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Introduction

1.1 So what is a differential form?

A differential form is simply this: an integrand. In other words, it is a thing
which can be integrated over some (often complicated) domain. For exam-

ple, consider the following integral:
1∫
0

x2dx. This notation indicates that we

are integrating x2 over the interval [0, 1]. In this case, x2dx is a differential
form. If you have had no exposure to this subject, this may make you a little
uncomfortable. After all, in calculus we are taught that x2 is the integrand.
The symbol “dx” is only there to delineate when the integrand has ended and
what variable we are integrating with respect to. However, as an object in
itself, we are not taught any meaning for “dx.” Is it a function? Is it an op-
erator on functions? Some professors call it an “infinitesimal” quantity. This

is very tempting. After all,
1∫
0

x2dx is defined to be the limit, as n → ∞, of

n∑
i=1

x2i∆x, where {xi} are n evenly spaced points in the interval [0, 1] and

∆x = 1/n. When we take the limit, the symbol “
∑

” becomes “
∫
,” and the

symbol “∆x” becomes “dx.” This implies that dx = lim∆x→0∆x, which is
absurd. lim∆x→0∆x = 0!! We are not trying to make the argument that the
symbol “dx” should be eliminated. It does have meaning. This is one of the
many mysteries that this book will reveal.

One word of caution here: Not all integrands are differential forms. In fact,
in Section 4.8 we will see how to calculate arc length and surface area. These
calculations involve integrands which are not differential forms. Differential
forms are simply natural objects to integrate and also the first that one should
study. As we will see, this is much like beginning the study of all functions by
understanding linear functions. The naive student may at first object to this,
since linear functions are a very restrictive class. On the other hand, eventually
we learn that any differentiable function (a much more general class) can be
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2 1 Introduction

locally approximated by a linear function. Hence, in some sense, the linear
functions are the most important ones. In the same way, one can make the
argument that differential forms are the most important integrands.

1.2 Generalizing the integral

Let’s begin by studying a simple example and trying to figure out how and
what to integrate. The function f(x, y) = y2 maps R

2 to R. Let M denote
the top half of the circle of radius 1, centered at the origin. Let’s restrict the
function f to the domain, M , and try to integrate it. Here we encounter our
first problem: The given description ofM is not particularly useful. IfM were
something more complicated, it would have been much harder to describe it in
words as we have just done. A parameterization is far easier to communicate
and far easier to use to determine which points of R2 are elements of M and
which are not. However, there are lots of parameterizations of M . Here are
two which we will use:

φ1(a) = (a,
√
1− a2), where −1 ≤ a ≤ 1, and

φ2(t) = (cos t, sin t), where 0 ≤ t ≤ π.
Here is the trick: Integrating f overM is difficult. It may not even be clear

what this means. However, perhaps we can use φ1 to translate this problem
into an integral over the interval [−1, 1]. After all, an integral is a big sum. If
we add up all the numbers f(x, y) for all the points, (x, y), of M , shouldn’t
we get the same thing as if we added up all the numbers f(φ1(a)) for all the
points, a, of [−1, 1] (see Figure 1.1)?

f

φ

f ◦ φ
3/4

M

−1 10

Fig. 1.1. Shouldn’t the integral of f over M be the same as the integral of f ◦ φ
over [−1, 1]?

Let’s try it. φ1(a) = (a,
√
1− a2), so f(φ1(a)) = 1 − a2. Hence, we are

saying that the integral of f over M should be the same as
1∫

−1

(1 − a2) da.

Using a little calculus, we can determine that this evaluates to 4/3.
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Let’s try this again, this time using φ2. Using the same argument, the

integral of f over M should be the same as
π∫
0

f(φ2(t)) dt =
π∫
0

sin2 t dt = π/2.

Hold on! The problem was stated before any parameterizations were cho-
sen. Shouldn’t the answer be independent of which one was picked? It would
not be a very meaningful problem if two people could get different correct
answers, depending on how they went about solving it. Something strange is
going on!

In order to understand what happened, we must first review the definition
of the Riemann Integral. In the usual definition of the integral, the first step

is to divide the interval up into n evenly spaced subintervals. Thus,
b∫
a

f(x) dx

is defined to be the limit, as n→ ∞, of
n∑
i=1

f(xi)∆x, where {xi} are n evenly

spaced points in the interval [a, b] and ∆x = (b − a)/n. Hpowever, what if
the points {xi} are not evenly spaced? We can still write down a reasonable

sum:
n∑
i=1

f(xi)∆xi, where now ∆xi = xi+1 − xi. In order to make the integral

well defined, we can no longer take the limit as n→ ∞. Instead, we must let
max{∆xi} → 0. It is a basic result of analysis that if this limit converges, then
it does not matter how we picked the points {xi}; the limit will converge to

the same number. It is this number that we define to be the value of
b∫
a

f(x) dx.

1.3 What went wrong?

We are now ready to figure out what happened in Section 1.2. Obviously,
1∫

−1

f(φ1(a)) da was not what we wanted. Let’s not give up on our general

approach just yet; it would still be great if we could use φ1 to find some
function that we can integrate on [−1, 1] that will give us the same answer as
the integral of f over M . For now, let’s call this mystery function “F (a).”

Let’s look at the Riemann Sum that we get for
1∫

−1

F (a) da when we divide

the interval up into n pieces, each of width ∆a:
n∑
i=1

F (ai)∆a. Examine Figure

1.2 to see what happens to the points ai under the function, φ1. Notice that
the points {φ1(ai)} are not evenly spaced along M . To use these points to
estimate the integral of f over M , we would have to use the approach from

the previous section. A Riemann Sum for f over M would be
n∑
i=1

f(φ1(ai))li,

where the li represent the arc length, along M , between φ1(ai) and φ1(ai+1).
This is a bit problematic, however, since arc length is generally hard to

calculate. Instead, we can approximate li by substituting in the length of the
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Fig. 1.2. We want
n∑

i=1

F (ai)∆a =
n∑

i=1

f(φ1(ai))Li.

line segment which connects φ1(ai) to φ1(ai+1), which we will denote as Li.
Note that this approximation gets better and better as we let n→ ∞. Hence,
when we take the limit, it does not matter if we use li or Li.

