
3

Forms

3.1 Coordinates for vectors

Before we begin to discuss functions of vectors, we first need to learn how to
specify a vector. Before we can answer that, we must first learn where vectors
live. In Figure 3.1 we see a curve, C, and a tangent line to that curve. The line
can be thought of as the set of all tangent vectors at the point p. We denote
that line as TpC, the tangent space to C at the point p.

TpC

p

C

Fig. 3.1. TpC is the set of all vectors tangents to C at p.

What if C is actually a straight line? Will TpC be the same line? To answer
this, let’s instead think about the real number line L = R

1. Suppose p is the
point corresponding to the number 2 on L. We would like to understand TpL,
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the set of all vectors tangent to L at the point p. For example, where would
you draw a vector of length 3? Would you put its base at the origin on L? Of
course not. You would put its base at the point p. This is really because the
origin for TpL is different than the origin for L. We are thus thinking about
L and TpL as two different lines, placed right on top of each other.

The key to understanding the difference between L and TpL is their co-
ordinate systems. Let’s pause here for a moment to look a little more closely.
What are “coordinates” anyway? They are a way of assigning a number (or,
more generally, a set of numbers) to a point in space. In other words, coordi-
nates are functions which take points of a space and return (sets of) numbers.
When we say that the x-coordinate of p in R

2 is 5, we really mean that we
have a function x : R2 → R, such that x(p) = 5.

Of course we need two numbers to specify a point in a plane, which means
that we have two coordinate functions. Suppose we denote the plane by P
and x : P → R and y : P → R are our coordinate functions. Then, saying
that the coordinates of a point, p, are (2, 3) is the same thing as saying that
x(p) = 2 and y(p) = 3. In other words, the coordinates of p are (x(p), y(p)).

So what do we use for coordinates in the tangent space? Well, first we
need a basis for the tangent space of P at p. In other words, we need to
pick two vectors which we can use to give the relative positions of all other

points. Note that if the coordinates of p are (x, y), then d(x+t,y)
dt = 〈1, 0〉 and

d(x,y+t)
dt = 〈0, 1〉. We have switched to the notation “〈·, ·〉” to indicate that

we are not talking about points of P anymore, but rather vectors in TpP . We
take these two vectors to be a basis for TpP . In other words, any point of TpP
can be written as dx〈0, 1〉+ dy〈1, 0〉, where dx, dy ∈ R. Hence, “dx” and “dy”
are coordinate functions for TpP . Saying that the coordinates of a vector V in
TpP are 〈2, 3〉, for example, is the same thing as saying that dx(V ) = 2 and
dy(V ) = 3. In general, we may refer to the coordinates of an arbitrary vector
in TpP as 〈dx, dy〉, just as we may refer to the coordinates of an arbitrary
point in P as (x, y).

It will be helpful in the future to be able to distinguish between the vector
〈2, 3〉 in TpP and the vector 〈2, 3〉 in TqP , where p �= q. We will do this by
writing 〈2, 3〉p for the former and 〈2, 3〉q for the latter.

Let’s pause for a moment to address something that may have been both-
ering you since your first term of calculus. Let’s look at the tangent line to
the graph of y = x2 at the point (1, 1). We are no longer thinking of this
tangent line as lying in the same plane that the graph does. Rather, it lies
in T(1,1)R

2. The horizontal axis for T(1,1)R
2 is the “dx” axis and the vertical

axis is the “dy” axis (see Figure 3.2). Hence, we can write the equation of the
tangent line as dy = 2dx. We can rewrite this as dy

dx = 2. Look familiar? This

is one explanation for why we use the notation dy
dx in calculus to denote the

derivative.

3.1.

1. Draw a vector with dx = 1, dy = 2 in the tangent space T(1,−1)R
2.
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Fig. 3.2. The line l lies in T(1,1)R
2. Its equation is dy = 2dx.

2. Draw 〈−3, 1〉(0,1).

3.2 1-Forms

Recall from the previous chapter that a 1-form is a linear function which acts
on vectors and returns numbers. For the moment let’s just look at 1-forms
on TpR

2 for some fixed point, p. Recall that a linear function, ω, is just one
whose graph is a plane through the origin. Hence, we want to write down an
equation of a plane through the origin in TpR

2 ×R, where one axis is labeled
dx, another dy and the third ω (see Figure 3.3). This is easy: ω = a dx+ b dy.
Hence, to specify a 1-form on TpR

2 we only need to know two numbers: a and
b.

Here is a quick example. Suppose ω(〈dx, dy〉) = 2dx+ 3dy; then

ω(〈−1, 2〉) = 2 · −1 + 3 · 2 = 4.

