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Preface

In the present book we study the pullback equation for differential forms

namely, given two differential k-forms f and g we want to discuss the equivalence of
such forms. This turns out to be a system of nonlinear first-order partial differential
equations in the unknown map ¢.

The problem that we study here is a particular case of the equivalence of tensors
which has received considerable attention. However, the pullback equation for dif-
ferential forms has quite different features than those for symmetric tensors, such
as Riemannian metrics, which has also been studied a great deal. In more physical
terms, the problem of equivalence of forms can also be seen as a problem of mass
transportation.

This is an important problem in geometry and in analysis. It has been extensively
studied, in the cases k =2 and k = n, but much less when 3 < k <n— 1. The problem
considered here of finding normal forms (Darboux theorem, Pfaff normal form) is
a fundamental question in symplectic and contact geometry. With respect to the
literature in geometry, the main emphasis of the book is on regularity and boundary
conditions. Indeed, special attention has been given to getting optimal regularity;
this is a particularly delicate point and requires estimates for elliptic equations and
fine properties of Holder spaces.

In the case of volume forms (i.e., k = n), our problem is clearly related to the
widely studied subject of optimal mass transportation. However, our analysis is not
in this framework. As stated before, the two main points of our analysis are that we
provide optimal regularity in Holder spaces and, at the same time, we are able to
handle boundary conditions.

Our book will hopefully appeal to both geometers and analysts. In order to make
the subject more easily attractive for the analysts, we have reduced as much as pos-
sible the notations of geometry. For example, we have restricted our attention to
domains in R”, but it goes without saying that all results generalize to manifolds
with or without boundary.



vi Preface

In Part I we gather some basic facts about exterior and differential forms that are
used throughout Parts II and IV. Most of the results are standard, but they are pre-
sented so that the reader may be able to grasp the main results of the subject without
getting too involved with the terminology and concepts of differential geometry.

Part IT presents the classical Hodge decomposition following the proof of Morrey,
but with some variants, notably in our way of deriving the Gaffney inequality. We
also give applications to several versions of the Poincaré lemma that are constantly
used in the other parts of the book. Part II can be of interest independently of the
main subject of the book.

Part III discusses the case k = n. We have tried in this part to make it, as much
as possible, independent of the machinery of differential forms. Indeed, Part III can
essentially be read with no reference to the other parts of the work, except for the
properties of Holder spaces presented in Part V.

Part IV deals with the general case. Emphasis in this part is given to the sym-
plectic case k = 2. We also briefly deal with the simpler cases k = 0,1, n— 1. The
case 3 < k < n—2 is much harder and we are able to obtain results only for forms
having a special structure. The difficulty is already at the algebraic level.

In Part V we gather several basic properties of Holder spaces that are used exten-
sively throughout the book. Due to the nonlinearity of the pullback equation, Holder
spaces are much better adapted than Sobolev spaces. The literature on Holder spaces
is considerably smaller than the one on Sobolev spaces. Moreover, the results pre-
sented here cannot be found solely in a single reference. We hope that this part will
be useful to mathematicians well beyond those who are primarily interested in the
pullback equation.
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Chapter 1
Introduction

1.1 Statement of the Problem

The aim of this book is the study of the pullback equation

¢ (g) =1 (1.1)

More precisely, we want to find a map @ : R” — R"; preferably we want this map to
be a diffeomorphism that satisfies the above equation, where f and g are differential
k-forms, 0 < k < n. Most of the time we will require these two forms to be closed.
Before going further, let us examine the exact meaning of (1.1). We write

gx)= Z iy (X)dXT A A

1<iy<--<ig<n

and similarly for f. The meaning of (1.1) is that

Y giei0@dotA-Adet =Y fildx A AdxE,
1<ij<--<ix<n 1<ii<--<ix<n
where o
n 1
do' = dx’.
(P J; ax]' o

This turns out to be a nonlinear (if 2 < k < n) homogeneous of degree k (in the
derivatives) first-order system of (Z) partial differential equations. Let us see the
form that the equation takes when k = 0,1,2, n.

Case: k = 0. Equation (1.1) reads as

while
dg=0 & gradg =0.

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 1
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9 1,
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2 1 Introduction

We will be, only marginally, interested in this elementary case, which is trivial for
closed forms. In any case, (1.1) is not, when k = 0, a differential equation.

Case: k = 1. The form g, and analogously for f, can be written as

Equation (1.1) then becomes

-

4 (9 (1)) do' = imx)dxl

while 3 3
dg=0 & curlg=0 & 280 %8 o |<i<j<n
ij 8x,-
Writing
noo i
= Z ¢ dx’
j=1 0x;j
and substituting into the equation, we find that (1.1) is equivalent to
n a(P] )
Z N) oW =fil), 1<i<n

This is a system of (YI’) = n first-order linear (in the first derivatives) partial differ-
ential equations.

Case: k = 2. The form g, and analogously for f, can be written as

g= Z gij(x x)dx' Adx/

1<i<j<n

while
dg=0 < 9gij _ dgik | 9gjk

=0, 1<i<j<k<n.

axk ax]' 8x,~
The equation ¢* (g) = f becomes
Y, gp(@(x)de? Ado?= Y fij(x)dx' Adx!.
1<p<q<n 1<i<j<n

We get, as before, that (1.1) is equivalent, forevery 1 <i < j <n,to
dpP dp4  JoP d4 B
L amtot (T 5555 ) =0,

which is a nonlinear homogeneous of degree 2 (in the derivatives) system of (’;) =

@ first-order partial differential equations.
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Case: k = n. In this case we always have df = dg = 0. By abuse of notations,

if we identify volume forms and functions, we get that the equation ¢* (g) = f
becomes

(9 (x))detVe (x) = f (x).

It is then a nonlinear homogeneous of degree n (in the derivatives) first-order partial
differential equation.smallskip

1y

2)

3)

The main questions that we will discuss are the following.

Local existence. This is the easiest question. We will handle fairly completely the
case of closed 2-forms, which is the case of the Darboux theorem. The cases of
1 and (n — 1)-forms as well as the case of n-forms will also be dealt with. It will
turn out that the case 3 < k < n— 2 is much more difficult and we will be able to
handle only closed k-forms with special structure.

Global existence. This is a much more difficult problem. We will obtain results
in the case of volume forms and of closed 2-forms.

Regularity. A special emphasis will be given on getting sharp regularity results.
For this reason we will have to work with Holder spaces C%, 0 < o < 1, not
with spaces C”. Apart from the linear problems considered in Part II, we will not
deal with Sobolev spaces. In the present context the reason is that Holder spaces
form an algebra contrary to Sobolev spaces (with low exponents).

1.2 Exterior and Differential Forms

In Chapter 2 we have gathered some algebraic results about exterior forms that are
used throughout the book.

1.2.1 Definitions and Basic Properties of Exterior Forms

Let 1 <k < n be an integer. An exterior k-form will be denoted by

f= Z fi1~~~ik€i1/\"'/\eik-

lﬁi] <'-'<ik§n

The set of exterior k-forms over R” is a vector space and is denoted A*(R") and its
dimension is

dim(A*(R") = (7).

If k=0, we set

A°(R") =R.
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By abuse of notations, we will, when convenient and in order not to burden the
. . . . . n
notations, identify k-forms with vectors in R(®).

(i) The exterior product of f € A¥(R") with g € A/(R"), denoted by f A g, is
defined as usual (cf. Definition 2.2) and it belongs to A¥*/(IR"). The scalar product
between two k-forms f and g is denoted by

(&)= Y Gi-ifiic-

1<ii<--<ix<n

The Hodge star operator (cf. Definition 2.9) associates to f € A¥(R") a form (xf) €
A"k(R"). We define (cf. Definition 2.11) the interior product of f € A¥(R") with
g € A'(R") by

gof = (=1 D x(gn(+1)).
These definitions are linked through the following elementary facts (cf. Proposition
2.16). For every f € AK(R"), g € AK*1(R") and h € A'(R"),

> f=ha(hAf)+hA(hf),

(hNfig) = (fihag).

(ii) Let A € R™" be a matrix and let f € A*(R") be given by

f= Z fiyi€ Ao Ak,

lﬁi] <'-'<ik§n
We define (cf. Definition 2.17) the pullback of f by A, denoted A*(f), by

A (f)= Y fii AN AAR € ARRY),

1§i1 <-'-<ik§l’l

where A/ is the jth row of A and is identified by

n .
Al=Y Al e ATRY).
k=1

If k =0, we then let
A(f) =T

The present definition is consistent with the one given at the beginning of the chap-
ter; just set @ (x) = Axin (1.1).

(iii) We next define the notion of rank (also called rank of order 1 in Chapter 2)
of f € A¥(R"). We first associate to the linear map

ge AVRY) = gL f e AR
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_ n
amatrix f € R(k*l) *" such that, by abuse of notations,
guf=fg foreveryge Al (R").

In this case, we have
g4f
= Z Z(—l)’F Z fjl"‘jy—lijy"'jk—lgi eV A NelkT,

1<ji<-<jg-1=n \r=1 Jy—1<i<jy

More explicitly, using the lexicographical order for the columns (index below) and
the rows (index above) of the matrix f, we have

(7){1”"”"71 = fiji-iis

forl1 <i<mand1 < j; <--- < jr_1 <n. The rank of the k-form f is then the rank
of the (,"';) x n matrix f (or similarly the rank of the map g — g ). We then write
(in Chapter 2, we write rank; [f], but in the remaining part of the book we write
only rank [f])

rank [f] = rank (f) .

Note that only when k = 2 or k = n, the matrix f is a square matrix. We will get our
best results precisely in these cases and when the matrix f is invertible.

We then have the following elementary result (cf. Proposition 2.37).

Proposition 1.1. Let f € A¥(R"), f #0.
(i) If k = 1, then the rank of f is always 1.
(ii) If k = 2, then the rank of f is even. The forms

Oy = 62171 /\6‘21

m

i=1

are such that rank [@,,] = 2m. Moreover, rank [f] = 2m if and only if
fm£0 and fm =0,

where f" = fA---Af.
——
m times

(iii) If 3 < k < n, then
rank [f] € {k,k+2,...,n}

and any of the values in {k,k+2,...,n} can be achieved by the rank of a k-form. In
particular, if k = n— 1, then rank [f] = n — 1, whereas if k = n, then rank [f] = n.
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Remark 1.2 (cf. Propositions 2.24 and 2.33). The rank is an invariant for the pull-
back equation. More precisely, if there exists A € GL(n) (i.e., A is an invertible
n X n matrix) such that

A*(g) =1,

then
rank [g] = rank [f].

Conversely, when k = 1,2,n— 1,n, if rank [g] = rank [f], then there exists A € GL (n)
such that

A'(g)= 1.

However, the converse is not true, in general, if 3 < k < n — 2. For example (cf.
Example 2.36), when k = 3, the forms

f=e' AN Fet e’ Ae,
g= enenE el Nt N+ Nt NS+ NP NP
have both rank = 6, but there is no A € GL(6) so that
A"(g) =1
Similarly and more strikingly (cf. Example 2.35), when k = 4 and
f=e ne*neé Nette AP NSNS+ Net A’ Ned,
there is no A € GL(6) such that

AY(f) =~

1.2.2 Divisibility

We then discuss the notion of divisibility for exterior forms. Given two integers
1 <1<k<n,ak-form f and a [-form g, we want to know if we can find a (k —[)-
form u so that

f=gNu.

This is an important question in the theory of Grassmann algebras. A well-known
result is the so called Cartan lemma (cf. Theorem 2.42).

Theorem 1.3 (Cartan lemma). Let 1 < k < n and f € A¥(R") with f # 0. Let
1<I<kandg,...,g €A (R") be such that

gIA- N #0.
Then there exists u € AK! (R™) verifying

f=g1N--NgiA\u
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if and only if
fAgI="=fNg=0.

Remark 1.4. In the same spirit, the following facts can easily be proved (cf. Propo-
sition 2.43):

(i) The form f € A¥(R") is totally divisible, meaning that there exist fi,--- , fx €
A (R™) such that

f=hNNfi

if and only if
rank[f] = k.

(i) If k is odd and if f € A¥(R") with rank[f] = k+2, then there exist u € A (R")
and g € A*~1(R") such that
f=gNu.

Our main result (cf. Theorem 2.45 for a more general statement) will be the
following theorem obtained by Dacorogna—Kneuss [31]. It generalizes the Cartan
lemma.

Theorem 1.5. Let 0 < [ < k < n be integers. Let g € AZ(R") and f € Ak(R”). The
following statements are then equivalent:

(i) There exists u € A¥"!(R") verifying
f=gAu.
(ii) For every h € A""K(R"), the following implication holds:

hrng=0] = [AAf=0].

1.2.3 Differential Forms

In Chapter 3 we have gathered the main notations concerning differential forms.

Definition 1.6. Let Q C R” be open and f € C! (_Q;Ak), namely

f= Y fieqdxt Ao ndx

1§i1<~~<ik§n
(i) The exterior derivative of f denoted df belongs to C°(2;A*"!) and is
defined by
if= Y Y Ui gom p gt p-.. 5 ds
3 .

1<ij<<iz<nm=1 9Xm

If k=n,thendf =0.
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(ii) The interior derivative or codifferential of f denoted & f belongs to C° (Q;
A*"1) and is defined by

§f = (=1)" "V x(d(xf)).

Remark 1.7. (i) If k = 0, then the operator d can be identified with the gradient
operator, while 8 f = 0 for any f.

(i1) If k = 1, then the operator d can be identified with the curl operator and the
operator 0 is the divergence operator.

We next gather some well-known properties of the operators d and & (cf. Theo-
rems 3.5 and 3.7).

Theorem 1.8. Let f € C*(Q2;AX). Then
ddf =0, 85f=0 and dSf+8df—Af.

We also need the following definition. In the sequel we will denote the exterior
unit normal of dQ by V.

Definition 1.9. The tangential component of a k-form f on 9 is the (k+ 1)-form
VAfe AR
The normal component of a k-form f on dQ is the (k — 1)-form
vaf et
We easily deduce the following properties (cf. Theorem 3.23).
Proposition 1.10. Let 0 < k < nand f € C'(Q;A*); then

VAf=00ndQ = VvAdf=00ndQ,
Vif=00ndQ = vi6f=00ndQ.

We will constantly use the integration by parts formula (cf. Theorem 3.28).

Theorem 1.11. Let 1 <k <n, f € C'(Q;A*") and g € C' (Q; A¥). Then

/Q<df;g>+/g<f;5g>:/(m<v/\f;g>:/(m<f;wg>~

We will adopt the following notations.

Notation 1.12. Let Q C R" be open, r > 0 be an integer and 0 < o <1 < p < oo,
Spaces with vanishing tangential or normal component will be denoted in the fol-
lowing way:
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CPH (AR = {f e C"*(Q:A") :vAf=0 ondQ},
CY (AR ={feCc®(@;A") :vof=0 ondQ},
WP (@A) = {F e WP (AR cvA F =0 ondQ]},
WP (3 AR) = {Fe WP (@AR) tvLf=0 ondQ}).
The different sets of harmonic fields will be denoted by
H(QAY) ={f e W' (@AY :df =0and 5f =0in Q},
A (AN ={fe A (Q:A") :vAf=0 onoQ},
%V(Q;Ak) ={fe %”(.Q;Ak) vif=0 ondQ}.
We now list (cf. Section 6.1) some properties of the harmonic fields.

Theorem 1.13. Let Q2 C R" be an open set. Then
H(2;A%) C C(2:A%).

Moreover if Q is bounded and smooth, then the next statements are valid.

(i) The following inclusion holds:

A7 (Q;AF) U (2:AF) € (2 A5).
Furthermore, if r > 0 is an integer and 0 < a < 1, then there exists C = C(r,Q)
such that for every @ € A7 (.Q;Ak) U A (Q;Ak) ,
@[l <Cllol  and |@fca <Cllofco.

(ii) The spaces A7 (Q;Ak) and fﬁv(Q;Ak) are finite dimensional and closed
in L*(2;A%).

(iii) Furthermore, if Q is contractible (cf. Definition 6.1), then

My (QAF) ={0} f0<k<n—1,
A (Q:AF) ={0} if1<k<n.

(iv)Ifk=0ork=nand h € (.Q;Ak) , then h is constant on each connected

component of Q. In particular, #7 (2;A°) = {0} and 74, (2;A") = {0}.

Remark 1.14. If k = 1 and assuming that Q is smooth, then the sets .77 and %y
can be rewritten, as usual by abuse of notations, as

Wi (Q;Al) = {fe c” (E;R") :

Curlf:()and lef:()
fvi—Ivi=0.¥1<i<j<n [’
curl f =0 and din:O}

Ay (A1) = {fGCm (:R") : Y fivi=0
i=1JiVi =
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Moreover, if 2 is simply connected, then

1 (:A") = 5 (2:A") = {0,

1.3 Hodge-Morrey Decomposition and Poincaré Lemma

1.3.1 A General Identity and Gaffney Inequality
In the proof of Morrey of the Hodge decomposition, one of the key points to get
compactness is the following inequality (cf. Theorem 5.16).

Theorem 1.15 (Gaffney inequality). Let 2 C R" be a bounded open smooth set.
Then there exists a constant C = C(2) > 0 such that

2 2 2 2
lolfy12 < C (ldolz + 80l + [o];)
1.2 12/ 0.
for every @ € Wp"(2;AF) UW~(2;A%).

Remark 1.16. When k = 1, the inequality says, identifying 1-forms with vector

fields,
@[f12 < C (|curlo|7, + [|divol7, + || o]}.)

for every @ € W1?(Q;R") satisfying either one of the following two conditions:
VAO=0 & ov,—0;v;=0,V1<i<j<n,
Voo = (v;o) =) ov;=0.
i=1
The inequality, as stated above, has been proved by Morrey [76, 77], generalizing

results of Gaffney [44, 45]. We will prove in Section 5.3 the inequality appealing to
a very general identity (see Theorem 5.7) proved by Csaté and Dacorogna [24].

Theorem 1.17 (A general identity). Let 0 < k < n and let Q C R" be a bcﬂnded
open smooth set and with exterior unit normal v. Then every a,f € C'(Q;A¥)
satisfy the equation

|, (dazdB) + (80:0B) ~ (Vo VB))
:—/(m((vAd(vJa);V/\ﬁ)Jr<vJ6(V/\oc);vJB))
+/a' (LY (v A@);vAB) + (KY (v a):v ).
JoQ

The operators L and K" (cf. Definition 5.1) can be seen as matrices acting on
(k+ 1)-forms and (k — 1)-forms respectively (identifying, as usual, a k-form with
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a (Z) vector). They depend only on the geometry of 2 and on the degree k of the

form. They can easily be calculated explicitly for general k-forms and, when  is a
ball of radius R (cf. Corollary 5.9), it turns out that

k
Lv(vAw):EW\w and KV(V_I(D):nTV_ICO
and, thus,
v k 2 \4 n—k 2
(L (v/\(u);v/\a)>:§|v/\(u| and (K (VJCO);VJ(D>:T|VJ(D| .

In the case of a 1-form and for general open sets 2 (cf. Proposition 5.11), it can
be shown that KV is a scalar and it is a multiple of k, the mean curvature of the
hypersurface dQ, namely

K'=mn-1)k.

Summarizing the results for a 1-form @ in R” (cf. Corollary 5.12) with vanishing
tangential component (i.e., VA @ = 0 on d2), we have

/Q(|curlw|2+\diva)|2—|Vw\2):(n—l)/ K [(v; )2,

2Q

where K is the mean curvature of the hypersurface dQ and (.;.) denotes the scalar
product in R”.

1.3.2 The Hodge—Morrey Decomposition

We now turn to the celebrated Hodge—Morrey decomposition (cf. Theorem 6.9).
Theorem 1.18 (Hodge-Morrey decomposition). Ler Q C R" be a bounded open
smooth set. Let 0 < k <nand f € [? (.Q;Ak). Then there exist

ae Wy (A1), Bew (@A),

he (A% and o € Wi (Q;AF)

such that, in 2,
f=do+8B+h, o=06w and PB=do.

Remark 1.19. (i) We have quoted only one of the three decompositions (cf. Theorem
6.9 for details). Another one, completely similar, is by replacing T by N and the
other one mixing both 7 and N.

(ii) If K <n—1 and if Q is contractible, then & = 0.
(iii) If k = 0, then the theorem reads as

f=0=8do=AwinQ with ©=0o0ndQ.
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(iv) When k£ = 1 and n = 3, the decomposition reads as follows. Let v be the
exterior unit normal. For any f € L?(Q;R3), there exist
0 €W (;R)  with v, —0;vi=00n0Q,V1<i<j<3
o< Wol’2 (Q) and o=divo,
Bew'?(2;R?) withf=—culew and (viB)=00ndQ
curlh =0and divh =0 }

helhec™ (R :
{ ( ) /’l,‘Vj*th,':O,v1§i<j§3

such that
f=grada+curl f+hin Q.

Furthermore, if 2 is simply connected, then 7 = 0.

(v) If f is more regular than in L?, then o, B and @ are in the corresponding class
of regularity (cf. Theorem 6.12). More precisely if, for example, r > 0 is an integer,
0<g<landf€C(Q;A"), then

ae (@AY, Bec™ (@A) and @ e CTTH(Q;AF).

(vi) The proof of Morrey (cf. Theorem 6.7) uses the direct methods of the calcu-
lus of variations. One minimizes

i) = [ (0P + 150 + (ri0))

in an appropriate space, Gaffney inequality giving the coercivity of the integral.

1.3.3 First-Order Systems of Cauchy—Riemann Type

It turns out that the Hodge—Morrey decomposition is in fact equivalent (cf. Proposi-
tion 7.9) to solving the first-order system

do=f and dw=g inQ,
VAO=VAay on dQ

or the similar one,

do=f and Sdw=g inQ,
Vi =Vl on dQ.

Both systems are discussed in Theorems 7.2 and 7.4. We here state a simplified
version of the first one.
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Theorem 1.20. Let r > 0 and 1 < k < n—2 be integers, 0 < g < 1 and Q C R"
be a bounded contractible open smooth set and with exterior unit normal v. Let
gecH (.Q;Ak’l) and f € C™ (Q;Ak“) be such that

0g=0inQ, df=0inQ and VvAf=00ndQ.
Then there exists @ € C'14 (§;Ak) , such that

do=f and dw=g inQ,
VA®=0 on dQ.

Remark 1.21. (i) It turns out that the sufficient conditions are also necessary (cf.
Theorems 7.2 and 7.4).
(i1) When k = n — 1, the result is valid provided

/Qf:O.

Note that in this case the conditions d f = 0 and v A f = 0 are automatically fulfilled.

(iii) Completely analogous results are given in Theorems 7.2 and 7.4 for Sobolev
spaces.

(iv) If Q is not contractible, then additional necessary conditions have to be
added.

(v) When k=1 and n = 3, the theorem reads as follows. Let £ C IR3 be a bounded
contractible smooth open set, g € C" (Q) and f € C"7 (2;R?) be such that

divf=0inQ and (f;v)=00ndQ.
Then there exists @ € C"t14 (ﬁ; R3 ) such that

curlo=f and divo=g in Q,
(DiVj—(DjVi:OVISi<j§3 on 0.

1.3.4 Poincaré Lemma

We start with the classical Poincaré lemma (cf. Theorem 8.1).

Theorem 1.22 (Poincaré lemma). Let r > 1 and 0 < k < n— 1 be integers and
Q C R”" be an open contractible set. Let g € C” (.Q;Ak“) withdg =0in Q. Then
there exists G € C" (Q;Ak) such that

dG=g inQ.
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With the help of the Hodge—Morrey decomposition, the result can be improved
(cf. Theorem 8.3) in two directions. First, one can consider general sets €2, not
only contractible sets. Moreover, one can get sharp regularity in Holder and in
Sobolev spaces. We quote here only the case of Holder spaces. We also give the
theorem with the d operator. Analogous results are also valid for the  operator; see
Theorem 8.4.

Theorem 1.23. Let r > 0 and 0 < k < n— 1 be integers, 0 < o < 1 and Q C R"
be a bounded open smooth set. Let f : Q — AT\ The following statements are
equivalent:

(i) Let f € C"* (§;Ak+1) be such that
df =0in Q and /(f;l//):OforeveWWE%(Q;Ak+l).
Q

(ii) There exists @ € C"+1:% (ﬁ;/\k) such that
do=f inQ.
Remark 1.24. (i) When k = n— 1, there is no restriction on the solvability of dw = f.
(i1) Recall that if Q is contractible and 0 < k <n— 1, then
M (A% = {0}.

We finally consider the boundary value problems

do=f inQ, So=g inQ,
and
O=wy onod W=0y ondQ.

We give a result for the first one and for @y = O (cf. Theorem 8.16 for general
a)), but a similar one (cf. Theorem 8.18) exists for the second problem. We only
discuss the case of Holder spaces, but the result is also valid in Sobolev spaces (see
Theorems 8.16 and 8.18 for details).

Theorem 1.25. Let r > 0 and 0 < k < n—1 be integers, 0 < a < 1 and 2 C R"
be a bounded open smooth set and with exterior unit normal v. Then the following
statements are equivalent:

(i) Let f € C™* (Q; A*TY) satisfy
df =0inQ, VvAf=00n0dQ,

and, for every y € A7 (2; A1),

|z =o.
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(ii) There exists @ € C™T1H,® (ﬁ;/\k) such that

do=f inQ,
wo=0 ondQ.

1.4 The Case of Volume Forms

1.4.1 Statement of the Problem

In Part III, we will discuss the following problem. Given €2 a bounded open set
inR" and f,g: R" — R, we want to find ¢ : Q — R” verifying

{g(<P(x))d€tV<P(x) =flx) xeL, (1.2)

ox)=x xX€IQ.

Writing the functions f and g as volume forms through the straightforward
identification

g=g)dx' A---Adx" and = f(x)dx' A AdA",
problem (1.2) can be written as

¢ (g)=f inL,
o=id ondQ,

where @*(g) is the pullback of g by ¢.
The following preliminary remarks are in order.
(1) The case n = 1 is completely elementary and is discussed in Section 1.4.2.

(i) When n > 2, the equation in (1.2) is a nonlinear first-order partial differential
equation homogeneous of degree n in the derivatives. It is underdetermined, in the
sense that we have n unknowns (the components of ¢) and only one equation. Re-
lated to this observation, we have that if there exists a solution to our problem, then
there are infinitely many ones. Indeed, for example, if n = 2, 2 is the unit ball and
f =g =1, the maps ¢, (written in polar and in Cartesian coordinates) defined by

rcos (9 +2m7tr2)
On (X) = O (31,32) = < rsin (9 +2m7rr2) )

[ xicos (2m7r (x% —|—x%)) — Xp sin (2m7r (x% —|—x%))
~ \ xacos (2mm (33 +3) ) +x; sin (2mm (xF +23))

satisfy (1.2) for every m € Z.
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(iii) An integration by parts, or, what amounts to the same thing, an elementary
topological degree argument (see (19.3)), immediately gives the necessary condition
(independently of the fact that ¢ is a diffeomorphism or not and of the fact that

¢ () contains strictly or not )
/ f= / g. (1.3)
Q Q

In most of our analysis, it will turn out that this condition is also sufficient.

(iv) We will always assume that g > 0. If g is not strictly positive, then hypotheses
other than (1.3) are necessary; for example, f cannot be strictly positive. Indeed if,
for example, f = 1 and g is allowed to vanish even at a single point, then no C'
solution of our problem exists (cf. Proposition 11.6). However, in a very special
case (cf. Lemma 11.21), we will deal with functions f and g that both change sign.

(v) We will, however, allow f to change sign, but the analysis is very different if
f > 0 orif f vanishes, even at a single point, let alone if it becomes negative. The
first problem will be discussed in Chapter 10, whereas the second one will be dealt
with in Chapter 11. One of the main differences is that in the first case, any solution
of (1.2) is necessarily a diffeomorphism (cf. Theorem 19.12), whereas this is never
true in the second case.

(vi) It is easy to see (cf. Corollary 19.4) that any solution of (1.2) satisfies
P(Q)DQ and ¢(Q)DQ. (1.4)
If f > 0, we have, since @ is a diffeomorphism, that (cf. Theorem 19.12)
P(2)=Q and ¢(Q)=2Q.

If this is not the case, then, in general, the inclusions can be strict. We will discuss
in Chapter 11 this matter in details.

(vii) Problem (1.2) admits a weak formulation. Indeed, if ¢ is a diffeomorphism,
we can write (cf. Theorem 19.7) the equation g(¢@)detVe = f as

/ g= / f forevery open set E C Q
9(E) E
or, equivalently,

A)gé’((p’”:/ﬂf{ forevery § € C5 (2).

We observe that both new writings make sense if ¢ is only a homeomorphism.

(viii) The problem can be seen as a question of mass transportation. Indeed, we
want to transport the mass distribution g to the mass distribution f without moving
the points of the boundary of Q2. In this context, the equation is usually written as
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/ g= / f forevery openset E C Q.
E o~ 1(E)

The problem of optimal mass transportation has received considerable attention.
We should point out that our analysis is not in this framework. The two main strong
points of our analysis are that we are able to find smooth solutions, sometimes with
the optimal regularity and to deal with fixed boundary data.

1.4.2 The One-Dimensional Case

As already stated, the case n = 1 is completely elementary (cf. Proposition 11.4),
but it exhibits some striking differences with the case n > 2. However, it may shed
some light on some issues that we will discuss in the higher-dimensional case. Let
Q = (a,b),

F(x):/xf(t)dt and G(x):/xg(t)dt.
Then problem (1.2) becomes

G(p(x)=F(x) ifxe(a,b),
¢(a)=a and ¢@(b)=0.

If G is invertible and this happens if, for example, g > 0 and if
F ([a,b]) C G(R), (1.5)
and this happens if, for example, g > go > 0, then the problem has the solution
¢(x) =G (F(x)).

The necessary condition (1.3)

ensures that
o(a)=a and o¢(b)=0b.

This very elementary analysis leads to the following conclusions:

1) Contrary to the case n > 2, the necessary condition (1.3) is not sufficient. We
need the extra condition (1.5); see Proposition 11.4 for details.

2) The problem has a unique solution, contrary to the case n > 2.

3) If f and g are in the space C”, then the solution ¢ is in C"*1.
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4)If f > 0, then @ is a diffeomorphism from [a, b] onto itself.
5) If f is allowed to change sign, then, in general,

[avb]gfp([a,b})-

For example, this always happens if f (a) <0 or f(b) <O0.

1.4.3 The Casef-g >0

In Chapter 10 we will study problem (1.2) when f-g > 0. It will be seen that (1.3)
is sufficient to solve (1.2) and that any solution is in fact a diffeomorphism from Q
to Q (see Theorem 19.12). This last observation implies, in particular, a symmetry
in f and g and allows us to restrict ourselves, without loss of generality, to the case
g = 1. Our main result (cf. Theorem 10.3) will be the following.

Theorem 1.26 (Dacorogna—Moser theorem). Let r > 0 be an integer and 0 < o <
1. Let 2 C R" be a bounded connected open smooth set. Then the two following
statements are equivalent:

(i) The function f € C"* (ﬁ) . f>0in Q and satisfies

/ f=meas Q.
Q
(ii) There exists @ € Diff’ 1% (5;5) satisfying

detVo(x)=f(x) xe€Q,
ox)=x X€IQ.

Furthermore, if ¢ > 0 is such that

1o < ¢,

7l
flleo’

then there exists a constant C = C (c,r, o, Q) > 0 such that
10 ~idllgrte <CILf ~leve -

The study of this problem originated in the seminal work of Moser [78]. The
above optimal theorem was obtained by Dacorogna and Moser [33]. Burago and
Kleiner [19] and Mc Mullen [73], independently, proved that the result is false
if r = a = 0, suggesting that the gain of regularity is to be expected only when
O<a<l.

In Section 10.5 (cf. Theorem 10.11), we present a different approach proposed
by Dacorogna and Moser [33] to solve our problem. This method is constructive and
does not use the regularity of elliptic differential operators; in this sense, it is more
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elementary. The drawback is that it does not provide any gain of regularity, which
is the strong point of the above theorem. However, the advantage is that it is much
more flexible. For example, if we assume in (1.2) that

supp(f —g) C £,

then we will be able to find ¢ such that
supp(@ —id) C Q.

This type of result, unreachable by the method of elliptic partial differential equa-
tions, will turn out to be crucial in Chapter 11.

1.4.4 The Case with No Sign Hypothesis on f

In Chapter 11, we discuss the case where the function f is allowed to change sign
and we will follow Cupini, Dacorogna and Kneuss [25]. As already pointed out, we
will however (apart from a very special case) assume that g > 0. In fact, contrary to
the case f-g > 0, the problem is no longer symmetric in f and g.

We start by observing that if f vanishes even at a single point, then the solution ¢
cannot be a diffeomorphism, although it can be a homeomorphism. In any case, if f
is negative somewhere, it can never be a homeomorphism (see Proposition 19.14).
Furthermore, if f is negative in some parts of the boundary, then any solution ¢
must go out of the domain (see Proposition 11.3); more precisely,

Q;(p(!)).

A special case of our theorem (cf. Theorem 11.1) is the following.

Theorem 1.27. Let n > 2 and r > 1 be integers. Let By C R" be the open unit ball.
Let f € C"(By) be such that

f =measB.
By

Then there exists @ € C"(B1;R") satisfying
detVo (x) = f(x) x€By,
ox)=x X € JB;.

Furthermore, the following conclusions also hold:
(i) If either f >0 on OBy or f > 0in By, then ¢ can be chosen so that

¢(B1)=B1.

(ii) If f > 0 in By and f~'(0)N By is countable, then ¢ can be chosen as a

homeomorphism from By onto Bj .



20 1 Introduction

1.5 The Case 0<k<n-1

Having dealt with the case k = n, we now discuss the equation
¢ (g)=r

when O < k <n—1. The cases k = 0,1,n — 1 are the simplest ones. The most im-
portant results of Part IV are for the case k = 2, where we obtain not only a local
result but also a global one; we, moreover, obtain sharp regularity results for both
cases. The case 3 < k < n—2 is considerably harder, even at the algebraic level and
we will be able to obtain results only for forms having a special structure.

We first point out the following necessary conditions (cf. Proposition 17.1).

Proposition 1.28. Ler Q C R”" be a bounded open smooth set and ¢ € Diff! (ﬁ;
¢(§)) Let 1 <k<n, feC' (E;Ak) and g € C! ((p(ﬁ);/\k) be such that

¢ (g)=finQ.
(i) For every x € ,
rank [g (¢ (x))] = rank[f (v)] and  rank[dg (¢ (x))] = rank [df (x)].
In particular,
dg=0inp(Q) & df=0in Q.
(ii) If ¢ (x) = x for x € dQ, then
VAf=VAg on 99,

where Vv is the exterior unit normal to Q.

If we drop the condition that ¢ is a diffeomorphism, then the rank is, in general,
not conserved. We have already seen such a phenomenon when k = n in Theo-
rem 1.27.

1.5.1 The Flow Method

One of the simplest and most elegant tools that we will use for the pullback equation
is Theorem 12.7 and it was first established by Moser in [78], who, however, dealt
only with manifolds without boundary. Its main drawback is that it does not provide
the expected gain in regularity.

Theorem 1.29. Let r > 1 and 0 < k < n be integers, 0 < o« <1, T > 0and Q CR"
be a bounded open Lipschitz set. Let
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u€ Ch*([0,T] x Q;R"), u=u(t,x) = u(x),
FeC ([0, T x ZA%), f = f(t,x) = fi(x)

be such that for every t € [0,T],
. d ..
u=00ndQ, dfi=0inQ and d(l/l[Jﬁ):—Eﬁ in Q.
Then for every t € [0,T], the solution @, of

d
E@Z%O(Pt, 0<t<T
Qo =id
belongs to Diff"* (5;5), satisfies @, = id on dQ and

o (fi)=fo in Q.

1.5.2 The Cases k=0and k=1

We start with the case k = 0, which is particularly elementary. We have for example
the following local result (cf. Theorem 13.1). For a global result, see Theorem 13.2.

Theorem 1.30. Let r > 1 be an integer, xo € R" and f,g € C" in a neighborhood of
xo and such that f (xp) = g (xo),

VF(x0) 0 and Vg(xy) #0.

Then there exist a neighborhood U of xy and ¢ € Diff” (U; ¢ (U)) such that

0" (g)=finU and @ (x9)=xp.
The results for k = 0 extend in a straightforward way to the case of closed 1-forms
(cf. Corollaries 13.3 and 13.5).

We now give a theorem (cf. Theorems 13.8 and 13.10) for nonclosed 1-forms. It
can be considered as the 1-form version of the Darboux theorem. We will see below
that it is equivalent to the Darboux theorem for closed 2-forms.

Theorem 1.31. Ler 2 < 2m < n be integers, xo € R" and @ be a C* 1-form such that
o(xo) # 0 and
rank[dw] =2m in a neighborhood of x .

Then there exist an open set U and

¢ € Diff™(U; ¢ (U))
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such that ¢ (U) is a neighborhood of xo and

m
xoi1dx? if oA (dw)™ = 0 in a neighborhood of xg
« i=1
(@) =9 ‘

sz,',ldxm +dx® N if o A (dw)™ # 0 in a neighborhood of xo .
i=1

Remark 1.32. (i) In the theorem, we have adopted the notation

(do)"=doN-- Ndo .
—_———

m times

(i1) Note that if n = 2m, then ® A (dw)" = 0.

1.5.3 The Case k =2

Our best results besides the ones for volume forms are in the case k = 2.

We start with two local results. The first one is the celebrated Darboux theorem,
but as stated it is due to Bandyopadhyay and Dacorogna [8] (cf. Theorem 14.1). The
difference between the following theorem and all of the classical ones is in terms
of regularity of the diffeomorphism. We provide the optimal possible regularity in
Hoélder spaces; the other ones give only that if @ € C"%, then ¢ € C"%.

Theorem 1.33. Let r > 0 and n = 2m > 4 be integers. Let 0 < a0 < 1 and xp € R".
Let @y, be the standard symplectic form of rank[@,,| = 2m = n,

W, = f"dxz’;1 Adx*.
i=1
Let @ be a 2-form. The two following statements are then equivalent:
(i) The 2-form o is closed, is in C*%* in a neighborhood of xy and verifies
rank [ (xo)] = n.
(ii) There exist a neighborhood U of xo and ¢ € Diff *"%(U; @ (U)) such that
0" (op)=winU and @(xp)=xp.

One possible proof of the theorem could be to use Theorem 1.31 with n = 2m
(cf. Remark 13.7 for details). We, however, will go the other way around and prove
Theorem 1.31 using Theorem 1.33.

We next discuss the case of forms of lower rank. This is also well known in the
literature. However, our theorem (cf. Theorem 14.3, proved in [9] by Bandyopad-
hyay, Dacorogna and Kneuss) provides, as the previous theorem, one class higher
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degree of regularity than the other results. Indeed, in all other theorems it is proved
that if @ € C"%, then @ € C"~1%_ It may appear that the theorem below is still not
optimal, since it only shows that ¢ € C"% when w € C"*. However, since there are
some missing variables, it is probably the best possible regularity.

Theorem 1.34. Let n > 3, r,m > 1 be integers and 0 < a < 1. Let xo € R" and oy,
be the standard symplectic form of rank [®,,] = 2m < n, namely

m
W, = dez’_l Adx?.
i=1

Let @ be a C"* closed 2-form such that
rank [@] = 2m in a neighborhood of xy.

Then there exist a neighborhood U of xo and ¢ € Diff"*(U; ¢ (U)) such that
0" (wn)=winU and @(x9)=x0.

We now turn to a global result (cf. Theorem 14.5). It has been obtained under
slightly more restrictive hypotheses by Bandyopadhyay and Dacorogna [8] and as
stated by Dacorogna and Kneuss [32]. The theorem provides the first global result
on manifolds with boundary. It is also nearly optimal.

Theorem 1.35. Let n > 2 be even and £ C R" be a bounded open smooth set with
exterior unit normal v. Let 0 < a < 1 and r > 1 be an integer. Let f,g € C"%(Q;A?)
satisfyingdf =dg=0in Q,

VA, VAgeCThe (8.(2;/\3), VAf=VAgondQ,

/ (fsw) :/ (g;y) forevery I;IG%”T(_Q;Az) (1.6)
Q Q
and, for everyt € [0,1],

rank[tg+(1—1t)f]=n inQ.

Then there exists @ € Diff" +la (ﬁ,ﬁ) such that

o (g)=f inQ,
o =id on dQ.

Remark 1.36. (i) In a similar way, we can consider a general homotopy f; with fy =
[, fi = g, provided

df, =0, VAfi=VAfoondQ and rank[f]]=ninQ,

| v = [ o) forevery y e £ (@:4%).
Q Q
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(ii) If Q is contractible, then ./ (2;A?) = {0} and, therefore, (1.6) is automat-
ically satisfied.

1.5.4 The Case3<k<n-1

The presentation in Chapter 15 follows closely the results of Bandyopadhyay,
Dacorogna and Kneuss [9]. We start with the case k = n — 1. We have as a con-
sequence of Theorems 15.3 and 15.5 the following result.

Theorem 1.37. Let xo € R" and f be a (n— 1)-form such that f € C* in a neigh-
borhood of xo and f(xo) # 0. Then there exist a neighborhood U of xo and

¢ € Diff*(U; ¢ (U))

such that ¢ satisfies one of the two following equations in U:
(i) If df = 0 in a neighborhood of xo, then

F=Ve' A AVE = (dx' Ao ndx™T).
(ii) If d f (xo) # 0, then
f=¢" (Vo' A AVQ" 1) = @* (xudx' Ao AdxX" ).
Remark 1.38. (i) The present theorem, when df = 0, is a consequence of Theorem

15.1, which is valid for k-forms of rank k.

(if) With our usual abuse of notations, identifying a (n — 1)-form with a vector
field and observing that the d operator can then be essentially identified with the
divergence operator, we can rewrite the theorem as follows (cf. Corollaries 15.4 and
15.7). For any C* vector field f such that f(xo) # 0, there exist an open set U and

¢ € Diff*(U; 9 (U))

such that ¢ (U) is a neighborhood of xo and

~x(Ve'A---AVerT) if divf=0
f= # (@ (Vo' A=AV 1)) if divf#0,

where * denotes the Hodge * operator.

We now turn to the case 3 < k < n—2, which is, as already said, much more dif-
ficult. This is so already at the algebraic level, since there are no known canonical
forms. Additionally, even when the algebraic setting is simple, the analytical situa-
tion is more complicated than in the cases k = 0,1,2,n— 1,n (see Proposition 15.14
for such an example). The only cases that we will be able to study in Chapter 15
are those that are combinations of 1 and 2-forms that we can handle separately.
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For 1-forms, we easily obtain local (cf. Proposition 15.8) as well as global results
(cf. Proposition 15.10). We now give a simple theorem (a more general statement
can be found in Theorem 15.15) that deals with 3-forms obtained by product of a
1-form and a 2-form (in the same spirit, Theorem 15.12 allows to deal with some
k-forms that are product of 1 and 2-forms).

Theorem 1.39. Let n = 2m > 4 be integers, xo € R" and f be a C* symplectic (i.e.,
closed and with rank[f] = n) 2-form and a be a nonzero closed C* 1-form. Then
there exist a neighborhood U of xy and ¢ € Diff”(U;(U)) such that ¢(xo) =
xo and
o (0n)=f and @*(dx")=a inU,

where

m

W, = deZi_l Adx.
i=1

In particular, if

G=

m—1
dx?! /\dxz’] AdX" = @ AdX",
i—=1

L

then
0" (G)=fAa inU.

1.6 Holder Spaces

Throughout the book we have used very fine properties of Holder continuous
functions. Most of the results discussed in Chapter 16 are “standard,” but they
are scattered in the literature. There does not exist such a huge literature as the
one for Sobolev spaces. Some of the best references are Fefferman [42], Gilbarg
and Trudinger [49] and Hormander [55].

1.6.1 Definition and Extension of Holder Functions

We give here the definition of Holder continuous functions (cf. Definition 16.2).

Definition 1.40. Let 2 C R” be a bounded open set, f : Q —>Rand0< a<1.Let

[0 =rO)
ey = s { L5
x#y

(i) The set C®* (Q) is the set of f € C° (Q) so that

||f||c0.,a(§) = Hf||c0(§) + [f]co.a(a) < o,
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where

1fllcog@y = sup{If ()]}
xeQ
If there is no ambiguity, we drop the dependence on the set Q and write simply

1fllcoa = 1.fllco + [flcoa -

(i) If r > 1 is an integer, then the set C"* () is the set of functions f € C" (Q2)
so that

V' fleoa (@) <o

We equip C"* (L) with the following norm:

[fllcre@) = 1fler@) + IV fleoag) »
where

Ifllery = X 1IV" flleog) -
m=0

Remark 1.41. (i) C"* () with its norm ||-|| o+« is a Banach space.
@11) If =0, we set

£ llero = Nlfller -

(iii) If we assume that € is bounded and Lipschitz, then the norms

,
£ llcra =Y 1IV"fllcoa
m=0

and

< flco+ 1V fllco  if ¢ =0.
are equivalent to the one defined above. We should, however, point out that these
norms are, in general, not equivalent for very wild sets.

(iv) When a = 1, we note that o1 (5) is in fact the set of Lipschitz continuous
and bounded functions.

The following result (cf. Theorem 16.11) is a remarkable extension result due to
Calderon [20] and Stein [92].

Theorem 1.42. Let 2 C R" be a bounded open Lipschitz set. Then there exists a
continuous linear extension operator

E:C"*(Q)—C,* (R")

for any integer r > 0 and any 0 < a < 1. More precisely, there exists a constant

C =C(r,R2) > 0 such that for every f € C"* (ﬁ) ’
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E(f)lg=1/, supplE(f)] is compact,
IE (N)llran) < Cllf llra (@) -

Remark 1.43. The extension is universal, in the sense that the same extension also
leads to

E (Dlless ny < Cll Nl ess (@)

for any integer s and any 0 < 8 < 1, with, of course, C = C(s,Q2) as far as f €
P ( ) The same extension is also Vahd for Sobolev spaces.

1.6.2 Interpolation, Product, Composition and Inverse

We now state the interpolation theorem (cf. Theorem 16.26) that plays an essential
role in our analysis.

Theorem 1.44. Let 2 C R" be a bounded open Lipschitz set, s > r >t > 0 be inte-
gersand 0 < o, B,y < 1 with

t+y<r+o<s+p.
Let A € [0,1] be such that
r+oa=A+B)+(1-4)(+7).
Then there exists a constant C = C (s,Q) > 0 such that
1fllere < CUFNGs 1167

As a byproduct of the interpolation theorem, we get the following result (cf.
Theorem 16.28).

Theorem 1.45. Let Q2 C R" be a bounded open Lipschitz set, r > 0 an integer and
0 < a < 1. Then there exists a constant C = C (r,2) > 0 such that

178llcra < C I llcra llgllco + 11/ llco l1gllcre) -

The next theorem (cf. Theorem 16.31) will also be intensively used.

Theorem 1.46. Let Q C R", O C R™ be bounded open Lipschitz sets, r > 0 an
integer and 0 < ot < 1. Let g € C"* (0) and f € C"* (2;0) NC" (Q;0) . Then

H80f||c<)a( )< ||8HC0a( )”f”cl( )+||g||c0( 0)>
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whereas if r > 1, there exists a constant C = C (r,,0) > 0 such that

g0 fllcra(a) < € [l8llene(o )||f|\r+f’ )+Hg||c1( ) I fllera (@) + llgllco oy

We easily deduce, from the previous results, an estimate on the inverse (cf. The-
orem 16.32).

Theorem 1.47. Let 2,0 C R" be bounded open Lipschitz sets, r > 1 an integer and
0<a<l.Letc>0.Let feC* (Q;O) and g € Ch* (O;Q) be such that

Then there exists a constant C = C (c,r,2,0) > 0 such that

£ llcra@y < Cllgllerao)

1.6.3 Smoothing Operator

The next theorem (cf. Theorem 16.43) is about smoothing C" or C"** functions. We
should draw the attention that in order to get the conclusions of the theorem, one
proceeds, as usual, by convolution. However, we have to choose the kernel very
carefully.

Theorem 1.48. Let Q C R" be a bounded open Lipschitz set. Let s > r >t > 0 be
integers and 0 < o, B,y < 1 be such that

t+y<r+o<s+p.

Let f € C"* (Q) . Then, for every 0 < &€ < 1, there exist a constant C = C (s,2) >0
and fe € C7 (ﬁ) such that

C
[ felless < P raw) 1fllere

If = fellerr < Celrte)=(+) £l cre -

We also need to approximate closed forms in C"* (E;Ak) by smooth closed
forms in a precise way (cf. Theorem 16.49).

Theorem 1.49. Let Q C R” be a bounded open smooth set and v be the exterior
unit normal. Let s >r >t >0 withs > 1 and 1 <k <n—1 be integers. Let 0 <
o, B,y < 1 be such that

t+y<r+o<s+p.
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Let g € Ch* (5;/\1‘) with
dg=0inQ and v/\gECS’B(a.Q;AkH).

Then for every € € (0, 1], there exist g € C™ (_Q;Ak) nesp (§;Ak) and a constant
C=C(s,o,B,7,2) > 0 such that

dge=0inQ, VAge=VAgondQ,
[ tsewi= [ tesw) forevery y € i (@349,
C
||88Hcs<ﬁ(§) < anncm( )+C||V/\8Hcs 0Q)>
llge — g||C,y( ><C8(r+(x (t+7) ||g||C’O‘( a)-

Remark 1.50. We recall that if Q is contractible and since 1 <k <n—1, then

4 (@:4Y) = (0}
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Chapter 2
Exterior Forms and the Notion of Divisibility

The present chapter is divided into three parts.

In Section 2.1, we recall the definitions and basic properties of exterior forms. All
notions introduced there are standard and, therefore, our presentation will be very
brief. We refer for further developments to the classic books on the subject—for
example, Bourbaki [15], Bryant, Chern, Gardner, Goldschmidt and Griffiths [18],
Godbillon [51], Godement [52], Greub [54], or Lang [67]. In what follows we will
only consider the finite vector space R", n > 1, over R. However, we can obviously
replace R" by any finite n-dimensional vector space over a field K of characteristic 0.

In Section 2.2, we introduce the different notions of rank and corank for exterior
forms. The material presented here is new and has been introduced by Dacorogna
and Kneuss [31]. However, the notion of rank (in our terminology below, rank of
order 1) of an exterior form is standard for 2-forms (see, e.g., Abraham, Marsden and
Ratiu [1], Bryant et al. [18], Godbillon [51], Mc Duff and Salamon [72], Postnikov
[82], Sternberg [93], or Taylor [96]) and also exists, although less standard and
sometimes expressed in a different but equivalent way, for general k-forms; see, for
example, Bandyopadhyay, Dacorogna and Kneuss [9], Godbillon [51], Marcus [74],
Martinet [71], or Sternberg [93]. All of the other notions of rank and corank of an
exterior form are new. The importance of these notions will be clear in our study of
the pullback equation; they are indeed invariant under pullback (see Proposition 2.33
and Proposition 17.1).

In Section 2.3, we discuss the central result of this chapter; it concerns the notion
of divisibility of an exterior form. More precisely, given f € AX(R") and g € A’ (R")
with 0 <1 < k, we want to find u € A~ (R") such that

f=gNu.

We will give here a result due to Dacorogna and Kneuss [31] (cf. Theorem 2.45)
which generalizes the celebrated Cartan lemma (cf. Theorem 2.42). This lemma
asserts that if g has the additional structure

g=81NNg#0,
G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 33

Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9 2,
© Springer Science+Business Media, LLC 2012
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where gi,...,g € A! (R™), then a necessary and sufficient condition for finding
such a u € AK=! (R") is that

fAgI="=fNg=0.

Our theorem will rely on the notions of annihilators introduced in Section 2.2. This
question of divisibility leads in a natural way to the notion of prime exterior forms
(cf. Definition 2.39 and Corollary 2.49).

2.1 Definitions

2.1.1 Exterior Forms and Exterior Product

Definition 2.1 (Exterior form). Let £ > 1 be an integer. An exterior k-form over R"
is a map
R x-- xR"=R
————

k times

such that
() f is linear is each variable,
(ii) for every X, ..., X; € R" and for every ¢ € Sym(k),

f(Xo-(l),...,Xo-(k)) =sign(o)f(X1,...,Xx),

where Sym(k) is the set of the permutations of {1,...,k} and sign(c) denotes the
sign of the permutation ©.

We denote by A¥(R") the set of exterior k-forms over R”. If k = 0, we set
A°(R") =R.

‘We have that
AKR™) = {0} if k > n.

Definition 2.2 (Exterior product). Let f € AK(R") and g € A!(R"). The exterior
product of f with g, denoted by f A g, belongs to A¥™/(R") and is defined by

(fAg) Xy Xivr)

= Y sign(0)f(Xo(1)s s Xo() 8 Koks1)s - Xo(rsn))»
ocSym(k,l)

where

Sym(k,l) ={oc € Sym(k+[):0(1)<---<o(k);olk+1)<---<o(k+1)}.
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Ifk=0(ie., f € A°(R") = R), we define
fAg=gNf=fg

Theorem 2.3 (Properties of the exterior product). Let f € AK(R"), g € A/(R")
and h € AP(R"). The exterior product is bilinear and the following properties are
verified:

(fAg) AR =fN(gAh),

frg=(=1"enf.
Moreover, if fi,..., [y € A'(R") and X,...,X; € R", then
SineAfiXy, o Xe) = det [fi(X))] o oy - 2.1)
In particular, the family {fi,..., fx} is linearly independent if and only if
Jin---Afie #0.

Let Eq,...,E, be the canonical basis of R” and let ei, 1 <i < n, be its dual basis,
which means that ‘
¢ (E;) =8,

where 6;; = 1 if i = j and §;; = 0 otherwise.
Proposition 2.4. Let 1 <k < n. The set
{eil A--~Aeik}, 1<ip<--<ig<n,

is a basis ofAk(R"); in particular,
. k (mon n
dim(A*(R")) = (k> .

Therefore, any f € A¥(R™) can be written as

f= Z fi1~-~ik€il A---Aelk

1<ij <-—<ix<n

for some unique f;,..;, € R. Moreover, the coefficients of f can be recovered by the
Sformula

firip = f(Eiy, .. Eip). (2.2)
Notation 2.5. (i) We will denote the set of strictly increasing tuples of length k by
Ti={1=(i1,...,ix) ENF, 1 <ij <--- < ip <n}.
In this way, for I € J; we write

e =et NNk,
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and for f € AK(R"), we write

1= fiyiye -
With these notations, we have
f= Y  fiad nnet=Y fie (2.3)
1<i) <--<ix<n 1€,

(ii) When in an index we write i, this means that i is omitted. For example,

Sidox = 1235k

(iii) Sometimes it will be more convenient to assign meaning to f;, ..;, for any
k-index 1 <iy,...,ix <n, by letting

; __{sign(o)ﬁc(])...ic(k) ifiga) < <iow
el —

0 if two indices coincide
for o € Sym(k).

Proposition 2.6 (Formula for the exterior product). Let f € AK(R") and g €
AY(R"). The following formula holds true:

fNg

= Z < Z (f/\eil /\.../\eiz)jl._.ij (gi]---il)>€jl A Aelitk

J<<Jipke N1 <<y
In particular, when k = 1 (i.e., f € A'(R")), the formula reads as

I+1
B . .
frg= Y (Z(l)y ijgjr-<jy_ljy+.~-~jz+1)6" ANl

I<ji<-<jipr<n \r=1

2.1.2 Scalar Product, Hodge Star Operator and Interior Product

We now introduce the notions of scalar product, Hodge star operator and interior
product. We also state some basic properties of these operators.

Definition 2.7 (Scalar product). Let f,g € AK(R"). We define the scalar product
of f with g as
(f:8) = Z fi1~~~ikgi1~~~ik = Z figi
1<iy<--<ip<n I1e 9,

and we let

[fI* = (f:f).
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Remark 2.8. From (2.2) it follows that

<f’g>: Z f(Eila~~~7Eik)g(Ei17“‘aEik)’

1<ij<..<ig<n

In fact, we could have taken any orthonormal basis {Y1,...,¥,} of R” and defined

<f’g>: Z f(Yil7""Yl'k)g(Yi17"'7Yik)'

1<ij<---<ix<n

The independence of the chosen orthonormal basis follows from Remark 2.18 and
the fact that (f;g) = (A*f;A*g) if A € O(n) (cf. Proposition 2.19).

Definition 2.9 (Hodge duality). The Hodge star operator is the linear operator
st ARR") — A" H(RY)

defined by
fAg=(xfig)e' A-w-Ae"

for every g € A" K (R").
Theorem 2.10 (Properties of the Hodge star operator). Let 0 < k < n. Then
w(e' A---Ne")y=1 and x1=e"'N---Ne".
Moreover, for every f,g € AK(R"),
FAGQ) = (fighel Avne® and (xf) = (~DHOR) .
Finally, let I € ;. , 1° ={1,...,n}\I € J,,_y and let r be such that
dne =(=1)e A ne.

Then .
w(el) = (=1)"e".

This last statement holds also true if the elements of I and I¢ are not ordered
increasingly.

We next turn to the definition of the interior product.

Definition 2.11 (Interior product). Let 0 < k,/ < n, f € A¥(R") and g € A'(R").
We define the interior product of f with g by

g1f = ()" D x (g (xf)).

Proposition 2.12 (Formula for the interior product). Let 0 < k,I <n, f € A¥(R")
and g € A'(R"). The following formulas then hold.
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(i) Ifl <k, then g s f € A*"!(R") and

gaf

k(k—1 j j—
= (71) (k=) Z ( Z fil"'iljl“'jkIgil"'i1> el N Nelk
1<ji < <Jgi<n

1<ii<--<ij<n

In particular, when l =1 (i.e., g € AI(R")), the formula reads as

k
ng: Z (Z(_I)YI Z fjl"'jy]ijy"~jk1gi> e/l /\~--/\eJk*1,

1< ji < <1 <n \y=1 Jy-1<i<jy
where if y =1, it is understood that fj,...j, \ijy-ji_, = fiji-j,_, and, similarly, when
v =k, it is understood that fjl“'jy—lijy“'jk—l = firjoyi-

(ii) If | = k, then
fag=gof=(f:8)-

(iii) If | > k, then
guf=0.

Remark 2.13. When g = e = el A---Aell and f = e’ = /1 A--- Aelk, the proposi-
tion leads to

L, o if1¢J

e e’ =
(—DE=DHr N if
where r € {0, 1} is given by
e ne'N = (=1)"¢.

Proposition 2.14 (Properties of the interior product). Let 0 <k, <n, f € A¥(R")
and g € AZ(R”). The following properties are then satisfied:

(i) The interior product is linear in both arguments.
(ii) The coefficients of f can be recovered by the formula
Jijip = <f;ei' /\---/\eik> =fu (ei' /\---/\eik)
= [fA(x(eT A NeEM))]. 2.4)
(iii) When | = 1, writing
n

n
g= Zgie’ and G=Y) GE

i=1 i=1

where G' = gi, then for every X1,..., X1 € R,

(ng) (Xl,...,Xk,l) :f(G,Xl,...,Xk,l).
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Remark 2.15. Sometimes in the literature (see, e.g., [96]), one finds a different def-
inition for the interior product of a k-form with a vector; namely let G € R” and
f € AKR"); then ig (f) € A¥-1(R") is defined by

ic (f)(X1,....Xk—1) = f(G,X1,...,.Xp—1).

Identifying G = Y, G'E; with g = Y, g;e' (G' = g;), statement (iii) in Proposi-
tion 2.14 tells us that the two definitions coincide; that is,

ic(f)=g4f
Proposition 2.16. Let f € AX(R"), g € A/(R") and h € AP(R"). Then
(hAg)af = (=1)*h(gf).
Furthermore, if p =k+1, then
(fAgih) = (=) g fah) = (1)} (f:gh).
Letw € A'(R"); then

wa(fAg)=wof)Ag+ (=D (wag)Af
=(waf)Ag+ (=D fFA(wag).

In particular, if k is even and m is an integer and letting f™ = f A--- A f, then
——

wo f" = (m 1) [(waf) A S (2.5)
Ifv,w € AY(R"), then

wa(AL) VAW f) = (wv)f (2.6)
and, thus,

wa(WAf)+wA(waf) = wlf, 2.7

WA= wawA P+ IwAwaf)E = W (wAf2+waf17) .

2.1.3 Pullback and Dimension Reduction

We start with the following definition and properties.

Definition 2.17 (Pullback). Let A € R be a (n x m)-matrix and f € A¥(R") be
given by . .
f= Y it Anek

1<ii<--<ix<n
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We define the pullback of f by A, denoted by A*(f) and belonging to A¥(R™),
through

A= X fa AT A AT,

1§i1<~~<l’k§l’l
where A/ is the jth row of A and is identified by

. mn .

Al =Y Al e ATR™).
k=1
If k =0, we then let
AY(f) = 1.
Remark 2.18. There is an equivalent definition of the pullback, namely
A ()(Kr e Xe) = FA- X, A XL,

for every Xi,..., X € R™.

Proposition 2.19 (Properties of the pullback). Letf € A¥(R"), g € AL (R"), A €
R™™ gand B € R™*P. Then

(AB)"(f) =B"(A"(f)),

A*(frg) =A"(f)NA"(g). (2.8)
If k=1, then
A (f+g)=A"(f)+A"(g).

If n =m, then
A*(e' A neh) =det(A) el AN

IfA € GL(n), then
A*(gof) = (A1) (8)) 2A*(f), 2.9)

A*(xf) = det(A) [+ (A7) (N)].- (2.10)

IfA € O(n), then
A (g f) =A"(g) A" (f),
A" (xf) = det(A) [« (A" ()], 2.11)

and ifk =1,
(A" (f):A" (g)) = (f38)-

Definition 2.20. Let f € AX (R™). We define, for k > 1,
A} ={uc A'(R"):Igec AV YR") with gof =u}.

Remark 2.21. (i) Let f € A¥(R") and A € GL(n). Using (2.9), we immediately
deduce that
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* 1 1
(i1) It will be seen that if f # 0, then
dim(Af) = rank, [f] € {k,k+2,...,n}

(see Definition 2.28 for the definition of rank; [f], Proposition 2.37(i) for the equiv-
alence and Proposition 2.37(ii) for the range of values of rank; [f]).

The following lemma is very useful for reducing dimension. Below we give a
purely algebraic proof; later (cf. Theorem 4.5) we will give two analytical proofs;
one of them being based on the Frobenius theorem (cf. Theorem 4.2).

Theorem 2.22 (Dimension reduction). Let 1 <k <nand f € Ak(R”) with f # 0.
Let {al,...,a[} be a basis ofA}. Then there exist f,..;, €R, 1 <ip < - <ip <,
such that

f= Z ﬁl...ikai‘ A---Na'k.

1<ij<--<ip<l
In particular, there exists A € GL(n) such that

A*(f) = Z ﬁ1>~»ikei1 A~ Aelk

1<iy <<y <I

and

Af}*(f) = span{el,...,el}.

Remark 2.23. (i) Looking at A¥(R?) as a subset of AK(R"), by abuse of notations
the theorem implies that
A(f) € AMRY),

(i) The above theorem (cf. Remark 2.21(ii)) therefore tells us that any f €
A¥(R™) with rank; [f] = can be seen (up to a pullback) as a k-form over R’. More-
over, if m > n and, by abuse of notations, we consider f € AF (R™), we see that Afl-

is independent of whether we see f as an element of A¥(R") or A¥(R™).

Proof. Step 1. Let {a',...,a'} be abasis of A} and we complete it as a basis of R”,

namely {a',...,a"}. Let B € GL(n) be the matrix whose ith row is a’, 1 < i < n.
Finally, we define
A=B""

Note that, by definition,
A*(d)=¢€ and B*(¢)=d, 1<i<n. (2.13)
Assume (cf. Step 2) that we can find some fil iy € R such that

A(f)= X o€t A et 2.14)

1<iyp << <I
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(i.e., A*(f) € Ak(Rl)). We will then have the result since, using (2.13), we get

f=B(A*(f)) =B ( Jiyeige" A"'Aeik>

1<ip<--<ip<l

_ 0 i
= Z Sijidt N Na'k.
1<ip<--<i <l

Step 2. We finally show (2.14). Writing

A*(f): Z }‘;l...ikeil/\"'/\eik,

1<ii<--<ix<n
we see that (2.14) is equivalent to proving
ﬁr"ik =0 forevery iy >1[.

Let 1 <ij <--- <i; <n. Using the properties of the interior product we have that
. . n ~ .
(e” A--- /\elk—l)JA*(f) — Z Zlifil‘-‘ik,ljej'
j=1

Appealing to (2.12) and to (2.13), we deduce that
A[{*(f) =span{e',... e/}

Combining this with the definition of A L () We must have

ﬁl"'ik—lj =0, foreveryj>I,

which shows the assertion. O

2.1.4 Canonical Forms for 1,2, (n —2) and (n — 1)-Forms

We now prove that when k = 1,2, (n—2),(n— 1), it is possible by a linear transfor-
mation to pull back any form to a canonical one. When 3 < k < n — 3, no standard
canonical form is known. Statements (i), (ii) and (iv) of Proposition 2.24 will be
proved in the more general analytical context (see Proposition 15.8 for statement (i),
Theorems 14.1 and 14.3 for the case k = 2 and Theorem 15.3 for the case k =n—1).
It is not presently known if statement (iii) for (n — 2)-forms can be extended to the
analytical setting.

Proposition 2.24. The following four statements hold true:
(i)Let 1 <k<nand fi,...,fi € A" (R") be such that

N Afi #0.
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Then there exists A € GL(n) such that
A*(f;) = ¢ forevery1 <i<k.
In particular, for every f € A'(R") with f # 0, there exists A € GL(n) such that
A (f) = .
(ii) Let f € AZ(R") with f # 0. Let m be the integer such that
fm£0 and fm=0.

Then there exists A € GL(n) such that
m . .
A (f) =, = Zezz_l AP
i=1

Moreover, if g,h € A" (R") with g,h # 0, then, in addition to A*(f) = ®, the fol-
lowing can be ensured:
A"(g)=h

provided
{geA} andhEAC})m} or {8¢A} andh%A&,m}.

(iii) Let f € A"2(R") with f # 0. Let m be the integer such that
(+f)"#0 and (xf)"'=0.

Then there exists A € GL(n) such that

A () — * (@) ifn>2mor if {n =2m and m even}
()= sign[(xf)"] [*(®y)]  if n=2m and m odd.

Moreover, when n =2m and m is odd, there exists no A € GL(n) such that
A" (x0p) = — [x(0m)]-
(iv) Let f € A"~ 1(R") with f # 0 then there exists A € GL(n) such that
A*(f)=e"' N nem

Remark 2.25. (i) Let f € A?(R"). Anticipating Definition 2.28 for rank;[f] and
Proposition 2.37 (iii) for the equivalence, we have that rank; [f] = 2m if and only if

fm™#0 and fml=o0.

Thus, statement (ii) in the above proposition can be rephrased as follows: Any
2-form f with rank;[f] = 2m can be pulled back to the standard symplectic form
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of rank 2m, namely

m
O = 262171 /\6’21.
i=1
Observe also that
(@n)" =mle' A---NeP™

(ii) In the case of (n—2)-forms, we have in fact (see Definition 2.28 for the
notations)
2m = corank (f) = rank; (xf).

Proof. We only prove (i), (iii) and (iv). The proof of (ii) is standard and can be
found, for example, in Bryant et al. [18, p. 13], Horn and Johnson [56, p. 107], or
Serre [90] (for the extra statement, see Kneuss [60]).

Step 1. We first show (i). Identifying 1-forms with elements of R", we let B €
GL(n) be a matrix whose ith row is f;, 1 <i < k. Note that this is possible since
JiN-- A fi # 0 (see Theorem 2.3). Then noticing that

B*(ei) = f; forevery 1 <i<k,
the matrix A = B! has the required property.

Step 2. We split the proof of (iii) into three steps.

Step 2.1. We show that there exists A € GL(n) such that
AX(f) = £ [+(om)]-
Indeed, since (xf) € A%(R"), using (ii), there exists B € GL(n) such that
B*(xf) = oy, .

Therefore, using (2.10), we get

det B [«((B™))*(f))] = om.

We thus obtain
det B[((B~")")*(f)] = *(@n).

Letting
1

A =|detB|72 (B!,
we have the claim, namely A*(f) = £ [*(@y)] -

Step 2.2. Let us show that if n > 2m or if {2m = n and m even}, there exists
A € GL(n) such that

A" (x(@n)) = — [*(@n)]. (2.15)
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(i) If 2m < n, then the diagonal matrix A defined by A;; =1 for 1 <i<n—1 and
Ay = —1 verifies (2.15).

(ii) If 2m = n and m even, it is easily seen that the diagonal matrix A defined by

A 1 if 1 <i<nmandieven
")l =1 ifl<i<nandiodd

satisfies (2.15).

Step 2.3. Assume 2m = n and m odd. We first prove that if A € GL(n) is such that
A*(f) = g [*(wn)], with € € {—1, 1}, then necessarily

e =sign[(+f)"].

Let B = (A~')". Observe that since n = 2m, we have that (*f)" is a n-form.
Identifying, as usual, n-forms with scalars and using Proposition 2.19, we find that

1

BY(f)") = det(B) (+/)" = 3o

()™
Using Theorem 2.10 and (2.10), we have the following implications:

A(f) = e[x(on)] & *(A7(xx f)) = € @]
& det(A) [B™(+f)] = € @]
= det(A)" [B*((xf)")] = &" [(@n)"]
& det(A)" " [(f)"] = & [(om)"].

Hence, recalling that m is odd and that sign [(®,,)"] = 1, we get the result, namely
e = sign[(+/)"].

Combining these three steps proves the main assertion. Applying the result of Step
2.3 with f = (x®,,), we have the extra claim, namely there exists no A € GL(n)
such that

A" () = — [x(0m)].
The proof of (iii) is therefore complete.
Step 3. We finally prove (iv). Identifying (xf) € A'(R) with a vector in R", we

let B € GL(n) be a matrix whose nth row is *f and with determinant equal to 1.
Since

B(€") = =,
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we have, using Theorem 2.10 and Proposition 2.19,

*

(1" () = (=D (B ) = (<1 (B7)') (xe)
(_l)n—l ((B—1)1>*((_1)n—161 /\.”/\en—l)
((Bil)t)*(e] A---Neh.

f

Therefore, recalling that (B*' )t = (B )_1 , the matrix A = B has all the required
properties. 0O

2.2 Annihilators, Rank and Corank

In this section we will closely follow Dacorogna and Kneuss [31], in which all
of the following notions are introduced. Prior contributions can also be found in
Bandyopadhyay, Dacorogna and Kneuss [9].

2.2.1 Exterior and Interior Annihilators

We define the different annihilating spaces and give some elementary properties. We
point out that these notions of annihilators, rank and corank seem very well adapted
to the pullback, since they are invariants by pullback (see Propositions 2.27(vii) and
2.33(vi)).

Definition 2.26. Let 0 < k <nand f € A¥(R").

(1) The space of exterior annihilators of f of order s is the vector space
Anh, (f,s) ={he A*(R"): fAh=0}.

(i1) The space of interior annihilators of f of order s is the vector space
Anh, (f,s) ={he€ A*(R"):h 1 f=0}.

Proposition 2.27. Let 0 <k < nand f,g € A*(R").
(i) The following hold, if 1 <k <n-—1:

Anh, (f,n—k)# {0} and Anh,(f,k)#{0}.
(ii) The following equivalences hold:

f=0< Anh, (f,0) # {0} < Anh,(f,n—k) =A"¥R")
& Anh, (£,0) # {0} < Anh, (f,k) = AKR").
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(i) If 0 < s <t <n,then
Anh, (f,5) ANA™*(R"),C Anh, (f,1),

Anh, (f,s) AA"™ (R") C Anh, (f,1).

(iv) If 0 < s < n, then
Anh,(f,s) = Anh,(xf,s).
(v) The following inclusion holds:
Anhx(f,s) UAnhx(g,s) C Anhp(fAg,s).
i) If0<s<t<n—kand
Anhy (g,t) C Anh,(f,1),

then
Anh), (g,s) C Anh,(f,s).

(vii) Let A € GL(n). Then, for every 1 <s <n,
A" (Anhy (f,s)) = Anh, (A" (f),s),

((A™)")* (Anh, (f,5)) = Anh, (A" (f) ).
In particular, if A € O(n), then

A (Ath (f,S)) = Anh, (A* (f) 7S) :

(viii) If L #£ 0, then
Anhn(Af,s) = Anhp(f,s),

Anh (Af,s) = Anh,(f,s).

Proof. Step 1. The proofs of (i), (ii), (iv), (v) and (viii) are immediate. The first
property in (iii) is also easy, whereas the second one in (iii) follows from the first
statement of Proposition 2.16.

Step 2. We now prove (vi). First, we notice that if 2 € Anhx(g,s), then
hAet A---Ne'= € Anh,(g,1) forevery 1 <ij <---<i;_s<n.
Thus, by hypothesis,
FARNET AN =0 forevery | <ij <---<ij_g<n,
which easily implies the claim, namely

FAR=0.
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Step 3. Property (vii) is a direct consequence of (2.8) and (2.9). This concludes
the proof of the proposition. O

2.2.2 Rank and Corank

The next important concept is the notion of rank and corank of a form and it is
related to the dimension of the corresponding annihilating spaces.

Definition 2.28. Let 0 < k < n be integers and f € A% (R").
(i) The rank of order s, 0 < s <k, of f € A¥(R") is given by

rank,[f] = (”) — dim(Anh,(f,s)).
s
(ii) The corank of order 5,0 < s <n—k, of f € AF(R") is defined by

corank,[f] = (’;) — dim(Anh,(f,s)).

Remark 2.29. (i) In the literature (see Bandyopadhyay and Dacorogna [8, p. 1720],
Definition 2.2 in Bandyopadhyay, Dacorogna and Kneuss [9], Definition 7.11 in
Godbillon [51], Marcus [74, pp. 85-88], Martinet [71] and Sternberg [93, p. 25]) the
only notion of rank, for an exterior form that is used, is the above rank of order 1.
In [74] and [93], a similar notion to our interior annihilator of order 1 is given.
However, the rank of order 1 is not always defined as above; but all of the definitions
are equivalent, as will be seen in Propositions 2.32 and 2.37. However, before that,
let us introduce the following notations.

(ii) Since the most important notion is the one of rank of order 1, we will write
rank instead of rank; when no ambiguity occurs. This will be the case throughout
Part IV, except for few instances.

Notation 2.30. Throughout the book we identify a k-form with a vector of R()
and, to fix the order of the elements of the vector, we adopt the lexicographical
order. Let 0 < k < nand f € A*(R").

(i) Let 0 < s < k. To the linear map
gE A (R") = gof € AK5(RY)
we associate a matrix 7va € RG> such that, by abuse of notations,

ng:fMg Sforevery g € A° (R").

More explicitly, using the lexicographical order for the columns (index below) and
the rows (index above) of the matrix f ., we have (cf. Proposition 2.12(i))

1,80
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Foiie = 0 fi g
for1 <ip<---<ig<nand1 < j1 <--- < jr_s <n.
(ii) Similarly let 0 < s < n—k. To the linear map

geAN(RY) = fAge ASHE (R™)
we associate a matrix f/\’x S R(Sik)x (5) such that, by abuse of notations,
fAhg= 7/\7Sg Sor every g € A*(R").
As above, the components of the matrix 7/\’ s can be written as (cf. Proposition 2.6(i))

(f/\7s)i11"~is = (f/\el1 ANt )jl“'jx+k

for1 <ip<---<ig<nand1<ji <--- < jopx <n.

Remark 2.31. As already said, in the next chapters of the book we will write, when

there is no ambiguity, rank[f] instead of rank;[f]. Similarly, we will denote the
matrix f ,; only by f.

Proposition 2.32. Let 0 < k < n and f € A¥ (R™).
(i) Let 0 < s < k. Then

rank [f] = rank (f ) .
(ii) Let 0 < s <n—k. Then

corankg [f] = rank (f, ) -

Proof. We only show (i), the proof of (ii) being similar. Using the definition of f
we see that

1,80

ker(f%s) = Anh_(f,s).
‘We thus obtain the result, since

rank(f ) = (n) —dim [ker(f )] -
9» Ky 3
This concludes the proof of the proposition. ]
We now gather some elementary properties of the rank and corank.

Proposition 2.33. Let 0 < k < nand f € A (R").
(i) If f =0, then for every s,

corank,[f] = rank,[f] = 0.
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(i) If f # 0, then
corank,_[f] = rank[f] = 1.

(iii) If 0 < s <n—k, then
corank[f] = rankg[* f].

(iv) If 0 < s <k, then
rank,[f] = ranky_[f],

rank ] > (1)

N

and if f # 0, then

W) If0 <s<n—k,then
corankg[f] = corank,, (1) [f],

and if f # 0, then
corank;[f] > (nk>

s
(vi) Let A € GL(n). If 0 < s < k, then

rank; [A” (f)] = rank [f],
whereas if 0 < s < n—k, then
corank; [A* (f)] = corank; (f) .
(vii) If L # 0, then for every 0 < s < k,
rankg[A f] = rank;[f],
whereas for every 0 <s <n—k,

corank; [A f] = corank; (f).

Proof. The proofs of (i)—(iii) and (vii) are elementary.

Step 1. We now discuss assertion (iv). We here use Notation 2.30. Let us
show that

?J,S = (_l)k+s+ks (?_.,k—s)l )

which will prove the assertion using Proposition 2.32(i). Indeed, by definition, for
any 1 <ij <---<ig<mand 1 < j; <--- < jr_s < n, we have

(Foa)in i = GO fiigi, = GO I fy e,

i)y
‘ X ks /= iy,
=(-1) +Sfil"'.ik—sil"'iA' =(=1 e (vak*“')jll“';k—s

and thus the claim is proved. We now prove that rank[f] > (];) Since f # 0, there
exists (iy,...,ix) € J such that f; ..; # 0. Therefore, there are at least (k) linearly

N
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independent s-forms which are not in Anh,(f,s), namely
em N Aelms ¢ Anh_(f,s) forevery l <mj <---<m;<k.

This implies the claim.

Step 2. We then discuss (v). Recalling that *f € A" ¥(R") and using (iii) and
(iv), we have the assertion, since

corank,[f] = rank; [* f] = rank, 4 [*f] = corank,,_(; 1) [f].
The assertion on the lower bound for the corank follows from (iii) and (iv).
Step 3. Claim (vi) is a direct consequence of Proposition 2.27(vii). O

Before proceeding further, we give some examples.

Example 2.34. Let f € AF(R") with f # 0.
(1) We start with the case k = 1. We claim, for 0 < s <n— 1, that

rank; [f]=1 and corank,[f]= <n— 1>.

N

The first equation is just a particular case of statement (ii) of the previous propo-
sition. To show the second equation we proceed as follows. According to Proposi-
tion 2.24(i) and Proposition 2.33(vi), we can assume that f = e!. Notice that

Anhy (e',s) = span{e! Ne2 A AP 2 <iy < --- <ig<n}

am o) = (") = (1) ()

(ii) We now turn to the case k = 2. The only invariant that matters is rank [f]
and, as will be seen in Proposition 2.37(iii), it is even. It determines the corank
of any order (cf. Proposition 2.24(ii) and Proposition 2.33(vi)) and, according to
Proposition 2.33(ii),

and hence

as claimed.

rank; [f] = 1.

rank, [f] = (Z)

whereas if k = n — 1, then (cf. Proposition 2.33(iii) and (i) of the present example)

rank; [f] = (n; 1).

(iv) Consider the case kK = 3. We automatically have, according to Proposi-
tion 2.33(iv),

(iii) When k = n, then

rank; [f] = rank; [f].
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However, the coranks are not uniquely determined by the rank of order 1. Indeed,
letn =7 and
f= elnePnE +ePnet N+ NP Ne,

g:el/\ez/\e3+el/\e4/\e5+el/\eé/\e7.
Then
rank; [f] =rank, [g] =7

and
corank; [f]=7 and corank; [g] =6.

(v) We finally give an example showing that the rank of order 1 does not deter-
mine the rank of higher orders. We let k =4, n = 8 and

fzel/\62/\63/\64—1—65/\66/\67/\687
g:el/\ [ez/\eS/\e4+e5/\e6/\e7+ez/\es/\eg}.

We have
rank; [f] = rank; [g] =8,

rank, [f] =12 and rank;[g] = 14.

