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Differential Forms

4.1 Families of forms

Let us now go back to the example in Chapter 1. In the last section of that
chapter, we showed that the integral of a function, f : R3 → R, over a surface
parameterized by φ : R ⊂ R

2 → R
3 is∫

R

f(φ(r, θ))Area

[
∂φ

∂r
(r, θ),

∂φ

∂θ
(r, θ)

]
dr dθ.

This gave one motivation for studying differential forms. We wanted to
generalize this integral by considering functions other than “Area(·, ·)” that
eat pairs of vectors and return numbers. However, in this integral, the point at
which such a pair of vectors is based changes. In other words, Area(·, ·) does
not act on TpR

3 × TpR
3 for a fixed p. We can make this point a little clearer

by reexamining the above integrand. Note that it is of the form f(�)Area(·, ·).
For a fixed point, �, of R3, this is an operator on T	R

3 × T	R
3, much like a

2-form is.
So far all we have done is to define 2-forms at fixed points of R3. To really

generalize the above integral, we must start to consider entire families of 2-
forms, ωp : TpR

3 × TpR
3 → R, where p ranges over all of R3. Of course, for

this to be useful, such a family must have some “niceness” properties. For one
thing, it should be continuous; that is, if p and q are close, then ωp and ωq
should be similar.

An even stronger property is that the family ωp is differentiable. To see
what this means, recall that for a fixed p, a 2-form ωp can always be written
as apdx ∧ dy+ bpdy ∧ dz + cpdx ∧ dz, where ap, bp and cp are constants. If we
let our choice of p vary over all of R3, then so will these constants. In other
words, ap, bp and cp are all functions from R

3 to R. To say that the family ωp
is differentiable, we mean that each of these functions is differentiable. If ωp
is differentiable, then we will refer to it as a differential form. When there can
be no confusion, we will suppress the subscript p.
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42 4 Differential Forms

Example 17. ω = x2y dx ∧ dy − xz dy ∧ dz is a differential 2-form on
R

3. On the space T(1,2,3)R
3 it is just the 2-form 2dx ∧ dy − 3dy ∧ dz. We

will denote vectors in T(1,2,3)R
3 as 〈dx, dy, dz〉(1,2,3). Hence, the value of

ω(〈4, 0,−1〉(1,2,3), 〈3, 1, 2〉(1,2,3)) is the same as the 2-form 2dx ∧ dy+ dy ∧ dz,
evaluated on the vectors 〈4, 0,−1〉 and 〈3, 1, 2〉, which we compute as follows:

ω(〈4, 0,−1〉(1,2,3), 〈3, 1, 2〉(1,2,3))
= 2dx ∧ dy − 3dy ∧ dz(〈4, 0,−1〉, 〈3, 1, 2〉)
= 2

4 3
0 1

− 3
0 1

−1 2
= 5.

Suppose ω is a differential 2-form on R
3. What does ω act on? It takes a

pair of vectors at each point of R3 and returns a number. In other words, it
takes two vector fields and returns a function from R

3 to R. A vector field is
simply a choice of vector in TpR

3 for each p ∈ R
3. In general, a differential

n-form on R
m acts on n vector fields to produce a function from R

m to R (see
Figure 4.1).

ω

2 3 π

√
7 9 −3

21 6 0

Fig. 4.1. A differential 2-form, ω, acts on a pair of vector fields and returns a
function from R

n to R.

Example 18. V1 = 〈2y, 0,−x〉(x,y,z) is a vector field on R
3. For example, it

contains the vector 〈4, 0,−1〉 ∈ T(1,2,3)R
3. If V2 = 〈z, 1, xy〉(x,y,z) and ω is the

differential 2-form x2y dx ∧ dy − xz dy ∧ dz, then
ω(V1, V2) = x2y dx ∧ dy − xz dy ∧ dz(〈2y, 0,−x〉(x,y,z), 〈z, 1, xy〉(x,y,z))

= x2y
2y z
0 1

− xz
0 1

−x xy = 2x2y2 − x2z,

which is a function from R
3 to R.

Notice that V2 contains the vector 〈3, 1, 2〉(1,2,3). So, from the previous
example we would expect that 2x2y2 − x2z equals 5 at the point (1, 2, 3),
which is indeed the case.
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4.1. Let ω be the differential 2-form on R
3 given by

ω = xyz dx ∧ dy + x2z dy ∧ dz − y dx ∧ dz.

Let V1 and V2 be the following vector fields:

V1 = 〈y, z, x2〉(x,y,z), V2 = 〈xy, xz, y〉(x,y,z).

1. What vectors do V1 and V2 contain at the point (1, 2, 3)?
2. Which 2-form is ω on T(1,2,3)R

3?
3. Use your answers to the previous two questions to compute ω(V1, V2) at

the point (1, 2, 3).
4. Compute ω(V1, V2) at the point (x, y, z). Then plug in x = 1, y = 2 and
z = 3 to check your answer against the previous question.

4.2 Integrating differential 2-forms

Let’s now recall the steps involved with integration of functions on subsets of
R

2. Suppose R ⊂ R
2 and f : R → R. The following steps define the integral

of f over R:

1. Choose a lattice of points in R, {(xi, yj)}.
2. For each i and j, define V 1

i,j = (xi+1, yj)− (xi, yj) and V
2
i,j = (xi, yj+1)−

(xi, yj) (see Figure 4.2). Notice that V 1
i,j and V 2

i,j are both vectors in

T(xi,yj)R
2.

3. For each i and j, compute f(xi, yj)Area(V
1
i,j , V

2
i,j), where Area(V,W ) is

the function which returns the area of the parallelogram spanned by the
vectors V and W .

4. Sum over all i and j.
5. Take the limit as the maximal distance between adjacent lattice points

goes to zero. This is the number that we define to be the value of
∫
R

f dx dy.

Let’s focus on Step 3. Here we compute f(xi, yj)Area(V
1
i,j , V

2
i,j). Notice

that this is exactly the value of the differential 2-form ω = f(x, y)dx ∧ dy
evaluated on the vectors V 1

i,j and V
2
i,j at the point (xi, yj). Hence, in Step 4 we

can write this sum as
∑
i

∑
j

f(xi, yj)Area(V
1
i,j , V

2
i,j) =

∑
i

∑
j

ω(xi,yj)(V
1
i,j , V

2
i,j).

It is reasonable, then, to adopt the shorthand “
∫
R

ω” to denote the limit in

Step 5. The upshot of all this is the following:

If ω = f(x, y)dx ∧ dy, then
∫
R

ω =
∫
R

f dx dy.
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xi

yj

V 1
i,j

V 2
i,j

Fig. 4.2. The steps toward integration.