The alert reader may see something familiar here: the dot product; that is,
ω(〈−1, 2〉) = 〈2, 3〉 · 〈−1, 2〉. Recall the geometric interpretation of the dot
product: You project 〈−1, 2〉 onto 〈2, 3〉 and then multiply by |〈2, 3〉| = √

13.
In other words:

Evaluating a 1-form on a vector is the same as projecting onto
some line and then multiplying by some constant.
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dx

dy

ω

Fig. 3.3. The graph of ω is a plane through the origin.

In fact, we can even interpret the act of multiplying by a constant geo-
metrically. Suppose ω is given by a dx+ b dy. Then the value of ω(V1) is the

length of the projection of V1 onto the line, l, where 〈a,b〉
|〈a,b〉|2 is a basis vector

for l.
This interpretation has a huge advantage ... it is coordinate free. Recall

from the previous section that we can think of the plane P as existing inde-
pendent of our choice of coordinates. We only pick coordinates so that we can
communicate to someone else the location of a point. Forms are similar. They
are objects that exist independently of our choice of coordinates. This is one
key as to why they are so useful outside of mathematics.

There is still another geometric interpretation of 1-forms. Let’s first look
at the simple example ω(〈dx, dy〉) = dx. This 1-form simply returns the first
coordinate of whatever vector you feed into it. This is also a projection; it’s
the projection of the input vector onto the dx-axis. This immediately gives us
a new interpretation of the action of a general 1-form ω = a dx+ b dy.

Evaluating a 1-form on a vector is the same as projecting onto
each coordinate axis, scaling each by some constant and adding
the results.

Although this interpretation is more cumbersome, it is the one that will
generalize better when we get to n-forms.
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Let’s move on now to 1-forms in n dimensions. If p ∈ R
n, then we can write

p in coordinates as (x1, x2, ..., xn). The coordinates for a vector in TpR
n are

〈dx1, dx2, ..., dxn〉. A 1-form is a linear function, ω, whose graph (in TpR
n×R)

is a plane through the origin. Hence, we can write it as ω = a1 dx1+a2 dx2+
· · ·+an dxn. Again, this can be thought of as either projecting onto the vector
〈a1, a2, ..., an〉 and then multiplying by |〈a1, a2, ..., an〉| or as projecting onto
each coordinate axis, multiplying by ai, and then adding.

3.2. Let ω(〈dx, dy〉) = −dx+ 4dy.

1. Compute ω(〈1, 0〉), ω(〈0, 1〉) and ω(〈2, 3〉).
2. What line does ω project vectors onto?

3.3. Find a 1-form which computes the length of the projection of a vector
onto the indicated line, multiplied by the indicated constant c.

1. The dx-axis, c = 3.
2. The dy-axis, c = 1

2 .
3. Find a 1-form that does both of the two preceding operations and adds

the result.
4. The line dy = 3

4dx, c = 10.

3.4. If ω is a 1-form show the following:

1. ω(V1 + V2) = ω(V1) + ω(V2), for any vectors V1 and V2.
2. ω(cV ) = cω(V ), for any vector V and constant c.

3.3 Multiplying 1-forms

In this section we would like to explore a method of multiplying 1-forms. You
may think “What is the big deal? If ω and ν are 1-forms, can’t we just define
ω · ν(V ) = ω(V ) · ν(V )?” Well, of course we can, but then ω · ν is not a linear
function, so we have left the world of forms.

The trick is to define the product of ω and ν to be a 2-form. So as not
to confuse this with the product just mentioned, we will use the symbol “∧”
(pronounced “wedge”) to denote multiplication. So how can we possibly define
ω∧ν to be a 2-form? We must define how it acts on a pair of vectors, (V1, V2).

Note first that there are four ways to combine all of the ingredients:

ω(V1), ν(V1), ω(V2), ν(V2).

The first two of these are associated with V1 and the second two with V2. In
other words, ω and ν together give a way of taking each vector and returning
a pair of numbers. How do we visualize pairs of numbers? In the plane, of
course! Let’s define a new plane with one axis as the ω-axis and the other
as the ν-axis. So, the coordinates of V1 in this plane are [ω(V1), ν(V1)] and
the coordinates of V2 are [ω(V2), ν(V2)]. Note that we have switched to the
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notation “[·, ·]” to indicate that we are describing points in a new plane. This
may seem a little confusing at first. Just keep in mind that when we write
something like (1, 2), we are describing the location of a point in the xy-plane,
whereas 〈1, 2〉 describes a vector in the dxdy-plane and [1, 2] is a vector in the
ων-plane.