We now turn to two interesting examples showing that in order that a form g be
the pullback of a form f, it is not enough that they have all their ranks and coranks
equal.

Example 2.35. Let m be odd, n = 2m and

e2i—1 A eZi)
1

NN NETT NN NPT

(o

f*(a)m)—*<

1

=

Il
-

14

Then f and — f have all their ranks and coranks equal (cf. Proposition 2.33(vii));
however, there is no A € GL(n) such that (cf. Proposition 2.24(iii))

A(f)=—f.
This result applies, in particular, to n = 6 and
f= N nENet el NP NS NS+ Nt A NeC.

Example 2.36. The same phenomenon also occurs when n = 6 and k = 3. Indeed,
the forms
f:el NN +e* e’ neb,

g:el/\ez/\e3—|—e1/\e4/\e5+e2/\e4/\e6+e3/\es/\e6
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have all of their ranks and coranks equal, namely
rank [f] = rank; [g] = rank; [f] = rank; [g] = 6,

corank [f] = corank; [g] = corank; [f] = corank; [g] = 6,
ranks [f] =ranks[g] =1 and coranks[f] = coranks[g] = 1.

However (cf. Kneuss [60] for details), there is no A € GL(6) so that

A% (g)=f.

2.2.3 Properties of the Rank of Order 1

Since the most essential notion is the one of rank of order 1, we gather below some
properties of this rank; for related results, see Martinet [71]. We also recall that in
all of the other chapters, the rank of order 1 of a form f is just referred to as the rank
of f and is denoted by rank [f] instead of rank; [f].

Proposition 2.37. Let f € A¥(R") and 1 <k <n.
(i) If
A} = {u cAV(RY): g e ANV (RY) withg f = u},
then
rank; [f] = dim (A}),
A} = Range (ﬂk_l) )
(i) If f A0 and 3 <k <n, then
rank [f] € {k,k+2,...,n}
and any of the values in {k,k+2,...,n} can be achieved by the rank of order 1 of a
k-form.

(iii) If k = 2, then the rank of order 1 of f, f # 0, is even and any even value less
than or equal to n can be achieved by the rank of order 1 of a 2-form. Moreover,
rank; [f] = 2m if and only if

fm ;é 0 and fm+l _ 0’

where f™ = f N\--- A\ f. Furthermore, if n is even, the following identity holds, iden-
—_——

m times

tifying n-forms with O-forms:

- (12 1
|deth’1‘ - (n/z)'

fn/2’ .
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(iv) If g € A (R"), then
rank; [f A g] < rank; [f] +rank; [g] — dim (A} OAgl) .
Moreover,
rank; [f A g] = rank; [f] +rank; [g] < A} ﬂAgI ={0}.
(v) Let f € A>(R") and g € A'(R") be such that f \g # 0. Then

rank [f] +1 ifggéA}

rank;[f A g] = {rankl[ﬂl ingA}'

Remark 2.38. (i) For f € A¥(R"), the rank of order 1 of f can never be (k+1). In
particular, when k = n— 1 and f # 0, then
rank; [f]=n—1.
(i1) From Proposition 2.37(iv), we can infer that if f # 0, then
rank; [xf] > n—rank; [f].

When k =1 or k = n — 1, then the inequality becomes an equality. In general, how-
ever, as soon as 2 < k < n— 2, the inequality can be strict.

(iii) Let m > n be integers; then rank; [f] is independent of whether we consider
f € AX(R") or f € AK(R™), in view of the above proposition and Theorem 2.22 (cf.
Remark 2.23(ii)). This is, however, not true for all of the other ranks and coranks.

Proof. We split the proof into five steps.
Step 1. We prove statement (i). The fact that

A} = Range (?J,k—l)

follows from the definition. We use claim (i) of Proposition 2.32 and assertion (iv)
of Proposition 2.33 to get that

dimA; = rank(f ;) =rank(f ) = rank; [f].

Step 2. We show (ii). Using Theorem 2.22, statement (i) of the present proposition
and Remark 2.21, we may assume that rank; [f] = n and thus that

A} =span{e',... e"}.
1) Since A¥(R") = {0} if k > n and f # 0, we must have k < n and thus

k <rank;[f] =n.



2.2 Annihilators, Rank and Corank 55

2) Let us show that n # k+ 1. Suppose, for the sake of contradiction, that n = k+ 1
and we then show the existence of u € A'(R"), u # 0, with

uif=0.
This will be the desired contradiction since
rank([f]=n < Anh,(f,1)={0}.

Indeed, since xf € A!(R"), we have that

0= (xf) A (xf) = [ (=1 D (xf) o f

and, therefore, u = xf is the required 1-form.

3) Finally, we show the last part of (ii). We have to prove that for any n > k,
n # k+ 1, there exists f € A¥(R") with rank; [f] = n. This will be sufficient to
show the assertion. Let s > 1 and / € {0,...,k— 1} be such that

n=sk+I.

We now define a k-form f having the required properties. We consider three cases.

Case 1.1 =0. We let

= Dk+1 A---Nek

-

f=

t=1

Case 2. 1 =1 (and thus s > 2 since n # k+ 1). We let

s—1
f= Ze(tfl)qul /\”./\etk_’_e(sfl)k/\“./\eskfl +e(s71)k+2/\__./\esk+l'
t=1

Case 3.2 <[ <k—1. Welet

S
f= Ze(r—l)kﬂ /\~--/\e’k—|—e<s_l>k+l+l Ao At
=1

In the three cases, we notice that f is a sum of terms having two by two at least two
distinct ¢’. From this observation it follows immediately that if u € A'(R") verifies

uif =0,

then u = 0. This shows that rank; [f] = n and ends the proof of (ii).

Step 3. Let us show (iii) and first prove that the rank of order 1 of f is even. From
Proposition 2.24(ii), we get that there exists a unique integer m, with 2 < 2m < n,
such that

fm#0 and fM1=0
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and there exists A € GL(n) such that

m
A'(f)=w, = ZeZHI Ae?.
i—1

14

Since the rank is invariant by pullback (cf. Proposition 2.33(vi)), we have the result
since we clearly have that

rank [f] = rank; [®,,] = 2m.

The fact that any even value less than or equal to n can be achieved by the rank
of order 1 of a 2-form follows from the above argument. We now prove the state-
ment concerning the determinant. Note first that if 2m < n, the result is trivial, since
both sides of the equation are 0. So let n = 2m. One easily sees by induction that
de/(@y) , ;] = 1. Note also that for any B € R"*" and any g € A% (R™), we have

(B@.1) =B @)= ¥ (8,855}

1<i<j<n
= L ey = X (8.)iB)B; = (53..8),
ihj= ij=

for every 1 < p,g < n. Next, let A be such that
m . .
A*(f) =, = Zebil Nex.
i=1
Therefore choosing B=A"", we get

_ _ 1/2
ldet 7, | = ‘det (B’(a)m)JJB)‘ — |detB]|

1
(n/2)!

= (B (¢ A = B ()" =

fl’l/2 ’ .
Step 4. For the proof of (iv), we refer to [60].

Step 5. We finally prove statement (v). First, note that if g ¢ A}, then the result

is a direct application of statement (iv) since rank; [g] = 1. We thus assume g € A }
Using Proposition 2.24(ii) and Remark 2.25, there exists A € GL(n) such that, writ-
ing 2m = rank; [f],

I AeH and  A*(g) =M.

s

AN(f) =

i=1

Therefore,

m m—1
A*(f/\g) — 282171 /\eZIAe2m _ Z 62171 /\621/\€2m.
i=1 i=1
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Since
m—1
rank lz NP /\ezm] =2(m—1)+1=rank[f] -1,
i=1
we obtain the result using Proposition 2.33(vi). O

2.3 Divisibility

In this section we will follow the presentation of Dacorogna and Kneuss [31] (see
also Bandyopadhyay, Dacorogna and Kneuss [9]).

2.3.1 Definition and First Properties

Definition 2.39. Let | <k <nand f € AF (R™).

(i) Let 0 < I < k. We say that f is [-divisible if there exist a € A! (R") and b €
A*=I(R™) such that
f=aANb.

We say that f is prime (or indecomposable) if it is not [-divisible for any 1 </ <
k—1.

(i) We say that f is fotally divisible (or totally decomposable) if there exist
fi,- fr € AT (R") such that

f=HNAfe

Remark 2.40. (i) In the literature the second definition is standard; it goes back to
Cartan and such a form is, sometimes, also called pure or decomposable.

(ii) Let f € A¥(R") and A € GL(n). Using (2.8), we see that f is [-divisible if
and only if A*(f) is [-divisible and that f is prime if and only if A*(f) is prime.

Remark 2.41. We should point out that a form is not uniquely decomposable into
prime forms. Indeed, consider

f= [el /\ez+e3/\e4] Nt =e' NP AP

and observe that it is a product of one prime 2-form of rank 4 and one (prime) 1-form
and, at the same time, a product of three (prime) 1-forms. However, only the second
one is an optimal decomposition of f, in the sense that

with f; € A% (R") prime, k; + -+ + ks = k, and

rank; [f] = Zslrankl [fi]-
i=1
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An optimal decomposition of the above type does not always exist, as the following
example shows. Let f € A* (R6) given by

f= [el /\ez+e3/\e4] A {el /\ez—i—es/\eﬂ
:el/\ez/\e3/\e4—|—el/\ez/\es/\e6—|—e3/\e4/\es/\e6.

Note that rank; [f] = 6. Let us show that f is not optimally decomposable in the
above sense.

1) Observe that f is not 1-divisible. Indeed, a simple calculation shows that there
exists no a € A!(R®) with a # 0, such that

fAa=0.

Therefore, we have the assertion using Theorem 2.42.
2) By construction, f is not prime. Therefore, two cases can happen.

Case 1. f =aNbwitha € A3(R®) and b € A'(R®) and this is impossible, since
f is not 1-divisible.

Case 2. f =aNb with a,b € A*(R%) and
rank; [ f] = rank; [a] 4+ rank; [b] = 6.

Since rank [a] and rank; [b] are even numbers, then one of them is 4 and the other
one is 2, say rank [b] = 2. Since b € A? with rank; [b] = 2, we deduce (see Propo-
sition 2.43(ii)) that there exist b,by € A'(R®) such that

b=biN\by

and, hence,
f=aNb=aNb; \b,

which is also impossible since f is not 1-divisible.

We now gather some properties about divisibility and total divisibility. The first
result is known as the Cartan lemma (cf., for example, Bryant et al. [18, p. 11]).

Theorem 2.42 (Cartan lemma). Let | <k < n and f € A*(R") with f # 0. Let
1<l<kandgy,...,g €AY (R") be such that

1A Ngi #0.
Then there exists u € A¥~!(R") verifying
f=81ANgihu

if and only if
fAgi=r=fAgi=0.



2.3 Divisibility 59
Proof. For the sake of completeness we provide here a proof of the theorem, al-
though it directly follows from Corollary 2.46 below.

Let us first show the necessary part. Let u € A¥~/(R") be such that
f=ungiN---Ngi;
then, clearly,
fAgr=--=fNg=0.

So we now turn to the sufficient part. In view of Proposition 2.19, proving the
theorem for f is equivalent to proving it for A*(f) for any A € GL(n). We may
therefore assume, using Proposition 2.24(i), that

gi=e, 1<i<l.
Since fAe =0, 1 <i <[, implies that

= . el A A NI A A edk
f= Y Srectjoy g€ Noo- Ne NN N ek,
1< <-<jx<n

we have the result by letting

_ . oI AN ek
T R T Sy
1< <<jxsn

This finishes the proof. O

We now gather some other elementary facts established in Bandyopadhyay,
Dacorogna and Kneuss [9].

Proposition 2.43. Let 1 <k <nand f € A¥(R") with f # 0.
(i) Let a € A" (R"), a # 0, be such that

fAa=0.

Then
acA) = {u eA'(R"): Ihe A (RY) with iuf:u}.

(ii) The form f is totally divisible, meaning that there exist fi,..., fy € A' (R")
such that

f=hNNfe
if and only if
rank;[f] =k

if and only if
_ 1
fAb=0, foreverybe Ag
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if and only if
dim (Anh, (f,1)) = k.
(iii) If k is odd and if rank [f] = k+ 2, then f is 1-divisible.

Remark 2.44. (i) Statement (iii) in the proposition is, in general, false when & is
even. Indeed, the form f € A*(R") given by

f:el/\62/\63/\e4+el/\62/\65/\66+e3/\e4/\e5/\86

is not 1-divisible (although it is 2-divisible) while rank;[f] = k+2 = 6 (cf.
Remark 2.41).

(ii) When k = 3, f # 0 and rank; [f] is even, then f is prime. This easily follows
from the fact that if f is 1-divisible, there exists a € A (R") and b € A (R") so that
f = aAb and, therefore, rank; [f] is odd, using Proposition 2.37(v).

(iii) If f is prime, then
Anh,(f,1) ={0}.
Conversely if k =2 or k =3 and Anh,(f,1) = {0}, then f is prime.
(iv) We always have, appealing to Theorem 2.42,

corank; [f] <n < Anha(f,1) # {0} < fis I-divisible.

Moreover, if [ is odd, then, noticing that 4 A h = 0 for every h € A'(R"), we imme-
diately deduce the following implication:

f is I-divisible = corank; [f] < (7) (2.16)

The converse of (2.16) is not verified in general. Indeed, let
f=e' " NS N+ N Nel Nt € AY(RD).
It is easily seen that f is not 1-divisible (and thus not 3-divisible). Noticing that
f/\e1 NP N =0,

we get

coranks[f] =8 < (2),

which shows the assertion. Finally, we prove that (2.16) is, in general, false if / is
even. Indeed, let

f=e A+ net +e° ne® e A?(RO).

We immediately obtain that f is 2-divisible (by itself). In addition, a simple calcu-
lation shows that corank; [f] = (g), which proves the assertion.
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Proof. Since Remark 2.21, Proposition 2.33(vi) and Remark 2.40(ii) hold, proving
the proposition for f is equivalent to proving the claims for A*(f) for any A €
GL(n). This fact will be constantly used throughout the proof.

Step 1. Let us show (i). We may, as already said, assume that a = e!. Since
fAe! =0, we find that

f= Z f]jz...jkel/\ejz/\“~/\€]k.
2<jp << jx<n

Letting

U= Z f1j2~»~jke]2 ANk,
2< o< <jp<n

we find that

usf =—(u;upe

and, thus, e! € A} since u # 0. The proof of (i) is therefore complete.
Step 2. We next show (ii) and we divide the proof into three parts.
Step 2.1. We first show that f is totally divisible if and only if rank; [f] = k.

(i) Assume that f is totally divisible. Using Proposition 2.24(i), we can suppose
that f = e! A--- Aek. This directly implies that

A} = span{e',..., ek}
and, therefore, rank; [f] = k, using Proposition 2.37(i).
(ii) Let f be such that rank; [f] = k. From Proposition 2.37(i), we have
rank; [f] = dimA}.
Appealing to Theorem 2.22, we can assume that f € A¥ (Rk) and, thus,
f=Ae'A-ner
with A # 0, which means that f is totally divisible.

Step 2.2. We now prove that rank; [f] = k is equivalent to

_ 1
fAb=0 foreverybe A;.

(i) Assume that rank; [f] = k. With the same argument as the one of Step 2.1(ii),
we can assume that

f=Ae'A-ner
with A # 0. This implies that

A} =span{e',... e}
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Thus, we have the result since
fAb=0 foreverybe/\fl.
(i1) We now prove the converse and let f verify
SAb=0 foreverybeAf.

Letting p = rank; [f], we can assume, using Theorem 2.22 and Proposition 2.37(i),
that
A} =spanfe',... e}

To conclude, it is enough to show that p = k. Suppose, for the sake of contradiction,
that p > k and let us show that f = 0, which will be the desired contradiction. Indeed,
forevery 1 < jj < --- < ji < p there exists then 1 < i < p such that

P gk
Combining this with f A e’ = 0, we obtain that
Jiri =0

and, thus, f = 0, which is the desired contradiction.

Step 2.3. We finally establish that f is totally divisible if and only if
dim (Anh, (f,1)) = k.

(i) Assume that f is totally divisible; then there exist fi,..., fy € A'(R") such
that

f=hnN NS
This clearly shows the assertion, namely
Anhn(f,1) =span{fi,...,fx}-
(ii) Assume now that dim (Anhy (f, 1)) = k. Therefore, there exist
fiy e €ANRY)
such that
Anh, (f,1) =span{fi,..., fi}-

It then follows from the Cartan lemma (cf. Theorem 2.42) that we can find A # 0
such that

f=AANNfi

and, thus, f is totally divisible.
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Step 3. We finally show (iii). Using once more Theorem 2.22, we can assume that
n = k+2 and, thus, by hypothesis, 7 is odd. Since * f € A2(R"), we have, according
to Proposition 2.37(iii), that

rank; [+ f] is even.

Combining this fact with the definition of the rank of order 1 and the fact that n is
odd, we deduce that there exists a € A'(R"), a # 0, such that

as(xf)=0.
Since
ais(xf)=0 & anf=0,

we have that f is 1-divisible (by a), using Theorem 2.42 with / = 1. The proof is
therefore complete. O

2.3.2 Main Result

Given f € A¥(R") and g € A' (R") with 0 <[ < k, we want to find u € AF/(R")
such that
f=ghu (2.17)

We have already studied the previous equation when g # 0 is a product of 1-forms,
namely

g=g1N - ANg#0,

where g1,...,g; € A' (R"). Indeed, in Theorem 2.42 we proved that a necessary
and sufficient condition for solving (2.17) is

fAgi=-=fAgi=0.

We want here to extend this result to general /-forms. All of the following results
have been established by Dacorogna and Kneuss [31]. Our main theorem is the
following. We recall that we use Notation 2.30.

Theorem 2.45 (Dacorogna—Kneuss theorem). Let 0 < [ < k < n be integers. Let
g € AL(R") and f € AX(R"). The following assertions are then equivalent:

(i) There exists u € AX"!(R") verifying
f=gNu.
(ii) For every h € A"~(R"), the following implication holds:

hAg=0] = [hAf=0]
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or, equivalently ,
Anh,(g,n—k) C Anh,(f,n—k).

(iii) For every 0 < s <n—k and h € A*(R"), the following implication is valid:
[hhng=0] = [hAf=0]
or, equivalently,

Anhn(g,s) C Anhp(f,s) forevery0<s<n-—k.

(iv) Let r =rank(g, ;). Looking at f and the columns of g, y_; € R0 < () g
1-forms in R(Z), then

)

@r-0)m 0 A AN@ag—)in o NF=0
1 k—1 1 k—1

for every

1<ilV <ol <1<l <o <il? <,

We will also write (cf. Corollary 2.48) the dual version of (2.17), where the ex-
terior product is replaced by the interior product, namely we solve

uig=f.
This last equation has been studied in Bandyopadhyay, Dacorogna and Kneuss [9]
in the case where g € A%(R") (see Proposition 2.50 below).

We now give some corollaries. The proof of the theorem is put off to Sec-
tion 2.3.4.

Corollary 2.46. Theorem 2.45 indeed generalizes the Cartan lemma (cf. Theo-
rem 2.42).

Proof. Let
g=81NNg#0

as in the Cartan lemma. We first claim that & € A*(R"), s > 1, satisfies g Ah =0 if
and only if % is of the form

1
h= Z g Ah j
j=1
for some h; € A*~1(R"). The sufficient part being obvious, we only prove the nec-
essary part. With no loss of generality, we can assume that g; = e; and, thus,

etN---NegNh=0.

Writing h =Y, .. hi..i;e"! A+ Ae’s, the previous equation immediately implies
that
hil"'ix =0 if {l'l,...,l.x}ﬂ{17...,l} =0,
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which directly implies the claim, namely
l
h= Z ejAh; forsomeh; € A" (R").
J=1

Thus, the Cartan lemma follows once noticed that for f € A¥(R"), we have
fAgi=0 & {fAgiAhj=0 foreveryh;c A" * '}
This concludes the proof. O

Corollary 2.47. A k-form f in R" is characterized, up to a multiplicative constant,
by Anh, (f,n—k).

Proof. We give two proofs of the corollary: the first one as a consequence of the
theorem and the second one in a constructive way.

Proof 1. Clearly, f and A f, with A # 0, verify
Anh,(f,n—k) = Anhp(Af,n—k).
So let us show the converse and let f,g € A¥(R") with
Anh,(f,n—k) = Anh,(g,n—k).

Theorem 2.45(ii) implies then the existence of A € A°(R") with g = A f. Noting
that A # 0 (unless f = g = 0), we have the claim.

Proof 2. The sufficient part is as in the first proof. We divide the proof of the
necessary part into two steps and assume that

Anh,(f,n—k) = Anhx(g,n—k)

and let us show that g = A f.
Step 1. We show that if f;,..;, = 0 for some 1 <ij <--- <ix <n, then

&iip = 0.
Note that f;,..;, = 0 is equivalent, according to (2.4), to
(e A+ Ae'k) € Anh(f,n—k).
Hence, by hypothesis,
* (eil Ao /\eik) € Anh,(g,n—k),

which is equivalent to g;,...;, = 0, using (2.4).

Step 2. If f =0, then g = 0 according to Step 1 and the corollary is thus true for
any A € R. We therefore assume that f # 0 and, thus, fj,...;, 7 0 for a certain index
1<ji<--<jr<n.Letl <ij <--- <ix <n. We note that, using (2.4),
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h= fi,i [* (ej' /\~--/\ej’<)] — firvi [* (ei‘ A~~-Aeik)] € Anh,(f,n—k).

The hypothesis implies that
gANh=0,

which is equivalent, in view of (2.4), to

Jivwix 8jv--jx = Sir-ix 8ir-ig = 0

and, thus,
81k
8iy iy - Jir-ix

Jrdk

Setting
1 81 Jk7

fjl“'Jk

we have the assertion. 0

By duality, we obtain from Theorem 2.45 the corresponding result for interior
equations.

Corollary 2.48. Let 0 < [ < k < n be integers. Let g € AX(R") and f € A'(R"). The
following statements are then equivalent.

(i) There exists u € A*¥'(R") satisfying
uig=f.
(ii) For every h € A'(R"),
[hog=0] = [haf=0]
or, equivalently ,
Anh,(g,l) C Anh_(f,1).
(iii) For every 0 < s <[ and every h € A*(R"),
[hog=0] = [haf=0]
or, equivalently ,

Anh_(g,s) C Anh_(f,s) forevery0<s<I.

(iv) Let r = rank(g ,x_;). Seeing f and the columns of g, ;_; as 1-forms in R(';),
then

@x-1)m o N ANEup-) o ANF=0
1 k—1 1 k—1
for every

1<iV<oici <1<l <o <il?, <.
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Proof. The equivalences (i)—(iii) follow from Theorem 2.45 and from the following
observations:

f=usg=(=1)"xA(xg)) & +f = (=)' (un(xg)),
hag=0 < hA(xg) =0,
haf=0 < hA(xf)=0.

The equivalence between (i) and (iv) is just Lemma 2.54 applied to the matrix g, ;_;,
since

usig=f < g u=1r.

This concludes the proof of the corollary. O

2.3.3 Some More Results

The main theorem (Theorem 2.45) immediately gives an equivalent condition for a
k-form to be prime.

Corollary 2.49. Let f € AK(R"); then the two following statements are equivalent:
(i) The k-form f is prime.

(ii) For any 1 <1 <k—1 and any g € A'(R"), there exists h € Anh,(g,n — k)
such that

FAR#O.

When k = 2, we can express Corollary 2.48 in a different way. The following
proposition is taken from Bandyopadhyay, Dacorogna and Kneuss [9].

Proposition 2.50. Let g € A%(R") with rank, [g] = 2m < n and f € A'(R"). There
exists u € A'(R") such that

f=uag
if and only if
fAg"=0.
Remark 2.51. (i) If n = 2m and since f A g" € A" (R"), we then always have
fAg"=0.
Therefore, there always exists u € A! (R") such that

f:MJg.
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(ii) More generally, if k is even, g € A% (R") with g”+! = 0 (with mk < n) and
there exists u € A' (R") such that f = u_ g, then necessarily (cf. (2.5))

fAg"=0.
The converse is, however, not true in general. Indeed, let k =4, m = 2 and
g=e' NP NS Nt NP Nel Ned e AY(RD).

Note that rank ;[g] = 4-2 =8, f Ag? =0 for every f € A3(R3), but that there does
not exist u € A'(R®) such that

e'neP N =uig.

This proves the claim.
We now prove the proposition.

Proof. Step 1. We start with a preliminary simplification. Using (2.9) and Proposi-
tion 2.24(ii), we can assume that g is of the form

m
g=0, = Zeb*l /\621.
i=1

14

Note that
g =mle' Ao NP
Writing f = Y., fie', we immediately deduce that
fAng"=0 < [fi=0 forevery2m+1<i<n]. (2.18)

Step 2. We now prove the sufficient part and assume that f A g” = 0. Therefore,
using (2.18), we have that

2m

u= Zuiei € AYRM),
i=1

where
wi= (=)™ fi Cpyin
satisfies
f=uag.

Step 3. Let us finally show the necessary part. Assume that there exists u such
that f = u_g. The special structure of g immediately implies that f; = O for every
2m+1 <i < n and thus the result according to (2.18). O



2.3 Divisibility 69
We conclude this subsection with the case k =+ 1 and a special g.
Proposition 2.52. Let 1 < p<n—1and?2 <[ <n—1 be integers verifying
p+Il+1,pl<n.
Let f € AT"Y(R") and g1,...,8, € AY(R") with
1A Agp #0,

g=lgi N ANgll+ g A Agul 4+ 81yt A A gl -
The following two statements are then equivalent:
(i) There exists u € A (R") verifying

f=gNu.

(ii) For every ij € {(j—1)I+1,...,jl} and j,s,t € {1,...,p} with s <t, the
following two sets of identities hold

f/\gil/\"'/\gip:()v

FAG N NG A NG N Ngi, NGy =0,

where l
1
Gy = [g(s—1)1+1 A Ngg| +(=1) - [g(171>1+1 ANl

Remark 2.53. The case p = 1 in the above proposition is the Cartan lemma (cf. The-
orem 2.42) when k = [ + 1, since the last set of identities is then empty. If p =2, the
last set of identities reads as

fAgiNg =0, 1<i<I<j<2l,

S lgr A Agl+ (=1 g A A ga]| =0,
Proof. Step 1. We show that (i) = (ii). For every 1 < j < p, we set
Li={(j—-1DI+1,...,jI}.
Since we trivially have, for every i; € I; and j,s,t € {1,...,p} with s <1,
gN&i N Ngi, =0,

gNGiy N NG N Ngi, N+ Ngi, NGy =0,
and since
f=ghu,
we immediately get the result.
Step 2. We now prove that (ii) = (i).
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Step 2.1. Since
1A Ngp #0,

we can assume (using Proposition 2.24(i)), without loss of generality, that g; = ¢',
1 <i < pl. Under this hypothesis, the existence of a u satisfying the equation

f=8Nu

will be implied by the following two sets of identities. The first one is

Firojry =0 (2.19)
for every 1 < j; < --- < jix1 < n such that I, ¢ {ji,...,ji+1} for every m €
{1,...,p}. Since [ > 2, the second one is

Jiov = fis—Dir1styv = Se— D1y = frv (2.20)

forevery 1 <s<r<pandve({l,.. n}\(UL). The result will follow if we
can show that (2.19) is implied by the first set of identities in statement (ii) of the
present proposition (cf. Step 2.2) and (2.20) is implied by the second set of identities
in statement (ii) of the proposition (cf. Step 2.3). The result then follows by setting

n
U= Z uye",
v=l1

where

Jrev iftve¢{l,...1I}
Uy = .
f(/+1)...(21)v ifve {1, e ,l}.

Step 2.2. By hypothesis, we have for every is € Iy and s € {1,...,p},
FAETA---Nelr =0.
We therefore deduce, for every 1 < j; < --- < ji11 < n, that

(fAETA---NeP) =0. (2.21)

JieJisainip

Let 1 <ji<--<jipp <nwith L, & {ji,...,ji+1} forevery m € {1,...,p}. We
then choose, form € {1,...,p},

im € Im\{j17~ . »jl+1}~
Applying (2.21) with these coefficients, we immediately have (2.19).

Step 2.3. We know that for every (iy,...,i,) €I} X --- x I, and 5,1 € {1,...,p}
with s < ¢, the following set of identities hold:

FAETA-Aels A Net N Nelr NEST =0, (2.22)
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where

ESl _ els 4 (—1)l+leb.
We have, due to Step 2.2,

P n
=YY fiveine. (2.23)
j=lv=1

Letl <s<t<pandve{l,....n}\(LUL). Note that if i, € I,, 1 <r < p, then
we have

einey NeA---Nels N Nelt A Net Nel =0 if j £,

INE NE A Nels A-e Nett Ao Nelr Neh =0 if j £ s.
Since [ > 2, we can chose i, for r # s, such that i, € I,\{v} to obtain
N N A Nels Ao Nett A Al A
= (—=D)el NeY Nelt Ao Neis Ave Ael Ao Aet? Aet £ 0.
Setting (2.23) into (2.22) and using the previous three equations, we get
flsv :fl,v~

This concludes the proof of the theorem. O

2.3.4 Proof of the Main Theorem

In the proof of Corollary 2.48 we have used the following lemma. It will also be
used in the proof of Theorem 2.45.

Lemma 2.54. Let m,n,r > 1 be integers, A € R"™"™ a matrix of rank r and y € R".
Then there exists x € R™ verifying

Ax=y
if and only if
Ay N NA, Ny=0 forevery 1<ij<---<i,<m,

where y is identified with a 1-form in R" and Ay, denotes the kth column of A and is
identified to a 1-form in R".

Proof. Step 1. We first prove the necessary part. Assume that there exists x € R™
verifying Ax = y. Then, writing, x = (x1,...,X,), we have
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m
y= ZA[X].
=1

Since the rank of A is r, we get

m
A N NA Ny = Z)C[ (A,‘l A= NA;, /\A[) =0,
I=1

which is our claim.

Step 2. We then turn to the proof of the sufficient part. Since the rank of A is r,
we can find 1 <i; < --- < i, < m such that

Aj N NA;, #0.
Since we also have
A N NAL Ny =0,

it follows that y is a linear combination of the A;, . This means that there exist w; € R,
1 <1 <r,so that

.
y= Z wiA;, .
=1

Setting x = (x1,...,X;) Where

wi if s = i[
Xs = .
0  otherwise,

it follows that
Ax =y.

This concludes the proof of the lemma. 0O

We now turn to the proof of Theorem 2.45.
Proof. Step 1. The implications (i) = (iii) = (ii) are obvious. The equivalence (i)
< (iv) is just a rewriting of Lemma 2.54, since
ghu=f < guu=/.
Step 2. The only nontrivial implication is (ii) = (iv). Let

1<ilV <ol <1<l <<l <,



2.3 Divisibility 73
recalling that r = rank(g, ,_;) and let us prove that

weed

(g/\,k—l)i(ll) o A"'A@A,k—z)iy)_,_i& Nf=0, (2.24)

i

where f and (g 4_;) () jm» 1 <m < r,are seen as 1-forms in R(). Equation (2.24)
I

is equivalent to

1)) (1) (1) (1) (1)
— J Jx — J J,
(g/\,kfl)A(ll) A('}) (gA,k—l).(lr) .(f) ()
b o
det =0
(1) (D) (rH1) () (1) (D)
— J J — J J,
(gmk—l).(ln (1) Lo (g/\,k—l).(lr) " 1) Yk
e e

for every 1 < jgl) <o < j,(CI) <n,..., 1< jgrﬂ) <o < j,(:H) < n. Expanding the

determinant with respect to the last column and writing, for every 1 <m <r+1,

(1) (1)

_ g1 _ J1 7
(3/\Ak—l)l.(11)‘_‘.(]1() e (g/\,k—l)l,(lr)‘_‘.(f)
1 1l
_ jgmfl)mjl(cmfl) _ .gmfl)mj]({mfl)
(8/\,k—l).(1) (1) (g/\,k—l).(r) ()
e ol
e = det jomen) _jome) jomen)_jomen) |2
— 1 3 —= 1 3
(g/\,kfl)l.(l)mi(l) (g/\,kfl)i(r)m.(r)
1y 1Ly
_ j§r+1)"'jl(cr+1> _ j(1r+1)"'j1<<r+l)
(gA,kfl)i( ) (g/\,kfl)i(r)mi(r)
1y 1

we find that (2.24) is equivalent to

(m) . +(m)

r+1 .
Y (1) e, (£ <o,
m=1

The above equation is equivalent (seeing f as a k-form and appealing to (2.4)) to

r+l +1 .(m) .(m)

fA Z(fl)m cm |x(e/t A Nelk )| | =0.
m=1

To prove our claim, it is sufficient to prove that

v (m) (m)
h: Z(_l)m+lcm |:*(e]1 /\---/\ejk ):| EAn*k(Rn)

m=1
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satisfies
gNh=0,
which turns out to be equivalent to
gNET AN NI AR =0 (2.25)
forevery 1 <1} <--- <fx_; < n. Since the matrix g, ;_; has rank r, we get

@ns=t) . jn A NBrk-Dio 0 N Erg—dn-n =0,

which implies that

PO POy PP

— — — o
(g/\,k—l) .(11) .(f) T (g/\,k—l) .(lr) .(f) (g/\,k—l)tll-»-zk,f
oy oy
det : : : =0.
- j§r+l)mj1((r+l) . ji’“’mj,(f“) . jﬁ””mj,(f“)
(8/\,k—1).(1) (1) (g/\,k—l)(r) () (g/\,k—l)tl---tk,l
ol ey

Expanding the above determinant with respect to the last column, we obtain
r+1 (m)  .(m)
1. (= B
Y D" em(@np)i)n S =0
m=1

Let us show that this last equation is equivalent to (2.25), namely
gNETA AT ANRL=0.
Noting that from Notation 2.30 and (2.4), we have, forevery 1 <m <r+1,

j(m) "'j]((m)

@rr-itny =g A- Aetkfl)jﬁ'"x..j,im)

(m) {(m)
=*(gNeV A NN (k(e!t A Nk ).

‘We therefore obtain that

r+1 (m) .(m)
(@A A NI AR) = Y (1) (@ gt =0
m=1

This is exactly our claim (2.25). O



Chapter 3
Differential Forms

3.1 Notations

In this section we recall the definitions and basic properties of differential forms
on R". Our presentation is very brief and for a detailed introduction on differential
forms, we refer, for instance, to Abraham, Marsden and Ratiu [1], do Carmo [37],
Lee [68], or Spivak [91]. From now on, we will denote the dual vectors ei, 1<i<n,
in A'(R") by dx' and, hence, a basis of AK(R") is given by the dx’l A --- A dx/.
Throughout this section 2 will stand for an open subset of R”".

Notation 3.1. Ler 0 < k < n. A differential k-form f : Q — A* will be written as

f= Z fil...ikdxil /\---/\d)Cik7
1<ip<-<ix<n
where fi ..i, : & = R, for every 1 < iy < --- < iy < n. When fj,..; € L\(Q),
for every 1 <y < --- < iy < n, we will write f € U’(Q;Ak) and similarly for
wlp (.Q;Ak) , ChY (.Q;Ak), or Ch* (ﬁ;Ak). The norm is defined componentwise;
for instance,

Hf”iZ = Z Hﬁ]lk”iZ

1<ij<---<ix<n

The differential forms obey pointwise the laws of the exterior algebra. For in-
stance, the exterior product is defined pointwise as

(fAg)(x) = f(x) Ag(x).

The scalar product, the Hodge duality, the interior product, rank and corank of dif-
ferential forms are also defined pointwise in an analogous way.

We can now introduce the two important differential operators on differential
forms.

Definition 3.2 (Exterior and interior derivative). Let 2 C R” be open and f €
C'(Q;A%),

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 75
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9 3,
© Springer Science+Business Media, LLC 2012
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f= Y fieqdx Ao ndx
1§i1<-~-<ik§n

(i) The exterior derivative of f, denoted d f, belongs to C°(2;A*™1) and is de-
fined by

df= ) Z af” = g A A A

1<i) < <ix<n m=1
Ifk=n,thendf =0.

(ii) The interior derivative or codifferential of f denoted & f belongs to C° (Q;
Ak_l) and is defined by

§f = (1" x(d(xf)).

We will use the next formulas on several occasions.

Proposition 3.3 (Formulas for d and §). Let f € C' (Q;A%),

/= Y fieidX A Adx

1<i; <---<ik§n

The following formulas hold true:
() Ifk <n,

df = k+1 V*laﬁ1"'iy*li7+l"'ik+1 g et
f= X (LN A pdi

1<ij < <igg <n \ y=1 dxiy
(ii) If k > 0,
4 y—1 aﬁl“'iyflﬁr“ik—l i i
sf= Y Yty SR ) g i,
1<ij<-<ix_1<n \ y=1 iy 1< j<iy Xj
where if Y =1, it is understood fhalﬁl---iy,ljiy-~-ik,l = fji\ir_,» and, similarly, when

Y=k, itis understood that f;, ey iy
the formula can be written as

iy = fiyir_j - If k=1, by abuse of notations,

. L df;
Sf=divf=Y) =,
j=2:laxj

We now define the notions of closed, coclosed, exact and coexact forms as well
as of harmonic fields.
Definition 3.4. Let 2 C R” be open and f be a k-form.

(i) If f € C'(2; A%) satisfies df = 0 in Q (respectively §f = 0 in Q), then f is
said to be closed (respectively coclosed) in 2.

(ii) If there exists g € C' (Q2; A1) such that dg = f in Q, then f is said to be
exact in Q. Similarly, if there exists g € C! (.Q;Ak“) such that g = f in Q, then
f is said to be coexact in .
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(iii) A differential form f € C'(2;AF) that satisfies both df =0 and §f = 0 in
Q is called a harmonic field.

We next gather some well-known properties of the operators d and §.

Theorem 3.5. Let f be a k-form and g be a l-form, then
d(fng)=df Ng+(~1)"f ndg,

8(fag)=(-1)"df g—f.ég.

Moreover, every exact form is closed and every coexact form is coclosed; that is,
ddf =0 and 66f=0.

Definition 3.6 (Laplacian). Let f € C?(2;AX). The Laplacian A f € C°(2;A*) is
defined by the Laplacian acting componentwise; that is,

A( Y fieqdx? A~~~Adx"k) = Y AfidxX A ndxt,
1<i)<-<ix<n 1<ip<-<ixg<n
where 5
o Jir-iy

Afiyoiy =
Ll lg‘i 8x12

Theorem 3.7. Let f € C*(2;AF). Then
déf+8df=Af.

Definition 3.8 (Pullback of a differential form). Let U C R™ and V C R" be open
and @ = (¢',...,¢") € CY(U;V). Let

f= Z Siyig dx'' A Ndxk e CO(V;Ak (R")). (3.1)

1§i1<~~~<ik§n

Then the pullback of f by ¢, denoted @* (f), belongs to C°(U;A* (R™)) and is
defined by

o' ()= Y (fi-i0@)do" A--Nde* =Y (fro@)de',  (32)

1<ii<-<ix<n 1

dx'.

i m a(ps
d(P - 1:21 8)61

Remark 3.9. (i) We see that this is a generalization of Definition 2.17. Indeed, if
¢ (x) = Ax, where A € R™™ is a matrix, and f is constant, then

¢*(f)=A"(f),

where the right-hand side has to be understood in the sense of Definition 2.17.
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(i1) We can also define, in an equivalent way,
o () Xi,....Xk) =foo(Vo-Xi,...,V@ - X)

for every X; € R™ for 1 < j < k. In the above notation, V¢ - X; € R" should be
understood as the matrix V¢ multiplied by the vector X;.

The following theorem is easily proved (cf. Definition 2.17 and Proposition 2.19).

Theorem 3.10 (Properties of pullback). Let U C R™, V CR" and W C R® be open,
@ €C'(U;V) and y € C'(W;U). Let f,g € C°(ViA¥) and h € CO(V;A'); then

P (f+8) =9 (f)+¢"(g),
O (fNh) =" ()Ne" (h),
(poy) (f)=v" (9" (f))-
Moreover, if f € C' (V;AX) and ¢ € C*(U;V), then
¢ (df) =d(¢" (f))-
Ifm=nand ¢ € Diff' (U;V), then
O (foh) = @* (f) 59" (),
where .
o0 = (Voo ™)') (oo

for every fixed x € U.
The next proposition is straightforward.

Proposition 3.11. Let 1 <i < n, ¢ € Diff' (U;V) and a € C°(V;R") be such that

g;’j =ao@ inU.

Then _
¢*(a)=dx' inU,

where a has been identified with a 1-form.

Proof. We have to show that for every fixed x € U,

((W‘P(x))l)’)* la(@ (1)) = dx’
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or, equivalently, '
a(p(x)= (Vo))" (dx).

Since the last equation is equivalent to

atol) = 520,

we have the result. O

3.2 Tangential and Normal Components

In this section 2 C R" will be a bounded open C I set (see Definition 16.4) and
v = v(x) will be the exterior unit normal on dQ at x. Let f be an element of
o (E;Ak). We will introduce the notion of tangential and normal components of
f on dQ and establish the relationship between the other definitions occurring in
the literature. The definition used, for instance, by Dacorogna [27], Kress [63], or
Taylor [96] is the one we will adopt in this book. For this definition, we consider v
as a 1-form
Vv=vidx' 4+ vdx" € CO(QQ;AI).

In this section we will skip back and forth between identifying v as a 1-form and
v =(vi,...,V,) € R" as a vector. In that sense, we will frequently use Remark 2.15,
which identifies a 1 f by i, (f).

Definition 3.12 (Tangential and normal component). Let f be a k-form. The tan-
gential component of f on dQ is the (k+ 1)-form

VAL.
The normal component of f on d€ is the (k— 1)-form
v.if.

Another definition (see, for instance, Schwarz [89]) for the tangential and normal
components is the following.

Definition 3.13. Let f be a k-form.
(i) Let X € R". Then, for every x € d£2, the vector X can be decomposed as

x=x"+xl,
where X is the component of X tangential to d<2 at x; that is,

xl=x—v(v;x). (3.3)
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(ii) Let X1, ..., X € R". We denote by 7 f the k-form on dQ defined by

tf(X, %) = Fx) . x)).

(iii) We let nf be the k-form defined by

nf=f—tf.

It follows from (3.3) that ¢ f and nf are in fact differential forms, as claimed in
this definition.

For the third definition, which is the most classical and is used for instance by
Duff and Spencer [38], Iwaniec and Martin [57], or Morrey [77], we first need to
introduce the notion of an admissible boundary coordinate system for an open set €2.

Notation 3.14. Throughout the present section, for y € R" we write
y=0yn) ER"IXR, where y =(y1,...,yn-1).

Definition 3.15 (Admissible boundary coordinate system). Let U, V, Q C R" be
open sets. We say that
o:U—=V

is an admissible boundary coordinate system for Q if ¢ € Diff! (U;V),
22NV ={e(y,0): (/,0) U},

and for every 1 <i <nand every (y/,0) € U,

¢, , 9o

—(y",0); =—(',0) ) = i .
Remark 3.16. It follows from the definition that

P
yn

(v/,0) = £v(p(y',0)) forevery (y,0) €U,

since the %(y’,O)7 1 <i<n-1, form a basis of the tangent space of dQ and
Vi

99
IYn

(y/,0) is a unit vector.

We now prove, following Morrey [77], that every a € d€ is in the range of an
admissible boundary coordinate system.

Proposition 3.17. Let r > 1 be an integer, 0 < a < 1, Q C R" be an open C"* set
and let a € dQ2. Then there exist an open set U C R", a neighborhood V C R" of a
and an admissible boundary coordinate system ¢ € Diff"* (U;V).

Proof. We will denote

H={xeR":x,=0} CR"
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and B C R” is the open unit ball centered at 0. By definition of a C"* set (see
Definition 16.5) there exists a neighborhood V of a and w € Diff"* (B; V) such that
y(0) = a and

y(BNH)=VNJQ.

For 1 <i,j < n, define g;; € C"""%(B) by
_ /oy, . dy
() = ( SEeH 5.

For x € B, let g(x) be the associated n x n matrix. Since det Vy/(x) # 0, the matrix
g(x) is symmetric and positive definite for every x € B, thus so is g !(x) and in
particular (g~ !),,,(x) > 0 for all x € B. Define d € C"~ "% (BN H;R") by

d(x’) = (O,...,071/ (g—l)m,(x’,O))
and let f € C"~ 1% (BN H;R") be given by
f(x/) :g_l(x’,O)d(x/).
Note that, by construction,
fo() =1/ (gD (x',0).

We next extend f to all of R"~! (cf. Theorem 16.11) and we define ¢ = (¢',...,¢")
through
nO)fix' —xy)dy', 1<i<n-—1,

0'(x) = x; +x”/

Rn—1

0" =0 [ O =5

where 1 € C3(R""!) verifies [gpa-1 1 = 1. As in Lemma 8.10, we have that ¢ €
C"% (R") and on H the following equations hold:

8¢"7 oy if1<i<n-—1 (3.4)

ox; | fi ifl=n, '
whenever 1 <i<n-—1,

29" .

aiil: 0 f, and ¢ =id. (3.5)

In particular, detV¢(0) # 0. Therefore, there exists a neighborhood U of 0 small
enough so that ¢(U) C B and ¢ € Diff"* (U;¢(U)). We now claim that ¢ : U —

9(U). given by
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has all the desired properties of an admissible boundary coordinate system. It only
remains to show the last property, namely that

<8¢,8¢

—;5— )=9 UNH.
dx; 8xn> O

Suppose first that 1 < < n— 1. Using (3.4), (3.5) and the definition of f, we get,
onUNH,

aiq)aq) - n ”a(bia;q)j_n—l n a(pz%
<8xl’8xn>_<z g”&xl ox, _;j;g”ax, ox,

i,j=1 1

n
=Y qfi=d=0.
=1

Similarly,

20 Ip\ _ ¢
<8;P8;P> = Y sufify={figf) = (fsd) =1,

i,j=1

which concludes the proof of the lemma. O

We are now in a position to define the third notion of tangential and normal
components.

Definition 3.18. Let ¢ € Diff! (U; V) be an admissible boundary coordinate system
and write, for a k-form f,

(p*(f): Z gil-"ikdyil/\'”/\dyik'

1<ij<---<ix<n
We then say that f has vanishing tangential component at x = @(y',0) if
iy, (v/,0) =0 forevery I <ij < <ij_j <ix<n

and write, in that case, ¢’ f(x) = 0. We say that f has vanishing normal component
atx = @(y,0) if

iy (v/,0) =0 forevery 1 <ij < <ip_j <ix=n
and write, in that case, ' f(x) = 0.

Remark 3.19. (i) The previous definition is independent of the choice of the admis-
sible boundary coordinate system as a direct consequence of Corollary 3.21.

(ii) Decompose ¢@* (f) as ¢* (f) = G, + G, where

Gan= Y, Giidy" A Adyh,

1<ip<--<ip<n
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G = Z gi1~~~ik,|ndyil /\---/\dyi"*l /\dyn.

1<i|<---<ip=n

Note that

Gen=dy' 2(dy"N@*(f)) and G, =dy"A(dy" 29 (f)).
Moreover, for x = ¢ (y',0),

1f(x)=0 & G (,0) = (dy" 2 (dY" A @™ (f))) (/,0) =0
and, similarly,

W f(x) =0 Gy (y,0) = (dy" A (dy" 29"(f))) (',0) =0.

Proposition 3.20. The following assertions are verified.:
(i) The following formulas for t f and nf hold:

tf=vi(vASf) and nf=vA(vif).
(ii) Let @ be an admissible boundary coordinate system. Then
" (Vva(VAS)) =dy" 2 (dy" N o*(f)),
¢ (VA(VLS)) =dy' A(dy" 597 (f))
Proof. Step 1. We prove (i). We first claim that
vitf=0 and vAnf=0. (3.6)

Step 1.1. We establish the first part of (3.6). Let Xi,...,X;—; € R". Using Re-
mark 2.15 and the fact that v = 0, we get

Vatf(Xu, X)) =tf (v, X1, X)) = £0,x),.x) ) =0,

which proves the assertion.

Step 1.2. We prove the second part of (3.6). Recalling that f =¢f +nf, we there-
fore have to prove that
VAf=VALf.

Let {Xj,...,X,} be a basis of R” such that
Xi=v and (v;X;)=0 forevery2<;<n. 3.7
In order to have the claim, it is enough to show that forevery 1 <ij <--- <iry; <n,

(v/\f)(X,-l,...,X ):(VAtf)(Xil7"'7Xik+l)'

ik+1

We split the discussion into two cases.
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Case 1:i; > 2. Using Definition 2.2 and (3.7), we get

k+1 ) .
(V/\f)( s+ Xl'/\ur]):' ](_l)lJrl<V;Xi_,'>f(Xi17"')Xij7"'aXik+1):O
J=
and, similarly,
k+1 - /\
(VALH) Koo Xig) = Y (D)X 0 f Xy X X ) = 0.

Il
R

J

Case 2: i; = 1. Using again Definition 2.2 and (3.7), which, in particular, implies
that
X,.Il =X, forevery2<j<n,

we get
k41 - .
(V/\f)( i1y - Xik+1): (71)j+ <V;Xij>f(Xi|a--'vxij7'~-aXik+1)

j=1

= (Xizv' Xlk+]) f(Xl!7 Xl‘]‘(+1) = tf(Xi27”° ’Xik+l)
k+1 - /\

= ( 1)j+ <V;Xi > f( i1s- 117 Xik+1)
j=1
VA L)X URE Xik+1)~

Step 1.3 (conclusion). Using Proposition 2.16, Steps 1.1 and 1.2, we obtain
tf =vi(VALf)+vA(vatf)=vi(VAS).
Since (by Proposition 2.16 and by the above equation)
f=Vi(VAL)+VA(VvLf)=tf+VA(VIS)
and recalling that f =¢f +nf, we get from the previous equation that
nf=vA(Vvif),
which ends the proof of (i).

Step 2. We now establish (ii). Applying Theorem 3.10, the result will immedi-
ately follow once it is shown that

1
9" (v)=edy" and ¢(v)=_dy"
for some nonvanishing € (in fact, € = £1). Using Remark 3.16, we know that

o)
Yn

=ev(Q). (3.8)
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Using the orthogonality property of ¢ in Definition 3.15 and (3.8), we get
. n n aq)l .
o (v ):Z @)de' = Zvl 9) ), 5 -
i=1 j=1 Yj
29, _ n
ZVZ Zv, ydy =edy".

Combining Proposition 3.11 and (3.8), we get

l
u 1=

1
¢*(ev)=dy", whichis equivalentto @*(v) = ps dy".
The proof is therefore finished. O

As an immediate consequence of Proposition 3.20 we get the equivalence of the
three definitions. As already said, this will prove that Definition 3.18 is independent
of the choice of the admissible boundary coordinate system.

Corollary 3.21. The following equivalence relations hold true:
VAfF=0&1tf=0&1f=0,
vif=0& nf=0< nf=0.

Remark 3.22. Note that the equation

VAf=0 ondQ

can be equivalently written as
i*(f) =0,

where i : dQ — R”" is the inclusion map.
Proof. Using Proposition 2.16, we immediately deduce that
VAf=0& vi(VAf)=0 and v_if=0< vA(vaf)=
Therefore, using Proposition 3.20(i), we get
VAf=0&tf=0 and vif=0 & nf=0.

Recall (cf. Remark 3.19(ii)) that

1f=0 & dy"L(dy" A*(f)) =0,

nf=0 < dy"A(dy" 29*(f)) =0.
Hence, using Proposition 3.20, we immediately deduce that

tf=0<{f=0 and nf=0 < nf=0,

which ends the proof. ]
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We will frequently use the next theorem.

Theorem 3.23. Let 2 be a bounded open C?set, 0<k<n and f € C! (5;/\").
(DIFVAf=00ndQR, then vAdf=0o0ndQ.
(i) Ifvif=00n0dQ,thenv_idf=00ndQ.

Proof. We need to prove only (i), since (ii) is obtained from (i) by duality. The result
(1) follows from Corollary 3.21, Definition 3.18 and the fourth statement of Theorem
3.10 applied to the admissible boundary coordinate system. More precisely, let ¢ be
an admissible boundary coordinate system and write

(P*(f)(y): Z gil---ik(y)dyil/\"'/\dyik7
1<ip < <ig<n
PN = X i, ()Y A Ay

1§i1<---<ik+1§n
Due to Corollary 3.21 and Definition 3.18, we have to show that
hil"'ik+l (yl,O) =0 if g1 < m. 3.9)

From the hypothesis and Corollary 3.21, we have g;,...;, (y',0) = 0 if i < n and,
hence,
agi1'~-ik / . . .
—L*H,0)=0 ifj<nandiy<n.
dy;
So we have

9" (df)(y',0) =d (9" (f)) (',0)

= Z Z 8g,1 l" (/,0)dy! Ady'" A--- Ndy'*

1<i) <<y <n j=

0

- Y g&” I8 ik (1 0V dy" Adyt A--- Ady'E

1<ij<—<iy<n 9¥n

"0 i . 4 A
+ X L- ljyy% = (,0)dy Adyt A Ady T Ay
1§i]<~-~<ik:}1 ]:1 J

This indeed shows (3.9). 0

We next define the tangential and normal components of forms belonging to
Sobolev spaces. Let 1 < p < oo If f € WI'P(Q;AF), then its boundary value
f € LP(92;A¥) is well defined in the sense of traces. Since v € C°(d2;A!), the
following functions are well defined:

VALELP(9Q;A!) and vofelP(9Q:AF),

and we can now define the following spaces.



3.3 Gauss—Green Theorem and Integration-by-Parts Formula 87

Definition 3.24. Let r > 0 be an integer and 0 < o < 1 < p < oo, Spaces with van-
ishing tangential component are defined by

i (@:A") = {f e (@AY sy = 0on 00},
WP (@A) = {F e WP (QA%) tv A F=00n 00},

Similarly, spaces with a vanishing normal component are defined by

(@AM = {f e C™*(@:A") :vof =00n 0@},
Wyt (@i AR) = {f e WHIP(2:A%) tvLf =000 00},

We will need the following density argument; for a proof, see Iwaniec, Scott and
Stroffolini [58] or, in more detail, Csaté [23].

Theorem 3.25. Let r > 1 be an integer, 1 < p < oo and 2 C R" be a bounded open
C™t1 set. Then the following two statements hold true:

(i) Cj (@5 AX) is dense in Wy ? (€5 AF).

(ii) Cy (ﬁ;Ak) is dense in WAI,’p (Q;Ak).

Using Theorem 3.28 of the following section, one can give an equivalent defi-
nition of the spaces WTI’” (_Q;Ak) and WAl,’p (.Q;Ak) (and similarly for the Holder
spaces). The set W, 7 (£2;A%) is the set of f € WP (2;A*) satisfying

/Q<df;<p>+/ﬂ<f;6<p> —0, Ve (@R,

The set WAl,’p (Q;Ak) is the set of f € wlr (.Q;Ak) satisfying

. . — oo (Y. A k—1
| @01+ [ (rdg) =0, Voec(@at).

3.3 Gauss—Green Theorem and Integration-by-Parts Formula

We will assume that £2 C R” is a bounded open sufficiently regular set so that inte-
gration by parts can be performed, but most of the time we will even require that Q
is at least C>. We begin with the Gauss—Green theorem.

Theorem 3.26 (Gauss—Green theorem). Let 0 < k < n and f € C'(Q;AX). Then

Afi i
/7‘](;1 lk:/ vjﬁl"'ik’ Vl§l1<<lk§n,l§]§nv
Q ax]‘ i
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and, thus, component by component,

/Qdf:./a.gv/\f and ./ééf:/axngf.

Remark 3.27. (1) If k = n— 1 in the identity involving d, or if k = 1 in the identity
involving 9, this is exactly the divergence theorem and hence a special case of the
Stokes formula. If k # n — 1 in the identity involving d, or if k # 1 in the identity
involving 0, the statement of the theorem has no connection with the Stokes theorem
and is to be seen as the classical Gauss—Green theorem consisting of (k +1> equations

in the first identity, respectively ( k—l) equations in the second one.

(ii) Due to density, the theorem is also true for Sobolev spaces of forms.

Proof. The first assertion is just the classical Gauss—Green theorem. Let us prove the
statement with d, the one with J being proved analogously. It follows immediately
from Proposition 2.6, Proposition 3.3 and the first assertion of the theorem, since

k 1
df o + y_ afll Dy—tlys 1l 1
IR/SS axly

k+1

Q;(il Vlyfll Ty—tiyp1 ik :/852 (V/\f)i1~~~ik+| :

This concludes the proof of the lemma. O
Due to density, the next theorem is also valid in Sobolev spaces.

Theorem 3.28 (Integration-by-parts formula). Let 1 <k <n. Let

fEC( QA 1) and gECl(ﬁ;Ak).

Larar+ [(rog= [ varg=[ v,

Proof. The second equality is trivial, as a consequence of Proposition 2.16. Appeal-
ing to Theorems 3.26, 3.5 and 2.10, we get (in the next equations, we will overlook
the difference between 0 and n-forms)

Then

[ wnsie= [ vasate= [ drnce)
= [arnte)+ [ (-1 r )
= [arg+ [ (1 a@e).
It is thus left to show that

(=D FA(d (xg)) = (f:88).
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Since d (xg) is a (n —k+ 1)-form, Theorem 2.10 yields
*(d (xg)) = (1) FEDG ().
By definition, we know that
8g=(—1)"""Dxd(xg).

We therefore find

FA(A(xg)) = (=) DED £ A (45 (d (%))
(=1 f A (x8g) = (=1)1(f18g).

The proof is therefore complete. 0O

The following result is obtained from the previous theorem by density.

Corollary 3.29. Let | <k <nand 1 < p,q < o with ;ﬁ =1.Let Q CR" bea

bounded open C? set. Let f € W”’(Q;Ak’l), g€ Wl’q(Q;AkH) and v\ f=0or
vig=00ndQ. Then

/Q<df; 8g) =

We finally deduce the following corollary, which will turn out to be useful in the
next chapter.

Corollary 3.30. Let | <k <n—1and f,g € C' (Q;A*). Then

| rag)+ [ (65:80
Q Q
— [@rve-X [ i)+ [ @rvag+ [ (fivag).
Q T /oo 20 9Q
In the corollary and in the next chapters, we have adopted the following notation.
Notation 3.31. Ler 1 <k<n—1land f,g € C! (ﬁ;Ak); we then define

" df d
(VFiVe) =Y (ViVan) ZZ f'ai'

1

Proof. By density, it is enough to prove the corollary for f,g € C*(Q;A¥). Note
first that

- [ (asi5) = Z/Afzgz Z/ (V£ Ver) 2/ 2 (Vfiv)
=/Q<Vf;Vg>—;/¢mg1 (Vfv)
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The claim then follows from Theorems 3.28 and 3.7, since
| ridg)+ [ (57:68)
[o) Q
_ 7/ <d5f+5df;g>+/ (df;v/\g>+/ (SF:v g)
Q 0Q oQ
= —/ <Af;g>+/ <df;V/\g>+/ (8f:vag).
Q 0Q 0Q

The corollary is thus proved. 0O



Chapter 4
Dimension Reduction

We turn our attention to a very useful result, which is well known in the case of
2-forms. However, it can be extended in a straightforward way to the case of
k-forms; it seems, however, that this extension has never been noticed. We will pro-
vide two proofs of the theorem. The first one is based on the Frobenius theorem and
the second one is much more elementary and self-contained. Both versions are the
same when k = n — 1 and the first one is better from the point of view of regularity
when2 <k <n-—2.

4.1 Frobenius Theorem

We begin by recalling a few notions and results related to the theory of differential
forms. For details, see, for example, Abraham, Marsden and Ratiu [1], Lee [68] and
Taylor [96].

Notation 4.1 (Lie derivative and involutive family). Ler U C R" be an open set,
a,b € CY(U:R") and w € C' (U A¥).

(i) £, o stands for the Lie derivative of @ with respect to a. It is given by

d
L=
a® =

0 (@),

where @y is the flow associated to the vector field a; that is,

d
i Oy =ao @y,
@ =1id.
G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 91

Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9 4,
© Springer Science+Business Media, LLC 2012
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[a,b] is sometimes referred to as the Lie bracket of a and b.

(iii) The Cartan formula, which is a direct consequence of Theorem 12.5 (see
Remark 12.6), states that

Ziow=aido+d(aio). 4.1
Moreover, the following equality holds:

[a,b] s =% (baw) — b (L0). “4.2)

(iv) For ay,...,an € C'(U;R"), we say that {ay,...,an} is an involutive family
inU if for every 1 < i, j < m, there exist clpj € C'U), 1 < p < m, satisfying

lai,aj](x) = i cf-}(x)ap(x)for everyx € U.
p=1

We now recall the Frobenius theorem.

Theorem 4.2 (Frobenius theorem). Let r > 1 and 1 < m < n be integers. Let xo €
R". Let ay,...,a, € C" be an involutive family in a neighborhood of xo, with

{a1 (x0),...,am (x0)} linearly independent.

Then there exist a neighborhood U C R" of xy and ¢ € Diff"(U;@(U)) such that
©(x0) = xo and, for every 1 <i<m,

99 ¢ span{(a109)..... (ano @)} inU.

Remark 4.3. (i) The result is still valid in Holder spaces.

(i1) The Frobenius theorem has a sharper form, if we assume, in addition to the
linear independence, the following stronger hypothesis:

lai,aj] =0 in a neighborhood of xy and for every 1 <i,j <m.

Indeed, in that case, there exist a neighborhood U C R” of xo and ¢ € Diff" (U; ¢(U))
such that @ (xo) = xo and for every 1 <i <m,

3)(5 =qg;o@ inU.



4.2 Reduction Theorem 93

In particular, if a(xp) # 0 and since we always have [a,a] = 0, then there exist a
neighborhood U C R” of xy and ¢ € Diff"(U; ¢(U)) such that

e
ox,

=ao@inU and @(x0) = xo.

In other words, a nonvanishing vector field can always be straightened out locally.
In fact, this last observation will be achieved in Step 2 of the second proof of Theo-
rem 4.5 below.

4.2 Reduction Theorem

Notation 4.4. We recall, from Chapter 2, some notations that we will use throughout
this section. As usual, when necessary, we identify in a natural way 1-forms with
vector fields in R".

(i) Let 1 <k <n.Given f € AK(R™), the matrix f € R ) > (written in Notation
2.30as f ;) is defined, by abuse of notations, as

fu=u_f foreveryuc A' (R") ~R".

(ii) The rank of f € AX(R™) (denoted by rank; in Proposition 2.32(i)) is de-
fined by B
rank [f] = rank (f) .

In particular, note that rank[f] = [ is equivalent to dimker(f) = n—1 and that

u € ker(f) is equivalent to us f = 0.

We now state the result on reduction of dimension and we follow Bandyopad-
hyay, Dacorogna and Kneuss [9].

Theorem 4.5 (Reduction of dimension). Let r > 1 and 1 <k <[ <n—1 be integers
and xo € R". Let g be a C" k-form verifying

dg=0 and rank[g]=1 inaneighborhood of xg.

Then there exist a neighborhood U of xo and ¢ € Diff"(U; @(U)) with ¢ (xg) = xo
and such that for every x = (xi,...,x,) € U,

(p* (g)(x17~~~7xn) :f(xla"'vxl)
= Z ﬁl“‘ik (xl,...,xl)dxil/\-~~/\dxi’°.

1§i1<'~'<ikS1

Thus f = @* (g) can be seen, by abuse of notations, as a k-form on R! with maximal
rank (i.e., rank [f] = 1).
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Remark 4.6. (i) The result is still valid in Holder spaces.
(ii) Note that ¢*(g) is only in C"~! although g € C".

Before starting with the two proofs of the theorem, we need the following simple
lemma.

Lemma 4.7. Let V C R" be an open set, g € C° (V;A*) and a € C° (V;R") be such
that
aig=0 inV.

Let U C R" be an open set, ¢ € Diff'(U; @ (U)) be such that ¢ (U) CV,1< j<n
and

gxq;—ao(p inU.

Then, in U and for every 1 <ij <--- <iy <n,
(0" (8))iyiy =0 ifj € {ity. . ix}-

Proof. We assume, without loss of generality, that j = n. Use Theorem 3.10 and
Proposition 3.11 and get

0=0¢"(aug)=dx"1¢"(g) inU,

which directly implies the claim. O
We now turn our attention to the first proof of our theorem.

Proof (First proof of Theorem 4.5). We divide the proof into four steps.

Step 1. Since rank [g] =1 < n— 1, it is easy to find a neighborhood V of x¢ and
a; € C"(V;R") for every [ + 1 < i < n such that for every x € V,

{aj11(x),...,a,(x)} are linearly independent 4.3)

and
span {ar 1 (x), .., an(x)} = kerg(x). (“4)

Then we have, in particular, for every [+ 1 <i < n,
aiig=0 inV.

Step 2. We now show that the family {a;,1,...,a,} is involutive in V; that is, for
every [+ 1 <, j < n, there exist cf]- € CO(V), 1 +1 < p < n, satisfying

n
[ai,aj(x) = ). cfi(x)ap(x) foreveryxeV.
p=I+1
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Indeed, since dg = 0 and (4.1), (4.2) and (4.4) hold, it follows that

laiaj] 1g = Zo(aj18) —aj1(Lag) = —aj+(ZLug)
=—aja(ajodg+d(a;ug)) =0 inV.

Hence, we have [a;,a;](x) € kerg(x), for every x € V , from where, using (4.3) and
(4.4), the existence of unique coefficients cf-’j (x), for every x € V, follows. It is easy

to check that CZ eCr(v).

Step 3. Therefore, using Theorem 4.2, there exist a neighborhood U of xy and
¢ € Diff" (U; (U)) with @(U) C V such that ¢(xy) = xo and

0
8—(p ckergo¢ inU andforeveryl+1<i<n. 4.5)
Xi

Let us show that ¢ has all of the desired properties. We have to show that
¢©*(8)ijiy, =0 inU (4.6)
forevery 1 <ij <--- <iy <nwithi > 141 and that
0" (g)(x1,. - xn) = 0*(g)(x1,...,x7) foreveryxeU.

Indeed, (4.6) comes directly from Lemma 4.7 and (4.5). Finally, since dg = 0, we
have d¢*(g) = 0. Hence, on writing (using (4.6))

¢*(g) = Z r,‘l...,'kdxi] /\---/\dxik,

1< <<y <l
we obtain, for every s > [ +1,

3r,- e %
ﬁsk = (d¢ (g))il"'iks =0,

which shows the second claim and ends the proof. O

We finish this chapter with the second proof of the theorem. As already stated,
it is much more elementary, but it gives a less sharp regularity; indeed we will only
be able to establish that

¢ € Diff (U (U)).

The proof therefore requires r > n—1[. Note that when k =n—1 (and, thus, / =n—1),
both proofs are the same.

Proof (Second proof of Theorem 4.5). Without loss of generality, we assume that
xo = 0. In the following, U stands for a generic neighborhood of 0.
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Step 1. Since rank [g] = < n— 1, there exists a € C"(U;R") satisfying
a(x)#0 and a(x).g(x)=0 foreveryxeU. 4.7

Step 2. We claim that we can find a neighborhood U of 0 and ¢,, € Diff" (U; ¢, (U))
such that ¢,(0) =0 and

o, =ao@, inU. 4.8)

Indeed, using well-known results on ordinary differential equations (see, e.g., [22]),
there exist a neighborhood U of 0, € > 0 small enough and y € C"(U x (—¢,€);R")
verifying, for every (x,7) € U x (—¢,€),

0

EW(xvt) = a(l[/(x,t)) and II/(X,O) =X
Since a(0) # 0, we can choose by, ...,b,_| € R" so that

{b1,...,by_1,a(0)} are linearly independent.
Let B € R"*("~1) be the matrix whose ith column is b;. Finally, define
On(X) = @u(x1, .-y x0) = W(B(x1, .y Xn—1), %)

and observe that

o,

0,(0) =0, detVe,(0)#0 and o

=aoQ, il’lU7

which shows the claim.
Step 3. From (4.7), (4.8) and Lemma 4.7, it follows that for every 1 <ij < --- <
k1 <n—1,
®,(8)iyix_n=0 inU.

Finally, since dg = 0, we have d¢;; (g) = 0. Hence, writing

0, (8) = Y iy i XA - Adx™,

1<i) < <iy<n—1

we obtain 3
Fiy..j ¥
T = (A (8))y 0 =0

which implies @ (g)(x) = @i (g)(x1, ..., Xn—1)-

Step 4 (conclusion). If | = n — 1, the proof is finished in view of Steps 2 and 3.
Henceforth, we will assume that 1 </ < n— 1. Since (using Proposition 17.1)
rank(@;(g)) = [ and since ¢;(g) € C"~!, repeating the aforementioned argument
we find @, | € Diff ! (U; @, (U)) satisfying @, 1(0) =0,

Op_1(0,(8))iyiy =0 inU
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forevery 1 <ij <---<i <mwithiy >n—1and
Po1(9:(8) (%) = @-1(9,(8)) (x1,- -, Xn-2))
After repeating the same argument n — [ times, we set
Q=00 0@+
and we get ¢ € Diff """ 1(U; 9(U)), ¢(0) =0,
¢ (8)iyi; =0 inU,

forevery | <ij <---<ip <mwithiy >/+1and

forevery x € U.

0" (g)(x1,...,x0) = 0" (g)(x1,...,x;), foreveryxeU.

This finishes the proof.
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Hodge-Morrey Decomposition and
Poincaré Lemma



Chapter 5

An Identity Involving Exterior Derivatives
and Gaffney Inequality

5.1 Introduction

The aim of this chapter is twofold. In Section 5.2 we prove a very general identity
(cf. Theorem 5.7) involving the operators d, 6 and V. In Section 5.3 we show how
the above identity leads to a very simple proof of the classical Gaffney inequality
(cf. Theorem 5.16). This inequality will be one of the key points for Hodge—Morrey
decomposition (cf. Chapter 6). Let us now describe in more detail the results.

Let 2 C R” be a bounded open smooth set and v be the exterior unit normal to
the boundary. We will first prove, following Csaté and Dacorogna [24] (cf. Theorem
5.7 for a more general statement), that for k-forms @ (cf. Notation 3.31 for |Va)|2),

/Q (ldol + 80> - |Vo ?)
= _/m((v/\d(vJa));V/\a)>—s—(vJS(V/\a));va))
+/‘ (<LV(V/\(D)§V/\CO>+<KV(VJCO);VJ60>) 5.1
Joa

where LY and K are given in Definition 5.1; they can also be seen as matrices acting
on (k+ 1)-forms and (k — 1)-forms, respectively (where we identify a k-form with
a (Z) vector). They depend only on the geometry of 2 and on the degree k of the
form. They can easily be calculated explicitly for general k-forms and when Q is a
ball of radius R (cf. Corollary 5.9 for a more general statement), it turns out that

k
LY(vAw) = AL and K'(vow)= nTV_ICO.
We therefore have

k —k
(LY(VA®);VA®) = R VA®]*> and (K¥(Viow);viw)= nT lviwl|?

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 101
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9 5,
© Springer Science+Business Media, LLC 2012
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We will also give general formulas (cf. Proposition 5.11 and Corollary 5.12) in the
case of 1-forms and for general domains £2; in this case, K" is a scalar and it is a
multiple of k, the mean curvature of the hypersurface 92, namely

K'=(n—1)k.

The advantages of this formula, besides its generality and elegancy, are the
following.

1) The right-hand side of the identity is expressed solely in terms of the tangential
and normal components of @. Therefore, if either v A @ = 0 or v_® = 0, then the
right-hand side of (5.1) does not depend on derivatives of ®. It hence leads to an
elementary proof of the classical Gaffney inequality (cf. Theorem 5.16 below). This
inequality states that there exists a constant C = C () > 0 such that for every k-form
o with either vA@=0orv_ow =0,

¢ [ Vol < [ 1doP+ [ |50+ [ [of. (52)
Q Q Q Q

The classical proof of (5.2) by Morrey [76, 77] (see also, e.g., Iwaniec, Scott and
Stroffolini [58]), generalizing results of Gaftney [44, 45], is more technical. It
requires the use of local rectification of the boundary, partition of unity and some
estimates concerning d@, §® and Vo.

2) The formula is valid with no restriction on the behavior of @ on dQ. This
observation will allow us to obtain (cf. Theorem 5.19) Gaffney-type inequalities for
more general boundary conditions than the classical ones, which are vA ® = 0 or
v =0. If one assumes v A @ = 0 (and similarly if v J® = 0), then an identity in
the same spirit as (5.1) can be found in Amrouche, Bernardi, Dauge and Girault [6]
and Duvaut and Lions [39] (cf. proof of Theorem 6.1 in Chapter 7) for the special
case of a 1-form in R and in Schwarz [89] (cf. Theorem 2.1.5). However, in this
last book, the actual K" is only very implicitly defined.

The proof of the formula is as follows. We start, as in classical proofs of the
Gaffney inequality, by expressing the left-hand side of (5.1) by a boundary integral
through some quite simple integrations by parts, together with the formula do +
0d = A (cf. Corollary 3.30), obtaining that

/(|dw|2+|6w|zf\Vco\2):/ ((dw;v A o)+ (50, 1 0) — ¥, (Var; v)ay).
0 0Q

We then transform the right-hand side through algebraic manipulations only and no
more integration by parts, so as to get our formula.

The L? versions for p # 2 of Gaffney-type inequalities have been treated by
Iwaniec, Scott and Stroffolini [58] and by Bolik [13], who also deals with Holder
spaces C"%. These results will be cited at the end of this chapter (cf. Theorem 5.21).
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5.2 An Identity Involving Exterior Derivatives

5.2.1 Preliminary Formulas

Recall the notation for a differential form w,

o= Z ;, ...ikdxil A Adxik = ;(O]dxl.

1<iy<-<ig<n

Definition 5.1. Let U C R” be open and v € C! (U;A') . We define for every 0 <
k < n, the two maps

LY, KY: CO(U;AI‘) — CO(U;Ak)
by
:Zwld(dex’) ifk>1,
Za), S(vadx') ifk<n—1,

whereas LY (@0) =0if k=0and K¥(w) =0if k =n.
Remark 5.2. Note that LY (@) and K" (®) are linear in @ and v.

The next two lemmas present some elementary properties of the maps LY and
KV and their connection with the Lie derivative. We therefore recall the following
facts. Depending on the context, we will identify 1-forms with vector fields. Let
v € CH(U;R") and @ € C'(U;A¥). The Lie derivative .%, @ is defined by

d
Ly = —
ve dt 11=0

where @ = ¢ (1,x) = ¢, (x) is the flow associated to the vector field v; that is,

(pt* (CO) )

d
(Pt VO(Pt»
@ =id

(5.3)

for ¢ small enough. The Cartan formula (see Notation 4.1 and Remark 12.6) states
that
ZLyo=v_ido+d(v.io). (5.4)

Its dual version is

(=R 4 L (x0) = VASO+8(VA®). (5.5)

Lemma 5.3. Let U C R" be open, 0 <k <n,w € CO(U;Ak) and v € C! (U;Al).
(i) The following duality relations hold true:

K*(0) = (~1)* 0 (L (+0) and  L"(@) = (~ D" (K (+0))
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(ViKY (0);vio) = (VALY (x@);V A (x@)).

(ii) If @ is the flow associated to v, then

ifk>1andifk <n-—1, then

K (@) = ()04 (;wz(x)iﬂtod%”(—l)’> 7

where I€ is the complement of I in the set {1,...,n} and (cf. Theorem 2.10)

dx! Ndx!" = (=1)"dx" A+ NdX".

Proof. (i) Due to linearity, one can assume that @ = dx/ for some I € .7. The state-
ment follows directly from the definitions of the interior derivative and the interior
product and Theorem 2.10.

(ii) Standard results on ordinary differential equations (cf. (7.13) in the proof
of Theorem 7.2 in Chapter 1 of Coddington and Levinson [22]) give that V¢ is
differentiable in ¢ and satisfies

d

E[V(Pt} =Vv(e) V.

This is indeed what is immediately obtained by formal differentiation of (5.3). In
particular, for every 1 <i < n, we have

d

yr [do] = dv;.

t=0

As in (i), we can assume that @ = dx’ and, thus,

4
dt

1

o

== de''A...Ado™
=0 dt‘t:O @ ¢

k
=Y dx" AL AdXT Advi, NdxTN L Adx
r=1

k _ ,
Y (177 (Vi A A A )
=

=d (v.dx').

This proves the equality concerning L”. The corresponding equality for KV follows
from (i). O
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Lemma 5.4. Let U C R" be open, 0 <k <n, w € C! (U;Ak) and v € C! (U;Al);
then
Lo =Y (Vorv)dx' + L (o),
T

(—DH s 2, (x0) = Y (Vo v)dx +KY (o),
1

Y (Vopv)dd =v.ido+d(voo)—LY (o)
T
=VAS0+8(VA®)—K" (o).

Proof. Using the definition of the Lie derivative and (ii) of Lemma 5.3, we get, if
k>1,

Lo = j‘ Zwl @ d(Pt
=YL (Vorvidd + Y or, ‘ _do!
1
=Y (Vor;v) dﬂ—i—L"( o).
1

If k = 0, the statement is immediate, since then LY (@) = 0. The proof of the corre-
sponding equality for K is completely analogous. The third statement of the lemma
follows from the first two identities of the lemma and the Cartan formula (5.4),
respectively (5.5). O

We also have the following useful property of the operators L and KV.

Lemma 5.5. Let 0 < k < n, U be an open subset of R", @ € C! (U;Ak) and v €
C! (U A l); then, the following equations hold true in U:

1
L'(VA®) = 5d(|v\2)/\a)Jrv/\Lv(a)),
1
K'(vio)= 5d(|v\2)4w+v4K"(w).
In particular, if |v| is constant in U, then

LY(vA@w)=VvAL'(®) and K'(viow)=v_.K'(0).

Proof. We prove the first equality. The second result concerning K" follows from
the first one using Lemma 5.3(i). The two extra assertions are trivial. First, noticing
that LV is linear, it is enough to prove the claim for @ = dx! for any I = (i, ... i) €
k. By definition of LY, we get

LY(vAdy') = (Zvj xf/\dx1> Zvj J(dx! ndxh) .
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Since, by Proposition 2.16,
va(dx Ndx) = vidx —dx) A (vodid),

we deduce that

n n
L'(vAadx')y =Y vidvinds' + Y vidx nd(vadx')
j=1 j=1

—_—

= ~d(|V[*) Adx' + Vv Ad(vadx)

= —d(|v])) Adx' +v ALY (dx)).

N = N

The proof is therefore finished. O

Our last lemma will turn out to be the key point in our main result.

Lemma 5.6. Let 0 < k < n, U be an open subset of R", v € C! (U;Al), o, B e
C'(U;AX) and x € U be such that |v(x)| = 1. Then the following equation holds
true, for every such x:

({da:vAB)+ (8a:viB) =Y (Vou;v)py

T
—(vAd(via);vABY—(vid(vAa);vif)
+ (VALY (a);VAB)+ (ViKY (a);vip). (5.6)

Proof. Essential in the proof are the results of Proposition 2.16 and the fact that
[v(x)| = 1. We split ¥ (Voy; v) By in the following way:

X[:Wa,;v) B = <Z<Va1;v)dx’;ﬁ>

1

:<Z<Vo¢,, vydx';v A (vip) > <Xl: (Voy;v)dx'; V_I(V/\ﬁ)>

1
and, similarly,
(do;vAB)=(vA(vida);vAB)+{(vi(vAda);vAB)
=(vA(vida);vAB).

Using this and Proposition 2.16, we obtain

<d(x;\//\ﬁ>—<Z<Va];v>de;VJ(V/\ﬁ)>

I

= (V/\(VJdOC)§V/\[3>—<V/\ (Z(Voc,;v>dx’);vA[3>

1
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and, thus, according to Lemma 5.4 applied to «,

(dazv AB) — <Z<Va1;v>dx1;v4(v/\ﬁ)>
1
=—(VAd(via);vAB)+ (VALY (a);VAPB). (5.7
We now carry out the analogue computations for (§a; v 1 f3) . Note first that

(ba;viB)y={(vi(VvAda);vipB).

Using this fact and again Proposition 2.16, we find

<8a;vJ[3>7<Z<Va1;v>dxf;v/\(vJB)>

1

= <VJ(V/\6(X);VJ[3>—<VJ<Z<V(X[;V>CZX]);VJ[3>

1

and, hence, according to Lemma 5.4 applied to «,

(o;v ) — <Z<Vo¢1;v>dx’;v/\(\u[3)>
1
=—(vid(vAa);viB)+(viK'(a);vip). (5.8)

We now combine (5.7) and (5.8) to conclude the proof. O

5.2.2 The Main Theorem

The following theorem has been established by Csaté and Dacorogna [24].