So our goal is to find a function, F (a), on the interval [−1, 1] so that

n∑
i=1

F (ai)∆a =

n∑
i=1

f(φ1(ai))Li.

Of course this equality will hold if F (ai)∆a = f(φ1(ai))Li. Solving, we get

F (ai) =
f(φ1(ai))Li

∆a .
What happens to this function as ∆a → 0? First, note that Li =

|φ1(ai+1)− φ1(ai)|. Hence,

lim
∆a→0

F (ai) = lim
∆a→0

f(φ1(ai))Li
∆a

= lim
∆a→0

f(φ1(ai))|φ1(ai+1)− φ1(ai)|
∆a

= f(φ1(ai)) lim
∆a→0

|φ1(ai+1)− φ1(ai)|
∆a

= f(φ1(ai))

∣∣∣∣ lim
∆a→0

φ1(ai+1)− φ1(ai)

∆a

∣∣∣∣ .
However, lim∆a→0

φ1(ai+1)−φ1(ai)
∆a is precisely the definition of the deriva-

tive of φ1 at ai,
dφ1

da (ai). Hence, we have lim∆a→0 F (ai) = f(φ1(ai))
∣∣∣dφ1

da (ai)
∣∣∣.

Finally, this means that the integral we want to compute is
1∫

−1

f(φ1(a))
∣∣∣ dφ1

da

∣∣∣ da.
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1.1. Check that
1∫

−1

f(φ1(a))|dφ1

da | da =
π∫
0

f(φ2(t))|dφ2

dt | dt, using the function,

f , defined in Section 1.2.

Recall that dφ1

da is a vector, based at the point φ(a), tangent to M . If we

think of a as a time parameter, then the length of dφ1

da tells us how fast φ1(a)

is moving along M . How can we generalize the integral,
1∫

−1

f(φ1(a))|dφ1

da | da?
Note that the bars |·| denote a function that “eats” vectors and “spits out” real
numbers. So we can generalize the integral by looking at other such functions.

In other words, a more general integral would be
1∫

−1

f(φ1(a))ω(
dφ1

da ) da, where

f is a function of points and ω is a function of vectors.
It is not the purpose of the present work to undertake a study of integrat-

ing with respect to all possible functions, ω. However, as with the study of
functions of real variables, a natural place to start is with linear functions.
This is the study of differential forms. A differential form is precisely a linear
function which eats vectors, spits out numbers and is used in integration. The
strength of differential forms lies in the fact that their integrals do not depend
on a choice of parameterization.

1.4 What about surfaces?

Let’s repeat the previous discussion (faster this time), bumping everything up
a dimension. Let f : R3 → R be given by f(x, y, z) = z2. Let M be the top
half of the sphere of radius 1, centered at the origin. We can parameterize M
by the function φ, where φ(r, θ) = (r cos(θ), r sin(θ),

√
1− r2), 0 ≤ r ≤ 1 and

0 ≤ θ ≤ 2π. Again, our goal is not to figure out how to actually integrate
f over M but to use φ to set up an equivalent integral over the rectangle
R = [0, 1]× [0, 2π]. See Figure 1.3 for an illustration of how we do this.

Let {xi,j} be a lattice of evenly spaced points in R. Let ∆r = xi+1,j−xi,j ,
and ∆θ = xi,j+1 − xi,j . By definition, the integral over R of a function, F (x),
is equal to lim∆r,∆θ→0

∑
F (xi,j)∆r∆θ.

To use the mesh of points, φ(xi,j), inM to set up a Riemann Sum, we write
down the following sum:

∑
f(φ(xi,j))Area(Li,j), where Li,j is the rectangle

spanned by the vectors φ(xi+1,j)− φ(xi,j) and φ(xi,j+1)− φ(xi,j). If we want
our Riemann Sum over R to equal this sum, then we end up with F (xi,j) =
f(φ(xi,j))Area(Li,j)

∆r∆θ .
We now leave it as an exercise to show that as ∆r and ∆θ get small,

Area(Li,j)
∆r∆θ converges to the area of the parallelogram spanned by the vectors

∂φ
∂r (xi,j) and ∂φ

∂θ (xi,j). The upshot of all this is that the integral we want to
evaluate is the following:
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Fig. 1.3. Setting up the Riemann Sum for the integral of z2 over the top half of
the sphere of radius 1.

∫
R

f(φ(r, θ))Area

(
∂φ

∂r
,
∂φ

∂θ

)
dr dθ.

The point of all this is not the specific integral that we have arrived at,
but the form of the integral. We integrate f ◦ φ (as in the previous section),
times a function which takes two vectors and returns a real number. Once
again, we can generalize this by using other such functions:∫

R

f(φ(r, θ))ω

(
∂φ

∂r
,
∂φ

∂θ

)
dr dθ.

In particular, if we examine linear functions for ω, we arrive at a differen-
tial form. The moral is that if we want to perform an integral over a region
parameterized by R, as in the previous section, then we need to multiply by a
function which takes a vector and returns a number. If we want to integrate
over something parameterized by R

2, then we need to multiply by a function
which takes two vectors and returns a number. In general, an n-form is a linear
function which takes n vectors and returns a real number. One integrates n-
forms over regions that can be parameterized by R

n. Their strength is that the
value of such an integral does not depend on the choice of parameterization.
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