Let’s not forget our goal now. We wanted to use ω and ν to take the pair
of vectors (V1, V2) and return a number. So far, all we have done is to take
this pair of vectors and return another pair of vectors. Do we know of a way
to take these vectors and get a number? Actually, we know several, but the
most useful one turns out to be the area of the parallelogram that the vectors
span. This is precisely what we define to be the value of ω ∧ ν(V1, V2) (see
Figure 3.4).

x
y

z

V1

V2

ω(V1)

ν(V1)

ω

ν

Fig. 3.4. The product of ω and ν.

Example 13. Let ω = 2dx − 3dy + dz and ν = dx + 2dy − dz be two 1-forms
on TpR

3 for some fixed p ∈ R
3. Let’s evaluate ω ∧ ν on the pair of vectors

(〈1, 3, 1〉, 〈2,−1, 3〉). First, we compute the [ω, ν] coordinates of the vector
〈1, 3, 1〉:

[ω(〈1, 3, 1〉), ν(〈1, 3, 1〉)] = [2 · 1− 3 · 3 + 1 · 1, 1 · 1 + 2 · 3− 1 · 1]
= [−6, 6].

Similarly, we compute [ω(〈2,−1, 3〉), ν(〈2,−1, 3〉)] = [10,−3]. Finally, the
area of the parallelogram spanned by [−6, 6] and [10,−3] is

−6 6
10 −3

= 18− 60 = −42.

Should we have taken the absolute value? Not if we want to define a linear
operator. The result of ω ∧ ν is not just an area, it is a signed area; it can



3.3 Multiplying 1-forms 31

either be positive or negative. We will see a geometric interpretation of this
soon. For now, we define

ω ∧ ν(V1, V2) = ω(V1) ν(V1)
ω(V2) ν(V2)

.

3.5. Let ω and ν be the following 1-forms:

ω(〈dx, dy〉) = 2dx− 3dy,

ν(〈dx, dy〉) = dx+ dy.

1. Let V1 = 〈−1, 2〉 and V2 = 〈1, 1〉. Compute ω(V1), ν(V1), ω(V2) and ν(V2).
2. Use your answers to the previous question to compute ω ∧ ν(V1, V2).
3. Find a constant c such that ω ∧ ν = c dx ∧ dy.

3.6. ω ∧ ν(V1, V2) = −ω ∧ ν(V2, V1) (ω ∧ ν is skew-symmetric).

3.7. ω∧ ν(V, V ) = 0. (This follows immediately from the previous exercise. It
should also be clear from the geometric interpretation.)

3.8. ω ∧ ν(V1 + V2, V3) = ω ∧ ν(V1, V3) + ω ∧ ν(V2, V3) and ω ∧ ν(cV1, V2) =
ω∧ν(V1, cV2) = c ω∧ν(V1, V2), where c is any real number (ω∧ν is bilinear).

3.9. ω ∧ ν(V1, V2) = −ν ∧ ω(V1, V2).
It is interesting to compare Problems 3.6 and 3.9. Problem 3.6 says that

the 2-form, ω ∧ ν, is a skew-symmetric operator on pairs of vectors. Problem
3.9 says that ∧ can be thought of as a skew-symmetric operator on 1-forms.

3.10. ω ∧ ω(V1, V2) = 0.

3.11. (ω + ν) ∧ ψ = ω ∧ ψ + ν ∧ ψ (∧ is distributive).

There is another way to interpret the action of ω ∧ ν which is much more
geometric. First, let ω = a dx + b dy be a 1-form on TpR

2. Then we let 〈ω〉
be the vector 〈a, b〉.
3.12. Let ω and ν be 1-forms on TpR

2. Show that ω ∧ ν(V1, V2) is the area of
the parallelogram spanned by V1 and V2, times the area of the parallelogram
spanned by 〈ω〉 and 〈ν〉.
3.13. Use the previous problem to show that if ω and ν are 1-forms on R

2

such that ω ∧ ν = 0, then there is a constant c such that ω = cν.
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There is also a more geometric way to think about ω ∧ ν if ω and ν are 1-
forms on TpR

3, although it will take us some time to develop the idea. Suppose
ω = a dx + b dy + c dz. Then we will denote the vector 〈a, b, c〉 as 〈ω〉. From
the previous section, we know that if V is any vector, then ω(V ) = 〈ω〉 · V
and that this is just the projection of V onto the line containing 〈ω〉, times
|〈ω〉|.