Since all differential 2-forms on R
2 are of the form f(x, y)dx∧ dy, we now

know how to integrate them.
CAUTION: When integrating 2-forms on R

2, it is tempting to always
drop the “∧” and forget you have a differential form. This is only valid with
dx ∧ dy. It is NOT valid with dy ∧ dx. This may seem a bit curious since
Fubini’s Theorem gives us∫

f dx ∧ dy =

∫
f dx dy =

∫
f dy dx.

All of these are equal to − ∫
f dy ∧ dx. We will revisit this issue in Example

27.

4.2. Let ω = xy2 dx ∧ dy be a differential 2-form on R
2. Let D be the region

of R2 where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Calculate
∫
D

ω.

What about integration of differential 2-forms on R
3? As remarked at the

end of Section 1.4, we do this only over those subsets of R3 which can be
parameterized by subsets of R2. Suppose M is such a subset, like the top half
of the unit sphere. To define what we mean by

∫
M

ω, we just follow the above

steps:

1. Choose a lattice of points in M , {pi,j}.
2. For each i and j, define V 1

i,j = pi+1,j − pi,j and V
2
i,j = pi,j+1 − pi,j . Notice

that V 1
i,j and V 2

i,j are both vectors in Tpi,jR
3 (see Figure 4.3).
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3. For each i and j, compute ωpi,j (V
1
i,j , V

2
i,j).

4. Sum over all i and j.
5. Take the limit as the maximal distance between adjacent lattice points

goes to zero. This is the number that we define to be the value of
∫
M

ω.

x

y

z

pi,j

V 1
i,j

V 2
i,j

Fig. 4.3. The steps toward integrating a 2-form.

Unfortunately these steps are not so easy to follow. For one thing, it
is not always clear how to pick the lattice in Step 1. In fact, there is an
even worse problem. In Step 3, why did we compute ωpi,j (V

1
i,j , V

2
i,j) instead of

ωpi,j (V
2
i,j , V

1
i,j)? After all, V 1

i,j and V 2
i,j are two randomly oriented vectors in

TR3
pi,j . There is no reasonable way to decide which should be first and which

second. There is nothing to be done about this. At some point we just have to
make a choice and make it clear which choice we have made. Such a decision
is called an orientation. We will have much more to say about this later. For
now, we simply note that a different choice will only change our answer by
changing its sign.

While we are on this topic, we also note that we would end up with
the same number in Step 5 if we had calculated ωpi,j (−V 1

i,j ,−V 2
i,j) in Step

4 instead. Similarly, if it turns out later that we should have calculated
ωpi,j (V

2
i,j , V

1
i,j), then we could have also arrived at the right answer by com-

puting ωpi,j (−V 1
i,j , V

2
i,j). In other words, there are really only two possibilities:
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Either ωpi,j (V
1
i,j , V

2
i,j) gives the correct answer or ωpi,j (−V 1

i,j , V
2
i,j) does. Which

one will depend on our choice of orientation.
Despite all the difficulties with using the above definition of

∫
M

ω, all hope

is not lost. Remember that we are only integrating over regions which can be
parameterized by subsets of R2. The trick is to use such a parameterization
to translate the problem into an integral of a 2-form over a region in R

2. The
steps are analogous to those in Section 1.4.

Suppose φ : R ⊂ R
2 →M is a parameterization. We want to find a 2-form

f(x, y) dx ∧ dy, such that a Riemann Sum for this 2-form over R gives the
same result as a Riemann Sum for ω over M . Let’s begin:

1. Choose a rectangular lattice of points in R, {(xi, yj)}. This also gives a
lattice, {φ(xi, yj)}, in M .

2. For each i and j, define V 1
i,j = (xi+1, yj) − (xi, yj), V

2
i,j = (xi, yj+1) −

(xi, yj), V1
i,j = φ(xi+1, yj) − φ(xi, yj) and V2

i,j = φ(xi, yj+1) − φ(xi, yj)

(see Figure 4.4). Notice that V 1
i,j and V 2

i,j are vectors in T(xi,yj)R
2 and

V1
i,j and V2

i,j are vectors in Tφ(xi,yj)R
3.

3. For each i and j, compute f(xi, yj) dx∧dy(V 1
i,j , V

2
i,j) and ωφ(xi,yj)(V1

i,j ,V2
i,j).

4. Sum over all i and j.

x

x

y

y

z

φ

xi

yj V1
i,j

V2
i,j

φ(xi, yj)

V 1
i,j

V 2
i,j

Fig. 4.4. Using φ to integrate a 2-form.

At the conclusion of Step 4 we have two sums:
∑
i

∑
j

f(xi, yj) dx ∧
dy(V 1

i,j , V
2
i,j) and

∑
i

∑
j

ωφ(xi,yj)(V1
i,j ,V2

i,j). In order for these to be equal, we

must have

f(xi, yj) dx ∧ dy(V 1
i,j , V

2
i,j) = ωφ(xi,yj)(V1

i,j ,V2
i,j).
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So,

f(xi, yj) =
ωφ(xi,yj)(V1

i,j ,V2
i,j)

dx ∧ dy(V 1
i,j , V

2
i,j)

.

Since we are using a rectangular lattice in R, we know dx ∧ dy(V 1
i,j , V

2
i,j) =

Area(V 1
i,j , V

2
i,j) = |V 1

i,j | · |V 2
i,j |. We now have

f(xi, yj) =
ωφ(xi,yj)(V1

i,j ,V2
i,j)

|V 1
i,j | · |V 2

i,j |
.

Using the bilinearity of ω, this reduces to

f(xi, yj) = ωφ(xi,yj)

(
V1
i,j

|V 1
i,j |

,
V2
i,j

|V 2
i,j |

)
.

As the distance between adjacent points of our partition tends toward zero,

V1
i,j

|V 1
i,j |

=
φ(xi+1, yj)− φ(xi, yj)

|(xi+1, yj)− (xi, yj)| =
φ(xi+1, yj)− φ(xi, yj)

|xi+1 − xi| → ∂φ

∂x
(xi, yj).

Similarly,
V2

i,j

|V 2
i,j | converges to

∂φ
∂y (xi, yj).

Let’s summarize what we have so far. We defined f(x, y) so that∑
i

∑
j

ωφ(xi,yj)(V1
i,j ,V2

i,j)

=
∑
i

∑
j

f(xi, yj) dx ∧ dy(V 1
i,j , V

2
i,j)

=
∑
i

∑
j

ωφ(xi,yj)

(
V1
i,j

|V 1
i,j |

,
V2
i,j

|V 2
i,j |

)
dx ∧ dy(V 1

i,j , V
2
i,j).

