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Preface to the Second Edition

The original edition of this book was written to be accessible to sophomore-
level undergraduates, who had only seen one year of a standard calculus se-
quence. In particular, for most of the text, no prior exposure to multivariable
calculus, vector calculus, or linear algebra was assumed. After receiving lots
of reader feedback to the first edition, it became clear that the people reading
this book were more advanced. Hence, for the second edition, most of the
material on basic topics such as partial derivatives and multiple integrals has
been removed, and more advanced applications of differential forms have been
added.

The largest of the new additions is a chapter containing an introduction
to differential geometry, based on the machinery of differential forms. At all
times, we have made an effort to be consistent with the rest of the text here,
so that the material is presented in R

3 for concreteness, but all definitions
are formulated to easily generalize to arbitrary dimensions. This is perhaps a
unique approach to this material.

Other smaller additions worth noting include new sections on linking
number and the Hopf Invariant. These join the host of brief applications
of differential forms which originally appeared in the first edition, including
Maxwell’s Equations, DeRham Cohomology, foliations, contact structures, and
the Godbillon–Vey Invariant. While the treatment given here of these topics
is far from exhaustive, we feel it is important to include these teasers to give
the reader some hint at the usefulness of differential forms.

Finally, other changes worth noting are a rearrangement of some of the
original sections for clarity, and the addition of several new problems and
examples.

Claremont, CA David Bachman
January, 2011
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Preface to the First Edition1

The present work is not meant to contain any new material about differential
forms. There are many good books out there which give complete treatments
of the subject. Rather, the goal here is to make the topic of differential forms
accessible to the sophomore-level undergraduate while still providing material
that will be of interest to more advanced students.

There are three tracks through this text. The first is a course in Multivari-
able Calculus, suitable for the third semester in a standard calculus sequence.
The second track is a sophomore-level Vector Calculus class. The last track is
for advanced undergraduates, or even beginning graduate students. At many
institutions, a course in linear algebra is not a prerequisite for either multi-
variable calculus or vector calculus. Consequently, this book has been written
so that the earlier chapters do not require many concepts from linear algebra.
What little is needed is covered in the first section.

The book begins with basic concepts from multivariable calculus such as
partial derivatives, gradients and multiple integrals. All of these topics are
introduced in an informal, pictorial way to quickly get students to the point
where they can do basic calculations and understand what they mean. The
second chapter focuses on parameterizations of curves, surfaces and three-
dimensional regions. We spend considerable time here developing tools which
will help students find parameterizations on their own, as this is a common
stumbling block.

Chapter 1 is purely motivational. It is included to help students understand
why differential forms arise naturally when integrating over parameterized
domains.

The heart of this text is Chapters 3 through 6. In these chapters, the entire
machinery of differential forms is developed from a geometric standpoint. New
ideas are always introduced with a picture. Verbal descriptions of geometric
actions are set out in boxes.

1 Chapter and Section references have been updated to conform to the present
edition.
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Chapter 6 focuses on the development of the generalized Stokes’ Theo-
rem. This is really the centerpiece of the text. Everything that precedes it is
there for the sole purpose of its development. Everything that follows is an
application. The equation is simple:∫

∂C

ω =

∫
C

dω.

Yet it implies, for example, all integral theorems of classical vector analysis.
Its simplicity is precisely why it is easier for students to understand and
remember than these classical results.

Chapter 6 concludes with a discussion on how to recover all of vector cal-
culus from the generalized Stokes’ Theorem. By the time students get through
this they tend to be more proficient at vector integration than after traditional
classes in vector calculus. Perhaps this will allay some of the concerns many
will have in adopting this textbook for traditional classes.

Chapter ∗∗2 contains further applications of differential forms. These in-
clude Maxwell’s Equations and an introduction to the theory of foliations
and contact structures. This material should be accessible to anyone who has
worked through Chapter 6.

Chapter 7 is intended for advanced undergraduate and beginning graduate
students. It focuses on generalizing the theory of differential forms to the
setting of abstract manifolds. The final section contains a brief introduction
to DeRham Cohomology.

We now describe the three primary tracks through this text.

Track 1. Multivariable Calculus (Calculus III).3 For such a course, one
should focus on the definitions of n-forms on R

m, where n and m are at most
3. The following chapters/sections are suggested:

• Chapter 2, perhaps supplementing Section 2.2 with additional material on
max/min problems,

• Chapter ∗∗4,
• Chapter 3, excluding Sections 3.4 and 3.5 due to time constraints,
• Chapters 4–6,5

• Appendix A.6

Track 2. Vector Calculus. In this course, one should mention that for n-
forms on R

m, the numbers n and m could be anything, although in practice

2 This material has been added to the end of Chapter 5 in the present edition.
3 The present edition may not be quite as suitable for such a course as the first
edition was.

4 Material has been removed in the present edition.
5 The material in Sections 5.6, 5.7 and 6.4 were not originally included in these
chapters.

6 This is now Section 4.8.

viii Preface



Preface to the First Edition

it is difficult to work examples when either is bigger than 4. The following
chapters/sections are suggested:

• Section ∗∗ (unless Linear Algebra is a prerequisite),7

• Chapter 1 (one lecture),
• Chapter 2,
• Chapters 3–6,
• Sections 6.4 through 5.7, as time permits.

Track 3. Upper Division Course. Students should have had linear algebra,
and perhaps even basic courses in group theory and topology.

• Chapter 1 (perhaps as a reading assignment),
• Chapters 3–6 (relatively quickly),
• Sections 6.4 through 5.7 and Chapter 7.

The original motivation for this book came from [GP10], the text I learned
differential topology from as a graduate student. In that text, differential forms
are defined in a highly algebraic manner, which left me craving something
more intuitiuve. In searching for a more geometric interpretation I came across
Chapter 7 of Arnold’s text on classical mechanics [Arn97], where there is a
wonderful introduction to differential forms given from a geometric viewpoint.
In some sense, the present work is an expansion of the presentation given there.
Hubbard and Hubbard’s text [HH99] was also a helpful reference during the
preparation of this manuscript.

The writing of this book began with a set of lecture notes from an intro-
ductory course on differential forms, given at Portland State University, dur-
ing the summer of 2000. The notes were then revised for subsequent courses
on multivariable calculus and vector calculus at California Polytechnic State
University, San Luis Obispo and Pitzer College.

I thank several people. First and foremost, I am grateful to all those stu-
dents who survived the earlier versions of this book. I would also like to thank
several of my colleagues for giving me helpful comments. Most notably, Don
Hartig, Matthew White and Jim Hoste had several comments after using ear-
lier versions of this text for vector or multivariable calculus courses. John
Etnyre and Danny Calegari gave me feedback regarding Section 5.6 and Saul
Schleimer suggested Example 27. Other helpful suggestions were provided by
Ryan Derby–Talbot. Alvin Bachman suggested some of the formatting of the
text. Finally, the idea to write this text came from conversations with Robert
Ghrist while I was a graduate student at the University of Texas at Austin.

Claremont, CA David Bachman
March, 2006

7 Material has been removed in the present edition.
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Guide to the Reader

It often seems like there are two types of students of mathematics: those who
prefer to learn by studying equations and following derivations, and those who
prefer pictures. If you are of the former type, this book is not for you. However,
it is the opinion of the author that the topic of differential forms is inherently
geometric and thus should be learned in a visual way. Of course, learning
mathematics in this way has serious limitations: How can one visualize a 23-
dimensional manifold? We take the approach that such ideas can usually be
built up by analogy to simpler cases. So the first task of the student should
be to really understand the simplest case, which CAN often be visualized.

Fig. 0.1. The faces of the n-dimensional cube come from connecting the faces of
two copies of an (n− 1)-dimensional cube.

xv



xvi Guide to the Reader

For example, suppose one wants to understand the combinatorics of the
n-dimensional cube. We can visualize a 1-D cube (i.e., an interval) and see
just from our mental picture that it has two boundary points. Next, we can
visualize a 2-D cube (a square) and see from our picture that this has four
intervals on its boundary. Furthermore, we see that we can construct this 2-D
cube by taking two parallel copies of our original 1-D cube and connecting
the endpoints. Since there are two endpoints, we get two new intervals, in
addition to the two we started with (see Figure 0.1). Now, to construct a 3-D
cube, we place two squares parallel to each other and connect up their edges.
Each time we connect an edge of one square to an edge of the other, we get
a new square on the boundary of the 3-D cube. Hence, since there were four
edges on the boundary of each square, we get four new squares, in addition to
the two we started with, making six in all. Now, if the student understands
this, then it should not be hard to convince him/her that every time we go
up a dimension, the number of lower-dimensional cubes on the boundary is
the same as in the previous dimension, plus two. Finally, from this we can
conclude that there are 2n (n− 1)-dimensional cubes on the boundary of the
n-dimensional cube.

Note the strategy in the above example: We understand the “small” cases
visually and use them to generalize to the cases we cannot visualize. This will
be our approach in studying differential forms.

Perhaps this goes against some trends in mathematics in the last several
hundred years. After all, there were times when people took geometric intu-
ition as proof and later found that their intuition was wrong. This gave rise
to the formalists, who accepted nothing as proof that was not a sequence
of formally manipulated logical statements. We do not scoff at this point of
view. We make no claim that the above derivation for the number of (n− 1)-
dimensional cubes on the boundary of an n-dimensional cube is actually a
proof. It is only a convincing argument, that gives enough insight to actually
produce a proof. Formally, a proof would still need to be given. Unfortunately,
all too often the classical math book begins the subject with the proof, which
hides all of the geometric intuition to which the above argument leads.



1

Introduction

1.1 So what is a differential form?

A differential form is simply this: an integrand. In other words, it is a thing
which can be integrated over some (often complicated) domain. For exam-

ple, consider the following integral:
1∫
0

x2dx. This notation indicates that we

are integrating x2 over the interval [0, 1]. In this case, x2dx is a differential
form. If you have had no exposure to this subject, this may make you a little
uncomfortable. After all, in calculus we are taught that x2 is the integrand.
The symbol “dx” is only there to delineate when the integrand has ended and
what variable we are integrating with respect to. However, as an object in
itself, we are not taught any meaning for “dx.” Is it a function? Is it an op-
erator on functions? Some professors call it an “infinitesimal” quantity. This

is very tempting. After all,
1∫
0

x2dx is defined to be the limit, as n → ∞, of

n∑
i=1

x2
iΔx, where {xi} are n evenly spaced points in the interval [0, 1] and

Δx = 1/n. When we take the limit, the symbol “
∑

” becomes “
∫
,” and the

symbol “Δx” becomes “dx.” This implies that dx = limΔx→0 Δx, which is
absurd. limΔx→0 Δx = 0!! We are not trying to make the argument that the
symbol “dx” should be eliminated. It does have meaning. This is one of the
many mysteries that this book will reveal.

One word of caution here: Not all integrands are differential forms. In fact,
in Section 4.8 we will see how to calculate arc length and surface area. These
calculations involve integrands which are not differential forms. Differential
forms are simply natural objects to integrate and also the first that one should
study. As we will see, this is much like beginning the study of all functions by
understanding linear functions. The naive student may at first object to this,
since linear functions are a very restrictive class. On the other hand, eventually
we learn that any differentiable function (a much more general class) can be

DOI 10.1007/978-0-8176-830 - _1, © Springer Science+Business Media, LLC 2012
1,, D. Bachman A Geometric Approach to Differential Forms
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2 1 Introduction

locally approximated by a linear function. Hence, in some sense, the linear
functions are the most important ones. In the same way, one can make the
argument that differential forms are the most important integrands.

1.2 Generalizing the integral

Let’s begin by studying a simple example and trying to figure out how and
what to integrate. The function f(x, y) = y2 maps R

2 to R. Let M denote
the top half of the circle of radius 1, centered at the origin. Let’s restrict the
function f to the domain, M , and try to integrate it. Here we encounter our
first problem: The given description of M is not particularly useful. If M were
something more complicated, it would have been much harder to describe it in
words as we have just done. A parameterization is far easier to communicate
and far easier to use to determine which points of R2 are elements of M and
which are not. However, there are lots of parameterizations of M . Here are
two which we will use:

φ1(a) = (a,
√
1− a2), where −1 ≤ a ≤ 1, and

φ2(t) = (cos t, sin t), where 0 ≤ t ≤ π.
Here is the trick: Integrating f overM is difficult. It may not even be clear

what this means. However, perhaps we can use φ1 to translate this problem
into an integral over the interval [−1, 1]. After all, an integral is a big sum. If
we add up all the numbers f(x, y) for all the points, (x, y), of M , shouldn’t
we get the same thing as if we added up all the numbers f(φ1(a)) for all the
points, a, of [−1, 1] (see Figure 1.1)?

f

φ

f ◦ φ
3/4

M

−1 10

Fig. 1.1. Shouldn’t the integral of f over M be the same as the integral of f ◦ φ
over [−1, 1]?

Let’s try it. φ1(a) = (a,
√
1− a2), so f(φ1(a)) = 1 − a2. Hence, we are

saying that the integral of f over M should be the same as
1∫
−1

(1 − a2) da.

Using a little calculus, we can determine that this evaluates to 4/3.



1.3 What went wrong? 3

Let’s try this again, this time using φ2. Using the same argument, the

integral of f over M should be the same as
π∫
0

f(φ2(t)) dt =
π∫
0

sin2 t dt = π/2.

Hold on! The problem was stated before any parameterizations were cho-
sen. Shouldn’t the answer be independent of which one was picked? It would
not be a very meaningful problem if two people could get different correct
answers, depending on how they went about solving it. Something strange is
going on!

In order to understand what happened, we must first review the definition
of the Riemann Integral. In the usual definition of the integral, the first step

is to divide the interval up into n evenly spaced subintervals. Thus,
b∫
a

f(x) dx

is defined to be the limit, as n→∞, of
n∑

i=1

f(xi)Δx, where {xi} are n evenly

spaced points in the interval [a, b] and Δx = (b − a)/n. Hpowever, what if
the points {xi} are not evenly spaced? We can still write down a reasonable

sum:
n∑

i=1

f(xi)Δxi, where now Δxi = xi+1 − xi. In order to make the integral

well defined, we can no longer take the limit as n→∞. Instead, we must let
max{Δxi} → 0. It is a basic result of analysis that if this limit converges, then
it does not matter how we picked the points {xi}; the limit will converge to

the same number. It is this number that we define to be the value of
b∫
a

f(x) dx.

1.3 What went wrong?

We are now ready to figure out what happened in Section 1.2. Obviously,
1∫
−1

f(φ1(a)) da was not what we wanted. Let’s not give up on our general

approach just yet; it would still be great if we could use φ1 to find some
function that we can integrate on [−1, 1] that will give us the same answer as
the integral of f over M . For now, let’s call this mystery function “F (a).”

Let’s look at the Riemann Sum that we get for
1∫
−1

F (a) da when we divide

the interval up into n pieces, each of width Δa:
n∑

i=1

F (ai)Δa. Examine Figure

1.2 to see what happens to the points ai under the function, φ1. Notice that
the points {φ1(ai)} are not evenly spaced along M . To use these points to
estimate the integral of f over M , we would have to use the approach from

the previous section. A Riemann Sum for f over M would be
n∑

i=1

f(φ1(ai))li,

where the li represent the arc length, along M , between φ1(ai) and φ1(ai+1).
This is a bit problematic, however, since arc length is generally hard to

calculate. Instead, we can approximate li by substituting in the length of the
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f

φ

F (a2)

F

M

−1 1a2

f(φ(a2))

Δa

l1

l2 l3

l4
L1

L2 L3

L4

Fig. 1.2. We want
n∑

i=1

F (ai)Δa =
n∑

i=1

f(φ1(ai))Li.

line segment which connects φ1(ai) to φ1(ai+1), which we will denote as Li.
Note that this approximation gets better and better as we let n→∞. Hence,
when we take the limit, it does not matter if we use li or Li.

So our goal is to find a function, F (a), on the interval [−1, 1] so that

n∑
i=1

F (ai)Δa =

n∑
i=1

f(φ1(ai))Li.

Of course this equality will hold if F (ai)Δa = f(φ1(ai))Li. Solving, we get

F (ai) =
f(φ1(ai))Li

Δa .
What happens to this function as Δa → 0? First, note that Li =

|φ1(ai+1)− φ1(ai)|. Hence,

lim
Δa→0

F (ai) = lim
Δa→0

f(φ1(ai))Li

Δa

= lim
Δa→0

f(φ1(ai))|φ1(ai+1)− φ1(ai)|
Δa

= f(φ1(ai)) lim
Δa→0

|φ1(ai+1)− φ1(ai)|
Δa

= f(φ1(ai))

∣∣∣∣ lim
Δa→0

φ1(ai+1)− φ1(ai)

Δa

∣∣∣∣ .
However, limΔa→0

φ1(ai+1)−φ1(ai)
Δa is precisely the definition of the deriva-

tive of φ1 at ai,
dφ1

da (ai). Hence, we have limΔa→0 F (ai) = f(φ1(ai))
∣∣∣dφ1

da (ai)
∣∣∣.

Finally, this means that the integral we want to compute is
1∫
−1

f(φ1(a))
∣∣∣ dφ1

da

∣∣∣ da.
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1.1. Check that
1∫
−1

f(φ1(a))|dφ1

da | da =
π∫
0

f(φ2(t))|dφ2

dt | dt, using the function,

f , defined in Section 1.2.

Recall that dφ1

da is a vector, based at the point φ(a), tangent to M . If we

think of a as a time parameter, then the length of dφ1

da tells us how fast φ1(a)

is moving along M . How can we generalize the integral,
1∫
−1

f(φ1(a))|dφ1

da | da?
Note that the bars |·| denote a function that “eats” vectors and “spits out” real
numbers. So we can generalize the integral by looking at other such functions.

In other words, a more general integral would be
1∫
−1

f(φ1(a))ω(
dφ1

da ) da, where

f is a function of points and ω is a function of vectors.
It is not the purpose of the present work to undertake a study of integrat-

ing with respect to all possible functions, ω. However, as with the study of
functions of real variables, a natural place to start is with linear functions.
This is the study of differential forms. A differential form is precisely a linear
function which eats vectors, spits out numbers and is used in integration. The
strength of differential forms lies in the fact that their integrals do not depend
on a choice of parameterization.

1.4 What about surfaces?

Let’s repeat the previous discussion (faster this time), bumping everything up
a dimension. Let f : R3 → R be given by f(x, y, z) = z2. Let M be the top
half of the sphere of radius 1, centered at the origin. We can parameterize M
by the function φ, where φ(r, θ) = (r cos(θ), r sin(θ),

√
1− r2), 0 ≤ r ≤ 1 and

0 ≤ θ ≤ 2π. Again, our goal is not to figure out how to actually integrate
f over M but to use φ to set up an equivalent integral over the rectangle
R = [0, 1]× [0, 2π]. See Figure 1.3 for an illustration of how we do this.

Let {xi,j} be a lattice of evenly spaced points in R. Let Δr = xi+1,j−xi,j ,
and Δθ = xi,j+1 − xi,j . By definition, the integral over R of a function, F (x),
is equal to limΔr,Δθ→0

∑
F (xi,j)ΔrΔθ.

To use the mesh of points, φ(xi,j), in M to set up a Riemann Sum, we write
down the following sum:

∑
f(φ(xi,j))Area(Li,j), where Li,j is the rectangle

spanned by the vectors φ(xi+1,j)− φ(xi,j) and φ(xi,j+1)− φ(xi,j). If we want
our Riemann Sum over R to equal this sum, then we end up with F (xi,j) =
f(φ(xi,j))Area(Li,j)

ΔrΔθ .
We now leave it as an exercise to show that as Δr and Δθ get small,

Area(Li,j)
ΔrΔθ converges to the area of the parallelogram spanned by the vectors

∂φ
∂r (xi,j) and ∂φ

∂θ (xi,j). The upshot of all this is that the integral we want to
evaluate is the following:
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R

φ

r

θ

1

2π

x3,1

φ(x3,1)

∂φ
∂r

(x3,1)

∂φ
∂θ

(x3,1)

Fig. 1.3. Setting up the Riemann Sum for the integral of z2 over the top half of
the sphere of radius 1.

∫
R

f(φ(r, θ))Area

(
∂φ

∂r
,
∂φ

∂θ

)
dr dθ.

The point of all this is not the specific integral that we have arrived at,
but the form of the integral. We integrate f ◦ φ (as in the previous section),
times a function which takes two vectors and returns a real number. Once
again, we can generalize this by using other such functions:∫

R

f(φ(r, θ))ω

(
∂φ

∂r
,
∂φ

∂θ

)
dr dθ.

In particular, if we examine linear functions for ω, we arrive at a differen-
tial form. The moral is that if we want to perform an integral over a region
parameterized by R, as in the previous section, then we need to multiply by a
function which takes a vector and returns a number. If we want to integrate
over something parameterized by R

2, then we need to multiply by a function
which takes two vectors and returns a number. In general, an n-form is a linear
function which takes n vectors and returns a real number. One integrates n-
forms over regions that can be parameterized by R

n. Their strength is that the
value of such an integral does not depend on the choice of parameterization.
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Prerequisites

2.1 Multivariable calculus

We denote by R
n the set of points with n real coordinates. In this text we will

often represent functions abstractly by saying how many numbers go into the
function and how many come out. So, if we write f : Rn → R

m, we mean f is
a function whose input is a point with n coordinates and whose output is a
point with m coordinates.

2.1. Sketch the graphs of the following functions f : R2 → R
1:

1. z = 2x− 3y.
2. z = x2 + y2.
3. z = xy.
4. z =

√
x2 + y2.

5. z = 1√
x2+y2

.

6. z =
√
x2 + y2 + 1.

7. z =
√
x2 + y2 − 1.

8. z = cos(x+ y).
9. z = cos(xy).

10. z = cos(x2 + y2).

11. z = e−(x2+y2).

2.2. Find functions whose graphs are the following:

1. A plane through the origin at 45◦ to both the x- and y-axes.
2. The top half of a sphere of radius 2.
3. The top half of a torus centered around the z-axis (i.e., the tube of radius

1, say, centered around a circle of radius 2 in the xy-plane).
4. The top half of the cylinder of radius 1 which is centered around the line

where the plane y = x meets the plane z = 0.

DOI 10.1007/978-0-8176-830 - _2, © Springer Science+Business Media, LLC 2012
, D. Bachman
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You may find it helpful to check your answers to the above exercises with
a computer graphing program.

The volume under the graph of a multivariable function is given by a
multiple integral, as in the next example.

Example 1. To find the volume under the graph of f(x, y) = xy2 and above
the rectangle R with vertices at (0, 0), (2, 0), (0, 3) and (2, 3) we compute

∫
R

xy2 dx dy =

3∫
0

2∫
0

xy2 dx dy

=

3∫
0

[
1

2
x2y2

∣∣∣∣
2

x=0

]
dy

=

3∫
0

2y2 dy

= 18.

2.3. Let R be the rectangle in the xy-plane with vertices at (1, 0), (2, 0), (1, 3)
and (2, 3). Integrate the following functions over R:

1. x2y2.
2. 1.
3. x2 + y2.