Now suppose ν is some other 1-form. Choose a scalar x so that 〈ν − xω〉
is perpendicular to 〈ω〉. Let νω = ν − xω. Note that ω ∧ νω = ω ∧ (ν − xω) =
ω ∧ ν − xω ∧ ω = ω ∧ ν. Hence, any geometric interpretation we find for the
action of ω ∧ νω is also a geometric interpretation of the action of ω ∧ ν.

Finally, we let ω = ω
|〈ω〉| and νω = νω

|〈νω〉| . Note that these are 1-forms

such that 〈ω〉 and 〈νω〉 are perpendicular unit vectors. We will now present a
geometric interpretation of the action of ω ∧ νω on a pair of vectors (V1, V2).

First, note that since 〈ω〉 is a unit vector, then ω(V1) is just the projection
of V1 onto the line containing 〈ω〉. Similarly, νω(V1) is given by projecting V1
onto the line containing 〈νω〉. As 〈ω〉 and 〈νω〉 are perpendicular, we can think
of the quantity

ω ∧ νω(V1, V2) = ω(V1) νω(V1)
ω(V2) νω(V2)

as the area of parallelogram spanned by V1 and V2, projected onto the plane
containing the vectors 〈ω〉 and 〈νω〉. This is the same plane as the one which
contains the vectors 〈ω〉 and 〈ν〉.

Now observe the following:

ω ∧ νω =
ω

|〈ω〉| ∧
νω

|〈νω〉| =
1

|〈ω〉||〈νω〉|ω ∧ νω.

Hence,

ω ∧ ν = ω ∧ νω = |〈ω〉||〈νω〉|ω ∧ νω.
Finally, note that since 〈ω〉 and 〈νω〉 are perpendicular, the quantity

|〈ω〉||〈νω〉| is just the area of the rectangle spanned by these two vectors.
Furthermore, the parallelogram spanned by the vectors 〈ω〉 and 〈ν〉 is ob-
tained from this rectangle by skewing. Hence, they have the same area. We
conclude the following:

Evaluating ω ∧ ν on the pair of vectors (V1, V2) gives the area
of parallelogram spanned by V1 and V2 projected onto the plane
containing the vectors 〈ω〉 and 〈ν〉, and multiplied by the area of
the parallelogram spanned by 〈ω〉 and 〈ν〉.

CAUTION: While every 1-form can be thought of as projected length,
not every 2-form can be thought of as projected area. The only 2-forms for
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which this interpretation is valid are those that are the product of 1-forms.
See Problem 3.18.

Let’s pause for a moment to look at a particularly simple 2-form on TpR
3,

dx ∧ dy. Suppose V1 = 〈a1, a2, a3〉 and V2 = 〈b1, b2, b3〉. Then

dx ∧ dy(V1, V2) = a1 a2
b1 b2

.

This is precisely the (signed) area of the parallelogram spanned by V1 and V2
projected onto the dxdy-plane.

3.14. Show that for any 1-forms ω and ν on TR3, there are constants c1, c2,
and c3 such that

ω ∧ ν = c1dx ∧ dy + c2dx ∧ dz + c3dy ∧ dz.
The preceding comments and this last exercise give the following geometric

interpretation of the action of a 2-form on the pair of vectors (V1, V2):

Every 2-form projects the parallelogram spanned by V1 and V2

onto each of the (2-dimensional) coordinate planes, computes
the resulting (signed) areas, multiplies each by some constant,
and adds the results.

This interpretation holds in all dimensions. Hence, to specify a 2-form, we
need to know as many constants as there are 2-dimensional coordinate planes.
For example, to give a 2-form in 4-dimensional Euclidean space we need to
specify six numbers:

c1dx ∧ dy + c2dx ∧ dz + c3dx ∧ dw + c4dy ∧ dz + c5dy ∧ dw + c6dz ∧ dw.
The skeptic may argue here. Problem 3.14 only shows that a 2-form which

is a product of 1-forms can be thought of as a sum of projected, scaled areas.
What about an arbitrary 2-form? Well, to address this, we need to know what
an arbitrary 2-form is! Up until now we have not given a complete definition.
Henceforth, we will define a 2-form to be a bilinear, skew-symmetric, real-
valued function on TpR

n×TpR
n. That is a mouthful. This just means that it

is an operator which eats pairs of vectors, spits out real numbers, and satisfies
the conclusions of Problems 3.6 and 3.8. Since these are the only ingredients
necessary to do Problem 3.14, our geometric interpretation is valid for all
2-forms.