We have also shown that when we take the limit as the distance between
adjacent partition points tends toward zero, this sum converges to the sum

∑
i

∑
j

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy(V 1

i,j , V
2
i,j).

Hence, it must be that

∫
M

ω =

∫
R

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy. (4.1)
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At first glance, this seems like a very complicated formula. Let’s break it
down by examining the integrand on the right. The most important thing to
notice is that this is just a differential 2-form on R, even though ω is a 2-form

onR
3. For each pair of numbers, (x, y), the function ωφ(x,y)

(
∂φ
∂x (x, y),

∂φ
∂y (x, y)

)
just returns some real number. Hence, the entire integrand is of the form
g dx ∧ dy, where g : R→ R.

The only way to really convince oneself of the usefulness of this formula is
to actually use it.

Example 19. Let M denote the top half of the unit sphere in R
3. Let ω =

z2dx ∧ dy be a differential 2-form on R
3. Calculating

∫
M

ω directly by setting

up a Riemann Sum would be next to impossible. So we employ the parame-
terization φ(r, t) = (r cos t, r sin t,

√
1− r2), where 0 ≤ t ≤ 2π and 0 ≤ r ≤ 1.

∫
M

ω =

∫
R

ωφ(r,t)

(
∂φ

∂r
(r, t),

∂φ

∂t
(r, t)

)
dr ∧ dt

=

∫
R

ωφ(r,t)

(〈
cos t, sin t,

−r√
1− r2

〉
, 〈−r sin t, r cos t, 0〉

)
dr ∧ dt

=

∫
R

(1− r2)
cos t −r sin t
sin t r cos t

dr ∧ dt

=

∫
R

(1− r2)(r) dr ∧ dt

=

2π∫
0

1∫
0

r − r3 dr dt =
π

2
.

Notice that, as promised, the term ωφ(r,t)

(
∂φ
∂r (r, t),

∂φ
∂t (r, t)

)
in the second

integral simplified to a function from R to R: r − r3.

4.3. Integrate the 2-form

ω =
1

x
dy ∧ dz − 1

y
dx ∧ dz

over the following surfaces:

1. The top half of the unit sphere using the following parameterizations from
cylindrical and spherical coordinates:
a) (r, θ) → (r cos θ, r sin θ,

√
1− r2), where 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1.

b) (θ, φ) → (sinφ cos θ, sinφ sin θ, cosφ), where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤
π
2 .
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2. The surface parameterized by

φ(r, θ) = (r cos θ, r sin θ, cos r), 0 ≤ r ≤ π

2
, 0 ≤ θ ≤ 2π.

3. The surface parameterized by

Ψ(θ, φ) = (cosφ cos θ, cosφ sin θ, sinφ), 0 ≤ θ ≤ 2π, −π
4
≤ φ ≤ π

4
.

4.4. Let S be the surface in R
3 parameterized by

Ψ(θ, z) = (cos θ, sin θ, z),

where 0 ≤ θ ≤ π and 0 ≤ z ≤ 1. Let ω = xyz dy ∧ dz. Calculate ∫
S

ω.

4.5. Let ω be the differential 2-form on R
3 given by

ω = xyz dx ∧ dy + x2z dy ∧ dz − y dx ∧ dz.
1. Let P be the portion of the plane 3 = 2x + 3y − z in R

3 that lies above
the square {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Calculate ∫

P

ω.

2. Let M be the portion of the graph of z = x2 + y2 in R
3 that lies above

the rectangle {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 2}. Calculate ∫
M

ω.

4.6. Let S be the surface given by the parameterization

φ(r, θ) = (r cos θ, r sin θ,
√
r2 + 1), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
.

Let ω be the differential 2-form given by

ω = xz dx ∧ dz − yz dy ∧ dz.
Compute

∫
S

ω.

4.7. Let S be the surface in R
3 parameterized by

Ψ(u, v) = (2u, v, u2 + v3), 0 ≤ u ≤ 1, 0 ≤ v ≤ 2.

Integrate the 2-form (x+ 2y) dx ∧ dz over S.

4.8. Let D be some region in the xy-plane. Let M denote the portion of the
graph of z = g(x, y) that lies above D.

1. Let ω = f(x, y) dx ∧ dy be a differential 2-form on R
3. Show that∫

M

ω =

∫
D

f(x, y) dx dy.

Notice the answer does not depend on the function g(x, y).
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2. Now suppose ω = f(x, y, z) dx ∧ dy. Show that∫
M

ω =

∫
D

f(x, y, g(x, y)) dx dy.

4.9. Let S be the surface obtained from the graph of z = f(x) = x3, where
0 ≤ x ≤ 1, by rotating around the z-axis. Integrate the 2-form ω = y dx ∧ dz
over S. (Hint: Use cylindrical coordinates to parameterize S.)

4.3 Orientations

What would have happened in Example 19 if we had used the parameteri-
zation φ′(r, t) = (−r cos t, r sin t,√1− r2) instead? We leave it to the reader
to check that we end up with the answer −π/2 rather than π/2. This is a
problem. We defined

∫
M

ω before we started talking about parameterizations.

Hence, the value which we calculate for this integral should not depend on
our choice of parameterization. So what happened?

To analyze this completely, we need to go back to the definition of
∫
M

ω

from the previous section. We noted at the time that a choice was made to
calculate ωpi,j (V

1
i,j , V

2
i,j) instead of ωpi,j (−V 1

i,j , V
2
i,j). Was this choice correct?

The answer is a resounding maybe! We are actually missing enough informa-
tion to tell. An orientation is precisely some piece of information about M
which we can use to make the right choice. This way we can tell a friend what
M is, what ω is, and what the orientation on M is, and they are sure to get
the same answer. Recall Equation 4.1:∫

M

ω =

∫
R

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy.

Depending on the specified orientation of M , it may be incorrect to use
Equation 4.1. Sometimes we may want to use∫

M

ω =

∫
R

ωφ(x,y)

(
−∂φ
∂x

(x, y),
∂φ

∂y
(x, y)

)
dx ∧ dy.

Both ω and
∫
are linear. This just means the negative sign in the integrand

on the right can go all the way outside. Hence, we can write both this equation
and Equation 4.1 as∫

M

ω = ±
∫
R

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy. (4.2)

We define an orientation on M to be any piece of information that can be
used to decide, for each choice of parameterization φ, whether to use the “+”



4.3 Orientations 51

or “−” sign in Equation 4.2, so that the integral will always yield the same
answer.