4.
√
x+ 2

3y.

As in the one-variable case, derivates of multivariable functions give the
slope of a tangent line. The relevant question here is “Which tangent line?”
The answer to this is another question: “Which derivative?” For example,
suppose we slice the graph of f : R2 → R

1 with the plane parallel to the
yz-plane, through the point (x0, y0, 0). Then we get a curve which represents
some function of y. We can then ask “What is the slope of the tangent line
to this curve when y = y0?” The answer to this question is precisely the
definition of ∂f

∂y (x0, y0) (see Figure 2.1). Similarly, slicing the graph with a

plane parallel to the xz-plane gives rise to the definition of ∂f
∂x (x0, y0).

2.4. Compute ∂f
∂x and ∂f

∂y .

1. x2y3.
2. sin(x2y3).
3. x sin(xy).

When you take a partial derivative, you get another function of x and y.
You can then do it again to find the second partials. These are denoted by
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y0x y

y

z

z

Slope= ∂f
∂y

(x0, y0)

(x0, y0)

Fig. 2.1. The partial derivative with respect to y.

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
.

2.5. Find all second partials for each of the functions in the previous exercise.

Recall that amazingly the “mixed” partials ∂2f
∂x∂y and ∂2f

∂y∂x are always
equal. This is not a coincidence! Somehow the mixed partials measure the
“twisting” of the graph, and this is the same from every direction.

2.6. Let

D(x, y) =

∣∣∣∣∣
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

∣∣∣∣∣ .
If, for some point (x0, y0), you know D(x0, y0) > 0, then show that the signs

of ∂2f
∂x2 (x0, y0) and

∂2f
∂y2 (x0, y0) are the same.
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2.2 Gradients

Let’s look back to Figure 2.1. What if we sliced the graph of f(x, y) with some
vertical plane through the point (x0, y0) that was not parallel to the xz-plane
or yz-plane, as in Figure 2.2? How could we compute the slope?

x

y

z

z

Slope=?

(x0, y0)

Fig. 2.2. A directional derivative.

To answer this, visualize the set of all lines tangent to the graph of f(x, y)
at the point (x0, y0). This is a tangent plane.

The equation for a plane through the origin in R
3 is of the form z =

mxx + myy. Notice that the intersection of such a plane with the xz-plane
is the graph of z = mxx. Hence, mx is the slope of this line of intersection.
Similarly, the quantity my is the slope of the line which is the intersection
with the yz-plane.

To get a plane through the point (x0, y0, f(x0, y0)), we can translate the
origin to this point by replacing x with x − x0, y with y − y0 and z with
z − f(x0, y0):

z − f(x0, y0) = mx(x− x0) +my(y − y0).

Since we want this to actually be a tangent plane, it follows that mx must be
equal to ∂f

∂x and my must be equal to ∂f
∂y . Hence, the equation of the tangent

plane T is given by
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T (x, y) =
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0) + f,

where ∂f
∂x ,

∂f
∂y and f are all evaluated at the point (x0, y0).

x

y

z

(x0, y0)

L

l

P

T

V

(x0 + a, y0 + b)

Fig. 2.3. Computing the slope of the tangent line L.

Now, suppose P is the vertical plane through the point (x0, y0) depicted in
Figure 2.3. Let l denote the line where P intersects the xy-plane. The tangent
line L to the graph of f , which lies above l, is also the line contained in T ,
which lies above l. To figure out the slope of L, we will simply compute “rise
over run.”

Suppose l contains the vector V = 〈a, b〉, where |V | = 1. Then two points
on l, a distance of 1 apart, are (x0, y0) and (x0 + a, y0 + b). Thus, the “run”
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will be equal to 1. The “rise” is the difference between T (x0, y0) and T (x0 +
a, y0 + b), which we compute as follows:

T (x0 + a, y0 + b)− T (x0, y0)

=

[
∂f

∂x
(x0 + a− x0) +

∂f

∂y
(y0 + b− y0) + f

]

−
[
∂f

∂x
(x0 − x0) +

∂f

∂y
(y0 − y0) + f

]

= a
∂f

∂x
+ b

∂f

∂y
.

Since the slope of L is “rise” over “run” and the “run” equals 1, we conclude
that the slope of L is a∂f

∂x + b∂f∂y , where
∂f
∂x and ∂f

∂y are evaluated at the point

(x0, y0).

2.7. Suppose f(x, y) = x2y3. Compute the slope of the line tangent to f(x, y),

at the point (2, 1), in the direction 〈
√
2
2 ,−

√
2
2 〉.

The quantity a∂f
∂x (x0, y0) + b∂f∂y (x0, y0) is defined to be the directional

derivative of f , at the point (x0, y0), in the direction V . We will adopt the
notation ∇V f(x0, y0) for this quantity.

Let f(x, y) = xy2. Let’s compute the directional derivative of f , at the
point (2, 3), in the direction V = 〈1, 5〉. We compute

∇V f(2, 3) = 1
∂f

∂x
(2, 3) + 5

∂f

∂y
(2, 3)

= 1 · 32 + 5 · 2 · 2 · 3
= 69.

Is 69 the slope of the tangent line to some curve that we get when we intersect
the graph of xy2 with some plane? What this number represents is the rate of
change of f , as we walk along the line l of Figure 2.3 with speed |V |. To find
the desired slope, we would have to walk with speed 1. Hence, the directional
derivative only represents a slope when |V | = 1.

2.8. Let f(x, y) = xy + x − 2y + 4. Find the slope of the tangent line to the
graph of f(x, y), in the direction of the vector 〈1, 2〉, at the point (0, 1).

To proceed further, we write the definition of ∇V f as a dot product:

∇〈a,b〉f(x0, y0) = a
∂f

∂x
+ b

∂f

∂y
=

〈
∂f

∂x
,
∂f

∂y

〉
· 〈a, b〉.

The vector
〈

∂f
∂x ,

∂f
∂y

〉
is called the gradient of f and is denoted ∇f . Using

this notation, we obtain the following formula:
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∇V f(x0, y0) = ∇f(x0, y0) · V.
Note that this dot product is greatest when V points in the same direction

as ∇f . This fact leads us to the geometric significance of the gradient vector.
Think of f(x, y) as a function which represents the altitude in some mountain
range, given a location in longitude x and latitude y. Now, if all you know is
f and your location x and y, and you want to figure out which way “uphill”
is, all you have to do is point yourself in the direction of ∇f .

What if you wanted to know what the slope was in the direction of steepest
ascent? You would have to compute the directional derivative, using a vector
of length 1 which points in the same direction as ∇f . Such a vector is easy to
find: U = ∇f

|∇f | . Now we compute this slope:

∇Uf = ∇f · U
= ∇f · ∇f

|∇f |
=

1

|∇f | (∇f · ∇f)

=
1

|∇f | |∇f |2

= |∇f |.
Hence, the magnitude of the gradient vector represents the largest slope

of a tangent line through a particular point.

2.9. Let f(x, y) = sin(xy2). Calculate the directional derivative of f(x, y) at

the point
(
π
4 , 1

)
, in the direction of

〈√
2
2 ,

√
2
2

〉
.

2.10. Let f(x, y) = xy2.

1. Compute ∇f .
2. Use your answer to the previous question to compute ∇〈1,5〉f(2, 3).
3. Find a vector of length 1 that points in the direction of steepest ascent,

at the point (2, 3).
4. What is the largest slope of a tangent line to the graph of f when (x, y) =

(2, 3)?

2.11. Let f(x, y) be the following function:

f(x, y) =
1

2
x2 + 3xy.

Find the largest slope of any tangent line to the graph of f(x, y) at the point
(1, 1).

2.12. Suppose (x0, y0) is a point where ∇f is nonzero and let n = f(x0, y0).
Show that the vector ∇f(x0, y0) is perpendicular to the set of points (x, y)
such that f(x, y) = n (i.e., a level curve).
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2.3 Polar, cylindrical and spherical coordinates

The two most common ways of specifying the location of a point in R
2 are

rectangular and polar coordinates. Rectangular coordinates on R
2 will always

be denoted in this text as (x, y) and polar coordinates by (r, θ). As is standard,
r is the distance to the origin and θ is the angle a ray makes with the (pos-
itive) x-axis. Some basic trigonometry gives the relationships between these
quantities:

x = r cos θ r =
√
x2 + y2,

y = r sin θ θ = tan−1
(
y
x

)
.

In R
3 we will mostly use three different coordinate systems: rectangular

(x, y, z), cylindrical (r, θ, z), and spherical (ρ, θ, φ).
Cylindrical coordinates describe the location of a point by using polar

coordinates (r, θ) to describe the projection onto the xy-plane and the quantity
z to describe the height off of the xy-plane (see Figure 2.4). It follows that
the relationships among r, θ, x and y are the same as for polar coordinates.

x

y

z

z

rθ

Fig. 2.4. Cylindrical coordinates.

In spherical coordinates, the quantity ρ specifies the distance from the
origin, the angle θ is the same as from cylindrical coordinates and the angle
φ is what a ray to the origin makes with the z-axis (see Figure 2.5). A little
basic trigonometry yields the relationships
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x = ρ sinφ cos θ ρ =
√
x2 + y2 + z2,

y = ρ sinφ sin θ θ = tan−1
(
y
x

)
,

z = ρ cosφ φ = tan−1

(√
x2+y2

z

)
.

x

y

z

ρ

θ

φ

Fig. 2.5. Spherical coordinates.

2.13. Find all of the relationships between the quantities r, θ and z from cylin-
drical coordinates and the quantities ρ, θ and φ from spherical coordinates.

Each coordinate system is useful for describing different graphs, as can be
seen in the following examples.

Example 2. A cylinder of radius 1, centered on the z-axis, can be described
by equations in each coordinate system as follows:

• Rectangular: x2 + y2 = 1.
• Cylindrical: r = 1.
• Spherical: ρ sinφ = 1.

Example 3. A sphere of radius 1 is described by the following equations:

• Rectangular: x2 + y2 + z2 = 1.
• Cylindrical: r2 + z2 = 1.
• Spherical: ρ = 1.

2.14. Sketch the shape described by the following equations:
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1. θ = π
4 .

2. z = r2.
3. ρ = φ.
4. ρ = cosφ.
5. r = cos θ.
6. z =

√
r2 − 1.

7. z =
√
r2 + 1.

8. r = θ.

2.15. Find rectangular, cylindrical and spherical equations that describe the
following shapes:

1. A right, circular cone centered on the z-axis, with vertex at the origin.
2. The xz-plane.
3. The xy-plane.
4. A plane that is at an angle of π

4 with both the x- and y-axes.
5. The surface found by revolving the graph of z = x3 (where x ≥ 0) around

the z-axis.

2.16. Let S be the surface which is the graph of z =
√
r2 + 1 (in cylindrical

coordinates).

1. Describe and/or sketch S.
2. Write an equation for S in rectangular coordinates.

2.4 Parameterized curves

Given a curve C in R
n, a parameterization for C is a (one-to-one, onto, dif-

ferentiable) function of the form φ : R1 → R
n whose image is C.

Example 4. The function φ(t) = (cos t, sin t), where 0 ≤ t < 2π, is a param-
eterization for the circle of radius 1. Another parameterization for the same
circle is ψ(t) = (cos 2t, sin 2t), where 0 ≤ t < π. The difference between these
two parameterizations is that as t increases, the image of ψ(t) moves twice as
fast around the circle as the image of φ(t).

2.17. A function of the form φ(t) = (at+ c, bt+ d) is a parameterization of a
line.

1. What is the slope of the line parameterized by φ?
2. How does this line compare to the one parameterized by ψ(t) = (at, bt)?

2.18. Draw the curves given by the following parameterizations:

1. (t, t2), where 0 ≤ t ≤ 1.
2. (t2, t3), where 0 ≤ t ≤ 1.
3. (2 cos t, 3 sin t), where 0 ≤ t ≤ 2π.
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4. (cos 2t, sin 3t), where 0 ≤ t ≤ 2π.
5. (t cos t, t sin t), where 0 ≤ t ≤ 2π.

Given a curve, it can be very difficult to find a parameterization. There
are many ways of approaching the problem, but nothing which always works.
Here are a few hints:

1. If C is the graph of a function y = f(x), then φ(t) = (t, f(t)) is a param-
eterization of C. Notice that the y-coordinate of every point in the image
of this parameterization is obtained from the x-coordinate by applying
the function f .

2. If one has a polar equation for a curve like r = f(θ), then, since x =
r cos θ and y = r sin θ, we get a parameterization of the form φ(θ) =
(f(θ) cos θ, f(θ) sin θ).

Example 5. The top half of a circle of radius 1 is the graph of y =
√
1− x2.

Hence, a parameterization for this is (t,
√
1− t2), where −1 ≤ t ≤ 1. This

figure is also the graph of the polar equation r = 1, 0 ≤ θ ≤ π, hence the
parameterization (cos t, sin t), where 0 ≤ t ≤ π.

2.19. Sketch and find parameterizations for the curves described by the fol-
lowing:

1. The graph of the polar equation r = cos θ.
2. The graph of y = sinx.
3. The set of points such that x = sin y.

2.20. Find a parameterization for the line segment which connects the point
(1, 1) to the point (2, 5).

The derivative of a parameterization φ(t) = (f(t), g(t)) is defined to be
the vector

φ′(t) =
dφ

dt
=

d

dt
(f(t), g(t)) = 〈f ′(t), g′(t)〉.

This vector has important geometric significance. The slope of a line con-
taining this vector when t = t0 is the same as the slope of the line tangent
to the curve at the point φ(t0). The magnitude (length) of this vector gives
one a concept of the speed of the point φ(t) as t is increases through t0. For
convenience, one often draws the vector φ′(t0) based at the point φ(t0) (see
Figure 2.6).

2.21. Let φ(t) = (cos t, sin t) (where 0 ≤ t ≤ π) and ψ(t) = (t,
√
1− t2) (where

−1 ≤ t ≤ 1) be parameterizations of the top half of the unit circle. Sketch the

vectors dφ
dt and dψ

dt at the points (
√
2
2 ,

√
2
2 ), (0, 1) and (−

√
2
2 ,

√
2
2 ).

2.22. Let C be the set of points in R
2 that satisfy the equation x = y2.
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x

y

Fig. 2.6. The derivative of the parameterization φ(t) = (t, t2) is the vector 〈1, 2t〉.
When t = 1, this is the vector 〈1, 2〉, which we picture based at the point φ(1) =
(1, 1).

1. Find a parameterization for C.
2. Find a tangent vector to C at the point (4, 2).

We nowmove on to parameterized curves in R
3. We begin with an example.

Example 6. The function φ(t) = (cos t, sin t, t) parameterizes a curve that spi-
rals upward around a cylinder of radius 1.

2.23. Describe the difference between the curves with the following parame-
terizations:

1. (cos t2, sin t2, t2).
2. (cos t, sin t, t2).
3. (t cos t, t sin t, t).
4. (cos 1

t , sin
1
t , t).

2.24. Describe the lines given by the following parameterizations:

1. (t, 0, 0).
2. (0, 0, t).
3. (0, t, t).
4. (t, t, t).

In R
2 we saw that a parameterization for a curve could be found if you

first use polar coordinates to describe it, then solve for r or θ, and then
translate to rectangular coordinates. To find a parameterization of a curve in
R

3, an effective strategy is to find some way to “eliminate” two coordinates
(in some coordinate system) and then translate into rectangular coordinates.
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By “eliminating” a coordinate we mean either expressing it as some constant
or expressing it as a function of the third, unknown coordinate.

Example 7. We demonstrate two ways to parameterize one of the lines that
is at the intersection of the cone z2 = x2 + y2 and the plane y = 2x. The
coordinate y is already expressed as a function of x. To express z as a function
of x, we substitute 2x for y in the first equation. This gives us z2 = x2+(2x)2 =
5x2, or z =

√
5x (the negative root would give us the other intersection line).

Hence, we get the parameterization

φ(x) = (x, 2x,
√
5x).

Another way to describe this line is with spherical coordinates. Note that
for every point on the line, φ = π

4 (from the first equation) and θ = tan−1 2
(because tan θ = y

x = 2, from the second equation). Converting to rectangular
coordinates then gives us

φ(ρ) =
(
ρ sin

π

4
cos(tan−1 2), ρ sin

π

4
sin(tan−1 2), ρ cos

π

4

)
,

which simplifies to

ψ(ρ) =

(√
10ρ

10
,

√
10ρ

5
,

√
2ρ

2

)
.

Note that dividing the first parameterization by
√
10 and simplifying yields

the second parameterization.

2.25. Find a parameterization for the curve that is at the intersection of the
plane x+ y = 1 and the cone z2 = x2 + y2.

2.26. Find two parameterizations for the circle that is at the intersection of
the cylinder x2 + y2 = 4 and the paraboloid z = x2 + y2.

2.27. Parameterize the curve that lies on a sphere of radius 1 such that θ = φ.

2.5 Parameterized surfaces in R
3

A parameterization for a surface S in R
3 is a (one-to-one, onto, differentiable)

function from some subset of R2 into R
3 whose image is S.

Example 8. The function φ(u, v) = (u, v,
√
1− u2 − v2), where (u, v) lies in-

side a disk of radius 1, is a parameterization for the top half of the unit
sphere.

One of the best ways to parameterize a surface is to find an equation in
some coordinate system which can be used to eliminate one unknown coordi-
nate. Then translate back to rectangular coordinates.
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Example 9. An equation for the top half of the sphere in cylindrical coordi-
nates is r2 + z2 = 1. Solving for z then gives us z =

√
1− r2. Translating to

rectangular coordinates, we have

x = r cos θ,

y = r sin θ,

z =
√

1− r2.

Hence, a parameterization is given by the function

φ(r, θ) = (r cos θ, r sin θ,
√

1− r2),

where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

Example 10. The equation ρ = φ describes some surface in spherical coordi-
nates. Translating to rectangular coordinates then gives us

x = ρ sin ρ cos θ,

y = ρ sin ρ sin θ,

z = ρ cos ρ.

Hence, a parameterization for this surface is given by

φ(ρ, θ) = (ρ sin ρ cos θ, ρ sin ρ sin θ, ρ cosρ).

2.28. Find parameterizations of the surfaces described by the equations in
Problem 2.14.

2.29. Find a parameterization for the graph of an equation of the form z =
f(x, y).

2.30. Parameterize the portion of the graph of z = 4−x2− y2 that lies above
the set of points in the xy-plane that are inside

1. the rectangle with vertices at (0, 0), (1, 0), (0, 1) and (1, 1).
2. the circle of radius 1, centered on the origin.

2.31. Use the rectangular, cylindrical and spherical equations found in Prob-
lem 2.15 to parameterize the surfaces described there.

2.32. Use spherical coordinates to find a parameterization for the portion of
the sphere of radius 2, centered at the origin, which lies below the graph of
z = r and above the xy-plane.

2.33. Sketch the surfaces given by the following parameterizations:

1. ψ(θ, φ) = (φ sin φ cos θ, φ sinφ sin θ, φ cosφ), 0 ≤ φ ≤ π
2 , 0 ≤ θ ≤ 2π.
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2. φ(r, θ) = (r cos θ, r sin θ, cos r), 0 ≤ r ≤ 2π, 0 ≤ θ ≤ 2π.

Just as we could differentiate parameterizations of curves in R
2, we can

also differentiate parameterizations of surfaces in R
3. In general, such a pa-

rameterization for a surface S can be written as

φ(u, v) = (f(u, v), g(u, v), h(u, v)).

Thus, there are two variables we can differentiate with respect to: u and v.
Each of these gives a vector which is tangent to the parameterized surface:

∂φ

∂u
=

〈
∂f

∂u
,
∂g

∂u
,
∂h

∂u

〉
,

∂φ

∂v
=

〈
∂f

∂v
,
∂g

∂v
,
∂h

∂v

〉
.

The vectors ∂φ
∂u and ∂φ

∂v determine a plane which is tangent to the surface
S at the point φ(u, v).

2.34. Suppose some surface is described by the parameterization

φ(u, v) = (2u, 3v, u2 + v2).

Find two (nonparallel) vectors which are tangent to this surface at the point
(4, 3, 5).

2.35. Consider the parameterization

φ(r, θ) = (r cos θ, r sin θ,
√
r),

where 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.

1. Sketch the surface parameterized by φ.
2. Find two tangent vectors to this surface at the point (0, 1, 1)

2.6 Parameterized regions in R
2 and R

3

A parameterization of a region R in R
n is a (differentiable, one-to-one) func-

tion f : Rn → R
n whose image is R. A change of coordinates, for example,

can give a parameterization of a region.

Example 11. A parameterization for the disk of radius 1 (i.e., the set of points
in R

2 which are at a distance of at most 1 from the origin) is given using polar
coordinates:

φ(r, θ) = (r cos θ, r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.
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Note that the interesting part of this parameterization is the specification
of the domain. Without this, we are just giving the translation from polar to
rectangular coordinates. It is the restrictions 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π that give
us just the points inside the disk of radius 1.

2.36. Let B be the ball of radius 1 in R
3 (i.e., the set of points satisfying

x2 + y2 + z2 ≤ 1).

1. Use spherical coordinates to find a parameterization for B.
2. Find a parameterization for the intersection of B with the first octant.
3. Find a parameterization for the intersection of B with the octant where

x, y, and z are all negative.

2.37. The “solid cylinder” of height 1 and radius r in R
3 is the set of points

inside the cylinder x2 + y2 = r2 and between the planes z = 0 and z = 1.

1. Use cylindrical coordinates to find a parameterization for the solid cylinder
of height 1 and radius 1.

2. Find a parameterization for the region that is inside the solid cylinder of
height 1 and radius 2 and outside the cylinder of radius 1.

Example 12. A common type of region to integrate over is one that is bounded
by the graphs of two functions. Suppose R is the region in R

2 above the graph
of y = g1(x), below the graph of y = g2(x) and between the lines x = a and
x = b. A parameterization for R (check this!) is given by

φ(x, t) = (x, tg2(x) + (1− t)g1(x)), a ≤ x ≤ b, 0 ≤ t ≤ 1.

2.38. Let R be the region between the (polar) graphs of r = f1(θ) and r =
f2(θ), where a ≤ θ ≤ b. Find a parameterization for R.

2.39. Find a parameterization for the region in R
2 bounded by the ellipse

whose x-intercepts are 3 and −3 and y-intercepts are 2 and −2. (Hint: Start
with the parameterization given in Example 11.)

2.40.

1. Sketch the region in R
2 parameterized by

φ(r, θ) = (2r cos θ, r sin θ),

where 1 ≤ r ≤ 2 and 0 ≤ θ ≤ π
2 .

2. Sketch the region in R
3 parameterized by

ψ(ρ, θ, φ) = (2ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ),

where 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ π
2 and 0 ≤ φ ≤ π.
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2.41. Consider the following parameterization:

ψ(r, θ) = (2r cos θ, r sin θ + 1),

where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π.