3.15. If ω(〈dx, dy, dz〉) = dx+ 5dy − dz and ν(〈dx, dy, dz〉) = 2dx− dy + dz,
compute

ω ∧ ν(〈1, 2, 3〉, 〈−1, 4,−2〉).
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3.16. Let ω(〈dx, dy, dz〉) = dx+5dy−dz and ν(〈dx, dy, dz〉) = 2dx−dy+dz.
Find constants c1, c2 and c3, such that

ω ∧ ν = c1dx ∧ dy + c2dy ∧ dz + c3dx ∧ dz.

3.17. Express each of the following as the product of two 1-forms:

1. 3dx ∧ dy + dy ∧ dx.
2. dx ∧ dy + dx ∧ dz.
3. 3dx ∧ dy + dy ∧ dx+ dx ∧ dz.
4. dx ∧ dy + 3dz ∧ dy + 4dx ∧ dz.

3.4 2-Forms on TpR
3 (optional)

This text is about differential n-forms on R
m. For most of it, we keep n,m ≤ 3

so that everything we do can be easily visualized. However, very little is special
about these dimensions. Everything we do is presented so that it can easily
generalize to higher dimensions. In this section and the next we break from
this philosophy and present some special results when the dimensions involved
are 3 or 4.

3.18. Find a 2-form which is not the product of 1-forms.

In doing this exercise, you may guess that, in fact, all 2-forms on TpR
3 can

be written as a product of 1-forms. Let’s see a proof of this fact that relies
heavily on the geometric interpretations we have developed.

Recall the correspondence introduced above between vectors and 1-forms.
If α = a1dx+a2dy+a3dz, then we let 〈α〉 = 〈a1, a2, a3〉. If V is a vector, then
we let 〈V 〉−1 be the corresponding 1-form.

We now prove two lemmas.

Lemma 1. If α and β are 1-forms on TpR
3 and V is a vector in the plane

spanned by 〈α〉 and 〈β〉, then there is a vector, W , in this plane such that
α ∧ β = 〈V 〉−1 ∧ 〈W 〉−1.

Proof. The proof of the above lemma relies heavily on the fact that 2-forms
which are the product of 1-forms are very flexible. The 2-form α ∧ β takes
pairs of vectors, projects them onto the plane spanned by the vectors 〈α〉 and
〈β〉, and computes the area of the resulting parallelogram times the area of
the parallelogram spanned by 〈α〉 and 〈β〉. Note that for every nonzero scalar
c, the area of the parallelogram spanned by 〈α〉 and 〈β〉 is the same as the
area of the parallelogram spanned by c〈α〉 and 1/c〈β〉. (This is the same thing
as saying that α ∧ β = cα ∧ 1

cβ.) The important point here is that we can
scale one of the 1-forms as much as we want at the expense of the other and
get the same 2-form as a product.
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Another thing we can do is apply a rotation to the pair of vectors 〈α〉
and 〈β〉 in the plane which they determine. As the area of the parallelogram
spanned by these two vectors is unchanged by rotation, their product still
determines the same 2-form. In particular, suppose V is any vector in the
plane spanned by 〈α〉 and 〈β〉. Then we can rotate 〈α〉 and 〈β〉 to 〈α′〉 and
〈β′〉 so that c〈α′〉 = V for some scalar c. We can then replace the pair (〈α〉, 〈β〉)
with the pair (c〈α′〉, 1/c〈β′〉) = (V, 1/c〈β′〉). To complete the proof, let W =
1/c〈β′〉.
Lemma 2. If ω1 = α1∧β1 and ω2 = α2∧β2 are 2-forms on TpR

3, then there
exist 1-forms, α3 and β3, such that ω1 + ω2 = α3 ∧ β3.
Proof. Let’s examine the sum α1 ∧ β1 + α2 ∧ β2. Our first case is that the
plane spanned by the pair (〈α1〉, 〈β1〉) is the same as the plane spanned by
the pair (〈α2〉, 〈β2〉). In this case, it must be that α1 ∧ β1 = Cα2 ∧ β2 and,
hence, α1 ∧ β1 + α2 ∧ β2 = (1 + C)α1 ∧ β1.

If these two planes are not the same, then they intersect in a line. Let V
be a vector contained in this line. Then by the preceding lemma, there are
1-forms γ and γ′ such that α1 ∧ β1 = 〈V 〉−1 ∧ γ and α2 ∧ β2 = 〈V 〉−1 ∧ γ′.
Hence,

α1 ∧ β1 + α2 ∧ β2 = 〈V 〉−1 ∧ γ + 〈V 〉−1 ∧ γ′ = 〈V 〉−1 ∧ (γ + γ′).

