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Differential Geometry via Differential Forms

In this chapter we present a brief introduction to some basic concepts of
differential geometry. As the reader will see, the facility we have developed
with differential forms will greatly aid us in this endeavor.

8.1 Covariant derivatives

In first-year calculus we learn how to measure the rate of change of a real-
valued function of a single variable by taking its derivative. Later, we learn
how to vary a real-valued function of several variables in the direction of
a particular vector, thereby leading us to the definition of the directional
derivative. Here, we go one step further and vary a vector field in the direction
of a vector, leading us to the idea of a covariant derivative.

We will use a vector field on R
2 for illustrative purposes, but the reader

should remain aware that there is nothing special about two dimensions in
this section. Suppose W is a vector field on R

2 and α(t) is a parameterization
of a curve.

At t = 0, we compute d
dtW(α(t)) (see Figure 8.1). Geometrically, what

is happening is the following. As we walk along the curve α(t) we watch the
vector field W. From our perspective, we can think of ourselves as being
stationary and the vector W(α(t)) as changing. The tip of this vector traces
out a parameterized curve in TR2. Differentiating then gives a tangent vector
U to this curve, which is precisely d

dtW(α(t)) (see Figure 8.2).

Example 53. Suppose W = 〈xy2, x+ y〉 and α(t) = (t2, t). Then

W(α(t)) = 〈t4, t2 + t〉

and, hence,
d

dt
W(α(t))

∣∣∣∣
t=0

= 〈4t3, 2t+ 1〉∣∣
t=0

= 〈0, 1〉.
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U
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Fig. 8.1. The derivative of a vector field W at the point p = α(0), in the direction
of the vector α′(0), is the vector U .

W(α(−ε))

W(α(0))

W(α(+ε))

U

Fig. 8.2. Superimposing vectors from the field W creates a parameterized curve.
The derivative vector U is then a tangent vector to this curve.

Abstractly, W is really a function from R
2 to TR2, so we can write W =

〈w1(x, y), w2(x, y)〉. The parameterization α : R
1 → R

2 can be written as
α(t) = (α1(t), α2(t)). So, in general, we can use the chain rule to obtain

d

dt
W(α(t))

∣∣∣∣
t=0

=
d

dt
〈w1(α(t)), w2(α(t))〉

∣∣∣∣
t=0

=

〈
dw1(α(t))

dt
,
dw2(α(t))

dt

〉∣∣∣∣
t=0

=

〈
∂w1

∂x

dα1

dt
+
∂w1

∂y

dα2

dt
,
∂w2

∂x

dα1

dt
+
∂w2

∂y

dα2

dt

〉∣∣∣∣
t=0

=

〈
∂w1

∂x
α′
1(0) +

∂w1

∂y
α′
2(0),

∂w2

∂x
α′
1(0) +

∂w2

∂y
α′
2(0)

〉

=

[
∂w1

∂x
∂w1

∂y
∂w2

∂x
∂w2

∂y

](
α′
1(0)
α′
2(0)

)
.

To make this a bit easier to write, we define the following matrix:
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∇W =

[
∂w1

∂x
∂w1

∂y
∂w2

∂x
∂w2

∂y

]
.

Then we have
d

dt
W(α(t))

∣∣∣∣
t=0

= [∇W]α′(0).

Example 54. We continue with the previous example, where W = 〈xy2, x+y〉
and α(t) = (t2, t). Then

∇W =

[
y2 2xy
1 1

]
.

At the point α(0) = (0, 0), this becomes

∇W =

[
0 0
1 1

]
.

The vector α′(0) = 〈2t, 1〉|t=0 = 〈0, 1〉. So,
d

dt
W(α(t))

∣∣∣∣
t=0

= [∇W]α′(0) =
[
0 0
1 1

](
0
1

)
= 〈0, 1〉

as we saw before.

The previous example illustrates an important point. Our final answer
doesn’t depend on the curve α, only the tangent vector α′(0). Hence, if we
define

∇VW = [∇W]V

and α is any parameterized curve with α′(0) = V , then

d

dt
W(α(t))

∣∣∣∣
t=0

= ∇VW.

