) 2-form and a be a nonzero closed C∞ 1-form. Then
there exist a neighborhood U of x0 and ϕ ∈ Diff∞(U ;ϕ(U)) such that ϕ(x0) =
x0 and

ϕ∗(ωm) = f and ϕ∗(dxn) = a in U ,

where

ωm =
m

∑
i=1

dx2i−1 ∧dx2i.

In particular, if

G =

[
m−1

∑
i=1

dx2i−1 ∧dx2i

]
∧dxn = ωm ∧dxn,

then
ϕ∗(G) = f ∧a in U.

1.6 Hölder Spaces

Throughout the book we have used very fine properties of Hölder continuous
functions. Most of the results discussed in Chapter 16 are “standard,” but they
are scattered in the literature. There does not exist such a huge literature as the
one for Sobolev spaces. Some of the best references are Fefferman [42], Gilbarg
and Trudinger [49] and Hörmander [55].

1.6.1 Definition and Extension of Hölder Functions

We give here the definition of Hölder continuous functions (cf. Definition 16.2).

Definition 1.40. Let Ω ⊂R
n be a bounded open set, f : Ω →R and 0 < α ≤ 1. Let

[ f ]C0,α(Ω) = sup
x,y∈Ω

x �=y

{ | f (x)− f (y)|
|x− y|α

}
.

(i) The set C0,α (
Ω
)

is the set of f ∈C0
(
Ω
)

so that

‖ f‖C0,α(Ω) = ‖ f‖C0(Ω) + [ f ]C0,α(Ω) < ∞,
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where
‖ f‖C0(Ω) = sup

x∈Ω
{| f (x)|}.

If there is no ambiguity, we drop the dependence on the set Ω and write simply

‖ f‖C0,α = ‖ f‖C0 +[ f ]C0,α .

(ii) If r ≥ 1 is an integer, then the set Cr,α (
Ω
)

is the set of functions f ∈Cr
(
Ω
)

so that
[∇r f ]C0,α(Ω) < ∞.

We equip Cr,α (
Ω
)

with the following norm:

‖ f‖Cr,α (Ω) = ‖ f‖Cr(Ω) + [∇r f ]C0,α (Ω) ,

where

‖ f‖Cr(Ω) =
r

∑
m=0

‖∇m f‖C0(Ω) .

Remark 1.41. (i) Cr,α (
Ω
)

with its norm ‖·‖Cr,α is a Banach space.

(ii) If α = 0, we set
‖ f‖Cr,0 = ‖ f‖Cr .

(iii) If we assume that Ω is bounded and Lipschitz, then the norms

‖ f‖Cr,α =
r

∑
m=0

‖∇m f‖C0,α

and

‖ f‖Cr,α =

{
‖ f‖C0 +[∇r f ]C0,α if 0 < α ≤ 1
‖ f‖C0 +‖∇r f‖C0 if α = 0.

are equivalent to the one defined above. We should, however, point out that these
norms are, in general, not equivalent for very wild sets.

(iv) When α = 1, we note that C0,1
(
Ω
)

is in fact the set of Lipschitz continuous
and bounded functions.

The following result (cf. Theorem 16.11) is a remarkable extension result due to
Calderon [20] and Stein [92].

Theorem 1.42. Let Ω ⊂ R
n be a bounded open Lipschitz set. Then there exists a

continuous linear extension operator

E : Cr,α (
Ω
)→Cr,α

0 (Rn)

for any integer r ≥ 0 and any 0 ≤ α ≤ 1. More precisely, there exists a constant
C =C (r,Ω)> 0 such that for every f ∈Cr,α (

Ω
)
,
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E ( f )|Ω = f , supp [E ( f )] is compact,

‖E ( f )‖Cr,α (Rn) ≤C‖ f‖Cr,α(Ω) .

Remark 1.43. The extension is universal, in the sense that the same extension also
leads to

‖E ( f )‖Cs,β (Rn) ≤C‖ f‖Cs,β (Ω)

for any integer s and any 0 ≤ β ≤ 1, with, of course, C = C (s,Ω) as far as f ∈
Cs,β (Ω

)
. The same extension is also valid for Sobolev spaces.

1.6.2 Interpolation, Product, Composition and Inverse

We now state the interpolation theorem (cf. Theorem 16.26) that plays an essential
role in our analysis.

Theorem 1.44. Let Ω ⊂ R
n be a bounded open Lipschitz set, s ≥ r ≥ t ≥ 0 be inte-

gers and 0 ≤ α,β ,γ ≤ 1 with

t + γ ≤ r+α ≤ s+β .

Let λ ∈ [0,1] be such that

r+α = λ (s+β )+(1−λ )(t + γ) .

