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Preface

In the present book we study the pullback equation for differential forms

ϕ∗ (g) = f ,

namely, given two differential k-forms f and g we want to discuss the equivalence of
such forms. This turns out to be a system of nonlinear first-order partial differential
equations in the unknown map ϕ.

The problem that we study here is a particular case of the equivalence of tensors
which has received considerable attention. However, the pullback equation for dif-
ferential forms has quite different features than those for symmetric tensors, such
as Riemannian metrics, which has also been studied a great deal. In more physical
terms, the problem of equivalence of forms can also be seen as a problem of mass
transportation.

This is an important problem in geometry and in analysis. It has been extensively
studied, in the cases k = 2 and k = n, but much less when 3≤ k≤ n−1. The problem
considered here of finding normal forms (Darboux theorem, Pfaff normal form) is
a fundamental question in symplectic and contact geometry. With respect to the
literature in geometry, the main emphasis of the book is on regularity and boundary
conditions. Indeed, special attention has been given to getting optimal regularity;
this is a particularly delicate point and requires estimates for elliptic equations and
fine properties of Hölder spaces.

In the case of volume forms (i.e., k = n), our problem is clearly related to the
widely studied subject of optimal mass transportation. However, our analysis is not
in this framework. As stated before, the two main points of our analysis are that we
provide optimal regularity in Hölder spaces and, at the same time, we are able to
handle boundary conditions.

Our book will hopefully appeal to both geometers and analysts. In order to make
the subject more easily attractive for the analysts, we have reduced as much as pos-
sible the notations of geometry. For example, we have restricted our attention to
domains in R

n, but it goes without saying that all results generalize to manifolds
with or without boundary.

v



vi Preface

In Part I we gather some basic facts about exterior and differential forms that are
used throughout Parts II and IV. Most of the results are standard, but they are pre-
sented so that the reader may be able to grasp the main results of the subject without
getting too involved with the terminology and concepts of differential geometry.

Part II presents the classical Hodge decomposition following the proof of Morrey,
but with some variants, notably in our way of deriving the Gaffney inequality. We
also give applications to several versions of the Poincaré lemma that are constantly
used in the other parts of the book. Part II can be of interest independently of the
main subject of the book.

Part III discusses the case k = n. We have tried in this part to make it, as much
as possible, independent of the machinery of differential forms. Indeed, Part III can
essentially be read with no reference to the other parts of the work, except for the
properties of Hölder spaces presented in Part V.

Part IV deals with the general case. Emphasis in this part is given to the sym-
plectic case k = 2. We also briefly deal with the simpler cases k = 0,1, n− 1. The
case 3 ≤ k ≤ n−2 is much harder and we are able to obtain results only for forms
having a special structure. The difficulty is already at the algebraic level.

In Part V we gather several basic properties of Hölder spaces that are used exten-
sively throughout the book. Due to the nonlinearity of the pullback equation, Hölder
spaces are much better adapted than Sobolev spaces. The literature on Hölder spaces
is considerably smaller than the one on Sobolev spaces. Moreover, the results pre-
sented here cannot be found solely in a single reference. We hope that this part will
be useful to mathematicians well beyond those who are primarily interested in the
pullback equation.
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Chapter 1

Introduction

1.1 Statement of the Problem

The aim of this book is the study of the pullback equation

ϕ∗ (g) = f . (1.1)

More precisely, we want to find a map ϕ : Rn →R
n; preferably we want this map to

be a diffeomorphism that satisfies the above equation, where f and g are differential
k-forms, 0 ≤ k ≤ n. Most of the time we will require these two forms to be closed.
Before going further, let us examine the exact meaning of (1.1). We write

g(x) = ∑
1≤i1<···<ik≤n

gi1···ik (x)dxi1 ∧·· ·∧dxik

and similarly for f . The meaning of (1.1) is that

∑
1≤i1<···<ik≤n

gi1···ik ◦ϕ dϕ i1 ∧·· ·∧dϕ ik = ∑
1≤i1<···<ik≤n

fi1···ik dxi1 ∧·· ·∧dxik ,

where

dϕ i =
n

∑
j=1

∂ϕ i

∂x j
dx j.

This turns out to be a nonlinear (if 2 ≤ k ≤ n) homogeneous of degree k (in the
derivatives) first-order system of

(n
k

)
partial differential equations. Let us see the

form that the equation takes when k = 0,1,2,n.

Case: k = 0. Equation (1.1) reads as

g(ϕ (x)) = f (x)

while
dg = 0 ⇔ gradg = 0.

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
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We will be, only marginally, interested in this elementary case, which is trivial for
closed forms. In any case, (1.1) is not, when k = 0, a differential equation.

Case: k = 1. The form g, and analogously for f , can be written as

g(x) =
n

∑
i=1

gi (x)dxi.

Equation (1.1) then becomes

n

∑
i=1

gi (ϕ (x))dϕ i =
n

∑
i=1

fi (x)dxi

while

dg = 0 ⇔ curlg = 0 ⇔ ∂gi

∂x j
− ∂g j

∂xi
= 0, 1≤ i < j ≤ n.

Writing

dϕ i =
n

∑
j=1

∂ϕ i

∂x j
dx j

and substituting into the equation, we find that (1.1) is equivalent to

n

∑
j=1

g j (ϕ (x))
∂ϕ j

∂xi
(x) = fi (x) , 1≤ i≤ n.

This is a system of
(n

1

)
= n first-order linear (in the first derivatives) partial differ-

ential equations.
Case: k = 2. The form g, and analogously for f , can be written as

g = ∑
1≤i< j≤n

gi j (x)dxi∧dx j

while

dg = 0 ⇔ ∂gi j

∂xk
− ∂gik

∂x j
+

∂g jk

∂xi
= 0, 1≤ i < j < k ≤ n.

The equation ϕ∗ (g) = f becomes

∑
1≤p<q≤n

gpq (ϕ (x))dϕ p∧dϕq = ∑
1≤i< j≤n

fi j (x)dxi∧dx j.

We get, as before, that (1.1) is equivalent, for every 1≤ i < j ≤ n, to

∑
1≤p<q≤n

gpq (ϕ (x))
(

∂ϕ p

∂xi

∂ϕq

∂x j
− ∂ϕ p

∂x j

∂ϕq

∂xi

)
(x) = fi j (x) ,

which is a nonlinear homogeneous of degree 2 (in the derivatives) system of
(n

2

)
=

n(n−1)
2 first-order partial differential equations.
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Case: k = n. In this case we always have d f = dg = 0. By abuse of notations,
if we identify volume forms and functions, we get that the equation ϕ∗ (g) = f
becomes

g(ϕ (x))det∇ϕ (x) = f (x) .

It is then a nonlinear homogeneous of degree n (in the derivatives) first-order partial
differential equation.smallskip

The main questions that we will discuss are the following.

1) Local existence. This is the easiest question. We will handle fairly completely the
case of closed 2-forms, which is the case of the Darboux theorem. The cases of
1 and (n−1)-forms as well as the case of n-forms will also be dealt with. It will
turn out that the case 3≤ k ≤ n−2 is much more difficult and we will be able to
handle only closed k-forms with special structure.

2) Global existence. This is a much more difficult problem. We will obtain results
in the case of volume forms and of closed 2-forms.

3) Regularity. A special emphasis will be given on getting sharp regularity results.
For this reason we will have to work with Hölder spaces Cr,α , 0 < α < 1, not
with spaces Cr. Apart from the linear problems considered in Part II, we will not
deal with Sobolev spaces. In the present context the reason is that Hölder spaces
form an algebra contrary to Sobolev spaces (with low exponents).

1.2 Exterior and Differential Forms

In Chapter 2 we have gathered some algebraic results about exterior forms that are
used throughout the book.

1.2.1 Definitions and Basic Properties of Exterior Forms

Let 1≤ k ≤ n be an integer. An exterior k-form will be denoted by

f = ∑
1≤i1<···<ik≤n

fi1···ik ei1 ∧·· ·∧ eik .

The set of exterior k-forms over Rn is a vector space and is denoted Λ k(Rn) and its
dimension is

dim(Λ k(Rn)) =
(n

k

)
.

If k = 0, we set

Λ 0(Rn) = R.
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By abuse of notations, we will, when convenient and in order not to burden the
notations, identify k-forms with vectors in R

(n
k).

(i) The exterior product of f ∈ Λ k(Rn) with g ∈ Λ l(Rn), denoted by f ∧ g, is
defined as usual (cf. Definition 2.2) and it belongs to Λ k+l(Rn). The scalar product
between two k-forms f and g is denoted by

〈g; f 〉= ∑
1≤i1<···<ik≤n

gi1···ik fi1···ik .

The Hodge star operator (cf. Definition 2.9) associates to f ∈Λ k(Rn) a form (∗ f )∈
Λ n−k(Rn). We define (cf. Definition 2.11) the interior product of f ∈ Λ k(Rn) with
g ∈Λ l(Rn) by

g� f = (−1)n(k−l) ∗ (g∧ (∗ f )) .

These definitions are linked through the following elementary facts (cf. Proposition
2.16). For every f ∈Λ k(Rn), g ∈Λ k+1(Rn) and h ∈Λ 1(Rn),

|h|2 f = h�(h∧ f )+h∧ (h� f ),

〈h∧ f ;g〉= 〈 f ;h�g〉 .

(ii) Let A ∈ R
n×n be a matrix and let f ∈Λ k(Rn) be given by

f = ∑
1≤i1<···<ik≤n

fi1···ik ei1 ∧·· ·∧ eik .

We define (cf. Definition 2.17) the pullback of f by A, denoted A∗( f ), by

A∗( f ) = ∑
1≤i1<···<ik≤n

fi1···ik Ai1 ∧·· ·∧Aik ∈Λ k(Rn),

where A j is the jth row of A and is identified by

A j =
n

∑
k=1

A j
kek ∈Λ 1(Rn).

If k = 0, we then let

A∗( f ) = f .

The present definition is consistent with the one given at the beginning of the chap-
ter; just set ϕ (x) = Ax in (1.1).

(iii) We next define the notion of rank (also called rank of order 1 in Chapter 2)
of f ∈Λ k (Rn) . We first associate to the linear map

g ∈Λ 1 (Rn)→ g� f ∈Λ k−1 (Rn)
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a matrix f ∈ R

( n
k−1

)
×n such that, by abuse of notations,

g� f = f g for every g ∈Λ 1 (Rn) .

In this case, we have

g� f

= ∑
1≤ j1<···< jk−1≤n

(
k

∑
γ=1

(−1)γ−1 ∑
jγ−1<i< jγ

f j1··· jγ−1i jγ ··· jk−1 gi

)
e j1 ∧·· ·∧ e jk−1 .

More explicitly, using the lexicographical order for the columns (index below) and
the rows (index above) of the matrix f , we have

( f ) j1··· jk−1
i = fi j1··· jk−1

for 1≤ i≤ n and 1≤ j1 < · · ·< jk−1 ≤ n. The rank of the k-form f is then the rank
of the

( n
k−1

)×n matrix f (or similarly the rank of the map g→ g� f ). We then write
(in Chapter 2, we write rank1 [ f ] , but in the remaining part of the book we write
only rank [ f ])

rank [ f ] = rank
(

f
)
.

Note that only when k = 2 or k = n, the matrix f is a square matrix. We will get our
best results precisely in these cases and when the matrix f is invertible.

We then have the following elementary result (cf. Proposition 2.37).

Proposition 1.1. Let f ∈Λ k (Rn) , f �= 0.

(i) If k = 1, then the rank of f is always 1.

(ii) If k = 2, then the rank of f is even. The forms

ωm =
m

∑
i=1

e2i−1∧ e2i

are such that rank [ωm] = 2m. Moreover, rank [ f ] = 2m if and only if

f m �= 0 and f m+1 = 0,

where f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

.

(iii) If 3≤ k ≤ n, then

rank [ f ] ∈ {k,k+2, . . . ,n}

and any of the values in {k,k+2, . . . ,n} can be achieved by the rank of a k-form. In
particular, if k = n−1, then rank [ f ] = n−1, whereas if k = n, then rank [ f ] = n.
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Remark 1.2 (cf. Propositions 2.24 and 2.33). The rank is an invariant for the pull-
back equation. More precisely, if there exists A ∈ GL(n) (i.e., A is an invertible
n×n matrix) such that

A∗(g) = f ,

then
rank [g] = rank [ f ] .

Conversely, when k = 1,2,n−1,n, if rank [g] = rank [ f ] , then there exists A∈GL(n)
such that

A∗(g) = f .

However, the converse is not true, in general, if 3 ≤ k ≤ n− 2. For example (cf.
Example 2.36), when k = 3, the forms

f = e1∧ e2∧ e3 + e4∧ e5∧ e6,

g = e1∧ e2∧ e3 + e1∧ e4∧ e5 + e2∧ e4∧ e6 + e3∧ e5∧ e6

have both rank = 6, but there is no A ∈ GL(6) so that

A∗ (g) = f .

Similarly and more strikingly (cf. Example 2.35), when k = 4 and

f = e1∧ e2∧ e3∧ e4 + e1∧ e2∧ e5∧ e6 + e3∧ e4∧ e5∧ e6,

there is no A ∈ GL(6) such that

A∗( f ) =− f .

1.2.2 Divisibility

We then discuss the notion of divisibility for exterior forms. Given two integers
1≤ l ≤ k ≤ n, a k-form f and a l-form g, we want to know if we can find a (k− l)-
form u so that

f = g∧u.

This is an important question in the theory of Grassmann algebras. A well-known
result is the so called Cartan lemma (cf. Theorem 2.42).

Theorem 1.3 (Cartan lemma). Let 1 ≤ k ≤ n and f ∈ Λ k (Rn) with f �= 0. Let
1≤ l ≤ k and g1, . . . ,gl ∈Λ 1(Rn) be such that

g1∧·· ·∧gl �= 0.

Then there exists u ∈Λ k−l(Rn) verifying

f = g1∧·· ·∧gl ∧u
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if and only if
f ∧g1 = · · ·= f ∧gl = 0.

Remark 1.4. In the same spirit, the following facts can easily be proved (cf. Propo-
sition 2.43):

(i) The form f ∈Λ k(Rn) is totally divisible, meaning that there exist f1, · · · , fk ∈
Λ 1 (Rn) such that

f = f1∧·· ·∧ fk

if and only if
rank[ f ] = k.

(ii) If k is odd and if f ∈Λ k(Rn) with rank[ f ] = k+2, then there exist u∈Λ 1(Rn)
and g ∈Λ k−1(Rn) such that

f = g∧u.

Our main result (cf. Theorem 2.45 for a more general statement) will be the
following theorem obtained by Dacorogna–Kneuss [31]. It generalizes the Cartan
lemma.

Theorem 1.5. Let 0 ≤ l ≤ k ≤ n be integers. Let g ∈ Λ l(Rn) and f ∈ Λ k(Rn). The
following statements are then equivalent:

(i) There exists u ∈Λ k−l(Rn) verifying

f = g∧u.

(ii) For every h ∈Λ n−k(Rn), the following implication holds:

[h∧g = 0] ⇒ [h∧ f = 0].

1.2.3 Differential Forms

In Chapter 3 we have gathered the main notations concerning differential forms.

Definition 1.6. Let Ω ⊂ R
n be open and f ∈C1

(
Ω ;Λ k

)
, namely

f = ∑
1≤i1<···<ik≤n

f i1···ik dxi1 ∧·· ·∧dxik .

(i) The exterior derivative of f denoted d f belongs to C0
(
Ω ;Λ k+1

)
and is

defined by

d f = ∑
1≤i1<···<ik≤n

n

∑
m=1

∂ fi1···ik
∂xm

dxm∧dxi1 ∧·· ·∧dxik .

If k = n, then d f = 0.



8 1 Introduction

(ii) The interior derivative or codifferential of f denoted δ f belongs to C0
(
Ω ;

Λ k−1
)

and is defined by

δ f = (−1)n(k−1) ∗ (d (∗ f )) .

Remark 1.7. (i) If k = 0, then the operator d can be identified with the gradient
operator, while δ f = 0 for any f .

(ii) If k = 1, then the operator d can be identified with the curl operator and the
operator δ is the divergence operator.

We next gather some well-known properties of the operators d and δ (cf. Theo-
rems 3.5 and 3.7).

Theorem 1.8. Let f ∈C2(Ω ;Λ k). Then

dd f = 0, δδ f = 0 and dδ f +δd f = Δ f .

We also need the following definition. In the sequel we will denote the exterior
unit normal of ∂Ω by ν .

Definition 1.9. The tangential component of a k-form f on ∂Ω is the (k+1)-form

ν ∧ f ∈Λ k+1.

The normal component of a k-form f on ∂Ω is the (k−1)-form

ν � f ∈Λ k−1.

We easily deduce the following properties (cf. Theorem 3.23).

Proposition 1.10. Let 0≤ k ≤ n and f ∈C1
(
Ω ;Λ k

)
; then

ν ∧ f = 0 on ∂Ω ⇒ ν ∧d f = 0 on ∂Ω ,

ν � f = 0 on ∂Ω ⇒ ν �δ f = 0 on ∂Ω .

We will constantly use the integration by parts formula (cf. Theorem 3.28).

Theorem 1.11. Let 1≤ k ≤ n, f ∈C1
(
Ω ;Λ k−1

)
and g ∈C1

(
Ω ;Λ k

)
. Then∫

Ω
〈d f ;g〉+

∫
Ω
〈 f ;δg〉=

∫
∂Ω
〈ν ∧ f ;g〉=

∫
∂Ω
〈 f ;ν �g〉.

We will adopt the following notations.

Notation 1.12. Let Ω ⊂ R
n be open, r ≥ 0 be an integer and 0≤ α ≤ 1≤ p≤ ∞.

Spaces with vanishing tangential or normal component will be denoted in the fol-
lowing way:
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Cr,α
T

(
Ω ;Λ k)= { f ∈Cr,α(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

Cr,α
N

(
Ω ;Λ k)= { f ∈Cr,α(Ω ;Λ k) : ν � f = 0 on ∂Ω},

W r+1,p
T

(
Ω ;Λ k)= { f ∈W r+1,p(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

W r+1,p
N

(
Ω ;Λ k)= { f ∈W r+1,p(Ω ;Λ k) : ν � f = 0 on ∂Ω}.

The different sets of harmonic fields will be denoted by

H
(
Ω ;Λ k)= { f ∈W 1,2(Ω ;Λ k) : d f = 0 and δ f = 0 in Ω},

HT
(
Ω ;Λ k)= { f ∈H

(
Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

HN
(
Ω ;Λ k)= { f ∈H

(
Ω ;Λ k) : ν � f = 0 on ∂Ω}.

We now list (cf. Section 6.1) some properties of the harmonic fields.

Theorem 1.13. Let Ω ⊂ R
n be an open set. Then

H
(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Moreover if Ω is bounded and smooth, then the next statements are valid.
(i) The following inclusion holds:

HT
(
Ω ;Λ k)∪HN

(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Furthermore, if r ≥ 0 is an integer and 0 ≤ α ≤ 1, then there exists C = C(r,Ω)
such that for every ω ∈HT

(
Ω ;Λ k

)∪HN
(
Ω ;Λ k

)
,

‖ω‖W r,2 ≤C‖ω‖L2 and ‖ω‖Cr,α ≤C‖ω‖C0 .

(ii) The spaces HT
(
Ω ;Λ k

)
and HN

(
Ω ;Λ k

)
are finite dimensional and closed

in L2
(
Ω ;Λ k

)
.

(iii) Furthermore, if Ω is contractible (cf. Definition 6.1), then

HT
(
Ω ;Λ k)= {0} if 0≤ k ≤ n−1,

HN
(
Ω ;Λ k)= {0} if 1≤ k ≤ n.

(iv) If k = 0 or k = n and h ∈H
(
Ω ;Λ k

)
, then h is constant on each connected

component of Ω . In particular, HT
(
Ω ;Λ 0

)
= {0} and HN (Ω ;Λ n) = {0}.

Remark 1.14. If k = 1 and assuming that Ω is smooth, then the sets HT and HN
can be rewritten, as usual by abuse of notations, as

HT
(
Ω ;Λ 1)=

{
f ∈C∞ (

Ω ;Rn) :

[
curl f = 0 and div f = 0

fiν j− f jνi = 0, ∀1≤ i < j ≤ n

}
,

HN
(
Ω ;Λ 1)=

{
f ∈C∞ (

Ω ;Rn) :

[
curl f = 0 and div f = 0

∑n
i=1 fiνi = 0

}
.
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Moreover, if Ω is simply connected, then

HT
(
Ω ;Λ 1)= HN

(
Ω ;Λ 1)= {0}.

1.3 Hodge–Morrey Decomposition and Poincaré Lemma

1.3.1 A General Identity and Gaffney Inequality

In the proof of Morrey of the Hodge decomposition, one of the key points to get
compactness is the following inequality (cf. Theorem 5.16).

Theorem 1.15 (Gaffney inequality). Let Ω ⊂ R
n be a bounded open smooth set.

Then there exists a constant C =C(Ω)> 0 such that

‖ω‖2
W 1,2 ≤C

(‖dω‖2
L2 +‖δω‖2

L2 +‖ω‖2
L2

)
for every ω ∈W 1,2

T (Ω ;Λ k)∪W 1,2
N (Ω ;Λ k).

Remark 1.16. When k = 1, the inequality says, identifying 1-forms with vector
fields,

‖ω‖2
W 1,2 ≤C

(‖curlω‖2
L2 +‖divω‖2

L2 +‖ω‖2
L2

)
for every ω ∈W 1,2(Ω ;Rn) satisfying either one of the following two conditions:

ν ∧ω = 0 ⇔ ωiν j−ω jνi = 0, ∀1≤ i < j ≤ n,

ν �ω = 〈ν ;ω〉=
n

∑
i=1

ωiνi = 0.

The inequality, as stated above, has been proved by Morrey [76, 77], generalizing
results of Gaffney [44, 45]. We will prove in Section 5.3 the inequality appealing to
a very general identity (see Theorem 5.7) proved by Csató and Dacorogna [24].

Theorem 1.17 (A general identity). Let 0 ≤ k ≤ n and let Ω ⊂ R
n be a bounded

open smooth set and with exterior unit normal ν . Then every α,β ∈ C1(Ω ;Λ k)
satisfy the equation∫

Ω
(〈dα;dβ 〉+ 〈δα;δβ 〉−〈∇α;∇β 〉)

=−
∫

∂Ω
(〈ν ∧d(ν �α);ν ∧β 〉+ 〈ν �δ (ν ∧α);ν �β 〉)

+
∫

∂Ω
(〈Lν(ν ∧α);ν ∧β 〉+ 〈Kν(ν �α);ν �β 〉) .

The operators Lν and Kν (cf. Definition 5.1) can be seen as matrices acting on
(k+1)-forms and (k−1)-forms respectively (identifying, as usual, a k-form with
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a
(n

k

)
vector). They depend only on the geometry of Ω and on the degree k of the

form. They can easily be calculated explicitly for general k-forms and, when Ω is a
ball of radius R (cf. Corollary 5.9), it turns out that

Lν(ν ∧ω) =
k
R

ν ∧ω and Kν (ν �ω) =
n− k

R
ν �ω

and, thus,

〈Lν(ν ∧ω);ν ∧ω〉= k
R
|ν ∧ω|2 and 〈Kν(ν �ω);ν �ω〉= n− k

R
|ν �ω|2.

In the case of a 1-form and for general open sets Ω (cf. Proposition 5.11), it can
be shown that Kν is a scalar and it is a multiple of κ, the mean curvature of the
hypersurface ∂Ω , namely

Kν = (n−1)κ.

Summarizing the results for a 1-form ω in R
n (cf. Corollary 5.12) with vanishing

tangential component (i.e., ν ∧ω = 0 on ∂Ω ), we have∫
Ω

(
|curlω|2 + |divω|2−|∇ω|2

)
= (n−1)

∫
∂Ω

κ [〈ν ;ω〉]2 ,

where κ is the mean curvature of the hypersurface ∂Ω and 〈.; .〉 denotes the scalar
product in R

n.

1.3.2 The Hodge–Morrey Decomposition

We now turn to the celebrated Hodge–Morrey decomposition (cf. Theorem 6.9).

Theorem 1.18 (Hodge–Morrey decomposition). Let Ω ⊂ R
n be a bounded open

smooth set. Let 0≤ k ≤ n and f ∈ L2
(
Ω ;Λ k

)
. Then there exist

α ∈W 1,2
T

(
Ω ;Λ k−1), β ∈W 1,2

T

(
Ω ;Λ k+1),

h ∈HT
(
Ω ;Λ k) and ω ∈W 2,2

T

(
Ω ;Λ k)

such that, in Ω ,

f = dα +δβ +h, α = δω and β = dω.

Remark 1.19. (i) We have quoted only one of the three decompositions (cf. Theorem
6.9 for details). Another one, completely similar, is by replacing T by N and the
other one mixing both T and N.

(ii) If k ≤ n−1 and if Ω is contractible, then h = 0.
(iii) If k = 0, then the theorem reads as

f = δβ = δdω = Δω in Ω with ω = 0 on ∂Ω .
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(iv) When k = 1 and n = 3, the decomposition reads as follows. Let ν be the
exterior unit normal. For any f ∈ L2(Ω ;R3), there exist

ω ∈W 2,2 (Ω ;R3) with ωiν j−ω jνi = 0 on ∂Ω , ∀1≤ i < j ≤ 3

α ∈W 1,2
0 (Ω) and α = divω,

β ∈W 1,2 (Ω ;R3) with β =−curlω and 〈ν ;β 〉= 0 on ∂Ω

h ∈
{

h ∈C∞ (
Ω ;R3) :

[
curlh = 0 and divh = 0

hiν j−h jνi = 0, ∀1≤ i < j ≤ 3

}

such that
f = gradα + curlβ +h in Ω .

Furthermore, if Ω is simply connected, then h = 0.

(v) If f is more regular than in L2, then α,β and ω are in the corresponding class
of regularity (cf. Theorem 6.12). More precisely if, for example, r ≥ 0 is an integer,
0 < q < 1 and f ∈Cr,q(Ω ;Λ k), then

α ∈Cr+1,q(Ω ;Λ k−1), β ∈Cr+1,q(Ω ;Λ k+1) and ω ∈Cr+2,q(Ω ;Λ k).
(vi) The proof of Morrey (cf. Theorem 6.7) uses the direct methods of the calcu-

lus of variations. One minimizes

D f (ω) =
∫

Ω

(
1
2
|dω|2 + 1

2
|δω|2 + 〈 f ;ω〉

)

in an appropriate space, Gaffney inequality giving the coercivity of the integral.

1.3.3 First-Order Systems of Cauchy–Riemann Type

It turns out that the Hodge–Morrey decomposition is in fact equivalent (cf. Proposi-
tion 7.9) to solving the first-order system{

dω = f and δω = g in Ω ,

ν ∧ω = ν ∧ω0 on ∂Ω

or the similar one, {
dω = f and δω = g in Ω ,

ν �ω = ν �ω0 on ∂Ω .

Both systems are discussed in Theorems 7.2 and 7.4. We here state a simplified
version of the first one.
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Theorem 1.20. Let r ≥ 0 and 1 ≤ k ≤ n− 2 be integers, 0 < q < 1 and Ω ⊂ R
n

be a bounded contractible open smooth set and with exterior unit normal ν . Let
g ∈Cr,q

(
Ω ;Λ k−1

)
and f ∈Cr,q

(
Ω ;Λ k+1

)
be such that

δg = 0 in Ω , d f = 0 in Ω and ν ∧ f = 0 on ∂Ω .

Then there exists ω ∈Cr+1,q
(
Ω ;Λ k

)
, such that{

dω = f and δω = g in Ω ,

ν ∧ω = 0 on ∂Ω .

Remark 1.21. (i) It turns out that the sufficient conditions are also necessary (cf.
Theorems 7.2 and 7.4).

(ii) When k = n−1, the result is valid provided∫
Ω

f = 0.

Note that in this case the conditions d f = 0 and ν∧ f = 0 are automatically fulfilled.

(iii) Completely analogous results are given in Theorems 7.2 and 7.4 for Sobolev
spaces.

(iv) If Ω is not contractible, then additional necessary conditions have to be
added.

(v) When k= 1 and n= 3, the theorem reads as follows. Let Ω ⊂R
3 be a bounded

contractible smooth open set, g ∈Cr,q
(
Ω
)

and f ∈Cr,q
(
Ω ;R3

)
be such that

div f = 0 in Ω and 〈 f ;ν〉= 0 on ∂Ω .

Then there exists ω ∈Cr+1,q
(
Ω ;R3

)
such that{

curlω = f and divω = g in Ω ,

ωiν j−ω jνi = 0 ∀1≤ i < j ≤ 3 on ∂Ω .

1.3.4 Poincaré Lemma

We start with the classical Poincaré lemma (cf. Theorem 8.1).

Theorem 1.22 (Poincaré lemma). Let r ≥ 1 and 0 ≤ k ≤ n− 1 be integers and
Ω ⊂ R

n be an open contractible set. Let g ∈Cr
(
Ω ;Λ k+1

)
with dg = 0 in Ω . Then

there exists G ∈Cr
(
Ω ;Λ k

)
such that

dG = g in Ω .
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With the help of the Hodge–Morrey decomposition, the result can be improved
(cf. Theorem 8.3) in two directions. First, one can consider general sets Ω , not
only contractible sets. Moreover, one can get sharp regularity in Hölder and in
Sobolev spaces. We quote here only the case of Hölder spaces. We also give the
theorem with the d operator. Analogous results are also valid for the δ operator; see
Theorem 8.4.

Theorem 1.23. Let r ≥ 0 and 0 ≤ k ≤ n− 1 be integers, 0 < α < 1 and Ω ⊂ R
n

be a bounded open smooth set. Let f : Ω → Λ k+1. The following statements are
equivalent:

(i) Let f ∈Cr,α (
Ω ;Λ k+1

)
be such that

d f = 0 in Ω and
∫

Ω
〈 f ;ψ〉= 0 for every ψ ∈HN

(
Ω ;Λ k+1).

(ii) There exists ω ∈Cr+1,α (
Ω ;Λ k

)
such that

dω = f in Ω .

Remark 1.24. (i) When k = n−1, there is no restriction on the solvability of dω = f .

(ii) Recall that if Ω is contractible and 0≤ k ≤ n−1, then

HN
(
Ω ;Λ k+1)= {0}.

We finally consider the boundary value problems{
dω = f in Ω ,

ω = ω0 on ∂Ω
and

{
δω = g in Ω ,

ω = ω0 on ∂Ω .

We give a result for the first one and for ω0 = 0 (cf. Theorem 8.16 for general
ω0), but a similar one (cf. Theorem 8.18) exists for the second problem. We only
discuss the case of Hölder spaces, but the result is also valid in Sobolev spaces (see
Theorems 8.16 and 8.18 for details).

Theorem 1.25. Let r ≥ 0 and 0 ≤ k ≤ n− 1 be integers, 0 < α < 1 and Ω ⊂ R
n

be a bounded open smooth set and with exterior unit normal ν . Then the following
statements are equivalent:

(i) Let f ∈Cr,α (
Ω ;Λ k+1

)
satisfy

d f = 0 in Ω , ν ∧ f = 0 on ∂Ω ,

and, for every χ ∈HT
(
Ω ;Λ k+1

)
,∫

Ω
〈 f ; χ〉= 0.
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(ii) There exists ω ∈Cr+1,α (
Ω ;Λ k

)
such that{

dω = f in Ω ,

ω = 0 on ∂Ω .

1.4 The Case of Volume Forms

1.4.1 Statement of the Problem

In Part III, we will discuss the following problem. Given Ω a bounded open set
in R

n and f ,g : Rn → R, we want to find ϕ : Ω → R
n verifying{

g(ϕ(x))det∇ϕ(x) = f (x) x ∈Ω ,

ϕ(x) = x x ∈ ∂Ω .
(1.2)

Writing the functions f and g as volume forms through the straightforward
identification

g = g(x)dx1∧·· ·∧dxn and f = f (x)dx1∧·· ·∧dxn,

problem (1.2) can be written as{
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω ,

where ϕ∗(g) is the pullback of g by ϕ.
The following preliminary remarks are in order.

(i) The case n = 1 is completely elementary and is discussed in Section 1.4.2.

(ii) When n≥ 2, the equation in (1.2) is a nonlinear first-order partial differential
equation homogeneous of degree n in the derivatives. It is underdetermined, in the
sense that we have n unknowns (the components of ϕ) and only one equation. Re-
lated to this observation, we have that if there exists a solution to our problem, then
there are infinitely many ones. Indeed, for example, if n = 2, Ω is the unit ball and
f = g = 1, the maps ϕm (written in polar and in Cartesian coordinates) defined by

ϕm (x) = ϕm (x1,x2) =

(
r cos

(
θ +2mπr2

)
r sin

(
θ +2mπr2

)
)

=

(
x1 cos

(
2mπ

(
x2

1 + x2
2
))− x2 sin

(
2mπ

(
x2

1 + x2
2
))

x2 cos
(
2mπ

(
x2

1 + x2
2
))

+ x1 sin
(
2mπ

(
x2

1 + x2
2
))

)

satisfy (1.2) for every m ∈ Z.
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(iii) An integration by parts, or, what amounts to the same thing, an elementary
topological degree argument (see (19.3)), immediately gives the necessary condition
(independently of the fact that ϕ is a diffeomorphism or not and of the fact that
ϕ (Ω) contains strictly or not Ω ) ∫

Ω
f =

∫
Ω

g. (1.3)

In most of our analysis, it will turn out that this condition is also sufficient.

(iv) We will always assume that g> 0. If g is not strictly positive, then hypotheses
other than (1.3) are necessary; for example, f cannot be strictly positive. Indeed if,
for example, f ≡ 1 and g is allowed to vanish even at a single point, then no C1

solution of our problem exists (cf. Proposition 11.6). However, in a very special
case (cf. Lemma 11.21), we will deal with functions f and g that both change sign.

(v) We will, however, allow f to change sign, but the analysis is very different if
f > 0 or if f vanishes, even at a single point, let alone if it becomes negative. The
first problem will be discussed in Chapter 10, whereas the second one will be dealt
with in Chapter 11. One of the main differences is that in the first case, any solution
of (1.2) is necessarily a diffeomorphism (cf. Theorem 19.12), whereas this is never
true in the second case.

(vi) It is easy to see (cf. Corollary 19.4) that any solution of (1.2) satisfies

ϕ(Ω)⊃Ω and ϕ(Ω)⊃Ω . (1.4)

If f > 0, we have, since ϕ is a diffeomorphism, that (cf. Theorem 19.12)

ϕ(Ω) = Ω and ϕ(Ω) = Ω .

If this is not the case, then, in general, the inclusions can be strict. We will discuss
in Chapter 11 this matter in details.

(vii) Problem (1.2) admits a weak formulation. Indeed, if ϕ is a diffeomorphism,
we can write (cf. Theorem 19.7) the equation g(ϕ)det∇ϕ = f as∫

ϕ(E)
g =

∫
E

f for every open set E ⊂Ω

or, equivalently, ∫
Ω

gζ
(
ϕ−1)= ∫

Ω
f ζ for every ζ ∈C∞

0 (Ω) .

We observe that both new writings make sense if ϕ is only a homeomorphism.

(viii) The problem can be seen as a question of mass transportation. Indeed, we
want to transport the mass distribution g to the mass distribution f without moving
the points of the boundary of Ω . In this context, the equation is usually written as
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E

g =
∫

ϕ−1(E)
f for every open set E ⊂Ω .

The problem of optimal mass transportation has received considerable attention.
We should point out that our analysis is not in this framework. The two main strong
points of our analysis are that we are able to find smooth solutions, sometimes with
the optimal regularity and to deal with fixed boundary data.

1.4.2 The One-Dimensional Case

As already stated, the case n = 1 is completely elementary (cf. Proposition 11.4),
but it exhibits some striking differences with the case n ≥ 2. However, it may shed
some light on some issues that we will discuss in the higher-dimensional case. Let
Ω = (a,b) ,

F (x) =
∫ x

a
f (t)dt and G(x) =

∫ x

a
g(t)dt.

Then problem (1.2) becomes{
G(ϕ (x)) = F (x) if x ∈ (a,b) ,

ϕ (a) = a and ϕ (b) = b.

If G is invertible and this happens if, for example, g > 0 and if

F ([a,b])⊂ G(R) , (1.5)

and this happens if, for example, g≥ g0 > 0, then the problem has the solution

ϕ (x) = G−1 (F (x)) .

The necessary condition (1.3)

∫ b

a
f =

∫ b

a
g

ensures that

ϕ (a) = a and ϕ (b) = b.

This very elementary analysis leads to the following conclusions:

1) Contrary to the case n≥ 2, the necessary condition (1.3) is not sufficient. We
need the extra condition (1.5); see Proposition 11.4 for details.

2) The problem has a unique solution, contrary to the case n≥ 2.

3) If f and g are in the space Cr, then the solution ϕ is in Cr+1.
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4) If f > 0, then ϕ is a diffeomorphism from [a,b] onto itself.
5) If f is allowed to change sign, then, in general,

[a,b]⊂
�=

ϕ ([a,b]) .

For example, this always happens if f (a)< 0 or f (b)< 0.

1.4.3 The Case f ·g > 0

In Chapter 10 we will study problem (1.2) when f ·g > 0. It will be seen that (1.3)
is sufficient to solve (1.2) and that any solution is in fact a diffeomorphism from Ω
to Ω (see Theorem 19.12). This last observation implies, in particular, a symmetry
in f and g and allows us to restrict ourselves, without loss of generality, to the case
g≡ 1. Our main result (cf. Theorem 10.3) will be the following.

Theorem 1.26 (Dacorogna–Moser theorem). Let r≥ 0 be an integer and 0 < α <
1. Let Ω ⊂ R

n be a bounded connected open smooth set. Then the two following
statements are equivalent:

(i) The function f ∈Cr,α (
Ω
)
, f > 0 in Ω and satisfies∫

Ω
f = measΩ .

(ii) There exists ϕ ∈ Diffr+1,α (
Ω ;Ω

)
satisfying{

det∇ϕ (x) = f (x) x ∈Ω ,

ϕ (x) = x x ∈ ∂Ω .

Furthermore, if c > 0 is such that∥∥∥∥ 1
f

∥∥∥∥
C0

, ‖ f‖C0,α ≤ c,

then there exists a constant C =C (c,r,α,Ω)> 0 such that

‖ϕ− id‖Cr+1,α ≤C‖ f −1‖Cr,α .

The study of this problem originated in the seminal work of Moser [78]. The
above optimal theorem was obtained by Dacorogna and Moser [33]. Burago and
Kleiner [19] and Mc Mullen [73], independently, proved that the result is false
if r = α = 0, suggesting that the gain of regularity is to be expected only when
0 < α < 1.

In Section 10.5 (cf. Theorem 10.11), we present a different approach proposed
by Dacorogna and Moser [33] to solve our problem. This method is constructive and
does not use the regularity of elliptic differential operators; in this sense, it is more
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elementary. The drawback is that it does not provide any gain of regularity, which
is the strong point of the above theorem. However, the advantage is that it is much
more flexible. For example, if we assume in (1.2) that

supp( f −g)⊂Ω ,

then we will be able to find ϕ such that

supp(ϕ− id)⊂Ω .

This type of result, unreachable by the method of elliptic partial differential equa-
tions, will turn out to be crucial in Chapter 11.

1.4.4 The Case with No Sign Hypothesis on f

In Chapter 11, we discuss the case where the function f is allowed to change sign
and we will follow Cupini, Dacorogna and Kneuss [25]. As already pointed out, we
will however (apart from a very special case) assume that g > 0. In fact, contrary to
the case f ·g > 0, the problem is no longer symmetric in f and g.

We start by observing that if f vanishes even at a single point, then the solution ϕ
cannot be a diffeomorphism, although it can be a homeomorphism. In any case, if f
is negative somewhere, it can never be a homeomorphism (see Proposition 19.14).
Furthermore, if f is negative in some parts of the boundary, then any solution ϕ
must go out of the domain (see Proposition 11.3); more precisely,

Ω ⊂
�=

ϕ(Ω).

A special case of our theorem (cf. Theorem 11.1) is the following.

Theorem 1.27. Let n≥ 2 and r ≥ 1 be integers. Let B1 ⊂ R
n be the open unit ball.

Let f ∈Cr(B1) be such that ∫
B1

f = measB1 .

Then there exists ϕ ∈Cr(B1;Rn) satisfying{
det∇ϕ (x) = f (x) x ∈ B1,

ϕ (x) = x x ∈ ∂B1 .

Furthermore, the following conclusions also hold:
(i) If either f > 0 on ∂B1 or f ≥ 0 in B1 , then ϕ can be chosen so that

ϕ(B1) = B1 .

(ii) If f ≥ 0 in B1 and f−1(0)∩ B1 is countable, then ϕ can be chosen as a
homeomorphism from B1 onto B1 .
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1.5 The Case 0≤ k≤ n−1

Having dealt with the case k = n, we now discuss the equation

ϕ∗ (g) = f

when 0 ≤ k ≤ n− 1. The cases k = 0,1,n− 1 are the simplest ones. The most im-
portant results of Part IV are for the case k = 2, where we obtain not only a local
result but also a global one; we, moreover, obtain sharp regularity results for both
cases. The case 3≤ k≤ n−2 is considerably harder, even at the algebraic level and
we will be able to obtain results only for forms having a special structure.

We first point out the following necessary conditions (cf. Proposition 17.1).

Proposition 1.28. Let Ω ⊂ R
n be a bounded open smooth set and ϕ ∈ Diff1 (Ω ;

ϕ
(
Ω
))
. Let 1≤ k ≤ n, f ∈C1

(
Ω ;Λ k

)
and g ∈C1

(
ϕ
(
Ω
)
;Λ k

)
be such that

ϕ∗ (g) = f in Ω .

(i) For every x ∈Ω ,

rank [g(ϕ (x))] = rank [ f (x)] and rank [dg(ϕ (x))] = rank [d f (x)] .

In particular,

dg = 0 in ϕ (Ω) ⇔ d f = 0 in Ω .

(ii) If ϕ (x) = x for x ∈ ∂Ω , then

ν ∧ f = ν ∧g on ∂Ω ,

where ν is the exterior unit normal to Ω .

If we drop the condition that ϕ is a diffeomorphism, then the rank is, in general,
not conserved. We have already seen such a phenomenon when k = n in Theo-
rem 1.27.

1.5.1 The Flow Method

One of the simplest and most elegant tools that we will use for the pullback equation
is Theorem 12.7 and it was first established by Moser in [78], who, however, dealt
only with manifolds without boundary. Its main drawback is that it does not provide
the expected gain in regularity.

Theorem 1.29. Let r ≥ 1 and 0≤ k ≤ n be integers, 0≤ α ≤ 1, T > 0 and Ω ⊂R
n

be a bounded open Lipschitz set. Let
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u ∈Cr,α([0,T ]×Ω ;Rn), u = u(t,x) = ut(x),

f ∈Cr,α([0,T ]×Ω ;Λ k), f = f (t,x) = ft(x)

be such that for every t ∈ [0,T ],

ut = 0 on ∂Ω , d ft = 0 in Ω and d(ut � ft) =− d
dt

ft in Ω .

Then for every t ∈ [0,T ], the solution ϕt of⎧⎨
⎩

d
dt

ϕt = ut ◦ϕt , 0≤ t ≤ T

ϕ0 = id

belongs to Diffr,α (
Ω ;Ω

)
, satisfies ϕt = id on ∂Ω and

ϕ∗t ( ft) = f0 in Ω .

1.5.2 The Cases k=0 and k=1

We start with the case k = 0, which is particularly elementary. We have for example
the following local result (cf. Theorem 13.1). For a global result, see Theorem 13.2.

Theorem 1.30. Let r ≥ 1 be an integer, x0 ∈ R
n and f ,g ∈Cr in a neighborhood of

x0 and such that f (x0) = g(x0) ,

∇ f (x0) �= 0 and ∇g(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr (U ;ϕ (U)) such that

ϕ∗ (g) = f in U and ϕ (x0) = x0 .

The results for k = 0 extend in a straightforward way to the case of closed 1-forms
(cf. Corollaries 13.3 and 13.5).

We now give a theorem (cf. Theorems 13.8 and 13.10) for nonclosed 1-forms. It
can be considered as the 1-form version of the Darboux theorem. We will see below
that it is equivalent to the Darboux theorem for closed 2-forms.

Theorem 1.31. Let 2≤ 2m≤ n be integers, x0 ∈R
n and ω be a C∞ 1-form such that

ω(x0) �= 0 and
rank[dω] = 2m in a neighborhood of x0 .

Then there exist an open set U and

ϕ ∈ Diff∞(U ;ϕ (U))
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such that ϕ (U) is a neighborhood of x0 and

ϕ∗(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

∑
i=1

x2i−1dx2i if ω ∧ (dω)m = 0 in a neighborhood of x0

m

∑
i=1

x2i−1dx2i +dx2m+1 if ω ∧ (dω)m �= 0 in a neighborhood of x0 .

Remark 1.32. (i) In the theorem, we have adopted the notation

(dω)m = dω ∧·· ·∧dω︸ ︷︷ ︸
m times

.

(ii) Note that if n = 2m, then ω ∧ (dω)m ≡ 0.

1.5.3 The Case k = 2

Our best results besides the ones for volume forms are in the case k = 2.
We start with two local results. The first one is the celebrated Darboux theorem,

but as stated it is due to Bandyopadhyay and Dacorogna [8] (cf. Theorem 14.1). The
difference between the following theorem and all of the classical ones is in terms
of regularity of the diffeomorphism. We provide the optimal possible regularity in
Hölder spaces; the other ones give only that if ω ∈Cr,α , then ϕ ∈Cr,α .

Theorem 1.33. Let r ≥ 0 and n = 2m ≥ 4 be integers. Let 0 < α < 1 and x0 ∈ R
n.

Let ωm be the standard symplectic form of rank[ωm] = 2m = n,

ωm =
m

∑
i=1

dx2i−1∧dx2i.

Let ω be a 2-form. The two following statements are then equivalent:

(i) The 2-form ω is closed, is in Cr,α in a neighborhood of x0 and verifies

rank [ω (x0)] = n.

(ii) There exist a neighborhood U of x0 and ϕ ∈ Diffr+1,α(U ;ϕ (U)) such that

ϕ∗ (ωm) = ω in U and ϕ (x0) = x0 .

One possible proof of the theorem could be to use Theorem 1.31 with n = 2m
(cf. Remark 13.7 for details). We, however, will go the other way around and prove
Theorem 1.31 using Theorem 1.33.

We next discuss the case of forms of lower rank. This is also well known in the
literature. However, our theorem (cf. Theorem 14.3, proved in [9] by Bandyopad-
hyay, Dacorogna and Kneuss) provides, as the previous theorem, one class higher



1.5 The Case 0≤ k ≤ n−1 23

degree of regularity than the other results. Indeed, in all other theorems it is proved
that if ω ∈Cr,α , then ϕ ∈Cr−1,α . It may appear that the theorem below is still not
optimal, since it only shows that ϕ ∈Cr,α when ω ∈Cr,α . However, since there are
some missing variables, it is probably the best possible regularity.

Theorem 1.34. Let n≥ 3, r,m≥ 1 be integers and 0 < α < 1. Let x0 ∈ R
n and ωm

be the standard symplectic form of rank [ωm] = 2m < n, namely

ωm =
m

∑
i=1

dx2i−1∧dx2i.

Let ω be a Cr,α closed 2-form such that

rank [ω] = 2m in a neighborhood of x0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr,α(U ;ϕ (U)) such that

ϕ∗ (ωm) = ω in U and ϕ (x0) = x0 .

We now turn to a global result (cf. Theorem 14.5). It has been obtained under
slightly more restrictive hypotheses by Bandyopadhyay and Dacorogna [8] and as
stated by Dacorogna and Kneuss [32]. The theorem provides the first global result
on manifolds with boundary. It is also nearly optimal.

Theorem 1.35. Let n > 2 be even and Ω ⊂ R
n be a bounded open smooth set with

exterior unit normal ν . Let 0<α < 1 and r≥ 1 be an integer. Let f ,g∈Cr,α(Ω ;Λ 2)
satisfying d f = dg = 0 in Ω ,

ν ∧ f ,ν ∧g ∈Cr+1,α (
∂Ω ;Λ 3) , ν ∧ f = ν ∧g on ∂Ω ,∫

Ω
〈 f ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈HT

(
Ω ;Λ 2) (1.6)

and, for every t ∈ [0,1] ,

rank [tg+(1− t) f ] = n in Ω .

Then there exists ϕ ∈ Diffr+1,α (
Ω ;Ω

)
such that{

ϕ∗ (g) = f in Ω ,

ϕ = id on ∂Ω .

Remark 1.36. (i) In a similar way, we can consider a general homotopy ft with f0 =
f , f1 = g, provided

d ft = 0, ν ∧ ft = ν ∧ f0 on ∂Ω and rank [ ft ] = n in Ω ,∫
Ω
〈 ft ;ψ〉=

∫
Ω
〈 f0;ψ〉 for every ψ ∈HT

(
Ω ;Λ 2).
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(ii) If Ω is contractible, then HT
(
Ω ;Λ 2

)
= {0} and, therefore, (1.6) is automat-

ically satisfied.

1.5.4 The Case 3≤ k≤ n−1

The presentation in Chapter 15 follows closely the results of Bandyopadhyay,
Dacorogna and Kneuss [9]. We start with the case k = n− 1. We have as a con-
sequence of Theorems 15.3 and 15.5 the following result.

Theorem 1.37. Let x0 ∈ R
n and f be a (n−1)-form such that f ∈ C∞ in a neigh-

borhood of x0 and f (x0) �= 0. Then there exist a neighborhood U of x0 and

ϕ ∈ Diff∞(U ;ϕ (U))

such that ϕ satisfies one of the two following equations in U:
(i) If d f = 0 in a neighborhood of x0, then

f = ∇ϕ1∧·· ·∧∇ϕn−1 = ϕ∗
(
dx1∧·· ·∧dxn−1) .

(ii) If d f (x0) �= 0, then

f = ϕn (∇ϕ1∧·· ·∧∇ϕn−1)= ϕ∗
(
xn dx1∧·· ·∧dxn−1) .

Remark 1.38. (i) The present theorem, when d f = 0, is a consequence of Theorem
15.1, which is valid for k-forms of rank k.

(ii) With our usual abuse of notations, identifying a (n−1)-form with a vector
field and observing that the d operator can then be essentially identified with the
divergence operator, we can rewrite the theorem as follows (cf. Corollaries 15.4 and
15.7). For any C∞ vector field f such that f (x0) �= 0, there exist an open set U and

ϕ ∈ Diff∞(U ;ϕ (U))

such that ϕ (U) is a neighborhood of x0 and

f =

{
∗(∇ϕ1∧·· ·∧∇ϕn−1

)
if div f = 0

∗(ϕn
(
∇ϕ1∧·· ·∧∇ϕn−1

))
if div f �= 0,

where ∗ denotes the Hodge ∗ operator.

We now turn to the case 3≤ k≤ n−2, which is, as already said, much more dif-
ficult. This is so already at the algebraic level, since there are no known canonical
forms. Additionally, even when the algebraic setting is simple, the analytical situa-
tion is more complicated than in the cases k = 0,1,2,n−1,n (see Proposition 15.14
for such an example). The only cases that we will be able to study in Chapter 15
are those that are combinations of 1 and 2-forms that we can handle separately.
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For 1-forms, we easily obtain local (cf. Proposition 15.8) as well as global results
(cf. Proposition 15.10). We now give a simple theorem (a more general statement
can be found in Theorem 15.15) that deals with 3-forms obtained by product of a
1-form and a 2-form (in the same spirit, Theorem 15.12 allows to deal with some
k-forms that are product of 1 and 2-forms).

Theorem 1.39. Let n = 2m≥ 4 be integers, x0 ∈ R
n and f be a C∞ symplectic (i.e.,

closed and with rank[ f ] = n) 2-form and a be a nonzero closed C∞ 1-form. Then
there exist a neighborhood U of x0 and ϕ ∈ Diff∞(U ;ϕ(U)) such that ϕ(x0) =
x0 and

ϕ∗(ωm) = f and ϕ∗(dxn) = a in U ,

where

ωm =
m

∑
i=1

dx2i−1∧dx2i.

In particular, if

G =

[
m−1

∑
i=1

dx2i−1∧dx2i

]
∧dxn = ωm∧dxn,

then
ϕ∗(G) = f ∧a in U.

1.6 Hölder Spaces

Throughout the book we have used very fine properties of Hölder continuous
functions. Most of the results discussed in Chapter 16 are “standard,” but they
are scattered in the literature. There does not exist such a huge literature as the
one for Sobolev spaces. Some of the best references are Fefferman [42], Gilbarg
and Trudinger [49] and Hörmander [55].

1.6.1 Definition and Extension of Hölder Functions

We give here the definition of Hölder continuous functions (cf. Definition 16.2).

Definition 1.40. Let Ω ⊂R
n be a bounded open set, f : Ω →R and 0 < α ≤ 1. Let

[ f ]C0,α(Ω) = sup
x,y∈Ω

x �=y

{ | f (x)− f (y)|
|x− y|α

}
.

(i) The set C0,α (
Ω
)

is the set of f ∈C0
(
Ω
)

so that

‖ f‖C0,α(Ω) = ‖ f‖C0(Ω) + [ f ]C0,α(Ω) < ∞,
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where
‖ f‖C0(Ω) = sup

x∈Ω
{| f (x)|}.

If there is no ambiguity, we drop the dependence on the set Ω and write simply

‖ f‖C0,α = ‖ f‖C0 +[ f ]C0,α .

(ii) If r ≥ 1 is an integer, then the set Cr,α (
Ω
)

is the set of functions f ∈Cr
(
Ω
)

so that
[∇r f ]C0,α(Ω) < ∞.

We equip Cr,α (
Ω
)

with the following norm:

‖ f‖Cr,α (Ω) = ‖ f‖Cr(Ω) + [∇r f ]C0,α (Ω) ,

where

‖ f‖Cr(Ω) =
r

∑
m=0

‖∇m f‖C0(Ω) .

Remark 1.41. (i) Cr,α (
Ω
)

with its norm ‖·‖Cr,α is a Banach space.

(ii) If α = 0, we set
‖ f‖Cr,0 = ‖ f‖Cr .

(iii) If we assume that Ω is bounded and Lipschitz, then the norms

‖ f‖Cr,α =
r

∑
m=0

‖∇m f‖C0,α

and

‖ f‖Cr,α =

{
‖ f‖C0 +[∇r f ]C0,α if 0 < α ≤ 1
‖ f‖C0 +‖∇r f‖C0 if α = 0.

are equivalent to the one defined above. We should, however, point out that these
norms are, in general, not equivalent for very wild sets.

(iv) When α = 1, we note that C0,1
(
Ω
)

is in fact the set of Lipschitz continuous
and bounded functions.

The following result (cf. Theorem 16.11) is a remarkable extension result due to
Calderon [20] and Stein [92].

Theorem 1.42. Let Ω ⊂ R
n be a bounded open Lipschitz set. Then there exists a

continuous linear extension operator

E : Cr,α (
Ω
)→Cr,α

0 (Rn)

for any integer r ≥ 0 and any 0 ≤ α ≤ 1. More precisely, there exists a constant
C =C (r,Ω)> 0 such that for every f ∈Cr,α (

Ω
)
,
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E ( f )|Ω = f , supp [E ( f )] is compact,

‖E ( f )‖Cr,α (Rn) ≤C‖ f‖Cr,α(Ω) .

Remark 1.43. The extension is universal, in the sense that the same extension also
leads to

‖E ( f )‖Cs,β (Rn) ≤C‖ f‖Cs,β (Ω)

for any integer s and any 0 ≤ β ≤ 1, with, of course, C = C (s,Ω) as far as f ∈
Cs,β (Ω

)
. The same extension is also valid for Sobolev spaces.

1.6.2 Interpolation, Product, Composition and Inverse

We now state the interpolation theorem (cf. Theorem 16.26) that plays an essential
role in our analysis.

Theorem 1.44. Let Ω ⊂ R
n be a bounded open Lipschitz set, s≥ r ≥ t ≥ 0 be inte-

gers and 0≤ α,β ,γ ≤ 1 with

t + γ ≤ r+α ≤ s+β .

Let λ ∈ [0,1] be such that

r+α = λ (s+β )+(1−λ )(t + γ) .

Then there exists a constant C =C (s,Ω)> 0 such that

‖ f‖Cr,α ≤C‖ f‖λ
Cs,β ‖ f‖1−λ

Ct,γ .

As a byproduct of the interpolation theorem, we get the following result (cf.
Theorem 16.28).

Theorem 1.45. Let Ω ⊂ R
n be a bounded open Lipschitz set, r ≥ 0 an integer and

0≤ α ≤ 1. Then there exists a constant C =C (r,Ω)> 0 such that

‖ f g‖Cr,α ≤C (‖ f‖Cr,α ‖g‖C0 +‖ f‖C0 ‖g‖Cr,α ) .

The next theorem (cf. Theorem 16.31) will also be intensively used.

Theorem 1.46. Let Ω ⊂ R
n, O ⊂ R

m be bounded open Lipschitz sets, r ≥ 0 an
integer and 0≤ α ≤ 1. Let g ∈Cr,α (

O
)

and f ∈Cr,α (
Ω ;O

)∩C1
(
Ω ;O

)
. Then

‖g◦ f‖C0,α(Ω) ≤ ‖g‖C0,α(O) ‖ f‖α
C1(Ω) +‖g‖C0(O) ,
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whereas if r ≥ 1, there exists a constant C =C (r,Ω ,O)> 0 such that

‖g◦ f‖Cr,α(Ω) ≤C
[
‖g‖Cr,α(O) ‖ f‖r+α

C1(Ω)
+‖g‖C1(O) ‖ f‖Cr,α(Ω) +‖g‖C0(O)

]
.

We easily deduce, from the previous results, an estimate on the inverse (cf. The-
orem 16.32).

Theorem 1.47. Let Ω ,O⊂R
n be bounded open Lipschitz sets, r≥ 1 an integer and

0≤ α ≤ 1. Let c > 0. Let f ∈Cr,α (
Ω ;O

)
and g ∈Cr,α (

O;Ω
)

be such that

g◦ f = id and ‖g‖C1(O) ,‖ f‖C1(Ω) ≤ c.

Then there exists a constant C =C (c,r,Ω ,O)> 0 such that

‖ f‖Cr,α (Ω) ≤C‖g‖Cr,α (O) .

1.6.3 Smoothing Operator

The next theorem (cf. Theorem 16.43) is about smoothing Cr or Cr,α functions. We
should draw the attention that in order to get the conclusions of the theorem, one
proceeds, as usual, by convolution. However, we have to choose the kernel very
carefully.

Theorem 1.48. Let Ω ⊂ R
n be a bounded open Lipschitz set. Let s ≥ r ≥ t ≥ 0 be

integers and 0≤ α,β ,γ ≤ 1 be such that

t + γ ≤ r+α ≤ s+β .

Let f ∈Cr,α (
Ω
)
. Then, for every 0 < ε ≤ 1, there exist a constant C =C (s,Ω)> 0

and fε ∈C∞ (
Ω
)

such that

‖ fε‖Cs,β ≤ C
ε(s+β )−(r+α)

‖ f‖Cr,α ,

‖ f − fε‖Ct,γ ≤Cε(r+α)−(t+γ) ‖ f‖Cr,α .

We also need to approximate closed forms in Cr,α (
Ω ;Λ k

)
by smooth closed

forms in a precise way (cf. Theorem 16.49).

Theorem 1.49. Let Ω ⊂ R
n be a bounded open smooth set and ν be the exterior

unit normal. Let s ≥ r ≥ t ≥ 0 with s ≥ 1 and 1 ≤ k ≤ n− 1 be integers. Let 0 <
α,β ,γ < 1 be such that

t + γ ≤ r+α ≤ s+β .
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Let g ∈Cr,α (
Ω ;Λ k

)
with

dg = 0 in Ω and ν ∧g ∈Cs,β (∂Ω ;Λ k+1).
Then for every ε ∈ (0,1], there exist gε ∈C∞ (

Ω ;Λ k
)∩Cs,β (Ω ;Λ k

)
and a constant

C =C (s,α ,β ,γ,Ω)> 0 such that

dgε = 0 in Ω , ν ∧gε = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈HT

(
Ω ;Λ k),

‖gε‖Cs,β (Ω) ≤
C

ε(s+β )−(r+α)
‖g‖Cr,α(Ω) +C‖ν ∧g‖Cs,β (∂Ω) ,

‖gε −g‖Ct,γ(Ω) ≤Cε(r+α)−(t+γ) ‖g‖Cr,α(Ω) .

Remark 1.50. We recall that if Ω is contractible and since 1≤ k ≤ n−1, then

HT
(
Ω ;Λ k)= {0} .
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Chapter 2

Exterior Forms and the Notion of Divisibility

The present chapter is divided into three parts.
In Section 2.1, we recall the definitions and basic properties of exterior forms. All

notions introduced there are standard and, therefore, our presentation will be very
brief. We refer for further developments to the classic books on the subject—for
example, Bourbaki [15], Bryant, Chern, Gardner, Goldschmidt and Griffiths [18],
Godbillon [51], Godement [52], Greub [54], or Lang [67]. In what follows we will
only consider the finite vector space R

n, n≥ 1, over R. However, we can obviously
replace Rn by any finite n-dimensional vector space over a field K of characteristic 0.

In Section 2.2, we introduce the different notions of rank and corank for exterior
forms. The material presented here is new and has been introduced by Dacorogna
and Kneuss [31]. However, the notion of rank (in our terminology below, rank of
order 1) of an exterior form is standard for 2-forms (see, e.g., Abraham, Marsden and
Ratiu [1], Bryant et al. [18], Godbillon [51], Mc Duff and Salamon [72], Postnikov
[82], Sternberg [93], or Taylor [96]) and also exists, although less standard and
sometimes expressed in a different but equivalent way, for general k-forms; see, for
example, Bandyopadhyay, Dacorogna and Kneuss [9], Godbillon [51], Marcus [74],
Martinet [71], or Sternberg [93]. All of the other notions of rank and corank of an
exterior form are new. The importance of these notions will be clear in our study of
the pullback equation; they are indeed invariant under pullback (see Proposition 2.33
and Proposition 17.1).

In Section 2.3, we discuss the central result of this chapter; it concerns the notion
of divisibility of an exterior form. More precisely, given f ∈Λ k (Rn) and g∈Λ l (Rn)
with 0≤ l ≤ k, we want to find u ∈Λ k−l (Rn) such that

f = g∧u.

We will give here a result due to Dacorogna and Kneuss [31] (cf. Theorem 2.45)
which generalizes the celebrated Cartan lemma (cf. Theorem 2.42). This lemma
asserts that if g has the additional structure

g = g1∧·· ·∧gl �= 0,

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
© Springer Science+Business Media, LLC 2012 
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where g1, . . . ,gl ∈ Λ 1 (Rn) , then a necessary and sufficient condition for finding
such a u ∈Λ k−l (Rn) is that

f ∧g1 = · · ·= f ∧gl = 0.

Our theorem will rely on the notions of annihilators introduced in Section 2.2. This
question of divisibility leads in a natural way to the notion of prime exterior forms
(cf. Definition 2.39 and Corollary 2.49).

2.1 Definitions

2.1.1 Exterior Forms and Exterior Product

Definition 2.1 (Exterior form). Let k≥ 1 be an integer. An exterior k-form over Rn

is a map
f : Rn×·· ·×R

n︸ ︷︷ ︸
k times

→ R

such that

(i) f is linear is each variable,

(ii) for every X1, . . . ,Xk ∈ R
n and for every σ ∈ Sym(k),

f (Xσ(1), . . . ,Xσ(k)) = sign(σ) f (X1, . . . ,Xk),

where Sym(k) is the set of the permutations of {1, . . . ,k} and sign(σ) denotes the
sign of the permutation σ .

We denote by Λ k(Rn) the set of exterior k-forms over Rn. If k = 0, we set

Λ 0(Rn) = R.

We have that
Λ k(Rn) = {0} if k > n.

Definition 2.2 (Exterior product). Let f ∈ Λ k(Rn) and g ∈ Λ l(Rn). The exterior
product of f with g, denoted by f ∧g, belongs to Λ k+l(Rn) and is defined by

( f ∧g)(X1, . . . ,Xk+l)

= ∑
σ∈Sym(k,l)

sign(σ) f (Xσ(1), . . . ,Xσ(k))g(Xσ(k+1), . . . ,Xσ(k+l)),

where

Sym(k, l) = {σ ∈ Sym(k+ l) : σ(1)< · · ·< σ(k);σ(k+1)< · · ·< σ(k+ l)}.
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If k = 0 (i.e., f ∈Λ 0(Rn) = R), we define

f ∧g = g∧ f = f g.

Theorem 2.3 (Properties of the exterior product). Let f ∈ Λ k(Rn), g ∈ Λ l(Rn)
and h ∈ Λ p(Rn). The exterior product is bilinear and the following properties are
verified:

( f ∧g)∧h = f ∧ (g∧h),

f ∧g = (−1)klg∧ f .

Moreover, if f1, . . . , fk ∈Λ 1(Rn) and X1, . . . ,Xk ∈ R
n, then

f1∧·· ·∧ fk(X1, . . . ,Xk) = det [ fi(Xj)]1≤i, j≤k . (2.1)

In particular, the family { f1, . . . , fk} is linearly independent if and only if

f1∧·· ·∧ fk �= 0.

Let E1, . . . ,En be the canonical basis of Rn and let ei, 1≤ i≤ n, be its dual basis,
which means that

ei(E j) = δi j,

where δi j = 1 if i = j and δi j = 0 otherwise.

Proposition 2.4. Let 1≤ k ≤ n. The set

{ei1 ∧·· ·∧ eik}, 1≤ i1 < · · ·< ik ≤ n,

is a basis of Λ k(Rn); in particular,

dim(Λ k(Rn)) =

(
n
k

)
.

Therefore, any f ∈Λ k(Rn) can be written as

f = ∑
1≤i1<···<ik≤n

fi1···ik ei1 ∧·· ·∧ eik

for some unique fi1···ik ∈ R. Moreover, the coefficients of f can be recovered by the
formula

fi1···ik = f (Ei1 , . . . ,Eik). (2.2)

Notation 2.5. (i) We will denote the set of strictly increasing tuples of length k by

Tk = {I = (i1, . . . , ik) ∈ N
k, 1≤ i1 < · · ·< ik ≤ n}.

In this way, for I ∈Tk we write

eI = ei1 ∧·· ·∧ eik ,



36 2 Exterior Forms and the Notion of Divisibility

and for f ∈Λ k(Rn), we write
fI = fi1···ik .

With these notations, we have

f = ∑
1≤i1<···<ik≤n

f i1···ik ei1 ∧·· ·∧ eik = ∑
I∈Tk

fIeI . (2.3)

(ii) When in an index we write ı̂, this means that i is omitted. For example,

f1···4̂···k = f1235···k .

(iii) Sometimes it will be more convenient to assign meaning to fi1···ik for any
k-index 1≤ i1, . . . , ik ≤ n, by letting

fi1···ik =

{
sign(σ) fiσ(1)···iσ(k) if iσ(1) < · · ·< iσ(k)

0 if two indices coincide

for σ ∈ Sym(k).

Proposition 2.6 (Formula for the exterior product). Let f ∈ Λ k(Rn) and g ∈
Λ l(Rn). The following formula holds true:

f ∧g

= ∑
j1<···< jl+k

(
∑

i1<···<il

( f ∧ ei1 ∧·· ·∧ eil ) j1··· jl+k

(
gi1···il

))
e j1 ∧·· ·∧ e jl+k .

In particular, when k = 1 (i.e., f ∈Λ 1(Rn)), the formula reads as

f ∧g = ∑
1≤ j1<···< jl+1≤n

(
l+1

∑
γ=1

(−1)γ−1 f jγ g j1··· jγ−1 jγ+1··· jl+1

)
e j1 ∧·· ·∧ e jl+1 .

2.1.2 Scalar Product, Hodge Star Operator and Interior Product

We now introduce the notions of scalar product, Hodge star operator and interior
product. We also state some basic properties of these operators.

Definition 2.7 (Scalar product). Let f ,g ∈ Λ k(Rn). We define the scalar product
of f with g as

〈 f ;g〉= ∑
1≤i1<···<ik≤n

fi1···ik gi1···ik = ∑
I∈Tk

fIgI

and we let
| f |2 = 〈 f ; f 〉.
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Remark 2.8. From (2.2) it follows that

〈 f ;g〉= ∑
1≤i1<...<ik≤n

f (Ei1 , . . . ,Eik)g(Ei1 , . . . ,Eik).

In fact, we could have taken any orthonormal basis {Y1, . . . ,Yn} of Rn and defined

〈 f ;g〉= ∑
1≤i1<···<ik≤n

f (Yi1 , . . . ,Yik)g(Yi1 , . . . ,Yik).

The independence of the chosen orthonormal basis follows from Remark 2.18 and
the fact that 〈 f ;g〉= 〈A∗ f ;A∗g〉 if A ∈ O(n) (cf. Proposition 2.19).

Definition 2.9 (Hodge duality). The Hodge star operator is the linear operator

∗ : Λ k(Rn)→Λ n−k(Rn)

defined by
f ∧g = 〈∗ f ;g〉e1∧·· ·∧ en

for every g ∈Λ n−k(Rn).

Theorem 2.10 (Properties of the Hodge star operator). Let 0≤ k ≤ n. Then

∗(e1∧·· ·∧ en) = 1 and ∗1 = e1∧·· ·∧ en.

Moreover, for every f ,g ∈Λ k(Rn),

f ∧ (∗g) = 〈 f ;g〉e1∧·· ·∧ en and ∗ (∗ f ) = (−1)k(n−k) f .

Finally, let I ∈Tk , Ic = {1, . . . ,n}\I ∈Tn−k and let r be such that

eI ∧ eIc
= (−1)r e1∧·· ·∧ en.

Then
∗(eI) = (−1)reIc

.

This last statement holds also true if the elements of I and Ic are not ordered
increasingly.

We next turn to the definition of the interior product.

Definition 2.11 (Interior product). Let 0 ≤ k, l ≤ n, f ∈ Λ k(Rn) and g ∈ Λ l(Rn).
We define the interior product of f with g by

g� f = (−1)n(k−l) ∗ (g∧ (∗ f )) .

Proposition 2.12 (Formula for the interior product). Let 0≤ k, l ≤ n, f ∈Λ k(Rn)
and g ∈Λ l(Rn). The following formulas then hold.
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(i) If l ≤ k, then g� f ∈Λ k−l(Rn) and

g� f

= (−1)k(k−l) ∑
1≤ j1<···< jk−l≤n

(
∑

1≤i1<···<il≤n
fi1···il j1··· jk−l gi1···il

)
e j1 ∧·· ·∧ e jk−l .

In particular, when l = 1 (i.e., g ∈Λ 1(Rn)), the formula reads as

g� f = ∑
1≤ j1<···< jk−1≤n

(
k

∑
γ=1

(−1)γ−1 ∑
jγ−1<i< jγ

f j1··· jγ−1i jγ ··· jk−1 gi

)
e j1 ∧·· ·∧ e jk−1 ,

where if γ = 1, it is understood that f j1··· jγ−1i jγ ··· jk−1 = fi j1··· jk−1 and, similarly, when
γ = k, it is understood that f j1··· jγ−1i jγ ··· jk−1 = f j1··· jk−1i .

(ii) If l = k, then
f �g = g� f = 〈 f ;g〉.

(iii) If l > k, then
g� f = 0.

Remark 2.13. When g = eI = ei1 ∧·· ·∧ eil and f = eJ = e j1 ∧·· ·∧ e jk , the proposi-
tion leads to

eI �eJ =

{
0 if I �⊂ J

(−1)k(k−l)+r eJ\I if I ⊂ J,

where r ∈ {0,1} is given by

eI ∧ eJ\I = (−1)r eJ .

Proposition 2.14 (Properties of the interior product). Let 0≤ k, l≤ n, f ∈Λ k(Rn)
and g ∈Λ l(Rn). The following properties are then satisfied:

(i) The interior product is linear in both arguments.

(ii) The coefficients of f can be recovered by the formula

fi1···ik =
〈

f ;ei1 ∧·· ·∧ eik
〉
= f �

(
ei1 ∧·· ·∧ eik

)
= ∗[ f ∧ (∗(ei1 ∧·· ·∧ eik

))]
. (2.4)

(iii) When l = 1, writing

g =
n

∑
i=1

giei and G =
n

∑
i=1

GiEi,

where Gi = gi , then for every X1, . . . ,Xk−1 ∈ R
n,

(g� f )(X1, . . . ,Xk−1) = f (G,X1, . . . ,Xk−1).
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Remark 2.15. Sometimes in the literature (see, e.g., [96]), one finds a different def-
inition for the interior product of a k-form with a vector; namely let G ∈ R

n and
f ∈Λ k(Rn); then iG ( f ) ∈Λ k−1(Rn) is defined by

iG ( f )(X1, . . . ,Xk−1) = f (G,X1, . . . ,Xk−1).

Identifying G = ∑n
i=1 GiEi with g = ∑n

i=1 giei (Gi = gi), statement (iii) in Proposi-
tion 2.14 tells us that the two definitions coincide; that is,

iG ( f ) = g� f .

Proposition 2.16. Let f ∈Λ k(Rn), g ∈Λ l(Rn) and h ∈Λ p(Rn). Then

(h∧g)� f = (−1)k+lh�(g� f ).

Furthermore, if p = k+ l, then

〈 f ∧g;h〉= (−1)l(k+1)〈g; f �h〉= (−1)k〈 f ;g�h〉.

Let w ∈Λ 1(Rn); then

w�( f ∧g) = (w� f )∧g+(−1)kl(w�g)∧ f

= (w� f )∧g+(−1)k f ∧ (w�g).

In particular, if k is even and m is an integer and letting f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

, then

w� f m+1 = (m+1) [(w� f )∧ f m] . (2.5)

If v,w ∈Λ 1(Rn), then

w�(v∧ f )+ v∧ (w� f ) = 〈w;v〉 f (2.6)

and, thus,
w�(w∧ f )+w∧ (w� f ) = |w|2 f , (2.7)

|w|4| f |2 = |w�(w∧ f )|2 + |w∧ (w� f )|2 = |w|2 (|w∧ f |2 + |w� f |2) .

2.1.3 Pullback and Dimension Reduction

We start with the following definition and properties.

Definition 2.17 (Pullback). Let A ∈ R
n×m be a (n×m)-matrix and f ∈ Λ k(Rn) be

given by
f = ∑

1≤i1<···<ik≤n
fi1···ik ei1 ∧·· ·∧ eik .
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We define the pullback of f by A, denoted by A∗( f ) and belonging to Λ k(Rm),
through

A∗( f ) = ∑
1≤i1<···<ik≤n

fi1···ik Ai1 ∧·· ·∧Aik ,

where A j is the jth row of A and is identified by

A j =
m

∑
k=1

A j
kek ∈Λ 1(Rm).

If k = 0, we then let
A∗( f ) = f .

Remark 2.18. There is an equivalent definition of the pullback, namely

A∗( f )(X1, . . . ,Xk) = f (A ·X1, . . . ,A ·Xk),

for every X1, . . . ,Xk ∈ R
m.

Proposition 2.19 (Properties of the pullback). Let f ∈ Λ k(Rn), g ∈ Λ l(Rn), A ∈
R

n×m and B ∈ R
m×p. Then

(AB)∗ ( f ) = B∗ (A∗( f )) ,

A∗( f ∧g) = A∗( f )∧A∗(g). (2.8)

If k = l, then
A∗ ( f +g) = A∗ ( f )+A∗ (g) .

If n = m, then
A∗(e1∧·· ·∧ en) = det(A) e1∧·· ·∧ en.

If A ∈ GL(n), then
A∗(g� f ) = ((A−1)t)∗ (g))�A∗( f ), (2.9)

A∗(∗ f ) = det(A)
[∗(((A−1)t)∗ ( f )

)]
. (2.10)

If A ∈ O(n), then
A∗(g� f ) = A∗ (g)�A∗( f ),

A∗(∗ f ) = det(A) [∗(A∗ ( f ))] , (2.11)

and if k = l,
〈A∗ ( f ) ;A∗ (g)〉= 〈 f ;g〉.

Definition 2.20. Let f ∈Λ k(Rn). We define, for k ≥ 1,

Λ 1
f = {u ∈Λ 1(Rn) : ∃g ∈Λ k−1(Rn) with g� f = u}.

Remark 2.21. (i) Let f ∈ Λ k(Rn) and A ∈ GL(n). Using (2.9), we immediately
deduce that
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A∗(Λ 1
f ) = Λ 1

A∗( f ) . (2.12)

(ii) It will be seen that if f �= 0, then

dim(Λ 1
f ) = rank1[ f ] ∈ {k,k+2, . . . ,n}

(see Definition 2.28 for the definition of rank1[ f ], Proposition 2.37(i) for the equiv-
alence and Proposition 2.37(ii) for the range of values of rank1[ f ]).

The following lemma is very useful for reducing dimension. Below we give a
purely algebraic proof; later (cf. Theorem 4.5) we will give two analytical proofs;
one of them being based on the Frobenius theorem (cf. Theorem 4.2).

Theorem 2.22 (Dimension reduction). Let 1≤ k ≤ n and f ∈Λ k(Rn) with f �= 0.
Let

{
a1, . . . ,al

}
be a basis of Λ 1

f . Then there exist f̃i1···ik ∈ R, 1≤ i1 < · · ·< ik ≤ l,
such that

f = ∑
1≤i1<···<ik≤l

f̃i1···ik ai1 ∧·· ·∧aik .

In particular, there exists A ∈ GL(n) such that

A∗( f ) = ∑
1≤i1<···<ik≤l

f̃i1···ik ei1 ∧·· ·∧ eik

and
Λ 1

A∗( f ) = span
{

e1, . . . ,el
}
.

Remark 2.23. (i) Looking at Λ k(Rl) as a subset of Λ k(Rn), by abuse of notations
the theorem implies that

A∗( f ) ∈Λ k(Rl).

(ii) The above theorem (cf. Remark 2.21(ii)) therefore tells us that any f ∈
Λ k(Rn) with rank1[ f ] = l can be seen (up to a pullback) as a k-form over Rl . More-
over, if m≥ n and, by abuse of notations, we consider f ∈Λ k(Rm), we see that Λ 1

f

is independent of whether we see f as an element of Λ k(Rn) or Λ k(Rm).

Proof. Step 1. Let
{

a1, . . . ,al
}

be a basis of Λ 1
f and we complete it as a basis of Rn,

namely
{

a1, . . . ,an
}
. Let B ∈ GL(n) be the matrix whose ith row is ai, 1 ≤ i ≤ n.

Finally, we define
A = B−1.

Note that, by definition,

A∗(ai) = ei and B∗(ei) = ai, 1≤ i≤ n. (2.13)

Assume (cf. Step 2) that we can find some f̃i1···ik ∈ R such that

A∗( f ) = ∑
1≤i1<···<ik≤l

f̃i1···ik ei1 ∧·· ·∧ eik (2.14)
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(i.e., A∗( f ) ∈Λ k(Rl)). We will then have the result since, using (2.13), we get

f = B∗(A∗( f )) = B∗
(

∑
1≤i1<···<ik≤l

f̃i1···ik ei1 ∧·· ·∧ eik

)

= ∑
1≤i1<···<ik≤l

f̃i1···ik ai1 ∧·· ·∧aik .

Step 2. We finally show (2.14). Writing

A∗( f ) = ∑
1≤i1<···<ik≤n

f̃i1···ik ei1 ∧·· ·∧ eik ,

we see that (2.14) is equivalent to proving

f̃i1···ik = 0 for every ik > l.

Let 1≤ i1 < · · ·< ik ≤ n. Using the properties of the interior product we have that

(ei1 ∧·· ·∧ eik−1)�A∗( f ) =
n

∑
j=1
± f̃i1···ik−1 je j.

Appealing to (2.12) and to (2.13), we deduce that

Λ 1
A∗( f ) = span{e1, . . . ,el}.

Combining this with the definition of Λ 1
A∗( f ), we must have

f̃i1···ik−1 j = 0, for every j > l,

which shows the assertion. 
�

2.1.4 Canonical Forms for 1, 2, (n−2) and (n−1)-Forms

We now prove that when k = 1,2,(n−2) ,(n−1) , it is possible by a linear transfor-
mation to pull back any form to a canonical one. When 3 ≤ k ≤ n−3, no standard
canonical form is known. Statements (i), (ii) and (iv) of Proposition 2.24 will be
proved in the more general analytical context (see Proposition 15.8 for statement (i),
Theorems 14.1 and 14.3 for the case k = 2 and Theorem 15.3 for the case k = n−1).
It is not presently known if statement (iii) for (n−2)-forms can be extended to the
analytical setting.

Proposition 2.24. The following four statements hold true:
(i) Let 1≤ k ≤ n and f1, . . . , fk ∈Λ 1 (Rn) be such that

f1∧·· ·∧ fk �= 0.
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Then there exists A ∈ GL(n) such that

A∗( fi) = ei for every 1≤ i≤ k.

In particular, for every f ∈Λ 1(Rn) with f �= 0, there exists A ∈ GL(n) such that

A∗( f ) = e1.

(ii) Let f ∈Λ 2(Rn) with f �= 0. Let m be the integer such that

f m �= 0 and f m+1 = 0.

Then there exists A ∈ GL(n) such that

A∗( f ) = ωm =
m

∑
i=1

e2i−1∧ e2i.

Moreover, if g,h ∈ Λ 1 (Rn) with g,h �= 0, then, in addition to A∗( f ) = ωm , the fol-
lowing can be ensured:

A∗(g) = h

provided {
g ∈Λ 1

f and h ∈Λ 1
ωm

}
or

{
g /∈Λ 1

f and h /∈Λ 1
ωm

}
.

(iii) Let f ∈Λ n−2(Rn) with f �= 0. Let m be the integer such that

(∗ f )m �= 0 and (∗ f )m+1 = 0.

Then there exists A ∈ GL(n) such that

A∗( f ) =

{
∗(ωm) if n > 2m or if {n = 2m and m even}
sign [(∗ f )m] [∗(ωm)] if n = 2m and m odd.

Moreover, when n = 2m and m is odd, there exists no A ∈ GL(n) such that

A∗(∗ωm) =− [∗(ωm)] .

(iv) Let f ∈Λ n−1(Rn) with f �= 0; then there exists A ∈ GL(n) such that

A∗( f ) = e1∧·· ·∧ en−1.

Remark 2.25. (i) Let f ∈ Λ 2(Rn). Anticipating Definition 2.28 for rank1[ f ] and
Proposition 2.37 (iii) for the equivalence, we have that rank1[ f ] = 2m if and only if

f m �= 0 and f m+1 = 0.

Thus, statement (ii) in the above proposition can be rephrased as follows: Any
2-form f with rank1[ f ] = 2m can be pulled back to the standard symplectic form
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of rank 2m, namely

ωm =
m

∑
i=1

e2i−1∧ e2i.

Observe also that

(ωm)
m = m!e1∧·· ·∧ e2m.

(ii) In the case of (n−2)-forms, we have in fact (see Definition 2.28 for the
notations)

2m = corank1( f ) = rank1(∗ f ).

Proof. We only prove (i), (iii) and (iv). The proof of (ii) is standard and can be
found, for example, in Bryant et al. [18, p. 13], Horn and Johnson [56, p. 107], or
Serre [90] (for the extra statement, see Kneuss [60]).

Step 1. We first show (i). Identifying 1-forms with elements of Rn, we let B ∈
GL(n) be a matrix whose ith row is fi , 1 ≤ i ≤ k. Note that this is possible since
f1∧·· ·∧ fk �= 0 (see Theorem 2.3). Then noticing that

B∗(ei) = fi for every 1≤ i≤ k,

the matrix A = B−1 has the required property.

Step 2. We split the proof of (iii) into three steps.

Step 2.1. We show that there exists A ∈ GL(n) such that

A∗( f ) =± [∗(ωm)] .

Indeed, since (∗ f ) ∈Λ 2(Rn), using (ii), there exists B ∈ GL(n) such that

B∗(∗ f ) = ωm .

Therefore, using (2.10), we get

det B
[∗(((B−1)t)∗( f )

)]
= ωm.

We thus obtain
det B

[
((B−1)t)∗( f )

]
= ∗(ωm).

Letting
A = |detB| 1

n−2 (B−1)t ,

we have the claim, namely A∗( f ) =± [∗(ωm)] .

Step 2.2. Let us show that if n > 2m or if {2m = n and m even}, there exists
A ∈ GL(n) such that

A∗ (∗(ωm)) =− [∗(ωm)] . (2.15)
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(i) If 2m < n, then the diagonal matrix A defined by Aii = 1 for 1≤ i≤ n−1 and
Ann =−1 verifies (2.15).

(ii) If 2m = n and m even, it is easily seen that the diagonal matrix A defined by

Aii =

{
1 if 1≤ i≤ n and i even
−1 if 1≤ i≤ n and i odd

satisfies (2.15).

Step 2.3. Assume 2m = n and m odd. We first prove that if A∈GL(n) is such that
A∗( f ) = ε [∗(ωm)] , with ε ∈ {−1,1}, then necessarily

ε = sign [(∗ f )m] .

Let B = (A−1)t . Observe that since n = 2m, we have that (∗ f )m is a n-form.
Identifying, as usual, n-forms with scalars and using Proposition 2.19, we find that

B∗((∗ f )m) = det(B)(∗ f )m =
1

det A
(∗ f )m.

Using Theorem 2.10 and (2.10), we have the following implications:

A∗( f ) = ε [∗(ωm)]⇔ ∗(A∗(∗∗ f )) = ε [ωm]

⇔ det(A) [B∗(∗ f )] = ε [ωm]

⇒ det(A)m [B∗((∗ f )m)] = εm [(ωm)
m]

⇔ det(A)m−1 [(∗ f )m] = εm [(ωm)
m] .

Hence, recalling that m is odd and that sign [(ωm)
m] = 1, we get the result, namely

ε = sign [(∗ f )m] .

Combining these three steps proves the main assertion. Applying the result of Step
2.3 with f = (∗ωm) , we have the extra claim, namely there exists no A ∈ GL(n)
such that

A∗(∗ωm) =− [∗(ωm)] .

The proof of (iii) is therefore complete.

Step 3. We finally prove (iv). Identifying (∗ f ) ∈ Λ 1(R) with a vector in R
n, we

let B ∈ GL(n) be a matrix whose nth row is ∗ f and with determinant equal to 1.
Since

B∗(en) = ∗ f ,
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we have, using Theorem 2.10 and Proposition 2.19,

f = (−1)n−1 (∗(∗ f )) = (−1)n−1 ∗ (B∗(en)) = (−1)n−1
((

B−1)t
)∗

(∗en)

= (−1)n−1
((

B−1)t
)∗

((−1)n−1e1∧·· ·∧ en−1)

=
((

B−1)t
)∗

(e1∧·· ·∧ en−1).

Therefore, recalling that
(
B−1

)t
= (Bt)−1 , the matrix A = Bt has all the required

properties. 
�

2.2 Annihilators, Rank and Corank

In this section we will closely follow Dacorogna and Kneuss [31], in which all
of the following notions are introduced. Prior contributions can also be found in
Bandyopadhyay, Dacorogna and Kneuss [9].

2.2.1 Exterior and Interior Annihilators

We define the different annihilating spaces and give some elementary properties. We
point out that these notions of annihilators, rank and corank seem very well adapted
to the pullback, since they are invariants by pullback (see Propositions 2.27(vii) and
2.33(vi)).

Definition 2.26. Let 0≤ k ≤ n and f ∈Λ k (Rn) .

(i) The space of exterior annihilators of f of order s is the vector space

Anh∧ ( f ,s) = {h ∈Λ s (Rn) : f ∧h = 0} .

(ii) The space of interior annihilators of f of order s is the vector space

Anh� ( f ,s) = {h ∈Λ s (Rn) : h � f = 0} .

Proposition 2.27. Let 0≤ k ≤ n and f ,g ∈Λ k (Rn) .

(i) The following hold, if 1≤ k ≤ n−1:

Anh∧ ( f ,n− k) �= {0} and Anh� ( f ,k) �= {0} .

(ii) The following equivalences hold:

f = 0 ⇔ Anh∧ ( f ,0) �= {0} ⇔ Anh∧( f ,n− k) = Λ n−k(Rn)

⇔ Anh� ( f ,0) �= {0} ⇔ Anh�( f ,k) = Λ k(Rn).
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(iii) If 0≤ s≤ t ≤ n, then

Anh∧ ( f ,s)∧Λ t−s (Rn) ,⊂ Anh∧ ( f , t) ,

Anh� ( f ,s)∧Λ t−s (Rn)⊂ Anh� ( f , t) .

(iv) If 0≤ s≤ n, then

Anh∧( f ,s) = Anh�(∗ f ,s).

(v) The following inclusion holds:

Anh∧( f ,s)∪Anh∧(g,s)⊂ Anh∧( f ∧g,s).

(vi) If 0≤ s≤ t ≤ n− k and

Anh∧(g, t)⊂ Anh∧( f , t),

then
Anh∧(g,s)⊂ Anh∧( f ,s).

(vii) Let A ∈ GL(n). Then, for every 1≤ s≤ n,

A∗ (Anh∧ ( f ,s)) = Anh∧ (A∗ ( f ) ,s) ,

((A−1)t)∗ (Anh� ( f ,s)) = Anh� (A∗ ( f ) ,s) .

In particular, if A ∈ O(n), then

A∗ (Anh� ( f ,s)) = Anh� (A∗ ( f ) ,s) .

(viii) If λ �= 0, then
Anh∧(λ f ,s) = Anh∧( f ,s),

Anh�(λ f ,s) = Anh�( f ,s).

Proof. Step 1. The proofs of (i), (ii), (iv), (v) and (viii) are immediate. The first
property in (iii) is also easy, whereas the second one in (iii) follows from the first
statement of Proposition 2.16.

Step 2. We now prove (vi). First, we notice that if h ∈ Anh∧(g,s), then

h∧ ei1 ∧·· ·∧ eit−s ∈ Anh∧(g, t) for every 1≤ i1 < · · ·< it−s ≤ n.

Thus, by hypothesis,

f ∧h∧ ei1 ∧·· ·∧ eit−s = 0 for every 1≤ i1 < · · ·< it−s ≤ n,

which easily implies the claim, namely

f ∧h = 0.
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Step 3. Property (vii) is a direct consequence of (2.8) and (2.9). This concludes
the proof of the proposition. 
�

2.2.2 Rank and Corank

The next important concept is the notion of rank and corank of a form and it is
related to the dimension of the corresponding annihilating spaces.

Definition 2.28. Let 0≤ k ≤ n be integers and f ∈Λ k (Rn) .
(i) The rank of order s, 0≤ s≤ k, of f ∈Λ k (Rn) is given by

ranks[ f ] =
(

n
s

)
−dim(Anh�( f ,s)).

(ii) The corank of order s, 0≤ s≤ n− k, of f ∈Λ k (Rn) is defined by

coranks[ f ] =
(

n
s

)
−dim(Anh∧( f ,s)).

Remark 2.29. (i) In the literature (see Bandyopadhyay and Dacorogna [8, p. 1720],
Definition 2.2 in Bandyopadhyay, Dacorogna and Kneuss [9], Definition 7.11 in
Godbillon [51], Marcus [74, pp. 85–88], Martinet [71] and Sternberg [93, p. 25]) the
only notion of rank, for an exterior form that is used, is the above rank of order 1.
In [74] and [93], a similar notion to our interior annihilator of order 1 is given.
However, the rank of order 1 is not always defined as above; but all of the definitions
are equivalent, as will be seen in Propositions 2.32 and 2.37. However, before that,
let us introduce the following notations.

(ii) Since the most important notion is the one of rank of order 1, we will write
rank instead of rank1 when no ambiguity occurs. This will be the case throughout
Part IV, except for few instances.

Notation 2.30. Throughout the book we identify a k-form with a vector of R
(n

k)

and, to fix the order of the elements of the vector, we adopt the lexicographical
order. Let 0≤ k ≤ n and f ∈Λ k (Rn) .

(i) Let 0≤ s≤ k. To the linear map

g ∈Λ s (Rn)→ g� f ∈Λ k−s (Rn)

we associate a matrix f �,s ∈ R
( n

k−s)×(n
s) such that, by abuse of notations,

g� f = f �,s g for every g ∈Λ s (Rn) .

More explicitly, using the lexicographical order for the columns (index below) and
the rows (index above) of the matrix f �,s, we have (cf. Proposition 2.12(i))
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( f �,s)
j1··· jk−s
i1···is = (−1)k(k−s) fi1···is j1··· jk−s

for 1≤ i1 < · · ·< is ≤ n and 1≤ j1 < · · ·< jk−s ≤ n.

(ii) Similarly let 0≤ s≤ n− k. To the linear map

g ∈Λ s (Rn)→ f ∧g ∈Λ s+k (Rn)

we associate a matrix f∧,s ∈ R
( n

s+k)×(n
s) such that, by abuse of notations,

f ∧g = f∧,s g for every g ∈Λ s (Rn) .

As above, the components of the matrix f∧,s can be written as (cf. Proposition 2.6(i))

( f∧,s)
j1··· js+k
i1···is =

(
f ∧ ei1 ∧·· ·∧ eis

)
j1··· js+k

for 1≤ i1 < · · ·< is ≤ n and 1≤ j1 < · · ·< js+k ≤ n.

Remark 2.31. As already said, in the next chapters of the book we will write, when
there is no ambiguity, rank[ f ] instead of rank1[ f ]. Similarly, we will denote the
matrix f �,1 only by f .

Proposition 2.32. Let 0≤ k ≤ n and f ∈Λ k (Rn) .

(i) Let 0≤ s≤ k. Then

ranks [ f ] = rank
(

f �,s
)
.

(ii) Let 0≤ s≤ n− k. Then

coranks [ f ] = rank
(

f∧,s
)
.

Proof. We only show (i), the proof of (ii) being similar. Using the definition of f �,s ,
we see that

ker( f �,s) = Anh�( f ,s).

We thus obtain the result, since

rank( f �,s) =
(

n
s

)
−dim

[
ker( f �,s)

]
.

This concludes the proof of the proposition. 
�

We now gather some elementary properties of the rank and corank.

Proposition 2.33. Let 0≤ k ≤ n and f ∈Λ k (Rn) .

(i) If f = 0, then for every s,

coranks[ f ] = ranks[ f ] = 0.
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(ii) If f �= 0, then
corankn−k[ f ] = rankk[ f ] = 1.

(iii) If 0≤ s≤ n− k, then

coranks[ f ] = ranks[∗ f ].

(iv) If 0≤ s≤ k, then
ranks[ f ] = rankk−s[ f ],

and if f �= 0, then

ranks[ f ]≥
(

k
s

)
.

(v) If 0≤ s≤ n− k, then

coranks[ f ] = corankn−(s+k)[ f ],

and if f �= 0, then

coranks[ f ]≥
(

n− k
s

)
.

(vi) Let A ∈ GL(n). If 0≤ s≤ k, then

ranks [A∗ ( f )] = ranks [ f ] ,

whereas if 0≤ s≤ n− k, then

coranks [A∗ ( f )] = coranks ( f ) .

(vii) If λ �= 0, then for every 0≤ s≤ k,

ranks[λ f ] = ranks[ f ],

whereas for every 0≤ s≤ n− k,

coranks [λ f ] = coranks ( f ) .

Proof. The proofs of (i)–(iii) and (vii) are elementary.

Step 1. We now discuss assertion (iv). We here use Notation 2.30. Let us
show that

f �,s = (−1)k+s+ks ( f �,k−s
)t
,

which will prove the assertion using Proposition 2.32(i). Indeed, by definition, for
any 1≤ i1 < · · ·< is ≤ n and 1≤ j1 < · · ·< jk−s ≤ n , we have(

f �,s
) j1··· jk−s

i1···is = (−1)k(k−s) fi1···is j1··· jk−s = (−1)k(k−s)(−1)s(k−s) f j1··· jk−si1···is

= (−1)k+s f j1··· jk−si1···is = (−1)k+s+ks ( f �,k−s
)i1···is

j1··· jk−s

and thus the claim is proved. We now prove that ranks[ f ]≥
(k

s

)
. Since f �= 0, there

exists (i1, . . . , ik) ∈ Tk such that fi1···ik �= 0. Therefore, there are at least
(k

s

)
linearly
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independent s-forms which are not in Anh�( f ,s), namely

eim1 ∧·· ·∧ eims /∈ Anh�( f ,s) for every 1≤ m1 < · · ·< ms ≤ k.

This implies the claim.

Step 2. We then discuss (v). Recalling that ∗ f ∈ Λ n−k(Rn) and using (iii) and
(iv), we have the assertion, since

coranks[ f ] = ranks[∗ f ] = rankn−k−s[∗ f ] = corankn−(s+k)[ f ].

The assertion on the lower bound for the corank follows from (iii) and (iv).
Step 3. Claim (vi) is a direct consequence of Proposition 2.27(vii). 
�

Before proceeding further, we give some examples.

Example 2.34. Let f ∈Λ k (Rn) with f �= 0.

(i) We start with the case k = 1. We claim, for 0≤ s≤ n−1, that

rank1 [ f ] = 1 and coranks [ f ] =
(

n−1
s

)
.

The first equation is just a particular case of statement (ii) of the previous propo-
sition. To show the second equation we proceed as follows. According to Proposi-
tion 2.24(i) and Proposition 2.33(vi), we can assume that f = e1. Notice that

Anh∧(e1,s) = span{e1∧ ei2 ∧·· ·∧ eis ; 2≤ i2 < · · ·< is ≤ n}
and hence

dim
(
Anh∧(e1,s)

)
=

(
n−1
s−1

)
=

(
n
s

)
−
(

n−1
s

)
as claimed.

(ii) We now turn to the case k = 2. The only invariant that matters is rank1 [ f ]
and, as will be seen in Proposition 2.37(iii), it is even. It determines the corank
of any order (cf. Proposition 2.24(ii) and Proposition 2.33(vi)) and, according to
Proposition 2.33(ii),

rank2 [ f ] = 1.

(iii) When k = n, then

ranks [ f ] =
(

n
s

)
,

whereas if k = n−1, then (cf. Proposition 2.33(iii) and (i) of the present example)

ranks [ f ] =
(

n−1
s

)
.

(iv) Consider the case k = 3. We automatically have, according to Proposi-
tion 2.33(iv),

rank2 [ f ] = rank1 [ f ] .
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However, the coranks are not uniquely determined by the rank of order 1. Indeed,
let n = 7 and

f = e1∧ e2∧ e3 + e2∧ e4∧ e5 + e3∧ e6∧ e7,

g = e1∧ e2∧ e3 + e1∧ e4∧ e5 + e1∧ e6∧ e7.

Then

rank1 [ f ] = rank1 [g] = 7

and
corank1 [ f ] = 7 and corank1 [g] = 6.

(v) We finally give an example showing that the rank of order 1 does not deter-
mine the rank of higher orders. We let k = 4, n = 8 and

f = e1∧ e2∧ e3∧ e4 + e5∧ e6∧ e7∧ e8,

g = e1∧
[
e2∧ e3∧ e4 + e5∧ e6∧ e7 + e2∧ e5∧ e8

]
.

We have
rank1 [ f ] = rank1 [g] = 8,

rank2 [ f ] = 12 and rank2 [g] = 14.

We now turn to two interesting examples showing that in order that a form g be
the pullback of a form f , it is not enough that they have all their ranks and coranks
equal.

Example 2.35. Let m be odd, n = 2m and

f = ∗(ωm) = ∗
(

m

∑
i=1

e2i−1∧ e2i

)

=
m

∑
i=1

e1∧ e2∧·· ·∧ ê2i−1∧ ê2i∧·· ·∧ e2m−1∧ e2m.

Then f and − f have all their ranks and coranks equal (cf. Proposition 2.33(vii));
however, there is no A ∈ GL(n) such that (cf. Proposition 2.24(iii))

A∗( f ) =− f .

This result applies, in particular, to n = 6 and

f = e1∧ e2∧ e3∧ e4 + e1∧ e2∧ e5∧ e6 + e3∧ e4∧ e5∧ e6.

Example 2.36. The same phenomenon also occurs when n = 6 and k = 3. Indeed,
the forms

f = e1∧ e2∧ e3 + e4∧ e5∧ e6,

g = e1∧ e2∧ e3 + e1∧ e4∧ e5 + e2∧ e4∧ e6 + e3∧ e5∧ e6
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have all of their ranks and coranks equal, namely

rank1 [ f ] = rank1 [g] = rank2 [ f ] = rank2 [g] = 6,

corank1 [ f ] = corank1 [g] = corank2 [ f ] = corank2 [g] = 6,

rank3 [ f ] = rank3 [g] = 1 and corank3 [ f ] = corank3 [g] = 1.

However (cf. Kneuss [60] for details), there is no A ∈ GL(6) so that

A∗ (g) = f .

2.2.3 Properties of the Rank of Order 1

Since the most essential notion is the one of rank of order 1, we gather below some
properties of this rank; for related results, see Martinet [71]. We also recall that in
all of the other chapters, the rank of order 1 of a form f is just referred to as the rank
of f and is denoted by rank [ f ] instead of rank1 [ f ] .

Proposition 2.37. Let f ∈Λ k (Rn) and 1≤ k ≤ n.

(i) If
Λ 1

f =
{

u ∈Λ 1 (Rn) : ∃g ∈Λ k−1 (Rn) with g� f = u
}
,

then
rank1 [ f ] = dim

(
Λ 1

f
)
,

Λ 1
f = Range

(
f �,k−1

)
.

(ii) If f �= 0 and 3≤ k ≤ n, then

rank1 [ f ] ∈ {k,k+2, . . . ,n}

and any of the values in {k,k+2, . . . ,n} can be achieved by the rank of order 1 of a
k-form.

(iii) If k = 2, then the rank of order 1 of f , f �= 0, is even and any even value less
than or equal to n can be achieved by the rank of order 1 of a 2-form. Moreover,
rank1 [ f ] = 2m if and only if

f m �= 0 and f m+1 = 0,

where f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

. Furthermore, if n is even, the following identity holds, iden-

tifying n-forms with 0-forms:

∣∣det f �,1
∣∣1/2

=
1

(n/2)!

∣∣∣ f n/2
∣∣∣ .
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(iv) If g ∈Λ l (Rn) , then

rank1 [ f ∧g]≤ rank1 [ f ]+ rank1 [g]−dim
(
Λ 1

f ∩Λ 1
g
)
.

Moreover,

rank1 [ f ∧g] = rank1 [ f ]+ rank1 [g] ⇔ Λ 1
f ∩Λ 1

g = {0} .

(v) Let f ∈Λ 2(Rn) and g ∈Λ 1(Rn) be such that f ∧g �= 0. Then

rank1[ f ∧g] =

{
rank1[ f ]+1 if g /∈Λ 1

f

rank1[ f ]−1 if g ∈Λ 1
f .

Remark 2.38. (i) For f ∈Λ k (Rn) , the rank of order 1 of f can never be (k+1) . In
particular, when k = n−1 and f �= 0, then

rank1 [ f ] = n−1.

(ii) From Proposition 2.37(iv), we can infer that if f �= 0, then

rank1 [∗ f ]≥ n− rank1 [ f ] .

When k = 1 or k = n−1, then the inequality becomes an equality. In general, how-
ever, as soon as 2≤ k ≤ n−2, the inequality can be strict.

(iii) Let m≥ n be integers; then rank1 [ f ] is independent of whether we consider
f ∈Λ k (Rn) or f ∈Λ k (Rm) , in view of the above proposition and Theorem 2.22 (cf.
Remark 2.23(ii)). This is, however, not true for all of the other ranks and coranks.

Proof. We split the proof into five steps.

Step 1. We prove statement (i). The fact that

Λ 1
f = Range

(
f �,k−1

)
follows from the definition. We use claim (i) of Proposition 2.32 and assertion (iv)
of Proposition 2.33 to get that

dimΛ 1
f = rank( f �,k−1) = rank( f �,1) = rank1[ f ].

Step 2. We show (ii). Using Theorem 2.22, statement (i) of the present proposition
and Remark 2.21, we may assume that rank1[ f ] = n and thus that

Λ 1
f = span{e1, . . . ,en}.

1) Since Λ k(Rn) = {0} if k > n and f �= 0, we must have k ≤ n and thus

k ≤ rank1[ f ] = n.
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2) Let us show that n �= k+1. Suppose, for the sake of contradiction, that n= k+1
and we then show the existence of u ∈Λ 1(Rn), u �= 0, with

u� f = 0.

This will be the desired contradiction since

rank1[ f ] = n ⇔ Anh�( f ,1) = {0}.

Indeed, since ∗ f ∈Λ 1(Rn), we have that

0 = (∗ f )∧ (∗ f ) = ∗
[
(−1)n(n−2)(∗ f )� f

]
and, therefore, u = ∗ f is the required 1-form.

3) Finally, we show the last part of (ii). We have to prove that for any n ≥ k,
n �= k + 1, there exists f ∈ Λ k(Rn) with rank1 [ f ] = n. This will be sufficient to
show the assertion. Let s≥ 1 and l ∈ {0, . . . ,k−1} be such that

n = sk+ l.

We now define a k-form f having the required properties. We consider three cases.

Case 1. l = 0. We let

f =
s

∑
t=1

e(t−1)k+1∧·· ·∧ etk.

Case 2. l = 1 (and thus s≥ 2 since n �= k+1). We let

f =
s−1

∑
t=1

e(t−1)k+1∧·· ·∧ etk + e(s−1)k ∧·· ·∧ esk−1 + e(s−1)k+2∧·· ·∧ esk+1.

Case 3. 2≤ l ≤ k−1. We let

f =
s

∑
t=1

e(t−1)k+1∧·· ·∧ etk + e(s−1)k+l+1∧·· ·∧ esk+l .

In the three cases, we notice that f is a sum of terms having two by two at least two
distinct ei. From this observation it follows immediately that if u ∈Λ 1(Rn) verifies

u� f = 0,

then u = 0. This shows that rank1 [ f ] = n and ends the proof of (ii).

Step 3. Let us show (iii) and first prove that the rank of order 1 of f is even. From
Proposition 2.24(ii), we get that there exists a unique integer m, with 2 ≤ 2m ≤ n,
such that

f m �= 0 and f m+1 = 0
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and there exists A ∈ GL(n) such that

A∗( f ) = ωm =
m

∑
i=1

e2i−1∧ e2i.