Before we end this section, we present one final way to think about ∇VW
called the covariant derivative of W in the V direction. By definition,

∇VW = [∇W]V =

[
∂w1

∂x
∂w1

∂y
∂w2

∂x
∂w2

∂y

](
v1
v2

)

=

〈
∂w1

∂x
v1 +

∂w1

∂y
v2,

∂w2

∂x
v1 +

∂w2

∂y
v2

〉
= 〈dw1(V ), dw2(V )〉 .

Here, we are thinking of wi as a 0-form and dwi as the 1-form that is its
derivative. We can simplify this a bit further and define dW to be the vector
of 1-forms 〈dw1, dw2〉. Thus, we now have

∇VW = dW(V ).

This is completely analogous to the statement ∇V f = df(V ), where ∇V f is
the directional derivative of the real-valued function f .
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Example 55. We continue with the previous example, where W = 〈xy2, x+y〉.
Then dW is the vector of 1-forms 〈y2 dx+2xy dy, dx+dy〉. At the point (0, 0),
this becomes 〈0, dx + dy〉. If we plug the vector 〈0, 1〉 into this, the result is
the vector 〈0, 1〉, as before.

In this section we have encountered three ways to think about/compute the
derivative of a vector field, at a point p, in the direction of a vector V ∈ TpR

n.
The reader would be well advised to remember these, as we will be switching
between them frequently to suit our needs. We summarize as follows:

1. ∇VW = d
dtW(α(t))

∣∣
t=0

, where α(t) is any parameterized curve such that
α′(0) = V .

2. ∇VW = [∇W]V , where ∇W is the matrix

[
∂w1

∂x
∂w1

∂y
∂w2

∂x
∂w2

∂y

]
.

3. ∇VW = dW(V ), where dW is the vector of 1-forms whose components
are the derivatives of the components of W, thought of as 0-forms.

8.1. In advanced settings we often refer to the analog of the “product rule” for
differentiation as a “Leibniz rule.” For example, the Leibniz rule for directional
derivatives is

∇V (fg) = (∇V f)g + f(∇V g).

Prove the following Leibniz rules for covariant differentiation:

∇V (X ·Y) = (∇VX) ·Y +X · (∇VY),

∇V (fW) = (∇Vf)W + f(∇VW).

8.2. Suppose V and W are vector fields. ThenV ·W is a real-valued function,
which we can think of as a 0-form. We can then differentiate this to get a 1-
form. Prove the following Leibniz rule for derivatives of dot products:

d(V ·W) = dV ·W +V · dW.

8.3. It will be useful later to be able to take dot products of vectors of 1-forms
and vectors of real numbers. Show that this commutes with evaluation on a
third vector; that is, if W is a vector field and U and V are vectors in TpR

n

for some p ∈ R
n, show that

dW(V ) · U = dW · U(V ).

8.4. Often we parameterize surfaces in R
3 by starting with cylindrical or

spherical coordinates and expressing one of the parameters in terms of the
other two. So, for example, by starting with spherical coordinates and ex-
pressing ρ as a function of θ and φ, we may end up with a parameterization
of the form Ψ(θ, φ) = (x, y, z). However, we may also view θ(x, y, z) as a
function on R

3 that gives the θ coordinate of the point (x, y, z), when it is
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expressed in spherical coordinates. Hence, it is often the case that we have
parameterizations of the form Ψ(θ, φ) such that

θ(Ψ(θ, φ)) = θ and φ(Ψ(θ, φ)) = φ.

When we think of θ(x, y, z) as a 0-form on R
3, we can differentiate to get

a 1-form dθ. Show that

dθ

(
∂Ψ

∂θ

)
= dφ

(
∂Ψ

∂φ

)
= 1 and dθ

(
∂Ψ

∂φ

)
= dφ

(
∂Ψ

∂θ

)
= 0.

8.2 Frame fields and Gaussian curvature

Our approach to the subject of differential geometry loosely follows Cartan’s
method of moving frames. Roughly speaking, this involves a choice of a partic-
ularly nice basis for the tangent space at each point of a surface S in R

n, called
a frame field. Geometric properties of S can then be derived from the way the
frame field varies from one point to the next. This is where the language of
differential forms comes in handy.

Definition 3. Let S be a surface in R
3. A frame field on S is a choice of

vector fields {E1,E2} such that at each point p of S, E1(p) and E2(p) form
an orthonormal basis for TpS.