1. Sketch the region of R2 parameterized by ψ.
2. Find the vectors ∂ψ

∂r and ∂ψ
∂θ

3. Find the area of the parallelogram spanned by ∂ψ
∂r and ∂ψ

∂θ .
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Forms

3.1 Coordinates for vectors

Before we begin to discuss functions of vectors, we first need to learn how to
specify a vector. Before we can answer that, we must first learn where vectors
live. In Figure 3.1 we see a curve, C, and a tangent line to that curve. The line
can be thought of as the set of all tangent vectors at the point p. We denote
that line as TpC, the tangent space to C at the point p.

TpC

p

C

Fig. 3.1. TpC is the set of all vectors tangents to C at p.

What if C is actually a straight line? Will TpC be the same line? To answer
this, let’s instead think about the real number line L = R

1. Suppose p is the
point corresponding to the number 2 on L. We would like to understand TpL,
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the set of all vectors tangent to L at the point p. For example, where would
you draw a vector of length 3? Would you put its base at the origin on L? Of
course not. You would put its base at the point p. This is really because the
origin for TpL is different than the origin for L. We are thus thinking about
L and TpL as two different lines, placed right on top of each other.

The key to understanding the difference between L and TpL is their co-
ordinate systems. Let’s pause here for a moment to look a little more closely.
What are “coordinates” anyway? They are a way of assigning a number (or,
more generally, a set of numbers) to a point in space. In other words, coordi-
nates are functions which take points of a space and return (sets of) numbers.
When we say that the x-coordinate of p in R

2 is 5, we really mean that we
have a function x : R2 → R, such that x(p) = 5.

Of course we need two numbers to specify a point in a plane, which means
that we have two coordinate functions. Suppose we denote the plane by P
and x : P → R and y : P → R are our coordinate functions. Then, saying
that the coordinates of a point, p, are (2, 3) is the same thing as saying that
x(p) = 2 and y(p) = 3. In other words, the coordinates of p are (x(p), y(p)).

So what do we use for coordinates in the tangent space? Well, first we
need a basis for the tangent space of P at p. In other words, we need to
pick two vectors which we can use to give the relative positions of all other

points. Note that if the coordinates of p are (x, y), then d(x+t,y)
dt = 〈1, 0〉 and

d(x,y+t)
dt = 〈0, 1〉. We have switched to the notation “〈·, ·〉” to indicate that

we are not talking about points of P anymore, but rather vectors in TpP . We
take these two vectors to be a basis for TpP . In other words, any point of TpP
can be written as dx〈0, 1〉+ dy〈1, 0〉, where dx, dy ∈ R. Hence, “dx” and “dy”
are coordinate functions for TpP . Saying that the coordinates of a vector V in
TpP are 〈2, 3〉, for example, is the same thing as saying that dx(V ) = 2 and
dy(V ) = 3. In general, we may refer to the coordinates of an arbitrary vector
in TpP as 〈dx, dy〉, just as we may refer to the coordinates of an arbitrary
point in P as (x, y).

It will be helpful in the future to be able to distinguish between the vector
〈2, 3〉 in TpP and the vector 〈2, 3〉 in TqP , where p = q. We will do this by
writing 〈2, 3〉p for the former and 〈2, 3〉q for the latter.

Let’s pause for a moment to address something that may have been both-
ering you since your first term of calculus. Let’s look at the tangent line to
the graph of y = x2 at the point (1, 1). We are no longer thinking of this
tangent line as lying in the same plane that the graph does. Rather, it lies
in T(1,1)R

2. The horizontal axis for T(1,1)R
2 is the “dx” axis and the vertical

axis is the “dy” axis (see Figure 3.2). Hence, we can write the equation of the
tangent line as dy = 2dx. We can rewrite this as dy

dx = 2. Look familiar? This

is one explanation for why we use the notation dy
dx in calculus to denote the

derivative.

3.1.

1. Draw a vector with dx = 1, dy = 2 in the tangent space T(1,−1)R
2.
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x

y

l

dx

dy

1

1

Fig. 3.2. The line l lies in T(1,1)R
2. Its equation is dy = 2dx.

2. Draw 〈−3, 1〉(0,1).

3.2 1-Forms

Recall from the previous chapter that a 1-form is a linear function which acts
on vectors and returns numbers. For the moment let’s just look at 1-forms
on TpR

2 for some fixed point, p. Recall that a linear function, ω, is just one
whose graph is a plane through the origin. Hence, we want to write down an
equation of a plane through the origin in TpR

2 ×R, where one axis is labeled
dx, another dy and the third ω (see Figure 3.3). This is easy: ω = a dx+ b dy.
Hence, to specify a 1-form on TpR

2 we only need to know two numbers: a and
b.

Here is a quick example. Suppose ω(〈dx, dy〉) = 2dx+ 3dy; then

ω(〈−1, 2〉) = 2 · −1 + 3 · 2 = 4.

The alert reader may see something familiar here: the dot product; that is,
ω(〈−1, 2〉) = 〈2, 3〉 · 〈−1, 2〉. Recall the geometric interpretation of the dot
product: You project 〈−1, 2〉 onto 〈2, 3〉 and then multiply by |〈2, 3〉| = √13.
In other words:

Evaluating a 1-form on a vector is the same as projecting onto
some line and then multiplying by some constant.
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dx

dy

ω

Fig. 3.3. The graph of ω is a plane through the origin.

In fact, we can even interpret the act of multiplying by a constant geo-
metrically. Suppose ω is given by a dx+ b dy. Then the value of ω(V1) is the

length of the projection of V1 onto the line, l, where 〈a,b〉
|〈a,b〉|2 is a basis vector

for l.
This interpretation has a huge advantage ... it is coordinate free. Recall

from the previous section that we can think of the plane P as existing inde-
pendent of our choice of coordinates. We only pick coordinates so that we can
communicate to someone else the location of a point. Forms are similar. They
are objects that exist independently of our choice of coordinates. This is one
key as to why they are so useful outside of mathematics.

There is still another geometric interpretation of 1-forms. Let’s first look
at the simple example ω(〈dx, dy〉) = dx. This 1-form simply returns the first
coordinate of whatever vector you feed into it. This is also a projection; it’s
the projection of the input vector onto the dx-axis. This immediately gives us
a new interpretation of the action of a general 1-form ω = a dx+ b dy.

Evaluating a 1-form on a vector is the same as projecting onto
each coordinate axis, scaling each by some constant and adding
the results.

Although this interpretation is more cumbersome, it is the one that will
generalize better when we get to n-forms.
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Let’s move on now to 1-forms in n dimensions. If p ∈ R
n, then we can write

p in coordinates as (x1, x2, ..., xn). The coordinates for a vector in TpR
n are

〈dx1, dx2, ..., dxn〉. A 1-form is a linear function, ω, whose graph (in TpR
n×R)

is a plane through the origin. Hence, we can write it as ω = a1 dx1+a2 dx2+
· · ·+an dxn. Again, this can be thought of as either projecting onto the vector
〈a1, a2, ..., an〉 and then multiplying by |〈a1, a2, ..., an〉| or as projecting onto
each coordinate axis, multiplying by ai, and then adding.

3.2. Let ω(〈dx, dy〉) = −dx+ 4dy.

1. Compute ω(〈1, 0〉), ω(〈0, 1〉) and ω(〈2, 3〉).
2. What line does ω project vectors onto?

3.3. Find a 1-form which computes the length of the projection of a vector
onto the indicated line, multiplied by the indicated constant c.

1. The dx-axis, c = 3.
2. The dy-axis, c = 1

2 .
3. Find a 1-form that does both of the two preceding operations and adds

the result.
4. The line dy = 3

4dx, c = 10.

3.4. If ω is a 1-form show the following:

1. ω(V1 + V2) = ω(V1) + ω(V2), for any vectors V1 and V2.
2. ω(cV ) = cω(V ), for any vector V and constant c.

3.3 Multiplying 1-forms

In this section we would like to explore a method of multiplying 1-forms. You
may think “What is the big deal? If ω and ν are 1-forms, can’t we just define
ω · ν(V ) = ω(V ) · ν(V )?” Well, of course we can, but then ω · ν is not a linear
function, so we have left the world of forms.

The trick is to define the product of ω and ν to be a 2-form. So as not
to confuse this with the product just mentioned, we will use the symbol “∧”
(pronounced “wedge”) to denote multiplication. So how can we possibly define
ω∧ν to be a 2-form? We must define how it acts on a pair of vectors, (V1, V2).

Note first that there are four ways to combine all of the ingredients:

ω(V1), ν(V1), ω(V2), ν(V2).

The first two of these are associated with V1 and the second two with V2. In
other words, ω and ν together give a way of taking each vector and returning
a pair of numbers. How do we visualize pairs of numbers? In the plane, of
course! Let’s define a new plane with one axis as the ω-axis and the other
as the ν-axis. So, the coordinates of V1 in this plane are [ω(V1), ν(V1)] and
the coordinates of V2 are [ω(V2), ν(V2)]. Note that we have switched to the



30 3 Forms

notation “[·, ·]” to indicate that we are describing points in a new plane. This
may seem a little confusing at first. Just keep in mind that when we write
something like (1, 2), we are describing the location of a point in the xy-plane,
whereas 〈1, 2〉 describes a vector in the dxdy-plane and [1, 2] is a vector in the
ων-plane.

Let’s not forget our goal now. We wanted to use ω and ν to take the pair
of vectors (V1, V2) and return a number. So far, all we have done is to take
this pair of vectors and return another pair of vectors. Do we know of a way
to take these vectors and get a number? Actually, we know several, but the
most useful one turns out to be the area of the parallelogram that the vectors
span. This is precisely what we define to be the value of ω ∧ ν(V1, V2) (see
Figure 3.4).

x
y

z

V1

V2

ω(V1)

ν(V1)

ω

ν

Fig. 3.4. The product of ω and ν.

Example 13. Let ω = 2dx − 3dy + dz and ν = dx + 2dy − dz be two 1-forms
on TpR

3 for some fixed p ∈ R
3. Let’s evaluate ω ∧ ν on the pair of vectors

(〈1, 3, 1〉, 〈2,−1, 3〉). First, we compute the [ω, ν] coordinates of the vector
〈1, 3, 1〉:

[ω(〈1, 3, 1〉), ν(〈1, 3, 1〉)] = [2 · 1− 3 · 3 + 1 · 1, 1 · 1 + 2 · 3− 1 · 1]
= [−6, 6].

Similarly, we compute [ω(〈2,−1, 3〉), ν(〈2,−1, 3〉)] = [10,−3]. Finally, the
area of the parallelogram spanned by [−6, 6] and [10,−3] is

−6 6
10 −3 = 18− 60 = −42.

Should we have taken the absolute value? Not if we want to define a linear
operator. The result of ω ∧ ν is not just an area, it is a signed area; it can
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either be positive or negative. We will see a geometric interpretation of this
soon. For now, we define

ω ∧ ν(V1, V2) =
ω(V1) ν(V1)
ω(V2) ν(V2)

.

3.5. Let ω and ν be the following 1-forms:

ω(〈dx, dy〉) = 2dx− 3dy,

ν(〈dx, dy〉) = dx+ dy.

1. Let V1 = 〈−1, 2〉 and V2 = 〈1, 1〉. Compute ω(V1), ν(V1), ω(V2) and ν(V2).
2. Use your answers to the previous question to compute ω ∧ ν(V1, V2).
3. Find a constant c such that ω ∧ ν = c dx ∧ dy.

3.6. ω ∧ ν(V1, V2) = −ω ∧ ν(V2, V1) (ω ∧ ν is skew-symmetric).

3.7. ω∧ ν(V, V ) = 0. (This follows immediately from the previous exercise. It
should also be clear from the geometric interpretation.)

3.8. ω ∧ ν(V1 + V2, V3) = ω ∧ ν(V1, V3) + ω ∧ ν(V2, V3) and ω ∧ ν(cV1, V2) =
ω∧ν(V1, cV2) = c ω∧ν(V1, V2), where c is any real number (ω∧ν is bilinear).

3.9. ω ∧ ν(V1, V2) = −ν ∧ ω(V1, V2).

It is interesting to compare Problems 3.6 and 3.9. Problem 3.6 says that
the 2-form, ω ∧ ν, is a skew-symmetric operator on pairs of vectors. Problem
3.9 says that ∧ can be thought of as a skew-symmetric operator on 1-forms.

3.10. ω ∧ ω(V1, V2) = 0.

3.11. (ω + ν) ∧ ψ = ω ∧ ψ + ν ∧ ψ (∧ is distributive).

There is another way to interpret the action of ω ∧ ν which is much more
geometric. First, let ω = a dx + b dy be a 1-form on TpR

2. Then we let 〈ω〉
be the vector 〈a, b〉.
3.12. Let ω and ν be 1-forms on TpR

2. Show that ω ∧ ν(V1, V2) is the area of
the parallelogram spanned by V1 and V2, times the area of the parallelogram
spanned by 〈ω〉 and 〈ν〉.
3.13. Use the previous problem to show that if ω and ν are 1-forms on R

2

such that ω ∧ ν = 0, then there is a constant c such that ω = cν.
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There is also a more geometric way to think about ω ∧ ν if ω and ν are 1-
forms on TpR

3, although it will take us some time to develop the idea. Suppose
ω = a dx + b dy + c dz. Then we will denote the vector 〈a, b, c〉 as 〈ω〉. From
the previous section, we know that if V is any vector, then ω(V ) = 〈ω〉 · V
and that this is just the projection of V onto the line containing 〈ω〉, times
|〈ω〉|.

Now suppose ν is some other 1-form. Choose a scalar x so that 〈ν − xω〉
is perpendicular to 〈ω〉. Let νω = ν − xω. Note that ω ∧ νω = ω ∧ (ν − xω) =
ω ∧ ν − xω ∧ ω = ω ∧ ν. Hence, any geometric interpretation we find for the
action of ω ∧ νω is also a geometric interpretation of the action of ω ∧ ν.

Finally, we let ω = ω
|〈ω〉| and νω = νω

|〈νω〉| . Note that these are 1-forms

such that 〈ω〉 and 〈νω〉 are perpendicular unit vectors. We will now present a
geometric interpretation of the action of ω ∧ νω on a pair of vectors (V1, V2).

First, note that since 〈ω〉 is a unit vector, then ω(V1) is just the projection
of V1 onto the line containing 〈ω〉. Similarly, νω(V1) is given by projecting V1

onto the line containing 〈νω〉. As 〈ω〉 and 〈νω〉 are perpendicular, we can think
of the quantity

ω ∧ νω(V1, V2) =
ω(V1) νω(V1)
ω(V2) νω(V2)

as the area of parallelogram spanned by V1 and V2, projected onto the plane
containing the vectors 〈ω〉 and 〈νω〉. This is the same plane as the one which
contains the vectors 〈ω〉 and 〈ν〉.

Now observe the following:

ω ∧ νω =
ω

|〈ω〉| ∧
νω
|〈νω〉| =

1

|〈ω〉||〈νω〉|ω ∧ νω.

Hence,

ω ∧ ν = ω ∧ νω = |〈ω〉||〈νω〉|ω ∧ νω.

Finally, note that since 〈ω〉 and 〈νω〉 are perpendicular, the quantity
|〈ω〉||〈νω〉| is just the area of the rectangle spanned by these two vectors.
Furthermore, the parallelogram spanned by the vectors 〈ω〉 and 〈ν〉 is ob-
tained from this rectangle by skewing. Hence, they have the same area. We
conclude the following:

Evaluating ω ∧ ν on the pair of vectors (V1, V2) gives the area
of parallelogram spanned by V1 and V2 projected onto the plane
containing the vectors 〈ω〉 and 〈ν〉, and multiplied by the area of
the parallelogram spanned by 〈ω〉 and 〈ν〉.

CAUTION: While every 1-form can be thought of as projected length,
not every 2-form can be thought of as projected area. The only 2-forms for
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which this interpretation is valid are those that are the product of 1-forms.
See Problem 3.18.

Let’s pause for a moment to look at a particularly simple 2-form on TpR
3,

dx ∧ dy. Suppose V1 = 〈a1, a2, a3〉 and V2 = 〈b1, b2, b3〉. Then

dx ∧ dy(V1, V2) =
a1 a2
b1 b2

.

This is precisely the (signed) area of the parallelogram spanned by V1 and V2

projected onto the dxdy-plane.

3.14. Show that for any 1-forms ω and ν on TR3, there are constants c1, c2,
and c3 such that

ω ∧ ν = c1dx ∧ dy + c2dx ∧ dz + c3dy ∧ dz.

The preceding comments and this last exercise give the following geometric
interpretation of the action of a 2-form on the pair of vectors (V1, V2):

Every 2-form projects the parallelogram spanned by V1 and V2

onto each of the (2-dimensional) coordinate planes, computes
the resulting (signed) areas, multiplies each by some constant,
and adds the results.

This interpretation holds in all dimensions. Hence, to specify a 2-form, we
need to know as many constants as there are 2-dimensional coordinate planes.
For example, to give a 2-form in 4-dimensional Euclidean space we need to
specify six numbers:

c1dx ∧ dy + c2dx ∧ dz + c3dx ∧ dw + c4dy ∧ dz + c5dy ∧ dw + c6dz ∧ dw.

The skeptic may argue here. Problem 3.14 only shows that a 2-form which
is a product of 1-forms can be thought of as a sum of projected, scaled areas.
What about an arbitrary 2-form? Well, to address this, we need to know what
an arbitrary 2-form is! Up until now we have not given a complete definition.
Henceforth, we will define a 2-form to be a bilinear, skew-symmetric, real-
valued function on TpR

n×TpR
n. That is a mouthful. This just means that it

is an operator which eats pairs of vectors, spits out real numbers, and satisfies
the conclusions of Problems 3.6 and 3.8. Since these are the only ingredients
necessary to do Problem 3.14, our geometric interpretation is valid for all
2-forms.

3.15. If ω(〈dx, dy, dz〉) = dx+ 5dy − dz and ν(〈dx, dy, dz〉) = 2dx− dy + dz,
compute

ω ∧ ν(〈1, 2, 3〉, 〈−1, 4,−2〉).
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3.16. Let ω(〈dx, dy, dz〉) = dx+5dy−dz and ν(〈dx, dy, dz〉) = 2dx−dy+dz.
Find constants c1, c2 and c3, such that

ω ∧ ν = c1dx ∧ dy + c2dy ∧ dz + c3dx ∧ dz.

3.17. Express each of the following as the product of two 1-forms:

1. 3dx ∧ dy + dy ∧ dx.
2. dx ∧ dy + dx ∧ dz.
3. 3dx ∧ dy + dy ∧ dx+ dx ∧ dz.
4. dx ∧ dy + 3dz ∧ dy + 4dx ∧ dz.

3.4 2-Forms on TpR
3 (optional)

This text is about differential n-forms on R
m. For most of it, we keep n,m ≤ 3

so that everything we do can be easily visualized. However, very little is special
about these dimensions. Everything we do is presented so that it can easily
generalize to higher dimensions. In this section and the next we break from
this philosophy and present some special results when the dimensions involved
are 3 or 4.

3.18. Find a 2-form which is not the product of 1-forms.

In doing this exercise, you may guess that, in fact, all 2-forms on TpR
3 can

be written as a product of 1-forms. Let’s see a proof of this fact that relies
heavily on the geometric interpretations we have developed.

Recall the correspondence introduced above between vectors and 1-forms.
If α = a1dx+a2dy+a3dz, then we let 〈α〉 = 〈a1, a2, a3〉. If V is a vector, then
we let 〈V 〉−1 be the corresponding 1-form.

We now prove two lemmas.

Lemma 1. If α and β are 1-forms on TpR
3 and V is a vector in the plane

spanned by 〈α〉 and 〈β〉, then there is a vector, W , in this plane such that
α ∧ β = 〈V 〉−1 ∧ 〈W 〉−1.

Proof. The proof of the above lemma relies heavily on the fact that 2-forms
which are the product of 1-forms are very flexible. The 2-form α ∧ β takes
pairs of vectors, projects them onto the plane spanned by the vectors 〈α〉 and
〈β〉, and computes the area of the resulting parallelogram times the area of
the parallelogram spanned by 〈α〉 and 〈β〉. Note that for every nonzero scalar
c, the area of the parallelogram spanned by 〈α〉 and 〈β〉 is the same as the
area of the parallelogram spanned by c〈α〉 and 1/c〈β〉. (This is the same thing
as saying that α ∧ β = cα ∧ 1

cβ.) The important point here is that we can
scale one of the 1-forms as much as we want at the expense of the other and
get the same 2-form as a product.
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Another thing we can do is apply a rotation to the pair of vectors 〈α〉
and 〈β〉 in the plane which they determine. As the area of the parallelogram
spanned by these two vectors is unchanged by rotation, their product still
determines the same 2-form. In particular, suppose V is any vector in the
plane spanned by 〈α〉 and 〈β〉. Then we can rotate 〈α〉 and 〈β〉 to 〈α′〉 and
〈β′〉 so that c〈α′〉 = V for some scalar c. We can then replace the pair (〈α〉, 〈β〉)
with the pair (c〈α′〉, 1/c〈β′〉) = (V, 1/c〈β′〉). To complete the proof, let W =
1/c〈β′〉.
Lemma 2. If ω1 = α1∧β1 and ω2 = α2∧β2 are 2-forms on TpR

3, then there
exist 1-forms, α3 and β3, such that ω1 + ω2 = α3 ∧ β3.

Proof. Let’s examine the sum α1 ∧ β1 + α2 ∧ β2. Our first case is that the
plane spanned by the pair (〈α1〉, 〈β1〉) is the same as the plane spanned by
the pair (〈α2〉, 〈β2〉). In this case, it must be that α1 ∧ β1 = Cα2 ∧ β2 and,
hence, α1 ∧ β1 + α2 ∧ β2 = (1 + C)α1 ∧ β1.

If these two planes are not the same, then they intersect in a line. Let V
be a vector contained in this line. Then by the preceding lemma, there are
1-forms γ and γ′ such that α1 ∧ β1 = 〈V 〉−1 ∧ γ and α2 ∧ β2 = 〈V 〉−1 ∧ γ′.
Hence,

α1 ∧ β1 + α2 ∧ β2 = 〈V 〉−1 ∧ γ + 〈V 〉−1 ∧ γ′ = 〈V 〉−1 ∧ (γ + γ′).

Now note that any 2-form is the sum of products of 1-forms. Hence, this
last lemma implies that any 2-form on TpR

3 is a product of 1-forms. In other
words:

Every 2-form on TpR
3 projects pairs of vectors onto some plane

and returns the area of the resulting parallelogram, scaled by
some constant.

This fact is precisely why all of classical vector calculus works. We explore
this in the next few exercises and further in Section 6.3.

3.19. Use the above geometric interpretation of the action of a 2-form on
TpR

3 to justify the following statement: For every 2-form ω on TpR
3 there are

nonzero vectors V1 and V2 such that V1 is not a multiple of V2 but ω(V1, V2) =
0.