We will see several ways to specify an orientation on M . The first will be
geometric. It has the advantage that it can be easily visualized, but it has the
disadvantage that it is actually much harder to use in calculations. All we do
is draw a small circle on M with an arrowhead on it. To use this “oriented
circle” to tell if we need the “+” or “−” sign in Equation 4.2, we draw the
vectors ∂φ

∂x (x, y) and
∂φ
∂y (x, y) and an arc with an arrow from the first to the

second. If the direction of this arrow agrees with the oriented circle, then we
use the “+” sign. If they disagree, then we use the “−” sign. See Figure 4.5.

∂φ
∂x

(x, y)

∂φ
∂x

(x, y) ∂φ
∂y

(x, y)

∂φ
∂y

(x, y)

Use the “−” sign when integrating. Use the “+” sign when integrating.

Fig. 4.5. An orientation on M is given by an oriented circle.

A more algebraic way to specify an orientation is to simply pick a point
p of M and choose any 2-form ν on TpR

3 such that ν(V 1
p , V

2
p ) �= 0 whenever

V 1
p and V 2

p are vectors tangent to M and V1 is not a multiple of V2. Do not
confuse this 2-form with the differential 2-form, ω, of Equation 4.2. The 2-
form ν is only defined at the single tangent space TpR

3, whereas ω is defined
everywhere.

Let us now see how we can use ν to decide whether to use the “+” or “−”

sign in Equation 4.2. All we must do is calculate ν
(
∂φ
∂x (xp, yp),

∂φ
∂y (xp, yp)

)
,

where φ(xp, yp) = p. If the result is positive, then we will use the “+” sign to
calculate the integral in Equation 4.2. If it is negative, then we use the “−”
sign. Let’s see how this works with an example.

Example 20. Let’s revisit Example 19. The problem was to integrate the form
z2dx∧dy overM , the top half of the unit sphere. However, no orientation was
ever given for M , so the problem was not very well stated. Let’s pick an easy
point, p, on M : (0,

√
2/2,

√
2/2). The vectors 〈1, 0, 0〉p and 〈0, 1,−1〉p in TpR3

are both tangent to M . To give an orientation on M , all we do is specify a
2-form ν on TpR

3 such that ν(〈1, 0, 0〉, 〈0, 1,−1〉) �= 0. Let’s pick an easy one:
ν = dx ∧ dy.
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Now let’s see what happens when we try to evaluate the integral by us-
ing the parameterization φ′(r, t) = (−r cos t, r sin t,√1− r2). First, note that
φ′(

√
2/2, π/2) = (0,

√
2/2,

√
2/2) and(

∂φ′

∂r

(√
2

2
,
π

2

)
,
∂φ′

∂t

(√
2

2
,
π

2

))
=

(
〈0, 1,−1〉 ,

〈√
2

2
, 0, 0

〉)
.

Now we check the value of ν when this pair is plugged in:

dx ∧ dy
(
〈0, 1,−1〉 ,

〈√
2

2
, 0, 0

〉)
=

∣∣∣∣0
√
2
2

1 0

∣∣∣∣ = −
√
2

2
.

The sign of this result is “−,” so we need to use the negative sign in
Equation 4.2 in order to use φ′ to evaluate the integral of ω over M :

∫
M

ω = −
∫
R

ωφ′(r,t)

(
∂φ′

∂r
(r, t),

∂φ′

∂t
(r, t)

)
dr ∧ dt

= −
∫
R

(1− r2)

∣∣∣∣− cos t r sin t
sin t r cos t

∣∣∣∣ dr dt = π

2
.

Very often, the surface that we are going to integrate over is given to us by
a parameterization. In this case, there is a very natural choice of orientation.
Just use the “+” sign in Equation 4.2! We will call this the orientation of
M induced by the parameterization. In other words, if you see a problem
phrased like “Calculate the integral of the form ω over the surface M given
by parameterization φ with the induced orientation,” then you should just go
back to using Equation 4.1 and do not worry about anything else. In fact, this
situation is so common that when you are asked to integrate some form over
a surface which is given by a parameterization but no orientation is specified,
then you should assume the induced orientation is the desired one.

4.10. Let M be the image of the parameterization, φ(a, b) = (a, a + b, ab),
where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Integrate the form ω = 2z dx ∧ dy + y dy ∧
dz − x dx ∧ dz over M using the orientation induced by φ.

4.11. Let S be the frustrum parameterized by

φ(r, θ) = (r cos θ, r sin θ, r), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

Integrate the 2-form

ω = z dx ∧ dy + 1

x
dy ∧ dz + 1

y
dx ∧ dz

over S with the orientation induced by φ.
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There is one subtle technical point here that should be addressed. The
novice reader may want to skip this for now. Suppose someone gives you a
surface defined by a parameterization and tells you to integrate some 2-form
over it using the induced orientation. However, you are clever and you realize
that if you change parameterizations, you can make the integral easier. Which
orientation do you use? The problem is that the orientation induced by your
new parameterization may not be the same as the one induced by the original
parameterization.

To fix this, we need to see how we can define a 2-form on some tangent
space TpR

3, where p is a point ofM , that yields an orientation ofM consistent
with the one induced by a parameterization φ. This is not so hard. If dx ∧
dy

(
∂φ
∂x (xp, yp),

∂φ
∂y (xp, yp)

)
is positive, then we simply let ν = dx ∧ dy. If

it is negative, then we let ν = −dx ∧ dy. In the unlikely event that dx ∧
dy

(
∂φ
∂x (xp, yp),

∂φ
∂y (xp, yp)

)
= 0, we can remedy things by either changing the

point p or by using dx ∧ dz instead of dx ∧ dy. Once we have defined ν, we
know how to integrate M using any other parameterization.

4.12. Let ψ be the following parameterization of the sphere of radius 1:

ψ(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ).

Which of the following 2-forms on T
(
√

2
2 ,0,

√
2

2 )
R

3 determine the same orienta-

tion on the sphere as that induced by ψ?

1. α = dx ∧ dy + 2dy ∧ dz.
2. β = dx ∧ dy − 2dy ∧ dz.
3. γ = dx ∧ dz.

4.4 Integrating 1-forms on R
m

In the previous sections we saw how to integrate a 2-form over a region in
R

2, or over a subset of R3 parameterized by a region in R
2. The reason that

these dimensions were chosen was because there is nothing new that needs to
be introduced to move to the general case. In fact, if the reader were to go
back and look at what we did, he/she would find that almost nothing would
change if we had been talking about n-forms instead.