Theorem 5.7 (A general identity). Ler 0 < k < n and let Q2 CLR" be a bounded
open C? set with exterior unit normal v. Then every o, B € C' (Q;Ak) satisfy the
equation

/_Q(<d0€;dﬁ>+<6a;6[¥>_<Va;vﬁ>)
:_/m((v/\d(vJa);v/\ﬁ>+<VJ5(vAa);vJﬁ>)

+/a (LY (VA @)V AB) + (K (v aa):v B)).
Q

Remark 5.8. (i) In the above theorem and in the sequel, we have always assumed
that the exterior unit normal v has been extended to R” in a C' way with |v| = 1 in
a neighborhood of Q. This is, of course, always possible. The formulas here and
below will be seen to be independent of the extension.
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(i1) An alternative version to formulate the theorem would be (see Lemma 5.5)
/Q(<d0€;dﬁ>+<5a;5ﬁ>*(VOC;VB»
ff/ ((vAd(vaa);vABY+(vid(vAa),vipB))
+/ (VALY (@);v AB) + (v K" (a):v ). (5.9)

In that case, we do not need to extend Vv, since all four terms in the boundary integral
depend only on the values of v on the boundary. This follows from Theorem 3.23.

(iii) If o = B, the first boundary integral could be expressed more compactly,
since by taking an arbitrary extension of v onto the whole €2, we obtain, appealing
to Theorem 3.28,

/(d(vJa);6(v/\a)>:/ VLS(VA®):Va)
Q

aQ

= (vAd(vaa),vAaa).
20

(iv) In the special cases k = 0 or k = n, the proof is much more immediate than
the one we will provide below, since then all terms in the boundary integral vanish.

As an example, we first present the following corollary.

Corollary 5.9. Let Q = Bg(a) be the ball of radius R centered at a with exterior
unit normal v. Then

LV(V/\a)zgvA(x and KV(vJa):%ma
and, thus, every o, B € C' (Q;A*) satisfy the equation
| ((docap) + (60:68) (Ve V)
:_/ (vAd(Va):vAB)+ (v aS(VA®):vIB))
+/ ( (vAa; V/\ﬁ>+—k<vmz m[i>)

We first prove the corollary.

Proof. Without loss of generality we can assume a = 0. We use Lemma 5.5 and
Proposition 5.10 below to obtain

L'(vAa)=vAL (o) = u AL* (@),

where ((x) = x/R. We use Lemma 5.3(ii) to calculate L* (o). Let ¢; be the flow

associated to u, namely :

@ = ¢ (x) = eR'x.
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‘We therefore obtain

Ik i I_E
dol = er'dx! = dthﬂd@-_Rdﬂ

and, thus, . L
L“((x):ioc and ,u/\L“(oc):Eu/\a.
It now follows from Lemma 5.3(i) that

—k —k
K“(oc):nR a and [JJK'“((Z):nT[JJa.

The corollary is therefore proved. ]
We now continue with the proof of Theorem 5.7.

Proof. We assume a, B € C?(Q;A*), since the result for o, € C' (2;A¥) follows
by a density argument. We apply Corollary 3.30 to obtain

/Q<doc;d[3>+/g<5a;6ﬁ):X[:/QWOQ;V[S[)—Z[:/tm[h(Voq;v)
+/(m<doc;v/\ﬁ>+/(m<5a;vJB>.

We next apply Lemma 5.6, which proves the alternative version (5.9). The theorem

now follows from Lemma 5.5. O
Consider the tangent vectors E;; = (El-lj, .., El) atx € dQ defined in the follow-
ing way:
0
vj(x) | < ithcoordinate position

E,’j (x) = :
—V;(x) | + jth coordinate position,

the dots standing for zeros. We define E;; = 0. For f € C 1 (8(2), we denote its
derivative in direction of E;; by d;;[f]; that is,

re| iz

dt =0
0 ifi=j,

9j[f1(x) =

where ¢;;(t) is any curve lying in 2, which satisfies ¢;;(0) = x and %cij (0) =E;jj.
It turns out that if f has been extended to R”, then
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of afV = (df/\V)ij

9ilf] = Frihe P

Let us denote by I,(,-) the second fundamental form of the hypersurface 9 at x.
We recall that given two tangent vectors Y and Z, the second fundamental form is
defined by

wr2)=—{[ o] 7).

where cy is any curve lying in dQ, which satisfies
d
cy(0) =x and ECy(O) =Y.

Recall also that the second fundamental form is a symmetric bilinear form. A
straightforward consequence of our definition is the following identity:

L(Eij, Ex) = 9ij[Vilvk — 0ij[vilvi = du[V)]Vi — Vil v; (5.10)

With this notation, we can prove the following.

Proposition 5.10. Ler Q be a bounded open C?* set of R" with exterior unit nor-
mal v. Then for every k-form o, the expressions v ALY (o) and v JKY () depend
only on the values of v on dQ. In particular, the following formula holds:

VALY ()=} Z Y (—D)7040[vi,Jdx" Adx* Adx\Min

I y=11<r<s<n

Proof. The fact that v ALY and v JK" do not depend on the extension of v onto a
neighborhood of 9 follows from the definition of LY and KV and Theorem 3.23.
Thus, we only have to show the formula. Observe that

VALY (o Zoqv/\d(dex])

™=

:Za,w\d<
7

(—I)Y*IViydxil /\"‘/\dxiV/\u./\dxik)

y=1
and, thus,
VALY (a)
n (9 Vi
=Yoval Y )Y (- DY —dx* Adxt A - CAdXT A - A dk
i y=1s=1 s
k n —
=)« v,d AdX AdXA . NDXY A - A d.
; I}Z’“SZ:’I 8xs X X X X X
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We now split the sum over the 7 and s as

In the second sum of these two, we interchange the roles of r and s. Recalling that
dx" Ndx* = —dx* Ndx", the desired formula follows. 0O

Proposition 5.11. Ler Q C R” be a bounded open C? set and o, be a O-form. Then
K (a)=[(n—1)x] a,
where K is the mean curvature of the hypersurface Q.

Proof. Recall that the exterior unit normal v has been extended on a neighborhood
of dQ so that |v| = 1. Let & be a O-form. Due to the definition of K", we obtain for
a zero form o,

K'(a) = o 6v = adivv.

Since the divergence of v is equal (see, for instance, Krantz and Parks [61]) to
(n—1)x, if |[v| = 1 near d 2, the proposition follows. O

Using Proposition 5.11 and doing some manipulations on L (®), we can rewrite
Theorem 5.7 in the case of 1-forms as follows.

Corollary 5.12 (General identity for 1-forms). Let Q2 C R" be a bounded open c?
set with exterior unit normal v. Every o, B € C' (.Q;Al) satisfy

/Q(<d0‘;d13>+<6a;8ﬁ>—<Va;vﬁ>)
:_/m((v/\d(vJa);v/\ﬁ>+<VJ5(V/\OC);VJ13>)
[ B Ay A+ (= 1) k(v asv B)),

where K is the mean curvature and BY acts on 2-forms and is defined by
B'(0)=-Y < Y 8,-j[v,]vsw5,> dx' Ndx!.
i<j \rs=I

In particular, if vAa=vAB =0, then

| (docap) + (0:5B) — (Vi VB) = [ (n=1)c(o:B).

0

Proof. Let v be extended to a neighborhood of U of d€2 such that |[v| =1 in U.
Note that (cf. (2.7) in Proposition 2.16)

vAa=VvA(Vvi(VvAQ)).
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Due to Lemma 5.5 we obtain
VALY (a)=L"(vAha)=L"(vA(vi(vA@))=VvAL' (vi(vAa)). (5.11)

Let ® = v A a. Applying Proposition 2.12 yields
(Vow); = Z V.
Setting this into the formula given by Proposition 5.10 gives

VALY (o) = VALY (V) ZZZ“’"VI s[Vildx” Adx* = BY (o).

i=lr<st=

We see now that the corollary follows from Theorem 5.7 together with Proposi-
tion 5.11. a

We present another possibility to express Theorem 5.7 for 1-forms.

Proposition 5.13. Let o = ¥ o;dx’ and B = Y. Bidx’ be 1-forms. Then for every x €
0Q, the identity

n
(VALY (a);vAB)+(voKY(a):vaB)=— ) ai; Z L(Eir,Ejr)
i,j=1 r=1
is valid, where 1l is the second fundamental form of the hypersurface 02 at x.
Remark 5.14. It can be shown that also for k > 1 and any k-form o,
(VALY (0);vA®)+ (VK'Y (0);V o)

can be expressed in terms of the second fundamental form and the tangent vec-
tors E;;; see Csaté [23]. However, the formulas in the case k > 1 do not turn out to
be as simple and elegant as for 1-forms.

Proof. Proposition 5.10 gives
VALY (o ZZ(X iV dx ANdx"
j=li<r
and, hence,

(VALY (a);VAB) = ZZO@ ri Vj (ViBy — v i)

j=li<r

ZZO@[% Li[Vi]V. ZZﬁ,a, i V)]V

j=li<r j=li<r
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Interchanging the roles of i and r in the second sum and noticing that d;, = —d,;
gives
(VALY (a);vAB) = Za,ﬁ, Li[Vi]V (5.12)
ijor

We know from Lemma 5.5 and the definition of KV that

(viKY(a);viB) = Za,[i,v,v]a

L,],r

for any v, whose extension satisfies |v| = 1. This implies in particular that
Zv, —0 forevery 1 <i<n.

We therefore get

(viK¥(a);vaB) = Zoc,Blv,v,(9 Zajﬁ,vrv] 8

L, ],r 1]r

= Z(xjﬁﬁr,-[v,]vj. (5.13)
i,j,r
Adding (5.12) to (5.13) gives the desired result, using the identity (5.10). O

5.3 Gaffney Inequality

5.3.1 An Elementary Proof

The Gaffney inequality is essentially based on the fact that the first boundary integral
in Theorem 5.7 drops, whenever & = 3 = ® and one of the conditions v A @ = 0 or
v_m = 0 is satisfied.

The Gaffney inequality will be essential for the proof of the Hodge—Morrey
decomposition theorem. Due to Theorem 5.7, the proof of the Gaffney inequality
will be very simple (cf. also Duvaut and Lions [39]) (see Theorem 6.1 in Chapter 7)
or Schwarz [89]. The inequality was first proved by Gaffney in [44] and [45] for
compact manifolds without boundary. The generalization of that proof to the case
of manifolds with boundary proved by Morrey [77] in Chapter 7 (cf. also Iwaniec,
Scott and Stroffolini [58]) is different from the one presented here. A third version of
the proof can be found in Taylor [96, Chapter 5.9], which involves more geometric
arguments.

To obtain the Gaffney inequality from Theorem 5.7 we need the following ele-
mentary result.
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Proposition 5.15. Let Q C R" be a bounded open C?* set. Then there exists C =
C(Q) > 0 such that for any 0 < € < 1,

C
/ u2§8/ \Vu|2+*/|u|2
20 Q € Ja
for everyu e W'2(Q).

Proof. Due to the density of C'(Q) in W!?(Q) and the continuous imbedding
W!2(Q) < L*(9Q), it suffices to show the inequality for every u € C'(Q). As
Q is a C? set, we can extend the exterior unit normal v to a C' (©;RR") map. Hence,
|v| and the divergence |div v| are bounded on £ by some C > 0. Using the diver-
gence theorem, we get

n
2 2% 2 2
u- = u Vi = u-vyv
./39 Jaa ,; ' /a_Q< )
:/ div(uzv):/ u? divv+/ (viVu?)
Q Q Q

g/ \divv|u2+/ |v||Vu2|§C/ u2+C/ 2ul |V,
Q Q0 Q Q

Since
2

C
2C|u||Vu| < £ |Vul* + e u?,
we have the desired result. 0

Theorem 5.16 (Gaffney inequality). Ler Q C R” be a bounded open C? set. Then
there exists a constant C = C(Q) > 0 such that

o312 <C ([dolf + 507, +|o]})

for every @ € WTl"2 (_Q;Ak) UWAI,’2 (Q;Ak).

Proof. By density (cf. Theorem 3.25), it is enough to prove the result for w €
Cr(Q:A%) UCY (2;AF). Appealing to Theorem 5.7 and the properties of L
and K", there exist continuous functions f;; € C°(9£2), depending only on the ge-
ometry of €2 and on k, such that

dol? 62:/V2/
Jy (aaP+180f) = [ Wof+ [ 3 frarar

for every @ € C} (E;Ak) UC}\, (E;Ak). In particular, since d is compact, there
exists a constant C = C(£2) > 0 such that

/Q(|da)|2+|5w|2)2/9|Vw|2—C/(m|w|2. (5.14)

Combining this with Proposition 5.15, we have the Gaffney inequality. O
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5.3.2 A Generalization of the Boundary Condition

We just saw that the proof of the Gaffney inequality is essentially based on the fact
that the first boundary integral in Theorem 5.7 drops whenever @ = 3 = ® and the
tangential or normal component of @ vanishes. In that case, no derivatives of @
occur in the boundary integral and one obtains the estimate (5.14). We now discuss
the possibility of extending Theorem 5.16 to more general conditions than those of
vanishing tangential or normal components. We give in Theorem 5.19 two ways of
generalizing the Gaffney inequality. However, before proceeding further we need
the following algebraic lemma.

Lemma 5.17. (i) Let 2k < n, k odd,
weC'(R:AY), veC (RHAY) and A eC'(RuAH)

such that
*[VAO]=AA (Vo).

Then
(VAd(V10);vA®)+(ViS(VA®);Vim) = —(VAIAA(VI®);%(V_0)).
(ii) Let 2k > n, (n— k) odd,
weC (R;AY), veC (RMAY) and A eC'(RHAPT)

such that
Viw=AAx(VA®).

Then
(VAA(VIw);vVA®)+{(ViS(VA®); Vi) = (VAIAN(x(VA®));VA®).

Proof. Step 1. We first show that if @ is a k-form, v is a 1-form and dV = dx' A
-+ Adx", we have

(vAd(viw);vA®)dV 4+ (vid(VA®);Viw)dV
=VAd(Vio)A(x(VA®))+ (=D (Voo) Ad(x (v A®))|. (5.15)

Indeed, from the definitions of the interior product and the interior derivative and
from Theorem 2.10, we have

vad(vA®) = (—=1)"ED s [v A (x(8(v A 0)))]
= (= 1) =N s [y A (% (d % (VA @)))]
_ (71)nk+n(k—1)+k(n—k) " [V/\ (d* (V/\(D))]
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and, thus, using again Theorem 2.10,

(vAd(viw);vA@)dV +(vid(VA®);Viw)dV
=VAd(VI0)A(*(VA®))+ (Vo)A (VAd(x(v A®)))] (—1)" Tk

=VvAd(Vio)A(x(VA®))— (Voo) AVvAd(x(VvA®))

A

—VA [d(mw) (+ (v/\w))+(—l)k(vJa))/\d(*(v/\a)))}.

We have therefore obtained (5.15).

Step 2. We first prove (i). We set the equality *[v A @] = A A (Vv J @) into the
right-hand side of (5.15), which yields, since k is odd,

VA [d(\uw)/\/I/\(vJa))f(vJa))/\d(ﬂt/\(va))}
=—VA(VIO)ANdAN(VI®)+VAA,
where
A=d(vio) ALAVL@)— (—1) (o) ALAd(V ).

Using again that & is odd, we have that A = 0. It therefore follows from (5.15) and
the above two identities that

(vAd(vio);vA@)dV +(vid(VA®);V_iw)dV
=—VAWVIO)NAAN(VI0)=—VAIAAN(VIO)A (%% (Vo))
—(VAAAN(Vi);*(v_io))dV.

Step 3. The proof of (ii) is analogous to that of (i) by setting the equality
Voo =AAx(VA®)

into the right-hand side of (5.15). 0

Remark 5.18. The hypothesis of the lemma can be relaxed. It follows from Step 2
of the proof that the lemma remains valid at all points x where the following two
equations hold true:

x[VAO]=AA (Vo)
VAd(x[VA®]) =VvAd(AAN(Viw)).

If the first identity is true not just at one point x but also in an open set, then it
trivially implies the second one. This implication remains valid if v is the exterior
unit normal on some sufficiently regular hypersurface and the first identity holds
true on that surface, due to Theorem 3.23. We will use the lemma exactly in this
setting.
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Theorem 5.19. Let 0 < k < n be integers and 2 C R" be a bounded open C? set
with exterior unit normal V.

(i) Let 2k < n with k odd. Let A € C! (BQ;A"’Zk). Then there exists a constant
C =C(A,Q) such that

Vo2 < C (lldolZ: + [ 8ol7: + |ol|7)
for every @ € C'(Q;A¥) satisfying
*(VA@)=AA(Vi®) ondQ.

(ii) Let 2k > n with (n—k) odd. Let A € C'(dQ;A*™™"). Then there exists a
constant C = C(A, Q) such that

Vo2 <€ (ldollf: + ol + o]7.)

for every @ € C'(Q;A¥) verifying
Vio=AA*x(VA®) ondQ.

Proof. We prove (i). The proof of (ii) is completely analogous. Due to Theorem 5.7,
Lemma 5.17(i) and the remark thereafter,

/|dwﬁ+/ﬁ6wﬁ—/NVwV
Q JQ Q

= Lo ((VAAAN(Vi0);x(Voiw))+{LY(VA®);VA®) +(KY (Vio); Vo).

The regularity assumption A € C! (8Q;A”_2k) implies that v AdA, which is well
defined by Theorem 3.23, is a continuous function on d€. One can now proceed
exactly as in the proof of the Gaffney inequality. 0O

We give the following example to part (i) of Theorem 5.19.

Example 5.20. Let k=1 and n > 3. Hence, n — 2k = n—2. It will be more convenient
to use A than A, so we suppose that x4 € C! (d;A"~2). In that case, the condition
(VA @)= (*A) A (Vo) can be written as

VAw=(Vim)A ondQ,
which consists of the (}) equations

n
V,'G)j*Vj(D,':/ﬁLijZVZ(D] for1 <i<j<nm.
=1

To make the example even simpler, assume that

H=0Qn{xeR":x,=0}



118 5 An Identity Involving Exterior Derivatives and Gaffney Inequality
contains a relatively open set. Furthermore, suppose that, for every x € H,
Aij(x)=0 if j#nand 1 <i<j.
Since v = (0,...,0,1) at every x € H, we have
vAw=0 & w=---=0,1=0,

vio=0 & w,=0,

whereas

VA= (Vv_oo)A < o+AL,0,=0 for 1<i<n-—1.

5.3.3 Gaffney-Type Inequalities in IP and Holder Spaces
The following result follows from Theorem 2 in Bolik [13].

Theorem 5.21. Let n > 2, r > 1 and 1 <k <n—1 be integers and 0 < ot < 1 <
p < oo. Let Q C R" be a bounded open smooth set with exterior unit normal V.
Then there exist C; = C(r,p,2) and C, = Cy(r,a, Q) such that for every @ €
WrP (2;AF),
lolwera) < €1 (4@l 1o+ [13@lyr1(0))
Ci{llvho Viw ,
£ (IV Al o0 + V0160
lolwera) < €1 (Id@llyr1o@) + [13@lyr1(a))
4 (IV30l, 0 IV A@ G2 )
whereas for every @ € CH* (ﬁ;/\")7
l@llcraa) < € (Idolo-1a@) +180lc-1a@)

e (||vAw||cw<am + v 0log)

lollcraa) < € (Idolo-1a) +80lc-1o@)

+C (IVoollerean + VA ollaaa))

Remark 5.22. (i) We see that this is a generalization of the Gaffney inequality
(cf. Theorem 5.16). Indeed, if 0 € WTl’2 (.Q;Ak) U Wl\l,’2 (.Q;Ak), then the first two
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inequalities reduce to
|@llyr20) <C (Hdw||L2(Q) + 160 2(0) + [l (ag)) :

(i1) The actual theorem, as stated in Bolik [13], is more precise. Before explaining
the refinement, we need to introduce the spaces

A7 (Q5GAY)  and A (Q4AF), (5.16)

where Q€ is the complement of 2 in R". In Definition 6.1, we will introduce the
sets
%”T(Q;Ak) and %V(Q;Ak).

In Theorem 6.5, it will be proved that
dim 7 (Q;AF) <o and  dim 4 (Q;AF) < .

The sets in (5.16) are defined analogously, requiring that @(x) — 0 uniformly as
|x| = oo. In Kress [63] (cf. Satz 7.5), it is proved that

B, = dim % (Q;A%) = dim 4 (Q5 A ), 1<k <n,
By = dim 4 (Q;A%) = dim o7 (Q4 A, 0<k<n—1,

where By, are the Betti numbers (for more details, see Duff and Spencer [38] or Kress
[63]). Let z/, i =1,...,B,_y, be a basis of 4 (2 A" ") and y',i=1,...,By, be
a basis of 77 (QC;AI‘“). The sharper version of Theorem 5.21 is now obtained by
replacing in the first inequality the term ||V S @[ 115 (or the term ||V S @[|co 9y in
the third inequality) by

By

)}

i=1

By

-3

i=1

/(99((1);V/\zi> AQ<VJw;Zi>

and replacing in the second inequality ||V A ®||,1(5q) (or the term [[V A @|co(50) in
the fourth inequality) by

By

Yy /(99<a);vin>

i=1

By

=)

i=1

/(99<v/\a);yi>

To obtain Theorem 5.21 from [13], we have estimated these terms by taking into
account that the z' and y* are smooth up to the boundary, according to a result similar
to Theorem 6.3.

(iii) Note that if © is contractible, 1 <k <n—1 and ® € W (.Q;Ak) U
Wy? (2;A%), then

l@llwre) < €1 (Idolly100) + 18@llw-1r@))
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and, similarly, if @ € C;a (E;Ak) UC;\’,O‘ (ﬁ;Ak), then
@l craay < > (140l + 160l o rage ) -

This follows from the previous remark and Theorem 6.5, since if €2 is contractible
and 1 <k <n—1, then /7 (Q2;AX) = 54, (Q;A%) = {0}.



Chapter 6
The Hodge-Morrey Decomposition

6.1 Properties of Harmonic Fields

‘We recall the definition of harmonic fields and of contractible sets. Let 0 < k < n be
an integer.

Definition 6.1. (i) The set of harmonic fields is defined by
H(Q;AF) = {0 e W (2;A") :dw=0and §0 =0},

and we will write

X
©
=
T
X
Q
=
e
=
.
=

that is,

%(Q;Ak) ={we %(Q;Ak) :VA®=00ndQ},
M (Q:AF) = {0 € #(Q;A") : vio =00n0Q}.

(i1) The set 2 C R” is said to be contractible if there exist xo € 2 and F €
C=([0,1] x £;£) such that for every x € Q,

F(0,x)=xp and F(l,x)=x.

Remark 6.2. (i) Note that a contractible set is necessarily simply connected.
(ii) The set 7 (22; A¥) can be equivalently defined as

H(Q;AY) ={w € L, (2;A%) :do = 0 and §0 = 0},

where we understand the equations dw = 0 and 6 @ = 0 in the sense of distributions,
namely

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 121
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_6,
© Springer Science+Business Media, LLC 2012
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/ (w;6¢0) =0, forevery ¢ € CE’;'(.Q;A"H)7
Q

/ (w;d) =0, forevery ¢ € Cy (Q2;A%).

Q

The proof of Theorem 6.3 shows that the two definitions are equivalent.
We now list some properties of these fields.

Theorem 6.3. Let Q C R" be an open set. Then
H(2:A%) C C™(2;A%).
Moreover; if Q is bounded and smooth, then
A7 (Q;A%) U (23 A%) € € (23 A%).

Furthermore, if r > 1 is an integer, then there exists C = C(r, Q) such that for every
o € A (Q:AN) U A (Q:AF),

@]l < Cllo]. (6.1)

Remark 6.4. If r > 0 is an integer and 0 < a < 1, then there exists C = C(r,£2) such
that for every @ € 7 (Q;A%) Uy (Q2;AF),

ollcre < Cll@]|co-
Indeed, we have, by the Morrey imbedding theorem, that for s sufficiently large,
[@]lcre < Ci|@]ysa-

Since trivially
oll2 < Clofo,

we have the result by combining the theorem with the above two estimates.

Proof. Step 1. The inclusion
H(2;A%) C ™ (Q:AF)

follows from the Weyl lemma (cf. e.g., [29]). Indeed, let ¢ € C (2;A%);

/Q<CO;A¢>Z/Q<(D;5d¢—|—d5¢>:/Q<da);d¢>+/g<5w;5¢>:0.

Choose ¢ = @dx’ and ¢ € CJ(Q2) and, thus, & € C(Q).

Step 2. The extra statements are direct consequences of Theorem 6.11. O

In the sequel we will sometimes omit the brackets (.Q;Ak) in the expressions
w2 (.Q;Ak), I (.Q;Ak) ... whenever the degree k of the form is evident.
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Theorem 6.5. Let Q C R” be a bounded open C? set.
(i) The spaces H7 (Q;Ak) and %\/(Q;Ak) are finite dimensional.
(ii) The sets H7 (.Q;Ak) and %’iv(.Q;Ak) are closed in L* (.Q;Ak).

(iii) Furthermore, if Q is contractible, then

A (Q;AF) ={0} if0<k<n—1
A (Q;A%) ={0}  if1<k<n.

(v)Ifk=0o0ork=nand h e (Q;Ak) , then h is constant on each connected
component. In particular,

A7 (Q:A%) ={0} and I3 (Q;A") ={0}.

(v) Let (7)™ be the orthogonal complement of #7 with respect to the L*-inner
product, then
L* =@ (A7) .

More precisely, for any f € L?, there exist unique h € #7 and g € (H7)* such that
f=h+g, (6.2)

[ll2 5 llgllz < 112 - (6.3)
A similar result holds for 3 .

Remark 6.6. Statement (iii) can be improved, since it is a special case of the de
Rham theorem (cf. [68], for instance). For example, if kK = 1, then

S (QA) = (A1) = {0}
if ©Q is only simply connected.

Proof. (i) We only prove the statement for .77 ; the proof for 773 is similar. Let
E={we 7 (2:A") : ||y <1}

If we can prove that E is compact, then the result will follow from the Riesz the-
orem (cf. [17]). Let {®; },cn be a sequence in E. Then there is a subsequence also
denoted by @ which converges weakly in W!? to some @ € W!? (Q;A*). The
compact imbedding W!?(Q) < L?(Q) implies that the convergence is strong in L.
The Gaffney inequality (cf. Theorem 5.16) implies that the convergence is strong
in W2, Hence, w € E.

(i) We only do the proof for 77 (Q;Ak); the other case is completely analo-
gous. Let {@;};en C 5% be such that @ — @ in L? (.Q;Ak). Then {@;}en is a
Cauchy sequence in L2 (Q;Ak). From the Gaffney inequality it follows that it is
also a Cauchy sequence in W2 (Q;Ak). So it converges also in W12 (Q;Ak) to the
same limit ®. The trace theorem for Sobolev functions yields @ € J#7 (.Q;Ak )
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(iii) Let h € 4 (2;AX). Since dh =0, k > 1 and Q is contractible, it follows
from the Poincaré lemma (Theorem 8.1) that there exists a (k— 1)-form g such that
h=dg. So we have

/ (hsh) = / (dg:h) = f/ (a:5h) +/ (v oh) =0,
Q Q Q 2Q
This proves that 52y = {0}. The claim concerning 77 follows by duality.

(iv) This is obvious, since a function with vanishing gradient on a connected set
is constant.

(v) Since L? is a Hilbert space and 777 is closed, we have the claim. O

6.2 Existence of Minimizers and Euler-Lagrange Equation

Let 0 < k < n. We now establish the first step in the Hodge—Morrey decomposition.
Recall that

Wy (Q:AY) = {f W' (:A") :vAf=00n0Q}.

Theorem 6.7 (Existence of minimizer). Ler Q C R” be a bounded open C? set. Let
g€ L*(Q;A%) and

Do) = [ (5laak+ 51608+ (50)).
X = W2 (A9 (o (2;49))
Then there exists a unique ® € X such that
Dy(@) < Dy(w) foreverym € X
and satisfying the weak form of the Euler—Lagrange equation, namely
/ (d®;du) +/ (6@;6u) = — / (g;u) foreveryueX. (6.4)
Jo Q Jo
Moreover, if g € (%”T (.Q;Ak))L, then @ verifies
/Q<d5;du> —l—/ﬂ(S@;ﬁu} =— /g)(g;u> foreveryu e WTl’2 (2:A%). (6.5

The same result holds true by replacing everywhere the subscript T by N.
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Remark 6.8. It can be easily shown that the correspondence g — ® is linear, since
g — Dy is linear.

Proof. The statement with N instead of T is obtained in a completely analogous
way. The existence of a minimizer follows from the direct methods of the calculus
of variations (cf. e.g., Dacorogna [28]) and is established in Steps 1-3. The second
statement, namely (6.4), is just the weak form of the Euler—Lagrange equation. The
uniqueness is discussed in Step 4. The last identity (6.5) will be obtained in Step 5.

Step 1. We first claim that there exists a C; > 0 such that
||, < Cy / (ldo+|8) forevery o € X. 6.6)
Q

Step 1.1. If this were not the case, then there would exist for every m € N, a @,, €
X such that

”@M%zzméﬂme+w%yy (6.7)

According to the Gaffney inequality (cf. Theorem 5.16), there exists a C, > 0 such
that

[0ulfyr <2 [ (1d0n+ 15, +0nf?).
Taking ||@y]||;2 = 1 for every m, the two inequalities yield, for m large,

G
||wm||$vl,2 < ;meH%Vlz +G = ||wm||€vl,2 <G.

So the || @y |12 are uniformly bounded in the reflexive space W' (2; A%). We can

therefore extract a subsequence, that we do not relabel and find u € w2 (.Q;Ak)
such that

W,; —u in w'?  and W, —u in Lz,
8w, —6u inL®> and dw, —du inL?
The strong convergence yields ||u|,2 = 1. As @, € (#7)*, we find that u € (7)*.
Step 1.2. We now assert that

du=0inQ, 6u=0inQ and vAu=0o0ndQ.

From (6.7) and the bound on the W' norm for the @,,, we obtain, for m sufficiently
large,

G
180nll7 + ldo| . < =
m
and, consequently,

dw, —»0=06u, dw,—0=du inlL?
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Due to the compact imbedding of W'?(Q) into L?>(9Q), we find that v Au = 0 on
29, since VA ®, =0 on Q. Steps 1.1 and 1.2 yield u € 2 N (H#7)*+ = {0},
which is in contradiction with ||u||;2 = 1.

Step 2. We next prove that there exists a constant Cy4 such that
|o|ly12 <4C1Dy(w)+Cy  forevery w € X. (6.8)
From (6.6) we obtain
0lfnz <261 [ (4o +[50f) - o]
— 41 Dy(@) ~4C1 [ (g:0) =[0I o]}
<A4C Dy(@) +4C1[|gll 2| @] 12 — HwHiz .

The claim of Step 2 follows, since the sum of the last two terms on the right-hand
side is bounded from above by a constant Cy .

Step 3. The fact that D, is weakly lower semicontinuous in W2 is immediate. So
to conclude at the existence of a minimizer @ € X, it is enough to show that any min-
imizing sequence {®,,} C X has a subsequence that converges weakly in W2 to a
limit @ € X. From (6.8) we obtain that || @12 is bounded and, therefore, up to the
extraction of a subsequence that we do not relabel, there exists @ € W12 such that

Oy —® inW? = @, o inlL%

Since all of the @, are in X and the imbedding W' () into L? (9 ) is compact, we
obtain that @ € WTl‘z. Similarly, since the @), are all in (#7)* and (#7)" is closed
in L2, we obtain that @ € (% )*. Thus, @ € WTI’2 N (7)* = X. The existence part
of the proof is then complete. Moreover, we also have immediately (6.4).

Step 4. The uniqueness is easily obtained. Indeed, let u,v € X be two minimizers.
Due to the strict convexity of the map ® — [(|d®|*> + |5 w|?), we find that

ou=0v and du=dv.

Applying (6.6) to u — v, we obtain that

lu—lne <€ ([ duma+ [ [6u-52) =0
Q Q

and thus the claim.

Step 5. It remains to establish (6.5). Let u in WTI’2 (2:;A%) € L?(2;AF). We then

write, according to (6.2), u =w+v with w € ¢ and v € (%”T)L We therefore
deduce that

ow=0, dw=0 and /(g,w>:0.
Q
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In addition, v € X because v € (/)" andv=u—w € WTI’Z. We hence find that

/Q (@ du) + /Q (5@: 5u) — /Q (g,u) = /Q (d@;dv) + /Q (5@: 5v) — /Q (g.v) =0,

which is precisely what had to be shown. O

6.3 The Hodge—-Morrey Decomposition

We now turn to the main result of the present chapter.

Theorem 6.9 (Hodge—Morrey decomposition). Let Q C R” be a bounded open
C3 set with exterior unit normal v. Let 0 < k < n and fe 1? (.Q;Ak).

(i) There exist o, € WTl"2 (.Q;Ak’l) ,B e WTI’2 (.Q;Ak*l) ,he %(Q;Ak) and
weE WTZ’2 (.Q;Ak) such that, in

f=da+d8B+h, o=0w and PB=do.

(ii) There exist o0 € W]\l,’2 (.Q;Ak_l) ,Be WAI,’2 (Q;Ak+1) ,he %\;(.Q;Ak) and
w e Wﬁ’z (Q;Ak) such that, in Q,

f=do+df+h, a=0w and P=do.

(iii) There exist o € W, (A1), Be Wy (@:451) he o (Q:4F), 0"
W%,Z (.Q;Ak) and @ € Wl\%’z (Q;Ak) such that, in £,

f=da+8B+h, o=38w" and B=do’.

(iv) In addition, in each of the three cases, da, 0 B and h are mutually orthogonal
with respect to the L*-inner product. Moreover, in each of the three cases, there
exists a positive constant C = C(Q) such that

l@llw22 + 1Al 2 < Cllf]l 2
Remark 6.10. (i) We recall that if » > 1 is an integer,
WTnZ(Q?Ak) ={few? (-Q;Ak) VAf=00ndQ},
Wi (Q:A%) = {f e W2(2:A%) : v, f =000 9Q}.

(ii) If £ = 0, then statement (i) of the theorem is the simplest of the three decom-
positions and it reads as

f=0B=6do=Awin Q2 with ©=0o0ndQ.
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If k = n, then statement (ii) of the theorem is the simplest of the three decomposi-
tions and it reads as

f=da=déow=Awin Q with ©=00ndQ.

(>i11) If Q is contractible, then in statement (i), 7 = 0 if k < n — 1 and in state-
ment (ii), h = 0 if k > 1, as seen in Theorem 6.5.

(iv) There exists a much simpler decomposition, namely
f=da+86BinQ, voa=00ondQ and VAL =00ndQ.

This can be immediately obtained by solving componentwise the Poisson equation
with Dirichlet boundary condition; that is,

Awo=déw+ddo=f inQ,
ow=0 on dQ

Setting ¢ = d @ and B = dw, we get the claim according to Theorem 3.23. However,
this decomposition turns out to be much less useful (in particular, it is not an orthog-
onal decomposition) than the Hodge—Morrey one, since v @, respectively v A 3,
do not give any information about the boundary behavior of dct, respectively 6.

We will deduce Theorem 6.9 from Theorem 6.7. Indeed, after proving with usual
arguments (see Theorem 6.11) that the minimizer @ found in Theorem 6.7 is in fact
W22, the Hodge-Morrey decomposition will be seen to be, in fact, a rewriting of the
strong Euler—Lagrange equation. We now proceed with the proof of Theorem 6.9.

Proof. We divide the proof into three steps, each one corresponding to one of the
statements.

Step 1. We start by proving (i).

Step 1.1. Let f =h+g,h € 7 and g € (%) as in (6.2). We use Theorem 6.7
for g and obtain € WTI"2 N (H#7)* such that

/Q((dco;du>+<5a);5u>):_/Q<g;u>, vuele,z.

In view of the regularity Theorem 6.11, we conclude that @ € W?? and we can
. . 1,2
integrate by parts to obtain, for every u € W7,

—/ (8dw;u) + (dSw;u)) +/' ((d;v Au) + (v A Swsu)) = —/‘ (g:u).
Q 0Q Q

6.9)
Taking first u € Ci (22; A¥), we obtain

odo+ddéw =g inQ. (6.10)
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We set o« = d and B = dw. We immediately obtain from Theorem 3.23 that v A
B =0. It is left to show that VAot = v Ad® = 0. From (6.9) and (6.10) we conclude
that the integrals both over Q and dQ vanish separately. So we have

0:/ (da)7V/\u>+/ <V/\5a)7u>=/ (VASm,u), VueWTl’z. 6.11)
00 00 20

In fact, this is also true for all u € W'?(£2;A¥), as we will show right now. So
let u € W'2(Q2;A*) be arbitrary. We use in (6.11) the test function v A (v u) €

WTI’2 (Q ;Ak) , where we have extended vtoaC 1 (E;A 1) function. We obtain, using
Proposition 2.16,

0:/89<V/\60);V/\(VJM)> :/

8Q<V/\500;u>—/ (VAS®V (v Aw))

JoQ

= (VASw;u).
20

Hence, since u € W12 (Q;Ak) is arbitrary, we deduce that VA 8@ = 0 on Q.

Step 1.2. We next prove the orthogonality of the decomposition (i). We have
to show that &, da, and 83 are mutually orthogonal with respect to the L-inner
product. As da+ 8 = Aw = g € (2#7)*, we already know that

/ (h;do+ 8B) = 0.
Q

Using the boundary condition on @ and the fact that % is a harmonic field, we obtain

/Q<h;d(x>:7/9<6h;(x>+/lm<h;v/\a>:0 = /Q(h;8B>:O.

The orthogonality of do and 88 follows immediately from Corollary 3.29.
Step 1.3. The estimate immediately follows from (6.3) and Theorem 6.11.

Step 2. The proof of (ii) is completely analogous to that of (i) and we skip the
details.

Step 3. We prove (iii).
Step 3.1. We use decomposition (i) to get a' € Wp? (A1), Bl e w2
(A [ h' € 7 (Q;AF) and @' € WTZ’2 (£2;A¥) such that, in Q,
f=da'+86B'+h', a'=6w' and B'=do'. (6.12)

Similarly, appealing to decomposition (ii), we get o € Wy (;A%1), B2 ¢
WAI/Z (Q; AR B2 € A3(2;AK) and @7 € W]%z (£2;A¥) such that, in Q,

f=da*+8B*+h*, o®>=086w?> and B%=dw’ (6.13)
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We set
h=06B'—6B%+h' =da® —da' +1*

and observe that

f=da'+8B*+h.
It therefore remains to prove that h € 7 (Q;Ak). Let us first prove that for every
v €Cy (2;A 1) and y € C§ (2;AF1),

[ taw) = [ 6x)=o. (6.14)
Q JQ

We prove only the first identity, the other one being established analogously. We
have, from Theorem 3.28,

[ )= [ (38" -3+ lav)
o o
= [ 8"~ Bday)+ [ (6n'sw)=o.
JQ Q

We now choose, for any ¢ € Cy (.Q;Ak), v =0¢ and y =d¢ in (6.14). We therefore
obtain

/ (h;A9) =0 forevery ¢ € Cy (Q;A%).

Q

The Weyl lemma (cf. [29]) implies that h € C* (Q;Ak) and, therefore, by (6.14),
he o (Q;A%).

Step 3.2. The orthogonality of the decomposition is obtained in the same way as
in Step 1.2.

Step 3.3. The estimate follows from the fact that oc!, o, 81, B2, h! and h? satisfy
the corresponding inequality. O

6.4 Higher Regularity

The following theorems have been established by Morrey [76] (cf. also Theorems
7.7.4 and 7.7.8 in [77]), see also Agmon, Douglis and Nirenberg [4] (for the regu-
larity), Bolik [13], Iwaniec, Scott and Stroffolini [58] and Schwarz [89].

Theorem 6.11 (W”z-regularity). Let r > 0,0 <k <n be integers and 2 C R" be
a bounded open C'3 set. Let f € W"? (.Q;Ak) and o € WTI'2 (Q;Ak) be such that

/ ((dw;du) + (8 ; Su)) = / (fiu) YueWp?(2;A5). (6.15)
Q Q
Then there exists a constant C = C(r,Q) > 0 such that the inequality

lollyriz2 < Cll@ll2 + £ llwr2)
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holds and if, in addition, ® € WTl"2 (.Q;Ak) N (%”T (_Q;Ak) )L, then
lollyrizz < Cllfllyr2 - (6.16)

The same theorem holds true by replacing the subscript T by N.

Proof. Note that the interior regularity for a solution @ of (6.15) is exactly that of
the Laplacian, since by choosing u = @ dx A--- Adx'* in (6.15), we obtain by partial
integration, for every ¢ € Ci (L),

/Q<Va),-l...,'k;V(p>:—/Q a),»l...ikA(p:—/Qm);Au)
:/Q<da);du>+/9<5w;5u>:/Qﬁl...,-k(p.

We will not prove the boundary regularity. We, however, illustrate the idea in the
following simplified setting, which is essentially obtained after having locally rec-
tified the boundary by an admissible boundary coordinate system. Suppose €2 is of
the form

Q={x=(x1,....x) ER":x, <0} NU

for some open set U C R", suppw C U and that

. . _ . 1,2 Ak
/Q(<d(o,du>+<5w,5u>)_/Q<f,u>, Yue W) (2:A8),

with suppu C U. Then, invoking Theorem 5.7, we find

| vo:vi) = [ (fua),

since K¥ and L vanish on the hyperplane {x, = 0}. Thus, exactly the same methods
can be applied as for the Laplacian. We refer, for a detailed proof, to Csat6 [23]. O

The second theorem gives now the appropriate regularity for the Hodge—Morrey
decomposition theorem, cf. Theorem 6.9.

Theorem 6.12. Let r > 0 be an integer, 0 < g < 1 < p <eoand £ C R" be a bounded
open smooth set. Let f € W"P (Q;Ak), respectively f € C"1 (.Q;Ak).

(i) There exist
a e WP (@A), Bews TP (@A),

he%”T(.Q;A") and wEW;”’p(.Q;Ak),

respectively
aeCi(@ARY), Bech @A,

he (A% and o € CFP(2;A%),
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such that, in Q,
f=da+déB+h, a=06w and PB=do.

Moreover, there exist constants Cy = Cy(r,p, Q) and C = Cy(r,q, ) such that

@l + llwrr < Cll e,

[@llcr2q + [hllcra < Cal| fllera -

(ii) There exist
a e Wy (@A), Bewy TP (QiakT),

he A (A% and @ € WP (Q;A5),

respectively
aeCy (@A), e @Ak,

he %\/(.Q;Ak) and o€ C;,H’q (5;/\]‘),

such that, in Q,
f=doa+0B+h, a=0w and B =do.
Moreover; there exist constants Cy = Cy(r, p, Q) and C, = C(r,q, ) such that
l@llyr+2p + 1Allwre < Cill fllwre,
l@ll¢ri2q +[hllcra < Col fllcna -
(iii) There exist
o eW;+1,p(Q;Ak71>, B €W1<',+1,p(Q;Ak+1)’
he %(.Q;Ak), o' e WTr+2’p (.Q;Ak) and ©* € Wj\r,+2’p(Q;Ak),
respectively

ae (@ AR, Becy (@A),
he (A%, o' eCpP(@AN) and o € C(2;A%),

such that, in Q,
f=da+8B+h o=086w" and B=do’.
Moreover, there exist constants Cy = Cy(r,p, Q) and Cy = C(r,q, Q) such that

1o 2 + [l [lyre2p + [lBllwrr < Callfllwee,
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" lcra + 0% llriza + [lhllcra < Call £llcna -

Remark 6.13. (i) When 1 < p < 2, decomposition (i) reads as a direct sum:
LP = dWy? (A1) @ WP (@A) @ o7 (A7),

and similarly for the other two decompositions. If p > 2, then the decomposition is
even orthogonal with respect to the L2-inner product (cf. Theorem 6.9(iv)).

(ii) The above results remain valid if © is C"t3 for the Sobolev case and C"+3¢
for the Holder case.

(iii) The correspondence f — (¢, ,h, ®) is linear. Furthermore, the construction
is universal in the sense that all of the assertions remain valid if (r, p,q) is replaced
by (¥,p',q) as far as f € W'+ (2;A), respectively f € c’'d (2;AF%), with the
same (¢, 8, h, ®) and with constants C; = C (v, p/,Q) and C5 = C5(r' .4/, Q).



Chapter 7

First-Order Elliptic Systems
of Cauchy—Riemann Type

7.1 System with Prescribed Tangential Component

We first deal with the following boundary value problem:

do=f and Sdw=g inQ,
VA®=VAay on dQ,

where f,g and @y are given and V is the exterior unit normal. If there is a solution
and w,wy, f and g are sufficiently regular, then Theorem 3.5 and Theorem 3.23
imply that

df =0inQ, 6g=0inQ, VvAdoy=VAf ondQ.

We will in fact show that these conditions are also sufficient to guarantee the exis-
tence of @ if €2 is contractible (cf. Remark 7.3(v)).

Our method is similar to that applied by Schwarz [89, Theorem 3.1.1] in the
framework of Sobolev spaces; see also Borchers and Sohr [14] and Von Wahl [103,
104] for the case of 1-forms. The problem has also been treated by Georgescu [47,
Theorem 4.2.2] and Kress [63, Satz 8.1] in the setting of Holder spaces. We start
our analysis with an extension theorem.

Lemma 7.1. Let r > 1 be an integer, 0 < g <1 < p < e and Q C R" be a bounded
open smooth set with exterior unit normal v. Let @y : 02 — Ak,

(i) Suppose
_1 .
VA@y € WP (dQ;AMTY) respectively v Ay € C(92;AFT).
Then there exists
wewP (.Q;Ak), respectively @ € C™? (§;Ak),
G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 135
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such that
VAO=VA®y ondQ.

Moreover, there exists a constant C; = Cy(r, p,Q), respectively C; = C»(r,q,2),
such that

[ollwrr) < Cil[v Aol o olle@) = CllvAalicraaa)

WP PP (0Q)

(ii) Suppose
Vo € erllf’p (8Q;Ak71), respectively 'V 10y € Cr’q(c?.Q;Ak’l).
Then there exists
wewr? (Q;Ak), respectively @ € C"™ (ﬁ;/\k),

such that
Voo =Vv.iwy ondQ.

Moreover; there exists a constant C; = Ci(r, p,Q), respectively C; = C5(r,q,2),
such that

ollwrr) < Cillvam] v oller@) = Cllvamleaoa) -

WP (9Q)

Proof. We only discuss statement (i) concerning the exterior product, the other

one being handled similarly. The extension theorem for functions is well known
1

(cf. Adams [2] and Gilbarg and Trudinger [49]) and we get, if f € W' 77 (9Q),

respectively C" (d€2), that one can extend f by f so that

| fllwre (@) < Ci ||f||W,_1

boioey TP [l o) < Callflenon.

for some constants C; and C; independent of f. We now let & = v A @y and extend
it so as to have, without relabeling, oc € W"? (.Q;Ak) , respectively C"? (ﬁ;Ak) .
Extending V in such a way that the extension, still denoted v, belongs to C* (Q;RR")
and setting

0w=VvV.iQ,

we have the claim. Indeed, in view of Proposition 2.16, we find, on 92,
VAO=VA(via)=a—Vvi(VAQ)=0=VAw,
which is the assertion. 0

We now state the main theorem of the present section.

Theorem 7.2. Let r > 0 and 0 < k < n be integers, 0 < g < 1,2§p<wajd9 C R”
be a bounded open smooth set with exterior unit normal v. Let f: Q — AR
g:Q = AV and wy: dQ — A*. Then the following statements are equivalent:
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(i) Let
FEW(QAM) g e WP (@A) and v Ay € WHTHP (90 AR,
respectively
fecr (E;AH])7 gecCcH (5;/\"71) and v Ay e CH14 ((9!2;/\"“),
satisfying the conditions
df=0inQ, 6g=0inQ, VvAdwy=VAfondQ (A1)

and, for every x € 7 (Q; A1) and y € A7 (Q;A%71),
L= vraz =0 ad [ (@y)=0. @
Q 20 Q

(ii) There exists @ € W'TLp (Q;Ak), respectively @ € C'+14 (E;Ak) , such that

do=f and dw=g inQ,
VA®W=VAay ondQ.

In addition, there exists a constant C; = C\(r, p, Q) such that

|@llyri1r@) < Ci <||f||W’-P(Q) + | gllwre (@) + |V/\(1XJW,+11',,,,(M)) )
respectively Cy = Cy(r,q, Q) such that
lollerta@ < C2 (Il cra) +lgllcra@ + IV A G lleriraga) )

Remark 7.3. (i) When k = 0, all statements of the theorem have to be understood as
if g were not present. For example, statement (ii) reads then as

do=f inQ,
Ow=0w) ondQ.

Moreover, the result is also valid when g = 0,1 (see Theorem 8.16 and the remark
following it). Furthermore, when k = n, then all statements of the theorem have to
be understood as if f and @y were not present. In this case, statement (ii) becomes

do=g inQ.

@ii) If » > 1, conditions (A1) are well defined. This is obvious for the first

1
two equations. The third one makes sense in W' 7" (8Q;Ak+2), respectively
cr4 (QQ;A"”) , due to Theorem 3.23 and Lemma 7.1.
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(iii) If » = 0, then the conditions d f = 0 and 6g = 0 are understood in the sense
of distributions. The third statement in (A1) is well defined in the Holder case and
is understood, in the Sobolev case, in the weak sense, namely

| r:60)= [ vnanise) =0 (B1)

for every ¢ € C* (2;A%2).
(iv) If » > 1, then (B1) is equivalent to the first and third conditions in (Al).

This can be shown by several partial integrations (cf. Step 2.1 in the proof of Theo-
rem 7.2).

(v) If Q is contractible and k < n — 2, then condition (A2) drops due to Theo-
rem 6.5.

(vi) The above results remain valid if the set € is C"*> for the Sobolev case and
C"34 for the Holder case.

(vii) We will prove the result for C"*¢ and the same proof is valid for W"? when
p=>2.

(viii) The construction is linear and universal in the sense of Remark 6.13.

Proof. We deal with the statement in Holder spaces.

Step 1. We start by showing that (ii) implies ().

Suppose first that » > 1. Theorems 3.5 and 3.23 immediately imply the conditions
in (Al). The first condition in (A2) follows by partial integration; indeed, for any
X € A (A1),

/['2<f;x>—/m<wwo;x>=/Q<dw;x>—/m<wwo;x>
— [ wa@-o:z) - [ (@:87) 0.

The second condition in (A2) follows in a similar way.
If » = 0, the first two conditions in (A1) are understood in the sense of distribu-
tions (cf. Proposition 7.6) and follow by partial integration, since

| (r:69)= [ dw:s0) =~ [ (:650) =0
Q Q JQ
for every ¢ € Cy (.Q ;Ak”) . The second condition in (A1) follows in the same way.

Condition (A2) and the third condition in (A1) follow exactly as in the case » > 1.

Step 2. We next turn to the implication (i) = (ii). We first extend, according to
Lemma 7.1, wy by @y so that v A wy = v A @y.

Step 2.1. We now show that (A1) implies the following two equations:

| (:60)~ [ @an:69) =0, voecm(@ak?), (7.1)
Q Q



7.1 System with Prescribed Tangential Component 139

/Q<g;d1/f> =0, VyeCy(Q;A?). (7.2)

Let us first assume that » > 1. Equation (7.1) follows by several partial integrations
and the first and third identity in (A1) in the following way:

L rise)=— [ arior+ [ (vasio)= [ (vadanio)
= [ tadanio)+ [ (danis9) = | (dan:s0).

If r =0, we can apply Proposition 7.6 twice, since f and d@ are closed in the sense
of distributions. This gives

| o= [ wnrio) = [ (vadeng)= [ (@ais).

Equation (7.2) follows immediately from the second condition in (A1) by a single
partial integration if » > 1, respectively from Proposition 7.8 if r = 0.

Step 2.2. We apply the Hodge—Morrey decomposition (cf. Theorem 6.12(i)) to
decompose f —d @y and obtain (if kK = n, we do not need this construction)

f—diy=doy+68Br+xs inQ,
Baf:O, dﬁfzo in Q,
vAar=0,vABr=0 ondQ,

where x; € A7 (Q;Ak“) . Moreover, there exists a positive constant C = C(r,q, Q)
such that

lesllcrsra@) < € (Ifller@) + 1@l crerage) ) -

We claim that § B and x vanish. Using the orthogonality of the decomposition and
partial integration, we obtain

| 188/ = [ (8B —daw) =0.
In the last equality we have used (7.1) and a density argument. The claim xr = 0

follows in the same way using partial integration and the first condition in (A2),
namely

/\xf\z /xff day) = /<xf;f>—/m<xf;wwo>:

Hence, we have found oty € C"™14(Q; A¥) satisfying (if k = n, we take oy = 0)

dog=f—dd and Sar=0 inQ,
(7.3)

vAar=0 on dQ.



140 7 First-Order Elliptic Systems of Cauchy—Riemann Type

We now apply the same decomposition to g — d @y (if k = 0, we do not need this
construction) and get

g— 8@ =day+ 8B, +y, inQ,
80, =0,dB, =0 inQ,
VAGg=0,vAB, =0 ondQ,

where Y, € 7 (.Q;Ak_l) . Moreover, there exists a positive constant C = C(r, ¢, Q)
such that

1Bellcra@) < € (lgllcra) + I @lcrsra)) -
Using (7.2), the second condition in (A2) and the same argument as before, we have

that dot, and y, vanish (cf. Theorem 3.25 and Corollary 3.29). Hence, we have
found B, € C""19(Q; A¥) satisfying (if k = 0, we take B, = 0)

dB; =0 and 0B, =g—6a@ inQ, (7.4)
VAB, =0 on 0Q. '
We now set
o = af +Bg + (1)07
which satisfies, due to (7.3) and (7.4),
do=doy+diy=f and 6w=0B,+6@=g inQ,
VA®=VAG@=VAwy on 0.
This concludes the proof. O

7.2 System with Prescribed Normal Component
Using statement (ii) instead of (i) in Theorem 6.12, we obtain the following theorem
in a completely analogous way as in Theorem 7.2.

Theorem 7.4. Let r > 0 and 0 < k < n be integers, 0 < g < 1, 2 < p < o and
Q C R" be a bounded open smooth set with exterior unit normal v. Let f :
Q — A o0 Q — A and wy : 0Q — AX. Then the following statements are
equivalent:

(i) Let
1
FeWP (A, g e WP (A and v iwy e WP (90 A%,
respectively

feC(Q;AMY), ge C™(QAM ) and v awy € CTTH(9Q; AR,
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satisfying the conditions
df=0inQ, 6g=0inQ, v.idwy=v.igondQ (CD)

and, for every x € Hy (2;A*Y) and y € A, (Q;AFT)

|- [ oo =0 ad [ () —o. (©2)

(ii) There exists @ € W'+1.p (.Q;Ak), respectively @ € C"14 (E;Ak) , such that

do=f and dw=g inQ,
Voo =V_my on 0f.

In addition, there exists a constant C; = Cy(r, p, Q) such that

[@llisiay <1 (Wl + lelhrniay + 1V 500l oy )
respectively Cy = Cy(r,q, ) such that

@l crtaay < C (Il + I8l + 1V 100 lerraza) )

Remark 7.5. (i) When k = 0, all statements of the theorem have to be understood as
if g and wy were not present. For example, statement (ii) reads then as

do=f inQ.

Similarly, when k = n, then all statements of the theorem have to be understood as
if f was not present. In this case, statement (ii) becomes

dw=g inQ,
O=0wy ondQ.

Moreover, the result is also valid when g = 0, 1 (see Theorem 8.18 and the remark
following it).

@ii) If r > 1, conditions (C1) are well defined. This is obvious for the first
two equations. The third one makes sense in erll”p (8!2;/\"’2) , respectively
crH (8.(2;/\]‘_2) , due to Theorem 3.23 and Lemma 7.1.

(iii) If » = O, then the conditions d f = 0 and 6g = 0 are understood in the sense
of distributions. The third condition in (C1) is well defined in the Holder case and
is understood, in the Sobolev case, in the weak sense, namely

/Q<g;d<p>f/(m<vm>o;d<p> ~0 D1

for every ¢ € C~ (ﬁ;Ak_2) .
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@iv) If r > 1, it can be easily shown, as in Remark 7.3, that (D1) is equivalent to
the second and third conditions in (C1).
(v) If Q is contractible and k > 2, then condition (C2) drops due to Theorem 6.5.

(vi) The above results remain valid if the set  is C"*3 for the Sobolev case and
C" 34 for the Holder case.

(vii) The construction is linear and universal in the sense of Remark 6.13.

7.3 Weak Formulation for Closed Forms

We now establish two propositions that allow one to express the conditions df = 0
and 8¢ = 0 in the sense of distributions in equivalent ways. We have used them to
prove Theorems 7.2 and 7.4 when r = 0. The proof below, however, uses implicitly
(through Theorem 8.18) the theorems when r = oco.

Proposition 7.6. Let 0 < k < n— 1 be integers and 2 C R" be a bounded open
smooth set with exterior unit normal v.

Part 1. Let f € L' (Q;Ak) . Then the following statements are equivalent:

(i) f is closed in the sense of distributions, namely
/Q<f;5(p> =0 forevery g€ C(°)°(Q;Ak+l).
(ii) The following holds:
/ (f;00) =0 forevery ¢ € CX}’(E;A/‘H).
Q

Part 2. Let f € C%4 (ﬁ;Ak) with 0 < g < 1. Then the two statements of part 1
are equivalent to the two conditions below.

(iii) The following holds:

L 801 [ (vAfi0) =0 forevery g € 7 (@:A").
(iv) The following identity is valid:

| 800 [ (vAfip)=0 forevery g e C(@:A*).

Remark 7.7. Since (i) is equivalent to (ii), the following statement is also equivalent
with f being closed in the sense of distributions. For every open smooth set O C €2,

/(f;&p) =0 forevery ¢ € Cy (0;A*).
0
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Proof. Part 1. The implication (ii) = (i) is trivial, so let us prove (i) = (ii).
Step 1. Let ¢ € Cy (ﬁ;Ak“) and find, using Theorem 8.18,
¢ eC*(Q:AM") and ||9]lc11p <C,

where C = C (||@]|-1.1/2,2) > 0 such that

50=06¢ inQ,
0=0 on dQ.

This is possible using Theorem 3.23 and since ¢ € Cy (E;Ak“) . Next, let e >0
be small enough. We can then find an open set €2, such that

Q:CQ and dist(2:0Q)<e
and p, € Cy () such that
pe=1inQ; and |gradpelco <2/e.

We then let ¢z = pe¢ € Ci (2;A**!) and observe that since ¢ = 0 on 92, there
exists a constant C = C (|@|| 112, 2) > 0 independent of € such that

[@ellct <C and @ — @in W' ase — 0.
We can therefore assume that, up to a subsequence, we also have
60 =060 =00 ae.ase—0.

It therefore follows from the dominated convergence theorem that
/ (f;:80—08¢:) >0 ase—0.
Q

Step 2. Let ¢ € Cyy (Q; A1) and let ¢ € C§ (Q2;A!) be as in Step 1. The
hypothesis (i) and Step 1 lead, as € — 0, to

| r:80) = [ (£:800+ [ (r:80- 690 = [ (1:3069:) 0.

which implies (ii), namely

| (r:80) =0,

Part 2. The implications (iv) = (iii) = (i) are obvious. So let us show (i) = (iv).
In view of part 1, (i) implies

/ (f;89) =0 forevery ¢ € Cy (Q2;A*). (7.5)
Q
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Applying the Hodge-Morrey decomposition theorem 6.12(ii) to f, we get o €
C]{,’q (E;Ak_l) ,B € C;,’q (E;Ak“) and h € 4 (.Q;Ak) such that

f=da+0B+h inQ.

Due to (7.5) and by a density argument (cf. Theorem 3.25), we obtain
| tr:68)=0.
Q

The L?-orthogonality of the Hodge—Morrey decomposition and the previous equa-
tion give
f=da+h in Q.

Let now {ag} C C (2;A*7") be such that
o — o inC' (A" ase—o0.
Define f; = dae + h. By construction, it has the following properties:
dfe=0in Q2 and fe— funiformly as e — 0.

Since fe is in C! and closed, we obtain by partial integration

/ <f5;6(p>—/a (VA fe;90) =0 forevery ¢ € C(Q;A*).
Q Q
Taking the limit as € — 0, we have (iv). 0O

We also have the dual version.

Proposition 7.8. Let 1 < k < n be integers and  C R" be a bounded open smooth
set with exterior unit normal v.

Part 1. Let f € L! (Q;Ak) . Then the following statements are equivalent:

(i) f is coclosed in the sense of distributions, namely
/_Q<f;d(p> =0 forevery ¢ c Cg’(!);/\k’l).
(ii) The following holds:
/Q(f;d(p> =0 forevery ¢ € C7(Q;:AF1).
Part 2. Let f € C%4 (5;/\") with 0 < g < 1. Then the two statements of part 1
are equivalent to the two conditions below.

(iii) The following holds:

/Q<f;d(P>—/tm<V—'f;(P> =0 forevery @ EC}’V"(ﬁ;Ak’l).
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(iv) The following identity is valid:

/Q<f;d<P>—/a.Q<VJf;(p>:O forevery(pEC‘”(ﬁ;Ak’]).

7.4 Equivalence Between Hodge Decomposition and
Cauchy-Riemann-Type Systems

We now show that Theorem 7.2, respectively Theorem 7.4, is in fact equivalent
to the Hodge—Morrey decomposition theorem (cf. part (i), respectively part (ii), of
Theorem 6.12). We already saw that part (i) of Theorem 6.12 implies Theorem 7.2
(and part (ii) implies Theorem 7.4); we now show the converse. We establish this
fact only in Holder spaces, but the same result holds in Sobolev spaces.

Proposition 7.9. Let Q C R" be a bounded open smooth set. Let 0 <k <nandr > 1
be integers, 0 < g < 1l and f € C" (E;Ak) . Then Theorem 7.2 implies the Hodge—
Morrey decomposition Theorem 6.12(i); more precisely, it implies the existence of
oc C;H’q (ﬁ;Ak_l) ,B € C;H’q (ﬁ;AkH) and h € % (.Q;Ak) such that, in Q,

f=da+8B+h, 8a=0 and dB=0,

with o, B and h mutually orthogonal with respect to the L*-inner product. It also
implies the existence of a constant C = C(r,q,Q) such that

[ellcrera +1IBllerera + lIhllcra < Cllfllcra -

Remark 7.10. The proposition does not, however, establish the existence of a ® such
that o = 0w and f = dw.

Proof. We use Theorem 7.2 three times. We first find a solution ¢ € C"7 (2;A*) of

{d¢:0 and 8¢ =8f inQ, 76

VAP =0 ondQ.

The solvability conditions (A1) (or equivalently (B1)) and (A2) are easily verified.
We next write
o=0"+x, o-e(H), xeAtr.

Since ¢ and (jﬁ)l are closed in C"? (E;Ak) , we can apply the closed comple-
ment theorem (cf. for instance, Alt [5, Theorem 7.15]) and find that the projections
onto .74 and (L%ﬂr)L are continuous, namely

19" [lcra + 12 llcra < Cll@lcra

for some constant C independent of ¢. We now find a solution o € C"+1+4 (E;Ak_l)
such that
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da=¢+ and Sa=0 inQ,
vAo =0 ondQ.

The solvability conditions (A1) and (A2) are satisfied due to (7.6) and the fact that
ot e (f%”T)L . We now apply again the L?-orthogonal decomposition to f —d o and
obtain

f—dou=g+h, ge ()" and he 7.

As above,
llgllcra + || Allcra < C||f —deal|cra .

At last, we find a solution § € C"*14 (Q; A¥F1) of

dBp=0 and OB=g inQ,
VAB=0 on dQ.

This is possible since
S8g=08(f—da)=38¢p—8doe=38¢p"—8do=0

and g € (JfT)l . By construction, ¢, 8 and & have all of the required properties. O



Chapter 8
Poincaré Lemma

8.1 The Classical Poincaré Lemma

Our first result is the classical Poincaré lemma. Its proof is elementary and does not
use the Hodge—Morrey decomposition. Its drawback (compare with Theorem 8.3)
is that it does not provide the expected gain in regularity and is restricted to con-
tractible sets.

Theorem 8.1 (Poincaré lemma). Let r > 1 and 0 < k < n— 1 be integers and Q C
R" be an open contractible set. Let g € C” (Q;AkH) with dg =0 in Q. Then there
exists G € C" (.Q;Ak) such that

dG=g in£.
Remark 8.2. When k = 0, the theorem gives immediately that G € C"1 (Q).
Proof. Since Q is contractible, we have that there exist xo € Q and
FeC”([0,1] x Q2;Q)

such that for every x € Q,

F(0,x)=xp and F(l,x)=x.
We then apply Theorem 17.3 to F to get that there exists G € C” (.Q;Ak) such that

dG=F(g)-F (g =g inQ.

This achieves the proof of the theorem. O

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 147
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8.2 Global Poincaré Lemma with Optimal Regularity

We now have a global version of Poincaré lemma with optimal regularity, as well as
its dual version.

Theorem 8.3. Let r > 0 and 0 < k <n—1 be integers, 0 < o0 < 1,2 < p < o0 and
Q CR" be a bounded open smooth set. The following statements are equivalent:

(i) Let f €e WP (Q;Ak“) , respectively C"% (E;Ak“) , be such that
df=0inQ and / (f;w) =0 forevery y € j‘ﬁv(Q;AkH).
Q

(ii) There exists @ € W™+1:P (Q;Ak) , respectively C' 1% (ﬁ;/\k) , such that
do=f inQ.
Moreover; there exists a constant C; = Ci(r, p, Q) such that
ollyritr < Cillfllwre,
respectively there exists a constant Cy = Co(r, o, ) such that
@llcrra < Cal fllene

Theorem 8.4. Let r > 0 and 1 < k < n be integers, 0 < o0 < 1, 2 < p < oo and
Q CR" be a bounded open smooth set. The following statements are equivalent:

(i) Let g € W"P (.Q;Ak’l) , respectively C"% (§;Ak’1) , be such that
6g=0inQ and / (g;¥) =0 forevery y € jfT(Q;Ak*]).
Q

(ii) There exists @ € W' +1-r (Q;Ak) , respectively C'+1:¢ (ﬁ;Ak) , such that
do=g inQ.
Moreover, there exists a constant Cy = C(r, p,Q) such that
[@llyr1r < Cillgllwer,
respectively there exists a constant Co = Co(r, @, Q) such that
@llcrera < Colgllere -

Remark 8.5. (i) When k =n— 1 in Theorem 8.3 or kK = 1 in Theorem 8.4, there is no
restriction on the solvability of dw = f or §® = g (cf. Theorem 6.5).

(ii) If r = 0, then the conditions df = 0 or g = 0 have to be understood in the
sense of distributions.
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(iii) The above results remain valid if  is C"*3 for the Sobolev case and C"+3¢
for the Holder case.

(iv) If Q is contractible, then (cf. Theorem 6.5)

(2,4 ={0} if0<k<n—1,
H(Q2;A) = {0} if1<k<n.

(v) The construction is linear and universal in the sense of Remark 6.13.

We only prove the first theorem and only in the Sobolev case; all of the other
statements are obtained by trivial adaptation of the proof below.

Proof. (ii) = (i). Suppose first that there exists @ € W'*1? (Q;Ak) such that f =
do. Clearly, df = 0 and the other assertion follows by partial integration, since, for
every Y € Jy,

[ v = [ o)== [ (@:6w)+ [ (@:voy) =0
Q Jo Jo Joga
(i) = (ii). Suppose now that
df =0in Q and / (f;w) =0 for every y € S (2;AF1).
Q
We then appeal to Theorem 7.4 to solve the problem

do=f and Sdw=0 1inQ,
Voo =0 on dQ.

This concludes the proof. O

When k = 0 in Theorem 8.3 or kK = n in Theorem 8.4, then the result can be
refined so as to include the limit cases o¢ =0, 1.

Corollary 8.6. Let r > 0 @ an integer, 0 < o < 1 and Q C R" be a bounded open
smooth set. Let f € C"* (.Q;Al) be such that

df=0inQ and /<f;l//>=0f0reveryl//e<}ﬁv(£2;/\l).
Q

Then there exist ® € C"% (Q) and a constant C = C(r, ) such that
do=finQ and |||+ <Clflcme.

Corollary 8.7. Let r > 0 be an integer; 0 < o < 1 and  C R" be a bounded open
smooth set. Let g € C"* (Q;A"‘l) be such that

0g=0inQ and /<g;l//>:OforeveryllfejfT(Q;A”_l).
Q



150 8 Poincaré Lemma
Then there exist @ € C"+1% (5;/\”) and a constant C = C(r, Q) such that
bw=ginQ and |0|cri1a <Clgllcre.

We only prove the first corollary, the second one being obtained by duality.

Proof. Choose p such that n < p < eo. Since C"* () C W'’ (&), we can apply
Theorem 8.3 and find @ € W' 17(Q) such that

do=grado=f inQ.
Note first that, since p > n, we get, from the Morrey imbedding theorem,
weC (Q).

Using again that p > n, we obtain, since V'@ € W', that V'@ is differentiable in
Q and its gradient equals its weak gradient (cf. e.g., Theorem 5 in Section 5.8.3 in
[41]). Note that in our case, we have everywhere (and not just almost everywhere)
differentiability, since f € C"*. Hence, we have obtained that @ € C” tha (ﬁ) and
the proof is complete. O

It is possible to give a more classical and direct proof of the theorem without
appealing to Hodge—Morrey decomposition. We discuss only the case where €2 is
star-shaped with respect to 0. It can be easily seen that if f is a closed 1-form, then

a)(x):/ol (f (%) 5x) dt

has all the desired properties. This is elementary if r > 1 and can easily be estab-
lished even when r = 0O (for more details, we refer to Csaté [23]).

8.3 Some Preliminary Lemmas

We start with a slight improvement of a lemma proved in Dacorogna and Moser [33].

Lemma 8.8. Let r > 0 be an integer, 0 < o < 1 and Q C R" be a bounded open
C' 1% set with exterior unit normal v. Let ¢ € C"* (0Q) . Then there exists

he e (E)
satisfying, all over 08,
gradb=cv and b=0.
Furthermore, there exists a constant C = C (r,Q) > 0 such that

[1Bllcrir.a (@) < Cllellera o) -
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Remark 8.9. The above result is valid (cf. Proof 1 below) in Sobolev spaces and
reads as follows. Let r > 1 be an integer, | < p < 0 and 2 C R” be a bounded open

1 .
C™+! set with exterior unit normal v. Let ¢ € W'~ 7"7(9Q); then there exists
be Wty (Q)

satisfying, all over d €2,
gradb=cv and b=0.

Moreover, there exists a constant C = C(r, p, ) > 0 such that
Hb||W'+1-/'(Q) <C HCHW»'fl/p.p(ag) :

We start by proving the lemma in the particular case of the half-space.

Lemma 8.10. Let n > 2, r > 0 be integers, 0 < a < 1 and f € C"*(R""! ).Let 8 >0
and ¢ € C3(R"™") be such that

supp@ C By and =1,
Rn—1

where B% C R"! denotes the open ball centered at O and of radius 8. Then F :
R" — R defined by

F(x) =F (X, x,) = x, Ri-1 () f(X —xny') dy'

belongs to C" 1% (R") NC=(R" \ {x, = 0}) and satisfies, for every x¥' € R" !,
F(xX',0)=0 and gradF(x',0)=(0,...,0,f(x)).
Moreover, for every R > 0, there exists C = C(r,R, @) > 0 such that

1Ellerste@e) < Clflcna @y, g

Proof. We first compute the derivatives of F when x;, # 0. Since

F( o) = [ 000 =)y

1 X =y NN
= [ o () soa,
we find, for 1 <i<n—1,

IF 1 a0 (Y= .
= [ 52 () s0ay

n—1 )C;ql_l axi
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whereas, for i = n,

J 1 /) )
a—)fn(x’,xn:(z—n) / , zl“’(x y)f(y’)dy

Rn—1

_‘/R’Fl <y’;grad(p (y/)> f(x’—xny/)dy/.

These formulas extend continuously to x,, = 0 and we get, since supp ¢ C B% and
fR"‘l Q= 1, that

IE oy = £l 99 _ :
Txi(x’o)if(x)/ngnl&x,( Ndy' =0, 1<i<n—1,
oF "o
S0 =@-nfe) [ o0y

) [ rerado () dy' = £(X).
From the above formulas we immediately infer that

||FHC'+I a BR < C”f”croc (l+6))

This concludes the proof of the lemma. O

We next prove Lemma 8.8.

Proof. If one is not interested in the sharp regularity result, a solution of the problem
is given by

b(x) = —c(x)§ (d (x,0Q)),

where ¢ has been extended to Q and d (x,d) stands for the distance from x to
the boundary (recalling that the distance function is as regular as the set £2 near the
boundary; see, e.g., Gilbarg and Trudinger [49]) and { is a smooth function so that
£(0)=0, ¢’ (0) =1 and & = 0 outside a small neighborhood of 0.

We will provide two proofs of the lemma. The first one uses elliptic regularity
and hence only works whenever 0 < a < 1 (and also works in L? for 1 < p < o0);
in this case, the constant obtained depends also on . The second one, which works
also when o = 0, 1, uses admissible boundary coordinate systems and the previous
lemma.
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Proof 1. The desired solution b is obtained by solving
A’h=0 in Q,
{b:Oandgl‘j =c¢ ondQ.
The solution
beC™(Q)NC(Q)

satisfies the estimate (see Agmon, Douglis and Nirenberg [3], Theorem 12.10 for
the existence and Theorem 7.3 and the remarks following for the estimate)

Bty <€ lellcragoay -
Clearly, b solves on d£2,

gradb=cv and b=0.

Proof 2. Let m > 0 be an integer and, for 1 <i < m, let U;,V; be open sets in R"
and ¢; € Diff 1@ (Ui;V;) be admissible boundary coordinate systems, as given in
Proposition 3.17, such that

m
aQcJv.
=1

Without loss of generality, we can assume that U; are open balls centered at 0, ¢; €
Diff ™% (T;V;) and (see Remark 3.16)

10 '
ayn - v((pl)'

Moreover, let {6;}” , be a smooth partition of unity of dQ subordinate to {V;}”", .
In the sequel, C;,C, and C3 will denote generic constants depending on 7,2, U; and
0;. We also let

H={(,0)eR"y eR" 1} cR".
We define for (y/,0) € U,
gi(y) = c(¢:(y,0)).
Note that g; € C"*% (Ui ﬂH) in view of Definition 16.7. Using Theorem 16.11 and

Definition 16.7 again, we can extend g; such that g; € C;® (R"™!), satisfying the
estimate

18illcrern-1y < Crllellcraag) -
According to Lemma 8.10, there exists f; € C""1:% (R") such that on H,

fi=0 and gradf;=g;e,,
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where e, = (0,...,0,1) and we have
I fillerira@, < Co8illcraga-1y < Callellcra(ag) - (8.1)

We claim that b given by

0;(x) fi(¢; " (x))

s

b(x) =

has all of the desired properties. If x € dQ, then (pf1 (x) € H and, thus, we immedi-
ately obtain that f;(¢; ' (x)) = 0. Therefore, we get all over <,

gradb(x) = Y BV (fio g () = ¥ 6,0V filo () Ve ()

on
=

[
L
[l

1

0:(x)gi(@; ' (x))en Vo' (x) = Y Bi(x)c(x)enV ;! (x).

I
™=

Il
—_
Il
—_

It remains to show that e,V ' (x) = v(x), which is equivalent to, setting y =

(piil(x%
en=V(i(y))Vei(y) foreveryye HNU;.

This follows from the fact that ¢; is an admissible boundary coordinate system,
namely for 1 <[ <n,

@0)To0) = (Vo0 5200 ) = (5201 5E0) ) = a.

The estimate of the Hélder norm of b follows from (8.1), Theorem 16.28 and The-
orem 16.31. O

We now need a generalization of the above lemma to differential forms, as
achieved in Dacorogna [27].

Lemma 8.11. Let r > 0and 1 <k <n—1 be integers, 0 < o < 1 and 2 C R" be a
bounded open C'+'% set with exterior unit normal v.

(i) If c € C"* (B.Q;Ak) is such that
VAc=0 ondQ,
then there exists b € C"™1:® (ﬁ;Ak’l) satisfying all over 042,
db=c¢, 6b=0 and b=0.
Moreover, there exists a constant C = C (r,2) > 0 such that

1Bllcrra@) < C llelleraaq) -
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(ii) If c e C"% (QQ;A") is such that
vic=0 ondQ,
then there exists b € C"T1& (§;Ak+1) satisfying all over 0£2,
ob=c, db=0 and b=0.
Furthermore, there exists a constant C = C(r,2) > 0 such that
bl ey < € llelcraon -

Remark 8.12. (i) If k = 0 in statement (ii) (and analogously if k = n in statement (1))
and 0 < o < 1, then it is easy to find b such that (and without any restriction on ¢)

Sb=c and db=0 inQ,

where ¢ has been extended to Q with the appropriate regularity. Indeed, choose
b = grad B, where B solves

AB=c inQ,
B=0 ondQ.

(ii) The above result remains valid, with the same proof, in the Sobolev setting.
More precisely, statement (i) (and similarly for statement (ii)) reads as follows. Let
r> 1 be an integer, 1 < p < oo and 2 C R” be a bounded open C"*! set with exterior
unit normal v. Let ¢ € W/ —1/p.p (a.Q;Ak); then there exists

be Wr+l,])(Q;Ak71)
satisfying all over d£2,
db=c, 6b=0 and b=0.

Moreover, there exists a constant C = C(r, p, Q) > 0 such that
Hb||W'+LP(Q) <C HCHW’*I/PW(()Q) .

Proof. Step 1. We start with case (i). First, solve with Lemma 8.8 the problem,
on dQ2,
gradbil...,-H = (\/_16‘),'1...,',{7l v and bil'“ik—l =0

for every multi-index 1 <ij < -+ <i;_; <nand set

b= ) biyeoip_ dXT A Adx
1<ii<..<ig_1<n

The formulas of Propositions 2.6 and 3.3 immediately imply that, on dQ,

db=vA(vic) and S6b=vi(vic)=0.
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We combine the first equation with the hypothesis v A ¢ = 0 and use (2.7) to get
db=vA(vic)=VA(vic)+Vi(VAc)=c ondQ.

We have therefore proved the assertion.

Step 2. For (ii), we first solve, on €2,

gradb;, i, = (VAc) v and b =0

i1l i1 it

and then proceed exactly as in Step 1. This concludes the proof of the lemma. O

If Q is contractible, then Lemma 8.11 can be generalized and gives a global
version of the Poincaré lemma on the manifold 9.

Corollary 8.13. Let 2 C R" be a bounded open contractible smooth set with exte-
rior unit normal v. Let r > 1, 1 <k <n—1 be two integers and 0 < o < 1. Then
the following are equivalent:

(i) Let c € C"% (8Q;Ak) satisfy
VAde=00ndQ ifk<n-2,

/ VAc=0  ifk=n—1.
202

(ii) There exists b € C"t1H* (E;Ak’l) satisfying all over 02,
db=c and 6b=0.
Remark 8.14. (i) v Adc € C"" 1% (9Q;A*"2) is well defined in view of Theo-
rem 3.23.

(i1) If k = n, then the problem is solvable without any condition on ¢ and the
topology of 2 (cf. Remark 8.12()).

(iii) The corollary is indeed a generalization of Lemma 8.11 since vAc =0
implies v Adc = 0, appealing again to Theorem 3.23.

(iv) We cannot require the solution b to satisfy b = 0 on dQ as in Lemma 8.11.
This would imply 0 = Vv Adb = v Ac on dQ, but v Adc = 0 does not imply, in
general, vAc=0.

(v) An analogous result holds true in Sobolev spaces.
Proof. The implication (ii) = (i) follows immediately from Theorems 3.23 and

3.26. So let us show the reverse implication. We first apply Theorem 7.2 to find a
solution u € C"* (.Q;Ak) of the problem

du=0 and Su=0 inQ,
VAu=VAc on df.
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Conditions (A1) and (A2) of Theorem 7.2 are satisfied, since /%7 (2;AX") is equal
to {0} if k < n—2 and is equal to the set of constant volume forms if k =n — 1 (cf.
Theorem 6.5). We next use Theorem 7.4 to find a solution @ € C"+1:% (Q;Ak’l) of

do=u and dw=0 inQ,
Voo =0 on dQ.