Since the rank is invariant by pullback (cf. Proposition 2.33(vi)), we have the result
since we clearly have that

rank1 [ f ] = rank1 [ωm] = 2m.

The fact that any even value less than or equal to n can be achieved by the rank
of order 1 of a 2-form follows from the above argument. We now prove the state-
ment concerning the determinant. Note first that if 2m < n, the result is trivial, since
both sides of the equation are 0. So let n = 2m. One easily sees by induction that
det[(ωm)�,1] = 1. Note also that for any B ∈ R

n×n and any g ∈Λ 2 (Rn), we have(
B∗(g)�,1

)q

p
= (B∗(g))pq = ∑

1≤i< j≤n
gi j

(
Bi

pB j
q−Bi

qB j
p
)

=
n

∑
i, j=1

gi jBi
pB j

q =
n

∑
i, j=1

(
g�,1

) j
i Bi

pB j
q =

(
Btg�,1B

)q
p

for every 1≤ p,q≤ n. Next, let A be such that

A∗( f ) = ωm =
m

∑
i=1

e2i−1∧ e2i.

Therefore choosing B = A−1, we get

∣∣det f �,1
∣∣1/2

=
∣∣∣det

(
Bt(ωm)�,1B

)∣∣∣1/2
= |detB|

=
∣∣B∗ (e1∧·· ·∧ en)∣∣= 1

m!
|B∗ ((ωm)

m)|= 1
(n/2)!

∣∣∣ f n/2
∣∣∣ .

Step 4. For the proof of (iv), we refer to [60].

Step 5. We finally prove statement (v). First, note that if g /∈ Λ 1
f , then the result

is a direct application of statement (iv) since rank1[g] = 1. We thus assume g ∈Λ 1
f .

Using Proposition 2.24(ii) and Remark 2.25, there exists A ∈GL(n) such that, writ-
ing 2m = rank1[ f ],

A∗( f ) =
m

∑
i=1

e2i−1∧ e2i and A∗(g) = e2m.

Therefore,

A∗( f ∧g) =
m

∑
i=1

e2i−1∧ e2i∧ e2m =
m−1

∑
i=1

e2i−1∧ e2i∧ e2m.
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Since

rank1

[
m−1

∑
i=1

e2i−1∧ e2i∧ e2m

]
= 2(m−1)+1 = rank1[ f ]−1,

we obtain the result using Proposition 2.33(vi). 
�

2.3 Divisibility

In this section we will follow the presentation of Dacorogna and Kneuss [31] (see
also Bandyopadhyay, Dacorogna and Kneuss [9]).

2.3.1 Definition and First Properties

Definition 2.39. Let 1≤ k ≤ n and f ∈Λ k (Rn) .

(i) Let 0 ≤ l ≤ k. We say that f is l-divisible if there exist a ∈ Λ l (Rn) and b ∈
Λ k−l (Rn) such that

f = a∧b.

We say that f is prime (or indecomposable) if it is not l-divisible for any 1 ≤ l ≤
k−1.

(ii) We say that f is totally divisible (or totally decomposable) if there exist
f1, . . . , fk ∈Λ 1 (Rn) such that

f = f1∧·· ·∧ fk.

Remark 2.40. (i) In the literature the second definition is standard; it goes back to
Cartan and such a form is, sometimes, also called pure or decomposable.

(ii) Let f ∈ Λ k(Rn) and A ∈ GL(n). Using (2.8), we see that f is l-divisible if
and only if A∗( f ) is l-divisible and that f is prime if and only if A∗( f ) is prime.

Remark 2.41. We should point out that a form is not uniquely decomposable into
prime forms. Indeed, consider

f =
[
e1∧ e2 + e3∧ e4]∧ e3 = e1∧ e2∧ e3

and observe that it is a product of one prime 2-form of rank 4 and one (prime) 1-form
and, at the same time, a product of three (prime) 1-forms. However, only the second
one is an optimal decomposition of f , in the sense that

f = f1∧·· ·∧ fs

with fi ∈Λ ki (Rn) prime, k1 + · · ·+ ks = k, and

rank1[ f ] =
s

∑
i=1

rank1[ fi].
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An optimal decomposition of the above type does not always exist, as the following
example shows. Let f ∈Λ 4

(
R

6
)

given by

f =
[
e1∧ e2 + e3∧ e4]∧[e1∧ e2 + e5∧ e6

]
= e1∧ e2∧ e3∧ e4 + e1∧ e2∧ e5∧ e6 + e3∧ e4∧ e5∧ e6.

Note that rank1[ f ] = 6. Let us show that f is not optimally decomposable in the
above sense.

1) Observe that f is not 1-divisible. Indeed, a simple calculation shows that there
exists no a ∈Λ 1(R6) with a �= 0, such that

f ∧a = 0.

Therefore, we have the assertion using Theorem 2.42.
2) By construction, f is not prime. Therefore, two cases can happen.

Case 1. f = a∧b with a ∈Λ 3(R6) and b ∈Λ 1(R6) and this is impossible, since
f is not 1-divisible.

Case 2. f = a∧b with a,b ∈Λ 2(R6) and

rank1[ f ] = rank1 [a]+ rank1[b] = 6.

Since rank1 [a] and rank1 [b] are even numbers, then one of them is 4 and the other
one is 2, say rank1 [b] = 2. Since b ∈Λ 2 with rank1 [b] = 2, we deduce (see Propo-
sition 2.43(ii)) that there exist b1,b2 ∈Λ 1(R6) such that

b = b1∧b2

and, hence,
f = a∧b = a∧b1∧b2,

which is also impossible since f is not 1-divisible.

We now gather some properties about divisibility and total divisibility. The first
result is known as the Cartan lemma (cf., for example, Bryant et al. [18, p. 11]).

Theorem 2.42 (Cartan lemma). Let 1 ≤ k ≤ n and f ∈ Λ k (Rn) with f �= 0. Let
1≤ l ≤ k and g1, . . . ,gl ∈Λ 1(Rn) be such that

g1∧·· ·∧gl �= 0.

Then there exists u ∈Λ k−l(Rn) verifying

f = g1∧·· ·∧gl ∧u

if and only if
f ∧g1 = · · ·= f ∧gl = 0.
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Proof. For the sake of completeness we provide here a proof of the theorem, al-
though it directly follows from Corollary 2.46 below.

Let us first show the necessary part. Let u ∈Λ k−l(Rn) be such that

f = u∧g1∧·· ·∧gl ;

then, clearly,
f ∧g1 = · · ·= f ∧gl = 0.

So we now turn to the sufficient part. In view of Proposition 2.19, proving the
theorem for f is equivalent to proving it for A∗( f ) for any A ∈ GL(n). We may
therefore assume, using Proposition 2.24(i), that

gi = ei, 1≤ i≤ l.

Since f ∧ ei = 0, 1≤ i≤ l, implies that

f = ∑
l+1≤ jl+1<···< jk≤n

f1···l jl+1··· jk e1∧·· ·∧ el ∧ e jl+1 ∧·· ·∧ e jk ,

we have the result by letting

u = ∑
l+1≤ jl+1<···< jk≤n

f1···l jl+1··· jk e jl+1 ∧·· ·∧ e jk .

This finishes the proof. 
�

We now gather some other elementary facts established in Bandyopadhyay,
Dacorogna and Kneuss [9].

Proposition 2.43. Let 1≤ k ≤ n and f ∈Λ k (Rn) with f �= 0.

(i) Let a ∈Λ 1(Rn), a �= 0, be such that

f ∧a = 0.

Then
a ∈Λ 1

f =
{

u ∈Λ 1 (Rn) : ∃h ∈Λ k−1 (Rn) with h� f = u
}
.

(ii) The form f is totally divisible, meaning that there exist f1, . . . , fk ∈ Λ 1 (Rn)
such that

f = f1∧·· ·∧ fk

if and only if
rank1[ f ] = k

if and only if
f ∧b = 0, for every b ∈Λ 1

f
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if and only if

dim(Anh∧ ( f ,1)) = k.

(iii) If k is odd and if rank1[ f ] = k+2, then f is 1-divisible.

Remark 2.44. (i) Statement (iii) in the proposition is, in general, false when k is
even. Indeed, the form f ∈Λ 4 (Rn) given by

f = e1∧ e2∧ e3∧ e4 + e1∧ e2∧ e5∧ e6 + e3∧ e4∧ e5∧ e6

is not 1-divisible (although it is 2-divisible) while rank1[ f ] = k + 2 = 6 (cf.
Remark 2.41).

(ii) When k = 3, f �= 0 and rank1[ f ] is even, then f is prime. This easily follows
from the fact that if f is 1-divisible, there exists a∈Λ 1 (Rn) and b∈Λ 2 (Rn) so that
f = a∧b and, therefore, rank1[ f ] is odd, using Proposition 2.37(v).

(iii) If f is prime, then
Anh∧( f ,1) = {0} .

Conversely if k = 2 or k = 3 and Anh∧( f ,1) = {0} , then f is prime.

(iv) We always have, appealing to Theorem 2.42,

corank1 [ f ]< n ⇔ Anh∧( f ,1) �= {0} ⇔ f is 1-divisible.

Moreover, if l is odd, then, noticing that h∧h = 0 for every h ∈Λ l(Rn), we imme-
diately deduce the following implication:

f is l-divisible ⇒ corankl [ f ]<
(

n
l

)
. (2.16)

The converse of (2.16) is not verified in general. Indeed, let

f = e1∧ e2∧ e3∧ e4 + e5∧ e6∧ e7∧ e8 ∈Λ 4(R8).

It is easily seen that f is not 1-divisible (and thus not 3-divisible). Noticing that

f ∧ e1∧ e2∧ e5 = 0,

we get

corank3[ f ] = 8 <

(
8
3

)
,

which shows the assertion. Finally, we prove that (2.16) is, in general, false if l is
even. Indeed, let

f = e1∧ e2 + e3∧ e4 + e5∧ e6 ∈Λ 2(R6).

We immediately obtain that f is 2-divisible (by itself). In addition, a simple calcu-
lation shows that corank2[ f ] =

(6
2

)
, which proves the assertion.
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Proof. Since Remark 2.21, Proposition 2.33(vi) and Remark 2.40(ii) hold, proving
the proposition for f is equivalent to proving the claims for A∗( f ) for any A ∈
GL(n). This fact will be constantly used throughout the proof.

Step 1. Let us show (i). We may, as already said, assume that a = e1. Since
f ∧ e1 = 0, we find that

f = ∑
2≤ j2<···< jk≤n

f1 j2··· jk e1∧ e j2 ∧·· ·∧ e jk .

Letting
u = ∑

2≤ j2<···< jk≤n
f1 j2··· jk e j2 ∧·· ·∧ e jk ,

we find that
u� f =−〈u;u〉e1

and, thus, e1 ∈Λ 1
f since u �= 0. The proof of (i) is therefore complete.

Step 2. We next show (ii) and we divide the proof into three parts.

Step 2.1. We first show that f is totally divisible if and only if rank1[ f ] = k.

(i) Assume that f is totally divisible. Using Proposition 2.24(i), we can suppose
that f = e1∧·· ·∧ ek. This directly implies that

Λ 1
f = span{e1, . . . ,ek}

and, therefore, rank1 [ f ] = k, using Proposition 2.37(i).

(ii) Let f be such that rank1[ f ] = k. From Proposition 2.37(i), we have

rank1 [ f ] = dimΛ 1
f .

Appealing to Theorem 2.22, we can assume that f ∈Λ k
(
R

k
)

and, thus,

f = λ e1∧·· ·∧ ek

with λ �= 0, which means that f is totally divisible.

Step 2.2. We now prove that rank1 [ f ] = k is equivalent to

f ∧b = 0 for every b ∈Λ 1
f .

(i) Assume that rank1 [ f ] = k. With the same argument as the one of Step 2.1(ii),
we can assume that

f = λ e1∧·· ·∧ ek

with λ �= 0. This implies that

Λ 1
f = span{e1, . . . ,ek}.
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Thus, we have the result since

f ∧b = 0 for every b ∈Λ 1
f .

(ii) We now prove the converse and let f verify

f ∧b = 0 for every b ∈Λ 1
f .

Letting p = rank1 [ f ] , we can assume, using Theorem 2.22 and Proposition 2.37(i),
that

Λ 1
f = span{e1, . . . ,ep}.

To conclude, it is enough to show that p = k. Suppose, for the sake of contradiction,
that p> k and let us show that f = 0, which will be the desired contradiction. Indeed,
for every 1≤ j1 < · · ·< jk ≤ p there exists then 1≤ i≤ p such that

i /∈ { j1, . . . , jk}.

Combining this with f ∧ ei = 0, we obtain that

f j1··· jk = 0

and, thus, f = 0, which is the desired contradiction.

Step 2.3. We finally establish that f is totally divisible if and only if

dim(Anh∧ ( f ,1)) = k.

(i) Assume that f is totally divisible; then there exist f1, . . . , fk ∈ Λ 1(Rn) such
that

f = f1∧·· ·∧ fk .

This clearly shows the assertion, namely

Anh∧( f ,1) = span{ f1, . . . , fk} .

(ii) Assume now that dim(Anh∧ ( f ,1)) = k. Therefore, there exist

f1, . . . , fk ∈Λ 1(Rn)

such that

Anh∧( f ,1) = span{ f1, . . . , fk} .

It then follows from the Cartan lemma (cf. Theorem 2.42) that we can find λ �= 0
such that

f = λ f1∧·· ·∧ fk

and, thus, f is totally divisible.
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Step 3. We finally show (iii). Using once more Theorem 2.22, we can assume that
n = k+2 and, thus, by hypothesis, n is odd. Since ∗ f ∈Λ 2(Rn), we have, according
to Proposition 2.37(iii), that

rank1[∗ f ] is even.

Combining this fact with the definition of the rank of order 1 and the fact that n is
odd, we deduce that there exists a ∈Λ 1(Rn), a �= 0, such that

a�(∗ f ) = 0.

Since

a�(∗ f ) = 0 ⇔ a∧ f = 0,

we have that f is 1-divisible (by a), using Theorem 2.42 with l = 1. The proof is
therefore complete. 
�

2.3.2 Main Result

Given f ∈ Λ k (Rn) and g ∈ Λ l (Rn) with 0 ≤ l ≤ k, we want to find u ∈ Λ k−l (Rn)
such that

f = g∧u. (2.17)

We have already studied the previous equation when g �= 0 is a product of 1-forms,
namely

g = g1∧·· ·∧gl �= 0,

where g1, . . . ,gl ∈ Λ 1 (Rn) . Indeed, in Theorem 2.42 we proved that a necessary
and sufficient condition for solving (2.17) is

f ∧g1 = · · ·= f ∧gl = 0.

We want here to extend this result to general l-forms. All of the following results
have been established by Dacorogna and Kneuss [31]. Our main theorem is the
following. We recall that we use Notation 2.30.

Theorem 2.45 (Dacorogna–Kneuss theorem). Let 0 ≤ l ≤ k ≤ n be integers. Let
g ∈Λ l(Rn) and f ∈Λ k(Rn). The following assertions are then equivalent:

(i) There exists u ∈Λ k−l(Rn) verifying

f = g∧u.

(ii) For every h ∈Λ n−k(Rn), the following implication holds:

[h∧g = 0] ⇒ [h∧ f = 0]



64 2 Exterior Forms and the Notion of Divisibility

or, equivalently ,
Anh∧(g,n− k)⊂ Anh∧( f ,n− k).

(iii) For every 0≤ s≤ n− k and h ∈Λ s(Rn), the following implication is valid:

[h∧g = 0] ⇒ [h∧ f = 0]

or, equivalently ,

Anh∧(g,s)⊂ Anh∧( f ,s) for every 0≤ s≤ n− k.

(iv) Let r = rank(g∧,k−l). Looking at f and the columns of g∧,k−l ∈R
(n

k)×( n
k−l) as

1-forms in R
(n

k), then

(g∧,k−l)i(1)1 ···i(1)k−l
∧·· ·∧ (g∧,k−l)i(r)1 ···i(r)k−l

∧ f = 0

for every
1≤ i(1)1 < · · ·< i(1)k−l ≤ n, . . . ,1≤ i(r)1 < · · ·< i(r)k−l ≤ n.

We will also write (cf. Corollary 2.48) the dual version of (2.17), where the ex-
terior product is replaced by the interior product, namely we solve

u�g = f .

This last equation has been studied in Bandyopadhyay, Dacorogna and Kneuss [9]
in the case where g ∈Λ 2(Rn) (see Proposition 2.50 below).

We now give some corollaries. The proof of the theorem is put off to Sec-
tion 2.3.4.

Corollary 2.46. Theorem 2.45 indeed generalizes the Cartan lemma (cf. Theo-
rem 2.42).

Proof. Let
g = g1∧·· ·∧gl �= 0

as in the Cartan lemma. We first claim that h ∈Λ s(Rn), s≥ 1, satisfies g∧h = 0 if
and only if h is of the form

h =
l

∑
j=1

g j ∧h j

for some h j ∈Λ s−1(Rn). The sufficient part being obvious, we only prove the nec-
essary part. With no loss of generality, we can assume that g j = e j and, thus,

e1∧·· ·∧ el ∧h = 0.

Writing h = ∑i1<···<is hi1···is e
i1 ∧·· ·∧eis , the previous equation immediately implies

that
hi1···is = 0 if {i1, . . . , is}∩{1, . . . , l}= /0,
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which directly implies the claim, namely

h =
l

∑
j=1

e j ∧h j for some h j ∈Λ s−1(Rn).

Thus, the Cartan lemma follows once noticed that for f ∈Λ k(Rn), we have

f ∧g j = 0 ⇔ { f ∧g j ∧h j = 0 for every h j ∈Λ n−k−1}.

This concludes the proof. 
�
Corollary 2.47. A k-form f in R

n is characterized, up to a multiplicative constant,
by Anh∧ ( f ,n− k) .

Proof. We give two proofs of the corollary: the first one as a consequence of the
theorem and the second one in a constructive way.

Proof 1. Clearly, f and λ f , with λ �= 0, verify

Anh∧( f ,n− k) = Anh∧(λ f ,n− k).

So let us show the converse and let f ,g ∈Λ k(Rn) with

Anh∧( f ,n− k) = Anh∧(g,n− k).

Theorem 2.45(ii) implies then the existence of λ ∈ Λ 0(Rn) with g = λ f . Noting
that λ �= 0 (unless f = g = 0), we have the claim.

Proof 2. The sufficient part is as in the first proof. We divide the proof of the
necessary part into two steps and assume that

Anh∧( f ,n− k) = Anh∧(g,n− k)

and let us show that g = λ f .
Step 1. We show that if fi1···ik = 0 for some 1≤ i1 < · · ·< ik ≤ n, then

gi1···ik = 0.

Note that fi1···ik = 0 is equivalent, according to (2.4), to

∗(ei1 ∧·· ·∧ eik
) ∈ Anh∧( f ,n− k).

Hence, by hypothesis,

∗(ei1 ∧·· ·∧ eik
) ∈ Anh∧(g,n− k),

which is equivalent to gi1···ik = 0, using (2.4).
Step 2. If f = 0, then g = 0 according to Step 1 and the corollary is thus true for

any λ ∈R. We therefore assume that f �= 0 and, thus, f j1··· jk �= 0 for a certain index
1≤ j1 < · · ·< jk ≤ n. Let 1≤ i1 < · · ·< ik ≤ n. We note that, using (2.4),
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h = fi1···ik
[∗(e j1 ∧·· ·∧ e jk

)]− f j1··· jk
[∗(ei1 ∧·· ·∧ eik

)] ∈ Anh∧( f ,n− k).

The hypothesis implies that
g∧h = 0,

which is equivalent, in view of (2.4), to

fi1···ik g j1··· jk − f j1··· jk gi1···ik = 0

and, thus,
gi1···ik =

g j1··· jk
f j1··· jk

fi1···ik .

Setting
λ =

g j1··· jk
f j1··· jk

,

we have the assertion. 
�
By duality, we obtain from Theorem 2.45 the corresponding result for interior

equations.

Corollary 2.48. Let 0≤ l ≤ k≤ n be integers. Let g ∈Λ k(Rn) and f ∈Λ l(Rn). The
following statements are then equivalent.

(i) There exists u ∈Λ k−l(Rn) satisfying

u�g = f .

(ii) For every h ∈Λ l(Rn),

[h�g = 0] ⇒ [h� f = 0]

or, equivalently ,

Anh�(g, l)⊂ Anh�( f , l).

(iii) For every 0≤ s≤ l and every h ∈Λ s(Rn),

[h�g = 0] ⇒ [h� f = 0]

or, equivalently ,

Anh�(g,s)⊂ Anh�( f ,s) for every 0≤ s≤ l.

(iv) Let r = rank(g�,k−l). Seeing f and the columns of g�,k−l as 1-forms in R
(n

l),
then

(g�,k−l)i(1)1 ···i(1)k−l
∧·· ·∧ (g�,k−l)i(r)1 ···i(r)k−l

∧ f = 0

for every
1≤ i(1)1 < · · ·< i(1)k−l ≤ n, . . . ,1≤ i(r)1 < · · ·< i(r)k−l ≤ n.
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Proof. The equivalences (i)–(iii) follow from Theorem 2.45 and from the following
observations:

f = u�g = (−1)nl ∗ (u∧ (∗g)) ⇔ ∗ f = (−1)l (u∧ (∗g)) ,

h�g = 0 ⇔ h∧ (∗g) = 0,

h� f = 0 ⇔ h∧ (∗ f ) = 0.

The equivalence between (i) and (iv) is just Lemma 2.54 applied to the matrix g�,k−l ,
since

u�g = f ⇔ g�,k−lu = f .

This concludes the proof of the corollary. 
�

2.3.3 Some More Results

The main theorem (Theorem 2.45) immediately gives an equivalent condition for a
k-form to be prime.

Corollary 2.49. Let f ∈Λ k(Rn); then the two following statements are equivalent:

(i) The k-form f is prime.

(ii) For any 1 ≤ l ≤ k− 1 and any g ∈ Λ l(Rn), there exists h ∈ Anh∧(g,n− k)
such that

f ∧h �= 0.

When k = 2, we can express Corollary 2.48 in a different way. The following
proposition is taken from Bandyopadhyay, Dacorogna and Kneuss [9].

Proposition 2.50. Let g ∈ Λ 2(Rn) with rank1[g] = 2m ≤ n and f ∈ Λ 1(Rn). There
exists u ∈Λ 1(Rn) such that

f = u�g

if and only if

f ∧gm = 0.

Remark 2.51. (i) If n = 2m and since f ∧gm ∈Λ n+1 (Rn) , we then always have

f ∧gm = 0.

Therefore, there always exists u ∈Λ 1 (Rn) such that

f = u�g.
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(ii) More generally, if k is even, g ∈ Λ k (Rn) with gm+1 = 0 (with mk ≤ n) and
there exists u ∈Λ 1 (Rn) such that f = u�g, then necessarily (cf. (2.5))

f ∧gm = 0.

The converse is, however, not true in general. Indeed, let k = 4, m = 2 and

g = e1∧ e2∧ e3∧ e4 + e5∧ e6∧ e7∧ e8 ∈Λ 4(R8).

Note that rank 1[g] = 4 ·2 = 8, f ∧g2 = 0 for every f ∈Λ 3(R8), but that there does
not exist u ∈Λ 1(R8) such that

e1∧ e2∧ e5 = u�g.

This proves the claim.

We now prove the proposition.

Proof. Step 1. We start with a preliminary simplification. Using (2.9) and Proposi-
tion 2.24(ii), we can assume that g is of the form

g = ωm =
m

∑
i=1

e2i−1∧ e2i.

Note that

gm = m!e1∧·· ·∧ e2m.

Writing f = ∑n
i=1 fiei, we immediately deduce that

f ∧gm = 0 ⇔ [ fi = 0 for every 2m+1≤ i≤ n] . (2.18)

Step 2. We now prove the sufficient part and assume that f ∧gm = 0. Therefore,
using (2.18), we have that

u =
2m

∑
i=1

uiei ∈Λ 1(Rn),

where

ui = (−1)i+1 fi+(−1)i+1

satisfies

f = u�g.

Step 3. Let us finally show the necessary part. Assume that there exists u such
that f = u�g. The special structure of g immediately implies that fi = 0 for every
2m+1≤ i≤ n and thus the result according to (2.18). 
�
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We conclude this subsection with the case k = l +1 and a special g.

Proposition 2.52. Let 1≤ p≤ n−1 and 2≤ l ≤ n−1 be integers verifying

p+ l +1, pl ≤ n.

Let f ∈Λ l+1(Rn) and g1, . . . ,gpl ∈Λ 1(Rn) with

g1∧·· ·∧gpl �= 0,

g = [g1∧·· ·∧gl ]+ [gl+1∧·· ·∧g2l ]+ · · ·+
[
g(p−1)l+1∧·· ·∧gpl

]
.

The following two statements are then equivalent:
(i) There exists u ∈Λ 1(Rn) verifying

f = g∧u.

(ii) For every i j ∈ {( j−1) l +1, . . . , jl} and j,s, t ∈ {1, . . . , p} with s < t, the
following two sets of identities hold

f ∧gi1 ∧·· ·∧gip = 0,

f ∧gi1 ∧·· ·∧ ĝis ∧·· ·∧ ĝit ∧·· ·∧gip ∧Gst = 0,

where
Gst =

[
g(s−1)l+1∧·· ·∧gsl

]
+(−1)l+1 [g(t−1)l+1∧·· ·∧gtl

]
.

Remark 2.53. The case p = 1 in the above proposition is the Cartan lemma (cf. The-
orem 2.42) when k = l+1, since the last set of identities is then empty. If p = 2, the
last set of identities reads as

f ∧gi∧g j = 0, 1≤ i≤ l < j ≤ 2l,

f ∧
[
[g1∧·· ·∧gl ]+ (−1)l+1 [gl+1∧·· ·∧g2l ]

]
= 0.

Proof. Step 1. We show that (i)⇒ (ii). For every 1≤ j ≤ p, we set

I j = {( j−1)l +1, . . . , jl}.

Since we trivially have, for every i j ∈ I j and j,s, t ∈ {1, . . . , p} with s < t,

g∧gi1 ∧·· ·∧gip = 0,

g∧gi1 ∧·· ·∧ ĝis ∧·· ·∧ ĝit ∧·· ·∧gip ∧Gst = 0,

and since
f = g∧u,

we immediately get the result.
Step 2. We now prove that (ii)⇒ (i).
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Step 2.1. Since
g1∧·· ·∧gpl �= 0,

we can assume (using Proposition 2.24(i)), without loss of generality, that gi = ei,
1≤ i≤ pl. Under this hypothesis, the existence of a u satisfying the equation

f = g∧u

will be implied by the following two sets of identities. The first one is

f j1··· jl+1 = 0 (2.19)

for every 1 ≤ j1 < · · · < jl+1 ≤ n such that Im �⊂ { j1, . . . , jl+1} for every m ∈
{1, . . . , p}. Since l ≥ 2, the second one is

fIsν = f(s−1)l+1···(sl)ν = f(t−1)l+1···(tl)ν = fIt ν (2.20)

for every 1 ≤ s < t ≤ p and ν ∈ {1, . . . ,n}\(Is∪ It) . The result will follow if we
can show that (2.19) is implied by the first set of identities in statement (ii) of the
present proposition (cf. Step 2.2) and (2.20) is implied by the second set of identities
in statement (ii) of the proposition (cf. Step 2.3). The result then follows by setting

u =
n

∑
ν=1

uν eν ,

where

uν =

{
f1···lν if ν /∈ {1, . . . , l}
f(l+1)···(2l)ν if ν ∈ {1, . . . , l}.

Step 2.2. By hypothesis, we have for every is ∈ Is and s ∈ {1, . . . , p} ,

f ∧ ei1 ∧·· ·∧ eip = 0.

We therefore deduce, for every 1≤ j1 < · · ·< jl+1 ≤ n, that

( f ∧ ei1 ∧·· ·∧ eip) j1··· jl+1i1···ip = 0. (2.21)

Let 1 ≤ j1 < · · · < jl+1 ≤ n with Im �⊂ { j1, . . . , jl+1} for every m ∈ {1, . . . , p}. We
then choose, for m ∈ {1, . . . , p},

im ∈ Im\{ j1, . . . , jl+1} .

Applying (2.21) with these coefficients, we immediately have (2.19).

Step 2.3. We know that for every (i1, . . . , ip) ∈ I1×·· ·× Ip and s, t ∈ {1, . . . , p}
with s < t, the following set of identities hold:

f ∧ ei1 ∧·· ·∧ êis ∧·· ·∧ êit ∧·· ·∧ eip ∧Est = 0, (2.22)
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where

Est = eIs +(−1)l+1eIt .

We have, due to Step 2.2,

f =
p

∑
j=1

n

∑
ν=1

fI jν eIj ∧ eν . (2.23)

Let 1 ≤ s < t ≤ p and ν ∈ {1, . . . ,n}\(Is ∪ It). Note that if ir ∈ Ir, 1 ≤ r ≤ p, then
we have

eIj ∧ eν ∧ ei1 ∧·· ·∧ êis ∧·· ·∧ êit ∧·· ·∧ eip ∧ eIs = 0 if j �= t,

eIj ∧ eν ∧ ei1 ∧·· ·∧ êis ∧·· ·∧ êit ∧·· ·∧ eip ∧ eIt = 0 if j �= s.

Since l ≥ 2, we can chose ir for r �= s, t such that ir ∈ Ir\{ν} to obtain

eIt ∧ eν ∧ ei1 ∧·· ·∧ êis ∧·· ·∧ êit ∧·· ·∧ eip ∧ eIs

= (−1)leIs ∧ eν ∧ ei1 ∧·· ·∧ êis ∧·· ·∧ êit ∧·· ·∧ eip ∧ eIt �= 0.

Setting (2.23) into (2.22) and using the previous three equations, we get

fIsν = fIt ν .

This concludes the proof of the theorem. 
�

2.3.4 Proof of the Main Theorem

In the proof of Corollary 2.48 we have used the following lemma. It will also be
used in the proof of Theorem 2.45.

Lemma 2.54. Let m,n,r ≥ 1 be integers, A ∈ R
n×m a matrix of rank r and y ∈ R

n.
Then there exists x ∈ R

m verifying

Ax = y

if and only if

Ai1 ∧·· ·∧Air ∧ y = 0 for every 1≤ i1 < · · ·< ir ≤ m,

where y is identified with a 1-form in R
n and Ak denotes the kth column of A and is

identified to a 1-form in R
n.

Proof. Step 1. We first prove the necessary part. Assume that there exists x ∈ R
m

verifying Ax = y. Then, writing, x = (x1, . . . ,xm) , we have
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y =
m

∑
l=1

Alxl .

Since the rank of A is r, we get

Ai1 ∧·· ·∧Air ∧ y =
m

∑
l=1

xl (Ai1 ∧·· ·∧Air ∧Al) = 0,

which is our claim.

Step 2. We then turn to the proof of the sufficient part. Since the rank of A is r,
we can find 1≤ i1 < · · ·< ir ≤ m such that

Ai1 ∧·· ·∧Air �= 0.

Since we also have

Ai1 ∧·· ·∧Air ∧ y = 0,

it follows that y is a linear combination of the Ail . This means that there exist wl ∈R,
1≤ l ≤ r, so that

y =
r

∑
l=1

wlAil .

Setting x = (x1, . . . ,xm) where

xs =

{
wl if s = il
0 otherwise,

it follows that

Ax = y.

This concludes the proof of the lemma. 
�

We now turn to the proof of Theorem 2.45.

Proof. Step 1. The implications (i) ⇒ (iii) ⇒ (ii) are obvious. The equivalence (i)
⇔ (iv) is just a rewriting of Lemma 2.54, since

g∧u = f ⇔ g∧,k−lu = f .

Step 2. The only nontrivial implication is (ii)⇒ (iv). Let

1≤ i(1)1 < · · ·< i(1)k−l ≤ n, . . . ,1≤ i(r)1 < · · ·< i(r)k−l ≤ n,
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recalling that r = rank(g∧,k−l) and let us prove that

(g∧,k−l)i(1)1 ···i(1)k−l
∧·· ·∧ (g∧,k−l)i(r)1 ···i(r)k−l

∧ f = 0, (2.24)

where f and (g∧,k−l)i(m)
1 ···i(m)

k−l
, 1≤m≤ r, are seen as 1-forms in R

(n
k). Equation (2.24)

is equivalent to

det

∣∣∣∣∣∣∣∣∣∣∣∣

(g∧,k−l)
j(1)1 ··· j(1)k

i(1)1 ···i(1)k−l

· · · (g∧,k−l)
j(1)1 ··· j(1)k

i(r)1 ···i(r)k−l

( f ) j(1)1 ··· j(1)k

...
...

...

(g∧,k−l)
j(r+1)
1 ··· j(r+1)

k

i(1)1 ···i(1)k−l

· · · (g∧,k−l)
j(r+1)
1 ··· j(r+1)

k

i(r)1 ···i(r)k−l

( f ) j(r+1)
1 ··· j(r+1)

k

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

for every 1≤ j(1)1 < · · ·< j(1)k ≤ n, . . . ,1≤ j(r+1)
1 < · · ·< j(r+1)

k ≤ n. Expanding the
determinant with respect to the last column and writing, for every 1≤ m≤ r+1,

cm = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(g∧,k−l)
j(1)1 ··· j(1)k

i(1)1 ···i(1)k−l

· · · (g∧,k−l)
j(1)1 ··· j(1)k

i(r)1 ···i(r)k−l

...
...

(g∧,k−l)
j(m−1)
1 ··· j(m−1)

k

i(1)1 ···i(1)k−l

· · · (g∧,k−l)
j(m−1)
1 ··· j(m−1)

k

i(r)1 ···i(r)k−l

(g∧,k−l)
j(m+1)
1 ··· j(m+1)

k

i(1)1 ···i(1)k−l

· · · (g∧,k−l)
j(m+1)
1 ··· j(m+1)

k

i(r)1 ···i(r)k−l

...
...

(g∧,k−l)
j(r+1)
1 ··· j(r+1)

k

i(1)1 ···i(1)k−l

· · · (g∧,k−l)
j(r+1)
1 ··· j(r+1)

k

i(r)1 ···i(r)k−l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

we find that (2.24) is equivalent to

r+1

∑
m=1

(−1)m+1cm( f ) j(m)
1 ··· j(m)

k = 0.

The above equation is equivalent (seeing f as a k-form and appealing to (2.4)) to

f ∧
(

r+1

∑
m=1

(−1)m+1cm

[
∗(e j(m)

1 ∧·· ·∧ e j(m)
k )

])
= 0.

To prove our claim, it is sufficient to prove that

h =
r+1

∑
m=1

(−1)m+1cm

[
∗(e j(m)

1 ∧·· ·∧ e j(m)
k )

]
∈Λ n−k(Rn)
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satisfies

g∧h = 0,

which turns out to be equivalent to

g∧ et1 ∧·· ·∧ etk−l ∧h = 0 (2.25)

for every 1≤ t1 < · · ·< tk−l ≤ n. Since the matrix g∧,k−l has rank r, we get

(g∧,k−l)i(1)1 ···i(1)k−l
∧·· ·∧ (g∧,k−l)i(r)1 ···i(r)k−l

∧ (g∧,k−l)t1···tk−l = 0,

which implies that

det

∣∣∣∣∣∣∣∣∣∣∣∣∣

(g∧,k−l)
j(1)1 ··· j(1)k

i(1)1 ···i(1)k−l

· · · (g∧,k−l)
j(1)1 ··· j(1)k

i(r)1 ···i(r)k−l

(g∧,k−l)
j(1)1 ··· j(1)k
t1···tk−l

...
...

...

(g∧,k−l)
j(r+1)
1 ··· j(r+1)

k

i(1)1 ···i(1)k−l

· · · (g∧,k−l)
j(r+1)
1 ··· j(r+1)

k

i(r)1 ···i(r)k−l

(g∧,k−l)
j(r+1)
1 ··· j(r+1)

k
t1···tk−l

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Expanding the above determinant with respect to the last column, we obtain

r+1

∑
m=1

(−1)m+1cm(g∧,k−l)
j(m)
1 ··· j(m)

k
t1···tk−l

= 0.

Let us show that this last equation is equivalent to (2.25), namely

g∧ et1 ∧·· ·∧ etk−l ∧h = 0.

Noting that from Notation 2.30 and (2.4), we have, for every 1≤ m≤ r+1,

(g∧,k−l)
j(m)
1 ··· j(m)

k
t1···tk−l

=
(
g∧ et1 ∧·· ·∧ etk−l

)
j(m)
1 ··· j(m)

k

= ∗(g∧ et1 ∧·· ·∧ etk−l ∧ (∗(e j(m)
1 ∧·· ·∧ e j(m)

k )).

We therefore obtain that

∗(g∧ et1 ∧·· ·∧ etk−l ∧h) =
r+1

∑
m=1

(−1)m+1cm(g∧,k−l)
j(m)
1 ··· j(m)

k
t1···tk−l

= 0.

This is exactly our claim (2.25). 
�



Chapter 3

Differential Forms

3.1 Notations

In this section we recall the definitions and basic properties of differential forms
on R

n. Our presentation is very brief and for a detailed introduction on differential
forms, we refer, for instance, to Abraham, Marsden and Ratiu [1], do Carmo [37],
Lee [68], or Spivak [91]. From now on, we will denote the dual vectors ei, 1≤ i≤ n,
in Λ 1(Rn) by dxi and, hence, a basis of Λ k(Rn) is given by the dxi1 ∧ ·· · ∧ dxik .
Throughout this section Ω will stand for an open subset of Rn.

Notation 3.1. Let 0≤ k ≤ n. A differential k-form f : Ω →Λ k will be written as

f = ∑
1≤i1<···<ik≤n

f i1···ik dxi1 ∧·· ·∧dxik ,

where f i1···ik : Ω → R, for every 1 ≤ i1 < · · · < ik ≤ n. When f i1···ik ∈ Lp(Ω),
for every 1 ≤ i1 < · · · < ik ≤ n, we will write f ∈ Lp

(
Ω ;Λ k

)
and similarly for

W 1,p
(
Ω ;Λ k

)
, Cr,α(Ω ;Λ k

)
, or Cr,α(Ω ;Λ k

)
. The norm is defined componentwise;

for instance,
‖ f‖2

L2 = ∑
1≤i1<···<ik≤n

‖ fi1···ik‖2
L2 .

The differential forms obey pointwise the laws of the exterior algebra. For in-
stance, the exterior product is defined pointwise as

( f ∧g)(x) = f (x)∧g(x).

The scalar product, the Hodge duality, the interior product, rank and corank of dif-
ferential forms are also defined pointwise in an analogous way.

We can now introduce the two important differential operators on differential
forms.

Definition 3.2 (Exterior and interior derivative). Let Ω ⊂ R
n be open and f ∈

C1
(
Ω ;Λ k

)
,
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f = ∑
1≤i1<···<ik≤n

f i1···ik dxi1 ∧·· ·∧dxik .

(i) The exterior derivative of f , denoted d f , belongs to C0
(
Ω ;Λ k+1

)
and is de-

fined by

d f = ∑
1≤i1<···<ik≤n

n

∑
m=1

∂ fi1···ik
∂xm

dxm∧dxi1 ∧·· ·∧dxik .

If k = n, then d f = 0.
(ii) The interior derivative or codifferential of f denoted δ f belongs to C0

(
Ω ;

Λ k−1
)

and is defined by

δ f = (−1)n(k−1) ∗ (d (∗ f )) .

We will use the next formulas on several occasions.

Proposition 3.3 (Formulas for d and δ ). Let f ∈C1
(
Ω ;Λ k

)
,

f = ∑
1≤i1<···<ik≤n

f i1···ik dxi1 ∧·· ·∧dxik .

The following formulas hold true:
(i) If k < n,

d f = ∑
1≤i1<···<ik+1≤n

(
k+1

∑
γ=1

(−1)γ−1 ∂ fi1···iγ−1iγ+1···ik+1

∂xiγ

)
dxi1 ∧·· ·∧dxik+1 .

(ii) If k > 0,

δ f = ∑
1≤i1<···<ik−1≤n

(
k

∑
γ=1

(−1)γ−1 ∑
iγ−1< j<iγ

∂ fi1···iγ−1 jiγ ···ik−1

∂x j

)
dxi1 ∧·· ·∧dxik−1 ,

where if γ = 1, it is understood that fi1···iγ−1 jiγ ···ik−1 = f ji1···ik−1 , and, similarly, when
γ = k, it is understood that fi1···iγ−1 jiγ ···ik−1 = fi1···ik−1 j . If k= 1, by abuse of notations,
the formula can be written as

δ f = div f =
n

∑
j=1

∂ f j

∂x j
.

We now define the notions of closed, coclosed, exact and coexact forms as well
as of harmonic fields.

Definition 3.4. Let Ω ⊂ R
n be open and f be a k-form.

(i) If f ∈C1
(
Ω ;Λ k

)
satisfies d f = 0 in Ω (respectively δ f = 0 in Ω ), then f is

said to be closed (respectively coclosed) in Ω .

(ii) If there exists g ∈C1
(
Ω ;Λ k−1

)
such that dg = f in Ω , then f is said to be

exact in Ω . Similarly, if there exists g ∈C1
(
Ω ;Λ k+1

)
such that δg = f in Ω , then

f is said to be coexact in Ω .
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(iii) A differential form f ∈C1
(
Ω ;Λ k

)
that satisfies both d f = 0 and δ f = 0 in

Ω is called a harmonic field.

We next gather some well-known properties of the operators d and δ .
Theorem 3.5. Let f be a k-form and g be a l-form, then

d( f ∧g) = d f ∧g+(−1)k f ∧dg,

δ ( f �g) = (−1)k+ld f �g− f �δg.

Moreover, every exact form is closed and every coexact form is coclosed; that is,

dd f = 0 and δδ f = 0.

Definition 3.6 (Laplacian). Let f ∈C2
(
Ω ;Λ k

)
. The Laplacian Δ f ∈C0

(
Ω ;Λ k

)
is

defined by the Laplacian acting componentwise; that is,

Δ
(

∑
1≤i1<···<ik≤n

f i1···ik dxi1 ∧·· ·∧dxik
)
= ∑

1≤i1<···<ik≤n
Δ f i1···ik dxi1 ∧·· ·∧dxik ,

where

Δ fi1···ik =
n

∑
l=1

∂ 2 fi1···ik
∂x2

l
.

Theorem 3.7. Let f ∈C2
(
Ω ;Λ k

)
. Then

dδ f +δd f = Δ f .

Definition 3.8 (Pullback of a differential form). Let U ⊂R
m and V ⊂R

n be open
and ϕ = (ϕ1, . . . ,ϕn) ∈C1(U ;V ). Let

f = ∑
1≤i1<···<ik≤n

fi1···ik dxi1 ∧·· ·∧dxik ∈C0(V ;Λ k (Rn)
)
. (3.1)

Then the pullback of f by ϕ, denoted ϕ∗ ( f ) , belongs to C0
(
U ;Λ k (Rm)

)
and is

defined by

ϕ∗ ( f ) = ∑
1≤i1<···<ik≤n

( fi1···ik ◦ϕ)dϕ i1 ∧·· ·∧dϕ ik = ∑
I
( fI ◦ϕ)dϕ I , (3.2)

where

dϕs =
m

∑
l=1

∂ϕs

∂xl
dxl .

Remark 3.9. (i) We see that this is a generalization of Definition 2.17. Indeed, if
ϕ (x) = Ax, where A ∈ R

n×m is a matrix, and f is constant, then

ϕ∗ ( f ) = A∗ ( f ) ,

where the right-hand side has to be understood in the sense of Definition 2.17.
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(ii) We can also define, in an equivalent way,

ϕ∗ ( f )(X1, . . . ,Xk) = f ◦ϕ(∇ϕ ·X1, . . . ,∇ϕ ·Xk)

for every Xj ∈ R
m for 1 ≤ j ≤ k. In the above notation, ∇ϕ ·Xj ∈ R

n should be
understood as the matrix ∇ϕ multiplied by the vector Xj.

The following theorem is easily proved (cf. Definition 2.17 and Proposition 2.19).

Theorem 3.10 (Properties of pullback). Let U ⊂R
m,V ⊂R

n and W ⊂R
s be open,

ϕ ∈C1(U ;V ) and ψ ∈C1(W ;U). Let f ,g ∈C0
(
V ;Λ k

)
and h ∈C0

(
V ;Λ l

)
; then

ϕ∗( f +g) = ϕ∗ ( f )+ϕ∗ (g) ,

ϕ∗( f ∧h) = ϕ∗ ( f )∧ϕ∗ (h) ,

(ϕ ◦ψ)∗ ( f ) = ψ∗ (ϕ∗ ( f )) .

Moreover, if f ∈C1
(
V ;Λ k

)
and ϕ ∈C2(U ;V ), then

ϕ∗(d f ) = d(ϕ∗ ( f )).

If m = n and ϕ ∈ Diff1(U ;V ), then

ϕ∗( f �h) = ϕ� ( f )�ϕ∗ (h) ,

where

ϕ� ( f )(x) =
((

(∇ϕ (x))−1
)t
)∗

[ f (ϕ (x))]

for every fixed x ∈U.

The next proposition is straightforward.

Proposition 3.11. Let 1≤ i≤ n, ϕ ∈ Diff1(U ;V ) and a ∈C0(V ;Rn) be such that

∂ϕ
∂xi

= a◦ϕ in U .

Then
ϕ�(a) = dxi in U ,

where a has been identified with a 1-form.

Proof. We have to show that for every fixed x ∈U,((
(∇ϕ (x))−1

)t
)∗

[a(ϕ (x))] = dxi
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or, equivalently,
a(ϕ (x)) =

(
(∇ϕ (x))t)∗ (dxi).

Since the last equation is equivalent to

a(ϕ(x)) =
∂ϕ
∂xi

(x) ,

we have the result. 
�

3.2 Tangential and Normal Components

In this section Ω ⊂ R
n will be a bounded open C1 set (see Definition 16.4) and

ν = ν(x) will be the exterior unit normal on ∂Ω at x. Let f be an element of
C0

(
Ω ;Λ k

)
. We will introduce the notion of tangential and normal components of

f on ∂Ω and establish the relationship between the other definitions occurring in
the literature. The definition used, for instance, by Dacorogna [27], Kress [63], or
Taylor [96] is the one we will adopt in this book. For this definition, we consider ν
as a 1-form

ν = ν1dx1 + · · ·+νndxn ∈C0(∂Ω ;Λ 1).
In this section we will skip back and forth between identifying ν as a 1-form and
ν = (ν1, . . . ,νn)∈R

n as a vector. In that sense, we will frequently use Remark 2.15,
which identifies a� f by ia ( f ) .

Definition 3.12 (Tangential and normal component). Let f be a k-form. The tan-
gential component of f on ∂Ω is the (k+1)-form

ν ∧ f .

The normal component of f on ∂Ω is the (k−1)-form

ν � f .

Another definition (see, for instance, Schwarz [89]) for the tangential and normal
components is the following.

Definition 3.13. Let f be a k-form.

(i) Let X ∈ R
n. Then, for every x ∈ ∂Ω , the vector X can be decomposed as

X = X⊥+X‖,

where X‖ is the component of X tangential to ∂Ω at x; that is,

X‖ = X−ν〈ν ;X〉. (3.3)
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(ii) Let X1, . . . ,Xk ∈ R
n. We denote by t f the k-form on ∂Ω defined by

t f (X1, . . . ,Xk) = f (X‖1 , . . . ,X
‖
k ).

(iii) We let n f be the k-form defined by

n f = f − t f .

It follows from (3.3) that t f and n f are in fact differential forms, as claimed in
this definition.

For the third definition, which is the most classical and is used for instance by
Duff and Spencer [38], Iwaniec and Martin [57], or Morrey [77], we first need to
introduce the notion of an admissible boundary coordinate system for an open set Ω .

Notation 3.14. Throughout the present section, for y ∈ R
n we write

y = (y′,yn) ∈ R
n−1×R, where y′ = (y1, . . . ,yn−1).

Definition 3.15 (Admissible boundary coordinate system). Let U, V, Ω ⊂ R
n be

open sets. We say that
ϕ : U →V

is an admissible boundary coordinate system for Ω if ϕ ∈ Diff1(U ;V ),

∂Ω ∩V = {ϕ(y′,0) : (y′,0) ∈U},

and for every 1≤ i≤ n and every (y′,0) ∈U,〈
∂ϕ
∂yi

(y′,0);
∂ϕ
∂yn

(y′,0)
〉
= δin .

Remark 3.16. It follows from the definition that

∂ϕ
∂yn

(y′,0) =±ν(ϕ(y′,0)) for every (y′,0) ∈U ,

since the ∂ϕ
∂yi

(y′,0) , 1 ≤ i ≤ n− 1, form a basis of the tangent space of ∂Ω and
∂ϕ
∂yn

(y′,0) is a unit vector.

We now prove, following Morrey [77], that every a ∈ ∂Ω is in the range of an
admissible boundary coordinate system.

Proposition 3.17. Let r ≥ 1 be an integer, 0 ≤ α ≤ 1, Ω ⊂ R
n be an open Cr,α set

and let a ∈ ∂Ω . Then there exist an open set U ⊂ R
n, a neighborhood V ⊂ R

n of a
and an admissible boundary coordinate system ϕ ∈ Diffr,α (U ;V ) .

Proof. We will denote

H = {x ∈ R
n : xn = 0} ⊂ R

n
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and B ⊂ R
n is the open unit ball centered at 0. By definition of a Cr,α set (see

Definition 16.5) there exists a neighborhood V of a and ψ ∈ Diffr,α (B;V ) such that
ψ(0) = a and

ψ (B∩H) =V ∩∂Ω .

For 1≤ i, j ≤ n, define gi j ∈Cr−1,α(B) by

gi j(x) =
〈

∂ψ
∂xi

(x);
∂ψ
∂x j

(x)
〉
.

For x ∈ B, let g(x) be the associated n× n matrix. Since det∇ψ(x) �= 0, the matrix
g(x) is symmetric and positive definite for every x ∈ B, thus so is g−1(x) and in
particular (g−1)nn(x)> 0 for all x ∈ B. Define d ∈Cr−1,α (B∩H;Rn) by

d
(
x′
)
=

(
0, . . . ,0,1/

√
(g−1)nn(x′,0)

)

and let f ∈Cr−1,α (B∩H;Rn) be given by

f
(
x′
)
= g−1(x′,0)d(x′).

Note that, by construction,

fn(x′) =
√
(g−1)nn(x′,0).

We next extend f to all of Rn−1 (cf. Theorem 16.11) and we define φ = (φ 1, . . . ,φ n)
through

φ i(x) = xi + xn

∫
Rn−1

η(y′) fi(x′ − xny′)dy′, 1≤ i≤ n−1,

φ n(x) = xn

∫
Rn−1

η(y′) fn(x′ − xny′)dy′,

where η ∈ C∞
0 (R

n−1) verifies
∫
Rn−1 η = 1. As in Lemma 8.10, we have that φ ∈

Cr,α (Rn) and on H the following equations hold:

∂φ i

∂xl
=

{
δil if 1≤ l ≤ n−1
fi if l = n,

(3.4)

whenever 1≤ i≤ n−1,

∂φ n

∂xl
= δnl fn and φ = id . (3.5)

In particular, det∇φ(0) �= 0. Therefore, there exists a neighborhood U of 0 small
enough so that φ(U) ⊂ B and φ ∈ Diffr,α (U ;φ(U)) . We now claim that ϕ : U →
ϕ(U), given by

ϕ(x) = ψ(φ(x)),
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has all the desired properties of an admissible boundary coordinate system. It only
remains to show the last property, namely that〈

∂ϕ
∂xl

;
∂ϕ
∂xn

〉
= δln on U ∩H.

Suppose first that 1 ≤ l ≤ n− 1. Using (3.4), (3.5) and the definition of f , we get,
on U ∩H, 〈

∂ϕ
∂xl

;
∂ϕ
∂xn

〉
=

n

∑
i, j=1

gi j
∂φ i

∂xl

∂φ j

∂xn
=

n−1

∑
i=1

n

∑
j=1

gi j
∂φ i

∂xl

∂φ j

∂xn

=
n

∑
j=1

gl j f j = dl = 0.

Similarly, 〈
∂ϕ
∂xn

;
∂ϕ
∂xn

〉
=

n

∑
i, j=1

gi j fi f j = 〈 f ;g f 〉= 〈 f ;d〉= 1,

which concludes the proof of the lemma. 
�

We are now in a position to define the third notion of tangential and normal
components.

Definition 3.18. Let ϕ ∈ Diff1(U ;V ) be an admissible boundary coordinate system
and write, for a k-form f ,

ϕ∗ ( f ) = ∑
1≤i1<···<ik≤n

gi1···ik dyi1 ∧·· ·∧dyik .

We then say that f has vanishing tangential component at x = ϕ(y′,0) if

gi1···ik(y
′,0) = 0 for every 1≤ i1 < · · ·< ik−1 < ik < n

and write, in that case, t ′ f (x) = 0. We say that f has vanishing normal component
at x = ϕ(y′,0) if

gi1···ik(y
′,0) = 0 for every 1≤ i1 < · · ·< ik−1 < ik = n

and write, in that case, n′ f (x) = 0.

Remark 3.19. (i) The previous definition is independent of the choice of the admis-
sible boundary coordinate system as a direct consequence of Corollary 3.21.

(ii) Decompose ϕ∗ ( f ) as ϕ∗ ( f ) = G<n +Gn, where

G<n = ∑
1≤i1<···<ik<n

gi1···ik dyi1 ∧·· ·∧dyik ,
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Gn = ∑
1≤i1<···<ik=n

gi1···ik−1n dyi1 ∧·· ·∧dyik−1 ∧dyn.

Note that

G<n = dyn �(dyn∧ϕ∗( f )) and Gn = dyn∧ (dyn �ϕ∗( f )).

Moreover, for x = ϕ (y′,0) ,

t ′ f (x) = 0 ⇔ G<n
(
y′,0

)
= (dyn � (dyn∧ϕ∗( f )))(y′,0) = 0

and, similarly,

n′ f (x) = 0 ⇔ Gn
(
y′,0

)
= (dyn∧ (dyn �ϕ∗( f )))(y′,0) = 0.

Proposition 3.20. The following assertions are verified:

(i) The following formulas for t f and n f hold:

t f = ν �(ν ∧ f ) and n f = ν ∧ (ν � f ).

(ii) Let ϕ be an admissible boundary coordinate system. Then

ϕ∗ (ν �(ν ∧ f )) = dyn �(dyn∧ϕ∗( f )),

ϕ∗ (ν ∧ (ν � f )) = dyn∧ (dyn �ϕ∗( f ))

Proof. Step 1. We prove (i). We first claim that

ν � t f = 0 and ν ∧n f = 0. (3.6)

Step 1.1. We establish the first part of (3.6). Let X1, . . . ,Xk−1 ∈ R
n. Using Re-

mark 2.15 and the fact that ν‖ = 0, we get

ν � t f (X1, . . . ,Xk−1) = t f (ν ,X1, . . . ,Xk−1) = f (0,X‖1 , . . . ,X
‖
k−1) = 0,

which proves the assertion.

Step 1.2. We prove the second part of (3.6). Recalling that f = t f +n f , we there-
fore have to prove that

ν ∧ f = ν ∧ t f .

Let {X1, . . . ,Xn} be a basis of Rn such that

X1 = ν and 〈ν ;Xj〉= 0 for every 2≤ j ≤ n. (3.7)

In order to have the claim, it is enough to show that for every 1≤ i1 < · · ·< ik+1 ≤ n,

(ν ∧ f )(Xi1 , . . . ,Xik+1) = (ν ∧ t f )(Xi1 , . . . ,Xik+1).

We split the discussion into two cases.
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Case 1: i1 ≥ 2. Using Definition 2.2 and (3.7), we get

(ν ∧ f )(Xi1 , . . . ,Xik+1) =
k+1

∑
j=1

(−1) j+1〈ν ;Xi j〉 f (Xi1 , . . . , X̂i j , . . . ,Xik+1) = 0

and, similarly,

(ν ∧ t f )(Xi1 , . . . ,Xik+1) =
k+1

∑
j=1

(−1) j+1〈ν ;Xi j〉 t f (Xi1 , . . . , X̂i j , . . . ,Xik+1) = 0.

Case 2: i1 = 1. Using again Definition 2.2 and (3.7), which, in particular, implies
that

X‖i j
= Xi j for every 2≤ j ≤ n,

we get

(ν ∧ f )(Xi1 , . . . ,Xik+1) =
k+1

∑
j=1

(−1) j+1〈ν ;Xi j〉 f (Xi1 , . . . , X̂i j , . . . ,Xik+1)

= f (Xi2 , . . . ,Xik+1) = f (X‖i2 , . . . ,X
‖
ik+1

) = t f (Xi2 , . . . ,Xik+1)

=
k+1

∑
j=1

(−1) j+1〈ν ;Xi j〉 t f (Xi1 , . . . , X̂i j , . . . ,Xik+1)

= (ν ∧ t f )(Xi1 , . . . ,Xik+1).

Step 1.3 (conclusion). Using Proposition 2.16, Steps 1.1 and 1.2, we obtain

t f = ν �(ν ∧ t f )+ν ∧ (ν � t f ) = ν �(ν ∧ f ).

Since (by Proposition 2.16 and by the above equation)

f = ν �(ν ∧ f )+ν ∧ (ν � f ) = t f +ν ∧ (ν � f )

and recalling that f = t f +n f , we get from the previous equation that

n f = ν ∧ (ν � f ),

which ends the proof of (i).

Step 2. We now establish (ii). Applying Theorem 3.10, the result will immedi-
ately follow once it is shown that

ϕ∗(ν) = ε dyn and ϕ�(ν) =
1
ε

dyn

for some nonvanishing ε (in fact, ε =±1). Using Remark 3.16, we know that

∂ϕ
∂yn

= ε ν(ϕ). (3.8)
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Using the orthogonality property of ϕ in Definition 3.15 and (3.8), we get

ϕ∗ (ν) =
n

∑
i=1

νi(ϕ)dϕ i =
n

∑
i=1

νi(ϕ)
n

∑
j=1

∂ϕ i

∂y j
dy j

=
n

∑
j=1

(
n

∑
i=1

νi(ϕ)
∂ϕ i

∂y j

)
dy j =

n

∑
i=1

νi(ϕ)
∂ϕ i

∂yn
dyn = ε dyn.

Combining Proposition 3.11 and (3.8), we get

ϕ�(ε ν) = dyn, which is equivalent to ϕ�(ν) =
1
ε

dyn.

The proof is therefore finished. 
�

As an immediate consequence of Proposition 3.20 we get the equivalence of the
three definitions. As already said, this will prove that Definition 3.18 is independent
of the choice of the admissible boundary coordinate system.

Corollary 3.21. The following equivalence relations hold true:

ν ∧ f = 0 ⇔ t f = 0 ⇔ t ′ f = 0,
ν � f = 0 ⇔ n f = 0 ⇔ n′ f = 0.

Remark 3.22. Note that the equation

ν ∧ f = 0 on ∂Ω

can be equivalently written as
i∗( f ) = 0,

where i : ∂Ω → R
n is the inclusion map.

Proof. Using Proposition 2.16, we immediately deduce that

ν ∧ f = 0 ⇔ ν �(ν ∧ f ) = 0 and ν � f = 0 ⇔ ν ∧ (ν � f ) = 0.

Therefore, using Proposition 3.20(i), we get

ν ∧ f = 0 ⇔ t f = 0 and ν � f = 0 ⇔ n f = 0.

Recall (cf. Remark 3.19(ii)) that

t ′ f = 0 ⇔ dyn �(dyn∧ϕ∗( f )) = 0,

n′ f = 0 ⇔ dyn∧ (dyn �ϕ∗( f )) = 0.

Hence, using Proposition 3.20, we immediately deduce that

t f = 0 ⇔ t ′ f = 0 and n f = 0 ⇔ n′ f = 0,

which ends the proof. 
�
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We will frequently use the next theorem.

Theorem 3.23. Let Ω be a bounded open C2 set, 0≤ k ≤ n and f ∈C1
(
Ω ;Λ k

)
.

(i) If ν ∧ f = 0 on ∂Ω , then ν ∧d f = 0 on ∂Ω .

(ii) If ν � f = 0 on ∂Ω , then ν �δ f = 0 on ∂Ω .

Proof. We need to prove only (i), since (ii) is obtained from (i) by duality. The result
(i) follows from Corollary 3.21, Definition 3.18 and the fourth statement of Theorem
3.10 applied to the admissible boundary coordinate system. More precisely, let ϕ be
an admissible boundary coordinate system and write

ϕ∗ ( f )(y) = ∑
1≤i1<···<ik≤n

gi1···ik(y)dyi1 ∧·· ·∧dyik ,

ϕ∗(d f )(y) = ∑
1≤i1<···<ik+1≤n

hi1···ik+1(y)dyi1 ∧·· ·∧dyik+1 .

Due to Corollary 3.21 and Definition 3.18, we have to show that

hi1···ik+1(y
′,0) = 0 if ik+1 < n. (3.9)

From the hypothesis and Corollary 3.21, we have gi1···ik(y
′,0) = 0 if ik < n and,

hence,
∂gi1···ik

∂y j
(y′,0) = 0 if j < n and ik < n.

So we have

ϕ∗(d f )(y′,0) = d (ϕ∗ ( f ))(y′,0)

= ∑
1≤i1<···<ik≤n

n

∑
j=1

∂gi1···ik
∂y j

(y′,0)dy j ∧dyi1 ∧·· ·∧dyik

= ∑
1≤i1<···<ik<n

∂gi1···ik
∂yn

(y′,0)dyn∧dyi1 ∧·· ·∧dyik

+ ∑
1≤i1<···<ik=n

n

∑
j=1

∂gi1···ik−1n

∂y j
(y′,0)dy j ∧dyi1 ∧·· ·∧dyik−1 ∧dyn.

This indeed shows (3.9). 
�

We next define the tangential and normal components of forms belonging to
Sobolev spaces. Let 1 ≤ p ≤ ∞. If f ∈ W 1,p

(
Ω ;Λ k

)
, then its boundary value

f ∈ Lp
(
∂Ω ;Λ k

)
is well defined in the sense of traces. Since ν ∈C0

(
∂Ω ;Λ 1

)
, the

following functions are well defined:

ν ∧ f ∈ Lp(∂Ω ;Λ k+1) and ν � f ∈ Lp(∂Ω ;Λ k−1),
and we can now define the following spaces.
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Definition 3.24. Let r ≥ 0 be an integer and 0≤ α ≤ 1≤ p≤ ∞. Spaces with van-
ishing tangential component are defined by

Cr,α
T

(
Ω ;Λ k)= { f ∈Cr,α(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

W r+1,p
T

(
Ω ;Λ k)= { f ∈W r+1,p(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω}.

Similarly, spaces with a vanishing normal component are defined by

Cr,α
N

(
Ω ;Λ k)= { f ∈Cr,α(Ω ;Λ k) : ν � f = 0 on ∂Ω},

W r+1,p
N

(
Ω ;Λ k)= { f ∈W r+1,p(Ω ;Λ k) : ν � f = 0 on ∂Ω}.

We will need the following density argument; for a proof, see Iwaniec, Scott and
Stroffolini [58] or, in more detail, Csató [23].

Theorem 3.25. Let r ≥ 1 be an integer, 1≤ p < ∞ and Ω ⊂ R
n be a bounded open

Cr+1 set. Then the following two statements hold true:

(i) Cr
T
(
Ω ;Λ k

)
is dense in W 1,p

T

(
Ω ;Λ k

)
.

(ii) Cr
N
(
Ω ;Λ k

)
is dense in W 1,p

N

(
Ω ;Λ k

)
.

Using Theorem 3.28 of the following section, one can give an equivalent defi-
nition of the spaces W 1,p

T

(
Ω ;Λ k

)
and W 1,p

N

(
Ω ;Λ k

)
(and similarly for the Hölder

spaces). The set W 1,p
T

(
Ω ;Λ k

)
is the set of f ∈W 1,p

(
Ω ;Λ k

)
satisfying∫

Ω
〈d f ;ϕ〉+

∫
Ω
〈 f ;δϕ〉= 0, ∀ ϕ ∈C∞(Ω ;Λ k+1).

The set W 1,p
N

(
Ω ;Λ k

)
is the set of f ∈W 1,p

(
Ω ;Λ k

)
satisfying∫

Ω
〈δ f ;ϕ〉+

∫
Ω
〈 f ;dϕ〉= 0, ∀ ϕ ∈C∞(Ω ;Λ k−1).

3.3 Gauss–Green Theorem and Integration-by-Parts Formula

We will assume that Ω ⊂ R
n is a bounded open sufficiently regular set so that inte-

gration by parts can be performed, but most of the time we will even require that Ω
is at least C2. We begin with the Gauss–Green theorem.

Theorem 3.26 (Gauss–Green theorem). Let 0≤ k ≤ n and f ∈C1
(
Ω ;Λ k

)
. Then

∫
Ω

∂ fi1···ik
∂x j

=
∫

∂Ω
ν j fi1···ik , ∀ 1≤ i1 < · · ·< ik ≤ n, 1≤ j ≤ n,
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and, thus, component by component,∫
Ω

d f =
∫

∂Ω
ν ∧ f and

∫
Ω

δ f =
∫

∂Ω
ν � f .

Remark 3.27. (i) If k = n− 1 in the identity involving d, or if k = 1 in the identity
involving δ , this is exactly the divergence theorem and hence a special case of the
Stokes formula. If k �= n− 1 in the identity involving d, or if k �= 1 in the identity
involving δ , the statement of the theorem has no connection with the Stokes theorem
and is to be seen as the classical Gauss–Green theorem consisting of

( n
k+1

)
equations

in the first identity, respectively
( n

k−1

)
equations in the second one.

(ii) Due to density, the theorem is also true for Sobolev spaces of forms.

Proof. The first assertion is just the classical Gauss–Green theorem. Let us prove the
statement with d, the one with δ being proved analogously. It follows immediately
from Proposition 2.6, Proposition 3.3 and the first assertion of the theorem, since

∫
Ω
(d f )i1···ik+1

=
∫

Ω

k+1

∑
γ=1

(−1)γ−1 ∂ fi1···iγ−1iγ+1···ik+1

∂xiγ

=
∫

∂Ω

k+1

∑
γ=1

(−1)γ−1νiγ fi1···iγ−1iγ+1···ik+1 =
∫

∂Ω
(ν ∧ f )i1···ik+1

.

This concludes the proof of the lemma. 
�
Due to density, the next theorem is also valid in Sobolev spaces.

Theorem 3.28 (Integration-by-parts formula). Let 1≤ k ≤ n. Let

f ∈C1(Ω ;Λ k−1) and g ∈C1(Ω ;Λ k).
Then ∫

Ω
〈d f ;g〉+

∫
Ω
〈 f ;δg〉=

∫
∂Ω
〈ν ∧ f ;g〉=

∫
∂Ω
〈 f ;ν �g〉.

Proof. The second equality is trivial, as a consequence of Proposition 2.16. Appeal-
ing to Theorems 3.26, 3.5 and 2.10, we get (in the next equations, we will overlook
the difference between 0 and n-forms)∫

∂Ω
〈ν ∧ f ;g〉=

∫
∂Ω

ν ∧ f ∧ (∗g) =
∫

Ω
d( f ∧ (∗g))

=
∫

Ω
d f ∧ (∗g)+

∫
Ω
(−1)k−1 f ∧ (d (∗g))

=
∫

Ω
〈d f ;g〉+

∫
Ω
(−1)k−1 f ∧ (d (∗g)).

It is thus left to show that

(−1)k−1 f ∧ (d (∗g)) = 〈 f ;δg〉.
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Since d (∗g) is a (n− k+1)-form, Theorem 2.10 yields

∗∗ (d (∗g)) = (−1)(n−k+1)(k−1)d (∗g) .

By definition, we know that

δg = (−1)n(k−1) ∗d (∗g) .

We therefore find

f ∧ (d (∗g)) = (−1)(n−k+1)(k−1) f ∧ (∗∗ (d (∗g)))
= (−1)k−1 f ∧ (∗δg) = (−1)k−1〈 f ;δg〉.

The proof is therefore complete. 
�

The following result is obtained from the previous theorem by density.

Corollary 3.29. Let 1 ≤ k ≤ n and 1 < p,q < ∞ with 1
p +

1
q = 1. Let Ω ⊂ R

n be a
bounded open C2 set. Let f ∈W 1,p

(
Ω ;Λ k−1

)
, g ∈W 1,q

(
Ω ;Λ k+1

)
and ν ∧ f = 0 or

ν �g = 0 on ∂Ω . Then ∫
Ω
〈d f ;δg〉= 0.

We finally deduce the following corollary, which will turn out to be useful in the
next chapter.

Corollary 3.30. Let 1≤ k ≤ n−1 and f ,g ∈C1
(
Ω ;Λ k

)
. Then∫

Ω
〈d f ;dg〉+

∫
Ω
〈δ f ;δg〉

=
∫

Ω
〈∇ f ;∇g〉−∑

I

∫
∂Ω

gI 〈∇ fI ;ν〉+
∫

∂Ω
〈d f ;ν ∧g〉+

∫
∂Ω
〈δ f ;ν �g〉.

In the corollary and in the next chapters, we have adopted the following notation.

Notation 3.31. Let 1≤ k ≤ n−1 and f ,g ∈C1
(
Ω ;Λ k

)
; we then define

〈∇ f ;∇g〉= ∑
I
〈∇ fI ;∇gI〉= ∑

I

n

∑
i=1

∂ fI

∂xi

∂gI

∂xi
.

Proof. By density, it is enough to prove the corollary for f ,g ∈ C2(Ω ;Λ k). Note
first that

−
∫

Ω
〈Δ f ;g〉=−∑

I

∫
Ω

Δ fI gI = ∑
I

∫
Ω
〈∇ fI ;∇gI〉−∑

I

∫
∂Ω

gI 〈∇ fI ;ν〉

=
∫

Ω
〈∇ f ;∇g〉−∑

I

∫
∂Ω

gI 〈∇ fI ;ν〉.
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The claim then follows from Theorems 3.28 and 3.7, since∫
Ω
〈d f ;dg〉+

∫
Ω
〈δ f ;δg〉

=−
∫

Ω
〈dδ f +δd f ;g〉+

∫
∂Ω
〈d f ;ν ∧g〉+

∫
∂Ω
〈δ f ;ν �g〉

=−
∫

Ω
〈Δ f ;g〉+

∫
∂Ω
〈d f ;ν ∧g〉+

∫
∂Ω
〈δ f ;ν �g〉.

The corollary is thus proved. 
�



Chapter 4

Dimension Reduction

We turn our attention to a very useful result, which is well known in the case of
2-forms. However, it can be extended in a straightforward way to the case of
k-forms; it seems, however, that this extension has never been noticed. We will pro-
vide two proofs of the theorem. The first one is based on the Frobenius theorem and
the second one is much more elementary and self-contained. Both versions are the
same when k = n−1 and the first one is better from the point of view of regularity
when 2≤ k ≤ n−2.

4.1 Frobenius Theorem

We begin by recalling a few notions and results related to the theory of differential
forms. For details, see, for example, Abraham, Marsden and Ratiu [1], Lee [68] and
Taylor [96].

Notation 4.1 (Lie derivative and involutive family). Let U ⊂ R
n be an open set,

a,b ∈C1(U ;Rn) and ω ∈C1
(
U ;Λ k

)
.

(i) Laω stands for the Lie derivative of ω with respect to a. It is given by

Laω =
d
dt

∣∣∣
t=0

ϕ∗t (ω) ,

where ϕt is the flow associated to the vector field a; that is,⎧⎨
⎩

d
dt

ϕt = a◦ϕt ,

ϕ0 = id .

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
© Springer Science+Business Media, LLC 2012 
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(ii) Let [a,b] = ([a,b]1, . . . , [a,b]n), where

[a,b]i =
n

∑
j=1

(
a j

∂bi

∂x j
−b j

∂ai

∂x j

)
.

[a,b] is sometimes referred to as the Lie bracket of a and b.

(iii) The Cartan formula, which is a direct consequence of Theorem 12.5 (see
Remark 12.6), states that

Laω = a�d ω +d(a�ω). (4.1)

Moreover, the following equality holds:

[a,b]�ω = La(b�ω)−b�(Laω). (4.2)

(iv) For a1, . . . ,am ∈C1(U ;Rn), we say that {a1, . . . ,am} is an involutive family
in U if for every 1≤ i, j ≤ m, there exist cp

i j ∈C0(U), 1≤ p≤ m, satisfying

[ai,a j](x) =
m

∑
p=1

cp
i j(x)ap(x) for every x ∈U.

We now recall the Frobenius theorem.

Theorem 4.2 (Frobenius theorem). Let r ≥ 1 and 1≤ m≤ n be integers. Let x0 ∈
R

n. Let a1, . . . ,am ∈Cr be an involutive family in a neighborhood of x0, with

{a1 (x0) , . . . ,am (x0)} linearly independent.

Then there exist a neighborhood U ⊂ R
n of x0 and ϕ ∈ Diffr(U ;ϕ(U)) such that

ϕ(x0) = x0 and, for every 1≤ i≤ m,

∂ϕ
∂xi

∈ span{(a1 ◦ϕ), . . . ,(am ◦ϕ)} in U.

Remark 4.3. (i) The result is still valid in Hölder spaces.

(ii) The Frobenius theorem has a sharper form, if we assume, in addition to the
linear independence, the following stronger hypothesis:

[ai,a j] = 0 in a neighborhood of x0 and for every 1≤ i, j ≤ m.

Indeed, in that case, there exist a neighborhood U ⊂R
n of x0 and ϕ ∈Diffr(U ;ϕ(U))

such that ϕ(x0) = x0 and for every 1≤ i≤ m,

∂ϕ
∂xi

= ai ◦ϕ in U.
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In particular, if a(x0) �= 0 and since we always have [a,a] = 0, then there exist a
neighborhood U ⊂ R

n of x0 and ϕ ∈ Diffr(U ;ϕ(U)) such that

∂ϕ
∂xn

= a◦ϕ in U and ϕ(x0) = x0.

In other words, a nonvanishing vector field can always be straightened out locally.
In fact, this last observation will be achieved in Step 2 of the second proof of Theo-
rem 4.5 below.

4.2 Reduction Theorem

Notation 4.4. We recall, from Chapter 2, some notations that we will use throughout
this section. As usual, when necessary, we identify in a natural way 1-forms with
vector fields in R

n.

(i) Let 1≤ k≤ n. Given f ∈Λ k (Rn) , the matrix f ∈R
( n

k−1)×n (written in Notation
2.30 as f �,1) is defined, by abuse of notations, as

f u = u� f for every u ∈Λ 1 (Rn)≈ R
n.

(ii) The rank of f ∈ Λ k (Rn) (denoted by rank1 in Proposition 2.32(i)) is de-
fined by

rank [ f ] = rank
(

f
)
.

In particular, note that rank[ f ] = l is equivalent to dimker( f ) = n− l and that
u ∈ ker( f ) is equivalent to u� f = 0.

We now state the result on reduction of dimension and we follow Bandyopad-
hyay, Dacorogna and Kneuss [9].

Theorem 4.5 (Reduction of dimension). Let r≥ 1 and 1≤ k≤ l≤ n−1 be integers
and x0 ∈ R

n. Let g be a Cr k-form verifying

dg = 0 and rank [g] = l in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr(U ;ϕ(U)) with ϕ (x0) = x0
and such that for every x = (x1, . . . ,xn) ∈U,

ϕ∗ (g)(x1, . . . ,xn) = f (x1, . . . ,xl)

= ∑
1≤i1<···<ik≤l

fi1···ik (x1, . . . ,xl)dxi1 ∧·· ·∧dxik .

Thus f = ϕ∗ (g) can be seen, by abuse of notations, as a k-form on R
l with maximal

rank (i.e., rank [ f ] = l).
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Remark 4.6. (i) The result is still valid in Hölder spaces.

(ii) Note that ϕ∗(g) is only in Cr−1 although g ∈Cr.

Before starting with the two proofs of the theorem, we need the following simple
lemma.

Lemma 4.7. Let V ⊂R
n be an open set, g ∈C0

(
V ;Λ k

)
and a ∈C0 (V ;Rn) be such

that
a�g = 0 in V.

Let U ⊂ R
n be an open set, ϕ ∈ Diff1(U ;ϕ (U)) be such that ϕ (U)⊂V, 1≤ j ≤ n

and
∂ϕ
∂x j

= a◦ϕ in U.

Then, in U and for every 1≤ i1 < · · ·< ik ≤ n,

(ϕ∗ (g))i1···ik = 0 if j ∈ {i1, . . . , ik} .

Proof. We assume, without loss of generality, that j = n. Use Theorem 3.10 and
Proposition 3.11 and get

0 = ϕ∗(a�g) = dxn�ϕ∗(g) in U,

which directly implies the claim. ��

We now turn our attention to the first proof of our theorem.

Proof (First proof of Theorem 4.5). We divide the proof into four steps.

Step 1. Since rank [g] = l ≤ n− 1, it is easy to find a neighborhood V of x0 and
ai ∈Cr(V ;Rn) for every l +1≤ i≤ n such that for every x ∈V,

{al+1(x), . . . ,an(x)} are linearly independent (4.3)

and
span{al+1(x), . . . ,an(x)}= kerg(x). (4.4)

Then we have, in particular, for every l +1≤ i≤ n,

ai �g = 0 in V.

Step 2. We now show that the family {al+1, . . . ,an} is involutive in V ; that is, for
every l +1≤ i, j ≤ n, there exist cp

i j ∈C0(V ), l +1≤ p≤ n, satisfying

[ai,a j](x) =
n

∑
p=l+1

cp
i j(x)ap(x) for every x ∈V .
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Indeed, since dg = 0 and (4.1), (4.2) and (4.4) hold, it follows that

[ai,a j]�g = Lai(a j �g)−a j �(Laig) =−a j �(Laig)

=−a j �(ai �dg+d(ai �g)) = 0 in V.

Hence, we have [ai,a j](x) ∈ kerg(x), for every x ∈ V , from where, using (4.3) and
(4.4), the existence of unique coefficients cp

i j(x), for every x ∈V, follows. It is easy
to check that cp

i j ∈Cr(V ).

Step 3. Therefore, using Theorem 4.2, there exist a neighborhood U of x0 and
ϕ ∈ Diffr(U ;ϕ(U)) with ϕ(U)⊂V such that ϕ(x0) = x0 and

∂ϕ
∂xi

∈ kerg◦ϕ in U and for every l +1≤ i≤ n. (4.5)

Let us show that ϕ has all of the desired properties. We have to show that

ϕ∗(g)i1···ik = 0 in U (4.6)

for every 1≤ i1 < · · ·< ik ≤ n with ik ≥ l +1 and that

ϕ∗(g)(x1, . . . ,xn) = ϕ∗(g)(x1, . . . ,xl) for every x ∈U .

Indeed, (4.6) comes directly from Lemma 4.7 and (4.5). Finally, since dg = 0, we
have dϕ∗(g) = 0. Hence, on writing (using (4.6))

ϕ∗(g) = ∑
1�i1<···<ik�l

ri1···ik dxi1 ∧·· ·∧dxik ,

we obtain, for every s≥ l +1,

∂ ri1···ik
∂xs

= (dϕ∗(g))i1···iks = 0,

which shows the second claim and ends the proof. ��

We finish this chapter with the second proof of the theorem. As already stated,
it is much more elementary, but it gives a less sharp regularity; indeed we will only
be able to establish that

ϕ ∈ Diffr+l−n+1(U ;ϕ(U)).

The proof therefore requires r≥ n− l. Note that when k= n−1 (and, thus, l = n−1),
both proofs are the same.

Proof (Second proof of Theorem 4.5). Without loss of generality, we assume that
x0 = 0. In the following, U stands for a generic neighborhood of 0.
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Step 1. Since rank [g] = l ≤ n−1, there exists a ∈Cr(U ;Rn) satisfying

a(x) �= 0 and a(x)�g(x) = 0 for every x ∈U. (4.7)

Step 2. We claim that we can find a neighborhood U of 0 and ϕn ∈Diffr(U ;ϕn(U))
such that ϕn(0) = 0 and

∂ϕn

∂xn
= a◦ϕn in U. (4.8)

Indeed, using well-known results on ordinary differential equations (see, e.g., [22]),
there exist a neighborhood U of 0, ε > 0 small enough and ψ ∈Cr(U×(−ε,ε);Rn)
verifying, for every (x, t) ∈U× (−ε,ε),

∂
∂ t

ψ (x, t) = a(ψ(x, t)) and ψ (x,0) = x.

Since a(0) �= 0, we can choose b1, . . . ,bn−1 ∈ R
n so that

{b1, . . . ,bn−1,a(0)} are linearly independent.

Let B ∈ R
n×(n−1) be the matrix whose ith column is bi. Finally, define

ϕn(x) = ϕn(x1, . . . ,xn) = ψ (B(x1, . . . ,xn−1),xn)

and observe that

ϕn(0) = 0, det∇ϕn(0) �= 0 and
∂ϕn

∂xn
= a◦ϕn in U,

which shows the claim.
Step 3. From (4.7), (4.8) and Lemma 4.7, it follows that for every 1≤ i1 < · · ·<

ik−1 ≤ n−1,
ϕ∗n (g)i1···ik−1n = 0 in U.

Finally, since dg = 0, we have dϕ∗n (g) = 0. Hence, writing

ϕ∗n (g) = ∑
1�i1<···<ik≤n−1

ri1···ik dxi1 ∧·· ·∧dxik ,

we obtain
∂ ri1···ik

∂xn
= (dϕ∗n (g))i1···ikn = 0,

which implies ϕ∗n (g)(x) = ϕ∗n (g)(x1, . . . ,xn−1).

Step 4 (conclusion). If l = n− 1, the proof is finished in view of Steps 2 and 3.
Henceforth, we will assume that 1 ≤ l < n− 1. Since (using Proposition 17.1)
rank(ϕ∗n (g)) = l and since ϕ∗n (g) ∈ Cr−1, repeating the aforementioned argument
we find ϕn−1 ∈ Diffr−1(U ;ϕn−1(U)) satisfying ϕn−1(0) = 0,

ϕ∗n−1(ϕ
∗
n (g))i1···ik = 0 in U
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for every 1≤ i1 < · · ·< ik ≤ n with ik ≥ n−1 and

ϕ∗n−1(ϕ
∗
n (g))(x) = ϕ∗n−1(ϕ

∗
n (g))(x1, . . . ,xn−2)) for every x ∈U.

After repeating the same argument n− l times, we set

ϕ = ϕn ◦ · · · ◦ϕl+1

and we get ϕ ∈ Diffr+l−n+1(U ;ϕ(U)), ϕ(0) = 0,

ϕ∗(g)i1···ik = 0 in U,

for every 1≤ i1 < · · ·< ik ≤ n with ik ≥ l +1 and

ϕ∗(g)(x1, . . . ,xn) = ϕ∗(g)(x1, . . . ,xl), for every x ∈U .

This finishes the proof. ��



Part II

Hodge–Morrey Decomposition and
Poincaré Lemma



Chapter 5

An Identity Involving Exterior Derivatives

and Gaffney Inequality

5.1 Introduction

The aim of this chapter is twofold. In Section 5.2 we prove a very general identity
(cf. Theorem 5.7) involving the operators d,δ and ∇. In Section 5.3 we show how
the above identity leads to a very simple proof of the classical Gaffney inequality
(cf. Theorem 5.16). This inequality will be one of the key points for Hodge–Morrey
decomposition (cf. Chapter 6). Let us now describe in more detail the results.

Let Ω ⊂ R
n be a bounded open smooth set and ν be the exterior unit normal to

the boundary. We will first prove, following Csató and Dacorogna [24] (cf. Theorem
5.7 for a more general statement), that for k-forms ω (cf. Notation 3.31 for |∇ω|2),∫

Ω

(|dω|2 + |δω|2−|∇ω|2)
=−

∫
∂Ω

(〈ν ∧d(ν �ω);ν ∧ω〉+ 〈ν �δ (ν ∧ω);ν �ω〉)

+
∫

∂Ω
(〈Lν(ν ∧ω);ν ∧ω〉+ 〈Kν(ν �ω);ν �ω〉) (5.1)

where Lν and Kν are given in Definition 5.1; they can also be seen as matrices acting
on (k+1)-forms and (k−1)-forms, respectively (where we identify a k-form with
a
(n

k

)
vector). They depend only on the geometry of Ω and on the degree k of the

form. They can easily be calculated explicitly for general k-forms and when Ω is a
ball of radius R (cf. Corollary 5.9 for a more general statement), it turns out that

Lν(ν ∧ω) =
k
R

ν ∧ω and Kν (ν �ω) =
n− k

R
ν �ω.

We therefore have

〈Lν(ν ∧ω);ν ∧ω〉= k
R
|ν ∧ω|2 and 〈Kν(ν �ω);ν �ω〉= n− k

R
|ν �ω|2.

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
© Springer Science+Business Media, LLC 2012 

5
101



102 5 An Identity Involving Exterior Derivatives and Gaffney Inequality

We will also give general formulas (cf. Proposition 5.11 and Corollary 5.12) in the
case of 1-forms and for general domains Ω ; in this case, Kν is a scalar and it is a
multiple of κ, the mean curvature of the hypersurface ∂Ω , namely

Kν = (n−1)κ.

The advantages of this formula, besides its generality and elegancy, are the
following.

1) The right-hand side of the identity is expressed solely in terms of the tangential
and normal components of ω. Therefore, if either ν ∧ω = 0 or ν �ω = 0, then the
right-hand side of (5.1) does not depend on derivatives of ω. It hence leads to an
elementary proof of the classical Gaffney inequality (cf. Theorem 5.16 below). This
inequality states that there exists a constant C =C (Ω)> 0 such that for every k-form
ω with either ν ∧ω = 0 or ν �ω = 0,

C
∫

Ω
|∇ω|2 ≤

∫
Ω
|dω|2 +

∫
Ω
|δω|2 +

∫
Ω
|ω|2. (5.2)

The classical proof of (5.2) by Morrey [76, 77] (see also, e.g., Iwaniec, Scott and
Stroffolini [58]), generalizing results of Gaffney [44, 45], is more technical. It
requires the use of local rectification of the boundary, partition of unity and some
estimates concerning dω, δω and ∇ω.

2) The formula is valid with no restriction on the behavior of ω on ∂Ω . This
observation will allow us to obtain (cf. Theorem 5.19) Gaffney-type inequalities for
more general boundary conditions than the classical ones, which are ν ∧ω = 0 or
ν �ω = 0. If one assumes ν ∧ω = 0 (and similarly if ν �ω = 0), then an identity in
the same spirit as (5.1) can be found in Amrouche, Bernardi, Dauge and Girault [6]
and Duvaut and Lions [39] (cf. proof of Theorem 6.1 in Chapter 7) for the special
case of a 1-form in R

3 and in Schwarz [89] (cf. Theorem 2.1.5). However, in this
last book, the actual Kν is only very implicitly defined.

The proof of the formula is as follows. We start, as in classical proofs of the
Gaffney inequality, by expressing the left-hand side of (5.1) by a boundary integral
through some quite simple integrations by parts, together with the formula dδ +
δd = Δ (cf. Corollary 3.30), obtaining that∫

Ω

(|dω|2 + |δω|2−|∇ω|2)= ∫
∂Ω

(〈dω;ν ∧ω〉+ 〈δω;ν �ω〉−∑I〈∇ωI ;ν〉ωI) .

We then transform the right-hand side through algebraic manipulations only and no
more integration by parts, so as to get our formula.

The Lp versions for p �= 2 of Gaffney-type inequalities have been treated by
Iwaniec, Scott and Stroffolini [58] and by Bolik [13], who also deals with Hölder
spaces Cr,α . These results will be cited at the end of this chapter (cf. Theorem 5.21).



5.2 An Identity Involving Exterior Derivatives 103

5.2 An Identity Involving Exterior Derivatives

5.2.1 Preliminary Formulas

Recall the notation for a differential form ω,

ω = ∑
1≤i1<···<ik≤n

ωi1···ik dxi1 ∧·· ·∧dxik = ∑
I

ωIdxI .

Definition 5.1. Let U ⊂ R
n be open and ν ∈C1

(
U ;Λ 1

)
. We define for every 0 ≤

k ≤ n, the two maps

Lν ,Kν : C0(U ;Λ k)→C0(U ;Λ k)
by

Lν(ω) = ∑
I

ωI d
(
ν �dxI) if k ≥ 1,

Kν(ω) = ∑
I

ωI δ
(
ν ∧dxI) if k ≤ n−1,

whereas Lν(ω) = 0 if k = 0 and Kν(ω) = 0 if k = n.

Remark 5.2. Note that Lν(ω) and Kν(ω) are linear in ω and ν .

The next two lemmas present some elementary properties of the maps Lν and
Kν and their connection with the Lie derivative. We therefore recall the following
facts. Depending on the context, we will identify 1-forms with vector fields. Let
ν ∈C1(U ;Rn) and ω ∈C1(U ;Λ k). The Lie derivative Lν ω is defined by

Lν ω =
d
dt

∣∣∣
t=0

ϕ∗t (ω) ,

where ϕ = ϕ (t,x) = ϕt (x) is the flow associated to the vector field ν ; that is,⎧⎨
⎩

d
dt

ϕt = ν ◦ϕt ,

ϕ0 = id
(5.3)

for t small enough. The Cartan formula (see Notation 4.1 and Remark 12.6) states
that

Lν ω = ν �dω +d(ν �ω). (5.4)

Its dual version is

(−1)k(n−k) ∗Lν(∗ω) = ν ∧δω +δ (ν ∧ω). (5.5)

Lemma 5.3. Let U ⊂ R
n be open, 0≤ k ≤ n, ω ∈C0

(
U ;Λ k

)
and ν ∈C1

(
U ;Λ 1

)
.

(i) The following duality relations hold true:

Kν(ω) = (−1)k(n−k) (∗Lν(∗ω)) and Lν(ω) = (−1)k(n−k) (∗Kν(∗ω)) ,
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〈ν �Kν(ω);ν �ω〉= 〈ν ∧Lν(∗ω);ν ∧ (∗ω)〉.

(ii) If ϕ is the flow associated to ν , then

Lν (ω) = ∑
I

ωI
d
dt

∣∣∣
t=0

dϕ I
t

if k ≥ 1 and if k ≤ n−1, then

Kν(ω) = (−1)k(n−k) ∗
(

∑
I

ωI(x)
d
dt

∣∣∣
t=0

dϕ Ic

t (−1)r

)
,

where Ic is the complement of I in the set {1, . . . ,n} and (cf. Theorem 2.10)

dxI ∧dxIc
= (−1)rdx1∧·· ·∧dxn.

Proof. (i) Due to linearity, one can assume that ω = dxI for some I ∈Tk. The state-
ment follows directly from the definitions of the interior derivative and the interior
product and Theorem 2.10.

(ii) Standard results on ordinary differential equations (cf. (7.13) in the proof
of Theorem 7.2 in Chapter 1 of Coddington and Levinson [22]) give that ∇ϕt is
differentiable in t and satisfies

d
dt
[∇ϕt ] = ∇ν (ϕt) ∇ϕt .

This is indeed what is immediately obtained by formal differentiation of (5.3). In
particular, for every 1≤ i≤ n, we have

d
dt

∣∣∣
t=0

[dϕ i
t ] = dνi .

As in (i), we can assume that ω = dxI and, thus,

d
dt

∣∣∣
t=0

dϕ I
t =

d
dt

∣∣∣
t=0

dϕ i1
t ∧ . . .∧dϕ ik

t

=
k

∑
γ=1

dxi1 ∧ . . .∧dxiγ−1 ∧dνiγ ∧dxiγ+1 ∧ . . .∧dxik

=
k

∑
γ=1

(−1)γ−1d
(

νiγ dxi1 ∧·· ·∧ d̂xiγ ∧·· ·∧dxik
)

= d
(
ν �dxI) .

This proves the equality concerning Lν . The corresponding equality for Kν follows
from (i). 
�
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Lemma 5.4. Let U ⊂ R
n be open, 0 ≤ k ≤ n, ω ∈C1

(
U ;Λ k

)
and ν ∈C1

(
U ;Λ 1

)
;

then
Lν ω = ∑

I
〈∇ωI ;ν〉dxI +Lν(ω),

(−1)k(n−k) ∗Lν(∗ω) = ∑
I
〈∇ωI ;ν〉dxI +Kν(ω),

∑
I
〈∇ωI ;ν〉dxI = ν �dω +d(ν �ω)−Lν(ω)

= ν ∧δω +δ (ν ∧ω)−Kν(ω).

Proof. Using the definition of the Lie derivative and (ii) of Lemma 5.3, we get, if
k ≥ 1,

Lν ω =
d
dt

∣∣∣
t=0

∑
I

ωI(ϕt)dϕ I
t

= ∑
I
〈∇ωI ;ν〉dxI +∑

I
ωI

d
dt

∣∣∣
t=0

dϕ I
t

= ∑
I
〈∇ωI ;ν〉dxI +Lν(ω).

If k = 0, the statement is immediate, since then Lν(ω) = 0. The proof of the corre-
sponding equality for Kν is completely analogous. The third statement of the lemma
follows from the first two identities of the lemma and the Cartan formula (5.4),
respectively (5.5). 
�

We also have the following useful property of the operators Lν and Kν .

Lemma 5.5. Let 0 ≤ k ≤ n, U be an open subset of Rn, ω ∈ C1
(
U ;Λ k

)
and ν ∈

C1
(
U ;Λ 1

)
; then, the following equations hold true in U:

Lν(ν ∧ω) =
1
2

d(|ν |2)∧ω +ν ∧Lν(ω),

Kν(ν �ω) =
1
2

d(|ν |2)�ω +ν �Kν(ω).

In particular, if |ν | is constant in U, then

Lν(ν ∧ω) = ν ∧Lν(ω) and Kν(ν �ω) = ν �Kν(ω).

Proof. We prove the first equality. The second result concerning Kν follows from
the first one using Lemma 5.3(i). The two extra assertions are trivial. First, noticing
that Lν is linear, it is enough to prove the claim for ω = dxI for any I = (i1, . . . , ik) ∈
Tk. By definition of Lν , we get

Lν(ν ∧dxI) = Lν

(
n

∑
j=1

ν j dx j ∧dxI

)
=

n

∑
j=1

ν j d
(
ν �(dx j ∧dxI)

)
.
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Since, by Proposition 2.16,

ν �(dx j ∧dxI) = ν j dxI−dx j ∧ (ν �dxI),

we deduce that

Lν(ν ∧dxI) =
n

∑
j=1

ν j dν j ∧dxI +
n

∑
j=1

ν j dx j ∧d(ν �dxI)

=
1
2

d(|ν |2)∧dxI +ν ∧d(ν �dxI)

=
1
2

d(|ν |2)∧dxI +ν ∧Lν(dxI).

The proof is therefore finished. 
�

Our last lemma will turn out to be the key point in our main result.

Lemma 5.6. Let 0 ≤ k ≤ n, U be an open subset of Rn, ν ∈ C1
(
U ;Λ 1

)
, α, β ∈

C1
(
U ;Λ k

)
and x ∈U be such that |ν(x)| = 1. Then the following equation holds

true, for every such x:

〈dα;ν ∧β 〉+ 〈δα;ν �β 〉−∑
I
〈∇αI ;ν〉βI

=−〈ν ∧d(ν �α);ν ∧β 〉−〈ν �δ (ν ∧α);ν �β 〉
+ 〈ν ∧Lν(α);ν ∧β 〉+ 〈ν �Kν(α);ν �β 〉. (5.6)

Proof. Essential in the proof are the results of Proposition 2.16 and the fact that
|ν(x)|= 1. We split ∑〈∇αI ;ν〉βI in the following way:

∑
I
〈∇αI ;ν〉βI =

〈
∑

I
〈∇αI ;ν〉dxI ;β

〉
=
〈

∑
I
〈∇αI ;ν〉dxI ;ν ∧ (ν �β )

〉
+
〈

∑
I
〈∇αI ;ν〉dxI ;ν �(ν ∧β )

〉
and, similarly,

〈dα;ν ∧β 〉= 〈ν ∧ (ν �dα);ν ∧β 〉+ 〈ν �(ν ∧dα);ν ∧β 〉
= 〈ν ∧ (ν �dα);ν ∧β 〉 .

Using this and Proposition 2.16, we obtain

〈dα;ν ∧β 〉−
〈

∑
I
〈∇αI ;ν〉dxI ;ν �(ν ∧β )

〉
= 〈ν ∧ (ν �dα);ν ∧β 〉−

〈
ν ∧

(
∑

I
〈∇αI ;ν〉dxI

)
;ν ∧β

〉
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and, thus, according to Lemma 5.4 applied to α,

〈dα;ν ∧β 〉−
〈

∑
I
〈∇αI ;ν〉dxI ;ν �(ν ∧β )

〉
=−〈ν ∧d(ν �α);ν ∧β 〉+ 〈ν ∧Lν(α);ν ∧β 〉 . (5.7)

We now carry out the analogue computations for 〈δα;ν �β 〉 . Note first that

〈δα;ν �β 〉= 〈ν �(ν ∧δα);ν �β 〉 .

Using this fact and again Proposition 2.16, we find

〈δα;ν �β 〉−
〈

∑
I
〈∇αI ;ν〉dxI ;ν ∧ (ν �β )

〉
= 〈ν �(ν ∧δα);ν �β 〉−

〈
ν �

(
∑

I
〈∇αI ;ν〉dxI

)
;ν �β

〉
and, hence, according to Lemma 5.4 applied to α,

〈δα;ν �β 〉−
〈

∑
I
〈∇αI ;ν〉dxI ;ν ∧ (ν �β )

〉
=−〈ν �δ (ν ∧α);ν �β 〉+ 〈ν �Kν(α);ν �β 〉 . (5.8)

We now combine (5.7) and (5.8) to conclude the proof. 
�

5.2.2 The Main Theorem

The following theorem has been established by Csató and Dacorogna [24].

Theorem 5.7 (A general identity). Let 0 ≤ k ≤ n and let Ω ⊂ R
n be a bounded

open C2 set with exterior unit normal ν . Then every α, β ∈C1
(
Ω ;Λ k

)
satisfy the

equation ∫
Ω
(〈dα;dβ 〉+ 〈δα;δβ 〉−〈∇α;∇β 〉)

=−
∫

∂Ω
(〈ν ∧d(ν �α);ν ∧β 〉+ 〈ν �δ (ν ∧α);ν �β 〉)

+
∫

∂Ω
(〈Lν(ν ∧α);ν ∧β 〉+ 〈Kν(ν �α);ν �β 〉) .

Remark 5.8. (i) In the above theorem and in the sequel, we have always assumed
that the exterior unit normal ν has been extended to R

n in a C1 way with |ν |= 1 in
a neighborhood of ∂Ω . This is, of course, always possible. The formulas here and
below will be seen to be independent of the extension.
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(ii) An alternative version to formulate the theorem would be (see Lemma 5.5)∫
Ω
(〈dα;dβ 〉+ 〈δα;δβ 〉−〈∇α;∇β 〉)

=−
∫

∂Ω
(〈ν ∧d(ν �α);ν ∧β 〉+ 〈ν �δ (ν ∧α);ν �β 〉)

+
∫

∂Ω
(〈ν ∧Lν(α);ν ∧β 〉+ 〈ν �Kν(α);ν �β 〉) . (5.9)

In that case, we do not need to extend ν , since all four terms in the boundary integral
depend only on the values of ν on the boundary. This follows from Theorem 3.23.

(iii) If α = β , the first boundary integral could be expressed more compactly,
since by taking an arbitrary extension of ν onto the whole Ω , we obtain, appealing
to Theorem 3.28,∫

Ω
〈d(ν �α);δ (ν ∧α)〉=

∫
∂Ω
〈ν �δ (ν ∧α);ν �α〉

=
∫

∂Ω
〈ν ∧d(ν �α);ν ∧α〉.

(iv) In the special cases k = 0 or k = n, the proof is much more immediate than
the one we will provide below, since then all terms in the boundary integral vanish.

As an example, we first present the following corollary.

Corollary 5.9. Let Ω = BR(a) be the ball of radius R centered at a with exterior
unit normal ν . Then

Lν(ν ∧α) =
k
R

ν ∧α and Kν(ν �α) =
n− k

R
ν �α

and, thus, every α, β ∈C1
(
Ω ;Λ k

)
satisfy the equation∫

Ω
(〈dα;dβ 〉+ 〈δα;δβ 〉−〈∇α;∇β 〉)

=−
∫

∂Ω
(〈ν ∧d(ν �α);ν ∧β 〉+ 〈ν �δ (ν ∧α);ν �β 〉)

+
∫

∂Ω

(
k
R
〈ν ∧α;ν ∧β 〉+ n− k

R
〈ν �α;ν �β 〉

)
.

We first prove the corollary.

Proof. Without loss of generality we can assume a = 0. We use Lemma 5.5 and
Proposition 5.10 below to obtain

Lν(ν ∧α) = ν ∧Lν(α) = μ ∧Lμ(α),

where μ(x) = x/R. We use Lemma 5.3(ii) to calculate Lμ(α). Let ϕt be the flow
associated to μ, namely

ϕt = ϕt (x) = e
1
R tx.
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We therefore obtain

dϕ I
t = e

k
R tdxI ⇒ d

dt

∣∣∣
t=0

dϕ I
t =

k
R

dxI

and, thus,

Lμ(α) =
k
R

α and μ ∧Lμ(α) =
k
R

μ ∧α.

It now follows from Lemma 5.3(i) that

Kμ(α) =
n− k

R
α and μ �Kμ(α) =

n− k
R

μ �α.

The corollary is therefore proved. 
�
We now continue with the proof of Theorem 5.7.

Proof. We assume α, β ∈C2
(
Ω ;Λ k

)
, since the result for α , β ∈C1

(
Ω ;Λ k

)
follows

by a density argument. We apply Corollary 3.30 to obtain∫
Ω
〈dα;dβ 〉+

∫
Ω
〈δα;δβ 〉= ∑

I

∫
Ω
〈∇αI ;∇βI〉−∑

I

∫
∂Ω

βI〈∇αI ;ν〉

+
∫

∂Ω
〈dα;ν ∧β 〉+

∫
∂Ω
〈δα;ν �β 〉.

We next apply Lemma 5.6, which proves the alternative version (5.9). The theorem
now follows from Lemma 5.5. 
�

Consider the tangent vectors Ei j = (E1
i j, . . . ,E

n
i j) at x ∈ ∂Ω defined in the follow-

ing way:

Ei j(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

ν j(x)
...

−νi(x)
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← i th coordinate position

← j th coordinate position,

the dots standing for zeros. We define Eii = 0. For f ∈ C1
(
∂Ω

)
, we denote its

derivative in direction of Ei j by ∂i j[ f ]; that is,

∂i j[ f ](x) =

⎧⎨
⎩

[
d
dt

f (ci j(t))
]

t=0
if i �= j

0 if i = j,

where ci j(t) is any curve lying in ∂Ω , which satisfies ci j(0) = x and d
dt ci j(0) = Ei j .

It turns out that if f has been extended to R
n, then
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∂i j[ f ] =
∂ f
∂xi

ν j− ∂ f
∂x j

νi = (d f ∧ν)i j .

Let us denote by Ix(·, ·) the second fundamental form of the hypersurface ∂Ω at x.
We recall that given two tangent vectors Y and Z, the second fundamental form is
defined by

Ix(Y,Z) =−
〈[ d

dt
ν(cY (t))

]
t=0

;Z
〉
,

where cY is any curve lying in ∂Ω , which satisfies

cY (0) = x and
d
dt

cY (0) = Y.

Recall also that the second fundamental form is a symmetric bilinear form. A
straightforward consequence of our definition is the following identity:

Ix(Ei j,Ekl) = ∂i j[νl ]νk−∂i j[νk]νl = ∂kl [ν j]νi−∂kl [νi]ν j . (5.10)

With this notation, we can prove the following.

Proposition 5.10. Let Ω be a bounded open C2 set of Rn with exterior unit nor-
mal ν . Then for every k-form α, the expressions ν ∧Lν(α) and ν �Kν(α) depend
only on the values of ν on ∂Ω . In particular, the following formula holds:

ν ∧Lν(α) = ∑
I

k

∑
γ=1

∑
1≤r<s≤n

(−1)γ αI∂rs[νiγ ]dxr ∧dxs∧dxI\{iγ}.

Proof. The fact that ν ∧Lν and ν �Kν do not depend on the extension of ν onto a
neighborhood of ∂Ω follows from the definition of Lν and Kν and Theorem 3.23.
Thus, we only have to show the formula. Observe that

ν ∧Lν(α) = ∑
I

αI ν ∧d
(
ν �dxI)

= ∑
I

αI ν ∧d

(
k

∑
γ=1

(−1)γ−1νiγ dxi1 ∧·· ·∧ d̂xiγ ∧·· ·∧dxik

)

and, thus,

ν ∧Lν(α)

= ∑
I

αI ν ∧
(

k

∑
γ=1

n

∑
s=1

(−1)γ−1 ∂νiγ

∂xs
dxs∧dxi1 ∧·· ·∧ d̂xiγ ∧·· ·∧dxik

)

= ∑
I

αI

k

∑
γ=1

n

∑
r,s=1

(−1)γ−1 ∂νiγ

∂xs
νr dxr ∧dxs∧dxi1 ∧ . . .∧ d̂xiγ ∧·· ·∧dxik .
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We now split the sum over the r and s as

n

∑
r,s=1

= ∑
r<s

+∑
r>s

.

In the second sum of these two, we interchange the roles of r and s. Recalling that
dxr ∧dxs =−dxs∧dxr, the desired formula follows. 
�
Proposition 5.11. Let Ω ⊂ R

n be a bounded open C2 set and α be a 0-form. Then

Kν (α) = [(n−1)κ] α,

where κ is the mean curvature of the hypersurface ∂Ω .

Proof. Recall that the exterior unit normal ν has been extended on a neighborhood
of ∂Ω so that |ν |= 1. Let α be a 0-form. Due to the definition of Kν , we obtain for
a zero form α ,

Kν(α) = α δν = α divν .

Since the divergence of ν is equal (see, for instance, Krantz and Parks [61]) to
(n−1)κ, if |ν |= 1 near ∂Ω , the proposition follows. 
�

Using Proposition 5.11 and doing some manipulations on Lν(ω), we can rewrite
Theorem 5.7 in the case of 1-forms as follows.