Before we jump to the general case, we will work one example showing
how to integrate a 1-form over a parameterized curve.

Example 21. Let C be the curve in R
2 parameterized by

φ(t) = (t2, t3),

where 0 ≤ t ≤ 2. Let ν be the 1-form y dx+ x dy. We calculate
∫
C

ν.
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The first step is to calculate

dφ

dt
= 〈2t, 3t2〉.

So, dx = 2t and dy = 3t2. From the parameterization, we also know x = t2

and y = t3. Hence, since ν = y dx+ x dy, we have

νφ(t)

(
dφ

dt

)
= (t3)(2t) + (t2)(3t2) = 5t4.

Finally, we integrate:

∫
C

ν =

2∫
0

νφ(t)

(
dφ

dt

)
dt

=

2∫
0

5t4 dt

= t5
∣∣2
0

= 32.

4.13. Let C be the curve in R
2 given by ψ(t) = (t cos t, t sin t), where 0 ≤ t ≤

2. Let ν = −y dx+ x dy. Compute
∫
C

ν (with the induced orientation).

4.14. Let C be the curve in R
3 parameterized by φ(t) = (t, t2, 1 + t), where

0 ≤ t ≤ 2. Integrate the 1-form ω = y dx + z dy + xy dz over C using the
induced orientation.

4.15. Let C be the curve parameterized by the following:

φ(t) = (2 cos t, 2 sin t, t2), 0 ≤ t ≤ 2.

Integrate the 1-form (x2 + y2) dz over C.

4.16. Let C be the subset of the graph of y = x2, where 0 ≤ x ≤ 1. An
orientation on C is given by the 1-form dx on T(0,0)R

2. Let ω be the 1-form
−x4 dx+ xy dy. Integrate ω over C.

4.17. Let M be the line segment in R
2 which connects (0, 0) to (4, 6). An

orientation on M is specified by the 1-form −dx on T(2,3)R
2. Integrate the

form ω = sin y dx+ cosx dy over M .

Just as there was for surfaces, for parameterized curves there is also a
pictorial way to specify an orientation. All we have to do is place an arrow-
head somewhere along the curve and ask whether or not the derivative of the
parameterization gives a tangent vector that points in the same direction. We
illustrate this in the next example.
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x

y

C

Fig. 4.6. An orientation on C is given by an arrowhead.

Example 22. Let C be the portion of the graph of x = y2, where 0 ≤ x ≤ 1, as
pictured in Figure 4.6. Notice the arrowhead on C. We integrate the 1-form
ω = dx+ dy over C with the indicated orientation.

First, parameterize C as φ(t) = (t2, t), where 0 ≤ t ≤ 1. Now notice that
the derivative of φ is

dφ

dt
= 〈2t, 1〉.

At the point (0, 0) this is the vector 〈0, 1〉, which points in a direction opposite
to that of the arrowhead. This tells us to use a negative sign when we integrate,
as follows:

∫
C

ω = −
1∫

0

ω(t2,t)(〈2t, 1〉)

= −(2t+ 1)|10
= −2.

4.5 Integrating n-forms on R
m

To proceed to the general case, we need to know what the integral of an n-
form over a region of Rn is. The steps to define such an object are precisely
the same as before, and the results are similar. If our coordinates in R

n are
(x1, x2, ..., xn), then an n-form is always given by

f(x1, ..., xn)dx1 ∧ dx2 ∧ · · · ∧ dxn.
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Going through the steps, we find that the definition of
∫
Rn

ω is exactly the

same as the definition we learned in Chapter 2 for
∫
Rn

f dx1dx2 · · · dxn.

4.18. Let Ω be the cube in R
3:

{(x, y, z)| 0 ≤ x, y, z ≤ 1}.
Let γ be the 3-form x2z dx ∧ dy ∧ dz. Calculate ∫

Ω

γ.

Moving on to integrals of n-forms over subsets of Rm parameterized by
a region in R

n, we again find nothing surprising. Suppose we denote such a
subset by M . Let φ : R ⊂ R

n → M ⊂ R
m be a parameterization. Then we

find that the following generalization of Equation 4.2 must hold:

∫
M

ω = ±
∫
R

ωφ(x1,...,xn)

(
∂φ

∂x1
(x1, ..., xn), ...,

∂φ

∂xn
(x1, ..., xn)

)
dx1 ∧ · · · ∧ dxn.

(4.3)
To decide whether or not to use the negative sign in this equation, we

must specify an orientation. Again, one way to do this is to give an n-form
ν on TpR

m, where p is some point of M . We use the negative sign when the
value of

ν

(
∂φ

∂x1
(x1, ..., xn), ...,

∂φ

∂xn
(x1, ..., xn)

)
is negative, where φ(x1, ..., xn) = p. If M was originally given by a parame-
terization and we are instructed to use the induced orientation, then we can
ignore the negative sign.

Example 23. Suppose φ(a, b, c) = (a + b, a + c, bc, a2), where 0 ≤ a, b, c ≤ 1.
LetM be the image of φ with the induced orientation. Suppose ω = dy∧dz∧
dw − dx ∧ dz ∧ dw − 2y dx ∧ dy ∧ dz. Then

∫
M

ω =

∫
R

ωφ(a,b,c)

(
∂φ

∂a
(a, b, c),

∂φ

∂b
(a, b, c),

∂φ

∂c
(a, b, c)

)
da ∧ db ∧ dc

=

∫
R

ωφ(a,b,c) (〈1, 1, 0, 2a〉, 〈1, 0, c, 0〉, 〈0, 1, b, 0〉)da ∧ db ∧ dc

=

∫
R

∣∣∣∣∣∣
1 0 1
0 c b

2a 0 0

∣∣∣∣∣∣−
∣∣∣∣∣∣

1 1 0
0 c b

2a 0 0

∣∣∣∣∣∣− 2(a+ c)

∣∣∣∣∣∣
1 1 0
1 0 1
0 c b

∣∣∣∣∣∣ da ∧ db ∧ dc

=

1∫
0

1∫
0

1∫
0

2bc+ 2c2 da db dc =
7

6
.
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4.6 The change of variables formula

There is a special case of Equation 4.3 which is worth noting. Suppose φ
is a parameterization that takes some subregion, R, of Rn into some other
subregion, M , of Rn and ω is an n-form on R

n. At each point, ω is just a
volume form, so it can be written as f(x1, ..., xn) dx1 ∧ · · · ∧ dxn. If we let
x̄ = (x1, ..., xn), then Equation 4.3 can be written as

∫
M

f(x̄)dx1 · · · dxn = ±
∫
R

f(φ(x̄))

∣∣∣∣ ∂φ∂x1 (x̄) · · ·
∂φ

∂xn
(x̄)

∣∣∣∣ dx1 · · · dxn. (4.4)

The bars | · | indicate that we take the determinant of the matrix whose
column vectors are ∂φ

∂xi
(x̄).