Now note that any 2-form is the sum of products of 1-forms. Hence, this
last lemma implies that any 2-form on TpR

3 is a product of 1-forms. In other
words:

Every 2-form on TpR
3 projects pairs of vectors onto some plane

and returns the area of the resulting parallelogram, scaled by
some constant.

This fact is precisely why all of classical vector calculus works. We explore
this in the next few exercises and further in Section 6.3.

3.19. Use the above geometric interpretation of the action of a 2-form on
TpR

3 to justify the following statement: For every 2-form ω on TpR
3 there are

nonzero vectors V1 and V2 such that V1 is not a multiple of V2 but ω(V1, V2) =
0.

3.20. Does Problem 3.19 generalize to higher dimensions?

3.21. Show that if ω is a 2-form on TpR
3, then there is a line l in TpR

3 such
that if the plane spanned by V1 and V2 contains l, then ω(V1, V2) = 0.

Note that the conditions of Problem 3.21 are satisfied when the vectors
that are perpendicular to both V1 and V2 are also perpendicular to l.
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3.22. Show that if all you know about V1 and V2 is that they are vectors
in TpR

3 that span a parallelogram of area A, then the value of ω(V1, V2) is
maximized when V1 and V2 are perpendicular to the line l of Problem 3.21.

Note that the conditions of this exercise are satisfied when the vectors
perpendicular to V1 and V2 are parallel to l.

3.23. Let N be a vector perpendicular to V1 and V2 in TpR
3 whose length is

precisely the area of the parallelogram spanned by these two vectors. Show
that there is a vector Vω in the line l of Problem 3.21 such that the value of
ω(V1, V2) is precisely Vω ·N .

Remark. You may have learned that the vector N of the previous exercise
is precisely the cross product of V1 and V2. Hence, the previous problem
implies that if ω is a 2-form on TpR

3 then there is a vector Vω such that
ω(V1, V2) = Vω · (V1 × V2).

3.24. Show that if ω = Fx dy ∧ dz − Fy dx ∧ dz + Fz dx ∧ dy, then Vω =
〈Fx, Fy, Fz〉.

3.5 2-Forms and 3-forms on TpR
4 (optional)

Many of the techniques of the previous section can be used to prove results
about 2- and 3-forms on TpR

4.

3.25. Show that any 3-form on TpR
4 can be written as the product of three

1-forms. (Hint: Two 3-dimensional subspaces of TpR
4 must meet in at least a

line.)

We now give away an answer to Problem 3.18. Let ω = dx∧ dy+ dz ∧ dw.
Then an easy computation shows that ω ∧ ω = 2dx ∧ dy ∧ dz ∧ dw. However,
if ω were equal to α ∧ β for some 1-forms α and β, then ω ∧ ω would be zero
(why?). This argument shows that, in general, if ω is any 2-form such that
ω ∧ ω �= 0, then ω cannot be written as the product of 1-forms.

3.26. Let ω be a 2-form on TpR
4. Show that ω can be written as the sum of

exactly two products; that is, ω = α ∧ β + δ ∧ γ. (Hint: Given three planes in
TpR

4, there are at least two of them that intersect in more than a point.)

Above, we saw that if ω is a 2-form such that ω ∧ω �= 0, then ω is not the
product of 1-forms. We now use the previous exercise to show the converse.

Theorem 1. If ω is a 2-form on TpR
4 such that ω ∧ ω = 0, then ω can be

written as the product of two 1-forms.
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Our proof of this again relies heavily on the geometry of the situation. By
the previous exercise, ω = α ∧ β + δ ∧ γ. A short computation then shows

ω ∧ ω = 2α ∧ β ∧ δ ∧ γ.
If this 4-form is the zero 4-form, then it must be the case that the (4-

dimensional) volume of the parallelepiped spanned by 〈α〉, 〈β〉, 〈δ〉 and 〈γ〉
is zero. This, in turn, implies that the plane spanned by 〈α〉 and 〈β〉 meets
the plane spanned by 〈δ〉 and 〈γ〉 in at least a line (show this!). Call such an
intersection line L.

As in the previous section, we can now rotate 〈α〉 and 〈β〉, in the plane
they span, to vectors 〈α′〉 and 〈β′〉 such that 〈α′〉 lies in the line L. The 2-
form α′ ∧ β′ must equal α ∧ β since they determine the same plane and span
a parallelogram of the same area. Similarly, we rotate 〈δ〉 and 〈γ〉 to vectors
〈δ′〉 and 〈γ′〉 such that 〈δ′〉 ⊂ L. It follows that δ ∧ γ = δ′ ∧ γ′.