The orthonormality condition is equivalent to

E1 · E2 = 0, E1 · E1 = E2 · E2 = 1.

Geometric properties of S follow from the way E1 and E2 vary from one
point of S to the next. To this end, we now examine the covariant derivatives
of E1 and E2. Let V be a tangent vector to S at some point. We can then
take the directional derivative of both sides of the equation

E1 · E1 = 1

to obtain
∇V (E1 ·E1) = ∇V 1.

Using the appropriate Leibniz rule this becomes

(∇V E1) · E1 +E1 · (∇V E1) = 0.

and thus, (∇V E1) · E1 = 0. We conclude that ∇VE1 is a vector that is
perpendicular to E1 and is thus in the plane spanned by E2 and the normal
vector N to S.

Now, suppose S is a plane. Then a normal vector N to S is constant
(i.e., it does not depend on a choice of p ∈ S). Since E1 is tangent to S, we
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have E1 ·N = 0. Again, taking the directional derivative of both sides of this
equation and applying the appropriate Leibniz rule gives us

(∇V E1) ·N +E1 · (∇VN) = 0.

However, since N is constant, ∇VN = 0. We conclude (∇V E1) ·N = 0, and,
thus, when S is a plane, ∇V E1 is also perpendicular to N . We already knew
∇V E1 was perpendicular to E1, so we may now conclude that ∇V E1 points
in the same direction as E2.

Now, suppose for some surface S that the vector ∇V E1 does not point in
the same direction as E2 at a point p ∈ S. Then, near p, it must be the case
that S does not look like a plane (i.e., it has some curvature). This motivates us
to look toward the projection of ∇V E1 onto E2 as a measure of the curvature
(or lack thereof) of S. This projection is a linear function of the vector V and
is thus a 1-form. We define

Ω(V ) = (∇V E1) ·E2.

Since (∇V E1) · E2 = dE1(V ) · E2 = dE1 · E2(V ), it is sometimes more
convenient to write

Ω = dE1 ·E2.

We now define a numerical measure of the curvature of S at each point,
which does not depend on a choice of tangent vector at that point.

Definition 4. The Gaussian curvature at each point of S is defined to be the
number

K = −dΩ(E1,E2).

The amazing thing about the Gaussian curvature is that it is independent
of the choice of frame field. It is a number that is completely determined by
the shape of S. We prove this now.

Theorem 3. At each point of S, the Gaussian curvature is independent of
the choice of frame field.

Proof. Suppose E1 = 〈E1
1 , E

2
1 , E

3
1〉 and E2 = 〈E1

2 , E
2
2 , E

3
2 〉. Then note that

dΩ = d(dE1 · E2)

= d(〈dE1
1 , dE

2
1 , dE

3
1〉 · 〈E1

2 , E
2
2 , E

3
2〉)

= d(dE1
1E

1
2 + dE2

1E
2
2 + dE3

1E
3
2 )

= dE1
1 ∧ dE1

2 + dE2
1 ∧ dE2

2 + dE3
1 ∧ dE3

2 .

We can rewrite this more compactly using summation notation:

dΩ =

3∑
i=1

dEi1 ∧ dEi2.
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Now, suppose {F1,F2} is some other frame field on S. Let φ : S → R
1

be the angle between E1 and F1. As any orthonormal basis can be obtained
from any other by rotation, it must be the case that

F1 = cosφE1 + sinφE2,

F2 = − sinφE1 + cosφE2.

Let Ω′ = dF1 · F2. Then the Gaussian curvature computed by using the
frame field {F1,F2} is given by evaluation of the 2-form dΩ′ on these two
vectors. We now calculate

dΩ′ =
3∑
i=1

dF i1 ∧ dF i2

=

3∑
i=1

d(cosφEi1 + sinφEi2) ∧ d(− sinφEi1 + cosφEi2)

=

3∑
i=1

(− sinφEi1dφ+ cosφdEi1 + cosφEi2dφ+ sinφdEi2)

∧(− cosφEi1dφ− sinφdEi1 − sinφEi2dφ+ cosφdEi2)

=

3∑
i=1

Ei1dφ ∧ dEi1 + Ei2dφ ∧ dEi2 + dEi1 ∧ dEi2

= dφ ∧
(

3∑
i=1

Ei1dE
i
1

)
+ dφ ∧

(
3∑
i=1

Ei2dE
i
2

)
+

3∑
i=1

dEi1 ∧ dEi2

= dφ ∧ (E1 · dE1) + dφ ∧ (E2 · dE2) + dΩ.