3.20. Does Problem 3.19 generalize to higher dimensions?

3.21. Show that if ω is a 2-form on TpR
3, then there is a line l in TpR

3 such
that if the plane spanned by V1 and V2 contains l, then ω(V1, V2) = 0.

Note that the conditions of Problem 3.21 are satisfied when the vectors
that are perpendicular to both V1 and V2 are also perpendicular to l.
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3.22. Show that if all you know about V1 and V2 is that they are vectors
in TpR

3 that span a parallelogram of area A, then the value of ω(V1, V2) is
maximized when V1 and V2 are perpendicular to the line l of Problem 3.21.

Note that the conditions of this exercise are satisfied when the vectors
perpendicular to V1 and V2 are parallel to l.

3.23. Let N be a vector perpendicular to V1 and V2 in TpR
3 whose length is

precisely the area of the parallelogram spanned by these two vectors. Show
that there is a vector Vω in the line l of Problem 3.21 such that the value of
ω(V1, V2) is precisely Vω ·N .

Remark. You may have learned that the vector N of the previous exercise
is precisely the cross product of V1 and V2. Hence, the previous problem
implies that if ω is a 2-form on TpR

3 then there is a vector Vω such that
ω(V1, V2) = Vω · (V1 × V2).

3.24. Show that if ω = Fx dy ∧ dz − Fy dx ∧ dz + Fz dx ∧ dy, then Vω =
〈Fx, Fy, Fz〉.

3.5 2-Forms and 3-forms on TpR
4 (optional)

Many of the techniques of the previous section can be used to prove results
about 2- and 3-forms on TpR

4.

3.25. Show that any 3-form on TpR
4 can be written as the product of three

1-forms. (Hint: Two 3-dimensional subspaces of TpR
4 must meet in at least a

line.)

We now give away an answer to Problem 3.18. Let ω = dx∧ dy+ dz ∧ dw.
Then an easy computation shows that ω ∧ ω = 2dx ∧ dy ∧ dz ∧ dw. However,
if ω were equal to α ∧ β for some 1-forms α and β, then ω ∧ ω would be zero
(why?). This argument shows that, in general, if ω is any 2-form such that
ω ∧ ω = 0, then ω cannot be written as the product of 1-forms.

3.26. Let ω be a 2-form on TpR
4. Show that ω can be written as the sum of

exactly two products; that is, ω = α ∧ β + δ ∧ γ. (Hint: Given three planes in
TpR

4, there are at least two of them that intersect in more than a point.)

Above, we saw that if ω is a 2-form such that ω ∧ω = 0, then ω is not the
product of 1-forms. We now use the previous exercise to show the converse.

Theorem 1. If ω is a 2-form on TpR
4 such that ω ∧ ω = 0, then ω can be

written as the product of two 1-forms.
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Our proof of this again relies heavily on the geometry of the situation. By
the previous exercise, ω = α ∧ β + δ ∧ γ. A short computation then shows

ω ∧ ω = 2α ∧ β ∧ δ ∧ γ.

If this 4-form is the zero 4-form, then it must be the case that the (4-
dimensional) volume of the parallelepiped spanned by 〈α〉, 〈β〉, 〈δ〉 and 〈γ〉
is zero. This, in turn, implies that the plane spanned by 〈α〉 and 〈β〉 meets
the plane spanned by 〈δ〉 and 〈γ〉 in at least a line (show this!). Call such an
intersection line L.

As in the previous section, we can now rotate 〈α〉 and 〈β〉, in the plane
they span, to vectors 〈α′〉 and 〈β′〉 such that 〈α′〉 lies in the line L. The 2-
form α′ ∧ β′ must equal α ∧ β since they determine the same plane and span
a parallelogram of the same area. Similarly, we rotate 〈δ〉 and 〈γ〉 to vectors
〈δ′〉 and 〈γ′〉 such that 〈δ′〉 ⊂ L. It follows that δ ∧ γ = δ′ ∧ γ′.

Since 〈α′〉 and 〈δ′〉 lie on the same line, there is a constant c such that
cα′ = δ′. We now put all of this information together:

ω = α ∧ β + δ ∧ γ

= α′ ∧ β′ + δ′ ∧ γ′

= (cα′) ∧
(
1

c
β′
)
+ δ′ ∧ γ′

= δ′ ∧
(
1

c
β′
)
+ δ′ ∧ γ′

= δ′ ∧
(
1

c
β′ + γ′

)
.

3.6 n-Forms

Let’s think a little more about our multiplication operator ∧. If it is really
going to be anything like multiplication, we should be able to take three 1-
forms — ω, ν and ψ — and form the product ω ∧ ν ∧ ψ. How can we define
this? A first guess might be to say that ω ∧ ν ∧ ψ = ω ∧ (ν ∧ ψ), but ν ∧ ψ is
a 2-form and we have not defined the product of a 2-form and a 1-form. We
take a different approach and define ω ∧ ν ∧ ψ directly.

This is completely analogous to the previous section. ω, ν and ψ each act
on a vector, V , to give three numbers. In other words, they can be thought of
as coordinate functions. We say the coordinates of V are [ω(V ), ν(V ), ψ(V )].
Hence, if we have three vectors — V1, V2 and V3 — we can compute the
[ω, ν, ψ] coordinates of each. This gives us three new vectors. The value of
ω∧ν∧ψ(V1, V2, V3) is then defined to be the signed volume of the parallelepiped
which they span.

There is no reason to stop at 3 dimensions. Suppose ω1, ω2, ..., ωn are 1-
forms and V1, V2, ..., Vn are vectors. Then we define the value of
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ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, V2, ..., Vn)

to be the signed (n-dimensional) volume of the parallelepiped spanned by the
vectors [ω1(Vi), ω2(Vi), ..., ωn(Vi)]. Algebraically,

ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, V2, ..., Vn) =

ω1(V1) ω2(V1) · · · ωn(V1)
ω1(V2) ω2(V2) · · · ωn(V2)

...
...

...
ω1(Vn) ω2(Vn) · · · ωn(Vn)

3.27. Let γ be the 3-form 2dx ∧ dy ∧ dz. Let

V1 = 〈1, 2, 1〉, V2 = 〈0, 1, 1〉, V3 = 〈−1,−2, 1〉.
Compute γ(V1, V2, V3).

3.28. Calculate α ∧ β ∧ γ(V1, V2, V3), where

α = dx+ 2dy + dz, β = dx− dz, γ = −dy + 3dz,

V1 = 〈1, 2, 3〉, V2 = 〈−1, 1, 1〉, V3 = 〈0, 1, 1〉.
3.29. Note that, just as in Problem 3.12, if α, β and γ are 1-forms on TpR

3,
then α∧β∧γ(V1, V2, V3) is the (signed) volume of the parallelepiped spanned
by V1, V2 and V3 times the volume of the parallelepiped spanned by 〈α〉, 〈β〉
and 〈γ〉. Suppose ω is a 2-form on TpR

3 and ν is a 1-form on TpR
3. Show that

if ω∧ ν = 0, then there is a 1-form γ such that ω = ν ∧γ. (Hint: Combine the
given geometric interpretation of a 3-form which is the product of 1-forms on
TpR

3, with the results of Section 3.4.)

It follows from linear algebra that if we swap any two rows or columns
of this matrix, the sign of the result flips. Hence, if the n-tuple V′ =
(Vi1 , Vi2 , ..., Vin) is obtained from V = (V1, V2, ..., Vn) by an even number
of exchanges, then the sign of ω1 ∧ ω2 ∧ · · · ∧ ωn(V

′) will be the same as the
sign of ω1∧ω2 ∧ · · ·∧ωn(V). If the number of exchanges is odd, then the sign
is opposite. We sum this up by saying that the n-form, ω1 ∧ ω2 ∧ · · · ∧ ωn is
alternating.

The wedge product of 1-forms is also multilinear, in the following sense:

ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., Vi + V ′i , ..., Vn)

= ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., Vi, ..., Vn)

+ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., V
′
i , ..., Vn)

and

ω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., cVi, ..., Vn) = cω1 ∧ ω2 ∧ · · · ∧ ωn(V1, ..., Vi, ..., Vn)

for all i and any real number c.
In general, we define an n-form to be any alternating, multilinear real-

valued function which acts on n-tuples of vectors.
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3.30. Prove the following geometric interpretation (Hint: All of the steps are
completely analogous to those in Section 3.3.):

An m-form on TpR
n can be thought of as a function which takes

the parallelepiped spanned by m vectors, projects it onto each
of the m-dimensional coordinate planes, computes the resulting
areas, multiplies each by some constant, and adds the results.

3.31. How many numbers do you need to give to specify a 5-form on TpR
10?

We turn now to the simple case of an n-form on TpR
n. Notice that there

is only one n-dimensional coordinate plane in this space — namely the space
itself. Such a form, evaluated on an n-tuple of vectors, must therefore give the
n-dimensional volume of the parallelepiped which it spans, multiplied by some
constant. For this reason, such a form is called a volume form (in 2-dimensions,
an area form).

Example 14. Consider the forms, ω = dx + 2dy − dz, ν = 3dx − dy + dz and
ψ = −dx − 3dy + dz, on TpR

3. By the above argument, ω ∧ ν ∧ ψ must be
a volume form. Which volume form is it? One way to tell is to compute its
value on a set of vectors which we know span a parallelepiped of volume one
— namely 〈1, 0, 0〉, 〈0, 1, 0〉 and 〈0, 0, 1〉. This will tell us how much the form
scales volume.

ω ∧ ν ∧ ψ(〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉) =
1 3 −1
2 −1 −3

−1 1 1
= 4.

So, ω ∧ ν ∧ ψ must be the same as the form 4dx ∧ dy ∧ dz.

3.32. Let ω(〈dx, dy, dz〉) = dx+5dy−dz, ν(〈dx, dy, dz〉) = 2dx−dy+dz and
γ(〈dx, dy, dz) = −dx+ dy + 2dz.

1. If V1 = 〈1, 0, 2〉, V2 = 〈1, 1, 2〉 and V3 = 〈0, 2, 3〉, compute ω ∧ ν ∧
γ(V1, V2, V3).

2. Find a constant c such that ω ∧ ν ∧ γ = c dx ∧ dy ∧ dz.
3. Let α = 3dx ∧ dy + 2dy ∧ dz − dx ∧ dz. Find a constant c such that

α ∧ γ = c dx ∧ dy ∧ dz.

3.33. Simplify

dx ∧ dy ∧ dz + dx ∧ dz ∧ dy + dy ∧ dz ∧ dx+ dy ∧ dx ∧ dy.

3.34.

1. Expand and simplify

(dx + dy) ∧ (2dx+ dz) ∧ dz.
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2. Plug the following vectors into the above 3-form:

V1 = 〈1, 1, 1〉, V2 = 〈1, 0, 1〉, V3 = 〈0, 1,−1〉
3.35. Let ω be an n-form and ν an m-form.

1. Show that
ω ∧ ν = (−1)nmν ∧ ω.

2. Use this to show that if n is odd, then ω ∧ ω = 0.

3.7 Algebraic computation of products

In this section, we break with the spirit of the text briefly. At this point,
we have amassed enough algebraic identities that multiplying forms becomes
similar to multiplying polynomials. We quickly summarize these identities and
work a few examples.

Let ω be an n-form and ν be an m-form. Then we have the following
identities:

ω ∧ ν = (−1)nmν ∧ ω,

ω ∧ ω = 0 if n is odd,

ω ∧ (ν + ψ) = ω ∧ ν + ω ∧ ψ,

(ν + ψ) ∧ ω = ν ∧ ω + ψ ∧ ω.

Example 15.

(x dx+ y dy) ∧ (y dx + x dy) =�����xy dx ∧ dx+ x2 dx ∧ dy + y2 dy ∧ dx

+�����yx dy ∧ dy

= x2 dx ∧ dy + y2 dy ∧ dx

= x2 dx ∧ dy − y2 dx ∧ dy

= (x2 − y2) dx ∧ dy.

Example 16.

(x dx+ y dy) ∧ (xz dx ∧ dz + yz dy ∧ dz)

=��������
x2z dx ∧ dx ∧ dz + xyz dx ∧ dy ∧ dz

+yxz dy ∧ dx ∧ dz +��������
y2z dy ∧ dy ∧ dz

= xyz dx ∧ dy ∧ dz + yxz dy ∧ dx ∧ dz

= xyz dx ∧ dy ∧ dz − xyz dx ∧ dy ∧ dz

= 0.

3.36. Expand and simplify the following:

1. [(x− y) dx+ (x+ y) dy + z dz] ∧ [(x− y) dx+ (x+ y) dy].
2. (2dx+ 3dy) ∧ (dx− dz) ∧ (dx + dy + dz).
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Differential Forms

4.1 Families of forms

Let us now go back to the example in Chapter 1. In the last section of that
chapter, we showed that the integral of a function, f : R3 → R, over a surface
parameterized by φ : R ⊂ R

2 → R
3 is∫

R

f(φ(r, θ))Area

[
∂φ

∂r
(r, θ),

∂φ

∂θ
(r, θ)

]
dr dθ.

This gave one motivation for studying differential forms. We wanted to
generalize this integral by considering functions other than “Area(·, ·)” that
eat pairs of vectors and return numbers. However, in this integral, the point at
which such a pair of vectors is based changes. In other words, Area(·, ·) does
not act on TpR

3 × TpR
3 for a fixed p. We can make this point a little clearer

by reexamining the above integrand. Note that it is of the form f(�)Area(·, ·).
For a fixed point, �, of R3, this is an operator on T
R

3 × T
R
3, much like a

2-form is.
So far all we have done is to define 2-forms at fixed points of R3. To really

generalize the above integral, we must start to consider entire families of 2-
forms, ωp : TpR

3 × TpR
3 → R, where p ranges over all of R3. Of course, for

this to be useful, such a family must have some “niceness” properties. For one
thing, it should be continuous; that is, if p and q are close, then ωp and ωq

should be similar.
An even stronger property is that the family ωp is differentiable. To see

what this means, recall that for a fixed p, a 2-form ωp can always be written
as apdx ∧ dy+ bpdy ∧ dz + cpdx ∧ dz, where ap, bp and cp are constants. If we
let our choice of p vary over all of R3, then so will these constants. In other
words, ap, bp and cp are all functions from R

3 to R. To say that the family ωp

is differentiable, we mean that each of these functions is differentiable. If ωp

is differentiable, then we will refer to it as a differential form. When there can
be no confusion, we will suppress the subscript p.
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Example 17. ω = x2y dx ∧ dy − xz dy ∧ dz is a differential 2-form on
R

3. On the space T(1,2,3)R
3 it is just the 2-form 2dx ∧ dy − 3dy ∧ dz. We

will denote vectors in T(1,2,3)R
3 as 〈dx, dy, dz〉(1,2,3). Hence, the value of

ω(〈4, 0,−1〉(1,2,3), 〈3, 1, 2〉(1,2,3)) is the same as the 2-form 2dx ∧ dy+ dy ∧ dz,
evaluated on the vectors 〈4, 0,−1〉 and 〈3, 1, 2〉, which we compute as follows:

ω(〈4, 0,−1〉(1,2,3), 〈3, 1, 2〉(1,2,3))
= 2dx ∧ dy − 3dy ∧ dz(〈4, 0,−1〉, 〈3, 1, 2〉)
= 2

4 3
0 1

− 3
0 1
−1 2

= 5.

Suppose ω is a differential 2-form on R
3. What does ω act on? It takes a

pair of vectors at each point of R3 and returns a number. In other words, it
takes two vector fields and returns a function from R

3 to R. A vector field is
simply a choice of vector in TpR

3 for each p ∈ R
3. In general, a differential

n-form on R
m acts on n vector fields to produce a function from R

m to R (see
Figure 4.1).

ω

2 3 π

√
7 9 −3

21 6 0

Fig. 4.1. A differential 2-form, ω, acts on a pair of vector fields and returns a
function from R

n to R.

Example 18. V1 = 〈2y, 0,−x〉(x,y,z) is a vector field on R
3. For example, it

contains the vector 〈4, 0,−1〉 ∈ T(1,2,3)R
3. If V2 = 〈z, 1, xy〉(x,y,z) and ω is the

differential 2-form x2y dx ∧ dy − xz dy ∧ dz, then

ω(V1, V2) = x2y dx ∧ dy − xz dy ∧ dz(〈2y, 0,−x〉(x,y,z), 〈z, 1, xy〉(x,y,z))

= x2y
2y z
0 1

− xz
0 1

−x xy
= 2x2y2 − x2z,

which is a function from R
3 to R.

Notice that V2 contains the vector 〈3, 1, 2〉(1,2,3). So, from the previous
example we would expect that 2x2y2 − x2z equals 5 at the point (1, 2, 3),
which is indeed the case.
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4.1. Let ω be the differential 2-form on R
3 given by

ω = xyz dx ∧ dy + x2z dy ∧ dz − y dx ∧ dz.

Let V1 and V2 be the following vector fields:

V1 = 〈y, z, x2〉(x,y,z), V2 = 〈xy, xz, y〉(x,y,z).

1. What vectors do V1 and V2 contain at the point (1, 2, 3)?
2. Which 2-form is ω on T(1,2,3)R

3?
3. Use your answers to the previous two questions to compute ω(V1, V2) at

the point (1, 2, 3).
4. Compute ω(V1, V2) at the point (x, y, z). Then plug in x = 1, y = 2 and

z = 3 to check your answer against the previous question.

4.2 Integrating differential 2-forms

Let’s now recall the steps involved with integration of functions on subsets of
R

2. Suppose R ⊂ R
2 and f : R → R. The following steps define the integral

of f over R:

1. Choose a lattice of points in R, {(xi, yj)}.
2. For each i and j, define V 1

i,j = (xi+1, yj)− (xi, yj) and V 2
i,j = (xi, yj+1)−

(xi, yj) (see Figure 4.2). Notice that V 1
i,j and V 2

i,j are both vectors in

T(xi,yj)R
2.

3. For each i and j, compute f(xi, yj)Area(V
1
i,j , V

2
i,j), where Area(V,W ) is

the function which returns the area of the parallelogram spanned by the
vectors V and W .

4. Sum over all i and j.
5. Take the limit as the maximal distance between adjacent lattice points

goes to zero. This is the number that we define to be the value of
∫
R

f dx dy.

Let’s focus on Step 3. Here we compute f(xi, yj)Area(V
1
i,j , V

2
i,j). Notice

that this is exactly the value of the differential 2-form ω = f(x, y)dx ∧ dy
evaluated on the vectors V 1

i,j and V 2
i,j at the point (xi, yj). Hence, in Step 4 we

can write this sum as
∑
i

∑
j

f(xi, yj)Area(V
1
i,j , V

2
i,j) =

∑
i

∑
j

ω(xi,yj)(V
1
i,j , V

2
i,j).

It is reasonable, then, to adopt the shorthand “
∫
R

ω” to denote the limit in

Step 5. The upshot of all this is the following:

If ω = f(x, y)dx ∧ dy, then
∫
R

ω =
∫
R

f dx dy.
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xi

yj

V 1
i,j

V 2
i,j

Fig. 4.2. The steps toward integration.

Since all differential 2-forms on R
2 are of the form f(x, y)dx∧ dy, we now

know how to integrate them.
CAUTION: When integrating 2-forms on R

2, it is tempting to always
drop the “∧” and forget you have a differential form. This is only valid with
dx ∧ dy. It is NOT valid with dy ∧ dx. This may seem a bit curious since
Fubini’s Theorem gives us∫

f dx ∧ dy =

∫
f dx dy =

∫
f dy dx.

All of these are equal to − ∫ f dy ∧ dx. We will revisit this issue in Example
27.

4.2. Let ω = xy2 dx ∧ dy be a differential 2-form on R
2. Let D be the region

of R2 where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Calculate
∫
D

ω.

What about integration of differential 2-forms on R
3? As remarked at the

end of Section 1.4, we do this only over those subsets of R3 which can be
parameterized by subsets of R2. Suppose M is such a subset, like the top half
of the unit sphere. To define what we mean by

∫
M

ω, we just follow the above

steps:

1. Choose a lattice of points in M , {pi,j}.
2. For each i and j, define V 1

i,j = pi+1,j − pi,j and V 2
i,j = pi,j+1 − pi,j . Notice

that V 1
i,j and V 2

i,j are both vectors in Tpi,jR
3 (see Figure 4.3).
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3. For each i and j, compute ωpi,j (V
1
i,j , V

2
i,j).

4. Sum over all i and j.
5. Take the limit as the maximal distance between adjacent lattice points

goes to zero. This is the number that we define to be the value of
∫
M

ω.

x

y

z

pi,j

V 1
i,j

V 2
i,j

Fig. 4.3. The steps toward integrating a 2-form.

Unfortunately these steps are not so easy to follow. For one thing, it
is not always clear how to pick the lattice in Step 1. In fact, there is an
even worse problem. In Step 3, why did we compute ωpi,j (V

1
i,j , V

2
i,j) instead of

ωpi,j (V
2
i,j , V

1
i,j)? After all, V 1

i,j and V 2
i,j are two randomly oriented vectors in

TR3
pi,j

. There is no reasonable way to decide which should be first and which
second. There is nothing to be done about this. At some point we just have to
make a choice and make it clear which choice we have made. Such a decision
is called an orientation. We will have much more to say about this later. For
now, we simply note that a different choice will only change our answer by
changing its sign.

While we are on this topic, we also note that we would end up with
the same number in Step 5 if we had calculated ωpi,j (−V 1

i,j ,−V 2
i,j) in Step

4 instead. Similarly, if it turns out later that we should have calculated
ωpi,j (V

2
i,j , V

1
i,j), then we could have also arrived at the right answer by com-

puting ωpi,j (−V 1
i,j , V

2
i,j). In other words, there are really only two possibilities:
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Either ωpi,j (V
1
i,j , V

2
i,j) gives the correct answer or ωpi,j (−V 1

i,j , V
2
i,j) does. Which

one will depend on our choice of orientation.
Despite all the difficulties with using the above definition of

∫
M

ω, all hope

is not lost. Remember that we are only integrating over regions which can be
parameterized by subsets of R2. The trick is to use such a parameterization
to translate the problem into an integral of a 2-form over a region in R

2. The
steps are analogous to those in Section 1.4.

Suppose φ : R ⊂ R
2 →M is a parameterization. We want to find a 2-form

f(x, y) dx ∧ dy, such that a Riemann Sum for this 2-form over R gives the
same result as a Riemann Sum for ω over M . Let’s begin:

1. Choose a rectangular lattice of points in R, {(xi, yj)}. This also gives a
lattice, {φ(xi, yj)}, in M .

2. For each i and j, define V 1
i,j = (xi+1, yj) − (xi, yj), V

2
i,j = (xi, yj+1) −

(xi, yj), V1
i,j = φ(xi+1, yj) − φ(xi, yj) and V2

i,j = φ(xi, yj+1) − φ(xi, yj)

(see Figure 4.4). Notice that V 1
i,j and V 2

i,j are vectors in T(xi,yj)R
2 and

V1
i,j and V2

i,j are vectors in Tφ(xi,yj)R
3.