4.6.1 1-Forms on R
1

When n = 1, this is just the reverse of the substitution rule for integration
from calculus. We demonstrate this in the following example.

Example 24. Let’s integrate the 1-form ω =
√
u du over the interval [1, 5].

This would be easy enough to do directly, but using a parameterization of
this interval will be instructive. Let φ : [0, 2] → [1, 5] be the parameterization
given by φ(x) = x2 + 1. Then dφ

dx = 〈2x〉. Now we compute:

5∫
1

√
u du =

∫
[1,5]

ω =

∫
[0,2]

ωφ(x)

(
dφ

dx

)
dx

=

∫
[0,2]

ωx2+1 (〈2x〉) dx

=

∫
[0,2]

2x
√
x2 + 1 dx

=

2∫
0

2x
√
x2 + 1 dx.

Reading this backwards is doing the integral
2∫
0

2x
√
x2 + 1 dx by “u-

substitution.”

Employing a parameterization to integrate a 1-form on R
1 is a common

technique to handle certain integrands. This is often called “trigonometric
substitution” in a first-year calculus class.
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Example 25. Let ω = 1√
1−x2

dx be a 1-form on R
1. We wish to integrate ω

over the interval [0, 1], with the standard orientation on R
1. To do this, we

employ the parameterization φ : [0, π2 ] → [0, 1] given by φ(θ) = sin θ. To use

φ to perform the desired integration, we will need its derivative: dφdθ = 〈cos θ〉.
We may now compute:

1∫
0

1√
1− x2

dx =

∫
[0,1]

ω

=

∫
[0,π2 ]

ωφ(θ)

(
dφ

dθ

)
dθ

=

∫
[0,π2 ]

ωsin θ(〈cos θ〉)dθ

=

∫
[0,π2 ]

1√
1− sin2 θ

cos θ dθ

=

π
2∫

0

dθ

=
π

2

4.6.2 2-Forms on R
2

For other n, Equation 4.4 is the general change of variables formula.

Example 26. We will use the parameterization Ψ(u, v) = (u, u2 + v2) to eval-
uate ∫∫

R

(x2 + y) dA,

where R is the region of the xy-plane bounded by the parabolas y = x2 and
y = x2 + 4 and the lines x = 0 and x = 1.

The first step is to find out what the limits of integration will be when we
change coordinates:

y = x2 ⇒ u2 + v2 = u2 ⇒ v = 0,

y = x2 + 4 ⇒ u2 + v2 = u2 + 4 ⇒ v = 2,

x = 0 ⇒ u = 0,

x = 1 ⇒ u = 1.
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Next, we will need the partial derivatives:

∂Ψ

∂u
= 〈1, 2u〉,

∂Ψ

∂v
= 〈0, 2v〉.

Finally, we can integrate:

∫∫
R

(x2 + y) dA =

∫
R

(x2 + y) dx ∧ dy

=

2∫
0

1∫
0

u2 + (u2 + v2)

∣∣∣∣ 1 0
2u 2v

∣∣∣∣ du dv

=

2∫
0

1∫
0

4vu2 + 2v3 du dv

=

2∫
0

4

3
v + 2v3 dv

=
8

3
+ 8 =

32

3
.

Example 27. In our second example, we revisit Fubini’s Theorem, which says
that the order of integration does not matter in a multiple integral. Recall from
Section 4.2 the curious fact that

∫
f dx dy =

∫
f dx ∧ dy but

∫
f dy dx �=∫

f dy ∧ dx. We are now prepared to see why this is.
Let’s suppose we want to integrate the function f(x, y) over the rectangle

R in R
2 with vertices at (0, 0), (a, 0), (0, b) and (a, b). We know the answer is

just
b∫
0

a∫
0

f(x, y) dx dy. We also know this integral is equal to
∫
R

f dx∧dy, where
R is given the “standard” orientation (e.g., the one specified by a counter-
clockwise oriented circle).

Let’s see what happens if we try to compute the integral using the following
parameterization:

φ(y, x) = (x, y), 0 ≤ y ≤ b, 0 ≤ x ≤ a.

First, we need the partials of φ:

∂φ

∂y
= 〈0, 1〉,

∂φ

∂x
= 〈1, 0〉.
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Next, we have to deal with the issue of orientation. The pair of vectors we
just found — 〈0, 1〉 and 〈1, 0〉 — are in an order which does not agree with
the orientation of R. So we have to use the negative sign when employing
Equation 4.4:

∫
R

f(x, y) dx dy = −
∫
R

f(φ(y, x))

∣∣∣∣∂φ∂y ∂φ∂x
∣∣∣∣ dy dx

= −
∫
R

f(x, y)

∣∣∣∣0 1
1 0

∣∣∣∣ dy ∧ dx
= −

∫
R

f(x, y)(−1) dy ∧ dx

=

∫
R

f(x, y) dy dx.

From the above, we see one of the reasons why Fubini’s Theorem is true
is because when the order of integration is switched, there are two negative
signs. So,

∫
R

f dy dx actually does equal
∫
R

f dy ∧dx, but only if you remember

to switch the orientation of R!

4.19. Let E be the region in R
2 parameterized by Ψ(u, v) = (u2 + v2, 2uv),

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Evaluate∫
E

1√
x− y

dx ∧ dy.

Up until this point, we have only seen how to integrate functions f(x, y)
over regions in the plane which are rectangles. Let’s now see how we can use
parameterizations to integrate over more general regions. Suppose, first, that
R is the region of the plane below the graph of y = g(x), above the x-axis,
and between the lines x = a and x = b.

The region R can be parameterized by

Ψ(u, v) = (u, vg(u)),

where a ≤ u ≤ b and 0 ≤ v ≤ 1. The partials of this parameterization are

∂Ψ

∂u
=

〈
1, v

dg(u)

du

〉
,

∂Ψ

∂v
= 〈0, g(u)〉 .

Hence,
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dx ∧ dy =

∣∣∣∣ 1 0

v dg(u)du g(u)

∣∣∣∣ = g(u).

We conclude with the identity

∫
R

f(x, y) dy dx =

b∫
a

1∫
0

f(u, vg(u))g(u) dv du.