Then there exists a constant C =C (s,Ω)> 0 such that

‖ f‖Cr,α ≤C‖ f‖λ
Cs,β ‖ f‖1−λ

Ct,γ .

As a byproduct of the interpolation theorem, we get the following result (cf.
Theorem 16.28).

Theorem 1.45. Let Ω ⊂ R
n be a bounded open Lipschitz set, r ≥ 0 an integer and

0 ≤ α ≤ 1. Then there exists a constant C =C (r,Ω)> 0 such that

‖ f g‖Cr,α ≤C (‖ f‖Cr,α ‖g‖C0 +‖ f‖C0 ‖g‖Cr,α ) .

The next theorem (cf. Theorem 16.31) will also be intensively used.

Theorem 1.46. Let Ω ⊂ R
n, O ⊂ R

m be bounded open Lipschitz sets, r ≥ 0 an
integer and 0 ≤ α ≤ 1. Let g ∈Cr,α (

O
)

and f ∈Cr,α (
Ω ;O

)∩C1
(
Ω ;O

)
. Then

‖g◦ f‖C0,α(Ω) ≤ ‖g‖C0,α(O) ‖ f‖α
C1(Ω) +‖g‖C0(O) ,
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whereas if r ≥ 1, there exists a constant C =C (r,Ω ,O)> 0 such that

‖g◦ f‖Cr,α(Ω) ≤C
[
‖g‖Cr,α(O) ‖ f‖r+α

C1(Ω)
+‖g‖C1(O) ‖ f‖Cr,α(Ω) +‖g‖C0(O)

]
.

We easily deduce, from the previous results, an estimate on the inverse (cf. The-
orem 16.32).

Theorem 1.47. Let Ω ,O ⊂R
n be bounded open Lipschitz sets, r ≥ 1 an integer and

0 ≤ α ≤ 1. Let c > 0. Let f ∈Cr,α (
Ω ;O

)
and g ∈Cr,α (

O;Ω
)

be such that

g◦ f = id and ‖g‖C1(O) ,‖ f‖C1(Ω) ≤ c.

Then there exists a constant C =C (c,r,Ω ,O)> 0 such that

‖ f‖Cr,α (Ω) ≤C‖g‖Cr,α (O) .

1.6.3 Smoothing Operator

The next theorem (cf. Theorem 16.43) is about smoothing Cr or Cr,α functions. We
should draw the attention that in order to get the conclusions of the theorem, one
proceeds, as usual, by convolution. However, we have to choose the kernel very
carefully.

Theorem 1.48. Let Ω ⊂ R
n be a bounded open Lipschitz set. Let s ≥ r ≥ t ≥ 0 be

integers and 0 ≤ α,β ,γ ≤ 1 be such that

t + γ ≤ r+α ≤ s+β .

Let f ∈Cr,α (
Ω
)
. Then, for every 0 < ε ≤ 1, there exist a constant C =C (s,Ω)> 0

and fε ∈C∞ (
Ω
)

such that

‖ fε‖Cs,β ≤ C
ε(s+β )−(r+α)

‖ f‖Cr,α ,

‖ f − fε‖Ct,γ ≤Cε(r+α)−(t+γ) ‖ f‖Cr,α .

We also need to approximate closed forms in Cr,α (
Ω ;Λ k

)
by smooth closed

forms in a precise way (cf. Theorem 16.49).

Theorem 1.49. Let Ω ⊂ R
n be a bounded open smooth set and ν be the exterior

unit normal. Let s ≥ r ≥ t ≥ 0 with s ≥ 1 and 1 ≤ k ≤ n− 1 be integers. Let 0 <
α,β ,γ < 1 be such that

t + γ ≤ r+α ≤ s+β .



1.6 Hölder Spaces 29

Let g ∈Cr,α (
Ω ;Λ k

)
with

dg = 0 in Ω and ν ∧g ∈Cs,β (∂Ω ;Λ k+1).
Then for every ε ∈ (0,1], there exist gε ∈C∞ (

Ω ;Λ k
)∩Cs,β (Ω ;Λ k

)
and a constant

C =C (s,α ,β ,γ,Ω)> 0 such that

dgε = 0 in Ω , ν ∧gε = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈ HT

(
Ω ;Λ k),

‖gε‖Cs,β (Ω) ≤
C

ε(s+β )−(r+α)
‖g‖Cr,α(Ω) +C‖ν ∧g‖Cs,β (∂Ω) ,

‖gε −g‖Ct,γ(Ω) ≤Cε(r+α)−(t+γ) ‖g‖Cr,α(Ω) .

Remark 1.50. We recall that if Ω is contractible and since 1 ≤ k ≤ n−1, then

HT
(
Ω ;Λ k)= {0} .
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