Conditions (C1) and the first equation in (C2) are obviously satisfied. The second
equation in (C2) follows from the fact that /4 (2;AX) = {0}, cf. Theorem 6.5. We

now use Lemma 8.11 to find v € C""1% (Q; A*~1) satisfying all over 02
dv=c—u and 0ov=0.

At last we set b = w +v. It can be easily seen that b has the required properties. O
We also have the dual version of the corollary.

Corollary 8.15. Let Q C R" be a bounded open contractible smooth set with exte-
rior unit normal v. Let r > 1, 1 <k <n—1 be two integers and 0 < a < 1. Then
the following are equivalent:

(i) Let ¢ € C"* (9Q; AX) satisfy
Vidc=00ndQ ifk>2,

(ii) There exists b € C' 1 (E;AHI) satisfying all over 0£2,

O6b=c and db=0.

8.4 Poincaré Lemma with Dirichlet Boundary Data

We now consider the boundary value problems

do=f inQ, d dw=g inQ,
n
Ww=0w) ondQ A Ow=0am) ondQ.

In contrast to the problems of Section 7.1 (respectively Section 7.2), @ (respec-
tively dw) is not prescribed; however both the tangential and normal components
of @ are given on the boundary. It turns out that the problems can be solved under
exactly the same hypotheses on f, g and @y as in Theorem 7.2 (respectively Theo-
rem 7.4). We follow exactly the construction in Dacorogna [27] for Holder spaces;
a very similar method is used in Schwarz [89] for Sobolev spaces.
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Theorem 8.16. Let r > 0 and 0 < k <n—1 be integers, 0 < a < 1,2 < p < oicznd
Q C R" be a bounded open smooth set with exterior unit normal v. Let f : Q —
AR and ayy : dQ — AF. Then the following statements are equivalent:

(i) Let f € C"* (Q;A**!) and ax € C"T1%(9Q; A%), respectively f € W'P(L;
AR and oy € W (02;A%) | satisfy

df =0inQ, vAdwy=VAfondQ (A1)

and, for every y € A7 (Q; A1),

/(f;x>—/ (VvAwy;x) =0. (A2)
Q Jo)
(ii) There exists @ € crtlo (E;Ak), respectively @ € wrtlp (Q;Ak), such that
do=f inQ,
w=wy ondf

and there exists a constant Cy = Cy(r, o, Q) such that

lollerra@) < €1 (I llcra@ + I @vllerraaay)

respectively there exists a constant Cy = C(r, p, Q) such that

l@lhyrsto@) < G2 (I lwro@) + @0 lyri-1nnag) ) -

Remark 8.17. (i) In the case k = n — 1, conditions (A1) are trivially satisfied and

(A2) reads as
L= e
Q oQ

if Q is connected (cf. Theorem 6.5).

(i1) When k = 0, then the result is still valid for o« = 0, 1 with an argument com-
pletely analogous to the one of Corollary 8.6.

(iii) If » > 1, conditions (A1) are well defined. This is obvious for the first equa-

1
tion. The second one makes sense in W'~ »* (8Q;Ak+2) , respectively C"%(dQ;
AK2) | due to Theorem 3.23.

(iv) If r = 0, then the condition d f = 0 is understood in the sense of distributions.
The second condition in (A1) is well defined in the Holder setting and is to be
understood, in the Sobolev setting, in the weak sense, namely

[ r:80)~ [ (vaasg)=0. vpecT (@), @)
Q 0Q

which is equivalent with (A1) whenever r > 1 (cf. Section 7.1).
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(v) The above results remain valid if the set £ is C"3 for the Sobolev case and
C'*+3:% for the Holder case.

(vi) If Q is contractible, then (cf. Theorem 6.5)
S (A1) ={0} if0<k<n-2,
whereas if k=n—1,
M (A = A"(R") =R
(vii) The construction is linear and universal in the sense of Remark 6.13.

Proof. We deal only with the case of Holder spaces, the case of Sobolev spaces
being handled similarly. The implication (ii) = (i) is straightforward using partial
integration (cf. Theorem 3.28). To show the other implication, we first use Theo-
rem 7.2 to find a solution u € C" 1% (5;/\") of the problem

du=f and O6u=0 inQ,
VAu=VAay on 0Q.

If £ =0, then @ = u has already all the claimed properties. So we next assume that
k > 1. Since v A (@ — u) = 0, we can apply Lemma 8.11(i) to find € C"%(Q;
A*1) such that

dB=wy—u ondQ.

We finally set
o=u+dp
to obtain the result. O

Due to Theorem 7.4 and Lemma 8.11(ii), we can prove the dual version in the
same way.

Theorem 8.18. Let r > 0 and 1 <k <nbe integers, 0 < x < 1,2<p< iand QC
R be a bounded open smooth set with exterior unit normal v. Let g : Q — A*~!
and wy : dQ — A, Then the following claims are equivalent:

(i) Let g € C"* (ﬁ;Ak’l) and ay € C"1% (3!2;/\"), respectively g € WP (Q;
AN and oy € Wt pp (02;A%) | satisfy

0g=0inQ, vidwy=vVv.ig ondQ (CD

and, for every y € (_Q;Ak") ,

/Q<g;x>—/tm<vjwo;x>zo. (C2)
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(ii) There exists @ € C"t1,% (ﬁ;/\k), respectively @ € W'1p (.Q;Ak), such that

=g inQ,
O=wy ondQ

and there exists a constant C; = Cy(r,a, Q) such that

0llcriva@ <C1 <||8ch(§) + ||0’0Hcr+1-a<ag))7

respectively there exists a constant Cy = C(r, p, Q) such that

l@lhyrstoa) < Co (lglhwer) + 1@ lyrii-1mn(a0))

Remark 8.19. (i) In the case k = 1, conditions (C1) are trivially satisfied and (C2)

reads as
/ g / - (00

if Q is connected (cf. Theorem 6.5).

(i) When k = n, then the result is still valid for ¢ = 0, 1 with an argument com-
pletely analogous to the one of Corollary 8.7.

(iii) If » > 1, conditions (C1) are well defined. This is obvious for the first equa-

tion. The second one makes sense in Wr_%’p (3Q;Ak_2) , respectively C"*(0Q;
A*=2). due to Theorem 3.23.

(iv) If » = 0, then the condition §g = 0 is understood in the sense of distributions.
The second condition in (C1) is well defined in the Holder setting and is to be
understood, in the Sobolev setting, in the weak sense, namely

TN Lo do) — 5. Ak-2
/Q<g,d<p> /(m<v @0:dp) =0, Vel (@A), (D1

which is equivalent to (C1) whenever » > 1 (cf. Section 7.2).

(v) The above results remains valid if Q is C"3 for the Sobolev case and C'+3:¢
for the Holder case.

(vi) If Q is contractible, then (cf. Theorem 6.5)
(A ={0} if2<k<n,
whereas if k =1,
A (A1) = AOR") =R,

(vii) The construction is linear and universal in the sense of Remark 6.13.
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8.5 Poincaré Lemma with Constraints

8.5.1 A First Result

Our first proposition is the Poincaré lemma under a constraint on the scalar product.

Proposition 8.20. Let xo € R" and f be a C™ closed 2-form. Let a be a C* 1-form
such that a(xg) # 0 and let b be a C* function. Then there exist a neighborhood U
of xo and ® € C*(U;A") such that

do=f and (w;a)=binU.

Moreover; if b(xo) = 0, then @ can be chosen so that, in addition to the previous
equation, ®(xp) = 0.

Remark 8.21. If f, a and b depend in a smooth way on a parameter 7, we find exactly
in the same way a @ depending smoothly on ¢ and with the same properties, provided
there exists 1 <i < n so that

a;(t,xg) 0 forevery t.

Proof. Without loss of generality, we can assume xo = 0 and that a,(0) # 0. Using
Theorem 8.1, there exist a neighborhood V of 0 and u € C*(V;A') such that

du=f inV.

Replacing u by u— u(0), we can assume without loss of generality that u(0) = 0. By
the methods of characteristics, recalling that a,(0) # 0, there exist a neighborhood
U CVof0andve C”(U) such that

(dvia) =b—(u;a) inU,
v(xi,...,%—1,0) =0 forevery (x1,...,x,-1,0) € U.
Letting @ = u + dv, we have the main result. Finally, let us show that the same
o fulfills the extra assertion. Indeed, since in that case, b(0) = 0, u(0) = 0 and

a,(0) # 0, we immediately deduce that dv(0) = 0 and, hence, ®(0) = 0, which
concludes the proof. O

8.5.2 A Second Result

We now give a theorem that will be used in the second proof of Theorem 14.3 (cf.
Bandyopadhyay, Dacorogna and Kneuss [9]).

Theorem 8.22. Ler 2 < 2m < n be integers and xy € R". Let f and g be two C~
closed 2-forms such that
g" (x0) #0
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and, in a neighborhood of xg ,
FAE"=0 and g"'=o0.
Then there exist a neighborhood U of xg and ® € C*(U;A") such that o (xo) = 0,
do=f and oANg"=0, inU.
Remark 8.23. (i) We can easily replace C* by C”, but a refined version of our con-

struction finds @ only in C"~! (see [60]).

(ii) Note that the hypotheses imply that in a neighborhood of xg ,
rank [g] = 2m.

(iii) If f and g depend in a smooth way on a parameter ¢, we find exactly in the
same way a @ depending smoothly on ¢ and with the same properties.

Proof. The following proof becomes much simpler if we can invoke Theorem 14.3.
However, since, later, we want to use the present theorem to give a second proof of
Theorem 14.3, we have to find an independent proof. The proof will rely on several
technical results that are gathered in Section 8.5.3.

Without loss of generality, we can assume that xo = 0, and in what follows, U will
be a generic neighborhood of 0.

Step 1. Appealing to the classical Poincaré lemma (see Theorem 8.1), we can
find a neighborhood U of 0 and u € C*(U;A") such that du = f in U. Replacing u
by u—u(0), we can assume that u(0) = 0. We then set

®=u—dv.

Our result will follow if we can find v € C*(U) verifying

(8.2)

dvAg"=uNg™ inU,
dv(0) =0.

Step 2 (simplification of g). It follows from Proposition 8.31 that there exist a
neighborhood U of 0 and ¢ € Diff”(U; @(U)) such that ¢ (0) = 0 and

m
0 (g) = dez’_l ANdx* + Y rijdx ndx
i=1 1<i<j<n
2m< j

for some r;; € C*(U). Problem (8.2) is then equivalent to finding w € C**(U) such

that
dwA (9" (g))" = ¢*(u) A (¢*(g))" inU,
dw(0) = 0.
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Indeed, it is enough to set v = (¢~ !)*(w) to have a solution of (8.2). So from now
on, we will assume, upon substitution of ¢*(g) and ¢*(u) by g and u, that

m
g=Y a 'nd+ Y rydx Ady (8.3)
i=1 1<i<j<n
2m<j

and we therefore have to find v € C*(U) satisfying (8.2) only for g as in (8.3). Note
that for such a g, we have

(8")1(2m)y =m! #0.

Step 3. We then solve (8.2) by induction on n, m being fixed. In the case n = 2m,
nothing is to be proved; just choose v = 0. So we assume that the result has been
proven for n =2m+j, j > 0, and let us prove it for n = 2m+ j+ 1. We therefore
assume that we can find a neighborhood U C R"~! of 0 € R"~! and h € C*(U) with

dhAG" =TNAG",
dh(0) =0

whenever g € C=(U; A2(R"")) and &t € C*(U; A" (R"1)) verify

ding" =0, dg=0, g""'=0,

m
g=Y d 'Ad+ Y Fdx Ndx
i=1 I<i<j<n-1
2m<j
for some 7;; € Cw(lj ) and let us prove that it holds for . To establish this result, we
proceed in four substeps.

Step 3.1. We first solve, by the method of characteristics, the Cauchy problem for
the first-order partial differential equation

(dV/\gm)l---(Zm)n = (u/\gm)l---(Zm)m (8.4)
V(X1 Xn—1,0) = Alxr, ... x0—1), '
where h € C ’(17 ) is a solution, which exists by hypothesis of induction, of
dhNTE(g)" = (u) NiE(g)™,
2 (&)™ = in(u) Niy(8) ®5)
dh(0)=0

and i, : R"! — R" is defined by
in(xl,...,xn_l) = (xl,...,xn_l,O).

Indeed we can apply the method of characteristics since the first equation of (8.4) is
equivalent to, recalling that (g"),....om) = m!,
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dv i i+1 dv m m
axn -m! +l=21 (71) - aixl ’ (g )1...?..(2,,,),, = (u/\g )1'~(2m)n . (8.6)

Observe also that
(v)=h < v(xy,...,x-1,0) = h(x1,..., %—1).

Finally, note that we can apply the hypothesis of induction since

dg=0, dung™=0, g™ =0,

m
g= dez’fl Adx* + Y rijdx' ndx
i=1 1<i<j<n
2m<j

for some r;; € C™ imply
d(iz(8)) =0, d(i;(w) Aiy(g)" =0, ()" =0,

m
ir(g)= dez’fl Adx* + Z 7idx' Ndx’
=1 1<i<j<n—1
2m<j

for some r;; € C*.

Step 3.2. It now remains to prove that the solution v of (8.4) is indeed a solution
of (8.2). First, we claim that dv(0) = 0. Indeed, combining the last equation of (8.4)
and (8.5), we deduce that

%(O):o, 1<i<n—1.

Next, inserting the previous equation in (8.6) and using the fact that u(0) = 0, we
immediately deduce that

which gives the claim. Hence, it only remains to show that
dvAg" =ung™. 8.7)
Lemma 8.28 implies that to show (8.7), it is enough to establish
(@ AE")1.omp = (UNE") 1 amps 2m+1<k<n. (8.8)
Step 3.3. We now prove (8.8). Define, for every 2m+1 < k <n,

L (v) = (dvAg")1.ompx  and wp =L (v) — (uAg")1.com -



8.5 Poincaré Lemma with Constraints 165

Since we already have from (8.4) that w, = 0, our claim (8.8) reduces to proving
that

wy =0 forevery2m+1<k<n-—1. (8.9)
Since
0=fNAg"=dung”
and (8.3) holds, we can apply Lemma 8.29 and Lemma 8.30 to obtain

Ly (i) = LyLi (v) = Ly (u A g™ )1 ompe)
= LiLy (v) = Li (u A &™) 1. ompn) = L (wn) = 0.
Assume (cf. Step 3.4), that we can prove that
wi(x1,. .., x0—1,0) = 05 (8.10)

we will then have, by uniqueness of the solutions of the Cauchy problem, that the
only solution of

is wr = 0. This is exactly our claim (8.9).

Step 3.4. Finally, we show (8.10), which is equivalent to proving that i, (w;) = 0.
We have that, recalling that i (v) = h,

in(wi) = iy ((AvAE" —uNg™)1.omp) = (in(vAE" —uNE™) .. omp
= (d(iy (V) N1y (8™)) — i (1) N i (™)) 1. c2mk

and thus, appealing to (8.5),
in(wi) = (dh Ny (") = i, () Ny (8™) ... ompie = O-
This concludes the proof of the theorem. ]

With substantially the same proof we can get a global result (see Kneuss [60]).

Theorem 8.24. Let 2 <2m <nand g,f € C* (R";Az) be closed. Assume that g is
of the form

g:

On

dx* U Ndx ¢ Z gijdx' Ndx!
I 1<i<j<n
2m<j

L

for some g;; € C*(R") and, for every x € R",

FONg" (x)=0, ¢""(x)=0 and |g(x)|<alx|+b,
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where a,b > 0 are constants. Then there exists w € C™ (R”;A 1) so that the following
equations are satisfied in R":

dw=7f and wAg"=0.

8.5.3 Some Technical Lemmas

In this subsection we gather all algebraic lemmas that we have used in the proof of
Theorem 8.22.

Lemma 8.25. Let 2 < 2m < n be integers and g € A*(R") with rank [g] = 2m and
of the form

m
g= dez’_l Adx* + Y, gijdx ndx.
i=1

1<i<j<n
2m<j

Then, for every 1 < i, j <2m < k < n, the following hold:

(&)1 7 (amp = 8.11)

m!g i ifiisodd
m!g 1y ifiiseven,

(&)1 7 2mn (8™ 1 Fozmpe = (8™ 172 (81 G 2mpn
0 ifi=]
m (") 7 G 1<
=m (&™) g ompn HT>

Remark 8.26. When m = 1, the two conclusions of the lemma are immediate and
the last one reads as (since gZ = 0)

82n81k — 82k81n = 8kn = 8128kn -

For the proof of the lemma we will need the following result, whose proof is
elementary (see Kneuss [60] for details).

Lemma 8.27. Let2 <2m <n, f € A>(R"), 1 <iy < -+ <oy <nand 1 <1< 2m.

Then
-1
j+1+1 -1
(" igoing = m _Zl(—l)’+ i " i

j=

2m el 1

i+ -

+m ;1(_1)] ﬁlij(fm )il'“a"'iAj"'iZm.
Jj=l+

We now prove Lemma 8.25.
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Proof. We split the proof into two steps.

Step 1. We first show (8.11). We assume that i is odd and thus i = 2s — 1 for some
1 <5 < m (the case that i is even can be handled exactly in the same way). From
Lemma 8.27 (choosing [ = 25 — 1 and hence i; = 2s in the computation below), it
follows that

+2 —1
(8’”)12?\4 (2m)k =m Z s (gm )172?;\1&(””)/(
+2 +1 -1
+m §:+1 800 (8" ) 15 T
] S

Since by the special structure of g, g5 = 0 for 1 < j <25 —2 and g(,y); = 0 for
2s+1<j<2mand

mfl)

(g 1-25— 12w (2m) -

the previous equation reduces to
mo =m!
(g )l~-»2s71---(2m)k =M 825k

which is exactly the claim.

Step 2. We now prove the second statement. When i = j, the proof is trivial. We
prove the result for i < j, which, in turn, immediately implies the case i > j. More-
over, we assume that i is odd and thus i = 25 — 1 for some 1 < s < m (the case that i is
even being handled exactly in the same way). Using (8.11), it is enough to show that

Mg 8(j+k —M!'8sk8(j+1)n  if jis odd

\ | . (8.12)
m!goann8(j— 1k —M!'8sk&(j—1n  if jiseven.

(gm)l...zf,\[...f..(zm)kn = {

We consider two cases to establish (8.12).

Case 1: 25+ 1 < j <2m. From Lemma 8.27 (choosing / = 2s — 1 and hence
i; = 2s in the computation below), it follows that

25s—2
, - 1425 m—1
(¢ )1...277\14.‘f..(2m)kn_mZi(_l) 829 (€™ )\ 2. 515 Famen
=
Jj—1
25+1 -1
+m Y (D) 00 (8" s e 2
t=2s5+1
2m 2 1
+m Y, (1) 28000 (8" 5715 e
t=j+1
m—1
—mgao(8"), 25— 135+ j-+(2m)
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Since g;(a5) =0 for 1 <t <2s—2 and g(5,), = 0 for 25+ 1 <7 < 2m, the previous
equation reduces to

m _ m—1
(&™) 570 7 ampten = ~™8k (€™ L 5T5 T (2min

m—l)

+mg(2s)n (g 12??12}?(%,1)](

Moreover, proceeding exactly as in Step 1, we can show that

m—1 —
)1“‘2S‘123“'/“‘(2”’)k N { (m—1)!g(j—1 if jiseven

(8

and the same for k replaced by n. Hence, combining the last two equations, we
get (8.12).

Case 2: j = 2s. First note that (g”*! )1--(2m)kn = O since rank(g) = 2m (see Propo-
sition 2.37(iii)). Hence, using Lemma 8.27 once more (with m+ 1, [ = 2s and hence
i; = 2s in the computation below), we obtain

25—2
0= ("1 ampn = (m+1) Y (=) g0 (8") 7.5 amptn

t=1
+m+ D801 (8" 5715 2min

2m

+ (er 1) 22, 1(*1)t+2s+18(2s)t(gm)1...2}...?.4.(2,”)1(,,
=25+

+ (m + l)g(2s)k (gm)l...fs...(zm)n
- (m + l)g(Zs)n (gm)l...fs.“(zm)k .

=

Since g(a5—1)(25) = 1 &s(25) =0 for 1 <7 <2s—2and g5, =0for2s+1 <7 <2m,
the previous equation rewrites as

(gm)l...zf\_lfs‘.‘<2,n>kn = 8(2s)n (gm)l...fs...(zm)k —8(2s)k (gm)l...fs...(zm)n .
Using (8.11), we immediately deduce that
(8m)1...2f\,12}...(2m>kn = m!g(Zs)n 8(2s—1)k — m! 8(25)k8(2s—1)n>

which is exactly (8.12). This finishes the proof. O

The next lemma has been used in Step 3.2 of the proof of Theorem 8.22.

Lemma 8.28. Let 2 < 2m < n be integers, ® € A'(R") and g € A*(R") with
rank[g] = 2m and of the form
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3

g=Y a’ ' ndx + Y gijdx  Ndx/.
1

Suppose that
(ONAE")1..omik =0, forevery2m+1<k<n.
Then

oNng"=0.
Proof. According to Proposition 2.50, it is enough to show that there exists u €
A'(R") such that

O=u.ig.

We claim that this is satisfied by

u= Z (amdxzs*l — wzs_ldxzs) .

s=1

We will show that (1 g); = oy for 1 < k < n by considering two cases.

Case 1: k < 2m. Hence, we have

1<i<j<n
2m<j

<dx’J Y gijdxi/\dxj> =0 ifl<2m.
k

‘We therefore obtain

2m m
(wagh= (Z wdx' Z’dx2“1 /\del>
k

=1 i=1
Uzs—1 if k =2s

. = .
—upy  ifk=2s—1

Case 2: k > 2m+ 1. Using the hypothesis (a)/\g’”)l_,_(z,n)k =0 and (8.11), we
obtain

0= (CO /\gm) -(2m)k

_ ): )7 @0y (€)1 5 (amppe T Ok (871 2m)
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m
m
Z (“’2 &) Ty~ 925 (8 )1-~-(2?>~-~<2m>k)+m’“’k

=m! <Z ((OZS 18(25)k — W258(25—1)k )+0)k>

Using that kK > 2m + 1, the definition of # and the previous equation yield

(wagh= <Zu1dx a <de25 PAdx® + Z gijdx' /\dx’))
k

K l<t<]<n
2m

m m
= Z uldxl | Z g,‘jdx’ ANdx!| = Z U8k
=1 1<i<j<n =1

2m< j

m

m
= Z (Mzs 18 (25— 1)k U258 (25)k Z 258 (25— 1)k — D25—18(25)k )
s=1 s=1

= W,

which concludes the proof of the lemma. 0O

The following two lemmas have been used in Step 3.3 of Theorem 8.22.

Lemma 8.29. Let 2 < 2m < n be integers and £ C R" be an open set. Let g €
C=(2;A?) be closed with rank[g] = 2m in & and of the form

m
g)=Y a ' hd+ Y gij(x)dx'ndx!, xe€Q,
i 1<i<j<n
2m<j

where gij € C*(Q). Then, for every 2m+1 <k <n,
L,Ly = Ly Ly, (8.13)
where Ly : C*(2) — C*(R), 2m+ 1 < k < n, is defined by
Li(z) = (dz AN ") 1...omk -
Proof. We begin by noting that the structure of g implies that
(8")1.omy =m! inQ. (8.14)

For z € C*(Q), we have

2m
Li(z) = (dz/\gm)ln-(Zm)k =zym!+ Z(_1)l+lzx;(gm)1...ﬁ..(2m)k7

i=1
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where we have denoted partial differentiation of z by x; by z,, . We therefore find

L,Ly (Z)

2m
=L, (Zxk m!+ Z(_1)l+11x,-(gm)1...?..(2,,,)1()

2m
= (Zxk m!+ Z(_1)l+lzxi(gm)l...?..(zm)k> m!

i=1 Xn
2m . 2m "
+ Z(_I)JJF Zka!+2(_1)l+ sz'(gm)l...?..(zmk (gm)l...f..(zm)n-
= i=1 B

J

Setting
Al m ZXan 9 A2 - m' Zl l+lzxix" (g”l)l/l\(zm)l€7
i=
l+l m
=m! Z ( )1,,;..(2,”)1()}(”’
1
As=m! Z j+ Zxkxj m)]...fn(2m)n’
2m i il
As = '21(71)14_ (71)]4— Zx,-xj(gm)1...?~(2m)k(gm)1“'f“(2”’)"’
L]=
2m i1 i1
Ag = ijzv:’l(_l)z (_1)] 2y, ((gm)1-~-?~-(2"1)k)xj (g’")l“.}..@m)m
we find that

LoLi(2) = A1 +Ay + A3 +Ag+As + Ag.

Note that A; , A» + A4 and As are symmetric in k and n. Therefore, for proving that
LiL,(z) = LyLi(z), it is enough to show that A3 + Ag is symmetric in k and n, which
is equivalent to

2£( 1)i+1 m' ((gm)lm?m(zm)k)xn
1)y,
= () 5 ) (817 o

m! ((gm)1---?-v(2m)”>xk (8.15)

_ Z 1 l+1 )
sz (7 )]-H ((gm)l---?--(Zm)n)xj (gm)l...f“(zm)k

To prove this, note first that, for every 2m+1 < k < n,

2m

Y (€ 5 om) =0 (8.16)

j=1 Xj
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since (dg™);....omy = 0, g being closed, and ((g’")l...(zm))xk = 0 according to (8.14).
Hence, it follows from (8.16) that (8.15) is equivalent to

2m )
Y ()" Gi=0,

i=1

where

Ci=m! ((gm)l...;..(z,,,)k) . —m! ((gm)l---?--@m)")xk

+Z D ()1 o 8" 1)

Xj

_ Z 1)/+! ( 1“;..(2,,,),1(gm)1<~f~(2m)k)

Xj

To finish the proof, it is enough to prove that C; = 0 for every 1 <i < 2m. Indeed,
using Lemma 8.25, we deduce that

=m! (dgm)l?(Zm)kn =0

since g is closed. This finishes the proof of the lemma. O

Lemma 8.30. Ler 2 < 2m < n be integers and  C R" be an open set. Let g €
C=(Q2;A?) be closed with rank[g] = 2m in Q and of the form

g(x)—Zd 2NN a4 Y gij(x x)dx' Ndx/, x€Q,
i=1 1<i<j<n
2m<j

where gij € C*(Q). Let u € C*(2;A") be such that
dung™ =0 inQ.
Then for every integer 2m+ 1 < k < n, the following holds:

Ln((u/\gm)l...(zm)k) =L ((u /\gm)l...(zm)n),
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where Ly : C*(Q) — C*(Q), 2m+1 < k <n, is given by
Ly(z) = (dz A 8" )1 ampk -
Proof. We divide the proof of the lemma into three steps.
Step 1. We have, since (g");....m) = m!in Q,

Li((uAg™) 1 amn) = (d[(AE™) 1. amn) A ™)1 2m)k
=m! ((u/\gm)]---(Zm)n)xk

2m )
=+ Z(_I)HI ((u/\gm)l---&m)n)xi (gm)l...?..(zm)k .
i=1

Since (dg")i...omy = 0, g being closed, and ((8")...cm) )z, = 0, it follows that, for
every 2m+1 <k <n,

and therefore

Lk((u/\gm)l~-~(2m)n) =m! ((M /\gm)l---(2m)n)

Xk

- Z e ( M/\gm)l--~(2m)n(gm)1“'?"(2’”)")

Xi
Similarly, we have

Ln((u/\gm)lm(Zm)k) =m! ((u/\gm) -~-(2m)k)x”

4 Z l+1 ( u/\gm)l...(Zm)k(gm)1"'/1'\'"(2’")")

Xj
We then set, for 1 <i<2m,

Ai = (A" )1 2mn(8"™) 17 ampe = WA E" )1 2m(8™)1. e mpn -
In order to prove the lemma, we therefore have to show the following:

2m

m!((u/\gm)l,_,(zm>n)xk—m!((u/\g (2m)k) +Z ) (A, =0. (8.17)

Step 2. In this step, we prove that, for every 1 <i < 2m,

Ai=m!(ung™) (8.18)

1o (2m)kn *
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To show this, we note that
2m o
A= Zl(_l)'l+ u](gm)l...f..(zm)n +m!u" (gm)l...’[...(zm)k
j=

2m
- < (_1)/+1M/ (gm)l...f..(zmy( +m! uk> (gm)l...f..(zm)” .

We therefore get

Aj=m!u"(g") 1ot (2m)k m! “k(gm) 1ot (2m)n
Y D @5 a8 7 o

_(gm)1....f..(2m)k(gm)1...?..(2,,1)”
Invoking Lemma 8.25 at this point, it follows that

k
Aj=ml" (gm)1~~?~(2m)k —mlu (gm)lmﬁn(zm)n
i—1 2m

N j+1 j
+ Zl(_l)] m!uj(g )1~~~j~~~1~~~ 2m)ki n+ Zl /m'uj )1? jA -(2m)kn
Jj= j=i+

Step 3. We finally use (8.18) in the left-hand side of (8.17) to deduce that

m! ((u/\gm)lm(Zm)n) o m! ((u/\gm)lm(Zm)k)xn

ol Z )it ( u/\g’”)l.,.ﬁ..(zm)kn)xi

=ml! (d(u/\g ))1---(2;n)kn =0,

the last equality coming from the fact that dg = 0 and du A g™ = 0. The proof is
finished. 0O

The final proposition has been used in Step 3.1 of Theorem 8.22.

Proposition 8.31. Let 2 < 2m < n be integers and xo € R". Let g be a C™ closed
2-form and such that, in a neighborhood of x ,

rank [g] = 2m. (8.19)
Then there exist a neighborhood U of xo , rij € C*(U) and ¢ € Diff*(U; @(U)) such
that @ (xo) = xo and, in U,

m
0" (g) = ZdXZI_l Adx* + Z rijdx' ANdx’.
i=1 1<i<j<n
2m<j
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Proof. Step 1. Without loss of generality, we can assume that xo = 0. In addition,
using Proposition 2.24(ii), we can also assume that

m

2(0) =, = Y de® P Adx?.

i
We next introduce some notations. We let
X = (3,2) = (X150, X2, X2 15 -, Xn) € RP™ x RIT2™
and we define, for every z € R"~2" the map i, : R*" — R" through
iz(y) =z =x

Step 2. We define for every z € R"2" with |z| small and every ¢ € [0,1] the
2-form

8ot W= AZ(R™) by g, () =il [tg+ (1= 1)wu] (v),
where W is a small neighborhood of 0 in R*”. Note that

82,0 (y) = i: [wm] =w, and 8z,1 (y) = Z 8ij (x)dxi/\dxj'

1<i<j<2m

Our assumption in Step 1 leads to g;; (0) = ,, and therefore, in a sufficiently small
cube Q centered at 0 € R?" x R"2"_ we can ensure that

rank[g., (v)] =2m forevery (y,z) € Qandr € [0,1]. (8.20)
Furthermore, g, has the property that
dyg.; =0 inQ, foreveryte[0,1], (8.21)

where d,, is understood as the exterior differential operator involving only the vari-
able y = (x1,...,%,); namely d,g., = 0 is equivalent to

p] 9 . d .
(gZJ)lj _ (gZJ)zk + (gz’t)/k — O fOr every 1 S i,j,k S 2m
dxy, 9x; Ix;

Step 3. Using (8.20), (8.21) and the Poincaré lemma (see Theorem 8.1), we find
a C™ vector field u, : R*" — R?™ such that

d e :
dy (1t s8es) = — .80 = On—i[g] N0, foreveryr € [0,1]

We now consider the initial value problem, for every x = (y,z) € O,

d
E(Pz,t =UzrOQ and (Pz,0<y) =)
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Using Theorem 12.8, we deduce that, up to restricting the set Q,

q);,l (gz,l) = 82,0 = Wy,

which means that

Z (gal),'j (2,1 (y))dy(/’zi.l /\dy(sz;1 = W, (8.22)

1<i<j<2m

where for u : R" — R, we have set

2 Ju " du .
dyu = ; ﬁxid " and du= ; a—xldxl.
= i=2m+1

We finally let, for x = (y,z) € Q,

¢ (x) = (@1 (¥):2)

and we claim that this is the diffeomorphism we are looking for. Indeed, first observe
that

Y (1) (@0 0)del Adol = Y gij(@(x)dyo' Adyel. (8.23)

1<i<j<2m 1<i<j<2m

‘We, moreover, have

o' (e)=Y ile()do'ndg’
1<i<j<n
= Y gileO)de'nde’+ Y gii(e(y)de' nde’
1<i<j<2m 1<i<j<n
2m<j
= Z 8ij ((P (y)) (dy(pi+dz(Pi) A (dy(Pj +dz(Pj)
1<i<j<2m
+ Z gii (@ (y)do' Adx/
1<i<j<n
2m<j
and thus
0 ()= Y gij(@1)do Ndyg’
1<i<j<2m
+ Y gie0))do' ndo'+ Y gii(9(y)d-9' Adyo!
1<i<j<2m 1<i<j<2m
+ Y g0 d9'Adp'+ Y gij(@(v)de' Adxl. (8.24)
1<i<j<2m 1<i<j<n

2m<j
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Appealing to (8.22)—(8.24), we get
(p* (g) =, + Z rijdxi/\dxj
1<i<j<n

2m<j

for appropriate r;; . This finishes the proof. O



Chapter 9
The Equation divu = f

We now study the equation
divu = f,

which is constantly used in Chapter 10. Of course, most of the results can be found in
Chapter 8. However, the proofs are much more elementary in this case and, in most
cases, do not require the sophisticated machinery of Hodge—Morrey decomposition.
They use only standard properties of the Laplacian. Therefore, for the convenience
of the reader, we have gathered and proved the results in the present chapter.

9.1 The Main Theorem

We first introduce the following notations.
Notation 9.1. (i) For a C" vector field u : R" — R" we let

n aui
divu=17) —.
i:zl 8x,-

In terms of differential forms, u is seen as a 1-form and the divergence operator is
seen as the & operator on 1-forms.

(ii) For a C" vector field v : R" — R""=D/2 ywhere the components of v are writ-
ten as

—1)/2
V= (Vij)1§i<j§n e R0/ )
we define
curl*v = ((curl*v),,..., (curl*v),) e R"
and
e - T S
(curl*v)i — Z a JU 8 2 .
=1 9% =1 9%
G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 179

Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9 9,
© Springer Science+Business Media, LLC 2012



180 9 The Equation divu = f

We therefore have
diveurl*v=0 foreveryv e C? (R”;R”("*l)ﬂ) )

In terms of differential forms v is seen as a 2-form and the curl® operator is seen as
the & operator on 2-forms. The identity divcurl*v = 0 is just §6v = 0.

Theorem 9.2. Let r > 0 be an integer and 0 < o0 < 1. Let  C R" be a bounded
connected open C'+>% set. The following conditions are then equivalent:

(i) feCh® (5) satisfies
/ f=0.
Q

(ii) There exists u € C'+1:% (E; R”) verifying
divu=f inQ,
©.1)

u=0 on 082.

Furthermore, the correspondence f — u can be chosen linear and there exists C =
C(r,a,) > 0 such that
[ullrra <Cllfllcra -

Remark 9.3. (i) If £ is not connected, then the condition [, f = 0 has to hold on
each connected component of Q.

(i1) As we already said, this result is part of the studies on the Poincaré lemma
(cf. Chapter 8). However, because of its importance in applications, it has received
considerable attention and has usually been treated independently of the context of
Hodge—Morrey decomposition and the Poincaré lemma. Precise references can be
found in Bogovski [12], Borchers and Sohr [14], Dacorogna [27, 28], Dacorogna
and Moser [33], Dautray and Lions [35], Galdi [46], Girault and Raviart [50], Kap-
itanskii and Pileckas [59], Ladyzhenskaya [64], Ladyzhenskaya and Solonnikov
[65], Necas [79], Tartar [94] and Von Wahl [103, 104].

(iii) Similar type of results hold for f € L, 1 < p < oo, finding u € W'». How-
ever, the result is false if p = 1 or p = oo and it is also false in C%* when & = 0 or
o = 1; see Bourgain and Brézis [16], Dacorogna, Fusco and Tartar [30], Mc Mullen
[73] and Preiss [83].

Proof. (ii)= (i). This implication is just the divergence theorem.
(i) = (ii). We split the proof into two steps.
Step 1. We first find w € C"+>% (cf. Gilbarg and Trudinger [49] or Ladyzhenskaya
and Uraltseva [66]) satisfying
Aw=f in Q,
{ dw/dv=0 ondQ,
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where V is the exterior unit normal to d€. In order to get uniqueness, we assume

that
/ w=0.
Q

The uniqueness ensures that the correspondence f — w is linear. Moreover, there
exists ¢; = ¢ (1, &, 22) > 0 such that

Wlleriza < ctllfllena - ©.2)
Step 2. We then make the ansatz
u = curl® v+ gradw. 9.3)
Since divcurl* v = 0 for any v, it remains to find v € C"+2% such that
curl*v = —gradw on dQ.

An easy computation (using the fact that dw/dv = 0) shows that a solution of this
problem is given by

ow ow

gradv;; = <8x,-vj axjvi) vV ondQ,

whose solvability is ensured by Lemma 8.8 and, moreover, there exists ¢, =
c2 (r,00, ) > 0 such that

Vllcri2a < 2wl eri2a - 9.4)

The combination of (9.2)—(9.4) leads to the proof of the first part of the theorem.

Step 3. Since the constructions of Steps 1 and 2 are linear, so is the correspon-
dence f — u. The inequality follows from the previous steps. O

9.2 Regularity of Divergence-Free Vector Fields

The next result uses in a more direct way the results of Chapter 8, namely Theo-
rem 8.4.

Theorem 9.4. Let r > 0 be an integer and 0 < a < 1. Let Q C R" be a bounded
open contractible smooth set. The following conditions are then equivalent:

(i) Let u € C°* (ﬁ;R") satisfy
divu=0 inQ.

(ii) There exists v € C"t1:® (5; R"("’l)/z) such that

u=curl*v inQ.
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Remark 9.5. (1) If 2 is no longer contractible, we then should add another condition
to (i), namely

/ (u; )y =0 forevery w € 7 (;R"),
Q
where

culy =0 inQ
A7 (R = yeC” (QRY): | divg=0 inQ ,
VAYy =0 ondQ

where V is the exterior unit normal to dQ. In Section 6.1, 77 (2;R") is denoted
by #7 (Q;A') . If Q is contractible, then

Hr (Q;R") = {0}
and thus the condition
/ (u; ) =0 forevery y € 77 (2;R")
Q

is trivially fulfilled.
(ii) We recall that v A y = 0 stands for

Viyj—Vvjy; = 0forevery 1 <i,j<n.

(iii) When r = 0, divu = 0 is understood in the sense of distributions.

(iv) The correspondence # — v can be chosen linear and continuous, as in Theo-
rem 8.4.

Proof. (ii) = (i). The condition div # = 0 follows at once from the fact that div curl* v =
0. To obtain the condition in (i) of the above remark we integrate by parts, namely

/Q (u; y) :./Q (curl*v;y) = —./Q <V;Curlw>+./(;g (v;VAY).

The result then follows since y € 777 (Q2;R").
(i)=(ii). This follows from Theorem 8.4. O
9.3 Some More Results

9.3.1 A First Result

In Corollary 10.8, we use the next proposition.

Proposition 9.6. Let r > 0 be an integer and 0 < @ < 1. Let 0,2 C R" be bounded
open smooth sets such that O is contractible, Q2 is connected and
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OoCcocCQ.

Let f € C"%(Q) be such that

o for=o

Then there exists u € C"1%(Q;R") such that

9.5)

divu=f inQ,
u=0 ond0UIQ.

Proof. We split the proof into four steps.

Step 1. Using Theorem 9.2, there exist w; € C"T1%(0;R") and v € C"H1*(Q; R")
such that

divw; =f inO, ©9.6)
w; =0 on d0 '
and
divv=f inQ, ©7)
v=20 on dQ. '
Step 2. Let wy € C"1:%(0;R") be defined by
Wy =wp — W
Using (9.6) and (9.7), we obtain
divw, =0 in O, ©8)
wy=—v  ondO. '

Since divw, = 0, there exists, invoking Theorem 9.4, h € C’+2’0‘(6; R"(”_l)ﬂ) such
that
curl " h =w,.

Step 3. Using Theorem 16.11 componentwise, there exists
E c Cr+2,a (5; Rn(nfl)/2)
such that
h=h inO.
Let ¢ € C*(£2;[0,1]) be such that

¢=1 inO and supp¢ C Q.



184 9 The Equation divu = f
Finally, let w € C"t1:%(Q;R") be defined by
w = curl*(9h).
Step 4. Let us show that u € C"t1:*(Q;R") defined by
U=v+w
verifies (9.5). Using (9.7), we have
divu = divv+divw = f +diveurl*(ph) = f in Q.
Using the definition of ¢, we have w = 0 on dQ and therefore, appealing to (9.7),
u=v+w=0 ondQ.

Using again the definition of ¢, we obtain

w = curl*(ph) = curl*(h) =w, inO.
Combining the above result with (9.6) and (9.8), we have

u=v4+w=v+wr=w; =0 ondO.

This concludes the proof of the lemma. O

9.3.2 A Second Result

The following proposition is used in Theorem 10.11. It is a weaker version of The-
orem 9.2 from the point of view of regularity, but it gives an additional information
on the support of the solution.

Proposition 9.7. Let r > 1 be an integer and 2 be a bounded connected open set in
R”™. Then for every h € Cj(82) such that

/h:O,
Q

divu=h in Q.

there exists u € Cj(£;R") such that

The proof of the above proposition will rely on two lemmas. The first lemma
gives an explicit solution when Q = (0,1)" and the second one will allow us, de-
composing the domain £, to suppose that Q = (0,1)". In the sequel, we let, for any
integer s > 1,

0 =(0,1)".
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Lemma 9.8. Let r > 1 be an integer. Then for every h € Cj(Q") such that

h=0,
Ql‘l

there exists u € Cj(Q";R") such that
divu=h inQ".

Proof. We proceed by induction on . The case n = 1 is immediate; just define

ux) = [ hdy.

Suppose now that the lemma holds true for n — 1 and let us prove it for n. Define
geCy(Q"") by

1
g, . xy) = /0 h(y,x2,...,%,)dy.
Thus, there exists v € Cjj (Q"~';R"~ 1) satisfying
divv=g inQ" '

We then choose & € C (0, 1) satisfying

[ etar=1.
0

We now define u!, the first component of u, by

"X] X1 1
u1:/0 h(y,xg,...,x,,)dy—/o §(y)dy/0 h(y,x2,...,X,)dy,
and u is defined by
u(x) = (ul(x),é(xl)v(xz,...,x,,)).

It is straightforward to see that u has all of the desired properties. O
We next turn to our second lemma (cf. [78] and also [33]).

Lemma 9.9. Let Q1,Q C R”" be bounded and connected open sets. Let Uy, ..., Uy
be N + 1 bounded open sets in R" such that

N
§1CUUJ'C.Q 9.9
=0

and, for every 0 < j <N,
Uing, #0. (9.10)



186 9 The Equation divu = f

Then for every h € C"(Q) with

supph C 1 and /h:O,
Q

there exist hy, ...,hy € C"(Q) with the following properties:
N JE—
Y hy=h inQ, supph;CU;NQ and / hj=0, 0<j<N.
5=0 Uj

Proof. We divide the proof into two steps.

Step 1. We start with some preliminaries.

(i) Using (9.9) we let yp, ..., wy € C°(R";[0,1]) be a partition of unity of €,
subordinate to {U;}, meaning that

N

Y wi=1 inQ; and suppy; CU; forevery0< j<N. 9.11)
s=0

(ii) Since £2; is connected and (9.10) holds, the U; can be ordered in such a
manner that for every 1 <k <N,

(UkﬂUj<kUj) N #0.

This is easily shown by induction on k. Suppose first that k = 1. If it were not
possible to choose one of the U;, 1 <1 < N, and rename it Uy, such that the above
equation holds true, then we would have

(UlﬁUo)ﬂ.lew for1 <I<N.

This would imply that the two open sets, both nonempty due to (9.10),

N
UU;Q.Q] and UpN
=1

form a disjoint partition of Q;, contradicting the connectivity. The choice of U} for
2 <k < N is made by the same argument. Therefore, for every 1 < k < N, we can
find an integer p (k) < k such that

UkﬁUp(k)ﬁﬂl #0. 9.12)
We define the matrix A € RWV+D*N py

1 if j=k
Al={ 1 ifj=p(k)
0 otherwise for 0 < j <N, 1 <k <N.
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Since each of the N columns of the matrix A contains exactly one pair (+1,—1), we
have that forevery 1 <k <N,

N o
ZA-’ =0. 9.13)
j=0

Observe that if we cancel the first line of A, the resulting N X N matrix is then
invertible.

(iil) Invoking (9.12), we can easily construct 1y, ..., Ny € C*(R"; [0, 1]) such that
forevery 1 <k <N,

supp Mk - Uk N Up(k) N Ql and Nk = 1.
2
Step 2. For every 0 < j < N, we define ; € C"(Q) by

N .
hj=hy;— Y MA{N, (9.14)
k=1

where the A are real numbers and will be chosen appropriately. First, we notice that
supp(hy;) CU;NQ;  forevery 0 < j <N.

Moreover, for 0 < j < N, we have that Ai #0only if k= j or p(k) = j and for those
k, the support of 7, lies in

UkﬁUp(k)ﬂ.Ql C UjﬂQl.
Thus, we have for every 0 < j < N that (for any A;),
supph; CU;NEy .

Then (again for any A;) we have, using (9.11) and (9.13), that

N
Y hj=h ing,
j=0

and since the left- and right-hand sides of the above equation are both zero outside
of Q, the last equality holds in all Q. In order to have

/ hj=0, forevery0<j<N,
Jo

the A1,..., Ay have to satisfy the N + 1 following equations (integrating (9.14))

N .
Y MA] :/ hy;, forevery0< j<N. 9.15)
k=1 Q
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Using (9.13) and

N
Oz/h: /h
o E)QV]J

we observe that if (9.15) is true for j =1,... N, then (9.15) is automatically verified
for j = 0. From the properties of A, the N remaining equations are uniquely solvable.
The proof of the lemma is then complete. O

We can now conclude with the proof of Proposition 9.7.

Proof. We divide the proof into three steps.
Step 1. (i) Let ©; be a connected open set in R” such that

supph C Q) C Q1 C Q.

Then choose N € N, ag,...,ay €  and 7o, ..., Ny > 0, such that

N
Q,C U[Clj+ann] cQ
=0

and
laj+1;0"NQ #0 forevery0< j<N.

(ii) Applying Lemma 9.9 to A, there exist hy,...,hy € C"(£2) such that

/hj:O and supph; Ca;j+n;Q" forevery0<j<N, (9.16)
Q
N JE—
Y hj=h inQ. (9.17)
j=0

Step 2. Fix 0 < j < N. It is obvious, by a simple change of variables, that the
result of Lemma 9.8 remains true if we change Q" into a4+ n Q" for any a € R" and
N > 0. We therefore apply Lemma 9.8 to A; (this is possible in view of (9.16)) and
we get u; € Cy(a;j+n,;Q";R") and

diVI/tj = hj in aj+ T]an.
Step 3. Extending all the u; by 0 to the whole of Q, we have, using (9.17), that u

defined by
n
u= Z uj
j=0

has all of the desired properties. 0O
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Chapter 10
The Casef-g > 0

10.1 The Main Theorem

The main theorem of this chapter has been established by Dacorogna and Moser [33].

Theorem 10.1 (Dacorogna—Moser theorem). Let r > 0 be an integer ani 0<
a < 1. Let Q C R" be a bounded connected open C'+*% set. Let f,g € C"* (.Q) be

such that f-g > 0 in Q and
/f=/ g (10.1)
Q Q

Then there exists ¢ € Diff"+1:% (Q;Q) satisfying

{g(fp(X))detvfp(X) =flx), xeQ, (10.2)

o(x) =x, XE€IQ.

Moreover, if ¢ > 0 is such that

o glicon < e
C

[7.- 1
Flleo" Il g
then there exists a constant C = C (c,r, o, Q) > 0 such that

[@llcrea <CILA+[Ifllcra + llgllcral -

Remark 10.2. (i) Recall that Diff"* (ﬁ;ﬁ) denotes the set of diffeomorphisms ¢ so
that ¢ (Q) =Q, ¢ € C"* (Q;R") and ¢~ € C"* (2;R").

(ii) Identifying functions with n-forms and depending on the context, we some-
times prefer to write (10.2) as

¢ (g)=f inQ,
o=id on dQ.

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 191
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_10,
© Springer Science+Business Media, LLC 2012
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(>ii1) If © is not connected, then condition (10.1) has to hold on each connected
component.
(iv) The sufficient conditions are also necessary. More precisely, if ¢ satisfies

(10.2), then necessarily, for nonvanishing f and g, we have f-g > 0in Q (cf. Corol-
lary 19.10) and (10.1) holds (cf. (19.3)). Moreover, the function

f nLo (O
— e (Q2);
200 (@)

hence, if one of the functions f or g is in C"%, then so is the other one.

(v) The study of this problem originated in the seminal work of Moser [78].
This result has generated a considerable amount of work, notably by Banyaga [10],
Dacorogna [26], Reimann [84], Tartar [95] and Zehnder [107]. Posterior contribu-
tions to [33] can be found in Riviére and Ye [85] and Ye [106]. Burago and Kleiner
[19] and Mc Mullen [73], independently, proved that the result is false if r = @ = 0,
suggesting that the gain of regularity is to be expected only when 0 < o < 1.

The estimate in the theorem has a sharper form when g = 1.
Theorem 10.3 (Dacorogna—Moser theorem). Let r > 0 be an integer and 0 <

a < 1. Let Q C R" be a bounded connected open C">% set and f : Q — R. Then
the two following statements are equivalent:

(i) The function f € C"* (ﬁ) , f > 0in Q and satisfies
/ f =measQ. (10.3)
Q
(ii) There exists ¢ € Diff 1% (Q; Q) satisfying

{ detVe(x) = f(x), x€Q, (10.4)

o(x) =x, x€dQ.

Moreover, if ¢ > 0 is such that

o M lleoe <,
C

|

f

then there exists a constant C = C (c,r, 0, Q) > 0 such that
lo —idlleria <CIf =1l cra -

We will give in Section 10.4 two proofs of Theorem 10.1 (one of them relying
on Theorem 10.3). However, before that, we give two intermediate results.

The first one in Section 10.2 presents the celebrated flow method introduced by
Moser [78]. It is a very simple and elegant method for solving our problem; however,
it fails to give the expected gain in regularity.
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The second result discussed in Section 10.3 is based on a fixed point argument
and gives the main theorem under a smallness condition.

In Section 10.5, we give a more constructive way to find solutions of (10.2). It
has the advantage to require less smoothness of the domain and, more importantly,
we are also able to obtain results such as

supp(@ —id) C Q,

provided supp(f — g) C Q. However, its main drawback is that it does not provide
the expected gain of regularity.

10.2 The Flow Method

All over the present section when dealing with maps
g:RxR"— RN
we write, depending on the context,
g=gt,x)=g(x), teR, xeR"

The flow method introduced by Moser easily generalizes to the case of k-forms;
see Theorem 12.7. Before stating the main theorem of the present section, we start
with a lemma, which is a particular case of Theorem 12.7.

Lemma 10.4. Let r > 1 be an integer, 0 < a < 1, T > 0 and 2 C R" be a bounded
open Lipschitz set. Let

ue€C"*([0,T] x 2;R") and feC"*([0,T]xQ)

and, moreover, for every 0 <t < T,

. d .
div(fiu,) = _Eft in Q,

(10.5)
u, =0 on Q.
Then for every 0 <t < T, ¢; : Q — R" defined by
i =u0 0<t<T
AR ARG (10.6)
Qo =1id
belongs to Diff"* (2; Q) and verifies
* — . 97
¢ (ft) . Jo in (10.7)
o =1id on Q.
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Moreover, for each x € Q such that u,(x) = 0 for every 0 <t < T, then
@ (x)=x forevery0<t<T.
Furthermore, if
||“t||cl(§) <c forevery0<t<T,

then there exists a constant C = C (¢,r,T, ) > 0 such that for everyt € [0,T],

1~ il vy < C | Nl o
Before proving the lemma we need the following elementary result.
Proposition 10.5. Let 21,Q, C R" be bounded open Lipschitz sets and T > 0. Let
ueC'([0,T] x Qy;R") and ¢ € C'([0,T] x 21;Q5)

such that, in Q1 ,
d
E(Pt =uo@ forevery0<t<T. (10.8)

Then for every f € C'([0,T] x Q,), the following equality holds in Q and for
0<r<T:
d

o (= (dtft +dw(ﬁu,)) :

Remark 10.6. Although this proposition is a simple consequence of Theorem 12.5,
we give here an elementary proof without using any tool of differential geometry.

Proof. We start by recalling a well-known fact (cf., e.g., Theorem 7.2 in Chapter 1
of Coddington and Levinson [22]). The solution of (10.8) satisfies

1
det Vg, (x) = [det Vg (x)] exp { / (divies) (9 (x)) ds| .
0
Since the right-hand side of the above identity is C! in 7, we get

% [det Ve, (x)] = det Ve (x) - (diva) (¢ (x)). (10.9)

We also obtain

d

Lo ()] = 510V fi(g)

_ % [detVe,] f,(@,) +det Ve, Kjtfz) (@) + <Vft(<pz);5t<pz>}
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and thus, appealing to (10.8) and (10.9), we find

%[(pt*(f,)] =detVo, [(divu,)((p,) (@) + <5tfz> (o) + <Vﬁ(¢z);uz(¢z)>}
—aerve, | (5 00+ v (o)) =i (G +divrn) )
which concludes the proof. 0

We now prove Lemma 10.4.

Proof. 'We split the proof into two steps.

Step 1. Iisi&g Theorem 12.1, for every 0 <t < T, the solution ¢ of(l(L6) belongs
to Diff"*(Q; ) and verifies ¢, = id on d€Q. Moreover, for each x € Q such that
u;(x) =0 for every 0 <t < T, then

@ (x)=x forevery0<t<T.

Furthermore, if
lusllor <c forevery0<t<T,

then, using (12.3), we immediately deduce that for every 0 <7 < T,

t
o =idcre <C [ v s
where C = C(c,r,T,) > 0. Finally, we have
© €C"*([0,T] x Q;Q).

Step 2. Using Proposition 10.5 and the hypotheses on u, and f; , we get that, in 2,

Slor = (G div(r)) =
which implies the result since ¢p = id. ad

We now turn to the Moser theorem [78], which did not however consider the
boundary condition.

Theorem 10.7. Let r > 1 be a integer, 0 < a< 1and Q C R" be a bouﬁded con-
nected open C'*>% set. Let also f,g € C"* (Q) be such that f-g > 0in Q and

Lo

Then there exists ¢ € Diff"* (5;5) satisfying

(10.10)

g(@(x))detVe(x) = f(x), x€Q,
o(x) =x, X€JQ.



196 10 The Case f-g >0

Furthermore, if 0 <y < a < 1 and if ¢ > 0 is such that

A llers lgller < e,

I ]
S 8llco

then there exists a constant C = C (c,r, o, Y, ) > 0 such that

)
co

¢ —idllcra < C[|fllcra + lIgllcra] If — &llcor +ClIf —&llcr1e -
Proof. Step 1. Define, for0 <t < 1,x € Q,

fix) = (1=0)f(x) +18(x)

and

_u(x)
m@—ﬁw, (10.11)

where u € C"% (Q;R") (if 0 < a < 1, then u € C""1% (Q;R")) satisfies

divu=f—g inQ,
(10.12)

u=0 on dQ.
Such a u exists by Theorem 9.2. Note, however, that u, (see (10.11)) is only in C"*

(even if 0 < o < 1), since f and g are only in C"%. Since (10.11) and (10.12) hold,
we have

. d .
div(uf) = -2 fi=f-g e,

u, =0 on dQ.

(10.13)

We can then apply Lemma 10.4 and have, defining ¢, : Q — R" for every ¢ € [0, 1]
as the solution of

d

— ¢ = , 0<r<1,

dt(Pt MtO(Pt SIS
that

has all of the desired properties.

Step 2. Let us now show the estimate (recall that in the present step, 0 < o < 1).
‘We have that the solution of (10.13), found in Theorem 9.2, satisfies

lufillcra <Collf —gller—1a  and  luefillcry < Crllf —gllco



and thus, invoking Theorem 16.28 and Proposition 16.29, we have

Ji
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<G |lufllen |
U — L &) U Jtllcro || =
fellera s

N
<GIIf = gllerra +1f = gllcor 1l crel
< Glf = gllera +Cllf = gllcor [I1f | cra + llglleral -

1

i

e cra =

+ llucfillco
c0

Similarly, we also have
luller < Ca.

Combining the above estimates with the one in Lemma 10.4, we obtain the claim.
O

In Section 11.1, we will need a slight improvement of the above theorem.

Corollary 10.8. Let r > 1 be an integer. Let 0,82 C R" be bounded open smooth
sets and such that O is contractible, 2 is connected and

0OCOcCRQ.

Let also f,g € C"(Q) be such that f-g > 0 in Q with

L e [ L

Then there exists ¢ € Diff" (Q;Q) such that

{g((p(x))detV(p(x) =f, x€eQ, (10.14)

o(x)=x, x€9d0UIQ.

Proof. We decompose the proof into two steps.

Step 1. Since f —g € C"(£2), then, for example,
f—geCc @)

TheLefore, using Proposition 9.6, there exists u € crl/2 (5; R™) (in particular, in
C"(22;R™)) such that

divu=f—g inQ,
u=0 ondOoUIQ.

Step 2. Define, for 0 <t < 1,x€ Q,

fi(x) = (1=0)f(x) +18(x)

and
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Note that 4
div(u fy) =divu=f—g= _Eft in Q

and u; = 0 on dQ UJO. We can then apply Lemma 10.4 and have, defining ¢ :
Q — R" forevery t € [0, 1] as the solution of

d
E(Pt =wof, 0<t<I,
¢0 = 1d7
that
? =0
has all of the desired properties. O

10.3 The Fixed Point Method

We now prove Theorem 10.1 when g = 1 and under a smallness assumption on the
C%7 norm of f — 1. The following result is in Dacorogna and Moser [33] and follows
earlier considerations by Zehnder [107].

Theorem 10.9. Let r > 0 be an integer and 0 < o,y < 1 with y <r+a. Let @ C R"
be a bounded connected open C"™>% set. Let f € C"% (.Q) , f>0inQ and

/ f =meas Q.
Q

Then there exists € = € (r,@,Y,€2) > 0 such that if || f — 1|| coy < €, then there exists
@ € Diffr 1@ (Q:9Q) satisfying
{ detVo (x) = f(x), x€Q,

(10.15)
0 (x) =x, X€IQ.

Moreover, there exists a constant ¢ = ¢ (r, &, Y, ) > 0 such that if || f — 1| oy < €,
then @ satisfies

lo —idllcrira <cllf =llcra  and [l@—idllcry <c|lf = 1o -

Proof. For the convenience of the reader we will not use the abstract fixed point
theorem (cf. Theorem 18.1), but we will redo the proof. We divide the proof into
two steps.

Step 1. We start by introducing some notations.
(i) Let
X={ac crthe (QR"): a=00ndQ},
Y={beC"*(Q): [(b=0}.
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Define L : X — Y by La = diva. Note that L is well defined by the divergence
theorem. As seen in Theorem 9.2, there exist a bounded linear operator L l.vy—>X
and a constant K; = K (r, o, 7, Q) > 0, such that

LL™'=id inY,
HLAbHCIJSKIHb”cOm (10.16)
lL~"5]

e <K [[blcra (10.17)
(ii) Let for &, any n X n matrix,

Q(&)=det(I+&)—1—trace(§), (10.18)

where [ stands for the identity matrix. Note that Q is a sum of monomials of degree
t,2 <t < n. Hence, there exists a constant k > 0 such that for every &, € R"*",

0(&) - o(m] <k (1&]+ I+ +In" 1) 1€ —nl.

With the same method, we can find (cf. Theorem 16.28) a constant K» = K»(r,2) >
0 such that if v,w € C"1% with ||v||c1y , |[w]lc1y < 1, then

10 (Vv) = Q(Vw)llcor < Ko ([Vllerr + [Wllera) v =wlierr s

(10.19)
10 (VV)llcra < K2 V]|t VIl s

Step 2. In order to solve (10.15), we set v(x) = @ (x) —x and we rewrite it as

divv=f—-1-0(Vv) inQ,
(10.20)
v=0 on dQ.
If we set
N()=f-1-0(W),
then (10.20) is satisfied for any v € X with
v=L"'N(®v). (10.21)

Note first that the equation is well defined (i.e., N : X — Y), since if v=10 on d£2,
then [, N (v(x))dx = 0. Indeed, from (10.18) we have that

[ No@)dx= [ 700~ 1-0(Vr()dx
= /Q [f (x) +divv (x) —det (I+ Vv (x))]dx;

since v=0o0n dQ and [, f = meas €2, it follows immediately (cf. Corollary 19.10
and the divergence theorem) that the right-hand side of the above identity is 0.
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We now solve (10.21) by the contraction principle. We first let

u=0o0ndN
B=QueCt*(QR") : | [|lullcry <2Ki ||f =1l cor
lullcrera <2K1 || f =1l cra

We endow B with the C!'¥ norm. We observe that B is complete (cf. Proposition
16.23) and we will show that by choosing ||f — 1||0.y small enough, then L~!N :
B — B is a contraction mapping. The contraction principle will then immediately
lead to a solution v € B and, hence, in C"1:% of (10.21). Indeed, let

1 1
1oy <mind ——, — 4. 10.22
1= lens < min{ o 7 1022)

If v,w € B (note that by construction 2K || f — 1 ||C()y 1), we will show that

[L7'N () =L7'N(W)]| o1y < ||v—w\|cly, (10.23)

L~ IN(v <2Ki ||f = Uleoy » |[L™ N ( )]

et crira < 2K [ f =1 cra - (10.24)

Inequality (10.23) follows from (10.16), (10.19) and (10.22) through

W)l ey < KLlIN () =N (W)l cor
=Ki[[Q(Vv) =2 (VW)]|cox
S KKy (Illerr +wllern) v =wllcry
<4KTK || f = Ulcorllv = wller

|IL7'N (@)=L 'N(w

1
<5 lv=wleir -
To obtain the first inequality in (10.24), we observe that
[IL7'N (0)]| 1y < K1 IN(0) oy = K1 L = Lllcor

and, hence, combining (10.23) with the above inequality, we have immediately the
first inequality in (10.24). To obtain the second one, we just have to observe that

IL NG erire < KL IN G ra < KL =l cra+ Kt [Q(VW)llcra (10.25)

and use the second inequality in (10.19) to get, recalling that v € B,

12(W)llcra < Ka[Vllet [Vllersra < Kalvlicry V]]ree
S2KiK (| f = Mlcor [Vllereve -

The above inequality combined with (10.22) gives

12 (WW)llcre <

i Ml
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Combining this last inequality, (10.25) and the fact that v € B, we deduce that

|L7'N ()|

creta 2K |1 f = 1lgre -

Thus, the contraction principle gives immediately the existence of a C" ¢ solution.

It now remains to show that ¢ (x) = v (x) +x is a diffeomorphism. This is a con-
sequence of the fact that detVe = f > 0 and @ (x) =x on dQ (see Theorem 19.12).
The estimates in the statement of the theorem follow by construction, since v € B.

O

10.4 Two Proofs of the Main Theorem

10.4.1 First Proof

We start by proving Theorem 10.3, following the original proof of Dacorogna and
Moser [33].

Proof. We divide the proof into four steps. Let » > 0 be an integer and 0 < o < 1.
The first step is to prove that (ii) = (i) and the three other steps to prove the reverse
implication.

Step 1. Assume that ¢ € Diff" !¢ (Q:; Q) satisfies

detVo(x) = f(x), x€Q,
o(x) =x, x€dQ.

Then, clearly, f € C"* (E) . We also have, from Corollary 19.10, that f > 0 in Q.
Finally,

/ f =measQ
Q
in view of (19.3).

Step 2 (approximation). We first approximate f € C"* by functions f; € C* in
an appropriate way. Let r >t > 0 be an integer and 0 < ¥ < . Let

e <e
C

I
f
Then for every 1) > 0 small, we can find (see Proposition 16.46) f, € C* (E) with
fn >0in Q and a constant C = C (c,r,£2) > 0 so that

/Q;;—meas.Q,
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anHcry < C”f”c’v ) an’

Cr+la = Hf”C“X ) anHcla = If”CO"‘ ’

an - 1||ct-7 <CIf =1y an - 1”(?1“ < ﬁ ||f* | coa

L

‘fn

Step 3 (existence and regularity). We now prove the existence of a solution with
appropriate regularity.

<Cn* .

oy

<Cllf ~1lly and ‘

f
A
n

chy

Step 3.1 (choice of an appropriate ). Let € = €(r, a, Q) be the € in the statement
of Theorem 10.9 with ¥ = /2. Then choose 1o > 0 small enough so that

o/2

Cn,'~ <e.

Note that 1o only depends on ¢, 7, & and Q. Next, define & = f, . In particular, by
definition of 1y and by the last inequality in Step 2, we have

H H <e. (10.26)
,00/2

Step 3.2 (conclusion). Using (10.26) and Theorem 10.9 (with y = o /2), we can
find @, € Diff" !¢ (2:;2Q), a solution of

f(x)
\Y% =—
detVe; (x) ) xeQ,
o1 (x) =x, x€dQ.
We further let ¢, € Diff" !¢ (2:;2) be a solution of
{detprz(y)=h(<P11(y))7 yEQ,
02(y) = y€dQ.

Such a solution exists by Theorem 10.7, since & o (pf e Ccrtl 0‘( ) (cf. Theo-
rem 16.31) and

./Qh((pl"(y))dyz/gh(x)detV(pl (x)dx:/ﬂf(x)dx:meas.Q.

Finally, observe that the function ¢ = @, o ¢; has all of the claimed properties.

Step 4 (estimate). We now prove the estimate, first showing estimates for ¢y,
then for ¢, and, finally, for ¢. We recall that

1
HH o <c (10.27)
flleo
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In what follows, C;,C,,... will be generic constants depending only on c,r,
and Q.

Step 4.1. Since (10.26) holds and, by construction, we deduce that, using Theo-
rem 10.9,

||(P1 7idHcr+1.a SC] i*l and ||(p1 *id”Cl,a/Z SC] i*l .
h cra h CO‘a/Z
Invoking Step 2 with y = «/2 and 1) = 1, we hence find
H(Pl _idHCH—l,a <G ||f_ ]Hcr,oc (10.28)
and
o1 —id||crae < Co |l f =1 o2 - (10.29)

From the last estimate, from (10.27) and from Theorem 19.12, we deduce that

loillcrs [lor | < Gs. (10.30)

The next inequality is obtained, combining Theorem 16.31, (10.30) and Theo-
rem 16.32:

crria = ||[(@1 —id)o g
< Cyllor —id|crira + Call@r —id o1 |1 ][ 1.0
< Cyllr —id|crira +Cs |lor —id o [1+[|@1 —id|| cri1.]
< Cs|lo1 —id||cr+1,a

lor " —id]

crtla

and hence, using (10.28),

H(p;1 _1d| cr+la S C7 ||f_ 1||cr,a . (103])

We also find, in a similar way,
o7 =id|| praz < C1lf = Ul coarn - (10.32)

We now use Theorem 16.31, Step 2 (recalling that 1/19 only depends on ¢, r, & and
Q), (10.30), Theorem 16.32 and (10.28), to find

crrra < Csllhlleroa + G llAller || 07| e
<G| fllcrec +Co || fll o | 1]l
< Col| fllere +Cro |l fllcow [T+ 1 fll cre)

loe |

and thus, since || f]| 0.« < ¢, we get

o @ | crira < Cutllfllcroc - (10.33)
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Similarly, we obtain (using also Proposition 16.29)

1
hoq)l_1

[hoer !l <Cn. (10.34)

c!

Finally, we have the last estimate, appealing to Theorem 16.31, (10.30) and (10.28):

cra = [[(F=1) 00| e
<Ci3llh—1cra +Ci3llh =11 || 07| o
<Cu|lf—1era +Ciallf — U cow |@1|lcrera
< Cus|lf = Ulera +Cis || f = U cow 1+ f = U cra]
< Cis||lf = Ulera +Cis [|f =l cow [If = 1| cre

loe ' —1]

and thus, since || f|| 0.« < ¢, we find

ot —1]

cne < C17 ||f_ 1||cr,(1 . (1035)

We analogously obtain
[ho @ =1l crap < Cirllf = coas - (10.36)

Step 4.2. We now turn to estimate ¢, . We have, according to Theorem 10.7 and
(10.34),

12 —id]|cr10
<Cig[L+[hogy|

Cr+17a] ||hO(P1_1 - 1HC0,(x/2 +C18 ||hO(P1_1 - 1| cra -

Using (10.33), (10.36) and (10.35), we find

@2 —idlcrira < Cro [1+ || fllcral If = Ulco.arz +Cro [l f = 1l cra
<Cio 2+ 1f = Uenal [ILf = UHlcoarz +Cro lf = 1l
< Cyp|lf = Ulcra

and, similarly,
@2 —id[[ 102 < Caollf = 1l c0.ar2 - (10.37)

Step 4.3. We are now in a position to conclude with the estimate on ¢. Combining
Step 4.2 and (10.31), we find

cr+la S H(P2 _id||cr+l.oc + H(P;l —1d|
<Gy Hf_ IHCW .

lo2—o/'|

Cr+1‘a

Moreover, by (10.32) and (10.37), we get

||(P2 - (pl_1 Hcl,a/z <(Cn.
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Since ¢ = @, o ¢, we have, invoking Theorem 16.31, (10.30), (10.28) and the two
previous estimates, that

lo—idllcrrc =920 01 =0 01| crra = [ (02— 01 0
<Cs =0 i1 + O3]l = 01| o @t llcrira
<Cuslle— o7 | ors1
+Coa |2 =97 | [1+ [l @1 —id cror.a]
<Cos||o2— 01 | crira +Caa |02 — 01| 1 |1 —id]| 1
<Gy ||f —1cra -

This achieves the proof of the theorem. O

cr+la

We may now turn to the first proof of Theorem 10.1.

Proof. We divide the proof into two steps.
Step 1. First find, by Theorem 10.3,

V1, ¥ € Diff 1 %(Q: Q)

satisfying
.Q
det Vs (x Jmeas xeQ,
/ fx dx
detVy (x HmeasQ o
/ g(x)dx
v (x) = ya (x) =x, x€dQ.

It is then easy to see that ¢ = wl‘l oy, satisfies (10.2).
Step 2. From Theorem 16.31 we have

I@llcrre = ||y own|

Cr+1‘a
< (W o vl ™ 1y e T2 s+ ¥ o) -
From the fact that
1
A, Whese. Tl <

we get, from Theorems 10.3 and 19.12,

||W1HC] ) w;lucl 3 ||w2HC1 SCZ’
Willerre <G [1+8llere]  and  [lyallcrire < Co 1+ | fllcre] -

We then combine all these estimates and Theorem 16.32 to get the claim. ]
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10.4.2 Second Proof

We now turn to the second proof of Theorem 10.1, following the ideas of Riviere and
Ye [85]. We prove here the theorem, but without the estimates, under the additional
hypotheses r > 1 and £ a smooth set. But before that we prove an intermediate
result.

Theorem 10.10. Lez r > 1 be an integer; 0 < o < 1, £ C R" be a bounded connected
open smooth set and f € C** (.Q) with f > 0 in Q. Then, for every € small, there

exist fe € C*(Q) and @ € Diff"+1:* (.Q .Q) satisfying

Je(@e(x))detVee(x) = f(x), xe€Q,
Pe(x) =x, x€dQ,

lim ||fg —f”cr =0.
e—=0

Proof. We divide the proof into four steps.

Step 1 (definition of f¢). We apply Proposition 16.47 to fandlets >r >t >0
be integers and 0 < o, 3,7 < 1 be such that

t+y<r+o<s+p.

Therefore, for every € > 0 small, there exist fe € C*(Q) with fe > 0in Q and a
constant C; = Ci(s, 8, f|lco,||1/fl|c0) such that

/Qfg:/gf, (10.38)

C
felless = Sompr—grag 1/ llcme (10.39)
Ife = fllcrr < CLe" O~ fllcra + || fl|geal., (10.40)
C
er < eGP —(rra)t1 (1Al cre + ||f||CWL (10.41)
Hf el| < Crel TN fllone 4| fEra)- (10.42)
ctY

Moreover, defining, for some € < 1 small enough, F : (0,€] x Q — R by F(g,x) =
Sfe(x), we have

FeC™((0,8] x Q). (10.43)

Using (10.40) and choosing € even smaller, we can assume that for every € € (0, €],

1
[ fellco <2[|f[lco and Hfg (10.44)
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Combining (10.44) and Proposition 16.29, we get for every € € (0,€],

1
E
where Cy = Ca(s, 2, || 1o, 11/ £l co)-

Step 2. Choose 6 > 0 small enough so that [o¢ — 8, + 8] C (0, 1). We show that
for every € € (0,], there exist ug € C* (Q;R") and a constant

G =C3(ra,6,9, | fllco, [11/flc0)

<Gl fellss (10.45)
csB

such that 4
div(feue) = —%fg in Q, (10.46)

G
el cre1y < W[Ilf\lcw +11fleral, vE[@—8,a+8]. (10.47)

Moreover, defining u : (0,€] x  — R" by u(&,x) = ug(x), we will show that u €
C=((0,€] x ;R").
Step 2.1. According to (10.38) we have for every € € (0,€],

d
—fe =0.
L aele

We can therefore find, by Theorem 9.2, we € C°°(§;]R”) and a constant C4 =
C4(r,a,0,Q) such that
. d .
div(we) = —%fs in Q,
we =0 ondQ,

and for every integer ¢ < r and every v € [ — J, 0 + 8],

d
—Je

10.4
de (10.48)

HWSHCCHLV <4
caY

Moreover, using (10.43) and defining w : (0,€] x Q — R" by w(e,x) = we(x), we
have w € C*((0,€] x Q;R").
Step 2.2. Since fr > 0 in Q, we can define for every € € (0,¢],
_ e
fe'
First, note that for every € € (0,€], (10.46) holds,

Ue

ugEC“(ﬁ;R"), and u,=0 ondQ.

Moreover, defining u : (0,€] x 2 — R" by u(€,x) = ug(x), we have u € C*((0,€] x
Q;R").
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Step 2.3. To conclude Step 2, it only remains to prove (10.47). Using Theo-
rem 16.28, (10.44), (10.45) and (10.48), we obtain

1
el < Cslwellgrong || - +cs||w8||co] L
Jellco Jellcrry
SC6||W8||C"+1~V+C6HWS||C1-,(1Hfs”CrJrLy
d d
<C7||— Ci||— 1,
<7 defe CW+ 7 dsfg cou | fell ey

and hence, appealing to (10.39), (10.41), (10.42) and recalling that € < 1 and that
r> 1, we find

C8 2
l[uellcrery < W“VHCW + 1 f[[Gre]
r—1

£
+Gs m[”f“cw + | fllEral [l fllcre

Gy 3
< cimr=a M e+ 1 fllgrel.

where C; = Ci(r,a, 8,8, f||co, |11/ f]|co)- Therefore, the claim is proven.

Step 3. We can now finish the proof.

Step 3.1. Since u € C*((0,€] x Q:R"), ue = 0 on 9L and (10.47) holds, we de-
duce, using Theorem 12.4, that the solution ¢ : [0,€] x Q — Q, ¢(&,x) = @¢(x), of

d _
%‘P&ZMSO(P& 0<8S£a
Qo =id

verifies -
0 cCt([0,8] x 2:Q) (10.49)

and that for every € € [0, €],

@ € Diff *1%(Q:Q) and @ =id on Q.

Step 3.2. Since (10.46) holds, we have that, using Proposition 10.5, for every
0<eg <g<E,
(pgz(f«?z) = (P; (f£1) in Q.
Since using (10.40) and (10.49),

lim||fe — fllco=0 and i - =0
/e~ flo =0 and  lim [lg: ~ goller =0,
we immediately deduce that for every € € [0, €],

P (fe)=o(f)=1.
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Finally, using again (10.40), we deduce that
lim || fe = fllcr =0,
e—0

which concludes the proof. O
We can now deal with the second proof of Theorem 10.1.

Proof. Step 1. By Theorem 10.10 applied to f and g there exist fi,g1 € C” (2) and
@1, ¢, € Diff "% (Q; Q) such that

{WUU=f nQ, {@@ozg in Q.

10.50
¢ =id on dQ o =id on dQ. ( )

Step 2. Since (10.50) holds, we have (cf. Corollary 19.10), fi,g1 > 0 in Q and

(cf. (19.3))
fn=[r=[e=[ e

Therefore, using Theorem 10.7, there exists @3 € Diff(£;) such that

¢i(g1)=fi inQ,
03 =id ondQ.

Step 3. Using the above steps, we find that
P=¢, 030

has all of the desired properties. O

10.5 A Constructive Method

In this section we present a constructive method (cf. Theorem 5 in Dacorogna and
Moser [33]) to solve the problem

¢*(g)=/f inQ,
o=id ondQ.

The following theorem is only a particular case of the results in [33]. The proof that
we provide here is substantially different from the original proof.

Theorem 10.11. Let r > 1 be an integer, 2 be a bounded connected open set in R"

and f,g € C"(2) such that

f-g>0inQ, /Qf:/gg and supp(f—g) C Q.
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Then there exists ¢ € Diff’ (Q; Q) such that

= in Q,
supp(¢ —1d C Q.

Proof. We divide the proof into two steps, but before that, we note that we can
assume, by choosing 2 smaller if necessary, that - g > 0 in Q and that © is smooth,
since supp(f —g) C .

Step 1. Using Proposition 9.7, we can find u € C"(2;R") such that
divu=f—g in and suppuC L.
Step 2. Define for 0 <t < 1,x€ Q,
fi(x) = (1 =) f(x) +1g(x)

and

Note that d
div(u, f;) =divu=f—g= _Eﬁ in Q

and suppu; = suppu C £2. We can then apply Lemma 10.4 and have, defining ¢; :
Q — R” for every 1 € [0, 1], as the solution of
d 0, ¢, 0<r<1
Z o =uo
dl (3 1 (] =t =1
¢ = id,

that
¢ =0
has all of the desired properties. O



Chapter 11
The Case Without Sign Hypothesis on f

11.1 Main Result

The aim of this chapter is to solve the problem

g(p(x))detVe(x) = f(x), x€Q,
o(x) =x, X€JQ,

equivalently written as

(11.1)

¢ (g)=/f inQ,
o=id on dQ2,

with g > 0 in R" but with no sign restriction on f. Of course, the solution cannot be
a diffeomorphism; nevertheless, if f > 0 and under further restrictions, it can be a
homeomorphism (see Theorem 11.1(iii)).

The main result of this chapter, established by Cupini, Dacorogna and Kneuss
[25], is the following. In the sequel, we denote by Bg the open ball of radius R
centered at the origin.

Theorem 11.1. Let n > 2 and r > 1 be integers and Q a bounded open set in R"
such that Q is C™'-diffeomorphic to By . Let g € C"(R") with g > 0 and f € C"(Q)

be Such that
Q 0

Then for every € > 0, there exists ¢ = @ € C"(Q;R") satisfying (11.1), namely

¢ (g)=f inQ,
o=id on dQ

and

QCo(Q)CcQ+B;.

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 211
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_11,
© Springer Science+Business Media, LLC 2012
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Moreover, the three following properties hold:

(i) If either f >0 on dQ or f >0 in Q, then € can be taken to be 0. In other
words, there exists ¢ € C'(Q; Q) satisfying (11.1).

(ii) If supp(g — f) C Q, then @ can be chosen such that

9 eC'(2;Q) and supp(p—id) C Q.
(iii) If f > 0 in Q and f~'(0) N Q is countable, then @ can be chosen such that
¢ €C'(Q2;Q)NHom(Q; Q).
Remark 11.2. (i) Note that, in view of (19.2), we always have Q C ¢(£) as soon as

¢ =id on 0Q.