3. For each i and j, compute f(xi, yj) dx∧dy(V 1
i,j , V

2
i,j) and ωφ(xi,yj)(V1

i,j ,V2
i,j).

4. Sum over all i and j.

x

x

y

y

z

φ

xi

yj V1
i,j

V2
i,j

φ(xi, yj)

V 1
i,j

V 2
i,j

Fig. 4.4. Using φ to integrate a 2-form.

At the conclusion of Step 4 we have two sums:
∑
i

∑
j

f(xi, yj) dx ∧
dy(V 1

i,j , V
2
i,j) and

∑
i

∑
j

ωφ(xi,yj)(V1
i,j ,V2

i,j). In order for these to be equal, we

must have

f(xi, yj) dx ∧ dy(V 1
i,j , V

2
i,j) = ωφ(xi,yj)(V1

i,j ,V2
i,j).
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So,

f(xi, yj) =
ωφ(xi,yj)(V1

i,j ,V2
i,j)

dx ∧ dy(V 1
i,j , V

2
i,j)

.

Since we are using a rectangular lattice in R, we know dx ∧ dy(V 1
i,j , V

2
i,j) =

Area(V 1
i,j , V

2
i,j) = |V 1

i,j | · |V 2
i,j |. We now have

f(xi, yj) =
ωφ(xi,yj)(V1

i,j ,V2
i,j)

|V 1
i,j | · |V 2

i,j |
.

Using the bilinearity of ω, this reduces to

f(xi, yj) = ωφ(xi,yj)

(
V1
i,j

|V 1
i,j |

,
V2
i,j

|V 2
i,j |

)
.

As the distance between adjacent points of our partition tends toward zero,

V1
i,j

|V 1
i,j |

=
φ(xi+1, yj)− φ(xi, yj)

|(xi+1, yj)− (xi, yj)| =
φ(xi+1, yj)− φ(xi, yj)

|xi+1 − xi| → ∂φ

∂x
(xi, yj).

Similarly,
V2

i,j

|V 2
i,j | converges to

∂φ
∂y (xi, yj).

Let’s summarize what we have so far. We defined f(x, y) so that∑
i

∑
j

ωφ(xi,yj)(V1
i,j ,V2

i,j)

=
∑
i

∑
j

f(xi, yj) dx ∧ dy(V 1
i,j , V

2
i,j)

=
∑
i

∑
j

ωφ(xi,yj)

(
V1
i,j

|V 1
i,j |

,
V2
i,j

|V 2
i,j |

)
dx ∧ dy(V 1

i,j , V
2
i,j).

We have also shown that when we take the limit as the distance between
adjacent partition points tends toward zero, this sum converges to the sum

∑
i

∑
j

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy(V 1

i,j , V
2
i,j).

Hence, it must be that

∫
M

ω =

∫
R

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy. (4.1)
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At first glance, this seems like a very complicated formula. Let’s break it
down by examining the integrand on the right. The most important thing to
notice is that this is just a differential 2-form on R, even though ω is a 2-form

onR
3. For each pair of numbers, (x, y), the function ωφ(x,y)

(
∂φ
∂x (x, y),

∂φ
∂y (x, y)

)
just returns some real number. Hence, the entire integrand is of the form
g dx ∧ dy, where g : R→ R.

The only way to really convince oneself of the usefulness of this formula is
to actually use it.

Example 19. Let M denote the top half of the unit sphere in R
3. Let ω =

z2dx ∧ dy be a differential 2-form on R
3. Calculating

∫
M

ω directly by setting

up a Riemann Sum would be next to impossible. So we employ the parame-
terization φ(r, t) = (r cos t, r sin t,

√
1− r2), where 0 ≤ t ≤ 2π and 0 ≤ r ≤ 1.

∫
M

ω =

∫
R

ωφ(r,t)

(
∂φ

∂r
(r, t),

∂φ

∂t
(r, t)

)
dr ∧ dt

=

∫
R

ωφ(r,t)

(〈
cos t, sin t,

−r√
1− r2

〉
, 〈−r sin t, r cos t, 0〉

)
dr ∧ dt

=

∫
R

(1− r2)
cos t −r sin t
sin t r cos t

dr ∧ dt

=

∫
R

(1− r2)(r) dr ∧ dt

=

2π∫
0

1∫
0

r − r3 dr dt =
π

2
.

Notice that, as promised, the term ωφ(r,t)

(
∂φ
∂r (r, t),

∂φ
∂t (r, t)

)
in the second

integral simplified to a function from R to R: r − r3.

4.3. Integrate the 2-form

ω =
1

x
dy ∧ dz − 1

y
dx ∧ dz

over the following surfaces:

1. The top half of the unit sphere using the following parameterizations from
cylindrical and spherical coordinates:
a) (r, θ)→ (r cos θ, r sin θ,

√
1− r2), where 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1.

b) (θ, φ) → (sinφ cos θ, sinφ sin θ, cosφ), where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤
π
2 .
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2. The surface parameterized by

φ(r, θ) = (r cos θ, r sin θ, cos r), 0 ≤ r ≤ π

2
, 0 ≤ θ ≤ 2π.

3. The surface parameterized by

Ψ(θ, φ) = (cosφ cos θ, cosφ sin θ, sinφ), 0 ≤ θ ≤ 2π, −π

4
≤ φ ≤ π

4
.

4.4. Let S be the surface in R
3 parameterized by

Ψ(θ, z) = (cos θ, sin θ, z),

where 0 ≤ θ ≤ π and 0 ≤ z ≤ 1. Let ω = xyz dy ∧ dz. Calculate
∫
S

ω.

4.5. Let ω be the differential 2-form on R
3 given by

ω = xyz dx ∧ dy + x2z dy ∧ dz − y dx ∧ dz.

1. Let P be the portion of the plane 3 = 2x + 3y − z in R
3 that lies above

the square {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Calculate ∫
P

ω.

2. Let M be the portion of the graph of z = x2 + y2 in R
3 that lies above

the rectangle {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 2}. Calculate ∫
M

ω.

4.6. Let S be the surface given by the parameterization

φ(r, θ) = (r cos θ, r sin θ,
√

r2 + 1), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
.

Let ω be the differential 2-form given by

ω = xz dx ∧ dz − yz dy ∧ dz.

Compute
∫
S

ω.

4.7. Let S be the surface in R
3 parameterized by

Ψ(u, v) = (2u, v, u2 + v3), 0 ≤ u ≤ 1, 0 ≤ v ≤ 2.

Integrate the 2-form (x+ 2y) dx ∧ dz over S.

4.8. Let D be some region in the xy-plane. Let M denote the portion of the
graph of z = g(x, y) that lies above D.

1. Let ω = f(x, y) dx ∧ dy be a differential 2-form on R
3. Show that∫

M

ω =

∫
D

f(x, y) dx dy.

Notice the answer does not depend on the function g(x, y).
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2. Now suppose ω = f(x, y, z) dx ∧ dy. Show that∫
M

ω =

∫
D

f(x, y, g(x, y)) dx dy.

4.9. Let S be the surface obtained from the graph of z = f(x) = x3, where
0 ≤ x ≤ 1, by rotating around the z-axis. Integrate the 2-form ω = y dx ∧ dz
over S. (Hint: Use cylindrical coordinates to parameterize S.)

4.3 Orientations

What would have happened in Example 19 if we had used the parameteri-
zation φ′(r, t) = (−r cos t, r sin t,√1− r2) instead? We leave it to the reader
to check that we end up with the answer −π/2 rather than π/2. This is a
problem. We defined

∫
M

ω before we started talking about parameterizations.

Hence, the value which we calculate for this integral should not depend on
our choice of parameterization. So what happened?

To analyze this completely, we need to go back to the definition of
∫
M

ω

from the previous section. We noted at the time that a choice was made to
calculate ωpi,j (V

1
i,j , V

2
i,j) instead of ωpi,j (−V 1

i,j , V
2
i,j). Was this choice correct?

The answer is a resounding maybe! We are actually missing enough informa-
tion to tell. An orientation is precisely some piece of information about M
which we can use to make the right choice. This way we can tell a friend what
M is, what ω is, and what the orientation on M is, and they are sure to get
the same answer. Recall Equation 4.1:∫

M

ω =

∫
R

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy.

Depending on the specified orientation of M , it may be incorrect to use
Equation 4.1. Sometimes we may want to use∫

M

ω =

∫
R

ωφ(x,y)

(
−∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy.

Both ω and
∫
are linear. This just means the negative sign in the integrand

on the right can go all the way outside. Hence, we can write both this equation
and Equation 4.1 as∫

M

ω = ±
∫
R

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy. (4.2)

We define an orientation on M to be any piece of information that can be
used to decide, for each choice of parameterization φ, whether to use the “+”
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or “−” sign in Equation 4.2, so that the integral will always yield the same
answer.

We will see several ways to specify an orientation on M . The first will be
geometric. It has the advantage that it can be easily visualized, but it has the
disadvantage that it is actually much harder to use in calculations. All we do
is draw a small circle on M with an arrowhead on it. To use this “oriented
circle” to tell if we need the “+” or “−” sign in Equation 4.2, we draw the
vectors ∂φ

∂x (x, y) and
∂φ
∂y (x, y) and an arc with an arrow from the first to the

second. If the direction of this arrow agrees with the oriented circle, then we
use the “+” sign. If they disagree, then we use the “−” sign. See Figure 4.5.

∂φ
∂x

(x, y)

∂φ
∂x

(x, y) ∂φ
∂y

(x, y)

∂φ
∂y

(x, y)

Use the “−” sign when integrating. Use the “+” sign when integrating.

Fig. 4.5. An orientation on M is given by an oriented circle.

A more algebraic way to specify an orientation is to simply pick a point
p of M and choose any 2-form ν on TpR

3 such that ν(V 1
p , V

2
p ) = 0 whenever

V 1
p and V 2

p are vectors tangent to M and V1 is not a multiple of V2. Do not
confuse this 2-form with the differential 2-form, ω, of Equation 4.2. The 2-
form ν is only defined at the single tangent space TpR

3, whereas ω is defined
everywhere.

Let us now see how we can use ν to decide whether to use the “+” or “−”
sign in Equation 4.2. All we must do is calculate ν

(
∂φ
∂x (xp, yp),

∂φ
∂y (xp, yp)

)
,

where φ(xp, yp) = p. If the result is positive, then we will use the “+” sign to
calculate the integral in Equation 4.2. If it is negative, then we use the “−”
sign. Let’s see how this works with an example.

Example 20. Let’s revisit Example 19. The problem was to integrate the form
z2dx∧dy over M , the top half of the unit sphere. However, no orientation was
ever given for M , so the problem was not very well stated. Let’s pick an easy
point, p, on M : (0,

√
2/2,

√
2/2). The vectors 〈1, 0, 0〉p and 〈0, 1,−1〉p in TpR

3

are both tangent to M . To give an orientation on M , all we do is specify a
2-form ν on TpR

3 such that ν(〈1, 0, 0〉, 〈0, 1,−1〉) = 0. Let’s pick an easy one:
ν = dx ∧ dy.
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Now let’s see what happens when we try to evaluate the integral by us-
ing the parameterization φ′(r, t) = (−r cos t, r sin t,√1− r2). First, note that
φ′(
√
2/2, π/2) = (0,

√
2/2,

√
2/2) and(

∂φ′

∂r

(√
2

2
,
π

2

)
,
∂φ′

∂t

(√
2

2
,
π

2

))
=

(
〈0, 1,−1〉 ,

〈√
2

2
, 0, 0

〉)
.

Now we check the value of ν when this pair is plugged in:

dx ∧ dy

(
〈0, 1,−1〉 ,

〈√
2

2
, 0, 0

〉)
=

∣∣∣∣0
√
2
2

1 0

∣∣∣∣ = −
√
2

2
.

The sign of this result is “−,” so we need to use the negative sign in
Equation 4.2 in order to use φ′ to evaluate the integral of ω over M :

∫
M

ω = −
∫
R

ωφ′(r,t)

(
∂φ′

∂r
(r, t),

∂φ′

∂t
(r, t)

)
dr ∧ dt

= −
∫
R

(1− r2)

∣∣∣∣− cos t r sin t
sin t r cos t

∣∣∣∣ dr dt =
π

2
.

Very often, the surface that we are going to integrate over is given to us by
a parameterization. In this case, there is a very natural choice of orientation.
Just use the “+” sign in Equation 4.2! We will call this the orientation of
M induced by the parameterization. In other words, if you see a problem
phrased like “Calculate the integral of the form ω over the surface M given
by parameterization φ with the induced orientation,” then you should just go
back to using Equation 4.1 and do not worry about anything else. In fact, this
situation is so common that when you are asked to integrate some form over
a surface which is given by a parameterization but no orientation is specified,
then you should assume the induced orientation is the desired one.

4.10. Let M be the image of the parameterization, φ(a, b) = (a, a + b, ab),
where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Integrate the form ω = 2z dx ∧ dy + y dy ∧
dz − x dx ∧ dz over M using the orientation induced by φ.

4.11. Let S be the frustrum parameterized by

φ(r, θ) = (r cos θ, r sin θ, r), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

Integrate the 2-form

ω = z dx ∧ dy +
1

x
dy ∧ dz +

1

y
dx ∧ dz

over S with the orientation induced by φ.
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There is one subtle technical point here that should be addressed. The
novice reader may want to skip this for now. Suppose someone gives you a
surface defined by a parameterization and tells you to integrate some 2-form
over it using the induced orientation. However, you are clever and you realize
that if you change parameterizations, you can make the integral easier. Which
orientation do you use? The problem is that the orientation induced by your
new parameterization may not be the same as the one induced by the original
parameterization.

To fix this, we need to see how we can define a 2-form on some tangent
space TpR

3, where p is a point ofM , that yields an orientation of M consistent
with the one induced by a parameterization φ. This is not so hard. If dx ∧
dy
(

∂φ
∂x (xp, yp),

∂φ
∂y (xp, yp)

)
is positive, then we simply let ν = dx ∧ dy. If

it is negative, then we let ν = −dx ∧ dy. In the unlikely event that dx ∧
dy
(

∂φ
∂x (xp, yp),

∂φ
∂y (xp, yp)

)
= 0, we can remedy things by either changing the

point p or by using dx ∧ dz instead of dx ∧ dy. Once we have defined ν, we
know how to integrate M using any other parameterization.

4.12. Let ψ be the following parameterization of the sphere of radius 1:

ψ(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ).

Which of the following 2-forms on T
(
√

2
2 ,0,

√
2

2 )
R

3 determine the same orienta-

tion on the sphere as that induced by ψ?

1. α = dx ∧ dy + 2dy ∧ dz.
2. β = dx ∧ dy − 2dy ∧ dz.
3. γ = dx ∧ dz.

4.4 Integrating 1-forms on R
m

In the previous sections we saw how to integrate a 2-form over a region in
R

2, or over a subset of R3 parameterized by a region in R
2. The reason that

these dimensions were chosen was because there is nothing new that needs to
be introduced to move to the general case. In fact, if the reader were to go
back and look at what we did, he/she would find that almost nothing would
change if we had been talking about n-forms instead.

Before we jump to the general case, we will work one example showing
how to integrate a 1-form over a parameterized curve.

Example 21. Let C be the curve in R
2 parameterized by

φ(t) = (t2, t3),

where 0 ≤ t ≤ 2. Let ν be the 1-form y dx+ x dy. We calculate
∫
C

ν.
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The first step is to calculate

dφ

dt
= 〈2t, 3t2〉.

So, dx = 2t and dy = 3t2. From the parameterization, we also know x = t2

and y = t3. Hence, since ν = y dx+ x dy, we have

νφ(t)

(
dφ

dt

)
= (t3)(2t) + (t2)(3t2) = 5t4.

Finally, we integrate:

∫
C

ν =

2∫
0

νφ(t)

(
dφ

dt

)
dt

=

2∫
0

5t4 dt

= t5
∣∣2
0

= 32.

4.13. Let C be the curve in R
2 given by ψ(t) = (t cos t, t sin t), where 0 ≤ t ≤

2. Let ν = −y dx+ x dy. Compute
∫
C

ν (with the induced orientation).

4.14. Let C be the curve in R
3 parameterized by φ(t) = (t, t2, 1 + t), where

0 ≤ t ≤ 2. Integrate the 1-form ω = y dx + z dy + xy dz over C using the
induced orientation.

4.15. Let C be the curve parameterized by the following:

φ(t) = (2 cos t, 2 sin t, t2), 0 ≤ t ≤ 2.

Integrate the 1-form (x2 + y2) dz over C.

4.16. Let C be the subset of the graph of y = x2, where 0 ≤ x ≤ 1. An
orientation on C is given by the 1-form dx on T(0,0)R

2. Let ω be the 1-form
−x4 dx+ xy dy. Integrate ω over C.

4.17. Let M be the line segment in R
2 which connects (0, 0) to (4, 6). An

orientation on M is specified by the 1-form −dx on T(2,3)R
2. Integrate the

form ω = sin y dx+ cosx dy over M .

Just as there was for surfaces, for parameterized curves there is also a
pictorial way to specify an orientation. All we have to do is place an arrow-
head somewhere along the curve and ask whether or not the derivative of the
parameterization gives a tangent vector that points in the same direction. We
illustrate this in the next example.
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x

y

C

Fig. 4.6. An orientation on C is given by an arrowhead.

Example 22. Let C be the portion of the graph of x = y2, where 0 ≤ x ≤ 1, as
pictured in Figure 4.6. Notice the arrowhead on C. We integrate the 1-form
ω = dx+ dy over C with the indicated orientation.

First, parameterize C as φ(t) = (t2, t), where 0 ≤ t ≤ 1. Now notice that
the derivative of φ is

dφ

dt
= 〈2t, 1〉.

At the point (0, 0) this is the vector 〈0, 1〉, which points in a direction opposite
to that of the arrowhead. This tells us to use a negative sign when we integrate,
as follows:

∫
C

ω = −
1∫

0

ω(t2,t)(〈2t, 1〉)

= −(2t+ 1)|10
= −2.

4.5 Integrating n-forms on R
m

To proceed to the general case, we need to know what the integral of an n-
form over a region of Rn is. The steps to define such an object are precisely
the same as before, and the results are similar. If our coordinates in R

n are
(x1, x2, ..., xn), then an n-form is always given by

f(x1, ..., xn)dx1 ∧ dx2 ∧ · · · ∧ dxn.



56 4 Differential Forms

Going through the steps, we find that the definition of
∫
Rn

ω is exactly the

same as the definition we learned in Chapter 2 for
∫
Rn

f dx1dx2 · · · dxn.

4.18. Let Ω be the cube in R
3:

{(x, y, z)| 0 ≤ x, y, z ≤ 1}.
Let γ be the 3-form x2z dx ∧ dy ∧ dz. Calculate

∫
Ω

γ.

Moving on to integrals of n-forms over subsets of Rm parameterized by
a region in R

n, we again find nothing surprising. Suppose we denote such a
subset by M . Let φ : R ⊂ R

n → M ⊂ R
m be a parameterization. Then we

find that the following generalization of Equation 4.2 must hold:

∫
M

ω = ±
∫
R

ωφ(x1,...,xn)

(
∂φ

∂x1
(x1, ..., xn), ...,

∂φ

∂xn
(x1, ..., xn)

)
dx1 ∧ · · · ∧ dxn.

(4.3)
To decide whether or not to use the negative sign in this equation, we

must specify an orientation. Again, one way to do this is to give an n-form
ν on TpR

m, where p is some point of M . We use the negative sign when the
value of

ν

(
∂φ

∂x1
(x1, ..., xn), ...,

∂φ

∂xn
(x1, ..., xn)

)
is negative, where φ(x1, ..., xn) = p. If M was originally given by a parame-
terization and we are instructed to use the induced orientation, then we can
ignore the negative sign.

Example 23. Suppose φ(a, b, c) = (a + b, a + c, bc, a2), where 0 ≤ a, b, c ≤ 1.
Let M be the image of φ with the induced orientation. Suppose ω = dy∧dz∧
dw − dx ∧ dz ∧ dw − 2y dx ∧ dy ∧ dz. Then

∫
M

ω =

∫
R

ωφ(a,b,c)

(
∂φ

∂a
(a, b, c),

∂φ

∂b
(a, b, c),

∂φ

∂c
(a, b, c)

)
da ∧ db ∧ dc

=

∫
R

ωφ(a,b,c) (〈1, 1, 0, 2a〉, 〈1, 0, c, 0〉, 〈0, 1, b, 0〉)da ∧ db ∧ dc

=

∫
R

∣∣∣∣∣∣
1 0 1
0 c b

2a 0 0

∣∣∣∣∣∣−
∣∣∣∣∣∣

1 1 0
0 c b

2a 0 0

∣∣∣∣∣∣− 2(a+ c)

∣∣∣∣∣∣
1 1 0
1 0 1
0 c b

∣∣∣∣∣∣ da ∧ db ∧ dc

=

1∫
0

1∫
0

1∫
0

2bc+ 2c2 da db dc =
7

6
.
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4.6 The change of variables formula

There is a special case of Equation 4.3 which is worth noting. Suppose φ
is a parameterization that takes some subregion, R, of Rn into some other
subregion, M , of Rn and ω is an n-form on R

n. At each point, ω is just a
volume form, so it can be written as f(x1, ..., xn) dx1 ∧ · · · ∧ dxn. If we let
x̄ = (x1, ..., xn), then Equation 4.3 can be written as

∫
M

f(x̄)dx1 · · · dxn = ±
∫
R

f(φ(x̄))

∣∣∣∣ ∂φ∂x1
(x̄) · · · ∂φ

∂xn
(x̄)

∣∣∣∣ dx1 · · · dxn. (4.4)

The bars | · | indicate that we take the determinant of the matrix whose
column vectors are ∂φ

∂xi
(x̄).

4.6.1 1-Forms on R
1

When n = 1, this is just the reverse of the substitution rule for integration
from calculus. We demonstrate this in the following example.

Example 24. Let’s integrate the 1-form ω =
√
u du over the interval [1, 5].

This would be easy enough to do directly, but using a parameterization of
this interval will be instructive. Let φ : [0, 2]→ [1, 5] be the parameterization
given by φ(x) = x2 + 1. Then dφ

dx = 〈2x〉. Now we compute:

5∫
1

√
u du =

∫
[1,5]

ω =

∫
[0,2]

ωφ(x)

(
dφ

dx

)
dx

=

∫
[0,2]

ωx2+1 (〈2x〉) dx

=

∫
[0,2]

2x
√
x2 + 1 dx

=

2∫
0

2x
√
x2 + 1 dx.

Reading this backwards is doing the integral
2∫
0

2x
√
x2 + 1 dx by “u-

substitution.”

Employing a parameterization to integrate a 1-form on R
1 is a common

technique to handle certain integrands. This is often called “trigonometric
substitution” in a first-year calculus class.
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Example 25. Let ω = 1√
1−x2

dx be a 1-form on R
1. We wish to integrate ω

over the interval [0, 1], with the standard orientation on R
1. To do this, we

employ the parameterization φ : [0, π
2 ] → [0, 1] given by φ(θ) = sin θ. To use

φ to perform the desired integration, we will need its derivative: dφ
dθ = 〈cos θ〉.