Since 〈α′〉 and 〈δ′〉 lie on the same line, there is a constant c such that
cα′ = δ′. We now put all of this information together:

ω = α ∧ β + δ ∧ γ
= α′ ∧ β′ + δ′ ∧ γ′

= (cα′) ∧
(
1

c
β′
)
+ δ′ ∧ γ′

= δ′ ∧
(
1

c
β′
)
+ δ′ ∧ γ′

= δ′ ∧
(
1

c
β′ + γ′

)
.

3.6 n-Forms

Let’s think a little more about our multiplication operator ∧. If it is really
going to be anything like multiplication, we should be able to take three 1-
forms — ω, ν and ψ — and form the product ω ∧ ν ∧ ψ. How can we define
this? A first guess might be to say that ω ∧ ν ∧ ψ = ω ∧ (ν ∧ ψ), but ν ∧ ψ is
a 2-form and we have not defined the product of a 2-form and a 1-form. We
take a different approach and define ω ∧ ν ∧ ψ directly.

This is completely analogous to the previous section. ω, ν and ψ each act
on a vector, V , to give three numbers. In other words, they can be thought of
as coordinate functions. We say the coordinates of V are [ω(V ), ν(V ), ψ(V )].
Hence, if we have three vectors — V1, V2 and V3 — we can compute the
[ω, ν, ψ] coordinates of each. This gives us three new vectors. The value of
ω∧ν∧ψ(V1, V2, V3) is then defined to be the signed volume of the parallelepiped
which they span.

There is no reason to stop at 3 dimensions. Suppose ω1, ω2, ..., ωn are 1-
forms and V1, V2, ..., Vn are vectors. Then we define the value of
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ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, V2, ..., Vn)
to be the signed (n-dimensional) volume of the parallelepiped spanned by the
vectors [ω1(Vi), ω2(Vi), ..., ωn(Vi)]. Algebraically,

ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, V2, ..., Vn) =
ω1(V1) ω2(V1) · · · ωn(V1)
ω1(V2) ω2(V2) · · · ωn(V2)

...
...

...
ω1(Vn) ω2(Vn) · · · ωn(Vn)

3.27. Let γ be the 3-form 2dx ∧ dy ∧ dz. Let
V1 = 〈1, 2, 1〉, V2 = 〈0, 1, 1〉, V3 = 〈−1,−2, 1〉.

Compute γ(V1, V2, V3).

3.28. Calculate α ∧ β ∧ γ(V1, V2, V3), where
α = dx+ 2dy + dz, β = dx− dz, γ = −dy + 3dz,

V1 = 〈1, 2, 3〉, V2 = 〈−1, 1, 1〉, V3 = 〈0, 1, 1〉.
3.29. Note that, just as in Problem 3.12, if α, β and γ are 1-forms on TpR

3,
then α∧β∧γ(V1, V2, V3) is the (signed) volume of the parallelepiped spanned
by V1, V2 and V3 times the volume of the parallelepiped spanned by 〈α〉, 〈β〉
and 〈γ〉. Suppose ω is a 2-form on TpR

3 and ν is a 1-form on TpR
3. Show that

if ω∧ ν = 0, then there is a 1-form γ such that ω = ν ∧γ. (Hint: Combine the
given geometric interpretation of a 3-form which is the product of 1-forms on
TpR

3, with the results of Section 3.4.)

It follows from linear algebra that if we swap any two rows or columns
of this matrix, the sign of the result flips. Hence, if the n-tuple V′ =
(Vi1 , Vi2 , ..., Vin) is obtained from V = (V1, V2, ..., Vn) by an even number
of exchanges, then the sign of ω1 ∧ ω2 ∧ · · · ∧ ωn(V′) will be the same as the
sign of ω1∧ω2 ∧ · · ·∧ωn(V). If the number of exchanges is odd, then the sign
is opposite. We sum this up by saying that the n-form, ω1 ∧ ω2 ∧ · · · ∧ ωn is
alternating.

The wedge product of 1-forms is also multilinear, in the following sense:

ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., Vi + V ′
i , ..., Vn)

= ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., Vi, ..., Vn)
+ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., V ′

i , ..., Vn)

and

ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., cVi, ..., Vn) = cω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., Vi, ..., Vn)
for all i and any real number c.