Corollary 5.12 (General identity for 1-forms). Let Ω ⊂R
n be a bounded open C2

set with exterior unit normal ν . Every α, β ∈C1
(
Ω ;Λ 1

)
satisfy∫

Ω
(〈dα;dβ 〉+ 〈δα;δβ 〉−〈∇α;∇β 〉)

=−
∫

∂Ω
(〈ν ∧d(ν �α);ν ∧β 〉+ 〈ν �δ (ν ∧α);ν �β 〉)

+
∫

∂Ω
(〈Bν(ν ∧α);ν ∧β 〉+(n−1)κ 〈ν �α;ν �β 〉) ,

where κ is the mean curvature and Bν acts on 2-forms and is defined by

Bν(ω) =−∑
i< j

(
n

∑
r,s=1

∂i j[νr]νsωsr

)
dxi∧dx j.

In particular, if ν ∧α = ν ∧β = 0, then∫
Ω
(〈dα;dβ 〉+ 〈δα;δβ 〉−〈∇α;∇β 〉) =

∫
∂Ω

(n−1)κ 〈α;β 〉.

Proof. Let ν be extended to a neighborhood of U of ∂Ω such that |ν | = 1 in U.
Note that (cf. (2.7) in Proposition 2.16)

ν ∧α = ν ∧ (ν �(ν ∧α)).
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Due to Lemma 5.5 we obtain

ν ∧Lν(α) = Lν(ν ∧α) = Lν(ν ∧ (ν �(ν ∧α))) = ν ∧Lν(ν �(ν ∧α)). (5.11)

Let ω = ν ∧α. Applying Proposition 2.12 yields

(ν �ω)i =
n

∑
t=1

ωti νt .

Setting this into the formula given by Proposition 5.10 gives

ν ∧Lν(α) = ν ∧Lν(ν �ω) =−
n

∑
i=1

∑
r<s

n

∑
t=1

ωtiνt∂rs[νi]dxr ∧dxs = Bν(ω).

We see now that the corollary follows from Theorem 5.7 together with Proposi-
tion 5.11. 
�

We present another possibility to express Theorem 5.7 for 1-forms.

Proposition 5.13. Let α = ∑αidxi and β = ∑βidxi be 1-forms. Then for every x ∈
∂Ω , the identity

〈ν ∧Lν(α);ν ∧β 〉+ 〈ν �Kν(α);ν �β 〉=−
n

∑
i, j=1

αiβ j

n

∑
r=1

Ix(Eir,E jr)

is valid, where Ix is the second fundamental form of the hypersurface ∂Ω at x.

Remark 5.14. It can be shown that also for k > 1 and any k-form ω,

〈ν ∧Lν(ω);ν ∧ω〉+ 〈ν �Kν(ω);ν �ω〉

can be expressed in terms of the second fundamental form and the tangent vec-
tors Ei j; see Csató [23]. However, the formulas in the case k > 1 do not turn out to
be as simple and elegant as for 1-forms.

Proof. Proposition 5.10 gives

ν ∧Lν(α) =
n

∑
j=1

∑
i<r

α j∂ri[ν j]dxi∧dxr

and, hence,

〈ν ∧Lν(α);ν ∧β 〉=
n

∑
j=1

∑
i<r

α j∂ri[ν j](νiβr−νrβi)

=
n

∑
j=1

∑
i<r

α jβr∂ri[ν j]νi−
n

∑
j=1

∑
i<r

βiα j∂ri[ν j]νr .
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Interchanging the roles of i and r in the second sum and noticing that ∂ir = −∂ri
gives

〈ν ∧Lν(α);ν ∧β 〉=−∑
i, j,r

α jβi∂ri[ν j]νr . (5.12)

We know from Lemma 5.5 and the definition of Kν that

〈ν �Kν(α);ν �β 〉= ∑
i, j,r

α jβiνiν j
∂νr

∂xr

for any ν , whose extension satisfies |ν |= 1. This implies in particular that

∑
r

νr
∂νr

∂xi
= 0 for every 1≤ i≤ n.

We therefore get

〈ν �Kν(α);ν �β 〉= ∑
i, j,r

α jβiνiν j
∂νr

∂xr
−∑

i, j,r
α jβiνrν j

∂νr

∂xi

= ∑
i, j,r

α jβi∂ri[νr]ν j . (5.13)

Adding (5.12) to (5.13) gives the desired result, using the identity (5.10). 
�

5.3 Gaffney Inequality

5.3.1 An Elementary Proof

The Gaffney inequality is essentially based on the fact that the first boundary integral
in Theorem 5.7 drops, whenever α = β = ω and one of the conditions ν ∧ω = 0 or
ν �ω = 0 is satisfied.

The Gaffney inequality will be essential for the proof of the Hodge–Morrey
decomposition theorem. Due to Theorem 5.7, the proof of the Gaffney inequality
will be very simple (cf. also Duvaut and Lions [39]) (see Theorem 6.1 in Chapter 7)
or Schwarz [89]. The inequality was first proved by Gaffney in [44] and [45] for
compact manifolds without boundary. The generalization of that proof to the case
of manifolds with boundary proved by Morrey [77] in Chapter 7 (cf. also Iwaniec,
Scott and Stroffolini [58]) is different from the one presented here. A third version of
the proof can be found in Taylor [96, Chapter 5.9], which involves more geometric
arguments.

To obtain the Gaffney inequality from Theorem 5.7 we need the following ele-
mentary result.
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Proposition 5.15. Let Ω ⊂ R
n be a bounded open C2 set. Then there exists C =

C(Ω)> 0 such that for any 0 < ε < 1,∫
∂Ω

u2 ≤ ε
∫

Ω
|∇u|2 + C

ε

∫
Ω
|u|2

for every u ∈W 1,2(Ω).

Proof. Due to the density of C1(Ω) in W 1,2(Ω) and the continuous imbedding
W 1,2(Ω) ↪→ L2(∂Ω), it suffices to show the inequality for every u ∈ C1

(
Ω
)
. As

Ω is a C2 set, we can extend the exterior unit normal ν to a C1
(
Ω ;Rn

)
map. Hence,

|ν | and the divergence |divν | are bounded on Ω by some C > 0. Using the diver-
gence theorem, we get

∫
∂Ω

u2 =
∫

∂Ω
u2

n

∑
i=1

ν2
i =

∫
∂Ω
〈u2ν ;ν〉

=
∫

Ω
div(u2 ν) =

∫
Ω

u2 divν +
∫

Ω
〈ν ;∇u2〉

≤
∫

Ω
|divν |u2 +

∫
Ω
|ν | |∇u2| ≤C

∫
Ω

u2 +C
∫

Ω
2|u| |∇u|.

Since

2C|u| |∇u| ≤ ε |∇u|2 + C2

ε
u2,

we have the desired result. 
�
Theorem 5.16 (Gaffney inequality). Let Ω ⊂ R

n be a bounded open C2 set. Then
there exists a constant C =C(Ω)> 0 such that

‖ω‖2
W 1,2 ≤C

(‖dω‖2
L2 +‖δω‖2

L2 +‖ω‖2
L2

)
for every ω ∈W 1,2

T

(
Ω ;Λ k

)∪W 1,2
N

(
Ω ;Λ k

)
.

Proof. By density (cf. Theorem 3.25), it is enough to prove the result for ω ∈
C1

T
(
Ω ;Λ k

) ∪C1
N
(
Ω ;Λ k

)
. Appealing to Theorem 5.7 and the properties of Lν

and Kν , there exist continuous functions fIJ ∈C0
(
∂Ω

)
, depending only on the ge-

ometry of ∂Ω and on k, such that∫
Ω

(|dω|2 + |δω|2)= ∫
Ω
|∇ω|2 +

∫
∂Ω

∑
I,J

fIJωIωJ

for every ω ∈ C1
T
(
Ω ;Λ k

)∪C1
N
(
Ω ;Λ k

)
. In particular, since ∂Ω is compact, there

exists a constant C =C(Ω)> 0 such that∫
Ω

(|dω|2 + |δω|2)≥ ∫
Ω
|∇ω|2−C

∫
∂Ω
|ω|2. (5.14)

Combining this with Proposition 5.15, we have the Gaffney inequality. 
�



5.3 Gaffney Inequality 115

5.3.2 A Generalization of the Boundary Condition

We just saw that the proof of the Gaffney inequality is essentially based on the fact
that the first boundary integral in Theorem 5.7 drops whenever α = β = ω and the
tangential or normal component of ω vanishes. In that case, no derivatives of ω
occur in the boundary integral and one obtains the estimate (5.14). We now discuss
the possibility of extending Theorem 5.16 to more general conditions than those of
vanishing tangential or normal components. We give in Theorem 5.19 two ways of
generalizing the Gaffney inequality. However, before proceeding further we need
the following algebraic lemma.

Lemma 5.17. (i) Let 2k ≤ n, k odd,

ω ∈C1(
R

n;Λ k), ν ∈C1(
R

n;Λ 1) and λ ∈C1(
R

n;Λ n−2k)
such that

∗[ν ∧ω] = λ ∧ (ν �ω).

Then

〈ν ∧d(ν �ω);ν ∧ω〉+ 〈ν �δ (ν ∧ω);ν �ω〉=−〈ν ∧dλ ∧ (ν �ω);∗(ν �ω)〉.

(ii) Let 2k ≥ n, (n− k) odd,

ω ∈C1(
R

n;Λ k), ν ∈C1(
R

n;Λ 1) and λ ∈C1(
R

n;Λ 2k−n)
such that

ν �ω = λ ∧∗(ν ∧ω).

Then

〈ν ∧d(ν �ω);ν ∧ω〉+ 〈ν �δ (ν ∧ω);ν �ω〉= 〈ν ∧dλ ∧ (∗(ν ∧ω)) ;ν ∧ω〉.

Proof. Step 1. We first show that if ω is a k-form, ν is a 1-form and dV = dx1 ∧
·· ·∧dxn, we have

〈ν ∧d(ν �ω);ν ∧ω〉dV + 〈ν �δ (ν ∧ω);ν �ω〉dV

= ν ∧
[
d(ν �ω)∧ (∗(ν ∧ω))+(−1)k(ν �ω)∧d(∗(ν ∧ω))

]
. (5.15)

Indeed, from the definitions of the interior product and the interior derivative and
from Theorem 2.10, we have

ν �δ (ν ∧ω) = (−1)n(k−1) ∗ [ν ∧ (∗(δ (ν ∧ω)))]

= (−1)nk+n(k−1) ∗ [ν ∧ (∗∗ (d ∗ (ν ∧ω)))]

= (−1)nk+n(k−1)+k(n−k) ∗ [ν ∧ (d ∗ (ν ∧ω))]
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and, thus, using again Theorem 2.10,

〈ν ∧d(ν �ω);ν ∧ω〉dV + 〈ν �δ (ν ∧ω);ν �ω〉dV

= ν ∧d(ν �ω)∧ (∗(ν ∧ω))+(ν �ω)∧ [∗∗ (ν ∧d(∗(ν ∧ω)))] (−1)n+k+nk

= ν ∧d(ν �ω)∧ (∗(ν ∧ω))− (ν �ω)∧ν ∧d(∗(ν ∧ω))

= ν ∧
[
d(ν �ω)∧ (∗(ν ∧ω))+(−1)k(ν �ω)∧d(∗(ν ∧ω))

]
.

We have therefore obtained (5.15).

Step 2. We first prove (i). We set the equality ∗[ν ∧ω] = λ ∧ (ν � ω) into the
right-hand side of (5.15), which yields, since k is odd,

ν ∧
[
d(ν �ω)∧λ ∧ (ν �ω)− (ν �ω)∧d(λ ∧ (ν �ω))

]
=−ν ∧ (ν �ω)∧dλ ∧ (ν �ω)+ν ∧A,

where

A = d(ν �ω)∧λ ∧ (ν �ω)− (−1)n−2k(ν �ω)∧λ ∧d(ν �ω).

Using again that k is odd, we have that A = 0. It therefore follows from (5.15) and
the above two identities that

〈ν ∧d(ν �ω);ν ∧ω〉dV + 〈ν �δ (ν ∧ω);ν �ω〉dV

=−ν ∧ (ν �ω)∧dλ ∧ (ν �ω) =−ν ∧dλ ∧ (ν �ω)∧ (∗∗ (ν �ω))

=−〈ν ∧dλ ∧ (ν �ω);∗(ν �ω)〉dV.

Step 3. The proof of (ii) is analogous to that of (i) by setting the equality

ν �ω = λ ∧∗(ν ∧ω)

into the right-hand side of (5.15). 
�

Remark 5.18. The hypothesis of the lemma can be relaxed. It follows from Step 2
of the proof that the lemma remains valid at all points x where the following two
equations hold true:

∗[ν ∧ω] = λ ∧ (ν �ω),

ν ∧d (∗[ν ∧ω]) = ν ∧d (λ ∧ (ν �ω)) .

If the first identity is true not just at one point x but also in an open set, then it
trivially implies the second one. This implication remains valid if ν is the exterior
unit normal on some sufficiently regular hypersurface and the first identity holds
true on that surface, due to Theorem 3.23. We will use the lemma exactly in this
setting.
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Theorem 5.19. Let 0 ≤ k ≤ n be integers and Ω ⊂ R
n be a bounded open C2 set

with exterior unit normal ν .
(i) Let 2k ≤ n with k odd. Let λ ∈C1

(
∂Ω ;Λ n−2k

)
. Then there exists a constant

C =C(λ ,Ω) such that

‖∇ω‖2
W 1,2 ≤C

(‖dω‖2
L2 +‖δω‖2

L2 +‖ω‖2
L2

)
for every ω ∈C1(Ω ;Λ k) satisfying

∗(ν ∧ω) = λ ∧ (ν �ω) on ∂Ω .

(ii) Let 2k ≥ n with (n− k) odd. Let λ ∈ C1
(
∂Ω ;Λ 2k−n

)
. Then there exists a

constant C =C(λ ,Ω) such that

‖∇ω‖2
W 1,2 ≤C

(‖dω‖2
L2 +‖δω‖2

L2 +‖ω‖2
L2

)
for every ω ∈C1(Ω ;Λ k) verifying

ν �ω = λ ∧∗(ν ∧ω) on ∂Ω .

Proof. We prove (i). The proof of (ii) is completely analogous. Due to Theorem 5.7,
Lemma 5.17(i) and the remark thereafter,∫

Ω
|dω|2 +

∫
Ω
|δω|2−

∫
Ω
|∇ω|2

=
∫

∂Ω
(〈ν ∧dλ ∧ (ν �ω);∗(ν �ω)〉+ 〈Lν(ν ∧ω);ν ∧ω〉+ 〈Kν(ν �ω);ν �ω〉) .

The regularity assumption λ ∈ C1
(
∂Ω ;Λ n−2k

)
implies that ν ∧ dλ , which is well

defined by Theorem 3.23, is a continuous function on ∂Ω . One can now proceed
exactly as in the proof of the Gaffney inequality. 
�

We give the following example to part (i) of Theorem 5.19.

Example 5.20. Let k= 1 and n≥ 3. Hence, n−2k= n−2. It will be more convenient
to use ∗λ than λ , so we suppose that ∗λ ∈C1

(
∂Ω ;Λ n−2

)
. In that case, the condition

∗(ν ∧ω) = (∗λ )∧ (ν �ω) can be written as

ν ∧ω = (ν �ω)λ on ∂Ω ,

which consists of the
(n

2

)
equations

νi ω j−ν j ωi = λi j

n

∑
l=1

νl ωl for 1≤ i < j ≤ n.

To make the example even simpler, assume that

H = ∂Ω ∩{x ∈ R
n : xn = 0}
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contains a relatively open set. Furthermore, suppose that, for every x ∈ H,

λi j (x) = 0 if j �= n and 1≤ i < j.

Since ν = (0, . . . ,0,1) at every x ∈ H, we have

ν ∧ω = 0 ⇔ ω1 = · · ·= ωn−1 = 0,

ν �ω = 0 ⇔ ωn = 0,

whereas

ν ∧ω = (ν �ω)λ ⇔ ωi +λinωn = 0 for 1≤ i≤ n−1.

5.3.3 Gaffney-Type Inequalities in Lp and Hölder Spaces

The following result follows from Theorem 2 in Bolik [13].

Theorem 5.21. Let n > 2, r ≥ 1 and 1 ≤ k ≤ n− 1 be integers and 0 < α < 1 <
p < ∞. Let Ω ⊂ R

n be a bounded open smooth set with exterior unit normal ν .
Then there exist C1 = C1(r, p,Ω) and C2 = C2(r,α,Ω) such that for every ω ∈
W r,p

(
Ω ;Λ k

)
,

‖ω‖W r,p(Ω) ≤C1

(
‖dω‖W r−1,p(Ω) +‖δω‖W r−1,p(Ω)

)
+C1

(
‖ν ∧ω‖

W r− 1
p ,p

(∂Ω)
+‖ν �ω‖L1(∂Ω)

)
,

‖ω‖W r,p(Ω) ≤C1

(
‖dω‖W r−1,p(Ω) +‖δω‖W r−1,p(Ω)

)
+C1

(
‖ν �ω‖

W r− 1
p ,p

(∂Ω)
+‖ν ∧ω‖L1(∂Ω)

)
,

whereas for every ω ∈Cr,α(Ω ;Λ k
)
,

‖ω‖Cr,α (Ω) ≤C2

(
‖dω‖Cr−1,α (Ω) +‖δω‖Cr−1,α (Ω)

)
+C2

(
‖ν ∧ω‖Cr,α (∂Ω) +‖ν �ω‖C0(∂Ω)

)
,

‖ω‖Cr,α (Ω) ≤C2

(
‖dω‖Cr−1,α (Ω) +‖δω‖Cr−1,α (Ω)

)
+C2

(
‖ν �ω‖Cr,α (∂Ω) +‖ν ∧ω‖C0(∂Ω)

)
.

Remark 5.22. (i) We see that this is a generalization of the Gaffney inequality
(cf. Theorem 5.16). Indeed, if ω ∈W 1,2

T

(
Ω ;Λ k

)∪W 1,2
N

(
Ω ;Λ k

)
, then the first two
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inequalities reduce to

‖ω‖W 1,2(Ω) ≤C
(
‖dω‖L2(Ω) +‖δω‖L2(Ω) +‖ω‖L1(∂Ω)

)
.

(ii) The actual theorem, as stated in Bolik [13], is more precise. Before explaining
the refinement, we need to introduce the spaces

HT
(
Ω c;Λ k) and HN

(
Ω c;Λ k), (5.16)

where Ω c is the complement of Ω in R
n. In Definition 6.1, we will introduce the

sets
HT

(
Ω ;Λ k) and HN

(
Ω ;Λ k).

In Theorem 6.5, it will be proved that

dimHT
(
Ω ;Λ k)< ∞ and dimHN

(
Ω ;Λ k)< ∞.

The sets in (5.16) are defined analogously, requiring that ω(x)→ 0 uniformly as
|x| → ∞. In Kress [63] (cf. Satz 7.5), it is proved that

Bn−k = dimHT
(
Ω ;Λ k)= dimHN

(
Ω c;Λ k−1), 1≤ k ≤ n,

Bk = dimHN
(
Ω ;Λ k)= dimHT

(
Ω c;Λ k+1), 0≤ k ≤ n−1,

where Bk are the Betti numbers (for more details, see Duff and Spencer [38] or Kress
[63]). Let zi, i = 1, . . . ,Bn−k , be a basis of HN

(
Ω c;Λ k−1

)
and yi, i = 1, . . . ,Bk, be

a basis of HT
(
Ω c;Λ k+1

)
. The sharper version of Theorem 5.21 is now obtained by

replacing in the first inequality the term ‖ν �ω‖L1(∂Ω) (or the term ‖ν �ω‖C0(∂Ω) in
the third inequality) by

Bn−k

∑
i=1

∣∣∣∣∫∂Ω
〈ω;ν ∧ zi〉

∣∣∣∣= Bn−k

∑
i=1

∣∣∣∣∫∂Ω
〈ν �ω;zi〉

∣∣∣∣
and replacing in the second inequality ‖ν ∧ω‖L1(∂Ω) (or the term ‖ν ∧ω‖C0(∂Ω) in
the fourth inequality) by

Bk

∑
i=1

∣∣∣∣∫∂Ω
〈ω;ν �yi〉

∣∣∣∣= Bk

∑
i=1

∣∣∣∣∫∂Ω
〈ν ∧ω;yi〉

∣∣∣∣ .
To obtain Theorem 5.21 from [13], we have estimated these terms by taking into
account that the zi and yi are smooth up to the boundary, according to a result similar
to Theorem 6.3.

(iii) Note that if Ω is contractible, 1 ≤ k ≤ n− 1 and ω ∈ W r,p
T

(
Ω ;Λ k

) ∪
W r,p

N

(
Ω ;Λ k

)
, then

‖ω‖W r,p(Ω) ≤C1

(
‖dω‖W r−1,p(Ω) +‖δω‖W r−1,p(Ω)

)
,
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and, similarly, if ω ∈Cr,α
T

(
Ω ;Λ k

)∪Cr,α
N

(
Ω ;Λ k

)
, then

‖ω‖Cr,α (Ω) ≤C2

(
‖dω‖Cr−1,α (Ω) +‖δω‖Cr−1,α (Ω)

)
.

This follows from the previous remark and Theorem 6.5, since if Ω is contractible
and 1≤ k ≤ n−1, then HT

(
Ω ;Λ k

)
= HN

(
Ω ;Λ k

)
= {0} .



Chapter 6

The Hodge–Morrey Decomposition

6.1 Properties of Harmonic Fields

We recall the definition of harmonic fields and of contractible sets. Let 0≤ k≤ n be
an integer.

Definition 6.1. (i) The set of harmonic fields is defined by

H
(
Ω ;Λ k)= {ω ∈W 1,2(Ω ;Λ k) : dω = 0 and δω = 0},

and we will write

HT (Ω ;Λ k) = H (Ω ;Λ k)∩W 1,2
T (Ω ;Λ k),

HN(Ω ;Λ k) = H (Ω ;Λ k)∩W 1,2
N (Ω ;Λ k);

that is,

HT
(
Ω ;Λ k)= {ω ∈H

(
Ω ;Λ k) : ν ∧ω = 0 on ∂Ω},

HN
(
Ω ;Λ k)= {ω ∈H

(
Ω ;Λ k) : ν �ω = 0 on ∂Ω}.

(ii) The set Ω ⊂ R
n is said to be contractible if there exist x0 ∈ Ω and F ∈

C∞ ([0,1]×Ω ;Ω) such that for every x ∈Ω ,

F(0,x) = x0 and F(1,x) = x.

Remark 6.2. (i) Note that a contractible set is necessarily simply connected.

(ii) The set H
(
Ω ;Λ k

)
can be equivalently defined as

H
(
Ω ;Λ k)= {ω ∈ L1

loc
(
Ω ;Λ k) : dω = 0 and δω = 0},

where we understand the equations dω = 0 and δω = 0 in the sense of distributions,
namely

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
© Springer Science+Business Media, LLC 2012 
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Ω
〈ω;δϕ〉= 0, for every ϕ ∈C∞

0
(
Ω ;Λ k+1),

∫
Ω
〈ω;dϕ〉= 0, for every ϕ ∈C∞

0
(
Ω ;Λ k−1).

The proof of Theorem 6.3 shows that the two definitions are equivalent.

We now list some properties of these fields.

Theorem 6.3. Let Ω ⊂ R
n be an open set. Then

H
(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Moreover, if Ω is bounded and smooth, then

HT
(
Ω ;Λ k)∪HN

(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Furthermore, if r ≥ 1 is an integer, then there exists C =C(r,Ω) such that for every
ω ∈HT

(
Ω ;Λ k

)∪HN
(
Ω ;Λ k

)
,

‖ω‖W r,2 ≤C‖ω‖L2 . (6.1)

Remark 6.4. If r≥ 0 is an integer and 0≤ α ≤ 1, then there exists C =C(r,Ω) such
that for every ω ∈HT

(
Ω ;Λ k

)∪HN
(
Ω ;Λ k

)
,

‖ω‖Cr,α ≤C‖ω‖C0 .

Indeed, we have, by the Morrey imbedding theorem, that for s sufficiently large,

‖ω‖Cr,α ≤C1‖ω‖W s,2 .

Since trivially
‖ω‖L2 ≤C2‖ω‖C0 ,

we have the result by combining the theorem with the above two estimates.

Proof. Step 1. The inclusion

H
(
Ω ;Λ k)⊂C∞(Ω ;Λ k)

follows from the Weyl lemma (cf. e.g., [29]). Indeed, let φ ∈C∞
0
(
Ω ;Λ k

)
;∫

Ω
〈ω;Δφ〉=

∫
Ω
〈ω;δdφ +dδφ〉=

∫
Ω
〈dω;dφ〉+

∫
Ω
〈δω;δφ〉= 0.

Choose φ = ϕ dxI and ϕ ∈C∞
0 (Ω) and, thus, ωI ∈C∞(Ω).

Step 2. The extra statements are direct consequences of Theorem 6.11. �


In the sequel we will sometimes omit the brackets
(
Ω ;Λ k

)
in the expressions

W 1,2
(
Ω ;Λ k

)
, HT

(
Ω ;Λ k

)
. . . whenever the degree k of the form is evident.
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Theorem 6.5. Let Ω ⊂ R
n be a bounded open C2 set.

(i) The spaces HT
(
Ω ;Λ k

)
and HN

(
Ω ;Λ k

)
are finite dimensional.

(ii) The sets HT
(
Ω ;Λ k

)
and HN

(
Ω ;Λ k

)
are closed in L2

(
Ω ;Λ k

)
.

(iii) Furthermore, if Ω is contractible, then

HT
(
Ω ;Λ k

)
= {0} if 0≤ k ≤ n−1

HN
(
Ω ;Λ k

)
= {0} if 1≤ k ≤ n.

(iv) If k = 0 or k = n and h ∈H
(
Ω ;Λ k

)
, then h is constant on each connected

component. In particular,

HT
(
Ω ;Λ 0)= {0} and HN

(
Ω ;Λ n)= {0}.

(v) Let (HT )
⊥ be the orthogonal complement of HT with respect to the L2-inner

product, then
L2 = HT ⊕ (HT )

⊥.

More precisely, for any f ∈ L2, there exist unique h ∈HT and g ∈ (HT )
⊥ such that

f = h+g, (6.2)

‖h‖L2 , ‖g‖L2 ≤ ‖ f‖L2 . (6.3)

A similar result holds for HN .

Remark 6.6. Statement (iii) can be improved, since it is a special case of the de
Rham theorem (cf. [68], for instance). For example, if k = 1, then

HT
(
Ω ;Λ 1)= HN

(
Ω ;Λ 1)= {0}

if Ω is only simply connected.

Proof. (i) We only prove the statement for HT ; the proof for HN is similar. Let

E = {ω ∈HT
(
Ω ;Λ k) : ‖ω‖W 1,2 ≤ 1}.

If we can prove that E is compact, then the result will follow from the Riesz the-
orem (cf. [17]). Let {ωl}l∈N be a sequence in E. Then there is a subsequence also
denoted by ωl which converges weakly in W 1,2 to some ω ∈W 1,2

(
Ω ;Λ k

)
. The

compact imbedding W 1,2(Ω) ↪→ L2(Ω) implies that the convergence is strong in L2.
The Gaffney inequality (cf. Theorem 5.16) implies that the convergence is strong
in W 1,2. Hence, ω ∈ E.

(ii) We only do the proof for HT
(
Ω ;Λ k

)
; the other case is completely analo-

gous. Let {ωl}l∈N ⊂ HT be such that ωl → ω in L2
(
Ω ;Λ k

)
. Then {ωl}l∈N is a

Cauchy sequence in L2
(
Ω ;Λ k

)
. From the Gaffney inequality it follows that it is

also a Cauchy sequence in W 1,2
(
Ω ;Λ k

)
. So it converges also in W 1,2

(
Ω ;Λ k

)
to the

same limit ω. The trace theorem for Sobolev functions yields ω ∈HT
(
Ω ;Λ k

)
.



124 6 The Hodge–Morrey Decomposition

(iii) Let h ∈HN
(
Ω ;Λ k

)
. Since dh = 0, k ≥ 1 and Ω is contractible, it follows

from the Poincaré lemma (Theorem 8.1) that there exists a (k−1)-form g such that
h = dg. So we have∫

Ω
〈h;h〉=

∫
Ω
〈dg;h〉=−

∫
Ω
〈g;δh〉+

∫
∂Ω
〈g;ν �h〉= 0.

This proves that HN = {0}. The claim concerning HT follows by duality.

(iv) This is obvious, since a function with vanishing gradient on a connected set
is constant.

(v) Since L2 is a Hilbert space and HT is closed, we have the claim. �


6.2 Existence of Minimizers and Euler–Lagrange Equation

Let 0≤ k≤ n. We now establish the first step in the Hodge–Morrey decomposition.
Recall that

W 1,2
T

(
Ω ;Λ k)= { f ∈W 1,2(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω}.

Theorem 6.7 (Existence of minimizer). Let Ω ⊂R
n be a bounded open C2 set. Let

g ∈ L2
(
Ω ;Λ k

)
and

Dg(ω) =
∫

Ω

(
1
2
|dω|2 + 1

2
|δω|2 + 〈g;ω〉

)
,

X =W 1,2
T

(
Ω ;Λ k)∩ (HT

(
Ω ;Λ k))⊥.

Then there exists a unique ω ∈ X such that

Dg(ω)≤ Dg(ω) for every ω ∈ X

and satisfying the weak form of the Euler–Lagrange equation, namely∫
Ω
〈dω;du〉+

∫
Ω
〈δω;δu〉=−

∫
Ω
〈g;u〉 for every u ∈ X . (6.4)

Moreover, if g ∈ (
HT

(
Ω ;Λ k

))⊥
, then ω verifies∫

Ω
〈dω;du〉+

∫
Ω
〈δω;δu〉=−

∫
Ω
〈g;u〉 for every u ∈W 1,2

T

(
Ω ;Λ k). (6.5)

The same result holds true by replacing everywhere the subscript T by N.
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Remark 6.8. It can be easily shown that the correspondence g→ ω is linear, since
g→ Dg is linear.

Proof. The statement with N instead of T is obtained in a completely analogous
way. The existence of a minimizer follows from the direct methods of the calculus
of variations (cf. e.g., Dacorogna [28]) and is established in Steps 1–3. The second
statement, namely (6.4), is just the weak form of the Euler–Lagrange equation. The
uniqueness is discussed in Step 4. The last identity (6.5) will be obtained in Step 5.

Step 1. We first claim that there exists a C1 > 0 such that

‖ω‖2
W 1,2 ≤C1

∫
Ω

(|dω|2 + |δω|2) for every ω ∈ X . (6.6)

Step 1.1. If this were not the case, then there would exist for every m∈N, a ωm ∈
X such that

‖ωm‖2
W 1,2 ≥ m

∫
Ω

(|dωm|2 + |δωm|2
)
. (6.7)

According to the Gaffney inequality (cf. Theorem 5.16), there exists a C2 > 0 such
that

‖ωm‖2
W 1,2 ≤C2

∫
Ω

(|dωm|2 + |δωm|2 + |ωm|2
)
.

Taking ‖ωm‖L2 = 1 for every m, the two inequalities yield, for m large,

‖ωm‖2
W 1,2 ≤ C2

m
‖ωm‖2

W 1,2 +C2 ⇒ ‖ωm‖2
W 1,2 ≤C3 .

So the ‖ωm‖W 1,2 are uniformly bounded in the reflexive space W 1,2
(
Ω ;Λ k

)
. We can

therefore extract a subsequence, that we do not relabel and find u ∈W 1,2
(
Ω ;Λ k

)
such that

ωm ⇀ u in W 1,2 and ωm → u in L2,

δωm ⇀ δu in L2 and dωm ⇀ du in L2.

The strong convergence yields ‖u‖L2 = 1. As ωm ∈ (HT )
⊥, we find that u∈ (HT )

⊥.

Step 1.2. We now assert that

du = 0 in Ω , δu = 0 in Ω and ν ∧u = 0 on ∂Ω .

From (6.7) and the bound on the W 1,2 norm for the ωm, we obtain, for m sufficiently
large,

‖δωm‖2
L2 +‖dω‖2

L2 ≤ C3

m
and, consequently,

δωm → 0 = δu, dωm → 0 = du in L2.
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Due to the compact imbedding of W 1,2(Ω) into L2(∂Ω), we find that ν ∧u = 0 on
∂Ω , since ν ∧ωm = 0 on ∂Ω . Steps 1.1 and 1.2 yield u ∈ HT ∩ (HT )

⊥ = {0},
which is in contradiction with ‖u‖L2 = 1.

Step 2. We next prove that there exists a constant C4 such that

‖ω‖W 1,2 ≤ 4C1 Dg(ω)+C4 for every ω ∈ X . (6.8)

From (6.6) we obtain

‖ω‖2
W 1,2 ≤ 2C1

∫
Ω

(|dω|2 + |δω|2)−‖ω‖2
W 1,2

= 4C1 Dg(ω)−4C1

∫
Ω
〈g;ω〉−‖∇ω‖2

L2 −‖ω‖2
L2

≤ 4C1 Dg(ω)+4C1‖g‖L2‖ω‖L2 −‖ω‖2
L2 .

The claim of Step 2 follows, since the sum of the last two terms on the right-hand
side is bounded from above by a constant C4 .

Step 3. The fact that Dg is weakly lower semicontinuous in W 1,2 is immediate. So
to conclude at the existence of a minimizer ω ∈X , it is enough to show that any min-
imizing sequence {ωm} ⊂ X has a subsequence that converges weakly in W 1,2 to a
limit ω ∈X . From (6.8) we obtain that ‖ωm‖W 1,2 is bounded and, therefore, up to the
extraction of a subsequence that we do not relabel, there exists ω ∈W 1,2 such that

ωm ⇀ ω in W 1,2 ⇒ ωm → ω in L2.

Since all of the ωm are in X and the imbedding W 1,2(Ω) into L2(∂Ω) is compact, we
obtain that ω ∈W 1,2

T . Similarly, since the ωm are all in (HT )
⊥ and (HT )

⊥ is closed
in L2, we obtain that ω ∈ (HT )

⊥. Thus, ω ∈W 1,2
T ∩ (HT )

⊥ = X . The existence part
of the proof is then complete. Moreover, we also have immediately (6.4).

Step 4. The uniqueness is easily obtained. Indeed, let u,v∈ X be two minimizers.
Due to the strict convexity of the map ω → ∫

(|dω|2 + |δω|2), we find that

δu = δv and du = dv.

Applying (6.6) to u− v, we obtain that

‖u− v‖2
W 1,2 ≤C1

(∫
Ω
|du−dv|2 +

∫
Ω
|δu−δv|2

)
= 0

and thus the claim.

Step 5. It remains to establish (6.5). Let u in W 1,2
T

(
Ω ;Λ k

)⊂ L2
(
Ω ;Λ k

)
. We then

write, according to (6.2), u = w+ v with w ∈ HT and v ∈ (HT )
⊥. We therefore

deduce that
δw = 0, dw = 0 and

∫
Ω
〈g,w〉= 0.
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In addition, v ∈ X because v ∈ (HT )
⊥ and v = u−w ∈W 1,2

T . We hence find that∫
Ω
〈dω;du〉+

∫
Ω
〈δω;δu〉−

∫
Ω
〈g,u〉=

∫
Ω
〈dω;dv〉+

∫
Ω
〈δω;δv〉−

∫
Ω
〈g,v〉= 0,

which is precisely what had to be shown. �


6.3 The Hodge–Morrey Decomposition

We now turn to the main result of the present chapter.

Theorem 6.9 (Hodge–Morrey decomposition). Let Ω ⊂ R
n be a bounded open

C3 set with exterior unit normal ν . Let 0≤ k ≤ n and f ∈ L2
(
Ω ;Λ k

)
.

(i) There exist α ∈W 1,2
T

(
Ω ;Λ k−1

)
, β ∈W 1,2

T

(
Ω ;Λ k+1

)
, h ∈HT

(
Ω ;Λ k

)
and

ω ∈W 2,2
T

(
Ω ;Λ k

)
such that, in Ω ,

f = dα +δβ +h, α = δω and β = dω.

(ii) There exist α ∈W 1,2
N

(
Ω ;Λ k−1

)
, β ∈W 1,2

N

(
Ω ;Λ k+1

)
, h ∈HN

(
Ω ;Λ k

)
and

ω ∈W 2,2
N

(
Ω ;Λ k

)
such that, in Ω ,

f = dα +δβ +h, α = δω and β = dω.

(iii) There exist α ∈W 1,2
T

(
Ω ;Λ k−1

)
, β ∈W 1,2

N

(
Ω ;Λ k+1

)
, h∈H

(
Ω ;Λ k

)
, ω1 ∈

W 2,2
T

(
Ω ;Λ k

)
and ω2 ∈W 2,2

N

(
Ω ;Λ k

)
such that, in Ω ,

f = dα +δβ +h, α = δω1 and β = dω2.

(iv) In addition, in each of the three cases, dα, δβ and h are mutually orthogonal
with respect to the L2-inner product. Moreover, in each of the three cases, there
exists a positive constant C =C(Ω) such that

‖ω‖W 2,2 +‖h‖L2 ≤C‖ f‖L2 .

Remark 6.10. (i) We recall that if r ≥ 1 is an integer,

W r,2
T

(
Ω ;Λ k)= { f ∈W r,2(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

W r,2
N

(
Ω ;Λ k)= { f ∈W r,2(Ω ;Λ k) : ν � f = 0 on ∂Ω}.

(ii) If k = 0, then statement (i) of the theorem is the simplest of the three decom-
positions and it reads as

f = δβ = δdω = Δω in Ω with ω = 0 on ∂Ω .
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If k = n, then statement (ii) of the theorem is the simplest of the three decomposi-
tions and it reads as

f = dα = dδω = Δω in Ω with ω = 0 on ∂Ω .

(iii) If Ω is contractible, then in statement (i), h = 0 if k ≤ n− 1 and in state-
ment (ii), h = 0 if k ≥ 1, as seen in Theorem 6.5.

(iv) There exists a much simpler decomposition, namely

f = dα +δβ in Ω , ν �α = 0 on ∂Ω and ν ∧β = 0 on ∂Ω .

This can be immediately obtained by solving componentwise the Poisson equation
with Dirichlet boundary condition; that is,{

Δω = dδω +δdω = f in Ω ,

ω = 0 on ∂Ω

Setting α = δω and β = dω, we get the claim according to Theorem 3.23. However,
this decomposition turns out to be much less useful (in particular, it is not an orthog-
onal decomposition) than the Hodge–Morrey one, since ν �α, respectively ν ∧β ,
do not give any information about the boundary behavior of dα, respectively δβ .

We will deduce Theorem 6.9 from Theorem 6.7. Indeed, after proving with usual
arguments (see Theorem 6.11) that the minimizer ω found in Theorem 6.7 is in fact
W 2,2, the Hodge–Morrey decomposition will be seen to be, in fact, a rewriting of the
strong Euler–Lagrange equation. We now proceed with the proof of Theorem 6.9.

Proof. We divide the proof into three steps, each one corresponding to one of the
statements.

Step 1. We start by proving (i).

Step 1.1. Let f = h+g, h ∈HT and g ∈ (HT )
⊥ as in (6.2). We use Theorem 6.7

for g and obtain ω ∈W 1,2
T ∩ (HT )

⊥ such that∫
Ω
(〈dω;du〉+ 〈δω;δu〉) =−

∫
Ω
〈g;u〉, ∀u ∈W 1,2

T .

In view of the regularity Theorem 6.11, we conclude that ω ∈W 2,2 and we can
integrate by parts to obtain, for every u ∈W 1,2

T ,

−
∫

Ω
(〈δdω;u〉+ 〈dδω;u〉)+

∫
∂Ω

(〈dω;ν ∧u〉+ 〈ν ∧δω;u〉) =−
∫

Ω
〈g;u〉.

(6.9)

Taking first u ∈C∞
0
(
Ω ;Λ k

)
, we obtain

δdω +dδω = g in Ω . (6.10)
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We set α = δω and β = dω. We immediately obtain from Theorem 3.23 that ν ∧
β = 0. It is left to show that ν∧α = ν∧δω = 0. From (6.9) and (6.10) we conclude
that the integrals both over Ω and ∂Ω vanish separately. So we have

0 =
∫

∂Ω
〈dω,ν ∧u〉+

∫
∂Ω
〈ν ∧δω,u〉=

∫
∂Ω
〈ν ∧δω,u〉, ∀u ∈W 1,2

T . (6.11)

In fact, this is also true for all u ∈W 1,2
(
Ω ;Λ k

)
, as we will show right now. So

let u ∈W 1,2
(
Ω ;Λ k

)
be arbitrary. We use in (6.11) the test function ν ∧ (ν �u) ∈

W 1,2
T

(
Ω ;Λ k

)
, where we have extended ν to a C1

(
Ω ;Λ 1

)
function. We obtain, using

Proposition 2.16,

0 =
∫

∂Ω
〈ν ∧δω;ν ∧ (ν �u)〉=

∫
∂Ω
〈ν ∧δω;u〉−

∫
∂Ω
〈ν ∧δω;ν �(ν ∧u)〉

=
∫

∂Ω
〈ν ∧δω;u〉.

Hence, since u ∈W 1,2
(
Ω ;Λ k

)
is arbitrary, we deduce that ν ∧δω = 0 on ∂Ω .

Step 1.2. We next prove the orthogonality of the decomposition (i). We have
to show that h, dα, and δβ are mutually orthogonal with respect to the L2-inner
product. As dα +δβ = Δω = g ∈ (HT )

⊥, we already know that∫
Ω
〈h;dα +δβ 〉= 0.

Using the boundary condition on α and the fact that h is a harmonic field, we obtain∫
Ω
〈h;dα〉=−

∫
Ω
〈δh;α〉+

∫
∂Ω
〈h;ν ∧α〉= 0 ⇒

∫
Ω
〈h;δβ 〉= 0.

The orthogonality of dα and δβ follows immediately from Corollary 3.29.

Step 1.3. The estimate immediately follows from (6.3) and Theorem 6.11.

Step 2. The proof of (ii) is completely analogous to that of (i) and we skip the
details.

Step 3. We prove (iii).

Step 3.1. We use decomposition (i) to get α1 ∈ W 1,2
T

(
Ω ;Λ k−1

)
, β 1 ∈ W 1,2

T(
Ω ;Λ k+1

)
, h1 ∈HT

(
Ω ;Λ k

)
and ω1 ∈W 2,2

T

(
Ω ;Λ k

)
such that, in Ω ,

f = dα1 +δβ 1 +h1, α1 = δω1 and β 1 = dω1. (6.12)

Similarly, appealing to decomposition (ii), we get α2 ∈ W 1,2
N

(
Ω ;Λ k−1

)
, β 2 ∈

W 1,2
N

(
Ω ;Λ k+1

)
, h2 ∈HN(Ω ;Λ k) and ω2 ∈W 2,2

N

(
Ω ;Λ k

)
such that, in Ω ,

f = dα2 +δβ 2 +h2, α2 = δω2 and β 2 = dω2. (6.13)
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We set
h = δβ 1−δβ 2 +h1 = dα2−dα1 +h2

and observe that
f = dα1 +δβ 2 +h.

It therefore remains to prove that h ∈H
(
Ω ;Λ k

)
. Let us first prove that for every

ψ ∈C∞
0
(
Ω ;Λ k−1

)
and χ ∈C∞

0
(
Ω ;Λ k+1

)
,∫

Ω
〈h;dψ〉=

∫
Ω
〈h;δ χ〉= 0. (6.14)

We prove only the first identity, the other one being established analogously. We
have, from Theorem 3.28,∫

Ω
〈h;dψ〉=

∫
Ω
〈δβ 1−δβ 2 +h1;dψ〉

=
∫

Ω
〈β 1−β 2;ddψ〉+

∫
Ω
〈δh1;ψ〉= 0.

We now choose, for any φ ∈C∞
0
(
Ω ;Λ k

)
, ψ = δφ and χ = dφ in (6.14). We therefore

obtain ∫
Ω
〈h;Δφ〉= 0 for every φ ∈C∞

0
(
Ω ;Λ k).

The Weyl lemma (cf. [29]) implies that h ∈ C∞(Ω ;Λ k
)

and, therefore, by (6.14),
h ∈H (Ω ;Λ k).

Step 3.2. The orthogonality of the decomposition is obtained in the same way as
in Step 1.2.

Step 3.3. The estimate follows from the fact that α1,α2,β 1,β 2,h1 and h2 satisfy
the corresponding inequality. �


6.4 Higher Regularity

The following theorems have been established by Morrey [76] (cf. also Theorems
7.7.4 and 7.7.8 in [77]), see also Agmon, Douglis and Nirenberg [4] (for the regu-
larity), Bolik [13], Iwaniec, Scott and Stroffolini [58] and Schwarz [89].

Theorem 6.11 (Wr,2-regularity). Let r ≥ 0, 0 ≤ k ≤ n be integers and Ω ⊂ R
n be

a bounded open Cr+3 set. Let f ∈W r,2
(
Ω ;Λ k

)
and ω ∈W 1,2

T

(
Ω ;Λ k

)
be such that∫

Ω
(〈dω;du〉+ 〈δω;δu〉) =

∫
Ω
〈 f ;u〉 ∀u ∈W 1,2

T

(
Ω ;Λ k). (6.15)

Then there exists a constant C =C(r,Ω)> 0 such that the inequality

‖ω‖W r+2,2 ≤C
(‖ω‖L2 +‖ f‖W r,2

)
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holds and if, in addition, ω ∈W 1,2
T

(
Ω ;Λ k

)∩ (HT
(
Ω ;Λ k

))⊥
, then

‖ω‖W r+2,2 ≤C‖ f‖W r,2 . (6.16)

The same theorem holds true by replacing the subscript T by N.

Proof. Note that the interior regularity for a solution ω of (6.15) is exactly that of
the Laplacian, since by choosing u=ϕ dxi1∧·· ·∧dxik in (6.15), we obtain by partial
integration, for every ϕ ∈C∞

0 (Ω),∫
Ω
〈∇ωi1···ik ;∇ϕ〉=−

∫
Ω

ωi1···ik Δϕ =−
∫

Ω
〈ω;Δu〉

=
∫

Ω
〈dω;du〉+

∫
Ω
〈δω;δu〉=

∫
Ω

fi1···ik ϕ.

We will not prove the boundary regularity. We, however, illustrate the idea in the
following simplified setting, which is essentially obtained after having locally rec-
tified the boundary by an admissible boundary coordinate system. Suppose Ω is of
the form

Ω = {x = (x1, . . . ,xn) ∈ R
n : xn < 0}∩U

for some open set U ⊂ R
n, suppω ⊂U and that∫

Ω
(〈dω;du〉+ 〈δω;δu〉) =

∫
Ω
〈 f ;u〉, ∀u ∈W 1,2

T

(
Ω ;Λ k),

with suppu⊂U. Then, invoking Theorem 5.7, we find∫
Ω
〈∇ω;∇u〉=

∫
Ω
〈 f ;u〉,

since Kν and Lν vanish on the hyperplane {xn = 0}. Thus, exactly the same methods
can be applied as for the Laplacian. We refer, for a detailed proof, to Csató [23]. �


The second theorem gives now the appropriate regularity for the Hodge–Morrey
decomposition theorem, cf. Theorem 6.9.

Theorem 6.12. Let r≥ 0 be an integer, 0< q< 1< p<∞ and Ω ⊂R
n be a bounded

open smooth set. Let f ∈W r,p
(
Ω ;Λ k

)
, respectively f ∈Cr,q

(
Ω ;Λ k

)
.

(i) There exist

α ∈W r+1,p
T

(
Ω ;Λ k−1), β ∈W r+1,p

T

(
Ω ;Λ k+1),

h ∈HT
(
Ω ;Λ k) and ω ∈W r+2,p

T

(
Ω ;Λ k),

respectively
α ∈Cr+1,q

T

(
Ω ;Λ k−1

)
, β ∈Cr+1,q

T

(
Ω ;Λ k+1

)
,

h ∈HT
(
Ω ;Λ k

)
and ω ∈Cr+2,q

T

(
Ω ;Λ k

)
,
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such that, in Ω ,

f = dα +δβ +h, α = δω and β = dω.

Moreover, there exist constants C1 =C1(r, p,Ω) and C2 =C2(r,q,Ω) such that

‖ω‖W r+2,p +‖h‖W r,p ≤C1‖ f‖W r,p ,

‖ω‖Cr+2,q +‖h‖Cr,q ≤C2‖ f‖Cr,q .

(ii) There exist

α ∈W r+1,p
N

(
Ω ;Λ k−1), β ∈W r+1,p

N

(
Ω ;Λ k+1),

h ∈HN
(
Ω ;Λ k) and ω ∈W r+2,p

N

(
Ω ;Λ k),

respectively
α ∈Cr+1,q

N

(
Ω ;Λ k−1

)
, β ∈Cr+1,q

N

(
Ω ;Λ k+1

)
,

h ∈HN
(
Ω ;Λ k

)
and ω ∈Cr+2,q

N

(
Ω ;Λ k

)
,

such that, in Ω ,

f = dα +δβ +h, α = δω and β = dω.

Moreover, there exist constants C1 =C1(r, p,Ω) and C2 =C2(r,q,Ω) such that

‖ω‖W r+2,p +‖h‖W r,p ≤C1‖ f‖W r,p ,

‖ω‖Cr+2,q +‖h‖Cr,q ≤C2‖ f‖Cr,q .

(iii) There exist

α ∈W r+1,p
T

(
Ω ;Λ k−1), β ∈W r+1,p

N

(
Ω ;Λ k+1),

h ∈H
(
Ω ;Λ k), ω1 ∈W r+2,p

T

(
Ω ;Λ k) and ω2 ∈W r+2,p

N

(
Ω ;Λ k),

respectively

α ∈Cr+1,q
T

(
Ω ;Λ k−1

)
, β ∈Cr+1,q

N

(
Ω ;Λ k+1

)
,

h ∈H
(
Ω ;Λ k

)
, ω1 ∈Cr+2,q

T

(
Ω ;Λ k

)
and ω2 ∈Cr+2,q

N

(
Ω ;Λ k

)
,

such that, in Ω ,

f = dα +δβ +h, α = δω1 and β = dω2.

Moreover, there exist constants C1 =C1(r, p,Ω) and C2 =C2(r,q,Ω) such that

‖ω1‖W r+2,p +‖ω2‖W r+2,p +‖h‖W r,p ≤C1‖ f‖W r,p ,
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‖ω1‖Cr+2,q +‖ω2‖Cr+2,q +‖h‖Cr,q ≤C2‖ f‖Cr,q .

Remark 6.13. (i) When 1 < p < 2, decomposition (i) reads as a direct sum:

Lp = dW 1,p
T

(
Ω ;Λ k−1)⊕δW 1,p

T

(
Ω ;Λ k+1)⊕HT

(
Ω ;Λ k),

and similarly for the other two decompositions. If p≥ 2, then the decomposition is
even orthogonal with respect to the L2-inner product (cf. Theorem 6.9(iv)).

(ii) The above results remain valid if Ω is Cr+3 for the Sobolev case and Cr+3,q

for the Hölder case.
(iii) The correspondence f → (α,β ,h,ω) is linear. Furthermore, the construction

is universal in the sense that all of the assertions remain valid if (r, p,q) is replaced
by (r′, p′,q′) as far as f ∈W r′,p′(Ω ;Λ k

)
, respectively f ∈ Cr′,q′(Ω ;Λ k

)
, with the

same (α,β ,h,ω) and with constants C′1 =C′1(r
′, p′,Ω) and C′2 =C′2(r

′,q′,Ω).



Chapter 7

First-Order Elliptic Systems

of Cauchy–Riemann Type

7.1 System with Prescribed Tangential Component

We first deal with the following boundary value problem:{
dω = f and δω = g in Ω ,

ν ∧ω = ν ∧ω0 on ∂Ω ,

where f ,g and ω0 are given and ν is the exterior unit normal. If there is a solution
and ω,ω0, f and g are sufficiently regular, then Theorem 3.5 and Theorem 3.23
imply that

d f = 0 in Ω , δg = 0 in Ω , ν ∧dω0 = ν ∧ f on ∂Ω .

We will in fact show that these conditions are also sufficient to guarantee the exis-
tence of ω if Ω is contractible (cf. Remark 7.3(v)).

Our method is similar to that applied by Schwarz [89, Theorem 3.1.1] in the
framework of Sobolev spaces; see also Borchers and Sohr [14] and Von Wahl [103,
104] for the case of 1-forms. The problem has also been treated by Georgescu [47,
Theorem 4.2.2] and Kress [63, Satz 8.1] in the setting of Hölder spaces. We start
our analysis with an extension theorem.

Lemma 7.1. Let r ≥ 1 be an integer, 0≤ q≤ 1 < p < ∞ and Ω ⊂ R
n be a bounded

open smooth set with exterior unit normal ν . Let ω0 : ∂Ω →Λ k.

(i) Suppose

ν ∧ω0 ∈W r− 1
p ,p

(
∂Ω ;Λ k+1), respectively ν ∧ω0 ∈Cr,q(∂Ω ;Λ k+1).

Then there exists

ω ∈W r,p(Ω ;Λ k), respectively ω ∈Cr,q(Ω ;Λ k),
G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
© Springer Science+Business Media, LLC 2012 
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such that
ν ∧ω = ν ∧ω0 on ∂Ω .

Moreover, there exists a constant C1 = C1(r, p,Ω), respectively C2 = C2(r,q,Ω),
such that

‖ω‖W r,p(Ω) ≤C1‖ν ∧ω0‖
W r− 1

p ,p
(∂Ω)

, ‖ω‖Cr,q(Ω) ≤C2‖ν ∧ω0‖Cr,q(∂Ω) .

(ii) Suppose

ν �ω0 ∈W r− 1
p ,p

(
∂Ω ;Λ k−1), respectively ν �ω0 ∈Cr,q(∂Ω ;Λ k−1).

Then there exists

ω ∈W r,p(Ω ;Λ k), respectively ω ∈Cr,q(Ω ;Λ k),
such that

ν �ω = ν �ω0 on ∂Ω .

Moreover, there exists a constant C1 = C1(r, p,Ω), respectively C2 = C2(r,q,Ω),
such that

‖ω‖W r,p(Ω) ≤C1‖ν �ω0‖
W r− 1

p ,p
(∂Ω)

, ‖ω‖Cr,q(Ω) ≤C2‖ν �ω0‖Cr,q(∂Ω) .

Proof. We only discuss statement (i) concerning the exterior product, the other
one being handled similarly. The extension theorem for functions is well known
(cf. Adams [2] and Gilbarg and Trudinger [49]) and we get, if f ∈W r− 1

p ,p (∂Ω) ,
respectively Cr,q (∂Ω) , that one can extend f by f̃ so that

‖ f̃‖W r,p(Ω) ≤C1‖ f‖
W r− 1

p ,p
(∂Ω)

, respectively ‖ f̃‖Cr,q(Ω) ≤C2‖ f‖Cr,q(∂Ω),

for some constants C1 and C2 independent of f . We now let α = ν ∧ω0 and extend
it so as to have, without relabeling, α ∈W r,p

(
Ω ;Λ k

)
, respectively Cr,q

(
Ω ;Λ k

)
.

Extending ν in such a way that the extension, still denoted ν , belongs to C∞ (
Ω ;Rn

)
and setting

ω = ν �α,

we have the claim. Indeed, in view of Proposition 2.16, we find, on ∂Ω ,

ν ∧ω = ν ∧ (ν �α) = α−ν �(ν ∧α) = α = ν ∧ω0,

which is the assertion. 	

We now state the main theorem of the present section.

Theorem 7.2. Let r≥ 0 and 0≤ k≤ n be integers, 0< q< 1, 2≤ p<∞ and Ω ⊂ R
n

be a bounded open smooth set with exterior unit normal ν . Let f : Ω → Λ k+1,
g : Ω →Λ k−1 and ω0 : ∂Ω →Λ k. Then the following statements are equivalent:
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(i) Let

f ∈W r,p(Ω ;Λ k+1), g ∈W r,p(Ω ;Λ k−1) and ν ∧ω0 ∈W r+1− 1
p ,p

(
∂Ω ;Λ k+1),

respectively

f ∈Cr,q(Ω ;Λ k+1), g ∈Cr,q(Ω ;Λ k−1) and ν ∧ω0 ∈Cr+1,q(∂Ω ;Λ k+1),
satisfying the conditions

d f = 0 in Ω , δg = 0 in Ω , ν ∧dω0 = ν ∧ f on ∂Ω (A1)

and, for every χ ∈HT
(
Ω ;Λ k+1

)
and ψ ∈HT

(
Ω ;Λ k−1

)
,∫

Ω
〈 f ; χ〉−

∫
∂Ω
〈ν ∧ω0; χ〉= 0 and

∫
Ω
〈g;ψ〉= 0. (A2)

(ii) There exists ω ∈W r+1,p
(
Ω ;Λ k

)
, respectively ω ∈Cr+1,q

(
Ω ;Λ k

)
, such that{

dω = f and δω = g in Ω ,

ν ∧ω = ν ∧ω0 on ∂Ω .

In addition, there exists a constant C1 =C1(r, p,Ω) such that

‖ω‖W r+1,p(Ω) ≤C1

(
‖ f‖W r,p(Ω) +‖g‖W r,p(Ω) +‖ν ∧ω0‖

W r+1− 1
p ,p

(∂Ω)

)
,

respectively C2 =C2(r,q,Ω) such that

‖ω‖Cr+1,q(Ω) ≤C2

(
‖ f‖Cr,q(Ω) +‖g‖Cr,q(Ω) +‖ν ∧ω0‖Cr+1,q(∂Ω)

)
.

Remark 7.3. (i) When k = 0, all statements of the theorem have to be understood as
if g were not present. For example, statement (ii) reads then as{

dω = f in Ω ,

ω = ω0 on ∂Ω .

Moreover, the result is also valid when q = 0,1 (see Theorem 8.16 and the remark
following it). Furthermore, when k = n, then all statements of the theorem have to
be understood as if f and ω0 were not present. In this case, statement (ii) becomes

δω = g in Ω .

(ii) If r ≥ 1, conditions (A1) are well defined. This is obvious for the first
two equations. The third one makes sense in W r− 1

p ,p
(
∂Ω ;Λ k+2

)
, respectively

Cr,q
(
∂Ω ;Λ k+2

)
, due to Theorem 3.23 and Lemma 7.1.
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(iii) If r = 0, then the conditions d f = 0 and δg = 0 are understood in the sense
of distributions. The third statement in (A1) is well defined in the Hölder case and
is understood, in the Sobolev case, in the weak sense, namely∫

Ω
〈 f ;δϕ〉−

∫
∂Ω
〈ν ∧ω0;δϕ〉= 0 (B1)

for every ϕ ∈C∞ (
Ω ;Λ k+2

)
.

(iv) If r ≥ 1, then (B1) is equivalent to the first and third conditions in (A1).
This can be shown by several partial integrations (cf. Step 2.1 in the proof of Theo-
rem 7.2).

(v) If Ω is contractible and k ≤ n− 2, then condition (A2) drops due to Theo-
rem 6.5.

(vi) The above results remain valid if the set Ω is Cr+3 for the Sobolev case and
Cr+3,q for the Hölder case.

(vii) We will prove the result for Cr,q and the same proof is valid for W r,p when
p≥ 2.

(viii) The construction is linear and universal in the sense of Remark 6.13.

Proof. We deal with the statement in Hölder spaces.
Step 1. We start by showing that (ii) implies (i).
Suppose first that r≥ 1. Theorems 3.5 and 3.23 immediately imply the conditions

in (A1). The first condition in (A2) follows by partial integration; indeed, for any
χ ∈HT

(
Ω ;Λ k+1

)
,∫

Ω
〈 f ; χ〉−

∫
∂Ω
〈ν ∧ω0; χ〉=

∫
Ω
〈dω; χ〉−

∫
∂Ω
〈ν ∧ω0; χ〉

=
∫

∂Ω
〈ν ∧ (ω−ω0); χ〉−

∫
Ω
〈ω;δ χ〉= 0.

The second condition in (A2) follows in a similar way.
If r = 0, the first two conditions in (A1) are understood in the sense of distribu-

tions (cf. Proposition 7.6) and follow by partial integration, since∫
Ω
〈 f ;δϕ〉=

∫
Ω
〈dω;δϕ〉=−

∫
Ω
〈 f ;δδϕ〉= 0

for every ϕ ∈C∞
0
(
Ω ;Λ k+2

)
. The second condition in (A1) follows in the same way.

Condition (A2) and the third condition in (A1) follow exactly as in the case r ≥ 1.
Step 2. We next turn to the implication (i) ⇒ (ii). We first extend, according to

Lemma 7.1, ω0 by ω̃0 so that ν ∧ω0 = ν ∧ ω̃0.

Step 2.1. We now show that (A1) implies the following two equations:∫
Ω
〈 f ;δϕ〉−

∫
Ω
〈dω̃0;δϕ〉= 0, ∀ϕ ∈C∞(Ω ;Λ k+2), (7.1)
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Ω
〈g;dψ〉= 0, ∀ψ ∈C∞

T
(
Ω ;Λ k−2). (7.2)

Let us first assume that r ≥ 1. Equation (7.1) follows by several partial integrations
and the first and third identity in (A1) in the following way:∫

Ω
〈 f ;δϕ〉=−

∫
Ω
〈d f ;ϕ〉+

∫
∂Ω
〈ν ∧ f ;ϕ〉=

∫
∂Ω
〈ν ∧dω0;ϕ〉

=
∫

Ω
〈ddω̃0;ϕ〉+

∫
Ω
〈dω̃0;δϕ〉=

∫
Ω
〈dω̃0;δϕ〉.

If r = 0, we can apply Proposition 7.6 twice, since f and dω̃0 are closed in the sense
of distributions. This gives∫

Ω
〈 f ;δϕ〉=

∫
∂Ω
〈ν ∧ f ;ϕ〉=

∫
∂Ω
〈ν ∧dω0;ϕ〉=

∫
Ω
〈dω̃0;δϕ〉.

Equation (7.2) follows immediately from the second condition in (A1) by a single
partial integration if r ≥ 1, respectively from Proposition 7.8 if r = 0.

Step 2.2. We apply the Hodge–Morrey decomposition (cf. Theorem 6.12(i)) to
decompose f −dω̃0 and obtain (if k = n, we do not need this construction)

f −dω̃0 = dα f +δβ f +χ f in Ω ,

δα f = 0, dβ f = 0 in Ω ,

ν ∧α f = 0, ν ∧β f = 0 on ∂Ω ,

where χ f ∈HT
(
Ω ;Λ k+1

)
. Moreover, there exists a positive constant C =C(r,q,Ω)

such that
‖α f ‖Cr+1,q(Ω) ≤C

(
‖ f‖Cr,q(Ω) +‖ω̃0‖Cr+1,q(Ω)

)
.

We claim that δβ f and χ f vanish. Using the orthogonality of the decomposition and
partial integration, we obtain∫

Ω
|δβ f |2 =

∫
Ω
〈δβ f ; f −dω̃0〉= 0.

In the last equality we have used (7.1) and a density argument. The claim χ f = 0
follows in the same way using partial integration and the first condition in (A2),
namely ∫

Ω
|χ f |2 =

∫
Ω
〈χ f ; f −dω̃0〉=

∫
Ω
〈χ f ; f 〉−

∫
∂Ω
〈χ f ;ν ∧ω0〉= 0.

Hence, we have found α f ∈Cr+1,q
(
Ω ;Λ k

)
satisfying (if k = n, we take α f = 0){

dα f = f −dω̃0 and δα f = 0 in Ω ,

ν ∧α f = 0 on ∂Ω .
(7.3)
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We now apply the same decomposition to g− δω̃0 (if k = 0, we do not need this
construction) and get

g−δω̃0 = dαg +δβg +ψg in Ω ,

δαg = 0, dβg = 0 in Ω ,

ν ∧αg = 0, ν ∧βg = 0 on ∂Ω ,

where ψg ∈HT
(
Ω ;Λ k−1

)
. Moreover, there exists a positive constant C =C(r,q,Ω)

such that
‖βg‖Cr+1,q(Ω) ≤C

(
‖g‖Cr,q(Ω) +‖ω̃0‖Cr+1,q(Ω)

)
.

Using (7.2), the second condition in (A2) and the same argument as before, we have
that dαg and ψg vanish (cf. Theorem 3.25 and Corollary 3.29). Hence, we have
found βg ∈Cr+1,q

(
Ω ;Λ k

)
satisfying (if k = 0, we take βg = 0){

dβg = 0 and δβg = g−δω̃0 in Ω ,

ν ∧βg = 0 on ∂Ω .
(7.4)

We now set
ω = α f +βg + ω̃0,

which satisfies, due to (7.3) and (7.4),{
dω = dα f +dω̃0 = f and δω = δβg +δω̃0 = g in Ω ,

ν ∧ω = ν ∧ ω̃0 = ν ∧ω0 on ∂Ω .

This concludes the proof. 	


7.2 System with Prescribed Normal Component

Using statement (ii) instead of (i) in Theorem 6.12, we obtain the following theorem
in a completely analogous way as in Theorem 7.2.

Theorem 7.4. Let r ≥ 0 and 0 ≤ k ≤ n be integers, 0 < q < 1, 2 ≤ p < ∞ and
Ω ⊂ R

n be a bounded open smooth set with exterior unit normal ν . Let f :
Ω → Λ k+1, g : Ω → Λ k−1 and ω0 : ∂Ω → Λ k. Then the following statements are
equivalent:

(i) Let

f ∈W r,p(Ω ;Λ k+1), g ∈W r,p(Ω ;Λ k−1) and ν �ω0 ∈W r+1− 1
p ,p

(
∂Ω ;Λ k−1),

respectively

f ∈Cr,q(Ω ;Λ k+1), g ∈Cr,q(Ω ;Λ k−1) and ν �ω0 ∈Cr+1,q(∂Ω ;Λ k−1),
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satisfying the conditions

d f = 0 in Ω , δg = 0 in Ω , ν �δω0 = ν �g on ∂Ω (C1)

and, for every χ ∈HN
(
Ω ;Λ k−1

)
and ψ ∈HN

(
Ω ;Λ k+1

)
,∫

Ω
〈g; χ〉−

∫
∂Ω
〈ν �ω0; χ〉= 0 and

∫
Ω
〈 f ;ψ〉= 0. (C2)

(ii) There exists ω ∈W r+1,p
(
Ω ;Λ k

)
, respectively ω ∈Cr+1,q

(
Ω ;Λ k

)
, such that{

dω = f and δω = g in Ω ,

ν �ω = ν �ω0 on ∂Ω .

In addition, there exists a constant C1 =C1(r, p,Ω) such that

‖ω‖W r+1,p(Ω) ≤C1

(
‖ f‖W r,p(Ω) +‖g‖W r,p(Ω) +‖ν �ω0‖

W r+1− 1
p ,p

(∂Ω)

)
,

respectively C2 =C2(r,q,Ω) such that

‖ω‖Cr+1,q(Ω) ≤C2

(
‖ f‖Cr,q(Ω) +‖g‖Cr,q(Ω) +‖ν �ω0‖Cr+1,q(∂Ω)

)
.

Remark 7.5. (i) When k = 0, all statements of the theorem have to be understood as
if g and ω0 were not present. For example, statement (ii) reads then as

dω = f in Ω .

Similarly, when k = n, then all statements of the theorem have to be understood as
if f was not present. In this case, statement (ii) becomes{

δω = g in Ω ,

ω = ω0 on ∂Ω .

Moreover, the result is also valid when q = 0,1 (see Theorem 8.18 and the remark
following it).

(ii) If r ≥ 1, conditions (C1) are well defined. This is obvious for the first
two equations. The third one makes sense in W r− 1

p ,p
(
∂Ω ;Λ k−2

)
, respectively

Cr,q
(
∂Ω ;Λ k−2

)
, due to Theorem 3.23 and Lemma 7.1.

(iii) If r = 0, then the conditions d f = 0 and δg = 0 are understood in the sense
of distributions. The third condition in (C1) is well defined in the Hölder case and
is understood, in the Sobolev case, in the weak sense, namely∫

Ω
〈g;dϕ〉−

∫
∂Ω
〈ν �ω0;dϕ〉= 0 (D1)

for every ϕ ∈C∞ (
Ω ;Λ k−2

)
.
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(iv) If r ≥ 1, it can be easily shown, as in Remark 7.3, that (D1) is equivalent to
the second and third conditions in (C1).

(v) If Ω is contractible and k≥ 2, then condition (C2) drops due to Theorem 6.5.

(vi) The above results remain valid if the set Ω is Cr+3 for the Sobolev case and
Cr+3,q for the Hölder case.

(vii) The construction is linear and universal in the sense of Remark 6.13.

7.3 Weak Formulation for Closed Forms

We now establish two propositions that allow one to express the conditions d f = 0
and δg = 0 in the sense of distributions in equivalent ways. We have used them to
prove Theorems 7.2 and 7.4 when r = 0. The proof below, however, uses implicitly
(through Theorem 8.18) the theorems when r = ∞.

Proposition 7.6. Let 0 ≤ k ≤ n− 1 be integers and Ω ⊂ R
n be a bounded open

smooth set with exterior unit normal ν .
Part 1. Let f ∈ L1

(
Ω ;Λ k

)
. Then the following statements are equivalent:

(i) f is closed in the sense of distributions, namely∫
Ω
〈 f ;δϕ〉= 0 for every ϕ ∈C∞

0
(
Ω ;Λ k+1).

(ii) The following holds:∫
Ω
〈 f ;δϕ〉= 0 for every ϕ ∈C∞

N
(
Ω ;Λ k+1).

Part 2. Let f ∈ C0,q
(
Ω ;Λ k

)
with 0 < q < 1. Then the two statements of part 1

are equivalent to the two conditions below.

(iii) The following holds:∫
Ω
〈 f ;δϕ〉−

∫
∂Ω
〈ν ∧ f ;ϕ〉= 0 for every ϕ ∈C∞

T
(
Ω ;Λ k+1).

(iv) The following identity is valid:∫
Ω
〈 f ;δϕ〉−

∫
∂Ω
〈ν ∧ f ;ϕ〉= 0 for every ϕ ∈C∞(Ω ;Λ k+1).

Remark 7.7. Since (i) is equivalent to (ii), the following statement is also equivalent
with f being closed in the sense of distributions. For every open smooth set O⊂Ω ,∫

O
〈 f ;δϕ〉= 0 for every ϕ ∈C∞

N
(
O;Λ k+1).
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Proof. Part 1. The implication (ii)⇒ (i) is trivial, so let us prove (i)⇒ (ii).

Step 1. Let ϕ ∈C∞
N
(
Ω ;Λ k+1

)
and find, using Theorem 8.18,

ϕ̃ ∈C∞(Ω ;Λ k+1) and ‖ϕ̃‖C1,1/2 ≤C,

where C =C
(‖ϕ‖C1,1/2 ,Ω

)
> 0 such that{

δ ϕ̃ = δϕ in Ω ,

ϕ̃ = 0 on ∂Ω .

This is possible using Theorem 3.23 and since ϕ ∈C∞
N
(
Ω ;Λ k+1

)
. Next, let ε > 0

be small enough. We can then find an open set Ωε such that

Ωε ⊂Ω and dist(Ωε ;∂Ω)≤ ε

and ρε ∈C∞
0 (Ω) such that

ρε ≡ 1 in Ωε and ‖gradρε‖C0 ≤ 2/ε.

We then let ϕε = ρε ϕ̃ ∈C∞
0
(
Ω ;Λ k+1

)
and observe that since ϕ̃ = 0 on ∂Ω , there

exists a constant C =C
(‖ϕ‖C1,1/2 ,Ω

)
> 0 independent of ε such that

‖ϕε‖C1 ≤C and ϕε → ϕ̃ in W 1,1 as ε → 0.

We can therefore assume that, up to a subsequence, we also have

δϕε → δ ϕ̃ = δϕ a.e. as ε → 0.

It therefore follows from the dominated convergence theorem that∫
Ω
〈 f ;δϕ−δϕε〉 → 0 as ε → 0.

Step 2. Let ϕ ∈ C∞
N
(
Ω ;Λ k+1

)
and let ϕε ∈ C∞

0
(
Ω ;Λ k+1

)
be as in Step 1. The

hypothesis (i) and Step 1 lead, as ε → 0, to∫
Ω
〈 f ;δϕ〉=

∫
Ω
〈 f ;δϕε〉+

∫
Ω
〈 f ;δϕ−δϕε〉=

∫
Ω
〈 f ;δϕ−δϕε〉 → 0,

which implies (ii), namely ∫
Ω
〈 f ;δϕ〉= 0.

Part 2. The implications (iv)⇒ (iii)⇒ (i) are obvious. So let us show (i)⇒ (iv).
In view of part 1, (i) implies∫

Ω
〈 f ;δϕ〉= 0 for every ϕ ∈C∞

N
(
Ω ;Λ k+1). (7.5)
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Applying the Hodge–Morrey decomposition theorem 6.12(ii) to f , we get α ∈
C1,q

N

(
Ω ;Λ k−1

)
, β ∈C1,q

N

(
Ω ;Λ k+1

)
and h ∈HN

(
Ω ;Λ k

)
such that

f = dα +δβ +h in Ω .

Due to (7.5) and by a density argument (cf. Theorem 3.25), we obtain∫
Ω
〈 f ;δβ 〉= 0.

The L2-orthogonality of the Hodge–Morrey decomposition and the previous equa-
tion give

f = dα +h in Ω .

Let now {αε} ⊂C∞ (
Ω ;Λ k−1

)
be such that

αε → α in C1(Ω ;Λ k−1) as ε → 0.

Define fε = dαε +h. By construction, it has the following properties:

d fε = 0 in Ω and fε → f uniformly as ε → 0.

Since fε is in C1 and closed, we obtain by partial integration∫
Ω
〈 fε ;δϕ〉−

∫
∂Ω
〈ν ∧ fε ;ϕ〉= 0 for every ϕ ∈C∞(Ω ;Λ k+1).

Taking the limit as ε → 0, we have (iv). 	

We also have the dual version.

Proposition 7.8. Let 1≤ k ≤ n be integers and Ω ⊂ R
n be a bounded open smooth

set with exterior unit normal ν .
Part 1. Let f ∈ L1

(
Ω ;Λ k

)
. Then the following statements are equivalent:

(i) f is coclosed in the sense of distributions, namely∫
Ω
〈 f ;dϕ〉= 0 for every ϕ ∈C∞

0
(
Ω ;Λ k−1).

(ii) The following holds:∫
Ω
〈 f ;dϕ〉= 0 for every ϕ ∈C∞

T
(
Ω ;Λ k−1).

Part 2. Let f ∈ C0,q
(
Ω ;Λ k

)
with 0 < q < 1. Then the two statements of part 1

are equivalent to the two conditions below.
(iii) The following holds:∫

Ω
〈 f ;dϕ〉−

∫
∂Ω
〈ν � f ;ϕ〉= 0 for every ϕ ∈C∞

N
(
Ω ;Λ k−1).
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(iv) The following identity is valid:∫
Ω
〈 f ;dϕ〉−

∫
∂Ω
〈ν � f ;ϕ〉= 0 for every ϕ ∈C∞(Ω ;Λ k−1).

7.4 Equivalence Between Hodge Decomposition and

Cauchy–Riemann-Type Systems

We now show that Theorem 7.2, respectively Theorem 7.4, is in fact equivalent
to the Hodge–Morrey decomposition theorem (cf. part (i), respectively part (ii), of
Theorem 6.12). We already saw that part (i) of Theorem 6.12 implies Theorem 7.2
(and part (ii) implies Theorem 7.4); we now show the converse. We establish this
fact only in Hölder spaces, but the same result holds in Sobolev spaces.

Proposition 7.9. Let Ω ⊂R
n be a bounded open smooth set. Let 0≤ k≤ n and r ≥ 1

be integers, 0 < q < 1 and f ∈Cr,q
(
Ω ;Λ k

)
. Then Theorem 7.2 implies the Hodge–

Morrey decomposition Theorem 6.12(i); more precisely, it implies the existence of
α ∈Cr+1,q

T

(
Ω ;Λ k−1

)
, β ∈Cr+1,q

T

(
Ω ;Λ k+1

)
and h ∈HT

(
Ω ;Λ k

)
such that, in Ω ,

f = dα +δβ +h, δα = 0 and dβ = 0,

with α, β and h mutually orthogonal with respect to the L2-inner product. It also
implies the existence of a constant C =C(r,q,Ω) such that

‖α‖Cr+1,q +‖β‖Cr+1,q +‖h‖Cr,q ≤C‖ f‖Cr,q .

Remark 7.10. The proposition does not, however, establish the existence of a ω such
that α = δω and β = dω.

Proof. We use Theorem 7.2 three times. We first find a solution φ ∈Cr,q
(
Ω ;Λ k

)
of{

dφ = 0 and δφ = δ f in Ω ,

ν ∧φ = 0 on ∂Ω .
(7.6)

The solvability conditions (A1) (or equivalently (B1)) and (A2) are easily verified.
We next write

φ = φ⊥+χ , φ⊥ ∈ (HT )
⊥ , χ ∈HT .

Since HT and (HT )
⊥ are closed in Cr,q

(
Ω ;Λ k

)
, we can apply the closed comple-

ment theorem (cf. for instance, Alt [5, Theorem 7.15]) and find that the projections
onto HT and (HT )

⊥ are continuous, namely

‖φ⊥‖Cr,q +‖χ‖Cr,q ≤C‖φ‖Cr,q ,

for some constant C independent of φ . We now find a solution α ∈Cr+1,q
(
Ω ;Λ k−1

)
such that
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dα = φ⊥ and δα = 0 in Ω ,

ν ∧α = 0 on ∂Ω .

The solvability conditions (A1) and (A2) are satisfied due to (7.6) and the fact that
φ⊥ ∈ (HT )

⊥ . We now apply again the L2-orthogonal decomposition to f −dα and
obtain

f −dα = g+h, g ∈ (HT )
⊥ and h ∈HT .

As above,
‖g‖Cr,q +‖h‖Cr,q ≤C‖ f −dα‖Cr,q .

At last, we find a solution β ∈Cr+1,q
(
Ω ;Λ k+1

)
of{

dβ = 0 and δβ = g in Ω ,

ν ∧β = 0 on ∂Ω .

This is possible since

δg = δ ( f −dα) = δφ −δdα = δφ⊥−δdα = 0

and g∈ (HT )
⊥ . By construction, α, β and h have all of the required properties. 	




Chapter 8

Poincaré Lemma

8.1 The Classical Poincaré Lemma

Our first result is the classical Poincaré lemma. Its proof is elementary and does not
use the Hodge–Morrey decomposition. Its drawback (compare with Theorem 8.3)
is that it does not provide the expected gain in regularity and is restricted to con-
tractible sets.

Theorem 8.1 (Poincaré lemma). Let r ≥ 1 and 0≤ k ≤ n−1 be integers and Ω ⊂
R

n be an open contractible set. Let g ∈Cr
(
Ω ;Λ k+1

)
with dg = 0 in Ω . Then there

exists G ∈Cr
(
Ω ;Λ k

)
such that

dG = g in Ω .

Remark 8.2. When k = 0, the theorem gives immediately that G ∈Cr+1 (Ω) .

Proof. Since Ω is contractible, we have that there exist x0 ∈Ω and

F ∈C∞ ([0,1]×Ω ;Ω)

such that for every x ∈Ω ,

F(0,x) = x0 and F(1,x) = x.

We then apply Theorem 17.3 to F to get that there exists G ∈Cr
(
Ω ;Λ k

)
such that

dG = F∗1 (g)−F∗0 (g) = g in Ω .

This achieves the proof of the theorem. ��

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
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8.2 Global Poincaré Lemma with Optimal Regularity

We now have a global version of Poincaré lemma with optimal regularity, as well as
its dual version.

Theorem 8.3. Let r ≥ 0 and 0 ≤ k ≤ n−1 be integers, 0 < α < 1, 2 ≤ p < ∞ and
Ω ⊂ R

n be a bounded open smooth set. The following statements are equivalent:

(i) Let f ∈W r,p
(
Ω ;Λ k+1

)
, respectively Cr,α (

Ω ;Λ k+1
)
, be such that

d f = 0 in Ω and
∫

Ω
〈 f ;ψ〉= 0 for every ψ ∈HN

(
Ω ;Λ k+1).

(ii) There exists ω ∈W r+1,p
(
Ω ;Λ k

)
, respectively Cr+1,α (

Ω ;Λ k
)
, such that

dω = f in Ω .

Moreover, there exists a constant C1 =C1(r, p,Ω) such that

‖ω‖W r+1,p ≤C1‖ f‖W r,p ,

respectively there exists a constant C2 =C2(r,α,Ω) such that

‖ω‖Cr+1,α ≤C2‖ f‖Cr,α .

Theorem 8.4. Let r ≥ 0 and 1 ≤ k ≤ n be integers, 0 < α < 1, 2 ≤ p < ∞ and
Ω ⊂ R

n be a bounded open smooth set. The following statements are equivalent:

(i) Let g ∈W r,p
(
Ω ;Λ k−1

)
, respectively Cr,α (

Ω ;Λ k−1
)
, be such that

δg = 0 in Ω and
∫

Ω
〈g;ψ〉= 0 for every ψ ∈HT

(
Ω ;Λ k−1).

(ii) There exists ω ∈W r+1,p
(
Ω ;Λ k

)
, respectively Cr+1,α (

Ω ;Λ k
)
, such that

δω = g in Ω .

Moreover, there exists a constant C1 =C1(r, p,Ω) such that

‖ω‖W r+1,p ≤C1‖g‖W r,p ,

respectively there exists a constant C2 =C2(r,α,Ω) such that

‖ω‖Cr+1,α ≤C2‖g‖Cr,α .

Remark 8.5. (i) When k = n−1 in Theorem 8.3 or k = 1 in Theorem 8.4, there is no
restriction on the solvability of dω = f or δω = g (cf. Theorem 6.5).

(ii) If r = 0, then the conditions d f = 0 or δg = 0 have to be understood in the
sense of distributions.
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(iii) The above results remain valid if Ω is Cr+3 for the Sobolev case and Cr+3,α

for the Hölder case.
(iv) If Ω is contractible, then (cf. Theorem 6.5)

HT (Ω ;Λ k) = {0} if 0≤ k ≤ n−1,

HN(Ω ;Λ k) = {0} if 1≤ k ≤ n.

(v) The construction is linear and universal in the sense of Remark 6.13.

We only prove the first theorem and only in the Sobolev case; all of the other
statements are obtained by trivial adaptation of the proof below.

Proof. (ii) ⇒ (i). Suppose first that there exists ω ∈W r+1,p
(
Ω ;Λ k

)
such that f =

dω. Clearly, d f = 0 and the other assertion follows by partial integration, since, for
every ψ ∈HN ,∫

Ω
〈 f ;ψ〉=

∫
Ω
〈dω;ψ〉=−

∫
Ω
〈ω;δψ〉+

∫
∂Ω
〈ω;ν �ψ〉= 0.

(i)⇒ (ii). Suppose now that

d f = 0 in Ω and
∫

Ω
〈 f ;ψ〉= 0 for every ψ ∈HN

(
Ω ;Λ k+1).

We then appeal to Theorem 7.4 to solve the problem{
dω = f and δω = 0 in Ω ,

ν �ω = 0 on ∂Ω .

This concludes the proof. ��
When k = 0 in Theorem 8.3 or k = n in Theorem 8.4, then the result can be

refined so as to include the limit cases α = 0,1.

Corollary 8.6. Let r ≥ 0 be an integer, 0 ≤ α ≤ 1 and Ω ⊂ R
n be a bounded open

smooth set. Let f ∈Cr,α (
Ω ;Λ 1

)
be such that

d f = 0 in Ω and
∫

Ω
〈 f ;ψ〉= 0 for every ψ ∈HN

(
Ω ;Λ 1).

Then there exist ω ∈Cr+1,α (
Ω
)

and a constant C =C(r,Ω) such that

dω = f in Ω and ‖ω‖Cr+1,α ≤C‖ f‖Cr,α .

Corollary 8.7. Let r ≥ 0 be an integer, 0 ≤ α ≤ 1 and Ω ⊂ R
n be a bounded open

smooth set. Let g ∈Cr,α (
Ω ;Λ n−1

)
be such that

δg = 0 in Ω and
∫

Ω
〈g;ψ〉= 0 for every ψ ∈HT

(
Ω ;Λ n−1).
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Then there exist ω ∈Cr+1,α (
Ω ;Λ n

)
and a constant C =C(r,Ω) such that

δω = g in Ω and ‖ω‖Cr+1,α ≤C‖g‖Cr,α .

We only prove the first corollary, the second one being obtained by duality.

Proof. Choose p such that n < p < ∞. Since Cr,α (
Ω
) ⊂W r,p (Ω) , we can apply

Theorem 8.3 and find ω ∈W r+1,p(Ω) such that

dω = gradω = f in Ω .

Note first that, since p > n, we get, from the Morrey imbedding theorem,

ω ∈Cr (Ω
)
.

Using again that p > n, we obtain, since ∇rω ∈W 1,p, that ∇rω is differentiable in
Ω and its gradient equals its weak gradient (cf. e.g., Theorem 5 in Section 5.8.3 in
[41]). Note that in our case, we have everywhere (and not just almost everywhere)
differentiability, since f ∈Cr,α . Hence, we have obtained that ω ∈Cr+1,α (

Ω
)

and
the proof is complete. ��

It is possible to give a more classical and direct proof of the theorem without
appealing to Hodge–Morrey decomposition. We discuss only the case where Ω is
star-shaped with respect to 0. It can be easily seen that if f is a closed 1-form, then

ω (x) =
∫ 1

0
〈 f (tx) ;x〉 dt

has all the desired properties. This is elementary if r ≥ 1 and can easily be estab-
lished even when r = 0 (for more details, we refer to Csató [23]).

8.3 Some Preliminary Lemmas

We start with a slight improvement of a lemma proved in Dacorogna and Moser [33].

Lemma 8.8. Let r ≥ 0 be an integer, 0 ≤ α ≤ 1 and Ω ⊂ R
n be a bounded open

Cr+1,α set with exterior unit normal ν . Let c ∈Cr,α (∂Ω) . Then there exists

b ∈Cr+1,α (
Ω
)

satisfying, all over ∂Ω ,

gradb = cν and b = 0.

Furthermore, there exists a constant C =C (r,Ω)> 0 such that

‖b‖Cr+1,α(Ω) ≤C‖c‖Cr,α (∂Ω) .
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Remark 8.9. The above result is valid (cf. Proof 1 below) in Sobolev spaces and
reads as follows. Let r≥ 1 be an integer, 1 < p < ∞ and Ω ⊂R

n be a bounded open
Cr+1 set with exterior unit normal ν . Let c ∈W r− 1

p ,p(∂Ω); then there exists

b ∈W r+1,p (Ω)

satisfying, all over ∂Ω ,
gradb = cν and b = 0.

Moreover, there exists a constant C =C(r, p,Ω)> 0 such that

‖b‖W r+1,p(Ω) ≤C ‖c‖W r−1/p,p(∂Ω) .

We start by proving the lemma in the particular case of the half-space.

Lemma 8.10. Let n≥ 2, r≥ 0 be integers, 0≤α ≤ 1 and f ∈Cr,α(Rn−1). Let δ > 0
and ϕ ∈C∞

0 (R
n−1) be such that

suppϕ ⊂ B′δ and
∫
Rn−1

ϕ = 1,

where B′δ ⊂ R
n−1 denotes the open ball centered at 0 and of radius δ . Then F :

R
n → R defined by

F(x) = F(x′,xn) = xn

∫
Rn−1

ϕ(y′) f (x′ − xny′)dy′

belongs to Cr+1,α(Rn)∩C∞(Rn \{xn = 0}) and satisfies, for every x′ ∈ R
n−1,

F(x′,0) = 0 and gradF(x′,0) = (0, . . . ,0, f (x′)).

Moreover, for every R > 0, there exists C =C(r,R,ϕ)> 0 such that

‖F‖Cr+1,α (BR)
≤C‖ f‖Cr,α (B′R(1+δ ))

.

Proof. We first compute the derivatives of F when xn �= 0. Since

F(x′,xn) = xn

∫
Rn−1

ϕ(y′) f (x′ − xny′)dy′

= xn

∫
Rn−1

1
xn−1

n
ϕ
(

x′ − y′

xn

)
f (y′)dy′,

we find, for 1≤ i≤ n−1,

∂F
∂xi

(x′,xn) =
∫
Rn−1

1
xn−1

n

∂ϕ
∂xi

(
x′ − y′

xn

)
f (y′)dy′

=
∫
Rn−1

∂ϕ
∂xi

(y′) f (x′ − xny′)dy′,
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whereas, for i = n,

∂F
∂xn

(x′,xn) = (2−n)
∫
Rn−1

1
xn−1

n
ϕ
(

x′ − y′

xn

)
f (y′)dy′

−
∫
Rn−1

1
xn−1

n

n−1

∑
j=1

x j− y j

xn

∂ϕ
∂x j

(
x′ − y′

xn

)
f (y′)dy′

= (2−n)
∫
Rn−1

ϕ(y′) f (x′ − xny′)dy′

−
∫
Rn−1

〈
y′;gradϕ

(
y′
)〉

f (x′ − xny′)dy′.

These formulas extend continuously to xn = 0 and we get, since suppϕ ⊂ B′δ and∫
Rn−1 ϕ = 1, that

∂F
∂xi

(x′,0) = f (x′)
∫
Rn−1

∂ϕ
∂xi

(y′)dy′ = 0, 1≤ i≤ n−1,

∂F
∂xn

(x′,0) = (2−n) f (x′)
∫
Rn−1

ϕ(y′)dy′

− f (x′)
∫
Rn−1

〈
y′;gradϕ

(
y′
)〉

dy′ = f (x′).

From the above formulas we immediately infer that

‖F‖Cr+1,α (BR)
≤C‖ f‖Cr,α (B′R(1+δ ))

.

This concludes the proof of the lemma. ��

We next prove Lemma 8.8.

Proof. If one is not interested in the sharp regularity result, a solution of the problem
is given by

b(x) =−c(x)ζ (d (x,∂Ω)) ,

where c has been extended to Ω and d (x,∂Ω) stands for the distance from x to
the boundary (recalling that the distance function is as regular as the set Ω near the
boundary; see, e.g., Gilbarg and Trudinger [49]) and ζ is a smooth function so that
ζ (0) = 0, ζ ′ (0) = 1 and ζ ≡ 0 outside a small neighborhood of 0.

We will provide two proofs of the lemma. The first one uses elliptic regularity
and hence only works whenever 0 < α < 1 (and also works in Lp for 1 < p < ∞);
in this case, the constant obtained depends also on α. The second one, which works
also when α = 0,1, uses admissible boundary coordinate systems and the previous
lemma.
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Proof 1. The desired solution b is obtained by solving{
Δ 2b = 0 in Ω ,

b = 0 and ∂b
∂ν = c on ∂Ω .

The solution

b ∈C∞ (Ω)∩Cr+1,α (
Ω
)

satisfies the estimate (see Agmon, Douglis and Nirenberg [3], Theorem 12.10 for
the existence and Theorem 7.3 and the remarks following for the estimate)

‖b‖Cr+1,α(Ω) ≤C ‖c‖Cr,α (∂Ω) .

Clearly, b solves on ∂Ω ,

gradb = cν and b = 0.

Proof 2. Let m > 0 be an integer and, for 1≤ i≤ m, let Ui,Vi be open sets in R
n

and ϕi ∈ Diffr+1,α (Ui;Vi) be admissible boundary coordinate systems, as given in
Proposition 3.17, such that

∂Ω ⊂
m⋃

i=1

Vi .

Without loss of generality, we can assume that Ui are open balls centered at 0, ϕi ∈
Diffr+1,α (

Ui;V i
)

and (see Remark 3.16)

∂ϕi

∂yn
= ν(ϕi).

Moreover, let {θi}m
i=1 be a smooth partition of unity of ∂Ω subordinate to {Vi}m

i=1 .
In the sequel, C1,C2 and C3 will denote generic constants depending on r,Ω ,Ui and
θi . We also let

H = {(y′,0) ∈ R
n; y′ ∈ R

n−1} ⊂ R
n.

We define for (y′,0) ∈Ui,
gi(y′) = c(ϕi(y′,0)).

Note that gi ∈Cr,α (
Ui∩H

)
in view of Definition 16.7. Using Theorem 16.11 and

Definition 16.7 again, we can extend gi such that gi ∈ Cr,α
0

(
R

n−1
)
, satisfying the

estimate
‖gi‖Cr,α (Rn−1) ≤C1 ‖c‖Cr,α (∂Ω) .

According to Lemma 8.10, there exists fi ∈Cr+1,α (Rn) such that on H,

fi = 0 and grad fi = gi en,
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where en = (0, . . . ,0,1) and we have

‖ fi‖Cr+1,α (Ui)
≤C2 ‖gi‖Cr,α (Rn−1) ≤C3 ‖c‖Cr,α (∂Ω) . (8.1)

We claim that b given by

b(x) =
m

∑
i=1

θi(x) fi(ϕ−1
i (x))

has all of the desired properties. If x ∈ ∂Ω , then ϕ−1
i (x) ∈H and, thus, we immedi-

ately obtain that fi(ϕ−1
i (x)) = 0. Therefore, we get all over ∂Ω ,

gradb(x) =
m

∑
i=1

θi(x)∇( fi ◦ϕ−1
i )(x) =

m

∑
i=1

θi(x)∇ fi(ϕ−1
i (x))∇ϕ−1

i (x)

=
m

∑
i=1

θi(x)gi(ϕ−1
i (x))en∇ϕ−1

i (x) =
m

∑
i=1

θi(x)c(x)en∇ϕ−1
i (x).

It remains to show that en∇ϕ−1
i (x) = ν(x), which is equivalent to, setting y =

ϕ−1
i (x),

en = ν(ϕi(y))∇ϕi(y) for every y ∈ H ∩Ui .

This follows from the fact that ϕi is an admissible boundary coordinate system,
namely for 1≤ l ≤ n,

[ν(ϕi(y))∇ϕi(y)]l =
〈

ν(ϕi(y));
∂ϕi

∂yl
(y)

〉
=

〈
∂ϕi

∂yn
(y);

∂ϕi

∂yl
(y)

〉
= δnl .

The estimate of the Hölder norm of b follows from (8.1), Theorem 16.28 and The-
orem 16.31. ��

We now need a generalization of the above lemma to differential forms, as
achieved in Dacorogna [27].

Lemma 8.11. Let r ≥ 0 and 1≤ k ≤ n−1 be integers, 0≤ α ≤ 1 and Ω ⊂ R
n be a

bounded open Cr+1,α set with exterior unit normal ν .
(i) If c ∈Cr,α (

∂Ω ;Λ k
)

is such that

ν ∧ c = 0 on ∂Ω ,

then there exists b ∈Cr+1,α (
Ω ;Λ k−1

)
satisfying all over ∂Ω ,

db = c, δb = 0 and b = 0.

Moreover, there exists a constant C =C (r,Ω)> 0 such that

‖b‖Cr+1,α(Ω) ≤C ‖c‖Cr,α (∂Ω) .
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(ii) If c ∈Cr,α(∂Ω ;Λ k
)

is such that

ν �c = 0 on ∂Ω ,

then there exists b ∈Cr+1,α (
Ω ;Λ k+1

)
satisfying all over ∂Ω ,

δb = c, db = 0 and b = 0.

Furthermore, there exists a constant C =C (r,Ω)> 0 such that

‖b‖Cr+1,α(Ω) ≤C ‖c‖Cr,α (∂Ω) .

Remark 8.12. (i) If k = 0 in statement (ii) (and analogously if k = n in statement (i))
and 0 < α < 1, then it is easy to find b such that (and without any restriction on c)

δb = c and db = 0 in Ω ,

where c has been extended to Ω with the appropriate regularity. Indeed, choose
b = gradB, where B solves {

ΔB = c in Ω ,

B = 0 on ∂Ω .

(ii) The above result remains valid, with the same proof, in the Sobolev setting.
More precisely, statement (i) (and similarly for statement (ii)) reads as follows. Let
r≥ 1 be an integer, 1< p<∞ and Ω ⊂R

n be a bounded open Cr+1 set with exterior
unit normal ν . Let c ∈W r−1/p,p

(
∂Ω ;Λ k

)
; then there exists

b ∈W r+1,p(Ω ;Λ k−1)
satisfying all over ∂Ω ,

db = c, δb = 0 and b = 0.

Moreover, there exists a constant C =C(r, p,Ω)> 0 such that

‖b‖W r+1,p(Ω) ≤C ‖c‖W r−1/p,p(∂Ω) .

Proof. Step 1. We start with case (i). First, solve with Lemma 8.8 the problem,
on ∂Ω ,

gradbi1···ik−1 = (ν �c)i1···ik−1 ν and bi1···ik−1 = 0

for every multi-index 1≤ i1 < · · ·< ik−1 ≤ n and set

b = ∑
1≤i1<...<ik−1≤n

bi1···ik−1dxi1 ∧·· ·∧dxik−1 .

The formulas of Propositions 2.6 and 3.3 immediately imply that, on ∂Ω ,

db = ν ∧ (ν �c) and δb = ν �(ν �c) = 0.
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We combine the first equation with the hypothesis ν ∧ c = 0 and use (2.7) to get

db = ν ∧ (ν �c) = ν ∧ (ν �c)+ν �(ν ∧ c) = c on ∂Ω .

We have therefore proved the assertion.

Step 2. For (ii), we first solve, on ∂Ω ,

gradbi1...ik+1 = (ν ∧ c)i1...ik+1 ν and bi1···ik+1 = 0

and then proceed exactly as in Step 1. This concludes the proof of the lemma. ��

If Ω is contractible, then Lemma 8.11 can be generalized and gives a global
version of the Poincaré lemma on the manifold ∂Ω .

Corollary 8.13. Let Ω ⊂ R
n be a bounded open contractible smooth set with exte-

rior unit normal ν . Let r ≥ 1, 1 ≤ k ≤ n− 1 be two integers and 0 < α < 1. Then
the following are equivalent:

(i) Let c ∈Cr,α (
∂Ω ;Λ k

)
satisfy

ν ∧dc = 0 on ∂Ω if k ≤ n−2,∫
∂Ω

ν ∧ c = 0 if k = n−1.

(ii) There exists b ∈Cr+1,α (
Ω ;Λ k−1

)
satisfying all over ∂Ω ,

db = c and δb = 0.

Remark 8.14. (i) ν ∧ dc ∈ Cr−1,α (
∂Ω ;Λ k+2

)
is well defined in view of Theo-

rem 3.23.

(ii) If k = n, then the problem is solvable without any condition on c and the
topology of Ω (cf. Remark 8.12(i)).

(iii) The corollary is indeed a generalization of Lemma 8.11 since ν ∧ c = 0
implies ν ∧dc = 0, appealing again to Theorem 3.23.

(iv) We cannot require the solution b to satisfy b = 0 on ∂Ω as in Lemma 8.11.
This would imply 0 = ν ∧ db = ν ∧ c on ∂Ω , but ν ∧ dc = 0 does not imply, in
general, ν ∧ c = 0.

(v) An analogous result holds true in Sobolev spaces.

Proof. The implication (ii) ⇒ (i) follows immediately from Theorems 3.23 and
3.26. So let us show the reverse implication. We first apply Theorem 7.2 to find a
solution u ∈Cr,α (

Ω ;Λ k
)

of the problem{
du = 0 and δu = 0 in Ω ,

ν ∧u = ν ∧ c on ∂Ω .
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Conditions (A1) and (A2) of Theorem 7.2 are satisfied, since HT
(
Ω ;Λ k+1

)
is equal

to {0} if k ≤ n−2 and is equal to the set of constant volume forms if k = n−1 (cf.
Theorem 6.5). We next use Theorem 7.4 to find a solution ω ∈Cr+1,α (

Ω ;Λ k−1
)

of{
dω = u and δω = 0 in Ω ,

ν �ω = 0 on ∂Ω .

Conditions (C1) and the first equation in (C2) are obviously satisfied. The second
equation in (C2) follows from the fact that HN

(
Ω ;Λ k

)
= {0}, cf. Theorem 6.5. We

now use Lemma 8.11 to find v ∈Cr+1,α (
Ω ;Λ k−1

)
satisfying all over ∂Ω

dv = c−u and δv = 0.

At last we set b = ω +v. It can be easily seen that b has the required properties. ��

We also have the dual version of the corollary.

Corollary 8.15. Let Ω ⊂ R
n be a bounded open contractible smooth set with exte-

rior unit normal ν . Let r ≥ 1, 1 ≤ k ≤ n− 1 be two integers and 0 < α < 1. Then
the following are equivalent:

(i) Let c ∈Cr,α (
∂Ω ;Λ k

)
satisfy

ν �δc = 0 on ∂Ω if k ≥ 2,∫
∂Ω ν �c = 0 if k = 1.

(ii) There exists b ∈Cr+1,α (
Ω ;Λ k+1

)
satisfying all over ∂Ω ,

δb = c and db = 0.

8.4 Poincaré Lemma with Dirichlet Boundary Data

We now consider the boundary value problems{
dω = f in Ω ,

ω = ω0 on ∂Ω
and

{
δω = g in Ω ,

ω = ω0 on ∂Ω .

In contrast to the problems of Section 7.1 (respectively Section 7.2), δω (respec-
tively dω) is not prescribed; however both the tangential and normal components
of ω are given on the boundary. It turns out that the problems can be solved under
exactly the same hypotheses on f , g and ω0 as in Theorem 7.2 (respectively Theo-
rem 7.4). We follow exactly the construction in Dacorogna [27] for Hölder spaces;
a very similar method is used in Schwarz [89] for Sobolev spaces.
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Theorem 8.16. Let r ≥ 0 and 0≤ k ≤ n−1 be integers, 0 < α < 1, 2≤ p < ∞ and
Ω ⊂ R

n be a bounded open smooth set with exterior unit normal ν . Let f : Ω →
Λ k+1 and ω0 : ∂Ω →Λ k. Then the following statements are equivalent:

(i) Let f ∈Cr,α (
Ω ;Λ k+1

)
and ω0 ∈Cr+1,α(∂Ω ;Λ k

)
, respectively f ∈W r,p(Ω ;

Λ k+1) and ω0 ∈W r+1− 1
p ,p

(
∂Ω ;Λ k

)
, satisfy

d f = 0 in Ω , ν ∧dω0 = ν ∧ f on ∂Ω (A1)

and, for every χ ∈HT
(
Ω ;Λ k+1

)
,∫

Ω
〈 f ; χ〉−

∫
∂Ω
〈ν ∧ω0; χ〉= 0. (A2)

(ii) There exists ω ∈Cr+1,α(Ω ;Λ k
)
, respectively ω ∈W r+1,p

(
Ω ;Λ k

)
, such that{

dω = f in Ω ,

ω = ω0 on ∂Ω

and there exists a constant C1 =C1(r,α,Ω) such that

‖ω‖Cr+1,α (Ω) ≤C1

(
‖ f‖Cr,α (Ω) +‖ω0‖Cr+1,α (∂Ω)

)
,

respectively there exists a constant C2 =C2(r, p,Ω) such that

‖ω‖W r+1,p(Ω) ≤C2

(
‖ f‖W r,p(Ω) +‖ω0‖W r+1−1/p,p(∂Ω)

)
.

Remark 8.17. (i) In the case k = n− 1, conditions (A1) are trivially satisfied and
(A2) reads as ∫

Ω
f =

∫
∂Ω

ν ∧ω0

if Ω is connected (cf. Theorem 6.5).

(ii) When k = 0, then the result is still valid for α = 0,1 with an argument com-
pletely analogous to the one of Corollary 8.6.

(iii) If r ≥ 1, conditions (A1) are well defined. This is obvious for the first equa-
tion. The second one makes sense in W r− 1

p ,p
(
∂Ω ;Λ k+2

)
, respectively Cr,α(∂Ω ;

Λ k+2), due to Theorem 3.23.

(iv) If r = 0, then the condition d f = 0 is understood in the sense of distributions.
The second condition in (A1) is well defined in the Hölder setting and is to be
understood, in the Sobolev setting, in the weak sense, namely∫

Ω
〈 f ;δϕ〉−

∫
∂Ω
〈ν ∧ω0;δϕ〉= 0, ∀ϕ ∈C∞(Ω ;Λ k+2), (B1)

which is equivalent with (A1) whenever r ≥ 1 (cf. Section 7.1).
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(v) The above results remain valid if the set Ω is Cr+3 for the Sobolev case and
Cr+3,α for the Hölder case.

(vi) If Ω is contractible, then (cf. Theorem 6.5)

HT
(
Ω ;Λ k+1)= {0} if 0≤ k ≤ n−2,

whereas if k = n−1,

HT
(
Ω ;Λ k+1)= Λ n(Rn)∼= R.

(vii) The construction is linear and universal in the sense of Remark 6.13.

Proof. We deal only with the case of Hölder spaces, the case of Sobolev spaces
being handled similarly. The implication (ii) ⇒ (i) is straightforward using partial
integration (cf. Theorem 3.28). To show the other implication, we first use Theo-
rem 7.2 to find a solution u ∈Cr+1,α(Ω ;Λ k

)
of the problem{

du = f and δu = 0 in Ω ,

ν ∧u = ν ∧ω0 on ∂Ω .

If k = 0, then ω = u has already all the claimed properties. So we next assume that
k ≥ 1. Since ν ∧ (ω0−u) = 0, we can apply Lemma 8.11(i) to find β ∈Cr+2,α(Ω ;
Λ k−1

)
such that

dβ = ω0−u on ∂Ω .

We finally set

ω = u+dβ

to obtain the result. ��

Due to Theorem 7.4 and Lemma 8.11(ii), we can prove the dual version in the
same way.

Theorem 8.18. Let r≥ 0 and 1≤ k≤ n be integers, 0 < α < 1, 2≤ p < ∞ and Ω ⊂
R

n be a bounded open smooth set with exterior unit normal ν . Let g : Ω → Λ k−1

and ω0 : ∂Ω →Λ k. Then the following claims are equivalent:

(i) Let g ∈Cr,α (
Ω ;Λ k−1

)
and ω0 ∈Cr+1,α(∂Ω ;Λ k

)
, respectively g ∈W r,p(Ω ;

Λ k−1) and ω0 ∈W r+1− 1
p ,p

(
∂Ω ;Λ k

)
, satisfy

δg = 0 in Ω , ν �δω0 = ν �g on ∂Ω (C1)

and, for every χ ∈HN
(
Ω ;Λ k−1

)
,∫

Ω
〈g; χ〉−

∫
∂Ω
〈ν �ω0; χ〉= 0. (C2)
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(ii) There exists ω ∈Cr+1,α(Ω ;Λ k
)
, respectively ω ∈W r+1,p

(
Ω ;Λ k

)
, such that{

δω = g in Ω ,

ω = ω0 on ∂Ω

and there exists a constant C1 =C1(r,α,Ω) such that

‖ω‖Cr+1,α (Ω) ≤C1

(
‖g‖Cr,α (Ω) +‖ω0‖Cr+1,α (∂Ω)

)
,

respectively there exists a constant C2 =C2(r, p,Ω) such that

‖ω‖W r+1,p(Ω) ≤C2

(
‖g‖W r,p(Ω) +‖ω0‖W r+1−1/p,p(∂Ω)

)
.