We may now compute:

1∫
0

1√
1− x2

dx =

∫
[0,1]

ω

=

∫
[0,π2 ]

ωφ(θ)

(
dφ

dθ

)
dθ

=

∫
[0,π2 ]

ωsin θ(〈cos θ〉)dθ

=

∫
[0,π2 ]

1√
1− sin2 θ

cos θ dθ

=

π
2∫

0

dθ

=
π

2

4.6.2 2-Forms on R
2

For other n, Equation 4.4 is the general change of variables formula.

Example 26. We will use the parameterization Ψ(u, v) = (u, u2 + v2) to eval-
uate ∫∫

R

(x2 + y) dA,

where R is the region of the xy-plane bounded by the parabolas y = x2 and
y = x2 + 4 and the lines x = 0 and x = 1.

The first step is to find out what the limits of integration will be when we
change coordinates:

y = x2 ⇒ u2 + v2 = u2 ⇒ v = 0,

y = x2 + 4⇒ u2 + v2 = u2 + 4⇒ v = 2,

x = 0⇒ u = 0,

x = 1⇒ u = 1.
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Next, we will need the partial derivatives:

∂Ψ

∂u
= 〈1, 2u〉,

∂Ψ

∂v
= 〈0, 2v〉.

Finally, we can integrate:

∫∫
R

(x2 + y) dA =

∫
R

(x2 + y) dx ∧ dy

=

2∫
0

1∫
0

u2 + (u2 + v2)

∣∣∣∣ 1 0
2u 2v

∣∣∣∣ du dv

=

2∫
0

1∫
0

4vu2 + 2v3 du dv

=

2∫
0

4

3
v + 2v3 dv

=
8

3
+ 8 =

32

3
.

Example 27. In our second example, we revisit Fubini’s Theorem, which says
that the order of integration does not matter in a multiple integral. Recall from
Section 4.2 the curious fact that

∫
f dx dy =

∫
f dx ∧ dy but

∫
f dy dx =∫

f dy ∧ dx. We are now prepared to see why this is.
Let’s suppose we want to integrate the function f(x, y) over the rectangle

R in R
2 with vertices at (0, 0), (a, 0), (0, b) and (a, b). We know the answer is

just
b∫
0

a∫
0

f(x, y) dx dy. We also know this integral is equal to
∫
R

f dx∧dy, where
R is given the “standard” orientation (e.g., the one specified by a counter-
clockwise oriented circle).

Let’s see what happens if we try to compute the integral using the following
parameterization:

φ(y, x) = (x, y), 0 ≤ y ≤ b, 0 ≤ x ≤ a.

First, we need the partials of φ:

∂φ

∂y
= 〈0, 1〉,

∂φ

∂x
= 〈1, 0〉.
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Next, we have to deal with the issue of orientation. The pair of vectors we
just found — 〈0, 1〉 and 〈1, 0〉 — are in an order which does not agree with
the orientation of R. So we have to use the negative sign when employing
Equation 4.4:

∫
R

f(x, y) dx dy = −
∫
R

f(φ(y, x))

∣∣∣∣∂φ∂y ∂φ

∂x

∣∣∣∣ dy dx

= −
∫
R

f(x, y)

∣∣∣∣0 1
1 0

∣∣∣∣ dy ∧ dx

= −
∫
R

f(x, y)(−1) dy ∧ dx

=

∫
R

f(x, y) dy dx.

From the above, we see one of the reasons why Fubini’s Theorem is true
is because when the order of integration is switched, there are two negative
signs. So,

∫
R

f dy dx actually does equal
∫
R

f dy ∧dx, but only if you remember

to switch the orientation of R!

4.19. Let E be the region in R
2 parameterized by Ψ(u, v) = (u2 + v2, 2uv),

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Evaluate∫
E

1√
x− y

dx ∧ dy.

Up until this point, we have only seen how to integrate functions f(x, y)
over regions in the plane which are rectangles. Let’s now see how we can use
parameterizations to integrate over more general regions. Suppose, first, that
R is the region of the plane below the graph of y = g(x), above the x-axis,
and between the lines x = a and x = b.

The region R can be parameterized by

Ψ(u, v) = (u, vg(u)),

where a ≤ u ≤ b and 0 ≤ v ≤ 1. The partials of this parameterization are

∂Ψ

∂u
=

〈
1, v

dg(u)

du

〉
,

∂Ψ

∂v
= 〈0, g(u)〉 .

Hence,
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dx ∧ dy =

∣∣∣∣ 1 0

v dg(u)
du g(u)

∣∣∣∣ = g(u).

We conclude with the identity

∫
R

f(x, y) dy dx =

b∫
a

1∫
0

f(u, vg(u))g(u) dv du.

4.20. Let R be the region below the graph of y = x2 and between the lines
x = 0 and x = 2. Calculate ∫

R

xy2 dx dy.

A slight variant is to integrate over a region bounded by the graphs of
y = g1(x) and y = g2(x) and by the lines x = a and x = b, where g1(x) < g2(x)
for all x ∈ [a, b]. To compute such an integral, we may simply integrate over the
region below g2(x), then integrate over the region below g1(x), and subtract.

4.21. Let R be the region to the right of the y-axis, to the left of the graph
of x = g(y), above the line y = a, and below the line y = b. Find a formula
for

∫
R

f(x, y) dx dy.

4.22. Let R be the region in the first quadrant of R2, below the line y = x,
and bounded by x2 + y2 = 4. Integrate the 2-form

ω =

(
1 +

y2

x2

)
dx ∧ dy

over R.

4.23. Let R be the region of the xy-plane bounded by the ellipse

9x2 + 4y2 = 36.

Integrate the 2-form ω = x2dx∧dy over R (Hint: See Problem 2.39 of Chapter
2.)

4.24. Integrate the 2-form

ω =
1

x
dy ∧ dz − 1

y
dx ∧ dz

over the top half of the unit sphere using the following parameterization from
rectangular coordinates:

(x, y)→ (x, y,
√

1− x2 − y2),

where
√
x2 + y2 ≤ 1. Compare your answer to Problem 4.3.
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4.25. Let R be the region of R2 parameterized by

φ(r, t) = (r cosh t, r sinh t), 0 ≤ r ≤ 1, −1 ≤ t ≤ 1.

Integrate the function f(x, y) = x2 − y2 over R. Hints:

d

dt
sinh t = cosh t,

d

dt
cosh t = sinh t,

cosh2 t− sinh2 t = 1.

4.6.3 3-Forms on R
3

Example 28. Let V = {(r, θ, z)|1 ≤ r ≤ 2, 0 ≤ z ≤ 1}. (V is the region
between the cylinders of radii 1 and 2 and between the planes z = 0 and
z = 1.) Let’s calculate ∫

V

z(x2 + y2) dx ∧ dy ∧ dz.

The region V is best parameterized using cylindrical coordinates:

Ψ(r, θ, z) = (r cos θ, r sin θ, z),

where 1 ≤ r ≤ 2, 1 ≤ θ ≤ 2π and 0 ≤ z ≤ 1.
We compute the partials:

∂Ψ

∂r
= 〈cos θ, sin θ, 0〉,

∂Ψ

∂θ
= 〈−r sin θ, r cos θ, 0〉,

∂Ψ

∂z
= 〈0, 0, 1〉.

Hence,

dx ∧ dy ∧ dz =

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

∣∣∣∣∣∣ = r.

Additionally,

z(x2 + y2) = z(r2 cos2 θ + r2 sin2 θ) = zr2.

So we have
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∫
V

z(x2 + y2) dx ∧ dy ∧ dz =

1∫
0

2π∫
0

2∫
1

(zr2)(r) dr dθ dz

=

1∫
0

2π∫
0

2∫
1

zr3 dr dθ dz

=
15

4

1∫
0

2π∫
0

z dθ dz

=
15π

2

1∫
0

z dz

=
15π

4
.

4.26. Integrate the 3-form ω = x dx ∧ dy ∧ dz over the region of R3 in the
first octant bounded by the cylinders x2 + y2 = 1 and x2 + y2 = 4 and the
plane z = 2.

4.27. Let R be the region in the first octant of R3 bounded by the spheres
x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4. Integrate the 3-form ω = dx ∧ dy ∧ dz
over R.

4.28. Let V be the volume in the first octant, inside the cylinder of radius 1
and below the plane z = 1. Integrate the 3-form

2
√
1 + x2 + y2 dx ∧ dy ∧ dz

over V .

4.29. Let V be the region inside the cylinder of radius 1, centered around
the z-axis and between the planes z = 0 and z = 2. Integrate the function
f(x, y, z) = z over V .

4.30. Let V be the volume in R
3 parameterized by

Ψ(r, θ, t) = (r cos θ, r sin θ, t2), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ t ≤ 1.

(Note that this is not a parameterization of a surface by cylindrical coordi-
nates.) Use the parameterization Ψ to integrate the function f(x, y, z) =

√
z

over V .

4.31. Let ω be the 3-form on R
3 given by

ω =
z

x2 + y2
dx ∧ dy ∧ dz.

Compute the integral of ω over the region under the graph of f(x, y) = x2+y2,
in the positive octant, and

1. above the square with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 0).
2. at most one unit away from the z-axis.



64 4 Differential Forms

4.7 Summary: How to integrate a differential form

4.7.1 The steps

To compute the integral of a differential n-form ω over a region S, the steps
are as follows:

1. Choose a parameterization Ψ : R → S, where R is a subset of Rn (see
Figure 4.7).

x
y

z

Ψ

u

v

R

S

Fig. 4.7.

2. Find all n vectors given by the partial derivatives of Ψ . Geometrically,
these are tangent vectors to S which span its tangent space (see Figure
4.8).

x
y

z

∂Ψ
∂u

∂Ψ
∂v

Fig. 4.8.

3. Plug the tangent vectors into ω at the point Ψ(u1, u2, ..., un).
4. Integrate the resulting function over R.
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4.7.2 Integrating 2-forms

The best way to see the above steps in action is to look at the integral of a
2-form over a surface in R

3. In general, such a 2-form is given by

ω = f1(x, y, z) dx ∧ dy + f2(x, y, z) dy ∧ dz + f3(x, y, z) dx ∧ dz.

To integrate ω over S, we now follow steps 1–4:

1. Choose a parameterization Ψ : R→ S, where R is a subset of R2:

Ψ(u, v) = (g1(u, v), g2(u, v), g3(u, v)).

2. Find both vectors given by the partial derivatives of Ψ :

∂Ψ

∂u
=

〈
∂g1
∂u

,
∂g2
∂u

,
∂g3
∂u

〉
,

∂Ψ

∂v
=

〈
∂g1
∂v

,
∂g2
∂v

,
∂g3
∂v

〉
.

3. Plug the tangent vectors into ω at the point Ψ(u, v). To do this, x, y
and z will come from the coordinates of Ψ ; that is, x = g1(u, v), y =
g2(u, v) and z = g3(u, v). Terms like dx ∧ dy are determinants of 2 × 2
matrices, whose entries come from the vectors computed in the previous
step. Geometrically, the value of dx ∧ dy is the area of the parallelogram
spanned by the vectors ∂Ψ

∂u and ∂Ψ
∂v (tangent vectors to S), projected onto

the dxdy-plane (see Figure 4.9).
The result of all this is:

f1(g1, g2, g3)

∣∣∣∣∣∣
∂g1
∂u

∂g1
∂v

∂g2
∂u

∂g2
∂v

∣∣∣∣∣∣+ f2(g1, g2, g3)

∣∣∣∣∣∣
∂g2
∂u

∂g2
∂v

∂g3
∂u

∂g3
∂v

∣∣∣∣∣∣
+f3(g1, g2, g3)

∣∣∣∣∣∣
∂g1
∂u

∂g1
∂v

∂g3
∂u

∂g3
∂v

∣∣∣∣∣∣ .
Note that simplifying this gives a function of u and v.

4. Integrate the resulting function over R. In other words, if h(u, v) is the
function you ended up with in the previous step, then compute∫

R

h(u, v) du dv.

If R is not a rectangle, you may have to find a parameterization of R whose
domain is a rectangle and repeat the above steps to compute this integral.
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dx dy

dz

∂Ψ
∂u

∂Ψ
∂v

Area=dx ∧ dy
(
∂Ψ
∂u

, ∂Ψ
∂v

)

Fig. 4.9. Evaluating dx ∧ dy geometrically.

4.7.3 A sample 2-form

Let ω = (x2 + y2) dx∧ dy+ z dy ∧ dz. Let S denote the subset of the cylinder
x2 + y2 = 1 that lies between the planes z = 0 and z = 1.

1. Choose a parameterization Ψ : R→ S:

Ψ(θ, z) = (cos θ, sin θ, z),

where R = {(θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1}.
2. Find both vectors given by the partial derivatives of Ψ .

∂Ψ

∂θ
= 〈− sin θ, cos θ, 0〉

∂Ψ

∂z
= 〈0, 0, 1〉.

3. Plug the tangent vectors into ω at the point Ψ(θ, z). We get

(cos2 θ + sin2 θ)

∣∣∣∣− sin θ 0
cos θ 0

∣∣∣∣+ z

∣∣∣∣ cos θ 0
0 1

∣∣∣∣ .
This simplifies to the function z cos θ.

4. Integrate the resulting function over R:

1∫
0

2π∫
0

z cos θ dθ dz.
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Note that the integrand comes from Step 3 and the limits of integration
come from Step 1.

4.8 Nonlinear forms (optional)

4.8.1 Surface area

Now that we have developed some proficiency with integrating differential
forms, let’s see what else we can integrate. A basic assumption that we used
to come up with the definition of an n-form was the fact that at every point,
it is a linear function which “eats” n vectors and returns a number. What
about the non-linear functions?

Let’s go all the way back to Section 1.4. There we decided that the integral
of a function f over a surface R in R

3 should look something like∫
R

f(φ(r, θ))Area

[
∂φ

∂r
(r, θ),

∂φ

∂θ
(r, θ)

]
dr dθ. (4.5)

At the heart of the integrand is the Area function, which takes two vectors
and returns the area of the parallelogram that it spans. The 2-form dx ∧ dy
does this for two vectors in TpR

2. In TpR
3, the right function is the following:

Area(V 1
p , V

2
p ) =

√
(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.

(The reader may recognize this as the magnitude of the cross product
between V 1

p and V 2
p .) This is clearly nonlinear!

Example 29. The area of the parallelogram spanned by 〈1, 1, 0〉 and 〈1, 2, 3〉
can be computed as follows:

Area(〈1, 1, 0〉, 〈1, 2, 3〉) =
√∣∣∣∣1 0

2 3

∣∣∣∣
2

+

∣∣∣∣1 0
1 3

∣∣∣∣
2

+

∣∣∣∣1 1
1 2

∣∣∣∣
2

=
√
32 + 32 + 12

=
√
19.

We will see in Chapter 6 that the thing that makes (linear) differential
forms so useful is the Generalized Stokes Theorem. We do not have anything
like this for nonlinear forms, but that is not to say that they do not have their
uses. For example, there is no differential 2-form on R

3 that one can integrate
over arbitrary surfaces to find their surface area. For that, we would need to
compute the following:

Area(R) =

∫
S

√
(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.
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For relatively simple surfaces, this integrand can be evaluated by hand.
Integrals such as this play a particularly important role in certain applied
problems. For example, if one were to dip a loop of bent wire into a soap film,
the resulting surface would be the one of minimal area. Before one can even
begin to figure out what surface this is for a given piece of wire, one must be
able to know how to compute the area of an arbitrary surface, as above.

Example 30. We compute the surface area of a sphere of radius r in R
3. A

parameterization is given by

Φ(θ, φ) = (r sinφ cos θ, r sinφ sin θ, r cosφ),

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.
Now we compute:

Area
(

∂Φ
∂θ ,

∂Φ
∂φ

)
= Area (〈−r sinφ sin θ, r sinφ cos θ, 0〉, 〈r cosφ cos θ, r cosφ sin θ,−r sinφ〉)

=
√

(−r2 sin2 φ cos θ)2 + (r2 sin2 φ sin θ)2 + (−r2 sinφ cosφ)2

= r2
√
sin4 φ+ sin2 φ cos2 φ

= r2 sinφ.

Thus, the desired area is given by

∫
S

Area

(
∂Φ

∂θ
,
∂Φ

∂φ

)
dθ dφ

=

π∫
0

2π∫
0

r2 sinφ dθ dφ

= 4πr2.

4.32. Compute the surface area of a sphere of radius r in R
3 using the pa-

rameterizations
Φ(ρ, θ) = (ρ cos θ, ρ sin θ,±

√
r2 − ρ2)

for the top and bottom halves, where 0 ≤ ρ ≤ r and 0 ≤ θ ≤ 2π.

Let’s now go back to Equation 4.5. Classically, this is called a surface
integral. It might be a little clearer how to compute such an integral if we
write it as follows:

∫
R

f(x, y, z) dS =

∫
R

f(x, y, z)
√
(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.
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4.8.2 Arc length

Lengths are very similar to areas. In calculus you learn that if you have a curve
C in the plane, for example, parameterized by the function φ(t) = (x(t), y(t)),
where a ≤ t ≤ b, then its arc length is given by

Length(C) =

b∫
a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

We can write this without making reference to the parameterization by
employing a nonlinear 1-form:

Length(C) =

∫
C

√
dx2 + dy2.

Finally, we can define what is classically called a line integral as follows:∮
C

f(x, y) ds =

∫
C

f(x, y)
√
dx2 + dy2.
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Differentiation of Differential Forms

5.1 The derivative of a differential 1-form

The goal of this section is to figure out what we mean by the derivative of a
differential form. One way to think about a derivative is as a function which
measures the variation of some other function. Suppose ω is a 1-form on R

2.
What do we mean by the “variation” of ω? One thing we can try is to plug
in a vector field V . The result is a function from R

2 to R. We can then think
about how this function varies near a point p of R2. However, p can vary in
a lot of ways, so we need to pick one. In Section 2.2, we learned how to take
another vector, W , and use it to vary p. Hence, the derivative of ω, which we
will denote “dω,” is a function that acts on both V and W . In other words,
it must be a 2-form!

Let’s recall how to vary a function f(x, y) in the direction of a vector W
at a point p. This was precisely the definition of the directional derivative:

∇W f(p) = ∇f(p) ·W,

where ∇f(p) is the gradient of f at p:

∇f(p) =

〈
∂f

∂x
(p),

∂f

∂y
(p)

〉
.

Going back to the 1-form ω and the vector field V , we take the directional
derivative of the function ω(V ). Let’s do this now for a specific example.
Suppose ω = y dx − x2dy, V = 〈1, 2〉, W = 〈2, 3〉 and p = (1, 1). Then ω(V )
is the function y − 2x2. Now we compute:

∇Wω(V ) = ∇ω(V ) ·W = 〈−4x, 1〉 · 〈2, 3〉 = −8x+ 3.

At the point p = (1, 1) this is the number −5.
What about the variation of ω(W ), in the direction of V , at the point p?

The function ω(W ) is 2y − 3x2. We now compute
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∇V ω(W ) = ∇ω(W ) · V = 〈−6x, 2〉 · 〈1, 2〉 = −6x+ 4.

At the point p = (1, 1), this is the number −2.
This is a small problem. We want dω, the derivative of ω, to be a 2-form.

Hence, dω(V,W ) should equal −dω(W,V ). How can we use the variations
above to define dω so this is true? Simple. We just define it to be the difference
in these variations:

dω(V,W ) = ∇V ω(W )−∇Wω(V ). (5.1)

Hence, in the above example, dω(〈1, 2〉, 〈2, 3〉), at the point p = (1, 1), is
the number −2− (−5) = 3.

5.1. Suppose ω = xy2 dx + x3z dy − (y + z9) dz, V = 〈1, 2, 3〉 and W =
〈−1, 0, 1〉.
1. Compute ∇V ω(W ) and ∇Wω(V ), at the point (2, 3,−1).
2. Use your answer to the previous question to compute dω(V,W ) at the

point (2, 3,−1).
There are other ways to determine what dω is rather than using Equation

5.1. Recall that a 2-form acts on a pair of vectors by projecting them onto
each coordinate plane, calculating the area they span, multiplying by some
constant, and adding. So the 2-form is completely determined by the con-
stants that you multiply by after projecting. In order to figure out what these
constants are, we are free to examine the action of the 2-form on any pair of
vectors. For example, suppose we have two vectors that lie in the xy-plane
and span a parallelogram with area 1. If we run these through some 2-form
and end up with the number 5, then we know that the multiplicative constant
for that 2-form, associated with the xy-plane is 5. This, in turn, tells us that
the 2-form equals 5 dx ∧ dy + ν. To figure out what ν is, we can examine the
action of the 2-form on other pairs of vectors.

Let’s try this with a general differential 2-form on R
3. Such a form always

looks like dω = a(x, y, z)dx∧dy+b(x, y, z)dy∧dz+c(x, y, z)dx∧dz. To figure
out what a(x, y, z) is, for example, all we need to do is determine what dω
does to the vectors 〈1, 0, 0〉(x,y,z) and 〈0, 1, 0〉(x,y,z). Let’s compute this using
Equation 5.1, assuming ω = f(x, y, z)dx+ g(x, y, z)dy + h(x, y, z)dz:

dω(〈1, 0, 0〉, 〈0, 1, 0〉) = ∇〈1,0,0〉ω(〈0, 1, 0〉)−∇〈0,1,0〉ω(〈1, 0, 0〉)

=

〈
∂g

∂x
,
∂g

∂y
,
∂g

∂z

〉
· 〈1, 0, 0〉 −

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
· 〈0, 1, 0〉

=
∂g

∂x
− ∂f

∂y
.

Similarly, direct computation shows
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dω(〈0, 1, 0〉, 〈0, 0, 1〉) = ∂h

∂y
− ∂g

∂z

and

dω(〈1, 0, 0〉, 〈0, 0, 1〉) = ∂h

∂x
− ∂f

∂z
.

Hence, we conclude that

dω =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy +

(
∂h

∂y
− ∂g

∂z

)
dy ∧ dz +

(
∂h

∂x
− ∂f

∂z

)
dx ∧ dz.

5.2. Suppose ω = f(x, y)dx + g(x, y)dy is a 1-form on R
2. Show that dω =

( ∂g∂x − ∂f
∂y )dx ∧ dy.

5.3. If ω = y dx−x2 dy, find dω. Verify that dω(〈1, 2〉, 〈2, 3〉) = 3 at the point
(1, 1).

Technical Note: Equation 5.1 defines the value of dω as long as the vector
fields V and W are constant. If nonconstant vector fields are used, then the
answer provided by Equation 5.1 will involve partial derivatives of the com-
ponents of V and W and, hence, will not be a differential form. Despite this,
Equation 5.1 does lead to the correct formulas for dω, as in Exercise 5.2 above.
Once such formulas are obtained, then any vector fields can be plugged in.