4.20. Let R be the region below the graph of y = x2 and between the lines
x = 0 and x = 2. Calculate ∫

R

xy2 dx dy.

A slight variant is to integrate over a region bounded by the graphs of
y = g1(x) and y = g2(x) and by the lines x = a and x = b, where g1(x) < g2(x)
for all x ∈ [a, b]. To compute such an integral, we may simply integrate over the
region below g2(x), then integrate over the region below g1(x), and subtract.

4.21. Let R be the region to the right of the y-axis, to the left of the graph
of x = g(y), above the line y = a, and below the line y = b. Find a formula
for

∫
R

f(x, y) dx dy.

4.22. Let R be the region in the first quadrant of R2, below the line y = x,
and bounded by x2 + y2 = 4. Integrate the 2-form

ω =

(
1 +

y2

x2

)
dx ∧ dy

over R.

4.23. Let R be the region of the xy-plane bounded by the ellipse

9x2 + 4y2 = 36.

Integrate the 2-form ω = x2dx∧dy over R (Hint: See Problem 2.39 of Chapter
2.)

4.24. Integrate the 2-form

ω =
1

x
dy ∧ dz − 1

y
dx ∧ dz

over the top half of the unit sphere using the following parameterization from
rectangular coordinates:

(x, y) → (x, y,
√
1− x2 − y2),

where
√
x2 + y2 ≤ 1. Compare your answer to Problem 4.3.
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4.25. Let R be the region of R2 parameterized by

φ(r, t) = (r cosh t, r sinh t), 0 ≤ r ≤ 1, −1 ≤ t ≤ 1.

Integrate the function f(x, y) = x2 − y2 over R. Hints:

d

dt
sinh t = cosh t,

d

dt
cosh t = sinh t,

cosh2 t− sinh2 t = 1.

4.6.3 3-Forms on R
3

Example 28. Let V = {(r, θ, z)|1 ≤ r ≤ 2, 0 ≤ z ≤ 1}. (V is the region
between the cylinders of radii 1 and 2 and between the planes z = 0 and
z = 1.) Let’s calculate ∫

V

z(x2 + y2) dx ∧ dy ∧ dz.

The region V is best parameterized using cylindrical coordinates:

Ψ(r, θ, z) = (r cos θ, r sin θ, z),

where 1 ≤ r ≤ 2, 1 ≤ θ ≤ 2π and 0 ≤ z ≤ 1.
We compute the partials:

∂Ψ

∂r
= 〈cos θ, sin θ, 0〉,

∂Ψ

∂θ
= 〈−r sin θ, r cos θ, 0〉,

∂Ψ

∂z
= 〈0, 0, 1〉.

Hence,

dx ∧ dy ∧ dz =
∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

∣∣∣∣∣∣ = r.

Additionally,

z(x2 + y2) = z(r2 cos2 θ + r2 sin2 θ) = zr2.

So we have
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∫
V

z(x2 + y2) dx ∧ dy ∧ dz =

1∫
0

2π∫
0

2∫
1

(zr2)(r) dr dθ dz

=

1∫
0

2π∫
0

2∫
1

zr3 dr dθ dz

=
15

4

1∫
0

2π∫
0

z dθ dz

=
15π

2

1∫
0

z dz

=
15π

4
.

4.26. Integrate the 3-form ω = x dx ∧ dy ∧ dz over the region of R3 in the
first octant bounded by the cylinders x2 + y2 = 1 and x2 + y2 = 4 and the
plane z = 2.

4.27. Let R be the region in the first octant of R3 bounded by the spheres
x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4. Integrate the 3-form ω = dx ∧ dy ∧ dz
over R.

4.28. Let V be the volume in the first octant, inside the cylinder of radius 1
and below the plane z = 1. Integrate the 3-form

2
√
1 + x2 + y2 dx ∧ dy ∧ dz

over V .

4.29. Let V be the region inside the cylinder of radius 1, centered around
the z-axis and between the planes z = 0 and z = 2. Integrate the function
f(x, y, z) = z over V .

4.30. Let V be the volume in R
3 parameterized by

Ψ(r, θ, t) = (r cos θ, r sin θ, t2), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ t ≤ 1.

(Note that this is not a parameterization of a surface by cylindrical coordi-
nates.) Use the parameterization Ψ to integrate the function f(x, y, z) =

√
z

over V .

4.31. Let ω be the 3-form on R
3 given by

ω =
z

x2 + y2
dx ∧ dy ∧ dz.

Compute the integral of ω over the region under the graph of f(x, y) = x2+y2,
in the positive octant, and

1. above the square with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 0).
2. at most one unit away from the z-axis.
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4.7 Summary: How to integrate a differential form

4.7.1 The steps

To compute the integral of a differential n-form ω over a region S, the steps
are as follows:

1. Choose a parameterization Ψ : R → S, where R is a subset of Rn (see
Figure 4.7).

x
y

z

Ψ

u

v

R

S

Fig. 4.7.

2. Find all n vectors given by the partial derivatives of Ψ . Geometrically,
these are tangent vectors to S which span its tangent space (see Figure
4.8).

x
y

z

∂Ψ
∂u

∂Ψ
∂v

Fig. 4.8.

3. Plug the tangent vectors into ω at the point Ψ(u1, u2, ..., un).
4. Integrate the resulting function over R.
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4.7.2 Integrating 2-forms

The best way to see the above steps in action is to look at the integral of a
2-form over a surface in R

3. In general, such a 2-form is given by

ω = f1(x, y, z) dx ∧ dy + f2(x, y, z) dy ∧ dz + f3(x, y, z) dx ∧ dz.
To integrate ω over S, we now follow steps 1–4:

1. Choose a parameterization Ψ : R → S, where R is a subset of R2:

Ψ(u, v) = (g1(u, v), g2(u, v), g3(u, v)).

2. Find both vectors given by the partial derivatives of Ψ :

∂Ψ

∂u
=

〈
∂g1
∂u

,
∂g2
∂u

,
∂g3
∂u

〉
,

∂Ψ

∂v
=

〈
∂g1
∂v

,
∂g2
∂v

,
∂g3
∂v

〉
.