Remark 8.19. (i) In the case k = 1, conditions (C1) are trivially satisfied and (C2)
reads as ∫

Ω
g =

∫
∂Ω

ν �ω0

if Ω is connected (cf. Theorem 6.5).

(ii) When k = n, then the result is still valid for α = 0,1 with an argument com-
pletely analogous to the one of Corollary 8.7.

(iii) If r ≥ 1, conditions (C1) are well defined. This is obvious for the first equa-
tion. The second one makes sense in W r− 1

p ,p
(
∂Ω ;Λ k−2

)
, respectively Cr,α(∂Ω ;

Λ k−2), due to Theorem 3.23.

(iv) If r = 0, then the condition δg = 0 is understood in the sense of distributions.
The second condition in (C1) is well defined in the Hölder setting and is to be
understood, in the Sobolev setting, in the weak sense, namely∫

Ω
〈g;dϕ〉−

∫
∂Ω
〈ν �ω0;dϕ〉= 0, ∀ϕ ∈C∞(Ω ;Λ k−2), (D1)

which is equivalent to (C1) whenever r ≥ 1 (cf. Section 7.2).

(v) The above results remains valid if Ω is Cr+3 for the Sobolev case and Cr+3,α

for the Hölder case.

(vi) If Ω is contractible, then (cf. Theorem 6.5)

HN
(
Ω ;Λ k−1)= {0} if 2≤ k ≤ n,

whereas if k = 1,

HN
(
Ω ;Λ k−1)= Λ 0(Rn) = R.

(vii) The construction is linear and universal in the sense of Remark 6.13.
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8.5 Poincaré Lemma with Constraints

8.5.1 A First Result

Our first proposition is the Poincaré lemma under a constraint on the scalar product.

Proposition 8.20. Let x0 ∈ R
n and f be a C∞ closed 2-form. Let a be a C∞ 1-form

such that a(x0) �= 0 and let b be a C∞ function. Then there exist a neighborhood U
of x0 and ω ∈C∞(U ;Λ 1) such that

dω = f and 〈ω;a〉= b in U.

Moreover, if b(x0) = 0, then ω can be chosen so that, in addition to the previous
equation, ω(x0) = 0.

Remark 8.21. If f , a and b depend in a smooth way on a parameter t, we find exactly
in the same way a ω depending smoothly on t and with the same properties, provided
there exists 1≤ i≤ n so that

ai(t,x0) �= 0 for every t.

Proof. Without loss of generality, we can assume x0 = 0 and that an(0) �= 0. Using
Theorem 8.1, there exist a neighborhood V of 0 and u ∈C∞(V ;Λ 1

)
such that

du = f in V .

Replacing u by u−u(0), we can assume without loss of generality that u(0) = 0. By
the methods of characteristics, recalling that an(0) �= 0, there exist a neighborhood
U ⊂V of 0 and v ∈C∞(U) such that{

〈dv;a〉= b−〈u;a〉 in U ,

v(x1, . . . ,xn−1,0) = 0 for every (x1, . . . ,xn−1,0) ∈U.

Letting ω = u+ dv, we have the main result. Finally, let us show that the same
ω fulfills the extra assertion. Indeed, since in that case, b(0) = 0, u(0) = 0 and
an(0) �= 0, we immediately deduce that dv(0) = 0 and, hence, ω(0) = 0, which
concludes the proof. ��

8.5.2 A Second Result

We now give a theorem that will be used in the second proof of Theorem 14.3 (cf.
Bandyopadhyay, Dacorogna and Kneuss [9]).

Theorem 8.22. Let 2 ≤ 2m ≤ n be integers and x0 ∈ R
n. Let f and g be two C∞

closed 2-forms such that
gm (x0) �= 0
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and, in a neighborhood of x0 ,

f ∧gm = 0 and gm+1 = 0.

Then there exist a neighborhood U of x0 and ω ∈C∞(U ;Λ 1
)

such that ω (x0) = 0,

dω = f and ω ∧gm = 0, in U.

Remark 8.23. (i) We can easily replace C∞ by Cr, but a refined version of our con-
struction finds ω only in Cr−1 (see [60]).

(ii) Note that the hypotheses imply that in a neighborhood of x0 ,

rank [g] = 2m.

(iii) If f and g depend in a smooth way on a parameter t, we find exactly in the
same way a ω depending smoothly on t and with the same properties.

Proof. The following proof becomes much simpler if we can invoke Theorem 14.3.
However, since, later, we want to use the present theorem to give a second proof of
Theorem 14.3, we have to find an independent proof. The proof will rely on several
technical results that are gathered in Section 8.5.3.

Without loss of generality, we can assume that x0 = 0, and in what follows, U will
be a generic neighborhood of 0.

Step 1. Appealing to the classical Poincaré lemma (see Theorem 8.1), we can
find a neighborhood U of 0 and u ∈C∞(U ;Λ 1

)
such that du = f in U. Replacing u

by u−u(0), we can assume that u(0) = 0. We then set

ω = u−dv.

Our result will follow if we can find v ∈C∞(U) verifying{
dv∧gm = u∧gm in U,

dv(0) = 0. (8.2)

Step 2 (simplification of g). It follows from Proposition 8.31 that there exist a
neighborhood U of 0 and ϕ ∈ Diff∞(U ;ϕ(U)) such that ϕ (0) = 0 and

ϕ∗ (g) =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

ri jdxi∧dx j

for some ri j ∈C∞(U). Problem (8.2) is then equivalent to finding w ∈C∞(U) such
that {

dw∧ (ϕ∗(g))m = ϕ∗(u)∧ (ϕ∗(g))m in U,

dw(0) = 0.
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Indeed, it is enough to set v = (ϕ−1)∗(w) to have a solution of (8.2). So from now
on, we will assume, upon substitution of ϕ∗(g) and ϕ∗(u) by g and u, that

g =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

ri jdxi∧dx j (8.3)

and we therefore have to find v ∈C∞(U) satisfying (8.2) only for g as in (8.3). Note
that for such a g, we have

(gm)1···(2m) = m ! �= 0.

Step 3. We then solve (8.2) by induction on n, m being fixed. In the case n = 2m,
nothing is to be proved; just choose v = 0. So we assume that the result has been
proven for n = 2m+ j, j ≥ 0, and let us prove it for n = 2m+ j+ 1. We therefore
assume that we can find a neighborhood Ũ ⊂R

n−1 of 0∈R
n−1 and h∈C∞(Ũ) with{

dh∧ g̃m = ũ∧ g̃m,

dh(0) = 0

whenever g̃ ∈C∞(Ũ ;Λ 2(Rn−1)) and ũ ∈C∞(Ũ ;Λ 1(Rn−1)) verify

dũ∧ g̃m = 0, dg̃ = 0, g̃m+1 = 0,

g̃ =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n−1

2m< j

r̃i jdxi∧dx j

for some r̃i j ∈C∞(Ũ) and let us prove that it holds for n. To establish this result, we
proceed in four substeps.

Step 3.1. We first solve, by the method of characteristics, the Cauchy problem for
the first-order partial differential equation{

(dv∧gm)1···(2m)n = (u∧gm)1···(2m)n,

v(x1, . . . ,xn−1,0) = h(x1, . . . ,xn−1),
(8.4)

where h ∈Cr(Ũ) is a solution, which exists by hypothesis of induction, of{
dh∧ i∗n(g)m = i∗n(u)∧ i∗n(g)m,

dh(0) = 0
(8.5)

and in : Rn−1 → R
n is defined by

in(x1, . . . ,xn−1) = (x1, . . . ,xn−1,0).

Indeed we can apply the method of characteristics since the first equation of (8.4) is
equivalent to, recalling that (gm)1···(2m) = m! ,
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∂v
∂xn

·m!+
2m

∑
i=1

(−1)i+1 ∂v
∂xi

· (gm)1···̂i···(2m)n = (u∧gm)1···(2m)n . (8.6)

Observe also that

i∗n(v) = h ⇔ v(x1, . . . ,xn−1,0) = h(x1, . . . ,xn−1).

Finally, note that we can apply the hypothesis of induction since

dg = 0, du∧gm = 0, gm+1 = 0,

g =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

ri jdxi∧dx j

for some ri j ∈C∞ imply

d(i∗n(g)) = 0, d(i∗n(u))∧ i∗n(g)
m = 0, i∗n(g)

m+1 = 0,

i∗n(g) =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n−1

2m< j

r̃i jdxi∧dx j

for some r̃i j ∈C∞.

Step 3.2. It now remains to prove that the solution v of (8.4) is indeed a solution
of (8.2). First, we claim that dv(0) = 0. Indeed, combining the last equation of (8.4)
and (8.5), we deduce that

∂v
∂xi

(0) = 0, 1≤ i≤ n−1.

Next, inserting the previous equation in (8.6) and using the fact that u(0) = 0, we
immediately deduce that

∂v
∂xn

(0) = 0,

which gives the claim. Hence, it only remains to show that

dv∧gm = u∧gm. (8.7)

Lemma 8.28 implies that to show (8.7), it is enough to establish

(dv∧gm)1···(2m)k = (u∧gm)1···(2m)k , 2m+1≤ k ≤ n. (8.8)

Step 3.3. We now prove (8.8). Define, for every 2m+1≤ k ≤ n,

Lk (v) = (dv∧gm)1···(2m)k and wk = Lk (v)− (u∧gm)1···(2m)k .
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Since we already have from (8.4) that wn = 0, our claim (8.8) reduces to proving
that

wk = 0 for every 2m+1≤ k ≤ n−1. (8.9)

Since

0 = f ∧gm = du∧gm

and (8.3) holds, we can apply Lemma 8.29 and Lemma 8.30 to obtain

Ln (wk) = LnLk (v)−Ln
(
(u∧gm)1···(2m)k

)
= LkLn (v)−Lk

(
(u∧gm)1···(2m)n

)
= Lk (wn) = 0.

Assume (cf. Step 3.4), that we can prove that

wk(x1, . . . ,xn−1,0) = 0; (8.10)

we will then have, by uniqueness of the solutions of the Cauchy problem, that the
only solution of {

Ln (wk) = 0,
wk = 0 on xn = 0

is wk = 0. This is exactly our claim (8.9).

Step 3.4. Finally, we show (8.10), which is equivalent to proving that i∗n(wk) = 0.
We have that, recalling that i∗n(v) = h,

i∗n(wk) = i∗n
(
(dv∧gm−u∧gm)1···(2m)k

)
= (i∗n(dv∧gm−u∧gm))1···(2m)k

= (d(i∗n(v))∧ i∗n(g
m))− i∗n(u)∧ i∗n(g

m))1···(2m)k

and thus, appealing to (8.5),

i∗n(wk) = (dh∧ i∗n(g
m)− i∗n(u)∧ i∗n(g

m))1···(2m)k = 0.

This concludes the proof of the theorem. ��

With substantially the same proof we can get a global result (see Kneuss [60]).

Theorem 8.24. Let 2≤ 2m < n and g, f ∈C∞(
R

n;Λ 2
)

be closed. Assume that g is
of the form

g =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

gi j dxi∧dx j

for some gi j ∈C∞(Rn) and, for every x ∈ R
n,

f (x)∧gm (x) = 0, gm+1 (x) = 0 and |g(x)| ≤ a |x|+b,
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where a,b> 0 are constants. Then there exists w∈C∞(
R

n;Λ 1
)

so that the following
equations are satisfied in R

n:

dw = f and w∧gm = 0.

8.5.3 Some Technical Lemmas

In this subsection we gather all algebraic lemmas that we have used in the proof of
Theorem 8.22.

Lemma 8.25. Let 2 ≤ 2m < n be integers and g ∈ Λ 2(Rn) with rank [g] = 2m and
of the form

g =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

gi j dxi∧dx j.

Then, for every 1≤ i, j ≤ 2m < k ≤ n, the following hold:

(gm)1···̂i···(2m)k =

{
m!g(i+1)k if i is odd

m!g(i−1)k if i is even,
(8.11)

(gm)1···̂i···(2m)n (g
m)1··· ĵ···(2m)k− (gm)1···̂i···(2m)k (g

m)1··· ĵ···(2m)n

=

⎧⎪⎪⎨
⎪⎪⎩

0 if i = j

m!(gm)1···̂i··· ĵ···(2m)kn if i < j

−m!(gm)1··· ĵ···̂i···(2m)kn if i > j.

Remark 8.26. When m = 1, the two conclusions of the lemma are immediate and
the last one reads as (since g2 = 0)

g2ng1k−g2kg1n = gkn = g12gkn .

For the proof of the lemma we will need the following result, whose proof is
elementary (see Kneuss [60] for details).

Lemma 8.27. Let 2≤ 2m≤ n, f ∈Λ 2(Rn), 1≤ i1 < · · ·< i2m ≤ n and 1≤ l ≤ 2m.
Then

( f m)i1···i2m = m
l−1

∑
j=1

(−1) j+l+1 fi j il ( f m−1)i1···î j ···îl ···i2m

+m
2m

∑
j=l+1

(−1) j+l+1 fil i j( f m−1)i1···îl ···î j ···i2m
.

We now prove Lemma 8.25.
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Proof. We split the proof into two steps.

Step 1. We first show (8.11). We assume that i is odd and thus i = 2s−1 for some
1 ≤ s ≤ m (the case that i is even can be handled exactly in the same way). From
Lemma 8.27 (choosing l = 2s− 1 and hence il = 2s in the computation below), it
follows that

(gm)1···2̂s−1···(2m)k = m
2s−2

∑
j=1

(−1) j+2sg j(2s) (g
m−1)1··· ĵ···2̂s−12̂s···(2m)k

+m
2m

∑
j=2s+1

(−1) j+2s+1g(2s) j (g
m−1)1···2̂s−12̂s··· ĵ···(2m)k

+mg(2s)k
(
gm−1)

1···2̂s−12̂s······(2m)
.

Since by the special structure of g, g j(2s) = 0 for 1 ≤ j ≤ 2s− 2 and g(2s) j = 0 for
2s+1≤ j ≤ 2m and

(gm−1)1···2̂s−12̂s······(2m)
= (m−1)! ,

the previous equation reduces to

(gm)1···2̂s−1···(2m)k = m!g(2s)k ,

which is exactly the claim.

Step 2. We now prove the second statement. When i = j, the proof is trivial. We
prove the result for i < j, which, in turn, immediately implies the case i > j. More-
over, we assume that i is odd and thus i= 2s−1 for some 1≤ s≤m (the case that i is
even being handled exactly in the same way). Using (8.11), it is enough to show that

(gm)1···2̂s−1··· ĵ···(2m)kn =

{
m!g(2s)n g( j+1)k−m!g(2s)k g( j+1)n if j is odd

m!g(2s)n g( j−1)k−m!g(2s)k g( j−1)n if j is even.
(8.12)

We consider two cases to establish (8.12).

Case 1: 2s+ 1 ≤ j ≤ 2m. From Lemma 8.27 (choosing l = 2s− 1 and hence
il = 2s in the computation below), it follows that

(gm)1···2̂s−1··· ĵ···(2m)kn = m
2s−2

∑
t=1

(−1)t+2sgt(2s) (g
m−1)1···̂t···2̂s−12̂s··· ĵ···(2m)kn

+m
j−1

∑
t=2s+1

(−1)t+2s+1g(2s)t (g
m−1)1···2̂s−12̂s···̂t··· ĵ···(2m)kn

+m
2m

∑
t= j+1

(−1)t+2sg(2s)t (g
m−1)1···2̂s−12̂s··· ĵ···̂t···(2m)kn

−mg(2s)k (g
m−1)1···2̂s−12̂s··· ĵ···(2m)n

+mg(2s)n (g
m−1)1···2̂s−12̂s··· ĵ···(2m)k .
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Since gt(2s) = 0 for 1 ≤ t ≤ 2s− 2 and g(2s)t = 0 for 2s+ 1 ≤ t ≤ 2m, the previous
equation reduces to

(gm)1···2̂s−1··· ĵ···(2m)kn =−mg(2s)k (g
m−1)1···2̂s−12̂s··· ĵ···(2m)n

+mg(2s)n (g
m−1)1···2̂s−12̂s··· ĵ···(2m)k .

Moreover, proceeding exactly as in Step 1, we can show that

(gm−1)1···2̂s−12̂s··· ĵ···(2m)k =

{
(m−1)!g( j+1)k if j is odd

(m−1)!g( j−1)k if j is even

and the same for k replaced by n. Hence, combining the last two equations, we
get (8.12).

Case 2: j = 2s. First note that (gm+1)1···(2m)kn = 0 since rank(g) = 2m (see Propo-
sition 2.37(iii)). Hence, using Lemma 8.27 once more (with m+1, l = 2s and hence
il = 2s in the computation below), we obtain

0 = (gm+1)1···(2m)kn = (m+1)
2s−2

∑
t=1

(−1)t+2s+1gt(2s) (g
m)1···̂t···2̂s···(2m)kn

+(m+1)g(2s−1)(2s) (g
m)1···2̂s−12̂s···(2m)kn

+(m+1)
2m

∑
t=2s+1

(−1)t+2s+1g(2s)t(g
m)1···2̂s···̂t···(2m)kn

+(m+1)g(2s)k (g
m)1···2̂s···(2m)n

− (m+1)g(2s)n (g
m)1···2̂s···(2m)k .

Since g(2s−1)(2s) = 1, gt(2s) = 0 for 1≤ t ≤ 2s−2 and g(2s)t = 0 for 2s+1≤ t ≤ 2m,
the previous equation rewrites as

(gm)1···2̂s−12̂s···(2m)kn = g(2s)n (g
m)1···2̂s···(2m)k−g(2s)k (g

m)1···2̂s···(2m)n .

Using (8.11), we immediately deduce that

(gm)1···2̂s−12̂s···(2m)kn = m!g(2s)n g(2s−1)k−m!g(2s)k g(2s−1)n ,

which is exactly (8.12). This finishes the proof. ��

The next lemma has been used in Step 3.2 of the proof of Theorem 8.22.

Lemma 8.28. Let 2 ≤ 2m ≤ n be integers, ω ∈ Λ 1(Rn) and g ∈ Λ 2(Rn) with
rank[g] = 2m and of the form
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g =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

gi jdxi∧dx j.

Suppose that

(ω ∧gm)1···(2m)k = 0, for every 2m+1≤ k ≤ n.

Then

ω ∧gm = 0.

Proof. According to Proposition 2.50, it is enough to show that there exists u ∈
Λ 1(Rn) such that

ω = u�g.

We claim that this is satisfied by

u =
m

∑
s=1

(
ω2sdx2s−1−ω2s−1dx2s) .

We will show that (u�g)k = ωk for 1≤ k ≤ n by considering two cases.

Case 1: k ≤ 2m. Hence, we have(
dxl � ∑

1≤i< j≤n
2m< j

gi jdxi∧dx j

)
k

= 0 if l ≤ 2m.

We therefore obtain

(u�g)k =

(
2m

∑
l=1

uldxl �
m

∑
i=1

dx2i−1∧dx2i

)
k

=

{
u2s−1 if k = 2s

−u2s if k = 2s−1

}
= ωk .

Case 2: k ≥ 2m+ 1. Using the hypothesis (ω ∧gm)1···(2m)k = 0 and (8.11), we
obtain

0 = (ω ∧gm)1···(2m)k

=
2m

∑
γ=1

(−1)γ−1ωγ (gm)1···γ̂···(2m)k +ωk (gm)1···(2m)



170 8 Poincaré Lemma

=
m

∑
s=1

(
ω2s−1 (gm)

1···(̂2s−1)···(2m)k
−ω2s (gm)

1···(̂2s)···(2m)k

)
+m!ωk

= m!

(
m

∑
s=1

(
ω2s−1g(2s)k−ω2sg(2s−1)k

)
+ωk

)
.

Using that k ≥ 2m+1, the definition of u and the previous equation yield

(u�g)k =

(
m

∑
l=1

uldxl �
(

m

∑
s=1

dx2s−1∧dx2s + ∑
1≤i< j≤n

2m< j

gi jdxi∧dx j

))
k

=

(
m

∑
l=1

uldxl � ∑
1≤i< j≤n

2m< j

gi jdxi∧dx j

)
k

=
m

∑
l=1

ulglk

=
m

∑
s=1

(
u2s−1g(2s−1)k +u2sg(2s)k

)
=

m

∑
s=1

(
ω2sg(2s−1)k−ω2s−1g(2s)k

)
= ωk ,

which concludes the proof of the lemma. ��

The following two lemmas have been used in Step 3.3 of Theorem 8.22.

Lemma 8.29. Let 2 ≤ 2m < n be integers and Ω ⊂ R
n be an open set. Let g ∈

C∞(Ω ;Λ 2
)

be closed with rank[g] = 2m in Ω and of the form

g(x) =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

gi j (x)dxi∧dx j, x ∈Ω ,

where gi j ∈C∞(Ω). Then, for every 2m+1≤ k ≤ n,

LnLk = LkLn, (8.13)

where Lk : C∞(Ω)→C∞(Ω), 2m+1≤ k ≤ n, is defined by

Lk(z) = (dz∧gm)1···(2m)k .

Proof. We begin by noting that the structure of g implies that

(gm)1···(2m) = m! in Ω . (8.14)

For z ∈C∞(Ω), we have

Lk(z) = (dz∧gm)1···(2m)k = zxk m!+
2m

∑
i=1

(−1)i+1zxi(g
m)1···̂i···(2m)k,
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where we have denoted partial differentiation of z by xk by zxk . We therefore find

LnLk(z)

= Ln

(
zxk m!+

2m

∑
i=1

(−1)i+1zxi(g
m)1···̂i···(2m)k

)

=

(
zxk m!+

2m

∑
i=1

(−1)i+1zxi(g
m)1···̂i···(2m)k

)
xn

m!

+
2m

∑
j=1

(−1) j+1

(
zxk m!+

2m

∑
i=1

(−1)i+1zxi(g
m)1···̂i···(2m)k

)
x j

(gm)1··· ĵ···(2m)n .

Setting

A1 = m!2zxkxn , A2 = m!
2m

∑
i=1

(−1)i+1zxixn(g
m)1···̂i···(2m)k,

A3 = m!
2m

∑
i=1

(−1)i+1zxi

(
(gm)1···̂i···(2m)k

)
xn
,

A4 = m!
2m

∑
j=1

(−1) j+1zxkx j(g
m)1··· ĵ···(2m)n,

A5 =
2m

∑
i, j=1

(−1)i+1(−1) j+1zxix j(g
m)1···̂i···(2m)k(g

m)1··· ĵ···(2m)n,

A6 =
2m

∑
i, j=1

(−1)i+1(−1) j+1zxi

(
(gm)1···̂i···(2m)k

)
x j
(gm)1··· ĵ···(2m)n,

we find that
LnLk(z) = A1 +A2 +A3 +A4 +A5 +A6 .

Note that A1 , A2 +A4 and A5 are symmetric in k and n. Therefore, for proving that
LkLn(z) = LnLk(z), it is enough to show that A3 +A6 is symmetric in k and n, which
is equivalent to

2m

∑
i=1

(−1)i+1zxi

⎡
⎢⎣ m!

(
(gm)1···̂i···(2m)k

)
xn

+∑2m
j=1(−1) j+1

(
(gm)1···̂i···(2m)k

)
x j
(gm)1··· ĵ···(2m)n

⎤
⎥⎦

=
2m

∑
i=1

(−1)i+1zxi

⎡
⎢⎣ m!

(
(gm)1···̂i···(2m)n

)
xk

+∑2m
j=1(−1) j+1

(
(gm)1···̂i···(2m)n

)
x j
(gm)1··· ĵ···(2m)k

⎤
⎥⎦ . (8.15)

To prove this, note first that, for every 2m+1≤ k ≤ n,

2m

∑
j=1

(−1) j+1
(
(gm)1··· ĵ···(2m)k

)
x j
= 0 (8.16)
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since (dgm)1···(2m)k = 0, g being closed, and
(
(gm)1···(2m)

)
xk
= 0 according to (8.14).

Hence, it follows from (8.16) that (8.15) is equivalent to

2m

∑
i=1

(−1)i+1zxiCi = 0,

where

Ci = m!
(
(gm)1···̂i···(2m)k

)
xn
−m!

(
(gm)1···̂i···(2m)n

)
xk

+
2m

∑
j=1

(−1) j+1
(
(gm)1···̂i···(2m)k(g

m)1··· ĵ···(2m)n

)
x j

−
2m

∑
j=1

(−1) j+1
(
(gm)1···̂i···(2m)n(g

m)1··· ĵ···(2m)k

)
x j
.

To finish the proof, it is enough to prove that Ci = 0 for every 1 ≤ i ≤ 2m. Indeed,
using Lemma 8.25, we deduce that

Ci = m!
(
(gm)1···̂i···(2m)k

)
xn
−m!

(
(gm)1···̂i···(2m)n

)
xk

+m!
i−1

∑
j=1

(−1) j+1
(
(gm)1··· ĵ···̂i···(2m)kn

)
x j

+m!
2m

∑
j=i+1

(−1) j
(
(gm)1···̂i··· ĵ···(2m)kn

)
x j

= m!(dgm)1···̂i···(2m)kn = 0

since g is closed. This finishes the proof of the lemma. ��

Lemma 8.30. Let 2 ≤ 2m < n be integers and Ω ⊂ R
n be an open set. Let g ∈

C∞(Ω ;Λ 2
)

be closed with rank[g] = 2m in Ω and of the form

g(x) =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

gi j (x)dxi∧dx j, x ∈Ω ,

where gi j ∈C∞(Ω). Let u ∈C∞(Ω ;Λ 1
)

be such that

du∧gm = 0 in Ω .

Then for every integer 2m+1≤ k ≤ n, the following holds:

Ln((u∧gm)1···(2m)k) = Lk((u∧gm)1···(2m)n),
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where Lk : C∞(Ω)→C∞(Ω), 2m+1≤ k ≤ n, is given by

Lk(z) = (dz∧gm)1···(2m)k .

Proof. We divide the proof of the lemma into three steps.

Step 1. We have, since (gm)1···(2m) = m ! in Ω ,

Lk((u∧gm)1···(2m)n) = (d[(u∧gm)1···(2m)n]∧gm)1···(2m)k

= m!
(
(u∧gm)1···(2m)n

)
xk

+
2m

∑
i=1

(−1)i+1 ((u∧gm)1···(2m)n
)

xi
(gm)1···̂i···(2m)k .

Since (dgm)1···(2m)k = 0, g being closed, and ((gm)1···(2m))xk = 0, it follows that, for
every 2m+1≤ k ≤ n,

2m

∑
i=1

(−1)i+1
(
(gm)1···̂i···(2m)k

)
xi
= 0

and therefore

Lk((u∧gm)1···(2m)n) = m!
(
(u∧gm)1···(2m)n

)
xk

+
2m

∑
i=1

(−1)i+1
(
(u∧gm)1···(2m)n(g

m)1···̂i···(2m)k

)
xi
.

Similarly, we have

Ln((u∧gm)1···(2m)k) = m!
(
(u∧gm)1···(2m)k

)
xn

+
2m

∑
i=1

(−1)i+1
(
(u∧gm)1···(2m)k(g

m)1···̂i···(2m)n

)
xi
.

We then set, for 1≤ i≤ 2m,

Ai = (u∧gm)1···(2m)n(g
m)1···̂i···(2m)k− (u∧gm)1···(2m)k(g

m)1···̂i···(2m)n .

In order to prove the lemma, we therefore have to show the following:

m!
(
(u∧gm)1···(2m)n

)
xk
−m!

(
(u∧gm)1···(2m)k

)
xn
+

2m

∑
i=1

(−1)i+1 (Ai)xi
= 0. (8.17)

Step 2. In this step, we prove that, for every 1≤ i≤ 2m,

Ai = m!(u∧gm)1···̂i···(2m)kn . (8.18)
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To show this, we note that

Ai =

(
2m

∑
j=1

(−1) j+1u j(gm)1··· ĵ···(2m)n +m!un

)
(gm)1···̂i···(2m)k

−
(

2m

∑
j=1

(−1) j+1u j(gm)1··· ĵ···(2m)k +m!uk

)
(gm)1···̂i···(2m)n .

We therefore get

Ai = m!un(gm)1···̂i···(2m)k−m!uk(gm)1···̂i···(2m)n

+
2m

∑
j=1

(−1) j+1u j
[
(gm)1··· ĵ···(2m)n(g

m)1···̂i···(2m)k

−(gm)1··· ĵ···(2m)k(g
m)1···̂i···(2m)n

]
.

Invoking Lemma 8.25 at this point, it follows that

Ai = m!un(gm)1···̂i···(2m)k−m!uk(gm)1···̂i···(2m)n

+
i−1

∑
j=1

(−1) j+1m!u j(gm)1··· ĵ···̂i···(2m)kn +
2m

∑
j=i+1

(−1) jm!u j(gm)1···̂i··· ĵ···(2m)kn

= m!(u∧gm)1···̂i···(2m)kn .

Step 3. We finally use (8.18) in the left-hand side of (8.17) to deduce that

m!
(
(u∧gm)1···(2m)n

)
xk
− m!

(
(u∧gm)1···(2m)k

)
xn

+m!
2m

∑
i=1

(−1)i+1
(
(u∧gm)1···̂i···(2m)kn

)
xi

= m! (d(u∧gm))1···(2m)kn = 0,

the last equality coming from the fact that dg = 0 and du∧ gm = 0. The proof is
finished. ��

The final proposition has been used in Step 3.1 of Theorem 8.22.

Proposition 8.31. Let 2 ≤ 2m < n be integers and x0 ∈ R
n. Let g be a C∞ closed

2-form and such that, in a neighborhood of x0 ,

rank [g] = 2m. (8.19)

Then there exist a neighborhood U of x0 , ri j ∈C∞(U) and ϕ ∈Diff∞(U ;ϕ(U)) such
that ϕ (x0) = x0 and, in U,

ϕ∗ (g) =
m

∑
i=1

dx2i−1∧dx2i + ∑
1≤i< j≤n

2m< j

ri j dxi∧dx j.
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Proof. Step 1. Without loss of generality, we can assume that x0 = 0. In addition,
using Proposition 2.24(ii), we can also assume that

g(0) = ωm =
m

∑
i=1

dx2i−1∧dx2i.

We next introduce some notations. We let

x = (y,z) = (x1, . . . ,x2m,x2m+1, . . . ,xn) ∈ R
2m×R

n−2m

and we define, for every z ∈ R
n−2m, the map iz : R2m → R

n through

iz (y) = (y,z) = x.

Step 2. We define for every z ∈ R
n−2m with |z| small and every t ∈ [0,1] the

2-form

gz,t : W →Λ 2 (
R

2m) by gz,t (y) = i∗z [tg+(1− t)ωm] (y) ,

where W is a small neighborhood of 0 in R
2m. Note that

gz,0 (y) = i∗z [ωm] = ωm and gz,1 (y) = ∑
1≤i< j≤2m

gi j (x)dxi∧dx j.

Our assumption in Step 1 leads to gz,t (0) = ωm and therefore, in a sufficiently small
cube Q centered at 0 ∈ R

2m×R
n−2m, we can ensure that

rank [gz,t (y)] = 2m for every (y,z) ∈ Q and t ∈ [0,1]. (8.20)

Furthermore, gz,t has the property that

dygz,t = 0 in Q, for every t ∈ [0,1], (8.21)

where dy is understood as the exterior differential operator involving only the vari-
able y = (x1, . . . ,x2m); namely dygz,t = 0 is equivalent to

∂ (gz,t)i j

∂xk
− ∂ (gz,t)ik

∂x j
+

∂ (gz,t) jk

∂xi
= 0 for every 1≤ i, j,k ≤ 2m.

Step 3. Using (8.20), (8.21) and the Poincaré lemma (see Theorem 8.1), we find
a C∞ vector field uz,t : R2m → R

2m such that

dy (uz,t �gz,t) =− d
dt

gz,t = ωm− i∗z [g] in Q, for every t ∈ [0,1].

We now consider the initial value problem, for every x = (y,z) ∈ Q,

d
dt

ϕz,t = uz,t ◦ϕz,t and ϕz,0(y) = y.
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Using Theorem 12.8, we deduce that, up to restricting the set Q,

ϕ∗z,1 (gz,1) = gz,0 = ωm,

which means that

∑
1≤i< j≤2m

(gz,1)i j (ϕz,1 (y))dyϕ i
z,1∧dyϕ j

z,1 = ωm, (8.22)

where for u : Rn → R, we have set

dyu =
2m

∑
i=1

∂u
∂xi

dxi and dzu =
n

∑
i=2m+1

∂u
∂xi

dxi.

We finally let, for x = (y,z) ∈ Q,

ϕ (x) = (ϕz,1 (y) ,z)

and we claim that this is the diffeomorphism we are looking for. Indeed, first observe
that

∑
1≤i< j≤2m

(gz,1)i j (ϕz,1 (y))dyϕ i
z,1∧dyϕ j

z,1 = ∑
1≤i< j≤2m

gi j (ϕ (x))dyϕ i∧dyϕ j. (8.23)

We, moreover, have

ϕ∗ (g) = ∑
1≤i< j≤n

gi j (ϕ (y))dϕ i∧dϕ j

= ∑
1≤i< j≤2m

gi j (ϕ (y))dϕ i∧dϕ j + ∑
1≤i< j≤n

2m< j

gi j (ϕ (y))dϕ i∧dϕ j

= ∑
1≤i< j≤2m

gi j (ϕ (y))
(
dyϕ i +dzϕ i)∧ (

dyϕ j +dzϕ j)
+ ∑

1≤i< j≤n
2m< j

gi j (ϕ (y))dϕ i∧dx j

and thus

ϕ∗ (g) = ∑
1≤i< j≤2m

gi j (ϕ (y))dyϕ i∧dyϕ j

+ ∑
1≤i< j≤2m

gi j (ϕ (y))dyϕ i∧dzϕ j + ∑
1≤i< j≤2m

gi j (ϕ (y))dzϕ i∧dyϕ j

+ ∑
1≤i< j≤2m

gi j (ϕ (y))dzϕ i∧dzϕ j + ∑
1≤i< j≤n

2m< j

gi j (ϕ (y))dϕ i∧dx j. (8.24)
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Appealing to (8.22)–(8.24), we get

ϕ∗ (g) = ωm + ∑
1≤i< j≤n

2m< j

ri j dxi∧dx j

for appropriate ri j . This finishes the proof. ��



Chapter 9

The Equation divu = f

We now study the equation
divu = f ,

which is constantly used in Chapter 10. Of course, most of the results can be found in
Chapter 8. However, the proofs are much more elementary in this case and, in most
cases, do not require the sophisticated machinery of Hodge–Morrey decomposition.
They use only standard properties of the Laplacian. Therefore, for the convenience
of the reader, we have gathered and proved the results in the present chapter.

9.1 The Main Theorem

We first introduce the following notations.

Notation 9.1. (i) For a C1 vector field u : Rn → R
n we let

divu =
n

∑
i=1

∂ui

∂xi
.

In terms of differential forms, u is seen as a 1-form and the divergence operator is
seen as the δ operator on 1-forms.

(ii) For a C1 vector field v : Rn → R
n(n−1)/2 where the components of v are writ-

ten as
v = (vi j)1≤i< j≤n ∈ R

n(n−1)/2,

we define
curl∗ v = ((curl∗ v)1 , . . . ,(curl∗ v)n) ∈ R

n

and

(curl∗ v)i =
i−1

∑
j=1

∂v ji

∂x j
−

n

∑
j=i+1

∂vi j

∂x j
.
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We therefore have

divcurl∗ v = 0 for every v ∈C2
(
R

n;Rn(n−1)/2
)
.

In terms of differential forms v is seen as a 2-form and the curl∗ operator is seen as
the δ operator on 2-forms. The identity divcurl∗ v = 0 is just δδv = 0.

Theorem 9.2. Let r ≥ 0 be an integer and 0 < α < 1. Let Ω ⊂ R
n be a bounded

connected open Cr+2,α set. The following conditions are then equivalent:

(i) f ∈Cr,α (
Ω
)

satisfies ∫
Ω

f = 0.

(ii) There exists u ∈Cr+1,α (
Ω ;Rn

)
verifying{

divu = f in Ω ,

u = 0 on ∂Ω .
(9.1)

Furthermore, the correspondence f → u can be chosen linear and there exists C =
C (r,α,Ω)> 0 such that

‖u‖Cr+1,α ≤C‖ f‖Cr,α .

Remark 9.3. (i) If Ω is not connected, then the condition
∫

Ω f = 0 has to hold on
each connected component of Ω .

(ii) As we already said, this result is part of the studies on the Poincaré lemma
(cf. Chapter 8). However, because of its importance in applications, it has received
considerable attention and has usually been treated independently of the context of
Hodge–Morrey decomposition and the Poincaré lemma. Precise references can be
found in Bogovski [12], Borchers and Sohr [14], Dacorogna [27, 28], Dacorogna
and Moser [33], Dautray and Lions [35], Galdi [46], Girault and Raviart [50], Kap-
itanskii and Pileckas [59], Ladyzhenskaya [64], Ladyzhenskaya and Solonnikov
[65], Necas [79], Tartar [94] and Von Wahl [103, 104].

(iii) Similar type of results hold for f ∈ Lp, 1 < p < ∞, finding u ∈W 1,p. How-
ever, the result is false if p = 1 or p = ∞ and it is also false in C0,α when α = 0 or
α = 1; see Bourgain and Brézis [16], Dacorogna, Fusco and Tartar [30], Mc Mullen
[73] and Preiss [83].

Proof. (ii)⇒ (i). This implication is just the divergence theorem.

(i)⇒ (ii). We split the proof into two steps.

Step 1. We first find w∈Cr+2,α (cf. Gilbarg and Trudinger [49] or Ladyzhenskaya
and Uraltseva [66]) satisfying{

Δw = f in Ω ,

∂w/∂ν = 0 on ∂Ω ,
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where ν is the exterior unit normal to ∂Ω . In order to get uniqueness, we assume
that ∫

Ω
w = 0.

The uniqueness ensures that the correspondence f → w is linear. Moreover, there
exists c1 = c1 (r,α,Ω)> 0 such that

‖w‖Cr+2,α ≤ c1 ‖ f‖Cr,α . (9.2)

Step 2. We then make the ansatz

u = curl∗ v+gradw. (9.3)

Since divcurl∗ v = 0 for any v, it remains to find v ∈Cr+2,α such that

curl∗ v =−gradw on ∂Ω .

An easy computation (using the fact that ∂w/∂ν = 0) shows that a solution of this
problem is given by

gradvi j =

(
∂w
∂xi

ν j− ∂w
∂x j

νi

)
ν on ∂Ω ,

whose solvability is ensured by Lemma 8.8 and, moreover, there exists c2 =
c2 (r,α,Ω)> 0 such that

‖v‖Cr+2,α ≤ c2 ‖w‖Cr+2,α . (9.4)

The combination of (9.2)–(9.4) leads to the proof of the first part of the theorem.

Step 3. Since the constructions of Steps 1 and 2 are linear, so is the correspon-
dence f → u. The inequality follows from the previous steps. 
�

9.2 Regularity of Divergence-Free Vector Fields

The next result uses in a more direct way the results of Chapter 8, namely Theo-
rem 8.4.

Theorem 9.4. Let r ≥ 0 be an integer and 0 < α < 1. Let Ω ⊂ R
n be a bounded

open contractible smooth set. The following conditions are then equivalent:

(i) Let u ∈Cr,α (
Ω ;Rn

)
satisfy

divu = 0 in Ω .

(ii) There exists v ∈Cr+1,α
(

Ω ;Rn(n−1)/2
)

such that

u = curl∗ v in Ω .
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Remark 9.5. (i) If Ω is no longer contractible, we then should add another condition
to (i), namely ∫

Ω
〈u;ψ〉= 0 for every ψ ∈HT (Ω ;Rn) ,

where

HT (Ω ;Rn) =

⎧⎨
⎩ψ ∈C∞ (

Ω ;Rn) :

⎡
⎣ curlψ = 0 in Ω

divψ = 0 in Ω
ν ∧ψ = 0 on ∂Ω

⎫⎬
⎭ ,

where ν is the exterior unit normal to ∂Ω . In Section 6.1, HT (Ω ;Rn) is denoted
by HT

(
Ω ;Λ 1

)
. If Ω is contractible, then

HT (Ω ;Rn) = {0}

and thus the condition∫
Ω
〈u;ψ〉= 0 for every ψ ∈HT (Ω ;Rn)

is trivially fulfilled.
(ii) We recall that ν ∧ψ = 0 stands for

νiψ j−ν jψi = 0 for every 1≤ i, j ≤ n.

(iii) When r = 0, divu = 0 is understood in the sense of distributions.
(iv) The correspondence u→ v can be chosen linear and continuous, as in Theo-

rem 8.4.

Proof. (ii)⇒ (i). The condition divu= 0 follows at once from the fact that divcurl∗ v=
0. To obtain the condition in (i) of the above remark we integrate by parts, namely∫

Ω
〈u;ψ〉=

∫
Ω
〈curl∗ v;ψ〉=−

∫
Ω
〈v; curlψ〉+

∫
∂Ω
〈v;ν ∧ψ〉 .

The result then follows since ψ ∈HT (Ω ;Rn) .

(i)⇒ (ii). This follows from Theorem 8.4. 
�

9.3 Some More Results

9.3.1 A First Result

In Corollary 10.8, we use the next proposition.

Proposition 9.6. Let r≥ 0 be an integer and 0 < α < 1. Let O,Ω ⊂R
n be bounded

open smooth sets such that O is contractible, Ω is connected and
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O⊂ O⊂Ω .

Let f ∈Cr,α(Ω) be such that ∫
O

f =
∫

Ω
f = 0.

Then there exists u ∈Cr+1,α(Ω ;Rn) such that{
divu = f in Ω ,

u = 0 on ∂O∪∂Ω .
(9.5)

Proof. We split the proof into four steps.

Step 1. Using Theorem 9.2, there exist w1 ∈Cr+1,α(O;Rn) and v∈Cr+1,α(Ω ;Rn)
such that {

divw1 = f in O,

w1 = 0 on ∂O
(9.6)

and {
divv = f in Ω ,

v = 0 on ∂Ω .
(9.7)

Step 2. Let w2 ∈Cr+1,α(O;Rn) be defined by

w2 = w1− v.

Using (9.6) and (9.7), we obtain{
divw2 = 0 in O,

w2 =−v on ∂O.
(9.8)

Since divw2 = 0, there exists, invoking Theorem 9.4, h ∈Cr+2,α(O;Rn(n−1)/2) such
that

curl∗ h = w2 .

Step 3. Using Theorem 16.11 componentwise, there exists

h̃ ∈Cr+2,α(Ω ;Rn(n−1)/2)

such that

h̃ = h in O.

Let φ ∈C∞(Ω ; [0,1]) be such that

φ ≡ 1 in O and supp φ ⊂Ω .
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Finally, let w ∈Cr+1,α(Ω ;Rn) be defined by

w = curl∗(φ h̃).

Step 4. Let us show that u ∈Cr+1,α(Ω ;Rn) defined by

u = v+w

verifies (9.5). Using (9.7), we have

divu = divv+divw = f +divcurl∗(φ h̃) = f in Ω .

Using the definition of φ , we have w = 0 on ∂Ω and therefore, appealing to (9.7),

u = v+w = 0 on ∂Ω .

Using again the definition of φ , we obtain

w = curl∗(φ h̃) = curl∗(h) = w2 in O.

Combining the above result with (9.6) and (9.8), we have

u = v+w = v+w2 = w1 = 0 on ∂O.

This concludes the proof of the lemma. 
�

9.3.2 A Second Result

The following proposition is used in Theorem 10.11. It is a weaker version of The-
orem 9.2 from the point of view of regularity, but it gives an additional information
on the support of the solution.

Proposition 9.7. Let r≥ 1 be an integer and Ω be a bounded connected open set in
R

n. Then for every h ∈Cr
0(Ω) such that∫

Ω
h = 0,

there exists u ∈Cr
0(Ω ;Rn) such that

divu = h in Ω .

The proof of the above proposition will rely on two lemmas. The first lemma
gives an explicit solution when Ω = (0,1)n and the second one will allow us, de-
composing the domain Ω , to suppose that Ω = (0,1)n. In the sequel, we let, for any
integer s≥ 1,

Qs = (0,1)s .
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Lemma 9.8. Let r ≥ 1 be an integer. Then for every h ∈Cr
0(Q

n) such that∫
Qn

h = 0,

there exists u ∈Cr
0(Q

n;Rn) such that

divu = h in Qn.

Proof. We proceed by induction on n. The case n = 1 is immediate; just define

u(x) =
∫ x

0
h(y)dy.

Suppose now that the lemma holds true for n− 1 and let us prove it for n. Define
g ∈Cr

0
(
Qn−1

)
by

g(x2, . . . ,xn) =
∫ 1

0
h(y,x2, . . . ,xn)dy.

Thus, there exists v ∈Cr
0
(
Qn−1;Rn−1

)
satisfying

divv = g in Qn−1.

We then choose ξ ∈C∞
0 (0,1) satisfying

∫ 1

0
ξ (y)dy = 1.

We now define u1, the first component of u, by

u1 =
∫ x1

0
h(y,x2, . . . ,xn)dy−

∫ x1

0
ξ (y)dy

∫ 1

0
h(y,x2, . . . ,xn)dy,

and u is defined by

u(x) =
(
u1(x),ξ (x1)v(x2, . . . ,xn)

)
.

It is straightforward to see that u has all of the desired properties. 
�
We next turn to our second lemma (cf. [78] and also [33]).

Lemma 9.9. Let Ω1,Ω ⊂ R
n be bounded and connected open sets. Let U0, . . . ,UN

be N +1 bounded open sets in R
n such that

Ω 1 ⊂
N⋃

j=0

Uj ⊂Ω (9.9)

and, for every 0≤ j ≤ N,
Uj ∩Ω1 �= /0. (9.10)
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Then for every h ∈Cr(Ω) with

supph⊂Ω1 and
∫

Ω
h = 0,

there exist h0, . . . ,hN ∈Cr(Ω) with the following properties:

N

∑
s=0

hs = h in Ω , supph j ⊂Uj ∩Ω1 and
∫

Uj

h j = 0, 0≤ j ≤ N.

Proof. We divide the proof into two steps.

Step 1. We start with some preliminaries.

(i) Using (9.9) we let ψ0, . . . ,ψN ∈ C∞(Rn; [0,1]) be a partition of unity of Ω 1
subordinate to {Uj}, meaning that

N

∑
s=0

ψs = 1 in Ω 1 and suppψ j ⊂Uj for every 0≤ j ≤ N. (9.11)

(ii) Since Ω1 is connected and (9.10) holds, the Uj can be ordered in such a
manner that for every 1≤ k ≤ N,(

Uk ∩⋃
j<kUj

)∩Ω1 �= /0.

This is easily shown by induction on k. Suppose first that k = 1. If it were not
possible to choose one of the Ul , 1 ≤ l ≤ N, and rename it U1, such that the above
equation holds true, then we would have

(Ul ∩U0)∩Ω1 = /0 for 1≤ l ≤ N.

This would imply that the two open sets, both nonempty due to (9.10),

N⋃
l=1

Ul ∩Ω1 and U0∩Ω1

form a disjoint partition of Ω1, contradicting the connectivity. The choice of Uk for
2 ≤ k ≤ N is made by the same argument. Therefore, for every 1 ≤ k ≤ N, we can
find an integer ρ(k)< k such that

Uk ∩Uρ(k)∩Ω1 �= /0. (9.12)

We define the matrix A ∈ R
(N+1)×N by

A j
k =

⎧⎪⎨
⎪⎩

1 if j = k

−1 if j = ρ(k)
0 otherwise for 0≤ j ≤ N, 1≤ k ≤ N.
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Since each of the N columns of the matrix A contains exactly one pair (+1,−1), we
have that for every 1≤ k ≤ N,

N

∑
j=0

A j
k = 0. (9.13)

Observe that if we cancel the first line of A, the resulting N ×N matrix is then
invertible.

(iii) Invoking (9.12), we can easily construct η1, . . . ,ηN ∈C∞(Rn; [0,1]) such that
for every 1≤ k ≤ N,

suppηk ⊂Uk ∩Uρ(k)∩Ω1 and
∫

Ω1

ηk = 1.

Step 2. For every 0≤ j ≤ N, we define h j ∈Cr(Ω) by

h j = hψ j−
N

∑
k=1

λkA j
kηk, (9.14)

where the λk are real numbers and will be chosen appropriately. First, we notice that

supp(hψ j)⊂Uj ∩Ω1 for every 0≤ j ≤ N.

Moreover, for 0≤ j≤N, we have that A j
k �= 0 only if k = j or ρ(k) = j and for those

k, the support of ηk lies in

Uk ∩Uρ(k)∩Ω1 ⊂Uj ∩Ω1 .

Thus, we have for every 0≤ j ≤ N that (for any λk),

supph j ⊂Uj ∩Ω1 .

Then (again for any λk) we have, using (9.11) and (9.13), that

N

∑
j=0

h j = h in Ω1,

and since the left- and right-hand sides of the above equation are both zero outside
of Ω1 , the last equality holds in all Ω . In order to have∫

Ω
h j = 0, for every 0≤ j ≤ N,

the λ1, . . . ,λN have to satisfy the N +1 following equations (integrating (9.14))

N

∑
k=1

λkA j
k =

∫
Ω

hψ j , for every 0≤ j ≤ N. (9.15)
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Using (9.13) and

0 =
∫

Ω
h =

N

∑
j=0

∫
Ω

hψ j,

we observe that if (9.15) is true for j = 1, . . . ,N, then (9.15) is automatically verified
for j = 0. From the properties of A, the N remaining equations are uniquely solvable.
The proof of the lemma is then complete. 
�

We can now conclude with the proof of Proposition 9.7.

Proof. We divide the proof into three steps.
Step 1. (i) Let Ω1 be a connected open set in R

n such that

supph⊂Ω1 ⊂Ω 1 ⊂Ω .

Then choose N ∈ N, a0, . . . ,aN ∈Ω and η0, . . . ,ηN > 0, such that

Ω 1 ⊂
N⋃

j=0

[a j +η jQn]⊂Ω

and
[a j +η jQn]∩Ω1 �= /0 for every 0≤ j ≤ N.

(ii) Applying Lemma 9.9 to h, there exist h0, . . . ,hN ∈Cr(Ω) such that∫
Ω

h j = 0 and supph j ⊂ a j +η jQn for every 0≤ j ≤ N, (9.16)

N

∑
j=0

h j = h in Ω . (9.17)

Step 2. Fix 0 ≤ j ≤ N. It is obvious, by a simple change of variables, that the
result of Lemma 9.8 remains true if we change Qn into a+ηQn for any a ∈ R

n and
η > 0. We therefore apply Lemma 9.8 to h j (this is possible in view of (9.16)) and
we get u j ∈Cr

0(a j +η jQn;Rn) and

divu j = h j in a j +η jQn.

Step 3. Extending all the u j by 0 to the whole of Ω , we have, using (9.17), that u
defined by

u =
n

∑
j=0

u j

has all of the desired properties. 
�
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The Case k = n



Chapter 10

The Case f ·g > 0

10.1 The Main Theorem

The main theorem of this chapter has been established by Dacorogna and Moser [33].

Theorem 10.1 (Dacorogna–Moser theorem). Let r ≥ 0 be an integer and 0 <
α < 1. Let Ω ⊂R

n be a bounded connected open Cr+2,α set. Let f ,g ∈Cr,α (
Ω
)

be
such that f ·g > 0 in Ω and ∫

Ω
f =

∫
Ω

g. (10.1)

Then there exists ϕ ∈ Diffr+1,α (
Ω ;Ω

)
satisfying{

g(ϕ(x))det∇ϕ(x) = f (x), x ∈Ω ,

ϕ(x) = x, x ∈ ∂Ω .
(10.2)

Moreover, if c > 0 is such that∥∥∥∥ 1
f

∥∥∥∥
C0

,

∥∥∥∥1
g

∥∥∥∥
C0

, ‖ f‖C0,α , ‖g‖C0,α ≤ c,

then there exists a constant C =C (c,r,α,Ω)> 0 such that

‖ϕ‖Cr+1,α ≤C [1+‖ f‖Cr,α +‖g‖Cr,α ] .

Remark 10.2. (i) Recall that Diffr,α (
Ω ;Ω

)
denotes the set of diffeomorphisms ϕ so

that ϕ
(
Ω
)
= Ω , ϕ ∈Cr,α (

Ω ;Rn
)

and ϕ−1 ∈Cr,α (
Ω ;Rn

)
.

(ii) Identifying functions with n-forms and depending on the context, we some-
times prefer to write (10.2) as{

ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω .
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(iii) If Ω is not connected, then condition (10.1) has to hold on each connected
component.

(iv) The sufficient conditions are also necessary. More precisely, if ϕ satisfies
(10.2), then necessarily, for nonvanishing f and g, we have f ·g > 0 in Ω (cf. Corol-
lary 19.10) and (10.1) holds (cf. (19.3)). Moreover, the function

f
g◦ϕ

∈Cr,α (
Ω
)

;

hence, if one of the functions f or g is in Cr,α , then so is the other one.

(v) The study of this problem originated in the seminal work of Moser [78].
This result has generated a considerable amount of work, notably by Banyaga [10],
Dacorogna [26], Reimann [84], Tartar [95] and Zehnder [107]. Posterior contribu-
tions to [33] can be found in Rivière and Ye [85] and Ye [106]. Burago and Kleiner
[19] and Mc Mullen [73], independently, proved that the result is false if r = α = 0,
suggesting that the gain of regularity is to be expected only when 0 < α < 1.

The estimate in the theorem has a sharper form when g≡ 1.

Theorem 10.3 (Dacorogna–Moser theorem). Let r ≥ 0 be an integer and 0 <
α < 1. Let Ω ⊂ R

n be a bounded connected open Cr+2,α set and f : Ω → R. Then
the two following statements are equivalent:

(i) The function f ∈Cr,α (
Ω
)
, f > 0 in Ω and satisfies∫

Ω
f = measΩ . (10.3)

(ii) There exists ϕ ∈ Diffr+1,α (
Ω ;Ω

)
satisfying{

det∇ϕ(x) = f (x), x ∈Ω ,

ϕ(x) = x, x ∈ ∂Ω .
(10.4)

Moreover, if c > 0 is such that ∥∥∥∥ 1
f

∥∥∥∥
C0

, ‖ f‖C0,α ≤ c,

then there exists a constant C =C (c,r,α,Ω)> 0 such that

‖ϕ− id‖Cr+1,α ≤C‖ f −1‖Cr,α .

We will give in Section 10.4 two proofs of Theorem 10.1 (one of them relying
on Theorem 10.3). However, before that, we give two intermediate results.

The first one in Section 10.2 presents the celebrated flow method introduced by
Moser [78]. It is a very simple and elegant method for solving our problem; however,
it fails to give the expected gain in regularity.
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The second result discussed in Section 10.3 is based on a fixed point argument
and gives the main theorem under a smallness condition.

In Section 10.5, we give a more constructive way to find solutions of (10.2). It
has the advantage to require less smoothness of the domain and, more importantly,
we are also able to obtain results such as

supp(ϕ− id)⊂Ω ,

provided supp( f −g) ⊂ Ω . However, its main drawback is that it does not provide
the expected gain of regularity.

10.2 The Flow Method

All over the present section when dealing with maps

g : R×R
n → R

N

we write, depending on the context,

g = g(t,x) = gt(x), t ∈ R, x ∈ R
n.

The flow method introduced by Moser easily generalizes to the case of k-forms;
see Theorem 12.7. Before stating the main theorem of the present section, we start
with a lemma, which is a particular case of Theorem 12.7.

Lemma 10.4. Let r ≥ 1 be an integer, 0≤ α ≤ 1, T > 0 and Ω ⊂ R
n be a bounded

open Lipschitz set. Let

u ∈Cr,α([0,T ]×Ω ;Rn) and f ∈Cr,α([0,T ]×Ω)

and, moreover, for every 0≤ t ≤ T,⎧⎨
⎩ div( ftut) =− d

dt
ft in Ω ,

ut = 0 on ∂Ω .
(10.5)

Then for every 0≤ t ≤ T, ϕt : Ω → R
n defined by⎧⎨

⎩
d
dt

ϕt = ut ◦ϕt , 0≤ t ≤ T ,

ϕ0 = id
(10.6)

belongs to Diffr,α (
Ω ;Ω

)
and verifies{

ϕ∗t ( ft) = f0 in Ω ,

ϕt = id on ∂Ω .
(10.7)
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Moreover, for each x ∈Ω such that ut(x) = 0 for every 0≤ t ≤ T, then

ϕt(x) = x for every 0≤ t ≤ T.

Furthermore, if

‖ut‖C1(Ω) ≤ c for every 0≤ t ≤ T ,

then there exists a constant C =C (c,r,T,Ω)> 0 such that for every t ∈ [0,T ] ,

‖ϕt − id‖Cr,α (Ω) ≤C
∫ t

0
‖us‖Cr,α (Ω) ds.

Before proving the lemma we need the following elementary result.

Proposition 10.5. Let Ω1,Ω2 ⊂ R
n be bounded open Lipschitz sets and T > 0. Let

u ∈C1([0,T ]×Ω 2;Rn) and ϕ ∈C1([0,T ]×Ω 1;Ω 2)

such that, in Ω1 ,

d
dt

ϕt = ut ◦ϕt for every 0≤ t ≤ T. (10.8)

Then for every f ∈ C1([0,T ]×Ω 2), the following equality holds in Ω1 and for
0≤ t ≤ T :

d
dt
[ϕ∗t ( ft)] = ϕ∗t

(
d
dt

ft +div( ftut)

)
.

Remark 10.6. Although this proposition is a simple consequence of Theorem 12.5,
we give here an elementary proof without using any tool of differential geometry.

Proof. We start by recalling a well-known fact (cf., e.g., Theorem 7.2 in Chapter 1
of Coddington and Levinson [22]). The solution of (10.8) satisfies

det∇ϕt (x) = [det∇ϕ0 (x)] exp
[∫ t

0
(divus)(ϕs (x)) ds

]
.

Since the right-hand side of the above identity is C1 in t, we get

d
dt

[det∇ϕt (x)] = det∇ϕt (x) · (divut)(ϕt (x)) . (10.9)

We also obtain

d
dt
[ϕ∗t ( ft)] =

d
dt
[det∇ϕt · ft(ϕt)]

=
d
dt

[det∇ϕt ] ft(ϕt)+det∇ϕt

[(
d
dt

ft

)
(ϕt)+

〈
∇ ft(ϕt);

d
dt

ϕt

〉]
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and thus, appealing to (10.8) and (10.9), we find

d
dt
[ϕ∗t ( ft)] = det∇ϕt

[
(divut)(ϕt) · ft(ϕt)+

(
d
dt

ft

)
(ϕt)+ 〈∇ ft(ϕt);ut(ϕt)〉

]

= det∇ϕt

[(
d
dt

ft

)
(ϕt)+div( ftut)(ϕt)

]
= ϕ∗t

(
d
dt

ft +div( ftut)

)
,

which concludes the proof. 
�
We now prove Lemma 10.4.

Proof. We split the proof into two steps.
Step 1. Using Theorem 12.1, for every 0≤ t ≤ T, the solution ϕt of (10.6) belongs

to Diffr,α(Ω ;Ω) and verifies ϕt = id on ∂Ω . Moreover, for each x ∈ Ω such that
ut(x) = 0 for every 0≤ t ≤ T, then

ϕt(x) = x for every 0≤ t ≤ T.

Furthermore, if
‖ut‖C1 ≤ c for every 0≤ t ≤ T ,

then, using (12.3), we immediately deduce that for every 0≤ t ≤ T,

‖ϕt − id‖Cr,α ≤C
∫ t

0
‖us‖Cr,α ds,

where C =C (c,r,T,Ω)> 0. Finally, we have

ϕ ∈Cr,α([0,T ]×Ω ;Ω).

Step 2. Using Proposition 10.5 and the hypotheses on ut and ft , we get that, in Ω ,

d
dt
[ϕ∗t ( ft)] = ϕ∗t

(
d
dt

ft +div( ftut)

)
= 0,

which implies the result since ϕ0 = id . 
�
We now turn to the Moser theorem [78], which did not however consider the

boundary condition.

Theorem 10.7. Let r ≥ 1 be a integer, 0 ≤ α ≤ 1 and Ω ⊂ R
n be a bounded con-

nected open Cr+2,α set. Let also f ,g ∈Cr,α (
Ω
)

be such that f ·g > 0 in Ω and∫
Ω

f =
∫

Ω
g.

Then there exists ϕ ∈ Diffr,α (
Ω ;Ω

)
satisfying{

g(ϕ(x))det∇ϕ(x) = f (x), x ∈Ω ,

ϕ(x) = x, x ∈ ∂Ω .
(10.10)
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Furthermore, if 0 < γ ≤ α < 1 and if c > 0 is such that∥∥∥∥ 1
f

∥∥∥∥
C0

,

∥∥∥∥1
g

∥∥∥∥
C0

, ‖ f‖C1 , ‖g‖C1 ≤ c,

then there exists a constant C =C (c,r,α,γ,Ω)> 0 such that

‖ϕ− id‖Cr,α ≤C [‖ f‖Cr,α +‖g‖Cr,α ]‖ f −g‖C0,γ +C‖ f −g‖Cr−1,α .

Proof. Step 1. Define, for 0≤ t ≤ 1, x ∈Ω ,

ft(x) = (1− t) f (x)+ tg(x)

and

ut (x) =
u(x)
ft(x)

, (10.11)

where u ∈Cr,α (
Ω ;Rn

)
(if 0 < α < 1, then u ∈Cr+1,α (

Ω ;Rn
)
) satisfies{

divu = f −g in Ω ,

u = 0 on ∂Ω .
(10.12)

Such a u exists by Theorem 9.2. Note, however, that ut (see (10.11)) is only in Cr,α

(even if 0 < α < 1), since f and g are only in Cr,α . Since (10.11) and (10.12) hold,
we have ⎧⎪⎨

⎪⎩
div(ut ft) =− d

dt
ft = f −g in Ω ,

ut = 0 on ∂Ω .

(10.13)

We can then apply Lemma 10.4 and have, defining φt : Ω → R
n for every t ∈ [0,1]

as the solution of ⎧⎪⎨
⎪⎩

d
dt

φt = ut ◦φt , 0≤ t ≤ 1,

φ0 = id,

that

ϕ = φ1

has all of the desired properties.

Step 2. Let us now show the estimate (recall that in the present step, 0 < α < 1).
We have that the solution of (10.13), found in Theorem 9.2, satisfies

‖ut ft‖Cr,α ≤C1 ‖ f −g‖Cr−1,α and ‖ut ft‖C1,γ ≤C1 ‖ f −g‖C0,γ ,
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and thus, invoking Theorem 16.28 and Proposition 16.29, we have

‖ut‖Cr,α =

∥∥∥∥ut
ft
ft

∥∥∥∥
Cr,α

≤C2

[
‖ut ft‖Cr,α

∥∥∥∥ 1
ft

∥∥∥∥
C0

+‖ut ft‖C0

∥∥∥∥ 1
ft

∥∥∥∥
Cr,α

]
≤C3 [‖ f −g‖Cr−1,α +‖ f −g‖C0,γ ‖ ft‖Cr,α ]

≤C3 ‖ f −g‖Cr−1,α +C3 ‖ f −g‖C0,γ [‖ f‖Cr,α +‖g‖Cr,α ] .

Similarly, we also have
‖ut‖C1 ≤C4 .

Combining the above estimates with the one in Lemma 10.4, we obtain the claim.

�

In Section 11.1, we will need a slight improvement of the above theorem.

Corollary 10.8. Let r ≥ 1 be an integer. Let O,Ω ⊂ R
n be bounded open smooth

sets and such that O is contractible, Ω is connected and

O⊂ O⊂Ω .

Let also f ,g ∈Cr(Ω) be such that f ·g > 0 in Ω with∫
O

f =
∫

O
g and

∫
Ω

f =
∫

Ω
g.

Then there exists ϕ ∈ Diffr(Ω ;Ω) such that{
g(ϕ(x))det∇ϕ(x) = f , x ∈Ω ,

ϕ(x) = x, x ∈ ∂O∪∂Ω .
(10.14)

Proof. We decompose the proof into two steps.
Step 1. Since f −g ∈Cr(Ω), then, for example,

f −g ∈Cr−1,1/2(Ω).

Therefore, using Proposition 9.6, there exists u ∈ Cr,1/2(Ω ;Rn) (in particular, in
Cr(Ω ;Rn)) such that {

divu = f −g in Ω ,

u = 0 on ∂O∪∂Ω .

Step 2. Define, for 0≤ t ≤ 1, x ∈Ω ,

ft(x) = (1− t) f (x)+ tg(x)

and

ut (x) =
u(x)
ft(x)

.
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Note that
div(ut ft) = divu = f −g =− d

dt
ft in Ω

and ut = 0 on ∂Ω ∪ ∂O. We can then apply Lemma 10.4 and have, defining φt :
Ω → R

n for every t ∈ [0,1] as the solution of⎧⎨
⎩

d
dt

φt = ut ◦φt , 0≤ t ≤ 1,

φ0 = id,

that
ϕ = φ1

has all of the desired properties. 
�

10.3 The Fixed Point Method

We now prove Theorem 10.1 when g≡ 1 and under a smallness assumption on the
C0,γ norm of f −1. The following result is in Dacorogna and Moser [33] and follows
earlier considerations by Zehnder [107].

Theorem 10.9. Let r≥ 0 be an integer and 0 < α,γ < 1 with γ ≤ r+α. Let Ω ⊂R
n

be a bounded connected open Cr+2,α set. Let f ∈Cr,α (
Ω
)
, f > 0 in Ω and∫

Ω
f = measΩ .

Then there exists ε = ε (r,α,γ,Ω)> 0 such that if ‖ f −1‖C0,γ ≤ ε, then there exists
ϕ ∈ Diffr+1,α (

Ω ;Ω
)

satisfying{
det∇ϕ (x) = f (x) , x ∈Ω ,

ϕ (x) = x, x ∈ ∂Ω .
(10.15)

Moreover, there exists a constant c = c(r,α,γ,Ω)> 0 such that if ‖ f −1‖C0,γ ≤ ε,
then ϕ satisfies

‖ϕ− id‖Cr+1,α ≤ c‖ f −1‖Cr,α and ‖ϕ− id‖C1,γ ≤ c‖ f −1‖C0,γ .

Proof. For the convenience of the reader we will not use the abstract fixed point
theorem (cf. Theorem 18.1), but we will redo the proof. We divide the proof into
two steps.

Step 1. We start by introducing some notations.
(i) Let

X =
{

a ∈Cr+1,α (
Ω ;Rn) : a = 0 on ∂Ω

}
,

Y =
{

b ∈Cr,α (
Ω
)

:
∫

Ω b = 0
}
.
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Define L : X → Y by La = diva. Note that L is well defined by the divergence
theorem. As seen in Theorem 9.2, there exist a bounded linear operator L−1 : Y → X
and a constant K1 = K1(r,α,γ,Ω)> 0, such that

LL−1 = id in Y ,∥∥L−1b
∥∥

C1,γ ≤ K1 ‖b‖C0,γ , (10.16)∥∥L−1b
∥∥

Cr+1,α ≤ K1 ‖b‖Cr,α . (10.17)

(ii) Let for ξ , any n×n matrix,

Q(ξ ) = det(I +ξ )−1− trace(ξ ) , (10.18)

where I stands for the identity matrix. Note that Q is a sum of monomials of degree
t, 2≤ t ≤ n. Hence, there exists a constant k > 0 such that for every ξ ,η ∈ R

n×n,

|Q(ξ )−Q(η)| ≤ k
(
|ξ |+ |η |+ |ξ |n−1 + |η |n−1

)
|ξ −η | .

With the same method, we can find (cf. Theorem 16.28) a constant K2 = K2(r,Ω)>
0 such that if v,w ∈Cr+1,α with ‖v‖C1,γ , ‖w‖C1,γ ≤ 1, then

‖Q(∇v)−Q(∇w)‖C0,γ ≤ K2 (‖v‖C1,γ +‖w‖C1,γ )‖v−w‖C1,γ ,

‖Q(∇v)‖Cr,α ≤ K2 ‖v‖C1 ‖v‖Cr+1,α .
(10.19)

Step 2. In order to solve (10.15), we set v(x) = ϕ (x)− x and we rewrite it as{
divv = f −1−Q(∇v) in Ω ,

v = 0 on ∂Ω .
(10.20)

If we set
N (v) = f −1−Q(∇v) ,

then (10.20) is satisfied for any v ∈ X with

v = L−1N (v) . (10.21)

Note first that the equation is well defined (i.e., N : X → Y ), since if v = 0 on ∂Ω ,
then

∫
Ω N (v(x))dx = 0. Indeed, from (10.18) we have that∫

Ω
N (v(x))dx =

∫
Ω
[ f (x)−1−Q(∇v(x))]dx

=
∫

Ω
[ f (x)+divv(x)−det(I +∇v(x))]dx;

since v = 0 on ∂Ω and
∫

Ω f = measΩ , it follows immediately (cf. Corollary 19.10
and the divergence theorem) that the right-hand side of the above identity is 0.
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We now solve (10.21) by the contraction principle. We first let

B =

⎧⎪⎨
⎪⎩u ∈Cr+1,α (

Ω ;Rn) :

⎡
⎢⎣ u = 0 on ∂Ω
‖u‖C1,γ ≤ 2K1 ‖ f −1‖C0,γ

‖u‖Cr+1,α ≤ 2K1 ‖ f −1‖Cr,α

⎫⎪⎬
⎪⎭ .

We endow B with the C1,γ norm. We observe that B is complete (cf. Proposition
16.23) and we will show that by choosing ‖ f −1‖C0,γ small enough, then L−1N :
B → B is a contraction mapping. The contraction principle will then immediately
lead to a solution v ∈ B and, hence, in Cr+1,α of (10.21). Indeed, let

‖ f −1‖C0,γ ≤min
{

1
8K2

1 K2
,

1
2K1

}
. (10.22)

If v,w ∈ B (note that by construction 2K1 ‖ f −1‖C0,γ ≤ 1), we will show that

∥∥L−1N (v)−L−1N (w)
∥∥

C1,γ ≤ 1
2
‖v−w‖C1,γ , (10.23)∥∥L−1N (v)

∥∥
C1,γ ≤ 2K1 ‖ f −1‖C0,γ ,

∥∥L−1N (v)
∥∥

Cr+1,α ≤ 2K1 ‖ f −1‖Cr,α . (10.24)

Inequality (10.23) follows from (10.16), (10.19) and (10.22) through∥∥L−1N (v)−L−1N (w)
∥∥

C1,γ ≤ K1 ‖N (v)−N (w)‖C0,γ

= K1 ‖Q(∇v)−Q(∇w)‖C0,γ

≤ K1K2 (‖v‖C1,γ +‖w‖C1,γ )‖v−w‖C1,γ

≤ 4K2
1 K2 ‖ f −1‖C0,γ ‖v−w‖C1,γ

≤ 1
2
‖v−w‖C1,γ .

To obtain the first inequality in (10.24), we observe that∥∥L−1N (0)
∥∥

C1,γ ≤ K1 ‖N (0)‖C0,γ = K1 ‖ f −1‖C0,γ ,

and, hence, combining (10.23) with the above inequality, we have immediately the
first inequality in (10.24). To obtain the second one, we just have to observe that∥∥L−1N (v)

∥∥
Cr+1,α ≤ K1 ‖N (v)‖Cr,α ≤ K1 ‖ f −1‖Cr,α +K1 ‖Q(∇v)‖Cr,α (10.25)

and use the second inequality in (10.19) to get, recalling that v ∈ B,

‖Q(∇v)‖Cr,α ≤ K2 ‖v‖C1 ‖v‖Cr+1,α ≤ K2 ‖v‖C1,γ ‖v‖Cr+1,α

≤ 2K1K2 ‖ f −1‖C0,γ ‖v‖Cr+1,α .

The above inequality combined with (10.22) gives

‖Q(∇v)‖Cr,α ≤ 1
4K1

‖v‖Cr+1,α .
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Combining this last inequality, (10.25) and the fact that v ∈ B, we deduce that∥∥L−1N (v)
∥∥

Cr+1,α ≤ 2K1 ‖ f −1‖Cr,α .

Thus, the contraction principle gives immediately the existence of a Cr+1,α solution.

It now remains to show that ϕ (x) = v(x)+ x is a diffeomorphism. This is a con-
sequence of the fact that det∇ϕ = f > 0 and ϕ (x) = x on ∂Ω (see Theorem 19.12).
The estimates in the statement of the theorem follow by construction, since v ∈ B.


�

10.4 Two Proofs of the Main Theorem

10.4.1 First Proof

We start by proving Theorem 10.3, following the original proof of Dacorogna and
Moser [33].

Proof. We divide the proof into four steps. Let r ≥ 0 be an integer and 0 < α < 1.
The first step is to prove that (ii) ⇒ (i) and the three other steps to prove the reverse
implication.

Step 1. Assume that ϕ ∈ Diffr+1,α (
Ω ;Ω

)
satisfies{

det∇ϕ(x) = f (x), x ∈Ω ,

ϕ(x) = x, x ∈ ∂Ω .

Then, clearly, f ∈Cr,α (
Ω
)
. We also have, from Corollary 19.10, that f > 0 in Ω .

Finally, ∫
Ω

f = measΩ

in view of (19.3).

Step 2 (approximation). We first approximate f ∈Cr,α by functions fη ∈C∞ in
an appropriate way. Let r ≥ t ≥ 0 be an integer and 0≤ γ ≤ α. Let∥∥∥∥ 1

f

∥∥∥∥
C0

, ‖ f‖C0,α ≤ c.

Then for every η > 0 small, we can find (see Proposition 16.46) fη ∈C∞ (
Ω
)

with
fη > 0 in Ω and a constant C =C (c,r,Ω)> 0 so that

∫
Ω

f
fη

= measΩ ,
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∥∥ fη
∥∥

Ct,γ ≤C‖ f‖Ct,γ ,
∥∥ fη

∥∥
Cr+1,α ≤ C

η
‖ f‖Cr,α ,

∥∥ fη
∥∥

C1,α ≤ C
η
‖ f‖C0,α ,

∥∥ fη −1
∥∥

Ct,γ ≤C‖ f −1‖Ct,γ ,
∥∥ fη −1

∥∥
C1,α ≤ C

η
‖ f −1‖C0,α ,∥∥∥∥ f

fη
−1

∥∥∥∥
Ct,γ
≤C‖ f −1‖Ct,γ and

∥∥∥∥ f
fη
−1

∥∥∥∥
C0,γ

≤Cηα−γ .

Step 3 (existence and regularity). We now prove the existence of a solution with
appropriate regularity.

Step 3.1 (choice of an appropriate η). Let ε = ε(r,α,Ω) be the ε in the statement
of Theorem 10.9 with γ = α/2. Then choose η0 > 0 small enough so that

Cηα/2
0 ≤ ε.

Note that η0 only depends on c,r,α and Ω . Next, define h = fη0 . In particular, by
definition of η0 and by the last inequality in Step 2, we have∥∥∥∥ f

h
−1

∥∥∥∥
C0,α/2

≤ ε. (10.26)

Step 3.2 (conclusion). Using (10.26) and Theorem 10.9 (with γ = α/2), we can
find ϕ1 ∈ Diffr+1,α (

Ω ;Ω
)
, a solution of⎧⎪⎨

⎪⎩
det∇ϕ1 (x) =

f (x)
h(x)

, x ∈Ω ,

ϕ1 (x) = x, x ∈ ∂Ω .

We further let ϕ2 ∈ Diffr+1,α (
Ω ;Ω

)
be a solution of{

det∇ϕ2 (y) = h
(
ϕ−1

1 (y)
)
, y ∈Ω ,

ϕ2 (y) = y, y ∈ ∂Ω .

Such a solution exists by Theorem 10.7, since h ◦ ϕ−1
1 ∈ Cr+1,α (

Ω
)

(cf. Theo-
rem 16.31) and∫

Ω
h
(
ϕ−1

1 (y)
)

dy =
∫

Ω
h(x)det∇ϕ1 (x)dx =

∫
Ω

f (x)dx = measΩ .

Finally, observe that the function ϕ = ϕ2 ◦ϕ1 has all of the claimed properties.

Step 4 (estimate). We now prove the estimate, first showing estimates for ϕ1 ,
then for ϕ2 and, finally, for ϕ. We recall that∥∥∥∥ 1

f

∥∥∥∥
C0

, ‖ f‖C0,α ≤ c. (10.27)
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In what follows, C1,C2, . . . will be generic constants depending only on c,r,α
and Ω .

Step 4.1. Since (10.26) holds and, by construction, we deduce that, using Theo-
rem 10.9,

‖ϕ1− id‖Cr+1,α ≤C1

∥∥∥∥ f
h
−1

∥∥∥∥
Cr,α

and ‖ϕ1− id‖C1,α/2 ≤C1

∥∥∥∥ f
h
−1

∥∥∥∥
C0,α/2

.

Invoking Step 2 with γ = α/2 and η = η0 , we hence find

‖ϕ1− id‖Cr+1,α ≤C2 ‖ f −1‖Cr,α (10.28)

and

‖ϕ1− id‖C1,α/2 ≤C2 ‖ f −1‖C0,α/2 . (10.29)

From the last estimate, from (10.27) and from Theorem 19.12, we deduce that

‖ϕ1‖C1 ,
∥∥ϕ−1

1

∥∥
C1 ≤C3 . (10.30)

The next inequality is obtained, combining Theorem 16.31, (10.30) and Theo-
rem 16.32:∥∥ϕ−1

1 − id
∥∥

Cr+1,α =
∥∥(ϕ1− id)◦ϕ−1

1

∥∥
Cr+1,α

≤C4 ‖ϕ1− id‖Cr+1,α +C4 ‖ϕ1− id‖C1 ‖ϕ1‖Cr+1,α

≤C4 ‖ϕ1− id‖Cr+1,α +C5 ‖ϕ1− id‖C1 [1+‖ϕ1− id‖Cr+1,α ]

≤C6 ‖ϕ1− id‖Cr+1,α

and hence, using (10.28),∥∥ϕ−1
1 − id

∥∥
Cr+1,α ≤C7 ‖ f −1‖Cr,α . (10.31)

We also find, in a similar way,∥∥ϕ−1
1 − id

∥∥
C1,α/2 ≤C7 ‖ f −1‖C0,α/2 . (10.32)

We now use Theorem 16.31, Step 2 (recalling that 1/η0 only depends on c,r,α and
Ω ), (10.30), Theorem 16.32 and (10.28), to find∥∥h◦ϕ−1

1

∥∥
Cr+1,α ≤C8 ‖h‖Cr+1,α +C8 ‖h‖C1

∥∥ϕ−1
1

∥∥
Cr+1,α

≤C9 ‖ f‖Cr,α +C9 ‖ f‖C0,α ‖ϕ1‖Cr+1,α

≤C9 ‖ f‖Cr,α +C10 ‖ f‖C0,α [1+‖ f‖Cr,α ]

and thus, since ‖ f‖C0,α ≤ c, we get∥∥h◦ϕ−1
1

∥∥
Cr+1,α ≤C11 ‖ f‖Cr,α . (10.33)
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Similarly, we obtain (using also Proposition 16.29)

∥∥h◦ϕ−1
1

∥∥
C1 ,

∥∥∥∥∥ 1
h◦ϕ−1

1

∥∥∥∥∥
C1

≤C12 . (10.34)

Finally, we have the last estimate, appealing to Theorem 16.31, (10.30) and (10.28):∥∥h◦ϕ−1
1 −1

∥∥
Cr,α =

∥∥(h−1)◦ϕ−1
1

∥∥
Cr,α

≤C13 ‖h−1‖Cr,α +C13 ‖h−1‖C1

∥∥ϕ−1
1

∥∥
Cr,α

≤C14 ‖ f −1‖Cr,α +C14 ‖ f −1‖C0,α ‖ϕ1‖Cr+1,α

≤C14 ‖ f −1‖Cr,α +C15 ‖ f −1‖C0,α [1+‖ f −1‖Cr,α ]

≤C16 ‖ f −1‖Cr,α +C15 ‖ f −1‖C0,α ‖ f −1‖Cr,α

and thus, since ‖ f‖C0,α ≤ c, we find∥∥h◦ϕ−1
1 −1

∥∥
Cr,α ≤C17 ‖ f −1‖Cr,α . (10.35)

We analogously obtain∥∥h◦ϕ−1
1 −1

∥∥
C1,α/2 ≤C17 ‖ f −1‖C0,α/2 . (10.36)

Step 4.2. We now turn to estimate ϕ2 . We have, according to Theorem 10.7 and
(10.34),

‖ϕ2− id‖Cr+1,α

≤C18
[
1+

∥∥h◦ϕ−1
1

∥∥
Cr+1,α

]∥∥h◦ϕ−1
1 −1

∥∥
C0,α/2 +C18

∥∥h◦ϕ−1
1 −1

∥∥
Cr,α .

Using (10.33), (10.36) and (10.35), we find

‖ϕ2− id‖Cr+1,α ≤C19 [1+‖ f‖Cr,α ]‖ f −1‖C0,α/2 +C19 ‖ f −1‖Cr,α

≤C19 [2+‖ f −1‖Cr,α ]‖ f −1‖C0,α/2 +C19 ‖ f −1‖Cr,α

≤C20 ‖ f −1‖Cr,α

and, similarly,
‖ϕ2− id‖C1,α/2 ≤C20 ‖ f −1‖C0,α/2 . (10.37)

Step 4.3. We are now in a position to conclude with the estimate on ϕ. Combining
Step 4.2 and (10.31), we find∥∥ϕ2−ϕ−1

1

∥∥
Cr+1,α ≤ ‖ϕ2− id‖Cr+1,α +

∥∥ϕ−1
1 − id

∥∥
Cr+1,α

≤C21 ‖ f −1‖Cr,α .

Moreover, by (10.32) and (10.37), we get∥∥ϕ2−ϕ−1
1

∥∥
C1,α/2 ≤C22 .
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Since ϕ = ϕ2 ◦ϕ1 , we have, invoking Theorem 16.31, (10.30), (10.28) and the two
previous estimates, that

‖ϕ− id‖Cr+1,α =
∥∥ϕ2 ◦ϕ1−ϕ−1

1 ◦ϕ1
∥∥

Cr+1,α =
∥∥(ϕ2−ϕ−1

1
)◦ϕ1

∥∥
Cr+1,α

≤C23
∥∥ϕ2−ϕ−1

1

∥∥
Cr+1,α +C23

∥∥ϕ2−ϕ−1
1

∥∥
C1 ‖ϕ1‖Cr+1,α

≤C23
∥∥ϕ2−ϕ−1

1

∥∥
Cr+1,α

+C24
∥∥ϕ2−ϕ−1

1

∥∥
C1 [1+‖ϕ1− id‖Cr+1,α ]

≤C25
∥∥ϕ2−ϕ−1

1

∥∥
Cr+1,α +C24

∥∥ϕ2−ϕ−1
1

∥∥
C1 ‖ϕ1− id‖Cr+1,α

≤C26 ‖ f −1‖Cr,α .

This achieves the proof of the theorem. 
�
We may now turn to the first proof of Theorem 10.1.

Proof. We divide the proof into two steps.

Step 1. First find, by Theorem 10.3,

ψ1,ψ2 ∈ Diffr+1,α(Ω ;Ω)

satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

det∇ψ2 (x) =
f (x)measΩ∫

Ω
f (x)dx

, x ∈Ω ,

det∇ψ1 (x) =
g(x)measΩ∫

Ω
g(x)dx

, x ∈Ω ,

ψ1 (x) = ψ2 (x) = x, x ∈ ∂Ω .

It is then easy to see that ϕ = ψ−1
1 ◦ψ2 satisfies (10.2).

Step 2. From Theorem 16.31 we have

‖ϕ‖Cr+1,α =
∥∥ψ−1

1 ◦ψ2
∥∥

Cr+1,α

≤C1

(∥∥ψ−1
1

∥∥
Cr+1,α ‖ψ2‖r+1+α

C1 +
∥∥ψ−1

1

∥∥
C1 ‖ψ2‖Cr+1,α +

∥∥ψ−1
1

∥∥
C0

)
.

From the fact that ∥∥∥∥ 1
f

∥∥∥∥
C0

,

∥∥∥∥1
g

∥∥∥∥
C0

, ‖ f‖C0,α , ‖g‖C0,α ≤ c,

we get, from Theorems 10.3 and 19.12,

‖ψ1‖C1 ,
∥∥ψ−1

1

∥∥
C1 , ‖ψ2‖C1 ≤C2,

‖ψ1‖Cr+1,α ≤C2 [1+‖g‖Cr,α ] and ‖ψ2‖Cr+1,α ≤C2 [1+‖ f‖Cr,α ] .

We then combine all these estimates and Theorem 16.32 to get the claim. 
�
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10.4.2 Second Proof

We now turn to the second proof of Theorem 10.1, following the ideas of Rivière and
Ye [85]. We prove here the theorem, but without the estimates, under the additional
hypotheses r ≥ 1 and Ω a smooth set. But before that we prove an intermediate
result.

Theorem 10.10. Let r≥ 1 be an integer, 0<α < 1, Ω ⊂R
n be a bounded connected

open smooth set and f ∈Cr,α (
Ω
)

with f > 0 in Ω . Then, for every ε small, there
exist fε ∈C∞(Ω) and ϕε ∈ Diffr+1,α (

Ω ;Ω
)

satisfying{
fε(ϕε(x))det∇ϕε(x) = f (x), x ∈Ω ,

ϕε(x) = x, x ∈ ∂Ω ,

lim
ε→0

‖ fε − f‖Cr = 0.

Proof. We divide the proof into four steps.
Step 1 (definition of fε ). We apply Proposition 16.47 to f and let s ≥ r ≥ t ≥ 0

be integers and 0≤ α,β ,γ ≤ 1 be such that

t + γ ≤ r+α ≤ s+β .

Therefore, for every ε > 0 small, there exist fε ∈ C∞(Ω) with fε > 0 in Ω and a
constant C1 =C1(s,Ω ,‖ f‖C0 ,‖1/ f‖C0) such that∫

Ω
fε =

∫
Ω

f , (10.38)

‖ fε‖Cs,β ≤ C1

ε(s+β )−(r+α)
‖ f‖Cr,α , (10.39)

‖ fε − f‖Ct,γ ≤C1ε(r+α)−(t+γ)[‖ f‖Cr,α +‖ f‖2
Cr,α ], (10.40)∥∥∥∥ d

dε
fε

∥∥∥∥
Cs,β

≤ C1

ε(s+β )−(r+α)+1 [‖ f‖Cr,α +‖ f‖2
Cr,α ], (10.41)

∥∥∥∥ d
dε

fε

∥∥∥∥
Ct,γ
≤C1ε(r+α)−(t+γ)−1[‖ f‖Cr,α +‖ f‖2

Cr,α ]. (10.42)

Moreover, defining, for some ε ≤ 1 small enough, F : (0,ε]×Ω → R by F(ε,x) =
fε(x), we have

F ∈C∞((0,ε]×Ω). (10.43)

Using (10.40) and choosing ε even smaller, we can assume that for every ε ∈ (0,ε],

‖ fε‖C0 ≤ 2‖ f‖C0 and
∥∥∥∥ 1

fε

∥∥∥∥
C0
≤ 2

∥∥∥∥ 1
f

∥∥∥∥
C0

. (10.44)
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Combining (10.44) and Proposition 16.29, we get for every ε ∈ (0,ε],∥∥∥∥ 1
fε

∥∥∥∥
Cs,β

≤C2‖ fε‖Cs,β , (10.45)

where C2 =C2(s,Ω ,‖ f‖C0 ,‖1/ f‖C0).

Step 2. Choose δ > 0 small enough so that [α−δ ,α +δ ]⊂ (0,1). We show that
for every ε ∈ (0,ε], there exist uε ∈C∞ (

Ω ;Rn
)

and a constant

C3 =C3(r,α,δ ,Ω ,‖ f‖C0 ,‖1/ f‖C0)

such that
div( fε uε) =− d

dε
fε in Ω , (10.46)

‖uε‖Cr+1,γ ≤ C3

ε1+γ−α [‖ f‖Cr,α +‖ f‖3
Cr,α ], γ ∈ [α−δ ,α +δ ]. (10.47)

Moreover, defining u : (0,ε]×Ω → R
n by u(ε,x) = uε(x), we will show that u ∈

C∞((0,ε]×Ω ;Rn).

Step 2.1. According to (10.38) we have for every ε ∈ (0,ε],∫
Ω

d
dε

fε = 0.

We can therefore find, by Theorem 9.2, wε ∈ C∞(Ω ;Rn) and a constant C4 =
C4(r,α,δ ,Ω) such that ⎧⎨

⎩ div(wε) =− d
dε

fε in Ω ,

wε = 0 on ∂Ω ,

and for every integer q≤ r and every γ ∈ [α−δ ,α +δ ],

‖wε‖Cq+1,γ ≤C4

∥∥∥∥ d
dε

fε

∥∥∥∥
Cq,γ

. (10.48)

Moreover, using (10.43) and defining w : (0,ε]×Ω → R
n by w(ε,x) = wε(x), we

have w ∈C∞((0,ε]×Ω ;Rn).

Step 2.2. Since fε > 0 in Ω , we can define for every ε ∈ (0,ε],

uε =
wε

fε
.

First, note that for every ε ∈ (0,ε], (10.46) holds,

uε ∈C∞ (
Ω ;Rn) , and uε = 0 on ∂Ω .

Moreover, defining u : (0,ε]×Ω →R
n by u(ε,x) = uε(x), we have u ∈C∞((0,ε]×

Ω ;Rn).
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Step 2.3. To conclude Step 2, it only remains to prove (10.47). Using Theo-
rem 16.28, (10.44), (10.45) and (10.48), we obtain

‖uε‖Cr+1,γ ≤C5‖wε‖Cr+1,γ

∥∥∥∥ 1
fε

∥∥∥∥
C0

+C5‖wε‖C0

∥∥∥∥ 1
fε

∥∥∥∥
Cr+1,γ

≤C6‖wε‖Cr+1,γ +C6‖wε‖C1,α‖ fε‖Cr+1,γ

≤C7

∥∥∥∥ d
dε

fε

∥∥∥∥
Cr,γ

+C7

∥∥∥∥ d
dε

fε

∥∥∥∥
C0,α

‖ fε‖Cr+1,γ

and hence, appealing to (10.39), (10.41), (10.42) and recalling that ε ≤ 1 and that
r ≥ 1, we find

‖uε‖Cr+1,γ ≤ C8

ε1+γ−α [‖ f‖Cr,α +‖ f‖2
Cr,α ]

+C8
εr−1

ε1+γ−α [‖ f‖Cr,α +‖ f‖2
Cr,α ]‖ f‖Cr,α

≤ C9

ε1+γ−α [‖ f‖Cr,α +‖ f‖3
Cr,α ],

where Ci =Ci(r,α,δ ,Ω ,‖ f‖C0 ,‖1/ f‖C0). Therefore, the claim is proven.

Step 3. We can now finish the proof.

Step 3.1. Since u ∈C∞((0,ε]×Ω ;Rn), uε = 0 on ∂Ω and (10.47) holds, we de-
duce, using Theorem 12.4, that the solution ϕ : [0,ε]×Ω →Ω , ϕ(ε,x) = ϕε(x), of⎧⎨

⎩
d

dε
ϕε = uε ◦ϕε , 0 < ε ≤ ε,

ϕ0 = id

verifies
ϕ ∈Cr+1([0,ε]×Ω ;Ω) (10.49)

and that for every ε ∈ [0,ε],

ϕε ∈ Diffr+1,α(Ω ;Ω) and ϕε = id on ∂Ω .

Step 3.2. Since (10.46) holds, we have that, using Proposition 10.5, for every
0 < ε1 ≤ ε2 ≤ ε,

ϕ∗ε2
( fε2) = ϕ∗ε1

( fε1) in Ω .

Since using (10.40) and (10.49),

lim
ε→0

‖ fε − f‖C0 = 0 and lim
ε→0

‖ϕε −ϕ0‖C1 = 0,

we immediately deduce that for every ε ∈ [0,ε],

ϕ∗ε ( fε) = ϕ∗0 ( f ) = f .
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Finally, using again (10.40), we deduce that

lim
ε→0

‖ fε − f‖Cr = 0,

which concludes the proof. 
�
We can now deal with the second proof of Theorem 10.1.

Proof. Step 1. By Theorem 10.10 applied to f and g there exist f1,g1 ∈C∞(Ω) and
ϕ1,ϕ2 ∈ Diffr+1,α(Ω ;Ω) such that{

ϕ∗1 ( f1) = f in Ω ,

ϕ1 = id on ∂Ω
and

{
ϕ∗2 (g1) = g in Ω ,

ϕ2 = id on ∂Ω .
(10.50)

Step 2. Since (10.50) holds, we have (cf. Corollary 19.10), f1,g1 > 0 in Ω and
(cf. (19.3)) ∫

Ω
f1 =

∫
Ω

f =
∫

Ω
g =

∫
Ω

g1 .

Therefore, using Theorem 10.7, there exists ϕ3 ∈ Diff∞(Ω ;Ω) such that{
ϕ∗3 (g1) = f1 in Ω ,

ϕ3 = id on ∂Ω .

Step 3. Using the above steps, we find that

ϕ = ϕ−1
2 ◦ϕ3 ◦ϕ1

has all of the desired properties. 
�

10.5 A Constructive Method

In this section we present a constructive method (cf. Theorem 5 in Dacorogna and
Moser [33]) to solve the problem{

ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω .

The following theorem is only a particular case of the results in [33]. The proof that
we provide here is substantially different from the original proof.

Theorem 10.11. Let r ≥ 1 be an integer, Ω be a bounded connected open set in R
n

and f ,g ∈Cr(Ω) such that

f ·g > 0 in Ω ,
∫

Ω
f =

∫
Ω

g and supp( f −g)⊂Ω .
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Then there exists ϕ ∈ Diffr(Ω ;Ω) such that{
ϕ∗(g) = f in Ω ,

supp(ϕ− id)⊂Ω .

Proof. We divide the proof into two steps, but before that, we note that we can
assume, by choosing Ω smaller if necessary, that f ·g> 0 in Ω and that Ω is smooth,
since supp( f −g)⊂Ω .

Step 1. Using Proposition 9.7, we can find u ∈Cr(Ω ;Rn) such that

divu = f −g in Ω and suppu⊂Ω .

Step 2. Define for 0≤ t ≤ 1, x ∈Ω ,

ft(x) = (1− t) f (x)+ tg(x)

and

ut (x) =
u(x)
ft(x)

.

Note that
div(ut ft) = divu = f −g =− d

dt
ft in Ω

and supput = suppu ⊂ Ω . We can then apply Lemma 10.4 and have, defining φt :
Ω → R

n for every t ∈ [0,1], as the solution of⎧⎨
⎩

d
dt

φt = ut ◦φt , 0≤ t ≤ 1,

φ0 = id,

that
ϕ = φ1

has all of the desired properties. 
�



Chapter 11

The Case Without Sign Hypothesis on f

11.1 Main Result

The aim of this chapter is to solve the problem{
g(ϕ(x))det∇ϕ(x) = f (x), x ∈Ω ,

ϕ(x) = x, x ∈ ∂Ω ,

equivalently written as {
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω ,
(11.1)

with g > 0 in R
n but with no sign restriction on f . Of course, the solution cannot be

a diffeomorphism; nevertheless, if f ≥ 0 and under further restrictions, it can be a
homeomorphism (see Theorem 11.1(iii)).

The main result of this chapter, established by Cupini, Dacorogna and Kneuss
[25], is the following. In the sequel, we denote by BR the open ball of radius R
centered at the origin.

Theorem 11.1. Let n ≥ 2 and r ≥ 1 be integers and Ω a bounded open set in R
n

such that Ω is Cr+1-diffeomorphic to B1 . Let g ∈Cr(Rn) with g > 0 and f ∈Cr(Ω)
be such that ∫

Ω
g =

∫
Ω

f .

Then for every ε > 0, there exists ϕ = ϕε ∈Cr(Ω ;Rn) satisfying (11.1), namely{
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω

and

Ω ⊂ ϕ
(
Ω
)⊂Ω +Bε .

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
© Springer Science+Business Media, LLC 2012 

211
11



212 11 The Case Without Sign Hypothesis on f

Moreover, the three following properties hold:
(i) If either f > 0 on ∂Ω or f ≥ 0 in Ω , then ε can be taken to be 0. In other

words, there exists ϕ ∈Cr(Ω ;Ω) satisfying (11.1).
(ii) If supp(g− f )⊂Ω , then ϕ can be chosen such that

ϕ ∈Cr(Ω ;Ω) and supp(ϕ− id)⊂Ω .

(iii) If f ≥ 0 in Ω and f−1(0)∩Ω is countable, then ϕ can be chosen such that

ϕ ∈Cr(Ω ;Ω)∩Hom(Ω ;Ω).

Remark 11.2. (i) Note that, in view of (19.2), we always have Ω ⊂ ϕ(Ω) as soon as
ϕ = id on ∂Ω .

(ii) In general, without further hypothesis on f as the extra statement (i), it is not
possible to find a solution that remains in Ω . In fact, if f is negative in some part of
∂Ω , then any solution must go out of Ω (cf. Proposition 11.3).

(iii) The above theorem is also valid in Hölder spaces.

The proof of the theorem will be discussed in Section 11.3, but we want to explain
the two main steps. First, observe that the fact that f is not strictly positive precludes
the use of either the flow method or the fixed point method developed in Chapter 10;
the proof will be more constructive. Here are the main steps for Ω the unit ball. The
idea is to look for radial solutions of the problem; however, to achieve this, we have
to rearrange f in an appropriate way. We therefore will look for solutions of the
form

ϕ = ψ ◦χ−1

with ψ = χ = id on ∂Ω .

— First, we rearrange f with a diffeomorphism χ, so that

f1 = χ∗( f )

satisfies f1 (0)> 0 and has nice symmetry properties, for instance, among others,

∫ r

0
sn−1 f1

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1].

This will be the most difficult part of our proof and will be achieved in Section 11.6
(with the help of Section 11.5). Note that in view of Proposition 11.6 the function
f1 cannot therefore be strictly positive if f is not strictly positive.

— We then find a map ψ so that

ψ∗(g) = f1 .

This will be achieved using Section 11.4 and Chapter 10. Note that the map ψ cannot
be a diffeomorphism if f1 vanishes even at a single point.
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11.2 Remarks and Related Results

In this section Ω will be a bounded open set in R
n. We start by showing that if f < 0

in some parts of ∂Ω , then any solution of{
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω
(11.2)

must go out of Ω—more precisely,

Ω ⊂
�=

ϕ
(
Ω
)
.

We recall, using (19.2), that we necessarily have

Ω ⊂ ϕ(Ω).

Proposition 11.3. Let Ω be a bounded open C1 set in R
n and ϕ ∈C1(Ω ;Rn) with

ϕ = id on ∂Ω . If there exists x ∈ ∂Ω such that det∇ϕ(x)< 0, then

Ω ⊂
�=

ϕ(Ω). (11.3)

Proof. We divide the proof into two steps.

Step 1 (simplification). Since Ω is C1 (cf. Definition 16.5), there exists ψ ∈
Diff1(B1;ψ(B1)) with ψ(0) = x and

ψ(B1∩{xn = 0})⊂ ∂Ω ,

ψ(B1∩{xn > 0})⊂Ω ,

ψ(B1∩{xn < 0})⊂ (Ω)c.

Therefore, using that ϕ(x) = x, we can choose ε > 0 small enough so that

ϕ̃ : Bε ∩{xn ≥ 0}→ R
n with ϕ̃(x) = ψ−1(ϕ(ψ(x)))

is well defined. We observe that ϕ̃ satisfies

ϕ̃ = id on Bε ∩{xn = 0} and det∇ϕ̃(0) = det∇ϕ(x)< 0. (11.4)

To prove (11.3) it is enough to show that

ϕ̃(Bε ′ ∩ {xn > 0})⊂ {xn < 0} (11.5)

for a certain 0 < ε ′ ≤ ε.



214 11 The Case Without Sign Hypothesis on f

Step 2. We finally show (11.5). Using (11.4), we immediately obtain

∂ ϕ̃n

∂xn
(0) = det∇ϕ̃(0)< 0,

and therefore, by continuity, there exists 0 < ε ′ ≤ ε such that

∂ ϕ̃n

∂xn
< 0 in Bε ′ ∩ {xn > 0} . (11.6)

Combining (11.6) and the fact that ϕ̃n(0) = 0 (by (11.4)), we get (11.5). �


We now discuss the special case n = 1 in the context g > 0 and with no sign
restriction on f .

Proposition 11.4. Let n = 1, r ≥ 0, Ω = (a,b), g ∈ Cr(R) with g > 0 and f ∈
Cr([a,b]). Let

F (x) =
∫ x

a
f (t)dt and G(x) =

∫ x

a
g(t)dt.

Then there exists ϕ ∈Cr+1([a,b];R) a solution of (11.2) if and only if

F(b) = G(b) and F([a,b])⊂ G(R).

Remark 11.5. Let F and G be as in the proposition with F(b) = G(b). Then the
following statements are verified:

(i) We always have

G([a,b])⊂ F([a,b]).

Moreover, when f ≥ 0, the previous inclusion is an equality.

(ii) In general,

F([a,b])⊂
�=

G([a,b]).

This is for example always the case when f (a)< 0 or f (b)< 0.

(iii) The inclusion

F([a,b])⊂ G(R)

is not always fulfilled.

Proof. Step 1. First, note that Problem (11.2) becomes{
G(ϕ (x)) = F (x) , x ∈ (a,b) ,

G(b) = F (b) .
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Indeed, (11.2) is equivalent to{
[G(ϕ (x))]′ = F ′ (x) if x ∈ (a,b) ,

ϕ (a) = a and ϕ (b) = b.

We therefore get
G(ϕ (x)) = F (x)+ c.

Since ϕ (a) = a and G(a) = F (a) , we deduce that c = 0 and thus our claim.
Step 2. Since G is strictly monotone (because g > 0), the solution ϕ (if it exists)

is given by
ϕ(x) = G−1(F(x)).

Therefore, the conclusion easily follows. �

We now show that Problem (11.2) is not symmetric in g and f .

Proposition 11.6. Let g ∈C0(Rn) with g−1(0)∩Ω �= /0 and f ∈C0(Ω) with f > 0
in Ω . Then no ϕ ∈C1(Ω ;Rn) can satisfy (11.2).

Proof. We proceed by contradiction. Assume that ϕ ∈ C1(Ω ;Rn) is a solution of
(11.2). Since ϕ = id on ∂Ω , then (see (19.2) below)

ϕ(Ω)⊃Ω .

Thus, there exists z ∈ Ω such that ϕ(z) ∈ Ω and g(ϕ(z)) = 0, which is the desired
contradiction, since

g(ϕ(z))det∇ϕ(z) = f (z)> 0.

The proposition is therefore proved. �

In the following proposition, we state a necessary condition (see (11.7) below)

for the existence of a one-to-one solution of (11.2). Moreover, we show that not all
solutions of (11.2), verifying (11.7), are one-to-one.

Proposition 11.7. Let

g ∈C0(Rn), g > 0 in R
n, f ∈C0(Ω) and

∫
Ω

f =
∫

Ω
g.

Then the following claims hold true:
(i) If ϕ ∈C1(Ω ;Rn) is a one-to-one solution of (11.2), then ϕ ∈Hom(Ω ;Ω) and

f ≥ 0 and int( f−1(0)) = /0. (11.7)

(ii) There exists f satisfying (11.7) such that not all solutions ϕ ∈C1(Ω ;Rn) of
(11.2) are one-to-one.

Proof. (i) By Lemma 19.11, we have that ϕ ∈ Hom(Ω ;Ω). Applying Proposition
19.14, we have the claim.
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(ii) We provide a counterexample in two dimensions. Let f ∈C1(B1) be such that
f ≥ 0,

f−1(0) = {(t,0) : t ∈ [1/2,3/4]}, f ≡ 1 in a neighborhood of 0

and, for every x �= 0, ∫ 1

0
s f

(
s

x
|x|

)
ds =

1
2
.

Define next α : B1 → [0,1], through α (0) = 0 and, for 0 < |x| ≤ 1,

α(x)2

2
=

∫ α(x)

0
sds =

∫ |x|

0
s f

(
s

x
|x|

)
ds.

As in Step 2 of the proof of Lemma 11.11 (with g = 1), the map

ϕ(x) = α(x)
x
|x|

is in C1(B1;B1), with

ϕ∗(1) = f and ϕ = id on ∂B1 .

Since ϕ(1/2,0) = ϕ(3/4,0), ϕ is not one-to-one. �

The next proposition can be proved with the same technique as the one developed

in this chapter and we refer to [60] for details.

Proposition 11.8. Let r≥ 1 and n≥ 2 be integers. Let g ∈Cr(Rn) with g > 0 in R
n,

f ∈Cr(B1) satisfying ∫
B1

g =
∫

B1

f .

Then there exist δ = δ (n,r,g, f ) and γ = γ(n,r,g, f ) such that for every g1,g2 ∈
Cr(Rn), f1, f2 ∈Cr(B1) satisfying, for i = 1,2,∫

B1

gi =
∫

B1

fi , ‖ fi− f‖Cr(B1) ≤ δ and ‖gi−g‖Cr(B2) ≤ δ ,

there exist ϕi ∈Cr(B1;B2), i = 1,2, such that for every 0≤ k ≤ r−1,

ϕ∗i (gi) = fi in B1 , ϕi = id on ∂B1,

‖ϕ1−ϕ2‖Ck(B1)
≤ γ(‖ f1− f2‖Ck(B1)

+‖g1−g2‖Ck(B2)
),

‖ϕi‖Cr(B1)
≤ γ.