5.2 Derivatives of n-forms

Before jumping to the general case, let’s look at the derivative of a 2-form.
A 2-form, ω, acts on a pair of vector fields, V and W , to return a function.
To find some a variation of ω, we can examine how this function varies in the
direction of a third vector, U , at some point p. Hence, whatever dω turns out
to be, it will be a function of the vectors U , V and W at each point p. So, we
would like to define it to be a 3-form.

Let’s start by looking at the variation of ω(V,W ) in the direction of U . We
write this as ∇Uω(V,W ). If we were to define this as the value of dω(U, V,W ),
we would find that, in general, it would not be alternating; that is, usually
∇Uω(V,W ) = −∇V ω(U,W ). To remedy this, we simply define dω to be the
alternating sum of all the variations:

dω(U, V,W ) = ∇Uω(V,W )−∇V ω(U,W ) +∇Wω(U, V ).

We leave it to the reader to check that dω is alternating and multilinear
(assuming U , V and W are constant vector fields).

It should not be hard for the reader to now jump to the general case.
Suppose ω is an n-form and V 1, ..., V n+1 are n + 1 vector fields. Then we
define
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dω(V 1, ..., V n+1) =

n+1∑
i=1

(−1)i+1∇V i ω(V 1, ..., V i−1, V i+1, ..., V n+1).

In other words, dω, applied to n + 1 vectors, is the alternating sum of the
variations of ω applied to n of those vectors in the direction of the remaining
one. Note that we can think of d as an operator which takes n-forms to (n+1)-
forms.

5.4. Show that dω is alternating.

5.5. Show that d(ω + ν) = dω + dν and d(cω) = c dω, for any constant c.

5.6. Suppose ω = f(x, y, z) dx ∧ dy + g(x, y, z) dy ∧ dz + h(x, y, z) dx ∧ dz.
Find dω. (Hint: Compute dω(〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉).) Compute d(x2y dx∧
dy + y2z dy ∧ dz).

5.3 Interlude: 0-Forms

Let’s go back to Section 3.1, where we introduced coordinates for vectors. At
that time, we noted that if C was the graph of the function y = f(x) and p
was a point of C, then the tangent line to C at p lies in TpR

2 and has the
equation dy = m dx for some constant m. Of course, if p = (x0, y0), then m
is just the derivative of f evaluated at x0.

Now, suppose we had looked at the graph of a function of 2-variables,
z = f(x, y), instead. At some point p = (x0, y0, z0) on the graph, we could look
at the tangent plane, which lies in TpR

3. Its equation is dz = m1dx +m2dy.

Since z = f(x, y), m1 = ∂f
∂x (x0, y0) and m2 = ∂f

∂y (x0, y0), we can rewrite this
as

df =
∂f

∂x
dx+

∂f

∂y
dy.

Notice that the right-hand side of this equation is a differential 1-form. This
is a bit strange; we applied the d operator to something and the result was a
1-form. However, we know that when we apply the d operator to a differential
n-form, we get a differential (n + 1)-form. So, it must be that f(x, y) is a
differential 0-form on R

2!
In retrospect, this should not be so surprising. After all, the input to a

differential n-form on R
m is a point and n vectors based at that point. So,

the input to a differential 0-form should be a point of Rm and no vectors. In
other words, a 0-form on R

m is just another word for a real-valued function
on R

m.
Let’s extend some of the things we can do with forms to 0-forms. Suppose

f is a 0-form and ω is an n-form (where n may also be zero). What do we
mean by f ∧ ω? Since the wedge product of an n-form and an m-form is an
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(n +m)-form, it must be that f ∧ ω is an n-form. It is hard to think of any
other way to define this as just the product fω.

What about integration? Remember that we integrate n-forms over subsets
of Rm that can be parameterized by a subset of Rn. So, 0-forms get integrated
over things parameterized by R

0. In other words, we integrate a 0-form over
a point. How do we do this? We do the simplest possible thing; define the
value of a 0-form, f , integrated over the point p to be ±f(p). To specify an
orientation, we just need to say whether or not to use the − sign. We do this
just by writing “−p” instead of “p” when we want the integral of f over p to
be −f(p).

One word of caution here: Beware of orientations! If p ∈ R
n, then we use

the notation “−p” to denote p with the negative orientation. So if p = −3 ∈
R

1, then −p is not the same as the point, 3. −p is just the point −3 with a
negative orientation. So, if f(x) = x2, then

∫
−p

f = −f(p) = −9.

5.7. If f is the 0-form x2y3, p is the point (−1, 1), q is the point (1,−1), and
r is the point (−1,−1), then compute the integral of f over the points −p,
−q and −r, with the indicated orientations.

Let’s go back to our exploration of derivatives of n-forms. Suppose f(x, y) dx
is a 1-form on R

2. Then we have already shown that d(f dx) = ∂f
∂y dy ∧ dx.

We now compute:

df ∧ dx =

(
∂f

∂x
dx+

∂f

∂y
dy

)
∧ dx

=
∂f

∂x
dx ∧ dx +

∂f

∂y
dy ∧ dx

=
∂f

∂y
dy ∧ dx

= d(f dx).

5.8. If f is a 0-form, show that d(f dx1 ∧ dx2 ∧ · · · ∧ dxn) = df ∧ dx1 ∧ dx2 ∧
· · · ∧ dxn.

5.9. Prove d(dω) = 0.

5.10. If ω is an n-form and μ is an m-form, then show that d(ω ∧ μ) =
dω ∧ μ+ (−1)nω ∧ dμ.

5.4 Algebraic computation of derivatives

As in Section 3.7, we break with the spirit of the text to list the identities we
have acquired and work a few examples.
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Let ω be an n-form, μ an m-form, and f a 0-form. Then we have the
following identities:

d(dω) = 0,

d(ω + μ) = dω + dμ,

d(ω ∧ μ) = dω ∧ μ+ (−1)nω ∧ dμ,

d(f dx1 ∧ dx2 ∧ · · · ∧ dxn) = df ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn,

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn.

Example 31.
d
(
xy dx− xy dy + xy2z3 dz

)
= d(xy) ∧ dx− d(xy) ∧ dy + d(xy2z3) ∧ dz

= (y dx+ x dy) ∧ dx− (y dx+ x dy) ∧ dy

+(y2z3 dx+ 2xyz3 dy + 3xy2z2 dz) ∧ dz

=�����y dx ∧ dx+ x dy ∧ dx− y dx ∧ dy −�����x dy ∧ dy

+y2z3 dx ∧ dz + 2xyz3 dy ∧ dz +�������
3xy2z2 dz ∧ dz

= x dy ∧ dx− y dx ∧ dy + y2z3 dx ∧ dz + 2xyz3 dy ∧ dz

= −x dx ∧ dy − y dx ∧ dy + y2z3 dx ∧ dz + 2xyz3 dy ∧ dz

= (−x− y) dx ∧ dy + y2z3 dx ∧ dz + 2xyz3 dy ∧ dz.

Example 32.
d
(
x2(y + z2) dx ∧ dy + z(x3 + y) dy ∧ dz

)
= d(x2(y + z2)) ∧ dx ∧ dy + d(z(x3 + y)) ∧ dy ∧ dz

= 2x2z dz ∧ dx ∧ dy + 3x2z dx ∧ dy ∧ dz

= 5x2z dx ∧ dy ∧ dz.

5.11. If f is the 0-form x2y3 and ω is the 1-form x2z dx + y3z2 dy (on R
3),

then use the identity d(f dω) = df ∧ dω to compute d(f dω).

5.12. For each differential n-form ω, find dω.

1. x2 sin(y − z).
2. sin y dx+ cosx dy.
3. xy dx+ xz dy + xyz dz.
4. xy2 dx+ x3z dy − (y + z9) dz.
5. xz2 dx ∧ dy + xz2 dy ∧ dz.
6. (x2 + y2)dy ∧ dz + (x2 − y2)dx ∧ dz.
7. xy2 dy ∧ dz + x3z dx ∧ dz − (y + z9) dx ∧ dy.
8. x2y3z4 dx ∧ dy ∧ dz.

5.13. Let f, g and h be functions from R
3 to R. If

ω = f dy ∧ dz − g dx ∧ dz + h dx ∧ dy,

then compute dω.
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5.5 Antiderivatives

Just as in single-variable calculus, it will be helpful to have some proficiency
in recognizing antiderivatives. Nothing substitutes for practice.

5.14. Find forms whose derivatives are

1. dx ∧ dy
2. dx ∧ dy ∧ dz
3. yz dx+ xz dy + xy dz
4. y2z2 dx+ 2xyz2 dy + 2xy2z dz
5. (y2 − 2xy) cos(xy2) dx ∧ dy.

5.15. Find two 1-forms whose derivatives are

y

x
dx ∧ dy.

One should be of the form “ dx” and the other “ dy.”

5.16. Show that ω = xy2 dx is not the derivative of any 0-form. (Hint: Con-
sider dω.)

5.6 Application: Foliations and contact structures

Everyone has seen tree rings and layers in sedimentary rock. These are exam-
ples of foliations. Intuitively, a foliation is when some region of space has been
“filled up” with lower-dimensional surfaces. A full treatment of foliations is a
topic for a much larger textbook than this one. Here we will only be discussing
foliations of R3.

Let U be an open subset of R3. We say U has been foliated if there is
a family φt : Rt → U of parameterizations (where for each t, the domain
Rt ⊂ R

2) such that every point of U is in the image of exactly one such
parameterization. In other words, the images of the parameterizations φt are
surfaces that fill up U , and no two overlap.

Suppose p is a point of U and U has been foliated as above. Then there
is a unique value of t such that p is a point in φt(Rt). The partial derivatives
∂φt

∂x (p) and ∂φt

∂y (p) are then two vectors that span a plane in TpR
3. Let’s call

this plane Πp. In other words, if U is foliated, then at every point p of U , we
get a plane Πp in TpR

3.
The family {Πp} is an example of a plane field. In general, a plane field

is just a choice of a plane in each tangent space which varies smoothly from
point to point in R

3. We say a plane field is integrable if it consists of the
tangent planes to a foliation.

This should remind you a little of first-term calculus. If f : R1 → R
1 is

a differentiable function, then at every point p on its graph, we get a line in
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TpR
2 (see Figure 3.2). If we only know the lines and want the original function,

then we integrate.
There is a theorem that states that every line field on R

2 is integrable.
The question we would like to answer in this section is whether or not this is
true of plane fields on R

3. The first step is to figure out how to specify a plane
field in some reasonably nice way. This is where differential forms come in.
Suppose {Πp} is a plane field. At each point p, we can define a line in TpR

3

(i.e., a line field) by looking at the set of all vectors that are perpendicular
to Πp. We can then define a 1-form ω by projecting vectors onto these lines.
So, if Vp is a vector in Πp, then ω(Vp) = 0. Another way to say this is that
the plane Πp is the set of all vectors which yield zero when plugged into ω. In
shorthand, we write this set as Ker ω (“Ker” comes from the word “Kernel,”
a term from linear algebra). So all we are saying is that ω is a 1-form such
that Πp = Ker ω. This is very convenient. To specify a plane field, all we have
to do now is write down a 1-form!

Example 33. Suppose ω = dx. Then at each point p of R3, the vectors of TpR
3

that yield zero when plugged into ω are all those in the dydz-plane. Hence,
Ker ω is the plane field consisting of all of the dydz-planes (one for every point
of R3). It is obvious that this plane field is integrable; at each point p we just
have the tangent plane to the plane parallel to the yz-plane through p.

In the above example, note that any 1-form that looks like f(x, y, z)dx
defines the same plane field, as long as f is nonzero everywhere. So, knowing
something about a plane field (like the assumption that it is integrable) seems
like it might not say much about the 1-form ω, since so many different 1-forms
give the same plane field. Let’s investigate this further.

First, let’s see if there is anything special about the derivative of a 1-form
that looks like ω = f(x, y, z)dx. This is easy: dω = ∂f

∂y dy∧dx+ ∂f
∂z dz∧dx. This

is nothing special so far. What about combining this with ω? Let’s compute:

ω ∧ dω = f(x, y, z)dx ∧
(
∂f

∂y
dy ∧ dx+

∂f

∂z
dz ∧ dx

)
= 0.

Now that is special! In fact, recall our earlier emphasis on the fact that forms
are coordinate-free. In other words, any computation one can perform with
forms will give the same answer regardless of what coordinates are chosen.
The wonderful thing about foliations is that near every point, you can always
choose coordinates so that your foliation looks like planes parallel to the yz-
plane. In other words, the above computation is not as special as you might
think.

Theorem 2. If Ker ω is an integrable plane field, then ω ∧ dω = 0 at every
point of R3.

It should be noted that we have only chosen to work in R
3 for ease of

visualization. There are higher-dimensional definitions of foliations and plane
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fields. In general, if the kernel of a 1-form ω defines an integrable plane field,
then ω∧dωn = 0. chain Our search for a plane field that is not integrable (i.e.,
not the tangent planes to a foliation) has now been reduced to the search for
a 1-form ω for which ω ∧ dω = 0 somewhere. There are many such forms. An
easy one is x dy + dz. We compute:

(x dy + dz) ∧ d(x dy + dz) = (x dy + dz) ∧ (dx ∧ dy) = dz ∧ dx ∧ dy.

Our answer is quite special. All we needed was a 1-form such that

ω ∧ dω = 0

somewhere. What we found was a 1-form for which ω ∧ dω = 0 everywhere.
This means that there is not a single point of R3 which has a neighborhood
in which the planes given by Ker x dy + dz are tangent to a foliation. Such a
plane field is called a contact structure.

At this point you are probably wondering, “What could Ker x dy + dz
possibly look like?!” It is not so easy to visualize this, but we have tried to
give you some indication in Figure 5.1.1 A good exercise is to stare at this
picture long enough to convince yourself that the planes pictured cannot be
the tangent planes to a foliation.

5.7 How not to visualize a differential 1-form

There are several contemporary physics texts (most notably [MTW73]) that
attempt to give a visual interpretation of differential forms that seems quite
different from the one presented here. As this alternate interpretation is much
simpler than anything described here, one may wonder why we have not taken
this approach.

Let’s look again at the 1-form dx on R
3. Given a vector Vp at a point p,

the value of dx(Vp) is just the projection of Vp onto the dx-axis in TpR
3. Now,

let C be some parameterized curve in R
3 for which the x-coordinate is always

increasing. Then
∫
C

dx is just the length of the projection of C onto the x-axis.

To the nearest integer, this is just the number of planes that C punctures of
the form x = n, where n is an integer. So one way to visualize the form dx is
to picture these planes.

This view is very appealing. After all, every 1-form ω, at every point p,
projects vectors onto some line lp. So can we integrate ω along a curve C (at
least to the nearest integer) by counting the number of surfaces punctured
by C whose tangent planes are perpendicular to the lines lp (see Figure 5.2)?

1 Figure drawn by Stephan Schoenenberger. Taken from Introductory Lectures on
Contact Geometry by John B. Etnyre.
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x

y

z

Fig. 5.1. The plane field Ker x dy + dz.

If you have read the previous section, you might guess that the answer is a
categorical NO!

Recall that the planes perpendicular to the lines lp are precisely Ker ω.
To say that there are surfaces whose tangent planes are perpendicular to the
lines lp is the same thing as saying that Ker ω is an integrable plane field.
However, we have seen in the previous section that there are 1-forms as simple
as x dy + dz whose kernels are nowhere integrable.

Can we at least use this interpretation for a 1-form whose kernel is in-
tegrable? Unfortunately, the answer is still no. Let ω be the 1-form on the
solid torus whose kernel consists of the planes tangent to the foliation pic-
tured in Figure 5.3 (This is called the Reeb Foliation of the solid torus.) The
surfaces of this foliation spiral continually outward. So if we try to pick some
number of “sample” surfaces, then they will “bunch up” near the boundary
torus. This seems to indicate that if we want to integrate ω over any path
that cuts through the solid torus, then we should get an infinite answer, since
such a path would intersect our “sample” surfaces an infinite number of times.
However, we can certainly find a 1-form ω for which this is not the case.
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x

y

z

lp

C

p

Fig. 5.2. “Surfaces” of ω?

We do not want to end this section on such a down note. Although it is not
valid in general to visualize a 1-form as a sample collection of surfaces from a
foliation, we can visualize it as a plane field. For example, Figure 5.1 is a pretty
good depiction of the 1-form x dy+ dz. In this picture, there are a few evenly
spaced elements of its kernel, but this is enough. To get a rough idea of the
value of

∫
C

x dy+dz, we can just count the number of (transverse) intersections

of the planes pictured with C. So, for example, if C is a curve whose tangents
are always contained in one of these planes (a so-called Legendrian curve),
then

∫
C

x dy+ dz will be zero. Inspection of the picture reveals that examples

of such curves are the lines parallel to the x-axis.

5.17. Show that if C is a line parallel to the x-axis, then
∫
C

x dy + dz = 0.
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Fig. 5.3. The Reeb Foliation of the solid torus.
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Stokes’ Theorem

6.1 Cells and chains

Up until now, we have not been very specific as to the types of subsets of Rm

on which one integrates a differential n-form. All we have needed is a subset
that can be parameterized by a region in R

n. To go further, we need to specify
the types of regions.

Definition 1. Let I = [0, 1]. An n-cell, σ, is the image of a differentiable
map, φ : In → R

m, with a specified orientation. We denote the same cell with
opposite orientation as −σ. We define a 0-cell to be an oriented point of Rm.

Example 34. Suppose g1(x) and g2(x) are functions such that g1(x) < g2(x)
for all x ∈ [a, b]. Let R denote the subset of R2 bounded by the graphs of
the equations y = g1(x) and y = g2(x) and by the lines x = a and x = b. In
Example 12, we showed that R is a 2-cell (assuming the induced orientation).

We would like to treat cells as algebraic objects which can be added and
subtracted. However, if σ is a cell, it may not at all be clear what “2σ”
represents. One way to think about it is as two copies of σ, placed right on
top of each other.

Definition 2. An n-chain is a formal linear combination of n-cells.

As one would expect, we assume the following relations hold:

σ − σ = ∅,
nσ +mσ = (n+m)σ,

σ + τ = τ + σ.

You may be able to guess what the integral of an n-form, ω, over an n-chain
is. Suppose C =

∑
niσi. Then we define

DOI 10.1007/978-0-8176-830 - _6, © Springer Science+Business Media, LLC 2012
, D. Bachman
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∫
C

ω =
∑
i

ni

∫
σi

ω.

6.1. If f is the 0-form x2y3, p is the point (−1, 1), q is the point (1,−1), and
r is the point (−1,−1), then compute the integral of f over the following
0-chains:

1. p− q; r − p.
2. p+ q − r.

Another concept that will be useful for us is the boundary of an n-chain. As
a warm-up, we define the boundary of a 1-cell. Suppose σ is the 1-cell which
is the image of φ : [0, 1]→ R

m with the induced orientation. Then we define
the boundary of σ (which we will denote ∂σ) as the 0-chain, φ(1)− φ(0). We
can represent this pictorially as in Figure 6.1.

σ

∂σ

+

−
Fig. 6.1. Orienting the boundary of a 1-cell.

σ

∂σ

Fig. 6.2. The boundary of a 2-cell.

Figure 6.2 depicts a 2-cell and its boundary. Notice that the boundary
consists of four individually oriented 1-cells. This hints at the general formula.
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In general, if the n-cell σ is the image of the parameterization φ : In → R
m

with the induced orientation, then

∂σ =

n∑
i=1

(−1)i+1
(
φ|(x1,...,xi−1,1,xi+1,...,xn) − φ|(x1,...,xi−1,0,xi+1,...,xn)

)
.

So, if σ is a 2-cell, then

∂σ = (φ(1, x2)− φ(0, x2))− (φ(x1, 1)− φ(x1, 0))

= φ(1, x2)− φ(0, x2)− φ(x1, 1) + φ(x1, 0).

The four terms on the right side of this equality are the four 1-cells depicted
in Figure 6.2. The signs in front of these terms guarantee that the orientations
are as pictured.

If σ is a 3-cell, then

∂σ = (φ(1, x2, x3)− φ(0, x2, x3))− (φ(x1, 1, x3)− φ(x1, 0, x3))

+ (φ(x1, x2, 1)− φ(x1, x2, 0))

= φ(1, x2, x3)− φ(0, x2, x3)− φ(x1, 1, x3) + φ(x1, 0, x3)

+ φ(x1, x2, 1)− φ(x1, x2, 0).

An example will hopefully clear up the confusion this was sure to generate:

x

y

r

θ

Fig. 6.3. Orienting the boundary of a 2-cell.

Example 35. Suppose φ(r, θ) = (r cosπθ, r sinπθ). The image of φ is the 2-cell
σ depicted in Figure 6.3. By the above definition,

∂σ = (φ(1, θ) − φ(0, θ))− (φ(r, 1) − φ(r, 0))

= (cos πθ, sinπθ)− (0, 0) + (r, 0)− (−r, 0).
This is the 1-chain depicted in Figure 6.3.

Finally, we are ready to define what we mean by the boundary of an n-
chain. If C =

∑
niσi, then we define ∂C =

∑
ni∂σi.
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Example 36. Suppose

φ1(r, θ) = (r cos 2πθ, r sin 2πθ,
√
1− r2),

φ2(r, θ) = (−r cos 2πθ, r sin 2πθ,−
√
1− r2),

σ1 = Im(φ1), and σ2 = Im(φ2). Then σ1+σ2 is a sphere in R
3. One can check

that ∂(σ1 + σ2) = ∅.
6.2. If σ is an n-cell, show that ∂∂σ = ∅. (At least show this if σ is a 2-cell
and a 3-cell. The 2-cell case can be deduced pictorially from Figures 6.1 and
6.2.)

6.3. If σ is given by the parameterization

φ(r, θ) = (r cos θ, r sin θ)

for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π
4 , then what is ∂σ?

6.4. If σ is given by the parameterization

φ(r, θ) = (r cos θ, r sin θ, r)

for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π, then what is ∂σ?

6.2 The generalized Stokes’ Theorem

In calculus, we learn that when you take a function, differentiate it, and then
integrate the result, something special happens. In this section, we explore
what happens when we take a form, differentiate it, and then integrate the
resulting form over some chain. The general argument is quite complicated, so
we start by looking at forms of a particular type integrated over very special
regions.

Suppose ω = a dx2∧dx3 is a 2-form on R
3, where a : R3 → R. Let R be the

unit cube I3 ⊂ R
3. We would like to explore what happens when we integrate

dω over R. Note first that Problem 5.8 implies that dω = ∂a
∂x1

dx1 ∧ dx2 ∧ dx3.

Recall the steps used to define
∫
R

dω:

1. Choose a lattice of points in R, {pi,j,k}. Since R is a cube, we can choose
this lattice to be rectangular.

2. Define V 1
i,j,k = pi+1,j,k − pi,j,k. Similarly, define V 2

i,j,k and V 3
i,j,k.