Now, note that differentiating the equation E1 · E1 = 1 tells us that
E1 · dE1 = 0. Identical reasoning leads us to conclude E2 · dE2 = 0, and thus
we have dΩ′ = dΩ. Finally, note that since these 2-forms are the same, then
evaluating either one on any pair of vectors that span a parallelogram of area
one in a fixed plane will always produce the same number. Thus,

K ′ = dΩ′(F1,F2) = dΩ(E1,E2) = K,

as desired.

Example 56. We compute the Gaussian curvature of a sphere S of radius R.
We begin by defining a frame field on it. As usual, a parameterization for S
is given by

Ψ(θ, φ) = (R sinφ cos θ,R sinφ sin θ,R cosφ).

The partial derivatives of this give tangent vectors to S:
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∂Ψ

∂θ
= 〈−R sinφ sin θ,R sinφ cos θ, 0〉,

∂Ψ

∂φ
= 〈R cosφ cos θ,R cosφ sin θ,−R sinφ〉.

Since the dot product of these two vectors is zero, they are orthogonal. To
get a frame field then, we must simply divide each vector by its magnitude to
get unit vectors:

E1 =
1

R sinφ

∂Ψ

∂θ
= 〈− sin θ, cos θ, 0〉,

E2 =
1

R

∂Ψ

∂φ
= 〈cosφ cos θ, cosφ sin θ,− sinφ〉.

Now, we find the 1-form Ω. Since

dE1 = 〈− cos θ dθ,− sin θ dθ, 0〉,
we have

Ω = dE1 · E2 = − cosφ cos2 θ dθ − cosφ sin2 θ dθ = − cosφ dθ.

Thus,
−dΩ = − sinφ dφ ∧ dθ.

To compute K = −dΩ(E1,E2), we will need to know the following:

dθ(E1) = dθ

(
1

R sinφ

∂Ψ

∂θ

)
=

1

R sinφ
dθ

(
∂Ψ

∂θ

)
=

1

R sinφ
,

dφ(E1) = dφ

(
1

R sinφ

∂Ψ

∂θ

)
=

1

R sinφ
dφ

(
∂Ψ

∂θ

)
= 0,

dθ(E2) = dθ

(
1

R

∂Ψ

∂φ

)
=

1

R
dθ

(
∂Ψ

∂φ

)
= 0,

dφ(E2) = dφ

(
1

R

∂Ψ

∂φ

)
=

1

R
dφ

(
∂Ψ

∂φ

)
=

1

R
.

We are now prepared to compute the Gaussian curvature:

K = −dΩ(E1,E2)

= − sinφ dφ ∧ dθ(E1,E2)

= − sinφ

∣∣∣∣dφ(E1) dθ(E1)
dφ(E2) dθ(E2)

∣∣∣∣
= − sinφ

∣∣∣∣ 0 1
R sinφ

1
R 0

∣∣∣∣
= sinφ

1

R2 sinφ

=
1

R2
.
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8.5. Let (f(t), 0, g(t)) be a unit speed curve in the xz-plane (thus, f ′(t)2 +
g′(t)2 = 1). Then Ψ(θ, t) = (f(t) cos θ, f(t) sin θ, g(t)) is the surface obtained
by revolving this curve about the z-axis.

1. Show that the Gaussian curvature of this surface is − f ′′

f .
2. Find the Gaussian curvature of a cylinder of radius R.
3. Find the Gaussian curvature of a right-angled cone.
4. Confirm that the Gaussian curvature of a sphere of radius R is 1

R2 by
viewing it as a surface of revolution.

5. A unit-speed parameterization for the tractrix is given by

(et,
√
1− e2t − tanh−1

√
1− e2t),

where t < 0. The surface of revolution of a tractrix is called a tractricoid
(see Figure 8.3). Calculate its Gaussian curvature. Why is this surface
sometimes called a pseudo-sphere?