Remark 11.9. We can make the conclusion of the proposition more precise. In the
sense that for every ε > 0, by letting δ and γ depending of ε we can replace B2
above by B1+ε .
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11.3 Proof of the Main Result

We can now discuss the proof of the main theorem. For the sake of simplicity, we
will split it into two proofs. First, we establish the main statement of the theorem
and then we show its three extra statements.

Proof. We divide the proof into five steps and we fix ε > 0.

Step 1 (transfer of the problem into the ball). Since Ω is Cr+1-diffeomorphic
to B1 , there exists ϕ1 ∈ Diffr+1(B1;Ω). With no loss of generality we can as-
sume that det∇ϕ1 > 0. Indeed, if det∇ϕ1 < 0 (note that since ϕ1 is a diffeomor-
phism, then det∇ϕ1 �= 0 everywhere), then replace ϕ1(x) by ϕ1(−x1,x2, . . . ,xn).
Using Corollary 16.15, we extend ϕ1 and choose ε1 > 0 small enough so that
ϕ1 ∈ Diffr+1(B1+ε1 ;ϕ1(B1+ε1)) with

ϕ1(B1+ε1)⊂Ω +Bε .

Define
f1 = ϕ∗1 ( f ) ∈Cr(B1) and g1 = ϕ∗1 (g) ∈Cr(B1+ε1).

By the change of variables formula, we have that∫
B1

f1 =
∫

Ω
f =

∫
Ω

g =
∫

B1

g1 > 0 . (11.8)

Step 2 (positive radial integration). Since (11.8) holds, we may apply Lemma
11.21 to f1 . Therefore, there exists ϕ2 ∈ Diff∞(B1;B1) with

supp(ϕ2− id)⊂ B1

such that, letting f2 = ϕ∗2 ( f1) ∈Cr(B1), we have f2 (0)> 0 and

∫ r

0
sn−1 f2

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1]

∫ 1

r
sn−1 f2

(
s

x
|x|

)
ds >−

∫
B1+ε1

g1−
∫

B1

g1

n meas(B1)
for every x �= 0 and r ∈ [0,1].

The change of variables formula and (11.8) lead to∫
B1

f2 =
∫

B1

ϕ∗2 ( f1) =
∫

B1

f1 =
∫

B1

g1 . (11.9)

Step 3 (radial solution). By the previous step, f2 satisfies all of the hypotheses of
Lemma 11.10 (with m =

∫
B1+ε1

g1). Therefore, there exist g2 ∈Cr(Rn) with g2 > 0
in R

n and ∫
B1+ε1

g2 =
∫

B1+ε1

g1
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and ϕ3 ∈Cr(B1;B1+ε1) verifying{
ϕ∗3 (g2) = f2 in B1,

ϕ3 = id on ∂B1 .

Note that, using (19.3), ∫
B1

g2 =
∫

B1

f2

and therefore, by (11.9), ∫
B1

g2 =
∫

B1

g1 .

Step 4 (positive resolution). Since g1,g2 ∈Cr(B1+ε1), g1,g2 > 0 in B1+ε1 ,∫
B1

g1 =
∫

B1

g2 and
∫

B1+ε1

g1 =
∫

B1+ε1

g2 ,

there exists, using Corollary 10.8, ϕ4 ∈ Diffr(B1+ε1 ;B1+ε1) such that{
ϕ∗4 (g1) = g2 in B1+ε1 ,

ϕ4 = id on ∂B1∪∂B1+ε1 .

Step 5 (conclusion). By the above steps, we have that

ϕ = ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1
2 ◦ϕ−1

1 ∈Cr(Ω ;Rn)

satisfies
Ω ⊂ ϕ(Ω)⊂Ω +Bε ,{

ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω .

Indeed, for x ∈ ∂Ω , since ϕ1(∂B1) = ∂Ω (see Theorem 19.6) and ϕi = id on ∂B1 ,
i = 2,3,4, we have

ϕ(x) = ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1
2 ◦ϕ−1

1 (x)

= ϕ1(ϕ−1
1 (x)) = x.

Thus, using (19.2), we have that Ω ⊂ ϕ(Ω). Noticing that

ϕ−1
1 (Ω) = B1 , ϕ−1

2 (B1) = B1 , ϕ3(B1)⊂ B1+ε1 ,

ϕ4(B1+ε1) = B1+ε1 and ϕ1(B1+ε1)⊂Ω +Bε ,

we have
ϕ(Ω)⊂Ω +Bε .



11.3 Proof of the Main Result 219

Eventually, using several times the third statement in Theorem 3.10,

ϕ∗(g) =
(
ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1

2 ◦ϕ−1
1

)∗
(g)

= (ϕ−1
1 )∗

(
(ϕ−1

2 )∗ (ϕ∗3 (ϕ
∗
4 (ϕ

∗
1 (g))))

)
= (ϕ−1

1 )∗
(
(ϕ−1

2 )∗ (ϕ∗3 (ϕ
∗
4 (g1)))

)
= (ϕ−1

1 )∗
(
(ϕ−1

2 )∗ (ϕ∗3 (g2))
)

= (ϕ−1
1 )∗

(
(ϕ−1

2 )∗( f2)
)

= (ϕ−1
1 )∗( f1) = f ,

which concludes the proof. �

We now prove the three extra statements of Theorem 11.1.

Proof. We divide the proof into seven steps.
Step 1 (transfer of the problem into the ball). Since Ω is Cr+1-diffeomorphic

to B1 , there exists ϕ1 ∈ Diffr+1(B1;Ω). With no loss of generality we can assume
that det∇ϕ1 > 0. Indeed, if det∇ϕ1 < 0, then replace ϕ1(x) by ϕ1(−x1,x2, . . . ,xn).
Define

f1 = ϕ∗1 ( f ) ∈Cr(B1) and g1 = ϕ∗1 (g) ∈Cr(B1).

From the change of variables formula, we get∫
B1

f1 =
∫

Ω
f =

∫
Ω

g =
∫

B1

g1 > 0. (11.10)

We notice the following facts:
(i) If f > 0 on ∂Ω , then

f1 > 0 on ∂B1 (11.11)

since ϕ1(∂B1) = ∂Ω by the invariance of domain theorem (see Theorem 19.6).
(ii) If supp(g− f )⊂Ω , then

supp(g1− f1)⊂ B1 . (11.12)

(iii) If f ≥ 0 in Ω , then
f1 ≥ 0 in B1 (11.13)

since det∇ϕ1 > 0 in B1 .

(iv) If f ≥ 0 in Ω and f−1(0)∩Ω is countable, then

f1 ≥ 0 in B1 and f−1
1 (0)∩B1 is countable. (11.14)

Step 2 (positive radial integration). Applying Corollary 11.23 to f1 , which is
justified by (11.10) and (11.11) if f > 0 on ∂Ω and by (11.10) and (11.13) if f ≥ 0
in Ω , we can find ϕ2 ∈ Diff∞(B1;B1) with

supp(ϕ2− id)⊂ B1
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such that, letting f2 = ϕ∗2 ( f1) ∈Cr(B1), we have f2 (0)> 0 and

∫ r

0
sn−1 f2

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1],

∫ 1

r
sn−1 f2

(
s

x
|x|

)
ds≥ 0, for every x �= 0 and r ∈ [0,1].

Moreover, using the change of variables formula and (11.10), we obtain∫
B1

f2 =
∫

B1

ϕ∗2 ( f1) =
∫

B1

f1 =
∫

B1

g1 . (11.15)

Finally, we notice the two following facts:

(i) If supp(g− f )⊂Ω , then by (11.12) and since supp(ϕ2− id)⊂ B1 , we have

supp(g1− f2)⊂ B1 . (11.16)

(ii) If f ≥ 0 in Ω and f−1(0)∩Ω is countable, then by (11.14), we get that

f2 ≥ 0 in B1 and f−1
2 (0)∩B1 is countable. (11.17)

Step 3 (radial solution). Since f2 satisfies all the hypotheses of Lemma 11.11,
there exist g2 ∈Cr(B1) with g2 > 0 in B1 and ϕ3 ∈Cr(B1;B1) verifying{

ϕ∗3 (g2) = f2 in B1,

ϕ3 = id on ∂B1 .

Note that using (19.3), ∫
B1

g2 =
∫

B1

f2

and therefore, using (11.15), ∫
B1

g2 =
∫

B1

g1 .

We, moreover, have the two following facts:

(i) If supp(g− f ) ⊂ Ω (which implies, in particular, by (11.16) that f2 > 0 on
∂B1), the first extra statement of Lemma 11.11 implies that g2 and ϕ3 can be chosen
so that

supp(g2− f2)⊂ B1 and supp(ϕ3− id)⊂ B1 . (11.18)

(ii) If f ≥ 0 in Ω and f−1(0)∩Ω is countable (which implies by (11.17) that f2≥
0 in B1 and f−1

2 (0)∩B1 is countable), the second extra statement of Lemma 11.11
implies that ϕ3 can be chosen so that

ϕ3 ∈ Hom(B1;B1). (11.19)
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Step 4 (positive resolution). Since g1,g2 ∈Cr(B1), g1,g2 > 0 in B1 and∫
B1

g1 =
∫

B1

g2 ,

using Theorem 10.7, we can find ϕ4 ∈ Diffr(B1;B1) such that{
ϕ∗4 (g1) = g2 in B1,

ϕ4 = id on ∂B1 .

We, moreover, have the following fact: If supp(g− f ) ⊂ Ω , then by (11.16) and
(11.18) we get that supp(g1−g2)⊂ B1 . Therefore, using Theorem 10.11 instead of
Theorem 10.7, we can furthermore assume that

supp(ϕ4− id)⊂ B1 . (11.20)

Step 5 (conclusion). Using the above steps, we have that

ϕ = ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1
2 ◦ϕ−1

1 ∈Cr(Ω ;Ω)

satisfies {
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω .

Indeed, for x ∈ ∂Ω , since ϕ1(∂B1) = ∂Ω (see Theorem 19.6) and ϕi = id on ∂B1,
i = 2,3,4, we have

ϕ(x) = ϕ1 ◦ϕ4 ◦ϕ3 ◦ϕ−1
2 ◦ϕ−1

1 (x)

= ϕ1(ϕ−1
1 (x)) = x.

Since ϕ−1
1 (Ω) = B1, (ϕ2)

−1(B1) = B1, ϕ4(B1) = B1, ϕ3(B1) = B1 (by (19.2)) and
ϕ1(B1) = Ω , we have that

ϕ(Ω) = Ω .

Finally, exactly as in Step 5 of the previous proof, we prove that

ϕ∗(g) = f in Ω ,

which shows the first extra statement.

Step 6. We show the second extra assertion. If supp(g− f )⊂Ω , then (11.18) and
(11.20) imply the result, since

supp(ϕ2− id), supp(ϕ3− id), supp(ϕ4− id)⊂ B1 .

Step 7. Finally, we show the third extra assertion. If f ≥ 0 in Ω and f−1(0)∩Ω
is countable, then (11.19) implies the assertion since ϕ1,ϕ2 and ϕ4 are diffeomor-
phisms. �
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11.4 Radial Solution

In this section we give sufficient conditions on f in order to have a positive g and a
radial solution ϕ of (11.2) in the unit ball (i.e., a solution of the form α(x)x/|x| with
α : B1 → R). For the sake of simplicity, we split the discussion into two lemmas.

Lemma 11.10. Let r ≥ 1 be an integer, m > 0 and f ∈Cr(B1) be such that

f (0)> 0, m >
∫

B1

f ,

∫ r

0
sn−1 f

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1], (11.21)

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds >−

m−
∫

B1

f

n meas(B1)
for every x �= 0 and r ∈ [0,1]. (11.22)

Then for every ε > 0, there exist g = gm,ε ∈Cr(Rn) with g > 0 in R
n and∫

B1+ε
g = m

and ϕ = ϕm,ε ∈Cr(B1;B1+ε) such that{
ϕ∗(g) = f in B1,

ϕ = id on ∂B1 .

Proof. We split the proof into two steps. Fix ε > 0.

Step 1 (construction of g). In this step we construct a function g ∈Cr(Rn) with
the following properties:

g > 0 in R
n, g = f in a neighborhood of 0,

∫
B1+ε

g = m,

∫ 1

0
sn−1g

(
s

x
|x|

)
ds =

∫ 1

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0, (11.23)

∫ 1+ε

0
sn−1g

(
s

x
|x|

)
ds >

∫ r

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0 and r ∈ [0,1] .

(11.24)

Step 1.1 (preliminaries). Since f (0)> 0 and (11.21) and (11.22) hold, there exists
δ > 0 small enough such that

f > 0 in Bδ , min
x �=0

∫ 1

δ
sn−1 f

(
s

x
|x|

)
ds > 0, (11.25)
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∫ 1

r
sn−1 f

(
s

x
|x|

)
ds >−

m−
∫

B1

f

n meas(B1)
+δ for every x �= 0 and r ∈ [0,1]. (11.26)

Let η ∈C∞([0,∞); [0,1]) be such that

η(s) =

{
1 if 0≤ s≤ δ/2

0 if δ ≤ s.

Define then h : Rn \{0}→ R by

h(x) =

∫ 1

0
sn−1(1−η(s)) f

(
s x
|x|
)

ds∫ 1

0
sn−1(1−η(s))ds

.

It is easily seen that h ∈Cr(Rn \{0}),

h(x) = h(λx) for every λ > 0,

and, using (11.25),
h > 0, in R

n \{0}.
Now define, for x ∈ R

n,

h(x) = η(|x|) f (x)+(1−η(|x|))h(x).

Using the definition of h and η , we have that⎧⎨
⎩

h ∈Cr(Rn), h > 0 in R
n, h = f in Bδ/2,∫ 1

0
sn−1h

(
s

x
|x|

)
ds =

∫ 1

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0.

(11.27)

For every 0 < μ < ε, let ρμ ∈C∞(Rn; [0,1]) be such that

ρμ =

{
1 in B1,

0 in (B1+μ)
c

and define

cμ =

m−
∫

B1+ε
ρμ h∫

B1+ε
(1−ρμ)

.

Integrating the last equation of (11.27) on the unit sphere, we obtain that∫
B1

h =
∫

B1

f



224 11 The Case Without Sign Hypothesis on f

and, thus, we get

lim
μ→0

cμ =

m−
∫

B1

h

meas(B1+ε \B1)
=

m−
∫

B1

f

meas(B1+ε \B1)
=

m−
∫

B1

f

[(1+ ε)n−1]meas(B1)
.

This implies

lim
μ→0

(1+ ε)n− (1+μ)n

n
cμ =

(1+ ε)n−1
n

lim
μ→0

cμ =

m−
∫

B1

f

n meas(B1)

and therefore, by (11.26) we can choose μ1 small enough such that cμ1 > 0 and

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds >− (1+ ε)n− (1+μ1)

n

n
cμ1 , for every x �= 0 and r ∈ [0,1].

(11.28)
Step 1.2 (conclusion). Let us show that the function

g = ρμ1h+(1−ρμ1)cμ1 ∈Cr(Rn)

has all of the desired properties. Indeed, since h > 0 in R
n and cμ1 > 0, we have that

g > 0 in R
n. By definition of cμ1 , we see that∫

B1+ε
g = m .

Using the last equation of (11.27) and the fact that g = h in B1 , we get (11.23). We
finally show (11.24). Using (11.23), this is equivalent to showing

∫ 1+ε

1
sn−1g

(
s

x
|x|

)
ds >−

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds for every x �= 0 and r ∈ [0,1].

Let x �= 0 and r ∈ [0,1]. We have, since g = cμ1 in B1+ε \B1+μ1 and (11.28) holds,

∫ 1+ε

1
sn−1g

(
s

x
|x|

)
ds >

∫ 1+ε

1+μ1

sn−1g
(

s
x
|x|

)
ds =

∫ 1+ε

1+μ1

sn−1cμ1ds

=
(1+ ε)n− (1+μ1)

n

n
cμ1 >−

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds

and therefore the assertion.

Step 2 (construction of ϕ). We will construct a solution ϕ of the form

ϕ(x) = α(x)
x
|x| ,

where α : B1 → R.
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Step 2.1 (definition of α). Let α : B1 → R be such that α (0) = 0 and, for 0 <
|x| ≤ 1, ∫ α(x)

0
sn−1g

(
s

x
|x|

)
ds =

∫ |x|

0
sn−1 f

(
s

x
|x|

)
ds. (11.29)

Since g > 0, using (11.21) and (11.24), we get, for every x ∈ B1 \{0}, that α(x) is
well defined and verifies 0 < α(x)< 1+ ε. Since g = f in a neighborhood of 0, we
obtain that

α(x) = |x| in the same neighborhood of 0.

By (11.23), we immediately have

α(x) = 1 on ∂B1 .

Therefore, by the implicit function theorem, which can be used since α > 0 and
g > 0, we have that α ∈Cr(B1 \{0}). Moreover, since α(x) = |x| in a neighborhood
of 0, the function x→ α(x)/|x| is Cr(B1).

Step 2.2 (conclusion). We finally show that

ϕ(x) =
α(x)
|x| x

is in Cr(B1;B1+ε) and verifies{
ϕ∗(g) = f in B1,

ϕ = id on ∂B1 .

In fact, by the properties of α, it is obvious that ϕ ∈Cr(B1;B1+ε) and that ϕ = id
on ∂B1 . Using Lemma 11.12, we obtain

det∇ϕ(x) =
αn−1(x)
|x|n

n

∑
i=1

xi
∂α
∂xi

(x) . (11.30)

Computing the derivative of (11.29) with respect to xi , we get

αn−1(x)g(ϕ(x))
∂α
∂xi

(x)+
n

∑
j=1

∫ α(x)

0
sn ∂g

∂x j

(
s

x
|x|

)( |x|δi j− xix j
|x|

|x|2
)

ds

= |x|n−1 f (x)
xi

|x| +
n

∑
j=1

∫ |x|

0
sn ∂ f

∂x j

(
s

x
|x|

)( |x|δi j− xix j
|x|

|x|2
)

ds,

where δi j = 1 if i = j and δi j = 0 otherwise. Multiplying the above equality by xi,
adding up the terms with respect to i and using

n

∑
i=1

xi

( |x|δi j− xix j
|x|

|x|2
)

= 0, 1≤ j ≤ n,
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we obtain

αn−1(x)g(ϕ(x))
n

∑
i=1

xi
∂α
∂xi

(x) = |x|n f (x).

This equality, together with (11.30), implies ϕ∗(g) = f , which shows the assertion.
�


Lemma 11.11. Let r ≥ 1 be an integer, f ∈Cr(B1) be such that f (0)> 0 and

∫ r

0
sn−1 f

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1], (11.31)

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds≥ 0 for every x �= 0 and r ∈ [0,1]. (11.32)

Then there exists g ∈Cr(B1) with g > 0 in B1 and ϕ ∈Cr(B1;B1) such that{
ϕ∗(g) = f in B1,

ϕ = id on ∂B1 .

Furthermore, the following two extra properties hold:
(i) If f > 0 on ∂B1 , then g and ϕ can be chosen so that

supp(g− f )⊂ B1 and supp(ϕ− id)⊂ B1 .

(ii) If f ≥ 0 in B1 and

f−1(0)∩B1 is countable,

then ϕ can be chosen in Hom(B1;B1).

Proof. The proof is essentially the same as the previous one. We split the proof into
two steps.

Step 1 (construction of g). In this step we construct a function g∈Cr(B1) with the
following properties: g > 0 in B1 , g = f in a neighborhood of 0 (and also supp(g−
f )⊂ B1 if f > 0 on ∂B1),

∫ 1

0
sn−1g

(
s

x
|x|

)
ds =

∫ 1

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0, (11.33)

∫ 1

0
sn−1g

(
s

x
|x|

)
ds≥

∫ r

0
sn−1 f

(
s

x
|x|

)
ds for every x �= 0 and r ∈ [0,1] .

(11.34)
Step 1.1 (preliminaries). Since f (0) > 0 and (11.31) holds, there exists δ > 0

small enough such that

f > 0 in Bδ and min
x �=0

∫ 1

δ
sn−1 f

(
s

x
|x|

)
ds > 0. (11.35)
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Let η ∈C∞([0,∞); [0,1]) be such that

η(s) =

{
1 if 0≤ s≤ δ/2

0 if δ ≤ s.

If f > 0 on ∂B1 , we modify the definition of δ and η as follows. We assume that

η(s) =

{
1 if 0≤ s≤ δ/2 or 1−δ/2≤ s≤ 1
0 if δ ≤ s≤ 1−δ ,

where δ > 0 small enough is such that

f > 0 in Bδ ∪ (B1 \B1−δ ) and min
x �=0

∫ 1−δ

δ
sn−1 f

(
s

x
|x|

)
ds > 0. (11.36)

Define next h : Rn \{0}→ R by

h(x) =

∫ 1

0
sn−1(1−η(s)) f (s x

|x| )ds∫ 1

0
sn−1(1−η(s))ds

.

It is easily seen that h ∈Cr(Rn \{0}), that

h(x) = h(λx) for every λ > 0,

and, using (11.35) or (11.36), that

h > 0.

Step 1.2 (conclusion). Let us show that g defined by

g(x) = η(|x|) f (x)+(1−η(|x|))h(x), x ∈ B1,

has all of the required properties. Using the definition of h and η , we see that g ∈
Cr(B1) satisfies g > 0 in B1 , (11.33) and g = f in Bδ/2 (if, moreover, f > 0 on ∂B1 ,
then supp(g− f ) ⊂ B1). Finally, we show (11.34). Let x �= 0 and r ∈ [0,1]. Using
(11.32) and (11.33), we get

∫ 1

0
sn−1g

(
s

x
|x|

)
ds =

∫ 1

0
sn−1 f

(
s

x
|x|

)
ds

=
∫ r

0
sn−1 f

(
s

x
|x|

)
ds+

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds

≥
∫ r

0
sn−1 f

(
s

x
|x|

)
ds,

which ends the construction of g.
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Step 2 (construction of ϕ). We will construct, as before, a solution ϕ of the form

ϕ(x) = α(x)
x
|x| ,

where α : B1 → R.

Step 2.1 (definition of α). Let α : B1 → R be such that α (0) = 0 and, for 0 <
|x| ≤ 1, ∫ α(x)

0
sn−1g

(
s

x
|x|

)
ds =

∫ |x|

0
sn−1 f

(
s

x
|x|

)
ds.

Since g > 0, using (11.31) and (11.34), we get for every x ∈ B1 \ {0} that α(x) is
well defined and verifies 0 < α(x) ≤ 1. Since g = f in a neighborhood of 0, we
obtain that

α(x) = |x| in the same neighborhood of 0.

By (11.33), we immediately have

α(x) = 1 on ∂B1 .

Moreover, if supp(g− f )⊂ B1 , then α also verifies

α(x) = |x| in a neighborhood of ∂B1 . (11.37)

Therefore, by the implicit function theorem, which can be used since α > 0 and
g > 0, we have that α ∈Cr(B1 \{0}). Moreover, since α(x) = |x| in a neighborhood
of 0, the map x→ α(x)x/|x| is Cr(B1).

Step 2.2 (conclusion). We show that

ϕ(x) =
α(x)
|x| x

is in Cr(B1;B1) and verifies {
ϕ∗(g) = f in B1,

ϕ = id on ∂B1 .

In fact, by the properties of α, it is obvious that ϕ ∈Cr(B1;B1) and that ϕ = id on
∂B1 . Finally, proceeding exactly as in Step 2.2 of the proof of Lemma 11.10, we
obtain that

ϕ∗(g) = f in B1,

which concludes the proof of the main statement.
It remains to show the two extra statements.
(i) If f > 0 on ∂B1 , then we have supp(g− f ) ⊂ B1 . Hence, it follows from

(11.37) that
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supp(ϕ− id)⊂ B1,

which proves the first extra statement.

(ii) If f ≥ 0 and
f−1(0)∩B1 is countable,

we immediately obtain

α(x) �= α(rx) for every x ∈ B1 \{0} and r ∈ [0,1) ,

which implies that ϕ ∈ Hom(B1;B1) and establishes the second statement and ends
the proof. �


In the proof of Lemmas 11.10 and 11.11, we used the following elementary
result.

Lemma 11.12. Let λ ∈C1(B1) and ϕ ∈C1(B1;Rn) be such that ϕ(x)= λ (x)x. Then

det∇ϕ(x) = λ n(x)+λ n−1(x)
n

∑
i=1

xi
∂λ
∂xi

(x).

In particular, if λ (x) = α(x)/|x| for some α, then

det∇ϕ(x) =
αn−1(x)
|x|n

n

∑
i=1

xi
∂α
∂xi

(x).

Proof. Since ∇ϕ = λ Id+x⊗∇λ and x⊗∇λ is a rank-1 matrix, the first equality
holds true. The second one easily follows. �


11.5 Concentration of Mass

We start with an elementary lemma.

Lemma 11.13. Let c ∈C0([0,1];B1). Then for every ε > 0 such that

c([0,1])+Bε ⊂ B1 ,

there exists ϕε ∈ Diff∞(B1;B1) satisfying

ϕε(c(0)) = c(1) and supp(ϕε − id)⊂ c([0,1])+Bε .

Proof. Define ηε ∈C∞(Rn; [0,1]) such that

ηε =

{
1 in Bε/4

0 in
(
Bε/2

)c
.
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Set, for a ∈ R
n,

ηa,ε(x) = ηε(x−a).

We then have
δ‖∇ηa,ε‖C0 = δ‖∇ηε‖C0 < 1/(2n) (11.38)

for a suitable δ > 0. Let xi ∈ B1 , 1≤ i≤ N, with x1 = c(0) and xN = c(1), be such
that

xi ∈ c([0,1]) for 1≤ i≤ N and |xi+1− xi|< δ for 1≤ i≤ N−1

and define
ϕi(x) = x+ηxi,ε(x)(xi+1− xi), 1≤ i≤ N−1.

Since (11.38) holds and supp(ϕi− id)⊂ c([0,1])+Bε ⊂ B1 , we have

det∇ϕi > 0 and ϕi = id on ∂B1 .

Therefore, ϕi ∈Diff∞(B1;B1) by Theorem 19.12. Moreover, ϕi(xi) = xi+1 . Then the
diffeomorphism

ϕε = ϕN−1 ◦ · · · ◦ϕ1

has all of the required properties. �

Before stating the main result of this section, we need some notations and ele-

mentary properties of pullbacks and connected components.

Notation 11.14. (i) Let Ω ⊂ R
n be a bounded open set. For f ∈C0(Ω), we adopt

the following notations:

F+ = f−1((0,∞)) and F− = f−1((−∞,0)).

Moreover, if x ∈ F±, then

F±x denotes the connected component of F± containing x.

(ii) Given a set A⊂ R
n, we let

1A (x) =

{
1 if x ∈ A

0 otherwise.

In the following lemma we state an easy property of pullbacks.

Lemma 11.15. Let Ω ⊂ R
n be open and bounded and f ∈C0(Ω),

ϕ ∈ Diff1(Ω ;Ω) with det∇ϕ > 0,

x ∈ F+, y ∈ F−. If f̃ = ϕ∗( f ), then ϕ−1(F+) = F̃+ , ϕ−1(F−) = F̃− ,

ϕ−1(F+
x ) = F̃+

ϕ−1(x) and ϕ−1(F−y ) = F̃−ϕ−1(y) .
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The following lemma is a trivial result about the cardinality of the connected
components of super (sub)-level sets of continuous functions and we state it for the
sake of completeness.

Lemma 11.16. Let f ∈C0(B1). Let {F+
xi
}i∈I+ and {F−y j

} j∈I− be the connected com-
ponents of F+, respectively of F−. Then I+ and I− are at most countable. Moreover,
if |I+|= ∞, respectively |I−|= ∞, then

lim
k→∞

meas
(

F+ \
k⋃

i=1

F+
xi

)
= 0, respectively lim

k→∞
meas

(
F− \

k⋃
j=1

F−y j

)
= 0.

We now give the first main result of the present section.

Lemma 11.17 (Concentration of the positive mass). Let r ≥ 1 be an integer, f ∈
Cr(B1) and z ∈ F+. Let also Ai , 1 ≤ i ≤ M, be M closed sets pairwise disjoint of
positive measure such that

Ai ⊂ F+
z ∩B1 , 1≤ i≤M.

Then for every ε > 0 small enough, there exists ϕε, f ,{Ai} ∈Diffr(B1;B1) (which will
be simply denoted ϕε ) satisfying the following properties:

supp(ϕε − id)⊂ F+
z ∩B1,

ϕ∗ε ( f )≥

∫
F+

z

f

M meas(Ai)
− ε in Ai , 1≤ i≤M. (11.39)

Remark 11.18. Indeed, the above lemma allows one to concentrate the positive mass
of the connected component containing z into the union of the Ai . The conclusion
of the lemma immediately implies that

∫
F+

z

f =
∫

F+
z

ϕ∗ε ( f )≥
M

∑
i=1

∫
Ai

ϕ∗ε ( f )≥
∫

F+
z

f − ε
M

∑
i=1

meas(Ai).

Proof. We split the proof into three steps.
Step 1 (simplification). Using Theorem 10.11, it is sufficient to prove the exis-

tence of fε ∈Cr(B1), such that

fε > 0 in F+
z , supp( f − fε)⊂ F+

z ∩B1 and
∫

F+
z

fε =
∫

F+
z

f

satisfying also (11.39) with ϕ∗ε ( f ) replaced by fε .

Step 2 (definition of fε and conclusion). Let K ⊂ F+
z ∩B1 be a closed set with

M⋃
i=1

Ai ⊂ intK ⊂ K ⊂ F+
z ∩B1
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and let, for every ε > 0 and 1≤ i≤M,

ηi,ε ∈C∞(B1; [0,1]) and ξε ∈C∞(B1; [0,1])

be such that

supp(ηi,ε)∩ supp(η j,ε) = /0 for i �= j, (11.40)

Ai ⊂ {x ∈ B1 : ηi,ε(x) = 1} ⊂ suppηi,ε ⊂ intK, (11.41)

K ⊂ {x ∈ B1 : ξε(x) = 1} ⊂ supp(ξε)⊂ F+
z ∩B1, (11.42)

lim
ε→0

ξε = 1F+
z ∩B1

and lim
ε→0

ηi,ε = 1Ai . (11.43)

Define fε , ε small, as

fε =

{
∑M

i=1 ηi,εC+
i,ε +(1−∑M

i=1 ηi,ε) · ε in K

ξε · ε +(1−ξε) f elsewhere,

where

C+
i,ε =

∫
F+

z

f

M meas(Ai)
, 1≤ i≤M−1, (11.44)

and C+
M,ε is the unique constant defined implicitly by the equation

∫
F+

z

fε =
∫

F+
z

f .

We claim that fε has, up to rescaling ε, all of the required properties. Using (11.41)
and (11.42), we get that

fε ∈Cr(B1), supp( fε − f )⊂ F+
z ∩B1 ,

∫
F+

z

fε =
∫

F+
z

f .

We claim that

lim
ε→0

C+
i,ε =

∫
F+

z

f

M meas(Ai)
, 1≤ i≤M. (11.45)

By (11.44), it is obviously sufficient to prove the assertion for i = M. Using (11.43),
(11.44), and the dominated convergence theorem, we get

∫
F+

z

f = lim
ε→0

∫
F+

z

fε =
M−1

∑
i=1

∫
F+

z

1Ai

∫
F+

z
f

M meas(Ai)
+

∫
F+

z

1AM lim
ε→0

C+
M,ε

=
M−1

M

∫
F+

z

f +meas(AM) lim
ε→0

C+
M,ε

and thus the assertion holds. By the definition of fε , (11.40) and (11.45), we get
that, for ε small,
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fε > 0 in F+
z .

Finally, since, by (11.41),

fε =C+
i,ε in Ai, 1≤ i≤M,

(11.45) directly implies, up to rescaling ε, (11.39), which ends the proof. �

We now give a similar result for the negative mass.

Lemma 11.19 (Concentration of the negative mass). Let r ≥ 1 be an integer, f ∈
Cr(B1) and y ∈ F−. Let also Ai , 1 ≤ i ≤ M, be M closed sets pairwise disjoint of
positive measure such that

Ai ⊂ F−y ∩B1 and meas(∂Ai) = 0, 1≤ i≤M. (11.46)

Then for every ε > 0 small enough, there exists ϕε, f ,{Ai} ∈ Diffr(B1;B1) (simply
denoted ϕε ) satisfying the following properties:

supp(ϕε − id)⊂ F−y ∩B1,∫
F−y

f

M meas(Ai)
− ε ≤ ϕ∗ε ( f )< 0 in Ai , 1≤ i≤M, (11.47)

∫ 1

0
sn−1(1F−y \(∪M

i=1Ai)ϕ∗ε ( f ))
(

s
x
|x|

)
ds≥−ε, x �= 0. (11.48)

Remark 11.20. Integrating the last inequality over the unit sphere, we indeed obtain
that the negative mass of the connected component containing y is concentrated into
the union of the Ai .

Proof. We split the proof into three steps.
Step 1 (simplification). Using Theorem 10.11, it is sufficient to prove the exis-

tence of fε ∈Cr(B1), such that

fε < 0 in F−y , supp( f − fε)⊂ F−y ∩B1 and
∫

F−y
fε =

∫
F−y

f

satisfying also (11.47) and (11.48) with ϕ∗ε ( f ) replaced by fε .

Step 2 (preliminaries). It is easily seen that the family of closed sets Kε , ε small,
defined by

Kε = {x ∈ F−y ∩B1−ε : f (x)≤−ε}
has the following properties:

Kε ⊂ Kε ′ if ε ′ < ε and
⋃
ε>0

Kε = F−y ∩B1, (11.49)

f |(F−y ∩B1−ε )\Kε
>−ε. (11.50)
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Let ξε ∈C∞(B1; [0,1]) be such that

ξε = 1 in Kε and suppξε ⊂ F−y ∩B1 . (11.51)

Using (11.49) and (11.51), we immediately deduce that

lim
ε→0

ξε = 1F−y ∩B1
and

M⋃
i=1

Ai ⊂ int(Kε) for ε small. (11.52)

Finally, for every 1 ≤ i ≤ M and ε small enough, let ηi,ε ∈ C∞(B1; [0,1]) be such
that

supp(ηi,ε)⊂ int(Ai) and lim
ε→0

ηi,ε = 1int(Ai), 1≤ i≤M. (11.53)

Step 3 (definition of fε and conclusion). Define fε , ε small, as

fε =

{
∑M

i=1 ηi,εC−i,ε +(1−∑M
i=1 ηi,ε) · (−ε) in

⋃M
i=1 Ai

ξε · (−ε)+(1−ξε) f elsewhere,

where

C−i,ε =

∫
F−y

f

M meas(Ai)
, 1≤ i≤M−1, (11.54)

and C−M,ε is the unique constant defined implicitly by the equation

∫
F−y

fε =
∫

F−y
f .

We claim that, up to rescaling ε, fε has all the required properties. Using (11.51)–
(11.53), we obtain that

fε ∈Cr(B1), supp( f − fε)⊂ F−y ∩B1 ,
∫

F−y
fε =

∫
F−y

f .

We assert that

lim
ε→0

C−i,ε =

∫
F−y

f

M meas(Ai)
, 1≤ i≤M. (11.55)

By (11.54), it is obviously sufficient to prove (11.55) for i = M. Using (11.52)
and (11.53) and noticing (using (11.46))

meas(Ai) = meas(int(Ai)),
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we get, by the dominated convergence theorem,

∫
F−y

f = lim
ε→0

∫
F−y

fε =
M−1

∑
i=1

∫
F−y

1int(Ai)

∫
F−y f

M meas(Ai)
+

∫
F−y

1int(AM) lim
ε→0

C−M,ε

=
M−1

M

∫
F−y

f +meas(AM) lim
ε→0

C−M,ε

and, thus, the assertion is verified. Equation (11.55) immediately implies fε < 0 in
F−y for ε small and also, rescaling ε if necessary, (11.47).

It remains to prove (11.48). First, we claim that

fε |(F−y ∩B1−ε )\(∪M
i=1Ai)≥−ε, (11.56)

fε ≥−D (11.57)

for some D > 0 independent of ε. In fact, (11.56) is obtained combining the fact that
(by definition of fε )

fε =−ε in Kε \
(∪M

i=1Ai
)

and, by (11.50) and the definition of fε ,

fε |(F−y ∩B1−ε )\Kε
≥−ε.

Equation (11.57) is an immediate consequence of (11.55) and the definition of fε .
Using (11.56) and (11.57) we get, for ε small and every x �= 0,

∫ 1

0
sn−1(1F−y \(∪M

i=1Ai) fε)

(
s

x
|x|

)
ds≥

∫ 1

0
(1F−y \(∪M

i=1Ai) fε)

(
s

x
|x|

)
ds

=
∫ 1−ε

0
(1F−y \(∪M

i=1Ai) fε)

(
s

x
|x|

)
ds+

∫ 1

1−ε
(1F−y \(∪M

i=1Ai) fε)

(
s

x
|x|

)
ds

≥
∫ 1−ε

0
−εds+

∫ 1

1−ε
(−D)ds≥−ε− εD =−(D+1)ε.

Replacing ε by ε/(D+1) , we have shown (11.48) while still conserving the in-
equality (11.47). This ends the proof. �


11.6 Positive Radial Integration

Lemma 11.21 is the central part of the proof of Theorem 11.1. We show how to
modify the mass distribution f ∈C0(B1) satisfying

∫
B1

f > 0, in order to have strictly
positive integrals on every radius starting from 0 and almost positive integrals on
every radius starting from any point of the boundary (see Lemma 11.21). Moreover,
if f is strictly positive on the boundary or if f ≥ 0 in B1, we will be able to modify
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the mass of f in order to have strictly positive integrals on every radius starting
either from 0 or from any point of the boundary (see Corollary 11.23).

Lemma 11.21 (Positive radial integration). Let f ∈C0(B1) be such that∫
B1

f > 0. (11.58)

Then for every σ > 0, there exists ϕ = ϕσ ∈ Diff∞(B1;B1) such that

supp(ϕ− id)⊂ B1 , ϕ∗( f )(0)> 0,

∫ r

0
sn−1ϕ∗( f )

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1], (11.59)

∫ 1

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds >−σ for every x �= 0 and r ∈ [0,1]. (11.60)

Remark 11.22. (i) If f ≥ 0, the proof is straightforward (see Corollary 11.23).
(ii) If f1 satisfies ϕ∗( f1)(0) > 0, (11.59) and (11.60), for a certain ϕ as in the

lemma, then every f ≥ f1 also satisfies ϕ∗( f )(0)> 0, (11.59) and (11.60) with the
same ϕ. Indeed, we clearly have

ϕ∗( f1)(x) = f1(ϕ(x))det∇ϕ(x)︸ ︷︷ ︸
>0

≤ f (ϕ(x))det∇ϕ(x) = ϕ∗( f )(x).

(iii) Integrating (11.59) over the sphere with r = 1, we get
∫

B1
ϕ∗( f ) > 0 and,

therefore, (11.58) is necessary using the change of variables formula.
(iv) In general, (11.60) cannot be assumed to be positive or 0 for every x and r.

This is, for example, always the case when f (x) < 0 for some x ∈ ∂B1. Indeed,
noting that

ϕ∗( f )(x) = f (x)det∇ϕ(x)< 0,

we have that (11.60) will be strictly negative for x = x and r sufficiently close to 1.
(v) We could have replaced, without any changes, the unit ball by any ball cen-

tered at 0.

As a corollary, we have the following result.

Corollary 11.23. Let f ∈C0(B1) be such that∫
B1

f > 0 (11.61)

and

either f > 0 on ∂B1 or f ≥ 0 in B1 .
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Then there exists ϕ ∈ Diff∞(B1;B1) such that

supp(ϕ− id)⊂ B1 , ϕ∗( f )(0)> 0,∫ r

0
sn−1ϕ∗( f )

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,1], (11.62)

∫ 1

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds≥ 0 for every x �= 0 and r ∈ [0,1]. (11.63)

Proof (Corollary 11.23). We split the proof into two parts.

Part 1. We prove the corollary when f ≥ 0 in B1 . By (11.61) there exists a ∈ B1
with f (a)> 0. Using Lemma 11.13, there exists ϕ ∈ Diff∞(B1;B1) such that

supp(ϕ− id)⊂ B1 and ϕ(0) = a.

Since ϕ∗( f )(0) = f (ϕ(0))det∇ϕ(0)> 0 and ϕ∗( f )≥ 0 in B1 , it is immediate that
ϕ has all of the required properties.

Part 2. We prove the corollary when f > 0 on ∂B1 .

Part 2.1. By (11.61), there exist 0 < η < 1 and ε > 0 such that∫
Bη

f > 0 and f > ε on B1 \Bη .

Using Lemma 11.21 with Bη instead of B1 , there exists ϕ ∈Diff∞(Bη ;Bη) verifying

supp(ϕ− id)⊂ Bη , ϕ∗( f )(0)> 0,∫ r

0
sn−1ϕ∗( f )

(
s

x
|x|

)
ds > 0 for every x �= 0 and r ∈ (0,η ], (11.64)

∫ η

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds >−ε(1−ηn)

n
for every x �= 0 and r ∈ [0,η ]. (11.65)

Part 2.2. Let us show that ϕ (extended by the identity to B1) has all of the required
properties. Trivially, ϕ ∈ Diff∞(B1;B1),

ϕ∗( f )(0)> 0 and supp(ϕ− id)⊂ Bη ⊂ B1 .

Since ϕ∗( f ) = f > 0 in B1 \Bη , (11.64) directly implies (11.62). Finally, we show
(11.63). Using again that ϕ∗( f ) = f > 0 in B1 \Bη , it is obvious that (11.63) is
verified for every r∈ [η ,1]. Suppose that r∈ [0,η). Combining the fact that ϕ∗( f )=
f > ε in B1 \Bη and (11.65), we obtain for every x �= 0,∫ 1

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds =

∫ 1

η
sn−1ϕ∗( f )

(
s

x
|x|

)
ds+

∫ η

r
sn−1ϕ∗( f )

(
s

x
|x|

)
ds

>
∫ 1

η
sn−1ε ds− ε(1−ηn)

n
= 0.

The proof is therefore complete. �
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Finally, we give the proof of Lemma 11.21.

Proof. Since the proof is rather long, we divide it into five steps. The three following
facts will be crucial.

(i) For fixed a,b ∈ B1 , there exists, from Lemma 11.13, ϕ ∈ Diff∞(B1;B1) such
that ϕ(a) = b. This will be used in Step 1.3 and Step 3.1.

(ii) From Lemmas 11.17 and 11.19, we concentrate the mass contained in con-
nected components of F+ and F− in sectors of cones. This will be achieved in
Step 4.

(iii) From Remark 11.22(ii), it is sufficient to prove the result for a function
f1 ≤ f . This will be used in Steps 1.1, 1.2 and 1.4.

Step 1. We show that we can, without loss of generality, assume that

f ∈C∞(B1), F− connected, f (0)> 0 and
∫

B1\F+
0

f > 0, (11.66)

recalling that F+
0 is the connected component of F+ = f−1 ((0,∞)) containing 0.

Step 1.1. We start by showing that we can assume f ∈C∞(B1). First, using The-
orem 16.11, we extend f so that f ∈C0(Rn). Then we choose δ > 0 small enough
such that ∫

B1

f > δ meas(B1).

By continuity of f , there exists fδ ∈C∞(Rn) such that

fδ (x)< f (x)< fδ (x)+δ for every x ∈ B1 .

Note that ∫
B1

fδ >
∫

B1

f −δ meas(B1)> 0.

Using Remark 11.22(ii), we have the assertion. From now on, we write f instead of
fδ and we can therefore assume that f ∈C∞(B1).

Step 1.2. We show that we can, without loss of generality, assume that F− is
connected.

Step 1.2.1 (preliminaries). For every ε > 0 there exist M ∈ N, a1, . . . ,aM ∈ B1
and δ1, . . . ,δM > 0 (depending all on ε) such that

M⋃
i=1

Bδi(ai)⊂ F+∩B1

Bδi(ai)∩Bδ j(a j) = /0 for every i �= j,

meas
(
F+ \ (∪M

i=1Bδi(ai)
))

< ε.
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Using the last equation and since∫
B1

f =
∫

F+
f +

∫
F−

f > 0,

we can choose ε > 0 (and, therefore, also M, ai and δi) small enough so that∫
∪M

i=1Bδi
(ai)

f +
∫

F−
f > 0.

We then choose δ > 0 small enough such that

M⋃
i=1

Bδi+4δ (ai)⊂ F+∩B1,

Bδi+4δ (ai)∩Bδ j+4δ (a j) = /0 for every i �= j,∫
∪M

i=1Bδi
(ai)

f +
∫

F−
f > δ meas(B1). (11.67)

Let ξ ∈C∞(B1; [0,1]) be such that

ξ = 1 in
M⋃

i=1

(
Bδi+3δ (ai)\Bδi+δ (ai)

)
,

suppξ ⊂
M⋃

i=1

(
Bδi+4δ (ai)\Bδi(ai)

)
,

{x ∈ B1 \
(∪M

i=1Bδi+2δ (ai)
)

: ξ (x)< 1} is connected. (11.68)

Using Theorem 16.11, we extend f so that f ∈C∞(Rn). Define f̃ : Rn → R by

f̃ (x) = min{ f (x),0}.

By continuity of f̃ , there exists hδ ∈C∞(Rn) such that

hδ (x)< f̃ (x)< hδ (x)+δ for every x ∈ B1 . (11.69)

In particular, note that

hδ < 0 in B1 .

Step 1.2.2 (conclusion). Let fδ : B1 → R be defined by

fδ =

{
(1−ξ ) f in

⋃M
i=1Bδi+2δ (ai)

(1−ξ )hδ in B1 \⋃M
i=1Bδi+2δ (ai).

(11.70)
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It is easily seen that fδ is of class C∞ and satisfies the following properties:

fδ (x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= hδ (x)< min{ f (x),0} ≤ f (x) if x ∈ B1 \⋃M
i=1Bδi+4δ (ai)

≤ 0 < f (x) if x ∈⋃M
i=1(Bδi+4δ (ai)\Bδi+3δ (ai))

= 0 < f (x) if x ∈⋃M
i=1(Bδi+3δ (ai)\Bδi+δ (ai))

≤ f (x) if x ∈⋃M
i=1(Bδi+δ (ai)\Bδi(ai))

= f (x) if x ∈⋃M
i=1Bδi(ai).

In particular, fδ ≤ f . We, moreover, have, since hδ < 0 and

fδ ≥ 0 in
M⋃

i=1

Bδi+2δ (ai),

that

F−δ = {x ∈ B1 : fδ (x)< 0}= {x ∈ B1 \∪M
i=1Bδi+2δ (ai) : fδ (x)< 0}

= {x ∈ B1 \∪M
i=1Bδi+2δ (ai) : (1−ξ (x))hδ (x)< 0}

= {x ∈ B1 \∪M
i=1Bδi+2δ (ai) : ξ (x)< 1},

which is a connected set by (11.68). We thus have that

F−δ ⊂ B1 \⋃M
i=1Bδi+2δ (ai) and F−δ is connected.

Observe next that∫
F−δ

fδ =
∫

F−δ
(1−ξ )hδ ≥

∫
F−δ

hδ >
∫

F−δ

(
f̃ −δ

)
≥

∫
F−δ

f̃ −δ meas(B1)

=
∫

F−δ ∩F−
f̃ +

∫
F−δ \F−

f̃ −δ meas(B1) =
∫

F−δ ∩F−
f̃ −δ meas(B1)

=
∫

F−δ ∩F−
f −δ meas(B1)≥

∫
F−

f −δ meas(B1).

This leads to∫
B1

fδ =
∫

F+
δ

fδ +
∫

F−δ
fδ ≥

∫
∪M

i=1Bδi
(ai)

fδ +
∫

F−δ
fδ =

∫
∪M

i=1Bδi
(ai)

f +
∫

F−δ
fδ

>
∫
∪M

i=1Bδi
(ai)

f +
∫

F−
f −δ meas(B1)> 0,

where we have used (11.67) in the last inequality. From now on, we write f in place
of fδ , since fδ ≤ f and Remark 11.22(ii) holds. We may therefore assume, in the
remaining part of the proof, that f ∈C∞ (

B1
)

and F− is connected.
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Step 1.3. Let us prove that we can assume that f (0) > 0. In fact, suppose that
f (0) ≤ 0. We prove that there exists a diffeomorphism ϕ1 such that ϕ∗1 ( f )(0) > 0.
Indeed, since

∫
B1

f > 0, there exists a ∈ B1 such that f (a) > 0. By Lemma 11.13,
there exists ϕ1 ∈ Diff∞(B1;B1) such that

supp(ϕ1− id)⊂ B1 and ϕ1(0) = a.

Since ϕ∗1 ( f )(0) = f (a)det∇ϕ1(0) > 0, we have the result. Note that, using the
change of variables formula, ∫

B1

ϕ∗1 ( f ) =
∫

B1

f > 0.

Note also that ϕ∗1 ( f ) ∈C∞ (
B1

)
and, using Lemma 11.15,

(ϕ∗1 ( f ))−1 ((−∞,0)) = ϕ−1
1 (F−) is connected.

From now on, we write f in place of ϕ∗1 ( f ) and thus we can assume, without loss
of generality, that f ∈C∞ (

B1
)
, F− is connected and f (0)> 0.

Step 1.4. We finally show that we can assume that∫
B1\F+

0

f > 0.

In fact, since f (0)> 0 and
∫

B1
f > 0, if δ1 > 0 is small enough, we have that B4δ1 ⊂

F+
0 and ∫

B1\B4δ1

f > 0. (11.71)

Let η ∈C∞([0,1]; [0,1]) be such that

η (r) =

{
1 if r ≤ δ1 or 4δ1 ≤ r ≤ 1

0 if 2δ1 ≤ r ≤ 3δ1 .

Let h ∈C∞(B1) defined by h(x) = η(|x|) f (x). We then have

h(0)> 0, H− = F− connected and Bδ1 ⊂ H+
0 ⊂ B2δ1 .

Using (11.71), we get ∫
B1\H+

0

h≥
∫

B1\B4δ1

h =
∫

B1\B4δ1

f > 0.

Since h≤ f , we may, according to Remark 11.22(ii), proceed replacing f with h =
η f . The proof of Step 1 is therefore complete.

Step 2. In this step we start by selecting N connected components of F+ \F+
0 .

Then we select an appropriate amount of points in each of them.
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Step 2.1 (selection of N connected components of F+ \ F+
0 ). Let F+

xi
, i ∈ I+,

xi ∈ B1 \F+
0 , be the pairwise disjoint connected components of F+ \F+

0 . Notice
that I+ is not empty by Step 1.4 and is at most countable; see Lemma 11.16. We
claim that there exists N ∈ N such that∫

∪N
i=1F+

xi

f +
∫

F−
f > 0. (11.72)

In fact, suppose that I+ is infinite (otherwise the assertion is trivial because of the
fourth statement in (11.66)). Since, by the fourth statement in (11.66),∫

F+\F+
0

f +
∫

F−
f > 0

and since, using Lemma 11.16,

lim
N→∞

∫
∪N

i=1F+
xi

f =
∫

F+\F+
0

f ,

we have (11.72) for N large enough.

Step 2.2 (selection of Mi points in F+
xi
, 1 ≤ i ≤ N and of M1 + · · ·+ MN − 1

points in F−). We start by defining the integers Mi. We claim that there exist M1, . . . ,
MN ∈ N such that∫

F+
xi

f

Mi
+

∫
F−

f

(∑N
j=1 Mj)−1

> 0 for every 1≤ i≤ N. (11.73)

In order to simplify the notations, let

m+
i =

∫
F+

xi

f , 1≤ i≤ N and m− =
∫

F−
f .

We claim that for an integer ν large enough,

M1 = ν and Mi =

[
m+

i

m+
1

ν
]
, 2≤ i≤ N,

where [x] stands for the integer part of x, satisfy (11.73). Indeed, let 1≤ i≤ N; then
since

m+
i

m+
1

ν−1 < Mi <
m+

i

m+
1

ν +1, 1≤ i≤ N,

we deduce

m+
i

Mi
+

m−

(∑N
j=1 Mj)−1

≥ m+
i

m+
i

m+
1

ν +1
+

m−

∑N
j=1 m+

j

m+
1

ν−N−1
.
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Therefore, since, by (11.72),

N

∑
j=1

m+
j +m− > 0,

we get

lim
ν→∞

[
ν

(
m+

i
Mi

+
m−

(∑N
j=1 Mj)−1

)]
≥ m+

1

(
1+

m−

∑N
j=1 m+

j

)
> 0.

This proves the assertion.

Finally, choose M1 distinct points

z1, . . . ,zM1 ∈ F+
x1
.

Then choose M2 distinct points

zM1+1, . . . ,zM1+M2 ∈ F+
x2

and so on, and finally choose MN distinct points

zM1+···+MN−1+1, . . . ,zM1+···+MN ∈ F+
xN
.

Similarly, choose M1 + · · ·+MN −1 distinct points

y1, . . . ,yM1+···+MN−1 ∈ F−.

We define
M = M1 + · · ·+MN .

In particular, we have

f (zk)> 0, 1≤ k ≤M and f (y j)< 0, 1≤ j ≤M−1.

Step 3. In this step we move the 2M−1 points selected in the above step so that
they are on the same radial axis and well ordered; moreover, we define some cone
sectors.

Step 3.1 (displacement of the points zk and y j). Choose (2M−1) points, z̃1, . . . , z̃M
and ỹ1, . . . , ỹM−1 such that

0 < |z̃1|< |ỹ1|< |z̃2|< |ỹ2|< · · ·< |z̃M−1|< |ỹM−1|< |z̃M|< 1,

z̃k

|z̃k| =
ỹ j

|ỹ j| for every 1≤ k ≤M, 1≤ j ≤M−1.

Then choose ε1 small enough and

cl ∈C0([0,1];B1), 1≤ l ≤ 2M−1,
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such that the sets

cl([0,1])+Bε1 are pairwise disjoint and contained in B1 \{0},{
cl(0) = z̃l cl(1) = zl if 1≤ l ≤M,

cl(0) = ỹl−M cl(1) = yl−M if M+1≤ l ≤ 2M−1.

Applying, for 1 ≤ l ≤ 2M− 1, Lemma 11.13 with ε = ε1 and c = cl , we get ψl ∈
Diff∞(B1;B1) with

ψl(cl(0)) = cl(1) and supp(ψl− id)⊂ cl([0,1])+Bε1 ⊂ B1 \{0}.

Thus, defining ϕ2 =ψ1◦· · ·◦ψ2M−1, we get that supp(ϕ2− id)⊂B1\{0} (and thus,
in particular ϕ2(0) = 0) and

ϕ2(z̃k) = zk , 1≤ k ≤M and ϕ2(ỹ j) = y j , 1≤ j ≤M−1.

To complete, we also define

x̃i = ϕ−1
2 (xi) 1≤ i≤ N.

Step 3.2 (definition of cone sectors). For 0 < δ < 1, let Kδ be the closed cone
having vertex 0 and axis R+ỹ1 and such that

meas(Kδ ∩B1) = δ measB1 .

This immediately implies that

meas(Kδ ∩Br) = δ measBr for every r > 0. (11.74)

Define
f̃ = ϕ∗2 ( f ).

By the properties of f and ϕ2 we get that

f̃ (0)> 0, f̃ (z̃k)> 0, 1≤ k ≤M and f̃ (ỹ j)< 0, 1≤ j ≤M−1.

Therefore, there exists δ > 0 small enough such that⎧⎪⎪⎨
⎪⎪⎩

f̃ > δ in Bδ ,

Kδ ∩
(
B|z̃k|+δ \B|z̃k|−δ

)⊂ F̃+∩B1, 1≤ k ≤M,

Kδ ∩
(

B|ỹ j |+δ \B|ỹ j |−δ

)
⊂ F̃− ∩B1, 1≤ j ≤M−1;

in particular,

δ < |z̃1|−δ < |z̃1|+δ < |ỹ1|−δ < |ỹ1|+δ < |z̃2|−δ < |z̃2|+δ
< · · ·< |ỹM−1|−δ < |ỹM−1|+δ < |z̃M|−δ < |z̃M|+δ < 1.
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Using Lemma 11.15 and (11.72), we get that f̃ ∈ C∞ (
B1

)
is such that F̃− is con-

nected and ∫
∪N

i=1F̃+
x̃i

f̃ +
∫

F̃−
f̃ > 0.

From now on, we write f , xi , zk and y j instead of f̃ = ϕ∗2 ( f ), x̃i , z̃k and ỹ j , respec-
tively. Define ⎧⎨

⎩
S+k = Kδ ∩

(
B|zk|+δ \B|zk|−δ

)
, 1≤ k ≤M,

S−j = Kδ ∩
(

B|y j |+δ \B|y j |−δ

)
, 1≤ j ≤M−1,

in particular,

δ < |z1|−δ < |z1|+δ < |y1|−δ < |y1|+δ < |z2|−δ < |z2|+δ
< · · ·< |yM−1|−δ < |yM−1|+δ < |zM|−δ < |zM|+δ < 1.

Choosing δ even smaller, we can assume, without loss of generality, that

δ n+1

n
< σ , (11.75)

where σ is the σ in the statement of the lemma. Note that f has the following
properties:

S+k ⊂ F+
xt(k)

,

where t(k) is defined by

t(k) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 1≤ k ≤M1

...
...

N if M1 + · · ·+MN−1 +1≤ k ≤M,

f > δ in Bδ ⊂ F+
0 , F− is connected and∫

∪N
i=1F+

xi

f +
∫

F−
f > 0. (11.76)

Step 4. In this step we concentrate the positive and the negative mass in the cone
sectors defined in the previous step.

Step 4.1 (concentration of the positive mass in S+k , 1 ≤ k ≤ M). Using (11.73),
we can find ε1 small enough such that∫

F+
xi

f

Mi
−2ε1 measB1 +

∫
F−

f

M−1
> 0, 1≤ i≤ N. (11.77)
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Applying, for 1≤ i≤ N, Lemma 11.17 to f , z = xi , ε = ε1 and

A1 = S+
1+∑i−1

j=1Mj
, . . . ,AMi = S+

∑i
j=1Mj

,

we get ψi ∈ Diff∞(B1;B1) with supp(ψi− id)⊂ F+
xi
∩B1 and

(ψi)
∗( f )≥

∫
F+

xi

f

Mi measS+k
− ε1 in S+k , 1+

i−1

∑
j=1

Mj ≤ k ≤
i

∑
j=1

Mj .

Letting ϕ3 = ψ1 ◦ · · · ◦ψN ∈ Diff∞(B1;B1), we obtain that

supp(ϕ3− id)⊂
N⋃

j=1

(F+
x j
∩B1)⊂ B1 \F+

0 ,

ϕ∗3 ( f ) = f > δ in Bδ ,

and, for every 1≤ i≤ N,

ϕ∗3 ( f )≥

∫
F+

xi

f

Mi measS+k
− ε1 in S+k , 1+

i−1

∑
j=1

Mj ≤ k ≤
i

∑
j=1

Mj .

We define, for 1≤ k ≤M,

C+
k =

∫
F+

xi

f

Mi measS+k
− ε1 if 1+

i−1

∑
j=1

Mj ≤ k ≤
i

∑
j=1

Mj

and we replace ϕ∗3 ( f ) by f . We therefore have, using (11.77) and the fact that
meas(S+k )≤meas(B1),⎧⎪⎪⎨

⎪⎪⎩
f ≥C+

k in S+k , 1≤ k ≤M, f > δ in Bδ ,

C+
k meas(S+k )+

∫
F−

f

M−1
− ε1 meas(B1)> 0, 1≤ k ≤M.

(11.78)

We also have
M⋃

k=1

S+k ⊂ F+ \F+
0 .

Step 4.2 (concentration of the negative mass in S−j , 1 ≤ j ≤ M − 1). Using
Lemma 11.19, recalling that F− is connected, with A j = S−j , 1≤ j ≤M−1, and

ε = min{ε1,δ n+1/n},
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where δ has been defined in Step 3.2, we get ϕ4 ∈ Diff∞(B1;B1) with supp(ϕ4−
id)⊂ F− ∩B1 and⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
F−

f

(M−1)measS−j
− ε1 ≤ ϕ∗4 ( f )< 0 in S−j , 1≤ j ≤M−1,

∫ 1

0
sn−1(1

F−\
(
∪M−1

j=1 S−j
)ϕ∗4 ( f ))

(
s

x
|x|

)
ds≥−δ n+1

n
, x �= 0.

Defining

C−j =

∫
F−

f

(M−1)measS−j
− ε1 , 1≤ j ≤M−1,

we thus get, using the second inequality of (11.78),⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C−j ≤ ϕ∗4 ( f )< 0 in S−j , 1≤ j ≤M−1,

C+
k measS+k +C−j measS−j > 0, 1≤ j ≤M−1, 1≤ k ≤M,∫ 1

0
sn−1(1

F−\
(
∪M−1

j=1 S−j
)ϕ∗4 ( f ))

(
s

x
|x|

)
ds≥−δ n+1

n
, x �= 0.

Note that ϕ∗4 ( f ) = f in F+. Finally, as usual, we replace ϕ∗4 ( f ) by f . We therefore
obtain, using (11.78) and recalling (by (11.75)) that δ n+1

n < σ ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f > δ in Bδ ⊂ F+
0 ,

f ≥C+
k in S+k ⊂ F+ \F+

0 , 1≤ k ≤M,

f ≥C−j in S−j ⊂ F−, 1≤ j ≤M−1,

C+
k measS+k +C−j measS−j > 0, 1≤ k ≤M, 1≤ j ≤M−1,∫ 1

0
sn−1(1

F−\
(
∪M−1

j=1 S−j
) f )

(
s

x
|x|

)
ds≥−δ n+1

n
>−σ , x �= 0.

(11.79)
Step 4.3 (summary of the properties of f ). We claim that f has the following

properties:
f > δ in Bδ ⊂ F+

0 , (11.80)

M⋃
k=1

S+k ⊂ F+ \F+
0 ,

M−1⋃
j=1

S−j ⊂ F−, (11.81)

∫ 1

0
sn−1(1

F−\
(
∪M−1

j=1 S−j
) f )

(
s

x
|x|

)
ds≥−δ n+1

n
>−σ if x �= 0 (11.82)

and for every x �= 0 and 1≤ k ≤M, 1≤ j ≤M−1,

∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−j

f )
(

s
x
|x|

)
ds > 0. (11.83)
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In fact, (11.80)–(11.82) are just the first, second and fifth inequalities of (11.79),
respectively. Let us show (11.83). Fix 1≤ k ≤M and 1≤ j ≤M−1. Recall that

S+k = Kδ ∩ (B|zk|+δ \B|zk|−δ ) and S−j = Kδ ∩ (B|y j |+δ \B|y j |−δ ),

where Kδ is a cone with vertex 0 and aperture δ . Thus, according to (11.74),

measS+k = δ [(|zk|+δ )n− (|zk|−δ )n]measB1,

measS−j = δ [(|y j|+δ )n− (|y j|−δ )n]measB1 .

Then, using (11.79), we get

∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−j

f )
(

s
x
|x|

)
ds

≥
∫ |zk|+δ

|zk|−δ
sn−1C+

k ds+
∫ |y j |+δ

|y j |−δ
sn−1C−j ds

=C+
k
(|zk|+δ )n− (|zk|−δ )n

n
+C−j

(|y j|+δ )n− (|y j|−δ )n

n

=C+
k

measS+k
nδ measB1

+C−j
measS−j

nδ measB1
> 0,

which is the claim.

Step 5 (conclusion). Let

ϕ = ϕ1 ◦ϕ2 ◦ϕ3 ◦ϕ4 .

Note that, by construction, supp(ϕ − id) ⊂ B1 . Because of all of the successive
replacements of f in Steps 1–4 by a new f , the lemma has to be proved for ϕ = id .

Step 5.1. First, note that f (0)> 0 by (11.80).

Step 5.2. We now show (11.59). We divide the discussion into three steps.

Step 5.2.1. If r ≤ δ , (11.80) directly implies the assertion.

Step 5.2.2. We now suppose that either x �∈ Kδ and r ∈ (δ ,1] or x ∈ Kδ and
r ∈ (δ , |y1|−δ ) and thus, in particular,[

0,r
x
|x|

]⋂(⋃M−1

j=1
S−j

)
= /0.

Observe that (11.80) and (11.82) then imply

∫ r

0
sn−1 f

(
s

x
|x|

)
ds≥

∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F− f )

(
s

x
|x|

)
ds

=
∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds
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>
∫ δ

0
sn−1δ ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

≥
∫ δ

0
sn−1δ ds+

∫ 1

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds≥ 0

and the assertion is proved.

Step 5.2.3. It only remains to show the assertion when x∈Kδ and r∈ [ |y1|−δ ,1] .
We get

∫ r

0
sn−1 f

(
s

x
|x|

)
ds

=
∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds

+
∫ r

0
sn−1(1F− f )

(
s

x
|x|

)
ds

and thus∫ r

0
sn−1 f

(
s

x
|x|

)
ds

=
∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

+
∫ r

0
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds.

Since r ≥ |y1| − δ ≥ |z1|+ δ ≥ δ , (11.80) holds, and f < 0 in F− \∪M−1
j=1 S−j , we

obtain ∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

≥
∫ δ

0
sn−1δ ds+

∫ 1

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds.

and hence, according to (11.82),

∫ r

0
sn−1(1F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds≥ 0.

We therefore find, using (11.81), that

∫ r

0
sn−1 f

(
s

x
|x|

)
ds≥

∫ r

0
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

≥
M−1

∑
k=1

{∫ r

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}
.
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Define

A =
M−1

∑
k=1

{∫ r

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}
.

In order to conclude the proof of Step 5.2.3 and thus of Step 5.2, it is sufficient to
show that A > 0. We consider several cases.

Case 1: r ∈ [ |y1|−δ , |z2|+δ ). We then have

A =
∫ r

0
sn−1(1S+2

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S+1

f )
(

s
x
|x|

)
ds

+
∫ r

0
sn−1(1S−1

f )
(

s
x
|x|

)
ds

and thus, recalling that r ≥ |y1|−δ > |z1|+δ ,

A≥
∫ r

0
sn−1(1S+1

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S−1

f )
(

s
x
|x|

)
ds

≥
∫ 1

0
sn−1(1S+1

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−1

f )
(

s
x
|x|

)
ds,

which is positive, according to (11.83).

Case 2: r ∈ [ |zi|+δ , |zi+1|+δ ), 2≤ i≤M−1. We therefore find

A =
i+1

∑
k=1

∫ r

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

i

∑
k=1

∫ r

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds

≥
i

∑
k=1

{∫ r

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ r

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}

≥
i

∑
k=1

{∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}

which is positive, in view of (11.83).

Case 3: r ∈ [ |zM|+δ ,1]. We now have

A =
M−1

∑
k=1

{∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−k

f )
(

s
x
|x|

)
ds
}
,

which is positive, according to (11.83).

Step 5.3. We finally prove (11.60) and we divide the proof into two steps.

Step 5.3.1. First, suppose that either x �∈ Kδ or

x ∈ Kδ and r ∈ ( |yM−1|+δ ,1]
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and thus, in particular, [
r

x
|x| ,

x
|x|

]⋂(⋃M−1

j=1
S−j

)
= /0.

Inequality (11.82) then implies

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds≥

∫ 1

r
sn−1(1F− f )

(
s

x
|x|

)
ds

=
∫ 1

r
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

≥
∫ 1

0
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds >−σ ,

which proves the assertion.

Step 5.3.2. It only remains to show the assertion when x∈Kδ and r ∈ [0, |yM−1|+
δ ]. We get, using the fact that f < 0 in F−, (11.81) and f > 0 in F+

0 , that

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds =

∫ 1

r
sn−1(1F− f )

(
s

x
|x|

)
ds+

∫ 1

r
sn−1(1F+ f )

(
s

x
|x|

)
ds

≥
∫ 1

r
sn−1(1F−\∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

+
∫ 1

r
sn−1(1∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

+
∫ 1

r
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds

and hence, appealing to (11.82) and since f > 0 in S+1 ,

∫ 1

r
sn−1 f

(
s

x
|x|

)
ds >−σ +

∫ 1

r
sn−1(1∪M−1

j=1 S−j
f )
(

s
x
|x|

)
ds

+
∫ 1

r
sn−1(1F+\F+

0
f )
(

s
x
|x|

)
ds

≥−σ +
M

∑
k=2

∫ 1

r
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds

+
M

∑
k=2

∫ 1

r
sn−1(1S+k

f )
(

s
x
|x|

)
ds.

Define

B =
M

∑
k=2

{∫ 1

r
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

r
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds
}
.
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In order to obtain the claim, it remains to prove that B > 0. This is obtained exactly
as in Step 5.2.3.

Case 1: r ∈ [ |zM−1|−δ , |yM−1|+δ ]. We then have

B =
∫ 1

r
sn−1(1S+M

f )
(

s
x
|x|

)
ds+

∫ 1

r
sn−1(1S+M−1

f )
(

s
x
|x|

)
ds

+
∫ 1

r
sn−1(1S−M−1

f )
(

s
x
|x|

)
ds

and thus, recalling that r ≤ |yM−1|+δ < |zM|−δ ,

B≥
∫ 1

r
sn−1(1S+M

f )
(

s
x
|x|

)
ds+

∫ 1

r
sn−1(1S−M−1

f )
(

s
x
|x|

)
ds

≥
∫ 1

0
sn−1(1S+M

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−M−1

f )
(

s
x
|x|

)
ds,

which leads to B > 0, in view of (11.83).
Case 2: r ∈ [ |zi−1|−δ , |zi|−δ ), 2≤ i≤M−1. We thus deduce

B =
M

∑
k=i−1

∫ 1

r
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

M

∑
k=i

∫ 1

r
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds

≥
M

∑
k=i

{∫ 1

r
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

r
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds
}

≥
M

∑
k=i

{∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds
}

and, using (11.83), we get that B > 0.
Case 3: r ∈ [0, |z1|−δ ). We therefore find

B =
M

∑
k=2

{∫ 1

0
sn−1(1S+k

f )
(

s
x
|x|

)
ds+

∫ 1

0
sn−1(1S−k−1

f )
(

s
x
|x|

)
ds
}

;

using once more (11.83), we get that B > 0. This concludes the proof of the lemma.
�




Part IV

The Case 0≤ k≤ n−1



Chapter 12

General Considerations on the Flow Method

Let T > 0, Ω ⊂ R
n be an open set and

g : [0,T ]×Ω → R
N .

Throughout the present chapter, when dealing with such maps, we write, depending
on the context,

g = g(t,x) = gt(x), t ∈ [0,T ] , x ∈Ω .

Moreover, unless specified otherwise, we write ‖gt‖Cr,α instead of ‖gt‖Cr,α (Ω) when
t is fixed.

On several occasions we will use the fact that for bounded Lipschitz sets (cf.
Corollary 16.13), the ‖.‖C0,1 and the ‖.‖C1 norms are equivalent.

12.1 Basic Properties of the Flow

We start with a global result.

Theorem 12.1. Let r≥ 1 be an integer, 0≤ α ≤ 1, T > 0 and Ω ⊂R
n be a bounded

open Lipschitz set. Let u ∈Cr,α((0,T ]×Ω ;Rn) be such that ut = 0 on ∂Ω for every
t ∈ (0,T ] and ∫ T

0
‖ut‖Cr,α dt < ∞. (12.1)

Then there exists a unique solution ϕ ∈Cr,α([0,T ]×Ω ;Ω) of⎧⎨
⎩

d
dt

ϕt = ut ◦ϕt , 0 < t ≤ T,

ϕ0 = id .
(12.2)

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
© Springer Science+Business Media, LLC 2012 
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Furthermore, for every t ∈ [0,T ] , ϕt ∈ Diffr,α(Ω ;Ω), ϕt = id on ∂Ω and

d
dt

∇kϕt = ∇k d
dt

ϕt = ∇k(ut ◦ϕt), 1≤ k ≤ r.

Moreover, there exists a constant C =C(r,Ω) such that

‖ϕt − id‖Cr,α ≤C exp
[
C
∫ t

0
‖us‖C1 ds

]∫ t

0
‖us‖Cr,α ds. (12.3)

Finally, if x ∈Ω is such that ut(x) = 0 for every 0 < t ≤ T, then

ϕt(x) = x for every 0≤ t ≤ T .

Proof. We only show (12.3), the other properties being well known (see, e.g., [22]).
We split the proof into two steps. In what follows we will always suppose t ∈ [0,T ]
and C1,C2, . . . will denote generic constants depending only on r and Ω .

Step 1. We start by showing that

‖ϕt‖C1 ≤C1 exp
[
C1

∫ t

0
‖us‖C1 ds

]
. (12.4)

First, integrating (12.2), we get for x,y ∈Ω ,

|ϕt(x)−ϕt(y)|=
∣∣∣∣x− y+

∫ t

0
(us(ϕs(x))−us(ϕs(y)))ds

∣∣∣∣
≤ |x− y|+C2

∫ t

0
‖us‖C1 |ϕs(x)−ϕs(y)|ds.

Applying Lemma 12.3, we obtain

|ϕt(x)−ϕt(y)| ≤ |x− y|exp
[
C2

∫ t

0
‖us‖C1 ds

]

and thus

[ϕt ]C0,1 ≤ exp
[
C2

∫ t

0
‖us‖C1 ds

]
.

Combining the last equation with the fact that ϕt(Ω) = Ω , we immediately get that

‖ϕt‖C1 ≤C3 + exp
[
C2

∫ t

0
‖us‖C1 ds

]
≤C4 exp

[
C4

∫ t

0
‖us‖C1 ds

]
,

which proves the claim.

Step 2 (conclusion). We now show (12.3). Integrating (12.2) and using Theo-
rem 16.31, we get
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‖ϕt − id‖Cr,α =

∥∥∥∥∫ t

0
us ◦ϕs ds

∥∥∥∥
Cr,α

≤
∫ t

0
‖us ◦ϕs‖Cr,α ds

≤C5

∫ t

0

[
‖us‖Cr,α‖ϕs‖r+α

C1 +‖us‖C1‖ϕs‖Cr,α +‖us‖C0

]
ds

≤C6

∫ t

0
‖us‖Cr,α (1+‖ϕs‖r+α

C1 )ds

+C5

∫ t

0
‖us‖C1‖ϕs− id‖Cr,α ds

and hence, since (12.4) holds,

‖ϕt − id‖Cr,α ≤C7 exp
[
C7

∫ t

0
‖us‖C1 ds

]∫ t

0
‖us‖Cr,α ds

+C5

∫ t

0
‖us‖C1‖ϕs− id‖Cr,α ds.

Noticing that

C7 exp
[
C7

∫ t

0
‖us‖C1ds

]∫ t

0
‖us‖Cr,α ds

is increasing in t, we get, using Lemma 12.3,

‖ϕt − id‖Cr,α

≤C7 exp
[
C7

∫ t

0
‖us‖C1 ds

]∫ t

0
‖us‖Cr,α ds · exp

[
C5

∫ t

0
‖us‖C1 ds

]
,

which concludes the proof. 	


We also have a local version of the above theorem.

Theorem 12.2. Let r ≥ 1 be an integer, 0≤ α ≤ 1, T > 0 and V be a neighborhood
of x0 ∈ R

n. Let
u ∈Cr,α((0,T ]×V ;Rn)

be such that ut(x0) = 0 for every t ∈ (0,T ] and

∫ T

0
‖ut‖Cr,α dt < ∞. (12.5)

Then there exist a neighborhood U ⊂V of x0 and a unique solution ϕ ∈Cr,α([0,T ]×
U ;Rn) of ⎧⎨

⎩
d
dt

ϕt = ut ◦ϕt , 0 < t ≤ T ,

ϕ0 = id .

Moreover, for every t ∈ [0,T ] , ϕt ∈ Diffr,α(U ;ϕt(U)) and verifies ϕt(x0) = x0 .
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We finally recall the classical Grönwall lemma.

Lemma 12.3 (Grönwall lemma). Let T > 0, h : [0,T ] → [0,∞) increasing, f ∈
C0([0,T ]; [0,∞)) and g ∈C0((0,T ]; [0,∞))∩L1 (0,T ) be such that

f (t)≤ h(t)+
∫ t

0
g(s) f (s)ds for every t ∈ [0,T ].

Then

f (t)≤ h(t)exp
[∫ t

0
g(s)ds

]
for every t ∈ [0,T ].

12.2 A Regularity Result

The next result is essentially in Rivière and Ye [85].

Theorem 12.4. Let r ≥ 1 and

0 < δ < α < α +δ < 1.

Let Ω ⊂ R
n be a bounded open Lipschitz set, c,T > 0 and

u ∈Cr,α+δ ((0,T ]×Ω ;Rn)

be such that for every t ∈ (0,T ], ut = 0 on ∂Ω and

‖ut‖Cr,γ ≤ c
t1+γ−α for every γ ∈ [α−δ ,α +δ ]. (12.6)

Then, for every γ < α, there exists a unique solution ϕ ∈Cr,γ([0,T ]×Ω ;Ω) of⎧⎨
⎩

d
dt

ϕt = ut ◦ϕt , 0 < t ≤ T ,

ϕ0 = id .
(12.7)

Moreover, for every 0≤ t ≤ T, ϕt ∈ Diffr,α(Ω ;Ω) and verifies ϕt = id on ∂Ω .

Proof. All of the results, except the fact that ϕt ∈ Cr,α , are easy consequences of
Theorem 12.1. We split the proof into three steps. In the proof we will always
assume that t ∈ [0,T ] and C1,C2, . . . will be generic constants depending only on
c,r,α,δ ,Ω and T.

Step 1. Using (12.6), we have for every γ ∈ [α−δ ,α),∫ T

0
‖us‖Cr,γ ds≤

∫ T

0

c
s1+γ−α ds =

cT α−γ

α− γ
< ∞. (12.8)

Therefore, using Theorem 12.1, there exists ϕ : [0,T ]×Ω → Ω , a unique solution
of (12.7) such that for every γ < α,

ϕ ∈Cr,γ([0,T ]×Ω ;Ω),
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with
ϕt ∈ Diffr,γ(Ω ;Ω), ϕt = id on ∂Ω ,

and
d
dt

∇rϕt = ∇r(ut ◦ϕt), (12.9)

‖ϕt − id‖Cr,γ ≤C1 exp
[
C1

∫ t

0
‖us‖C1 ds

]∫ t

0
‖us‖Cr,γ ds. (12.10)

Therefore, it only remains to prove that ϕt ∈ Cr,α(Ω ;Ω) to establish the theorem.
This will be done in Steps 2 and 3.

Step 2. If we show (cf. Step 3) that for every γ ∈ [α−δ ,α),

‖ϕt − id‖Cr,γ ≤C2 +C2

∫ t

0
‖∇us‖C0‖ϕs− id‖Cr,γ ds, (12.11)

then, using Lemma 12.3 and noticing that
∫ T

0 ‖∇us‖C0ds < ∞ by (12.8), we deduce
that

‖ϕt − id‖Cr,γ ≤C2 exp
[
C2

∫ t

0
‖∇us‖C0 ds

]
< ∞.

Hence, letting γ tend to α and recalling that C2 is independent of γ, we obtain that
‖ϕt − id‖Cr,α < ∞, which concludes the theorem.

Step 3. We show (12.11). We start by noticing that (12.8) implies

∫ t

0
‖us‖C1 ds≤

∫ t

0
‖us‖Cr,α−δ ds≤ ctδ

δ
.

Thus, combining the previous inequality with (12.10) we deduce that

‖ϕt − id‖Cr,α−δ ≤C3tδ . (12.12)

Let γ ∈ [α−δ ,α). Since

‖ϕt − id‖Cr ≤C3T δ and [∇r(ϕt − id)]C0,γ = [∇rϕt ]C0,γ ,

to obtain (12.11), it is enough to prove that for every x,y ∈Ω ,

|∇rϕt(x)−∇rϕt(y)|

≤ |x− y|γC4

(
1+

∫ t

0
‖∇us‖C0‖ϕs− id‖Cr,γ ds

)
. (12.13)

Integrating (12.9) and using Lemma 16.33, we obtain

|∇rϕt(x)−∇rϕt(y)|

=

∣∣∣∣∫ t

0
[∇r(us ◦ϕs)(x)−∇r(us ◦ϕs)(y)]ds

∣∣∣∣
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≤C5|x− y|γ
∫ t

0
‖∇us‖C0‖ϕs− id‖Cr,γ ds

+C5|x− y|γ
∫ t

0
‖us‖Cr,γ‖ϕs− id‖C1(1+‖ϕs‖r+γ

C1 )ds

+C5

∫ t

0
|∇rus(ϕs(x))−∇rus(ϕs(y))| ds.

We now estimate the three terms of the last equation separately and show that they
are of the form of the right-hand side of (12.13). We start by noticing that the first
term already has the desired form.

Estimate of the second term. Using (12.6) and (12.12), we obtain∫ t

0
‖us‖Cr,γ‖ϕs− id‖C1(1+‖ϕs‖r+γ

C1 )ds

≤C6

∫ t

0

c
s1+γ−α sδ ds =C6 c

tα+δ−γ

α +δ − γ
≤C7,

where in the last inequality, we have used that α + δ − γ ∈ (δ ,2δ ] since
γ ∈ [α−δ ,α).

Estimate of the third term. First, note that since γ < α, it is sufficient to prove
that ∫ t

0
|∇rus(ϕs(x))−∇rus(ϕs(y))|ds≤C8|x− y|α .

Next, observe that the previous inequality will be verified if we show that

∫ |x−y|

0
|∇rus(ϕs(x))−∇rus(ϕs(y))|ds≤C9|x− y|α

and that if |x− y|< t,∫ t

|x−y|
|∇rus(ϕs(x))−∇rus(ϕs(y))|ds≤C10|x− y|α .

Let us show these last two inequalities. Using (12.12), we obtain

‖ϕt‖C0,1 ≤C11 .

Appealing to (12.6), we get

∫ |x−y|

0
|∇rus(ϕs(x))−∇rus(ϕs(y))| ds

≤
∫ |x−y|

0
‖us‖Cr,α−δ |ϕs(x)−ϕs(y)|α−δ ds

≤C12|x− y|α−δ
∫ |x−y|

0

c
s1−δ ds =

C12 c
δ
|x− y|α .
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Similarly, if |x− y|< t,∫ t

|x−y|
|∇rus(ϕs(x))−∇rus(ϕs(y))| ds

≤
∫ t

|x−y|
‖us‖Cr,α+δ |ϕs(x)−ϕs(y)|α+δ ds

≤C13|x− y|α+δ
∫ t

|x−y|
c

s1+δ ds≤C13|x− y|α+δ
∫ ∞

|x−y|
c

s1+δ ds

=
C13 c

δ
|x− y|α

which ends the proof of the theorem. 	


12.3 The Flow Method

We start by recalling a well-known result of differential geometry.

Theorem 12.5. Let Ω1 and Ω2⊂R
n be open sets, T > 0 and 0≤ k≤ n be an integer.

Let
u ∈C1 ([0,T ]×Ω2;Rn) and ϕ ∈C1 ([0,T ]×Ω1;Ω2)

be such that in Ω1 ,

d
dt

ϕt = ut ◦ϕt for every 0≤ t ≤ T . (12.14)

Then for every f ∈C1
(
[0,T ]×Ω2;Λ k

)
, the following equality holds in Ω1 and for

0≤ t ≤ T :

d
dt
[ϕ∗t ( ft)] = ϕ∗t

(
d
dt

ft +d(ut � ft)+ut �(d ft)
)
, (12.15)

where ut has been identified with a 1-form.

Remark 12.6. (i) Let a ∈ C1(U ;Rn) and ω ∈ C1(U ;Λ k). The Lie derivative is de-
fined as

Laω =
d
dt

∣∣∣
t=0

ϕ∗t (ω) ,

where ⎧⎨
⎩

d
dt

ϕt = a◦ϕt ,

ϕ0 = id .
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The Cartan formula states that

Laω = a�d ω +d(a�ω).

The formula follows at once from Theorem 12.5.
(ii) Note that when k = n, then necessarily d ft = 0 and (identifying as usual

functions with n-forms and 1-forms with vector fields)

d(ut � ft) = div( ftut),

therefore recovering Proposition 10.5.

Proof. Since both sides of (12.15) are linear in ft , we can assume with no loss of
generality that

ft = at dxi1 ∧·· ·∧dxik

for some 1≤ i1 < · · ·< ik ≤ n and some a ∈C1([0,T ]×Ω2). We split the proof into
three steps.

Step 1. We compute the right-hand side of (12.15). First,

d
dt

ft =
[

d
dt

at

]
dxi1 ∧·· ·∧dxik .

Since

ut � ft =
k

∑
l=1

(−1)l+1at uil
t dxi1 ∧·· ·∧dxil−1 ∧dxil+1 ∧·· ·∧dxik ,

we deduce that

d(ut � ft)

=
k

∑
l=1

(−1)l+1
n

∑
j=1

∂at

∂x j
uil

t dx j ∧dxi1 ∧·· ·∧dxil−1 ∧dxil+1 ∧·· ·∧dxik

+
k

∑
l=1

(−1)l+1
n

∑
j=1

at
∂uil

t

∂x j
dx j ∧dxi1 ∧·· ·∧dxil−1 ∧dxil+1 ∧·· ·∧dxik .

Next, from

d ft =
n

∑
j=1

∂at

∂x j
dx j ∧dxi1 ∧·· ·∧dxik ,

we get

ut �d ft =
n

∑
j=1

∂at

∂x j
u j

t dxi1 ∧·· ·∧dxik

+
n

∑
j=1

∂at

∂x j

k

∑
l=1

(−1)luil
t dx j ∧dxi1 ∧·· ·∧dxil−1 ∧dxil+1 ∧·· ·∧dxik .
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Therefore, combining the previous three equations, it follows that

d
dt

ft +d(ut � ft)+ut �d ft

=

[
d
dt

at

]
dxi1 ∧·· ·∧dxik +

n

∑
j=1

∂at

∂x j
u j

t dxi1 ∧·· ·∧dxik

+
k

∑
l=1

n

∑
j=1

at
∂uil

t

∂x j
dxi1 ∧·· ·∧dxil−1 ∧dx j ∧dxil+1 ∧·· ·∧dxik .

Step 2. We now compute the left-hand side of (12.15).

Step 2.1. Standard results on ordinary differential equations (cf. (7.13) in the
proof of Theorem 7.2 in Chapter 1 of Coddington and Levinson [22]) give that ∇ϕt
is differentiable in t and satisfies

d
dt
[∇ϕt ] = ∇ut (ϕt) ∇ϕt .

This is indeed what is immediately obtained by formal differentiation of (12.14). In
particular, for every 1≤ i≤ n, we have

d
dt
[dϕ i

t ] =
n

∑
m=1

[
n

∑
j=1

∂ui
t

∂x j
(ϕt)

∂ϕ j
t

∂xm

]
dxm =

n

∑
j=1

∂ui
t

∂x j
(ϕt)dϕ j

t .

Step 2.2. Using Step 2.1 we can differentiate ϕ∗t ( ft) with respect to t. Since

ϕ∗t ( ft) = at (ϕt) dϕ i1
t ∧·· ·∧dϕ ik

t ,

we deduce that

d
dt
[ϕ∗t ( ft)] =

[
d
dt

at

]
(ϕt)dϕ i1

t ∧·· ·∧dϕ ik
t

+
n

∑
j=1

[
∂at

∂x j
(ϕt)

][
d
dt

ϕ j
t

]
dϕ i1

t ∧·· ·∧dϕ ik
t

+
k

∑
l=1

at(ϕt)dϕ i1
t ∧·· ·∧dϕ il−1

t ∧ d
dt

(
dϕ il

t

)
∧dϕ il+1

t ∧·· ·∧dϕ ik
t .

Using (12.14) and Step 2.1, we have

d
dt
[ϕ∗t ( ft)] =

[
d
dt

at

]
(ϕt)dϕ i1

t ∧·· ·∧dϕ ik
t

+
n

∑
j=1

[
∂at

∂x j
(ϕt)

][
u j

t (ϕt)
]

dϕ i1
t ∧·· ·∧dϕ ik

t

+
k

∑
l=1

n

∑
j=1

at(ϕt)
∂uil

t

∂x j
(ϕt)dϕ i1

t ∧·· ·∧dϕ il−1
t ∧dϕ j

t ∧dϕ il+1
t ∧·· ·∧dϕ ik

t .
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Step 3 (conclusion). Since we trivially have

ϕ∗t

([
d
dt

at

]
dxi1 ∧·· ·∧dxik

)
=

[
d
dt

at(ϕt)

]
dϕ i1

t ∧·· ·∧dϕ ik
t ,

ϕ∗t

(
n

∑
j=1

∂at

∂x j
u j

t dxi1 ∧·· ·∧dxik

)
=

n

∑
j=1

[
∂at

∂x j
(ϕt)

][
u j

t (ϕt)
]

dϕ i1
t ∧·· ·∧dϕ ik

t ,

ϕ∗t

(
k

∑
l=1

n

∑
j=1

at
∂uil

t

∂x j
dxi1 ∧·· ·∧dxil−1 ∧dx j ∧dxil+1 ∧·· ·∧dxik

)

=
k

∑
l=1

n

∑
j=1

at(ϕt)
∂uil

t

∂x j
(ϕt)dϕ i1

t ∧·· ·∧dϕ il−1
t ∧dϕ j

t ∧dϕ il+1
t ∧·· ·∧dϕ ik

t ,

we have indeed shown the theorem in view of Steps 1 and 2. 	

As a consequence, we have the following result essentially established by

Moser [78].

Theorem 12.7. Let r ≥ 1 and 0≤ k ≤ n be integers, 0≤ α ≤ 1, T > 0 and Ω ⊂R
n

be a bounded open Lipschitz set. Let

u ∈Cr,α (
[0,T ]×Ω ;Rn) and f ∈Cr,α([0,T ]×Ω ;Λ k)

be such that for every t ∈ [0,T ],

ut = 0 on ∂Ω , d ft = 0 in Ω ,

d(ut � ft) =− d
dt

ft in Ω .

Then for every t ∈ [0,T ], the solution ϕt of⎧⎨
⎩

d
dt

ϕt = ut ◦ϕt , 0≤ t ≤ T,

ϕ0 = id
(12.16)

belongs to Diffr,α (
Ω ;Ω

)
, satisfies ϕt = id on ∂Ω and

ϕ∗t ( ft) = f0 in Ω .

Proof. We split the proof into two steps.
Step 1. Using Theorem 12.1, for every 0 ≤ t ≤ T, the solution ϕt of (12.16)

belongs to Diffr,α(Ω ;Ω) and verifies ϕt = id on ∂Ω . Moreover, defining ϕ : [0,T ]×
Ω →Ω by ϕ(t,x) = ϕt(x), we have

ϕ ∈Cr,α([0,T ]×Ω ;Ω).
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Step 2. Using Theorem 12.5 and the hypotheses on ut and ft , we find that in Ω ,

d
dt
[ϕ∗t ( ft)] = ϕ∗t

(
d
dt

ft +d(ut � ft)+ut �(d ft)
)
= 0,

which implies the result since ϕ0 = id . 	


We also have the local version of the above theorem.

Theorem 12.8. Let r ≥ 1 and 0≤ k≤ n be integers, 0≤ α ≤ 1, T > 0 and x0 ∈R
n.

Let
u ∈Cr,α ([0,T ]×R

n;Rn) and f ∈Cr,α([0,T ]×R
n;Λ k)

be such that for every t ∈ [0,T ], ut(x0) = 0 and

d ft = 0 and d(ut � ft) =− d
dt

ft in a neighborhood of x0 .

Then there exists a neighborhood U of x0 in which for every t ∈ [0,T ], the solution
ϕt of ⎧⎨

⎩
d
dt

ϕt = ut ◦ϕt , 0≤ t ≤ T,

ϕ0 = id
(12.17)

belongs to Diffr,α(U ;ϕt(U)), satisfies ϕt(x0) = x0 and

ϕ∗t ( ft) = f0 in U.

Proof. We split the proof in two steps.
Step 1. Using Theorem 12.2, there exists a neighborhood U of x0 in which for

every 0≤ t ≤ T, the solution ϕt of (12.17) belongs to Diffr,α(U ;ϕt(U)) and ϕt(x0) =
x0 . Moreover, defining ϕ : [0,T ]×U → R

n by ϕ(t,x) = ϕt(x), then

ϕ ∈Cr,α([0,T ]×U ;Rn).

Step 2. Since ϕt(x0) = x0 for every t ∈ [0,T ] and since ϕ is C0, we can, choosing
if necessary U smaller, assume that for every t ∈ [0,T ],

d ft = 0 and d(ut � ft) =− d
dt

ft in ϕt(U).

Using Theorem 12.5 and the hypotheses on ut and ft , we know that in U,

d
dt
[ϕ∗t ( ft)] = ϕ∗t

(
d
dt

ft +d(ut � ft)+ut �(d ft)
)
= 0,

which implies the result since ϕ0 = id . 	




Chapter 13

The Cases k = 0 and k = 1

13.1 The Case of 0-Forms and of Closed 1-Forms

13.1.1 The Case of 0-Forms

We start with 0-forms. We begin our study with a local existence theorem.

Theorem 13.1. Let r ≥ 1 be an integer, x0 ∈ R
n and f and g be Cr functions in a

neighborhood of x0 such that f (x0) = g(x0) ,

∇ f (x0) �= 0 and ∇g(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈Diffr (U ;ϕ (U)) such that ϕ(x0) =
x0 and

ϕ∗ (g)(x) = g(ϕ (x)) = f (x) .

Furthermore, if
∂ f
∂xi

(x0) · ∂g
∂xi

(x0) �= 0

for a certain 1≤ i≤ n, then ϕ can be chosen of the form

ϕ(x) = (x1, . . . ,xi−1,ϕ i(x),xi+1, . . . ,xn).

Proof. Without loss of generality we may assume that x0 = 0. We split the proof
into two steps.

Step 1. We prove the main statement. Since ∇ f (0) �= 0 and ∇g(0) �= 0, we can
find

A2, . . . ,An,B2, . . . ,Bn ∈ R
n

such that letting

F (x) = ( f (x),〈A2;x〉, . . . ,〈An;x〉) and G(x) = (g(x),〈B2;x〉, . . . ,〈Bn;x〉),

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
© Springer Science+Business Media, LLC 2012 
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then

det∇F(0) �= 0 and det∇G(0) �= 0.

Hence, since F(0) = G(0), we deduce that

F ∈Diffr(U ;F(U)), G∈Diffr(U ;G(U)) and G−1◦F ∈Diffr(U ;(G−1◦F)(U))

for a neighborhood U of 0 small enough. Therefore, ϕ = G−1 ◦F has all of the
desired properties.

Step 2. We now prove the extra property. Define

F (x) = (x1, . . . ,xi−1, f (x),xi+1, . . . ,xn),

G(x) = (x1, . . . ,xi−1,g(x),xi+1, . . . ,xn)

and note that ϕ = G−1 ◦F has all of the required properties. The proof is therefore
complete. 
�

We now have the following global result.

Theorem 13.2. Let Ω ⊂R
n be a bounded open Lipschitz set. Let r≥ 1 be an integer

and f and g ∈Cr
(
Ω

)
with f = g on ∂Ω and

∂ f
∂xi

· ∂g
∂xi

> 0 in Ω (13.1)

for a certain 1≤ i≤ n. Then there exists a diffeomorphism ϕ ∈ Diffr (Ω ;Ω
)

of the
form

ϕ (x) = (x1, . . . ,xi−1,ϕ i(x),xi+1, . . . ,xn)

satisfying {
ϕ∗ (g) = g◦ϕ = f in Ω ,

ϕ = id on ∂Ω .

Proof. Let ei be the ith vector of the Euclidean basis of Rn. We will find ϕ of the
form ϕ(x) = x+ u(x)ei, where u : Ω → R. Since Ω is Lipschitz, we can extend
(according to Theorem 16.11) f and g to Cr(Rn) functions. We therefore also have

∂ f
∂xi

· ∂g
∂xi

> 0 in a neighborhood of Ω . (13.2)

By compactness, for every x ∈Ω , there exist sx, tx ∈ R with sx < 0 < tx such that

x+ sxei,x+ txei ∈ ∂Ω and (x+ sxei,x+ txei)⊂Ω .

Define h : Rn×R→ R by

h(x,v) = g(x+ vei)− f (x).
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We claim that there exists u ∈Cr(Ω) such that

h(x,u(x)) = 0, for x ∈Ω , u = 0 on ∂Ω and 1+
∂u
∂xi

(x)> 0 for x ∈Ω .

(i) For every x ∈ ∂Ω , let u(x) = 0 and note that h(x,u(x)) = h(x,0) = g(x)−
f (x) = 0 since f = g on ∂Ω .

(ii) Let x ∈Ω . Since f = g on ∂Ω , we have

h(x,sx) = f (x+ sxei)− f (x) and h(x, tx) = f (x+ txei)− f (x).

Hence, recalling that ∂ f (x)/∂xi �= 0 for every x ∈Ω , we get

h(x,sx) ·h(x, tx)< 0.

Note that v → h(x,v) is monotone. Therefore, there exists a unique u(x) ∈ (sx, tx)
verifying h(x,u(x)) = 0.

(iii) Using the implicit function theorem and (13.2), we immediately deduce that
u ∈Cr(Ω) and that

1+
∂u
∂xi

(x) =
∂ f
∂xi

(x)
(

∂g
∂xi

(x+u(x))
)−1

> 0 for every x ∈Ω .

This proves the claim. Finally, letting ϕ(x) = x+u(x)ei, we get that g◦ϕ = f in Ω ,
ϕ ∈Cr(Ω ;Rn), det∇ϕ > 0 in Ω and ϕ = id on ∂Ω . Hence, using Theorem 19.12,
we have ϕ ∈ Diffr(Ω ;Ω), which concludes the proof. 
�

13.1.2 The Case of Closed 1-Forms

We get as immediate corollaries similar results for closed 1-forms. Recall that
1-forms are written as

f =
n

∑
i=1

fi dxi and g =
n

∑
i=1

gi dxi .

We start first with the local version.

Corollary 13.3. Let r ≥ 0 be an integer, x0 ∈ R
n and f and g be Cr closed 1-forms

in a neighborhood of x0 such that

f (x0) �= 0 and g(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr+1 (U ;ϕ (U)) such that
ϕ(x0) = x0 and

ϕ∗(g) = f in U.
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Furthermore, if

fi (x0) ·gi (x0) �= 0

for a certain 1≤ i≤ n, then ϕ can be chosen of the form

ϕ(x) = (x1, . . . ,xi−1,ϕ i(x),xi+1, . . . ,xn).

Remark 13.4. When r = 0, the fact that a 1-form ω is closed has to be understood
in the sense of distributions.

Proof. Using Corollary 8.6, there exist a small ball V centered at x0 and F,G ∈
Cr+1(V ) such that

dF = f and dG = g in V .

Adding, if necessary, a constant, we can also assume that F(x0) = G(x0). Note that
if fi(x0) ·gi(x0) �= 0 for a certain 1≤ i≤ n, then

∂F
∂xi

(x0) · ∂G
∂xi

(x0) �= 0.

We are then in a position to apply Theorem 13.1 to get U ⊂ V , a neighborhood of
x0 and ϕ ∈ Diffr+1(U ;ϕ(U)) such that ϕ(x0) = x0 and

ϕ∗ (G) = F,

which implies
ϕ∗ (dG) = dF

and concludes the proof. 
�
We now conclude with the global version obtained in Bandyopadhyay and

Dacorogna [8].

Corollary 13.5. Let Ω ⊂ R
n be a bounded simply connected smooth open set. Let

r ≥ 0 be an integer and f ,g ∈Cr
(
Ω ;Λ 1

)
be closed and such that

ν ∧ f = ν ∧g on ∂Ω and fi ·gi > 0 in Ω

for a certain 1 ≤ i ≤ n. Then there exists a diffeomorphism ϕ ∈ Diffr+1 (Ω ;Ω
)

of
the form

ϕ(x) = (x1, . . . ,xi−1,ϕ i(x),xi+1, . . . ,xn)

satisfying {
ϕ∗ (g) = f in Ω ,

ϕ = id on ∂Ω .

Proof. We first claim that there exist F,G∈Cr+1(Ω) such that F,G∈Cr+1
(
Ω

)
and

dF = f , dG = g in Ω and F = G on ∂Ω .
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Indeed, by Theorem 8.16 and the remark following it and recalling that HT (Ω ,Λ 1)=
{0} since Ω is simply connected (see Remark 6.6), there exists H ∈ Cr+1(Ω ;Λ 1)
such that

dH = f −g in Ω and H = 0 on ∂Ω .

Then, using Corollary 8.6, there exists G ∈Cr+1(Ω) such that dG = g in Ω . Letting
F = H +G, we have the claim. In particular, note that

∂F
∂xi

· ∂G
∂xi

> 0 in Ω .

Finally, apply Theorem 13.2 to get ϕ ∈ Diffr+1(Ω ;Ω) of the desired form so that

ϕ∗(G) = F in Ω ,

which implies

ϕ∗(dG) = dF in Ω .

The proof is therefore complete. 
�

13.2 Darboux Theorem for 1-Forms

13.2.1 Main Results

The following result is classical and due to Darboux [34]; see, for example Bryant
et al. [18], Olver [80], or Sternberg [93]. This result is equivalent to the Darboux
theorem (cf. the remark below) for closed 2-forms.

Theorem 13.6. Let r ≥ 3 and 2 ≤ 2m ≤ n be integers. Let 0 < α < 1, x0 ∈ R
n and

w be a Cr,α 1-form such that

rank[dw] = 2m in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and

ϕ ∈
{

Diffr,α(U ;ϕ (U)) if 2m = n

Diffr−1,α(U ;ϕ (U)) if 2m < n

such that ϕ(x0) = x0 and

ϕ∗(w) =
m

∑
i=1

x2i−1dx2i +dS in U ,
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with

S ∈
{

Cr,α(U) if 2m = n

Cr−1,α(U) if 2m < n.

Remark 13.7. (i) The above result is equivalent to the Darboux theorem for closed
2-forms. This last theorem reads (see Theorems 14.1 and 14.3) as follows. Let n ≥
2m, x0 ∈ R

n and f be a Cr,α closed 2-form satisfying

rank[ f ] = 2m in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and

ϕ ∈
{

Diffr+1,α(U ;ϕ (U)) if n = 2m

Diffr,α(U ;ϕ (U)) if n > 2m

such that ϕ(x0) = x0 and

ϕ∗( f ) =
m

∑
i=1

dx2i−1∧dx2i in U .

The fact that the Darboux theorem for 2-forms implies the one for 1-forms is pre-
cisely the proof of Theorem 13.6 below. The other implication follows immediately,
once it has been observed that we can choose, for example, U to be a ball so that,
f being closed in U, we can find (cf. Theorem 8.3) w ∈ Cr+1,α(U ;Λ 1) such that
f = dw. We then apply the theorem to w, getting

ϕ∗( f ) = ϕ∗(dw) = dϕ∗(w) =
m

∑
i=1

dx2i−1∧dx2i.

(ii) The hypothesis r≥ 3 can be weakened if we use a weak version of the fourth
statement of Theorem 3.10. Indeed, it is enough to assume r≥ 1 if n = 2m and r≥ 2
if n > 2m (cf. Csató [23]).

Proof. Using Theorem 14.1 if 2m = n or Theorem 14.3 if 2m < n, there exist a
neighborhood U of x0 and

ϕ ∈
{

Diffr,α(U ;ϕ (U)) if 2m = n

Diffr−1,α(U ;ϕ (U)) if 2m < n

such that ϕ(x0) = x0 and

ϕ∗(dw) =
m

∑
i=1

dx2i−1∧dx2i in U.

Note that

d

[
ϕ∗(w)−

m

∑
i=1

x2i−1dx2i

]
= 0 in U
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and

ϕ∗(w)−
m

∑
i=1

x2i−1dx2i ∈
{

Cr−1,α(U ;Λ 1) if 2m = n

Cr−2,α(U ;Λ 1) if 2m < n.

Thus, by Theorem 8.3, restricting U if necessary, there exists

S ∈
{

Cr,α(U) if 2m = n

Cr−1,α(U) if 2m < n

such that

dS = ϕ∗(w)−
m

∑
i=1

x2i−1dx2i,

which concludes the proof. 
�

The next two theorems refine the above result (cf. Bryant et al. [18] or Sternberg
[93]). In particular, the second one gives a sufficient condition ensuring that S = 0.

Theorem 13.8. Let r ≥ 3 and 2 ≤ 2m ≤ n be integers. Let 0 < α < 1, x0 ∈ R
n and

w be a Cr,α 1-form such that

rank[dw] = 2m in a neighborhood of x0

and
w∧dw∧·· ·∧dw︸ ︷︷ ︸

m times

(x0) �= 0.

Then there exist a neighborhood U of x0 and

ϕ ∈ Diffr−1,α(U ;ϕ (U))

such that ϕ(x0) = x0 and

ϕ∗(w) =
m

∑
i=1

x2i−1 dx2i +dx2m+1 in U.

Remark 13.9. Since w∧ (dw)m is a (2m+1)-form and since

w∧ (dw)m(x0) �= 0,

we necessarily have 2m < n.

Proof. With no loss of generality, we can assume x0 = 0. Since (according to Re-
mark 13.9) we necessarily have 2m < n, we get, using Theorem 13.6, a neighbor-
hood V of 0 and ϕ1 ∈ Diffr−1,α(V ;ϕ1(V )) such that ϕ1(0) = 0 and

ϕ∗1 (w) =
m

∑
i=1

x2i−1 dx2i +dS in V ,
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with S ∈Cr−1,α(V ). Since, by hypothesis,

w∧ (dw)m(0) �= 0,

we get that since ϕ1(0) = 0,

ϕ∗1 (w)∧ (dϕ∗1 (w))
m(0) �= 0,

which is equivalent to
dS∧dx1∧·· ·∧dx2m(0) �= 0.

Permuting, if necessary, the coordinates x2m+1, . . . ,xn, we can therefore assume with
no loss of generality that

∂S
∂x2m+1

(0) �= 0.

Now, define, for x ∈V,

ϕ2(x) = (x1, . . . ,x2m,S(x)−S(0),x2m+2, . . . ,xn).

Taking V smaller, if necessary, we obtain that ϕ2 ∈ Diffr−1,α(V ;ϕ2(V )), ϕ2(0) = 0
and

ϕ∗2 (dxi) =

{
dxi if i �= 2m+1
dS if i = 2m+1.