(ii) In general, without further hypothesis on f as the extra statement (i), it is not
possible to find a solution that remains in £2. In fact, if f is negative in some part of
dQ, then any solution must go out of Q (cf. Proposition 11.3).

(iii) The above theorem is also valid in Holder spaces.

The proof of the theorem will be discussed in Section 11.3, but we want to explain
the two main steps. First, observe that the fact that f is not strictly positive precludes
the use of either the flow method or the fixed point method developed in Chapter 10;
the proof will be more constructive. Here are the main steps for 2 the unit ball. The
idea is to look for radial solutions of the problem; however, to achieve this, we have
to rearrange f in an appropriate way. We therefore will look for solutions of the
form

p=yoy
with y = y =id on 0Q.

— First, we rearrange f with a diffeomorphism %, so that

fi=x"(f)

satisfies f1 (0) > 0 and has nice symmetry properties, for instance, among others,

.
/S"_lﬁ <sx|> ds >0 forevery x#0andr € (0,1].
0 X

This will be the most difficult part of our proof and will be achieved in Section 11.6
(with the help of Section 11.5). Note that in view of Proposition 11.6 the function
1 cannot therefore be strictly positive if f is not strictly positive.

— We then find a map v so that

This will be achieved using Section 11.4 and Chapter 10. Note that the map y cannot
be a diffeomorphism if f; vanishes even at a single point.
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11.2 Remarks and Related Results

In this section 2 will be a bounded open set in R”. We start by showing that if f <0
in some parts of €, then any solution of

¢ (g)=/f inQ,
(11.2)
o=id on dQ
must go out of Q—more precisely,

aco@).

We recall, using (19.2), that we necessarily have

QCo(Q).

Proposition 11.3. Let Q be a bounded open C' set in R" and ¢ € C'(Q;R") with
@ =id on dQ. If there exists X € dQ such that detV @ (X) < 0, then

aco@). (113)

Proof. We divide the proof into two steps.

Step 1 (simplification). Since Q is C' (cf. Definition 16.5), there exists Y €
Diff' (By; w(B;)) with y(0) =X and

y(Bi 0 {x, = 0}) C 92,
v(B1N{x, >0}) C Q,
(B N{x, <0}) C (Q)".
Therefore, using that ¢(X) = X, we can choose € > 0 small enough so that
§:BeN{x, >0} 5B with §(x) =y~ (p(w(x)))
is well defined. We observe that @ satisfies
¢=idon B, N{x, =0} and detVQ(0)=detVo(x)<O0. (11.4)
To prove (11.3) it is enough to show that
@(Be N{x, > 0}) C {x, <0} (11.5)

for a certain 0 < £’ < €.
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Step 2. We finally show (11.5). Using (11.4), we immediately obtain

2,
axn

(0) = det Vg (0) < 0,

and therefore, by continuity, there exists 0 < & < € such that

20,
0xy,

<0 inByn{x,>0}. (11.6)

Combining (11.6) and the fact that @,(0) = 0 (by (11.4)), we get (11.5). O

We now discuss the special case n = 1 in the context g > 0 and with no sign
restriction on f.

Proposition 11.4. Let n =1, r > 0, Q = (a,b), g € C"(R) with g > 0 and f €
C"([a,b]). Let

F(x):/:f(t)dt and G(x):/axg(t)dt.

Then there exists ¢ € C™'([a,b];R) a solution of (11.2) if and only if
F(b)=G(b) and F(la,b]) C G(R).

Remark 11.5. Let F and G be as in the proposition with F(b) = G(b). Then the
following statements are verified:

(i) We always have
G([a,b]) C F([a,b]).

Moreover, when f > 0, the previous inclusion is an equality.

(ii) In general,
F(la,b]) ¢ G(la.B]).
This is for example always the case when f(a) < 0 or f(b) < 0.
(iii) The inclusion
F([a,b]) C G(R)
is not always fulfilled.

Proof. Step 1. First, note that Problem (11.2) becomes

G(p(x)=F(x), x€(ab),
G(b) =F (b).
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Indeed, (11.2) is equivalent to

[Glp()]' =F'(x) ifxe(ab),
¢(a)=a and @(b)=0.

We therefore get
G(p((x)=F(x)+c.
Since ¢ (a) = a and G (a) = F (a), we deduce that ¢ = 0 and thus our claim.
Step 2. Since G is strictly monotone (because g > 0), the solution ¢ (if it exists)
is given by
¢(x) =G (F(x)).
Therefore, the conclusion easily follows. O

We now show that Problem (11.2) is not symmetric in g and f.

Proposition 11.6. Let g € C°(R") with g1 (0)NQ # 0 and f € C°(Q) with f >0
in Q. Then no ¢ € C'(Q;R") can satisfy (11.2).

Proof. We proceed by contradiction. Assume that ¢ € C'(Q;R") is a solution of
(11.2). Since @ = id on d€2 , then (see (19.2) below)

»(Q)D Q.

Thus, there exists z € Q such that ¢(z) € 2 and g(¢(z)) = 0, which is the desired
contradiction, since

g(9(2))detVo(z) = f(z) > 0.

The proposition is therefore proved. O

In the following proposition, we state a necessary condition (see (11.7) below)
for the existence of a one-to-one solution of (11.2). Moreover, we show that not all
solutions of (11.2), verifying (11.7), are one-to-one.

Proposition 11.7. Let

geC®R"), g>0inR", feC@) and / f= / 2.
Q Q
Then the following claims hold true:
(i) If p € C' (Q;R") is a one-to-one solution of (11.2), then ¢ € Hom(Q;Q) and
>0 and int(f71(0)) =0. (11.7)

(ii) There exists f satisfying (11.7) such that not all solutions ¢ € C'(Q;R") of
(11.2) are one-to-one.

Proof. (i) By Lemma 19.11, we have that ¢ € Hom(Q;). Applying Proposition
19.14, we have the claim.
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(ii) We provide a counterexample in two dimensions. Let f € C'(B}) be such that
f=0,

F10)={(z,0) : t € [1/2,3/4]}, f=1ina neighborhood of 0

1 x 1
/0 sf(sxl>ds:2.

Define next o : By — [0, 1], through o (0) = 0 and, for 0 < [x| <1,

(x(x)2 o(x) |x] X
5 :/0 sds:/0 sf(sx>ds.

As in Step 2 of the proof of Lemma 11.11 (with g = 1), the map

¢x) = a(x)

and, for every x # 0,

x
[

isin C!(B};B), with
¢*(1)=f and ¢ =id ondB;.
Since ¢(1/2,0) = ¢(3/4,0), @ is not one-to-one. 0O

The next proposition can be proved with the same technique as the one developed
in this chapter and we refer to [60] for details.

Proposition 11.8. Let r > 1 and n > 2 be integers. Let g € C"(R") with g > 0 in R",
f € C"(By) satisfying
/ g=/ f.
B B

Then there exist § = 8(n,r,g,f) and v = y(n,r,g, f) such that for every gi,82 €
C"(R"), f1,f» € C"(By) satisfying, fori=1,2,

Loa=[ 5 Wilow) <8 and lsi-glow, <.
1 1

there exist ¢; € C"(B1;Ba), i = 1,2, such that for every 0 <k <r—1,
¢ (gi)=fi inB1, @ =id ondB,

o1 = @2llcrz,) < VLA = Lllovg,) + g1 — g2llcxz,))s
9illcr@,) < 7-

Remark 11.9. We can make the conclusion of the proposition more precise. In the
sense that for every € > 0, by letting § and y depending of € we can replace B,
above by B¢ .
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11.3 Proof of the Main Result

We can now discuss the proof of the main theorem. For the sake of simplicity, we
will split it into two proofs. First, we establish the main statement of the theorem
and then we show its three extra statements.

Proof. We divide the proof into five steps and we fix € > 0.

Step 1 (transfer of the problem into the ball). Since Q is C'*!-diffeomorphic
to By, there exists @ € D1ff’+1(B],Q) With no loss of generality we can as-
sume that detV¢@; > 0. Indeed, if detV¢; < 0 (note that since ¢; is a diffeomor-
phism, then detV¢; # 0 everywhere), then replace @;(x) by @;(—x,x2,...,%,).
Using Corollary 16.15, we extend ¢; and choose £ > 0 small enough so that
@1 € Diff ™ (By1¢,; @1 (Bisg, ) With

@1(Biye) C Q+Be.

Define B B
fi=0i(f)€C(B1) and g1 =¢(g) €C"(Big).

By the change of variables formula, we have that

Blflz/gf:/gg:/&goo. (11.8)

Step 2 (positive radial integration). Since (11.8) holds, we may apply Lemma
11.21 to fi . Therefore, there exists @, € Diff*(B;;B;) with

supp(@2 —id) C By

such that, letting f> = @;(f1) € C"(B)), we have f>(0) > 0 and

.
/ s (s|x|> ds>0 foreveryx#0andre (0,1]
0 x

81— &1
1 /B /
[en (o) o - e xtomreo

The change of variables formula and (11.8) lead to

/Blf2=/Bl<P§(fl)=/Blf1=/Blg]. (11.9)

Step 3 (radial solution). By the previous step, f> satisfies all of the hypotheses of
Lemma 11.10 (with m = f31+s g1). Therefore, there exist go € C"(R") with g» > 0
1

in R" and
/ &2 = 81
B]+£l Bl+sl
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and @3 € C"(By; B 1¢,) verifying

0;(g2)=f2 inBy,
¢ =id on dBj .

Note that, using (19.3),
/ &=/ f
B, B,

/ 822/ 81 -
By By

Step 4 (positive resolution). Since g1,82 € C"(Bit¢, ), 81,82 > 0in By, ,

/812/ g2 and 812/ 825
JBj B 'Bl+€1 Bl+sl

there exists, using Corollary 10.8, ¢4 € Diff"(Bj¢,;Bi+¢,) such that

and therefore, by (11.9),

¢;(g1) =8 inBiig,
¢4 =1id on 8B1U8B1+81 .

Step 5 (conclusion). By the above steps, we have that
P=giropiopop, op ! €C (R

satisfies o -

QCe(Q)C Q+Beg,

¢*(g)=f inQ,
o=id ondQ.
Indeed, for x € 9, since @;(dB;) = IQ (see Theorem 19.6) and @; = id on JBy,
i=2,3,4, we have
Q) =propopsop, ' op ! (x)
=o' (%) =x.

Thus, using (19.2), we have that Q C @(). Noticing that

(Pl_l(ﬁ) =B, (Pz_l(El) =B, @3(B1)CBitg,

04(Biye) =Bite, and @1 (Biig ) C Q+ B,

we have -
(p(.Q) CQ+B;.
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Eventually, using several times the third statement in Theorem 3.10,

9" (8) = (Pro@opop; ' og ") (g)
= (o) (02 )* (@3 (5 (91(2)))))
= (o) (02 )* (@3 (i (s1))))
= (o7 )" (92 )" (93(82)))
= (o) () (1)
= (o)) =1
which concludes the proof. 0O

We now prove the three extra statements of Theorem 11.1.

Proof. We divide the proof into seven steps.

Step 1 (transfer of the problem into the ball). Since Q is C'*!-diffeomorphic
to By, there exists ¢, € Diff” +1 (B 1 ,.Q) With no loss of generality we can assume
that detV¢; > 0. Indeed, if detV¢; < 0, then replace @) (x) by @;(—x1,x2,...,%,).
Define

fi=0i(f)€C’(B1) and g =¢j(g) €C(By).

From the change of variables formula, we get

/B|f1=/9f:/gg:/31g1>o. (11.10)

We notice the following facts:

(i) If f > 0 on d£2, then
fi>0 ondB (11.11)

since @;(dB1) = dQ by the invariance of domain theorem (see Theorem 19.6).
(i) If supp(g — f) C Q, then

supp(g1 — f1) C Bi. (11.12)

(iii) If £ > 0 in @, then
f1>0 inB (11.13)

since detV¢; > 0in B; .
(v) If f > 0in Q and f~'(0) N Q is countable, then

fi>0inB; and f;'(0)NB; iscountable. (11.14)

Step 2 (positive radial integration). Applying Corollary 11.23 to fi, which is
justified by (11.10) and (11.11) if f > 0 on dQ and by (11.10) and (11.13) if f >0
in Q, we can find ¢, € Diff*(B;;B;) with

supp(¢, —id) C B



220 11 The Case Without Sign Hypothesis on f

such that, letting f> = @;(f1) € C"(B1), we have /> (0) > 0 and

/ "L (sji') ds>0 foreveryx=#0andre (0,1],
0

1
/ s (s|x|> ds >0, foreveryx##0andre|[0,1].
r X

Moreover, using the change of variables formula and (11.10), we obtain

/zalfzz/lgl“’f(fl):/lglfl:/&gl- (11.15)

Finally, we notice the two following facts:

(i) If supp(g — f) C 2, then by (11.12) and since supp(¢, —id) C B}, we have
supp(g1 — f2) C Bi. (11.16)
(i) If f > 0in Q and f~'(0) N Q is countable, then by (11.14), we get that
£>0inB; and f,'(0)NB; iscountable. (11.17)

Step 3 (radial solution). Since f, satisfies all the hypotheses of Lemma 11.11,
there exist g, € C"(B;) with g2 > 01in B} and @3 € C"(By;B;) verifying

0i(g2) = f2 inBy,
o3 =id on 0B .

Note that using (19.3),

/Blg2:/31f2

82 = 81 -
By By

and therefore, using (11.15),

We, moreover, have the two following facts:

(i) If supp(g — f) C Q (which implies, in particular, by (11.16) that f, > 0 on
dBy), the first extra statement of Lemma 11.11 implies that g, and ¢3 can be chosen
so that

supp(g2 — f2) C By and supp(¢s —id) C B;. (11.18)
(i) If f > 0in Q and f~!(0) N Q is countable (which implies by (11.17) that f> >
0in B and f; 1(0) N By is countable), the second extra statement of Lemma 11.11

implies that ¢3 can be chosen so that

@3 € Hom(B;;By). (11.19)
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Step 4 (positive resolution). Since g1,g> € C"(B}), g1,82 > 01in B and

/812/ 82,
B, B

using Theorem 10.7, we can find ¢4 € Diff"(B;;B;) such that

¢;(g1) =g inBy,
o1 =id on dB;.

We, moreover, have the following fact: If supp(g — f) C 2, then by (11.16) and
(11.18) we get that supp(g; — g2) C B; . Therefore, using Theorem 10.11 instead of
Theorem 10.7, we can furthermore assume that

supp(¢@4 —id) C By . (11.20)
Step 5 (conclusion). Using the above steps, we have that
P=piopiogion, ' og ! €C(Q:Q)
satisfies

o=id on dQ.

Indeed, for x € dQ, since @;(dB;) = dQ (see Theorem 19.6) and ¢; = id on JBy,
i=2,3,4, we have

{q)*(g) =f inQ,

Q) =ropsop30p; og ! (x)
=oi(p; ' (x) =x.

Since ;' (2) = By, (¢2)"'(B1) = B1, ¢x(B1) = By, ¢3(B1) = B (by (19.2)) and

¢1(B1) = Q, we have that o
0(Q)=20.

Finally, exactly as in Step 5 of the previous proof, we prove that
¢'(g)=f inQ,
which shows the first extra statement.

Step 6. We show the second extra assertion. If supp(g — f) C Q, then (11.18) and
(11.20) imply the result, since

supp (¢ —id), supp(@3 —id), supp(¢4 —id) C By .

Step 7. Finally, we show the third extra assertion. If £ > 0in Q and f~!(0)NQ
is countable, then (11.19) implies the assertion since @, ¢> and @4 are diffeomor-
phisms. O
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11.4 Radial Solution

In this section we give sufficient conditions on f in order to have a positive g and a
radial solution ¢ of (11.2) in the unit ball (i.e., a solution of the form a(x)x/|x| with
a : By — R). For the sake of simplicity, we split the discussion into two lemmas.

Lemma 11.10. Let r > 1 be an integer, m > 0 and f € C"(By) be such that

f(0)>0, m> a fs

.
/ s”lf(s|x|) ds>0 foreveryx#0andre (0,1], (11.21)
0 x
1 X m-— s f
/ ST (s )ds > ———=— foreveryx#0andre[0,1]. (11.22)
r |x] n meas(By)

Then for every € > 0, there exist g = gy ¢ € C"(R") with g > 0 in R" and

[
Biye

and @ = Qe € C"(B1;Bi1¢) such that

o =id on 0B .

Proof. 'We split the proof into two steps. Fix € > 0.

Step 1 (construction of g). In this step we construct a function g € C"(R") with
the following properties:

g>0inR", g= finaneighborhood of 0, / g=m,
Biie

1 1
/ s"lg (sx) ds = / s (sx) ds forevery x # 0, (11.23)
0 x| 0 ||

1+¢€ x r x
/ " lg (s) ds > / sSf (s) ds forevery x#0Oandre[0,1].
0 Y 0 x|
(11.24)

Step 1.1 (preliminaries). Since f(0) > 0and (11.21) and (11.22) hold, there exists
0 > 0 small enough such that

1
f>0 inBj, min/ SLf <sx> ds > 0, (11.25)
x40 J§ |x|
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1 N m= | f

/r s <s|x|) ds > —m +6 foreveryx=#0andrel0,1]. (11.26)
Let n € C™([0,%0);]0, 1]) be such that

o 1 if0<s<§/2
S)=
1 0 ifé<s.

Define then # : R\ {0} — R by

It is easily seen that 2 € C"(R"\ {0}),
h(x) = h(Ax) for every A >0,

and, using (11.25), _
h>0, inR"\{0}.

Now define, for x € R”,

h(x) = n(Jx[).f(x) + (1 =1 (|x])h(x).
Using the definition of & and 17, we have that

heC(RY), h>0inR", h=finBs),
1 1 11.27
/ s"h (Sx> ds = / s <sx) ds for every x # 0. ( )
0 x| 0 x|

For every 0 < p < g, let p,, € C*(R";[0, 1]) be such that

1 inEl,
=0 in (B4p)°

and define

Integrating the last equation of (11.27) on the unit sphere, we obtain that

b=
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and, thus, we get

m— | h m— | f m— | f
limc, = B = 5 = 5 :
u—0 " meas(Bi;e \Bi) meas(Biie\Bi) [(14¢&)"—1]meas(B;)
This implies
m— | f
1 "—(1 " 1 "1
P it G ) SO o . el O
1—0 n n 1—0 n meas(B))

and therefore, by (11.26) we can choose (; small enough such that ¢, > 0 and

1 14+¢e)"—(1 n
/ s"1f<s|x|) ds > — (1+e)" = (L+m) cy , foreveryx#0andre[0,1].
r X n
(11.28)
Step 1.2 (conclusion). Let us show that the function

8§= p#lh + (1 - p#l )C,Ul € Cr(Rn)

has all of the desired properties. Indeed, since 4 > 0 in R" and ¢y, > 0, we have that
g > 0in R". By definition of ¢, , we see that

/ g=m.
JBite

Using the last equation of (11.27) and the fact that g = 4 in By, we get (11.23). We
finally show (11.24). Using (11.23), this is equivalent to showing

It 1
/ s lg (sx|) ds > —/ sLf (sx> ds foreveryx=#0andr€[0,1].
1 r

¢ x|

Letx# 0 and r € [0, 1]. We have, since g = ¢y, in Byy¢ \ Bi4y, and (11.28) holds,

I+e x I+ x I+
/ s"lg (s> ds>/ s"lg (s> ds:/ sn_lculds
1 || I+ || I+

_ (e -y _/‘Snlf(SX> s

n

and therefore the assertion.

Step 2 (construction of ¢). We will construct a solution ¢ of the form

where a : B; — R.
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Step 2.1 (definition of o). Let @ : B; — R be such that o (0) = 0 and, for 0 <

|x|§1,
a(x) ||
/ o g (s ) as— / sl (52 ) ds. (11.29)
0 x| 0 ||

Since g > 0, using (11.21) and (11.24), we get, for every x € B; \ {0}, that a(x) is
well defined and verifies 0 < a(x) < 1+ €. Since g = f in a neighborhood of 0, we
obtain that

o(x) =|x| in the same neighborhood of 0.

By (11.23), we immediately have
a(x)=1 ondB;.

Therefore, by the implicit function theorem, which can be used since o > 0 and
g >0, we have that & € C"(B; \ {0}). Moreover, since o(x) = |x| in a neighborhood
of 0, the function x — o(x)/|x| is C"(By).

Step 2.2 (conclusion). We finally show that

is in C"(By; By +¢) and verifies

(P*(g):f in By,
o =id on 0B .

In fact, by the properties of @, it is obvious that ¢ € C"(B1;B1¢) and that @ = id
on dB; . Using Lemma 11.12, we obtain

a0 & da
detVo(x) = Wizzlx,a—xi(x). (11.30)

Computing the derivative of (11.29) with respect to x;, we get

x,‘Xj

nel X x| 8 — T
" (x)g(o( 8x, Z/ 8xj (s|x|> <|x|2 )ds
n— l b af |x|6ij B %
=k [0 (o) ( )

where 6;; = 1 if i = j and §;; = 0 otherwise. Multiplying the above equality by x;,
adding up the terms with respect to i and using

n (a8 — ,
Zx,- —F— | =0, 1<;j<n,
i=1

[x[?
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we obtain

o (x)g(o(x) ixz'gz(@ = "f (%)

This equality, together with (11.30), implies ¢*(g) = f, which shows the assertion.

O
Lemma 11.11. Let r > 1 be an integer, f € C"(By) be such that f(0) > 0 and

r

/ Sf (s|i|> ds >0 foreveryx=#0andr e (0,1], (11.31)
0
1

/ s"f <s|x|> ds>0 foreveryx+#0andre|0,1]. (11.32)

r X

Then there exists g € C"(By) with g > 0 in By and ¢ € C"(By;B)) such that
{q»*(g) =f inB.
o=id on dBy.

Furthermore, the following two extra properties hold:

() If f > 0 0n dBy, then g and ¢ can be chosen so that

supp(g—f) CB1 and supp(¢ —id) C B;.
(ii) If f > 0 in By and
1 0)NBy s countable,

then @ can be chosen in Hom(By;B)).

Proof. The proof is essentially the same as the previous one. We split the proof into
two steps.

Step I (construction of g). In this step we construct a function g € C"(B;) with the
following properties: g > 01in By , g = f in a neighborhood of 0 (and also supp(g —
f) C B iff> 0 on (981),

1 1
/ g (sx> ds = / s (sx) ds forevery x # 0, (11.33)
0 Ry 0 ||

1 r
/ s"lg (sx> ds > / S (sx> ds foreveryx#0andre|[0,1].
0 | 0 |
(11.34)

Step 1.1 (preliminaries). Since f(0) > 0 and (11.31) holds, there exists & > 0
small enough such that

1
f>0 inBs and min/ s”lf(sx>ds>0. (11.35)
x#0 J§ |x]
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Letn € C*([0,0); [0, 1]) be such that
I if0<s<§/2
n(s) = ,
0 ifdo<s.
If f > 0 on dB;, we modify the definition of § and 1 as follows. We assume that
(s) = 1 if0<s<d/20or1-0/2<s<1
M=Y0 irs<s<i-s,
where 0 > 0 small enough is such that

1-6
f>0 inBsU(B;\B, 5) and min/ s”1f<sx>ds>0. (11.36)
x#0 J§ |x]

Define next 2 : R"\ {0} — R by

[erta-nonssgas
1 |
|1 =nG)ds
0

h(x) =

It is easily seen that 2 € C"(R"\ {0}), that
h(x) = h(Ax) for every A > 0,

and, using (11.35) or (11.36), that

h>0.
Step 1.2 (conclusion). Let us show that g defined by

g(x) =n(lx))f(x)+ (1 =n(lx]))h(x), x€Bi,

has all of the required properties. Using the definition of & and 1, we see that g €
C"(B) satisfies g > 0in By, (11.33) and g = f in By, (if, moreover, f >0 on 9By,
then supp(g — f) C By). Finally, we show (11.34). Let x # 0 and r € [0,1]. Using
(11.32) and (11.33), we get

Lo (X) _ [ <X)
/Os g s|x| ds-/os f S|x| ds
_ [T (o2 Lot (o
—/Os f<s|x|)ds—|—/r s f<s|x|)ds
" n—1 X
2 [l ()

which ends the construction of g.
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Step 2 (construction of @). We will construct, as before, a solution ¢ of the form

X

Plx) = alx) —

el

where o : B — R.
Step 2.1 (definition of o). Let o : By — R be such that o (0) = 0 and, for 0 <

x| <1,
o(x) [
/ s" g (sx> ds = / s (sx) ds.
0 x| 0 x|

Since g > 0, using (11.31) and (11.34), we get for every x € By \ {0} that o(x) is
well defined and verifies 0 < a(x) < 1. Since g = f in a neighborhood of 0, we
obtain that

o(x) = |x| in the same neighborhood of 0.

By (11.33), we immediately have
o(x)=1 ondB.
Moreover, if supp(g — f) C Bi, then o also verifies
o(x) =|x| in aneighborhood of dB; . (11.37)

Therefore, by the implicit function theorem, which can be used since o > 0 and
g >0, we have that & € C"(B; \ {0}). Moreover, since o(x) = |x| in a neighborhood
of 0, the map x — ot(x)x/|x| is C"(By).

Step 2.2 (conclusion). We show that

is in C"(By;B) ) and verifies

(p*(g):f iIlB],
o=id on dB.

In fact, by the properties of ¢, it is obvious that ¢ € C"(By;B;) and that ¢ = id on
dB, . Finally, proceeding exactly as in Step 2.2 of the proof of Lemma 11.10, we
obtain that

(p*(g):f ith

which concludes the proof of the main statement.
It remains to show the two extra statements.

(i) If f > 0 on dB;, then we have supp(g — f) C B;. Hence, it follows from
(11.37) that
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supp(¢ —id) C By,
which proves the first extra statement.

(i) If £> 0 and
f_1 (0)NB; is countable,

we immediately obtain
o(x) # o(rx) forevery x € B\ {0} and r € [0,1),

which implies that ¢ € Hom(B;; B ) and establishes the second statement and ends
the proof. 0O

In the proof of Lemmas 11.10 and 11.11, we used the following elementary
result.

Lemma 11.12. Let A € C'(B) and ¢ € C'(B1;R") be such that ¢(x) = A (x)x. Then
detVo(x) = A"(x) + A" I( le ax,

In particular, if A(x) = o(x)/|x| for some o, then

(an n Ol

T E o

Proof. Since Vo = A1d+x® VA and x ® VA is a rank-1 matrix, the first equality
holds true. The second one easily follows. O

detVo(x

11.5 Concentration of Mass

We start with an elementary lemma.
Lemma 11.13. Let ¢ € C°([0,1]; By ). Then for every € > 0 such that
([0, 1]) + Be C By
there exists Qg € Diff”(By;By) satisfying
9e(c(0) = c(1) and supp(@e —id) ([0, 1]) + Be .
Proof. Define ne € C*(R";[0,1]) such that

1 il’lBE/4
70 in (Bp)
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Set, for a € R",
Nae(x) = Ne(x—a).

‘We then have
8|Vituellco = I1Vnellco < 1/ (2n) (11.38)

for a suitable 6 > 0. Letx; € By, 1 <i <N, with x; = ¢(0) and xy = ¢(1), be such
that

xi€c([0,1]) for 1 <i<N and |x—x] <dforl <i<N-—1
and define
@i(x) =x+ My e (x) (i1 —x;), 1<i<N-—1L
Since (11.38) holds and supp(¢; —id) C ¢([0,1]) + B¢ C By, we have

detVe; >0 and ¢;=id ondB;.

Therefore, ¢; € Diff*(By;B;) by Theorem 19.12. Moreover, @;(x;) = x;+1 . Then the
diffeomorphism

Qe =@QN-10---0Q
has all of the required properties. 0O

Before stating the main result of this section, we need some notations and ele-
mentary properties of pullbacks and connected components.

Notation 11.14. (i) Let Q C R" be a bounded open set. For f € C°(Q), we adopt
the following notations:

Fr=f71((0,%) and F~ = f~'((=,0)).
Moreover, if x € Fi7 then
in denotes the connected component of F* containing x.

(ii) Given a set A C R", we let

1A(x)_{1 ifxeA

0 otherwise.

In the following lemma we state an easy property of pullbacks.

Lemma 11.15. Let Q C R” be open and bounded and f € C°(Q),
¢ € Diff' (Q;Q) with detVe >0,

XEFY yeF . If f = @*(f), then 9" (F*)=F* ¢ (F")=F~,
(Pil(Fer):FJfl(x) and ¢71(Fy7):f71
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The following lemma is a trivial result about the cardinality of the connected
components of super (sub)-level sets of continuous functions and we state it for the
sake of completeness.

Lemma 11.16. Let f € C°(B)). Let {F,} };c/+ and {Fy, }jer- be the connected com-

ponents of F ¥, respectively of F~. Then I and I~ are at most countable. Moreover,
if |IT| = o, respectively |I”| = oo, then

k k
; + +) = ; ; - -\ =
1351010 meas (F \U Fy ) =0, respectively ]}glolo meas (F \U F}]> =0.

i=1
We now give the first main result of the present section.

Lemma 11.17 (Concentration of the positive mass). Let r > 1 be an integer, f €
C"(By) and z € F*. Let also A;, 1 <i <M, be M closed sets pairwise disjoint of
positive measure such that

A CF'nBy, 1<i<M.

Then for every € > 0 small enough, there exists Qg s (4,y € Diff"(By;By) (which will
be simply denoted @) satisfying the following properties:

supp(@e —id) C F," N By,

f
.\
wé(f)zm— inA;, 1<i<M. (11.39)

Remark 11.18. Indeed, the above lemma allows one to concentrate the positive mass
of the connected component containing z into the union of the A;. The conclusion
of the lemma immediately implies that

/E*f:/p;(p:(f)zi‘;//;i(’);(f) Z/Wf—slimeas(Ai),

Proof. We split the proof into three steps.
Step 1 (simplification). Using Theorem 10.11, it is sufficient to prove the exis-

tence of fe € C"(By), such that

fe>0 inFS supp(f—f) CEFNB and [ fom [
E; F;

satisfying also (11.39) with @;(f) replaced by f; .
Step 2 (definition of fg and conclusion). Let K C F;" N B be a closed set with

M
(JAicintk cK C F,"' nB,
i=1
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and let, forevery € >0and 1 <i < M,
e €C*(Bi:[0,1])) and & € C°(By:0,1))

be such that

supp(1ie) Nsupp(nje) =0 fori# j, (11.40)
A; C{x€Bj:Nig(x) =1} Csuppnie C intK, (11.41)
K C{x€B;:&(x)=1} Csupp(&) C F,' NBy, (11.42)
lim & =1pinp  and limre =1y, (11.43)

Define f;, € small, as

e {Zglni,scﬂ‘F(l—Zﬁlni,e)'E in K
=

Ce-e+(1-8)f elsewhere,
where
F*f
= 1<i<M-1 11.44
Y Mmeas(4;) L= ’ ( )

and C;Le is the unique constant defined implicitly by the equation

ot

We claim that f has, up to rescaling €, all of the required properties. Using (11.41)
and (11.42), we get that

fe€C'(Br), supp(fe—f) CEFNBy, /Fﬁfg: [ 1.

!

+ _ z <i< ] .
éli%c“s Mmeas(A;)’ Isis¥M (11.45)

We claim that

By (11.44), it is obviously sufficient to prove the assertion for i = M. Using (11.43),
(11.44), and the dominated convergence theorem, we get

M—1
=1li —_ 14, lim C;,
/F;f £30 F fe= Z / ’Mmeas )+ Ft Au .91—I>I(1)CM78
M—1 .
== ot f+meas(Ay) lg%cﬁje
and thus the assertion holds. By the definition of f¢, (11.40) and (11.45), we get
that, for € small,



11.5 Concentration of Mass 233
fe>0 inF’.
Finally, since, by (11.41),
fe=Cle inA;, 1<i<M,
(11.45) directly implies, up to rescaling €, (11.39), which ends the proof. o
We now give a similar result for the negative mass.

Lemma 11.19 (Concentration of the negative mass). Let r > 1 be an integer, f €
C'(By)andy € F~. Let also A;, 1 <i <M, be M closed sets pairwise disjoint of
positive measure such that

A;CF, NBy and meas(dA;) =0, 1<i<M. (11.46)

Then for every € > 0 small enough, there exists Qe r(a,;} € Diff"(By;By) (simply
denoted Q¢ ) satisfying the following properties:

supp(¢e —id) C F, N By,

f
mﬂéqﬁ(fko inA;, 1<i<M, (11.47)
1
n—1 % X
/os (1Fy\(U%Af)"’e(f))(s|x|>dsz8, x#0. (11.48)

Remark 11.20. Integrating the last inequality over the unit sphere, we indeed obtain
that the negative mass of the connected component containing y is concentrated into
the union of the A; .

Proof. We split the proof into three steps.

Step 1 (simplification). Using Theorem 10.11, it is sufficient to prove the exis-
tence of fe € C"(By), such that

fe<0 inF, supp(f—fe) CF, NB; and /F_fg: F_f
y y

satisfying also (11.47) and (11.48) with ¢} (f) replaced by fe.

Step 2 (preliminaries). It is easily seen that the family of closed sets K¢ , € small,
defined by

Ke ={xe Fy NBi_¢: f(x) < —¢}

has the following properties:

KeCKy ife'<e and | JKe=F, NBy, (11.49)
>0

Pl oy o\ke™ —€- (11.50)
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Let & € C*(B;[0,1]) be such that
Ee=1inKe and supp&e C F, NBy. (11.51)

Using (11.49) and (11.51), we immediately deduce that

M
5%5821%?31 and | JA; Cint(Ke) for & small. (11.52)

i=1

Finally, for every 1 <i <M and € small enough, let ;¢ € C“(El; [0,1]) be such
that

supp(Mnie) C int(4;) and 1in(1)n,-,g = linay), 1<i<M. (11.53)
E—
Step 3 (definition of f¢ and conclusion). Define f; , € small, as

oz {Zﬁ”lni,sC,-,g+(l —Ximie) (—e)  in UL A
.=

Ge- (&) +(1=&)f elsewhere,

where

Fr
Cl.=—"r 1<i<M-1 11.54
Y€ Mmeas(A;)’ == ’ ( )

and C,, . is the unique constant defined implicitly by the equation

.%Tfsz/l%f-

We claim that, up to rescaling €, fe has all the required properties. Using (11.51)—
(11.53), we obtain that

fe €C'(B1), supp(f—fe) CF NBi, /F* fe=| f
‘We assert that

F’f
limC;, b

=——  1<i<M. 11.
e—0 "¢ Mmeas(A;)’ =t= (11.55)

By (11.54), it is obviously sufficient to prove (11.55) for i = M. Using (11.52)
and (11.53) and noticing (using (11.46))

meas(A;) = meas(int(4;)),
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we get, by the dominated convergence theorem,

' . ! fF;f ' .
/F;fZ ;133) e fe= ; /F; 1im(Al->M7meaS(Ai) +/F; Ting(ay) im Cyy ¢
M—1 . _
= Rﬁf—FmCaS(AM);I_I}I(I)CM?e

and, thus, the assertion is verified. Equation (11.55) immediately implies f; < O in
Fy_ for € small and also, rescaling € if necessary, (11.47).

It remains to prove (11.48). First, we claim that
Je |(E;QBI,S)\(U§‘11AI-)Z —&, (11.56)

fe>-D (11.57)

for some D > 0 independent of €. In fact, (11.56) is obtained combining the fact that
(by definition of f¢)
fe=—e in Ke\ (UZ4))

and, by (11.50) and the definition of f,

Jelirromy k= €

Equation (11.57) is an immediate consequence of (11.55) and the definition of f.
Using (11.56) and (11.57) we get, for € small and every x # 0,

o1 e X 1 X
J ) (55 )82 [ g (557
1—-¢ X 1 X
- /o (g () Te) (S|x> dH/l_e(l@’\(U?ilAf)fs) (le> @
1—-¢

1
2/ —eds+ (=D)ds > —e—eD=—(D+1)e.
0 l1—¢
Replacing € by €/(D+1), we have shown (11.48) while still conserving the in-
equality (11.47). This ends the proof. 0O

11.6 Positive Radial Integration

Lemma 11.21 is the central part of the proof of Theorem 11.1. We show how to
modify the mass distribution f € C°(B)) satisfying |, p, f > 0, in order to have strictly
positive integrals on every radius starting from O and almost positive integrals on
every radius starting from any point of the boundary (see Lemma 11.21). Moreover,
if f is strictly positive on the boundary or if £ > 0 in B}, we will be able to modify
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the mass of f in order to have strictly positive integrals on every radius starting
either from O or from any point of the boundary (see Corollary 11.23).

Lemma 11.21 (Positive radial integration). Let f € C°(B) be such that

f>0. (11.58)
By

Then for every ¢ > 0, there exists ¢ = @ € Diff*(By;B}) such that

Supp((P_id)CBlv (P*(f)(o) >07

/rsn—l(p*(f) (S|;C> ds >0 foreveryx#0andr e (0,1], (11.59)
0

1
/ s”_l(p*(f) <5i> ds>—0c foreveryx#0andre|0,1]. (11.60)

Remark 11.22. (i) If f > 0, the proof is straightforward (see Corollary 11.23).

(ii) If f1 satisfies @*(f1)(0) > 0, (11.59) and (11.60), for a certain ¢ as in the
lemma, then every f > fj also satisfies @*(f)(0) > 0, (11.59) and (11.60) with the
same ¢. Indeed, we clearly have

¢ (f1)(x) = fi(@(x))detVo(x) < f(@(x))detVe(x) = ¢*(f)(x).
>0

(iii) Integrating (11.59) over the sphere with r = 1, we get [z ¢*(f) > 0 and,
therefore, (11.58) is necessary using the change of variables formula.

(iv) In general, (11.60) cannot be assumed to be positive or 0 for every x and r.
This is, for example, always the case when f(X) < 0 for some X € dB;. Indeed,
noting that

¢*(f)(x) = f(x)detVo(x) <0,

we have that (11.60) will be strictly negative for x = X and r sufficiently close to 1.

(v) We could have replaced, without any changes, the unit ball by any ball cen-
tered at 0.

As a corollary, we have the following result.

Corollary 11.23. Let f € C°(B)) be such that

f>0 (11.61)
By

and

either f>0 ondB, or f>0 inB.



11.6 Positive Radial Integration 237
Then there exists ¢ € Diff*(By;B;) such that

supp(@ —id) C By, ¢*(f)(0) >0,

/rsnfl(p*(f) (s&) ds >0 foreveryx#0andre (0,1], (11.62)
0

1
/ " Lo*(f) <s|i|> ds >0 foreveryx+#0andre|[0,1]. (11.63)

Proof (Corollary 11.23). We split the proof into two parts.

Part 1. We prove the corollary when f > 0 in B; . By (11.61) there exists a € B;
with f(a) > 0. Using Lemma 11.13, there exists ¢ € Diff*(B;;B;) such that

supp(@ —id) C By and ¢(0) =a.

Since ¢*(f)(0) = f(@(0))detVep(0) > 0 and ¢*(f) > 0 in By, it is immediate that
¢ has all of the required properties.

Part 2. We prove the corollary when f > 0 on dB; .
Part 2.1. By (11.61), there exist 0 < 1 < 1 and € > 0 such that

f>0 and f>¢€ onBi\By.
By

Using Lemma 11.21 with By, instead of B , there exists ¢ € Diff(By;By,) verifying

/ Lo (f) <s|x|> ds>0 forevery x#0andre (0,7, (11.64)
0 X

n 1—n"
/rs"’l(p*(f) <S;C|>ds>—8(nn) for every x £ 0 and r € [0,7]. (11.65)

Part 2.2. Let us show that ¢ (extended by the identity to B;) has all of the required
properties. Trivially, ¢ € Diff*(B;;B),

¢*(f)(0) >0 and supp(¢ —id) C By C B;.

Since @*(f) = f > 0in By \ By, (11.64) directly implies (11.62). Finally, we show
(11.63). Using again that ¢*(f) = f > 0 in By \ By, it is obvious that (11.63) is
verified for every r € [1, 1]. Suppose that 7 € [0, 7). Combining the fact that ¢*(f) =
f>e€ein B \ By, and (11.65), we obtain for every x # 0,

[ <S|i|> as= [ () (s@) as+ 15 () (s@) ds

1 1—nn
>/ s"fleds—M:O.
n n

The proof is therefore complete. O
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Finally, we give the proof of Lemma 11.21.

Proof. Since the proof is rather long, we divide it into five steps. The three following
facts will be crucial.

(i) For fixed a,b € By, there exists, from Lemma 11.13, ¢ € Diff*(B;;B;) such
that ¢(a) = b. This will be used in Step 1.3 and Step 3.1.

(i) From Lemmas 11.17 and 11.19, we concentrate the mass contained in con-
nected components of F™ and F~ in sectors of cones. This will be achieved in
Step 4.

(iii) From Remark 11.22(ii), it is sufficient to prove the result for a function
f1 < f. This will be used in Steps 1.1, 1.2 and 1.4.

Step 1. We show that we can, without loss of generality, assume that

fe€C?(By), F connected, f(0)>0 and . >0, (11.66)
BI\F,
recalling that F;" is the connected component of F* = f ~1((0,%)) containing 0.

Step 1.1. We start by showing that we can assume f € C(B). First, using The-
orem 16.11, we extend f so that f € C°(R"). Then we choose § > 0 small enough
such that

. f > 0meas(By).
By

By continuity of f, there exists fg € C*(R") such that
fs(x) < f(x) < fs(x)+6 foreveryxe€B;.

Note that

/Bl fs > /Blf"smeaS(Bl) > 0.

Using Remark 11.22(ii), we have the assertion. From now on, we write f instead of
fs and we can therefore assume that f € C*(B)).

Step 1.2. We show that we can, without loss of generality, assume that F~ is
connected.

Step 1.2.1 (preliminaries). For every € > 0 there exist M € N, ay,...,ay € B;
and 0y, ...,0y > 0 (depending all on €) such that

M
UE&,(Q,‘) CFT N B
i=1

B, (a;) ﬂﬁgj(aj) =0 foreveryi# j,

meas(F '\ (UXBs (a;))) < e.
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Using the last equation and since

Lr=f. ) >0

we can choose € > 0 (and, therefore, also M, a; and &;) small enough so that

/M f+/ f>0.
Ui:]BtS,'(ai) F-

We then choose § > 0 small enough such that

M
UBs14s(ai) CFH 0By,
i=1

Bs,145(ai)NBs;a5(aj) =0 foreveryi# j,
/ f+/ f > 0 meas(B;). (11.67)
U?i]Bsi(ai) F-

Let £ € C*(B1;[0,1]) be such that

M

E=1 in | (Bsiss(ai)\Bs5(ai)),

i=1
M
supp& C | (Bs14s(ai) \ Bs,(ar)) ,

i=1
{x€e B\ (U£1B&+26 (a;)) : &(x) <1} is connected. (11.68)
Using Theorem 16.11, we extend f so that f € C*(R"). Define f: R” — R by
f(x) = min{f(x),0}.

By continuity of f, there exists hg € C*(R") such that

hs(x) < f(x) <hg(x)+6 foreveryx € By. (11.69)
In particular, note that

hs <0 inB.

Step 1.2.2 (conclusion). Let f5 : Bj — R be defined by

{ (1-8&)f inUY Bs 26(ai)
5 =

- (11.70)
(1=&)hs  in By \UMX,Bs 125(ar).
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It is easily seen that f is of class C* and satisfies the following properties:

= hs(x) <min{f(x),0} < f(x) ifxe€B;\UY Bs 45(ai)

<0< f(x) if x € UYL, (Bs, 145 (ai) \ Bo,135(ai))
fs(x){ =0<f(x) if x € UYL, (B, 435 (ai) \ Bs,15(ai)

< fx) if x € UL, (Bsyy5(ai) \ Bs, (ai))

= f(x) if x € UX,Bs (a;).

In particular, f5 < f. We, moreover, have, since h5 < 0 and

M
f5>0 in | JBgias(ai),

i=1
that
Fy ={x€Bi: f5(x) <0} = {x € Bi\UL|Bs 125(a) : f5(x) <0}
= {x e Bi\UYBsa5(ai) : (1-&(x))hs(x) <0}
= {x € B\ U B a5(ai) - §(x) <1},
which is a connected set by (11.68). We thus have that
Fy CB \U?i136,-+26 (a;) and Fy is connected.

Observe next that

/fsf/ (1=8)hs > /h5>/ f- 5 /f dmeas(B;)

. F5ﬂFf+-/F§\Ff fmeas(By) = /Féme gmeas(B1)
= f—5m€aS(31)2/ f — 8 meas(By).
FgﬂF* F—

This leads to

/B]f(*—/,v+ 5+/ f5 2 /U”M a+/ fa—/ul“S f+/F5f5

>/U o f+/ F— &meas(B)) > 0,

where we have used (11.67) in the last inequality. From now on, we write f in place
of f5, since f5 < f and Remark 11.22(ii) holds. We may therefore assume, in the
remaining part of the proof, that f € C* (El) and F~ is connected.
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Step 1.3. Let us prove that we can assume that £(0) > 0. In fact, suppose that
f(0) < 0. We prove that there exists a diffeomorphism ¢; such that ¢} (f)(0) > 0.
Indeed, since [ f > 0, there exists a € By such that f(a) > 0. By Lemma 11.13,

there exists @ € Diff*(B;;B;) such that
supp(@; —id) CB; and ¢;(0) =a.

Since @] (f)(0) = f(a)detVe;(0) > 0, we have the result. Note that, using the
change of variables formula,

/ ei(f)=[ f>0.
J B J B
Note also that ¢} (f) € C™ (B} ) and, using Lemma 11.15,

((Pf‘(f))_1 ((—o0,0)) = (pfl(F*) is connected.

From now on, we write f in place of @ (f) and thus we can assume, without loss
of generality, that f € C* (B,), F~ is connected and f(0) > 0.

Step 1.4. We finally show that we can assume that

> 0.
/BI\FO+ f
In fact, since £(0) > 0and [ f>0,if 8 > 0 is small enough, we have that Bys C
F," and
/ f>0. (11.71)
B1\Bys,

Let n € C([0,1];[0, 1]) be such that

1 ifr<éordd <r<l
n(r)=

0 if261§r§351.
Let h € C*(By) defined by A(x) = 1(]x|) f(x). We then have
h(0) >0, H~ =F~ connected and Bs C Hy C By, -

Using (11.71), we get

/ h> / h= f>0.
B)\Hy JB1\Bys, Bi\Bys,

Since h < f, we may, according to Remark 11.22(ii), proceed replacing f with h =
1 f. The proof of Step 1 is therefore complete.

Step 2. In this step we start by selecting N connected components of F+ \F0+.
Then we select an appropriate amount of points in each of them.
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Step 2.1 (selection of N connected components of F+ \F(;r ). Let F;ir, el
x; € By \ F,", be the pairwise disjoint connected components of FT \FO+. Notice
that I is not empty by Step 1.4 and is at most countable; see Lemma 11.16. We
claim that there exists N € N such that

/UN F+f+/F,f>0- (11.72)
i—1£x;

In fact, suppose that I is infinite (otherwise the assertion is trivial because of the
fourth statement in (11.66)). Since, by the fourth statement in (11.66),

/F+\F0+f+/Ff>0

and since, using Lemma 11.16,

li =
nglo uy F’rf /F+\F+ f
i=1"% 0
we have (11.72) for N large enough.
Step 2.2 (selection of M; points in F;, 1<i<Nandof Mi+---+ My —1

points in F~ ). We start by defining the integers M;. We claim that there exist M, ...,
My € N such that

- %f s

M (T M) —1

>0 foreveryl <i<N. (11.73)

In order to simplify the notations, let
mf={ f 1<i<N and mfz/ 7.
Joes F-

We claim that for an integer v large enough,

m
M;=v and Mi|:lV:|7 ZSiSN,

+
my

where [x] stands for the integer part of x, satisfy (11.73). Indeed, let 1 <i < N; then

since
+ +

R m.
“Vv—1<M<—Lv+1, 1<i<N,
my my
we deduce
m; N m- - m; N m-
M. N = mt N ot :
M, ( j:le)_l %v+1 Z./:lerJ v—N-=—1

1 my
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Therefore, since, by (11.72),

N
Z mf +m- >0,
j=1

mt m- m-
lim [v| -+ 4 ———-— || >m [ 14+ =——— ]| >0.
Voo [ (M,' ( ]jylej) —1 ! ]]\]:1 mj'

This proves the assertion.

we get

Finally, choose M| distinct points
21, €EF
Then choose M, distinct points

+
IMy+15 -5 AM+M, € sz

and so on, and finally choose My distinct points

+
IMy+-+My_1+1y - M ++My € F;CN .

Similarly, choose M| + - - - + My — 1 distinct points

Vs YMy+tMy—1 € F

We define
M=My+---+My.

In particular, we have
flz) >0, 1<k<M and f(y;)<0, 1<j<M-1

Step 3. In this step we move the 2M — 1 points selected in the above step so that
they are on the same radial axis and well ordered; moreover, we define some cone
sectors.

Step 3.1 (displacement of the points zi and y ;). Choose (2M — 1) points, Z1, ..., Zm
and yi, ...,y 1 such that

0<fzil <yl <zl <ol < <lam-1] < Pu-1] < |zm| < 1,
& _ Vi
2l [yl

Then choose €; small enough and

forevery l <k <M, 1<j<M-1.

c1€C°([0,1];By), 1 <I1<2M —1,
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such that the sets

¢1([0,1]) 4+ Bg, are pairwise disjoint and contained in B; \ {0},

a(0)=z a(l)y=z if1<I<M,
CI(O):)A;[,M C[(l):yl,M lfM'i‘lSlSZM—l

Applying, for 1 </ <2M — 1, Lemma 11.13 with € = & and ¢ = ¢;, we get y; €
Diff*(By;B;) with

vi(c;(0)) =¢/(1) and supp(y; —id) C ¢;([0,1]) +Be, C By \ {0}

Thus, defining @2 = W o---0 Yoy, we get that supp(¢@, —id) C By \ {0} (and thus,
in particular ¢,(0) = 0) and

0(z%) =2z, 1<k<M and @;)=y;,, 1<j<M-1
To complete, we also define

X=¢,"(x;) 1<i<N.

Step 3.2 (definition of cone sectors). For 0 < § < 1, let K5 be the closed cone
having vertex 0 and axis R y; and such that

meas (Ks NB1) = d meas B .
This immediately implies that
meas (Ks NB,) = 0 measB, for every r > 0. (11.74)

Define B
f=e:(/)
By the properties of f and ¢, we get that

f0)>0, f(z)>0,1<k<M and f(3;)<0,1<j<M—1.
Therefore, there exists 6 > 0 small enough such that
f>8 inBg,
K5O (B 15\B—s) CFTNB;, 1<k<M,
K0 (Bisyis\Biyj-s) CF NBi, 1<j<M—1L;
in particular,

S<|al-6<|n|+6<m|-8<|m|+6<|na|-8<|2|+6
<< Pmo| =8 < Pm-r]|+ 6 <|zm| -0 <|zm|+ 6 < 1.
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Using Lemma 11.15 and (11.72), we get that f € C* (By) is such that F~ is con-

nected and
pe[ 7o
/uf.\’]F;f F*f

From now on, we write f, x;, zx and y; instead of f= 03 (f), Xi, zx and y; , respec-
tively. Define

S¢ =Ks N\ (Biyjvs \Byl-s), 1<k<M,
S; = K5 (Byyjrs\Bys), 1<j<M-1,
in particular,

d<|z|=-0<|al+d<n|—-0<|yi|+0<|za| -6 <|z|+d
<< ym-1| =0 < |ym-1|+0 < |zm|[ =06 < |zm[+ 6 < 1.

Choosing & even smaller, we can assume, without loss of generality, that

8n+1

<o, (11.75)
n

where o is the o in the statement of the lemma. Note that f has the following
properties:

S¢CES
where 7(k) is defined by
1 ifl1<k<M,
tk)=q 1
N M+ My +1<k<M,

f>8inBs CF,", F~ is connected and

K}F¢f+ﬂéf>0- (11.76)
i=11%;

Step 4. In this step we concentrate the positive and the negative mass in the cone
sectors defined in the previous step.

Step 4.1 (concentration of the positive mass in S,:“, 1 <k <M). Using (11.73),
we can find £ small enough such that

! J.f

—2€ measB
M; ! IR

>0, 1<i<N. (11.77)
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Applying, for 1 <i < N,Lemma 11.17to f, z=1x;, € = &€ and

_ ¢t
A= A =SE
1+Z, 1M; j=1M;j

we get y; € Diff”(By; By) with supp(y; —id) C F;f NB; and

/f : ,
+ i—1 i
: > —— —ginS, 1+Y M;<k<) M
(wi)'(f) 2 M;meas S, S Jrj=1 A

Letting @3 = y; o---o Wy € Diff”(By; B} ), we obtain that

Cz

supp(s —id) € |J (F; NB1) CBI\F',

~.
Il
-

¢;(f)=f>8 inBs,
and, forevery 1 <i <N,

/f . ‘

+ i—1 i
—g inS, 1 M <k<V¥Y M

MmeasSJr Pk +J; /= _J; !

o3(f) >
We define, for 1 <k <M,
f i—1

—& if14+) M;<k< iM
j=1 j=1

F
Ck+ = T

M;meas S
and we replace ¢@;(f) by f. We therefore have, using (11.77) and the fact that
meas(S;) < meas(B),

f>C¢5 inSf, 1<k<M, f>38 inB;,
/' ¥ (11.78)
G meas(S;) + j"f;l—elmeas(Bl)>0, 1<k<M.

We also have

C=x

SfCFT\F .
k

Step 4.2 (concentration of the negative mass in S;, 1 < j <M —1). Using
Lemma 11.19, recalling that /'~ is connected, with A; = SJT ,1<j<M-—1,and

£ =min{g;,8" " /n},
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where & has been defined in Step 3.2, we get @4 € Diff”(By;B;) with supp(@s —
id) C F~ NBj and

f
F

— g < 0 inS;
(M —1)measS; &< ¢;i(f)<0 in

Jjo 1§]§M715

5n+1

'/().]SW](]F \(UM . )904( ))( x |>ds>— —, x#0.

Defining

f
Cr=—"2 ¢, 1<j<M-I,
7 (M—1)measS; ! =/=
we thus get, using the second inequality of (11.78),
C; <@i(f)<0 inS;, 1<j<M-—1,
C,jmeasSJr—|—C-7measST>07 1<j<M—-1,1<k<M,

/Olsn—l(lF\< ,]WI]SJ> o;(f ))( x >ds>6:—1, x#0.

Note that @; (f) = f in F . Finally, as usual, we replace ¢;(f) by f. We therefore
obtain, using (11.78) and recalling (by (11.75)) that %ﬂ <o,

f>8 inBsCF,

f>CH inSf CFP\F, 1<k<M,
fZCj_ inSj_CF_, 1<j<M—1,
C,jmeasS,j+CTmeasS7>O, 1<k<M, 1<j<M-1,

1 1 5n+]
n— > —— .
)
(11.79)

Step 4.3 (summary of the properties of f). We claim that f has the following
properties:
f>8 inBsCF, (11.80)

Ck

M—1
Sy CFI\R", |Js;cF, (11.81)

~
I

1 5n+1
n—1 > — 1
/Os (1, (s )< v |)ds —>-0 ifx#0 (11.82)

and forevery x #20and 1 <k <M, 1 <j<M—1,

! n—1 <x) ! nfl < )
/Os (lszrf) s|x| ds—!—/os ) ] ds > 0. (11.83)
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In fact, (11.80)—(11.82) are just the first, second and fifth inequalities of (11.79),
respectively. Let us show (11.83). Fix | <k <M and 1 < j <M — 1. Recall that

Sy =KsN(By45\Bly—s) and S} =KsN (B, 45 \Byy|-5);
where K is a cone with vertex 0 and aperture 6. Thus, according to (11.74),

measS; = & [(Jz| +6)" — (|zx| — 8)"] meas By,
measS; =6 [([y;|+6)" — (|y;| — 6)"| measB; .

Then, using (11.79), we get

/1 n—l(l f)< x)d+/1 n_l(l f)( )C)d
s s— |ds s - s— |ds
0 S x| 0 5 x|
|z [+6 lyjl+8
2/ s”_IC,jder/ , s”_le_ds
|2k |- lyjl—6

)" — (|2 — 8)" 1+ 8)" — (yj| — 8)"
C:(IZkIJr ) n(\ZkI ) Jrcj_(ly1|+ ) n(IyJI )

meas S,j _ measS;

+
K 18 meas B, 7 nd measB;

which is the claim.
Step 5 (conclusion). Let
P=0Q10P200300Q4.

Note that, by construction, supp(¢ —id) C B;. Because of all of the successive
replacements of f in Steps 1-4 by a new f, the lemma has to be proved for ¢ = id.

Step 5.1. First, note that £(0) > 0 by (11.80).
Step 5.2. We now show (11.59). We divide the discussion into three steps.
Step 5.2.1. If r < J, (11.80) directly implies the assertion.

Step 5.2.2. We now suppose that either x € K5 and r € (8,1] or x € K5 and
r € (0,|y1] — 0) and thus, in particular,

X M—1
[o,rxl}ﬂ(uj_:l s7) =0.
Observe that (11.80) and (11.82) then imply
! n—1 n—1
IR o e R U] Gy Py U C 2
=t (o) as [ s 0 g )
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/ n— 15d5+/ UM lS f)( |i|)ds
> n—1 / n—1 » B i >
7/0 s ods + A s (IF\UIy_llij)(sxl ds>0

and the assertion is proved.

Step 5.2.3. Tt only remains to show the assertion when x € Ks and r € [|y;| — 3, 1].

We get
/rs'“]f <sx> ds
0 x|
:/ s”fl(lFJf ( F >ds+/ F+\F0+f) (s|i|> ds
+ [ < )
and thus

/rsnflf (sx> ds
0 x|
_/ F+f ( x |)ds+/ F\Uéulls/f)<s|i|>ds
A )y e )

Since r > |y1| =8 > |z1|+ & > &, (11.80) holds, and f < 0 in F~\ U 'S, we
obtain
" n—1 i " n—1 i
/0 s (1F0+f) (s |x|) ds—i—/o s (1F,\U§\.4:7]1S;f) (s x)ds

"0 1
n—1 n—1 X
Z./o s 6ds+(/0 s (IF,\UII\/I:—]IS;f) <s|x|> ds

and hence, according to (11.82),

o X o
/Os 1y f) (SM)dH/O S e s f)( |x|>ds20.

We therefore find, using (11.81), that
r — r X r n—
/Os 1f<| |>ds>/ s" (1F+\F+f)(s|x|)ds+/0 s 1(1U1}4_11ij)(| |)ds
M- X
= { [ aen(sgy)ass [ 0oy o)
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= m [ ean () [ tnen (s57) )

In order to conclude the proof of Step 5.2.3 and thus of Step 5.2, it is sufficient to
show that A > 0. We consider several cases.

Define

Case I:r € [|y1| — 8,|z2| + 8). We then have

as [l vf( e [ 9050 (s o
o <|>

and thus, recalling that » > |y| — & > |z1| + 6,

Az/ors”’l(lsrf) (si) ds+/0rs"’l(lsff) <s|i|) ds
1 1
2/0 s”_l(lsrf) <s|;> ds+/0 s”_l(lslff) (s|i|> ds,

which is positive, according to (11.83).
Case 2: r € [|zi| + 6, |zit1| + 6), 2 <i < M — 1. We therefore find

AZEA% “”(|J“+Z/ 1) (57 @

L ([ an () [0 (o))
Lo (e [0 ()

which is positive, in view of (11.83).

Case 3: r € [|zu| + 8,1]. We now have

=T Lo () 0 () o

which is positive, according to (11.83).
Step 5.3. We finally prove (11.60) and we divide the proof into two steps.
Step 5.3.1. First, suppose that either x € Kg or

x€Ks and re€ (Jymy—1]|+0,1]
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and thus, in particular,
X X M—1
)N ) -
Inequality (11.82) then implies
1 X 1
/ Sn—lf (S) dSZ/ n— l(lF f)( )
r lx ||
L
= [ e (o)

1
n—1 X
> /0 s (1F,\U1}4:711S;f) (S|x> ds > —o,

which proves the assertion.

Step 5.3.2. It only remains to show the assertion when x € Ks and r € [0, |yp—1 |+
8]. We get, using the fact that f < 0in F—, (11.81) and f > 0 in F,", that

1 1
[ (5B )as=[Fvmapn (s )ast [ (2 ) as
r |« r x| ]
1
n—1 X
> [0 e i o) (s|x|> ds
[ ) (57 )
_ X
+/r sn ](1F+\Fo+f) <Sx> dS
and hence, appealing to (11.82) and since f > 0 in STL ,
1 x 1 x
/s”flf §— ds>—0'+/ s" 11 (I g f) (57 | ds
Jr |x| U/ 1Yj |x|
X
+/ F+\F0+f) (S|x|> ds
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In order to obtain the claim, it remains to prove that B > 0. This is obtained exactly

as in Step 5.2.3.
Case 1:r € [|zp—1] — 6, |ym—1] + 6]. We then have

oL () )
+/ ()

and thus, recalling that » < |yy—1| + 6 < |zum| —
1 X 1 X
B z/r s”’1(15+f) (s|> ds+/ s"*1(1511f) <s|x|> ds
1 X
2 [l (spp s [0, 0 (o)

which leads to B > 0, in view of (11.83).
Case 2: r € [|zi—1]| — 8, |zi| — 8), 2 <i < M — 1. We thus deduce

Bk;l/ (15:1) ( M)mz/ (i
2L {[ran (g )a [ Gi

=L {0 () [ f>(s|ii|>ds}

and, using (11.83), we get that B > 0.
Case 3: r € [0,]z1| — ). We therefore find

B (Lo () [ o))

using once more (11.83), we get that B > 0. This concludes the proof of the lemma.
O




Part IV
The Case 0 <k <n-1



Chapter 12
General Considerations on the Flow Method

Let 7T > 0, 2 C R” be an open set and
g:0,T]x Q — RN,

Throughout the present chapter, when dealing with such maps, we write, depending
on the context,

g=gt,x)=gx), t€[0,T],xcQ.

Moreover, unless specified otherwise, we write ||g; [|cr« instead of ||g¢[|cra () When
t is fixed.

On several occasions we will use the fact that for bounded Lipschitz sets (cf.
Corollary 16.13), the ||.||co.: and the ||.||-1 norms are equivalent.

12.1 Basic Properties of the Flow

We start with a global result.

Theorem 12.1. Let r > 1 be an integer, (Lg a<1,T>0and Q CR" be a bounded
open Lipschitz set. Let u € C"*((0,T] x Q;R") be such that u; = 0 on dQ for every
t € (0,T] and

T
/O e || craedt < oo. (12.1)

Then there exists a unique solution ¢ € C"*([0,T] x Q;Q) of

d
E(Pzzutofpn 0<t<T,
@ =1id.

(12.2)

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 255
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_12,
© Springer Science+Business Media, LLC 2012
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Furthermore, for everyt € [0,T], ¢, € Diff"*(Q;Q), ¢, = id on Q and

d d
Ekapz = Vka‘l’t = Vk(uzofpz), 1<k<r

Moreover, there exists a constant C = C(r,Q) such that

' '
s —id [|ra < Cexp {c/o s | ds} /0 s || e dis. (12.3)
Finally, if x € Q is such that u;(x) = 0 for every 0 <t < T, then
o (x)=x forevery0<t<T.

Proof. We only show (12.3), the other properties being well known (see, e.g., [22]).
We split the proof into two steps. In what follows we will always suppose ¢ € [0, 7|
and Cy,C,,. .. will denote generic constants depending only on r and 2.

Step 1. We start by showing that
ot
loler < Crexp {cl/0 sl ds] (12.4)
First, integrating (12.2), we get for x,y € Q,

90— 00 = =3+ [ (o)~ w0 )ds

1
<oyl +C [ nller 9:(3) = @:0)]ds:
Applying Lemma 12.3, we obtain
1
0.9 - 00 < e—stexp|Ca [ ]

and thus
(Pl <exp | [ udcr s

Combining the last equation with the fact that ¢, (2) = Q, we immediately get that
ller = Catexp|cs [/ uderds| < Cuesp i [ e as).

which proves the claim.

Step 2 (conclusion). We now show (12.3). Integrating (12.2) and using Theo-
rem 16.31, we get
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s —id | cr = H/Otuso(psds » S/OtHuso(p;HCr_ads
sc5[Dwmawmmg“+WMkm¢mam+wm@}m
< Co [ llore (1-+ 911 ds

+s [ lullerllo —idlcrads

and hence, since (12.4) holds,

t t
1y —id |cre < Crexp {a/o sl ds]/o s | e ds
t
+Cs [ e s —id | ds.

Noticing that

1 1
C7exp{C7/0 |us||clds}/0 it | dis

is increasing in ¢, we get, using Lemma 12.3,

g —id||cra
t 1 1
§C7exp{C7/0 [luts || 1 ds]/o |us||cr,ads~exp[C5/o l|us || o ds},

which concludes the proof. O

We also have a local version of the above theorem.

Theorem 12.2. Let r > 1 be an integer, 0 < a < 1, T > 0 and V be a neighborhood
of xo € R™. Let
ueC"*((0,T] x V;R")

be such that u;(xo) = 0 for every t € (0,T] and

T
/0 ||ete || cre dit < oo, (12.5)
Then there exist a neighborhood U C'V of xo and a unique solution ¢ € C"*([0,T] x
U;R") of
d
— Q= , 0<t<T,
i Pr = us © ¢ =
Qo =id.
Moreover, for everyt € [0,T], ¢, € Dift"*(U; @, (U)) and verifies ¢, (xg) = xo -
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We finally recall the classical Gronwall lemma.

Lemma 12.3 (Gronwall lemma). Ler T > 0, h: [0,T] — [0,00) increasing, f €
C%([0,T];]0,00)) and g € C°((0,T];[0,00)) "L (0,T) be such that

1O <00+ [ ¢6)s6)ds foreversr € 0.7,

Then )
F@) < h(r)exp [/0 g(s) ds} foreveryt €[0,T].

12.2 A Regularity Result

The next result is essentially in Riviere and Ye [85].

Theorem 12.4. Let r > 1 and
0<d<a<oa+d<l.
Let Q C R" be a bounded open Lipschitz set, ¢,T > 0 and
u e Ch8((0,T] x Q;R")
be such that for everyt € (0,T], uy =0 on dQ and

foreveryye[o—38,a+9d). (12.6)

C
e || crr < T

Then, for every y < Q. there exists a unique solution ¢ € C"([0,T] x Q;Q) of
4o = U o 0<t<T
dr @r = Uur © @y, <T,

Qo =1id.
Moreover, for every 0 <t < T, ¢, € Diff"*(Q; Q) and verifies ¢, = id on 9Q.

(12.7)

Proof. All of the results, except the fact that ¢, € C"%, are easy consequences of
Theorem 12.1. We split the proof into three steps. In the proof we will always
assume that ¢ € [0,7] and Cy,Cs,... will be generic constants depending only on
¢,r,a,0,Qand T.

Step 1. Using (12.6), we have for every y € [ — 0, ),

! gs< [ - gy 12.8
Alen < = < oo, .
) lllens < |7 s == (128)

Therefore, using Theorem 12.1, there exists ¢ : [0,T] x Q — Q, a unique solution
of (12.7) such that for every v < «,

@ eC([0,T] x 2;Q),
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with o
¢, € DiIff"7(Q;Q), ¢ =id on 0Q,

and

d
Zvr¢[ = Vr(uto(p,)7 (12.9)
1
. 't t
||go,—1dmgc1exp[c1/0 ||us||clds“0 i v ds. (12.10)

Therefore, it only remains to prove that ¢, € C"*(Q;Q) to establish the theorem.
This will be done in Steps 2 and 3.

Step 2. If we show (cf. Step 3) that for every v € [ — 5, &),
1
s —id [|cr §C2+C2/0 Vsl o | s — id[|cnr ds, (12.11)

then, using Lemma 12.3 and noticing that f ||Vul|cods < oo by (12.8), we deduce
that

ot
oy —id||crr < Crexp [Cz/o I Vus|| o ds] < oo,

Hence, letting 7 tend to o and recalling that C, is independent of 7y, we obtain that
[lor —id ||cre < oo, which concludes the theorem.

Step 3. We show (12.11). We start by noticing that (12.8) implies
't ! ct®

[ slerds < [l cra-ads < -

Thus, combining the previous inequality with (12.10) we deduce that
@ —id || pras < C31°. (12.12)
Let y€ [0 — 0, ). Since
@ —id||cr < GT° and [V (@ —id)]cor = [V @il cor ,
to obtain (12.11), it is enough to prove that for every x,y € Q,
Vi (x) =V (v)]
1

<t (14 [[I9ulollo-idlends). (213

Integrating (12.9) and using Lemma 16.33, we obtain
IV 1 (x) = Vo (y)]

_ ‘ / '[9 (150 00 () — V" (150 9) ()] ds
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<Gl [/ 1V coll g —id v
eshemal? [ ulerllo —idlle 1+ @ 7 ds
+6s [ 1Vu(0.) ~ V(@) .

We now estimate the three terms of the last equation separately and show that they
are of the form of the right-hand side of (12.13). We start by noticing that the first
term already has the desired form.

Estimate of the second term. Using (12.6) and (12.12), we obtain
t
| lslerrlio—id e (1+ gl ds

't c 5 ta+8—y
<C/7s ds=C¢c——— < C
= 60s1+7—0‘ 6 ato—_y - 75

where in the last inequality, we have used that oo + 8 — y € (§,20] since
YEla—-9d,a).

Estimate of the third term. First, note that since ¥y < «, it is sufficient to prove
that

1
/0 [V s (95(x)) = Vs (@s(v)) [ ds < Cglx—y|“.
Next, observe that the previous inequality will be verified if we show that
‘x_y‘ r r o
L IV 0) = V() ds < Col—

and that if [x —y| <1,

/l’ IV iy (@4(x)) — V7 ity (@4(3)) s < Crolor— 3|

x—y|

Let us show these last two inequalities. Using (12.12), we obtain

[@rl[cor < Chr-
Appealing to (12.6), we get
b=yl P
L Vo) = Vis(o )] ds
=yl a5
< [T Il sloto) - g2 ds

- =yl ¢ Cire
< Cralx—y[* 5/0 ngdsz S lx — [
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Similarly, if |x —y| < 1,
t
[ V() = Va0 ds

!
< [ Illoaslo) o)+ s

oo

c

! c
< Cizlx— ‘Hé/ ——ds <Cpzlx— ‘”6/ ——ds
< Cislx—y| ey 5178 = 13—yl ] 5150
C13C
= S |x_y|a
which ends the proof of the theorem. m]

12.3 The Flow Method
We start by recalling a well-known result of differential geometry.

Theorem 12.5. Let Q| and 2, C R" be open sets, T > 0 and 0 < k < n be an integer.
Let
ucC ([0,T] x Q;R") and ¢ €C'([0,T] x Q1;2,)

be such that in
d
Eq),:u,O(pt forevery0 <t <T. (12.14)

Then for every f € C' ([0,T] x .Qz;Ak) , the following equality holds in Q| and for
0<t<T:

d. . L d
Slortn=or (Ga+asn) usan), 0219
where u; has been identified with a 1-form.

Remark 12.6. (i) Let a € C' (U;R") and @ € C'(U;A¥). The Lie derivative is de-
fined as

d .
le_ E t=0(p[ ( )7
where
E(Pt =ao @y,
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The Cartan formula states that
Ly =a1dow+d(a.w).

The formula follows at once from Theorem 12.5.

(i1) Note that when k = n, then necessarily df; = 0 and (identifying as usual
functions with n-forms and 1-forms with vector fields)

d(u; o fy) = div(fruy),
therefore recovering Proposition 10.5.

Proof. Since both sides of (12.15) are linear in f;, we can assume with no loss of
generality that . .
fi =a;dx'" N\--- Ndx'*
for some 1 <ij < --- < i, <nand some a € C'([0,T] x £,). We split the proof into
three steps.
Step 1. We compute the right-hand side of (12.15). First,

d

d
dl i ik
dtft [dtat} dx"" A ANdx'k.

Since
k
wof =Y (—1)"a ul doxt A NdXT A DX A N,
=1

we deduce that
d (”t o] ft)

k
:Z( Mzga[ il dxd NdxiT A Adxi1 AN - A dodE
= Jj=1 Xj
+Y (- ’“Z ’deAdx”/\ AT N XA - A dxk
=1

Next, from
df, = Z d’/\dx”/\ - Adx'™,
we get
ad; J i i
i adf; = Z {dx A Ndx

aa[

sz

[ ’dx’ AdXT A AdxEY AT - A dxk

M»

n
+Y o
j=1 1
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Therefore, combining the previous three equations, it follows that
d
Eﬁ +d(utJﬁ) +M[ Jdﬁ
d . M e .
= that] dx"" A Ndx'* 4+ 2:: &—x;utjdx” A ANdx'®
k n auil ) ) ) ) )
+ Y Y ar =L dxt A Adx Ndx! NdxTN - Adx
I=1j=1 Xj

Step 2. We now compute the left-hand side of (12.15).

Step 2.1. Standard results on ordinary differential equations (cf. (7.13) in the
proof of Theorem 7.2 in Chapter 1 of Coddington and Levinson [22]) give that V ¢,
is differentiable in 7 and satisfies

d
E[V‘Pt] = Vu, (¢) V.

This is indeed what is immediately obtained by formal differentiation of (12.14). In
particular, for every 1 <i <n, we have

d Ju! 8
oo 5[ oo

m=1 [ j=1

Step 2.2. Using Step 2.1 we can differentiate ¢;"(f;) with respect to 7. Since

o (i) =a (@) do/' -+ Nd ¥,
we deduce that

d
[<pt (f7)] } @) Aol A---Ndek

[aa’ } [ }d(p” Ao Ad@

d ; ‘
(9)dgl' A+ Nd@i A2 (dgl') Ndg A ndg.

i
e

Using (12.14) and Step 2.1, we have

d; d i i

Hor( = | G| (@) dgl n-- g

+ i “ (o) [uj(q)t)} Ao A+ Adglt
ax]‘ ! ! 4

+Y Y alo)5 - (@)dg A NG Nd@I Adg A Adglt.
J
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Step 3 (conclusion). Since we trivially have

- d i i d i i
@ ([dlal} dx'/\'--/\dx") = |:dtat((pl)} do/' N---Ndo/F,
* n 8 i i n aat ; § y
(2 Z g dx A Adx Z (Pt) [”f ((Pt)} Ao A---Ndok,
j=19%j =

n ’1
(p;‘< Z el dx” A ANdX1 N dx! NdxTN - Adx’k>
I=1j=1

>
k n ll .
:ZZ (¢ YAQ! A ANdQ  NdQI Nd@ A Ad@lE,
we have indeed shown the theorem in view of Steps 1 and 2. O

As a consequence, we have the following result essentially established by
Moser [78].

Theorem 12.7. Let r > 1 and 0 < k < n be integers, 0 <« <1, T > 0 and 2 C R"
be a bounded open Lipschitz set. Let

ue (0,7 x &R")  and feC™*([0,T] x Q;A)
be such that for every t € [0,T],
=0 ondQ, dfi=0 inQ,
dusf)=—2f o
Ur 1 Jt) = dr t n .
Then for every t € [0,T], the solution @, of

d
E(Pzzutofpz, 0<r<T,
@ =id

(12.16)

belongs to Diff"* (E;ﬁ) satisfies @, = id on dQ and

¢ (fi)=fo inQ.

Proof. 'We split the proof into two steps.

Step 1. Using Theorem 12.1, for every 0 <t < T, the solution ¢ of (12.16)
belongs to Diff"*(Q; Q) and verifies ¢, = id on d2. Moreover, defining ¢ : [0, 7] x
Q — Q by ¢(t,x) = ¢:(x), we have

© €C"*(0,T] x Q;Q).
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Step 2. Using Theorem 12.5 and the hypotheses on &, and f;, we find that in 2,

d

* " i _
Sor =07 (h+ ) +us(an)) =o.

which implies the result since @y = id. O

We also have the local version of the above theorem.

Theorem 12.8. Let r > 1 and 0 < k < n be integers, 0 < a < 1, T > 0 and xyp € R".
Let
ueC([0,T) x RLR")  and  f € C™*([0,T] x R"; A¥)

be such that for everyt € [0,T], u;(xo) = 0 and
d . .
df;=0 and d(u .f;) = _Eﬁ in a neighborhood of x .

Then there exists a neighborhood U of xo in which for every t € [0,T], the solution
¢ of

d
— 0 = <r<
g wees OsisT, (12.17)
ov=id

belongs to Diff"*(U; ¢,(U)), satisfies ¢;(xo) = xo and

o (fi)=fo inU.

Proof. We split the proof in two steps.

Step 1. Using Theorem 12.2, there exists a neighborhood U of x( in which for
every 0 <t < T, the solution ¢, of (12.17) belongs to Diff"*(U; ¢,(U)) and ¢ (xo) =
Xo . Moreover, defining ¢ : [0,7] x U — R" by ¢(z,x) = ¢(x), then

@ € C"%([0,T] x U:R").

Step 2. Since @, (xg) = xo for every ¢ € [0, T] and since ¢ is C°, we can, choosing
if necessary U smaller, assume that for every 7 € [0, 7],

d .
df; =0 and d(l/l;Jﬁ):—Eﬁ in @ (U).
Using Theorem 12.5 and the hypotheses on u; and f; , we know that in U,

d

* _ * i _
Hor () = o7 5+ ) +usa)) =0,

which implies the result since ¢y = id. O



Chapter 13
The Casesk=0and k =1

13.1 The Case of 0-Forms and of Closed 1-Forms

13.1.1 The Case of 0-Forms

We start with O-forms. We begin our study with a local existence theorem.

Theorem 13.1. Let r > 1 be an integer, xo € R" and f and g be C” functions in a
neighborhood of xy such that f (xo) = g (xo),

Vf(x0)#0 and Vg(xo)#0.

Then there exist a neighborhood U of xo and ¢ € Diff" (U; ¢ (U)) such that ¢(xo) =
xo and

Furthermore, if

d 0
3—£<xo>-a—i<xo>¢o

fora certain 1 <i < n, then ¢ can be chosen of the form
O(x) = (X1, X1, @ (X), Xi 1y Xn).
Proof. Without loss of generality we may assume that xo = 0. We split the proof

into two steps.

Step 1. We prove the main statement. Since Vf (0) # 0 and Vg (0) # 0, we can
find
As,...,Ap,By,....B, €R"

such that letting
Fx) = (f(x), (A2:x),..., (An;x)) and G (x) = (8(x), (B2x), .., (Buix)),

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 267
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_13,
© Springer Science+Business Media, LLC 2012
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then
detVF(0) #0 and detVG(0) #DO0.
Hence, since F(0) = G(0), we deduce that
F eDiff' (U;F(U)), GeDiff (U;GU)) and G 'oF eDiff"(U;(G 'oF)(U))

for a neighborhood U of 0 small enough. Therefore, ¢ = G~ o F has all of the
desired properties.

Step 2. We now prove the extra property. Define
F (x) = (-x17 sy Xiel 7f('x)7xi+17 cee axn)7

G()C) = (xla' .. 7xi71ag(x)7xi+1a' .. ,)Cn)

and note that ¢ = G~! o F has all of the required properties. The proof is therefore
complete. O

We now have the following global result.

Theorem 13.2. Let  C R" be a bounded open Lipschitz set. Let r > 1 be an integer
and f and g € C" (Q) with f = g on dQ and

df dg

aTci'TxfO’”Q (13.1)

for a certain 1 <i < n. Then there exists a diffeomorphism ¢ € Diff"” (5;5) of the
form

(p(x) = (X],- . 'axi717(pi(x)7xi+l7' "axn)

satisfying
¢ (g)=goo=f inQ,
o=id on dQ.

Proof. Let e; be the ith vector of the Euclidean basis of R". We will find ¢ of the
form @(x) = x+u(x)e;, where u : Q — R. Since € is Lipschitz, we can extend
(according to Theorem 16.11) f and g to C"(R") functions. We therefore also have

==-5= >0 inaneighborhood of Q. (13.2)

By compactness, for every x € €, there exist sy,#, € R with s, < 0 < £, such that
x+sye,x+te; €9Q and (x+sce;,x+1te;) C Q.
Define 7: R" xR — R by

h(x,v) = g(x+vei) = f(x).
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We claim that there exists u € C"(Q) such that

u

h(x,u(x)) =0, forx€ Q, u=00ndQ and ]+8
Xi

(x) > 0forx € Q.