3. Plug the tangent vectors into ω at the point Ψ(u, v). To do this, x, y
and z will come from the coordinates of Ψ ; that is, x = g1(u, v), y =
g2(u, v) and z = g3(u, v). Terms like dx ∧ dy are determinants of 2 × 2
matrices, whose entries come from the vectors computed in the previous
step. Geometrically, the value of dx ∧ dy is the area of the parallelogram
spanned by the vectors ∂Ψ

∂u and ∂Ψ
∂v (tangent vectors to S), projected onto

the dxdy-plane (see Figure 4.9).
The result of all this is:

f1(g1, g2, g3)

∣∣∣∣∣∣
∂g1
∂u

∂g1
∂v

∂g2
∂u

∂g2
∂v

∣∣∣∣∣∣+ f2(g1, g2, g3)

∣∣∣∣∣∣
∂g2
∂u

∂g2
∂v

∂g3
∂u

∂g3
∂v

∣∣∣∣∣∣
+f3(g1, g2, g3)

∣∣∣∣∣∣
∂g1
∂u

∂g1
∂v

∂g3
∂u

∂g3
∂v

∣∣∣∣∣∣ .
Note that simplifying this gives a function of u and v.

4. Integrate the resulting function over R. In other words, if h(u, v) is the
function you ended up with in the previous step, then compute∫

R

h(u, v) du dv.

If R is not a rectangle, you may have to find a parameterization of R whose
domain is a rectangle and repeat the above steps to compute this integral.
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dx dy

dz

∂Ψ
∂u

∂Ψ
∂v

Area=dx ∧ dy
(
∂Ψ
∂u

, ∂Ψ
∂v

)

Fig. 4.9. Evaluating dx ∧ dy geometrically.

4.7.3 A sample 2-form

Let ω = (x2 + y2) dx∧ dy+ z dy ∧ dz. Let S denote the subset of the cylinder
x2 + y2 = 1 that lies between the planes z = 0 and z = 1.

1. Choose a parameterization Ψ : R → S:

Ψ(θ, z) = (cos θ, sin θ, z),

where R = {(θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1}.
2. Find both vectors given by the partial derivatives of Ψ .

∂Ψ

∂θ
= 〈− sin θ, cos θ, 0〉

∂Ψ

∂z
= 〈0, 0, 1〉.

3. Plug the tangent vectors into ω at the point Ψ(θ, z). We get

(cos2 θ + sin2 θ)

∣∣∣∣− sin θ 0
cos θ 0

∣∣∣∣+ z

∣∣∣∣ cos θ 0
0 1

∣∣∣∣ .
This simplifies to the function z cos θ.

4. Integrate the resulting function over R:

1∫
0

2π∫
0

z cos θ dθ dz.
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Note that the integrand comes from Step 3 and the limits of integration
come from Step 1.

4.8 Nonlinear forms (optional)

4.8.1 Surface area

Now that we have developed some proficiency with integrating differential
forms, let’s see what else we can integrate. A basic assumption that we used
to come up with the definition of an n-form was the fact that at every point,
it is a linear function which “eats” n vectors and returns a number. What
about the non-linear functions?

Let’s go all the way back to Section 1.4. There we decided that the integral
of a function f over a surface R in R

3 should look something like∫
R

f(φ(r, θ))Area

[
∂φ

∂r
(r, θ),

∂φ

∂θ
(r, θ)

]
dr dθ. (4.5)

At the heart of the integrand is the Area function, which takes two vectors
and returns the area of the parallelogram that it spans. The 2-form dx ∧ dy
does this for two vectors in TpR

2. In TpR
3, the right function is the following:

Area(V 1
p , V

2
p ) =

√
(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.

(The reader may recognize this as the magnitude of the cross product
between V 1

p and V 2
p .) This is clearly nonlinear!

Example 29. The area of the parallelogram spanned by 〈1, 1, 0〉 and 〈1, 2, 3〉
can be computed as follows:

Area(〈1, 1, 0〉, 〈1, 2, 3〉) =
√∣∣∣∣1 0

2 3

∣∣∣∣
2

+

∣∣∣∣1 0
1 3

∣∣∣∣
2

+

∣∣∣∣1 1
1 2

∣∣∣∣
2

=
√
32 + 32 + 12

=
√
19.

We will see in Chapter 6 that the thing that makes (linear) differential
forms so useful is the Generalized Stokes Theorem. We do not have anything
like this for nonlinear forms, but that is not to say that they do not have their
uses. For example, there is no differential 2-form on R

3 that one can integrate
over arbitrary surfaces to find their surface area. For that, we would need to
compute the following:

Area(R) =

∫
S

√
(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.
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For relatively simple surfaces, this integrand can be evaluated by hand.
Integrals such as this play a particularly important role in certain applied
problems. For example, if one were to dip a loop of bent wire into a soap film,
the resulting surface would be the one of minimal area. Before one can even
begin to figure out what surface this is for a given piece of wire, one must be
able to know how to compute the area of an arbitrary surface, as above.

Example 30. We compute the surface area of a sphere of radius r in R
3. A

parameterization is given by

Φ(θ, φ) = (r sinφ cos θ, r sinφ sin θ, r cosφ),

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.
Now we compute:

Area
(
∂Φ
∂θ ,

∂Φ
∂φ

)
= Area (〈−r sinφ sin θ, r sinφ cos θ, 0〉, 〈r cosφ cos θ, r cosφ sin θ,−r sinφ〉)

=
√

(−r2 sin2 φ cos θ)2 + (r2 sin2 φ sin θ)2 + (−r2 sinφ cosφ)2

= r2
√
sin4 φ+ sin2 φ cos2 φ

= r2 sinφ.

Thus, the desired area is given by

∫
S

Area

(
∂Φ

∂θ
,
∂Φ

∂φ

)
dθ dφ

=

π∫
0

2π∫
0

r2 sinφ dθ dφ

= 4πr2.

4.32. Compute the surface area of a sphere of radius r in R
3 using the pa-

rameterizations
Φ(ρ, θ) = (ρ cos θ, ρ sin θ,±

√
r2 − ρ2)

for the top and bottom halves, where 0 ≤ ρ ≤ r and 0 ≤ θ ≤ 2π.

Let’s now go back to Equation 4.5. Classically, this is called a surface
integral. It might be a little clearer how to compute such an integral if we
write it as follows:

∫
R

f(x, y, z) dS =

∫
R

f(x, y, z)
√
(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.
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4.8.2 Arc length

Lengths are very similar to areas. In calculus you learn that if you have a curve
C in the plane, for example, parameterized by the function φ(t) = (x(t), y(t)),
where a ≤ t ≤ b, then its arc length is given by

Length(C) =

b∫
a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

We can write this without making reference to the parameterization by
employing a nonlinear 1-form:

Length(C) =

∫
C

√
dx2 + dy2.

Finally, we can define what is classically called a line integral as follows:∮
C

f(x, y) ds =

∫
C

f(x, y)
√
dx2 + dy2.
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