0 0.25 0.5 0.75 1 1.25

-2

-1.5

-1

-0.5

(a) (b)

Fig. 8.3. (a) The tractrix; (b) the tractricoid.

6. A unit speed parameterization for the catenary, the graph of x = cosh z,
is given by

(
√

1 + t2, sinh−1 t).

The surface of revolution of the catenary is called a catenoid (see Figure
8.4). Calculate its Gaussian curvature.

8.6. The helicoid (see Figure 8.5) is the surface parameterized by

Ψ(t, θ) = (t cos θ, t sin θ, θ).
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-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1 6

-1.2

-0.8

-0.4

0.4

0.8

1.2

1.6

(a) (b)

Fig. 8.4. (a) The catenary; (b) the catenoid.

Fig. 8.5. The helicoid.

1. Calculate the Gaussian curvature of the helicoid.
2. Show that there is a continuous function f from the helicoid to the

catenoid such that the Gaussian curvature at p is the same as the Gaussian
curvature at f(p).

8.3 Parallel vector fields

Let α(t) be a parameterized curve in a surface S and let Y be a unit vector
field defined on α, tangent to S, that turns as little as possible; that is, we
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assume that Y is a vector field which has been chosen so that there is no
component of Y′ that is tangent to S. Said another way, we assume that the
projection of ∇α′Y onto the tangent space to S is zero. Such a vector field is
said to be parallel along α.

For each t, let φ(t) denote the angle between Y(t) and E1. Then

cosφ = Y · E1.

We now take the derivative of both sides of this equation in the direction
of α′:

− sinφ∇α′φ = (∇α′Y) ·E1 +Y · (∇α′E1).

Since we are assuming ∇α′Y has no component tangent to S, its dot product
with E1 (a tangent vector to S) must be zero. We now have

− sinφ∇α′φ = Y · (∇α′E1).

As Y is tangent to S, we may compute the right-hand side above by
first projecting ∇α′E1 into the tangent space to S and then taking the dot
product with Y. Earlier we observed that for any tangent vector V , ∇V E1

is perpendicular to E1. Thus, to project this vector into the tangent space to
S, we can take its dot product with E2, and then multiply by the vector E2.
Hence, we will replace the expression ∇α′E1 with (∇α′E1) ·E2 E2. This gives
us

− sinφ∇α′φ = Y · [(∇α′E1) · E2 E2]

= Ω(α′)Y ·E2.

Now, observe that since E1 and E2 are orthogonal, Y is in the tangent
plane defined by these two vectors, and φ is the angle between E1 and Y, it
follows that Y ·E2 = sinφ. Incorporating this into the above equation gives

− sinφ∇α′φ = Ω(α′) sinφ

and, thus, −∇α′φ = Ω(α′). Finally, note that ∇α′φ is precisely the definition
of φ′, giving

−φ′ = Ω(α′).

What is particularly striking now is what happens when we integrate both
sides of this equation. Suppose t, the parameter for α, ranges from a to b.
Then we get

φ(a)− φ(b) =

∫
α

Ω.

In other words, the integral of the 1-formΩ along α is precisely the net amount
of turning done by E1, relative to a parallel vector field. This number is called
the holonomy of α and will be denoted H(α).
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Example 57. Let S be the sphere of radius 1. Then S is parameterized by

Ψ(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ).

Now, suppose α is a circle of constant latitude; that is, α is a loop for
which φ is a constant. In Example 56 we computed Ω = − cosφ dθ. Thus,
going once around the circle α will mean a parallel vector field will have to
rotate in relation to E1 (which happens to be tangent to α) by a total angle
of

H(α) = −
∫
α

Ω =

2π∫
0

cosφ dθ = 2π cosφ.

See Figure 8.6. Note that at the equator, where φ = π
2 and thus cosφ = 0,

parallel vector fields do not rotate at all. Near the poles, parallel vector fields
will rotate close to a full circle (but in opposite directions at each pole.) You
can physically observe this effect with a Foucault Pendulum.

Fig. 8.6. A parallel vector field along a latitude rotates in relation to a tangent to
the latitude.