(i) For every x € €, let u(x) = 0 and note that i(x,u(x)) = h(x,0) = g(x) —
f(x) =0since f =g on dQ.

(ii) Let x € Q. Since f = g on dQ, we have
h(x,sy) = f(x+sce;) — f(x) and h(x,ty) = f(x+1ce;) — f(x).
Hence, recalling that d f(x)/dx; # 0 for every x € Q, we get
h(x,sx) - h(x, 1) <O0.
Note that v — h(x,v) is monotone. Therefore, there exists a unique u(x) € (sy,t)

verifying A (x,u(x)) = 0.

(iii) Using the implicit function theorem and (13.2), we immediately deduce that

u € C"() and that

du _af(x)(ag

! + 8x,- (X) o 87x, ax,»

-1
(x—I—u(x))) >0 foreveryxc Q.

This proves the claim. Finally, letting @(x) = x+u(x)e;, we get that go @ = f in Q,
¢ € C'(;R"), detVe > 0in Q and ¢ = id on Q. Hence, using Theorem 19.12,
we have ¢ € Diff"(;Q), which concludes the proof. O

13.1.2 The Case of Closed 1-Forms

We get as immediate corollaries similar results for closed 1-forms. Recall that
1-forms are written as

n n
f=Y fidx' and g=) gidx'.
i=1 i=1
We start first with the local version.

Corollary 13.3. Let r > 0 be an integer, xyo € R" and f and g be C" closed 1-forms
in a neighborhood of xy such that

F(xo)#0 and g(x) 0.

Then there exist a neighborhood U of xo and @ € Diff ™! (U; @ (U)) such that
O (x0) = xo and
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Furthermore, if

fi (x0) - 8i (x0) # 0

Jfor a certain 1 <i < n,then ¢ can be chosen of the form

(P(x) = (.Xl,. .- axi—la(Pi(‘x)axl'+17' "axn)-

Remark 13.4. When r = 0, the fact that a 1-form ® is closed has to be understood
in the sense of distributions.

Proof. Using Corollary 8.6, there exist a small ball V centered at xg and F,G €
C™1(V) such that
dF =f and dG=g inV.

Adding, if necessary, a constant, we can also assume that F'(xy) = G(x¢). Note that
if fi(x0) - gi(x0) # O for a certain 1 < i < n, then

o () S o) £0.

i

We are then in a position to apply Theorem 13.1 to get U C V, a neighborhood of
xo and @ € Diff" ™! (U; @ (U)) such that @(xo) = xo and

which implies

and concludes the proof. O

We now conclude with the global version obtained in Bandyopadhyay and
Dacorogna [8].

Corollary 13.5. Let Q C R" be a bounded simply connected smooth open set. Let
r > 0 be an integer and f,g € C" (Q;A 1) be closed and such that
VAf=VAgondQ and fi-gi>0inQ

for a certain 1 <i < n. Then there exists a diffeomorphism ¢ € Diff ! (ﬁ,ﬁ) of
the form

(P(x) = (xl yoeesXi—1, (pi(x)axi+1 PR 7xn)
satisfying
¢ (g)=f inQ,
o =id on dQ.
Proof. We first claim that there exist F,G € C""!(Q) such that F,G € C""! (©) and

dF =f,dG=ginQ and F=GondQ.
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Indeed, by Theorem 8.16 and the remark following it and recalling that #7 (2,A') =
{0} since  is simply connected (see Remark 6.6), there exists H € C"+1(Q;A!)
such that

dH=f—ginQ and H=0o0ndQ.

Then, using Corollary 8.6, there exists G € C"*!(Q) such that dG = g in Q. Letting
F = H + G, we have the claim. In particular, note that

37)1: : 37?1 >0in Q.

Finally, apply Theorem 13.2 to get ¢ € Diff"*! (Q; Q) of the desired form so that
0*(G)=F inQ,

which implies

¢*(dG) =dF inQ.

The proof is therefore complete. O

13.2 Darboux Theorem for 1-Forms

13.2.1 Main Results

The following result is classical and due to Darboux [34]; see, for example Bryant
et al. [18], Olver [80], or Sternberg [93]. This result is equivalent to the Darboux
theorem (cf. the remark below) for closed 2-forms.

Theorem 13.6. Let r > 3 and 2 < 2m < n be integers. Let 0 < a0 < 1, xo € R" and
w be a C"* 1-form such that

rank[dw] =2m in a neighborhood of x .

Then there exist a neighborhood U of xy and

Diff"*(U;@ (U))  if2m=n
Diff " *(U; 9 (U)) if2m<n

such that @(xo) = xo and

m
o*(w) = sz,;ldxz’ +dS inU,
i=1

=
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with

crhU)  if2m<n.

Remark 13.7. (1) The above result is equivalent to the Darboux theorem for closed
2-forms. This last theorem reads (see Theorems 14.1 and 14.3) as follows. Let n >
2m, xo € R" and f be a C"% closed 2-form satisfying

Se{ Cr%(U)  if2m=n

rank[f] =2m in a neighborhood of x .

Then there exist a neighborhood U of xy and

Diff (U@ (U))  ifn=2m
Diff"*(U;@ (U))  ifn>2m

such that ¢(xo) = xo and

m
0" (f) = dez’;l Adx* inU.

i=1
The fact that the Darboux theorem for 2-forms implies the one for 1-forms is pre-
cisely the proof of Theorem 13.6 below. The other implication follows immediately,
once it has been observed that we can choose, for example, U to be a ball so that,
f being closed in U, we can find (cf. Theorem 8.3) w € C"*1%(U;A'") such that
f = dw. We then apply the theorem to w, getting

0" () = 9" (dw) = dg* (w) = ¥ ¥ Ade?.
i=1

(ii) The hypothesis r > 3 can be weakened if we use a weak version of the fourth
statement of Theorem 3.10. Indeed, it is enough to assume r > 1 if n =2m and r > 2
if n > 2m (cf. Csat6 [23]).

Proof. Using Theorem 14.1 if 2m = n or Theorem 14.3 if 2m < n, there exist a
neighborhood U of xy and

Diff"*(U; 9 (U))  if2m=n
¢ Diff L (U@ (U)) if2m<n

such that ¢(xo) = xo and

Note that
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and 1 1
n . CH*U;AY)  if2m=n
W)=Y xp_dx €
¢ ( ) ; 2i—1 {C’z’“(U;AI) if 2m < n.

1

Thus, by Theorem 8.3, restricting U if necessary, there exists

CrU)  if2m=n
sed :
crh*U) if2m<n
such that .,
dS=o¢*(w)— ng,-_ldxzi,
i=1

which concludes the proof. O

The next two theorems refine the above result (cf. Bryant et al. [18] or Sternberg
[93]). In particular, the second one gives a sufficient condition ensuring that S = 0.

Theorem 13.8. Let r > 3 and 2 < 2m < n be integers. Let 0 < a0 < 1, xo € R" and
w be a C"* 1-form such that

rank[dw] =2m in a neighborhood of xo

and
wAdwA--- ANdw(xp) # 0.

m times

Then there exist a neighborhood U of xy and
¢ € Diff % (U; 9 (U))
such that @(xy) = xo and
m
o (w) = szl-,l A +dx*™ N nU.
i=1
Remark 13.9. Since w A (dw)™ is a (2m + 1)-form and since
wA (dw)™(xo) # 0,
we necessarily have 2m < n.

Proof. With no loss of generality, we can assume xy = 0. Since (according to Re-
mark 13.9) we necessarily have 2m < n, we get, using Theorem 13.6, a neighbor-
hood V of 0 and ¢; € Diff"~"%(V;¢;(V)) such that ¢;(0) =0 and

m
o (w) = Zx2i71dX21 +dS inV,
i=1
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with S € C"~1:%(V). Since, by hypothesis,
WA (dw)"(0) £0,
we get that since ¢;(0) =0,
@i (w) A (doi(w))"(0) # 0,

which is equivalent to
dSAdx' A--- ANdx*(0) # 0.

Permuting, if necessary, the coordinates x,,+1,. . . , X, we can therefore assume with
no loss of generality that
as
=22 (0) £0.
&x2m+ 1

Now, define, for x € V,
0 (x) = (X1, -, X2, S(x) = S(0), X042, - - - s Xn)-

Taking V smaller, if necessary, we obtain that @, € Diff™1"*(V;¢,(V)), ¢2(0) =0
and '
dx'  ifi#2m+1

*di _
93(dx) {dS ifi=2m+1.

Finally, letting U = ¢»(V) and @ = @ o () !, we easily obtain that ¢ € Diff" =% (U;
¢(U)), (0) = 0and

m
o (w) = szl;lde’ +dx”™! inuU,
i—1

which ends the proof. O
Theorem 13.10. Let 2 < 2m < n be an integer;, xo € R" and w a C* 1-form such that
rank|dw| =2m in a neighborhood of xy ,

w(xo) # 0 and

wAdwA---Ndw =0 inaneighborhood of x .
—_———

m times

Then there exist an open set U and
9 € DIff™ (U3 (1))
such that ¢ (U) is a neighborhood of xo and

m
Q" (w) = ng,;l dx* inU.
i=1
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Remark 13.11. (i) If w € C", the following proof shows in fact that ¢ € C"2"+1 if
2m=nand ¢ € C"~2"if 2m < n.

(ii) If we, moreover, want @ (xo) = X, then the conclusion becomes

(x2i—1 — Czi_l)dXZi inU

M-

¢ (w) =

L

for some ;1 € R, 1 <i <m. Note that the cp;_; cannot be arbitrary. For example,
the ¢y, can never verify ¢;_1 = (x0)2;—1 for every 1 <i < m. Indeed,

@ (W)(x0) = Y ((x0)2i-1 —€2i-1) dx*

on

Il
-

1

and thus we have the assertion since, recalling that ¢ (xp) = xp,

¢*(w)(x0) #0 < w(xg) # 0.

Proof. We split the proof into two steps. With no loss of generality, we can assume
that xo = 0.

Step 1 (simplification). Let us first prove that we can assume that n = 2m.
Applying Theorem 14.3 to dw, we can find a neighborhood U of 0 and y €
Diff”(U; y(U)) such that y(0) =0 and

m
yr(dw) =Y dx*" ' Ndx* inU. (13.3)
=1

Note that since y(0) = 0, we have, restricting U if necessary,
v w)(0)#0 and Yy (W)A(d(y*(w)))"=0 inU. (13.4)
The last equation being equivalent to
VW) Adx' A Ad¥®™ =0 inU,
we immediately deduce
[v*w)[i=0 inU forevery2m+1<i<n

and, hence,
2m

v (w)(x) = Z bi(x)dx' inU.
i=1
Combining the previous equation with (13.3), we get that
bi(x) = bi(xy,...,x2,) in aneighborhood of 0, forevery 1 <i<2m.

We thus have the claim, replacing y*(w) by w.
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Step 2 (conclusion). Applying Lemma 13.12 to w, we can find a neighborhood V
of 0 in R¥" and ¢, € Diff”(V;¢;(V)) such that ¢;(0) = 0 and

m
@ (w) =Y boi_1(x1,...,x0m)dx*"" inV (13.5)
i=1

for some by, € C*(V). Since
rank[d (@] (w))(0)] = rank[dw(0)] = 2m,

we know that (d@; (w))™(0) # 0, which is equivalent to, using (13.5),

dx' Ndx3 Ao NdXP" U Ndby Adby A -+ Adbyy—1(0) # 0. (13.6)
Now, define, forx € V,

0 (x) = (b1(x),x1,b3(x),x3, ..., bom—1(x), X2m—1)-
Using (13.6), we obtain that ¢, € Diff*(V;@,(V)), taking V smaller if neces-
sary. Finally, letting U = ¢2(V) and @ = ¢ o (¢2)~', we easily obtain that ¢ €
Diff”(U; ¢(U)) and
0" (w) = ixg,;ldx% inU,
i=1

which ends the proof. O

13.2.2 A Technical Result

We still need to prove the following lemma.

Lemma 13.12. Let m > 1 be an integer; xo € R*™ and w be a C* 1-form defined in
a neighborhood of x such that w(xy) # 0 and

rank[dw(xg)] = 2m.
Then there exist a neighborhood U of xy and
¢ € Diff"(U; 9(U))
such that @(xo) = xo and
[0 (W)]2i =0 inU forevery 1 <i<m. (13.7)

Remark 13.13. If w € C”, then the following proof gives ¢ € C"2(m=1),

For the proof of the lemma we will need the two following elementary results,
the first of which is purely algebraic.
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Lemma 13.14. Let f € A*(R*") with rank[f] = 2m and

2m—1 )
a= Z aie' € A(R?™)
i=1

with a # 0. Then there exists A € GL(2m) of the form

0
A= B ,
0
0--- 01
where B € GL(2m — 1) and such that
m—1 2m—2

Y @ ne =Y F NG and Y (A% (@) £0.

1<i<j<2m—1 i=1 i=1

Proof. Step 1. Using Proposition 2.24(ii), there exists Ae GL(2m) such that

6217] /\eZl and A*(eZm) _ eZm'

™=

AN(f) =

Note that the condition A*(¢2™) = ¢2™ is equivalent to

A
i— B :
0O ---0 1

where B € GL(2m — 1) is given by §§, :g’] Define

and observe that for 1 <i< j<2m—1,

1<p<q<2m 1<p<q<2m

(A*(f))if_< Y quA”AAq> = Y S (Aral-ara?)
ij

= L S (APAT AR = (B (1)

1<p<q<2m

277
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We therefore have
A* N A* ije inNel = ezl PAEH.
( J
1<i<j<2m—1 1<i<j<2m—1
Note that the previous equation is equivalent to
m—1 )
A (f) =Y A +hne™ (13.8)
i=1
for a certain h = Y7 ' e € A (R?™).

Step 2. Since a # 0, we have A*(a) = Y2 ' A*(a);e' # 0 and thus there exists
1 <i<2m—1 suchthat A*(a); #0. If | <i<2m—2, the matrix A has all of the
required properties. If A*(a); = 0 for 1 <i < 2m—2, we proceed as follows. Define

bo -0 1 ifi=j

p=10". 0 : @pjli: 1 ifi=2m—1landj=1
1o 1.0 0 otherwise
0. 0 1

and let us show that AP € GL(2m) has all the claimed properties. Indeed, first note
that AP has the desired form. Since

P*(ei):{ei ifi #2m—1

el +e2m 1 ifi=2m—1,

we deduce that, using (13.8),

(AP)*(f) =P (A*(f)) = Y ¥ " A& +P* (h) e

We therefore get

Z ((AP)*(f) ,]e iNel = Z o2 A Q2

1<i<j<2m—1
Note also that
((AP)*(a))1 = (P*(A™(a)))1 = (A"(@))2m—1 # 0.
The proof is therefore complete. O
We now give the second result.
Lemma 13.15. Let U C R" be an open set, n > 2 and w € C* (U;A 1) be such that

(dx")sdw=w inU. (13.9)



13.2 Darboux Theorem for 1-Forms 279
Then

n—1
w=e" Z Din (X1, -+, x0—1) dx",
i=1

dw = —e™ Z bi_;(xl,...,xn,l)dxi/\dxj
1<i<j<n

for some b;; € C*.
Proof. We first write

dw = Z a,-jdxi/\dxj

1<i<j<n

and observe that, as a direct consequence of (13.9), we have
n—1 )
w=—Y apdx (13.10)
i=1

We finally show that for every 1 <i< j <nandx= (x,...,x,) €U,
al-j(x) = 7€X”b,’j (xl, . ,anl)
for some b;; € C™. For this, it is enough to prove that for every 1 <i < j <n,

_ dai;
T ox,

a; j
Let 1 <i < j < n. First, since ddw = 0 and hence, in particular, (ddw);;, = 0, we
have (with the convention that a,,, = 0)

Bajn 8a,~n 8aij

dx;  Ox; + dx, =0

Using (13.10) and the previous equation, we obtain

da;,, dai, da;;
aij = (dw)ij = _< o axj) =

which concludes the proof. O

Finally, we prove Lemma 13.12.

Proof. With no loss of generality we can assume xo = 0. In the sequel, U will be a
generic neighborhood of 0. We prove the lemma by induction on m and we split the
proof into three steps.

Step 1. We start by introducing some notations. Let

X = (xl, cee 7x2m727x2mflvx2m) e R
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For every (xom—1,%2m) € R?, define i :R¥"=2 5 R¥™ by

X2m—1 7-x2m)
Uyt o) (X155 X2m—2) = X.
Let1 <k <nand
8= Y 8iy iy XA+ AdX € CO(RP™ AR (RP™)).

1<ij<---<ix <2m
Then for every (x2,—1,%m) € R2, we have

it (g) c C()(R2m—2;Ak(R2m—2))

(x2m—l sx2m)
and, explicitly,

o1 o) (8) (K15 Xom—2) = Z iy (X)dXT A - A dxE,
lgil <-~-<ik§2m72

Step 2 (the case m = 1). In that case, we have
w(x) =w; (xl,xz)dxl +wa(x1,x2) dx*.

Since, by hypothesis, (w;(0),w2(0)) # (0,0), there exist, applying Remark 4.3(ii),
a neighborhood U of 0 and ¢ € Diff”(U; ¢(U)) such that ¢(0) =0 and

92— (“walg)wmi(9) U
X2

We thus get, using the above equation,

@ (w) =wi(@)de' +wy(9)d¢?

= (@) 5+ wato)
= {m(w)gj’; +W2((P)} dx',

which is the desired assertion.

Step 3 (induction). We assume that the lemma has been proved for m — 1 and
prove it for m.

Step 3.1 (preliminaries). In this step we show the existence of a neighbor-
hood U of 0 and y € Diff”(U; y(U)) with y(0) = 0 such that for every x =

(X105 X2m—2,X2m—1,X2m) €U,

i )(‘V* (W) (x1,...,x2m—2) #0, (13.11)

(X2m—1:X2m

i
(X2m—1%2m

rank [d('* W)X 2) | = 2m =2, (13.12)
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2m—1 )
v w)(x) =2 Y ci(xi,... . xom1)dx  inU (13.13)

for some ¢; € C*(U).

(i) Since rank[dw] = 2m in a neighborhood of 0 and Proposition 2.50 holds, we
can find a neighborhood U of 0 and a unique v € C*(U;A") such that

vadw=w inU.

Note that v(0) # 0 since w(0) # 0. Hence, using Remark 4.3(ii), there exist a neigh-
borhood U of 0 and y € Diff”(U; x(U)) such that % (0) = 0 and

Ix
d X2m

=voy inU.

Using Theorem 3.10 and Proposition 3.11, we thus get
25 (w) = x*(vadw) = dx*"adyx*(w) inU.
Therefore, applying Lemma 13.15, we have

dy*(w)(x) = —e™m Z bij(X1,.. ., Xom—1)dx' Adx/  forevery x € U,
1<i<j<2m

2m—1
X (w)(x) =e™m Z biom) (X1, -, X2m—1)dx"  forevery x €U (13.14)
i=1

for some b;; € C.
(i1) Apply Lemma 13.14 to

f=dx'(w)(0) € A>(R*) and a =y (w)(0) € A'(R*™)

to get A € GL(n) of the form

such that

(A*(f))ije' Nel = Z A n e
1<i<j<2m—1

. (13.15)
Z )iel #0.

(iii) Let 6(x) = A-x. We now prove that y = y o 0 has all of the desired properties
claimed by Step 3.1. In the following, we will frequently use (cf. Remark 3.9) that
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for any ¢ € C' (R™;RY), any k-form ¢, and any fixed x € RY,

¢ (o) (x) = (Vo (x))" [t (9 (x))]-

First, note that y(0) = 0 since (0) = 6(0) = 0. We now show (13.11). Restricting if
necessary U, it is enough to show the property for x = 0. Using the second statement
in (13.15), we deduce

2m—2

i?0,0)(W* (W))(Ov v ,O) = ; A* (a)iei 75 0,

which proves the claim. We next prove (13.12). As before, restricting if necessary
U, it is enough to prove the assertion for x = 0. Using the first equality in (13.15),
we obtain

il o) (W ()(0,....,0) = ifg ) (W* (@) (0,....,0)

m—1
= Y  @)ene =Y, PN

1<i<j<2m—2 i=1

This establishes the claim. Finally, using (13.14) and since

9<x) = (el(xlv' . 7x2m—1); . .762”’!*] (x17' . >x2m—1)ax2m);

we have

= ¢"m Z bi(2m) [91 (xl, ... ,szfl), ey g1 (xl, ... ,mefl)} do!
i=1
2m—1 .
= " Z ci(x1,...,xom—1)dx';, x€eU,
i=1
for some ¢; € C*; therefore, (13.13) is fulfilled.
Step 3.2 (conclusion). Using (13.11) and (13.12), we get that

iﬁ(ﬁxszl Xom) (¥ (w))

satisfies the induction hypothesis for m — 1, for x,,—1,x2,, small. Moreover, note
that using (13.13),

2m—2

i?x2m717x2m) (W* (W))()C] P ,X2m72) = ex2m Z C[()Ch <o X2m—1 ) d'xi'
i=1

Hence, by the induction hypothesis and thanks to the special form of the coeffi-
cients of

iz‘xzm,l ,xzm) (W* (W))
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with respect to xo, , thqe exist a Eei ghborhood U of 0in R2m2 and, for every xp,,—1
small, ¢, , € Diff*(U;¢y,, ,(U)), verifying

((q)m_,)*(igmihw(q/*(w))>2i:0 nU, 1<i<m—1.  (13.16)

Furthermore, since the construction is smooth in the parameters, we have in fact
(x1 s ,X2m,1) — (szmq (X] g ,)sz,Q) isC™.

Define, for a neighborhood U of 0 small enough, ¢ € Diff*(U;¢(U)) by

Ox) =0 (x1,...,x0m) = (Pryy | (X153 X20—2), X2m—1,X2m) -

Slnce (P © l(x2m71 7x2m) = l(x2m71 -,X2m) © ¢X2m71 » We Obtaln

(Dx2 1) (g i) (W W))) =0,y (07 (W7 (W)
Note also that for every 1 < s < 2m —2 and for every 1-form g,

gt ) (8) (F15- szfz)]s = [g (¥t -, X2m—2,X2m—1, X2m) ] -

Therefore, combining (13.16) with the above two equations, one gets
[0 (v (W)]2i=0 inU, 1<i<m-—1.

Moreover, since the first (2m — 1) components of ¢ do not depend on x,,,, we ob-
tain, using (13.13),

[0 (W' (W)2n =0 inU.
Finally, letting ¢ = y o ¢, we have indeed found the desired diffeomorphism. O



Chapter 14
The Case k =2

14.1 Notations

We recall, from Chapter 2, some notations that we will use throughout the present
chapter. As usual, when necessary, we identify in a natural way 1-forms with vectors
in R".

() Ifu € A" (R") and f € A2 (R"), then (cf. Proposition 2.12)

usf=Yy dx’ € A'(R").
j=1

n
Y fijui
i=1

(ii) Given f € A2 (R"), the matrix f € R™" (denoted in Notation 2.30 as £
is defined, by abuse of notations, as

fu=u_f foreveryuc Al (R") =~ R".
(iii) The rank of f € A? (R") is defined (cf. Proposition 2.32(i)) by

rank [f] = rank (f) .

We also recall that in the present chapter we denote by rank what was denoted by
rank; in Chapter 2. In particular, if rank [f] = n, then f is invertible and

1

v=u.f S u=(f) v

(iv) When n is even, identifying n-forms with O-forms, we have (cf. Proposition
2.37(iii))

—1/2 1
ldet7]'* = 2
(n/2)!
where [ = fA---Af.
N———r
m times
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(v) Let r > 0 be an integer and 0 < a < 1. Let f € A%(R") with rank [f] = n
(thus, in particular, n is even). In view of Corollary 16.30 and of the previous point,
if ¢ > 0 is such that ‘

then there exists a constant C = C (c,r,£2) > 0 such that

1

|| o [ fllco <ec,

co

1P llera < Cllfllgna -

(vi) Finally, we recall the notion of harmonic fields with a vanishing tangential
part (cf. Section 6.1). If 2 C R" is a bounded open smooth set, then

Hr (A7) = {0 € C*(Q;A%) :dw=0, 50 =0in Q2 and vA® =0 0ndQ}.
Recall that if Q is contractible, then
Mt (Q;A%) ={0} ifn>3.
In terms of the components of

= Z co,-jdx"/\a’xj7

1<i<j<n
we have
0w;; Jdwy Jw;
do=0 e 2L Z5 Tk g vi<i<j<k<n,

axk 8xj (9)6,’
el

so=0« Y =2 =0,VI<i<n,
=1 9%

VA® =0 & Vi — @pV;+ ;v =0, Vi<i<j<k<n.

14.2 Local Result for Forms with Maximal Rank

The following result is the classical Darboux theorem for closed 2-forms but
with optimal regularity. This is a delicate point and it has been obtained by
Bandyopadhyay and Dacorogna [8]. The other existing results provide solutions that

are only in C"%*, whereas in the theorem below we find a solution which belongs to
Cr+1,lx.

Theorem 14.1 (Darboux theorem with optimal regularity). Let r > 0 and n =
2m > 4 be integers. Let 0 < o < 1 and xy € R". Let @, be the standard symplectic
form of rank 2m,

W, = AP A dR

m

i=1
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Let @ be a 2-form. The two following statements are then equivalent:

(i) The 2-form @ is closed, is in C*%* in a neighborhood of xq, and verifies
rank [@ (xp)] = n.
(ii) There exist a neighborhood U of xo and ¢ € Diff™ 1% (U; @ (U)) such that
0" (On) =0 inU and @(xp)=xp.

Remark 14.2. (i) When r = 0, the hypothesis d® = 0 is to be understood in the sense
of distributions.

(ii) The theorem is still valid when n = 2, but it is then the result of Dacorogna
and Moser [33] (cf. Theorem 10.3).

Proof. The necessary part is obvious and we discuss only the sufficient part. We
divide the proof into four steps.

Step 1. Without loss of generality we take xg = 0. We can, according to Proposi-
tion 2.24(ii), also always assume that

®(0) = o, .

Step 2. Our theorem will follow from Theorem 18.1. So we need to define the
spaces and the operators and then check all of the hypotheses.

1) We choose V a sufficiently small ball centered at 0 and we define the sets
X, =CY(V;R") and Y, =C%%(V;A?),
X, =CTNNVRY) and  Ya = {b € C"*(V;A%) :db=0inV}.

Using Proposition 16.23, we immediately deduce that (Hyy) of Theorem 18.1 is
fulfilled.

2) Define L : X, — 1> by
La=dla®y) =b.

We will show that there exists L' : ¥, — X5 a linear right inverse of L and a constant
C) =Ci(r,a,V) such that

|L7'b||x, < C1||b||y, forevery b€ Yo andi=1,2.

Once shown this, (Hy) of Theorem 18.1 will be satisfied. First, using Theorem 8.3,
find w € C"*1%(V;Al) and C; = Cy (r, @, V) > 0 such that

dw=b inV,

Wllerira <Cil[bllcra and  [wllcra < Ci [[b]|coa-
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Moreover, the correspondence b — w can be chosen to be linear. Next, define a €
CrJrl,OC (V,Rn) by

-1 =wy and ag=-—wy—1, 1<i<m,
and note that
a1y, =w.
Finally, defining L~! : ¥» — X, by L~!(b) = a, we easily check that L~! is linear,
LL'=id onY,
and
|L~'b||x, < C1||b|ly, foreverybecYsandi=1,2.
So (Hp,) of Theorem 18.1 is satisfied.
3) We then let Q be defined by
O(u) = @y — (id+u) o +d [u10y).

Since
[dw?™ ' Ndx +dx T NduT]

|

d [u 2 a)m]

O(u)=— Z"dubhf1 Adu.

4) Note that Q (0) =0 and dQ(u) = 0in V. Appealing to Theorem 16.28 (a similar
but more involved estimate can be found in LEmma 14.8), there exists a constant
Cy = C, (1, V) such that for every u,v € C"*1:%(Q;R"), the following estimates hold:

3

[10(u) — OV)||coe < ||du2"71 Adu? — dv?! /\deiHCO.a
i—1

<Y |[du® ! A (du® — dv*) || o

s

I
-

m
+Y (v —du* ) NdvH || o
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and

m
[Q(w)l|cre < Y [|du* ™" Adu||cre
i=1

m
<CY [ldw* Hicral|du®|lco + du || cre || du* | o]
i=1

=

< Colfullcrallullerra -
We therefore see that property (Hp) is valid for every p and we choose p = 1/(2n),
c1(rs)=Cy(r+s) and c(r,s)=Cars.
5) Setting ¢ = id+u, we can rewrite the equation ¢* (®,,) = ® as

Lu=duswy,] =o— (id+u)* o, +d[u_s o)
=0— 0+ [0 — (1d+u) @, +d 10,
=0— o, +0(u).
Step 3. We may now apply Theorem 18.1 and get that there exists y € C"+1:¢ (V; ]R")
such that y* (@,) = @ in V with [|[Vy —1I||0 < 1/(2n), provided

1
< .
- 2C; max{4C1 G, 1}

[l — @ 0.0 (14.1)

Setting ¢ (x) = v (x) — ¥ (0) , we have indeed proved that there exists ¢ € C" 1% (V;R")
satisfying

¢ (@) =0inV, [Vo-llw<s and 9(0)=0
Step 4. We may now conclude the proof of the theorem.
Step 4.1. Let 0 < € < 1 and define
0 (x) = o (ex).
Observe that wf € C"%(V;A?), dof =0, of (0) = @, and
|w® — wm”co-a(v) —0 ase—0.

Choose € sufficiently small so that

1
ot — o a(y) < .
[ mlleoe(v) < 3¢ max{4CiC,,1}

Apply Step 3 to find y € C"+1.¢ (V; R") satisfying

. 1
Ve (o) =0 inV, |[|[Vye—I|o0 < o and v, (0) =0.
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Step 4.2. Let
X
Xe (x) = c
and define
Q=EYe0Xe.

Define U = €V. It is easily seen that ¢ € C""1-%(TU;R"),
0 (0y)=0 inU and ¢(0)=0.

Note in particular that

1
Ve ~Ilico) = IV¥e ~Illcow) < 5

and therefore detV¢ > 0 in U. Hence, restricting U, if necessary, we can assume
that ¢ € Diff"*1%(U; @(U)). This concludes the proof of the theorem. O

14.3 Local Result for Forms of Nonmaximal Rank

The main result of the present section is to obtain the Darboux theorem for degen-
erate closed 2-forms. We will provide, following Bandyopadhyay, Dacorogna and
Kneuss [9], two proofs of the theorem. The standard proof uses the Frobenius the-
orem to reduce the dimension so that the forms have maximal rank and then apply
the classical Darboux theorem. We will follow this path but using the more sophis-
ticated Theorem 14.1. Our theorem will provide a solution in C"%, whereas in the
existing literature solutions are found only in C"~1:¢%,

We will also give a completely different proof; it will use an argument based on
the flow method. Still a different proof can be found in [8] when n = 2m + 1.

14.3.1 The Theorem and a First Proof

Theorem 14.3. Let n > 3, r,m > 1 be integers and 0 < a < 1. Let xo € R" and oy,
be the standard symplectic form with rank [@,] = 2m < n, namely
W, = APV A dR
i=1
Let @ be a C"* closed 2-form such that
rank (@] = 2m in a neighborhood of xg .
Then there exist a neighborhood U of xy and ¢ € Diff"*(U; @ (U)) such that

¢ (W) =winU and @ (xo) = xo.
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Remark 14.4. The theorem is standard in the C* case. In all proofs that we have
seen, the regularity that is established is, at best, that if @ € C"*%, then ¢ € crbe,
However, our result asserts that @ and ¢ have the same regularity in Holder spaces.
This is, of course, better but still not optimal, as in the nondegenerate case of Theo-
rem 14.1.

Proof. Step 1. Without loss of generality, we can assume xy = 0. We first find, ap-
pealing to Theorem 4.5, a neighborhood V C R” of 0 and y € Diff"*(V; y (V)) with
y(0) =0and

V(@) (X1, %) = O (X1, Xom) = Z ;j (X1, ., X0 ) dx' ANdx!.
1<i<j<2m

Therefore, y* (®) = @ € C"~"** in a neighborhood of 0 in R*" and rank @ = 2m in
a neighborhood of 0.

Step 2. We then apply Theorem 14.1 to @ find a neighborhood W C R?" of 0 and
x € Diff"*(W; x (W)), with x (0) = 0, such that

2 (0y) =@ inW.

We set

X (X) =X (xlw ey X2my X2mA4-15 - - 7xn) - (X (xlv cee ,)sz) s X2m4-1y .-+ ,Xn) .
We then choose V smaller, if necessary, so that
VCW xRV,

We finally have that U = y (V) and ¢ = ¥ o w~! have all of the desired properties.
O

14.3.2 A Second Proof

We now provide a second proof of Theorem 14.3 under the extra assumption that @
is in C™. It seems that the present proof is more appropriate if one wants to look for
global results.

Proof. As usual, we consider, without loss of generality, that xy = 0.
Step 1. Define, for a sufficiently small neighborhood U; of 0,

h(t,x) = h(x) = o (tx).

Then the homotopy / is such that h € C*([0, 1] x U;;A?) and for every ¢ € [0, 1], the
following identities hold in U;:

dh, =0, K"#0 and K"™'=0 (14.2)
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(recall that the last two conditions are equivalent to rank [#,;] = 2m) and
hy=®(0) and h =®.
Step 2. Since (14.2) holds and

oh 1 ont!
WA = = ———— =0,
ot m+1 ot

we can apply Theorem 8.22. We can therefore find a neighborhood U, C Uj of
0 and w € C=([0,1] x Uy;R"), w(t,x) = wy(x), satisfying, for every r € [0,1],
w;(0) =0 and
dhy " .
dw,:—y and w;AR"=0 inU;.
We then apply Proposition 2.50 to find u € C*([0, 1] x U2; R"), u(t,x) = u,(x), with
Uy Jh[ = W and Uy (0) = O

Step 3. We next find the flow, associated to the vector field u; ,

d
E(Pt:ulo(l)t» OSISL
@o =id.
Theorem 12.8 gives that ¢; is a diffeomorphism in a neighborhood Uz C U, of 0

such that
(pik(/’l]) =hpinU; and (0] (0) =0.

Step 4. Since hy is constant, we can use Proposition 2.24(ii) to find a diffeomor-
phism v of the form y (x) = Ax with A € GL(n) so that
m . .
v (hy) = On = dez’_l Adx*

i=1

Letting ¢ = y~' o @, !, we have the claim. O

14.4 Global Result with Dirichlet Data

14.4.1 The Main Result

We now state our main theorem. It has been obtained under slightly more restrictive
hypotheses by Bandyopadhyay and Dacorogna [8]; as stated, it is due to Dacorogna
and Kneuss [32]. We will provide two proofs of the theorem in Sections 14.4.5
and 14.4.6.
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Theorem 14.5. Let n > 2 be even and £ C R" be a bounded open smooth set with
exterior unit normal v. Let 0 < o« < 1 and r > 1 be an integer. Let f,g € C"%* (Q;Az)
satisfying df =dg=0in Q,

VAf,VAgeC Tl (8!2;/\3) and VAf=VAgondQ,
| rwiai= [ (gw)ds foreveryy e (@A) (143)
and, for everyt € [0,1],
rank[tg+ (1 —1) f] =n in Q.
Then there exists @ € Diff 1 (ﬁﬁ) such that
0" (g)=finQ and ¢=id ondQ.

Remark 14.6. (i) As already mentioned, we can consider, in a similar way, a general
homotopy f; with fo = f, fi =g,

df, =0, VAfi=VAfoondQ and rank[f;]=ninQ,
/(f,;l//>dx:/ (fo;w)dx foreverywe%(ﬂuﬁ).
Q Q

Note that the nondegeneracy condition rank [ f; | = n implies (identifying, as usual,
volume forms with functions)

%.¢"? >0 in Q.
(i1) The nondegeneracy condition
rank[rg+ (1 —1) f]=n foreverys € [0,1]

. . - . =\ —1 .
is equivalent to the condition that the matrix (g) ( f ) has no negative eigenvalues.

(iii) If Q is contractible, then .77 (.Q;Az) = {0} and, therefore, (14.3) is auto-
matically satisfied.

(iv) Note that the extra regularity on f and g holds only on the boundary and
only for their tangential parts. More precisely, recall that for x € €2, we denote by
v = v (x) the exterior unit normal to Q. By

VA EeCTH(90Q;A%)
we mean that the tangential part of f is in C"+1*% namely the 3-form F defined by
Fx)=vx)Af(x)

is such that
F el (0Q;A%).
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14.4.2 The Flow Method

We now state and prove a weaker version, from the point of view of regularity, of
Theorem 14.5. It has, however, the advantage of having a simple proof. It has been
obtained by Bandyopadhyay and Dacorogna [8].

Theorem 14.7. Let n > 2 be even and 2 C R" be a bounded open smooth set with
exterior unit normal v. Let r > 1 be an integer, 0 < o0 < 1 and f,g € C"* (§;A2)
satisfy

df=dg=0inQ, VAf=VAg ondf,

/(f;l//>dx:/ (g v)dx foreverylllejiﬂr(.Q;Az)7
Q Q

rank [tg+ (1 —1) f] = n in Q and for every t € [0,1].
Then there exists @ € Diff"* (5;5) such that

0 (g)=finQ and ¢@=id ondQ.
Furthermore, if 0 < B < oo < 1 and if ¢ > 0 is such that

1
[tg+(1—1) f]"?

then there exists a constant C = C (c,r, o, ,0) > 0 such that

<c¢ foreveryt€|0,1],
c0

||f||cl ) H8||cl ) H

19 —idl|cra < C[[Ifllcra +llgllcra] 1f = gllcos +CIIf = gller-1a -

Proof. We solve (cf. Theorem 8.16)

dw=f—g inQ,
w=0 on dQ

and find w € C""1%(Q;A") and C; =C) (r,a, B, 2) > 0 such that

Wllera <Cillf =gllcr1a and Wil < Crllf =gllcos -

Since rank [tg+ (1 —t) f] = n, we can find u, € C"%(Q;R") so that

walig+(1=1)fl=w < u = [ig+(1-1)F] 'w.

Moreover (in view of Notation (v) in Section 14.1, Theorem 16.28 and Corol-
lary 16.30), we can find constants C; = C; (¢,r, o, 3,2) > 0, i = 2,3, such that

el cra < Co[[IF Nl cre + [lgllcral [[Wllco + Ca [l re
<G lIfllera +llglleral 1f = 8llcos +C3[lf = gller-1.a



14.4 Global Result with Dirichlet Data 295

and [[u;|| -1 < C3. We then apply Theorem 12.7 to u; and f; =g+ (1 —1) f to find
¢ satisfying
0 (g)=finQ and ¢@=idondQ.

The estimate follows from Theorem 12.1. The proof is therefore complete. O

14.4.3 The Key Estimate for Regularity

The following estimate will play a crucial role in getting the optimal regularity in
Theorem 14.10. We have encountered a result of the same type in the much simpler
case of volume forms (see Theorem 10.9) or in the local case (see Theorem 14.1).
We will state the theorem for k-forms, although we will use it only when k = 2.

Lemma 14.8. Let n > 2 and 2 C R" be a bounded open Lipschitz set. Let r > 1,
2 <k<nbeintegers,c>0and 0 <y<a<1.Letge crtla (Q;Ak) be closed,
u,v € C""HE(Q;R") and ¢ > 0 with

lullcrrs Vllery <
(id+tu) (2), (id+1v) (2) C 2, Vi €[0,1].
Set
Q(u) = g — (id+u)" (g) +dug].
Then there exists a constant C = C (c,r, Q) such that the following estimates hold:
1Q(u) = QW) lcor < Cllgllcar(l[ullcry + [Vlicr)llu—=vllerr,
Q@) [[cra < Cllgllcrera lullcr +Cllgller lullerve uller-

Remark 14.9. With essentially the same argument, we can replace the last estimate
by the following one. In addition to the hypotheses of the lemma, let 0 < o < B<1
andg e C" +1Lp (Q;Ak); then the last estimate takes the following form:

Q@) llcre < Cligllerns lul P~ +Clgllersrae lullerrve llulle
c
for every u,v € C"*1%(Q;R") with
lullcrr s IVllerr < e
(id+ru) (Q), (id+1v) (Q) C 2, Vi € [0,1].

Proof. We divide the proof into four steps. Since we will apply the result only when
k =2, we will always single out the formulas for this case. We also will constantly
use Theorem 16.28.
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Step 1. We start with some notations. The form g will be written as

g= ) gax'.

1€

We first need to write (id+u)*(g) in a different way. For this, we observe that we
have, for I € .7,

d(x+u) = (dx"' +du'V ) A+ A (dx't 4 du'*)
=dx'+ Y dX ndu¥

(J.,K)=I
I<|K|<k
=dx'+ Y dndu'+ Y dx) ndu®,
(J.i)=I (J.K)=I
1<i<n 2<|K|<k

where we have used the notation

k
Y dxd ndu' =Y (=1 axt A Adx Ndx A A di N duT
(J,i)=I y=1
1<i<n

and similarly for

Y, dx ndu®.
(J,K)=I
2<|K|<k

When k& = 2, we have

(dx+du)" = (dx' +du') A (dx’ +du’)
=dx' Ndx! + [dui/\dijrdxi/\duj] +du' Ndu! .

We can therefore write

(id+u)*(g) = Y gr(id+u)yax'+ Y g (id+u) Y —ax' nduf
1<% 1€, (J,K)=I
1<|K|<k

=g(id4+u)+ Y Y g (id+u)dx’ ndu'
1€, (J,i)=I
1<i<n

+Y Y slidtu)dd nduf
1€9, (J,K)=I
2<|K|<k

so that when k = 2, we find

(id+u)* (g) =g(id+u)+ Y gij(id+u) [du' Ndx! +dx' Adu)
1<i<j<n
+ Y gijid+u)du Adu’.

1<i<j<n
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We will also use, for I € 7,

dusdx'] =Y dx'nau,
which reads, when k =2, as
d [quxij] =d [Lu (dxi/\dxj)} =du' Ndx) +dx' Ndu .

Step 2. We have, since g is closed and according to Lemma 5.4, that

dlusgl= Y gid[usdx]+ Y (gradg;u)dx’

1€, 1€
= Z Z grdx’ Ndu' + Z (gradgy; u) dx’
1€ (J,i)=I 1€,
1<i<n

and hence, when k = 2,

dlusgl= Z gij[dui/\dijrdxi/\duj]Jr Z (gradg;j;u)dx' Ndx’.

1<i<j<n 1<i<j<n
In order to get the right estimates, we rewrite Q(u), defined by
Q(u) = g— (id+u)" (g) +dugl,
in the following way:

Q) =g—g(id+u)— Y, Y g (id+u)dx’ Adu
1€ (J,i)=1
1<i<n

-Y Y g(dtu)dd ndu®+dlug]

1€, (J.K)=I
2<|K|<k
and thus
O(u)=g—g(id+u)— ). Y. grlid-+u)dx’ Adu'
1€ T, (Ti)=I
1<i<n
=Y Y a(id+uyax’ nau®
1€, (J.K)=I
2<|K[<k
+ Z Z gldx’/\dui+ Z <gradg1;u>dx1.
1€ (J,i)=I 1€,
1<i<n
We then let

0i(w)=Y Y lgr—g(id+u)][dx' ndu'l,
1€ (Ji)=I
1<i<n
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Ox(u) =Y [g1(id+u) — g1 — (grad gr;u)]dx’,

Ie I,
Os(u)=Y Y g(id+u)dx’ ndu¥
1€, (1K)=1

2<[K[<k
so that
O(u) = Q1(u) — Q2 (u) — Q3(u).
We therefore have, when k = 2, that

Qo)=Y [gijlid+u)—g;j— (grad g;j;u)dx’ Adx/,

1<i<j<n

Os(u)= Y gij(id+u)du' Adu.

1<i<j<n

Step 3. We now establish the first estimate for each of the Q,,, p = 1,2,3. So let
u,v € C7H¥(Q;R") with

lullcry, [[V][lcry < ¢ and  (id-+tu) (), (id+1v) () C 2, Vi €[0,1].

In the sequel, C; will denote constants that depend only on c and 2. Since in all cases
we will make the estimates component by component, we immediately drop the sum
signs. Before starting, we recall (cf. Theorems 16.31 and 16.36) that there exists a
constant Cy = C (¢, ) such that for every f € C'"7(Q) and every w,w € C' (Q; Q)
with [wllcr . [#er < e.

£ ewlicor < Cullfllcor,
[fow=Fowlco <Cillfllerw—wllco
1Fow—Fowlcoy <Crllfllcrylw—wllcor-
Estimate for Q1. We have

101 () = Q1 (v)l|coxr
= | [g1(id) — gr(id+u)] [dx” Adu'] — [g;(id) — g/ (id +v)] [dx” AdV'] || o
< |gr(id+v) — gr(id+u)] [dx' Aadv'] || cor
+ || lgr(id +u) — g7(id)] [dx” A [@v' — du']] || o -

We therefore get

101() = Q1 (V)| cor < Col[gr(id+v) — gr(id+u)][|col[vlicrr
+Cal[gr(id+v) = gr(id+u)] [ cor [Vl
+Col [gr(id+u) — i (id)]l|colu = vl|c1y
+Collfgr(id+u) — gr(id)] [l o[l = vl cr-
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Hence (bearing in mind that ||u||c1y, ||v|lc1y < c), we get

1Q1(u) = Q1 (V) o
<Gligller v =ullcollvlicry + Csligllcrr v — ullcor vl
+Gllgllcr llulleollu— vy +Csliglicrrllullcorllu—vller -

We thus have

101() = Q1 (V)| cor < Cligllerr(llullcry + [Vl e =viierr -

Estimate for Q, . For O, we proceed in the following way. We first observe that
Ld
0s(1) = [ 2 [(er(id=+1u) —1{grad g (id)iu)) ') ds
= /01 [(grad g;(id +ru) — grad g;(id); u) dx’] dr.
We therefore obtain
102(u) = Q2(v)l|cox
< /01 [{grad g;(id +tu) — grad g; (id); u)
— (grad g;(id +tv) — grad g;(id); v) || co.y dt
< [ {leradgiGa-+10) ~ sradg (a4 o
+ ||(grad g;(id +1v) — grad g;(id); u — v)|| o } dt
and, hence,
[Q2(u) — Q2(v)|lcor

1
<G /0 (|| erad g (id +u) — grad gy (id-+v) | o |l co

+ [ grad g;(id +7u) — grad g; (id +1v) | col [ul| cor
+ [l grad g;(id-+#v) — grad g;(id) | cor[|u — vlco
+ | grad g;(id+2v) — grad g (id)[| o lu = vl| o } dt.

This leads to (recall that ||ul|c1y, ||v]| ey <€)

102(u) = Q2 (v) | oy
< Gsllgllcarllu = vllcorllullco + Callgllcallu = vilcollullcor
+GllgllcarlVllcorllu=vilco +Csligllcalvilcollu = viicox-

We therefore have the estimate

[02() — Q2(v)llco.r < Cllgllcar ([l cor + VIl cor )1t = vl co-
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Estimate for Qs . It remains to prove the estimate for Q3. We get

1Q3(u) — Q3(v) || coxr
= ||lgs(id+v) dx! AdvE — g (id+u) dx’ Adu|| oy
<||gr(id+v) (dx’ A (aV — duX))]| cor
+ | (gr(id+v) — gr(id+u)) dx’ A du¥ || cos,

which leads to (recalling that ||ul|c1y, ||v]|c1y < ¢ and |K| > 2, just as in (10.19))

103(u) = Q3 (v)llcor < Gsllgllcor ([[ullcry +[IVllerr)lu=vicry
+Gllgllerrllu—vlicorllullcrr

and, thus,

103(u) = Q3(v) | cor < Cllgllcrallullcry + [IVllera) 1 = vllerr,

proving the estimate for Q3.

Step 4. We next establish the second estimate for each of the 0, p = 1,2,3. So
let u € C"1%(Q;R") with

lullcry <c and  (id+mu) (Q) CcQ, Vtelo,1].

As before, C; will denote constants that depend only on ¢, r and £2. Since in all cases
we will make the estimates component by component, we drop the sum signs. We
recall (cf. Theorem 16.31) that there exists a constant C; = Cj (¢, r, 22) such that for
every f € C"%(Q) and every w € C"*(Q; Q) with |w||-1 <c,

[f ewlicra < Cillfllcre +Cull fller [wlener -
We also claim that
g o (id+u) —goid||cra < Crllgllcriralluller +Crligler lullerra
for every u € C"1-%(Q;R"), with
ullet <c and  (id+u) (2) C Q.
Indeed, from Theorem 16.36, we have

g (id-+u) — goid]cra < Co lgllerra ullco +Cs lgllea 11+ ] o
+Cllglr e

and from Corollary 16.27, we get
8llc2 lullcra < Calllgllersra lluller +[lgller lullerira] - (14.4)

Combining the two estimates, we have our claim.
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Estimate for Q1. We have

101 () cre = || [1(id) — g1 (id +u)] [dx’ Adu'] ||cre
< Col|[gr(id+u) — gr(id)][|col[ullcrv1.a
+ Cal[gr(id +u) — g1 (id)][| cre|ullc1 -

We therefore get (bearing in mind that ||u|| 1y < ¢)

121(@)llcre < Csllgllcr[[ullcollullrre
2
+Gllgllerrra llullcr +Csllgller llullorre l[ullcr

and, thus,

[Q1(w)llcre < Cllgllcrrra lluller + Cligler lullerive luller -

Estimate for Q, . As before, we have that
ld . .
0s(1) = [ 2 [(er(id+10) —1(grad g (id)iu)) ') ds
1
= / [(grad g (id +tu) — grad g/ (id); u)dx'] dt.
0
We therefore obtain
1
|Qa(u)ere < Co | {erad g (id+11) — rad g i) v o
+ || grad g (id +1u) — grad g;(id) | co |l | cre }dt
and, hence,
1 .
[Q2(u)|cre < Cz/O {[ll grad g;(id+1u)||cre + || grad gr|cre] [|ull co
+ || grad g/ (id +tu) — grad g; (id) || co [|ul | crec } dt.
This leads to (recall that |u[|o1y < )
[1Q2(u)llcre < C3[llgllcrria + I8l c2 lullcra] llullco + C3ligll 2wl collul|cner -

From (14.4) we get

1Q2(u)|cre < Cligllcreraluller + Caligller lullorerallullr -

Estimate for Q3. We immediately have

1103 (w) || croe = || g7 (id +u) dx’ A du||cra
< Gllg(id+u)||cre || duX || co + Callglcol| du” || e -
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Since |K| > 2 and ||u||q1.y < ¢, we get

K
103 () lcra < Cs [llgllcree + gl lullcnec] ] A

K|—1
+Csllgllcolull 5 lullror

and, thus, since ||u||o1y <,
103(w)lcre < Cliglicrelullcr +Cllglcr [[ullcrveluller -

The combination of the three estimates gives the proof of the lemma. O

14.4.4 The Fixed Point Method

The first proof of Theorem 14.5 relies on the following key theorem (obtained by
Bandyopadhyay and Dacorogna [8] under more restrictive hypotheses; as stated, it
is due to Dacorogna and Kneuss [32]).

Theorem 14.10. Let n > 2 be even and 2 C R" be a bounded open smooth set. Let
r>1beanintegerand 0 < y< o0 < 1. Let g € C'+1:% (5;/\2) and f € Ch* (5;/\2)
be such that

df=dg=0inQ, VAf=VAg ondQ,

/(f;l//)dx:/ (g w)dx foreverylllejiﬂr(.(2;./\2)7
Q Q

rank [g] =nin Q.
Let ¢ > 0 be such that

[g)"/?

8llco

co
and define

1 1 1
6(g)— min{||g| S }
e, " gleer” Telormre

There exists C = C(c,r, o, Y,Q) > 0 such that if

If — gllcre

I f—gllcoy <CO(g) and | f—gllcoy <Cr———vo
lgllcry llglleria

, (14.5)

then there exists ¢ € Diff 1% (Q; Q) verifying

0" (g)=finQ and ¢=id ondQ. (14.6)
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Furthermore, there exists C = 5(6, rna,y,Q) > 0 such that

1 —id|lcrra < Cligllcrriellf = gllene -

Remark 14.11. (i) Note that since g € C""1"%(Q;A?) and VA f = v Agon R, then
VAFECTI¥9Q;A3).

(ii) With essentially the same proof, but replacing the last estimate of Lemma
14.8 by the corresponding one in Remark 14.9, we get the following result. In addi-
tion to the hypotheses of the theorem, let 0 < y < & < B < 1, g € C"*1P(Q;A2),
fecr® (§;A2) and ¢ > 0 be such that

df =dg=01inQ, VAf=VAg ondQ,
/(f;l,l/>dx:/ (g:w)dx forevery y € 77 (Q;A%),
Q Q

rank [g] =n in Q,

1
lIgllco T2 =
[g] c0
Define | |
17 b 2 b
I Igllcrligllczr ™ |gllgrita
0(g) = ——min .
llgllcty { 1 ra
gllcrrllgllerie

There exist C = C(c,r, o, 3,7,2) > 0 and C= 5(c,r,a,[3,y,_(2) > 0 such that if
(compare with (14.5))
1f —gllcor <CO(g),

then there exists ¢ € Diff ¢ (5;5) verifying
0 (g)=finQ and ¢@=id ondQ
and

1o —id|[crera < Cllgllerriellf = gllene -

Proof. The theorem will follow from Theorem 18.1. We divide the proof into five
steps; the first four to verify the hypotheses of the theorem and the last one to con-
clude.

Step 1. We define the spaces as follows:

X1:Cl*7(§;R”) and Y1:C077’(§;A2)7
X, ={acC*(Q;R") :a=00n0dQ},
db=0inQ, VvAb=0ondLQ, }

Y=1Jp o E.AZ .
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It is easily seen that they satisfy Hypothesis (Hyy) of Theorem 18.1 (see Proposi-
tion 16.23).

Step 2. Define L : X, — Y» by
La=dla.g]=0b.

We will show that there exist L~ : ¥ — X5, a linear right inverse of L and a constant
K1 = Ki(c,r,a,v,) such that, defining

ki=Kilgllcryr and k= Ki[gllcrra,

we get
|IL~'b||x, < ki||b|ly, forevery b€ Ysandi=1,2.

Once this is shown, (H) of Theorem 18.1 will be satisfied.

Step 2.1. Indeed, we first solve, using Theorem 8.16, the equation

dw=b>b inQ,
w=0 ondQ

and find w € C"71%(Q;A") and Cy = Cy (r,at,7,2) > 0 such that

Wllerira < Cil[bllcra and [wllcry < Ci[[bl|coy -

Moreover, the correspondence b — w can be chosen to be linear.
Step 2.2. Since rank [g] = n, we can find a unique a € C""1%(Q;R") so that
aisg=w,

which is equivalent to
—1-1
a=[g] w

Define L~! : ¥, — X, by L™!(b) = a. First, note that L™ is linear and that
LL™'=id onY,.

Moreover, using Theorem 16.28, Corollary 16.30 and Step 2.1, we can find con-
stants C; = C; (¢,r, &, Y, Q) , i = 2,3,4, such that

lallcrira <G H(?)fl| crita [Wllco +C2 H@yl HCO [Wllcr+ta
< Gsllgllcrra [|bllcor +Cs llgllco [10]] o
< CGullgllersra bl cra
and, similarly,
lallcry < Callgllery 1Dllcoy -
Thus, the claim of Step 2 is valid.
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Step 3. We define
Q(u) =g — (id+u)" (g) +d [ug].

We will verify that Property (Hp) of Theorem 18.1 holds with p =1/ (2n) . The fact
that Q (0) = 0 is evident.

Step 3.1. According to Lemma 14.8, there exists a constant K, = K (r, Q) such
that the following estimates hold:

10(u) = Q) llcor < Kallgll v (lullcry + [Vl crn) e = vy,
10(w)|[cre < Kalgllcrerelluller + K2 llgller [[ullorire [lull e
for every u,v € C"*1:%(Q;R"), with
lullcrr, [[V]lcry <1/ (2n),

(id+tu) (2), (id+1v) (2) C 2, Vi €[0,1].

We finally let
c1(t1,12) = Ka|gllcar (11 +12),

e (ti) = Ka|lgllcriratt + K2 [|gllcr 122

Note that if
F(t,x)=x+tu(x) and |ul|x <1/(2n),

then for every 7 € [0, 1],
detV,F (t,x) = det(I+tVu(x)) >0, x€ Q.
Therefore, if u = 0 on €, then, appealing to Theorem 19.12, we get that
F(t,x) € Q forevery (t,x) € [0,1] x Q.

Thus, (18.1) and (18.2) have been verified.

Step 3.2. Let us check that
Q:{ueXo:|lullx, <1/2n)} =Y

is well defined. We have to prove that

dQO(u)=01inQ2, vAQu)=0o0n0dQ,

/ (O y)dx =0, Yy € A (Q:A2).
Q
(i) The first condition follows immediately since dg = 0 and

dQ(u) =dg— (id+u)" (dg)+dd[u_g].
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(ii) The second one is true since u = 0 on d2. Indeed, clearly (using the notations
Q; used in the proof of Lemma 14.8),

Ql(u) = Qz(u) =0 ondQ.

Since u = 0 on 9, each of gradu’ and gradu/ is parallel to the normal v. Thus,
du' Ndu/ = 0 on 9Q for every i < j, which implies that

03(u) =0 on 9Q.
Thus, we have, in fact, proved that Q(u) =0 on 9 Q.

(iii) Choosing F (t,x) = x+tu(x) in Remark 17.4, we find that there exists @
such that

dP =g—(id4+u)*(g) inLQ,
P=0 on dQ.

Since ¥ = & + u g satisfies

d¥ =Qu) inQ,
¥Y=0 on d<2,

we have the claim, namely
/XQ@ywmx:QVwe;ﬁ@LA%.
Q
Step 4. With the definition of L and Q in hand, we now rewrite (14.6) as follows.
Setting @ = id+u, the equation ¢* (g) = f becomes

Lu=du.gl=f—({d+u)" (g)+dug
=f—g+g—(ild+u)"(g)+d[uagl]
=f—g+0(u).

In order to apply Theorem 18.1, it remains to see how the hypotheses

2k || f = gllcor < 1/(2n),
2kic1 (ki || f — gllcor, 2k || f — gllcor) < 1, (14.7)
c2(2kt || f = gllcors 2ka || f — gllcra) < || f —gl|cre

translate in our context.

(i) The first one leads to

1
f—glleoy < ——.
17 =glleor < Gy
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(i1) The second one gives

1

lgliZllglcer

- <
||f gHCOwY = 8K12K2

(iii) The third condition reads as

K llgllcrera 2Killgllcrrllf = 8llcor)
+Kalgller CKillgllcr7 1 f = gllcor) CKillgllcrerallf = gllere)
<|f gl

Note that the third condition is verified if
1
2K K> |8l crerallgllcrallf — gllcor < 511f —gllcre

and

1
4KPKs |gllcr llgler s lIglcrva LS = gllcorllf = gliera < SI1f =gl

The first one leads to

LS = gllera
Kallgllererallgllery

— <
17~ gllcor < g

and the second one is verified if

1
coy < .
8KTK> |8l creter 1811y

If—zll

Combining the four conditions, we have just obtained, letting

1 ) {” H 1 1 }
= ———minq ||&||cly
lgllEry S gy lIgllerine S

that there exists C = C(c,r,a,7¥,£) > 0 such that the inequalities (14.7) are satis-
fied if

0 (g)

|f — gllcre

[f—gllcoy <CO(g) and |f—gllcoy <Cr—rr—.
||gHC1~Y ||8||cr+1,a

Step 5. The hypotheses of Theorem 18.1 having been verified, we conclude that
there exists u € C"*1%(Q;R"), with ||u||c14 < 1/ (2n), satisfying u = 0 on dQ and

Lu=dusgl=f—g+Q(u)=f—(id+u)" (g) +duag].

Letting ¢ = id +u, we therefore have found that

¢*(g)=f inQ.
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Since u =0 on €2, we have that ¢ =id on 9. Since ||u||1 < 1/(2n), we deduce
that o
detVo >0 in (2,

and therefore, according to Theorem 19.12, we find that ¢ € Diff 1 (5;5).
Moreover, by construction (cf. (18.5)),

[ullerera < 2ko|lf —gllcre,
which implies the desired estimate, namely

1 —id|[crera <Cllgllerriellf = gllene -

The proof is thus complete. O

14.4.5 A First Proof of the Main Theorem

We first prove Theorem 14.5 for special f and general g with extra regularity and
under a smallness assumption.

Proposition 14.12. Ler © C R" be a bounded open smooth set, r > 1, 0 < o0 <
B < 1 and g € C"P (Q;A?) with

VAgECT(9Q;A%), dg=0 and ranklg]=n inQ.
Then for every € small, there exist ge € C"1%(Q;A?) and @, € Diff 1% (Q; Q)

such that
P:(8e) =g inQ,
Qe =id ondQ,

dge =0, VAge=VAg ondQ,
/Q<ge;ll/>=/g<g;w>7VWG%(Q;AZ),

él_r)r(l) llge — chna(ﬁ) =0.

Moreover; there exists C = C(r,at, B, 2, ||gl|c1.e, | 1/8"/>

small,

llco), such that for every €

B—a

aHchnﬁ(ﬁ)+C8||V/\g‘|cr+1~a(ag)- (14.8)

. £
[Pe —id|crira@) <C =

Proof. For the sake of alleviating the notations we will write in the present proof,
for example, ||g||p instead of [[g[|rp ). However, when we will be considering

norms on the boundary of £, we will keep the notation [|g[|c-g (50)-
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Step 1 (definition of g¢). Apply Theorem 16.49 and Remark 16.50(v) and get,
for every € € (0,1], that there exist g¢ € crtla (Q;Az) and a constant C| =
Ci(r,a,f,Q) such that

dge=0 inQ, VAge=VAg ondQ, (14.9)

/Q (ge: W) = /!2 (g:) forevery w € 4 (Q;A%), (14.10)
(&

llgellcrera < mﬂg\\crﬁ +CillvAglleriraga), (14.11)

Ige — gllcre < C1eP~%||g|cup. (14.12)

<CieP o Ngllps.  (14.13)
cna

d d
Hdgge 0o SCillglcra and Hdggg

Moreover, defining G : (0,1] x Q — A? by G(&,x) = ge(x), we have

GeCT (O BAY . JOCC (O x@AY). 419

Since rank[g] = n in Q (which is equivalent to g"/?(x) # 0 for every x € Q) and
since (14.12) holds, there exists € < 1 such that for every € € (0, €],
I8ellco <2l18llco,  Ngeller <2llgller s
11/ (ge)"*lco < 21[1/8"lco -

Hence, combining (14.15) and Notation (v) in Section 14.1, we deduce that for every
€ €(0,¢],

IEe) e < Callgeller and - [[(8e) ™ lerere < Callgellrene, (14.16)

where C; = G2 (1,2, gl 0,111/8"?[| c0)-

Step 2. In this step we will show that for every & € (0,€], there exist ue €
C+1%(Q;AY) and a constant C3 = C3(r, ¢, B,2, gl c1.a [|1/8"?||c0) such that
ue =0 on dQ and

(14.15)

d .
d(uguge) = ~ s in Q, (14.17)
G
l[uellcrita < m”g\\cr,ﬁ +G|vAglleriiepa) (14.18)
uellcr < Cs. (14.19)

Moreover, defining u : (0,€] x Q — Al by u(e,x) = ue(x), we will show that u €
Che((0,8] x Q;A1).

Step 2.1. Since (14.9), (14.10) and (14.14) hold, using Theorem 8.16 we can find,
for every € € (0,€], we € C*(2;A') and a constant C4 = C4(r, o, Q) such that

d .
dwg:—%g‘E inQ, we=0 ondQR
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and, for every integer g < r,

[welcg+1.0 < Ca (14.20)

4
degs

ca-
Moreover, defining w: (0,€] x 2 — A' by w(€,x) = we(x), we have, using (14.14),
w e C((0,8] x 2;A).

Step 2.2. Since by (14.15), we have, for every € € (0,€], rank[ge] = n in @, there
exists a unique u, : Q — A! verifying

Ug 18 = We.

Note that ug € C"t1*(Q; A') and that ue = 0 on dQ. Moreover, defining u : (0,€] x
Q — Al by u(€,x) = ug(x), we have u € C"71#((0,8] x Q;Al).

Step 2.3. To show Step 2, it only remains to prove (14.18) and (14.19). Using
Theorem 16.28, (14.15), (14.16) and (14.20), it follows that

el crra = 1[(8e) " wellcrva

< Csl|(Be) llerrrallwellco +Csll(Ze) ™ llcollwellerra
< Gsllgellcr+r.alwellcre + Collwe [l cr+1.a

+C
CO,a

4 4
dggg degs

< C7||88||C'+1~a
C'ZOC

and thus, invoking (14.11) and (14.13),
Hl/l8||cr+l.lx
1 Cg
<G m”g”cr«ﬁ + v Agllerraga) ) lgllere + m”g”crﬂ
Co
< mllg\laﬁ +Co|vAglleriiepa):
where C; = Ci(r, o, B, 2, gl ¢, [|1/8"/?|| o). We similarly obtain
luellcr = 11(8e) ™ weller < Croll(8e) ™" llct Iwe e

d
<Cn ||8||Cl %gs

<CulgllctIgllcre < Ci,
COa

where C; = Ci(r, &, B, 2, ||gll oo, |[1/€"/?]| o) This shows the assertion.
Step 3. We can now conclude the proof.

Step 3.1. Since u € C"1*((0,€] x Q : R"), ug = 0 on dQ and by (14.18),

€
/0 lelg||cr+14,adg <°°,
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we deduce, using Theorem 12.1, that the solution ¢ : [0,€] x 2 — Q, ¢(g,x) =
@¢(x), of

d _

%%2%0%, 0<e<E,

@y =id

verifies

@ ChY(0,2] x 2: Q) (14.21)
and that for every € € [0, €],

@: €Diff T (Q;Q) and  @e =id on 9Q.

Finally, inserting (14.18) and (14.19) in (12.3), we immediately deduce (14.8).

Step 3.2. Since (14.17) holds, we deduce, using Theorem 12.7, that for every
0<e <g<E,
(sz(g&) = (Pgl (gsl) in Q.

Since, using (14.12) and (14.21),
;g% lge —8llco =0 and ;13(1) l[Pe — @ollcr =0,
we immediately infer that for every € € (0,€],

Pe(ge) = 9o (8) = &-
The proof is therefore complete. ]

We can now go back to the first proof of Theorem 14.5 using an iteration scheme
involving appropriate regularization.

Proof. We split the proof into three steps.

Step 1 (approximation of g and f). Choose y € (0,c¢) and 0 >0 with26 < a—y
and o +26 < 1. We next regularize g and f with the help of Theorem 16.49 (and
Remark 16.50(v)) and construct for every € € (0,1], ge, fe € C""* (2;A?) such
that

dgg:dfg:(), V/\g8:V/\g:V/\f:V/\f50naQ,

| tseswr= [ ww= [ )= [ v vw et (2:a2),

lIge = gllcor < C™ 7 gllcras

ge —8llcty < Ce gl e

C
Igellcrita < P lgllcra +C IV Agllertiaaq)
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C
ng||Cr,a+26 < 875 ”g”CW JFCHV/\g”Cr,aJrZS(aQ) )

C
lgellcar < - 8llcty +C IV Agllezraa)

where C =C (r,,7,6,8) > 0 and similarly for f and f, . Note that using the first
inequality above, there exists € such that for every €1,& < €, we have that

rank [1ge, + (1 —1) fe,] =n in Q and for every ¢ € [0, 1].

Step 2. In this step we show that there exist €1, & < €and ¢, @3 € Diff 1« (Eﬁ)
such that

¢ (8e) =8 InQ, and 03 (fe,) =f inQ,
¢ =1id on dQ 03 =id on dQ.

For this we will use a combination of Theorem 14.10 and Proposition 14.12. We
only show the assertion for g, the one with f being proved exactly in the same way.

Step 2.1. We start with some preliminary estimates. Using the second inequality
in Step 1, we deduce that for every € small enough, recalling that > 1 and ¥y <

1 1
sleelrs < lellwr <2leelerr ana |

1

<2
0 H [g]"/?

co .
In what follows, € will always be assumed small enough. Combining the left-hand

side of the previous inequality with the third and fifth inequalities in Step 1, we
deduce that there exists D; > 0, a constant independent of &, such that, defining

I 1 1
0 (56) = g min { el | b
||88HC1.y 8ellczr ™ lIgellcrra

we have
0 (gg) >De.

Hence, since ||ge — gl|coy < Ce€T* 7, r>1and y < o, we immediately deduce

lim ||g£ _g”COY

tim ) =0. (14.22)

Note also that there exists D, > 0, a constant independent of €, such that

gl |0 =%

cO

gellco

Step 2.2. Let C = C(Ds,r,t,7,Q) be the constant given in (14.5) of Theo-
rem 14.10. Due to (14.22), the first inequality of (14.5) is satisfied for every € < €
and for some € < €. We show the assertion by considering two cases. In the first



14.4 Global Result with Dirichlet Data 313

one, we use Theorem 14.10 to obtain the assertion and in the second one, we use
Proposition 14.12.

(i) Suppose that for some € < €, the second inequality of (14.5) is also satisfied,
namely

llge — gllcre
gellcrr llgellerr.a -

Hg&‘ _gHCO!Y S C(D27r7a,'}/,Q)

Hence, we have the claim of Step 2 using Theorem 14.10.

(i) Suppose that the first case does not hold true. Hence, for all € <&

lgellcry llgellcria [lge — 8llcor > C (D2, 10,7, 2) ||ge — gllcre -

Using the first and third inequality of Step 1, the fact that ||ge||c1y < 2[/g]|c1y, We
obtain, recalling that » > 1 and that 26 < o — 7,

lge —gllcre < D3e*  for every 0 < € <€,

where Dj is independent of €. Combining the above equation with the fact that, by
the fourth inequality in Step 1 (where D4 > 0 is independent of €),

Dy
||g€HC£a+25 S STB 9

we immediately deduce from Proposition 16.45 that g € C"**9(Q;A?). The
assertion then follows directly from Proposition 14.12 once noticed, using
Remark 16.50(v), that the g constructed in Proposition 14.12 are the same as the
ones defined in Step 1.

Step 3. Since

dge, =dfe, =0 in Q,
VAZe =VAfg ondQ,

/Q<ggl;w> = /Q<fez;w> for every y € 7 (Q;A%),
rank [tge, + (1 —1) fe,] =n in Q and for every ¢ € [0, 1],

we can apply Theorem 14.7 to find ¢, € Diff" ™% (Q; Q) such that

(Pik(g{il):fé'z inQ»
0 =id on dQ.

The claimed solution is then given by
P=9¢; opro0;.

This achieves the proof of the theorem. O
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14.4.6 A Second Proof of the Main Theorem

We first show Theorem 14.5 for special f and general g with extra regularity only
on the boundary and under a smallness assumption.

Proposition 14.13. Let Q C R" be a bounded open smooth set, r > 1 and 0 < & <
o< a+8<1. Let g € Cr*(Q;A?) with

VAGECTI(9OAY), dg=0 and rank[g]=n inQ.
Then for every € small, there exist
g € CHLTO(QA%) and  @e € Diff T (2 0)
such that .
(Pg (g&') =8 mn Qa
Q. =1id ondQ,
dge =0, VAge=VAg onodQ,

/<g£§W>:/ (g:w) for every y € 57 (Q2:A),
Q Q

glg(l) llge — g”cmfﬁ(ﬁ) =0.

Proof. We adopt the same simplification in the notations of the norms as in the proof
of Proposition 14.12.

Step 1 (definition of g¢). Apply Theorem 16.49 and Remark 16.50(v)-16.50(vi).
Therefore, for every € € (0,1], there exist g¢ € C'*1**9(Q;A?) and a constant
C, =Ci(r,a,8,Q) such that for every y € [a@ — §,a + 8],

dge=0 inQ, VAg.=VAg ondQ, (14.23)
/!'2<g£;y/> = /Q(g; y) forevery y € #7(Q;A?), (14.24)
Ci
18elleriy < m”g”a“ +CilvAglleivaa), (14.25)
Ige — gllcra-s < C1€°%|Igllcre, (14.26)
e, <o s | fee| < fglelen.  as2m

Moreover, defining G : (0,1] x Q — A2 by G(&,x) = ge(x), we have

G e ((0,1] x 2;A%)  and ;—EGEC”((O;I]XE;AZ). (14.28)
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Since rank[g] = n in Q (which is equivalent to g"/(x) # 0 for every x € ) and
since (14.26) holds, there exists € < 1 such that for every € € (0, €],

lgellco <2liglico and  [[1/(ge)"llco < 211/8"?llco- (14.29)

Hence, combining (14.29) and Notation (v) in Section 14.1, we deduce that for every
e € (0,€] andevery y € [@ — 6,00+ 3],

1&e) ey < Callgellerenys (14.30)

where C> = Co(r, 2, ||g|co, 11/8"?]|c0)-

Step 2. In this step we will show that for every € € (0,€], there exist ue €
Cr+10+9 (Al and a constant C; = C3(r, 0, 8,2, ||g||c1.a, [|1/8"|| o) such that
ug =0 on dQ and

d

d(unge) :7£gg in Q (14.31)
and, for every y € [¢ — 8, ¢+ 8],
G

lellcrrr < =g llgllcre + CllVAglcrras g - (14.32)

Moreover, defining u : (0,€] x & — A by u(e,x) = ue(x), we will show that u €
Cr+l,0£+5(<07§] % Q;A]).

Step 2.1. Since (14.23), (14.24) and (14.28) hold, using Theorem 8.16, we can
find for every € € (0,€], we € C*(Q;A!) and a constant Cy = C4(r, o, §,) such
that

d .
dwe = ~ese inQ, we=0 ondQ

and, for every integer ¢ < r and every y € [@ — §,a + 8],

(14.33)

4
d(—jgs

[Wellca+1y < Ca
caY

Moreover, defining w : (0,€] x 2 — A' by w(€,x) = we(x), we have, using (14.28),
w e C™((0,8] x 2;A).

Step 2.2. Since, by (14.29), we have for every € € (0,€], rank[ge] = n in Q, that
there exists a unique ue : Q — A verifying

Ug 18 = We.

Note that uz € C'T1-a+d (Q2;A') and that ue = 0 on 9. Moreover, defining u :
(0,8] x @ — A" by u(e,x) = ue(x), we have u € C™+1:79((0,8] x Q;A1).
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Step 2.3. To show Step 2, it only remains to prove (14.32). Using Theorem 16.28,
(14.29), (14.30) and (14.33), it follows that

luellcrerr = 1Ee) ™ wellererr

— -1 — -1
<Gsl[(8e) llerrirlwellco +Csll(8e) ™ lcollwell ey
< Collgellcrr1rlIwellcra + Collwe || cre1y

4 4
dgge dé‘ge

<C7l\gell iy +G
0.0

cry

and hence, appealing to (14.25) and (14.27),
[ute || crivy

1 &
<G | sima lsllere + v Agllerinaa) | lglere + =g gl

Gy
< pyEE llgllcre + Col|v /\chr+l~a+5(aQ)’

where C; = Ci(r,, 8,2, ||gl|ct.a, || 1/8"?]| co)- This shows the assertion.
Step 3. We can now conclude the proof.

Step 3.1. Since u € C"*1:%+3((0,€] x Q : R"), ue = 0 on 92 and (14.32) holds,
we deduce, using Theorem 12.4, that the solution ¢ : [0,€] x Q — Q, ¢(g,x) =

Qe (x), of y
%(Pszusofpea 0<e<eE,
@ =1id

verifies -
@ cC(0,8] x 2; Q) (14.34)

and that for every € € [0, €],
@ € Diff *1%(Q:Q) and @ =id on Q.

Step 3.2. Since (14.31) holds, we deduce, using Theorem 12.7, that for every
0<eg < <E,
¥z, (8e,) = @z, (8e,) in Q.

Since, using (14.26) and (14.34),
lim flge —gllco =0 and  lim |ge — @ollcr =,
we immediately deduce that for every € € (0, €],

?:(ge) = 95(8) =g-

This concludes the proof. O
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We now turn to our second proof of Theorem 14.5. We will do it under the
stronger assumption that there exists 0 < @ < f§ < 1 so that

VAL, VAgEe TP (9Q;A%).

Proof. Step 1. Let 0 > 0 small enough so that [a — §,a + 6] C (0,). Applying
Proposition 14.13 to f and g, there exist for every € small,

ferge €CTHUTO(QA%) and  @1e, ¢r € DIff 1Y (Q; Q)

such that

q)r,s(f&‘):f7 (,Of,g(gs)zg in Q,
Pre=Pe=1d ondQ,

ll_%nfs —[fllera—s = ll_r{(l)HgS —8llcra-s =0.

Using the previous equation, there exists & > 0 small enough so that for every
re0,1], o
rank([tge, + (1 —1)fg,] =n in Q.

Moreover, fe and g, satisfy

dge =dfe =0, VAge=VAfe=VAf=VAg ondQ,
L tesv) = [tww) = [ ey = [ (fw), vye ot (@:a2).
Q Q Q Q
Step 2. Using Theorem 14.7, we find @3 € C"+1%+9(Q) verifying

(p;(g&‘g):fg{) il’l.Q,
@3 =id on dQ.

Finally, the diffeomorphism ¢ = ¢, 810 0 (30 Q1 ¢, has all of the required properties.
' |



Chapter 15
The Case3<k<n-1

The results that will be discussed in this chapter are strongly based on
Bandyopadhyay, Dacorogna and Kneuss [9]. For related results see Turiel [97-102].

15.1 A General Theorem for Forms of Rank =%

Our first result concerns k-forms of minimal nonzero rank.

Theorem 15.1. Let 2 < k < n, r > 1 be integers, 0 < a < 1 and xy € R". Let f and
g be two C"% k-forms verifying, in a neighborhood of xy ,

df =dg=0 and rank[f] =rank[g] =k.
Then there exist a neighborhood U of xy and

Diff"*(U; o (U)) ifk<n
¢ Diff "L (U (U))  ifk=n

such that @(xy) = xo and
¢ (g)=f inU.
In particular, if g = dx" \--- Ndx*, then
f=Ve'A---AVQ* inU.

Remark 15.2. (i) The case k = n — 1 is therefore completely solved (cf. Theo-
rem 15.3).

(i1) We recall that the rank of a form is given in Definition 2.28 and Remark 2.31;
see also Proposition 2.37.

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 319
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_15,
© Springer Science+Business Media, LLC 2012
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(iii) Throughout this chapter we will often use the following elementary fact. In
order to solve @*(g) = f, it is enough to solve, for some A,

oi(h) =g, ¢3(h)=f
andlet(p:(pfloq)z.

Proof. With no loss of generality, we can assume xo = 0 and (see Remark 15.2(iii))
g =dx" A--- Ndx*. We split the proof into two steps.

Step 1. We first prove the case k = n. Since f = fi.., dx' A--- Adx" and since
rank[f] = n > 0 in a neighborhood of 0, there exists a sufficiently small ball U
centered at 0 such that fj...,(x) # 0 for every x € U. Using Theorem 10.1, there
exists @ € Diff""1%(TU;T) such that ¢; = id on JU and

@; (cdx' Ao Ndx") = fi.,dx' N---AdX" inU,

where

1
C—measU/Ufl...n.

Finally, let
¢2(x) =x—¢1(0)
and
?3(x) = @3(x1,- 1 20) = (X1, 3 Xn1,€X).

The map ¢ = @3 0 @, o @) has all of the desired properties.

Step 2. We next suppose that k < n. Using Theorem 4.5, there exist a neighbor-
hood V of 0 and ¢; € Diff"*(V;¢;(V)) such that ¢;(0) = 0 and

o7 (f)(x1, . x0) = alxy,...,x)dx" A~ Adx inV,

where a € C"~1% in a neighborhood of 0 in R¥. Using the fact that rank[f] = k and
Proposition 17.1, there exists W, a sufficiently small ball in R¥ centered at 0, such
that a(x) # 0 for every x € W. Using Step 1, there exists ¢, € Diff"*(W; @,(W))
such that ¢,(0) =0 and

@3 (dx' A NdXb) = adx' A - NdxE
Finally, defining @, € Diff"*(W x R"%; ¢,(W) x R" %) by
@(}C) = ((PZ(xh o axk)7xk+l7 o 7-xn)7

we get that ¢ = @0 ¢ ! has all of the desired properties. This concludes the proof.
O
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15.2 The Case of (n —1)-Forms

15.2.1 The Case of Closed (n — 1)-Forms

The case of closed (n— 1)-forms is a direct consequence of the results of Section
15.1 (see also Martinet [71]).