Finally, letting U =ϕ2(V ) and ϕ =ϕ1◦(ϕ2)
−1, we easily obtain that ϕ ∈Diffr−1,α(U ;

ϕ(U)), ϕ(0) = 0 and

ϕ∗(w) =
m

∑
i=1

x2i−1dx2i +dx2m+1 in U,

which ends the proof. 
�
Theorem 13.10. Let 2≤ 2m≤ n be an integer, x0 ∈R

n and w a C∞ 1-form such that

rank[dw] = 2m in a neighborhood of x0 ,

w(x0) �= 0 and

w∧dw∧·· ·∧dw︸ ︷︷ ︸
m times

= 0 in a neighborhood of x0 .

Then there exist an open set U and

ϕ ∈ Diff∞(U ;ϕ (U))

such that ϕ (U) is a neighborhood of x0 and

ϕ∗(w) =
m

∑
i=1

x2i−1 dx2i in U .
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Remark 13.11. (i) If w ∈Cr, the following proof shows in fact that ϕ ∈Cr−2m+1 if
2m = n and ϕ ∈Cr−2m if 2m < n.

(ii) If we, moreover, want ϕ(x0) = x0 , then the conclusion becomes

ϕ∗(w) =
m

∑
i=1

(x2i−1− c2i−1)dx2i in U

for some c2i−1 ∈R, 1≤ i≤m. Note that the c2i−1 cannot be arbitrary. For example,
the c2i−1 can never verify c2i−1 = (x0)2i−1 for every 1≤ i≤ m. Indeed,

ϕ∗(w)(x0) =
m

∑
i=1

((x0)2i−1− c2i−1)dx2i

and thus we have the assertion since, recalling that ϕ(x0) = x0 ,

ϕ∗(w)(x0) �= 0 ⇔ w(x0) �= 0.

Proof. We split the proof into two steps. With no loss of generality, we can assume
that x0 = 0.

Step 1 (simplification). Let us first prove that we can assume that n = 2m.
Applying Theorem 14.3 to dw, we can find a neighborhood U of 0 and ψ ∈
Diff∞(U ;ψ(U)) such that ψ(0) = 0 and

ψ∗(dw) =
m

∑
i=1

dx2i−1∧dx2i in U. (13.3)

Note that since ψ(0) = 0, we have, restricting U if necessary,

ψ∗(w)(0) �= 0 and ψ∗(w)∧ (d(ψ∗(w)))m = 0 in U. (13.4)

The last equation being equivalent to

ψ∗(w)∧dx1∧·· ·∧dx2m = 0 in U,

we immediately deduce

[ψ∗(w)]i = 0 in U for every 2m+1≤ i≤ n

and, hence,

ψ∗(w)(x) =
2m

∑
i=1

bi(x)dxi in U.

Combining the previous equation with (13.3), we get that

bi(x) = bi(x1, . . . ,x2m) in a neighborhood of 0, for every 1≤ i≤ 2m.

We thus have the claim, replacing ψ∗(w) by w.
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Step 2 (conclusion). Applying Lemma 13.12 to w, we can find a neighborhood V
of 0 in R

2m and ϕ1 ∈ Diff∞(V ;ϕ1(V )) such that ϕ1(0) = 0 and

ϕ∗1 (w) =
m

∑
i=1

b2i−1(x1, . . . ,x2m)dx2i−1 in V (13.5)

for some b2i−1 ∈C∞(V ). Since

rank[d(ϕ∗1 (w))(0)] = rank[dw(0)] = 2m,

we know that (dϕ∗1 (w))
m(0) �= 0, which is equivalent to, using (13.5),

dx1∧dx3∧·· ·∧dx2m−1∧db1∧db3∧·· ·∧db2m−1(0) �= 0. (13.6)

Now, define, for x ∈V,

ϕ2(x) = (b1(x),x1,b3(x),x3, . . . ,b2m−1(x),x2m−1).

Using (13.6), we obtain that ϕ2 ∈ Diff∞(V ;ϕ2(V )), taking V smaller if neces-
sary. Finally, letting U = ϕ2(V ) and ϕ = ϕ1 ◦ (ϕ2)

−1, we easily obtain that ϕ ∈
Diff∞(U ;ϕ(U)) and

ϕ∗(w) =
m

∑
i=1

x2i−1 dx2i in U,

which ends the proof. 
�

13.2.2 A Technical Result

We still need to prove the following lemma.

Lemma 13.12. Let m≥ 1 be an integer, x0 ∈ R
2m and w be a C∞ 1-form defined in

a neighborhood of x0 such that w(x0) �= 0 and

rank[dw(x0)] = 2m.

Then there exist a neighborhood U of x0 and

ϕ ∈ Diff∞(U ;ϕ(U))

such that ϕ(x0) = x0 and

[ϕ∗(w)]2i = 0 in U for every 1≤ i≤m. (13.7)

Remark 13.13. If w ∈Cr, then the following proof gives ϕ ∈Cr−2(m−1).

For the proof of the lemma we will need the two following elementary results,
the first of which is purely algebraic.
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Lemma 13.14. Let f ∈Λ 2(R2m) with rank[ f ] = 2m and

a =
2m−1

∑
i=1

aiei ∈Λ 1(R2m)

with a �= 0. Then there exists A ∈ GL(2m) of the form

A =

⎛
⎜⎜⎜⎝

0

B
...
0

0 · · · 0 1

⎞
⎟⎟⎟⎠ ,

where B ∈ GL(2m−1) and such that

∑
1≤i< j≤2m−1

(A∗( f ))i jei∧ e j =
m−1

∑
i=1

e2i−1∧ e2i and
2m−2

∑
i=1

(A∗(a))iei �= 0.

Proof. Step 1. Using Proposition 2.24(ii), there exists Ã ∈ GL(2m) such that

Ã∗( f ) =
m

∑
i=1

e2i−1∧ e2i and Ã∗(e2m) = e2m.

Note that the condition Ã∗(e2m) = e2m is equivalent to

Ã =

⎛
⎜⎜⎜⎝

Ã1
2m

B̃
...

Ã2m−1
2m

0 · · · 0 1

⎞
⎟⎟⎟⎠ ,

where B̃ ∈ GL(2m−1) is given by B̃i
j = Ãi

j . Define

A =

⎛
⎜⎜⎜⎝

0

B̃
...
0

0 · · · 0 1

⎞
⎟⎟⎟⎠

and observe that for 1≤ i < j ≤ 2m−1,

(A∗( f ))i j =

(
∑

1≤p<q≤2m
fpqAp∧Aq

)
i j

= ∑
1≤p<q≤2m

fpq

(
Ap

i Aq
j −Ap

j Aq
i

)

= ∑
1≤p<q≤2m

fpq

(
Ãp

i Ãq
j − Ãp

j Ãq
i

)
= (Ã∗( f ))i j .
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We therefore have

∑
1≤i< j≤2m−1

(A∗( f ))i jei∧ e j = ∑
1≤i< j≤2m−1

(Ã∗( f ))i jei∧ e j =
m−1

∑
i=1

e2i−1∧ e2i.

Note that the previous equation is equivalent to

A∗( f ) =
m−1

∑
i=1

e2i−1∧ e2i +h∧ e2m (13.8)

for a certain h = ∑2m−1
i=1 hiei ∈Λ 1(R2m).

Step 2. Since a �= 0, we have A∗(a) = ∑2m−1
i=1 A∗(a)iei �= 0 and thus there exists

1 ≤ i ≤ 2m− 1 such that A∗(a)i �= 0. If 1 ≤ i ≤ 2m− 2, the matrix A has all of the
required properties. If A∗(a)i = 0 for 1≤ i≤ 2m−2, we proceed as follows. Define

P =

⎛
⎜⎜⎜⎝

1 0 · · · 0

0
. . . 0

...
1 0 1 0
0 · · · 0 1

⎞
⎟⎟⎟⎠ ⇔ Pi

j =

⎧⎪⎨
⎪⎩

1 if i = j

1 if i = 2m−1 and j = 1
0 otherwise

and let us show that AP ∈ GL(2m) has all the claimed properties. Indeed, first note
that AP has the desired form. Since

P∗(ei) =

{
ei if i �= 2m−1

e1 + e2m−1 if i = 2m−1,

we deduce that, using (13.8),

(AP)∗( f ) = P∗(A∗( f )) =
m−1

∑
i=1

e2i−1∧ e2i +P∗ (h)∧ e2m.

We therefore get

∑
1≤i< j≤2m−1

((AP)∗( f ))i jei∧ e j =
m−1

∑
i=1

e2i−i∧ e2i.

Note also that

((AP)∗(a))1 = (P∗(A∗(a)))1 = (A∗(a))2m−1 �= 0.

The proof is therefore complete. 
�

We now give the second result.

Lemma 13.15. Let U ⊂ R
n be an open set, n≥ 2 and w ∈C∞(

U ;Λ 1
)

be such that

(dxn)�dw = w in U. (13.9)
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Then ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w = exn
n−1

∑
i=1

bin (x1, . . . ,xn−1)dxi,

dw =−exn ∑
1≤i< j≤n

bi j (x1, . . . ,xn−1)dxi∧dx j

for some bi j ∈C∞.

Proof. We first write

dw = ∑
1≤i< j≤n

ai j dxi∧dx j

and observe that, as a direct consequence of (13.9), we have

w =−
n−1

∑
i=1

ain dxi. (13.10)

We finally show that for every 1≤ i < j ≤ n and x = (x1, . . . ,xn) ∈U,

ai j(x) =−exnbi j (x1, . . . ,xn−1)

for some bi j ∈C∞. For this, it is enough to prove that for every 1≤ i < j ≤ n,

ai j =
∂ai j

∂xn
.

Let 1 ≤ i < j ≤ n. First, since ddw = 0 and hence, in particular, (ddw)i jn = 0, we
have (with the convention that ann = 0)

∂a jn

∂xi
− ∂ain

∂x j
+

∂ai j

∂xn
= 0.

Using (13.10) and the previous equation, we obtain

ai j = (dw)i j =−
(

∂a jn

∂xi
− ∂ain

∂x j

)
=

∂ai j

∂xn
,

which concludes the proof. 
�

Finally, we prove Lemma 13.12.

Proof. With no loss of generality we can assume x0 = 0. In the sequel, U will be a
generic neighborhood of 0. We prove the lemma by induction on m and we split the
proof into three steps.

Step 1. We start by introducing some notations. Let

x = (x1, . . . ,x2m−2,x2m−1,x2m) ∈ R
n.
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For every (x2m−1,x2m) ∈ R
2, define i(x2m−1,x2m) : R2m−2 → R

2m by

i(x2m−1,x2m)(x1, . . . ,x2m−2) = x.

Let 1≤ k ≤ n and

g = ∑
1≤i1<···<ik≤2m

gi1···ik dxi1 ∧·· ·∧dxik ∈C0(
R

2m;Λ k(R2m)
)
.

Then for every (x2m−1,x2m) ∈ R
2, we have

i∗(x2m−1,x2m)
(g) ∈C0(

R
2m−2;Λ k(R2m−2)

)
and, explicitly,

i∗(x2m−1,x2m)
(g)(x1, . . . ,x2m−2) = ∑

1≤i1<···<ik≤2m−2
gi1···ik(x)dxi1 ∧·· ·∧dxik .

Step 2 (the case m = 1). In that case, we have

w(x) = w1(x1,x2)dx1 +w2(x1,x2)dx2 .

Since, by hypothesis, (w1(0),w2(0)) �= (0,0), there exist, applying Remark 4.3(ii),
a neighborhood U of 0 and ϕ ∈ Diff∞(U ;ϕ(U)) such that ϕ(0) = 0 and

∂ϕ
∂x2

= (−w2(ϕ),w1(ϕ)) in U .

We thus get, using the above equation,

ϕ∗(w) = w1(ϕ)dϕ1 +w2(ϕ)dϕ2

=

[
w1(ϕ)

∂ϕ1

∂x1
+w2(ϕ)

∂ϕ2

∂x1

]
dx1 +

[
w1(ϕ)

∂ϕ1

∂x2
+w2(ϕ)

∂ϕ2

∂x2

]
dx2

=

[
w1(ϕ)

∂ϕ1

∂x1
+w2(ϕ)

∂ϕ2

∂x1

]
dx1,

which is the desired assertion.
Step 3 (induction). We assume that the lemma has been proved for m− 1 and

prove it for m.

Step 3.1 (preliminaries). In this step we show the existence of a neighbor-
hood U of 0 and ψ ∈ Diff∞(U ;ψ(U)) with ψ(0) = 0 such that for every x =
(x1, . . . ,x2m−2,x2m−1,x2m) ∈U,

i∗(x2m−1,x2m)
(ψ∗ (w))(x1, . . . ,x2m−2) �= 0, (13.11)

rank
[
d(i∗(x2m−1,x2m)

(ψ∗(w)))(x1, . . . ,x2m−2)
]
= 2m−2, (13.12)
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ψ∗(w)(x) = ex2m
2m−1

∑
i=1

ci(x1, . . . ,x2m−1)dxi in U (13.13)

for some ci ∈C∞(U).

(i) Since rank[dw] = 2m in a neighborhood of 0 and Proposition 2.50 holds, we
can find a neighborhood U of 0 and a unique v ∈C∞(U ;Λ 1) such that

v�dw = w in U .

Note that v(0) �= 0 since w(0) �= 0. Hence, using Remark 4.3(ii), there exist a neigh-
borhood U of 0 and χ ∈ Diff∞(U ; χ(U)) such that χ(0) = 0 and

∂ χ
∂x2m

= v◦χ in U .

Using Theorem 3.10 and Proposition 3.11, we thus get

χ∗(w) = χ∗(v�dw) = dx2m�dχ∗(w) in U .

Therefore, applying Lemma 13.15, we have

dχ∗(w)(x) =−ex2m ∑
1≤i< j≤2m

bi j(x1, . . . ,x2m−1)dxi∧dx j for every x ∈U ,

χ∗(w)(x) = ex2m
2m−1

∑
i=1

bi(2m)(x1, . . . ,x2m−1)dxi for every x ∈U (13.14)

for some bi j ∈C∞.

(ii) Apply Lemma 13.14 to

f = dχ∗(w)(0) ∈Λ 2(R2m) and a = χ∗(w)(0) ∈Λ 1(R2m)

to get A ∈ GL(n) of the form

A =

⎛
⎜⎜⎜⎝

0

B
...
0

0 · · · 0 1

⎞
⎟⎟⎟⎠

such that

∑
1≤i< j≤2m−1

(A∗( f ))i jei∧ e j =
m−1

∑
i=1

e2i−1∧ e2i,

2m−2

∑
i=1

(A∗(a))iei �= 0.

(13.15)

(iii) Let θ(x) =A ·x. We now prove that ψ = χ ◦θ has all of the desired properties
claimed by Step 3.1. In the following, we will frequently use (cf. Remark 3.9) that
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for any ϕ ∈C1
(
R

M;RN
)
, any k-form α , and any fixed x ∈ R

M ,

ϕ∗ (α)(x) = (∇ϕ (x))∗ [α (ϕ (x))] .

First, note that ψ(0)= 0 since χ(0)= θ(0)= 0. We now show (13.11). Restricting if
necessary U, it is enough to show the property for x = 0. Using the second statement
in (13.15), we deduce

i∗(0,0)(ψ
∗(w))(0, . . . ,0) =

2m−2

∑
i=1

A∗(a)iei �= 0,

which proves the claim. We next prove (13.12). As before, restricting if necessary
U , it is enough to prove the assertion for x = 0. Using the first equality in (13.15),
we obtain

di∗(0,0)(ψ
∗(w))(0, . . . ,0) = i∗(0,0)(ψ

∗(dw))(0, . . . ,0)

= ∑
1≤i< j≤2m−2

(A∗( f ))i jei∧ e j =
m−1

∑
i=1

e2i−1∧ e2i.

This establishes the claim. Finally, using (13.14) and since

θ(x) = (θ 1(x1, . . . ,x2m−1), . . . ,θ 2m−1(x1, . . . ,x2m−1),x2m),

we have

θ ∗(χ∗(w))(x)

= ex2m
2m−1

∑
i=1

bi(2m)

[
θ 1(x1, . . . ,x2m−1), . . . ,θ 2m−1(x1, . . . ,x2m−1)

]
dθ i

= ex2m
2m−1

∑
i=1

ci(x1, . . . ,x2m−1)dxi, x ∈U ,

for some ci ∈C∞; therefore, (13.13) is fulfilled.
Step 3.2 (conclusion). Using (13.11) and (13.12), we get that

i∗(x2m−1,x2m)
(ψ∗ (w))

satisfies the induction hypothesis for m− 1, for x2m−1,x2m small. Moreover, note
that using (13.13),

i∗(x2m−1,x2m)
(ψ∗(w))(x1, . . . ,x2m−2) = ex2m

2m−2

∑
i=1

ci(xi, . . . ,x2m−1)dxi.

Hence, by the induction hypothesis and thanks to the special form of the coeffi-
cients of

i∗(x2m−1,x2m)
(ψ∗(w))
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with respect to x2m , there exist a neighborhood Û of 0 in R
2m−2 and, for every x2m−1

small, φx2m−1 ∈ Diff∞(Û ;φx2m−1(Û)), verifying(
(φx2m−1)

∗(i∗(x2m−1,x2m)
(ψ∗ (w))

)
2i
= 0 in U , 1≤ i≤ m−1. (13.16)

Furthermore, since the construction is smooth in the parameters, we have in fact

(x1, . . . ,x2m−1)→ φx2m−1(x1, . . . ,x2m−2) is C∞.

Define, for a neighborhood U of 0 small enough, φ ∈ Diff∞(U ;φ(U)) by

φ(x) = φ(x1, . . . ,x2m) = (φx2m−1(x1, . . . ,x2m−2),x2m−1,x2m).

Since φ ◦ i(x2m−1,x2m) = i(x2m−1,x2m) ◦φx2m−1 , we obtain

(φx2m−1)
∗(i∗(x2m−1,x2m)

(ψ∗(w))) = i∗(x2m−1,x2m)
(φ ∗(ψ∗(w))) .

Note also that for every 1≤ s≤ 2m−2 and for every 1-form g,[
i∗(x2m−1,x2m)

(g)(x1, . . . ,x2m−2)
]

s
= [g(x1, . . . ,x2m−2,x2m−1,x2m)]s .

Therefore, combining (13.16) with the above two equations, one gets

[φ ∗(ψ∗(w))]2i = 0 in U , 1≤ i≤ m−1.

Moreover, since the first (2m−1) components of φ do not depend on x2m , we ob-
tain, using (13.13),

[φ ∗(ψ∗(w))]2m = 0 in U .

Finally, letting ϕ = ψ ◦φ , we have indeed found the desired diffeomorphism. 
�



Chapter 14

The Case k = 2

14.1 Notations

We recall, from Chapter 2, some notations that we will use throughout the present
chapter. As usual, when necessary, we identify in a natural way 1-forms with vectors
in R

n.

(i) If u ∈Λ 1 (Rn) and f ∈Λ 2 (Rn) , then (cf. Proposition 2.12)

u� f =
n

∑
j=1

[
n

∑
i=1

fi j ui

]
dx j ∈Λ 1 (Rn) .

(ii) Given f ∈ Λ 2 (Rn) , the matrix f ∈ R
n×n (denoted in Notation 2.30 as f �,1)

is defined, by abuse of notations, as

f u = u� f for every u ∈Λ 1 (Rn)≈ R
n.

(iii) The rank of f ∈Λ 2 (Rn) is defined (cf. Proposition 2.32(i)) by

rank [ f ] = rank
(

f
)
.

We also recall that in the present chapter we denote by rank what was denoted by
rank1 in Chapter 2. In particular, if rank [ f ] = n, then f is invertible and

v = u� f ⇔ u =
(

f
)−1 v.

(iv) When n is even, identifying n-forms with 0-forms, we have (cf. Proposition
2.37(iii)) ∣∣det f

∣∣1/2
=

1
(n/2) !

∣∣∣ f n/2
∣∣∣ ,

where f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

.
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(v) Let r ≥ 0 be an integer and 0 ≤ α ≤ 1. Let f ∈ Λ 2 (Rn) with rank [ f ] = n
(thus, in particular, n is even). In view of Corollary 16.30 and of the previous point,
if c > 0 is such that ∥∥∥∥ 1

f n/2

∥∥∥∥
C0

, ‖ f‖C0 ≤ c,

then there exists a constant C =C (c,r,Ω)> 0 such that

‖( f
)−1 ‖Cr,α ≤C‖ f‖Cr,α .

(vi) Finally, we recall the notion of harmonic fields with a vanishing tangential
part (cf. Section 6.1). If Ω ⊂ R

n is a bounded open smooth set, then

HT
(
Ω ;Λ 2)= {ω ∈C∞(Ω ;Λ 2) : dω = 0, δω = 0 in Ω and ν ∧ω = 0 on∂Ω}.

Recall that if Ω is contractible, then

HT
(
Ω ;Λ 2)= {0} if n≥ 3.

In terms of the components of

ω = ∑
1≤i< j≤n

ωi j dxi∧dx j,

we have

dω = 0 ⇔ ∂ωi j

∂xk
− ∂ωik

∂x j
+

∂ω jk

∂xi
= 0, ∀1≤ i < j < k ≤ n,

δω = 0 ⇔
n

∑
j=1

∂ωi j

∂x j
= 0, ∀1≤ i≤ n,

ν ∧ω = 0 ⇔ ωi jνk−ωikν j +ω jkνi = 0, ∀1≤ i < j < k ≤ n.

14.2 Local Result for Forms with Maximal Rank

The following result is the classical Darboux theorem for closed 2-forms but
with optimal regularity. This is a delicate point and it has been obtained by
Bandyopadhyay and Dacorogna [8]. The other existing results provide solutions that
are only in Cr,α , whereas in the theorem below we find a solution which belongs to
Cr+1,α .

Theorem 14.1 (Darboux theorem with optimal regularity). Let r ≥ 0 and n =
2m≥ 4 be integers. Let 0 < α < 1 and x0 ∈ R

n. Let ωm be the standard symplectic
form of rank 2m,

ωm =
m

∑
i=1

dx2i−1∧dx2i.
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Let ω be a 2-form. The two following statements are then equivalent:

(i) The 2-form ω is closed, is in Cr,α in a neighborhood of x0, and verifies

rank [ω (x0)] = n.

(ii) There exist a neighborhood U of x0 and ϕ ∈ Diffr+1,α(U ;ϕ (U)) such that

ϕ∗ (ωm) = ω in U and ϕ (x0) = x0 .

Remark 14.2. (i) When r = 0, the hypothesis dω = 0 is to be understood in the sense
of distributions.

(ii) The theorem is still valid when n = 2, but it is then the result of Dacorogna
and Moser [33] (cf. Theorem 10.3).

Proof. The necessary part is obvious and we discuss only the sufficient part. We
divide the proof into four steps.

Step 1. Without loss of generality we take x0 = 0. We can, according to Proposi-
tion 2.24(ii), also always assume that

ω (0) = ωm .

Step 2. Our theorem will follow from Theorem 18.1. So we need to define the
spaces and the operators and then check all of the hypotheses.

1) We choose V a sufficiently small ball centered at 0 and we define the sets

X1 =C1,α(V ;Rn) and Y1 =C0,α(V ;Λ 2),

X2 =Cr+1,α(V ;Rn) and Y2 = {b ∈Cr,α(V ;Λ 2) : db = 0 in V}.
Using Proposition 16.23, we immediately deduce that (HXY ) of Theorem 18.1 is
fulfilled.

2) Define L : X2 → Y2 by

La = d[a�ωm] = b.

We will show that there exists L−1 : Y2→X2 a linear right inverse of L and a constant
C1 =C1(r,α,V ) such that

‖L−1b‖Xi ≤C1‖b‖Yi for every b ∈ Y2 and i = 1,2.

Once shown this, (HL) of Theorem 18.1 will be satisfied. First, using Theorem 8.3,
find w ∈Cr+1,α(V ;Λ 1) and C1 =C1 (r,α,V )> 0 such that

dw = b in V ,

‖w‖Cr+1,α ≤C1 ‖b‖Cr,α and ‖w‖C1,α ≤C1 ‖b‖C0,α .
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Moreover, the correspondence b→ w can be chosen to be linear. Next, define a ∈
Cr+1,α(V ;Rn) by

a2i−1 = w2i and a2i =−w2i−1, 1≤ i≤ m,

and note that

a�ωm = w.

Finally, defining L−1 : Y2 → X2 by L−1(b) = a, we easily check that L−1 is linear,

LL−1 = id on Y2

and

‖L−1b‖Xi ≤C1‖b‖Yi for every b ∈ Y2 and i = 1,2.

So (HL) of Theorem 18.1 is satisfied.

3) We then let Q be defined by

Q(u) = ωm− (id+u)∗ωm +d [u�ωm] .

Since

d [u�ωm] =
m

∑
i=1

[
du2i−1∧dx2i +dx2i−1∧du2i] ,

ωm− (id+u)∗ωm =
m

∑
i=1

[
dx2i−1∧dx2i− (dx2i−1 +du2i−1)∧ (dx2i +du2i)] ,

we get

Q(u) =−
m

∑
i=1

du2i−1∧du2i.

4) Note that Q(0)= 0 and dQ(u)= 0 in V. Appealing to Theorem 16.28 (a similar
but more involved estimate can be found in Lemma 14.8), there exists a constant
C2 =C2 (r,V ) such that for every u,v∈Cr+1,α(Ω ;Rn), the following estimates hold:

‖Q(u)−Q(v)‖C0,α ≤
m

∑
i=1
‖du2i−1∧du2i−dv2i−1∧dv2i‖C0,α

≤
m

∑
i=1
‖du2i−1∧ (du2i−dv2i)‖C0,α

+
m

∑
i=1
‖(dv2i−1−du2i−1)∧dv2i‖C0,α

≤C2(‖u‖C1,α +‖v‖C1,α )‖u− v‖C1,α
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and

‖Q(u)‖Cr,α ≤
m

∑
i=1
‖du2i−1∧du2i‖Cr,α

≤C
m

∑
i=1

[‖du2i−1‖Cr,α‖du2i‖C0 +‖du2i‖Cr,α‖du2i−1‖C0
]

≤C2‖u‖C1,α‖u‖Cr+1,α .

We therefore see that property (HQ) is valid for every ρ and we choose ρ = 1/(2n),

c1 (r,s) =C2 (r+ s) and c2 (r,s) =C2 r s.

5) Setting ϕ = id+u, we can rewrite the equation ϕ∗ (ωm) = ω as

Lu = d [u�ωm] = ω− (id+u)∗ωm +d [u�ωm]

= ω−ωm +[ωm− (id+u)∗ωm +d [u�ωm]]

= ω−ωm +Q(u).

Step 3. We may now apply Theorem 18.1 and get that there exists ψ ∈Cr+1,α(V ;Rn
)

such that ψ∗ (ωm) = ω in V with ‖∇ψ− I‖C0 ≤ 1/(2n), provided

‖ω−ωm‖C0,α ≤ 1
2C1 max{4C1C2 ,1} . (14.1)

Setting ϕ (x)=ψ (x)−ψ (0) , we have indeed proved that there exists ϕ ∈Cr+1,α(V ;Rn
)

satisfying

ϕ∗ (ωm) = ω in V, ‖∇ϕ− I‖C0 ≤ 1
2n

and ϕ (0) = 0.

Step 4. We may now conclude the proof of the theorem.

Step 4.1. Let 0 < ε < 1 and define

ωε (x) = ω (εx) .

Observe that ωε ∈Cr,α(V ;Λ 2), dωε = 0, ωε (0) = ωm and

‖ωε −ωm‖C0,α(V)→ 0 as ε → 0.

Choose ε sufficiently small so that

‖ωε −ωm‖C0,α(V) ≤
1

2C1 max{4C1C2 ,1} .

Apply Step 3 to find ψε ∈Cr+1,α(V ;Rn
)

satisfying

ψ∗ε (ωm) = ωε in V, ‖∇ψε − I‖C0 ≤ 1
2n

and ψε (0) = 0.
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Step 4.2. Let
χε (x) =

x
ε

and define
ϕ = ε ψε ◦χε .

Define U = εV. It is easily seen that ϕ ∈Cr+1,α(U ;Rn),

ϕ∗(ωm) = ω in U and ϕ(0) = 0.

Note in particular that

‖∇ϕ− I‖C0(U) = ‖∇ψε − I‖C0(V ) ≤
1

2n

and therefore det∇ϕ > 0 in U . Hence, restricting U, if necessary, we can assume
that ϕ ∈ Diffr+1,α(U ;ϕ(U)). This concludes the proof of the theorem. ��

14.3 Local Result for Forms of Nonmaximal Rank

The main result of the present section is to obtain the Darboux theorem for degen-
erate closed 2-forms. We will provide, following Bandyopadhyay, Dacorogna and
Kneuss [9], two proofs of the theorem. The standard proof uses the Frobenius the-
orem to reduce the dimension so that the forms have maximal rank and then apply
the classical Darboux theorem. We will follow this path but using the more sophis-
ticated Theorem 14.1. Our theorem will provide a solution in Cr,α , whereas in the
existing literature solutions are found only in Cr−1,α .

We will also give a completely different proof; it will use an argument based on
the flow method. Still a different proof can be found in [8] when n = 2m+1.

14.3.1 The Theorem and a First Proof

Theorem 14.3. Let n≥ 3, r,m≥ 1 be integers and 0 < α < 1. Let x0 ∈ R
n and ωm

be the standard symplectic form with rank [ωm] = 2m < n, namely

ωm =
m

∑
i=1

dx2i−1∧dx2i.

Let ω be a Cr,α closed 2-form such that

rank [ω] = 2m in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr,α(U ;ϕ (U)) such that

ϕ∗ (ωm) = ω in U and ϕ (x0) = x0.
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Remark 14.4. The theorem is standard in the C∞ case. In all proofs that we have
seen, the regularity that is established is, at best, that if ω ∈Cr,α , then ϕ ∈Cr−1,α .
However, our result asserts that ω and ϕ have the same regularity in Hölder spaces.
This is, of course, better but still not optimal, as in the nondegenerate case of Theo-
rem 14.1.

Proof. Step 1. Without loss of generality, we can assume x0 = 0. We first find, ap-
pealing to Theorem 4.5, a neighborhood V ⊂R

n of 0 and ψ ∈Diffr,α(V ;ψ (V )) with
ψ (0) = 0 and

ψ∗ (ω)(x1, . . . ,xn) = ω̃ (x1, . . . ,x2m) = ∑
1≤i< j≤2m

ω̃i j (x1, . . . ,x2m)dxi∧dx j.

Therefore, ψ∗ (ω) = ω̃ ∈Cr−1,α in a neighborhood of 0 in R
2m and rank ω̃ = 2m in

a neighborhood of 0.
Step 2. We then apply Theorem 14.1 to ω̃ find a neighborhood W ⊂R

2m of 0 and
χ ∈ Diffr,α(W ; χ (W )), with χ (0) = 0, such that

χ∗ (ωm) = ω̃ in W.

We set

χ̃ (x) = χ̃ (x1, . . . ,x2m,x2m+1, . . . ,xn) = (χ (x1, . . . ,x2m) ,x2m+1, . . . ,xn) .

We then choose V smaller, if necessary, so that

V ⊂W ×R
n−2m.

We finally have that U = ψ (V ) and ϕ = χ̃ ◦ψ−1 have all of the desired properties.
��

14.3.2 A Second Proof

We now provide a second proof of Theorem 14.3 under the extra assumption that ω
is in C∞. It seems that the present proof is more appropriate if one wants to look for
global results.

Proof. As usual, we consider, without loss of generality, that x0 = 0.
Step 1. Define, for a sufficiently small neighborhood U1 of 0 ,

h(t,x) = ht(x) = ω (tx) .

Then the homotopy h is such that h∈C∞([0,1]×U1;Λ 2) and for every t ∈ [0,1], the
following identities hold in U1:

dht = 0, hm
t �= 0 and hm+1

t = 0 (14.2)
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(recall that the last two conditions are equivalent to rank [ht ] = 2m) and

h0 = ω (0) and h1 = ω.

Step 2. Since (14.2) holds and

hm
t ∧

∂ht

∂ t
=

1
m+1

∂hm+1
t

∂ t
= 0,

we can apply Theorem 8.22. We can therefore find a neighborhood U2 ⊂ U1 of
0 and w ∈ C∞([0,1]×U2;Rn), w(t,x) = wt(x), satisfying, for every t ∈ [0,1],
wt(0) = 0 and

dwt =−∂ht

∂ t
and wt ∧hm

t = 0 in U2 .

We then apply Proposition 2.50 to find u ∈C∞([0,1]×U2;Rn), u(t,x) = ut(x), with

ut �ht = wt and ut(0) = 0.

Step 3. We next find the flow, associated to the vector field ut ,⎧⎨
⎩

d
dt

ϕt = ut ◦ϕt , 0≤ t ≤ 1,

ϕ0 = id .

Theorem 12.8 gives that ϕ1 is a diffeomorphism in a neighborhood U3 ⊂U2 of 0
such that

ϕ∗1 (h1) = h0 in U3 and ϕ1(0) = 0 .

Step 4. Since h0 is constant, we can use Proposition 2.24(ii) to find a diffeomor-
phism ψ of the form ψ (x) = Ax with A ∈ GL(n) so that

ψ∗(h0) = ωm =
m

∑
i=1

dx2i−1∧dx2i.

Letting ϕ = ψ−1 ◦ϕ−1
1 , we have the claim. ��

14.4 Global Result with Dirichlet Data

14.4.1 The Main Result

We now state our main theorem. It has been obtained under slightly more restrictive
hypotheses by Bandyopadhyay and Dacorogna [8]; as stated, it is due to Dacorogna
and Kneuss [32]. We will provide two proofs of the theorem in Sections 14.4.5
and 14.4.6.
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Theorem 14.5. Let n > 2 be even and Ω ⊂ R
n be a bounded open smooth set with

exterior unit normal ν . Let 0<α < 1 and r≥ 1 be an integer. Let f ,g∈Cr,α(Ω ;Λ 2
)

satisfying d f = dg = 0 in Ω ,

ν ∧ f ,ν ∧g ∈Cr+1,α (∂Ω ;Λ 3) and ν ∧ f = ν ∧g on ∂Ω ,∫
Ω
〈 f ;ψ〉dx =

∫
Ω
〈g;ψ〉dx for every ψ ∈HT

(
Ω ;Λ 2) (14.3)

and, for every t ∈ [0,1] ,

rank [tg+(1− t) f ] = n in Ω .

Then there exists ϕ ∈ Diffr+1,α (Ω ;Ω
)

such that

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω .

Remark 14.6. (i) As already mentioned, we can consider, in a similar way, a general
homotopy ft with f0 = f , f1 = g,

d ft = 0, ν ∧ ft = ν ∧ f0 on ∂Ω and rank [ ft ] = n in Ω ,∫
Ω
〈 ft ;ψ〉dx =

∫
Ω
〈 f0;ψ〉dx for every ψ ∈HT

(
Ω ;Λ 2).

Note that the nondegeneracy condition rank [ ft ] = n implies (identifying, as usual,
volume forms with functions)

f n/2 ·gn/2 > 0 in Ω .

(ii) The nondegeneracy condition

rank [tg+(1− t) f ] = n for every t ∈ [0,1]

is equivalent to the condition that the matrix (g)
(

f
)−1 has no negative eigenvalues.

(iii) If Ω is contractible, then HT
(
Ω ;Λ 2

)
= {0} and, therefore, (14.3) is auto-

matically satisfied.
(iv) Note that the extra regularity on f and g holds only on the boundary and

only for their tangential parts. More precisely, recall that for x ∈ ∂Ω , we denote by
ν = ν (x) the exterior unit normal to Ω . By

ν ∧ f ∈Cr+1,α(∂Ω ;Λ 3)
we mean that the tangential part of f is in Cr+1,α , namely the 3-form F defined by

F (x) = ν (x)∧ f (x)

is such that
F ∈Cr+1,α(∂Ω ;Λ 3).
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14.4.2 The Flow Method

We now state and prove a weaker version, from the point of view of regularity, of
Theorem 14.5. It has, however, the advantage of having a simple proof. It has been
obtained by Bandyopadhyay and Dacorogna [8].

Theorem 14.7. Let n > 2 be even and Ω ⊂ R
n be a bounded open smooth set with

exterior unit normal ν . Let r ≥ 1 be an integer, 0 < α < 1 and f ,g ∈Cr,α(Ω ;Λ 2
)

satisfy
d f = dg = 0 in Ω , ν ∧ f = ν ∧g on ∂Ω ,∫

Ω
〈 f ;ψ〉dx =

∫
Ω
〈g;ψ〉dx for every ψ ∈HT

(
Ω ;Λ 2),

rank [tg+(1− t) f ] = n in Ω and for every t ∈ [0,1] .

Then there exists ϕ ∈ Diffr,α (Ω ;Ω
)

such that

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω .

Furthermore, if 0 < β ≤ α < 1 and if c > 0 is such that

‖ f‖C1 , ‖g‖C1 ,

∥∥∥∥∥ 1

[ tg+(1− t) f ]n/2

∥∥∥∥∥
C0

≤ c for every t ∈ [0,1] ,

then there exists a constant C =C (c,r,α,β ,Ω)> 0 such that

‖ϕ− id‖Cr,α ≤C [‖ f‖Cr,α +‖g‖Cr,α ]‖ f −g‖C0,β +C‖ f −g‖Cr−1,α .

Proof. We solve (cf. Theorem 8.16){
dw = f −g in Ω ,

w = 0 on ∂Ω

and find w ∈Cr+1,α(Ω ;Λ 1
)

and C1 =C1 (r,α,β ,Ω)> 0 such that

‖w‖Cr,α ≤C1 ‖ f −g‖Cr−1,α and ‖w‖C1,β ≤C1 ‖ f −g‖C0,β .

Since rank [ tg+(1− t) f ] = n, we can find ut ∈Cr,α(Ω ;Rn) so that

ut � [ tg+(1− t) f ] = w ⇔ ut =
[

tg+(1− t) f
]−1 w.

Moreover (in view of Notation (v) in Section 14.1, Theorem 16.28 and Corol-
lary 16.30), we can find constants Ci =Ci (c,r,α,β ,Ω)> 0, i = 2,3, such that

‖ut‖Cr,α ≤C2 [‖ f‖Cr,α +‖g‖Cr,α ]‖w‖C0 +C2 ‖w‖Cr,α

≤C3 [‖ f‖Cr,α +‖g‖Cr,α ]‖ f −g‖C0,β +C3 ‖ f −g‖Cr−1,α



14.4 Global Result with Dirichlet Data 295

and ‖ut‖C1 ≤C3 . We then apply Theorem 12.7 to ut and ft = tg+(1− t) f to find
ϕ satisfying

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω .

The estimate follows from Theorem 12.1. The proof is therefore complete. ��

14.4.3 The Key Estimate for Regularity

The following estimate will play a crucial role in getting the optimal regularity in
Theorem 14.10. We have encountered a result of the same type in the much simpler
case of volume forms (see Theorem 10.9) or in the local case (see Theorem 14.1).
We will state the theorem for k-forms, although we will use it only when k = 2.

Lemma 14.8. Let n ≥ 2 and Ω ⊂ R
n be a bounded open Lipschitz set. Let r ≥ 1,

2≤ k ≤ n be integers, c > 0 and 0≤ γ ≤ α ≤ 1. Let g ∈Cr+1,α(Ω ;Λ k
)

be closed,
u,v ∈Cr+1,α(Ω ;Rn

)
and c > 0 with

‖u‖C1,γ ,‖v‖C1,γ ≤ c,

(id+tu)
(
Ω
)
,(id+tv)

(
Ω
)⊂Ω , ∀ t ∈ [0,1] .

Set

Q(u) = g− (id+u)∗ (g)+d [u�g] .

Then there exists a constant C =C (c,r,Ω) such that the following estimates hold:

‖Q(u)−Q(v)‖C0,γ ≤C‖g‖C2,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ ,

‖Q(u)‖Cr,α ≤C‖g‖Cr+1,α ‖u‖C1 +C‖g‖C1 ‖u‖Cr+1,α ‖u‖C1 .

Remark 14.9. With essentially the same argument, we can replace the last estimate
by the following one. In addition to the hypotheses of the lemma, let 0≤ α < β ≤ 1
and g ∈Cr+1,β (Ω ;Λ k

)
; then the last estimate takes the following form:

‖Q(u)‖Cr,α ≤C‖g‖Cr+1,β ‖u‖1+β−α
C1 +C‖g‖Cr+1,α ‖u‖Cr+1,α ‖u‖C1

for every u,v ∈Cr+1,α(Ω ;Rn
)

with

‖u‖C1,γ ,‖v‖C1,γ ≤ c,

(id+tu)
(
Ω
)
,(id+tv)

(
Ω
)⊂Ω , ∀ t ∈ [0,1] .

Proof. We divide the proof into four steps. Since we will apply the result only when
k = 2, we will always single out the formulas for this case. We also will constantly
use Theorem 16.28.
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Step 1. We start with some notations. The form g will be written as

g = ∑
I∈Tk

gI dxI .

We first need to write (id+u)∗(g) in a different way. For this, we observe that we
have, for I ∈Tk ,

d (x+u)I =
(
dxi1 +dui1

)∧·· ·∧ (dxik +duik
)

= dxI + ∑
(J,K)=I
1≤|K|≤k

dxJ ∧duK

= dxI + ∑
(J,i)=I
1≤i≤n

dxJ ∧dui + ∑
(J,K)=I
2≤|K|≤k

dxJ ∧duK ,

where we have used the notation

∑
(J,i)=I
1≤i≤n

dxJ ∧dui =
k

∑
γ=1

(−1)k+γ dxi1 ∧·· ·∧dxiγ−1 ∧dxiγ+1 ∧·· ·∧dxik ∧duiγ

and similarly for
∑

(J,K)=I
2≤|K|≤k

dxJ ∧duK .

When k = 2, we have

(dx+du)i j = (dxi +dui)∧ (dx j +du j)

= dxi∧dx j +
[
dui∧dx j +dxi∧du j]+dui∧du j.

We can therefore write

(id+u)∗ (g) = ∑
I∈Tk

gI (id+u)dxI + ∑
I∈Tk

gI (id+u) ∑
(J,K)=I
1≤|K|≤k

dxJ ∧duK

= g(id+u)+ ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI (id+u)dxJ ∧dui

+ ∑
I∈Tk

∑
(J,K)=I
2≤|K|≤k

gI (id+u)dxJ ∧duK

so that when k = 2, we find

(id+u)∗ (g) = g(id+u)+ ∑
1≤i< j≤n

gi j(id+u)
[
dui∧dx j +dxi∧du j]

+ ∑
1≤i< j≤n

gi j(id+u)dui∧du j.
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We will also use, for I ∈Tk ,

d
[
u�dxI]= ∑

(J,i)=I
1≤i≤n

dxJ ∧dui,

which reads, when k = 2, as

d
[
u�dxi j]= d

[
u�
(
dxi∧dx j)]= dui∧dx j +dxi∧du j.

Step 2. We have, since g is closed and according to Lemma 5.4, that

d [u�g] = ∑
I∈Tk

gI d
[
u�dxI]+ ∑

I∈Tk

〈gradgI ;u〉dxI

= ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI dxJ ∧dui + ∑
I∈Tk

〈gradgI ;u〉dxI

and hence, when k = 2,

d [u�g] = ∑
1≤i< j≤n

gi j
[
dui∧dx j +dxi∧du j]+ ∑

1≤i< j≤n

〈
gradgi j;u

〉
dxi∧dx j.

In order to get the right estimates, we rewrite Q(u), defined by

Q(u) = g− (id+u)∗ (g)+d [u�g] ,

in the following way:

Q(u) = g−g(id+u)− ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI (id+u)dxJ ∧dui

− ∑
I∈Tk

∑
(J,K)=I
2≤|K|≤k

gI (id+u)dxJ ∧duK +d [u�g]

and thus

Q(u) = g−g(id+u)− ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI (id+u)dxJ ∧dui

− ∑
I∈Tk

∑
(J,K)=I
2≤|K|≤k

gI (id+u)dxJ ∧duK

+ ∑
I∈Tk

∑
(J,i)=I
1≤i≤n

gI dxJ ∧dui + ∑
I∈Tk

〈gradgI ;u〉dxI .

We then let
Q1(u) = ∑

I∈Tk

∑
(J,i)=I
1≤i≤n

[gI−gI(id+u)]
[
dxJ ∧dui] ,
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Q2(u) = ∑
I∈Tk

[gI(id+u)−gI−〈gradgI ;u〉]dxI ,

Q3(u) = ∑
I∈Tk

∑
(J,K)=I
2≤|K|≤k

gI (id+u)dxJ ∧duK

so that
Q(u) = Q1(u)−Q2(u)−Q3(u).

We therefore have, when k = 2, that

Q1(u) = ∑
1≤i< j≤n

[gi j−gi j(id+u)]
[
dui∧dx j +dxi∧du j] ,

Q2(u) = ∑
1≤i< j≤n

[gi j(id+u)−gi j−〈gradgi j;u〉]dxi∧dx j,

Q3(u) = ∑
1≤i< j≤n

gi j(id+u)dui∧ du j.

Step 3. We now establish the first estimate for each of the Qp , p = 1,2,3. So let
u,v ∈Cr+1,α(Ω ;Rn) with

‖u‖C1,γ ,‖v‖C1,γ ≤ c and (id+tu)
(
Ω
)
,(id+tv)

(
Ω
)⊂Ω , ∀ t ∈ [0,1] .

In the sequel, Ci will denote constants that depend only on c and Ω . Since in all cases
we will make the estimates component by component, we immediately drop the sum
signs. Before starting, we recall (cf. Theorems 16.31 and 16.36) that there exists a
constant C1 =C1 (c,Ω) such that for every f ∈C1,γ(Ω) and every w, w̃ ∈C1(Ω ;Ω)
with ‖w‖C1 ,‖w̃‖C1 ≤ c,

‖ f ◦w‖C0,γ ≤C1‖ f‖C0,γ ,

‖ f ◦w− f ◦ w̃‖C0 ≤C1 ‖ f‖C1 ‖w− w̃‖C0 ,

‖ f ◦w− f ◦ w̃‖C0,γ ≤C1 ‖ f‖C1,γ ‖w− w̃‖C0,γ .

Estimate for Q1. We have

‖Q1(u)−Q1(v)‖C0,γ

= ‖ [gI(id)−gI(id+u)]
[
dxJ ∧dui]− [gI(id)−gI(id+v)]

[
dxJ ∧dvi]‖C0,γ

≤ ‖[gI(id+v)−gI(id+u)]
[
dxJ ∧dvi]‖C0,γ

+‖[gI(id+u)−gI(id)]
[
dxJ ∧ [dvi−dui]]‖C0,γ .

We therefore get

‖Q1(u)−Q1(v)‖C0,γ ≤C2‖[gI(id+v)−gI(id+u)]‖C0‖v‖C1,γ

+C2‖[gI(id+v)−gI(id+u)]‖C0,γ‖v‖C1

+C2‖[gI(id+u)−gI(id)]‖C0‖u− v‖C1,γ

+C2‖[gI(id+u)−gI(id)]‖C0,γ‖u− v‖C1 .
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Hence (bearing in mind that ‖u‖C1,γ ,‖v‖C1,γ ≤ c), we get

‖Q1(u)−Q1(v)‖C0,γ

≤C3‖g‖C1‖v−u‖C0‖v‖C1,γ +C3‖g‖C1,γ‖v−u‖C0,γ‖v‖C1

+C3‖g‖C1‖u‖C0‖u− v‖C1,γ +C3‖g‖C1,γ‖u‖C0,γ‖u− v‖C1 .

We thus have

‖Q1(u)−Q1(v)‖C0,γ ≤C‖g‖C1,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ .

Estimate for Q2 . For Q2 we proceed in the following way. We first observe that

Q2(u) =
∫ 1

0

d
dt

[
(gI(id+tu)− t〈gradgI(id);u〉)dxI]dt

=
∫ 1

0

[〈gradgI(id+tu)−gradgI(id);u〉dxI]dt.

We therefore obtain

‖Q2(u)−Q2(v)‖C0,γ

≤
∫ 1

0
‖〈gradgI(id+tu)−gradgI(id);u〉

−〈gradgI(id+tv)−gradgI(id);v〉‖C0,γ dt

≤
∫ 1

0
{‖〈gradgI(id+tu)−gradgI(id+tv);u〉‖C0,γ

+ ‖〈gradgI(id+tv)−gradgI(id);u− v〉‖C0,γ}dt

and, hence,

‖Q2(u)−Q2(v)‖C0,γ

≤C2

∫ 1

0
{‖gradgI(id+tu)−gradgI(id+tv)‖C0,γ‖u‖C0

+‖gradgI(id+tu)−gradgI(id+tv)‖C0‖u‖C0,γ

+‖gradgI(id+tv)−gradgI(id)‖C0,γ‖u− v‖C0

+ ‖gradgI(id+tv)−gradgI(id)‖C0‖u− v‖C0,γ}dt.

This leads to (recall that ‖u‖C1,γ ,‖v‖C1,γ ≤ c)

‖Q2(u)−Q2(v)‖C0,γ

≤C3‖g‖C2,γ‖u− v‖C0,γ‖u‖C0 +C3‖g‖C2‖u− v‖C0‖u‖C0,γ

+C3‖g‖C2,γ‖v‖C0,γ‖u− v‖C0 +C3‖g‖C2‖v‖C0‖u− v‖C0,γ .

We therefore have the estimate

‖Q2(u)−Q2(v)‖C0,γ ≤C‖g‖C2,γ (‖u‖C0,γ +‖v‖C0,γ )‖u− v‖C0,γ .



300 14 The Case k = 2

Estimate for Q3 . It remains to prove the estimate for Q3 . We get

‖Q3(u)−Q3(v)‖C0,γ

= ‖gI(id+v)dxJ ∧dvK−gI(id+u)dxJ ∧duK‖C0,γ

≤ ‖gI(id+v)(dxJ ∧ (dvK−duK))‖C0,γ

+‖(gI(id+v)−gI(id+u))dxJ ∧duK‖C0,γ ,

which leads to (recalling that ‖u‖C1,γ ,‖v‖C1,γ ≤ c and |K| ≥ 2, just as in (10.19))

‖Q3(u)−Q3(v)‖C0,γ ≤C3‖g‖C0,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ

+C3‖g‖C1,γ‖u− v‖C0,γ‖u‖C1,γ

and, thus,

‖Q3(u)−Q3(v)‖C0,γ ≤C‖g‖C1,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ ,

proving the estimate for Q3 .

Step 4. We next establish the second estimate for each of the Qp , p = 1,2,3. So
let u ∈Cr+1,α(Ω ;Rn) with

‖u‖C1,γ ≤ c and (id+tu)
(
Ω
)⊂Ω , ∀ t ∈ [0,1].

As before, Ci will denote constants that depend only on c, r and Ω . Since in all cases
we will make the estimates component by component, we drop the sum signs. We
recall (cf. Theorem 16.31) that there exists a constant C1 =C1 (c,r,Ω) such that for
every f ∈Cr,α(Ω) and every w ∈Cr,α(Ω ;Ω) with ‖w‖C1 ≤ c,

‖ f ◦w‖Cr,α ≤C1‖ f‖Cr,α +C1‖ f‖C1‖w‖Cr,α .

We also claim that

‖g◦ (id+u)−g◦ id‖Cr,α ≤C1 ‖g‖Cr+1,α ‖u‖C1 +C1 ‖g‖C1 ‖u‖Cr+1,α

for every u ∈Cr+1,α(Ω ;Rn), with

‖u‖C1 ≤ c and (id+u)
(
Ω
)⊂Ω .

Indeed, from Theorem 16.36, we have

‖g◦ (id+u)−g◦ id‖Cr,α ≤C2 ‖g‖Cr+1,α ‖u‖C0 +C2 ‖g‖C2 [1+‖u‖Cr,α ]‖u‖C0

+C2 ‖g‖C1 ‖u‖Cr,α ,

and from Corollary 16.27, we get

‖g‖C2 ‖u‖Cr,α ≤C3 [‖g‖Cr+1,α ‖u‖C1 +‖g‖C1‖u‖Cr+1,α ] . (14.4)

Combining the two estimates, we have our claim.
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Estimate for Q1 . We have

‖Q1(u)‖Cr,α = ‖ [gI(id)−gI(id+u)]
[
dxJ ∧dui]‖Cr,α

≤C2‖[gI(id+u)−gI(id)]‖C0‖u‖Cr+1,α

+C2‖[gI(id+u)−gI(id)]‖Cr,α‖u‖C1 .

We therefore get (bearing in mind that ‖u‖C1,γ ≤ c)

‖Q1(u)‖Cr,α ≤C3‖g‖C1‖u‖C0‖u‖Cr+1,α

+C3 ‖g‖Cr+1,α ‖u‖2
C1 +C3 ‖g‖C1 ‖u‖Cr+1,α ‖u‖C1

and, thus,

‖Q1(u)‖Cr,α ≤C‖g‖Cr+1,α ‖u‖C1 +C‖g‖C1 ‖u‖Cr+1,α ‖u‖C1 .

Estimate for Q2 . As before, we have that

Q2(u) =
∫ 1

0

d
dt

[
(gI(id+tu)− t〈gradgI(id);u〉)dxI]dt

=
∫ 1

0

[〈gradgI(id+tu)−gradgI(id);u〉dxI]dt.

We therefore obtain

‖Q2(u)‖Cr,α ≤C2

∫ 1

0
{‖gradgI(id+tu)−gradgI(id)‖Cr,α‖u‖C0

+‖gradgI(id+tu)−gradgI(id)‖C0‖u‖Cr,α}dt

and, hence,

‖Q2(u)‖Cr,α ≤C2

∫ 1

0
{[‖gradgI(id+tu)‖Cr,α +‖gradgI‖Cr,α ]‖u‖C0

+ ‖gradgI(id+tu)−gradgI(id)‖C0‖u‖Cr,α}dt.

This leads to (recall that ‖u‖C1,γ ≤ c)

‖Q2(u)‖Cr,α ≤C3 [‖g‖Cr+1,α +‖g‖C2‖u‖Cr,α ]‖u‖C0 +C3‖g‖C2‖u‖C0‖u‖Cr,α .

From (14.4) we get

‖Q2(u)‖Cr,α ≤C‖g‖Cr+1,α ‖u‖C1 +C3‖g‖C1‖u‖Cr+1,α‖u‖C1 .

Estimate for Q3 . We immediately have

‖Q3(u)‖Cr,α = ‖gI(id+u)dxJ ∧duK‖Cr,α

≤C2‖g(id+u)‖Cr,α‖duK‖C0 +C2‖g‖C0‖duK‖Cr,α .
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Since |K| ≥ 2 and ‖u‖C1,γ ≤ c, we get

‖Q3(u)‖Cr,α ≤C3 [‖g‖Cr,α +‖g‖C1‖u‖Cr,α ]‖u‖|K|C1

+C3‖g‖C0‖u‖|K|−1
C1 ‖u‖Cr+1,α

and, thus, since ‖u‖C1,γ ≤ c,

‖Q3(u)‖Cr,α ≤C‖g‖Cr,α‖u‖C1 +C‖g‖C1‖u‖Cr+1,α‖u‖C1 .

The combination of the three estimates gives the proof of the lemma. ��

14.4.4 The Fixed Point Method

The first proof of Theorem 14.5 relies on the following key theorem (obtained by
Bandyopadhyay and Dacorogna [8] under more restrictive hypotheses; as stated, it
is due to Dacorogna and Kneuss [32]).

Theorem 14.10. Let n > 2 be even and Ω ⊂ R
n be a bounded open smooth set. Let

r≥ 1 be an integer and 0 < γ ≤ α < 1. Let g∈Cr+1,α(Ω ;Λ 2
)

and f ∈Cr,α(Ω ;Λ 2
)

be such that
d f = dg = 0 in Ω , ν ∧ f = ν ∧g on ∂Ω ,∫

Ω
〈 f ;ψ〉dx =

∫
Ω
〈g;ψ〉dx for every ψ ∈HT

(
Ω ;Λ 2),

rank [g] = n in Ω .

Let c > 0 be such that

‖g‖C0 ,

∥∥∥∥∥ 1

[g ]n/2

∥∥∥∥∥
C0

≤ c

and define

θ (g) =
1

‖g‖2
C1,γ

min
{
‖g‖C1,γ ,

1
‖g‖C2,γ

,
1

‖g‖Cr+1,α

}
.

There exists C =C(c,r,α,γ,Ω)> 0 such that if

‖ f −g‖C0,γ ≤Cθ (g) and ‖ f −g‖C0,γ ≤C
‖ f −g‖Cr,α

‖g‖C1,γ ‖g‖Cr+1,α
, (14.5)

then there exists ϕ ∈ Diffr+1,α (Ω ;Ω
)

verifying

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω . (14.6)
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Furthermore, there exists C̃ = C̃(c,r,α,γ,Ω)> 0 such that

‖ϕ− id‖Cr+1,α ≤ C̃‖g‖Cr+1,α‖ f −g‖Cr,α .

Remark 14.11. (i) Note that since g∈Cr+1,α(Ω ;Λ 2) and ν∧ f = ν∧g on ∂Ω , then
ν ∧ f ∈Cr+1,α(∂Ω ;Λ 3).

(ii) With essentially the same proof, but replacing the last estimate of Lemma
14.8 by the corresponding one in Remark 14.9, we get the following result. In addi-
tion to the hypotheses of the theorem, let 0 < γ ≤ α < β < 1, g ∈Cr+1,β (Ω ;Λ 2

)
,

f ∈Cr,α(Ω ;Λ 2
)

and c > 0 be such that

d f = dg = 0 in Ω , ν ∧ f = ν ∧g on ∂Ω ,∫
Ω
〈 f ;ψ〉dx =

∫
Ω
〈g;ψ〉dx for every ψ ∈HT

(
Ω ;Λ 2),

rank [g] = n in Ω ,

‖g‖C0 ,

∥∥∥∥∥ 1

[g ]n/2

∥∥∥∥∥
C0

≤ c.

Define

θ (g) =
1

‖g‖C1,γ
min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ,
1

‖g‖C1,γ‖g‖C2,γ
,

1

‖g‖2
Cr+1,α

,

[
1

‖g‖C1,γ‖g‖Cr+1,β

] 1
β−α

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

There exist C = C(c,r,α,β ,γ,Ω) > 0 and C̃ = C̃(c,r,α,β ,γ,Ω) > 0 such that if
(compare with (14.5))

‖ f −g‖C0,γ ≤Cθ (g) ,

then there exists ϕ ∈ Diffr+1,α (Ω ;Ω
)

verifying

ϕ∗ (g) = f in Ω and ϕ = id on ∂Ω

and
‖ϕ− id‖Cr+1,α ≤ C̃‖g‖Cr+1,α‖ f −g‖Cr,α .

Proof. The theorem will follow from Theorem 18.1. We divide the proof into five
steps; the first four to verify the hypotheses of the theorem and the last one to con-
clude.

Step 1. We define the spaces as follows:

X1 =C1,γ(Ω ;Rn) and Y1 =C0,γ(Ω ;Λ 2),
X2 = {a ∈Cr+1,α(Ω ;Rn) : a = 0 on ∂Ω},

Y2 =

{
b ∈Cr,α(Ω ;Λ 2) :

[
db = 0 in Ω , ν ∧b = 0 on ∂Ω ,∫

Ω 〈b;ψ〉dx = 0, ∀ψ ∈HT
(
Ω ;Λ 2

)
}
.



304 14 The Case k = 2

It is easily seen that they satisfy Hypothesis (HXY ) of Theorem 18.1 (see Proposi-
tion 16.23).

Step 2. Define L : X2 → Y2 by

La = d[a�g] = b.

We will show that there exist L−1 : Y2→ X2, a linear right inverse of L and a constant
K1 = K1(c,r,α,γ,Ω) such that, defining

k1 = K1‖g‖C1,γ and k2 = K1‖g‖Cr+1,α ,

we get
‖L−1b‖Xi ≤ ki‖b‖Yi for every b ∈ Y2 and i = 1,2.

Once this is shown, (HL) of Theorem 18.1 will be satisfied.

Step 2.1. Indeed, we first solve, using Theorem 8.16, the equation{
dw = b in Ω ,

w = 0 on ∂Ω

and find w ∈Cr+1,α(Ω ;Λ 1
)

and C1 =C1 (r,α,γ,Ω)> 0 such that

‖w‖Cr+1,α ≤C1 ‖b‖Cr,α and ‖w‖C1,γ ≤C1 ‖b‖C0,γ .

Moreover, the correspondence b→ w can be chosen to be linear.

Step 2.2. Since rank [g] = n, we can find a unique a ∈Cr+1,α(Ω ;Rn
)

so that

a�g = w,

which is equivalent to
a = [g ]−1 w.

Define L−1 : Y2 → X2 by L−1(b) = a. First, note that L−1 is linear and that

LL−1 = id on Y2 .

Moreover, using Theorem 16.28, Corollary 16.30 and Step 2.1, we can find con-
stants Ci =Ci (c,r,α,γ,Ω) , i = 2,3,4, such that

‖a‖Cr+1,α ≤C2
∥∥(g)−1∥∥

Cr+1,α ‖w‖C0 +C2
∥∥(g)−1∥∥

C0 ‖w‖Cr+1,α

≤C3 ‖g‖Cr+1,α ‖b‖C0,γ +C3 ‖g‖C0 ‖b‖Cr,α

≤C4 ‖g‖Cr+1,α ‖b‖Cr,α

and, similarly,
‖a‖C1,γ ≤C4 ‖g‖C1,γ ‖b‖C0,γ .

Thus, the claim of Step 2 is valid.
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Step 3. We define

Q(u) = g− (id+u)∗ (g)+d [u�g] .

We will verify that Property (HQ) of Theorem 18.1 holds with ρ = 1/(2n) . The fact
that Q(0) = 0 is evident.

Step 3.1. According to Lemma 14.8, there exists a constant K2 = K2 (r,Ω) such
that the following estimates hold:

‖Q(u)−Q(v)‖C0,γ ≤ K2‖g‖C2,γ (‖u‖C1,γ +‖v‖C1,γ )‖u− v‖C1,γ ,

‖Q(u)‖Cr,α ≤ K2 ‖g‖Cr+1,α ‖u‖C1 +K2 ‖g‖C1 ‖u‖Cr+1,α ‖u‖C1

for every u,v ∈Cr+1,α(Ω ;Rn), with

‖u‖C1,γ ,‖v‖C1,γ ≤ 1/(2n) ,

(id+tu)
(
Ω
)
,(id+tv)

(
Ω
)⊂Ω , ∀ t ∈ [0,1] .

We finally let
c1 (t1, t2) = K2‖g‖C2,γ (t1 + t2) ,

c2 (t1, t2) = K2‖g‖Cr+1,α t1 +K2 ‖g‖C1 t1t2 .

Note that if
F (t,x) = x+ tu(x) and ‖u‖C1 ≤ 1/(2n) ,

then for every t ∈ [0,1] ,

det∇xF (t,x) = det(I + t ∇u(x))> 0, x ∈Ω .

Therefore, if u = 0 on ∂Ω , then, appealing to Theorem 19.12, we get that

F (t,x) ∈Ω for every (t,x) ∈ [0,1]×Ω .

Thus, (18.1) and (18.2) have been verified.

Step 3.2. Let us check that

Q : {u ∈ X2 : ‖u‖X1 ≤ 1/(2n)}→ Y2

is well defined. We have to prove that

dQ(u) = 0 in Ω , ν ∧Q(u) = 0 on ∂Ω ,∫
Ω
〈Q(u);ψ〉dx = 0, ∀ψ ∈HT

(
Ω ;Λ 2).

(i) The first condition follows immediately since dg = 0 and

dQ(u) = dg− (id+u)∗ (dg)+dd [u�g] .
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(ii) The second one is true since u= 0 on ∂Ω . Indeed, clearly (using the notations
Qi used in the proof of Lemma 14.8),

Q1(u) = Q2(u) = 0 on ∂Ω .

Since u = 0 on ∂Ω , each of gradui and gradu j is parallel to the normal ν . Thus,
dui∧du j = 0 on ∂Ω for every i < j, which implies that

Q3(u) = 0 on ∂Ω .

Thus, we have, in fact, proved that Q(u) = 0 on ∂Ω .

(iii) Choosing F (t,x) = x+ tu(x) in Remark 17.4, we find that there exists Φ
such that {

dΦ = g− (id+u)∗ (g) in Ω ,

Φ = 0 on ∂Ω .

Since Ψ = Φ +u�g satisfies{
dΨ = Q(u) in Ω ,

Ψ = 0 on ∂Ω ,

we have the claim, namely∫
Ω
〈Q(u);ψ〉dx = 0, ∀ψ ∈HT

(
Ω ;Λ 2).

Step 4. With the definition of L and Q in hand, we now rewrite (14.6) as follows.
Setting ϕ = id+u, the equation ϕ∗ (g) = f becomes

Lu = d [u�g] = f − (id+u)∗ (g)+d [u�g]

= f −g+[g− (id+u)∗ (g)+d [u�g]]

= f −g+Q(u).

In order to apply Theorem 18.1, it remains to see how the hypotheses

2k1‖ f −g‖C0,γ ≤ 1/(2n) ,

2k1c1(2k1‖ f −g‖C0,γ ,2k1‖ f −g‖C0,γ )≤ 1,
c2(2k1‖ f −g‖C0,γ ,2k2‖ f −g‖Cr,α )≤ ‖ f −g‖Cr,α

(14.7)

translate in our context.

(i) The first one leads to

‖ f −g‖C0,γ ≤ 1
4nK1‖g‖C1,γ

.
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(ii) The second one gives

‖ f −g‖C0,γ ≤ 1
8K2

1 K2‖g‖2
C1,γ‖g‖C2,γ

.

(iii) The third condition reads as

K2‖g‖Cr+1,α (2K1‖g‖C1,γ‖ f −g‖C0,γ )

+K2 ‖g‖C1 (2K1‖g‖C1,γ‖ f −g‖C0,γ )(2K1‖g‖Cr+1,α‖ f −g‖Cr,α )

≤ ‖ f −g‖Cr,α .

Note that the third condition is verified if

2K1K2‖g‖Cr+1,α‖g‖C1,γ‖ f −g‖C0,γ ≤ 1
2
‖ f −g‖Cr,α

and

4K2
1 K2 ‖g‖C1 ‖g‖C1,γ ‖g‖Cr+1,α ‖ f −g‖C0,γ‖ f −g‖Cr,α ≤ 1

2
‖ f −g‖Cr,α .

The first one leads to

‖ f −g‖C0,γ ≤ ‖ f −g‖Cr,α

4K1K2‖g‖Cr+1,α‖g‖C1,γ

and the second one is verified if

‖ f −g‖C0,γ ≤ 1
8K2

1 K2 ‖g‖Cr+1,α ‖g‖2
C1,γ

.

Combining the four conditions, we have just obtained, letting

θ (g) =
1

‖g‖2
C1,γ

min
{
‖g‖C1,γ ,

1
‖g‖C2,γ

,
1

‖g‖Cr+1,α

}
,

that there exists C = C(c,r,α,γ,Ω) > 0 such that the inequalities (14.7) are satis-
fied if

‖ f −g‖C0,γ ≤Cθ (g) and ‖ f −g‖C0,γ ≤C
‖ f −g‖Cr,α

‖g‖C1,γ ‖g‖Cr+1,α
.

Step 5. The hypotheses of Theorem 18.1 having been verified, we conclude that
there exists u ∈Cr+1,α(Ω ;Rn), with ‖u‖C1,γ ≤ 1/(2n) , satisfying u = 0 on ∂Ω and

Lu = d [u�g] = f −g+Q(u) = f − (id+u)∗ (g)+d [u�g] .

Letting ϕ = id+u, we therefore have found that

ϕ∗ (g) = f in Ω .
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Since u = 0 on ∂Ω , we have that ϕ = id on ∂Ω . Since ‖u‖C1 ≤ 1/(2n) , we deduce
that

det∇ϕ > 0 in Ω ,

and therefore, according to Theorem 19.12, we find that ϕ ∈ Diffr+1,α (Ω ;Ω
)
.

Moreover, by construction (cf. (18.5)),

‖u‖Cr+1,α ≤ 2k2‖ f −g‖Cr,α ,

which implies the desired estimate, namely

‖ϕ− id‖Cr+1,α ≤ C̃‖g‖Cr+1,α‖ f −g‖Cr,α .

The proof is thus complete. ��

14.4.5 A First Proof of the Main Theorem

We first prove Theorem 14.5 for special f and general g with extra regularity and
under a smallness assumption.

Proposition 14.12. Let Ω ⊂ R
n be a bounded open smooth set, r ≥ 1, 0 < α <

β < 1 and g ∈Cr,β (Ω ;Λ 2
)

with

ν ∧g ∈Cr+1,α(∂Ω ;Λ 3), dg = 0 and rank[g] = n in Ω .

Then for every ε small, there exist gε ∈Cr+1,α(Ω ;Λ 2
)

and ϕε ∈ Diffr+1,α (Ω ;Ω
)

such that {
ϕ∗ε (gε) = g in Ω ,

ϕε = id on ∂Ω ,

dgε = 0, ν ∧gε = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 , ∀ψ ∈HT

(
Ω ;Λ 2),

lim
ε→0

‖gε −g‖Cr,α (Ω) = 0.

Moreover, there exists C = C(r,α,β ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0), such that for every ε
small,

‖ϕε − id‖Cr+1,α (Ω) ≤C
εβ−α

β −α
‖g‖Cr,β (Ω) +C ε‖ν ∧g‖Cr+1,α (∂Ω) . (14.8)

Proof. For the sake of alleviating the notations we will write in the present proof,
for example, ‖g‖Cr,β instead of ‖g‖Cr,β (Ω). However, when we will be considering
norms on the boundary of Ω , we will keep the notation ‖g‖Cr,β (∂Ω).
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Step 1 (definition of gε ). Apply Theorem 16.49 and Remark 16.50(v) and get,
for every ε ∈ (0,1], that there exist gε ∈ Cr+1,α(Ω ;Λ 2

)
and a constant C1 =

C1(r,α,β ,Ω) such that

dgε = 0 in Ω , ν ∧gε = ν ∧g on ∂Ω , (14.9)∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈HT

(
Ω ;Λ 2), (14.10)

‖gε‖Cr+1,α ≤ C1

ε1+α−β ‖g‖Cr,β +C1‖ν ∧g‖Cr+1,α (∂Ω), (14.11)

‖gε −g‖Cr,α ≤C1εβ−α‖g‖Cr,β , (14.12)∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

≤C1‖g‖C1,α and
∥∥∥∥ d

dε
gε

∥∥∥∥
Cr,α

≤C1εβ−α−1‖g‖Cr,β . (14.13)

Moreover, defining G : (0,1]×Ω →Λ 2 by G(ε,x) = gε(x), we have

G ∈Cr+1,α((0;1]×Ω ;Λ 2) and
∂

∂ε
G ∈C∞((0;1]×Ω ;Λ 2). (14.14)

Since rank[g] = n in Ω (which is equivalent to gn/2(x) �= 0 for every x ∈ Ω ) and
since (14.12) holds, there exists ε ≤ 1 such that for every ε ∈ (0,ε],

‖gε‖C0 ≤ 2‖g‖C0 , ‖gε‖C1 ≤ 2‖g‖C1 ,

‖1/(gε)
n/2‖C0 ≤ 2‖1/gn/2‖C0 .

(14.15)

Hence, combining (14.15) and Notation (v) in Section 14.1, we deduce that for every
ε ∈ (0,ε],

‖(gε)
−1‖C1 ≤C2‖gε‖C1 and ‖(gε)

−1‖Cr+1,α ≤C2‖gε‖Cr+1,α , (14.16)

where C2 =C2(r,Ω ,‖g‖C0 ,‖1/gn/2‖C0).

Step 2. In this step we will show that for every ε ∈ (0,ε], there exist uε ∈
Cr+1,α(Ω ;Λ 1

)
and a constant C3 = C3(r,α,β ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0) such that

uε = 0 on ∂Ω and

d(uε�gε) =− d
dε

gε in Ω , (14.17)

‖uε‖Cr+1,α ≤ C3

ε1+α−β ‖g‖Cr,β +C3‖ν ∧g‖Cr+1,α (∂Ω), (14.18)

‖uε‖C1 ≤C3 . (14.19)

Moreover, defining u : (0,ε]×Ω → Λ 1 by u(ε,x) = uε(x), we will show that u ∈
Cr+1,α((0,ε]×Ω ;Λ 1

)
.

Step 2.1. Since (14.9), (14.10) and (14.14) hold, using Theorem 8.16 we can find,
for every ε ∈ (0,ε], wε ∈C∞(Ω ;Λ 1

)
and a constant C4 =C4(r,α,Ω) such that

dwε =− d
dε

gε in Ω , wε = 0 on ∂Ω
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and, for every integer q≤ r,

‖wε‖Cq+1,α ≤C4

∥∥∥∥ d
dε

gε

∥∥∥∥
Cq,α

. (14.20)

Moreover, defining w : (0,ε]×Ω →Λ 1 by w(ε,x) = wε(x), we have, using (14.14),
w ∈C∞((0,ε]×Ω ;Λ 1

)
.

Step 2.2. Since by (14.15), we have, for every ε ∈ (0,ε], rank[gε ] = n in Ω , there
exists a unique uε : Ω →Λ 1 verifying

uε�gε = wε .

Note that uε ∈Cr+1,α(Ω ;Λ 1
)

and that uε = 0 on ∂Ω . Moreover, defining u : (0,ε]×
Ω →Λ 1 by u(ε,x) = uε(x), we have u ∈Cr+1,α((0,ε]×Ω ;Λ 1

)
.

Step 2.3. To show Step 2, it only remains to prove (14.18) and (14.19). Using
Theorem 16.28, (14.15), (14.16) and (14.20), it follows that

‖uε‖Cr+1,α = ‖(gε)
−1wε‖Cr+1,α

≤C5‖(gε)
−1‖Cr+1,α‖wε‖C0 +C5‖(gε)

−1‖C0‖wε‖Cr+1,α

≤C6‖gε‖Cr+1,α‖wε‖C1,α +C6‖wε‖Cr+1,α

≤C7‖gε‖Cr+1,α

∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

+C7

∥∥∥∥ d
dε

gε

∥∥∥∥
Cr,α

and thus, invoking (14.11) and (14.13),

‖uε‖Cr+1,α

≤C8

(
1

ε1+α−β ‖g‖Cr,β +‖ν ∧g‖Cr+1,α (∂Ω)

)
‖g‖C1,α +

C8

ε1+α−β ‖g‖Cr,β

≤ C9

ε1+α−β ‖g‖Cr,β +C9‖ν ∧g‖Cr+1,α (∂Ω),

where Ci =Ci(r,α,β ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0). We similarly obtain

‖uε‖C1 = ‖(gε)
−1wε‖C1 ≤C10‖(gε)

−1‖C1‖wε‖C1

≤C11 ‖g‖C1

∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

≤C12 ‖g‖C1 ‖g‖C1,α ≤C13,

where Ci =Ci(r,α,β ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0). This shows the assertion.

Step 3. We can now conclude the proof.

Step 3.1. Since u ∈Cr+1,α((0,ε]×Ω : Rn), uε = 0 on ∂Ω and by (14.18),

∫ ε

0
‖uε‖Cr+1,α dε < ∞,
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we deduce, using Theorem 12.1, that the solution ϕ : [0,ε]×Ω → Ω , ϕ(ε,x) =
ϕε(x), of ⎧⎨

⎩
d

dε
ϕε = uε ◦ϕε , 0 < ε ≤ ε,

ϕ0 = id

verifies

ϕ ∈Cr+1,α([0,ε]×Ω ;Ω) (14.21)

and that for every ε ∈ [0,ε],

ϕε ∈ Diffr+1,α(Ω ;Ω) and ϕε = id on ∂Ω .

Finally, inserting (14.18) and (14.19) in (12.3), we immediately deduce (14.8).
Step 3.2. Since (14.17) holds, we deduce, using Theorem 12.7, that for every

0 < ε1 ≤ ε2 ≤ ε,
ϕ∗ε2

(gε2) = ϕ∗ε1
(gε1) in Ω .

Since, using (14.12) and (14.21),

lim
ε→0

‖gε −g‖C0 = 0 and lim
ε→0

‖ϕε −ϕ0‖C1 = 0,

we immediately infer that for every ε ∈ (0,ε],

ϕ∗ε (gε) = ϕ∗0 (g) = g .

The proof is therefore complete. ��
We can now go back to the first proof of Theorem 14.5 using an iteration scheme

involving appropriate regularization.

Proof. We split the proof into three steps.
Step 1 (approximation of g and f ). Choose γ ∈ (0,α) and δ > 0 with 2δ ≤ α−γ

and α + 2δ < 1. We next regularize g and f with the help of Theorem 16.49 (and
Remark 16.50(v)) and construct for every ε ∈ (0,1], gε , fε ∈ Cr+1,α (Ω ;Λ 2

)
such

that
dgε = d fε = 0, ν ∧gε = ν ∧g = ν ∧ f = ν ∧ fε on ∂Ω ,∫

Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉=

∫
Ω
〈 f ;ψ〉=

∫
Ω
〈 fε ;ψ〉 , ∀ψ ∈HT

(
Ω ;Λ 2),

‖gε −g‖C0,γ ≤Cεr+α−γ ‖g‖Cr,α ,

‖gε −g‖C1,γ ≤Cεr−1+α−γ ‖g‖Cr,α ,

‖gε‖Cr+1,α ≤ C
ε
‖g‖Cr,α +C‖ν ∧g‖Cr+1,α (∂Ω) ,
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‖gε‖Cr,α+2δ ≤ C
ε2δ ‖g‖Cr,α +C‖ν ∧g‖Cr,α+2δ (∂Ω) ,

‖gε‖C2,γ ≤ C
ε
‖g‖C1,γ +C‖ν ∧g‖C2,γ (∂Ω) ,

where C =C (r,α,γ,δ ,Ω) > 0 and similarly for f and fε . Note that using the first
inequality above, there exists ε such that for every ε1,ε2 ≤ ε, we have that

rank [tgε1 +(1− t) fε2 ] = n in Ω and for every t ∈ [0,1] .

Step 2. In this step we show that there exist ε1,ε2≤ ε and ϕ1 ,ϕ3 ∈Diffr+1,α (Ω ;Ω
)

such that {
ϕ∗1 (gε1) = g in Ω ,

ϕ1 = id on ∂Ω
and

{
ϕ∗3 ( fε2) = f in Ω ,

ϕ3 = id on ∂Ω .

For this we will use a combination of Theorem 14.10 and Proposition 14.12. We
only show the assertion for g, the one with f being proved exactly in the same way.

Step 2.1. We start with some preliminary estimates. Using the second inequality
in Step 1, we deduce that for every ε small enough, recalling that r ≥ 1 and γ < α,

1
2
‖gε‖C1,γ ≤ ‖g‖C1,γ ≤ 2‖gε‖C1,γ and

∥∥∥∥ 1
[gε ]n/2

∥∥∥∥
C0
≤ 2

∥∥∥∥ 1
[g]n/2

∥∥∥∥
C0

.

In what follows, ε will always be assumed small enough. Combining the left-hand
side of the previous inequality with the third and fifth inequalities in Step 1, we
deduce that there exists D1 > 0, a constant independent of ε , such that, defining

θ (gε) =
1

‖gε‖2
C1,γ

min
{
‖gε‖C1,γ ,

1
‖gε‖C2,γ

,
1

‖gε‖Cr+1,α

}
,

we have
θ (gε)≥ D1ε.

Hence, since ‖gε −g‖C0,γ ≤Cεr+α−γ , r ≥ 1 and γ < α, we immediately deduce

lim
ε→0

‖gε −g‖C0,γ

θ (gε)
= 0. (14.22)

Note also that there exists D2 > 0, a constant independent of ε, such that

‖gε‖C0 ,

∥∥∥∥ 1
[gε ]n/2

∥∥∥∥
C0
≤ D2 .

Step 2.2. Let C = C (D2,r,α,γ,Ω) be the constant given in (14.5) of Theo-
rem 14.10. Due to (14.22), the first inequality of (14.5) is satisfied for every ε ≤ ε̃
and for some ε̃ ≤ ε. We show the assertion by considering two cases. In the first
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one, we use Theorem 14.10 to obtain the assertion and in the second one, we use
Proposition 14.12.

(i) Suppose that for some ε ≤ ε̃ , the second inequality of (14.5) is also satisfied,
namely

‖gε −g‖C0,γ ≤C (D2,r,α,γ,Ω)
‖gε −g‖Cr,α

‖gε‖C1,γ ‖gε‖Cr+1,α
.

Hence, we have the claim of Step 2 using Theorem 14.10.

(ii) Suppose that the first case does not hold true. Hence, for all ε ≤ ε̃

‖gε‖C1,γ ‖gε‖Cr+1,α ‖gε −g‖C0,γ >C (D2,r,α,γ,Ω)‖gε −g‖Cr,α .

Using the first and third inequality of Step 1, the fact that ‖gε‖C1,γ ≤ 2‖g‖C1,γ , we
obtain, recalling that r ≥ 1 and that 2δ ≤ α− γ,

‖gε −g‖Cr,α ≤ D3ε2δ for every 0 < ε ≤ ε̃,

where D3 is independent of ε. Combining the above equation with the fact that, by
the fourth inequality in Step 1 (where D4 > 0 is independent of ε),

‖gε‖Cr,α+2δ ≤ D4

ε2δ ,

we immediately deduce from Proposition 16.45 that g ∈ Cr,α+δ (Ω ;Λ 2
)
. The

assertion then follows directly from Proposition 14.12 once noticed, using
Remark 16.50(v), that the gε constructed in Proposition 14.12 are the same as the
ones defined in Step 1.

Step 3. Since⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dgε1 = d fε2 = 0 in Ω ,

ν ∧gε1 = ν ∧ fε2 on ∂Ω ,∫
Ω
〈gε1 ;ψ〉=

∫
Ω
〈 fε2 ;ψ〉 for every ψ ∈HT

(
Ω ;Λ 2

)
,

rank [tgε1 +(1− t) fε2 ] = n in Ω and for every t ∈ [0,1],

we can apply Theorem 14.7 to find ϕ2 ∈ Diffr+1,α (Ω ;Ω
)

such that{
ϕ∗2 (gε1) = fε2 in Ω ,

ϕ2 = id on ∂Ω .

The claimed solution is then given by

ϕ = ϕ−1
1 ◦ϕ2 ◦ϕ3 .

This achieves the proof of the theorem. ��
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14.4.6 A Second Proof of the Main Theorem

We first show Theorem 14.5 for special f and general g with extra regularity only
on the boundary and under a smallness assumption.

Proposition 14.13. Let Ω ⊂ R
n be a bounded open smooth set, r ≥ 1 and 0 < δ <

α < α +δ < 1. Let g ∈Cr,α(Ω ;Λ 2
)

with

ν ∧g ∈Cr+1,α+δ (∂Ω ;Λ 3), dg = 0 and rank[g] = n in Ω .

Then for every ε small, there exist

gε ∈Cr+1,α+δ (Ω ;Λ 2) and ϕε ∈ Diffr+1,α (Ω ;Ω
)

such that {
ϕ∗ε (gε) = g in Ω ,

ϕε = id on ∂Ω ,

dgε = 0, ν ∧gε = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈HT

(
Ω ;Λ 2),

lim
ε→0

‖gε −g‖Cr,α−δ (Ω) = 0.

Proof. We adopt the same simplification in the notations of the norms as in the proof
of Proposition 14.12.

Step 1 (definition of gε ). Apply Theorem 16.49 and Remark 16.50(v)–16.50(vi).
Therefore, for every ε ∈ (0,1], there exist gε ∈ Cr+1,α+δ (Ω ;Λ 2

)
and a constant

C1 =C1(r,α,δ ,Ω) such that for every γ ∈ [α−δ ,α +δ ],

dgε = 0 in Ω , ν ∧gε = ν ∧g on ∂Ω , (14.23)∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈HT (Ω ;Λ 2), (14.24)

‖gε‖Cr+1,γ ≤ C1

ε1+γ−α ‖g‖Cr,α +C1‖ν ∧g‖Cr+1,γ (∂Ω), (14.25)

‖gε −g‖Cr,α−δ ≤C1εδ‖g‖Cr,α , (14.26)∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

≤C1‖g‖C1,α and
∥∥∥∥ d

dε
gε

∥∥∥∥
Cr,γ
≤ C1

ε1+γ−α ‖g‖Cr,α . (14.27)

Moreover, defining G : (0,1]×Ω →Λ 2 by G(ε,x) = gε(x), we have

G ∈Cr+1,α+δ ((0;1]×Ω ;Λ 2) and
∂

∂ε
G ∈C∞((0;1]×Ω ;Λ 2). (14.28)
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Since rank[g] = n in Ω (which is equivalent to gn/2(x) �= 0 for every x ∈ Ω ) and
since (14.26) holds, there exists ε ≤ 1 such that for every ε ∈ (0,ε],

‖gε‖C0 ≤ 2‖g‖C0 and ‖1/(gε)
n/2‖C0 ≤ 2‖1/gn/2‖C0 . (14.29)

Hence, combining (14.29) and Notation (v) in Section 14.1, we deduce that for every
ε ∈ (0,ε] and every γ ∈ [α−δ ,α +δ ],

‖(gε)
−1‖Cr+1,γ ≤C2‖gε‖Cr+1,γ , (14.30)

where C2 =C2(r,Ω ,‖g‖C0 ,‖1/gn/2‖C0).

Step 2. In this step we will show that for every ε ∈ (0,ε], there exist uε ∈
Cr+1,α+δ (Ω ;Λ 1

)
and a constant C3 =C3(r,α,δ ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0) such that

uε = 0 on ∂Ω and

d(uε�gε) =− d
dε

gε in Ω (14.31)

and, for every γ ∈ [α−δ ,α +δ ],

‖uε‖Cr+1,γ ≤ C3

ε1+γ−α ‖g‖Cr,α +C3‖ν ∧g‖Cr+1,α+δ (∂Ω) . (14.32)

Moreover, defining u : (0,ε]×Ω → Λ 1 by u(ε,x) = uε(x), we will show that u ∈
Cr+1,α+δ ((0,ε]×Ω ;Λ 1

)
.

Step 2.1. Since (14.23), (14.24) and (14.28) hold, using Theorem 8.16, we can
find for every ε ∈ (0,ε], wε ∈ C∞(Ω ;Λ 1) and a constant C4 = C4(r,α,δ ,Ω) such
that

dwε =− d
dε

gε in Ω , wε = 0 on ∂Ω

and, for every integer q≤ r and every γ ∈ [α−δ ,α +δ ],

‖wε‖Cq+1,γ ≤C4

∥∥∥∥ d
dε

gε

∥∥∥∥
Cq,γ

. (14.33)

Moreover, defining w : (0,ε]×Ω →Λ 1 by w(ε,x) = wε(x), we have, using (14.28),
w ∈C∞((0,ε]×Ω ;Λ 1

)
.

Step 2.2. Since, by (14.29), we have for every ε ∈ (0,ε], rank[gε ] = n in Ω , that
there exists a unique uε : Ω →Λ 1 verifying

uε�gε = wε .

Note that uε ∈ Cr+1,α+δ (Ω ;Λ 1
)

and that uε = 0 on ∂Ω . Moreover, defining u :
(0,ε]×Ω →Λ 1 by u(ε,x) = uε(x), we have u ∈Cr+1,α+δ ((0,ε]×Ω ;Λ 1

)
.
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Step 2.3. To show Step 2, it only remains to prove (14.32). Using Theorem 16.28,
(14.29), (14.30) and (14.33), it follows that

‖uε‖Cr+1,γ = ‖(gε)
−1wε‖Cr+1,γ

≤C5‖(gε)
−1‖Cr+1,γ‖wε‖C0 +C5‖(gε)

−1‖C0‖wε‖Cr+1,γ

≤C6‖gε‖Cr+1,γ‖wε‖C1,α +C6‖wε‖Cr+1,γ

≤C7‖gε‖Cr+1,γ

∥∥∥∥ d
dε

gε

∥∥∥∥
C0,α

+C7

∥∥∥∥ d
dε

gε

∥∥∥∥
Cr,γ

and hence, appealing to (14.25) and (14.27),

‖uε‖Cr+1,γ

≤C8

(
1

ε1+γ−α ‖g‖Cr,α +‖ν ∧g‖Cr+1,γ (∂Ω)

)
‖g‖C1,α +

C8

ε1+γ−α ‖g‖Cr,α

≤ C9

ε1+γ−α ‖g‖Cr,α +C9‖ν ∧g‖Cr+1,α+δ (∂Ω),

where Ci =Ci(r,α,δ ,Ω ,‖g‖C1,α ,‖1/gn/2‖C0). This shows the assertion.

Step 3. We can now conclude the proof.

Step 3.1. Since u ∈Cr+1,α+δ ((0,ε]×Ω : Rn), uε = 0 on ∂Ω and (14.32) holds,
we deduce, using Theorem 12.4, that the solution ϕ : [0,ε]×Ω → Ω , ϕ(ε,x) =
ϕε(x), of ⎧⎨

⎩
d

dε
ϕε = uε ◦ϕε , 0 < ε ≤ ε,

ϕ0 = id

verifies
ϕ ∈Cr+1([0,ε]×Ω ;Ω) (14.34)

and that for every ε ∈ [0,ε],

ϕε ∈ Diffr+1,α(Ω ;Ω) and ϕε = id on ∂Ω .

Step 3.2. Since (14.31) holds, we deduce, using Theorem 12.7, that for every
0 < ε1 ≤ ε2 ≤ ε,

ϕ∗ε2
(gε2) = ϕ∗ε1

(gε1) in Ω .

Since, using (14.26) and (14.34),

lim
ε→0

‖gε −g‖C0 = 0 and lim
ε→0

‖ϕε −ϕ0‖C1 = 0,

we immediately deduce that for every ε ∈ (0,ε],

ϕ∗ε (gε) = ϕ∗0 (g) = g .

This concludes the proof. ��
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We now turn to our second proof of Theorem 14.5. We will do it under the
stronger assumption that there exists 0 < α < β < 1 so that

ν ∧ f , ν ∧g ∈Cr+1,β (∂Ω ;Λ 3) .
Proof. Step 1. Let δ > 0 small enough so that [α − δ ,α + δ ] ⊂ (0,β ). Applying
Proposition 14.13 to f and g, there exist for every ε small,

fε ,gε ∈Cr+1,α+δ (Ω ;Λ 2) and ϕ1,ε ,ϕ2,ε ∈ Diffr+1,α (Ω ;Ω
)

such that {
ϕ∗1,ε( fε) = f , ϕ∗2,ε(gε) = g in Ω ,

ϕ1,ε = ϕ2,ε = id on ∂Ω ,

lim
ε→0

‖ fε − f‖Cr,α−δ = lim
ε→0

‖gε −g‖Cr,α−δ = 0.

Using the previous equation, there exists ε0 > 0 small enough so that for every
t ∈ [0,1],

rank[tgε0 +(1− t) fε0 ] = n in Ω .

Moreover, fε and gε satisfy

dgε = d fε = 0, ν ∧gε = ν ∧ fε = ν ∧ f = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉=

∫
Ω
〈 fε ;ψ〉=

∫
Ω
〈 f ;ψ〉 , ∀ψ ∈HT

(
Ω ;Λ 2).

Step 2. Using Theorem 14.7, we find ϕ3 ∈Cr+1,α+δ (Ω) verifying{
ϕ∗3 (gε0) = fε0 in Ω ,

ϕ3 = id on ∂Ω .

Finally, the diffeomorphism ϕ = ϕ−1
2,ε0
◦ϕ3 ◦ϕ1,ε0 has all of the required properties.

��



Chapter 15

The Case 3≤ k≤ n−1

The results that will be discussed in this chapter are strongly based on
Bandyopadhyay, Dacorogna and Kneuss [9]. For related results see Turiel [97–102].

15.1 A General Theorem for Forms of Rank = k

Our first result concerns k-forms of minimal nonzero rank.

Theorem 15.1. Let 2≤ k ≤ n, r ≥ 1 be integers, 0 < α < 1 and x0 ∈ R
n. Let f and

g be two Cr,α k-forms verifying, in a neighborhood of x0 ,

d f = dg = 0 and rank [ f ] = rank [g] = k.

Then there exist a neighborhood U of x0 and

ϕ ∈
{

Diffr,α(U ;ϕ(U)) if k < n

Diffr+1,α(U ;ϕ(U)) if k = n

such that ϕ(x0) = x0 and

ϕ∗ (g) = f in U.

In particular, if g = dx1∧·· ·∧dxk, then

f = ∇ϕ1∧·· ·∧∇ϕk in U.

Remark 15.2. (i) The case k = n− 1 is therefore completely solved (cf. Theo-
rem 15.3).

(ii) We recall that the rank of a form is given in Definition 2.28 and Remark 2.31;
see also Proposition 2.37.
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(iii) Throughout this chapter we will often use the following elementary fact. In
order to solve ϕ∗(g) = f , it is enough to solve, for some h,

ϕ∗1 (h) = g, ϕ∗2 (h) = f

and let ϕ = ϕ−1
1 ◦ϕ2 .

Proof. With no loss of generality, we can assume x0 = 0 and (see Remark 15.2(iii))
g = dx1∧·· ·∧dxk. We split the proof into two steps.

Step 1. We first prove the case k = n. Since f = f1···n dx1 ∧ ·· · ∧ dxn and since
rank[ f ] = n > 0 in a neighborhood of 0, there exists a sufficiently small ball U
centered at 0 such that f1···n(x) �= 0 for every x ∈ U . Using Theorem 10.1, there
exists ϕ1 ∈ Diffr+1,α(U ;U) such that ϕ1 = id on ∂U and

ϕ∗1 (cdx1∧·· ·∧dxn) = f1···n dx1∧·· ·∧dxn in U ,

where

c =
1

measU

∫
U

f1···n .

Finally, let

ϕ2(x) = x−ϕ1 (0)

and

ϕ3(x) = ϕ3(x1, . . . ,xn) = (x1, . . . ,xn−1,cxn).

The map ϕ = ϕ3 ◦ϕ2 ◦ϕ1 has all of the desired properties.

Step 2. We next suppose that k < n. Using Theorem 4.5, there exist a neighbor-
hood V of 0 and ϕ1 ∈ Diffr,α(V ;ϕ1(V )) such that ϕ1(0) = 0 and

ϕ∗1 ( f )(x1, . . . ,xn) = a(x1, . . . ,xk)dx1∧·· ·∧dxk in V ,

where a ∈Cr−1,α in a neighborhood of 0 in R
k. Using the fact that rank[ f ] = k and

Proposition 17.1, there exists W, a sufficiently small ball in R
k centered at 0, such

that a(x) �= 0 for every x ∈W . Using Step 1, there exists ϕ2 ∈ Diffr,α(W ;ϕ2(W ))
such that ϕ2(0) = 0 and

ϕ∗2 (dx1∧·· ·∧dxk) = adx1∧·· ·∧dxk.

Finally, defining ϕ̃2 ∈ Diffr,α(W ×R
n−k;ϕ2(W )×R

n−k) by

ϕ̃2(x) = (ϕ2(x1, . . . ,xk),xk+1, . . . ,xn),

we get that ϕ = ϕ̃2 ◦ϕ−1
1 has all of the desired properties. This concludes the proof.
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15.2 The Case of (n−1)-Forms

15.2.1 The Case of Closed (n−1)-Forms

The case of closed (n−1)-forms is a direct consequence of the results of Section
15.1 (see also Martinet [71]).

Theorem 15.3. Let r ≥ 1 be an integer, 0 < α < 1 and x0 ∈ R
n. Let f and g be two

closed Cr,α (n−1)-forms verifying

f (x0) �= 0 and g(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈Diffr,α(U ;ϕ(U)) such that ϕ(x0)=
x0 and

ϕ∗(g) = f in U.

In particular, if g = dx1∧·· ·∧dxn−1, then

f = ∇ϕ1∧·· ·∧∇ϕn−1 in U.

Proof. Recall first that a nonzero (n−1)-form has always (cf. Remark 2.38(i)) its
rank equal to n−1. Therefore, the hypothesis

f (x0) �= 0 and g(x0) �= 0

is equivalent to

rank [ f ] = rank [g] = n−1 in a neighborhood of x0 .

Applying Theorem 15.1, we have the result. 	


Theorem 15.3 reads in a more analytical way when k = n−1 (cf. also Barbarosie
[11]), since the exterior derivative of an (n−1)-form is then essentially the classical
divergence operator.

Corollary 15.4. Let r ≥ 1 be an integer, 0 < α < 1 and x0 ∈ R
n. Let f be a Cr,α

vector field satisfying

f (x0) �= 0 and div f = 0 in a neighborhood of x0 .

Then there exist a neighborhood U of x0 and ϕ ∈Diffr,α(U ;ϕ(U)) such that ϕ(x0)=
x0 and

f = ∗(∇ϕ1∧·· ·∧∇ϕn−1) in U.
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15.2.2 The Case of Nonclosed (n−1)-Forms

We conclude with the case of nonclosed (n−1)-forms.

Theorem 15.5. Let x0 ∈ R
n and f a C∞ (n−1)-form verifying

f (x0) �= 0.

Then there exist a neighborhood U of x0 and

ϕ ∈C∞(U ;ϕ (U))

such that

f = ϕn ∇ϕ1∧·· ·∧∇ϕn−1 in U .

If, moreover, d f (x0) �= 0 then, up to restricting U, in addition to the previous equa-
tion, ϕ can be assumed in Diff∞(U ;ϕ(U)).

Remark 15.6. (i) If f ∈ Cr, then ϕn ∈ Cr−1 and ϕ i ∈ Cr, 1 ≤ i ≤ n− 1. Moreover,
another way to read the conclusion is

ϕ∗(xn dx1∧·· ·∧dxn−1) = f .

(ii) If d f = 0 in a neighborhood of x0 , then we have a better result (cf. Theo-
rem 15.3).

(iii) Note that we cannot, in general, ensure that ϕ(x0) = x0 ; for a similar result,
see Remark 13.11(ii).

Proof. We split the proof into two steps. In the sequel, ∗ f ∈C∞(
R

n;Λ 1
)

will some-
times be identified with a vector field (see Definition 2.9 for the notation).

Step 1. We prove the main assertion. Since f (x0) �= 0, using Remark 4.3(ii), there
exist a neighborhood V ⊂ R

n of x0 and ϕ1 ∈ Diff∞(V ;ϕ1(V )) such that ϕ1(x0) =
x0 and

∂ϕ1

∂xn
= (∗ f )◦ϕ1 in V . (15.1)

Using Definition 2.11 and the fact that (∗ f )∧ (∗ f ) = 0 (since ∗ f is a 1-form), we
deduce that (∗ f )� f = 0. Thus, using (15.1), Theorem 3.10 and Proposition 3.11,
we obtain

0 = ϕ∗1 ((∗ f )� f ) = ϕ�
1(∗ f )�ϕ∗1 ( f ) = dxn �ϕ∗1 ( f ).

From the previous equation we immediately deduce

ϕ∗1 ( f )(x) = a(x1, . . . ,xn)dx1∧·· ·∧dxn−1, x ∈V ,
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where a ∈C∞(V ). Letting U = ϕ1(V ) and

ϕ = (ϕ1, . . . ,ϕn) = ((ϕ−1
1 )1, . . . ,(ϕ−1

1 )n−1,a◦ϕ−1),

we have the main assertion, namely

f = ϕn∇ϕ1∧·· ·∧∇ϕn−1.

Step 2. We prove the extra assertion. Let ϕ1 be the diffeomorphism obtained in
Step 1. It verifies, in particular,

ϕ∗1 ( f )(x) = a(x1, . . . ,xn)dx1∧·· ·∧dxn−1, x ∈V .

Since, by hypothesis, d f �= 0 in a neighborhood of x0 and ϕ1(x0) = x0 , we have

d(ϕ∗1 ( f )) = ϕ∗1 (d f ) �= 0 in a neighborhood of x0

and, thus,

∂a
∂xn

(x0) �= 0.

Define ϕ2 : V → R
n by

ϕ2(x) = (x1, . . . ,xn−1,a(x)).

Note that

ϕ∗2 (xn dx1∧·· ·∧dxn−1) = a(x)dx1∧·· ·∧dxn−1 in V

and that, taking V smaller if necessary, ϕ2 ∈ Diff∞(V ;ϕ2(V )). Letting ϕ = ϕ2 ◦
(ϕ1)

−1, it follows that ϕ ∈ Diff∞(ϕ1(V );ϕ2(V )) and has the desired property. The
proof is therefore complete. 	


As before, the previous theorem can be seen in a more analytical way (cf. also
Barbarosie [11]).
Corollary 15.7. Let x0 ∈ R

n and let f be a C∞ vector field satisfying

f (x0) �= 0.

Then there exist a neighborhood U of x0 and

ϕ ∈C∞(U ;ϕ (U))

such that

f = ∗(ϕn ∇ϕ1∧·· ·∧∇ϕn−1) in U.

If, moreover, div f (x0) �= 0, then, up to restricting U, in addition to the previous
equation, ϕ can be assumed in Diff∞(U ;ϕ(U)).
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15.3 Simultaneous Resolutions and Applications

15.3.1 Simultaneous Resolution for 1-Forms

We start with a simultaneous resolution of closed 1-forms; see also Cartan [21].

Proposition 15.8. Let r ≥ 0, 1≤ m≤ n be integers and x0 ∈ R
n. Let b1, . . . ,bm and

a1, . . . ,am be Cr closed 1-forms verifying

(b1∧·· ·∧bm)(x0) �= 0 and (a1∧·· ·∧am)(x0) �= 0.

Then there exist a neighborhood U of x0 and ϕ ∈ Diffr+1(U ;ϕ(U)) such that
ϕ (x0) = x0 and

ϕ∗
(
bi)= ai in U and for every 1≤ i≤ m.

Remark 15.9. (i) When r = 0, the fact that a 1-form ω is closed has to be understood
in the sense of distributions.

(ii) The result is also valid in Hölder spaces.
(iii) It is interesting to compare the above proposition and Theorem 15.1. In view

of Proposition 2.43, we know that any m-form f with rank [ f ] = m is a product of
1-forms a1, . . . ,am so that

f = a1∧·· ·∧am ;

however, we do not know, in general, that a1, . . . ,am are closed if f is closed (and
even that a1, . . . ,am ∈Cr if f ∈Cr). But, Theorem 15.1 shows that there does exist
a total decomposition with closed a1, . . . ,am; however, we have lost one degree of
regularity, namely a1, . . . ,am ∈Cr−1,α (unless m = n). Therefore, if we assume that
a1, . . . ,am are closed, then the above proposition is better from the point of view of
regularity than Theorem 15.1.

(iv) When m = n and f ∈C0, it is, in general, impossible (according to Burago
and Kleiner [19] and Mc Mullen [73]) to find closed 1-forms a1, . . . ,an ∈C0 so that

f = a1∧·· ·∧an ;

although, in view of Theorem 10.1, we can do so if f ∈ C0,α , finding even that
a1, . . . ,an ∈C0,α .

Proof. We split the proof into two steps.
Step 1. With no loss of generality, we can assume x0 = 0. Noticing that if m < n,

we can choose 1≤ km+1 < · · ·< kn ≤ n and 1≤ lm+1 < · · ·< ln ≤ n such that

(b1∧·· ·∧bm∧dxkm+1 ∧·· ·∧dxkn)(0) �= 0,

(a1∧·· ·∧am∧dxlm+1 ∧·· ·∧dxln)(0) �= 0.
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We can therefore assume that m= n, letting bi = dxki and ai = dxli for m+1≤ i≤ n.
Using Corollary 8.6, we can find a neighborhood V of 0 and, for 1≤ i≤ n, Bi,Ai ∈
Cr+1(V ) such that

dAi = ai and dBi = bi in V for every 1≤ i≤ n.

Moreover, adding, if necessary, a constant, we can assume that Ai(0) = Bi(0) = 0
for 1 ≤ i ≤ n. Finally, define A,B ∈ Cr+1(U ;Rn) by A = (A1, . . . ,An) and B =
(B1, . . . ,Bn). Since A(0) = B(0) = 0 and since, identifying n-forms with 0-forms,

det∇A(0) = (a1∧·· ·∧an)(0) �= 0 and det∇B(0) = (b1∧·· ·∧bn)(0) �= 0,

it follows that A ∈ Diffr+1(U ;A(U)), B ∈ Diffr+1(U ;B(U)) and

B−1 ◦A ∈ Diffr+1(U ;(B−1 ◦A)(U))

for a neighborhood U of 0 small enough. Noticing that for 1≤ i≤ n,

A∗(dxi) = ai and B∗(dxi) = bi in U ,

we deduce that

(B−1 ◦A)∗(bi) = A∗((B−1)∗(bi)) = A∗(dxi) = ai in U .

Therefore, ϕ = B−1 ◦A has all of the desired properties and this concludes the proof.
	


It is interesting to see that the above proposition can also be global.

Proposition 15.10. Let Ω ⊂ R
n be a bounded open smooth set with exterior unit

normal ν . Let r ≥ 0 and 1 ≤ m ≤ n be integers. Let b1, . . . ,bm ∈ Cr
(
Ω ;Λ 1

)
be

closed in Ω and such that

b1∧·· ·∧bm∧dxm+1∧·· ·∧dxn �= 0 in Ω ,

ν ∧bi = ν ∧dxi on ∂Ω for every 1≤ i≤ m,∫
Ω
〈bi; χ〉=

∫
Ω
〈dxi; χ〉 for every χ ∈HT

(
Ω ;Λ 1) and every 1≤ i≤ m.

Then there exists ϕ ∈ Diffr+1 (Ω ;Ω
)

satisfying ϕ = id on ∂Ω , and in Ω ,{
ϕ∗

(
bi
)
= dxi, 1≤ i≤ m,

ϕ∗
(
dxi

)
= dxi, m+1≤ i≤ n.

Remark 15.11. If Ω is simply connected (cf. Remark 6.6), then HT
(
Ω ;Λ 1

)
= {0}

and hence the last condition on the bi is automatically fulfilled.

Proof. Using Theorem 8.16 and the remark following it, we can find, for 1≤ i≤m,
Ai ∈Cr+1(Ω) such that
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dAi = bi−dxi in Ω ,

Ai = 0 on ∂Ω .

Next, define B ∈Cr+1(Ω ;Rn) by

B(x) = (x1 +A1(x), . . . ,xm +Am(x),xm+1, . . . ,xn).