8.7. We continue the study of surfaces of revolution begun in Problem 8.5.
Recall that such a surface is parameterized by

(f(t) cos θ, f(t) sin θ, g(t)),

where we assume f ′(t)2 + g′(t)2 = 1. Determine how much a parallel vector
field rotates as you go once around a loop with t constant and 0 ≤ θ ≤ 2π.

8.8.

1. Suppose α is the boundary of a disk D in a surface S. Then show that
the the holonomy H(α) is

H(α) =

∫∫
D

K dA.
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It follows that if K is the average Gaussian curvature over the disk D,
then

H(α) = KArea(D).

2. Suppose p is a point of a surface S and Dr is a disk of radius r centered
at p. Conclude that that Gaussian curvature K at p is given by

K = lim
r→0

H(∂Dr)

Area(Dr)
.

8.9. For any vector V tangent to a surface S, let V ⊥ denote the orthogonal
tangent vector obtained by rotating it clockwise (with respect to the orienta-
tion of S) by π

2 . As above, let α be a curve in S. Let T be the surface defined
by α(t)+λα′(t)⊥ (so that α is a curve on T as well). Show that the holonomy
of α as a curve on S is the same as the holonomy of α on T .

8.10. Show that the holonomy around any curve on a cone is the same as the
holonomy around the corresponding curve on the “unrolled” cone.

8.11. Combine the previous two problems to deduce the formula for the ro-
tation of a parallel vector field around the latitude of a sphere by unrolling
the cone that is tangent to it so that it is flat and using basic trigonometry.
See Figure 8.7.

Fig. 8.7. The holonomy around the unrolled cone (right) gives the rotation of a
parallel vector field around a latitude of the sphere (left).

8.12. A geodesic is a parameterized curve on a surface whose tangent vector
field is parallel.
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1. Show that the only circle of latitude on a sphere that is a geodesic is the
equator.

2. Show that the only geodesics in a plane are lines.

8.4 The Gauss–Bonnet Theorem

In this section we prove the fundamental result that ties Differential Geometry
to Topology. Here, S will always denote a compact, closed surface in R

3. For
our purposes, this just means S has finite area and ∂S = ∅. A triangulation of
S is a decomposition into triangles. Each such triangle is called a face. Each
face has three edges and three vertices. We denote the number of Faces, Edges
and Vertices by F,E and V , respectively.

Definition 5. The Euler Characteristic is the number

χ(S) = V − E + F.

It is a basic result of topology that the Euler Characteristic is a homeo-
morphism invariant; that is, if there is a continuous, 1-1 function from S to
S′ with continuous inverse, then χ(S) = χ(S′). It follows that χ(S) does not
depend on the choice of triangulation of S.

8.13. Both the tetrahedron and the octahedron (see Figure 8.8) are homeo-
morphic to the sphere. Confirm that the Euler Characteristic of a sphere is 2
by computing V − E + F for each.

Fig. 8.8. A tetrahedron (left) and an octahedron (right) are homeomorphic to the
sphere.

We now come to the most amazing theorem of Differential Geometry.

Theorem 4 (Gauss–Bonnet).∫∫
S

K dA = 2πχ(S).
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It follows that the total Gaussian curvature over a surface is a homeomor-
phism invariant. So, for example, if you try to increase the curvature of S in
one spot by deforming it in some way, you must also decrease the curvature
elsewhere by the same amount.

Proof. As the Euler characteristic is a homeomorphism invariant, we are free
to choose any triangulation of S to compute it. We pick one so that each edge
is a geodesic segment (see Problem 8.12). Furthermore, we will assume that
each triangle is small enough so that the vector field E1 is roughly parallel on
it. We do not have to be terribly precise about this. All we need is for Figure
8.9 to be close to correct. These are simplifying assumptions only and are not
strictly necessary for the proof.

Recall that the Gaussian curvature K is defined by the equation K =
−dΩ(E1,E2). Hence, −dΩ is a 2-form on S which takes a parallelogram of
area 1 and returns the number K. It follows that the integral of K over the
surface S is equivalent to the integral of the 2-form −dΩ over S. In other
words, ∫∫

S

K dA = −
∫
S

dΩ.

Now, let T be a triangle of the triangulation. Then by the generalized
Stokes’ Theorem we have ∫

T

dΩ =

∫
∂T

Ω.