Theorem 15.3. Let r > 1 be an integer, 0 < @ < 1 and xy € R”". Let f and g be two
closed C™* (n— 1)-forms verifying

f(x0) #0 and g(xo) #0.

Then there exist a neighborhood U of xo and ¢ € Diff"*(U; @ (U)) such that ¢(xo) =
xo and

¢ (g)=f inU.
In particular, if g = dx' A --- ANdx"~1 then
f=Ve'A---AVQ"! inU.

Proof. Recall first that a nonzero (n — 1)-form has always (cf. Remark 2.38(1)) its
rank equal to n — 1. Therefore, the hypothesis

f(x0)#0 and g(xo) #0
is equivalent to
rank [f] = rank [g] = n— 1 in a neighborhood of x .

Applying Theorem 15.1, we have the result. O

Theorem 15.3 reads in a more analytical way when k =n — 1 (cf. also Barbarosie
[11]), since the exterior derivative of an (n — 1)-form is then essentially the classical
divergence operator.

Corollary 15.4. Let r > 1 be an integer, 0 < o < 1 and xo € R". Let f be a C"*
vector field satisfying
f(x0) #0 and divf =0 in a neighborhood of x .

Then there exist a neighborhood U of xy and ¢ € Diff"*(U; @(U)) such that ¢ (xo) =
xo and

f=+(Vo'A---AVQ" ") inU.
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15.2.2 The Case of Nonclosed (n — 1)-Forms

We conclude with the case of nonclosed (n — 1)-forms.
Theorem 15.5. Let xg € R" and f a C* (n— 1)-form verifying

[ (x0) #0.
Then there exist a neighborhood U of xy and
¢ eC™(U:0(U))
such that
f=¢"Vo'A---AVQ" ! inU.

If, moreover, df(xo) # 0 then, up to restricting U, in addition to the previous equa-
tion, @ can be assumed in Diff*(U; ¢(U)).

Remark 15.6. (i) If f € C”, then ¢" € C""" and ¢’ € C", 1 <i < n— 1. Moreover,
another way to read the conclusion is

O (xy dx' A NdxX") = f.

(ii) If df = 0 in a neighborhood of x(, then we have a better result (cf. Theo-
rem 15.3).

(iii) Note that we cannot, in general, ensure that ¢(xo) = xo; for a similar result,
see Remark 13.11(ii).

Proof. We split the proof into two steps. In the sequel, *f € C™(R";A') will some-
times be identified with a vector field (see Definition 2.9 for the notation).

Step 1. We prove the main assertion. Since f(xg) # 0, using Remark 4.3(ii), there
exist a neighborhood V C R” of xo and ¢; € Diff”(V;¢;(V)) such that ¢;(xg) =
xo and

Iy
0x,

= (xf)og; inV. (15.1)

Using Definition 2.11 and the fact that (xf) A (xf) = 0 (since *f is a 1-form), we
deduce that (xf) 1 f = 0. Thus, using (15.1), Theorem 3.10 and Proposition 3.11,
we obtain

0=f ((x/) 2/) = 9] (+f) 297 (/) = dx" 2 9] ().
From the previous equation we immediately deduce

gor(f)(x):a(x17---axn)dxl/\"'/\dxnil, xeV,
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where a € C*(V). Letting U = ¢;(V) and
e=(0'...0")=((or ). (@) o™,
we have the main assertion, namely
f=0"Vo' A--- AV

Step 2. We prove the extra assertion. Let ¢; be the diffeomorphism obtained in
Step 1. It verifies, in particular,

@1 (f) (%) = alx,..,x)dx' A= Adx xeV.
Since, by hypothesis, d f # 0 in a neighborhood of x( and ¢; (xo) = xo , we have
d(¢}(f)) = ¢; (df) # 0 in a neighborhood of xq

and, thus,

d
T;;(xo) #0.

Define ¢, : V — R" by
P2(x) = (x1,... . Xu—1,a(x)).
Note that
O (xp dx' Ao ANdX" ) =a(x)dx' Ao AdXTY inV

and that, taking V smaller if necessary, ¢, € Diff*(V;@,(V)). Letting ¢ = ¢, 0
(1)1, it follows that ¢ € Diff*(¢;(V); (V) and has the desired property. The
proof is therefore complete. ]

As before, the previous theorem can be seen in a more analytical way (cf. also
Barbarosie [11]).

Corollary 15.7. Let xo € R" and let f be a C* vector field satisfying
f(x0) #0.
Then there exist a neighborhood U of xy and
¢ eC(Uso(U))
such that
f=%(¢"Vo'A---AVQ" ) inU.

If, moreover, div f(xo) # 0, then, up to restricting U, in addition to the previous
equation, @ can be assumed in Diff”(U; @ (U)).
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15.3 Simultaneous Resolutions and Applications

15.3.1 Simultaneous Resolution for 1-Forms

We start with a simultaneous resolution of closed 1-forms; see also Cartan [21].

Proposition 15.8. Let r > 0, 1 < m < n be integers and xy € R". Let bl, ...,b™ and

a',...,a™ be C" closed 1-forms verifying

(D' A AD™)(x0) #0 and (a' A---Nad™)(xo) # 0.

Then there exist a neighborhood U of xo and ¢ € Diff " (U;@(U)) such that
o (x0) = xo and

0" (bi) =d  inU and forevery 1 <i<m.

Remark 15.9. (i) When r = 0, the fact that a 1-form @ is closed has to be understood
in the sense of distributions.

(i1) The result is also valid in Holder spaces.

(iii) It is interesting to compare the above proposition and Theorem 15.1. In view

of Proposition 2.43, we know that any m-form f with rank [f] = m is a product of
1-forms a',...,a" so that

f:al/\.../\am;

however, we do not know, in general, that al, ...,a™ are closed if f is closed (and
eventhata',...,a™ € C" if f € C"). But, Theorem 15.1 shows that there does exist
a total decomposition with closed al, ...,a™; however, we have lost one degree of
regularity, namely a',...,a™ € C"~1% (unless m = n). Therefore, if we assume that
a',...,a™ are closed, then the above proposition is better from the point of view of
regularity than Theorem 15.1.

(iv) When m = n and f € C?, it is, in general, impossible (according to Burago
and Kleiner [19] and Mc Mullen [73]) to find closed 1-forms al, Ladt e €Y so that

f:al/\---/\a”;

although, in view of Theorem 10.1, we can do so if f € CO*“, finding even that
a,....a" e e,

Proof. We split the proof into two steps.

Step 1. With no loss of generality, we can assume xo = 0. Noticing that if m < n,
we can choose 1 <k, <---<k,<mand 1</, <--- <[, <nsuch that

(bYA= AB™ AdXFm A - N diFn)(0) # 0,

(@' A Ad™ Ndxm A - Adx') (0) 0.
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We can therefore assume that m = n, letting b = dx"i and ' = dx% form+1 < i<n.
Using Corollary 8.6, we can find a neighborhood V of 0 and, for 1 <i<n, B',A' €
C™+1(V) such that

dA'=d and dB'=b" inV for every 1 <i<n.

Moreover, adding, if necessary, a constant, we can assume that Ai(O) =B (0)=0
for 1 < i < n. Finally, define A,B € C""!(U;R") by A = (A!,...,A") and B =
(B',...,B"). Since A(0) = B(0) = 0 and since, identifying n-forms with 0-forms,

detVA(0) = (@' A---Aa")(0)#0 and detVB(0) = (b' A---AB")(0) #0,
it follows that A € Diff" "' (U;A(U)), B € Diff" ™! (U; B(U)) and

B~ oA e Diff T (U; (B~ 0A)(U))
for a neighborhood U of 0 small enough. Noticing that for 1 <i < n,
A*(dx')=d and B*(dx')=b" inU,
we deduce that
(B~ 1 oA)* (b)) =A*((B~)*(0')) =A% (dx') =d' inU.

Therefore, @ = B~! oA has all of the desired properties and this concludes the proof.
O

It is interesting to see that the above proposition can also be global.

Proposition 15.10. Let 2 C R" be a bounded open smooth set with exterior unit
normal v. Let r > 0 and 1 < m < n be integers. Let bl7...,bm cCr (.Q;A') be
closed in Q and such that

BN AL AN ANdXT A0 in Q,
VAL =vAdx  ondQ forevery1 <i<m,
/Q<bi;x>:/!2<dxi;x) forevewxe%(Q;Al)andevewlSigm.

Then there exists ¢ € Diff"*! (5; 5) satisfying @ =id on 02, and in L2,

o (bi):dxi, 1 <i<m,

o* (dxi) =dx', m+1<i<n.
Remark 15.11. 1f € is simply connected (cf. Remark 6.6), then 77 (Q;A') = {0}
and hence the last condition on the b’ is automatically fulfilled.

Proof. Usi&g Theorem 8.16 and the remark following it, we can find, for 1 <i <m,
Al € C"1(Q) such that



326 15 TheCase3<k<n-—1
dAI =bi—d¥ inQ,
{ A'=0 on 9Q.
Next, define B € C"*1(Q;R") by
B(x) = (x1 + A (%), ... X + A" (X), Xops 15 -5 Xn).
Since B = id on dQ and since
detVB(x) = (b' A--- AB" Ndx™ TV A NdX") 1 (x) £ 0
for every x € 2, we immediately deduce from Theorem 19.12 that B € Diff" ™ (Q; Q).

Note that for 1 < i < m, B*(dx') = dB' = d(x' +A’) = b'. Therefore, ¢ =B~' €
Diff"!(Q:; Q) has all of the required properties. This concludes the proof. O

15.3.2 Applications to k-Forms
We next generalize Proposition 15.8 by mixing 1-forms and 2-forms.

Theorem 15.12. Let m,l > 0 be integers and xo € R". Let b',... ,b™ and a', ... ,a"
be closed C* 1-forms. Let g1,...,8; and f1,..., f; be closed C™ 2-forms such that,
in a neighborhood of xy ,

rank [g;] = rank [f;] = 2s;, 1 <i <,

rank[g1/\~--Agl/\b1/\~-/\bm} :rank[fl/\-~-/\f1/\a1/\---/\am]
=2(s1 4 +s) +m.
Then there exist a neighborhood U of xy and ¢ € Diff”(U; @(U)) such that ¢ (xo) =

xo and, in U,

o (b)=d, 1<i<m.

Remark 15.13. (i) When m = 0, respectively / = 0, the theorem is to be understood
as a statement only on 2-forms, respectively only on 1-forms (in this last case, see
Proposition 15.8).

(i) When 0 < & < 1, g;, f; € C"* and b/,a/ € C"*, the proof will give ¢ €
Diff e,

(iii) Of course, the theorem applies to k-forms, k = 2/ + m, of the type

G=gi N AgIAb'A--AD™ and F=fiA---Afiha' N---Nad".
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We therefore obtain that there exists a diffeomorphism ¢ such that
9" (G)=F,

generalizing a result obtained by Bandyopadhyay and Dacorogna [8].

Proof. We establish the result by induction on /. When / = 0, we are in the situation
of Proposition 15.8, which has already been proved. Let us suppose that the theorem
is true for / — 1 and prove it for /.

Step 1. Using Remark 15.2(iii), we can assume that

Syt ts; ) )
fi= Y AP adxd, 1< <,
i=(s1++sjo1)+1
a = dx2srtets)H for every 1 <i<m.

Note that these particular f; and a' satisfy all of the hypotheses of the theorem. We
find, using Theorem 14.3, a neighborhood Uj of x¢ and ¢; € Diff*(Uy; ¢;(U;)) such
that ¢ (xp) = xp and

S1 . .
or(g1)=fi= deZF] Adx* inUj.
i=1
Step 2. We claim that, in a neighborhood of xg,

rank[Q; (g2) A A @f(g1) Adx' A== Ad®T AT (') A A gy (B™)]
=2(sa+---+57)+ (251 +m). (15.2)

Indeed, first note using Proposition 17.1 that, in a neighborhood of xq,
rank [ (g1) A==~ A @i (g) A @ (b)) A A g (b7)]

=rank [@] (g1 A+~ AgiAB A AB™)]
=rank [g1 A AgIAD' N A" =2(s1+ - 45;) +m

Setting
h={(g2) A= Ay (g1) A QT (B') A~ N i (b™)

and using Proposition 2.37(iv), we obtain

2(Sl 4 "'+sl) +m <2sy —|—rank[h} —dim (Aql)r(gl

1
JNAL).
On the other hand, a successive application of the same proposition gives

rank [i] <2(sy+ - +57) +m.

Combining the two previous inequalities, we get

rank [h] =2(so+---+s;)+m and A1 ﬂAh {0}.
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Finally, noticing that, in a neighborhood of xg ,

1 _ 1 2517 _ Al
Afpl*(gl) =span{dx ,...,dx""'} =A i it

we have the claim (15.2) using again Proposition 2.37(iv). Note also that

rank [fo A+ A findxt A AdF NGt A Na™]
=2(s24+---+s57)+ (251 +m).

Step 3. Therefore, using the induction hypothesis, there exist a neighborhood U,
of xp and @, € Diff”(Us; ¢2(Us)) such that @2(xp) = xo and for every 2 <i </,
1 <j<2s;and 1 <k < m, the following identities hold in U,:

P3(9(8:)) = fi, @3(dx)=dx/ and @5(](b")) =d".

Note, in particular, that @3 (¢} (g1)) = @5 (f1) = fi. Setting, choosing if necessary
a smaller Uy,

Q=¢10¢,
we have ¢ € Diff”(U,; ¢ (U,)) with the claimed properties. O

It is interesting to contrast the algebraic result of Proposition 2.43(iii) with the an-
alytical result of the above theorem, where it is essential to require that the 1-forms
and the 2-forms be closed. Although every constant 3-form of rank = 5 is a linear
pullback (combining Proposition 2.43(iii) and Proposition 2.24(ii)) of

(dx' Ndx* +dx® Ndx*) Ndx®,
we have the following result.
Proposition 15.14. There exists F € C*(R>;A3) with
dF =0 and rank[F]=5 inR,

which cannot be pulled back locally by a diffeomorphism to the canonical 3-form of
rank 5:
(dx' Ndx* +dx® Ndx*) Ndx.

Proof. We will show that F = f Aa, where

1
f= ﬁd}c1 AdxX® +dx* Adx* and  a = ((x3)* + Ddx' + ((x3)* + 1)dx?
(X3) +1
has all of the desired properties. First, note that dF = 0 and rank[F] = 5 in R>. We
split the proof of the last assertion of the proposition into three steps.
Step 1. We claim that any 1-divisor ¢ of F must be of the form ¢ = Aa, where 4

is a scalar function. Indeed, if this is not the case, we have that the 1-form ¢ (xp) is
linearly independent of a (xo) for a certain point xo € R>. We therefore have
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F(xo)Na(xg) =F (xo) Ac(xo) =0 and c(xp)Aa(xg)#DO.

Appealing to Theorem 2.42, we deduce that F (xp) is totally divisible and, hence
(see again Proposition 2.43(ii)), rank [F (x)] = 3, a contradiction.

Step 2. We show that if there exist an open set U and A € C!(U) such that
d(Aa)=0 inU,
then we necessarily have A = 0. Indeed, if d(Aa) = 0 in U, then, in particular,
(d(Aa))13 = (d(Aa))2z =0
and, hence,
IAX(3+1)) _ IAX)(3+1))

0x3 - 0x3 =0

However, this implies the existence of u,v € C!(U) with
u(xl,x2,x3,x4,X5) - M(Xl ,X2,X4,X5),

V(X1,X2,X3,X4,X5) = V(X1,X2,X4,X5)

such that
M(x1,x2,X4,X5) V(x17x27x47x5)

)y = = s
() x%Jrl xg'Jrl

which is possible only if u = v = 0 in U, which proves the claim.

Step 3. We now conclude. If there exists a local diffeomorphism ¢ satisfying
F = @*((dx' Adx® +dx® Ndx*) Ndx) = @* (dx! Ndx* +dx Ndx*) A @* (dx°),
it follows from Step 1 that
0*(dx’) = Aa.

Howeyver, this leads to a contradiction, because the form on the left-hand side is
closed and nonzero, whereas (cf. Step 2) the form on the right-hand side is either
not closed or identically 0. O

We end this chapter with the following result, a particular case of which was
proved in Bandyopadhyay and Dacorogna [8].

Theorem 15.15. Let 4 < 2m < n be integers. Let xo € R", f and g be C* closed
2-forms, and a and b be C™ closed 1-forms such that, in a neighborhood of xy ,

rank[f] =rank[g] =2m and rank[g Ab] =rank[f Aa] =2m —1.

Then there exist a neighborhood U of xo and ¢ € Diff”(U; o(U)) such that ¢(xy) =
xo and

0 (g)=f and ¢*(b)=a inU.
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Remark 15.16. Note that if rank[g] =2m =n >4 and b # 0, then g Ab # 0; otherwise
by Theorem 2.42 there would exist ¢ a 1-form such that

g=bAc

and, hence, rank[g] = 2, which is a contradiction. We therefore have, by Proposi-
tion 2.37(v), that
rank[g A D] =2m — 1.

Proof. As usual, we may assume that xo = 0 and, using Remark 15.2(iii), that
n . .
f=w,=Yd* 'Ndx* and a=dx'
i=1

(note that these particular f and a satisfy all of the hypotheses of the theorem, in
view of Proposition 2.37(v)). We split the proof into three steps.

Step 1. Let us show that, with no loss of generality, we can assume

m 2m
g= Z“dxz’*1 AN =@, and b= Zb,-(x] Jee e X )dX!
i=1

and, thus, we can assume that 2m = n. Since dg = 0 and rank[g] = 2m in a neigh-
borhood of 0, we can apply Theorem 14.3 to find a neighborhood U; of 0 and
@1 € Diff”(Uy;9(U)) such that ¢;(0) = 0 and

o/ (g deZ’ "ANdx¥¥' = w, inUj.

We claim that
OF (D) (x1,- .y x0) = (X1, 0y Xom) = Zc, X1, .., Xop) dX'

Once this is shown, we will have the assertion of Step 1. Let us prove the claim.
Note that, in a neighborhood of 0,

rank [@,,] = rank [@] (g)] = rank [g] = 2m,
rank [c A @] =rank [@] (bAg)] =rank[bAg] =2m — 1.

Hence, using Proposition 2.37(v), we get, in a neighborhood of 0,
ce A(Lm = span {dxl, .. ,dxzm}

and, thus,
ci(x)=0 for2m+1<i<n.

Finally, combining the previous equation with the fact that dc = 0, we immediately
deduce that for every 1 <i < m and every x in a neighborhood of 0,
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c,-(xl,...,x,,) = C,'(xl,...,)Qm),

which proves the claim.

Step 2. Using Theorem 8.1, we can find a C* function (in a small ball B, centered
at 0) p such that
dp =b(0) —b.

With no loss of generality, we can assume that p(0) = 0. Let b;(x) € C=([0,1] x
Be;A') be defined by
by (x) = (1 —1)b(0) +1b(x).

Since for every 7 € [0, 1], b;(0) = b(0) # 0, there exist 1 <i <n and a neighborhood
of 0 in which

(b s @p); = [@mb]; #0 foreveryr € [0,1].

Hence, we can apply Remark 8.21 and find a neighborhood U, of 0 and w €
C=([0,1] x Ua; A1), w(t,x) = wy(x) such that for every ¢ € [0,1], w;(0) = 0 and

dw;,=0 and (w;@,b)=p inU,.
Finally, define u € C*([0,1] x Up; AY), u = u(t,x) = u,(x), as
M[ZEIZIW[@M[J(X);”:W[.

Note that for every 7 € [0,1], #,(0) = 0 and in Uz, d (4,0 @) = dw, = 0 and since
, € O(n),

db,

d(ur abr) = d((ur;br)) = d ((Wi; @pby)) = dp = — e

Hence, we deduce from Theorem 12.8 that for every ¢ € [0, 1], the solution ¢ of
d [ ¢, 0<r<1
2o =uo
dt (4 t (3] =t =4
¢ =id
exists in a neighborhood U3 of 0 and verifies ¢, € Diff*(Us; ¢, (Usz)) and
07 (On) = O, 67 (b)) =b(0) inUs.

Step 3. Finally, recalling that b(0) € Aé)m , there exists, using Proposition 2.24,
A € GL(n) such that

A*(®,) =, and A*(b(0))=dx'.

Letting y(x) = Ax and ¢ = ¢; o y, we get the result and this concludes the proof.
O



Part V
Holder Spaces



Chapter 16
Holder Continuous Functions

We recall here the basic definitions of Holder spaces. We use the following as
references in the present chapter: Adams [2], Dacorogna [29], de 1a Llave and Obaya
[36], Edmunds and Evans [40], Fefferman [42], Gilbarg and Trudinger [49] and
Hormander [55].

16.1 Definitions of Continuous and Holder Continuous Functions

16.1.1 Definitions

In this chapter, for x = (xq,...,xy) € RY, we will write
Il = max {Jxl}.

We start by recalling the definition of C" spaces.

Definition 16.1. Let » > 0 be an integer and £2 C R” be an open set.
(i) C°(Q) is the set of continuous functions f: Q — R.

(ii) C"(L) is the set of functions f : 2 — R which have all of their partial
derivatives of any order up to r continuous; in other words, D*f € CO(Q) for every
a € o, 0<m<r, where <7, is the set of all multi-indices of order m. We also set
Vif= {Daf}ae!zfm :

(i) C°(Q) is the set of bounded continuous functions f : Q — R. We equip this
space with the norm

1l o) = sup {1/ ()1}
xXEQ

(iv) C" (Q) is the set of C" () bounded functions whose derivatives up to the
order r can be extended continuously and in a bounded way to Q. The space C” (5)

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 335
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_16,
© Springer Science+Business Media, LLC 2012
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is equipped with the following norm:
Hf“cr(ﬁ) = Z vachO(ﬁ)-
m=0
When there is no ambiguity, we drop the dependence on the set Q and write simply
r
Ifller =Y IV" flico-

m=0

(v) The set Cj;(£2) denotes the set of functions in C” () with compact sup-
portin Q.

We now give the definitions of Holder continuous functions.

Definition 16.2. Let DCR", f: D —Rand 0 < o < 1. We let
{If(x)f(y)}.

Sfleoe(py = sup
[flcoap) =y

x,yeD
xFy

Let Q2 C R” be an open set and » > 0 be an integer. We define the different spaces
of Holder continuous functions in the following way:

(i) CO* (Q) is the set of f € C? (L) such that

[f]co,a(K) < o0

for every compact set K C 2.
(i) C%% () is the set of f € C” (Q) so that

1 llcoa @) = 1/ llco@y) + [feoa(g) <o
If there is no ambiguity, we drop the dependence on the set Q and write simply

[Fllco.a = Ifllco + [flcoa
(iil) C"* (2) is the set of f € C" () such that
[Daf]co.a(K) < oo

for every compact set K C Q and every a € <7,.
(iv) C"* (Q) is the set of functions f € C" (&) so that

[Daf]co,a (5) < o0
for every a € .. We equip C"% (5) with the following norm:

[fllcre = [I.fller + max [D* flcoa -
acdd,
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Most of the time we will write
V" flco.e = max [D*f] o.a;
ac.g),
thus, we adopt the notation

£ llcre = Ifller + [V fleva = [ Fller1 + IV fll o

(v) The set C;* (£2) denotes the set of functions in C"* (2) with compact sup-
portin Q.

Remark 16.3. (i) C"* (Q) with its norm [|-|| .« is a Banach space.

(i) When the domain has some minimal regularity (say Lipschitz), it will be
shown that the norm considered here is equivalent to the following ones (see Corol-
lary 16.13 for the first one and Corollary 16.25 for the second one):

’
1 fllcrec = Y V" fllcow
m=0

and
e = { [fllco+ [V fleow  if0O<a<1
CNI —

1flco + IV flleo  ifa=0.

We should, however, insist that these norms are, in general, not equivalent for very
wild sets.

(iii) When o = 1, we note that C%! (ﬁ) is in fact the set of Lipschitz continuous
and bounded functions, namely the set of bounded functions f such that there exists
a constant ¥ > 0 so that

If(x)—fO)| <7ylx—y|, ¥x,y € Q.

The best such constant is ¥ = [f]0.1 -

(iv) If one wants to include the classical C" spaces in the context of C"%* spaces,
one is led to some inconsistencies. We have decided to write

C" = Cr,O
In this case, we set

[flcoo =0 and [ fllcoo = [ fllco

and similarly for r > 1,

£ llero =Nl fllr-

(v) When Q = R", in order to remove any ambiguity, we understand C"* (R")
as Ch¢ (R”) in the sense of point (iv) of the above definition.



338 16 Holder Continuous Functions

(vi) It fﬁllows from Theorem 16.11 that if Q is bounded and Lipghitz, then
fecre (Q) if and only if there exist an open set O C R” such that Q C O and
g €C"*(0) with g = fin Q.

16.1.2 Regularity of Boundaries

We used and will use in several places the notion of C"% sets, in particular,
Lipschitz or smooth sets. We now give two classical definitions of such sets.

Definition 16.4. (i) Let Q C R” be an open set, r > 0 be an integer and 0 < o < 1.
The set Q is said to be C"? if for every x € dQ, there exist a neighborhood Uy of x
and ¢, € C" *“(R”_l) such that, up to a rotation,

U:nQ = Uxm{y = (y/a}’n> € R xR: Yn > (Px(y/)}'

(ii) When Q is C%!, then Q will be referred to as Lipschitz.
(i1i) If © is C*, then Q2 is said to be smooth.

Definition 16.5. Let » > 1 be an integer and 0 < o < 1. The set 2 is said to be
C"% if for every x € d€2, there exist a neighborhood Uy of x and ¢, € Diff"*(U,; B)
(where B denotes the open unit ball in R") such that

0. (UyNQ)={y€B:y,>0}.
Remark 16.6. It is easy to see that when r > 1, both definitions are equivalent.

We now define the meaning of C"*(d ) functions.

Definition 16.7. Let r > 1 be an integer, 0 < o < 1 and 2 C R” be a bounded open
Ch% set.

(i) The set C"*(d€2) is the set of functions f : dQ — R such that for every
x€dQ,

(yla"'vy’lfl) —>fo¢x71(y17---aynfla0)
belongs to C"*%(B'), where B’ is the open unit ball in R"~! and where ¢, is as in
Definition 16.5.
(ii) For f € C"%(dQ), we define
P Y Py

FeC"*(Q):

F=fondQ
Remark 16.8. (i) The definition of C"%(d Q) is independent of the chosen ¢,.

(i1) Note that the set over which the infimum is taken is never empty (see, e.g.,
Lemma 6.38 in [49]).
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(iii) The set C**(9 Q) and the associated norm have already been considered in
Definition 16.2.

(iv) C"%(d Q) with its norm || - [|cra(90) is a Banach space.

16.1.3 Some Elementary Properties

In Section 16.2, it will be more convenient to work with the norm
r
[ fllere = Y V"l o
m=0

and the corresponding space

(@) = {1 eC" (@) : I fllgze <}
Note that
gheC* = gheCl®

and
lghllcre < Cllgllcre |l cre-

A priori, we have no better result on the product of two Holder functions. This is
why we introduce the space cre (if, however, Q is Lipschitz, we have a much better
result; see Theorem 16.28). Clearly,

£ llcra < [1f1lcze
and, as already said, we will show in Corollary 16.13 the equivalence of the two

norms for Lipschitz sets. We now gather some elementary properties.

Proposition 16.9. Let Q2 C R" be any bounded open set and r > 0 be an integer.
Then

IV o <[V flcor  and || Fllcrer < NI fllerr -
If s >risanintegerand 0 < a < B <1, then

[Fllcra <Cliflles and | fllere < ClIfll s »
where C = max {1,diam Q} and

diamQ = sup {|x—y|}.
x,yeQ

Proof. Step 1. Let 1 <i < n, ¢; be the ith vector of the Euclidean basis and x € Q.
We have
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. VI f (x+her) = V' f (x)
5o VA1) = [lim :

< [V flcos

and, thus,
HVerHco < [Vrf]covl )

which, in turn, also implies

[ fllersr < M fllerr

as wished.

Step 2. The inequalities
1Fllcra <Clifllees and|fllere < Clfll s

follow from the observation that for every 0 <m <,

V" fleva < V" flcop sup {lx=yP~*} <CIV" oo
X, yeQ

This concludes the proof of the proposition. 0O

The above proposition can be strongly improved if one requires some additional
regularity on £2. We discuss here the case of convex sets £2. The more general case
of Lipschitz sets is dealt with in Corollary 16.13.

Proposition 16.10. Let 2 C R" be a bounded convex open set and r > 0 be an
integer. Then

IV flleo = V' Flcon and || fllerin =1 fllcn -
Let s > r be an integer and 0 < o, B < 1, with
r+a<s+p.

Then
[fllcra <Cllflless and || fllcre < (C+1) || fllcrer s

where C = max {1,diam Q}.

Proof. Step 1. For any x,y €  and a € <7, , we can write

D@ -D )= [ &)

:/01<VD“f(y+t(xfy);xfy>dt.

‘We hence deduce that
V' fleor < [V fll o
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The above inequality, coupled with Proposition 16.9, leads immediately to the claim,
namely
IV flleo =1V fleor and[Iflcrer = £l -

Step 2. We now prove that

£ llree < Cllfllcsp -

Observe first that if s = r and thus 0 < @ < 8 < 1, the result is already in Proposition
16.9. So let us assume that s > r+ 1 and use Proposition 16.9 and Step 1 to get

[ fllere < Clifllert = Cllflleret < CllFlles < CNFll s -
Step 3. We finally establish that

1 llere < (C+ D) fllera -

Assume that & > 0; otherwise the result is trivially valid by definition. Let 0 < m <
r— 1 and note first that

V" fleoa < CIV" fleor = C V" £l o
‘We therefore deduce that
IV" Fllcoa < 9" Fllco +Cl[ V" £ o

and, hence,

Z V" fllcow < NIfllco+(C+1) Z V" fllco +CIIV fllco -
m=0

We have therefore obtained that

]
1fllgre = Z V" fllcow < fllco+(C+1) Z V" flico + [V Flcoa

m=0 m=1

< (C+ D[ fllera

and the result is proved. O

16.2 Extension of Continuous and Holder Continuous Functions

16.2.1 The Main Result and Some Corollaries

The main result of this section is the following extension theorem essentially due
to Calderon [20]. We will closely follow the presentation of Stein [92] (sometimes
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word for word). Although Stein does his extension for Sobolev spaces, exactly the
same extension works for Holder spaces. We will therefore only outline the main
points of the proof and refer to Kneuss [60] for details.

Theorem 16.11. Let Q C R" be a bounded open Lipschitz set. Then there exists a
continuous linear extension operator

E:C"*(Q) = C;™ (R")

Jor any integer r > 0 and any 0 < o0 < 1. More precisely, there exists a constant
C =C(r,R2) > 0 such that for every f € C"* (Q),

E(f)lg=1. supplE(f)] is compact,
1B (F)llcragny < C 1 fllcre ey

Remark 16.12. We should emphasize that the extension is universal, in the sense
that the same extension also leads to

1E (1) llcos oy < C I llcos

for any integer s and any 0 < 8 < 1, with, of course, C = C (s,Q). It is also the very
same extension that is valid for Sobolev spaces.

We have, as an immediate consequence of Theorem 16.11, Propositions 16.9 and
16.10, the following result.

Corollary 16.13. Let Q C R” be a bounded open Lipschitz set, s > r > 0 be integers
and 0 < a,B <1, with
r+a<s+p.

Then there exists a constant C = C (s,2) > 0 such that

£ llera <Clflless

and
[fllessr < 1 fllest S Cllfllser -

Moreover (cf. Section 16.1 for the notations), the following inequality holds:
Ifllews < 1less < €I fllcun

and, therefore, the ||-|| B and the ||-|| vp norms are equivalent.

Remark 16.14. In particular, if 0 < a < 8 < 1, we deduce from the corollary that
Cr S S B S onl 5 ot

and the imbeddings are continuous. Note, however, that the result is false if the set
€ is not smooth enough (see [29] for an example).
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Another immediate corollary is the following. It has been used in the proof of
Theorem 11.1.

Corollary 16.15. Let r > 1 be an intiger aﬁd 0<a<1.Let Q2 CR"beabounded
open Lipschitz set and @ € Diff"*(Q; ¢ (Q)) Then there exist a neighborhood V
of Q and y an extension of ¢ such that

y € Diff"*(V; y(V)).

Proof. By Theorem 16.11, there exists y € C"*(R";R"), an extension of ¢. By
continuity, there exists € > 0 such that

detVy(x) #0 in Q+ By, . (16.1)
Let us show that there exists € < & such that
v € Diff"*(Q + Be; w(Q + Be)),

which will conclude the proof. It is sufficient, using (16.1), to find € < & such
that y is one-to-one in £ + B.. We proceed by contradiction. Then there exist two
sequences Xy, Yy € £+ Bg, v € N, such that

Xy #yv, W) =y(yy) and xy,yy €Q+B;), veN

Extracting, if necessary, a subsequence, we can assume that x, — x and y, — y with
x,y € Q. Therefore, w(x) = y(y) and, thus, x =y, ¥ being one-to-one in Q. Since
detVy(x) # 0, we know that v is a local diffeomorphism from a neighborhood of
x onto a neighborhood of y(x). This contradicts the fact that y(x,) = y(yy) for v
large enough. This concludes the proof. O

We would finally like to mention that when £ is as regular as the function to be
extended, then there is an elementary extension result using rectification of bound-
ary and reflection (see, e.g., Gilbarg and Trudinger [49]). Moreover, when r = 0,
we have other classical extension theorems. When r = a = 0, the Tietze extension
theorem (cf., e.g., [87]) is one of them. When r =0 and 0 < a < 1, we have the
Mc Shane lemma that we now prove.

Theorem 16.16 (Mc Shane lemma). Let D C R” be any set, 0 < ax < 1 and f : D —
R, with
Y= [fleoap) <o

Part 1. Then the two functions
fr ()= inf {f () + vl —yI%},
f-(x) =sup{f (v) =yl =%}
yeD

are extensions of f satisfying

[flcoamny = [f-lcoamn) = [flcoepy = V-
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Furthermore, any other extension g of f such that [g]co,a(Rn) = ¥ satisfies

f-<g<Jf+.

Part 2. If, moreover, D is bounded and f € C%* (5), then there exists g €

C%% (R") such that
glp=17r, suppgiscompact,
and
[8}@7a(R»1) = [f]coﬁa(b) =7

Proof. Proof of Part 1. We divide the proof into two steps.

Step 1. We discuss the case of f, the other one being handled similarly.

1) Let us first check that f. is indeed an extension of f. Let x € D; we therefore
get
f@) < fO)+ylx—y* foreveryyeD
and, thus,
Fx) < fr(x).

Now, clearly, choosing y = x in the definition of f leads to f (x) < f(x). Thus,
f+ is indeed an extension of f.

2) Let x,z € R". Assume, without loss of generality, that f (z) < fy (x). For
every € > 0, we can find y, € D such that

*6+f(YZ)+Y‘Z*YZ|a <fr (Z) < f(yz)+7|zfyz|a'
‘We hence obtain
| (X) = fr (@) = fr (x) = f+ (2)

<f(y) +7|x*yz|a+8*f(yz) —Ylz—y:
<e+ylx—7%.

| o

Letting € — 0, we have the claim.
Step 2. Let g be such that [g] 0.« (rr) = Y- We therefore have for x € R" and for
every y € D (and, thus, g (y) = f (),

—yle—y[* <g(x)—g(y) =g(x) =) <ylr—y*.

This leads to
FO) =vh=y* <g) < fO)+rk—y*
and, hence, f_ (x) < g(x) < fy (x), as wished.
Proof of Part 2. We split the discussion into two steps.
Step 1. Let C > 0 be such that

1A lleo(py < C-
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Since D is bounded, we can find R > 0 so that

. C 1/a
dist (D;(?BR) = <> .
Y
We then define B
f(x) ifxeD
filx) = . e on
0 ifx € (BR) =R \BR.
Observe that f; € C%% (DU (Bg)‘), with
[fi }C0=”(EU(BR)C) =7
Indeed, let us prove that for every x,y € DU (Bg)¢, we have
i () = fi )] < vhe—y]”

This is clearly so if x,y € D orif x,y € (Bg)°. So let us prove the inequality for x € D
and y € (Bg)* so that

|x—y|% > (dist (5;8BR))(X =

=19

We therefore have
c a
i) —AW=lA=]fx)]<C= vy <yle—y[",

as wished.

Step 2. Use Part 1 to extend f; to R”. We denote this extension g (we can choose,
e.g., g = (f1),) and we therefore have

glp =/, suppgiscompact and [g]coapn) = [flcoa(p) =7

This concludes the proof of the theorem. 0O

16.2.2 Preliminary Results
The main step in the proof of Theorem 16.11 is the following special case.
Theorem 16.17. Let ¢ € C*'(R"1) and
Q={x=x)eR" ' xR:x,> o)}
Then there exists a continuous linear extension operator

E:C"*(Q) = C"*(R")
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Jor any integer r > 0 and any 0 < a < 1. In particular, there exists a constant
C =C(r,Q2) > 0 such that for every f € C"* (Q) ’

1E ()l crorny < C||f\|cr,a(§)- (16.2)

Remark 16.18. (i) Note that (see Section 16.1 for the notations) the theorem imme-
diately gives

IE(F)llere gy < Cllfll gy for every f € C2¥(Q). (16.3)

(i1) The proof of the previous theorem gives, in fact, a sharper estimate. Indeed,

we have that for every f € C"%(Q) and every 0 <m <r,
19" E()llcogeny < CUV" Fllcoga.
[V"E(f)lcoamny < CIV" floam) -

To prove Theorem 16.17, we will use the following three results. The first lemma
can be found in Stein [92, p. 182].

Lemma 16.19. There exists ¢ € C°([1,0)) such that for every N € N, there exists
Ay > 0 so that

lw(A)] < % forevery A € [1,0) (16.4)
and, for every k > 1,
/w v(A)dA =1 and /w/lkw(k)dl =0. (16.5)
1 1

The next result is essentially geometrical. In the sequel, we write
d(x)=d(x;Q) =inf{|x—y|:ye Q}.
Lemma 16.20. Let ¢ € C%' (R"™!) and
Q={x=Wx) eR"'xR:x, > ()} and Q =Q°.
Then for any x = (X', x,) € Q_,
(1+[@lcor)-d(x) = @(x) —xp.
Moreover, for every x,y € Q _ with x # y, there exists z € Q_ such that
(x,z]U(y,2] Cc Q_,

=2l + 2=y < 2+4@lco) r—l. (16.6)
The result is also true for _ replaced by 2.
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Proof (Proof of Lemma 16.20). Step 1. Let x = (x',x,) € Q_. Note that there exists
Z € dQ such that o
d(x; Q) = [z — x| = max {[z; —xi[}.
1<i<n

We thus have z = (y/, ¢(')) for some y’ € R"~! and
¢

d(x: Q) = max{|y’ —x'|: |9 (/) —xal}.

We then have

O() =20 = @) —xa| < |@(X) — (V)| + |@(y) — x4
[@lcor|x" =Y+ @) —xal

(1+[@]coa) max{[y’ —x'|;|@(y') — x|}

(

L+ [@]cor) d(x:Q),

IAINA

which proves the first statement.

Step 2. Tt therefore remains to prove the second statement. Let x,y € Q_ (the
case where Q_ is replaced by £ is completely analogous). We can assume, without
loss of generality, that x,, <y,. Then

z= (Y = 2[@)cor [ —'])
has the claimed properties. O
The main ingredient is the construction of a regularized distance, denoted d*.
Theorem 16.21. Let ¢ € ol (R”’] ), 7 >0 be an integer and 0 < ot < 1. Let
Q={x=Wx) eR"'xR:x, >0} and Q =Q°.

Then there exist

d"=d"(Q) € C”(2_:[0,0))
and a constant C = C(r,n, [@]c0.1) such that for every x = (X', x,),y = (y/,yn) € Q_,

d*(x) >2(e(x') —x,), (16.7)

Sd(x) < d°(x) < (), (16.:8)

|V7d*(x)| < Cd(x)', (16.9)

|V'd*(x) — V'd*(y)| < Clx—y|* max{d(x)' "~ %d(y)' ~"%}. (16.10)

Proof (Proof of Theorem 16.21). Step 1. According to Theorem 2 in Stein [92,
p. 171] (the last statement is not explicitly in [92] but is hidden in the proof of the
theorem; cf. Kneuss [60] for details), there exist for every closed set F' C R”, a con-
stant C; = C;(r,n) and a function A(-,F) € C*(F¢) such that for every x,y € F¢,
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Cid(x;F) <AF) <Cd(xF),
1

IV (A F))| < Cid(x:F)' ",
IV (A F)) = V(A F))| < Crlx — y|“max{d(x; )"~ %d(y; F)" "%}

Step 2. From Lemma 16.20, we have for every x = (¥',x,) € Q_,
(14 [@lcor) - d(x:2) = o(x') -

The regularized distance

d*(x) =2C, (1+[@]c01) - A(x; Q)

has all of the required properties. 0O
We now return to the proof of Theorem 16.17.

Proof. Step 1. Let f € C"* (5) . We define the desired extension as
F(X x) if (¥',x,) € Q

E(f)(*,x,) = _
/w DA i (¥ ox) & 0,

where ¥ is as in Lemma 16.19, d* = d*(-; Q) is as in Theorem 16.21 and
x(A) = (*',x, + Ad*(x)).
Appealing to (16.7), we have for every A > 1 and every x € Q_,
X+ A (X x0) 2 0+ 2(@() —20) = () + (@) —xa) > @(¥).

Combining the above inequality with the fact that f is bounded and (16.4), we get
that E(f) is finite and well defined. It remains to show that E(f) € C"*(R") and
(16.2). We will only prove it for r < 2, the general case being handled in exactly the
same way (the key estimate being for r = 2). Recall that

Q =0 ={x=Wx) eR"'xR: o) >x,}

and note that
Q. NQ=02=02 ={(,p(x)):x¥ eR"'}.

We will often use the following elementary fact, valid for g : R” — R:
&leva(a):eleoa@ )y <D = [eleoeqn <2D. (16.11)

Step 2. We prove the theorem first for r = 0.
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Step 2.1. Let us show that E(f) € C°(R) and
IEG o) < Clfleoary

Since f € C”(£2) and (16.4) holds, we easily have E(f) € C°(2) NC(2-) and
for every x € Q_|

E() ()] < Cl o,

To conclude that E(f) € CO(R"), it is therefore enough to show that for every
x€dQ,
lim E(f)(y) = E(f)(x).

y—Xx
yeQ_

Appealing to (16.4), (16.5), (16.8) and the fact that f is bounded on Q, we can apply
dominated convergence theorem and we get the desired convergence.

Step 2.2. We now prove that, in fact, E(f) € C%%(R") and
[E(N]cvan < Clflcoa(a)-
Using (16.11), it is sufficient to establish the following inequality:
E(Ncow(m_) < Clfcoe(a)
Let x,y € _. Observe that (16.10) (with & = 1) implies that
|d*(x) =d"(y)| < Ci|x—l,
which combined with (16.4) leads to the desired inequality; indeed,
EN@-ENOI < [ W) FER) - 16 (A)]|dr
< [ WG +2%) Floua g {2
< [l o (@)l —yI*
Step 3. We now consider the case r = 1.
Step 3.1. We first prove that E(f) € C'(R") and
VB ety < Cllfllcn .

Since f € C!' () and E(f) € C' (2) NC'(2-) (according to (16.4)), we get for
every x = (x',x,) € Q_,

E(f)s(0) = [ fe@)WR)aA+ [ £ A 02W(R) A,
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where we recall that

x(A) = (', xp +Ad" (x)).

From Lemma 16.19 and the fact (see (16.9)) that |d} | < Cin Q_, we obtain, by the
dominated convergence theorem, that for every x € dQ2,

;lg}c E(f)y(y) = fu(x)-

yeQ

Appealing to (16.4) we have for every x € 2_,
E()s (9] €IV o).
We therefore have E(f) € C' (Q) NC'(Q_) and for every 1 <i <n,
Il » < €IV oo

Clearly, E(f) is differentiable in 2 U Q_. Since (16.6) holds, we easily see that
E(f) is differentiable on dQ (see [60] for details) and, thus, E(f) is differen-
tiable in R”.

Step 3.2. We now show that for every 1 <i < n, E(f),, € C*%(R") and
E()uJcoaan) < CIVAeaa(a)
As before, it is enough to prove that
[E(f)xi]c().a(ﬁi) < C[Vf]co.a(ﬁ) .
Let x,y € Q_ and assume, without loss of generality, that d(x) < d(y). We have
[E(f)x: () = E(f)x ()]
/lm V(A) [ (x(A)) = £ (v (A))] dl'

<

| [T [ e s 0 - £, A 0] a2
and thus, as in Step 2.2, the first term is readily estimated by
Cilfulcoa (@)l —yI%
The second term is estimated as follows. Since (16.5) holds, we get
R0 £ 20500~ £, ) )] a2

< ‘ [ v 600 [0~ ) dz\
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| [ AWM 0) (1) ~ £, ()] a2
= [ A () £ 0] [0 - 500] a2

/’Aw ) o (6 (A)) = fo, (v (A))] dA

and hence the claim, since (16.4) and (16.8)—(16.10) hold (recall that d(x) < d(y)),

\ / TAWR) [fo (AN (6) — for (W) (3)] dz\
<C1 [ AW A" (0)* 9l oad(x) = y|dA
1O /1 TA+A%) WA [Vl coa [x—y|%dA
< G3[Vf]coa Jx—y|*

Step 4. We finally discuss the case r = 2.

Step 4.1. As before, let us first prove that E(f) € C?(R") and
IED N2 <l leagay.

Since f € C?(Q) and E(f) € C* (2) NC*(_) (according to (16.4)), we have for
every x = (X', x,) € Q_,

x,x, / fx,x/ l)dk+/lwfx‘xn(x(l))ll,l/(l)d;j(x)dﬂ,
4 [ o G ODAW R () a2
+/mﬁﬁnxa AM%&uM;@MA

+ [ 1 QDAY () A
=A1(x) +A2(x) +A3z(x) +As(x) +As(x).

As in Step 3.1, we obtain for every 1 < k < 4 and every x € Q,
k()| < CIV? fllco (),

whereas for every x € dQ, we get

lim A (y) =
yeQ

for, () ifk=1
0 ifk=23,4.
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It therefore remains to study the behavior of As. We have, recalling that x(1) =
(' xp + Ad* (x)),

Fow(2) = £ L/dm (1462 = 1)ds
- / &) (A — 1) fup, (e (1 +1(A — 1)) dr.
We therefore deduce, from (16.5), that
0= [ £ QDAY (1)
oo 1
=f<m;x)/au—nwu)/ﬁm@u+mw4»wmw<mnm
1 0
Recalling Lemma 16.19 and using the fact (see (16.8) and (16.9)) that
&' (W () < C,
we get

45 < IV S lleo() and - Jim 4s(3) =0.
yeEQ_

To show that E(f) € C?(IR"), we proceed as in Step 3.1. From the previous estimates
we indeed have

IEA) lean < Cllflca @y

Step 4.2. We finally have to prove for every 1 <i < j that E(f)yx; € C%%(R") and
[E(slcoaen < C IV ] cou(ay -
Using (16.11), it is enough to show that
[E(f)x,x,]cw( ) <C [Vzﬂcmx( Q)
So let x,y € Q_. With the notations of Step 4.1, we can write

5
|E(f)xix]- (x) — X,x] Z

As in Step 3.2 and using (16.12) for As, we get

5
L) = A0)] < [V cou ki

This finishes the proof of the theorem. ]
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16.2.3 Proof of the Main Theorem
We finally turn to the proof of our main theorem.

Proof (Proof of Theorem 16.11). Step 1. We start by appropriately covering the
boundary of Q.

Step 1.1. Since  is Lipschitz and bounded, we can find an integer N, x; € dQ,
&> 0and ¢; € C%'(R"1), 1 <i < N, such that

N
aQ C UBgI- (x,)
i=1
and, up to a rotation,
ﬁmggi(xi> = ﬁiﬁggi(x;), (16.13)

where
Q= {r=(.5) ER" xR:x, > o).

Choose 0 < € < minj<;<y & such that

N
99 C | JBe—e(xi) (16.14)
i=1

and define
c= 122\7{8[/8} > 1.

Step 1.2. We then define some auxiliary functions. Let A; € C*(R";[0,1]),
1 <i <N, be such that

Ai=1inBg_¢p(x;) and  supp(A;) C Bg,_¢/q(xi).
Let Ag, A4, A— € C*(R";[0,1]) verify
A=1inQ and supp(dg) C Q2+ B,
Ay =1indQ+Bg;, and supp(A,) C IQ + B,

A-=1inQN(dQ+Ben)° and supp(A-) C Q.
Then let

- A - A
A*‘%(w) and A‘“(MM)'

Since

supp(Ag) C{x e R": AL +A_ > 1},
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the functions A, and A_ belong to Ci’(R"). Note also that
AL +A-=N.

Finally, since (using (16.14))

N
supp(A+) C IR +Bejy C UBs,-—g(xi)
=1

and noticing that

'["12

Z in UB xl

we obtain A
12 € Cy(R"). (16.15)

Step 2. We now make explicit the extension E.

Step 2.1 (Simplification). We show that to prove the theorem, we can restrict
ourselves to the space C;*(Q) (see Section 16.1 for the notations). More precisely,
we prove that it is enough to show the existence of

E:CI*(Q)— Cy*(RY) (16.16)
and

|E(f)llcraqen < [Ifllcreig  for every f € CI%(). (16.17)

Thus, suppose that (16.16) and (16.17) hold true and let f € C"*(Q). It is enough
to show that o
feci*(Q) and Hf”c:“(ﬁ) < C||f|\cm(§) (16.18)

to have the claim. Since, in particular, f € C"(Q) = C%(Q), we have
E(f) € G(R") and [|E(f)lcr@n) < Clfllcram)

Let 0 <m<r—1and R > 1/2 large enough so that Q C Bg. Using Proposi-
tion 16.10, we hence obtain

V" flcoa@) < [V"E(f)coage) < 2RIV'E()llcogey < 2RCIfller (o)
which directly implies (16.18) and shows the assertion.

Step 2.2 (Conclusion). For f € C;* (5) and x € R”, the desired extension is

given by
L A()E(f) ()
T A ()

1

B(W =) { b Ao,
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where E; : C;%(Q;) — C"%(R") is the extension operator of Theorem 16.17 (see

also Remark 16.18(i)) applied to €2; and f; : 2; — R is defined by

f _ /l,f in Eiﬂﬁgi (xi)a
e 0 il’l EZ\EEI ('xi)'

Let us show that E(f) is well defined and has all of the desired properties. We recall
that

gheCi® = gheC™®
and
lghllcra < Cllgll el cra-
(i) First, we show that f; € C2%(Q;) and, for an appropriate C = C(r, Q),

| filleseay < Cllere - (16.19)

— Since f € Ci"a(ﬁ) and A; € C*(R"), we immediately obtain, using (16.13),
that f; € C2%(Q; N Bg,(x;)) and that

I illcse (@0 ) < M sy (16.20)
— Then, recalling that supp(A;) C Bg,_¢ /4, we have that
supp(f) C ;N B¢ /4 (16.21)
and, therefore, f; € C"(Q;) and
lfiller@y < Clifller@):

— Finally, we show that f; € Ci’a(ﬁi) and (16.19). For this, it is enough to show
that for every integer 0 < m < r and every x,y € Q;,

V" fi(x) = V" fi ()] < ClI fll ere b — ¥

We only prove the assertion for x € ;N Bg,_g/4(x;) and y € ;N (Bg;(x;))¢, the
other cases being trivial since (16.20) and (16.21) hold. First, note that

E
ly—x| > —.
4

Note also that any z € ;N 9B, /4(x;) verifies (cf. Step 1.1 for the definition of c)

[x—z] <2(g;—€/4) < 2ce.
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Therefore, using (16.20) and (16.21), we find
V7 £:2) = VP £ < V" £i(x) = V()] + V" £i(2) = V7 £ )
= V" fi(x) = V" fi(2)| < Cl|fllcre ) lx — 2
< C||fllereg)(2ce)® < 8cCllf [l cro ) (€/4)°
< 8cC||fllre (g lx— 1%,

which proves the assertion.

(ii) E is well defined in view of (16.15) and the fact that supp(A_) C Q.

(iii) Since A; +A_ = A9 = 1in Q and, forevery 1 <i <N, LE;(f;) = A*fin 2,
we obtain that

E(f)=f inQ.

(iv) By construction, supp(A+.) C  + B, > and supp(A-) C Q; we hence deduce
that
suppE(f) C Q+Bg.

(v) Since A_ € Cy(R") with supp(A_) C £, we get that
A feCGGRY) and (A fllcremn < Clfllcrog)
(vi) Since, for 1 <i<n,
fi€Ci*(Q;) and }\5\72 Ai € CF(R")
(B A7)
and (cf. (16.3) and (16.19))
I1E(f)llcpe @y < Cllf llcro @y
we easily have (using point (iv)) that E(f) € C;%(R") and
1E(f)llcromny < C||f\|c§a(§)-

This concludes the proof of the theorem. O

16.3 Compact Imbeddings

We now turn to the compactness of the imbeddings.

Theorem 16.22. Let Q C R" be a bounded open Lipschitz set. Let s > r > 0 be
integers and 0 < o, < 1, with

r+a<s+p.



16.3 Compact Imbeddings 357

Then the imbedding o o
P (Q) — (@)

is compact.

Proof. Let {fy}ven C C*P (Q) with ||fy s < C for all v. We have to show that
we can extract a convergent subsequence in C"* ().

Step 1. We first assume r = s and thus o < 3.

Step 1.1. We deal with the case r = s = 0. From the Ascoli—Arzela theorem we
find a subsequence, still denoted by f,,, which converges to f in C° (ﬁ) . We now
show that [f — fv]c0.« also converges to 0. Since the convergence is trivial, with our
convention, when & = 0, we assume below that o > 0. Let § >0 and x #y € Q
with |x—y| < §. Then

[(f = fv) (@) = (f = /) )] — lim |(fu_fv)(x)_(fu_fv)()’)|

fx —y[® f—ve |x —y|®
< sup(fyu — fuleoslx —y[P~* <208~
n

‘We, moreover, have

|(f = fv)(x) = (f = /) )]

Jx —y[*

S2f = Follwd™  ifx—y| = 6.

For any given € > 0, we can take 6 > 0 so small that 208P~* < g. Using the
convergence in C? (©) , we can then take m € N such that

2lf = full06~% <€ forevery v>m.
‘We therefore obtain that
[f = fvlcoa <€ forevery v>m,

which concludes Step 1.1.

Step 1.2. We deal with the case r = s > 1. Due to Corollary 16.13, the || - || s
and the || - || (+p norms are equivalent. Therefore, |V fvllcop is bounded for 0 <

t <'s. Appealing to Step 1.1 and extracting iteratively subsequences, we obtain g; €
co.o (Q;R”[) such that

V'fy =g in coe (ﬁ) asVv — oo forevery 0 <r <s.

Since we have uniform convergence in all derivatives, we find that g, = V'g¢ and,
thus, f, converge to go in C*%.

Step 2. Consider the case r < s.
Step 2.1. We suppose r < s and B > 0. In view of Step 1, the imbedding

P (Q) = 0 (@)
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is compact. From Corollary 16.13, we have that the imbedding

0 (Q) = (Q)
is continuous. So the composition of these two imbeddings is compact.

Step 2.2. Letnow r < sand 3 = 0.

(i) We first assume s = r+ 1 and thus & < 1. Step 1 gives the compactness of the
imbedding - -
" (Q) = (Q).

Combining this with the continuity of the imbedding
Q) = " (Q)

(cf. Corollary 16.13), we have the desired result.

(ii) It remains to deal with the case s > r+1and f§ =0, and thus s — 1 > r+ «.
We use Step 1 to obtain the compactness of the imbedding

csll (ﬁ) oy 510 (ﬁ)
and combine it with the continuous imbeddings (cf. Remark 16.14)
Q)= (Q) and ¢ (Q) =¥ (Q).

This concludes the proof of the theorem. O

16.4 A Lower Semicontinuity Result

The following lower semicontinuity result (cf. Dacorogna [28]) has been used on
several occasions.

Proposition 16.23. Let r > 0 be an integer and 0 < o < 1. Let Q C R" be a bounded
open Lipschitz set. Let R > 0 and

Cr={f€C™(Q):||fllcra <R}.
Let {fv} C Cr be a sequence such that
fv—= finC®(Q) as v — oo

then f € Cg and
[ Fllera < timinf £y cra

Proof. First, define
L= llmlnf“fv ||Cr.oc
V—roo
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and then choose a subsequence such that
L=lim || fy, | crec - (16.22)
i—o0
From Theorem 16.22 we deduce that there is a further subsequence such that
fvl,]_ — finC" (Q) as j — o, (16.23)

Finally, we let x,y €  and observe that

V)=V ) <2 Vify, VS

r o
o {V f""f]cﬂ-a =yl

Letting j — oo and using (16.23), we get

r s H r
V' floa < hjniglf [V f"i_/}co,a .

Combining the above inequality with (16.22), we have indeed obtained that

£ llere <L,

which is our claim. O

16.5 Interpolation and Product

Throughout this section, we follow Hormander [55].

16.5.1 Interpolation

We start with a preliminary result.

Proposition 16.24. Let Q C R" be a bounded open Lipschitz set and r > 0 be an
integer. Then

1 ller@) <€ <|f||c0(.(2) + sup {|V'f(x) —V’f(y)|}>

yeR
for some constant C = C(r,R2).

As a immediate consequence of the previous proposition, we have the following
result.

Corollary 16.25. Let Q C R”" be a bounded open Lipschitz set. Let r > 0 be an
integer and 0 < o, < 1. Then there exists a constant C = C(r,Q) such that for every

fecr¥(Q),
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¢ (I lco@y + V" flcva(m)) ¥ 0<a<1

Hf” ro( Q) S
O (o) + IV Fleoga)) i @=0.

In other words, the norms ||-|| cre and
H'||CO+[Vr']CO,a fo<a<l
[flco + IV llco if @=0

are equivalent.

We now proceed with the proof of Proposition 16.24.

Proof. Step 1. Since 2 is bounded and Lipschitz, we easily deduce the existence of
€ > 0 with the following property: For every x € Q there exists X € £ such that

[x,y] C Q, foreveryy € Be(X). (16.24)

Note that the previous equation implies, in particular, that B (X) C Q.

Step 2. Fix x € Q. For every y € B¢ (X) we consider the Taylor polynomial of f of
degree r at x, denoted by 7} f (v); it is defined through the function (this is justified
by (16.24))

Fu)=f(x+uly—x), uel0,1],

and it is given by

k=0
Recalling that
L FER©0)  t(-w)
- (r) (r)
=Y " +/0 — [F© ()~ F) (0)] d
we obtain
1 (1 _u)rfl

f(y)*Tx’f(y):/O NCEO

‘We hence have
fO) - <G sgg{lv’f(Z) =V ()]},

which implies

T )< Cilllfleo +Sél£{|V’f(Z) =V
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We assert that the previous inequality, holding true for every y € B, (X), implies a
bound on all the coefficients (i.e., the derivatives of f at x up the order r) appearing
in 7] f and thus proves the theorem. We will have the claim once the following
assertion is proved (cf. Step 3). If

Z a,-l...inv'i‘ vﬁ{’ <c¢ foreveryv; €[b;—€,bi+¢|,1<i<n,
0<iy yin<r
where (vi,...,v,) =x—y and b; = x; —X;, then all the g;,...;, verify
|al~1...,~n | <Cc

for an appropriate constant C = C(r,&€,diamQ) = C (r,Q), recalling that € only
depends on Q. This will prove Step 2 and thus the proposition.

Step 3. We prove the above assertion. By induction it is easily seen that we can
restrict ourselves to the case n = 1. So we have to show that if

r .
¥ a

i=0

<c¢ foreveryvelb—e,b+¢],

then we have
la;] < Cec

for an appropriate constant C = C (r,€,b) . This is easily achieved as follows. Define,
for0<i<v,

2¢€i
tl-:b—£+7, a=(ap,...,a,) eR,

and B € R(r+1)><(}’+l) by

Ltgtd - 1§

Lo 62 o]
B=

Lt t2 -t

By hypothesis we have that |Ba| < c. Moreover, using well-known properties of
Vandermonde matrices, we know that

detB= [] (tj—1)>0.

0<i<j<r

Therefore, since

djB)’
(adiB)
detB
we immediately have the result. O

a=B 'Ba=
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We next state and prove the main interpolation theorem.

Theorem 16.26. Let Q C R" be a bounded open Lipschitz set, s > r >t >0 be
integers and 0 < o, B,y < 1 with

t+y<r+o<s+p.
Let A € [0,1] be such that
rro=A+B)+(1-1)(+7).

Then there exists a constant C = C (s,2) > 0 such that

A 1-1
[fllera < CllAlies [1F e -

Proof. In view of Theorem 16.11, there is no loss of generality in assuming that 2
is convex. We will also make in the proof of the theorem, and only here, an exception
to the convention

[f] coo =0.
Here, we will adopt that

[flcoo = I fllco-

Step 1. We first prove that if k is an integer such that
t+y<k<s<s+B,

then there exists a constant C = C (s, ) > 0 such that

v o =c(vs],, 191, ) - (16.25)

Oy
Replacing k by k —¢, it is enough to prove the result when = 0 (and, thus, ¥y < k <
s < s+ f3), namely

vk H <c( V] o) 16.2

V"1 0 <€ (191, + v 11, (1626)
If y =0, then (16.26) is an immediate consequence of Proposition 16.24. It remains
to prove (16.26) when 7y > 0. Then since in particular £ > 0, we remark that all of the
terms in (16.26) remain unchanged if we add a constant to f. Therefore, it is enough

to establish (16.26) only for those f such that there exists xo € Q with f(xo) = 0.
We hence deduce for every x € Q,

@<, k-l
and, thus, there exists a constant C; = C, (2) > 0 such that

Iflleo < €217,
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Combining the previous equation with Proposition 16.24, we immediately obtain
the claim. This finishes Step 1.

Step 2. We next prove that

A 1-2
V' fleoa <C([V*fleop + [V Fleor)” [V f cor - (16.27)
Step 2.1. We first establish the inequality when
r<t+y<r+a<s+B<r+l1

and in fact we will establish a sharper form of the inequality, namely

V' fleoa < C [V fllos [V'f]bod

Since the seminorms of C%! and C! are the same (cf. Proposition 16.10), we can
infer from the above inequalities thatf = r=sand 0 < y< a < 8 < 1, with

a=AB+(1-2)y.

If y = o (and hence B = @), (16.27) is then trivial, so we assume that ¥ < o. Since

A
V@) - VO _ (19 @)~ V' 0)l ( V' () = V' () ) -
be—y|* \xfy|3 e —yl” ’
we deduce, recalling that t = s = r, that

V' fleoa < [V fT2op [V f] oy

if y> 0 and if Y =0 that

V' fleoa <2[VSflRop [V £lleo™ = 20V FlEos [V ] o -

This establishes the sharper version of (16.27) under the assumptions of Step 2.1.
Step 2.2. We next prove (16.27) when o = 0 and thus

r=As+B)+(1—-A)(r+7)

and we have to show that

IV fleoo = [V flleo < € ([V* fleog + [V o) [V ko - (16.28)

If [V* f] 5 < \4 f]co,y , the result follows from (16.25), since then

0,

IV fleo <€ (V1] ,, +19°11,,,, ) <21 V']

0. 0y
=201 [V'fleoy [V'fl oy
<261 (I fleos + [V o) [V' o -
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So we may assume that [V'f] , < [V* f]co.ﬁ . Note that the strict inequality implies
that [V'f] ,, # 0, otherwise [V“'f]co_,3 =0 also. We fix x € Q and define for 6 €
(0,1) and for y € Q (recall that Q is convex),

fo(y)=f((1-6)x+8y).
We immediately find that
IV follco=0" IV flico,
(V' foleoy <O [V floy and  [Vifoleop < 6°7P [V¥fleop

We choose 0 € (0, 1) such that

@Us+B)—(+y) —

Invoking (16.25) applied to fy, we get

0 V" llco < Ci (07 [V'£] cay+ 6" P [V flco)
=2C10"7 [V f] oy = 2C 0P [V* fl o
) _
=20 <9HB [fo]c(lﬁ) (67 [th] 00-7)1 g
<2C10" ([V* fleop + [V'f] co,y) [th] cor -

This achieves the proof of Step 2.2.

Step 2.3. We now consider the general case
r+a=2As+B)+(1-1)(¢+7).

Four cases can happen.
Case l: r<t+7y<r+4+a<s+f <r+1, which has already been dealt in Step 2.1.

Case 2: t+y<r<r+a<r+1<s+ . We combine three interpolations,
namely for r and r+ 1 between [t + ¥,s+ ] and for r + o between [r,r + 1]. More
precisely, we let

r+a=(1-a)r+a(r+1),

ps+p)+(1—pw)(t+7y),
r+l=v(E+p)+1-Vv)(t+7y).

From Step 2.1, we have

V' fleow < CL IV fllod [V floo = CLIV £ [V £l o
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whereas from Step 2.2, we get

IV fllco = [V fleoo < Co ([VP fl o + [th]cfw) [th]COY ’
IV fll o = [V f] o0 <G (V' fleos + [V f] o) [Vtﬂc‘”

Combining the three inequalities, we have that (16.27) is valid under the hypotheses
of Case 2.

Case 3:t+y<r<r+4+a<s+f <r-+1. This is dealt with as in Case 2; it is
enough to interpolate r between [f + ¥,s + ], r + a between [r,s + ] and combine
the results.

Case d: r<t+y<r+a<r+1<s+ . We also proceed as in Case 2 and
interpolate r+ 1 between [t + ¥,s+ ] and r+ a between [t + y,r+1].

Thus, Step 2 is established.

Step 3. We are now in a position to conclude. We trivially have

fllco = LANZ I o™ < NI £l (16.29)

We immediately deduce from (16.27) that

V' Fleoa <Cr (I Flless + 1 Flenr)* Al

which combined with Proposition 16.10 (or Corollary 16.13) leads to

V" flcoa < Callflifus ILFllGr

Finally, combining the above inequality with Corollary 16.25 and (16.29), we have
the result, namely

fllera < C3 (I fllo + [V Fleow) < ClFlEs £ 65 -

This concludes the proof of the theorem. O
We have as an immediate corollary the following.

Corollary 16.27. Let Q2 C R" be a bounded open Lipschitz set, s > r >k > 1 be
integers and 0 < a,B < 1. Then there exists a constant C = C (s,2) > 0 such
that

£ llcre lglless < C LI fllerkallgllesris + gl crra | flleses] -
Proof. Set

B (s+B)—(r—k+a)
C (sH+k+B) - (r—k+a)

€ 10,1].
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Note that
Alr—k+a)+(1—-4)(s+k+p)=r+a,
Als+k+B)+(1—-A)(r—k+o)=s+p.

Appealing to Theorem 16.26, we get

A 1-2 A 1-2
P llcre gllcos < €1 (11 ca I 1Ein] -Cr [lgl2ses gl

A 1-2
<G [Ifller-ra lglesees]” - [I1fllgssis Igller+a]
<C[Ifllerra llgllsens + lgllerra Il csi]

and thus the corollary. ]

16.5.2 Product and Quotient

From the previous results we deduce the following inequality.

Theorem 16.28. Let 2 C R" be a bounded open Lipschitz set, r > 0 an integer and
0 < a < 1. Then there exists a constant C = C (r,2) > 0 such that

1f8llera < CIfllcra llgllco + 1o 18llcra) -

Proof. Step 1. We start with the case r = 0. If o = 0, the result is trivial, so we
assume that o > 0. We first observe that

[fglcoa = sup { [(f () —f<y>>g<|x>_+fo§y> (g(x)—g() }
x,yEQ x =yl
x#y

< llgllco [flco.a + [l co [g]co.

and hence the claim follows, since

17gllcoa = [178llco + [f8]coa-

Step 2. We then proceed by induction on r. Observe that from Corollary 16.27,
we have

£ llcr lgller1e < Crllfllco l18llcra +11.fllcre llgllco)
1A ller-rallgller < Ca (I flleo lgllera + [1fllcre llgllco) -

We now use the hypothesis of induction to find

IV{f&)ller1e <G (VS ller1a lgllco + VAo lgller-1.e)
G (I fller1a 1VEllco + 1 Fllco Vel 1)
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which, combined with the above estimates, leads to

IV(f&)ller-1a < Calllfllco lgllcre +[1fllcre llgllco) -

Since
[ f&llcrea =11 f8llco + IV (f&)llcr-1.a s

we have indeed established the theorem. ]
As a corollary, we have the following proposition.

Proposition 16.29. Let Q@ C R" be a bounded open Lipschitz set, r > 0 an integer
and 0 < ot < 1. Let f € C"* () be such that

f(x)>fo>0, VxeQ.
Then there exists a constant C = C (r,Q2) > 0 such that

c M lco

= Fllgro -

In particular, if there exists a constant ¢ > 0 so that

A flleo <

Il
f O

then there exists a constant C = C (¢,r,Q2) > 0 such that

|

Proof. Step 1. We start with the case r = 0. If o = 0, the result below is trivial, so
we assume that o > 0. We have
et 17
co f 0.

=it
<Ly g ITO 7T

0 xyeQ ‘x - yla
XAy

<C|fllere -
CK(X

...

and thus

7. = o { L — & ot e

Ccoa fO fOxyE.Q |x—y|
xX#£y
1
]T()Q(Hf||co+[ Jeo.a) = f2 (11l o

as wished.
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Step 2. We then proceed by induction and assume the result for (r — 1) and prove
it for r. We have, appealing to Theorem 16.28,

e =17l 17

cr—lLa
1
< —+Ci[|Vfller1a =5 +Cil|V o — H .
f() ¢ fo c f cr-la
Using the hypothesis of induction, we find
1 1 1 1 fllo
=l £z +CGlfllee = +CAS] 1——||fH r-1a
Hf cro fo ¢ fo ¢ frJrl ¢
< C3 V+1
<5 + 15 1 fllera + 1 llgo 1f Nt £ |1 )
0
We next invoke Corollary 16.27 to get that
1A ller 1Fller-re < Callfllco l1f llere
and we hence obtain
Cs .,
H < B R e+ 1 [ )
f cre 0
Il
< ,SWﬂba
Thus, the proposition is proved. ]

Finally, the above proposition, combined with Theorem 16.28, leads to the fol-
lowing corollary for the inverse of matrices.

Corollary 16.30. Ler Q C R" be a bounded open Lipschitz set, r > 0 an integer and
0<o<l.LetAecCr* (.Q;R”X") and ¢ > 0 be such that

Then there exists a constant C = C(c,r,2) > 0 such that

1
— 1Al <e.
o | o+ Mlleo <

la™]

cre <C ”AHCW :

In particular, if there exists a constant ¢ > 0 so that
1Allco, [|A

then there exists a constant C = C (¢,r, Q) > 0 such that

Mo =

la™]

cro = <C ”AHC’“ :
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16.6 Composition and Inverse

16.6.1 Composition
We follow here Hormander [55]. We start with the composition of two Holder con-
tinuous functions.

Theorem 16.31. Let Q C R", O C R™ l)e bounded open Lipschiti sets, r >0an
integer and 0 < o, < 1. Let g € C"* (0) Afr=0and f € OB (Q;O) , then

Hgof“co.aﬁ(ﬁ) < Hg”co.a(a) IIfIIZ‘o,ﬁ@ + ||ch0(5)~

Ifr>1and f € CH* (5;5) , then there exists a constant C = C (r,2,0) > 0 such
that

r+a

ls© fllera(g) < C |lllere @) 1 lci gy + 18lcr @) 1fllcne (@) + lgllco@) | -

Proof. In the sequel, we remove the dependence on the sets Q2 and O, since this
dependence will be clear from the context. We will use several times that the C!
norm is equivalent to the C%! norm (cf. Corollary 16.13).

Step 1. We start with the case r = 0. If & =0 or if § = 0, then the result is trivial
since

g fllcoo = llgo fllco < llgllco-
So we assume that r = 0 < «, 8 < 1. We therefore have, since g € C%* (5) ,

807 () =8 (F O] < [8lcoa | () = £ < [gleo [ [fleos be—o1P]”

and hence the claim

g o fllcoas < llgllcoe £ 1Igos + llglco-

Step 2. We next discuss the case r =1 and 0 < o < 1, the case o = 0 being
already settled in Step 1 (just take o = B = 1). We have, by definition,

lgofllcra =llgofllco+ 11V (gof)lcoa-
Since
IV (gof)llcoa = 1(Veo f) Vi coa,
we have, by Step 1 and by Theorem 16.28,

IV(gofllcoa <Ci[[Veo fllcoallVHllco +Crl[Veo fllco [Vl coa
<G [llgllera Al +lgler] 1A ller +C2ligler 1/l
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and hence our claim,

1
lgofllcra <C [HgHCW Il ™ +llgller 1 e+ lgllco |
Step 3. We proceed by induction on r > 2. We write

g0 fllcra = llgo fllco +1IV (g0 f)ller1
= llgofllco+11(Veo f)Vilicria-

We use the hypothesis of induction and Theorem 16.28 to get

(Vo f)Vlcr1a
<C|VgefllemralVHlco +CilIVeo flleo [V Aller1a

1)+
<G |IVgllerrallFIS " + 1Vl 1 llerra + [Vl | 1F ]l
+Collgller 1/l -

‘We therefore find

lgo fllcra < lgllco +Callgllera IFIATE +Callgllca 1f lerra [ fll e
+Gllgler 1 fllere - (16.30)

In order to conclude, it is enough to estimate

lgllez 1 llerre [l Fller -

We use Theorem 16.26 to get

r=2+a 1
8llc2 < Calllgller) = (llgllcre) =15,

r=24+a 1
[ fller-1o < Calllfllera) = ([ fller) =15
and thus
<c r=2ta rta\ —1re
I8llc2 Ifllcrre[lfller < Cs (llgler 11l grer) (llgllerec [1£11ET*)
< Cs [lgllcr 1fllcre +lgllcre A1 - (16.31)
Combining (16.30) and (16.31), we have the claim. O

16.6.2 Inverse

We easily deduce, from the previous results, an estimate on the inverse.
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Theorem 16.32. Let 2,0 C R" be bounded open Lipschitz sets, r > 1 be an integer
and 0 < a <1.Letc>0. Let f € C"* (Q;O) and g € C°* (O;Q) be such that

gof=id and |gla @) I/lci@) < e
Then there exists a constant C = C(c,1,,0) > 0 such that
Ifllcre @y < € lllena (o)
Proof. Step 1. Since go f =id, we obtain

lidflco = llg o fllco < llgllco

and, hence, combining with the fact that || f||-1 < ¢, we find that there exists a con-
stant C; = C| (¢,£2) > 0 such that

C C
Ifllco < Nfller < ¢ = i llidllco < =i ligllco = Ci llgllco
< ¢ lidllco " = Jlid]l o "€ c

Step 2. Appealing to Corollary 16.30, we get that there exists a constant Cp =
C> (c,r,£2) > 0 such that

IVfller e <CalIVgo fller v (1632)
Therefore, the case r = 1 is immediate, invoking Theorem 16.31, since we then have
[V llcoa <C2lIVgo fllcoa < C3[[[VEllcoa + [ Vellco] < Cllgllcre,

which, combined with Step 1, gives the claim.

Step 3. We now proceed by induction and apply Theorem 16.31 to (16.32). We
find

[VFllcr-1a < C2l[Vgo fllor1a
<GlIVeller-ra +IVellor | fller-1.0 + Vgl o]

and therefore, appealing to Step 1 and to the above inequality,

[ fllcre < Calllgllcra + gl 1 fllcr-1a]-

Applying the hypothesis of induction, we deduce that

[fllcre < Cslllgllcra + llglic2 gller-1a] - (16.33)

From Corollary 16.27, we get that

lgllcz llgller1.a < Collgllcre
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and, thus, combining with (16.33), we have the claim

1 llera < Cllglcre -

This concludes the proof of the theorem. O

16.6.3 A Further Result

Finally, the next result (cf. Riviere and Ye [85]) has been explicitly used in Theo-
rem 12.4.

Lemma 16.33. Let r > 1 be an integer, 0 < a < 1, Q C R" be a bounded open
Lipschitz set, g € C"*(Q) and u € C"*(Q; Q). Then for every x,y € £, there exists
a constant C = C(r, Q) such that
[V (gou)(x) = V' (gou)(y)| < ClIVgllcollu—id|lcre jx — y|*
+Cllgllcreflu—id|ler (1 + [lull ) e — y*
+C Vg (u(x)) = Vg(u(y))]-

Remark 16.34. The estimate implies the following inequality:

V' (gou)lcoa <C[(V'g)oulcoa+Cligllcr[u—id]|cre

+ClIgllere (1+ [lullgr ) Ju—id -

Note, however, that the lemma is more precise.

Proof. We prove the lemma by induction. We split the proof into two steps. In the
sequel, C1,C,,. .. will denote generic constants depending on » and £2. We will use
several times that the C! norm is equivalent to the C%! norm (cf. Corollary 16.13).

Step 1 (the case r = 1). We show the result when = 1. Let x,y € Q. We obtain
[V(gou)(x) = V(gou)(y)| =[Vg(u(x) x) = Vg(u(y)) - Vu(y)|
=[Vg(u(x))-|
—[Veg(u(y)) = Vg(u(x))]-

-Vu

~—
—

~—

and thus

[V(gou)(x) = V(gou)(y)|
< IVelleo [Vaelx) = Vu(y) [+ [[Vullo [V (u(y)) — Ve (u(x))]
= [Vellco [V(u—id)(x) = V(u—id)(y)| + [|Vull o [VE(u(y)) = Ve (u(x))|
<|IVellcollu—id [ cra e =3I + [ Vullco [V (u(y)) — Ve (u(x))].
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Since the first term of the previous sum has the desired form, it is enough to estimate
the second one. We obtain

IVullco [Ve(u(x)) — Ve (u(y))l
< (lu—idler +1) [Ve(ulx)) = Ve(u(y))l
< Cillu—id|cillgllerallullés e =y + Vg (u(x)) = Ve(u(y))]
< Cillu—id|lcrllgllera (14 Jull o) e =31 + Vg u(x) = Ve(u(y))].
Since both terms on the right-hand side of the previous inequality have the desired

form, Step 1 is shown.

Step 2 (induction). Assume that the result holds true for r — 1 and let us show it
for r > 2. We have to establish that for every x,y € Q,

[V (gou)(x) = V'(gou)(y)l
< ClIVglleollu—id crefx — y|*
+Cliglcre llu—id |l (14 [Jufl o7 ) e =y
+C[Vg(u(x)) = Vg(uy))l- (16.34)

Letx,y € Q. We write

V' (gou)(x) = V' (gou)(y)| = [V [V(gou)](x) = V! [V(gou)] (v)]
= |V [Vgou- Vul(x)— V! [Vgou-Vul(y)|

and therefore get

V' (gou)(x) = V' (gou)(y)|
< |V [Vgou-V(u—id)](x) - V" [Vgou-V(u—id)](y)|
+ |V Vgou)(x) = V! [Vgoul (v)|-

Hence, using the induction hypothesis, we obtain

[V (gou)(x) = V' (gou)(y)]
<|[Vgou-V(u—id)|crralx—y|* +C5[|VVgllcollu —id | r1.alx —y|*
+C3|Vllerrellu—id lor (1+ flull ) be—y|
+G[Vg(u(x)) = Vg(uly))l-
We now estimate separately each of the four terms of the previous inequality and
show that they have the same form as the right-hand side of (16.34). Noticing first

that the fourth term has already the desired form, it is enough to estimate the first
three terms.

1) Estimate of ||Vgou-V(u—id)|/or—1a]x —y|*. Using Theorems 16.28 and
16.31, we obtain
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Vg0t V(u—id)l| s abr—y|°

<G ([IVgoullcollV(u—id)llcrra + Vg oullcrra |V (u—id) || o) b — y[*

< Gs||Vgllcollu —id | crelx — y|*

+ Collu—idllcr [V llera ™ + Vgt el cr-va + 1Vl co] e =31
and thus
[Vgou-V(u—id)|cr1alx—y
< Gs||Vglleollu —id||crelx — y|*
+Crllu—id ]| [gllere (1+ Jufl G ®)x =y

+Cllu—idllci [ Veller l[uller-1a e —yI%.