Since B = id on ∂Ω and since

det∇B(x) = (b1∧·· ·∧bm∧dxm+1∧·· ·∧dxn)1···n(x) �= 0

for every x∈Ω , we immediately deduce from Theorem 19.12 that B∈Diffr+1(Ω ;Ω).
Note that for 1 ≤ i ≤ m, B∗(dxi) = dBi = d(xi +Ai) = bi. Therefore, ϕ = B−1 ∈
Diffr+1(Ω ;Ω) has all of the required properties. This concludes the proof. 	


15.3.2 Applications to k-Forms

We next generalize Proposition 15.8 by mixing 1-forms and 2-forms.

Theorem 15.12. Let m, l ≥ 0 be integers and x0 ∈ R
n. Let b1, . . . ,bm and a1, . . . ,am

be closed C∞ 1-forms. Let g1, . . . ,gl and f1, . . . , fl be closed C∞ 2-forms such that,
in a neighborhood of x0 ,

rank [gi] = rank [ fi] = 2si , 1≤ i≤ l,

rank
[
g1∧·· ·∧gl ∧b1∧·· ·∧bm]= rank

[
f1∧·· ·∧ fl ∧a1∧·· ·∧am]

= 2(s1 + · · ·+ sl)+m.

Then there exist a neighborhood U of x0 and ϕ ∈Diff∞(U ;ϕ(U)) such that ϕ (x0) =
x0 and, in U, {

ϕ∗ (gi) = fi, 1≤ i≤ l,

ϕ∗
(
bi
)
= ai, 1≤ i≤ m.

Remark 15.13. (i) When m = 0, respectively l = 0, the theorem is to be understood
as a statement only on 2-forms, respectively only on 1-forms (in this last case, see
Proposition 15.8).

(ii) When 0 < α < 1, gi, fi ∈ Cr,α and b j,a j ∈ Cr,α , the proof will give ϕ ∈
Diffr−l+1,α .

(iii) Of course, the theorem applies to k-forms, k = 2l +m, of the type

G = g1∧·· ·∧gl ∧b1∧·· ·∧bm and F = f1∧·· ·∧ fl ∧a1∧·· ·∧am.
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We therefore obtain that there exists a diffeomorphism ϕ such that

ϕ∗ (G) = F,

generalizing a result obtained by Bandyopadhyay and Dacorogna [8].
Proof. We establish the result by induction on l. When l = 0, we are in the situation
of Proposition 15.8, which has already been proved. Let us suppose that the theorem
is true for l−1 and prove it for l.

Step 1. Using Remark 15.2(iii), we can assume that

f j =
s1+···+s j

∑
i=(s1+···+s j−1)+1

dx2i−1∧dx2i, 1≤ j ≤ l,

ai = dx2(s1+···+sl)+i for every 1≤ i≤ m.

Note that these particular f j and ai satisfy all of the hypotheses of the theorem. We
find, using Theorem 14.3, a neighborhood U1 of x0 and ϕ1 ∈Diff∞(U1;ϕ1(U1)) such
that ϕ1(x0) = x0 and

ϕ∗1 (g1) = f1 =
s1

∑
i=1

dx2i−1∧dx2i in U1 .

Step 2. We claim that, in a neighborhood of x0 ,

rank[ϕ∗1 (g2)∧·· ·∧ϕ∗1 (gl)∧dx1∧·· ·∧dx2s1 ∧ϕ∗1 (b
1)∧·· ·∧ϕ∗1 (b

m)]

= 2(s2 + · · ·+ sl)+(2s1 +m). (15.2)

Indeed, first note using Proposition 17.1 that, in a neighborhood of x0 ,

rank
[
ϕ∗1 (g1)∧·· ·∧ϕ∗1 (gl)∧ϕ∗1 (b

1)∧·· ·∧ϕ∗1 (b
m)
]

= rank
[
ϕ∗1 (g1∧·· ·∧gl ∧b1∧·· ·∧bm)

]
= rank

[
g1∧·· ·∧gl ∧b1∧·· ·∧bm]= 2(s1 + · · ·+ sl)+m.

Setting
h = ϕ∗1 (g2)∧·· ·∧ϕ∗1 (gl)∧ϕ∗1 (b

1)∧·· ·∧ϕ∗1 (b
m)

and using Proposition 2.37(iv), we obtain

2(s1 + · · ·+ sl)+m≤ 2s1 + rank [h]−dim
(
Λ 1

ϕ∗1 (g1)
∩Λ 1

h
)
.

On the other hand, a successive application of the same proposition gives

rank [h]≤ 2(s2 + · · ·+ sl)+m.

Combining the two previous inequalities, we get

rank [h] = 2(s2 + · · ·+ sl)+m and Λ 1
ϕ∗1 (g1)

∩Λ 1
h = {0}.
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Finally, noticing that, in a neighborhood of x0 ,

Λ 1
ϕ∗1 (g1)

= span{dx1, . . . ,dx2s1}= Λ 1
dx1∧···∧dx2s1 ,

we have the claim (15.2) using again Proposition 2.37(iv). Note also that

rank
[

f2∧·· ·∧ fl ∧dx1∧·· ·∧dx2s1 ∧a1∧·· ·∧am]
= 2(s2 + · · ·+ sl)+(2s1 +m).

Step 3. Therefore, using the induction hypothesis, there exist a neighborhood U2
of x0 and ϕ2 ∈ Diff∞(U2;ϕ2(U2)) such that ϕ2(x0) = x0 and for every 2 ≤ i ≤ l,
1≤ j ≤ 2s1 and 1≤ k ≤ m, the following identities hold in U2:

ϕ∗2 (ϕ
∗
1 (gi)) = fi , ϕ∗2 (dx j) = dx j and ϕ∗2 (ϕ

∗
1 (b

k)) = ak.

Note, in particular, that ϕ∗2 (ϕ
∗
1 (g1)) = ϕ∗2 ( f1) = f1 . Setting, choosing if necessary

a smaller U2,
ϕ = ϕ1 ◦ϕ2,

we have ϕ ∈ Diff∞(U2;ϕ(U2)) with the claimed properties. 	

It is interesting to contrast the algebraic result of Proposition 2.43(iii) with the an-

alytical result of the above theorem, where it is essential to require that the 1-forms
and the 2-forms be closed. Although every constant 3-form of rank = 5 is a linear
pullback (combining Proposition 2.43(iii) and Proposition 2.24(ii)) of

(dx1∧dx2 +dx3∧dx4)∧dx5,

we have the following result.

Proposition 15.14. There exists F ∈C∞(R5;Λ 3) with

dF = 0 and rank[F ] = 5 in R
5,

which cannot be pulled back locally by a diffeomorphism to the canonical 3-form of
rank 5:

(dx1∧dx2 +dx3∧dx4)∧dx5.

Proof. We will show that F = f ∧a, where

f =
1

(x3)
4 +1

dx1∧dx5 +dx3∧dx4 and a = ((x3)
2 +1)dx1 +((x3)

4 +1)dx2

has all of the desired properties. First, note that dF = 0 and rank[F ] = 5 in R
5. We

split the proof of the last assertion of the proposition into three steps.
Step 1. We claim that any 1-divisor c of F must be of the form c = λa, where λ

is a scalar function. Indeed, if this is not the case, we have that the 1-form c(x0) is
linearly independent of a(x0) for a certain point x0 ∈ R

5. We therefore have
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F (x0)∧a(x0) = F (x0)∧ c(x0) = 0 and c(x0)∧a(x0) �= 0.

Appealing to Theorem 2.42, we deduce that F (x0) is totally divisible and, hence
(see again Proposition 2.43(ii)), rank [F (x0)] = 3, a contradiction.

Step 2. We show that if there exist an open set U and λ ∈C1(U) such that

d(λa) = 0 in U ,

then we necessarily have λ ≡ 0. Indeed, if d(λa) = 0 in U, then, in particular,

(d(λa))13 = (d(λa))23 = 0

and, hence,
∂ (λ (x)(x2

3 +1))
∂x3

=
∂ (λ (x)(x4

3 +1))
∂x3

= 0.

However, this implies the existence of u,v ∈C1(U) with

u(x1,x2,x3,x4,x5) = u(x1,x2,x4,x5),

v(x1,x2,x3,x4,x5) = v(x1,x2,x4,x5)

such that

λ (x) =
u(x1,x2,x4,x5)

x2
3 +1

=
v(x1,x2,x4,x5)

x4
3 +1

,

which is possible only if u = v = 0 in U, which proves the claim.

Step 3. We now conclude. If there exists a local diffeomorphism ϕ satisfying

F = ϕ∗((dx1∧dx2 +dx3∧dx4)∧dx5) = ϕ∗(dx1∧dx2 +dx3∧dx4)∧ϕ∗(dx5),

it follows from Step 1 that
ϕ∗(dx5) = λa.

However, this leads to a contradiction, because the form on the left-hand side is
closed and nonzero, whereas (cf. Step 2) the form on the right-hand side is either
not closed or identically 0. 	


We end this chapter with the following result, a particular case of which was
proved in Bandyopadhyay and Dacorogna [8].

Theorem 15.15. Let 4 ≤ 2m ≤ n be integers. Let x0 ∈ R
n, f and g be C∞ closed

2-forms, and a and b be C∞ closed 1-forms such that, in a neighborhood of x0 ,

rank[ f ] = rank[g] = 2m and rank[g∧b] = rank[ f ∧a] = 2m−1.

Then there exist a neighborhood U of x0 and ϕ ∈Diff∞(U ;ϕ(U)) such that ϕ(x0) =
x0 and

ϕ∗(g) = f and ϕ∗(b) = a in U.
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Remark 15.16. Note that if rank[g] = 2m= n≥ 4 and b �= 0, then g∧b �= 0; otherwise
by Theorem 2.42 there would exist c a 1-form such that

g = b∧ c

and, hence, rank[g] = 2, which is a contradiction. We therefore have, by Proposi-
tion 2.37(v), that

rank[g∧b] = 2m−1.

Proof. As usual, we may assume that x0 = 0 and, using Remark 15.2(iii), that

f = ωm =
m

∑
i=1

dx2i−1∧dx2i and a = dx1

(note that these particular f and a satisfy all of the hypotheses of the theorem, in
view of Proposition 2.37(v)). We split the proof into three steps.

Step 1. Let us show that, with no loss of generality, we can assume

g =
m

∑
i=1

dx2i−1∧dx2i = ωm and b =
2m

∑
i=1

bi(x1, . . . ,x2m)dxi

and, thus, we can assume that 2m = n. Since dg = 0 and rank[g] = 2m in a neigh-
borhood of 0, we can apply Theorem 14.3 to find a neighborhood U1 of 0 and
ϕ1 ∈ Diff∞(U1;ϕ(U1)) such that ϕ1(0) = 0 and

ϕ∗1 (g) =
m

∑
i=1

dx2i−1∧dx2i = ωm in U1 .

We claim that

ϕ∗1 (b)(x1, . . . ,xn) = c(x1, . . . ,x2m) =
2m

∑
i=1

ci(x1, . . . ,x2m) dxi.

Once this is shown, we will have the assertion of Step 1. Let us prove the claim.
Note that, in a neighborhood of 0,

rank [ωm] = rank [ϕ∗1 (g)] = rank [g] = 2m,

rank [c∧ωm] = rank [ϕ∗1 (b∧g)] = rank [b∧g] = 2m−1.

Hence, using Proposition 2.37(v), we get, in a neighborhood of 0,

c ∈Λ 1
ωm = span

{
dx1, . . . ,dx2m}

and, thus,
ci(x) = 0 for 2m+1≤ i≤ n.

Finally, combining the previous equation with the fact that dc = 0, we immediately
deduce that for every 1≤ i≤ m and every x in a neighborhood of 0,
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ci(x1, . . . ,xn) = ci(x1, . . . ,x2m),

which proves the claim.
Step 2. Using Theorem 8.1, we can find a C∞ function (in a small ball Bε centered

at 0) ρ such that
dρ = b(0)−b.

With no loss of generality, we can assume that ρ(0) = 0. Let bt(x) ∈ C∞([0,1]×
Bε ;Λ 1

)
be defined by

bt(x) = (1− t)b(0)+ tb(x).

Since for every t ∈ [0,1], bt(0) = b(0) �= 0, there exist 1≤ i≤ n and a neighborhood
of 0 in which

[bt �ωm]i = [ωm bt ]i �= 0 for every t ∈ [0,1].

Hence, we can apply Remark 8.21 and find a neighborhood U2 of 0 and w ∈
C∞([0,1]×U2;Λ 1

)
, w(t,x) = wt(x) such that for every t ∈ [0,1], wt(0) = 0 and

dwt = 0 and 〈wt ;ωmbt〉= ρ in U2 .

Finally, define u ∈C∞([0,1]×U2;Λ 1), u = u(t,x) = ut(x), as

ut = ω−1
m wt ⇔ ut �ωm = wt .

Note that for every t ∈ [0,1], ut(0) = 0 and in U2 , d (ut�ωm) = dwt = 0 and since
ωm ∈ O(n),

d(ut �bt) = d(〈ut ;bt〉) = d (〈wt ;ωmbt〉) = dρ =−dbt

dt
.

Hence, we deduce from Theorem 12.8 that for every t ∈ [0,1], the solution φt of⎧⎨
⎩

d
dt

φt = ut ◦φt , 0≤ t ≤ 1,

φ0 = id

exists in a neighborhood U3 of 0 and verifies φt ∈ Diff∞(U3;φt(U3)) and

φ ∗t (ωm) = ωm , φ ∗t (bt) = b(0) in U3 .

Step 3. Finally, recalling that b(0) ∈ Λ 1
ωm , there exists, using Proposition 2.24,

A ∈ GL(n) such that

A∗(ωm) = ωm and A∗(b(0)) = dx1.

Letting ψ(x) = Ax and ϕ = φ1 ◦ψ, we get the result and this concludes the proof.
	




Part V

Hölder Spaces



Chapter 16

Hölder Continuous Functions

We recall here the basic definitions of Hölder spaces. We use the following as
references in the present chapter: Adams [2], Dacorogna [29], de la Llave and Obaya
[36], Edmunds and Evans [40], Fefferman [42], Gilbarg and Trudinger [49] and
Hörmander [55].

16.1 Definitions of Continuous and Hölder Continuous Functions

16.1.1 Definitions

In this chapter, for x = (x1, . . . ,xN) ∈ R
N , we will write

|x|= max
1≤i≤N

{|xi|}.

We start by recalling the definition of Cr spaces.

Definition 16.1. Let r ≥ 0 be an integer and Ω ⊂ R
n be an open set.

(i) C0(Ω) is the set of continuous functions f : Ω → R.

(ii) Cr(Ω) is the set of functions f : Ω → R which have all of their partial
derivatives of any order up to r continuous; in other words, Da f ∈C0(Ω) for every
a ∈Am, 0≤ m≤ r, where Am is the set of all multi-indices of order m. We also set
∇m f = {Da f}a∈Am .

(iii) C0(Ω) is the set of bounded continuous functions f : Ω →R. We equip this
space with the norm

‖ f‖C0(Ω) = sup
x∈Ω
{| f (x)|}.

(iv) Cr
(
Ω
)

is the set of Cr (Ω) bounded functions whose derivatives up to the
order r can be extended continuously and in a bounded way to Ω . The space Cr

(
Ω
)

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_ , 
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is equipped with the following norm:

‖ f‖Cr(Ω) =
r

∑
m=0

‖∇m f‖C0(Ω) .

When there is no ambiguity, we drop the dependence on the set Ω and write simply

‖ f‖Cr =
r

∑
m=0

‖∇m f‖C0 .

(v) The set Cr
0 (Ω) denotes the set of functions in Cr (Ω) with compact sup-

port in Ω .

We now give the definitions of Hölder continuous functions.

Definition 16.2. Let D⊂ R
n, f : D→ R and 0 < α ≤ 1. We let

[ f ]C0,α (D) = sup
x,y∈D

x �=y

{ | f (x)− f (y)|
|x− y|α

}
.

Let Ω ⊂ R
n be an open set and r ≥ 0 be an integer. We define the different spaces

of Hölder continuous functions in the following way:

(i) C0,α (Ω) is the set of f ∈C0 (Ω) such that

[ f ]C0,α (K) < ∞

for every compact set K ⊂Ω .

(ii) C0,α (Ω) is the set of f ∈C0
(
Ω
)

so that

‖ f‖C0,α(Ω) = ‖ f‖C0(Ω) + [ f ]C0,α(Ω) < ∞.

If there is no ambiguity, we drop the dependence on the set Ω and write simply

‖ f‖C0,α = ‖ f‖C0 +[ f ]C0,α .

(iii) Cr,α (Ω) is the set of f ∈Cr (Ω) such that

[Da f ]C0,α (K) < ∞

for every compact set K ⊂Ω and every a ∈Ar.

(iv) Cr,α (Ω) is the set of functions f ∈Cr
(
Ω
)

so that

[Da f ]C0,α(Ω) < ∞

for every a ∈Ar . We equip Cr,α (Ω) with the following norm:

‖ f‖Cr,α = ‖ f‖Cr +max
a∈Ar

[Da f ]C0,α .
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Most of the time we will write

[∇r f ]C0,α = max
a∈Ar

[Da f ]C0,α ;

thus, we adopt the notation

‖ f‖Cr,α = ‖ f‖Cr +[∇r f ]C0,α = ‖ f‖Cr−1 +‖∇r f‖C0,α .

(v) The set Cr,α
0 (Ω) denotes the set of functions in Cr,α (Ω) with compact sup-

port in Ω .

Remark 16.3. (i) Cr,α (Ω) with its norm ‖·‖Cr,α is a Banach space.

(ii) When the domain has some minimal regularity (say Lipschitz), it will be
shown that the norm considered here is equivalent to the following ones (see Corol-
lary 16.13 for the first one and Corollary 16.25 for the second one):

‖ f‖Cr,α =
r

∑
m=0

‖∇m f‖C0,α

and

‖ f‖Cr,α =

{
‖ f‖C0 +[∇r f ]C0,α if 0 < α ≤ 1
‖ f‖C0 +‖∇r f‖C0 if α = 0.

We should, however, insist that these norms are, in general, not equivalent for very
wild sets.

(iii) When α = 1, we note that C0,1
(
Ω
)

is in fact the set of Lipschitz continuous
and bounded functions, namely the set of bounded functions f such that there exists
a constant γ > 0 so that

| f (x)− f (y)| ≤ γ |x− y| , ∀x,y ∈Ω .

The best such constant is γ = [ f ]C0,1 .

(iv) If one wants to include the classical Cr spaces in the context of Cr,α spaces,
one is led to some inconsistencies. We have decided to write

Cr =Cr,0.

In this case, we set

[ f ]C0,0 = 0 and ‖ f‖C0,0 = ‖ f‖C0

and similarly for r ≥ 1,
‖ f‖Cr,0 = ‖ f‖Cr .

(v) When Ω = R
n, in order to remove any ambiguity, we understand Cr,α (Rn)

as Cr,α (
Rn
)

in the sense of point (iv) of the above definition.
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(vi) It follows from Theorem 16.11 that if Ω is bounded and Lipschitz, then
f ∈ Cr,α (Ω) if and only if there exist an open set O ⊂ R

n such that Ω ⊂ O and
g ∈Cr,α(O) with g = f in Ω .

16.1.2 Regularity of Boundaries

We used and will use in several places the notion of Cr,α sets, in particular,
Lipschitz or smooth sets. We now give two classical definitions of such sets.

Definition 16.4. (i) Let Ω ⊂ R
n be an open set, r ≥ 0 be an integer and 0≤ α ≤ 1.

The set Ω is said to be Cr,α if for every x ∈ ∂Ω , there exist a neighborhood Ux of x
and ϕx ∈Cr,α(Rn−1) such that, up to a rotation,

Ux∩Ω =Ux∩{y = (y′,yn) ∈ R
n−1×R : yn > ϕx(y′)}.

(ii) When Ω is C0,1, then Ω will be referred to as Lipschitz.

(iii) If Ω is C∞, then Ω is said to be smooth.

Definition 16.5. Let r ≥ 1 be an integer and 0 ≤ α ≤ 1. The set Ω is said to be
Cr,α if for every x ∈ ∂Ω , there exist a neighborhood Ux of x and φx ∈ Diffr,α(Ux;B)
(where B denotes the open unit ball in R

n) such that

φx(Ux∩Ω) = {y ∈ B : yn > 0}.

Remark 16.6. It is easy to see that when r ≥ 1, both definitions are equivalent.

We now define the meaning of Cr,α(∂Ω) functions.

Definition 16.7. Let r ≥ 1 be an integer, 0≤ α ≤ 1 and Ω ⊂R
n be a bounded open

Cr,α set.

(i) The set Cr,α(∂Ω) is the set of functions f : ∂Ω → R such that for every
x ∈ ∂Ω ,

(y1, . . . ,yn−1)→ f ◦φ−1
x (y1, . . . ,yn−1,0)

belongs to Cr,α(B′), where B′ is the open unit ball in R
n−1 and where φx is as in

Definition 16.5.

(ii) For f ∈Cr,α(∂Ω), we define

‖ f‖Cr,α (∂Ω) = inf
F∈Cr,α (Ω):
F= f on ∂Ω

‖F‖Cr,α (Ω).

Remark 16.8. (i) The definition of Cr,α(∂Ω) is independent of the chosen φx.

(ii) Note that the set over which the infimum is taken is never empty (see, e.g.,
Lemma 6.38 in [49]).
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(iii) The set C0,α(∂Ω) and the associated norm have already been considered in
Definition 16.2.

(iv) Cr,α(∂Ω) with its norm ‖ · ‖Cr,α (∂Ω) is a Banach space.

16.1.3 Some Elementary Properties

In Section 16.2, it will be more convenient to work with the norm

‖ f‖Cr,α∗ =
r

∑
m=0

‖∇m f‖C0,α

and the corresponding space

Cr,α
∗
(
Ω
)
=
{

f ∈Cr (Ω) : ‖ f‖Cr,α∗ < ∞
}
.

Note that
g,h ∈Cr,α

∗ ⇒ gh ∈Cr,α
∗

and
‖gh‖Cr,α∗ ≤C‖g‖Cr,α∗ ‖h‖Cr,α∗ .

A priori, we have no better result on the product of two Hölder functions. This is
why we introduce the space Cr,α

∗ (if, however, Ω is Lipschitz, we have a much better
result; see Theorem 16.28). Clearly,

‖ f‖Cr,α ≤ ‖ f‖Cr,α∗

and, as already said, we will show in Corollary 16.13 the equivalence of the two
norms for Lipschitz sets. We now gather some elementary properties.

Proposition 16.9. Let Ω ⊂ R
n be any bounded open set and r ≥ 0 be an integer.

Then ∥∥∇r+1 f
∥∥

C0 ≤ [∇r f ]C0,1 and ‖ f‖Cr+1 ≤ ‖ f‖Cr,1 .

If s≥ r is an integer and 0≤ α ≤ β ≤ 1, then

‖ f‖Cr,α ≤C‖ f‖Cr,β and ‖ f‖Cr,α∗ ≤C‖ f‖
Cs,β
∗

,

where C = max{1,diamΩ} and

diamΩ = sup
x,y∈Ω

{|x− y|} .

Proof. Step 1. Let 1 ≤ i ≤ n, ei be the ith vector of the Euclidean basis and x ∈ Ω .
We have
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∂xi

[∇r f ] (x)
∣∣∣∣=
∣∣∣∣limh→0

∇r f (x+hei)−∇r f (x)
h

∣∣∣∣≤ [∇r f ]C0,1

and, thus, ∥∥∇r+1 f
∥∥

C0 ≤ [∇r f ]C0,1 ,

which, in turn, also implies

‖ f‖Cr+1 ≤ ‖ f‖Cr,1 ,

as wished.
Step 2. The inequalities

‖ f‖Cr,α ≤C‖ f‖Cr,β and ‖ f‖Cr,α∗ ≤C‖ f‖
Cs,β
∗

follow from the observation that for every 0≤ m≤ r,

[∇m f ]C0,α ≤ [∇m f ]C0,β sup
x,y∈Ω

{
|x− y|β−α

}
≤C [∇m f ]C0,β .

This concludes the proof of the proposition. ��

The above proposition can be strongly improved if one requires some additional
regularity on Ω . We discuss here the case of convex sets Ω . The more general case
of Lipschitz sets is dealt with in Corollary 16.13.

Proposition 16.10. Let Ω ⊂ R
n be a bounded convex open set and r ≥ 0 be an

integer. Then ∥∥∇r+1 f
∥∥

C0 = [∇r f ]C0,1 and ‖ f‖Cr+1 = ‖ f‖Cr,1 .

Let s≥ r be an integer and 0≤ α,β ≤ 1, with

r+α ≤ s+β .

Then
‖ f‖Cr,α ≤C‖ f‖Cs,β and ‖ f‖Cr,α∗ ≤ (C+1)‖ f‖Cr,α ,

where C = max{1,diamΩ} .
Proof. Step 1. For any x,y ∈Ω and a ∈Ar , we can write

Da f (x)−Da f (y) =
∫ 1

0

d
dt

[Da f (y+ t (x− y))]dt

=
∫ 1

0
〈∇Da f (y+ t (x− y) ;x− y〉dt.

We hence deduce that
[∇r f ]C0,1 ≤

∥∥∇r+1 f
∥∥

C0 .
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The above inequality, coupled with Proposition 16.9, leads immediately to the claim,
namely ∥∥∇r+1 f

∥∥
C0 = [∇r f ]C0,1 and ‖ f‖Cr+1 = ‖ f‖Cr,1 .

Step 2. We now prove that

‖ f‖Cr,α ≤C‖ f‖Cs,β .

Observe first that if s= r and thus 0≤α ≤ β ≤ 1, the result is already in Proposition
16.9. So let us assume that s≥ r+1 and use Proposition 16.9 and Step 1 to get

‖ f‖Cr,α ≤C‖ f‖Cr,1 =C‖ f‖Cr+1 ≤C‖ f‖Cs ≤C‖ f‖Cs,β .

Step 3. We finally establish that

‖ f‖Cr,α∗ ≤ (C+1)‖ f‖Cr,α .

Assume that α > 0; otherwise the result is trivially valid by definition. Let 0≤m≤
r−1 and note first that

[∇m f ]C0,α ≤C [∇m f ]C0,1 =C
∥∥∇m+1 f

∥∥
C0 .

We therefore deduce that

‖∇m f‖C0,α ≤ ‖∇m f‖C0 +C
∥∥∇m+1 f

∥∥
C0

and, hence,

r−1

∑
m=0

‖∇m f‖C0,α ≤ ‖ f‖C0 +(C+1)
r−1

∑
m=1

‖∇m f‖C0 +C‖∇r f‖C0 .

We have therefore obtained that

‖ f‖Cr,α∗ =
r

∑
m=0

‖∇m f‖C0,α ≤ ‖ f‖C0 +(C+1)
r

∑
m=1

‖∇m f‖C0 +[∇r f ]C0,α

≤ (C+1)‖ f‖Cr,α

and the result is proved. ��

16.2 Extension of Continuous and Hölder Continuous Functions

16.2.1 The Main Result and Some Corollaries

The main result of this section is the following extension theorem essentially due
to Calderon [20]. We will closely follow the presentation of Stein [92] (sometimes
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word for word). Although Stein does his extension for Sobolev spaces, exactly the
same extension works for Hölder spaces. We will therefore only outline the main
points of the proof and refer to Kneuss [60] for details.

Theorem 16.11. Let Ω ⊂ R
n be a bounded open Lipschitz set. Then there exists a

continuous linear extension operator

E : Cr,α (Ω)→Cr,α
0 (Rn)

for any integer r ≥ 0 and any 0 ≤ α ≤ 1. More precisely, there exists a constant
C =C (r,Ω)> 0 such that for every f ∈Cr,α (Ω) ,

E ( f )|Ω = f , supp [E ( f )] is compact,

‖E ( f )‖Cr,α (Rn) ≤C‖ f‖Cr,α(Ω) .

Remark 16.12. We should emphasize that the extension is universal, in the sense
that the same extension also leads to

‖E ( f )‖Cs,β (Rn) ≤C‖ f‖Cs,β (Ω)

for any integer s and any 0≤ β ≤ 1, with, of course, C =C (s,Ω) . It is also the very
same extension that is valid for Sobolev spaces.

We have, as an immediate consequence of Theorem 16.11, Propositions 16.9 and
16.10, the following result.

Corollary 16.13. Let Ω ⊂R
n be a bounded open Lipschitz set, s≥ r≥ 0 be integers

and 0≤ α,β ≤ 1, with
r+α ≤ s+β .

Then there exists a constant C =C (s,Ω)> 0 such that

‖ f‖Cr,α ≤C‖ f‖Cs,β

and
‖ f‖Cs+1 ≤ ‖ f‖Cs,1 ≤C‖ f‖Cs+1 .

Moreover (cf. Section 16.1 for the notations), the following inequality holds:

‖ f‖Cs,β ≤ ‖ f‖
Cs,β
∗
≤C‖ f‖Cs,β

and, therefore, the ‖·‖
Cs,β
∗

and the ‖·‖Cs,β norms are equivalent.

Remark 16.14. In particular, if 0 < α < β < 1, we deduce from the corollary that

Cr ⊃Cr,α ⊃Cr,β ⊃Cr,1 ⊃Cr+1

and the imbeddings are continuous. Note, however, that the result is false if the set
Ω is not smooth enough (see [29] for an example).
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Another immediate corollary is the following. It has been used in the proof of
Theorem 11.1.

Corollary 16.15. Let r ≥ 1 be an integer and 0≤ α ≤ 1. Let Ω ⊂R
n be a bounded

open Lipschitz set and ϕ ∈ Diffr,α(Ω ;ϕ
(
Ω
)
). Then there exist a neighborhood V

of Ω and ψ an extension of ϕ such that

ψ ∈ Diffr,α(V ;ψ(V )).

Proof. By Theorem 16.11, there exists ψ ∈ Cr,α(Rn;Rn), an extension of ϕ . By
continuity, there exists ε1 > 0 such that

det∇ψ(x) �= 0 in Ω +Bε1 . (16.1)

Let us show that there exists ε < ε1 such that

ψ ∈ Diffr,α(Ω +Bε ;ψ(Ω +Bε)),

which will conclude the proof. It is sufficient, using (16.1), to find ε < ε1 such
that ψ is one-to-one in Ω +Bε . We proceed by contradiction. Then there exist two
sequences xν ,yν ∈Ω +Bε1 , ν ∈ N, such that

xν �= yν , ψ(xν) = ψ(yν) and xν ,yν ∈Ω +B1/ν , ν ∈ N.

Extracting, if necessary, a subsequence, we can assume that xν → x and yν → y with
x,y ∈Ω . Therefore, ψ(x) = ψ(y) and, thus, x = y, ψ being one-to-one in Ω . Since
det∇ψ(x) �= 0, we know that ψ is a local diffeomorphism from a neighborhood of
x onto a neighborhood of ψ(x). This contradicts the fact that ψ(xν) = ψ(yν) for ν
large enough. This concludes the proof. ��

We would finally like to mention that when Ω is as regular as the function to be
extended, then there is an elementary extension result using rectification of bound-
ary and reflection (see, e.g., Gilbarg and Trudinger [49]). Moreover, when r = 0,
we have other classical extension theorems. When r = α = 0, the Tietze extension
theorem (cf., e.g., [87]) is one of them. When r = 0 and 0 < α ≤ 1, we have the
Mc Shane lemma that we now prove.

Theorem 16.16 (Mc Shane lemma). Let D⊂R
n be any set, 0<α ≤ 1 and f : D→

R, with
γ = [ f ]C0,α (D) < ∞.

Part 1. Then the two functions

f+ (x) = inf
y∈D

{
f (y)+ γ |x− y|α} ,

f− (x) = sup
y∈D

{
f (y)− γ |x− y|α}

are extensions of f satisfying

[ f+]C0,α (Rn) = [ f−]C0,α (Rn) = [ f ]C0,α (D) = γ.
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Furthermore, any other extension g of f such that [g]C0,α (Rn) = γ satisfies

f− ≤ g≤ f+.

Part 2. If, moreover, D is bounded and f ∈ C0,α (D) , then there exists g ∈
C0,α (Rn) such that

g|D = f , suppg is compact,

and
[g]C0,α (Rn) = [ f ]C0,α(D) = γ.

Proof. Proof of Part 1. We divide the proof into two steps.
Step 1. We discuss the case of f+, the other one being handled similarly.
1) Let us first check that f+ is indeed an extension of f . Let x ∈ D; we therefore

get
f (x)≤ f (y)+ γ |x− y|α for every y ∈ D

and, thus,
f (x)≤ f+ (x) .

Now, clearly, choosing y = x in the definition of f+ leads to f+ (x) ≤ f (x) . Thus,
f+ is indeed an extension of f .

2) Let x,z ∈ R
n. Assume, without loss of generality, that f+ (z) ≤ f+ (x) . For

every ε > 0, we can find yz ∈ D such that

−ε + f (yz)+ γ |z− yz|α ≤ f+ (z)≤ f (yz)+ γ |z− yz|α .

We hence obtain

| f+ (x)− f+ (z)|= f+ (x)− f+ (z)

≤ f (yz)+ γ |x− yz|α + ε− f (yz)− γ |z− yz|α
≤ ε + γ |x− z|α .

Letting ε → 0, we have the claim.
Step 2. Let g be such that [g]C0,α (Rn) = γ. We therefore have for x ∈ R

n and for
every y ∈ D (and, thus, g(y) = f (y)),

−γ |x− y|α ≤ g(x)−g(y) = g(x)− f (y)≤ γ |x− y|α .

This leads to
f (y)− γ |x− y|α ≤ g(x)≤ f (y)+ γ |x− y|α

and, hence, f− (x)≤ g(x)≤ f+ (x), as wished.
Proof of Part 2. We split the discussion into two steps.
Step 1. Let C > 0 be such that

‖ f‖C0(D) ≤C.
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Since D is bounded, we can find R > 0 so that

dist
(
D;∂BR

)
=

(
C
γ

)1/α
.

We then define

f1 (x) =

{
f (x) if x ∈ D

0 if x ∈ (BR)
c = R

n \BR.

Observe that f1 ∈C0,α (D∪ (BR)
c
)
, with

[ f1 ]C0,α(D∪(BR)c) = γ.

Indeed, let us prove that for every x,y ∈ D∪ (BR)
c, we have

| f1 (x)− f1 (y)| ≤ γ |x− y|α .

This is clearly so if x,y∈D or if x,y∈ (BR)
c. So let us prove the inequality for x∈D

and y ∈ (BR)
c so that

|x− y|α ≥ (dist
(
D;∂BR

))α
=

C
γ
.

We therefore have

| f1 (x)− f1 (y)|= | f1 (x)|= | f (x)| ≤C = γ
C
γ
≤ γ |x− y|α ,

as wished.
Step 2. Use Part 1 to extend f1 to R

n. We denote this extension g (we can choose,
e.g., g = ( f1)+) and we therefore have

g|D = f , suppg is compact and [g ]C0,α (Rn) = [ f ]C0,α(D) = γ.

This concludes the proof of the theorem. ��

16.2.2 Preliminary Results

The main step in the proof of Theorem 16.11 is the following special case.

Theorem 16.17. Let ϕ ∈C0,1(Rn−1) and

Ω = {x = (x′,xn) ∈ R
n−1×R : xn > ϕ(x′)}.

Then there exists a continuous linear extension operator

E : Cr,α (Ω)→Cr,α (Rn)
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for any integer r ≥ 0 and any 0 ≤ α ≤ 1. In particular, there exists a constant
C =C (r,Ω)> 0 such that for every f ∈Cr,α (Ω) ,

‖E( f )‖Cr,α (Rn) ≤C‖ f‖Cr,α(Ω). (16.2)

Remark 16.18. (i) Note that (see Section 16.1 for the notations) the theorem imme-
diately gives

‖E( f )‖Cr,α∗ (Rn) ≤C‖ f‖Cr,α∗ (Ω) for every f ∈Cr,α
∗ (Ω). (16.3)

(ii) The proof of the previous theorem gives, in fact, a sharper estimate. Indeed,
we have that for every f ∈Cr,α(Ω) and every 0≤ m≤ r,

‖∇mE( f )‖C0(Rn) ≤C‖∇m f‖C0(Ω),

[∇mE( f )]C0,α (Rn) ≤C [∇m f ]C0,α (Ω) .

To prove Theorem 16.17, we will use the following three results. The first lemma
can be found in Stein [92, p. 182].

Lemma 16.19. There exists ψ ∈C0([1,∞)) such that for every N ∈ N, there exists
AN > 0 so that

|ψ(λ )| ≤ AN

λ N for every λ ∈ [1,∞) (16.4)

and, for every k ≥ 1,∫ ∞

1
ψ(λ )dλ = 1 and

∫ ∞

1
λ kψ(λ )dλ = 0. (16.5)

The next result is essentially geometrical. In the sequel, we write

d(x) = d(x;Ω) = inf
{|x− y| : y ∈Ω

}
.

Lemma 16.20. Let ϕ ∈C0,1(Rn−1) and

Ω = {x = (x′,xn) ∈ R
n−1×R : xn > ϕ(x′)} and Ω− = Ω c

.

Then for any x = (x′,xn) ∈Ω−,

(1+[ϕ]C0,1) ·d(x)≥ ϕ(x′)− xn.

Moreover, for every x,y ∈Ω− with x �= y, there exists z ∈Ω− such that

(x,z]∪ (y,z]⊂Ω−,

|x− z|+ |z− y| ≤ (2+4[ϕ]C0,1) |x− y|. (16.6)

The result is also true for Ω− replaced by Ω .
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Proof (Proof of Lemma 16.20). Step 1. Let x = (x′,xn) ∈Ω−. Note that there exists
z ∈ ∂Ω such that

d(x;Ω) = |z− x|= max
1≤i≤n

{|zi− xi|}.

We thus have z = (y′,ϕ(y′)) for some y′ ∈ R
n−1 and

d(x;Ω) = max{|y′ − x′|; |ϕ(y′)− xn|}.

We then have

ϕ(x′)− xn = |ϕ(x′)− xn| ≤ |ϕ(x′)−ϕ(y′)|+ |ϕ(y′)− xn|
≤ [ϕ]C0,1 |x′ − y′|+ |ϕ(y′)− xn|
≤ (1+[ϕ]C0,1)max{|y′ − x′|; |ϕ(y′)− xn|}
= (1+[ϕ]C0,1) ·d(x;Ω),

which proves the first statement.

Step 2. It therefore remains to prove the second statement. Let x,y ∈ Ω− (the
case where Ω− is replaced by Ω is completely analogous). We can assume, without
loss of generality, that xn ≤ yn. Then

z =
(
y′,xn−2[ϕ]C0,1

∣∣x′ − y′
∣∣)

has the claimed properties. ��

The main ingredient is the construction of a regularized distance, denoted d∗.

Theorem 16.21. Let ϕ ∈C0,1(Rn−1), r ≥ 0 be an integer and 0≤ α ≤ 1. Let

Ω = {x = (x′,xn) ∈ R
n−1×R : xn > ϕ(x′)} and Ω− = Ω c

.

Then there exist
d∗ = d∗(·;Ω) ∈C∞(Ω−; [0,∞))

and a constant C =C(r,n, [ϕ]C0,1) such that for every x = (x′,xn),y = (y′,yn) ∈Ω−,

d∗(x)≥ 2(ϕ(x′)− xn), (16.7)

1
C

d(x)≤ d∗(x)≤Cd(x), (16.8)

|∇rd∗(x)| ≤Cd(x)1−r, (16.9)

|∇rd∗(x)−∇rd∗(y)| ≤C|x− y|α max{d(x)1−r−α ;d(y)1−r−α}. (16.10)

Proof (Proof of Theorem 16.21). Step 1. According to Theorem 2 in Stein [92,
p. 171] (the last statement is not explicitly in [92] but is hidden in the proof of the
theorem; cf. Kneuss [60] for details), there exist for every closed set F ⊂R

n, a con-
stant C1 =C1(r,n) and a function�(·,F) ∈C∞(Fc) such that for every x,y ∈ Fc,



348 16 Hölder Continuous Functions

1
C1

d(x;F)≤�(x;F)≤C1d(x;F),

|∇r(�(x;F))| ≤C1d(x;F)1−r,

|∇r(�(x;F))−∇r(�(y;F))| ≤C1|x− y|α max{d(x;F)1−r−α ;d(y;F)1−r−α}.

Step 2. From Lemma 16.20, we have for every x = (x′,xn) ∈Ω−,

(1+[ϕ]C0,1) ·d(x;Ω)≥ ϕ(x′)− xn.

The regularized distance

d∗(x) = 2C1 (1+[ϕ]C0,1) ·Δ(x;Ω)

has all of the required properties. ��

We now return to the proof of Theorem 16.17.

Proof. Step 1. Let f ∈Cr,α (Ω) . We define the desired extension as

E( f )(x′,xn) =

⎧⎨
⎩

f (x′,xn) if (x′,xn) ∈Ω∫ ∞

1
ψ(λ ) f (x(λ ))dλ if (x′,xn) /∈Ω ,

where ψ is as in Lemma 16.19, d∗ = d∗(·;Ω) is as in Theorem 16.21 and

x(λ ) = (x′,xn +λd∗(x)).

Appealing to (16.7), we have for every λ ≥ 1 and every x ∈Ω−,

xn +λd∗(x′,xn)≥ xn +2(ϕ(x′)− xn) = ϕ(x′)+(ϕ(x′)− xn)> ϕ(x′).

Combining the above inequality with the fact that f is bounded and (16.4), we get
that E( f ) is finite and well defined. It remains to show that E( f ) ∈ Cr,α(Rn) and
(16.2). We will only prove it for r≤ 2, the general case being handled in exactly the
same way (the key estimate being for r = 2). Recall that

Ω− = Ω c
= {x = (x′,xn) ∈ R

n−1×R : ϕ(x′)> xn}

and note that

Ω− ∩Ω = ∂Ω = ∂Ω− = {(x′,ϕ(x′)) : x′ ∈ R
n−1}.

We will often use the following elementary fact, valid for g : Rn → R:

[g]C0,α(Ω), [g]C0,α(Ω−) ≤ D ⇒ [g]C0,α (Rn) ≤ 2D. (16.11)

Step 2. We prove the theorem first for r = 0.
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Step 2.1. Let us show that E( f ) ∈C0(R) and

‖E( f )‖C0(Rn) ≤C‖ f‖C0(Ω).

Since f ∈ C0
(
Ω
)

and (16.4) holds, we easily have E( f ) ∈ C0
(
Ω
)∩C0(Ω−) and

for every x ∈Ω−,
|E( f )(x)| ≤C‖ f‖C0(Ω).

To conclude that E( f ) ∈ C0(Rn), it is therefore enough to show that for every
x ∈ ∂Ω ,

lim
y→x

y∈Ω−

E( f )(y) = E( f )(x).

Appealing to (16.4), (16.5), (16.8) and the fact that f is bounded on Ω , we can apply
dominated convergence theorem and we get the desired convergence.

Step 2.2. We now prove that, in fact, E( f ) ∈C0,α(Rn) and

[E( f )]C0,α (Rn) ≤C[ f ]C0,α(Ω).

Using (16.11), it is sufficient to establish the following inequality:

[E( f )]C0,α(Ω−) ≤C[ f ]C0,α(Ω).

Let x,y ∈Ω−. Observe that (16.10) (with α = 1) implies that

|d∗(x)−d∗(y)| ≤C1|x− y|,

which combined with (16.4) leads to the desired inequality; indeed,

|E( f )(x)−E( f )(y)| ≤
∫ ∞

1
|ψ(λ ) [ f (x(λ ))− f (y(λ ))]|dλ

≤
∫ ∞

1
|ψ(λ )|C2(1+λ α)[ f ]C0,α(Ω)|x− y|α dλ

≤C3[ f ]C0,α(Ω)|x− y|α .

Step 3. We now consider the case r = 1.

Step 3.1. We first prove that E( f ) ∈C1(Rn) and

‖E( f )‖C1(Rn) ≤C‖ f‖C1(Ω).

Since f ∈ C1
(
Ω
)

and E( f ) ∈ C1
(
Ω
)∩C1(Ω−) (according to (16.4)), we get for

every x = (x′,xn) ∈Ω−,

E( f )xi(x) =
∫ ∞

1
fxi(x(λ ))ψ(λ )dλ +

∫ ∞

1
fxn(x(λ ))d

∗
xi
(x)λψ(λ )dλ ,
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where we recall that
x(λ ) = (x′,xn +λd∗(x)).

From Lemma 16.19 and the fact (see (16.9)) that |d∗xi
| ≤C in Ω−, we obtain, by the

dominated convergence theorem, that for every x ∈ ∂Ω ,

lim
y→x

y∈Ω−

E( f )xi(y) = fxi(x).

Appealing to (16.4) we have for every x ∈Ω−,

|E( f )xi (x)| ≤C‖∇ f‖C0(Ω).

We therefore have E( f ) ∈C1
(
Ω
)∩C1(Ω−) and for every 1≤ i≤ n,

‖E( f )xi‖C0(Ω−) ≤C‖∇ f‖C0(Ω).

Clearly, E( f ) is differentiable in Ω ∪Ω−. Since (16.6) holds, we easily see that
E( f ) is differentiable on ∂Ω (see [60] for details) and, thus, E( f ) is differen-
tiable in R

n.

Step 3.2. We now show that for every 1≤ i≤ n, E( f )xi ∈C0,α(Rn) and

[E( f )xi ]C0,α (Rn) ≤C [∇ f ]C0,α(Ω) .

As before, it is enough to prove that

[E( f )xi ]C0,α(Ω−) ≤C [∇ f ]C0,α(Ω) .

Let x,y ∈Ω− and assume, without loss of generality, that d(x)≤ d(y). We have

|E( f )xi(x)−E( f )xi(y)|

≤
∣∣∣∣∫ ∞

1
ψ(λ ) [ fxi(x(λ ))− fxi(y(λ ))]dλ

∣∣∣∣
+

∣∣∣∣∫ ∞

1
λψ(λ )

[
fxn(x(λ ))d

∗
xi
(x)− fxn(y(λ ))d

∗
xi
(y)
]

dλ
∣∣∣∣

and thus, as in Step 2.2, the first term is readily estimated by

C1[ fxi ]C0,α(Ω)|x− y|α .

The second term is estimated as follows. Since (16.5) holds, we get∣∣∣∣∫ ∞

1
λψ(λ )

[
fxn(x(λ ))d

∗
xi
(x)− fxn(y(λ ))d

∗
xi
(y)
]

dλ
∣∣∣∣

≤
∣∣∣∣∫ ∞

1
λψ(λ ) fxn(x(λ ))

[
d∗xi

(x)−d∗xi
(y)
]

dλ
∣∣∣∣
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+

∣∣∣∣∫ ∞

1
λψ(λ )d∗xi

(y) [ fxn(x(λ ))− fxn(y(λ ))]dλ
∣∣∣∣

=

∣∣∣∣∫ ∞

1
λψ(λ )[ fxn(x(λ ))− fxn(x)]

[
d∗xi

(x)−d∗xi
(y)
]

dλ
∣∣∣∣

+

∣∣∣∣∫ ∞

1
λψ(λ )d∗xi

(y) [ fxn(x(λ ))− fxn(y(λ ))]dλ
∣∣∣∣

and hence the claim, since (16.4) and (16.8)–(16.10) hold (recall that d(x)≤ d(y)),∣∣∣∣∫ ∞

1
λψ(λ )

[
fxn(x(λ ))d

∗
xi
(x)− fxn(y(λ ))d

∗
xi
(y)
]

dλ
∣∣∣∣

≤C1

∫ ∞

1
λ |ψ(λ )|(λd∗(x))α [∇ f ]C0,α d(x)−α |x− y|α dλ

+C2

∫ ∞

1
λ (1+λ α) |ψ(λ )| [∇ f ]C0,α |x− y|α dλ

≤C3 [∇ f ]C0,α |x− y|α .

Step 4. We finally discuss the case r = 2.

Step 4.1. As before, let us first prove that E( f ) ∈C2(Rn) and

‖E( f )‖C2(Rn) ≤C‖ f‖C2(Ω).

Since f ∈C2
(
Ω
)

and E( f ) ∈C2
(
Ω
)∩C2(Ω−) (according to (16.4)), we have for

every x = (x′,xn) ∈Ω−,

E( f )xix j(x) =
∫ ∞

1
fxix j(x(λ ))ψ(λ )dλ +

∫ ∞

1
fxixn(x(λ ))λψ(λ )d∗x j

(x)dλ

+
∫ ∞

1
fx jxn(x(λ ))λψ(λ )d∗xi

(x)dλ

+
∫ ∞

1
fxnxn(x(λ ))ψ(λ )λ 2d∗xi

(x)d∗x j
(x)dλ

+
∫ ∞

1
fxn(x(λ ))λψ(λ )d∗xix j

(x)dλ

= A1(x)+A2(x)+A3(x)+A4(x)+A5(x).

As in Step 3.1, we obtain for every 1≤ k ≤ 4 and every x ∈Ω ,

|Ak(x)| ≤C‖∇2 f‖C0(Ω),

whereas for every x ∈ ∂Ω , we get

lim
y→x

y∈Ω−

Ak(y) =

{
fxix j(x) if k = 1

0 if k = 2,3,4.
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It therefore remains to study the behavior of A5. We have, recalling that x(λ ) =
(x′,xn +λd∗(x)),

fxn(x(λ ))− fxn(x(1)) =
∫ 1

0

d
dt

fxn(x(1+ t(λ −1)))dt

=
∫ 1

0
d∗(x)(λ −1) fxnxn(x(1+ t(λ −1)))dt.

We therefore deduce, from (16.5), that

A5(x) =
∫ ∞

1
fxn(x(λ ))λψ(λ )d∗xix j

(x)dλ

= d∗(x)d∗xix j
(x)
∫ ∞

1
λ (λ −1)ψ(λ )

∫ 1

0
fxnxn(x(1+ t(λ −1)))dt dλ . (16.12)

Recalling Lemma 16.19 and using the fact (see (16.8) and (16.9)) that

d∗(x)d∗xix j
(x)≤C,

we get

|A5(x)| ≤C‖∇2 f‖C0(Ω) and lim
y→x

y∈Ω−

A5(y) = 0.

To show that E( f )∈C2(Rn), we proceed as in Step 3.1. From the previous estimates
we indeed have

‖E( f )‖C2(Rn) ≤C‖ f‖C2(Ω).

Step 4.2. We finally have to prove for every 1≤ i≤ j that E( f )xix j ∈C0,α(Rn) and

[E( f )xix j ]C0,α (Rn) ≤C
[
∇2 f
]

C0,α(Ω) .

Using (16.11), it is enough to show that

[E( f )xix j ]C0,α(Ω−) ≤C
[
∇2 f
]

C0,α(Ω) .

So let x,y ∈Ω−. With the notations of Step 4.1, we can write

|E( f )xix j(x)−E( f )xix j(y)| ≤
5

∑
i=1
|Ai(x)−Ai(y)|.

As in Step 3.2 and using (16.12) for A5, we get

5

∑
i=1
|Ai(x)−Ai(y)| ≤C

[
∇2 f
]

C0,α |x− y|α .

This finishes the proof of the theorem. ��
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16.2.3 Proof of the Main Theorem

We finally turn to the proof of our main theorem.

Proof (Proof of Theorem 16.11). Step 1. We start by appropriately covering the
boundary of Ω .

Step 1.1. Since Ω is Lipschitz and bounded, we can find an integer N, xi ∈ ∂Ω ,
εi > 0 and ϕi ∈C0,1(Rn−1), 1≤ i≤ N, such that

∂Ω ⊂
N⋃

i=1

Bεi(xi)

and, up to a rotation,

Ω ∩Bεi(xi) = Ω i∩Bεi(xi), (16.13)

where
Ωi = {x = (x′,xn) ∈ R

n−1×R : xn > ϕi(x′)}.
Choose 0 < ε < min1≤i≤N εi such that

∂Ω ⊂
N⋃

i=1

Bεi−ε(xi) (16.14)

and define
c = max

1≤i≤N
{εi/ε}> 1.

Step 1.2. We then define some auxiliary functions. Let λi ∈ C∞(Rn; [0,1]),
1≤ i≤ N, be such that

λi = 1 in Bεi−ε/2(xi) and supp(λi)⊂ Bεi−ε/4(xi).

Let λ0,λ+,λ− ∈C∞(Rn; [0,1]) verify

λ0 = 1 in Ω and supp(λ0)⊂Ω +Bε/2,

λ+ = 1 in ∂Ω +Bε/2 and supp(λ+)⊂ ∂Ω +Bε ,

λ− = 1 in Ω ∩ (∂Ω +Bε/2
)c and supp(λ−)⊂Ω .

Then let

Λ+ = λ0

(
λ+

λ++λ−

)
and Λ− = λ0

(
λ−

λ++λ−

)
.

Since

supp(λ0)⊂ {x ∈ R
n : λ++λ− ≥ 1},
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the functions Λ+ and Λ− belong to C∞
0 (R

n). Note also that

Λ++Λ− = λ0.

Finally, since (using (16.14))

supp(Λ+)⊂ ∂Ω +Bε/2 ⊂
N⋃

i=1

Bεi− ε
2
(xi)

and noticing that
N

∑
i=1

λ 2
i ≥ 1 in

N⋃
i=1

Bεi− ε
2
(xi),

we obtain
Λ+

∑N
i=1 λ 2

i
∈C∞

0 (R
n). (16.15)

Step 2. We now make explicit the extension E.

Step 2.1 (Simplification). We show that to prove the theorem, we can restrict
ourselves to the space Cr,α

∗ (Ω) (see Section 16.1 for the notations). More precisely,
we prove that it is enough to show the existence of

E : Cr,α
∗ (Ω)→Cr,α

0 (Rn) (16.16)

and

‖E( f )‖Cr,α (Rn) ≤ ‖ f‖Cr,α∗ (Ω) for every f ∈Cr,α
∗ (Ω). (16.17)

Thus, suppose that (16.16) and (16.17) hold true and let f ∈Cr,α(Ω). It is enough
to show that

f ∈Cr,α
∗ (Ω) and ‖ f‖Cr,α∗ (Ω) ≤C‖ f‖Cr,α (Ω) (16.18)

to have the claim. Since, in particular, f ∈Cr(Ω) =Cr∗(Ω), we have

E( f ) ∈Cr
0(R

n) and ‖E( f )‖Cr(Rn) ≤C‖ f‖Cr(Ω).

Let 0 ≤ m ≤ r− 1 and R ≥ 1/2 large enough so that Ω ⊂ BR. Using Proposi-
tion 16.10, we hence obtain

[∇m f ]C0,α (Ω) ≤ [∇mE( f )]C0,α (BR)
≤ 2R‖∇m+1E( f )‖C0(BR)

≤ 2RC‖ f‖Cr(Ω),

which directly implies (16.18) and shows the assertion.

Step 2.2 (Conclusion). For f ∈ Cr,α
∗
(
Ω
)

and x ∈ R
n, the desired extension is

given by

E( f )(x) = Λ+(x)
{

∑N
i=1 λi(x)Ei( fi)(x)

∑N
i=1 λ 2

i (x)

}
+Λ−(x) f (x),
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where Ei : Cr,α
∗ (Ω i)→ Cr,α(Rn) is the extension operator of Theorem 16.17 (see

also Remark 16.18(i)) applied to Ωi and fi : Ω i → R is defined by

fi =

{
λi f in Ω i∩Bεi(xi),

0 in Ω i\Bεi(xi).

Let us show that E( f ) is well defined and has all of the desired properties. We recall
that

g,h ∈Cr,α
∗ ⇒ gh ∈Cr,α

and

‖gh‖Cr,α ≤C‖g‖Cr,α∗ ‖h‖Cr,α∗ .

(i) First, we show that fi ∈Cr,α
∗ (Ω i) and, for an appropriate C =C(r,Ω),

‖ fi‖Cr,α∗ (Ω i)
≤C‖ f‖Cr,α∗ (Ω). (16.19)

— Since f ∈ Cr,α
∗ (Ω) and λi ∈ C∞(Rn), we immediately obtain, using (16.13),

that fi ∈Cr,α
∗ (Ω i∩Bεi(xi)) and that

‖ fi‖Cr,α∗ (Ω i∩Bεi (xi)) ≤C‖ f‖Cr,α∗ (Ω). (16.20)

— Then, recalling that supp(λi)⊂ Bεi−ε/4, we have that

supp( fi)⊂Ω i∩Bεi−ε/4 (16.21)

and, therefore, fi ∈Cr(Ω i) and

‖ fi‖Cr(Ω i)
≤C‖ f‖Cr(Ω).

— Finally, we show that fi ∈Cr,α
∗ (Ω i) and (16.19). For this, it is enough to show

that for every integer 0≤ m≤ r and every x,y ∈Ω i,

|∇m fi(x)−∇m fi(y)| ≤C‖ f‖Cr,α∗ (Ω)|x− y|α .

We only prove the assertion for x ∈ Ω i ∩Bεi−ε/4(xi) and y ∈ Ω i ∩ (Bεi(xi))
c, the

other cases being trivial since (16.20) and (16.21) hold. First, note that

|y− x| ≥ ε
4
.

Note also that any z ∈Ω i∩∂Bεi−ε/4(xi) verifies (cf. Step 1.1 for the definition of c)

|x− z| ≤ 2(εi− ε/4)≤ 2cε.
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Therefore, using (16.20) and (16.21), we find

|∇m fi(x)−∇m fi(y)| ≤ |∇m fi(x)−∇m fi(z)|+ |∇m fi(z)−∇m fi(y)|
= |∇m fi(x)−∇m fi(z)| ≤C‖ f‖Cr,α∗ (Ω)|x− z|α
≤C‖ f‖Cr,α∗ (Ω)(2cε)α ≤ 8cC‖ f‖Cr,α∗ (Ω)(ε/4)α

≤ 8cC‖ f‖Cr,α∗ (Ω)|x− y|α ,

which proves the assertion.

(ii) E is well defined in view of (16.15) and the fact that supp(Λ−)⊂Ω .

(iii) Since Λ++Λ− = λ0 = 1 in Ω and, for every 1≤ i≤N, λiEi( fi) = λ 2
i f in Ω ,

we obtain that
E( f ) = f in Ω .

(iv) By construction, supp(Λ+)⊂Ω +Bε/2 and supp(Λ−)⊂Ω ; we hence deduce
that

suppE( f )⊂Ω +Bε/2.

(v) Since Λ− ∈C∞
0 (R

n) with supp(Λ−)⊂Ω , we get that

Λ− f ∈C∞
0 (R

n) and ‖Λ− f‖Cr,α (Rn) ≤C‖ f‖Cr,α∗ (Ω).

(vi) Since, for 1≤ i≤ n,

fi ∈Cr,α
∗ (Ω i) and

Λ+

(∑N
i=1 λ 2

i )
,λi ∈C∞

0 (R
n)

and (cf. (16.3) and (16.19))

‖Ei( fi)‖Cr,α∗ (Rn) ≤C‖ f‖Cr,α∗ (Ω),

we easily have (using point (iv)) that E( f ) ∈Cr,α
0 (Rn) and

‖E( f )‖Cr,α (Rn) ≤C‖ f‖Cr,α∗ (Ω).

This concludes the proof of the theorem. ��

16.3 Compact Imbeddings

We now turn to the compactness of the imbeddings.

Theorem 16.22. Let Ω ⊂ R
n be a bounded open Lipschitz set. Let s ≥ r ≥ 0 be

integers and 0≤ α,β ≤ 1, with

r+α < s+β .
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Then the imbedding
Cs,β (Ω) ↪→Cr,α (Ω)

is compact.

Proof. Let { fν}ν∈N ⊂Cs,β (Ω) with ‖ fν‖Cs,β ≤C for all ν . We have to show that
we can extract a convergent subsequence in Cr,α (Ω) .

Step 1. We first assume r = s and thus α < β .
Step 1.1. We deal with the case r = s = 0. From the Ascoli–Arzela theorem we

find a subsequence, still denoted by fν , which converges to f in C0
(
Ω
)
. We now

show that [ f − fν ]C0,α also converges to 0. Since the convergence is trivial, with our
convention, when α = 0, we assume below that α > 0. Let δ > 0 and x �= y ∈ Ω
with |x− y| ≤ δ . Then

|( f − fν)(x)− ( f − fν)(y)|
|x− y|α = lim

μ→∞

|( fμ − fν)(x)− ( fμ − fν)(y)|
|x− y|α

≤ sup
μ
[ fμ − fν ]C0,β |x− y|β−α ≤ 2Cδ β−α .

We, moreover, have

|( f − fν)(x)− ( f − fν)(y)|
|x− y|α ≤ 2‖ f − fν‖C0δ−α if |x− y| ≥ δ .

For any given ε > 0, we can take δ > 0 so small that 2Cδ β−α ≤ ε. Using the
convergence in C0

(
Ω
)
, we can then take m ∈ N such that

2‖ f − fν‖C0δ−α ≤ ε for every ν ≥ m.

We therefore obtain that

[ f − fν ]C0,α ≤ ε for every ν ≥ m,

which concludes Step 1.1.
Step 1.2. We deal with the case r = s ≥ 1. Due to Corollary 16.13, the ‖ · ‖Cs,β

and the ‖ · ‖
Cs,β
∗

norms are equivalent. Therefore, ‖∇t fν‖C0,β is bounded for 0 ≤
t ≤ s. Appealing to Step 1.1 and extracting iteratively subsequences, we obtain gt ∈
C0,α(Ω ;Rnt )

such that

∇t fν → gt in C0,α (Ω) as ν → ∞ for every 0≤ t ≤ s.

Since we have uniform convergence in all derivatives, we find that gt = ∇tg0 and,
thus, fν converge to g0 in Cs,α .

Step 2. Consider the case r < s.
Step 2.1. We suppose r < s and β > 0. In view of Step 1, the imbedding

Cs,β (Ω) ↪→Cs,0 (Ω)
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is compact. From Corollary 16.13, we have that the imbedding

Cs,0 (Ω) ↪→Cr,α (Ω)
is continuous. So the composition of these two imbeddings is compact.

Step 2.2. Let now r < s and β = 0.

(i) We first assume s = r+1 and thus α < 1. Step 1 gives the compactness of the
imbedding

Cr,1 (Ω) ↪→Cr,α (Ω) .
Combining this with the continuity of the imbedding

Cr+1,0 (Ω) ↪→Cr,1 (Ω)
(cf. Corollary 16.13), we have the desired result.

(ii) It remains to deal with the case s > r+1 and β = 0, and thus s−1≥ r+α .
We use Step 1 to obtain the compactness of the imbedding

Cs−1,1 (Ω) ↪→Cs−1,0 (Ω)
and combine it with the continuous imbeddings (cf. Remark 16.14)

Cs,0 (Ω) ↪→Cs−1,1 (Ω) and Cs−1,0 (Ω) ↪→Cr,α (Ω) .
This concludes the proof of the theorem. ��

16.4 A Lower Semicontinuity Result

The following lower semicontinuity result (cf. Dacorogna [28]) has been used on
several occasions.

Proposition 16.23. Let r≥ 0 be an integer and 0<α ≤ 1. Let Ω ⊂R
n be a bounded

open Lipschitz set. Let R > 0 and

CR =
{

f ∈Cr,α (Ω) : ‖ f‖Cr,α ≤ R
}
.

Let { fν} ⊂CR be a sequence such that

fν → f in C0 (Ω) as ν → ∞;

then f ∈CR and
‖ f‖Cr,α ≤ liminf

ν→∞
‖ fν‖Cr,α .

Proof. First, define
L = liminf

ν→∞
‖ fν‖Cr,α
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and then choose a subsequence such that

L = lim
i→∞

‖ fνi‖Cr,α . (16.22)

From Theorem 16.22 we deduce that there is a further subsequence such that

fνi j
→ f in Cr (Ω) as j→ ∞. (16.23)

Finally, we let x,y ∈Ω and observe that

|∇r f (x)−∇r f (y)| ≤ 2
∥∥∥∇r fνi j

−∇r f
∥∥∥

C0
+
[
∇r fνi j

]
C0,α

|x− y|α .

Letting j→ ∞ and using (16.23), we get

[∇r f ]C0,α ≤ liminf
j→∞

[
∇r fνi j

]
C0,α

.

Combining the above inequality with (16.22), we have indeed obtained that

‖ f‖Cr,α ≤ L,

which is our claim. ��

16.5 Interpolation and Product

Throughout this section, we follow Hörmander [55].

16.5.1 Interpolation

We start with a preliminary result.

Proposition 16.24. Let Ω ⊂ R
n be a bounded open Lipschitz set and r ≥ 0 be an

integer. Then

‖ f‖Cr(Ω) ≤C

(
‖ f‖C0(Ω) + sup

x,y∈Ω
{|∇r f (x)−∇r f (y)|}

)

for some constant C =C(r,Ω).

As a immediate consequence of the previous proposition, we have the following
result.

Corollary 16.25. Let Ω ⊂ R
n be a bounded open Lipschitz set. Let r ≥ 0 be an

integer and 0≤ α ≤ 1. Then there exists a constant C =C(r,Ω) such that for every
f ∈Cr,α(Ω),
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‖ f‖Cr,α(Ω) ≤
⎧⎨
⎩

C
(
‖ f‖C0(Ω) + [∇r f ]C0,α(Ω)

)
if 0 < α ≤ 1

C
(
‖ f‖C0(Ω) +‖∇r f‖C0(Ω)

)
if α = 0.

In other words, the norms ‖·‖Cr,α and{
‖·‖C0 +[∇r·]C0,α if 0 < α ≤ 1
‖·‖C0 +‖∇r·‖C0 if α = 0

are equivalent.

We now proceed with the proof of Proposition 16.24.

Proof. Step 1. Since Ω is bounded and Lipschitz, we easily deduce the existence of
ε > 0 with the following property: For every x ∈Ω there exists x ∈Ω such that

[x,y]⊂Ω , for every y ∈ Bε(x). (16.24)

Note that the previous equation implies, in particular, that Bε(x)⊂Ω .

Step 2. Fix x ∈Ω . For every y∈ Bε(x) we consider the Taylor polynomial of f of
degree r at x, denoted by T r

x f (y); it is defined through the function (this is justified
by (16.24))

F (u) = f (x+u(y− x)) , u ∈ [0,1] ,

and it is given by

T r
x f (y) =

r

∑
k=0

1
k!

F(k) (0) .

Recalling that

F (1) =
r

∑
k=0

F(k) (0)
k!

+
∫ 1

0

(1−u)r−1

(r−1)!

[
F(r) (u)−F(r) (0)

]
du,

we obtain

f (y)−T r
x f (y) =

∫ 1

0

(1−u)r−1

(r−1)!

[
F(r) (u)−F(r) (0)

]
du.

We hence have

| f (y)−T r
x f (y)| ≤C1 sup

z∈Ω
{|∇r f (z)−∇r f (x)|},

which implies

|T r
x f (y)| ≤C1(‖ f‖C0 + sup

z∈Ω
{|∇r f (z)−∇r f (x)|}).
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We assert that the previous inequality, holding true for every y ∈ Bε(x), implies a
bound on all the coefficients (i.e., the derivatives of f at x up the order r) appearing
in T r

x f and thus proves the theorem. We will have the claim once the following
assertion is proved (cf. Step 3). If∣∣∣∣∣ ∑

0≤i1,...,in≤r
ai1···invi1

1 · · ·vin
n

∣∣∣∣∣≤ c for every vi ∈ [bi− ε,bi + ε], 1≤ i≤ n,

where (v1, . . . ,vn) = x− y and bi = xi− xi, then all the ai1···in verify

|ai1···in | ≤C c

for an appropriate constant C = C (r,ε,diamΩ) = C (r,Ω), recalling that ε only
depends on Ω . This will prove Step 2 and thus the proposition.

Step 3. We prove the above assertion. By induction it is easily seen that we can
restrict ourselves to the case n = 1. So we have to show that if∣∣∣∣∣

r

∑
i=0

aivi

∣∣∣∣∣≤ c for every v ∈ [b− ε,b+ ε] ,

then we have
|ai| ≤C c

for an appropriate constant C =C (r,ε,b) . This is easily achieved as follows. Define,
for 0≤ i≤ r,

ti = b− ε +
2εi
r
, a = (a0, . . . ,ar) ∈ R

r+1,

and B ∈ R
(r+1)×(r+1) by

B =

⎛
⎜⎜⎜⎜⎝

1 t0 t2
0 · · · tr

0

1 t1 t2
1 · · · tr

1
...

...
...

. . .
...

1 tr t2
r · · · tr

r

⎞
⎟⎟⎟⎟⎠ .

By hypothesis we have that |Ba| ≤ c. Moreover, using well-known properties of
Vandermonde matrices, we know that

detB = ∏
0≤i< j≤r

(t j− ti)> 0.

Therefore, since

a = B−1Ba =
(adjB)t

detB
Ba,

we immediately have the result. ��
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We next state and prove the main interpolation theorem.

Theorem 16.26. Let Ω ⊂ R
n be a bounded open Lipschitz set, s ≥ r ≥ t ≥ 0 be

integers and 0≤ α,β ,γ ≤ 1 with

t + γ ≤ r+α ≤ s+β .

Let λ ∈ [0,1] be such that

r+α = λ (s+β )+(1−λ )(t + γ) .

Then there exists a constant C =C (s,Ω)> 0 such that

‖ f‖Cr,α ≤C‖ f‖λ
Cs,β ‖ f‖1−λ

Ct,γ .

Proof. In view of Theorem 16.11, there is no loss of generality in assuming that Ω
is convex. We will also make in the proof of the theorem, and only here, an exception
to the convention

[ f ]C0,0 = 0.

Here, we will adopt that

[ f ]C0,0 = ‖ f‖C0 .

Step 1. We first prove that if k is an integer such that

t + γ ≤ k ≤ s≤ s+β ,

then there exists a constant C =C (s,Ω)> 0 such that∥∥∥∇k f
∥∥∥

C0
≤C
([

∇t f
]

C0,γ
+[∇s f ]

C0,β

)
. (16.25)

Replacing k by k− t, it is enough to prove the result when t = 0 (and, thus, γ ≤ k ≤
s≤ s+β ), namely ∥∥∥∇k f

∥∥∥
C0
≤C
(
[ f ]

C0,γ
+[∇s f ]

C0,β

)
. (16.26)

If γ = 0, then (16.26) is an immediate consequence of Proposition 16.24. It remains
to prove (16.26) when γ > 0. Then since in particular k > 0, we remark that all of the
terms in (16.26) remain unchanged if we add a constant to f . Therefore, it is enough
to establish (16.26) only for those f such that there exists x0 ∈ Ω with f (x0) = 0.
We hence deduce for every x ∈Ω ,

| f (x)| ≤ [ f ]
C0,γ
|x− x0|γ ,

and, thus, there exists a constant C2 =C2 (Ω)> 0 such that

‖ f‖C0 ≤C2 [ f ]
C0,γ

.
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Combining the previous equation with Proposition 16.24, we immediately obtain
the claim. This finishes Step 1.

Step 2. We next prove that

[∇r f ]C0,α ≤C
(
[∇s f ]C0,β +

[
∇t f
]

C0,γ

)λ [∇t f
]1−λ

C0,γ . (16.27)

Step 2.1. We first establish the inequality when

r ≤ t + γ ≤ r+α ≤ s+β ≤ r+1

and in fact we will establish a sharper form of the inequality, namely

[∇r f ]C0,α ≤C [∇s f ]λC0,β
[
∇t f
]1−λ

C0,γ .

Since the seminorms of C0,1 and C1 are the same (cf. Proposition 16.10), we can
infer from the above inequalities that t = r = s and 0≤ γ ≤ α ≤ β ≤ 1, with

α = λβ +(1−λ )γ.

If γ = α (and hence β = α), (16.27) is then trivial, so we assume that γ < α. Since

|∇t f (x)−∇t f (y)|
|x− y|α =

(
|∇t f (x)−∇t f (y)|

|x− y|β
)λ ( |∇t f (x)−∇t f (y)|

|x− y|γ
)1−λ

,

we deduce, recalling that t = s = r, that

[∇r f ]C0,α ≤ [∇s f ]λC0,β
[
∇t f
]1−λ

C0,γ

if γ > 0 and if γ = 0 that

[∇r f ]C0,α ≤ 2 [∇s f ]λC0,β

∥∥∇t f
∥∥1−λ

C0 = 2 [∇s f ]λC0,β
[
∇t f
]1−λ

C0,0 .

This establishes the sharper version of (16.27) under the assumptions of Step 2.1.

Step 2.2. We next prove (16.27) when α = 0 and thus

r = λ (s+β )+(1−λ )(t + γ)

and we have to show that

[∇r f ]C0,0 = ‖∇r f‖C0 ≤C
(
[∇s f ]C0,β +

[
∇t f
]

C0,γ

)λ [∇t f
]1−λ

C0,γ . (16.28)

If [∇s f ]
C0,β

≤ [∇t f ]
C0,γ

, the result follows from (16.25), since then

‖∇r f‖C0 ≤C1

([
∇t f
]

C0,γ
+[∇s f ]

C0,β

)
≤ 2C1

[
∇t f
]

C0,γ

= 2C1
[
∇t f
]λ

C0,γ

[
∇t f
]1−λ

C0,γ

≤ 2C1
(
[∇s f ]C0,β +

[
∇t f
]

C0,γ

)λ [∇t f
]1−λ

C0,γ .
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So we may assume that [∇t f ]
C0,γ < [∇s f ]

C0,β . Note that the strict inequality implies
that [∇t f ]

C0,γ �= 0, otherwise [∇s f ]
C0,β = 0 also. We fix x ∈ Ω and define for θ ∈

(0,1) and for y ∈Ω (recall that Ω is convex),

fθ (y) = f ((1−θ)x+θy) .

We immediately find that

‖∇r fθ‖C0 = θ r ‖∇r f‖C0 ,[
∇t fθ

]
C0,γ ≤ θ t+γ [∇t f

]
C0,γ and [∇s fθ ]C0,β ≤ θ s+β [∇s f ]C0,β .

We choose θ ∈ (0,1) such that

θ (s+β )−(t+γ) =
[∇t f ]

C0,γ

[∇s f ]
C0,β

< 1.

Invoking (16.25) applied to fθ , we get

θ r ‖∇r f‖C0 ≤C1

(
θ t+γ [∇t f

]
C0,γ +θ s+β [∇s f ]C0,β

)
= 2C1θ t+γ [∇t f

]
C0,γ = 2C1θ s+β [∇s f ]C0,β

= 2C1

(
θ s+β [∇s f ]C0,β

)λ (
θ t+γ [∇t f

]
C0,γ

)1−λ

≤ 2C1θ r ([∇s f ]C0,β +
[
∇t f
]

C0,γ

)λ [∇t f
]1−λ

C0,γ .

This achieves the proof of Step 2.2.

Step 2.3. We now consider the general case

r+α = λ (s+β )+(1−λ )(t + γ) .

Four cases can happen.

Case 1: r≤ t+γ ≤ r+α ≤ s+β ≤ r+1, which has already been dealt in Step 2.1.

Case 2: t + γ ≤ r ≤ r +α ≤ r + 1 ≤ s+ β . We combine three interpolations,
namely for r and r+1 between [t + γ,s+β ] and for r+α between [r,r+1] . More
precisely, we let

r+α = (1−α)r+α (r+1) ,

r = μ (s+β )+(1−μ)(t + γ) ,

r+1 = ν (s+β )+(1−ν)(t + γ) .

From Step 2.1, we have

[∇r f ]C0,α ≤C1 [∇r f ]1−α
C0,0

[
∇r+1 f

]α
C0,0 =C1 ‖∇r f‖1−α

C0

∥∥∇r+1 f
∥∥α

C0 ,
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whereas from Step 2.2, we get

‖∇r f‖C0 = [∇r f ]C0,0 ≤C2
(
[∇s f ]C0,β +

[
∇t f
]

C0,γ

)μ [∇t f
]1−μ

C0,γ ,∥∥∇r+1 f
∥∥

C0 =
[
∇r+1 f

]
C0,0 ≤C3

(
[∇s f ]C0,β +

[
∇t f
]

C0,γ

)ν [∇t f
]1−ν

C0,γ .

Combining the three inequalities, we have that (16.27) is valid under the hypotheses
of Case 2.

Case 3: t + γ ≤ r ≤ r+α ≤ s+β ≤ r+ 1. This is dealt with as in Case 2; it is
enough to interpolate r between [t + γ,s+β ] , r+α between [r,s+β ] and combine
the results.

Case 4: r ≤ t + γ ≤ r +α ≤ r + 1 ≤ s+ β . We also proceed as in Case 2 and
interpolate r+1 between [t + γ,s+β ] and r+α between [t + γ,r+1] .

Thus, Step 2 is established.

Step 3. We are now in a position to conclude. We trivially have

‖ f‖C0 = ‖ f‖λ
C0 ‖ f‖1−λ

C0 ≤ ‖ f‖λ
Cs,β ‖ f‖1−λ

Ct,γ . (16.29)

We immediately deduce from (16.27) that

[∇r f ]C0,α ≤C1
(‖ f‖Cs,β +‖ f‖Ct,γ

)λ ‖ f‖1−λ
Ct,γ ,

which combined with Proposition 16.10 (or Corollary 16.13) leads to

[∇r f ]C0,α ≤C2 ‖ f‖λ
Cs,β ‖ f‖1−λ

Ct,γ .

Finally, combining the above inequality with Corollary 16.25 and (16.29), we have
the result, namely

‖ f‖Cr,α ≤C3 (‖ f‖C0 +[∇r f ]C0,α )≤C‖ f‖λ
Cs,β ‖ f‖1−λ

Ct,γ .

This concludes the proof of the theorem. ��

We have as an immediate corollary the following.

Corollary 16.27. Let Ω ⊂ R
n be a bounded open Lipschitz set, s ≥ r ≥ k ≥ 1 be

integers and 0 ≤ α,β ≤ 1. Then there exists a constant C = C (s,Ω) > 0 such
that

‖ f‖Cr,α ‖g‖Cs,β ≤C
[‖ f‖Cr−k,α ‖g‖Cs+k,β +‖g‖Cr−k,α ‖ f‖Cs+k,β

]
.

Proof. Set

λ =
(s+β )− (r− k+α)

(s+ k+β )− (r− k+α)
∈ [0,1] .
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Note that

λ (r− k+α)+(1−λ )(s+ k+β ) = r+α,

λ (s+ k+β )+(1−λ )(r− k+α) = s+β .

Appealing to Theorem 16.26, we get

‖ f‖Cr,α ‖g‖Cs,β ≤C1

[
‖ f‖λ

Cr−k,α ‖ f‖1−λ
Cs+k,β

]
·C1

[
‖g‖λ

Cs+k,β ‖g‖1−λ
Cr−k,α

]
≤C2

[‖ f‖Cr−k,α ‖g‖Cs+k,β
]λ · [‖ f‖Cs+k,β ‖g‖Cr−k,α

]1−λ

≤C2
[‖ f‖Cr−k,α ‖g‖Cs+k,β +‖g‖Cr−k,α ‖ f‖Cs+k,β

]
and thus the corollary. ��

16.5.2 Product and Quotient

From the previous results we deduce the following inequality.

Theorem 16.28. Let Ω ⊂R
n be a bounded open Lipschitz set, r ≥ 0 an integer and

0≤ α ≤ 1. Then there exists a constant C =C (r,Ω)> 0 such that

‖ f g‖Cr,α ≤C (‖ f‖Cr,α ‖g‖C0 +‖ f‖C0 ‖g‖Cr,α ) .

Proof. Step 1. We start with the case r = 0. If α = 0, the result is trivial, so we
assume that α > 0. We first observe that

[ f g]C0,α = sup
x,y∈Ω

x �=y

{ |( f (x)− f (y))g(x)+ f (y)(g(x)−g(y))|
|x− y|α

}

≤ ‖g‖C0 [ f ]C0,α +‖ f‖C0 [g]C0,α

and hence the claim follows, since

‖ f g‖C0,α = ‖ f g‖C0 +[ f g]C0,α .

Step 2. We then proceed by induction on r. Observe that from Corollary 16.27,
we have

‖ f‖C1 ‖g‖Cr−1,α ≤C1 (‖ f‖C0 ‖g‖Cr,α +‖ f‖Cr,α ‖g‖C0) ,

‖ f‖Cr−1,α ‖g‖C1 ≤C2 (‖ f‖C0 ‖g‖Cr,α +‖ f‖Cr,α ‖g‖C0) .

We now use the hypothesis of induction to find

‖∇( f g)‖Cr−1,α ≤C3 (‖∇ f‖Cr−1,α ‖g‖C0 +‖∇ f‖C0 ‖g‖Cr−1,α )

+C3 (‖ f‖Cr−1,α ‖∇g‖C0 +‖ f‖C0 ‖∇g‖Cr−1,α ) ,
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which, combined with the above estimates, leads to

‖∇( f g)‖Cr−1,α ≤C4 (‖ f‖C0 ‖g‖Cr,α +‖ f‖Cr,α ‖g‖C0) .

Since
‖ f g‖Cr,α = ‖ f g‖C0 +‖∇( f g)‖Cr−1,α ,

we have indeed established the theorem. ��

As a corollary, we have the following proposition.

Proposition 16.29. Let Ω ⊂ R
n be a bounded open Lipschitz set, r ≥ 0 an integer

and 0≤ α ≤ 1. Let f ∈Cr,α (Ω) be such that

f (x)≥ f0 > 0, ∀x ∈Ω .

Then there exists a constant C =C (r,Ω)> 0 such that∥∥∥∥ 1
f

∥∥∥∥
Cr,α

≤C
‖ f‖r

C0

f r+2
0

‖ f‖Cr,α .

In particular, if there exists a constant c > 0 so that∥∥∥∥ 1
f

∥∥∥∥
C0

, ‖ f‖C0 ≤ c,

then there exists a constant C =C (c,r,Ω)> 0 such that∥∥∥∥ 1
f

∥∥∥∥
Cr,α

≤C‖ f‖Cr,α .

Proof. Step 1. We start with the case r = 0. If α = 0, the result below is trivial, so
we assume that α > 0. We have∥∥∥∥ 1

f

∥∥∥∥
C0,α

=

∥∥∥∥ 1
f

∥∥∥∥
C0

+

[
1
f

]
C0,α

≤ 1
f0
+ sup

x,y∈Ω
x �=y

⎧⎨
⎩
∣∣∣ 1

f (x) − 1
f (y)

∣∣∣
|x− y|α

⎫⎬
⎭

and thus ∥∥∥∥ 1
f

∥∥∥∥
C0,α

≤ 1
f0
+

1
f 2
0

sup
x,y∈Ω

x �=y

{ | f (x)− f (y)|
|x− y|α

}
=

1
f 2
0
( f0 +[ f ]C0,α )

≤ 1
f 2
0
(‖ f‖C0 +[ f ]C0,α ) =

1
f 2
0
‖ f‖C0,α ,

as wished.
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Step 2. We then proceed by induction and assume the result for (r−1) and prove
it for r. We have, appealing to Theorem 16.28,∥∥∥∥ 1

f

∥∥∥∥
Cr,α

=

∥∥∥∥ 1
f

∥∥∥∥
C0

+

∥∥∥∥∇ f
f 2

∥∥∥∥
Cr−1,α

≤ 1
f0
+C1 ‖∇ f‖Cr−1,α

1
f 2
0
+C1 ‖∇ f‖C0

1
f0

∥∥∥∥ 1
f

∥∥∥∥
Cr−1,α

.

Using the hypothesis of induction, we find∥∥∥∥ 1
f

∥∥∥∥
Cr,α

≤ 1
f0
+C1 ‖ f‖Cr,α

1
f 2
0
+C2 ‖ f‖C1

1
f0

‖ f‖r−1
C0

f r+1
0

‖ f‖Cr−1,α

≤ C3

f r+2
0

(
f r+1
0 + f r

0 ‖ f‖Cr,α +‖ f‖r−1
C0 ‖ f‖C1 ‖ f‖Cr−1,α

)
.

We next invoke Corollary 16.27 to get that

‖ f‖C1 ‖ f‖Cr−1,α ≤C4 ‖ f‖C0 ‖ f‖Cr,α

and we hence obtain∥∥∥∥ 1
f

∥∥∥∥
Cr,α

≤ C5

f r+2
0

(
f r+1
0 + f r

0 ‖ f‖Cr,α +‖ f‖r
C0 ‖ f‖Cr,α

)
≤C

‖ f‖r
C0

f r+2
0

‖ f‖Cr,α .

Thus, the proposition is proved. ��

Finally, the above proposition, combined with Theorem 16.28, leads to the fol-
lowing corollary for the inverse of matrices.

Corollary 16.30. Let Ω ⊂R
n be a bounded open Lipschitz set, r≥ 0 an integer and

0≤ α ≤ 1. Let A ∈Cr,α (Ω ;Rn×n
)

and c > 0 be such that∥∥∥∥ 1
detA

∥∥∥∥
C0

, ‖A‖C0 ≤ c.

Then there exists a constant C =C (c,r,Ω)> 0 such that∥∥A−1∥∥
Cr,α ≤C‖A‖Cr,α .

In particular, if there exists a constant c > 0 so that

‖A‖C0 ,
∥∥A−1∥∥

C0 ≤ c,

then there exists a constant C =C (c,r,Ω)> 0 such that∥∥A−1∥∥
Cr,α ≤C‖A‖Cr,α .
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16.6 Composition and Inverse

16.6.1 Composition

We follow here Hörmander [55]. We start with the composition of two Hölder con-
tinuous functions.

Theorem 16.31. Let Ω ⊂ R
n, O ⊂ R

m be bounded open Lipschitz sets, r ≥ 0 an
integer and 0≤ α,β ≤ 1. Let g ∈Cr,α (O) . If r = 0 and f ∈C0,β (Ω ;O

)
, then

‖g◦ f‖C0,αβ (Ω) ≤ ‖g‖C0,α(O) ‖ f‖α
C0,β (Ω) +‖g‖C0(O) .

If r ≥ 1 and f ∈Cr,α (Ω ;O
)
, then there exists a constant C =C (r,Ω ,O) > 0 such

that

‖g◦ f‖Cr,α(Ω) ≤C
[
‖g‖Cr,α(O) ‖ f‖r+α

C1(Ω)
+‖g‖C1(O) ‖ f‖Cr,α(Ω) +‖g‖C0(O)

]
.

Proof. In the sequel, we remove the dependence on the sets Ω and O, since this
dependence will be clear from the context. We will use several times that the C1

norm is equivalent to the C0,1 norm (cf. Corollary 16.13).
Step 1. We start with the case r = 0. If α = 0 or if β = 0, then the result is trivial

since
‖g◦ f‖C0,0 = ‖g◦ f‖C0 ≤ ‖g‖C0 .

So we assume that r = 0 < α,β ≤ 1. We therefore have, since g ∈C0,α (O) ,
|g( f (x))−g( f (y))| ≤ [g]C0,α | f (x)− f (y)|α ≤ [g]C0,α

[
[ f ]C0,β |x− y|β

]α

and hence the claim

‖g◦ f‖C0,αβ ≤ ‖g‖C0,α ‖ f‖α
C0,β +‖g‖C0 .

Step 2. We next discuss the case r = 1 and 0 < α ≤ 1, the case α = 0 being
already settled in Step 1 (just take α = β = 1). We have, by definition,

‖g◦ f‖C1,α = ‖g◦ f‖C0 +‖∇(g◦ f )‖C0,α .

Since

‖∇(g◦ f )‖C0,α = ‖(∇g◦ f )∇ f‖C0,α ,

we have, by Step 1 and by Theorem 16.28,

‖∇(g◦ f )‖C0,α ≤C1 ‖∇g◦ f‖C0,α ‖∇ f‖C0 +C1 ‖∇g◦ f‖C0 ‖∇ f‖C0,α

≤C2
[‖g‖C1,α ‖ f‖α

C1 +‖g‖C1
]‖ f‖C1 +C2 ‖g‖C1 ‖ f‖C1,α
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and hence our claim,

‖g◦ f‖C1,α ≤C
[
‖g‖C1,α ‖ f‖1+α

C1 +‖g‖C1 ‖ f‖C1,α +‖g‖C0

]
.

Step 3. We proceed by induction on r ≥ 2. We write

‖g◦ f‖Cr,α = ‖g◦ f‖C0 +‖∇(g◦ f )‖Cr−1,α

= ‖g◦ f‖C0 +‖(∇g◦ f )∇ f‖Cr−1,α .

We use the hypothesis of induction and Theorem 16.28 to get

‖(∇g◦ f )∇ f‖Cr−1,α

≤C1 ‖∇g◦ f‖Cr−1,α ‖∇ f‖C0 +C1 ‖∇g◦ f‖C0 ‖∇ f‖Cr−1,α

≤C2

[
‖∇g‖Cr−1,α ‖ f‖(r−1)+α

C1 +‖∇g‖C1 ‖ f‖Cr−1,α +‖∇g‖C0

]
‖ f‖C1

+C2 ‖g‖C1 ‖ f‖Cr,α .

We therefore find

‖g◦ f‖Cr,α ≤ ‖g‖C0 +C2 ‖g‖Cr,α ‖ f‖r+α
C1 +C2 ‖g‖C2 ‖ f‖Cr−1,α ‖ f‖C1

+C3 ‖g‖C1 ‖ f‖Cr,α . (16.30)

In order to conclude, it is enough to estimate

‖g‖C2 ‖ f‖Cr−1,α ‖ f‖C1 .

We use Theorem 16.26 to get

‖g‖C2 ≤C4 (‖g‖C1)
r−2+α
r−1+α (‖g‖Cr,α )

1
r−1+α ,

‖ f‖Cr−1,α ≤C4 (‖ f‖Cr,α )
r−2+α
r−1+α (‖ f‖C1)

1
r−1+α

and thus

‖g‖C2 ‖ f‖Cr−1,α ‖ f‖C1 ≤C5 (‖g‖C1 ‖ f‖Cr,α )
r−2+α
r−1+α

(‖g‖Cr,α ‖ f‖r+α
C1

) 1
r−1+α

≤C6
[‖g‖C1 ‖ f‖Cr,α +‖g‖Cr,α ‖ f‖r+α

C1

]
. (16.31)

Combining (16.30) and (16.31), we have the claim. ��

16.6.2 Inverse

We easily deduce, from the previous results, an estimate on the inverse.
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Theorem 16.32. Let Ω ,O⊂R
n be bounded open Lipschitz sets, r≥ 1 be an integer

and 0≤ α ≤ 1. Let c > 0. Let f ∈Cr,α (Ω ;O
)

and g ∈Cr,α (O;Ω
)

be such that

g◦ f = id and ‖g‖C1(O) ,‖ f‖C1(Ω) ≤ c.

Then there exists a constant C =C (c,r,Ω ,O)> 0 such that

‖ f‖Cr,α(Ω) ≤C‖g‖Cr,α(O) .

Proof. Step 1. Since g◦ f = id, we obtain

‖id‖C0 = ‖g◦ f‖C0 ≤ ‖g‖C0

and, hence, combining with the fact that ‖ f‖C1 ≤ c, we find that there exists a con-
stant C1 =C1 (c,Ω)> 0 such that

‖ f‖C0 ≤ ‖ f‖C1 ≤ c =
c

‖id‖C0
‖id‖C0 ≤ c

‖id‖C0
‖g‖C0 =C1 ‖g‖C0 .

Step 2. Appealing to Corollary 16.30, we get that there exists a constant C2 =
C2 (c,r,Ω)> 0 such that

‖∇ f‖Cr−1,α ≤C2 ‖∇g◦ f‖Cr−1,α . (16.32)

Therefore, the case r = 1 is immediate, invoking Theorem 16.31, since we then have

‖∇ f‖C0,α ≤C2 ‖∇g◦ f‖C0,α ≤C3 [‖∇g‖C0,α +‖∇g‖C0 ]≤C‖g‖C1,α ,

which, combined with Step 1, gives the claim.

Step 3. We now proceed by induction and apply Theorem 16.31 to (16.32). We
find

‖∇ f‖Cr−1,α ≤C2 ‖∇g◦ f‖Cr−1,α

≤C3 [‖∇g‖Cr−1,α +‖∇g‖C1 ‖ f‖Cr−1,α +‖∇g‖C0 ]

and therefore, appealing to Step 1 and to the above inequality,

‖ f‖Cr,α ≤C4 [‖g‖Cr,α +‖g‖C2 ‖ f‖Cr−1,α ] .

Applying the hypothesis of induction, we deduce that

‖ f‖Cr,α ≤C5 [‖g‖Cr,α +‖g‖C2 ‖g‖Cr−1,α ] . (16.33)

From Corollary 16.27, we get that

‖g‖C2 ‖g‖Cr−1,α ≤C6 ‖g‖Cr,α
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and, thus, combining with (16.33), we have the claim

‖ f‖Cr,α ≤C‖g‖Cr,α .

This concludes the proof of the theorem. ��

16.6.3 A Further Result

Finally, the next result (cf. Rivière and Ye [85]) has been explicitly used in Theo-
rem 12.4.

Lemma 16.33. Let r ≥ 1 be an integer, 0 ≤ α ≤ 1, Ω ⊂ R
n be a bounded open

Lipschitz set, g ∈Cr,α(Ω) and u ∈Cr,α(Ω ;Ω). Then for every x,y ∈Ω , there exists
a constant C =C(r,Ω) such that

|∇r(g◦u)(x)−∇r(g◦u)(y)| ≤C‖∇g‖C0‖u− id‖Cr,α |x− y|α
+C‖g‖Cr,α‖u− id‖C1(1+‖u‖r+α

C1 )|x− y|α
+C |∇rg(u(x))−∇rg(u(y))| .

Remark 16.34. The estimate implies the following inequality:

[∇r(g◦u)]C0,α ≤C [(∇rg)◦u]C0,α +C‖g‖C1‖u− id‖Cr,α

+C‖g‖Cr,α (1+‖u‖r+α
C1 )‖u− id‖C1 .

Note, however, that the lemma is more precise.

Proof. We prove the lemma by induction. We split the proof into two steps. In the
sequel, C1,C2, . . . will denote generic constants depending on r and Ω . We will use
several times that the C1 norm is equivalent to the C0,1 norm (cf. Corollary 16.13).

Step 1 (the case r = 1). We show the result when r = 1. Let x,y ∈Ω . We obtain

|∇(g◦u)(x)−∇(g◦u)(y)|= |∇g(u(x)) ·∇u(x)−∇g(u(y)) ·∇u(y)|
= |∇g(u(x)) · [∇u(x)−∇u(y)]

− [∇g(u(y))−∇g(u(x))] ·∇u(y)|

and thus

|∇(g◦u)(x)−∇(g◦u)(y)|
≤ ‖∇g‖C0 |∇u(x)−∇u(y)|+‖∇u‖C0 |∇g(u(y))−∇g(u(x))|
= ‖∇g‖C0 |∇(u− id)(x)−∇(u− id)(y)|+‖∇u‖C0 |∇g(u(y))−∇g(u(x))|
≤ ‖∇g‖C0‖u− id‖C1,α |x− y|α +‖∇u‖C0 |∇g(u(y))−∇g(u(x))| .
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Since the first term of the previous sum has the desired form, it is enough to estimate
the second one. We obtain

‖∇u‖C0 |∇g(u(x))−∇g(u(y))|
≤ (‖u− id‖C1 +1) |∇g(u(x))−∇g(u(y))|
≤C1‖u− id‖C1‖g‖C1,α‖u‖α

C1 |x− y|α + |∇g(u(x))−∇g(u(y))|
≤C1‖u− id‖C1‖g‖C1,α (1+‖u‖1+α

C1 )|x− y|α + |∇g(u(x))−∇g(u(y))| .

Since both terms on the right-hand side of the previous inequality have the desired
form, Step 1 is shown.

Step 2 (induction). Assume that the result holds true for r−1 and let us show it
for r ≥ 2. We have to establish that for every x,y ∈Ω ,

|∇r(g◦u)(x)−∇r(g◦u)(y)|
≤C‖∇g‖C0‖u− id‖Cr,α |x− y|α
+C‖g‖Cr,α‖u− id‖C1(1+‖u‖r+α

C1 )|x− y|α
+C |∇rg(u(x))−∇rg(u(y))| . (16.34)

Let x,y ∈Ω . We write

|∇r(g◦u)(x)−∇r(g◦u)(y)|= ∣∣∇r−1[∇(g◦u)](x)−∇r−1[∇(g◦u)](y)
∣∣

=
∣∣∇r−1[∇g◦u ·∇u](x)−∇r−1[∇g◦u ·∇u](y)

∣∣
and therefore get

|∇r(g◦u)(x)−∇r(g◦u)(y)|
≤ ∣∣∇r−1[∇g◦u ·∇(u− id)](x)−∇r−1[∇g◦u ·∇(u− id)](y)

∣∣
+
∣∣∇r−1[∇g◦u](x)−∇r−1[∇g◦u](y)

∣∣ .
Hence, using the induction hypothesis, we obtain

|∇r(g◦u)(x)−∇r(g◦u)(y)|
≤ ‖∇g◦u ·∇(u− id)‖Cr−1,α |x− y|α +C3‖∇∇g‖C0‖u− id‖Cr−1,α |x− y|α
+C3‖∇g‖Cr−1,α‖u− id‖C1(1+‖u‖r−1+α

C1 )|x− y|α
+C3 |∇rg(u(x))−∇rg(u(y))| .

We now estimate separately each of the four terms of the previous inequality and
show that they have the same form as the right-hand side of (16.34). Noticing first
that the fourth term has already the desired form, it is enough to estimate the first
three terms.

1) Estimate of ‖∇g ◦ u ·∇(u− id)‖Cr−1,α |x− y|α . Using Theorems 16.28 and
16.31, we obtain
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‖∇g◦u ·∇(u− id)‖Cr−1,α |x− y|α
≤C4 (‖∇g◦u‖C0‖∇(u− id)‖Cr−1,α +‖∇g◦u‖Cr−1,α‖∇(u− id)‖C0) |x− y|α
≤C5‖∇g‖C0‖u− id‖Cr,α |x− y|α

+C6‖u− id‖C1

[
‖∇g‖Cr−1,α‖u‖r−1+α

C1 +‖∇g‖C1‖u‖Cr−1,α +‖∇g‖C0

]
|x− y|α

and thus

‖∇g◦u ·∇(u− id)‖Cr−1,α |x− y|α

≤C5‖∇g‖C0‖u− id‖Cr,α |x− y|α

+C7‖u− id‖C1‖g‖Cr,α (1+‖u‖r+α
C1 )|x− y|α

+C6‖u− id‖C1‖∇g‖C1‖u‖Cr−1,α |x− y|α .

Since the first two terms of the last sum have the desired form, it is enough to
estimate the last term. We have

‖u− id‖C1‖∇g‖C1‖u‖Cr−1,α |x− y|α
≤ ‖u− id‖C1‖∇g‖C1‖u− id‖Cr−1,α |x− y|α +C8‖u− id‖C1‖∇g‖C1 |x− y|α
≤ ‖u− id‖C1‖∇g‖C1‖u− id‖Cr−1,α |x− y|α +C8‖u− id‖C1‖g‖Cr,α |x− y|α .

The last term of the previous sum having the desired form, it remains to estimate the
first term. Using Theorem 16.26, we get, letting λ = 1/(r−1+α),

‖u− id‖Cr−1,α ≤C9(‖u− id‖Cr,α )1−λ (‖u− id‖C1)λ , (16.35)

‖∇g‖C1 ≤C9(‖∇g‖Cr−1,α )λ (‖∇g‖C0)1−λ . (16.36)

Therefore, using (16.35) and (16.36), we obtain

‖u− id‖C1‖u− id‖Cr−1,α‖∇g‖C1 |x− y|α

≤C9‖u− id‖C1 (‖u− id‖Cr,α‖∇g‖C0)
1−λ (‖u− id‖C1‖∇g‖Cr−1,α )

λ |x− y|α

=C9 (‖u− id‖Cr,α‖∇g‖C0)
1−λ
(
‖u− id‖

1
λ +1
C1 ‖∇g‖Cr−1,α

)λ
|x− y|α

≤C9

(
‖u− id‖Cr,α‖∇g‖C0 +‖u− id‖r+α

C1 ‖g‖Cr,α

)
|x− y|α ,

where we have used the fact that 1/λ +1 = r+α. The assertion is proved since the
two terms of the last inequality have the desired form.

2) Estimate of ‖∇∇g‖C0‖u− id‖Cr−1,α |x− y|α . Combining (16.35) and (16.36),
we obtain

‖u− id‖Cr−1,α‖∇g‖C1 ≤C9 (‖u− id‖Cr,α‖∇g‖C0 +‖u− id‖C1‖∇g‖Cr−1,α )
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and thus

‖∇∇g‖C0‖u− id‖Cr−1,α |x− y|α ≤ ‖∇g‖C1‖u− id‖Cr−1,α |x− y|α
≤C9 [‖∇g‖C0‖u− id‖Cr,α +‖∇g‖Cr−1,α‖u− id‖C1 ] |x− y|α .

The assertion is proved since the two terms of the last inequality have the desired
form.

3) Estimate of ‖∇g‖Cr−1,α‖u− id‖C1(1+‖u‖r−1+α
C1 )|x− y|α . We get

‖∇g‖Cr−1,α‖u− id‖C1(1+‖u‖r−1+α
C1 )|x− y|α

≤C10‖g‖Cr,α‖u− id‖C1(1+‖u‖r+α
C1 )|x− y|α .

This concludes the proof. ��

16.7 Difference of Composition

We often need to estimate the difference of two functions that are obtained through
composition, namely

‖g◦u−g◦ v‖Cr,α .

This has been used in our study of the pullback equation. We will give several the-
orems, following Bandyopadhyay and Dacorogna [8]. At first glance, one would
think that the above quantity can be estimated, in a continuous way, in terms of
‖g‖Cr,α and ‖u− v‖Cr,α . This is, in general, impossible if 0 < α < 1, as will be seen
in the example below; one needs to consider higher norms ‖g‖Cs,β with

r+α < s+β .

We will consider three theorems. The first and easiest one is when s = r + 1 and
β = α, the second one is when s = r and 0≤ α < β ≤ 1 and the third one is when
s = r+1 and 0≤ β < α ≤ 1.

Example 16.35. Let r ≥ 0 be an integer and 0 < α < 1. Let g ∈ Cr,α ([0,2]) be
given by

g(x) = xr+α .

Let, for ε ,x ∈Ω = [0,1] ,

u(x) = x+ ε and v(x) = x.

Note that for every integer t ≥ 0 and every 0≤ γ ≤ 1,

‖u− v‖Ct,γ = ε.

It is easily proved that

‖g◦u−g◦ v‖Cr,α �→ 0 as ε → 0.
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We show this for r = 0 (the general case is proved similarly). It is enough to observe
that

λε (x) =
[g(v(x))−g(u(x))]− [g(v(0))−g(u(0))]

|x|α =
|x|α + εα −|x+ ε|α

|x|α

does not tend uniformly to 0 as ε → 0. Indeed, choosing x = tε for any t > 0, we
have the claim.

Before starting our analysis, we recall, from Theorem 16.31, that if 0 ≤ α ≤ 1
and ‖u‖C1 ≤ c, then

‖g◦u‖C0,α ≤C‖g‖C0,α (16.37)

if r = 0, whereas if r ≥ 1, then

‖g◦u‖Cr,α ≤C‖g‖Cr,α +C‖g‖C1 ‖u‖Cr,α . (16.38)

16.7.1 A First Result

We start with the easiest case.

Theorem 16.36. Let Ω ⊂R
n and O⊂R

m be bounded open Lipschitz sets. Let r≥ 0
be an integer and 0 ≤ α ≤ 1. Let c > 0, g ∈ Cr+1,α (O) and u,v ∈ Cr,α (Ω ;O

)∩
C1
(
Ω ;O

)
, with

‖u‖C1(Ω) ,‖v‖C1(Ω) ≤ c.

Then there exists C =C (c,r,Ω ,O)> 0 so that if r = 0,

‖g◦u−g◦ v‖C0,α(Ω) ≤C‖g‖C1,α(O) ‖u− v‖C0(Ω) +C‖g‖C1(O) ‖u− v‖C0,α(Ω) ,

whereas, when r ≥ 1,

‖g◦u−g◦ v‖Cr,α(Ω)

≤C‖g‖Cr+1,α(O) ‖u− v‖C0(Ω)

+C‖g‖C2(O)

[
‖u‖Cr,α(Ω) +‖v‖Cr,α(Ω)

]
‖u− v‖C0(Ω)

+C‖g‖C1(O) ‖u− v‖Cr,α(Ω) .

Proof. In view of Theorem 16.11, we can assume that Ω is convex. We write

g◦u−g◦ v =
∫ 1

0

d
dt

[g(v+ t (u− v))]dt

=
∫ 1

0
〈∇g(v+ t (u− v));u− v〉dt
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and deduce, from Theorem 16.28, that

‖g◦u−g◦ v‖Cr,α ≤C1 ‖u− v‖C0

∫ 1

0
‖∇g(v+ t (u− v))‖Cr,α dt

+C1 ‖u− v‖Cr,α

∫ 1

0
‖∇g(v+ t (u− v))‖C0 dt.

We first deal with the case r = 0. We have from (16.37) and since ‖u‖C1 ,‖v‖C1 ≤ c
that

‖g◦u−g◦ v‖C0,α ≤C2 ‖u− v‖C0 ‖∇g‖C0,α +C2 ‖u− v‖C0,α ‖∇g‖C0 ,

which is our claim. We then discuss the case r ≥ 1. Appealing to (16.38) and to the
fact that ‖u‖C1 ,‖v‖C1 ≤ c, we get

‖g◦u−g◦ v‖Cr,α

≤C2 ‖u− v‖C0 [‖∇g‖Cr,α +‖∇g‖C1 (‖u‖Cr,α +‖v‖Cr,α )]

+C2 ‖u− v‖Cr,α ‖∇g‖C0

and thus the result. ��

16.7.2 A Second Result

Before going to our next results, we need the following lemma.

Lemma 16.37. Let Ω ⊂ R
n and O ⊂ R

m be bounded open Lipschitz sets. Let s ≥
r ≥ 1 be integers and 0≤ α,β ≤ 1 with

r+α < s+β ≤ r+1+α.

Let c > 0, g ∈Cs,β (O) and u,v ∈Cr,α (Ω ;O
)
, with

‖u‖C1(Ω), ‖v‖C1(Ω) ≤ c.