Let α, β and γ denote the three edges of T , where α goes from the vertex
x to the vertex y, β goes from y to z, and γ goes from z back to x. Then we
have

∫
∂T

Ω =

∫
α∪β∪γ

Ω

=

∫
α

Ω +

∫
β

Ω +

∫
γ

Ω

= [φα(x)− φα(y)] + [φβ(y)− φβ(z)] + [φγ(z)− φγ(x)]

= [φα(x)− φγ(x)] + [φβ(y)− φα(y)] + [φγ(z)− φβ(z)].

Here, φα, φβ and φγ are functions that measure the angles made between
the parallel vector fields α′, β′ and γ′ and the vector field E1. Let ε(v) denote
the exterior angle at vertex v. Inspection of Figure 8.9 reveals that at vertex
y, the difference φβ(y)−φα(y) is −ε(y). Similarly, from Figure 8.9 we can see
that at vertex z, the difference φβ(y)− φα(y) is precisely −ε(z). However, at
x, the difference φγ(z) − φβ(z) is 2π − ε(x). Putting this all together allows
us to rewrite the above equation as
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E1
E1

E1

x

y

z

α

β

γ

+

+

+

−

−

−

α′

γ′

β′

α′

γ′

φγ(z)− φβ(z)

φβ(y)− φα(y)

φβ(y)− φα(y)

β′

Fig. 8.9. At vertex y, the difference between the angle made by β′ and E1 and
the angle made by α′ and E1 is the negative of the exterior angle ε(y). Similarly, at
vertex z, the difference is −ε(z). However, at x, the difference is 2π − ε(x).

∫
∂T

Ω = 2π − ε(x) − ε(y)− ε(z).

It will be more convenient to express this in terms of the interior angles.
Let ι(v) denote the interior angle at v. Then ε(v) = π − ι(v). Thus, we now
have ∫

∂T

Ω = −π + ι(x) + ι(y) + ι(z).

Now, we add over all triangles. Around each vertex we end up adding
all of the interior angles and therefore get 2π. Hence, when we sum over all
triangles, the sum of all interior angles is just 2πV . We also add −π for each
triangle, so this sum is −πF . Putting everything together thus gives us
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S

K dA = −
∫
S

dΩ

= −
F∑
i=1

∫
Ti

dΩ

= −
F∑
i=1

∫
∂Ti

Ω

= πF − 2πV.

Now, notice that every triangle has three edges, but these edges are counted
twice when we sum over all triangles. Hence, E = 3

2F , or 2E = 3F . This allows
us to rewrite the above as

∫∫
S

K dA = πF − 2πV

= −2πF + 3πF − 2πV

= −2πF + 2πE − 2πV

= −2πχ(S).

8.14. Show by direct computation that the integral of the Gaussian curvature
over a sphere of radius R is −4π.

8.15. Derive the formula for the area of a sphere of radius R from the Gauss–
Bonnet Theorem and the fact that the Euler Characteristic of a sphere is
2.

8.16. A geodesic triangle is a triangle in a surface whose sides are geodesics.
Find formulas for the area of geodesic triangles on a sphere of radius 1 and
a pseudo-sphere (whose Gaussian curvature is −1) in terms of their interior
angles. Why can’t you find such a formula for geodesic triangles in a plane?
What can you conclude about the sum of the angles of a geodesic triangle,
compared to π, on a sphere, plane and psuedo-sphere?

8.17. Let α(t) be a unit-speed parameterization of a simple, closed curve in
R

3, where a ≤ t ≤ b. Let T = α′, N be a unit vector pointing in the direction
of α′′, and B = T ×N . Let S be the surface parameterized by

Ψ(t, θ) = α(t) + cos θN(t) + sin θB(t),

where a ≤ t ≤ b and 0 ≤ θ ≤ 2π.

1. Describe S.
2. Show that at the point Ψ(t, θ), the vectors E1 = T (t) and E2 = ∂Ψ

∂θ are
orthogonal unit tangent vectors to S and thus form a frame field.
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3. Compute the Gaussian curvature of S.
4. Compute the holonomy of a loop on S where a ≤ t ≤ b and θ is fixed.
5. Compute the total Gaussian curvature of S by integration.
6. What can you conclude about the Euler Characteristic of S?
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