Since the first two terms of the last sum have the desired form, it is enough to
estimate the last term. We have

lu—id[lc1 Vel [l crta e —y|*
< llu—id|lci[IVellr[lu —=id lerralx = y[* + Csllu —id [|c1 [ Veller e — y[*
< lu—idlle [Vl —id | crralx = y* + Cyllu —id [|c1 |8l onec e = y]“.

The last term of the previous sum having the desired form, it remains to estimate the
first term. Using Theorem 16.26, we get, letting A = 1/(r — 1 + ),

e —id[| 1.0 < Co(fJu—id [ ra) ™ (J|u—id | 1), (16.35)
IVeller < Co([IVeller1a)* ([ Vel o) . (16.36)
Therefore, using (16.35) and (16.36), we obtain
e —id |1 u—id | o1 | Vel [ = y|
< Collu—id ¢ (|| —id||crecl|Vgllo)' ™ ([l —id |t | Vgl er1.a)* e —]®
= Co ([lu—id|lcre|Velo)' (nu—idné.“||Vg||crw)l x—y|

< Cy (lhu—id crel| Vo + llu—id 7 llena ) br— 1%,

where we have used the fact that 1 /A 4+ 1 = r+ o. The assertion is proved since the
two terms of the last inequality have the desired form.

2) Estimate of ||VVg||co|lu —id||cr—1.a|x — y|*. Combining (16.35) and (16.36),
we obtain

lu—idlcr1al[Veller < Co (lu—id|[cra|[Vellco + llu —id [ c1 [ VEller-1.e)
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and thus

IVVglleollu—id|lcrralx = y* < [IVgllcr |l —id ler-1.alx =y
< Go[IV8licollu—id|lcre + V8l cr-1allu —id [l ca] |x = y|*.
The assertion is proved since the two terms of the last inequality have the desired
form.
3) Estimate of ||Vg||or—1.alju—id|[o1 (14 ||uHrCTl+a)\x—y|“. We get

IVgllertalle—id fler (14 [lull ) b=y

< Cuollgllre llu—id|er (1+ |l ®) e — v

This concludes the proof. O

16.7 Difference of Composition

We often need to estimate the difference of two functions that are obtained through
composition, namely

lgou—gov]ene.

This has been used in our study of the pullback equation. We will give several the-
orems, following Bandyopadhyay and Dacorogna [8]. At first glance, one would
think that the above quantity can be estimated, in a continuous way, in terms of
llgllcre and |lu — v||cre . This is, in general, impossible if 0 < & < 1, as will be seen
in the example below; one needs to consider higher norms ||g|| s with

r+o<s+p.

We will consider three theorems. The first and easiest one is when s = r+ 1 and
B = a, the second one is when s = r and 0 < ¢ < 8 < 1 and the third one is when
s=r+land0<B<a<l.

Example 16.35. Let r > 0 be an integer and 0 < o < 1. Let g € C"*([0,2]) be
given by

gx)=x
Let, for g,x € Q = [0,1],

u(x)=x+¢e and v(x)=nx.
Note that for every integer# > 0 and every 0 <y <1,
|u—vlcr=¢.
It is easily proved that

Hgou—gov”cmx 40 ase—0.
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We show this for » = 0 (the general case is proved similarly). It is enough to observe
that

Do () = [s(v(x) —g ()]~ [g(v(0) —g (u(0))] _ |x|*+e*—|x+e|*

el x|

does not tend uniformly to 0 as € — 0. Indeed, choosing x = € for any 7 > 0, we
have the claim.

Before starting our analysis, we recall, from Theorem 16.31, that if 0 < o < 1
and ||ul|o1 < ¢, then
HS’OMHCOJX SCHgHCOﬂ (16.37)

if r =0, whereas if r > 1, then

lgeullcra < Cliglcra +Clligller llullcre - (16.38)

16.7.1 A First Result

We start with the easiest case.

Theorem 16.36. Let 2 C R" and O C R™ be bounded open Lipschitz sets. Let r > 0
be an integer and 0 < oo < 1. Let ¢ > 0, gEC’“O‘( ) andquC’“(.Q 0)
C! (.Q,O) , with

luller @) Ve @) < e

Then there exists C = C(c,1,2,0) > 0 so that if r =0,
lgou—goviwa(g) < Clsllera(o) lu—vlco@) +Cligle @) 4 —vllcoa (g »
whereas, when r > 1,

Igou—g0vlea(a)

< Clgllerra(o) llu—vlleo(q)

+Cligll gy [l cra gy + 1Vl craay | e = Vlicoy
+Cllglles (g e = vl cra) -

Proof. In view of Theorem 16.11, we can assume that Q2 is convex. We write

1
gou—gov= [ Sleb+iu—v)la

:/01<Vg(v+t(u7v));ufv>dt
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and deduce, from Theorem 16.28, that

1
lgou—gov|ea <Ci HM—VHco/O IVe(v+1(u—=v))lcredt

1
e ||u—v||cna/0 V(v 41 (u—v))ll o dr.

We first deal with the case r = 0. We have from (16.37) and since |[u/|c1,[|v]|o1 < ¢
that

lgou—govlcoa < Callu=vlico[IVellcoa +Collu—vllcox[Vellco,

which is our claim. We then discuss the case r > 1. Appealing to (16.38) and to the
fact that [[u|q1, ||[v|lc1 < c, we get

lgou—govllera
<Gllu—=vle[IVelera + Vel (lullcra + [[vliera)]
+Callu—=vlcra [[Vellco

and thus the result. 0

16.7.2 A Second Result

Before going to our next results, we need the following lemma.

Lemma 16.37. Let Q C R" and O C R™ be bounded open Lipschitz sets. Let s >
r > 1 be integers and 0 < o, B < 1 with

r+a<s+B<r+l+a.
Letc>0,geCP (5) and u,v € C"* (5;5), with
H"‘Hcl(ﬁ)a ||V||c1(§) <c
If r =1, then there exists C = C(c,Q,0) > 0 such that
IV (g01) ~ ¥ (g0l com )
<C|[Vgou=Vgov|cag) +Clglea (@) lu—vllcram)

(s+B)— 1+Oc

+Cllglcun gy (1 -+ min{ellreqay IVleraa) } ) 1u—vlica)
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If r > 2, then there exists C = C(c,r,£,0) > 0 so that

19 (g00) =V (g% -1 ()
< C|[Vgou=Vgovleia(a)

+Cligller () 14 = Vlicra(ay +Cliglcun (o e =Vl go)

+Clglle2(o) Wmaa()+ﬂﬂkm()}wt Veo(@)-

Remark 16.38. Note that the proof gives that the lemma is also valid in the limit case
whens=r+ 1,0 =1and f =0.

Proof. Step 1. We start with a preliminary computation. We prove that for every
r>land0 < a,f <1, with

r+a<s+B<r+l+a,

we can find a constant C = C(c,r,£) > 0 such that

(s+B)—(r+a)

gllere [l =vlier < Cliglss lu =Vl +Cgller flu=viicra-

We divide the proof into two cases.
Case 1: s = r and, therefore, 0 < o < 8 < 1. Observe that since

(B-a)(r+a)

0<0=
< r+p—1

<1

and ||ul|c1, ||Vl < ¢, we have
0
lu=vler < Cillu—=vler,

and thus, by interpolation,

2]
l _
=Vl <G (nuvnets v )

B—o (B—a)(r+a—1)
r 1 r+p—1
=Cllu—vlaa " llu—vleo ™

Using again an interpolation, we have

r+o—1

r+p—T1 r+ﬁ 1

I8llcre < Csllgllas N8l -

Combining the two estimates, we get
r+o—1

o\ Ba
lgllerec lu—viler < Ca (lgllens lle—vIEs ) 727 (llgllcr lli— vl cre) 77T
o

< Cs gl ens lle—vIIP5 * +Cs llgllr llu—viere

as wished.
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Case 2: s = r+ 1 and, therefore, 0 < B < o < 1. We proceed in a very similar
way. We first note that since

and ||ul|c1,]|v]|c1 < ¢, we obtain
lu=vller < € flu =]

and hence, by interpolation,

1 r+o—1 0
= vl < (nu—vngt.z a5 )

1+B—a (I+B—0)(r+a—1)
=Clu—vllga” lu—vlo "

Interpolating once more, we have

r+aEI 1+ﬁ/;0‘
r+ r-
lgllcra < Csligllrivp llgler™

Combining the two estimates, we deduce

B\ S L+p-a
llgllcra [l —vlle §C4(||g||cr+l-ﬁ [l =Vl o ) (gl lu—=vllcra) P

1+B—
< Cs gllereip llu—vilsP~* +Cs gl | —vllera

as claimed.

Step 2. Tt easily follows from the observation

[V(gou) =V (gov)lcr1a = [I(Vgou) - Vu—(Vgov) - Vvlcr1a
<Ci|[Vgou—Vgov|eial[Vullco +Ci [[Vgou—Vgov|co [Vullcr-1a
+C[[Vgovlormia[Vu= Vvl +Ci|[Vgov|co [Vu—Vvcria,
using the fact that |[u|.1 < c, that
[V (gou) =V (gov)|er1a
<C|Vgou—Vgov|erra+ClIVgou—Vgovlco|ullcra
+C|IVgovllerrallu—vler +Cligller 1w = vllcra-
Step 3. We now discuss the case r = 1.

Step 3.1. Let us first prove that

(s+p)—(r+a)

IVgou—Vgov|co <Cligllcss llu—vllco :

We have to consider two cases.
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Case 1: s =r =1 and, therefore, 0 < @ < 8 < 1. Observe that we immediately
have the claim, since ||u||1, ||v]|c1 < c implies

IVgou—Vgovllco < Ci|[Vgllcos llu—vify < Callgllcrp llu—v]ls®
= Callglless 1 —vllgo™ =,
Case 2: s =r+1 =2 and, therefore, 0 < B < o < 1. Since ||ul|q1, [|v]|c1 < ¢, we

get (recalling that the C' norm is equivalent to the C%! norm, in view of Corollary
16.13)

Vgou—Vgovlco <Ci|[Vellcr llu—vllco < Crllgllca flu—=vlco

1+B—o ||

<Cilgllcas llu—vll —v]|% P

Using once more that ||ul|1 , [|v||c1 < ¢, we have indeed established Step 3.1.

Step 3.2. We are now in a position to conclude. We have (recall that r = 1), from
Steps 1 and 2 and (16.37),

HV(gOI,{) _V(gov)Hcr—l,a
<1 ||Vgou—Vgov|gr1a+Ci||Vgou—Vgov|coullcre

(s+B)—(r

(r+a)
+Crllgllcss llu—=vll o "+ llgller = vl

and, therefore, from Step 3.1,

IV(gou) =V (gov)lcrra <C|[Vgou—=Vgov|cmia+Cllgller lu—vlicra

+ r+
+Cllgllens (14 [allgre) [l —v]| 5=+

Since in the previous process we have privileged u with respect to v, the result is
also valid with the interchange of u and v and thus we get the lemma for the case
r=1.

Step 4. We finally prove the result for r > 2.
Step 4.1. Let us first show that

gllc2 [Vller-1a llu=vller < Cllglle2 [IVllere [lu =viico

+ +
+Cllgller lu—vllgra +Cllgllgss lu— vl P+,

This is easily obtained by the usual interpolation argument. Indeed, recalling that
Wler < e
Vller-1a llu=vlier
r+o— 1
< C ([l cra 1= vllco) T (Wllen flu =Vl cr-1.0) 7T
< GPllere llu=vlico +Collu=vlicr1a -
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Moreover, from Corollary 16.27,
lglle2 e —=vller-1a < Csllgllcra lu=viier +Csllgller llu—vllere ,

which combined with Step 1 and the previous inequality leads to the desired
estimate.

Step 4.2. Returning to Step 2 and appealing to (16.38), we get

[V(gou)—Vi(gov)|cria
<Ci[[Vgou—Vgov|cr1a+Ci||[Vgou—Vgov|co [|ulcra

+Clllgllera +llgllez [Vl erral e =viier +Crllgllcr lu = vcra -
Since
IVgou—Vgovlc <C[Veller u—=vlco < Callgllez lu=viico,
we get, combining with Step 1 and Step 4.1,

[V(gou)—Vi(gov)|cria
<C|Vgou—Vgov|cria

+ +a
+Cllgler lu—vllgra +Cllgllgss [l — v~
+Clgllce [ullgre + [Vl grac) 1 — vl o,
which is exactly the claim of the lemma for r > 2. 0O

We now turn to our second result.

Theorem 16.39. Let 2 C R" and O C R™ be bounded open Lipschitz sets. Letr > 0
be an integer and 0 < o < B < 1. Let ¢ >0, g € C"P (0) and u,v € C"* (Q;0) N
C! (ﬁ; 5) , with

H”Hcl(ﬁ)a ||V||c1(§) <c
If r =0, then there exists C = C (c,,0) > 0 so that

lgou=govllcoa(m) < Cllgllcan (@) I —vligo (s
If r > 1, then there exists C = C(c,r,£2,0) > 0 so that
||gOM—gOvHC,‘a(§)

< Cllglens () (14 min { Jullcra @y - IVl crgan } ) sl

+Cllgller(@) [Illcram) + Wlera @) | 18— Vllco @)
+Cllgllcr o) 14 = Vllera(a) -
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Proof. The proof is divided into two steps.

Step 1. We first prove the theorem when r = 0. We get, by interpolation,

1-« a
lgou—govlica <Cillgou—govlen” lgou—govll,
Bk “
<Ci [lglcon lle=viifo] " [lgoullcop +llgovicos] F -

Combining the above estimate with (16.37) and the fact that ||ul|1, ||v]|c1 < ¢, we
find
B <c BTV B
lgou—govllcoa <C |llgllcos lu—=vilco|  llgllcop
< Cllgllcos llu—vligs ™
as wished.
Step 2. We now deal with the case r > 1 and we will proceed by induction.
Step 2.1. Consider the case r = 1. According to Lemma 16.37, we have
IV (gou) =V (gov)coa
<Ci|[Vgou—Vgov|ca+Cilgllcr [lu—vliera
+Crlgllers (1 min{|lullcra  IVllcrad) e —viig *.

Since
lgou—govlco < llgllcrllu—vllco

and, appealing to Step 1,
[Vgou—Vgov|ca <Callgllers lu—vigo *,
we get, from the above three inequalities,
lgou—govlcia
<Cllgllerp (1 +min{||ullcra, [Vlcra}) [Ju— VIng“ +Cllgller lu—vllcre-

The theorem for r = 1 thus follows.
Step 2.2. We finally prove the claim by induction and start with assuming the
result for (r — 1) and we prove it for r > 2. The hypothesis of induction gives
IVgou—Vgovleria
< C1llgllerp (1+min{[ull i, [V ]cra ) fu—vilPs @

€1 lglor el + ler-vae) 1 = Vo
+C1 HgHCz HM - VHCr—L,a .



16.7 Difference of Composition 383

The only term in the above inequality that does not have the proper form is the last
one, but we readily estimate it by Corollary 16.27:

lglle2 e =vller-1a < Callgller lJu—=vllera +Callgllere [lu—=viier -

Finally, appealing to Step 1 of Lemma 16.37, we obtain

lgllca lu—vlier1a < Csliglen 1 —vlire +Cs llgl s e —vI|P *
We therefore have

|Vgou—Vgov|eria < Callgllees (14 min{[ullcra [V]cra}) lu—v]fs

+Callgller [lluller—1.0 + VIl er-1a] [ = V][ co
+Callgller e —vllere - (16.39)

Next, observe that in view of Lemma 16.37, we have
[V(gou)=V(gov)|cr1a <Cs||Vgou—Vgov|cria

+Cs llgller 1= vllcre +Csllgllcns lu—vIIZs
+Csgllez [llullcre + [[Vliera] lu = vlico . (16.40)

Since
lgou—gov|cra =llgou—govlco+[IV(gou)—V(gov)|crra,
we have, using (16.40), that
llgou—gov|cra <Cs||Vgou—Vgov|crra+Csllgllcp llu— v||g07a
+Co llgllca [[[ullcro + [Vl cra] [le = viico + Co llgllcr [ — vl cra -

Combining the above inequality with (16.39), we have indeed established the
theorem. o

Setting
u=1id4+w and v=id

in Theorem 16.39, we have the following corollary.

Corollary 16.40. Let 2 C R" be a bounded open Lipschitz set. Let r > 0 be an inte-
gerand0<a <B<l.Letc>0,g¢€ crB (5) and w € C"% (5,5) NC! (5;5) ,
with

Iwller <.

Then there exists C = C (c,r, Q) > 0 so that

lgo (id+w) — g oidllcra < Cllgllens IWNEs * +C gl crer Wllrer
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16.7.3 A Third Result

‘We now discuss our third result.

Theorem 16.41. Let 2 C R" and O C R™ be bounded open Lipschitz sets. Letr > 0
be an integer and 0 < B < ot < 1. Let¢>0,ge C" 1P (0) and u,v € C** (2;0) N
C! (ﬁ; 5) , with

||”Hc1(§)7 W@y <e
If r =0, then there exists C = C(c,,0) > 0 so that

1
lgou—govllcon(m) < Cllgllcs (@) =Vl (m)

If r > 1, then there exists C = C(c,r,2,0) > 0 so that

lgou—g0Vlera(ay

1+p—a

<Clgllcrp gy (1+min{ lellcra(ay - Mlcreqa) }) 14— viei )
+Cllglerz) [ellcra ) + Mlera @) | 14— Vo )
+Cllgler (@) lu =Vl cra(m) -

Proof. The proof will be divided into two steps.

Step 1. We prove the theorem for r = 0. We start by observing that from Theo-
rem 16.36, we have

lgou—govlcop < Cullgllers [lu—vileo +Crllgller 4= viicos
<Cllgllcrp llu=vllcrs

whereas from Theorem 16.39 and from the fact that |[u||.1 , ||v||o1 < ¢, we get

lgou—govler <Csllglers lle—vlEy +Csligler llu—viles
< Cyllglerp llu—vIl?, .

We now combine interpolation with the two above inequalities to get the claim;
more precisely,

5}

a=p

1-a
lgou—govlcoa <Cs(|lgou—gov|cos) " (lgou—govfe)™

1
< Csllgllerp llu—vilP .

Step 2. We then proceed by induction on r.

Step 2.1. When r = 1, we have, from Lemma 16.37 (and the remark following it)
and Step 1, that



16.7 Difference of Composition 385

IV (gou)=V(gov)coa

1+
<Cllellcas lu=vllg?~*+Cllgler llu—vliera
. 14+8—
+Cllgllcs (14+min{ ullcr, Vlerad) = vl P~

The claim then follows at once.
Step 2.2. We now consider the case r > 2. Lemma 16.37 gives
IV (g0u) = V(8001 < Ci [Vgou—Vgorferra
1+B8—
+Cillgllcr lu—vlicra +Crllgll e ||“_V||C0ﬁ ’
+Cillgllea [llullcro + [Vl ore] [l = vl co -

From the hypothesis of induction, we obtain

[Vgou—Vgov|eia
<G lgllernp (14 min {ullcra [¥llerad) e — vl P~
+Crllgller (luller-ro + IVl er1.0) [0 =vllco + Callglle 1 = Viier-1a -
Combining the two inequalities, we get

. 1+8—
lgou—govllera < Cs lgllerrip (1-+min{llufcra, [Vllera}) lu—v] o~

+Gsllgller (Nullcra + V]I cra) lu = vl co +C3 gl et lu— v cre
+C3 ||g||C2 HM _V”Cr—l_a .

The only term in the above inequality that does not have the proper form is the last
one. To write it appropriately, we combine Corollary 16.27, namely

gllcz lu =Viier-1a < Callgllcr lu=vlcra +Callglcre llu =Vl

with Step 1 of Lemma 16.37, namely

1 —
lgllcne 1= vler < Csllglerns lu—vilgaP ™ +Cs llgller 1= vllcna
to obtain
14+8—
lgllca Nl =vlerra < Cs llgller 4= vilcna +Cs lgllers lu—vigs? .
This concludes the proof of the theorem. ]
Setting

u=1id+w and v=1id

in Theorem 16.41, we have the following corollary.
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Corollary 16.42. Let 2 C R" be a bounded open Lipschitz set. Let r > 0 be an inte-
gerand0<B <o <1.Letc>0,geCtP (Q) andw e C™* (Q2;Q)NC! (2:2),
with

wller <e.
Then there exists C = C (c,r, ) > 0 so that

1+B—0o

lge (id+w) —goid|cra <Cllgllerrip W™ ™ +Cliglera [IWllere -

16.8 The Smoothing Operator

16.8.1 The Main Theorem

The result of this section is an essential tool in the Nash—-Moser theorem, see Krantz
and Parks [62]. We have also used it in a significant way in Theorems 10.1 and 14.5.
Our presentation follows Hormander [55].

Theorem 16.43. Let 2 C R" be a bounded open Lipschitz set. Let s > r >t > 0 be
integers and 0 < o, B,y < 1 be such that

t+y<r+o<s+p.
Let f € C"% (5) . Then for every 0 < € < 1, there exist a constant C = C (5,2) >0
and fe € C7 (E) such that

C
[felless < P ) 1fllere

If = fellernr < Celrro)=t+7) 1 fll cree s

4
de

C
s S eomGrart Wllew,

Jfe

d
P

< Celr D e

cty

Moreover; defining F : (0,1] x Q — R by F(&,x) = fe(x),
F eC™((0,1] x 2;A%).
Remark 16.44. (i) The theorem coupled with Corollary 16.13 gives that

[ fellerr < Cll fllera -
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(i1) The construction of f¢ is universal, in the sense that the four inequalities re-

. . / e~
main true replacing (r,s,7,0, B,7) by (/5,1 ,B',Y) as faras f € C"-* () and
with a constant C' = C’ (s, 2) > 0.

Proof. Step 1. Choose any ® € Cy (R") with @ = 1 near the origin. Define next the
smoothing kernel as

o= [ b (E)dE.

Note that since @ is the inverse of the Fourier transform of &, we have ¢ € . (R"),
the Schwartz space. Therefore, for any a and b multi-indices, we can find ¢ = ¢ (a,b)
such that

D9 ()] < e (1+ )77

Moreover, since ¢ = 1 near the origin, we find, using the formula for the inverse
Fourier transform,

[omdr=a0) =1,

and for any multi-index a with |a| > 1 and any multi-index b with |a| > |b]|, since
D (EP@(€)) ’5:0 =0, we have

/ XD (x)dx = 0. (16.41)

The desired f is then given by

Je=@exf,
where )
X
0ol =50 (5)-

Step 2. From now on, we assume, without loss of generality, that f has been
extended to R" as in Theorem 16.11. For any integer r > 1, we know from Proposi-
tion 16.10 or Corollary 16.13 that the norms ||-|| -0 and ||-|| 1.1 are equivalent. We
therefore adopt in the present proof the following convention: If r+ ot = k € N with
0<a<l1,thenr=kand ax =0.

We then prove the first inequality. Observe that

[ fellera < N[@llp 1Fllcra < Crllfllera (16.42)

and let us first prove the result when (s+ ) — (r+ a) = k € N, which, with our
convention, implies & = 3. Note that

1
Vi fe = gll’s*fa

where
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We then deduce, as in (16.42), that

G
(N == TP

cro
and thus, combining with (16.42) and the fact that € < 1, we get the claim, namely

C
I felless = I felloreva < pgEY ) Il fllcre - (16.43)

The case (s+ ) — (r+ ) ¢ N, is obtained, from the above one, with the usual
interpolation argument. More precisely, we let kK € N be such that

r+k+a<s+B<r+k+1+o.
We then let A € [0, 1] be such that
s+B=A(r+k+1+a)+(1-A)(r+k+a)=r+k+a+A

and we apply Theorem 16.26 and (16.43) to get
A 1-4 ¢
Il felless < CillfellGriksia Hf£||cr+k.a < Py Il £l cre -

Step 3. We next establish the second inequality.

Step 3.1. We first prove it for £ + Y = 0, namely

If — fellco < CE | fll croc - (16.44)

We use the definition of the smoothing operator to get

fw-10= [ Ze()a-n-swla

nen \g
= |, @ (x—e2) = f(x)]dz.

Note that from the above identity, we immediately have (16.44) when r = 0. So from
now on, we assume that r > 1. We next set

F(u):f(xfu&‘z), MG[Ovl]v
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Combining the two identities with (16.41), we deduce that

x) = /0 1 / an)(z) [F<f> (u) —F(0) | dz du.

(r—1)!
We have therefore proved (16.44), since

I1f = fellco < C& | fllcra-

Step 3.2. We now discuss the general case ¢ + ¥ > 0. From Theorem 16.26, we
have

1f = fellerr < Cillf = felléfg I1f = f8||co o :

and since

1f = fellcra <ol fllcra
we have, appealing to (16.44), the claim

If = fellory < CEVHO=EED | £]] e

Step 4. We now prove the third inequality. We start by noting that

7f8 8n+1 /.n¢<x;y)f(y)dy

- [ (525 (522 ) roas

VO = (Vo) ad vem)=v(3),

Writing

we deduce that

d

%fs 7% *f — *‘I’s *f=— (”‘Pe +We) * f.
Observe that the kernel

x=noty

has essentially the same properties as the kernel ¢. The third inequality therefore
follows by the same argument as the one of Step 2.

Step 5. The fourth inequality follows as in Steps 3 and 4. Indeed, write

e -r@=[ 5o(2)ra-n -l

Rn 8/1
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and then, with the same notations as in Step 4, we obtain

Lre=— [ o) ey -r@iay

n 81‘! £
—1

=% X (2) [f (x—&2) = f(x)]dz.

et

Since x has essentially the same properties as ¢ (in particular, it satisfies (16.41)),
the argument of Step 3 then applies and we get the last inequality of the theorem.

Step 6. The last statement follows from the fact that the regularization is obtained
through convolution. O

In the same spirit, we have the following elementary result.

Proposition 16.45. Let r > 0 be an integer, 0 < a < <1, & >0, C > 0 and
Q C R" be a bounded open set. Let f € C"*(Q) and, for every € € (0,&), fe €
C"B(Q) verifying

C _
[fellens < =g and ||fe = fllera < CeP™2 (16.45)

Then f € C"“B)/2(Q) and
2[|fller

oH—ﬁ ’
0

£ lcr@rprz < I fller +2C +

Proof. First, notice that we trivially have, for every x,y € Q with |[x —y| > eg, that

2
V() = V£ )| < 2 fller < ”ﬁf\ yl(@h)2

&

Letx,y € Q with [x—y| € (0,&2) and define &, = |x —y|'/?. Noticing that & € (0, &)
and using (16.45), we deduce

IV f(x) = VF )
< \V'fsl( ) =V fe DI+ [V f(x) = V' fey (x) +V’f81 W)=Vl

Ix P +CeP ¥ x—y|% = 2C|x — y| @B/

81

which concludes the proof. O

16.8.2 A First Application

We now give a direct consequence of the above theorem. It has been used in
Chapter 10.
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Proposition 16.46. Ler 2 C R" be a bounded open Lipschitz set, r > 0 be an integer
and 0 < a < 1. Let f € C"* (Q) and ¢ > 0 be such that

1
- 3 f 0, S C.
7l
Then for every € > 0 small, there exists fo € C™ (5) with
i = meas Q.
Q Je

Moreover; there exists a constant C = C(c,r,Q) > 0 such that for every integer
0<t<randevery0<y< a,

C
[fellcrr <Cllifllcas  Nfellerry < = Il Fll s

C
Ife =ty <CIf =g, lfe = llersrr < 2 If =Tl

Ly

|

€

< Ce% 7,

cO.y

<Clf 1o, H]{;—l

o
Proof. We first find, by Theorem 16.43, a constant C; = C| (r,Q2)>0and g €
c (.Q) such that

Ci
||gs||ct.7 <( ||cht-7 and H88||cf+1.7 < e ||fHC’-Y7

lge = fllrr < Cre" =D | flla and g = fllco < Cr% || fllcoa
Since in the construction of g¢ in Step 1 of Theorem 16.43 we defined
e =Qexf
and since @ x 1 = 1, we also have

C
llge = Ulera = 1@ (f = Dllcrae < P ) 1f = Ul

llge = fllcry = l@ex (f = 1) = (f = Dllcry < Cls(r+a)7(t+y) 1f = Ulcre -
Set, for € small enough,

1 f
= — d = .
A«g cas Q o 26 an fg A«g 8¢

We claim that f, verifies all of the conclusions of the proposition. This will be
checked in Step 2, but before that, we need an estimate on A.
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Step 1 (estimate on A¢). First, note that since

18e = fllco < Cre®|| fllcow,

we have, for € small enough,
1

8e

<2c.

co
Thus, we immediately deduce that

e — 1] < 2¢llge — flco,
which implies
e =1 <Cff —1llco and |Ae — 1] < Ce®||f = 1| coa-

Step 2. Let us check all of the properties. We assume that € is small enough.

(i) We clearly have
f

~— —meas .
Q Je

(i1) We find
er“cw = Ae ||ge||cf~7 < CHchw-

(iii) Observe that

C
[ fell ety = Ae llgell iy < z 1l e -
(iv) Note that

Ife = Ulerr = Ife — e +8e — Uy < [Ae — 1] gellcrr + llge — Ul crr
<CGf = Uleo [ fllerr +Crllf = Ul
<G f=Ueo [T+ f = Ulea] +Collf = e

and hence

Ife = Ul <ClIf =l
(v) Similarly, we have
[ fe = Ulcs1y = |Ife — g + 8¢ — Ul 1y
<|Ae — 1] llgellcr+ry + [lge — Ul 1y

C1 Cl
< ?CZ 1f = Uleo I Allcrr + S I1f = Ulcer

C1 Cl
< 2 Clf e +1f =T+ I = er
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and hence c
Ife = Ulerssy < 2 1f = Ulerr-

(vi) We next obtain

‘ f B ‘ £t
chy Je

<G

L
fe

ctY

- — Je G|— —Jellct
ol =l 6| 2| 1= Rl

< Callfeller|lf = felleo + Call f = Llcrr-

Since, using (iv),

[ fellerllf = fellco < Cs(llfe = Uiy + DI = Hco + 1 fe = Tleo)

<Cslf—1llcr,
we get
IZ-1|  <cr-tjen
Je oy

(vii) Finally, note that

lfe = Fllcor = Ife — ge + 8e = fllcor < 1Ae = 1] l|gellco.r + llge = fllcor
< CGE | fllor +Cre® (| fllcoa < Cre* 7| fll o

and thus
’ L 1H < Cea
Je coy
This concludes the proof of the proposition. 0O

16.8.3 A Second Application

In Chapter 10 we used the following proposition.

Proposition 16.47. Let Q C R” be a bounded open Lipschitz set. Let s > r >t >0
be integers. Let 0 < o, B,y < | be such that

t+y<r+o<s+p.

Let f € Ch® (5) with f > 0 and ¢ > 0 be such that

1
., 1o
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Then for every € > 0 small, there exist fe € C™ (5) and a constant C = C(c,s,8)

such that
| re=] 1

[felles < WWHC”’

1fe = Fllerr < Ce"H O~ fllcnar + || f|[Eel

d C )
|57, = el +11a)
d T
|25 <cer Ot 4 11l
cr

Moreover, defining, for some € small enough, F : (0,€] x Q —RbyF(g,x) = fe(x),
we have F € C*((0,€] x Q).

Remark 16.48. The construction is universal in the sense of Remark 16.44.

Proof. We split the proof into three steps.

Step 1. Applying Theorem 16.43 to f, we get a constant C; = Cy(s,£2) and
he € C*(R2), € € (0,1], such that

C
lhelless < W”ﬂ\cwa (16.46)
e = fller < Crg =D fljcre, (16.47)
d Ci
— < — o .
‘ dShg ooh = eGP —(rra)+1 ||f||C ) (16.48)
d
‘ —hel| < Ce O £l ra (16.49)
de " ||cy
Moreover, defining H : (0,1] x Q — R by H(g,x) = he(x), we have
HeC”((0,1]x Q).
Using (16.47), there exists € < 1 such that for every € € (0,€],
inf
lfellco <2lfllco and infhe > mff. (16.50)

From now on, C;,C3, ... will be generic constants depending only on ¢, s and Q.
Step 2. For every € € (0,€], define
/ f

T
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We trivially have A € C*((0,€]). Moreover, using Step 1, we obtain the following

properties:

(1) Using (16.50), we obtain

2
(i1) Appealing to (16.47) and (16.50), we get

/Q(he_f) <2meas.Q||hs—fHCO

[1-A(e)| = /hg ~  measQ-infq f
Q

< GCe™ | flicre-

(iii) Since (16.49) and (16.50) hold, we find

(fr)

d
< || fl| co meas Hh

2=/

4 meas Q
co (meas Q) (infq f)?

de ¢
< Ge™ N fllcre

Step 3. Let us show that

fe=A(e)he, €€(0,¢],

has all of the required properties. First, we obviously have

/ Jfe= / S
Q Q
We now show the inequalities.

(i) Appealing to (16.46) and (16.51), we have

Cy
[ felless < WHfHC*“

which shows the first inequality.

(i1) Using (16.47), (16.51) and (16.52) and recalling that € < 1, we get

1fe = Fller < A(€)llhe = fllcr + 1= A llcr

< Csel =) £l cra + Cse" | f|2na

< G5 N flcra + |1 2]

Therefore, the second inequality is shown.

(16.51)

(16.52)

(16.53)
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(iii) Since (16.46), (16.48), (16.51) and (16.53) hold and recalling that € < 1, we
have

55|, <

ol

+[A (&)l ell s
csB

C@E -1
WWHC o+ W\\fﬂcra

Co
o —rai e+ I fl|2re],

which proves the third inequality.

(iv) Using (16.46), (16.49), (16.51) and (16.53) and recalling that € < 1, we
obtain

d

— A(E)|he .

Tz CWH (&)|[|hellcrr

< Gy eI £l cna 4 Cre™ | £l e £l crr

< Cy e || fllna + || e,

< A(e)

cy

d
|2 ]

which establishes the last inequality.

(v) Finally, we have that F : (0,€] x Q — R defined by F(€,x) = fe(x) verifies
F € C~((0,€] x ), which concludes the proof. O

16.9 Smoothing Operator for Differential Forms

The results presented here are in Bandyopadhyay and Dacorogna [8] and Dacorogna
and Kneuss [32] (cf. also [7]). We will use the following functional notations. Let
Q C R” be an open smooth set, r > 0 an integer and 0 < o < 1.

(i) We denote by C"** (Q; A*) the set of k-forms

g= Z gi1~~~ikdxi| A Adx,

1§i1 <-~-<ik§l’l

so that g;...;, € C"% (ﬁ) .
(ii) For x € dQ, we denote by v = v (x) the exterior unit normal to . By

VAgECTH (9 QAR

we mean that the tangential part of g is in C"%; more precisely, the (k+ 1)-form &
defined by

P (x) =V (x)Ag(x)
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is such that

D € (9 A,

We now approximate closed forms in C"* (£; A*) by smooth closed forms in a
precise way.

Theorem 16.49. Let 2 C R” be a bounded open smooth set and v be the exterior
unit normal. Let s > r >t >0 withs > 1 and 1 <k <n—1 be integers. Let 0 <

o, B,y < 1 be such that
r+y<r+o<s+p.

Let g€ C"® (E;Ak) with
dg=0inQ and vAgeCP (QQ;AkH).

Then for every € € (0, 1], there exist g € C* (.Q;Ak) nesp (ﬁ;Ak) and a constant
C=C(s,a,pB,7,2) > 0 such that

dge=0inQ, VAge=VAgondQ,

| teeiv) = [ (g for every w e st (2:"),

lge — &llerr(my < CEH OV gl ram) -

”gchs.ﬁ(E) < (4B —(r+a) ||8||cra( )+C||V/\gHC3/3 (0Q)>

< < g8l
de%||cop ()~ eCTRI-CrrapT 1lcra (@)
d

“ < Celrta)=(t+y)-1 e
Hdgge cr(Q) = ”gHCA ()

Moreover, defining T" : (0,1] x Q — A* by I'(€,x) = ge(x), then

Fec?((0.1)x @AY and Ik € C((0.1] < E:AY).

Remark 16.50. (i) The result is valid for k = n, as a direct consequence of Theo-
rem 16.43 (cf. Proposition 16.47 and Theorem 6.5). It holds for any Lipschitz set
and, moreover, it gives g¢ € C* (Q;A").

(ii) The result is, of course, trivially true for kK = 0.
(iii) We recall that /%7 (2; A*) and /4, (£2; A¥) are defined in Definition 6.1 and

if Q is contractible and since 1 <k <n—1, then

M (Q;A%) = A4 (Q:A%) = {0}
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(iv) We will prove not only that

/Q<ga;ll/>:/g<g;ll/> for every ¥ € 77 (Q;A%)

but also that there exist G and G¢ such that g — g = d (G, — G) with G; — G =0
on dQ.

(v) The construction is universal in the sense of Remark 16.44.

(vi) The constant C = C (s, ct, 3,7, ) is uniform in (@, B,¥) in the sense that if
O<a<aB,y<b<l,
then C = C (s,a,b,Q).

(vii) If r = 0, the condition dg = 0 is understood in the sense of distributions.

Before starting the proof of the theorem, we need the equivalent of the theorem,
but for functions.

Lemma 16.51. Let Q C R" be a bounded open smooth set. Let s > r >t > 0 be
integers. Let 0 < a, B,v < 1 be such that

t+y<r+o<s+p.

Let f € C"* (Q) NC*B (0Q). Then for every € € (0,1], there exist fe € C*(2)N
P (ﬁ) and a constant C = C (s, a, B, v,0) > 0 such that

fEZf on an

fe = o) < Celrra=t) 1 llera ()

C
Ifelless @) < ppEy ) 1 llera @) +Cllf lless a0) »

d
P2

Moreover, defining F : (0,1] x Q — R by F(&,x) = fe(x), then

C
< g ra M e (@)

o (@)

d
el

< Cg(r+(x)*(f+y)*1‘|f|| .
(@) (@)

FeCP((0,1]xQ) and %eC""((O,l]xﬁ).

Proof. For the sake of alleviating the notations, we will write in the present proof,
for example, ||g|crp instead of ||g]|crp g)- When we will be considering norms on

the boundary of £, we will keep the notation [|g|rs(50)-
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We first find (see Theorem 16.43) ge € C~ () and a constant C; = Cy(s,£)
such that
lge — fllonr < CLeV T | £l v,
C
lIgellcep < P EE) [1fllrer s

C
< m”f”cwa

~- 8¢
H de CsB

< eI £l .
cy

Hgs

Moreover, defining G : (0,1] x 2 — R by G(&,x) = ge(x), we have G € C*((0,1] x
Q). We then fix the boundary data as follows. Let f; € C*(2)NC*P (Q) be the
solution of
Afg Agg iIl Q, o A[fgfgg} :O in Q,
fe=f on dQ fe—ge=f—ge onadQ.

Using Schauder estimates (the classical estimates assume s > 2; however, they are
also valid when s = 0 or s = 1; see Agmon, Douglis and Nirenberg [3], Gilbarg
and Hormander [48], Lieberman [69, 70] and Widman [105]), there exists C, =
Ca(s,B,7,) such that

I fellcos < €2 [llgellcss +1flcsp e

1fe = gellcrr < CoIf — gellernan) < C2llf — gellerr -

Moreover, defining F : (0,1] x & — R by F(g,x) = fe(x), we have F € C*F((0,1] x
Q). Finally, noticing that dd—g f¢ verifies

d d d .
—fe=A-——ge i Al (fe—ge)| =0 inQ
Adgfs Adgge in 2, - [d&‘ (fs gs)} m 3z,

d d d

gele=0 oo | (fi-g)=-Tg ondQ

there exists C3 = C3(s, 8,7, ) such that

d d
- - <C:l|l— ,
H fe de™" |lcsp H Je ar ae® cr
and
JF —
— €C”((0,1] x Q).
s €CT(0.1]x @)
The combination of the properties of f; and g¢ gives the result. ]

We can now go back to the proof of Theorem 16.49.
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Proof. We adopt the same simplification in the notations of the norms as in
Lemma 16.51.

Step 1. We first show that we can find
Ge (@A) e (0AMTY),  he 0 (248 N (Q:AY),
and a constant C = C(s, @, B, ) such that
g=dG+h,
[Bllcra +11Gller1e < Cllgllera
Vlless +11Glcssr550) < € [llgllere + 1V Aglesp o) -

We proceed as follows. In the sequel, C,Cs, ... will denote generic constants de-
pending only on s, o, 3 and Q.

(1) We first find (solving the Dirichlet problem component by component) g(l) €
P (Q;Ak) nce (Q;Ak) verifying

‘We, moreover, have
1
<]

Since |v| = 1, we have, using (2.7),

1
e SCll8llcre and Hg< )HCS~I3 <CillvAgliessan) -

VA g(l) =VAg.
Observe also that since dg = 0, then, using Theorem 3.23, we have
vadg) =0.
The above argument is valid only if > 1; however, it still holds if r = 0 (recall

that s > 1) and if we use Proposition 7.6(iv). More precisely, we have for every
@ €C™(2;AF1),

' D) — [ (7050 — [ (1).
/tm<VAdg ;0) /Q<dg ;00) /(m<VAg ;00)
= [ _(vngse) = [ (z:550)=0.

Since ¢ is arbitrary, we have indeed proved that

\ /\dg(l) =0.
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Note that we also have
/ <dg(l);1//> =0 for every y € /7 (Q;AFT).
Q
This last identity follows from the fact that, using Theorem 3.28,

/Q<dg(l);w>:/39<W\g(l);w>:/ag (V/\g;l//}:/9<dg;w>:0.

If r =0, we proceed similarly but use Proposition 7.6(iv). More precisely, we obtain
/ (dgV:y) = / (vagh:y) =/ (vAgy) = / (g:8y) =0.
Ja Joga 9Q Jo

(i) We next solve

dg® = —dgV  inQ,
g =0 on dQ

and we have g?) € CP (€; A¥) . This is possible (according to Theorem 8.16) since
vAdg!") =0 and / <dg(l); I[/> =0 for every y € 7 (Q;AFT).
Q

We also have

2 2
Hg( )ch <Cgllcre and Hg( >Hcm, < GlvAglessaq)-

(ii1) We then set

and observe that g € C*P (Q;AX),
dg(3) =0 and v/\g<3) = v/\g(l) =VAg.
Apply the Hodge—Morrey decomposition and find (in view of Theorem 6.12)
GV e (@A), pP e (@iak)
and
h e %V(Q;Ak) cec” (E;Ak)
such that

g(3) — dG(3) + 5‘3(3) +h(3>
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Note that §8() = 0, due to the orthogonality of the decomposition and since
dg® =0and O e C,S\,H’ﬁ. Observe that

H 3
cro

[ s+

oo

G» ’

<G Hg<3)H < Cyllgllcra

cr+l.a cro

3)
g =6 Hg chﬁ < CGillvAgllessan)-

(iv) We now apply again the Hodge—Morrey decomposition (cf. Theorem 6.12)
to get
g—g® =dG" + 5ﬁ(4) +h®),

where
G(4) GC;+1’a(§;Ak_1), ‘3(4) c C;+1’a(§;/\k+1)
and
WY € 7 (Q:A%) C ¢ (2;A%).

Note that & ﬁ(4> = 0 since, using Theorem 3.28, the orthogonality of the decompo-
sition and the fact that dg = dg(3) =0, we have

/Q‘5[3(4)‘2:/Q<g_g(3);5ﬁ(4)>
[0 -0

The above argument is valid only if r > 1; however, it still holds if » = 0 by density
and by Proposition 7.6(iv). We also have, using Remark 6.4,

W ey <& 19 < Cola =8 o < gl
H s =65 oa SCo|g—87| ., = Crliglc

Similarly, as above, we get

o]

cr+la g C7 Hg||C’>a .

(v) Finally, we adjust G e C;H’a(ﬁ;Ak‘l) 50 as to have G0 € "% (Q;
A1) with G®) =0 on 9Q. If k = 1, then nothing is to be done; just choose G) =
GY. So we may assume that k > 2. The claim then follows from Lemma 8.11, since
we can find A € C"122 (E;Ak_z) such that

dA=-G% onadQ.
It then suffices to set

G® =GW +dA.
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We also have

HG<5>H < Gy HG(‘”H < Collgll e -

crtla crtla

(vi) We conclude that
G=G¥+G% and h=hnrB+p®
have all of the desired properties. Indeed,
Ge (@A) Nt (904K,
heC” (ﬁ;/\k) NI (.Q;Ak) and
dG =dG®) +dG®) = gB®) _p0) 4 g g0 _p) = gy _p*),
By construction, we deduce the estimates

1Al cra +[1Gllerira < Crollgllcra

llcss + G less1 3y < Cnt [Igllena + 1V Aglless 3]
since G = G®) on 9.
Step 2. Applying Lemma 16.51 on each component of G, we get
Ge € C™ (A1) NCs TP (@A),

as in the lemma (in particular, Ge = G on dQ). Setting g. = dG¢ + h, we have
the claim. Before checking the inequalities, observe that, by construction, using
Theorem 3.23,

dge=0inQ, VAg.=VAgondQ,

and since g¢ — g = d (G — G) with Ge — G = 0 on JdQ, we have, using Theo-
rem 3.28,

/ (ge—g:w)dx=0 forevery y € 7 (Q;A%).
Q

In the sequel, C;,C>,... will denote generic constants depending only on s, @, 3,7
and 2. The first inequality follows from

Ige —gllenr < C1[|Ge = Gllriny < Coe" A= HEN G|
<G 8(r+oc)—(t+y) ||g||cr~06 )

To obtain the second inequality, first remark that

Igellcss < Ca[llAllcss +[1Gellssis]

Cs
< SOTTB) - 1ra) [Gll¢re1.a +Cs (Hh”cs-ﬁ + HG||cs+1ﬁ(aQ))
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and hence, since 0 < € <1,

Ce
8ellcep < Py 18llcre +Co IV Agllesp a0 -

The third one comes from
‘ d Cg

d
—-Ge G~ TFa) T

de
Cy
= W HgHCna

<G
cs:B

—8e IGllcrera

de

cs+1.B €

and the last one follows from

d
7G£
de cr+ly

< Cpelrtite -yl [Gllcr+1.a

< Clzg(rJr(x)f(hLy)fl Hg”C’ﬂ )

<Cio
cty

d
dgge

Finally, defining I" : (0,1] x Q — A* by I"(e,x) = ge(x), we have that

rec?((0,1]x 2;A%)  and ‘3—1;60”((0,1]><§;A’<),

which concludes the proof. O



Part VI
Appendix



Chapter 17
Necessary Conditions

In the following proposition we gather some elementary necessary conditions (cf.
(8], [9] and [31]).

Proposition 17.1. Let Q C R” be a bounded open smooth set and ¢ € Diff’! (ﬁ; 0] (5)) .
Let1<k<n, f€C'(Q;A*) and g € C' (¢ () ;A*) be such that

¢ (g)=f inQ.
(i) Then for every x € £,
rank [g (¢ (x))] = rank [f (x)],

rank [dg (¢ (x))] = rank [df (+)].

In particular,
dg=0in@(Q) < df=0inQ.

(ii) If det Vo > 0 and n = mk, with m an integer, then

/f’"=/ g,
JQ 0(Q)

where f" = fN---ANf.
——
m times
(iii) If @ (x) = x for x € dQ, then
VAf=VAg ondQ,
where Vv is the exterior unit normal to £2.

Remark 17.2. (i) Recall that we have denoted by rank what is denoted by rank; in
Chapter 2. In fact, statement (i) remains true for all ranks and coranks of any order.
More precisely, for every x € 2,0 <s <kand 0 <t <n—k, we have

G. Csato et al., The Pullback Equation for Differential Forms, Progress in Nonlinear 407
Differential Equations and Their Applications 83, DOI 10.1007/978-0-8176-8313-9_17,
© Springer Science+Business Media, LLC 2012



408

rank; [g (¢ (x))] = rank; [f (x)],

corank; [g (¢ (x))] = corank, [f (x)],
andforevery 0 <s<k+land0<t<n—k—1,

rank, [dg (¢ (x))] = rank, [df (x)],

corank; [dg (¢ (x))] = corank, [df (x)].

We will establish these facts in the proof of the proposition.
(i1) Note that the equation

VAg=VAf ondQ

is equivalent to

where i : dQ — R" is the inclusion map (cf. Remark 3.22).

Proof. (i) The statements

rank; [¢ (¢ (x))] = rank; [f (x)],
corank; [g (¢ (x))] = corank; [f (x)]
come directly from Proposition 2.33(vi), whereas the claims
rank; [dg (¢ (x))] = rank; [df (x)],
corank; [dg (¢ (x))] = corank; [df (x)]
follow as above and from the observation that
¢ (g)=rf = ¢ (dg) =df.
(ii) Since f™ and g" are volume forms and
¢ (g") = 1",

we have the claim using the change of variables formula.

17 Necessary Conditions

(iii) Let 1 <i < n. Since ¢ (x) = x for x € dQ, we have, appealing to Theo-

rem 3.23, that
VA(dg'—dx') =0 ondQ.
Thus, invoking Theorem 2.42, there exist

$:0Q >R
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such that _ '
do'=dx'+¢;v ondQ.

Taking any index I € .7, , where
Ty ={I=(i1,...,ix) eNF 1 <iy <--- <ip <n},
we find

de' = (dx" + 91, v) Ao A (dx + gy v)
—dd +VvAD

for some (k — 1)-form & and hence
vAdQ' =vAdx.
We thus find, for x € dQ, that
VAF=VAQ*( _V/\ng x))do' _ng YV Ade!
—Zgz vAdx’—vAZg, dx’—vAg

This concludes the proof. O

For results on the pullback equation when the rank is not conserved, see Golubit-
sky and Tischler [53], Martinet [71], Pelletier [81], Roussarie [86] and Zhitomirskii
[108]; see also Chapter 11 for the case k = n.

Before stating another necessary condition, we need the next theorem (cf. Bandy-
opadhyay [7]). The proof closely follows the standard proofs of the classical
Poincaré lemma for contractible sets.

Theorem 17.3. Let 1 < k < n be integers, 2 C R" be an open set and F €
C([0,1] x 2;Q), F =F (t,x) = F; (x). Let g € C' (Q;A*) be closed. Then there
exists G € C! (Q;Ak’l) such that

Fi (g) - Fq (¢) = dG.
Moreover, if there exists a set N C Q such that
F(t,x)=x forevery (t,x) € [0,1] XN,
then G can be chosen such that it additionally satisfies
G(x)=0 foreveryx€N.

Remark 17.4. (1) Noticing that with exactly the same proof, the theorem is still valid
with Q replaced by 2, for Q bounded, we have the following special case (used in



410 17 Necessary Conditions

Theorem 14.10). Let F € C? ([0, 1] x ;) such that F (t,x) = x for every x € Q2
and every 7 € [0,1]. Then there exists G € C' (2;A*"") verifying

dG=F; (g)~Fj(g) inQ,
G=0 on 0.

(i1) The same proof shows thatif » > 1 is aninteger, 0 < o < 1, F € Crth% and
g € C"% then G isin C"%.

Proof. Step 1. We start with a preliminary step. Let
ip,i1 : 2 —-RxQ
be defined by
io(x) =(0,x) and i(x)=(1,x).
Hence, we have, in Q,
Fo=Foiy and Fy=Foi.
Note that any @ € C' ([0, 1] x Q; A% (R""1)) can be written as

o(t,x)=Y aft.x)dx'+ Y by(t,x)dt Adx, 17.1)

165% JEf%(,]

where the a7,b; € C' ([0,1] x Q) are uniquely determined. We now define for 1 <
k < n+ 1 the maps

Li: CO([0,1] x @;AF (R™1)) — (@A T (R"))
by 1
L(o)x) =Y </0 b;(t,x)dt) dx'.

Jeﬂk,]

We claim that for every @ € C'([0,1] x 2;A* (R"™1)), the following identity
holds:

i (0) —ig(®) = Ly (drx0) + deLy (@)  in Q. (17.2)
To prove this, note that
8a1
dio=Y (dwaj+—=-dt)ndx'+ Y dibyAdindx
1€, ot JET
k k—1

9
=) (dxaI—i—;tldt) Ndx' = Y di Adiby NdX

e 9, JeT_
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Therefore,
861[ 1
Lisi(d0) = Y / Shir) ! - / dyby (1, x)dt | Adx’
1€, \/0 J€7k I
= Z(alozl—aloto d)g Z (/ b;txdt)/\dxj
1€, JeET

— Z(aloil—aloio)dxl—dx< (/ bjtxdt>/\dx’>
1€, Je€Tk
=ij(0) —ip(0) — diL(®),
which proves (17.2).

Step 2. We claim that
G =L (F"(g))

has all of the desired properties. Let @ = F* (g). Since g is closed in £, we get
di x0 = di .(F*(g)) = F*(dg) = 0.
We therefore obtain

Fi'(g)—Fy(g) = i1 (F7(8)) —ip (F"(g)) = i (@) —ip (@)
= Lk+| (dt7x(i)) +de]<((D) = dek((})) =dG.

The first part of the theorem is therefore proved. It remains to show that if F (¢,x0) =
xo for every ¢ € [0, 1], then the above G satisfies G(xp) = 0. First, note that for every
t €10,1] and every 1 <i <n, we have

JdF!

W(hxo)zo

and hence

Fi

dF' (t,x0) = 8;; (t,x0 dt—i—z (9 (t,x0)dx’ = Z 7, (t,x0) dx’.

‘We therefore deduce that

F*(g) (t,x0) Z g1 (F (t,x0))dF! = Z g1 (x0)dF! = Z ay (t,x0)dx’
Ie 7, Ie 1€,

for some appropriate a; and, hence, the corresponding by (¢, x¢) in (17.1) is zero. We
thus obtain, by definition of L , that

G(xo) = Ly (F" (g))(x0) = 0.

This concludes the proof of the theorem. ]
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As a corollary, we obtain the following necessary condition, whenever a solution
of the pullback equation is achieved by the flow method.

Corollary 17.5. Let 1 < k < n be integers, 2 C R" be an open set and
QE c? ([O, 1] x 5;5) , 0 =0(t,x) = @ (x).
Let f,g €C! (ﬁ;Ak) be closed. Assume that

oi()=f and @=id inQ,
o =id ondQ forevery0<t<I.

Then for every y € C* (E;Ak) with 8 = 0 in Q, the following equality holds true:

/Q<g;x>=/g<f;x>-

Proof. In view of Remark 17.4, there exists G € C' (2;A*"") verifying

dG=¢;(g)—¢;(g)=f—g inQ,
G=0 on dQ.

Therefore, by partial integration, we obtain

| -gn)= [ WG = [ Gsn) =0

This concludes the proof of the corollary. 0O



Chapter 18
An Abstract Fixed Point Theorem

The following theorem is particularly useful when dealing with nonlinear problems,
once good estimates are known for the linearized problem. We give it under a gen-
eral form, because we have used it this way in Theorems 14.1 and 14.10. However,
in many instances, Corollary 18.2 is amply sufficient. Our theorem will lean on the
following hypotheses.

(Hyy) Let X; D X, be Banach spaces and ¥; D ¥, be normed spaces such that the
following property holds: If

uvimt and |luy||x, <r,

then u € X, and
l[ullx, <r.

(HL) Let L: X, — Y be such that there exist a linear right inverse operator L
Y> — X, (namely LL~' =id on Y») and k,k; > 0 such that for every f € Y»,

1L fllx, < Kill flly,,  i=1,2.
(Hp) There exists p > 0 such that
Q:Bp={ueX:|lulx, <p}t—"
0(0) = 0 and for every u,v € B, , the following two inequalities hold:
10(u) = QW) Iy < er(lfullx, [[vllx)llu—vllx,, (18.1)

12Oy, < ca(IVllxy s IVl]x,) (18.2)
where ¢, ¢; : [0,400) X [0,+00) — [0, +00) are separately increasing.

Theorem 18.1 (Fixed point theorem). Let X1,X5,Y1,Y2,L and Q satisfy the hy-
potheses (Hxy) , (Hr) and (Hp) . Then for every f € Y» verifying

2kl flly, <p and  2kici (k| flly 2kl fllv) < 1, (18.3)
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414 18 An Abstract Fixed Point Theorem

22k | fln .2k fllv,) < 1 f Iy, (18.4)
there exists u € Bp C Xp such that

Lu=Q@u)+f and |ullx, <2kl fly,i=1,2. (18.5)

i

We have as an immediate consequence of the theorem the following result.

Corollary 18.2. Let X be a Banach space and Y a normed space. Let L : X — Y be
such that there exist a linear right inverse operator L' : Y — X (namely LL™' =id
onY)and k > 0 such that

L™ Fllx < KAl -

Let p > 0 and
Q:By={ucX:|ulx<p}—7Y,

with Q(0) = 0 and, for every u,v € By,
1Q(u) = QW) Iy < c(llullx, [Ivlx)llu—vlix
and where c : [0,40) X [0,+0) — [0, +o0) is separately increasing. If
2k||flly <p and  2ke(2k|flly, 2k flly) <1,
then there exists u € By C X such that
Lu=Q)+f and lullx < 2K fll.

We now turn to the proof of Theorem 18.1.

Proof. We set

‘We next define
B={ueXy:|lullx, <2kl fllyi=12}.

We endow B with || - ||x, norm; the property (Hyy ) ensures that B is closed. We now
want to show that L~'N : B— B is a contraction mapping (cf. Claims 1 and 2 below).
Applying the Banach fixed point theorem we will have indeed found a solution
verifying (18.5), since LL™! =id.

Claim 1. Let us first show that L~!N is a contraction on B. To show this, let
u,v € B and use (18.1) and (18.3) to get that

IL7'N(u) = L'N)|lx, < ki[IN(u) =Ny, = ki[|Q(u) — Q) v,
< krer([|ullx,, [1v[]x, )l —vllx,
< ki1 (k|| fllvy 2k | £ 1) e = vIx,

1
< 3 lu=vils
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Claim 2. We next show L~ 'N : B — B is well defined. First, note that
IL7INO)lx, < KilIN(O) Iy, = ki £1ly, -
Therefore, using Claim 1, we obtain
IL7IN ) 1, < IL7'N () = L7'N(O)[|x, + [IL7'N(0)|x,

1
< 5 llellxy kil fllvy < 2kallflly -
It remains to show that
IZ™'N (u)llx, < 2ka| £y, -
Using (18.2), we have
IL'N(u)|x, < kaIN() |y, < KallQ(w)lly, + k2l £,

<kaea ([lullx, lullx,) + ka2l £y,
<k [e2(2k1 ([ £y, 2k2 | f1vy) + 11 £l

and hence, appealing to (18.4),

IL='NW)llx, < k2 [lIfllv, + 1 fllv2] = 2k2 1 £1ly, -

This concludes the proof of Claim 2 and thus of the theorem. ]

For the sake of illustration, we give here an academic example loosely related to
our problem.

Example 18.3. Let 2 C R” be a bounded contractible smooth set and 0 < o < 1.
Let r > 1 and 1 < k < n—2 be integers. Consider the form w : R" — A¥ where

w= Z widx!,

Ie 9

where .7, is the set of ordered k-indices. Let Iy,... . [x1 € T, then there exists
€ > 0 such that for every f € C"* (2; A*!) with

Ifllcre <&, df=0 and VvAf=0 ondQ,
there exists w € C"+1:® (E;Ak) satisfying
dw—]:;:\:dw]r —f inQ,
v; =0 on dQ.
The proof immediately follows from Corollary 18.2 if we set
X ={we*(Q;A") :w=00n00Q},

Y={feC*(QA"") :df =0inQand vAf =0o0n R},
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L to be the operator constructed in Theorem 8.16 (Lw = f being equivalent to
dw=f)and

Since k > 1, the following estimate holds:

1Q(u) = QW) Iy < e(llullx, [[vllx) [l —=vlx,

with
c(s,t) =C(s+1),

where C is a constant given using Theorem 16.28.



Chapter 19
Degree Theory

19.1 Definition and Main Properties

We begin recalling some results on the topological degree (see, e.g., [43] or [88] for
further details). We start by defining the degree for C! maps.

Definition 19.1. Let Q be a bounded open set in R”, ¢ € C!(Q;R") and
Zy={x€ Q:detVo(x) =0}.
For every p € R" such that

pEe(0Q)Ue(Zy),

we define the integer deg(¢, Q, p) as

deg(p,Q,p)= )  sign(detVe(x)),
xeQ:@(x)=p

with the convention deg(¢,Q,p) =0if {x€ Q : p(x) = p} = 0.

Remark 19.2. The fact that p ¢ ¢(Z,) ensures that the set {¢~'(p)} is finite and
therefore, deg(¢, 2, p) is well defined.

It is possible to extend the definition of deg(¢, 2, p) to ¢ € C°(Q;R") and p ¢
0(dQ). Keeping the same notation, this extension of the degree has the following
properties.

Theorem 19.3. Let Q be a bounded open set in R", ¢,y € CO%(Q;R") and H <
C([0,1] x Q;R™). The following properties are then verified:
(i) If p¢ H(t,x) forevery 0 <t <1 and x € dQ, then

deg(H(Ov')v'va) = deg(H(l,-),.Q,p).
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In particular, if ¢ =y on dQ and p ¢ @(9Q), then (choosing H(t,x) = (1 —
Dex) +1y(x)

deg(9,Q,p) = deg(y,Q,p).

(ii) If p ¢ ©(9Q) is such that deg(@, Q, p) # 0, then there exists x € Q such that
¢(x) = p-

(iii) Let p & @(dQ). Then for every p' in the connected component of (¢(9))¢
containing p,

deg(9,Q, p) = deg(9,2.p").
We have the following immediate corollary.

Corollary 19.4. Let Q be a bounded open set in R" and ¢ € C°(Q;R") such that
o =id on dQ. Then

1 ifpeQ
0 = _ 19.
deg(,Q,p) {0 e (19.1)
and
P(R)DQ and ¢(Q)DQ. (19.2)

Proof. Noticing that

1 ifpeQ

deg(id, Q,p) = {o ifp¢0

we immediately obtain (19.1) and (19.2) using Theorems 19.3(i) and 19.3(ii). 0O

Finally we recall the Sard theorem and the invariance of domain theorem (see,
e.g., [43)).

Theorem 19.5 (Sard theorem). Let © be a bounded open Lipschitz set in R" and
¢ € C'(Q;R"). Then

meas(¢(Zy)) =0.

Theorem 19.6 (Invariance of domain theorem). Let 2 be a bounded open set in
R" and ¢ € C°(Q;R") be a one-to-one map. Then

©(Q)isopen and @(dQ2)=3(p(Q)).

19.2 General Change of Variables Formula

First, we recall the classic change of variables formula.
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Theorem 19.7. Let 2 and U be two bounded open sets in R", ¢ € Diff! (2:;U) and
g € C%(Q). Then the following formula holds:

/Ug(y)dy:/(p(m y)dy = /g )| det Vo (x)|dx.

We now give a generalization of the above theorem whose proof can be found,
for example, in [43, Theorem 5.27].

Theorem 19.8. Let Q be a bounded open Lipschitz set in R". Let ¢ € C'(Q;R")
and g € CO(R”). Then the following formula holds:

/ g(y)deg(@,2,y)dy = /g ))det Vo (x) dx

Remark 19.9. (i) Although deg(¢@,,y) is not defined for y € ¢(d€), the left-hand
side makes sense since meas (¢(d€Q)) = 0. This last equality holds due to the fact
that @ is Lipschitz and meas (dQ) =

(i) If ¢ € Diff' (Q; ¢(Q)) then, by definition of deg,

sign(detVe) ifye€ @ (Q)
0 ifyge@)

Therefore, Theorem 19.8 is indeed a generalization of Theorem 19.7.
(iii) If @ = id on €2, then, by Corollary 19.4, we have that

deg(,Q,y) = {

dea(0.Q.y) 1 ifyeQ
and, thus,
/g /g ))detVo(x)dx (19.3)
Q

As direct consequence we have the following result (cf. also Theorem 8.35
in [28]).

Corollary 19.10. Let Q be a bounded open Lipschitz set in R" and u € C'(Q;R"),
withu =0 on dQ. Then

/ det(I + Vu) = meas Q,
Q

where I stands for the identity matrix in R"*". As a consequence, if ¢ € Diff! (2:;Q),
with @ =id on dQ, then B
detVo >0 in Q.

Proof. Letting g =1 and ¢ = id +u, we have the result applying the identity (19.3).
O
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19.3 Local and Global Invertibility

As an application of these above properties we have the following results. We first
give a sufficient condition for a map to be a homeomorphism.

Lemma 19.11. Let Q be a bounded open set in R" and ¢ € C%(Q;R") be one-to-
one such that @ =id on dQ. Then ¢ € Hom(Q2;Q).

Proof. 1t can be easily seen, working on each connected component of 2, that we
can assume (2 to be connected. By the boundedness of €2 and the continuity of ¢,
we have that ¢(F) is closed for every closed set F in R” such that F C Q. Since ¢
is one-to-one, we obtain

¢ € Hom(Q;9(Q)).

Let us prove that -
(P(Q) =0,

which will end the proof. Due to (19.2), it is enough to prove that
p(Q)Cc Q. (19.4)

By Theorem 19.6, we have that ¢(dQ) = d(@(£)). Thus, since ¢ =id on d€ and
¢ is one-to-one, we get

20 =3(p(Q)) and @(Q)NIQ =0. (19.5)

Suppose by contradiction that there exists x €  such that ¢(x) € (Q)°. Since ¢
is the identity map on dQ, we have that x € Q. Let us now consider y € Q such
that @(y) € Q (such a y surely exists by (19.2)) and let ¢ € C°([0, 1];2) be a path
connecting x and y. Then, by continuity, there exists 0 < 7 < 1 such that @(c(z)) €
0, contradicting (19.5), which concludes the proof. 0O

We now provide a sufficient condition for the invertibility of functions in C' (Q;R").
A similar result can be found in Meisters and Olech [75].

Theorem 19.12. Let Q be a bounded open set in R" and let ¢ € C'(Q;R") be such

that o
{detV(p >0 inQ,

o=id on Q.

Then ¢ € Diff' (Q; Q). Moreover; if ¢ > 0 is such that

then there exists a constant C = C (¢, ) > 0 such that

1

—_— \Y% <
5 o7l <

H‘P71HC| <Cllollc -
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Remark 19.13. Under the weaker hypotheses, detVo > 0in Q, ¢ = id on QQ 2 and
Z, N Q does not have accumulation points, it can be proved that ¢ € C'(Q;Q2)N
Hom(Q;Q); see [60].
Proof. We divide the proof into three steps.

Step 1. We first prove that ¢(Q) = Q. Using (19.2), we know that

0(Q2)D Q.

Let us show the reverse inclusion (i.e., ¢(£2) C £). We first prove that () C Q
and then conclude. By contradiction, let x € Q be such that ¢(x) ¢ 2. By definition
of the degree, we obtain

0< )  sign(detVo(y)) = deg(9,2,9(x)),
yEQ:0(y)=0(x)

whereas, using (19.1), we have

deg(@, 2, 9(x)) =0,

which is absurd.

To conclude, suppose that x € Q and @(x) € Q\ Q = dQ. By the inverse function
theorem, which can be applied since detV@(x) > 0, there exists a neighborhood of
x such that the restriction of ¢ on this set is one-to-one and onto a neighborhood of
@(x) € dQ. In particular, this implies the existence of y € £ such that ¢(y) ¢ Q,
which contradicts what has just been proved.

Step 2. Since ¢(2) = Q and ¢ = id on 2, we have that
P(Q)=2Q.

Moreover, ¢(dQ2)N@(Q) =32 NQ = 0. Thus, it suffices to show that the restric-
tion of ¢ to Q is one-to-one to conclude. We reason by contradiction. We assume
that there exists p € Q which is the image of at least two elements in Q. By defini-
tion of the degree, we obtain

2< Y sign(detVo(x)) = deg(9,9Q.p),
xX€Q:¢(x)=p

whereas, using (19.1), we have
deg((P)'Q’p) = 17

which is the desired contradiction.
Step 3. We finally establish the estimate. We clearly have

o7 lco = ll9llco = llidlco -

We also have

V9"l = |01 o8] o =701 -
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Since . .
(V )—1 _ (ad.] V(P)
detVeo

3

we immediately get that

Voo <CIIVOllco -

This finishes the proof. O

We also have a necessary condition for ¢ to be a C' homeomorphism.

Proposition 19.14. Let Q C R" be a bounded open set in R" and ¢ € C @Q;Q)n
Hom(Q;Q), with ¢ =id on Q. Then

detVo(x) >0 inQ and int(Zy)=0.

Proof. We split the proof into two steps.

Step 1. We show that detV¢ > 0. By contradiction, suppose that there exists
y € Q such that detVo(y) < 0. By continuity, without loss of generality, we can
assume that y € Q. In particular, y ¢ Zy and since @ is one-to-one, we obtain

P() & @(Zp) U@(9Q) = ¢(Zp) UIQ.

By definition of deg(¢, 2, ¢(y)) and by (19.1), we have

1=deg(@,2,0(y))= )  sign(detVe(z)).
2:9(2)=0(y)

Since sign(detVe(y)) = —1, the above equality implies that ¢~!(¢(y)) is not a
singleton, which is absurd.

Step 2. We prove that int(Z,) = 0. By contradiction, suppose that int(Zy) # 0.
By continuity of ¢!, we have that

¢ (int(Zp)) = (97') "' (int(Zy)) # 0
and (¢~')~! (int(Zy)) is open. Therefore,

int (¢ (Zy)) # 0,

contradicting the Sard theorem. O

We conclude with some other necessary conditions.

Proposition 19.15. Let Q be a bounded open set in R" and let ¢ € C'(Q;R") be
such that

detVo >0 inQ,
(19.6)

o=id ondQ.
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Then
int(p(Q)) = Q. (19.7)
Moreover, if
int(Z(p) =0, (19.8)
then
(p(ﬁ) =Q. (19.9)

Finally, if (19.8) does not hold, then (19.9) may fail for some ¢ € C'(Q;R").

Proof. We divide the proof into three steps.
Step 1. We already know that () D Q and thus

int(p(Q)) D Q.
Let us show the reverse inclusion. We proceed by contradiction and assume that
int(@(2))NQ°£0;
thus, since int(¢@(£2)) is open,
int(9(2))N (Q)° #0.
Therefore, there exist y and € > 0 such that

c

Be (y) Cint(9(2))N (Q)° C o(Q)N (2)°. (19.10)

We claim that
0 (2\Zy) C Q. (19.11)

Indeed, lety € ¢ (22 \ Zy) and let us show thaty € Q. Since y € ¢ (2 \ Zy) , we can
find x € Q\ Zy such that y = ¢ (x).. Since x ¢ Z, and (19.6) holds, we deduce that

detVo (x) > 0.
We then proceed exactly as in Step 1 of the proof of Theorem 19.12 to get that
y=0(x)eQ.

We next combine (19.10) and (19.11) to find
Be(y) € 0(2)N (@) € [0 (2\2) 0 (@) L[ (2) N ()]

C [Q N (5)‘} U {(p (Zo)N (5)0} = (Zp)N(Q)

and, thus,
B&' (y) - (p(Z(P)a

contradicting the Sard theorem.
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Step 2. Let us next prove that (19.8) implies (19.9). Since ¢ = id on dQ and
(19.2) holds, it is enough to prove that

0(Q)cC Q.

By Step 1, we already know that ¢ (.Q \Z<P) C Q. Therefore, it remains to establish
that

¢ (ZpnQ) C Q.
So let x € Zy N £2; then (using (19.8)) there exists a sequence xy € 2 \Zq, such that
xy — x. Since (19.11) holds, we deduce that @(x,) € £ and, hence, ¢(x) € Q. We
therefore have the claim.

Step 3. We show that (19.9) may fail if (19.8) does not hold. Set 2 = B; be the
unit ball in R? and consider

@(x1,x2) = p (] +3) (x1,x2) + 1 (x5 +3) (x1,0),

where
p € C=([0,1];[0,%)), n € C=([0,1];[0,%)),
p=0in[0,1/2] p=1in[3/4,1], and suppn C (0,1/2),
p'=0in[0,1] n(1/4) =4.

Let us verify the hypotheses of the proposition. Obviously, ¢ € C'(B;;R”") and
supp(@ —id) C By . Let us now check that detV¢ > 0. We separately consider two
cases.

Case 1 (1/2 < |x|* < 1). A straightforward computation implies that
det Vo (x) = (2xip’ +p) (250" + p) — 4xix3p"
= 4xigp” +2|x[* pp’ + p* — dxfx3p”
=2|xpp'+p? > 0.

Case 2 (0 < |x|* < 1/2). By definition of ¢, it immediately follows that det V¢ = 0.
Thus, detVe > 0.

Since

(P(1/270) = 77(1/4)(1/2a0) = (2,0) ¢§1>

we have the claim and this concludes the proof of the proposition. ]
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Notations

General Notations

- |-l and (-;-) denote the usual norm and scalar product in R".

- For E C R", E, respectively dE, intE, measE, diamE and E° stands for the closure, respec-
tively the boundary, the interior, the Lebesgue measure, the diameter and the complement of E.

- Be(x)={yeR":|y—x| < e} and B¢ = B¢(0).

- For E C R" we denote
1 ifxeE
1 (x) =

0  otherwise.

- Forx=(x1,...,%,) € R", welet¥ = (x,...,x%,-1) € R""L.
- ForA,BCR", we let

A+B={x=a+b:acA and beB}.

- The vector space spanned by E is denoted by spanE.
- The support of a function f is denoted by supp f.
- R™*" s the set of matrices with m rows and n columns. For A € R™*", we write its entries as

i\ 1<i<m

A= (Alj)lgjgn'

- A’ is the transpose of A.

- GL(n), respectively O(n), stands for set of invertible, respectively orthogonal, n X n matrices.

- For an x n matrix A, we denote by detA the determinant of A and adjA stands for the adjugate
matrix of A.

- The dimension of a vector space X is denoted dimX.

(1) =

- For two integers i and j, the Kronecker symbol is denoted by &;; abbreviating

5,-,_{0 if it

- Forintegers 0 < s <n, we let

1 if i=j.
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432 Notations

Exterior Algebra

- For an integer k > 1, Sym(k) stands for the set of permutations of {1,...,k}. For o € Sym(k),
we denote by sign(c) € {—1,1} the sign of ©.

- The set of exterior k-forms over R” is denoted by A¥(R").
- stands for {(i1,...,ix) e N1 1 <ij <--- < i <n}.

- The A, respectively 1 and * operator stands for the exterior product, respectively the interior
product and Hodge star operator; see Section 2.1.

- The sign above a term in a sequence of indices, forms, or coefficients means that the corre-
sponding term is omitted; for example,

el A2 ned =el Net
- For an integer m and an exterior form f, we write
fr=fAAS
———
m times

- For a matrix A and an exterior form f, A*(f) stands for the pullback of f by A; see Section 2.1.

- For f € AK(R"), we let
Af={ucA'(R"):3ge A" (R") with g.f=u}.

- For an integer s, Anhx(f,s), respectively Anh,(f,s), stands for the space of exterior, respec-
tively interior, annihilators of order s of f (see Section 2.2).

- The rank, respectively the corank, of order s of f is denoted by rank;|f], respectively corank;|f].

- The exterior, respectively interior, matrix of order s associated to f is given by fm, respectively
S s (see Notation 2.30).

- Except in Chapter 2, we write, in order not to burden the notations, rank|[f] for rank; [f] and f
forf ;.

Differential Forms

- For a function ¢ : R” — R" and I € ., we denote (cf. Definition 3.8),
do' =do' A---Nd @ik
- For the notations L” (.Q;Ak), respectively W"” (.Q;Ak)7 cre (.Q;Ak); see Chapter 3.
- For the spaces with vanishing tangential component C3* (2;A*) and Wy (2;AF) and the
spaces with vanishing normal component Clr\‘,a (5;/\") and W[,‘p (_Q;Ak), see Definition 3.24.
- For the set of harmonic fields jf(.Q;Ak), I (.Q;Ak) and %(Q;Ak) , see Definition 6.1.
- For a sufficiently smooth open set 2, v stands for the exterior unit normal of Q.

- The operator d, respectively § and A, stands for the exterior derivative, respectively the interior
derivative and the Laplacian operator for forms; see Chapter 3.
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- The 2-form w,, denotes the standard symplectic 2-form of rank 2m; that is,

m
Oy = dem—l A dx?

i=1
- Foramap ¢ and a differential form f, we denote ¢*(f) the pullback of f by ¢. For the notation
©“(f), see Theorem 3.10.

- For a map u and a differential form f, %, f stands for the Lie derivative of f with respect to u;
see Notation 4.1. For the notations L* and K“, see Definition 5.1.

Functions Spaces

- For 1< p <o andr>0, W’ denote Sobolev spaces, namely the spaces of L” functions,
whose weak partial derivatives of order up to r exist and are all in L”. We make the convention
Wor =rr.

- For the definition of the spaces C", C}, C"%, C;%, €%, C* and C7 and the norms | - ||,
|- llcre, and || -[|cre, see Section 16.1.

- The set of diffeomorphisms of class C"* from U onto V is denoted by Diff** (U;V'). The set of
homeomorphisms of class C%* from U onto V is denoted by Hom®%*(U; V).

- For a bounded open set 2 and f € C%(Q), we write

Fr=f((0,2) and F~ = ((~e,0)).
Forx € F*,

in denotes the connected component of F= containing x.

- For a function f, D*f, respectively V' f and d f/dV, stands for the derivative of f with respect
to the multi-index a, respectively the set of derivatives of order r and the derivative of f in the
direction v. <7, stands for the set of multi-indices of order r. Sometimes the gradient Vf of a
function f is also denoted by grad f.

- For a vector field u, divu denotes the divergence of u. For the notation curl® u; see Notation 9.1.

- For a closed set F, the function d*(x) = d*(x; F) is a regularization of the usual distance func-
tion d(x) = d(x; F) from x to F (see Theorem 16.21).
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Admissible boundary coordinate system, 80,
82, 83, 85, 131, 152
definition, 80

Betti numbers, 119

Cartan formula, 92, 103, 105, 262
Cartan lemma, 33, 58, 64, 69
Contractible set, 119, 123, 128, 138, 142, 147,
149, 156, 157, 159, 160, 181, 182, 197,
286, 293, 397, 409, 415
definition, 121
Corank of order s, definition, 48

Dacorogna—Kneuss theorem, 63
Dacorogna—Moser theorem, 191, 192
Darboux theorem

for 1-forms, 271

for 2-forms, 272, 286

for degenerate 2-forms, 290
Divergence theorem, 180

Exterior annihilator, definition, 46
Exterior derivative, definition, 76
Exterior form, definition, 34
Exterior product, definition, 34

Fourier transform, 387
Frobenius theorem, 41, 92, 290

Gaffney inequality, 101, 102, 113-115, 118,
123,125

Gauss—Green theorem, 87, 88

Gronwall lemma, 258

Harmonic field, 77, 286
definition, 121

Hodge star operator, definition, 37

Hodge-Morrey decomposition, 101, 113, 124,
127, 131, 139, 144, 145, 147, 150, 179,
180, 401, 402

Holder continuous function, definition, 336

Integration by parts formula, 88
Interior annihilator, definition, 46
Interior derivative, definition, 76
Interior product, definition, 37
Involutive family, 94

definition, 92

Lie bracket, 92

Lie derivative, 91, 103, 261
Lipschitz continuous function, 337
Lipschitz set, definition, 338

Mc Shane lemma, 343
Morrey imbedding theorem, 122, 150
Moser theorem, 195

Normal component, definition, 79

Poincaré lemma, 124, 147, 148, 156, 157, 161,
162, 180, 409
Prime form, 57, 58, 60, 67
definition, 57
Pullback of a differential form, definition, 77
Pullback of an exterior form, definition, 39

Rank of order s, definition, 48
Riesz theorem, 123

Sard theorem, 418, 422, 423

Scalar product of forms, definition, 36
Schauder estimates, 399
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Schwartz space, 387 Tangential component, definition, 79
Second fundamental form, 110, 112 Tietze ex.te.ns.ion theorem, 343
Simply connected set, 121, 123, 270, 325 Totally divisible form, 59, 329

. definition, 57
Smooth set, definition, 338

Standard symplectic form of rank 2m, 44, 286,  Vandermonde matrix, 361
290

Star-shaped set, 150 Weyl lemma, 122, 130
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