If r = 1, then there exists C =C (c,Ω ,O)> 0 such that

‖∇(g◦u)−∇(g◦ v)‖C0,α(Ω)

≤C‖∇g◦u−∇g◦ v‖C0,α(Ω) +C‖g‖C1(O) ‖u− v‖C1,α(Ω)

+C‖g‖Cs,β (O)

(
1+min

{
‖u‖C1,α(Ω) ,‖v‖C1,α(Ω)

})
‖u− v‖(s+β )−(1+α)

C0(Ω)
.
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If r ≥ 2, then there exists C =C (c,r,Ω ,O)> 0 so that

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α(Ω)

≤C‖∇g◦u−∇g◦ v‖Cr−1,α(Ω)

+C‖g‖C1(O) ‖u− v‖Cr,α(Ω) +C‖g‖Cs,β (O) ‖u− v‖(s+β )−(r+α)

C0(Ω)

+C‖g‖C2(O)

[
‖u‖Cr,α(Ω) +‖v‖Cr,α(Ω)

]
‖u− v‖C0(Ω) .

Remark 16.38. Note that the proof gives that the lemma is also valid in the limit case
when s = r+1, α = 1 and β = 0.

Proof. Step 1. We start with a preliminary computation. We prove that for every
r ≥ 1 and 0≤ α,β ≤ 1, with

r+α < s+β ≤ r+1+α,

we can find a constant C =C (c,r,Ω)> 0 such that

‖g‖Cr,α ‖u− v‖C1 ≤C‖g‖Cs,β ‖u− v‖(s+β )−(r+α)

C0 +C‖g‖C1 ‖u− v‖Cr,α .

We divide the proof into two cases.

Case 1: s = r and, therefore, 0≤ α < β ≤ 1. Observe that since

0 < θ =
(β −α)(r+α)

r+β −1
≤ 1

and ‖u‖C1 ,‖v‖C1 ≤ c, we have

‖u− v‖C1 ≤C1 ‖u− v‖θ
C1 ,

and thus, by interpolation,

‖u− v‖C1 ≤C2

(
‖u− v‖

1
r+α
Cr,α ‖u− v‖

r+α−1
r+α

C0

)θ

=C2 ‖u− v‖
β−α

r+β−1
Cr,α ‖u− v‖

(β−α)(r+α−1)
r+β−1

C0 .

Using again an interpolation, we have

‖g‖Cr,α ≤C3 ‖g‖
r+α−1
r+β−1

Cr,β ‖g‖
β−α

r+β−1

C1 .

Combining the two estimates, we get

‖g‖Cr,α ‖u− v‖C1 ≤C4

(
‖g‖Cr,β ‖u− v‖β−α

C0

) r+α−1
r+β−1

(‖g‖C1 ‖u− v‖Cr,α )
β−α

r+β−1

≤C5 ‖g‖Cr,β ‖u− v‖β−α
C0 +C5 ‖g‖C1 ‖u− v‖Cr,α ,

as wished.
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Case 2: s = r+ 1 and, therefore, 0 ≤ β ≤ α ≤ 1. We proceed in a very similar
way. We first note that since

0≤ θ =
(1+β −α)(r+α)

r+β
≤ 1

and ‖u‖C1 ,‖v‖C1 ≤ c, we obtain

‖u− v‖C1 ≤C1 ‖u− v‖θ
C1

and hence, by interpolation,

‖u− v‖C1 ≤C2

(
‖u− v‖

1
r+α
Cr,α ‖u− v‖

r+α−1
r+α

C0

)θ

=C2 ‖u− v‖
1+β−α

r+β
Cr,α ‖u− v‖

(1+β−α)(r+α−1)
r+β

C0 .

Interpolating once more, we have

‖g‖Cr,α ≤C3 ‖g‖
r+α−1

r+β
Cr+1,β ‖g‖

1+β−α
r+β

C1 .

Combining the two estimates, we deduce

‖g‖Cr,α ‖u− v‖C1 ≤C4

(
‖g‖Cr+1,β ‖u− v‖1+β−α

C0

) r+α−1
r+β

(‖g‖C1 ‖u− v‖Cr,α )
1+β−α

r+β

≤C5 ‖g‖Cr+1,β ‖u− v‖1+β−α
C0 +C5 ‖g‖C1 ‖u− v‖Cr,α ,

as claimed.

Step 2. It easily follows from the observation

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α = ‖(∇g◦u) ·∇u− (∇g◦ v) ·∇v‖Cr−1,α

≤C1 ‖∇g◦u−∇g◦ v‖Cr−1,α ‖∇u‖C0 +C1 ‖∇g◦u−∇g◦ v‖C0 ‖∇u‖Cr−1,α

+C1 ‖∇g◦ v‖Cr−1,α ‖∇u−∇v‖C0 +C1 ‖∇g◦ v‖C0 ‖∇u−∇v‖Cr−1,α ,

using the fact that ‖u‖C1 ≤ c, that

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α

≤C‖∇g◦u−∇g◦ v‖Cr−1,α +C‖∇g◦u−∇g◦ v‖C0 ‖u‖Cr,α

+C‖∇g◦ v‖Cr−1,α ‖u− v‖C1 +C‖g‖C1 ‖u− v‖Cr,α .

Step 3. We now discuss the case r = 1.

Step 3.1. Let us first prove that

‖∇g◦u−∇g◦ v‖C0 ≤C‖g‖Cs,β ‖u− v‖(s+β )−(r+α)

C0 .

We have to consider two cases.
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Case 1: s = r = 1 and, therefore, 0 ≤ α < β ≤ 1. Observe that we immediately
have the claim, since ‖u‖C1 ,‖v‖C1 ≤ c implies

‖∇g◦u−∇g◦ v‖C0 ≤C1 ‖∇g‖C0,β ‖u− v‖β
C0 ≤C2 ‖g‖C1,β ‖u− v‖β−α

C0

=C2 ‖g‖Cs,β ‖u− v‖(s+β )−(r+α)

C0 .

Case 2: s = r+1 = 2 and, therefore, 0≤ β ≤ α ≤ 1. Since ‖u‖C1 ,‖v‖C1 ≤ c, we
get (recalling that the C1 norm is equivalent to the C0,1 norm, in view of Corollary
16.13)

‖∇g◦u−∇g◦ v‖C0 ≤C1 ‖∇g‖C1 ‖u− v‖C0 ≤C1 ‖g‖C2 ‖u− v‖C0

≤C1 ‖g‖C2,β ‖u− v‖1+β−α
C0 ‖u− v‖α−β

C0 .

Using once more that ‖u‖C1 ,‖v‖C1 ≤ c, we have indeed established Step 3.1.

Step 3.2. We are now in a position to conclude. We have (recall that r = 1), from
Steps 1 and 2 and (16.37),

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α

≤C1 ‖∇g◦u−∇g◦ v‖Cr−1,α +C1 ‖∇g◦u−∇g◦ v‖C0 ‖u‖Cr,α

+C1 ‖g‖Cs,β ‖u− v‖(s+β )−(r+α)

C0 +C1 ‖g‖C1 ‖u− v‖Cr,α

and, therefore, from Step 3.1,

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α ≤C‖∇g◦u−∇g◦ v‖Cr−1,α +C‖g‖C1 ‖u− v‖Cr,α

+C‖g‖Cs,β (1+‖u‖C1,α )‖u− v‖(s+β )−(r+α)

C0 .

Since in the previous process we have privileged u with respect to v, the result is
also valid with the interchange of u and v and thus we get the lemma for the case
r = 1.

Step 4. We finally prove the result for r ≥ 2.

Step 4.1. Let us first show that

‖g‖C2 ‖v‖Cr−1,α ‖u− v‖C1 ≤C‖g‖C2 ‖v‖Cr,α ‖u− v‖C0

+C‖g‖C1 ‖u− v‖Cr,α +C‖g‖Cs,β ‖u− v‖(s+β )−(r+α)

C0 .

This is easily obtained by the usual interpolation argument. Indeed, recalling that
‖v‖C1 ≤ c,

‖v‖Cr−1,α ‖u− v‖C1

≤C1 (‖v‖Cr,α ‖u− v‖C0)
r+α−2
r+α−1 (‖v‖C1 ‖u− v‖Cr−1,α )

1
r+α−1

≤C2 ‖v‖Cr,α ‖u− v‖C0 +C2 ‖u− v‖Cr−1,α .
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Moreover, from Corollary 16.27,

‖g‖C2 ‖u− v‖Cr−1,α ≤C3 ‖g‖Cr,α ‖u− v‖C1 +C3 ‖g‖C1 ‖u− v‖Cr,α ,

which combined with Step 1 and the previous inequality leads to the desired
estimate.

Step 4.2. Returning to Step 2 and appealing to (16.38), we get

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α

≤C1 ‖∇g◦u−∇g◦ v‖Cr−1,α +C1 ‖∇g◦u−∇g◦ v‖C0 ‖u‖Cr,α

+C1 [‖g‖Cr,α +‖g‖C2 ‖v‖Cr−1,α ]‖u− v‖C1 +C1 ‖g‖C1 ‖u− v‖Cr,α .

Since

‖∇g◦u−∇g◦ v‖C0 ≤C2 ‖∇g‖C1 ‖u− v‖C0 ≤C2 ‖g‖C2 ‖u− v‖C0 ,

we get, combining with Step 1 and Step 4.1,

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α

≤C‖∇g◦u−∇g◦ v‖Cr−1,α

+C‖g‖C1 ‖u− v‖Cr,α +C‖g‖Cs,β ‖u− v‖(s+β )−(r+α)

C0

+C‖g‖C2 [‖u‖Cr,α +‖v‖Cr,α ]‖u− v‖C0 ,

which is exactly the claim of the lemma for r ≥ 2. ��

We now turn to our second result.

Theorem 16.39. Let Ω ⊂R
n and O⊂R

m be bounded open Lipschitz sets. Let r≥ 0
be an integer and 0 ≤ α < β ≤ 1. Let c > 0, g ∈Cr,β (O) and u,v ∈Cr,α (Ω ;O

)∩
C1
(
Ω ;O

)
, with

‖u‖C1(Ω), ‖v‖C1(Ω) ≤ c.

If r = 0, then there exists C =C (c,Ω ,O)> 0 so that

‖g◦u−g◦ v‖C0,α(Ω) ≤C‖g‖C0,β (O) ‖u− v‖β−α
C0(Ω)

.

If r ≥ 1, then there exists C =C (c,r,Ω ,O)> 0 so that

‖g◦u−g◦ v‖Cr,α(Ω)

≤C‖g‖Cr,β (O)

(
1+min

{
‖u‖C1,α(Ω) ,‖v‖C1,α(Ω)

})
‖u− v‖β−α

C0(Ω)

+C‖g‖Cr(O)

[
‖u‖Cr,α(Ω) +‖v‖Cr,α(Ω)

]
‖u− v‖C0(Ω)

+C‖g‖C1(O) ‖u− v‖Cr,α(Ω) .
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Proof. The proof is divided into two steps.

Step 1. We first prove the theorem when r = 0. We get, by interpolation,

‖g◦u−g◦ v‖C0,α ≤C1 ‖g◦u−g◦ v‖1− α
β

C0 ‖g◦u−g◦ v‖
α
β
C0,β

≤C1

[
‖g‖C0,β ‖u− v‖β

C0

]1− α
β [‖g◦u‖C0,β +‖g◦ v‖C0,β

] α
β .

Combining the above estimate with (16.37) and the fact that ‖u‖C1 ,‖v‖C1 ≤ c, we
find

‖g◦u−g◦ v‖C0,α ≤C
[
‖g‖C0,β ‖u− v‖β

C0

]1− α
β ‖g‖

α
β
C0,β

≤C‖g‖C0,β ‖u− v‖β−α
C0 ,

as wished.

Step 2. We now deal with the case r ≥ 1 and we will proceed by induction.

Step 2.1. Consider the case r = 1. According to Lemma 16.37, we have

‖∇(g◦u)−∇(g◦ v)‖C0,α

≤C1 ‖∇g◦u−∇g◦ v‖C0,α +C1 ‖g‖C1 ‖u− v‖C1,α

+C1 ‖g‖C1,β (1+min{‖u‖C1,α ,‖v‖C1,α})‖u− v‖β−α
C0 .

Since
‖g◦u−g◦ v‖C0 ≤ ‖g‖C1 ‖u− v‖C0

and, appealing to Step 1,

‖∇g◦u−∇g◦ v‖C0,α ≤C2 ‖g‖C1,β ‖u− v‖β−α
C0 ,

we get, from the above three inequalities,

‖g◦u−g◦ v‖C1,α

≤C‖g‖C1,β (1+min{‖u‖C1,α ,‖v‖C1,α})‖u− v‖β−α
C0 +C‖g‖C1 ‖u− v‖C1,α .

The theorem for r = 1 thus follows.

Step 2.2. We finally prove the claim by induction and start with assuming the
result for (r−1) and we prove it for r ≥ 2. The hypothesis of induction gives

‖∇g◦u−∇g◦ v‖Cr−1,α

≤C1 ‖g‖Cr,β (1+min{‖u‖C1,α ,‖v‖C1,α})‖u− v‖β−α
C0

+C1 ‖g‖Cr [‖u‖Cr−1,α +‖v‖Cr−1,α ]‖u− v‖C0

+C1 ‖g‖C2 ‖u− v‖Cr−1,α .
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The only term in the above inequality that does not have the proper form is the last
one, but we readily estimate it by Corollary 16.27:

‖g‖C2 ‖u− v‖Cr−1,α ≤C2 ‖g‖C1 ‖u− v‖Cr,α +C2 ‖g‖Cr,α ‖u− v‖C1 .

Finally, appealing to Step 1 of Lemma 16.37, we obtain

‖g‖C2 ‖u− v‖Cr−1,α ≤C3 ‖g‖C1 ‖u− v‖Cr,α +C3 ‖g‖Cr,β ‖u− v‖β−α
C0 .

We therefore have

‖∇g◦u−∇g◦ v‖Cr−1,α ≤C4 ‖g‖Cr,β (1+min{‖u‖C1,α ,‖v‖C1,α})‖u− v‖β−α
C0

+C4 ‖g‖Cr [‖u‖Cr−1,α +‖v‖Cr−1,α ]‖u− v‖C0

+C4 ‖g‖C1 ‖u− v‖Cr,α . (16.39)

Next, observe that in view of Lemma 16.37, we have

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α ≤C5 ‖∇g◦u−∇g◦ v‖Cr−1,α

+C5 ‖g‖C1 ‖u− v‖Cr,α +C5 ‖g‖Cr,β ‖u− v‖β−α
C0

+C5 ‖g‖C2 [‖u‖Cr,α +‖v‖Cr,α ]‖u− v‖C0 . (16.40)

Since

‖g◦u−g◦ v‖Cr,α = ‖g◦u−g◦ v‖C0 +‖∇(g◦u)−∇(g◦ v)‖Cr−1,α ,

we have, using (16.40), that

‖g◦u−g◦ v‖Cr,α ≤C6 ‖∇g◦u−∇g◦ v‖Cr−1,α +C6 ‖g‖Cr,β ‖u− v‖β−α
C0

+C6 ‖g‖C2 [‖u‖Cr,α +‖v‖Cr,α ]‖u− v‖C0 +C6 ‖g‖C1 ‖u− v‖Cr,α .

Combining the above inequality with (16.39), we have indeed established the
theorem. ��

Setting

u = id+w and v = id

in Theorem 16.39, we have the following corollary.

Corollary 16.40. Let Ω ⊂R
n be a bounded open Lipschitz set. Let r≥ 0 be an inte-

ger and 0≤ α < β ≤ 1. Let c > 0, g ∈Cr,β (Ω) and w ∈Cr,α (Ω ;Ω
)∩C1

(
Ω ;Ω

)
,

with
‖w‖C1 ≤ c.

Then there exists C =C (c,r,Ω)> 0 so that

‖g◦ (id+w)−g◦ id‖Cr,α ≤C‖g‖Cr,β ‖w‖β−α
C0 +C‖g‖Cr,α ‖w‖Cr,α .
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16.7.3 A Third Result

We now discuss our third result.

Theorem 16.41. Let Ω ⊂R
n and O⊂R

m be bounded open Lipschitz sets. Let r≥ 0
be an integer and 0≤ β ≤ α ≤ 1. Let c > 0, g∈Cr+1,β (O) and u,v∈Cr,α (Ω ;O

)∩
C1
(
Ω ;O

)
, with

‖u‖C1(Ω) , ‖v‖C1(Ω) ≤ c.

If r = 0, then there exists C =C (c,Ω ,O)> 0 so that

‖g◦u−g◦ v‖C0,α(Ω) ≤C‖g‖C1,β (O) ‖u− v‖1+β−α
C1(Ω)

.

If r ≥ 1, then there exists C =C (c,r,Ω ,O)> 0 so that

‖g◦u−g◦ v‖Cr,α(Ω)

≤C‖g‖Cr+1,β (O)

(
1+min

{
‖u‖C1,α(Ω) ,‖v‖C1,α(Ω)

})
‖u− v‖1+β−α

C1(Ω)

+C‖g‖Cr(O)

[
‖u‖Cr,α(Ω) +‖v‖Cr,α(Ω)

]
‖u− v‖C0(Ω)

+C‖g‖C1(O) ‖u− v‖Cr,α(Ω) .

Proof. The proof will be divided into two steps.

Step 1. We prove the theorem for r = 0. We start by observing that from Theo-
rem 16.36, we have

‖g◦u−g◦ v‖C0,β ≤C1 ‖g‖C1,β ‖u− v‖C0 +C1 ‖g‖C1 ‖u− v‖C0,β

≤C2 ‖g‖C1,β ‖u− v‖C1 ,

whereas from Theorem 16.39 and from the fact that ‖u‖C1 ,‖v‖C1 ≤ c, we get

‖g◦u−g◦ v‖C1 ≤C3 ‖g‖C1,β ‖u− v‖β
C0 +C3 ‖g‖C1 ‖u− v‖C1

≤C4 ‖g‖C1,β ‖u− v‖β
C1 .

We now combine interpolation with the two above inequalities to get the claim;
more precisely,

‖g◦u−g◦ v‖C0,α ≤C5
(‖g◦u−g◦ v‖C0,β

) 1−α
1−β (‖g◦u−g◦ v‖C1)

α−β
1−β

≤C6 ‖g‖C1,β ‖u− v‖1+β−α
C1 .

Step 2. We then proceed by induction on r.

Step 2.1. When r = 1, we have, from Lemma 16.37 (and the remark following it)
and Step 1, that
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‖∇(g◦u)−∇(g◦ v)‖C0,α

≤C‖g‖C2,β ‖u− v‖1+β−α
C1 +C‖g‖C1 ‖u− v‖C1,α

+C‖g‖C2,β (1+min{‖u‖C1,α ,‖v‖C1,α})‖u− v‖1+β−α
C0 .

The claim then follows at once.

Step 2.2. We now consider the case r ≥ 2. Lemma 16.37 gives

‖∇(g◦u)−∇(g◦ v)‖Cr−1,α ≤C1 ‖∇g◦u−∇g◦ v‖Cr−1,α

+C1 ‖g‖C1 ‖u− v‖Cr,α +C1 ‖g‖Cr+1,β ‖u− v‖1+β−α
C0

+C1 ‖g‖C2 [‖u‖Cr,α +‖v‖Cr,α ]‖u− v‖C0 .

From the hypothesis of induction, we obtain

‖∇g◦u−∇g◦ v‖Cr−1,α

≤C2 ‖g‖Cr+1,β (1+min{‖u‖C1,α ,‖v‖C1,α})‖u− v‖1+β−α
C1

+C2 ‖g‖Cr (‖u‖Cr−1,α +‖v‖Cr−1,α )‖u− v‖C0 +C2 ‖g‖C2 ‖u− v‖Cr−1,α .

Combining the two inequalities, we get

‖g◦u−g◦ v‖Cr,α ≤C3 ‖g‖Cr+1,β (1+min{‖u‖C1,α ,‖v‖C1,α})‖u− v‖1+β−α
C1

+C3 ‖g‖Cr (‖u‖Cr,α +‖v‖Cr,α )‖u− v‖C0 +C3 ‖g‖C1 ‖u− v‖Cr,α

+C3 ‖g‖C2 ‖u− v‖Cr−1,α .

The only term in the above inequality that does not have the proper form is the last
one. To write it appropriately, we combine Corollary 16.27, namely

‖g‖C2 ‖u− v‖Cr−1,α ≤C4 ‖g‖C1 ‖u− v‖Cr,α +C4 ‖g‖Cr,α ‖u− v‖C1 ,

with Step 1 of Lemma 16.37, namely

‖g‖Cr,α ‖u− v‖C1 ≤C5 ‖g‖Cr+1,β ‖u− v‖1+β−α
C0 +C5 ‖g‖C1 ‖u− v‖Cr,α ,

to obtain

‖g‖C2 ‖u− v‖Cr−1,α ≤C6 ‖g‖C1 ‖u− v‖Cr,α +C6 ‖g‖Cr+1,β ‖u− v‖1+β−α
C0 .

This concludes the proof of the theorem. ��

Setting

u = id+w and v = id

in Theorem 16.41, we have the following corollary.
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Corollary 16.42. Let Ω ⊂R
n be a bounded open Lipschitz set. Let r≥ 0 be an inte-

ger and 0≤ β ≤α ≤ 1. Let c> 0, g∈Cr+1,β (Ω) and w∈Cr,α (Ω ;Ω
)∩C1

(
Ω ;Ω

)
,

with

‖w‖C1 ≤ c.

Then there exists C =C (c,r,Ω)> 0 so that

‖g◦ (id+w)−g◦ id‖Cr,α ≤C‖g‖Cr+1,β ‖w‖1+β−α
C1 +C‖g‖Cr,α ‖w‖Cr,α .

16.8 The Smoothing Operator

16.8.1 The Main Theorem

The result of this section is an essential tool in the Nash–Moser theorem, see Krantz
and Parks [62]. We have also used it in a significant way in Theorems 10.1 and 14.5.
Our presentation follows Hörmander [55].

Theorem 16.43. Let Ω ⊂ R
n be a bounded open Lipschitz set. Let s≥ r ≥ t ≥ 0 be

integers and 0≤ α,β ,γ ≤ 1 be such that

t + γ ≤ r+α ≤ s+β .

Let f ∈Cr,α (Ω) . Then for every 0 < ε ≤ 1, there exist a constant C =C (s,Ω)> 0
and fε ∈C∞ (Ω) such that

‖ fε‖Cs,β ≤ C
ε(s+β )−(r+α)

‖ f‖Cr,α ,

‖ f − fε‖Ct,γ ≤Cε(r+α)−(t+γ) ‖ f‖Cr,α ,∥∥∥∥ d
dε

fε

∥∥∥∥
Cs,β

≤ C
ε(s+β )−(r+α)+1

‖ f‖Cr,α ,

∥∥∥∥ d
dε

fε

∥∥∥∥
Ct,γ
≤Cε(r+α)−(t+γ)−1 ‖ f‖Cr,α .

Moreover, defining F : (0,1]×Ω → R by F(ε,x) = fε(x),

F ∈C∞((0,1]×Ω ;Λ k).

Remark 16.44. (i) The theorem coupled with Corollary 16.13 gives that

‖ fε‖Ct,γ ≤C‖ f‖Cr,α .
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(ii) The construction of fε is universal, in the sense that the four inequalities re-
main true replacing (r,s, t,α,β ,γ) by (r′,s′, t ′,α ′,β ′,γ ′) as far as f ∈Cr′,α ′ (Ω) and
with a constant C′ =C′ (s′,Ω)> 0.

Proof. Step 1. Choose any Φ ∈C∞
0 (Rn) with Φ ≡ 1 near the origin. Define next the

smoothing kernel as

ϕ (x) =
∫
Rn

e2πi〈ξ ;x〉Φ (ξ )dξ .

Note that since ϕ is the inverse of the Fourier transform of Φ , we have ϕ ∈S (Rn) ,
the Schwartz space. Therefore, for any a and b multi-indices, we can find c= c(a,b)
such that

|Daϕ (x)| ≤ c(1+ |x|)−|b| .
Moreover, since Φ ≡ 1 near the origin, we find, using the formula for the inverse
Fourier transform, ∫

Rn
ϕ (x)dx = Φ (0) = 1,

and for any multi-index a with |a| ≥ 1 and any multi-index b with |a| > |b| , since
Da
(
ξ bΦ (ξ )

)∣∣
ξ=0 = 0, we have

∫
Rn

xaDbϕ (x)dx = 0. (16.41)

The desired fε is then given by

fε = ϕε ∗ f ,

where
ϕε (x) =

1
εn ϕ

( x
ε

)
.

Step 2. From now on, we assume, without loss of generality, that f has been
extended to R

n as in Theorem 16.11. For any integer r ≥ 1, we know from Proposi-
tion 16.10 or Corollary 16.13 that the norms ‖·‖Cr,0 and ‖·‖Cr−1,1 are equivalent. We
therefore adopt in the present proof the following convention: If r+α = k ∈N with
0≤ α ≤ 1, then r = k and α = 0.

We then prove the first inequality. Observe that

‖ fε‖Cr,α ≤ ‖ϕ‖L1 ‖ f‖Cr,α ≤C1 ‖ f‖Cr,α (16.42)

and let us first prove the result when (s+β )− (r+α) = k ∈ N, which, with our
convention, implies α = β . Note that

∇k fε =
1
εk ψε ∗ f ,

where
ψε (x) =

1
εn ∇kϕ

( x
ε

)
.



388 16 Hölder Continuous Functions

We then deduce, as in (16.42), that∥∥∥∇k fε

∥∥∥
Cr,α

≤ C2

εk ‖ f‖Cr,α ,

and thus, combining with (16.42) and the fact that ε ≤ 1, we get the claim, namely

‖ fε‖Cs,β = ‖ fε‖Cr+k,α ≤ C
ε(s+β )−(r+α)

‖ f‖Cr,α . (16.43)

The case (s+β )− (r+α) /∈ N, is obtained, from the above one, with the usual
interpolation argument. More precisely, we let k ∈ N be such that

r+ k+α < s+β < r+ k+1+α.

We then let λ ∈ [0,1] be such that

s+β = λ (r+ k+1+α)+(1−λ )(r+ k+α) = r+ k+α +λ

and we apply Theorem 16.26 and (16.43) to get

‖ fε‖Cs,β ≤C1 ‖ fε‖λ
Cr+k+1,α ‖ fε‖1−λ

Cr+k,α ≤ C
ε(s+β )−(r+α)

‖ f‖Cr,α .

Step 3. We next establish the second inequality.

Step 3.1. We first prove it for t + γ = 0, namely

‖ f − fε‖C0 ≤Cεr+α ‖ f‖Cr,α . (16.44)

We use the definition of the smoothing operator to get

fε (x)− f (x) =
∫
Rn

1
εn ϕ

( y
ε

)
[ f (x− y)− f (x)]dy

=
∫
Rn

ϕ (z) [ f (x− εz)− f (x)]dz.

Note that from the above identity, we immediately have (16.44) when r = 0. So from
now on, we assume that r ≥ 1. We next set

F (u) = f (x−uεz) , u ∈ [0,1] ,

so that

f (x− εz)− f (x) = F (1)−F (0)

=
r

∑
k=1

F(k) (0)
k!

+
∫ 1

0

(1−u)r−1

(r−1)!

[
F(r) (u)−F(r) (0)

]
du.
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Combining the two identities with (16.41), we deduce that

fε (x)− f (x) =
∫ 1

0

∫
Rn

(1−u)r−1

(r−1)!
ϕ (z)

[
F(r) (u)−F(r) (0)

]
dz du.

We have therefore proved (16.44), since

‖ f − fε‖C0 ≤Cεr+α ‖ f‖Cr,α .

Step 3.2. We now discuss the general case t + γ ≥ 0. From Theorem 16.26, we
have

‖ f − fε‖Ct,γ ≤C1 ‖ f − fε‖
t+γ
r+α
Cr,α ‖ f − fε‖1− t+γ

r+α
C0 ,

and since
‖ f − fε‖Cr,α ≤C2 ‖ f‖Cr,α

we have, appealing to (16.44), the claim

‖ f − fε‖Ct,γ ≤Cε(r+α)−(t+γ) ‖ f‖Cr,α .

Step 4. We now prove the third inequality. We start by noting that

d
dε

fε =
−n

εn+1

∫
Rn

ϕ
(

x− y
ε

)
f (y)dy

− 1
εn+1

∫
Rn

〈
x− y

ε
;∇ϕ

(
x− y

ε

)〉
f (y)dy.

Writing

ψ (z) = 〈z;∇ϕ (z)〉 and ψε (z) =
1
εn ψ

( z
ε

)
,

we deduce that

d
dε

fε =
−n
ε

ϕε ∗ f − 1
ε

ψε ∗ f =
−1
ε

(nϕε +ψε)∗ f .

Observe that the kernel

χ = nϕ +ψ

has essentially the same properties as the kernel ϕ. The third inequality therefore
follows by the same argument as the one of Step 2.

Step 5. The fourth inequality follows as in Steps 3 and 4. Indeed, write

fε (x)− f (x) =
∫
Rn

1
εn ϕ

( y
ε

)
[ f (x− y)− f (x)] dy
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and then, with the same notations as in Step 4, we obtain

d
dε

fε =
−1
ε

∫
Rn

1
εn χ

( y
ε

)
[ f (x− y)− f (x)]dy

=
−1
ε

∫
Rn

χ (z) [ f (x− εz)− f (x)]dz.

Since χ has essentially the same properties as ϕ (in particular, it satisfies (16.41)),
the argument of Step 3 then applies and we get the last inequality of the theorem.

Step 6. The last statement follows from the fact that the regularization is obtained
through convolution. ��

In the same spirit, we have the following elementary result.

Proposition 16.45. Let r ≥ 0 be an integer, 0 ≤ α < β ≤ 1, ε0 > 0, C > 0 and
Ω ⊂ R

n be a bounded open set. Let f ∈ Cr,α(Ω) and, for every ε ∈ (0,ε0], fε ∈
Cr,β (Ω) verifying

‖ fε‖Cr,β ≤ C
εβ−α and ‖ fε − f‖Cr,α ≤Cεβ−α . (16.45)

Then f ∈Cr,(α+β )/2(Ω) and

‖ f‖Cr,(α+β )/2 ≤ ‖ f‖Cr +2C+
2‖ f‖Cr

εα+β
0

.

Proof. First, notice that we trivially have, for every x,y ∈Ω with |x− y| ≥ ε2
0 , that

|∇r f (x)−∇r f (y)| ≤ 2‖ f‖Cr ≤ 2‖ f‖Cr

εα+β
0

|x− y|(α+β )/2.

Let x,y∈Ω with |x−y| ∈ (0,ε2
0 ) and define ε1 = |x−y|1/2. Noticing that ε1 ∈ (0,ε0)

and using (16.45), we deduce

|∇r f (x)−∇r f (y)|
≤ |∇r fε1(x)−∇r fε1(y)|+ |∇r f (x)−∇r fε1(x)+∇r fε1(y)−∇r f (y)|
≤ C

εβ−α
1

|x− y|β +Cεβ−α
1 |x− y|α = 2C|x− y|(α+β )/2,

which concludes the proof. ��

16.8.2 A First Application

We now give a direct consequence of the above theorem. It has been used in
Chapter 10.
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Proposition 16.46. Let Ω ⊂R
n be a bounded open Lipschitz set, r≥ 0 be an integer

and 0≤ α ≤ 1. Let f ∈Cr,α (Ω) and c > 0 be such that∥∥∥∥ 1
f

∥∥∥∥
C0

, ‖ f‖C0,α ≤ c.

Then for every ε > 0 small, there exists fε ∈C∞ (Ω) with

∫
Ω

f
fε

= measΩ .

Moreover, there exists a constant C = C (c,r,Ω) > 0 such that for every integer
0≤ t ≤ r and every 0≤ γ ≤ α,

‖ fε‖Ct,γ ≤C‖ f‖Ct,γ , ‖ fε‖Ct+1,γ ≤ C
ε
‖ f‖Ct,γ ,

‖ fε −1‖Ct,γ ≤C‖ f −1‖Ct,γ , ‖ fε −1‖Ct+1,γ ≤ C
ε
‖ f −1‖Ct,γ ,∥∥∥∥ f

fε
−1
∥∥∥∥

Ct,γ
≤C‖ f −1‖Ct,γ ,

∥∥∥∥ f
fε
−1
∥∥∥∥

C0,γ
≤Cεα−γ .

Proof. We first find, by Theorem 16.43, a constant C1 = C1 (r,Ω) > 0 and gε ∈
C∞ (Ω) such that

‖gε‖Ct,γ ≤C1 ‖ f‖Ct,γ and ‖gε‖Ct+1,γ ≤ C1

ε
‖ f‖Ct,γ ,

‖gε − f‖Ct,γ ≤C1ε(r+α)−(t+γ) ‖ f‖Cr,α and ‖gε − f‖C0 ≤C1εα ‖ f‖C0,α .

Since in the construction of gε in Step 1 of Theorem 16.43 we defined

gε = ϕε ∗ f

and since ϕε ∗1 = 1, we also have

‖gε −1‖Cr,α = ‖ϕε ∗ ( f −1)‖Cr,α ≤ C1

ε(r+α)−(t+γ) ‖ f −1‖Ct,γ ,

‖gε − f‖Ct,γ = ‖ϕε ∗ ( f −1)− ( f −1)‖Ct,γ ≤C1ε(r+α)−(t+γ) ‖ f −1‖Cr,α .

Set, for ε small enough,

λε =
1

measΩ

∫
Ω

f
gε

and fε = λε gε .

We claim that fε verifies all of the conclusions of the proposition. This will be
checked in Step 2, but before that, we need an estimate on λε .
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Step 1 (estimate on λε ). First, note that since

‖gε − f‖C0 ≤C1εα‖ f‖C0,α ,

we have, for ε small enough, ∥∥∥∥ 1
gε

∥∥∥∥
C0
≤ 2c.

Thus, we immediately deduce that

|λε −1| ≤ 2c‖gε − f‖C0 ,

which implies

|λε −1| ≤C2‖ f −1‖C0 and |λε −1| ≤C2εα‖ f −1‖C0,α .

Step 2. Let us check all of the properties. We assume that ε is small enough.

(i) We clearly have ∫
Ω

f
fε

= measΩ .

(ii) We find
‖ fε‖Ct,γ = λε ‖gε‖Ct,γ ≤C‖ f‖Ct,γ .

(iii) Observe that

‖ fε‖Ct+1,γ = λε ‖gε‖Ct+1,γ ≤ C
ε
‖ f‖Ct,γ .

(iv) Note that

‖ fε −1‖Ct,γ = ‖ fε −gε +gε −1‖Ct,γ ≤ |λε −1|‖gε‖Ct,γ +‖gε −1‖Ct,γ

≤C1C2 ‖ f −1‖C0 ‖ f‖Ct,γ +C1 ‖ f −1‖Ct,γ

≤C1C2 ‖ f −1‖C0 [1+‖ f −1‖Ct,γ ]+C1 ‖ f −1‖Ct,γ

and hence

‖ fε −1‖Ct,γ ≤C‖ f −1‖Ct,γ .

(v) Similarly, we have

‖ fε −1‖Ct+1,γ = ‖ fε −gε +gε −1‖Ct+1,γ

≤ |λε −1|‖gε‖Ct+1,γ +‖gε −1‖Ct+1,γ

≤ C1

ε
C2 ‖ f −1‖C0 ‖ f‖Ct,γ +

C1

ε
‖ f −1‖Ct,γ

≤ C1

ε
C2 ‖ f −1‖C0 [1+‖ f −1‖Ct,γ ]+

C1

ε
‖ f −1‖Ct,γ
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and hence
‖ fε −1‖Ct+1,γ ≤ C

ε
‖ f −1‖Ct,γ .

(vi) We next obtain∥∥∥∥ f
fε
−1
∥∥∥∥

Ct,γ
=

∥∥∥∥ f − fε

fε

∥∥∥∥
Ct,γ

≤C3

∥∥∥∥ 1
fε

∥∥∥∥
Ct,γ
‖ f − fε‖C0 +C3

∥∥∥∥ 1
fε

∥∥∥∥
C0
‖ f − fε‖Ct,γ

≤C4‖ fε‖Ct,γ‖ f − fε‖C0 +C4‖ f −1‖Ct,γ .

Since, using (iv),

‖ fε‖Ct,γ‖ f − fε‖C0 ≤C5(‖ fε −1‖Ct,γ +1)(‖ f −1‖C0 +‖ fε −1‖C0)

≤C6‖ f −1‖Ct,γ ,

we get ∥∥∥∥ f
fε
−1
∥∥∥∥

Ct,γ
≤C‖ f −1‖Ct,γ .

(vii) Finally, note that

‖ fε − f‖C0,γ = ‖ fε −gε +gε − f‖C0,γ ≤ |λε −1|‖gε‖C0,γ +‖gε − f‖C0,γ

≤C1C2εα ‖ f‖C0,γ +C1εα−γ ‖ f‖C0,α ≤C7εα−γ ‖ f‖C0,α

and thus ∥∥∥∥ f
fε
−1
∥∥∥∥

C0,γ
≤Cεα−γ .

This concludes the proof of the proposition. ��

16.8.3 A Second Application

In Chapter 10 we used the following proposition.

Proposition 16.47. Let Ω ⊂ R
n be a bounded open Lipschitz set. Let s≥ r ≥ t ≥ 0

be integers. Let 0≤ α,β ,γ ≤ 1 be such that

t + γ ≤ r+α ≤ s+β .

Let f ∈Cr,α (Ω) with f > 0 and c > 0 be such that∥∥∥∥ 1
f

∥∥∥∥
C0

, ‖ f‖C0 ≤ c.
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Then for every ε > 0 small, there exist fε ∈C∞ (Ω) and a constant C =C (c,s,Ω)
such that ∫

Ω
fε =

∫
Ω

f ,

‖ fε‖Cs,β ≤ C
ε(s+β )−(r+α)

‖ f‖Cr,α ,

‖ fε − f‖Ct,γ ≤Cε(r+α)−(t+γ)[‖ f‖Cr,α +‖ f‖2
Cr,α ],∥∥∥∥ d

dε
fε

∥∥∥∥
Cs,β

≤ C
ε(s+β )−(r+α)+1 [‖ f‖Cr,α +‖ f‖2

Cr,α ],

∥∥∥∥ d
dε

fε

∥∥∥∥
Ct,γ
≤Cε(r+α)−(t+γ)−1[‖ f‖Cr,α +‖ f‖2

Cr,α ].

Moreover, defining, for some ε small enough, F : (0,ε]×Ω →R by F(ε,x) = fε(x),
we have F ∈C∞((0,ε]×Ω).

Remark 16.48. The construction is universal in the sense of Remark 16.44.

Proof. We split the proof into three steps.
Step 1. Applying Theorem 16.43 to f , we get a constant C1 = C1(s,Ω) and

hε ∈C∞(Ω), ε ∈ (0,1], such that

‖hε‖Cs,β ≤ C1

ε(s+β )−(r+α)
‖ f‖Cr,α , (16.46)

‖hε − f‖Ct,γ ≤C1ε(r+α)−(t+γ)‖ f‖Cr,α , (16.47)∥∥∥∥ d
dε

hε

∥∥∥∥
Cs,β

≤ C1

ε(s+β )−(r+α)+1 ‖ f‖Cr,α , (16.48)∥∥∥∥ d
dε

hε

∥∥∥∥
Ct,γ
≤C1ε(r+α)−(t+γ)−1‖ f‖Cr,α . (16.49)

Moreover, defining H : (0,1]×Ω → R by H(ε,x) = hε(x), we have

H ∈C∞((0,1]×Ω).

Using (16.47), there exists ε ≤ 1 such that for every ε ∈ (0,ε],

‖hε‖C0 ≤ 2‖ f‖C0 and inf
Ω

hε ≥ infΩ f
2

. (16.50)

From now on, C2,C3, . . . will be generic constants depending only on c, s and Ω .

Step 2. For every ε ∈ (0,ε], define

λ (ε) =

∫
Ω

f∫
Ω

hε

.
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We trivially have λ ∈C∞((0,ε]). Moreover, using Step 1, we obtain the following
properties:

(i) Using (16.50), we obtain

0 < λ (ε)≤ 2‖ f‖C0

infΩ f
. (16.51)

(ii) Appealing to (16.47) and (16.50), we get

|1−λ (ε)|=

∣∣∣∣∣∣∣
∫

Ω
(hε − f )∫

Ω
hε

∣∣∣∣∣∣∣≤
2measΩ‖hε − f‖C0

measΩ · infΩ f
≤C2εr+α‖ f‖Cr,α . (16.52)

(iii) Since (16.49) and (16.50) hold, we find

|λ ′(ε)|=
∣∣∣∣∫Ω

f
∣∣∣∣
∣∣∣∣∫Ω

d
dε

hε

∣∣∣∣
∣∣∣∣∣
(∫

Ω
hε

)−2
∣∣∣∣∣

≤ ‖ f‖C0 measΩ
∥∥∥∥ d

dε
hε

∥∥∥∥
C0

4measΩ
(measΩ)2 (infΩ f )2

≤C3εr+α−1‖ f‖Cr,α . (16.53)

Step 3. Let us show that

fε = λ (ε)hε , ε ∈ (0,ε],

has all of the required properties. First, we obviously have∫
Ω

fε =
∫

Ω
f .

We now show the inequalities.

(i) Appealing to (16.46) and (16.51), we have

‖ fε‖Cs,β ≤ C4

ε(s+β )−(r+α)
‖ f‖Cr,α ,

which shows the first inequality.

(ii) Using (16.47), (16.51) and (16.52) and recalling that ε ≤ 1, we get

‖ fε − f‖Ct,γ ≤ λ (ε)‖hε − f‖Ct,γ + |1−λ (ε)|‖ f‖Ct,γ

≤C5ε(r+α)−(t+γ)‖ f‖Cr,α +C5εr+α‖ f‖2
Cr,α

≤C5ε(r+α)−(t+γ)[‖ f‖Cr,α +‖ f‖2
Cr,α ].

Therefore, the second inequality is shown.
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(iii) Since (16.46), (16.48), (16.51) and (16.53) hold and recalling that ε ≤ 1, we
have ∥∥∥∥ d

dε
fε

∥∥∥∥
Cs,β

≤ λ (ε)
∥∥∥∥ d

dε
hε

∥∥∥∥
Cs,β

+ |λ ′(ε)|‖hε‖Cs,β

≤ C6

ε(s+β )−(r+α)+1 ‖ f‖Cr,α +
C6εr+α−1

ε(s+β )−(r+α)
‖ f‖2

Cr,α

≤ C6

ε(s+β )−(r+α)+1 [‖ f‖Cr,α +‖ f‖2
Cr,α ],

which proves the third inequality.

(iv) Using (16.46), (16.49), (16.51) and (16.53) and recalling that ε ≤ 1, we
obtain ∥∥∥∥ d

dε
fε

∥∥∥∥
Ct,γ
≤ λ (ε)

∥∥∥∥ d
dε

hε

∥∥∥∥
Ct,γ

+ |λ ′(ε)|‖hε‖Ct,γ

≤C7 ε(r+α)−(t+γ)−1‖ f‖Cr,α +C7εr+α−1‖ f‖Cr,α‖ f‖Ct,γ

≤C8 ε(r+α)−(t+γ)−1[‖ f‖Cr,α +‖ f‖2
Cr,α ],

which establishes the last inequality.

(v) Finally, we have that F : (0,ε]×Ω → R defined by F(ε,x) = fε(x) verifies
F ∈C∞((0,ε]×Ω), which concludes the proof. ��

16.9 Smoothing Operator for Differential Forms

The results presented here are in Bandyopadhyay and Dacorogna [8] and Dacorogna
and Kneuss [32] (cf. also [7]). We will use the following functional notations. Let
Ω ⊂ R

n be an open smooth set, r ≥ 0 an integer and 0≤ α ≤ 1.

(i) We denote by Cr,α (Ω ;Λ k
)

the set of k-forms

g = ∑
1≤i1<···<ik≤n

gi1···ik dxi1 ∧·· ·∧dxik ,

so that gi1···ik ∈Cr,α (Ω) .
(ii) For x ∈ ∂Ω , we denote by ν = ν (x) the exterior unit normal to Ω . By

ν ∧g ∈Cr,α(∂Ω ;Λ k+1)
we mean that the tangential part of g is in Cr,α ; more precisely, the (k+1)-form Φ
defined by

Φ (x) = ν (x)∧g(x)
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is such that

Φ ∈Cr,α(∂Ω ;Λ k+1).
We now approximate closed forms in Cr,α (Ω ;Λ k

)
by smooth closed forms in a

precise way.

Theorem 16.49. Let Ω ⊂ R
n be a bounded open smooth set and ν be the exterior

unit normal. Let s ≥ r ≥ t ≥ 0 with s ≥ 1 and 1 ≤ k ≤ n− 1 be integers. Let 0 <
α,β ,γ < 1 be such that

t + γ ≤ r+α ≤ s+β .

Let g ∈Cr,α (Ω ;Λ k
)

with

dg = 0 in Ω and ν ∧g ∈Cs,β (∂Ω ;Λ k+1).
Then for every ε ∈ (0,1], there exist gε ∈C∞ (Ω ;Λ k

)∩Cs,β (Ω ;Λ k
)

and a constant
C =C (s,α ,β ,γ,Ω)> 0 such that

dgε = 0 in Ω , ν ∧gε = ν ∧g on ∂Ω ,∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈HT

(
Ω ;Λ k),

‖gε −g‖Ct,γ(Ω) ≤Cε(r+α)−(t+γ) ‖g‖Cr,α(Ω) ,

‖gε‖Cs,β (Ω) ≤
C

ε(s+β )−(r+α)
‖g‖Cr,α(Ω) +C‖ν ∧g‖Cs,β (∂Ω) ,∥∥∥∥ d

dε
gε

∥∥∥∥
Cs,β (Ω)

≤ C
ε(s+β )−(r+α)+1 ‖g‖Cr,α(Ω),∥∥∥∥ d

dε
gε

∥∥∥∥
Ct,γ(Ω)

≤Cε(r+α)−(t+γ)−1‖g‖Cr,α(Ω).

Moreover, defining Γ : (0,1]×Ω →Λ k by Γ (ε,x) = gε(x), then

Γ ∈Cs,β ((0,1]×Ω ;Λ k) and
∂Γ
∂ε

∈C∞((0,1]×Ω ;Λ k).
Remark 16.50. (i) The result is valid for k = n, as a direct consequence of Theo-
rem 16.43 (cf. Proposition 16.47 and Theorem 6.5). It holds for any Lipschitz set
and, moreover, it gives gε ∈C∞ (Ω ;Λ n

)
.

(ii) The result is, of course, trivially true for k = 0.

(iii) We recall that HT
(
Ω ;Λ k

)
and HN

(
Ω ;Λ k

)
are defined in Definition 6.1 and

if Ω is contractible and since 1≤ k ≤ n−1, then

HT (Ω ;Λ k) = HN
(
Ω ;Λ k)= {0} .
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(iv) We will prove not only that∫
Ω
〈gε ;ψ〉=

∫
Ω
〈g;ψ〉 for every ψ ∈HT

(
Ω ;Λ k)

but also that there exist G and Gε such that gε − g = d (Gε −G) with Gε −G = 0
on ∂Ω .

(v) The construction is universal in the sense of Remark 16.44.

(vi) The constant C =C (s,α,β ,γ,Ω) is uniform in (α ,β ,γ) in the sense that if

0 < a≤ α,β ,γ ≤ b < 1,

then C =C (s,a,b,Ω) .

(vii) If r = 0, the condition dg = 0 is understood in the sense of distributions.

Before starting the proof of the theorem, we need the equivalent of the theorem,
but for functions.

Lemma 16.51. Let Ω ⊂ R
n be a bounded open smooth set. Let s ≥ r ≥ t ≥ 0 be

integers. Let 0 < α,β ,γ < 1 be such that

t + γ ≤ r+α ≤ s+β .

Let f ∈Cr,α (Ω)∩Cs,β (∂Ω) . Then for every ε ∈ (0,1], there exist fε ∈C∞ (Ω)∩
Cs,β (Ω) and a constant C =C (s,α,β ,γ,Ω)> 0 such that

fε = f on ∂Ω ,

‖ fε − f‖Ct,γ(Ω) ≤Cε(r+α)−(t+γ) ‖ f‖Cr,α(Ω) ,

‖ fε‖Cs,β (Ω) ≤
C

ε(s+β )−(r+α)
‖ f‖Cr,α(Ω) +C‖ f‖Cs,β (∂Ω) ,∥∥∥∥ d

dε
fε

∥∥∥∥
Cs,β (Ω)

≤ C
ε(s+β )−(r+α)+1 ‖ f‖Cr,α(Ω),∥∥∥∥ d

dε
fε

∥∥∥∥
Ct,γ(Ω)

≤Cε(r+α)−(t+γ)−1‖ f‖Cr,α(Ω).

Moreover, defining F : (0,1]×Ω → R by F(ε,x) = fε(x), then

F ∈Cs,β ((0,1]×Ω) and
∂F
∂ε

∈C∞((0,1]×Ω).

Proof. For the sake of alleviating the notations, we will write in the present proof,
for example, ‖g‖Cr,β instead of ‖g‖Cr,β (Ω). When we will be considering norms on
the boundary of Ω , we will keep the notation ‖g‖Cr,β (∂Ω).
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We first find (see Theorem 16.43) gε ∈ C∞ (Ω) and a constant C1 = C1(s,Ω)
such that

‖gε − f‖Ct,γ ≤C1ε(r+α)−(t+γ) ‖ f‖Cr,α ,

‖gε‖Cs,β ≤ C1

ε(s+β )−(r+α)
‖ f‖Cr,α ,∥∥∥∥ d

dε
gε

∥∥∥∥
Cs,β

≤ C1

ε(s+β )−(r+α)+1 ‖ f‖Cr,α ,∥∥∥∥ d
dε

gε

∥∥∥∥
Ct,γ
≤C1ε(r+α)−(t+γ)−1‖ f‖Cr,α .

Moreover, defining G : (0,1]×Ω →R by G(ε,x) = gε(x), we have G ∈C∞((0,1]×
Ω). We then fix the boundary data as follows. Let fε ∈ C∞ (Ω)∩Cs,β (Ω) be the
solution of {

Δ fε = Δgε in Ω ,

fε = f on ∂Ω
⇔
{

Δ [ fε −gε ] = 0 in Ω ,

fε −gε = f −gε on ∂Ω .

Using Schauder estimates (the classical estimates assume s ≥ 2; however, they are
also valid when s = 0 or s = 1; see Agmon, Douglis and Nirenberg [3], Gilbarg
and Hörmander [48], Lieberman [69, 70] and Widman [105]), there exists C2 =
C2(s,β ,γ,Ω) such that

‖ fε‖Cs,β ≤C2

[
‖gε‖Cs,β +‖ f‖Cs,β (∂Ω)

]
,

‖ fε −gε‖Ct,γ ≤C2 ‖ f −gε‖Ct,γ (∂Ω) ≤C2 ‖ f −gε‖Ct,γ .

Moreover, defining F : (0,1]×Ω →R by F(ε,x) = fε(x), we have F ∈Cs,β ((0,1]×
Ω). Finally, noticing that d

dε fε verifies

⎧⎪⎨
⎪⎩

Δ
d

dε
fε = Δ

d
dε

gε in Ω ,

d
dε

fε = 0 on ∂Ω
⇔

⎧⎪⎪⎨
⎪⎪⎩

Δ
[

d
dε

( fε −gε)

]
= 0 in Ω ,

d
dε

( fε −gε) =− d
dε

gε on ∂Ω ,

there exists C3 =C3(s,β ,γ,Ω) such that∥∥∥∥ d
dε

fε

∥∥∥∥
Cs,β

≤C3

∥∥∥∥ d
dε

gε

∥∥∥∥
Cs,β

,

∥∥∥∥ d
dε

fε

∥∥∥∥
Ct,γ
≤C3

∥∥∥∥ d
dε

gε

∥∥∥∥
Ct,γ

,

and

∂F
∂ε

∈C∞((0,1]×Ω).

The combination of the properties of fε and gε gives the result. ��

We can now go back to the proof of Theorem 16.49.
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Proof. We adopt the same simplification in the notations of the norms as in
Lemma 16.51.

Step 1. We first show that we can find

G ∈Cr+1,α(Ω ;Λ k−1)∩Cs+1,β (∂Ω ;Λ k−1), h ∈C∞(Ω ;Λ k)∩H
(
Ω ;Λ k),

and a constant C =C(s,α,β ,Ω) such that

g = dG+h,

‖h‖Cr,α +‖G‖Cr+1,α ≤C‖g‖Cr,α ,

‖h‖Cs,β +‖G‖Cs+1,β (∂Ω) ≤C
[
‖g‖Cr,α +‖ν ∧g‖Cs,β (∂Ω)

]
.

We proceed as follows. In the sequel, C1,C2, . . . will denote generic constants de-
pending only on s,α,β and Ω .

(i) We first find (solving the Dirichlet problem component by component) g(1) ∈
Cs,β (Ω ;Λ k

)∩C∞ (Ω ;Λ k
)

verifying{
Δg(1) = 0 in Ω ,

g(1) = ν � (ν ∧g) on ∂Ω .

We, moreover, have∥∥∥g(1)
∥∥∥

Cr,α
≤C1 ‖g‖Cr,α and

∥∥∥g(1)
∥∥∥

Cs,β
≤C1 ‖ν ∧g‖Cs,β (∂Ω) .

Since |ν |= 1, we have, using (2.7),

ν ∧g(1) = ν ∧g.

Observe also that since dg = 0, then, using Theorem 3.23, we have

ν ∧dg(1) = 0.

The above argument is valid only if r ≥ 1; however, it still holds if r = 0 (recall
that s ≥ 1) and if we use Proposition 7.6(iv). More precisely, we have for every
ϕ ∈C∞ (Ω ;Λ k+1

)
,∫

∂Ω
〈ν ∧dg(1);ϕ〉=

∫
Ω
〈dg(1);δϕ〉=

∫
∂Ω
〈ν ∧g(1);δϕ〉

=
∫

∂Ω
〈ν ∧g;δϕ〉=

∫
Ω
〈g;δδϕ〉= 0.

Since ϕ is arbitrary, we have indeed proved that

ν ∧dg(1) = 0.
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Note that we also have∫
Ω

〈
dg(1);ψ

〉
= 0 for every ψ ∈HT

(
Ω ;Λ k+1).

This last identity follows from the fact that, using Theorem 3.28,∫
Ω

〈
dg(1);ψ

〉
=
∫

∂Ω

〈
ν ∧g(1);ψ

〉
=
∫

∂Ω
〈ν ∧g;ψ〉=

∫
Ω
〈dg;ψ〉= 0.

If r = 0, we proceed similarly but use Proposition 7.6(iv). More precisely, we obtain∫
Ω

〈
dg(1);ψ

〉
=
∫

∂Ω

〈
ν ∧g(1);ψ

〉
=
∫

∂Ω
〈ν ∧g;ψ〉=

∫
Ω
〈g;δψ〉= 0.

(ii) We next solve {
dg(2) =−dg(1) in Ω ,

g(2) = 0 on ∂Ω

and we have g(2) ∈Cs,β (Ω ;Λ k
)
. This is possible (according to Theorem 8.16) since

ν ∧dg(1) = 0 and
∫

Ω

〈
dg(1);ψ

〉
= 0 for every ψ ∈HT

(
Ω ;Λ k+1).

We also have∥∥∥g(2)
∥∥∥

Cr,α
≤C2 ‖g‖Cr,α and

∥∥∥g(2)
∥∥∥

Cs,β
≤C2 ‖ν ∧g‖Cs,β (∂Ω) .

(iii) We then set

g(3) = g(2) +g(1)

and observe that g(3) ∈Cs,β (Ω ;Λ k
)
,

dg(3) = 0 and ν ∧g(3) = ν ∧g(1) = ν ∧g.

Apply the Hodge–Morrey decomposition and find (in view of Theorem 6.12)

G(3) ∈Cs+1,β
N

(
Ω ;Λ k−1), β (3) ∈Cs+1,β

N

(
Ω ;Λ k+1)

and

h(3) ∈HN
(
Ω ;Λ k)⊂C∞(Ω ;Λ k)

such that

g(3) = dG(3) +δβ (3) +h(3).
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Note that δβ (3) = 0, due to the orthogonality of the decomposition and since
dg(3) = 0 and β (3) ∈Cs+1,β

N . Observe that∥∥∥h(3)
∥∥∥

Cr,α
+
∥∥∥G(3)

∥∥∥
Cr+1,α

≤C3

∥∥∥g(3)
∥∥∥

Cr,α
≤C4 ‖g‖Cr,α ,∥∥∥h(3)

∥∥∥
Cs,β

+
∥∥∥G(3)

∥∥∥
Cs+1,β

≤C3

∥∥∥g(3)
∥∥∥

Cs,β
≤C4 ‖ν ∧g‖Cs,β (∂Ω) .

(iv) We now apply again the Hodge–Morrey decomposition (cf. Theorem 6.12)
to get

g−g(3) = dG(4) +δβ (4) +h(4),

where

G(4) ∈Cr+1,α
T

(
Ω ;Λ k−1), β (4) ∈Cr+1,α

T

(
Ω ;Λ k+1)

and

h(4) ∈HT
(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Note that δβ (4) = 0 since, using Theorem 3.28, the orthogonality of the decompo-
sition and the fact that dg = dg(3) = 0, we have∫

Ω

∣∣∣δβ (4)
∣∣∣2 = ∫

Ω

〈
g−g(3);δβ (4)

〉
=
∫

∂Ω

〈
ν ∧
[
g−g(3)

]
;β (4)

〉
= 0.

The above argument is valid only if r ≥ 1; however, it still holds if r = 0 by density
and by Proposition 7.6(iv). We also have, using Remark 6.4,∥∥∥h(4)

∥∥∥
Cs,β

≤C5

∥∥∥h(4)
∥∥∥

Cr,α
≤C6

∥∥∥g−g(3)
∥∥∥

Cr,α
≤C7 ‖g‖Cr,α .

Similarly, as above, we get ∥∥∥G(4)
∥∥∥

Cr+1,α
≤C7 ‖g‖Cr,α .

(v) Finally, we adjust G(4) ∈ Cr+1,α
T (Ω ;Λ k−1) so as to have G(5) ∈ Cr+1,α(Ω ;

Λ k−1) with G(5) = 0 on ∂Ω . If k = 1, then nothing is to be done; just choose G(5) =
G(4). So we may assume that k≥ 2. The claim then follows from Lemma 8.11, since
we can find A ∈Cr+2,α (Ω ;Λ k−2

)
such that

dA =−G(4) on ∂Ω .

It then suffices to set

G(5) = G(4) +dA.
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We also have ∥∥∥G(5)
∥∥∥

Cr+1,α
≤C8

∥∥∥G(4)
∥∥∥

Cr+1,α
≤C9 ‖g‖Cr,α .

(vi) We conclude that

G = G(3) +G(5) and h = h(3) +h(4)

have all of the desired properties. Indeed,

G ∈Cr+1,α(Ω ;Λ k−1)∩Cs+1,β (∂Ω ;Λ k−1),
h ∈C∞ (Ω ;Λ k

)∩H
(
Ω ;Λ k

)
and

dG = dG(3) +dG(5) = g(3)−h(3) +g−g(3)−h(4) = g−h(3)−h(4).

By construction, we deduce the estimates

‖h‖Cr,α +‖G‖Cr+1,α ≤C10 ‖g‖Cr,α ,

‖h‖Cs,β +‖G‖Cs+1,β (∂Ω) ≤C11

[
‖g‖Cr,α +‖ν ∧g‖Cs,β (∂Ω)

]
since G = G(3) on ∂Ω .

Step 2. Applying Lemma 16.51 on each component of G, we get

Gε ∈C∞(Ω ;Λ k−1)∩Cs+1,β (Ω ;Λ k−1),
as in the lemma (in particular, Gε = G on ∂Ω ). Setting gε = dGε + h, we have
the claim. Before checking the inequalities, observe that, by construction, using
Theorem 3.23,

dgε = 0 in Ω , ν ∧gε = ν ∧g on ∂Ω ,

and since gε − g = d (Gε −G) with Gε −G = 0 on ∂Ω , we have, using Theo-
rem 3.28, ∫

Ω
〈gε −g;ψ〉dx = 0 for every ψ ∈HT (Ω ;Λ k).

In the sequel, C1,C2, . . . will denote generic constants depending only on s,α,β ,γ
and Ω . The first inequality follows from

‖gε −g‖Ct,γ ≤C1 ‖Gε −G‖Ct+1,γ ≤C2ε(r+1+α)−(t+1+γ) ‖G‖Cr+1,α

≤C3 ε(r+α)−(t+γ) ‖g‖Cr,α .

To obtain the second inequality, first remark that

‖gε‖Cs,β ≤C4
[‖h‖Cs,β +‖Gε‖Cs+1,β

]
≤ C5

ε(s+1+β )−(r+1+α)
‖G‖Cr+1,α +C5

(
‖h‖Cs,β +‖G‖Cs+1,β (∂Ω)

)
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and hence, since 0 < ε ≤ 1,

‖gε‖Cs,β ≤ C6

ε(s+β )−(r+α)
‖g‖Cr,α +C6 ‖ν ∧g‖Cs,β (∂Ω) .

The third one comes from∥∥∥∥ d
dε

gε

∥∥∥∥
Cs,β

≤C7

∥∥∥∥ d
dε

Gε

∥∥∥∥
Cs+1,β

≤ C8

ε(s+1+β )−(r+1+α)+1
‖G‖Cr+1,α

≤ C9

ε(s+β )−(r+α)+1
‖g‖Cr,α

and the last one follows from∥∥∥∥ d
dε

gε

∥∥∥∥
Ct,γ
≤C10

∥∥∥∥ d
dε

Gε

∥∥∥∥
Ct+1,γ

≤C11ε(r+1+α)−(t+γ+1)−1 ‖G‖Cr+1,α

≤C12ε(r+α)−(t+γ)−1 ‖g‖Cr,α .

Finally, defining Γ : (0,1]×Ω →Λ k by Γ (ε,x) = gε(x), we have that

Γ ∈Cs,β ((0,1]×Ω ;Λ k) and
∂Γ
∂ε

∈C∞((0,1]×Ω ;Λ k),
which concludes the proof. ��



Part VI

Appendix



Chapter 17

Necessary Conditions

In the following proposition we gather some elementary necessary conditions (cf.
[8], [9] and [31]).

Proposition 17.1. Let Ω ⊂R
n be a bounded open smooth set and ϕ ∈Diff1 (Ω ;ϕ

(
Ω
))

.

Let 1≤ k ≤ n, f ∈C1
(
Ω ;Λ k

)
and g ∈C1

(
ϕ
(
Ω
)

;Λ k
)

be such that

ϕ∗ (g) = f in Ω .

(i) Then for every x ∈Ω ,

rank [g(ϕ (x))] = rank [ f (x)] ,

rank [dg(ϕ (x))] = rank [d f (x)] .

In particular,
dg = 0 in ϕ (Ω) ⇔ d f = 0 in Ω .

(ii) If det∇ϕ > 0 and n = mk, with m an integer, then∫
Ω

f m =
∫

ϕ(Ω)
gm,

where f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

.

(iii) If ϕ (x) = x for x ∈ ∂Ω , then

ν ∧ f = ν ∧g on ∂Ω ,

where ν is the exterior unit normal to Ω .

Remark 17.2. (i) Recall that we have denoted by rank what is denoted by rank1 in
Chapter 2. In fact, statement (i) remains true for all ranks and coranks of any order.
More precisely, for every x ∈Ω , 0≤ s≤ k and 0≤ t ≤ n− k, we have
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408 17 Necessary Conditions

ranks [g(ϕ (x))] = ranks [ f (x)] ,

corankt [g(ϕ (x))] = corankt [ f (x)] ,

and for every 0≤ s≤ k+1 and 0≤ t ≤ n− k−1,

ranks [dg(ϕ (x))] = ranks [d f (x)] ,

corankt [dg(ϕ (x))] = corankt [d f (x)] .

We will establish these facts in the proof of the proposition.

(ii) Note that the equation

ν ∧g = ν ∧ f on ∂Ω

is equivalent to

i∗(g) = i∗( f ),

where i : ∂Ω → R
n is the inclusion map (cf. Remark 3.22).

Proof. (i) The statements

ranks [g(ϕ (x))] = ranks [ f (x)] ,

corankt [g(ϕ (x))] = corankt [ f (x)]

come directly from Proposition 2.33(vi), whereas the claims

ranks [dg(ϕ (x))] = ranks [d f (x)] ,

corankt [dg(ϕ (x))] = corankt [d f (x)]

follow as above and from the observation that

ϕ∗ (g) = f ⇒ ϕ∗ (dg) = d f .

(ii) Since f m and gm are volume forms and

ϕ∗ (gm) = f m,

we have the claim using the change of variables formula.

(iii) Let 1 ≤ i ≤ n. Since ϕ (x) = x for x ∈ ∂Ω , we have, appealing to Theo-
rem 3.23, that

ν ∧ (dϕ i−dxi)= 0 on ∂Ω .

Thus, invoking Theorem 2.42, there exist

φi : ∂Ω → R
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such that
dϕ i = dxi +φiν on ∂Ω .

Taking any index I ∈Tk , where

Tk = {I = (i1, . . . , ik) ∈ N
k, 1≤ i1 < · · ·< ik ≤ n},

we find

dϕ I =
(
dxi1 +φi1ν

)∧·· ·∧ (dxik +φik ν
)

= dxI +ν ∧Φ

for some (k−1)-form Φ and hence

ν ∧dϕ I = ν ∧dxI .

We thus find, for x ∈ ∂Ω , that

ν ∧ f = ν ∧ϕ∗ (g) = ν ∧∑
I

gI (ϕ (x))dϕ I = ∑
I

gI (x)ν ∧dϕ I

= ∑
I

gI (x)ν ∧dxI = ν ∧∑
I

gI (x)dxI = ν ∧g.

This concludes the proof. 
�

For results on the pullback equation when the rank is not conserved, see Golubit-
sky and Tischler [53], Martinet [71], Pelletier [81], Roussarie [86] and Zhitomirskiı̆
[108]; see also Chapter 11 for the case k = n.

Before stating another necessary condition, we need the next theorem (cf. Bandy-
opadhyay [7]). The proof closely follows the standard proofs of the classical
Poincaré lemma for contractible sets.

Theorem 17.3. Let 1 ≤ k ≤ n be integers, Ω ⊂ R
n be an open set and F ∈

C2 ([0,1]×Ω ;Ω) , F = F (t,x) = Ft (x) . Let g ∈C1
(
Ω ;Λ k

)
be closed. Then there

exists G ∈C1
(
Ω ;Λ k−1

)
such that

F∗1 (g)−F∗0 (g) = dG.

Moreover, if there exists a set N ⊂Ω such that

F (t,x) = x for every (t,x) ∈ [0,1]×N,

then G can be chosen such that it additionally satisfies

G(x) = 0 for every x ∈ N.

Remark 17.4. (i) Noticing that with exactly the same proof, the theorem is still valid
with Ω replaced by Ω , for Ω bounded, we have the following special case (used in
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Theorem 14.10). Let F ∈C2
(
[0,1]×Ω ;Ω

)
such that F (t,x) = x for every x ∈ ∂Ω

and every t ∈ [0,1] . Then there exists G ∈C1
(
Ω ;Λ k−1

)
verifying{

dG = F∗1 (g)−F∗0 (g) in Ω ,

G = 0 on ∂Ω .

(ii) The same proof shows that if r ≥ 1 is an integer, 0≤ α ≤ 1, F ∈Cr+1,α and
g ∈Cr,α , then G is in Cr,α .

Proof. Step 1. We start with a preliminary step. Let

i0, i1 : Ω → R×Ω

be defined by

i0(x) = (0,x) and i1(x) = (1,x).

Hence, we have, in Ω ,

F0 = F ◦ i0 and F1 = F ◦ i1 .

Note that any ω ∈C1
(
[0,1]×Ω ;Λ k

(
R

n+1
))

can be written as

ω(t,x) = ∑
I∈Tk

aI(t,x)dxI + ∑
J∈Tk−1

bJ(t,x)dt ∧dxJ , (17.1)

where the aI ,bJ ∈C1 ([0,1]×Ω) are uniquely determined. We now define for 1 ≤
k ≤ n+1 the maps

Lk : C0( [0,1]×Ω ;Λ k (
R

n+1))→C0(Ω ;Λ k−1 (Rn)
)

by

Lk(ω)(x) = ∑
J∈Tk−1

(∫ 1

0
bJ(t,x)dt

)
dxJ .

We claim that for every ω ∈ C1
(
[0,1]×Ω ;Λ k

(
R

n+1
))

, the following identity
holds:

i∗1(ω)− i∗0(ω) = Lk+1(dt,xω)+dxLk(ω) in Ω . (17.2)

To prove this, note that

dt,xω = ∑
I∈Tk

(
dxaI +

∂aI

∂ t
dt
)
∧dxI + ∑

J∈Tk−1

dxbJ ∧dt ∧dxJ

= ∑
I∈Tk

(
dxaI +

∂aI

∂ t
dt
)
∧dxI− ∑

J∈Tk−1

dt ∧dxbJ ∧dxJ .
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Therefore,

Lk+1(dt,xω) = ∑
I∈Tk

(∫ 1

0

∂aI

∂ t
dt
)

dxI− ∑
J∈Tk−1

(∫ 1

0
dxbJ(t,x)dt

)
∧dxJ

= ∑
I∈Tk

(aI ◦ i1−aI ◦ i0)dxI− ∑
J∈Tk−1

dx

(∫ 1

0
bJ(t,x)dt

)
∧dxJ

= ∑
I∈Tk

(aI ◦ i1−aI ◦ i0)dxI−dx

(
∑

J∈Tk−1

(∫ 1

0
bJ(t,x)dt

)
∧dxJ

)

= i∗1(ω)− i∗0(ω)−dxLk(ω),

which proves (17.2).

Step 2. We claim that
G = Lk (F∗ (g))

has all of the desired properties. Let ω = F∗ (g) . Since g is closed in Ω , we get

dt,xω = dt,x(F∗(g)) = F∗(dg) = 0.

We therefore obtain

F∗1 (g)−F∗0 (g) = i∗1 (F
∗(g))− i∗0 (F

∗(g)) = i∗1(ω)− i∗0(ω)

= Lk+1(dt,xω)+dxLk(ω) = dxLk(ω) = dG.

The first part of the theorem is therefore proved. It remains to show that if F (t,x0) =
x0 for every t ∈ [0,1], then the above G satisfies G(x0) = 0. First, note that for every
t ∈ [0,1] and every 1≤ i≤ n, we have

∂Fi

∂ t
(t,x0) = 0

and hence

dFi (t,x0) =
∂Fi

∂ t
(t,x0)dt +

n

∑
j=1

∂Fi

∂x j
(t,x0)dx j =

n

∑
j=1

∂Fi

∂x j
(t,x0)dx j.

We therefore deduce that

F∗ (g)(t,x0) = ∑
I∈Tk

gI (F (t,x0))dFI = ∑
I∈Tk

gI (x0)dFI = ∑
I∈Tk

aI (t,x0)dxI

for some appropriate aI and, hence, the corresponding bJ (t,x0) in (17.1) is zero. We
thus obtain, by definition of Lk , that

G(x0) = Lk(F∗ (g))(x0) = 0.

This concludes the proof of the theorem. 
�
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As a corollary, we obtain the following necessary condition, whenever a solution
of the pullback equation is achieved by the flow method.

Corollary 17.5. Let 1≤ k ≤ n be integers, Ω ⊂ R
n be an open set and

ϕ ∈C2 ([0,1]×Ω ;Ω
)
, ϕ = ϕ(t,x) = ϕt(x).

Let f ,g ∈C1
(
Ω ;Λ k

)
be closed. Assume that

ϕ∗1 (g) = f and ϕ0 = id in Ω ,

ϕt = id on ∂Ω for every 0≤ t ≤ 1.

Then for every χ ∈C∞ (
Ω ;Λ k

)
with δ χ = 0 in Ω , the following equality holds true:∫
Ω
〈g; χ〉=

∫
Ω
〈 f ; χ〉.

Proof. In view of Remark 17.4, there exists G ∈C1
(
Ω ;Λ k−1

)
verifying{

dG = ϕ∗1 (g)−ϕ∗0 (g) = f −g in Ω ,

G = 0 on ∂Ω .

Therefore, by partial integration, we obtain∫
Ω
〈 f −g; χ〉=

∫
Ω
〈dG; χ〉=

∫
Ω
〈G;δ χ〉= 0.

This concludes the proof of the corollary. 
�



Chapter 18

An Abstract Fixed Point Theorem

The following theorem is particularly useful when dealing with nonlinear problems,
once good estimates are known for the linearized problem. We give it under a gen-
eral form, because we have used it this way in Theorems 14.1 and 14.10. However,
in many instances, Corollary 18.2 is amply sufficient. Our theorem will lean on the
following hypotheses.

(HXY ) Let X1 ⊃ X2 be Banach spaces and Y1 ⊃Y2 be normed spaces such that the
following property holds: If

uν
X1−→ u and ‖uν‖X2 ≤ r,

then u ∈ X2 and
‖u‖X2 ≤ r.

(HL) Let L : X2 → Y2 be such that there exist a linear right inverse operator L−1 :
Y2 → X2 (namely LL−1 = id on Y2) and k1,k2 > 0 such that for every f ∈ Y2,

‖L−1 f‖Xi ≤ ki‖ f‖Yi , i = 1,2.

(HQ) There exists ρ > 0 such that

Q : Bρ = {u ∈ X2 : ‖u‖X1 ≤ ρ}→ Y2

Q(0) = 0 and for every u,v ∈ Bρ , the following two inequalities hold:

‖Q(u)−Q(v)‖Y1 ≤ c1(‖u‖X1 ,‖v‖X1)‖u− v‖X1 , (18.1)

‖Q(v)‖Y2 ≤ c2 (‖v‖X1 ,‖v‖X2) , (18.2)

where c1,c2 : [0,+∞)× [0,+∞)→ [0,+∞) are separately increasing.

Theorem 18.1 (Fixed point theorem). Let X1,X2,Y1,Y2,L and Q satisfy the hy-
potheses (HXY ) , (HL) and (HQ) . Then for every f ∈ Y2 verifying

2k1‖ f‖Y1 ≤ ρ and 2k1c1(2k1‖ f‖Y1 ,2k1‖ f‖Y1)≤ 1, (18.3)
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414 18 An Abstract Fixed Point Theorem

c2(2k1‖ f‖Y1 ,2k2‖ f‖Y2)≤ ‖ f‖Y2 , (18.4)

there exists u ∈ Bρ ⊂ X2 such that

Lu = Q(u)+ f and ‖u‖Xi ≤ 2ki‖ f‖Yi , i = 1,2. (18.5)

We have as an immediate consequence of the theorem the following result.

Corollary 18.2. Let X be a Banach space and Y a normed space. Let L : X → Y be
such that there exist a linear right inverse operator L−1 : Y → X (namely LL−1 = id
on Y ) and k > 0 such that

‖L−1 f‖X ≤ k‖ f‖Y .

Let ρ > 0 and
Q : Bρ = {u ∈ X : ‖u‖X ≤ ρ}→ Y,

with Q(0) = 0 and, for every u,v ∈ Bρ ,

‖Q(u)−Q(v)‖Y ≤ c(‖u‖X ,‖v‖X )‖u− v‖X

and where c : [0,+∞)× [0,+∞)→ [0,+∞) is separately increasing. If

2k‖ f‖Y ≤ ρ and 2kc(2k‖ f‖Y ,2k‖ f‖Y )≤ 1,

then there exists u ∈ Bρ ⊂ X such that

Lu = Q(u)+ f and ‖u‖X ≤ 2k‖ f‖Y .

We now turn to the proof of Theorem 18.1.

Proof. We set
N(u) = Q(u)+ f .

We next define
B = {u ∈ X2 : ‖u‖Xi ≤ 2ki‖ f‖Yi i = 1,2} .

We endow B with ‖ ·‖X1 norm; the property (HXY ) ensures that B is closed. We now
want to show that L−1N : B→B is a contraction mapping (cf. Claims 1 and 2 below).
Applying the Banach fixed point theorem we will have indeed found a solution
verifying (18.5), since LL−1 = id .

Claim 1. Let us first show that L−1N is a contraction on B. To show this, let
u,v ∈ B and use (18.1) and (18.3) to get that

‖L−1N(u)−L−1N(v)‖X1 ≤ k1‖N(u)−N(v)‖Y1 = k1‖Q(u)−Q(v)‖Y1

≤ k1c1(‖u‖X1 ,‖v‖X1)‖u− v‖X1

≤ k1c1(2k1‖ f‖Y1 ,2k1‖ f‖Y1)‖u− v‖X1

≤ 1
2
‖u− v‖X1 .
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Claim 2. We next show L−1N : B→ B is well defined. First, note that

‖L−1N(0)‖X1 ≤ k1‖N(0)‖Y1 = k1‖ f‖Y1 .

Therefore, using Claim 1, we obtain

‖L−1N(u)‖X1 ≤ ‖L−1N(u)−L−1N(0)‖X1 +‖L−1N(0)‖X1

≤ 1
2
‖u‖X1 + k1‖ f‖Y1 ≤ 2k1‖ f‖Y1 .

It remains to show that
‖L−1N(u)‖X2 ≤ 2k2‖ f‖Y2 .

Using (18.2), we have

‖L−1N(u)‖X2 ≤ k2‖N(u)‖Y2 ≤ k2‖Q(u)‖Y2 + k2‖ f‖Y2

≤ k2c2 (‖u‖X1 ,‖u‖X2)+ k2‖ f‖Y2

≤ k2 [c2(2k1‖ f‖Y1 ,2k2‖ f‖Y2)+‖ f‖Y2 ]

and hence, appealing to (18.4),

‖L−1N(u)‖X2 ≤ k2 [‖ f‖Y2 +‖ f‖Y2 ] = 2k2‖ f‖Y2 .

This concludes the proof of Claim 2 and thus of the theorem. �	
For the sake of illustration, we give here an academic example loosely related to

our problem.

Example 18.3. Let Ω ⊂ R
n be a bounded contractible smooth set and 0 < α < 1.

Let r ≥ 1 and 1≤ k ≤ n−2 be integers. Consider the form w : Rn →Λ k, where

w = ∑
I∈Tk

wIdxI ,

where Tk is the set of ordered k-indices. Let I1, . . . , Ik+1 ∈ Tk; then there exists
ε > 0 such that for every f ∈Cr,α (

Ω ;Λ k+1
)

with

‖ f‖Cr,α ≤ ε, d f = 0 and ν ∧ f = 0 on ∂Ω ,

there exists w ∈Cr+1,α (
Ω ;Λ k

)
satisfying⎧⎨

⎩dw− k+1∧
r=1

dwIr = f in Ω ,

w = 0 on ∂Ω .

The proof immediately follows from Corollary 18.2 if we set

X = {w ∈Cr+1,α(Ω ;Λ k) : w = 0 on ∂Ω},

Y = { f ∈Cr,α(Ω ;Λ k+1) : d f = 0 in Ω and ν ∧ f = 0 on ∂Ω},
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L to be the operator constructed in Theorem 8.16 (Lw = f being equivalent to
dw = f ) and

Q(a) =
k+1∧
r=1

daIr .

Since k ≥ 1, the following estimate holds:

‖Q(u)−Q(v)‖Y ≤ c(‖u‖X ,‖v‖X )‖u− v‖X ,

with
c(s, t) =C (s+ t) ,

where C is a constant given using Theorem 16.28.



Chapter 19

Degree Theory

19.1 Definition and Main Properties

We begin recalling some results on the topological degree (see, e.g., [43] or [88] for
further details). We start by defining the degree for C1 maps.

Definition 19.1. Let Ω be a bounded open set in R
n, ϕ ∈C1(Ω ;Rn) and

Zϕ = {x ∈Ω : det∇ϕ(x) = 0}.

For every p ∈ R
n such that

p /∈ ϕ(∂Ω)∪ϕ(Zϕ),

we define the integer deg(ϕ,Ω , p) as

deg(ϕ,Ω , p) = ∑
x∈Ω :ϕ(x)=p

sign(det∇ϕ(x)),

with the convention deg(ϕ,Ω , p) = 0 if {x ∈Ω : ϕ(x) = p}= /0.

Remark 19.2. The fact that p /∈ ϕ(Zϕ) ensures that the set {ϕ−1(p)} is finite and
therefore, deg(ϕ,Ω , p) is well defined.

It is possible to extend the definition of deg(ϕ,Ω , p) to ϕ ∈C0(Ω ;Rn) and p /∈
ϕ(∂Ω). Keeping the same notation, this extension of the degree has the following
properties.

Theorem 19.3. Let Ω be a bounded open set in R
n, ϕ,ψ ∈ C0(Ω ;Rn) and H ∈

C0([0,1]×Ω ;Rn). The following properties are then verified:

(i) If p /∈ H(t,x) for every 0≤ t ≤ 1 and x ∈ ∂Ω , then

deg(H(0, ·),Ω , p) = deg(H(1, ·),Ω , p).
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In particular, if ϕ = ψ on ∂Ω and p /∈ ϕ(∂Ω), then (choosing H(t,x) = (1−
t)ϕ(x)+ tψ(x))

deg(ϕ,Ω , p) = deg(ψ,Ω , p).

(ii) If p /∈ ϕ(∂Ω) is such that deg(ϕ,Ω , p) �= 0, then there exists x ∈Ω such that
ϕ(x) = p.

(iii) Let p /∈ ϕ(∂Ω). Then for every p′ in the connected component of (ϕ(∂Ω))c

containing p,

deg(ϕ,Ω , p) = deg(ϕ,Ω , p′).

We have the following immediate corollary.

Corollary 19.4. Let Ω be a bounded open set in R
n and ϕ ∈C0(Ω ;Rn) such that

ϕ = id on ∂Ω . Then

deg(ϕ,Ω , p) =

{
1 if p ∈Ω
0 if p /∈Ω

(19.1)

and

ϕ(Ω)⊃Ω and ϕ(Ω)⊃Ω . (19.2)

Proof. Noticing that

deg(id,Ω , p) =

{
1 if p ∈Ω
0 if p /∈Ω ,

we immediately obtain (19.1) and (19.2) using Theorems 19.3(i) and 19.3(ii). �	
Finally we recall the Sard theorem and the invariance of domain theorem (see,

e.g., [43]).

Theorem 19.5 (Sard theorem). Let Ω be a bounded open Lipschitz set in R
n and

ϕ ∈C1(Ω ;Rn). Then

meas(ϕ(Zϕ)) = 0.

Theorem 19.6 (Invariance of domain theorem). Let Ω be a bounded open set in
R

n and ϕ ∈C0(Ω ;Rn) be a one-to-one map. Then

ϕ(Ω) is open and ϕ(∂Ω) = ∂ (ϕ(Ω)).

19.2 General Change of Variables Formula

First, we recall the classic change of variables formula.
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Theorem 19.7. Let Ω and U be two bounded open sets in R
n, ϕ ∈Diff1(Ω ;U) and

g ∈C0(Ω). Then the following formula holds:∫
U

g(y)dy =
∫

ϕ(Ω)
g(y)dy =

∫
Ω

g(ϕ(x))|det∇ϕ(x)|dx.

We now give a generalization of the above theorem whose proof can be found,
for example, in [43, Theorem 5.27].

Theorem 19.8. Let Ω be a bounded open Lipschitz set in R
n. Let ϕ ∈ C1(Ω ;Rn)

and g ∈C0(Rn). Then the following formula holds:∫
Rn

g(y)deg(ϕ,Ω ,y)dy =
∫

Ω
g(ϕ(x))det∇ϕ(x)dx.

Remark 19.9. (i) Although deg(ϕ,Ω ,y) is not defined for y ∈ ϕ(∂Ω), the left-hand
side makes sense since meas(ϕ(∂Ω)) = 0. This last equality holds due to the fact
that ϕ is Lipschitz and meas(∂Ω) = 0.

(ii) If ϕ ∈ Diff1(Ω ;ϕ(Ω)) then, by definition of deg,

deg(ϕ,Ω ,y) =

{
sign(det∇ϕ) if y ∈ ϕ (Ω)

0 if y /∈ ϕ(Ω).

Therefore, Theorem 19.8 is indeed a generalization of Theorem 19.7.

(iii) If ϕ = id on ∂Ω , then, by Corollary 19.4, we have that

deg(ϕ,Ω ,y) =

{
1 if y ∈Ω
0 if y /∈Ω

and, thus, ∫
Ω

g(y) =
∫

Ω
g(ϕ(x))det∇ϕ(x)dx. (19.3)

As direct consequence we have the following result (cf. also Theorem 8.35
in [28]).

Corollary 19.10. Let Ω be a bounded open Lipschitz set in R
n and u ∈C1(Ω ;Rn),

with u = 0 on ∂Ω . Then ∫
Ω

det(I +∇u) = measΩ ,

where I stands for the identity matrix in R
n×n. As a consequence, if ϕ ∈Diff1(Ω ;Ω),

with ϕ = id on ∂Ω , then
det∇ϕ > 0 in Ω .

Proof. Letting g = 1 and ϕ = id+u, we have the result applying the identity (19.3).
�	
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19.3 Local and Global Invertibility

As an application of these above properties we have the following results. We first
give a sufficient condition for a map to be a homeomorphism.

Lemma 19.11. Let Ω be a bounded open set in R
n and ϕ ∈C0(Ω ;Rn) be one-to-

one such that ϕ = id on ∂Ω . Then ϕ ∈ Hom(Ω ;Ω).

Proof. It can be easily seen, working on each connected component of Ω , that we
can assume Ω to be connected. By the boundedness of Ω and the continuity of ϕ ,
we have that ϕ(F) is closed for every closed set F in R

n such that F ⊂Ω . Since ϕ
is one-to-one, we obtain

ϕ ∈ Hom(Ω ;ϕ(Ω)).

Let us prove that
ϕ(Ω) = Ω ,

which will end the proof. Due to (19.2), it is enough to prove that

ϕ(Ω)⊂Ω . (19.4)

By Theorem 19.6, we have that ϕ(∂Ω) = ∂ (ϕ(Ω)). Thus, since ϕ = id on ∂Ω and
ϕ is one-to-one, we get

∂Ω = ∂ (ϕ(Ω)) and ϕ(Ω)∩∂Ω = /0. (19.5)

Suppose by contradiction that there exists x ∈ Ω such that ϕ(x) ∈ (Ω)c. Since ϕ
is the identity map on ∂Ω , we have that x ∈ Ω . Let us now consider y ∈ Ω such
that ϕ(y) ∈ Ω (such a y surely exists by (19.2)) and let c ∈C0([0,1];Ω) be a path
connecting x and y. Then, by continuity, there exists 0 < t < 1 such that ϕ(c(t)) ∈
∂Ω , contradicting (19.5), which concludes the proof. �	

We now provide a sufficient condition for the invertibility of functions in C1(Ω ;Rn).
A similar result can be found in Meisters and Olech [75].

Theorem 19.12. Let Ω be a bounded open set in R
n and let ϕ ∈C1(Ω ;Rn) be such

that {
det∇ϕ > 0 in Ω ,

ϕ = id on ∂Ω .

Then ϕ ∈ Diff1(Ω ;Ω). Moreover, if c > 0 is such that∥∥∥∥ 1
det∇ϕ

∥∥∥∥
C0

,‖∇ϕ‖C0 ≤ c,

then there exists a constant C =C (c,Ω)> 0 such that∥∥ϕ−1∥∥
C1 ≤C‖ϕ‖C1 .
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Remark 19.13. Under the weaker hypotheses, det∇ϕ ≥ 0 in Ω , ϕ = id on ∂Ω and
Zϕ ∩Ω does not have accumulation points, it can be proved that ϕ ∈ C1(Ω ;Ω)∩
Hom(Ω ;Ω); see [60].

Proof. We divide the proof into three steps.
Step 1. We first prove that ϕ(Ω) = Ω . Using (19.2), we know that

ϕ(Ω)⊃Ω .

Let us show the reverse inclusion (i.e., ϕ(Ω) ⊂ Ω ). We first prove that ϕ(Ω) ⊂ Ω
and then conclude. By contradiction, let x ∈Ω be such that ϕ(x) /∈Ω . By definition
of the degree, we obtain

0 < ∑
y∈Ω :ϕ(y)=ϕ(x)

sign(det∇ϕ(y)) = deg(ϕ,Ω ,ϕ(x)),

whereas, using (19.1), we have

deg(ϕ,Ω ,ϕ(x)) = 0,

which is absurd.
To conclude, suppose that x∈Ω and ϕ(x)∈Ω \Ω = ∂Ω . By the inverse function

theorem, which can be applied since det∇ϕ(x)> 0, there exists a neighborhood of
x such that the restriction of ϕ on this set is one-to-one and onto a neighborhood of
ϕ(x) ∈ ∂Ω . In particular, this implies the existence of y ∈ Ω such that ϕ(y) /∈ Ω ,
which contradicts what has just been proved.

Step 2. Since ϕ(Ω) = Ω and ϕ = id on ∂Ω , we have that

ϕ(Ω) = Ω .

Moreover, ϕ(∂Ω)∩ϕ(Ω) = ∂Ω ∩Ω = /0. Thus, it suffices to show that the restric-
tion of ϕ to Ω is one-to-one to conclude. We reason by contradiction. We assume
that there exists p ∈Ω which is the image of at least two elements in Ω . By defini-
tion of the degree, we obtain

2 < ∑
x∈Ω :ϕ(x)=p

sign(det∇ϕ(x)) = deg(ϕ,Ω , p),

whereas, using (19.1), we have

deg(ϕ,Ω , p) = 1,

which is the desired contradiction.
Step 3. We finally establish the estimate. We clearly have∥∥ϕ−1∥∥

C0 = ‖ϕ‖C0 = ‖id‖C0 .

We also have ∥∥∇ϕ−1∥∥
C0 =

∥∥∥(∇ϕ)−1 ◦ϕ
∥∥∥

C0
=
∥∥∥(∇ϕ)−1

∥∥∥
C0

.
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Since

(∇ϕ)−1 =
(adj∇ϕ)t

det∇ϕ
,

we immediately get that ∥∥∇ϕ−1∥∥
C0 ≤C‖∇ϕ‖C0 .

This finishes the proof. �	

We also have a necessary condition for ϕ to be a C1 homeomorphism.

Proposition 19.14. Let Ω ⊂ R
n be a bounded open set in R

n and ϕ ∈C1(Ω ;Ω)∩
Hom(Ω ;Ω), with ϕ = id on ∂Ω . Then

det∇ϕ(x)≥ 0 in Ω and int(Zϕ) = /0.

Proof. We split the proof into two steps.
Step 1. We show that det∇ϕ ≥ 0. By contradiction, suppose that there exists

y ∈ Ω such that det∇ϕ(y) < 0. By continuity, without loss of generality, we can
assume that y ∈Ω . In particular, y /∈ Zϕ and since ϕ is one-to-one, we obtain

ϕ(y) /∈ ϕ(Zϕ)∪ϕ(∂Ω) = ϕ(Zϕ)∪∂Ω .

By definition of deg(ϕ,Ω ,ϕ(y)) and by (19.1), we have

1 = deg(ϕ,Ω ,ϕ(y)) = ∑
z :ϕ(z)=ϕ(y)

sign(det∇ϕ(z)).

Since sign(det∇ϕ(y)) = −1, the above equality implies that ϕ−1(ϕ(y)) is not a
singleton, which is absurd.

Step 2. We prove that int(Zϕ) = /0. By contradiction, suppose that int(Zϕ) �= /0.
By continuity of ϕ−1, we have that

ϕ
(
int

(
Zϕ

))
= (ϕ−1)−1(int(Zϕ)) �= /0

and (ϕ−1)−1
(
int(Zϕ)

)
is open. Therefore,

int
(
ϕ
(
Zϕ

)) �= /0,

contradicting the Sard theorem. �	

We conclude with some other necessary conditions.

Proposition 19.15. Let Ω be a bounded open set in R
n and let ϕ ∈ C1(Ω ;Rn) be

such that {
det∇ϕ ≥ 0 in Ω ,

ϕ = id on ∂Ω .
(19.6)
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Then
int(ϕ(Ω)) = Ω . (19.7)

Moreover, if
int(Zϕ) = /0, (19.8)

then
ϕ(Ω) = Ω . (19.9)

Finally, if (19.8) does not hold, then (19.9) may fail for some ϕ ∈C1(Ω ;Rn).

Proof. We divide the proof into three steps.

Step 1. We already know that ϕ(Ω)⊃Ω and thus

int(ϕ(Ω))⊃Ω .

Let us show the reverse inclusion. We proceed by contradiction and assume that

int(ϕ(Ω))∩Ω c �= /0;

thus, since int(ϕ(Ω)) is open,

int(ϕ(Ω))∩ (Ω
)c �= /0.

Therefore, there exist y and ε > 0 such that

Bε (y)⊂ int(ϕ(Ω))∩ (Ω
)c ⊂ ϕ(Ω)∩ (Ω

)c
. (19.10)

We claim that
ϕ
(
Ω \Zϕ

)⊂Ω . (19.11)

Indeed, let y∈ ϕ
(
Ω \Zϕ

)
and let us show that y∈Ω . Since y∈ ϕ

(
Ω \Zϕ

)
, we can

find x ∈Ω \Zϕ such that y = ϕ (x) . Since x /∈ Zϕ and (19.6) holds, we deduce that

det∇ϕ (x)> 0.

We then proceed exactly as in Step 1 of the proof of Theorem 19.12 to get that

y = ϕ (x) ∈Ω .

We next combine (19.10) and (19.11) to find

Bε (y)⊂ ϕ(Ω)∩ (Ω
)c ⊂

[
ϕ
(
Ω \Zϕ

)∩ (Ω
)c
]
∪
[
ϕ
(
Zϕ

)∩ (Ω
)c
]

⊂
[
Ω ∩ (Ω

)c
]
∪
[
ϕ
(
Zϕ

)∩ (Ω
)c
]
= ϕ

(
Zϕ

)∩ (Ω
)c

and, thus,
Bε (y)⊂ ϕ

(
Zϕ

)
,

contradicting the Sard theorem.
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Step 2. Let us next prove that (19.8) implies (19.9). Since ϕ = id on ∂Ω and
(19.2) holds, it is enough to prove that

ϕ(Ω)⊂Ω .

By Step 1, we already know that ϕ
(
Ω \Zϕ

)⊂Ω . Therefore, it remains to establish
that

ϕ
(
Zϕ ∩Ω

)⊂Ω .

So let x ∈ Zϕ ∩Ω ; then (using (19.8)) there exists a sequence xν ∈Ω \Zϕ such that
xν → x. Since (19.11) holds, we deduce that ϕ(xν) ∈ Ω and, hence, ϕ(x) ∈ Ω . We
therefore have the claim.

Step 3. We show that (19.9) may fail if (19.8) does not hold. Set Ω = B1 be the
unit ball in R

2 and consider

ϕ(x1,x2) = ρ(x2
1 + x2

2)(x1,x2)+η(x2
1 + x2

2)(x1,0),

where⎧⎪⎨
⎪⎩

ρ ∈C∞([0,1]; [0,∞)),

ρ ≡ 0 in [0,1/2] ρ ≡ 1 in [3/4,1],
ρ ′ ≥ 0 in [0,1]

and

⎧⎪⎨
⎪⎩

η ∈C∞([0,1]; [0,∞)),

suppη ⊂ (0,1/2),
η(1/4) = 4.

Let us verify the hypotheses of the proposition. Obviously, ϕ ∈ C1(B1;Rn) and
supp(ϕ− id)⊂ B1 . Let us now check that det∇ϕ ≥ 0. We separately consider two
cases.

Case 1 (1/2≤ |x|2 ≤ 1). A straightforward computation implies that

det∇ϕ(x) = (2x2
1ρ ′+ρ)(2x2

2ρ ′+ρ)−4x2
1x2

2ρ ′2

= 4x2
1x2

2ρ ′2 +2 |x|2 ρρ ′+ρ2−4x2
1x2

2ρ ′2

= 2 |x|2 ρρ ′+ρ2 ≥ 0.

Case 2 (0≤ |x|2≤ 1/2). By definition of ϕ , it immediately follows that det∇ϕ = 0.
Thus, det∇ϕ ≥ 0.

Since
ϕ(1/2,0) = η(1/4)(1/2,0) = (2,0) /∈ B1,

we have the claim and this concludes the proof of the proposition. �	
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17. Brézis H., Analyse fonctionelle, théorie et applications, Dunod, Paris, 1999.
18. Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L. and Griffiths P.A., Exterior differ-

ential systems, Mathematical Sciences Research Institute Publications 18, Springer-Verlag,
New York, 1991.

19. Burago D. and Kleiner B., Separated nets in Euclidean space and Jacobian of biLipschitz
maps, Geom. Funct. Anal., 8 (1998), 273–282.

20. Calderon A.P., Lebesgue spaces of differentiable functions and distributions, Proc. Symp.
Pure Math., Vol. IV, American Mathematical Society, Providence, RI, 1961, pp. 33–49.

21. Cartan E., Selecta, Gauthier-Villars, Paris, 1939.

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9, 
© Springer Science+Business Media, LLC 2012 

425



426 References

22. Coddington E.A. and Levinson N., Theory of ordinary differential equations, McGraw-Hill
Book Company Inc., New York, 1955.
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52. Godement R., Cours d’algèbre, Hermann, Paris, 1963.
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95–178.
72. Mc Duff D. and Salamon D., Introduction to symplectic topology, second edition, Oxford

Science Publications, Oxford, 1998.
73. Mc Mullen C.T., Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal., 8 (1998),

304–314.
74. Marcus M., Finite dimensional multilinear algebra. Part II, Marcel Dekker, New York,

1975.
75. Meisters G.H. and Olech C., Locally one-to-one mappings and a classical theorem on

schlicht functions, Duke Math. J., 30 (1970), 63–80.
76. Morrey C.B., A variational method in the theory of harmonic integrals II, Amer. J. Math., 78

(1956), 137–170.
77. Morrey C.B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966.
78. Moser J., On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965),

286–294.
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Notations

General Notations

- | · | and 〈· ; ·〉 denote the usual norm and scalar product in R
n.

- For E ⊂ R
n, E, respectively ∂E, intE, measE, diamE and Ec stands for the closure, respec-

tively the boundary, the interior, the Lebesgue measure, the diameter and the complement of E.
- Bε (x) = {y ∈ R

n : |y− x|< ε} and Bε = Bε (0).
- For E ⊂ R

n we denote

1E(x) =

{
1 if x ∈ E

0 otherwise.

- For x = (x1, . . . ,xn) ∈ R
n, we let x′ = (x1, . . . ,xn−1) ∈ R

n−1.

- For A,B⊂ R
n, we let

A+B = {x = a+b : a ∈ A and b ∈ B}.

- The vector space spanned by E is denoted by spanE.
- The support of a function f is denoted by supp f .
- R

m×n is the set of matrices with m rows and n columns. For A ∈ R
m×n, we write its entries as

A =
(
Ai

j
)1≤i≤m

1≤ j≤n .

- At is the transpose of A.
- GL(n), respectively O(n), stands for set of invertible, respectively orthogonal, n×n matrices.
- For a n×n matrix A, we denote by detA the determinant of A and adjA stands for the adjugate

matrix of A.
- The dimension of a vector space X is denoted dimX .

- For integers 0≤ s≤ n, we let (
n
s

)
=

n!(n− s)!
s!

.

- For two integers i and j, the Kronecker symbol is denoted by δi j abbreviating

δi j =

{
0 if i 	= j

1 if i = j.
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Exterior Algebra

- For an integer k ≥ 1, Sym(k) stands for the set of permutations of {1, . . . ,k}. For σ ∈ Sym(k),
we denote by sign(σ) ∈ {−1,1} the sign of σ .

- The set of exterior k-forms over Rn is denoted by Λ k(Rn).

- Tk stands for {(i1, . . . , ik) ∈ N
k : 1≤ i1 < · · ·< ik ≤ n}.

- The ∧, respectively � and ∗ operator stands for the exterior product, respectively the interior
product and Hodge star operator; see Section 2.1.

- The ̂ sign above a term in a sequence of indices, forms, or coefficients means that the corre-
sponding term is omitted; for example,

e1∧ ê2 ∧ e3 = e1∧ e2.

- For an integer m and an exterior form f , we write

f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

.

- For a matrix A and an exterior form f , A∗( f ) stands for the pullback of f by A; see Section 2.1.

- For f ∈Λ k(Rn), we let

Λ 1
f = {u ∈Λ 1(Rn) : ∃g ∈Λ k−1(Rn) with g� f = u}.

- For an integer s , Anh∧( f ,s), respectively Anh�( f ,s), stands for the space of exterior, respec-
tively interior, annihilators of order s of f (see Section 2.2).

- The rank, respectively the corank, of order s of f is denoted by ranks[ f ], respectively coranks[ f ].

- The exterior, respectively interior, matrix of order s associated to f is given by f∧,s, respectively
f �,s (see Notation 2.30).

- Except in Chapter 2, we write, in order not to burden the notations, rank[ f ] for rank1[ f ] and f
for f �,1 .

Differential Forms

- For a function ϕ : Rm → R
n and I ∈Tk, we denote (cf. Definition 3.8),

dϕ I = dϕ i1 ∧·· ·∧dϕ ik .

- For the notations Lp
(
Ω ;Λ k

)
, respectively W r,p

(
Ω ;Λ k

)
, Cr,α(Ω ;Λ k

)
; see Chapter 3.

- For the spaces with vanishing tangential component Cr,α
T

(
Ω ;Λ k

)
and W r,p

T

(
Ω ;Λ k

)
and the

spaces with vanishing normal component Cr,α
N

(
Ω ;Λ k

)
and W r,p

N

(
Ω ;Λ k

)
, see Definition 3.24.

- For the set of harmonic fields H
(
Ω ;Λ k

)
, HT

(
Ω ;Λ k

)
and HN

(
Ω ;Λ k

)
, see Definition 6.1.

- For a sufficiently smooth open set Ω , ν stands for the exterior unit normal of Ω .

- The operator d, respectively δ and Δ , stands for the exterior derivative, respectively the interior
derivative and the Laplacian operator for forms; see Chapter 3.
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- The 2-form ωm denotes the standard symplectic 2-form of rank 2m; that is,

ωm =
m

∑
i=1

dx2i−1∧ dx2i.

- For a map ϕ and a differential form f , we denote ϕ∗( f ) the pullback of f by ϕ. For the notation
ϕ�( f ), see Theorem 3.10.

- For a map u and a differential form f , Lu f stands for the Lie derivative of f with respect to u;
see Notation 4.1. For the notations Lu and Ku, see Definition 5.1.

Functions Spaces

- For 1 ≤ p ≤ ∞ and r ≥ 0, W r,p denote Sobolev spaces, namely the spaces of Lp functions,
whose weak partial derivatives of order up to r exist and are all in Lp. We make the convention
W 0,p = Lp.

- For the definition of the spaces Cr, Cr
0, Cr,α , Cr,α

0 , Cr,α
∗ , C∞ and C∞

0 and the norms ‖ · ‖Cr ,
‖ · ‖Cr,α , and ‖ · ‖Cr,α∗ , see Section 16.1.

- The set of diffeomorphisms of class Cr,α from U onto V is denoted by Diffr,α (U ;V ). The set of
homeomorphisms of class C0,α from U onto V is denoted by Hom0,α (U ;V ).

- For a bounded open set Ω and f ∈C0(Ω), we write

F+ = f−1((0,∞)) and F− = f−1((−∞,0)).

For x ∈ F±,
F±x denotes the connected component of F± containing x.

- For a function f , Da f , respectively ∇r f and ∂ f/∂ν , stands for the derivative of f with respect
to the multi-index a, respectively the set of derivatives of order r and the derivative of f in the
direction ν . Ar stands for the set of multi-indices of order r. Sometimes the gradient ∇ f of a
function f is also denoted by grad f .

- For a vector field u, divu denotes the divergence of u. For the notation curl∗ u; see Notation 9.1.

- For a closed set F, the function d∗(x) = d∗(x;F) is a regularization of the usual distance func-
tion d(x) = d(x;F) from x to F (see Theorem 16.21).
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Admissible boundary coordinate system, 80,
82, 83, 85, 131, 152

definition, 80

Betti numbers, 119

Cartan formula, 92, 103, 105, 262
Cartan lemma, 33, 58, 64, 69
Contractible set, 119, 123, 128, 138, 142, 147,

149, 156, 157, 159, 160, 181, 182, 197,
286, 293, 397, 409, 415

definition, 121
Corank of order s, definition, 48

Dacorogna–Kneuss theorem, 63
Dacorogna–Moser theorem, 191, 192
Darboux theorem

for 1-forms, 271
for 2-forms, 272, 286
for degenerate 2-forms, 290

Divergence theorem, 180

Exterior annihilator, definition, 46
Exterior derivative, definition, 76
Exterior form, definition, 34
Exterior product, definition, 34

Fourier transform, 387
Frobenius theorem, 41, 92, 290

Gaffney inequality, 101, 102, 113–115, 118,
123, 125

Gauss–Green theorem, 87, 88
Grönwall lemma, 258

Harmonic field, 77, 286
definition, 121

Hodge star operator, definition, 37
Hodge–Morrey decomposition, 101, 113, 124,

127, 131, 139, 144, 145, 147, 150, 179,
180, 401, 402

Hölder continuous function, definition, 336

Integration by parts formula, 88
Interior annihilator, definition, 46
Interior derivative, definition, 76
Interior product, definition, 37
Involutive family, 94

definition, 92

Lie bracket, 92
Lie derivative, 91, 103, 261
Lipschitz continuous function, 337
Lipschitz set, definition, 338

Mc Shane lemma, 343
Morrey imbedding theorem, 122, 150
Moser theorem, 195

Normal component, definition, 79

Poincaré lemma, 124, 147, 148, 156, 157, 161,
162, 180, 409

Prime form, 57, 58, 60, 67
definition, 57

Pullback of a differential form, definition, 77
Pullback of an exterior form, definition, 39

Rank of order s, definition, 48
Riesz theorem, 123

Sard theorem, 418, 422, 423
Scalar product of forms, definition, 36
Schauder estimates, 399
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Schwartz space, 387
Second fundamental form, 110, 112
Simply connected set, 121, 123, 270, 325
Smooth set, definition, 338
Standard symplectic form of rank 2m, 44, 286,

290
Star-shaped set, 150

Tangential component, definition, 79
Tietze extension theorem, 343
Totally divisible form, 59, 329

definition, 57

Vandermonde matrix, 361

Weyl lemma, 122, 130
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