In general, we define an n-form to be any alternating, multilinear real-
valued function which acts on n-tuples of vectors.
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3.30. Prove the following geometric interpretation (Hint: All of the steps are
completely analogous to those in Section 3.3.):

An m-form on TpR
n can be thought of as a function which takes

the parallelepiped spanned by m vectors, projects it onto each
of the m-dimensional coordinate planes, computes the resulting
areas, multiplies each by some constant, and adds the results.

3.31. How many numbers do you need to give to specify a 5-form on TpR
10?

We turn now to the simple case of an n-form on TpR
n. Notice that there

is only one n-dimensional coordinate plane in this space — namely the space
itself. Such a form, evaluated on an n-tuple of vectors, must therefore give the
n-dimensional volume of the parallelepiped which it spans, multiplied by some
constant. For this reason, such a form is called a volume form (in 2-dimensions,
an area form).

Example 14. Consider the forms, ω = dx + 2dy − dz, ν = 3dx − dy + dz and
ψ = −dx − 3dy + dz, on TpR

3. By the above argument, ω ∧ ν ∧ ψ must be
a volume form. Which volume form is it? One way to tell is to compute its
value on a set of vectors which we know span a parallelepiped of volume one
— namely 〈1, 0, 0〉, 〈0, 1, 0〉 and 〈0, 0, 1〉. This will tell us how much the form
scales volume.

ω ∧ ν ∧ ψ(〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉) =
1 3 −1
2 −1 −3

−1 1 1
= 4.

So, ω ∧ ν ∧ ψ must be the same as the form 4dx ∧ dy ∧ dz.
3.32. Let ω(〈dx, dy, dz〉) = dx+5dy−dz, ν(〈dx, dy, dz〉) = 2dx−dy+dz and
γ(〈dx, dy, dz) = −dx+ dy + 2dz.

1. If V1 = 〈1, 0, 2〉, V2 = 〈1, 1, 2〉 and V3 = 〈0, 2, 3〉, compute ω ∧ ν ∧
γ(V1, V2, V3).

2. Find a constant c such that ω ∧ ν ∧ γ = c dx ∧ dy ∧ dz.
3. Let α = 3dx ∧ dy + 2dy ∧ dz − dx ∧ dz. Find a constant c such that
α ∧ γ = c dx ∧ dy ∧ dz.

3.33. Simplify

dx ∧ dy ∧ dz + dx ∧ dz ∧ dy + dy ∧ dz ∧ dx+ dy ∧ dx ∧ dy.
3.34.

1. Expand and simplify

(dx + dy) ∧ (2dx+ dz) ∧ dz.
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2. Plug the following vectors into the above 3-form:

V1 = 〈1, 1, 1〉, V2 = 〈1, 0, 1〉, V3 = 〈0, 1,−1〉
3.35. Let ω be an n-form and ν an m-form.

1. Show that
ω ∧ ν = (−1)nmν ∧ ω.

2. Use this to show that if n is odd, then ω ∧ ω = 0.

3.7 Algebraic computation of products

In this section, we break with the spirit of the text briefly. At this point,
we have amassed enough algebraic identities that multiplying forms becomes
similar to multiplying polynomials. We quickly summarize these identities and
work a few examples.

Let ω be an n-form and ν be an m-form. Then we have the following
identities:

ω ∧ ν = (−1)nmν ∧ ω,
ω ∧ ω = 0 if n is odd,

ω ∧ (ν + ψ) = ω ∧ ν + ω ∧ ψ,
(ν + ψ) ∧ ω = ν ∧ ω + ψ ∧ ω.

Example 15.

(x dx+ y dy) ∧ (y dx + x dy) =�����xy dx ∧ dx+ x2 dx ∧ dy + y2 dy ∧ dx
+�����yx dy ∧ dy

= x2 dx ∧ dy + y2 dy ∧ dx
= x2 dx ∧ dy − y2 dx ∧ dy
= (x2 − y2) dx ∧ dy.

Example 16.

(x dx+ y dy) ∧ (xz dx ∧ dz + yz dy ∧ dz)
=��������
x2z dx ∧ dx ∧ dz + xyz dx ∧ dy ∧ dz
+yxz dy ∧ dx ∧ dz +��������

y2z dy ∧ dy ∧ dz
= xyz dx ∧ dy ∧ dz + yxz dy ∧ dx ∧ dz
= xyz dx ∧ dy ∧ dz − xyz dx ∧ dy ∧ dz
= 0.

3.36. Expand and simplify the following:

1. [(x− y) dx+ (x+ y) dy + z dz] ∧ [(x− y) dx+ (x+ y) dy].
2. (2dx+ 3dy) ∧ (dx− dz) ∧ (dx + dy + dz).
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