3. Compute dωpi,j,k
(V 1

i,j,k, V
2
i,j,k, V

2
i,j,k).

4. Sum over all i, j and k.
5. Take the limit as the maximal distance between adjacent lattice points

goes to zero.
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Let’s focus on Step 3 for a moment. Let t be the distance between pi+1,j,k

and pi,j,k, and assume t is small. Then ∂a
∂x1

(pi,j,k) is approximately equal to
a(pi+1,j,k)−a(pi,j,k)

t . This approximation gets better and better when we let
t→ 0 in Step 5.

The vectors V 1
i,j,k through V 3

i,j,k form a little cube. If we say the vector

V 1
i,j,k is “vertical”, and the other two are horizontal, then the “height” of this

cube is t and the area of its base is dx2 ∧ dx3(V
2
i,j,k, V

3
i,j,k), which makes its

volume t dx2 ∧ dx3(V
2
i,j,k, V

3
i,j,k). Putting all this together, we find that

dωpi,j,k
(V 1

i,j,k, V
2
i,j,k, V

2
i,j,k) =

∂a

∂x1
dx1 ∧ dx2 ∧ dx3(V

1
i,j,k, V

2
i,j,k, V

2
i,j,k)

≈ a(pi+1,j,k)− a(pi,j,k)

t
t dx2 ∧ dx3(V

2
i,j,k, V

3
i,j,k)

= ω(V 2
i+1,j,k, V

3
i+1,j,k)− ω(V 2

i,j,k, V
3
i,j,k).

Let’s move on to Step 4. Here we sum over all i, j and k. Suppose for
the moment that i ranges between 1 and N . First, we fix j and k and sum
over all i. The result is ω(V 2

N,j,k, V
3
N,j,k) − ω(V 2

1,j,k, V
3
1,j,k). Now notice that∑

j,k

ω(V 2
N,j,k, V

3
N,j,k) is a Riemann Sum for the integral of ω over the “top” of

R and
∑
j,k

ω(V 2
1,j,k, V

3
1,j,k) is a Riemann Sum for ω over the “bottom” of R.

Finally, note that ω, evaluated on any pair of vectors which lie in the sides of
the cube, gives zero. Hence, the integral of ω over a side of R is zero. Putting
all this together, we conclude ∫

R

dω =

∫
∂R

ω. (6.1)

6.5. Prove that Equation 6.1 holds if ω = b dx1 ∧ dx3 or if ω = c dx1 ∧ dx2.
Caution: Beware of signs and orientations.

6.6. Use the previous problem to conclude that if ω = a dx2 ∧ dx3 + b dx1 ∧
dx3 + c dx1 ∧ dx2 is an arbitrary 2-form on R

3, then Equation 6.1 holds.

6.7. If ω is an arbitrary (n − 1)-form on R
n and R is the unit cube in R

n,
then show that Equation 6.1 still holds.

In general, if C =
∑

niσi is an n-chain, then

∫
∂C

ω =
∫
C

dω.

This equation is called the generalized Stokes’ Theorem. It is unquestion-
ably the most crucial result of this text. In fact, everything we have done up
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to this point has been geared toward developing this equation and everything
that follows will be applications of this equation. Technically, we have only
established this theorem when integrating over cubes and their boundaries.
We postpone the general proof to Section 7.1.

Example 37. Let ω = x dy be a 1-form on R
2. Let σ be the 2-cell which is the

image of the parameterization φ(r, θ) = (r cos θ, r sin θ), where 0 ≤ r ≤ R and
0 ≤ θ ≤ 2π. By the generalized Stokes’ Theorem,∫

∂σ

ω =

∫
σ

dω =

∫
σ

dx ∧ dy =

∫
σ

dx dy = Area(σ) = πR2.

6.8. Verify directly that
∫
∂σ

ω = πR2.

Example 38. Let ω = x dy + y dx be a 1-form on R
2 and let σ be any 2-cell.

Then
∫
∂σ

ω =
∫
σ

dω = 0.

6.9. Pick any 1-chain in R
2, which bounds a 2-cell, and integrate the form

x dy + y dx over this curve.

6.10. Let ω be a differential (n− 1)-form and σ a (n+1)-cell. Use the gener-
alized Stokes’ Theorem in two different ways to show

∫
∂σ

dω = 0.

Example 39. Let C be the curve in R
2 parameterized by φ(t) = (t2, t3), where

−1 ≤ t ≤ 1. Let f be the 0-form x2y. We use the generalized Stokes’ Theorem
to calculate

∫
C

df .

The curve C goes from the point (1,-1), when t = −1, to the point (1,1),
when t = 1. Hence, ∂C is the 0-chain (1, 1) − (1,−1). Now we use Stokes’
Theorem: ∫

C

df =

∫
∂C

f =

∫
(1,1)−(1,−1)

x2y = 1− (−1) = 2.

6.11. Calculate
∫
C

df directly.

6.12.

1. Let C be any curve in R
2 which goes from the point (1, 0) to the point

(2, 2). Calculate ∫
C

2xy3 dx+ 3x2y2 dy.
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2. Let C be any curve in R
3 from (0, 0, 0) to (1, 1, 1). Calculate∫

C

y2z2 dx+ 2xyz2 dy + 2xy2z dz.

6.13. Let ω be the 1-form on R
3 given by

ω = yz dx+ xz dy + xy dz.

Let C be the curve parameterized by

φ(t) =

(
4t

π
cos t,

4t

π
sin t,

4t

π

)
, 0 ≤ t ≤ π

4
,

with the induced orientation. Use the generalized Stokes’ Theorem to calculate∫
C

ω.

6.14. Let C be the curve pictured below. Calculate∫
C

sin y dx+ x cos y dy.

π
2

2 x

y

Example 40. Let ω = (x2 + y)dx+ (x− y2)dy be a 1-form on R
2. We wish to

integrate ω over σ, the top half of the unit circle, oriented clockwise. First,
note that dω = 0, so that if we integrate ω over the boundary of any 2-cell,
we would get zero. Let τ denote the line segment connecting (−1, 0) to (1, 0).
Then the 1-chain σ − τ bounds a 2-cell. So

∫
σ−τ

ω = 0, which implies that∫
σ

ω =
∫
τ

ω. This latter integral is a bit easier to compute. Let φ(t) = (t, 0) be

a parameterization of τ , where −1 ≤ t ≤ 1. Then

∫
σ

ω =

∫
τ

ω =

∫
[−1,1]

ω(t,0)(〈1, 0〉) dt =
1∫

−1

t2 dt =
2

3
.
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6.15. Let ω = −y2 dx+x2 dy. Let σ be the 2-cell in R
2 parameterized by the

following:
φ(u, v) = (2u− v, u+ v), 1 ≤ u ≤ 2, 0 ≤ v ≤ 1.

Calculate
∫
∂σ

ω.

6.16. Let ω = dx− ln x dy. Let σ be the 2-cell parameterized by the following:

φ(u, v) = (uv2, u3v), 1 ≤ u ≤ 2, 1 ≤ v ≤ 2.

Calculate:
∫
∂σ

ω.

6.17. Let σ be the 2-cell given by the following parameterization:

φ(r, θ) = (r cos θ, r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π.

Suppose ω = x2 dx+ ey dy.

1. Calculate
∫
σ

dω directly.

2. Let C1 be the horizontal segment connecting (−1, 0) to (0, 0) and let C2

be the horizontal segment connecting (0, 0) to (1, 0). Calculate
∫
C1

ω and∫
C2

ω directly.

3. Use your previous answers to determine the integral of ω over the top half
of the unit circle (oriented counterclockwise).

6.18. Let ω = (x+ y3) dx+ 3xy2 dy be a differential 1-form on R
2. Let Q be

the rectangle {(x, y)|0 ≤ x ≤ 3, 0 ≤ y ≤ 2}.
1. Compute dω.
2. Use the generalized Stokes’ Theorem to compute

∫
∂Q

ω.

3. Compute
∫
∂Q

ω directly, by integrating ω over each each edge of the bound-

ary of the rectangle and then adding in the appropriate manner.
4. How does

∫
R−T−L

ω compare to
∫
B

ω?

5. Let S be any curve in the upper half-plane (i.e., the set {(x, y)|y ≥ 0})
that goes from the point (3, 0) to the point (0, 0). What is

∫
S

ω? Why?

6. Let S be any curve that goes from the point (3, 0) to the point (0, 0).
What is

∫
S

ω? Why?

6.19. Calculate ∫
C

x3 dx+

(
1

3
x3 + xy2

)
dy,

where C is the circle of radius 2, centered about the origin.
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6.20. Suppose ω = x dx + x dy is a 1-form on R
2. Let C be the ellipse

x2

4 + y2

9 = 1. Determine the value of
∫
C

ω by integrating some 2-form over the

region bounded by the ellipse.

6.21. Let ω = −y2 dx+x2 dy. Let σ be the 2-cell in R
2 parameterized by the

following:
φ(r, θ) = (r cosh θ, r sinh θ),

where 0 ≤ r ≤ 1 and −1 ≤ θ ≤ 1. Calculate
∫
∂σ

ω.

(
Recall: cosh θ =

eθ + e−θ

2
, sinh θ =

eθ − e−θ

2
.

)

6.22. Suppose ω is a 1-form on R
2 such that dω = 0. Let C1 and C2 be the

1-cells given by the following parameterizations:

C1 : φ(t) = (t, 0), 2π ≤ t ≤ 6π

C2 : ψ(t) = (t cos t, t sin t), 2π ≤ t ≤ 6π.

Show that
∫
C1

ω =
∫
C2

ω. (Caution: Beware of orientations!)

6.23. Let S be the can-shaped surface in R
3 whose side is the cylinder of

radius 1 (centered on the z-axis), and whose top and bottom are in the planes
z = 1 and z = 0, respectively. Let

ω = z2 dx ∧ dy

Use the generalized Stokes’ Theorem to calculate
∫
S

ω (assume the standard

orientation on S).

6.24. Let V be the region between the cylinders of radii 1 and 2 (centered on
the z-axis), in the positive octant, and below the plane z = 2. Let ω be the
differential 2-form

ω = −y3 dx ∧ dz + x3 dy ∧ dz.

Calculate
∫
∂V

ω.

6.25. Let ω be the following 2-form on R
3:

ω = (x2 + y2)dy ∧ dz + (x2 − y2)dx ∧ dz.

Let V be the region of R3 bounded by the graph of y =
√
1− x2, the planes

z = 0 and z = 2, and the xz-plane (see Figure 6.4).

1. Parameterize V using cylindrical coordinates.
2. Determine dω.
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x

y

z

1

1

2

−1

Fig. 6.4. The region V of Problem 6.25.

3. Calculate
∫
V

dω.

4. The sides of V are parameterized as follows:
a) Bottom: φB(r, θ) = (r cos θ, r sin θ, 0), where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π.
b) Top: φT (r, θ) = (r cos θ, r sin θ, 2), where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π.
c) Flat side: φF (x, z) = (x, 0, z), where −1 ≤ x ≤ 1 and 0 ≤ z ≤ 2.
d) Curved side: φC(θ, z) = (cos θ, sin θ, z), where 0 ≤ θ ≤ π and 0 ≤ z ≤

2.
Calculate the integral of ω over the top, bottom and flat side. (Do not
calculate this integral over the curved side.)

5. If C is the curved side of ∂V , use your answers to the previous questions
to determine

∫
C

ω.

6.26. Calculate the volume of a ball of radius 1, {(ρ, θ, φ)|ρ ≤ 1}, by integrat-
ing some 2-form over the sphere of radius 1, {(ρ, θ, φ)|ρ = 1}.

6.3 Vector calculus and the many faces of the
generalized Stokes’ Theorem

Although the language and notation may be new, you have already seen the
generalized Stokes’ Theorem in many guises. For example, let f(x) be a 0-form
on R. Then df = f ′(x)dx. Let [a, b] be a 1-cell in R. Then the generalized
Stokes’ Theorem tells us

b∫
a

f ′(x) dx =

∫
[a,b]

f ′(x) dx =

∫
∂[a,b]

f(x) =

∫
b−a

f(x) = f(b)− f(a),
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which is, of course, the “Fundamental Theorem of Calculus.” If we let R be
some 2-chain in R

2, then the generalized Stokes’ Theorem implies

∫
∂R

P dx+Q dy =

∫
R

d(P dx+Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

This is what we call “Green’s Theorem” in calculus. To proceed further, we
restrict ourselves to R

3. In this dimension, there is a nice correspondence
between vector fields and both 1- and 2-forms:

F = 〈Fx, Fy, Fz〉 ↔ ω1
F = Fxdx+ Fydy + Fzdz

↔ ω2
F = Fxdy ∧ dz − Fydx ∧ dz + Fzdx ∧ dy.

On R
3 there is also a useful correspondence between 0-forms (functions) and

3-forms:
f(x, y, z)↔ ω3

f = f dx ∧ dy ∧ dz.

We can use these correspondences to define various operations involving
functions and vector fields. For example, suppose f : R3 → R is a 0-form.
Then df is the 1-form ∂f

∂xdx + ∂f
∂y dy + ∂f

∂z dz. The vector field associated to

this 1-form is then 〈∂f∂x , ∂f
∂y ,

∂f
∂z 〉. In calculus we call this vector field grad f ,

or ∇f . In other words, ∇f is the vector field associated with the 1-form, df .
This can be summarized by the equation

df = ω1
∇f .

It will be useful to think of this as a diagram as well:

f
grad−−−−→ ∇f∥∥∥ �⏐⏐

f −−−−→
d

df

Example 41. Suppose f = x2y3z. Then df = 2xy3z dx+3x2y2z dy+ x3y3 dz.
The associated vector field, grad f , is then ∇f = 〈2xy3z, 3x2y2z, x3y3〉.

Similarly, if we start with a vector field F, form the associated 1-form ω1
F,

differentiate it, and look at the corresponding vector field, then the result is
called curl F, or ∇×F. So, ∇×F is the vector field associated with the 2-form
dω1

F. This can be summarized by the equation

dω1
F = ω2

∇×F.

This can also be illustrated by the following diagram:
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F
curl−−−−→ ∇× F⏐⏐ �⏐⏐

ω1
F −−−−→

d
dω1

F

Example 42. Let F = 〈xy, yz, x2〉. The associated 1-form is then

ω1
F = xy dx + yz dy + x2 dz.

The derivative of this 1-form is the 2-form

dω1
F = −y dy ∧ dz + 2x dx ∧ dz − x dx ∧ dy.

The vector field associated to this 2-form is curl F, which is

∇× F = 〈−y,−2x,−x〉.

Finally, we can start with a vector field F = 〈Fx, Fy, Fz〉 and then look

at the 3-form dω2
F = (∂Fx

∂x +
∂Fy

∂y + ∂Fz

∂z )dx ∧ dy ∧ dz (see Problem 5.13). The

function ∂Fx

∂x +
∂Fy

∂y + ∂Fz

∂z is called div F, or ∇ ·F. This is summarized in the
following equation and diagram:

dω2
F = ω3

∇·F

F
div−−−−→ ∇ · F⏐⏐ �⏐⏐

ω2
F −−−−→

d
dω2

F

Example 43. Let F = 〈xy, yz, x2〉. The associated 2-form is then

ω2
F = xy dy ∧ dz − yz dx ∧ dz + x2 dx ∧ dy.

The derivative is the 3-form

dω2
F = (y + z) dx ∧ dy ∧ dz.

So div F is the function ∇ · F = y + z.

Two important vector identities follow from the fact that for a differential
form, ω, calculating d(dω) always yields zero (see Problem 5.9). For the first
identity, consider the following diagram:
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f
grad−−−−→ ∇f

curl−−−−→ ∇× (∇f)∥∥∥ �⏐⏐ �⏐⏐
f −−−−→

d
df −−−−→

d
ddf

This shows that if f is a 0-form, then the vector field corresponding to ddf
is ∇× (∇f). However, ddf = 0, so we conclude

∇× (∇f) = 0.

For the second identity, consider the diagram

F
curl−−−−→ ∇× F

div−−−−→ ∇ · (∇× F)⏐⏐ ⏐⏐ �⏐⏐
ω1
F −−−−→

d
dω1

F −−−−→
d

ddω1
F.

This shows that if ddω1
F is written as g dx ∧ dy ∧ dz, then the function g is

equal to ∇ · (∇× F). However, ddω1
F = 0, so we conclude

∇ · (∇× F) = 0.

In vector calculus we also learn how to integrate vector fields over param-
eterized curves (1-chains) and surfaces (2-chains). Suppose, first, that σ is
some parameterized curve. Then we can integrate the component of F which
points in the direction of the tangent vectors to σ. This integral is usually
denoted by

∫
σ

F · ds, and its definition is precisely the same as the definition

we learned here for
∫
σ

ω1
F. A special case of this integral arises when F = ∇f

for some function f . In this case, ω1
F is just df , so the definition of

∫
σ

∇f · ds
is the same as

∫
σ

df .

6.27. Let C be any curve in R
3 from (0, 0, 0) to (1, 1, 1). Let F be the vector

field 〈yz, xz, xy〉. Show that
∫
C

F · ds does not depend on C. (Hint: Use the

generalized Stokes’ Theorem.)

We also learn to integrate vector fields over parameterized surfaces. In this
case, the quantity we integrate is the component of the vector field which is
normal to the surface. This integral is often denoted by

∫
S

F ·dS. Its definition
is precisely the same as that of

∫
S

ω2
F (see Problems 3.23 and 3.24). A special

case of this is when F = ∇×G, for some vector field, G. Then ω2
G is just dω1

G,
so we see that

∫
S

(∇×G) · dS must be the same as
∫
S

dω1
G.
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The most basic thing to integrate over a 3-dimensional region (i.e., a 3-
chain) Ω in R

3 is a function f(x, y, x). In calculus we denote this integral by∫
Ω

f dV . Note that this is precisely the same as
∫
Ω

ω3
f . A special case is when

f = ∇ · F, for some vector field F. In this case,
∫
Ω

f dV =
∫
Ω

(∇ · F) dV .

However, we can write this integral with differential forms as
∫
Ω

dω2
F.

We summarize the equivalence between the integrals developed in vector
calculus and various integrals of differential forms in Table 6.1.

Table 6.1. The equivalence between the integrals of vector calculus and differential
forms.

Vector Calculus Differential Forms

∫

σ

F · ds ∫

σ

ω1
F

∫

σ

∇f · ds ∫

σ

df

∫

S

F · dS ∫

S

ω2
F

∫

S

(∇× F) · dS ∫

S

dω1
F

∫

Ω

f dV
∫

Ω

ω3
f

∫

Ω

(∇ · F)dV
∫

Ω

dω2
F

Let us now apply the generalized Stokes’ Theorem to various situations.
First, we start with a parameterization, φ : [a, b]→ σ ⊂ R

3, of a curve in R
3,

and a function, f : R3 → R. Then we have∫
σ

∇f · ds ≡
∫
σ

df =

∫
∂σ

f = f(φ(b))− f(φ(a)).

This shows the independence of path of line integrals of gradient fields. We
can use this to prove that a line integral of a gradient field over any simple
closed curve is zero, but for us there is an easier, direct proof, which again
uses the generalized Stokes’ Theorem. Suppose σ is a simple closed curve in
R

3 (i.e., ∂σ = ∅). Then σ = ∂D for some 2-chain D. We now have∫
σ

∇f · ds ≡
∫
σ

df =

∫
D

ddf = 0.

Now, suppose we have a vector field F and a parameterized surface S. Yet
another application of the generalized Stokes’ Theorem yields
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∫
∂S

F · ds ≡
∫
∂S

ω1
F =

∫
S

dω1
F ≡

∫
S

(∇× F) · dS.

In vector calculus we call this equality “Stokes’ Theorem.” In some sense,
∇× F measures the “twisting” of F at points of S. So Stokes’ Theorem says
that the net twisting of F over all of S is the same as the amount F circulates
around ∂S.

Example 44. Suppose we are faced with a problem phrased as “Use Stokes’
Theorem to calculate

∫
C

F · ds, where C is the curve of intersection of the

cylinder x2 + y2 = 1 and the plane z = x + 1, and F is the vector field〈−x2y, xy2, z3
〉
.”

We will solve this problem by translating to the language of differential
forms and using the generalized Stokes’ Theorem instead. To begin, note that∫
C

F · ds = ∫
C

ω1
F and ω1

F = −x2y dx+ xy2 dy + z3 dz.

Now, to use the generalized Stokes’ Theorem we will need to calculate

dω1
F = (x2 + y2) dx ∧ dy.

Let D denote the subset of the plane z = x+1 bounded by C. Then ∂D = C.
Hence, by the generalized Stokes’ Theorem we have∫

C

ω1
F =

∫
D

dω1
F =

∫
D

(x2 + y2) dx ∧ dy.

The region D is parameterized by Ψ(r, θ) = (r cos θ, r sin θ, r cos θ+ 1), where
0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Using this, one can (and should!) show that∫
D

(x2 + y2) dx ∧ dy = π
2 .

6.28. Let C be the square with sides (x,±1, 1), where −1 ≤ x ≤ 1 and
(±1, y, 1), where −1 ≤ y ≤ 1, with the indicated orientation (see Figure 6.5).
Let F be the vector field

〈
xy, x2, y2z

〉
. Compute

∫
C

F · ds.

6.29. Let F be the vector field 〈0,−z, 0〉.
1. Calculate ∇× F.
2. Find a 2-form α such that for any surface P ,∫

P

α =

∫
P

(∇× F) · dS.

3. Let P be the portion of a paraboloid parameterized by

φ(r, θ) = (r cos θ, r sin θ, r2), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
.

Use the previous problem to calculate
∫
∂P

F · ds
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x

y

z

C

Fig. 6.5.

Suppose now that Ω is some volume in R
3. Then we have∫

∂Ω

F · dS ≡
∫
∂Ω

ω2
F =

∫
Ω

dω2
F ≡

∫
Ω

(∇ ·F)dV.

This last equality is called “Gauss’ Divergence Theorem.”∇·F is a measure of
how much F “spreads out” at a point. So Gauss’ Theorem says that the total
spreading out of F inside Ω is the same as the net amount of F “escaping”
through ∂Ω.

6.30. Let Ω be the cube {(x, y, z)|0 ≤ x, y, z ≤ 1}. Let F be the vector field〈
xy2, y3, x2y2

〉
. Compute

∫
∂Ω

F · dS.

6.31. Let S be the portion of the graph of z = 4 − x2 − y2 that lies above
the plane z = 0. Let V be the region of R3 that lies between S and the plane
z = 0. Let W = 〈−y, x, z2〉.
1. Compute ∇ ·W.
2. Integrate ∇ ·W over V .
3. Use Gauss’ Divergence Theorem to compute a surface integral over ∂V of

something to get the same result as in Part 2.
4. Integrate W over ∂S.
5. Use Stokes’ Theorem to compute a surface integral over S of something

to get the same result as in Part 4.

6.4 Application: Maxwell’s Equations

As a brief application, we show how the language of differential forms can
greatly simplify the classical vector equations of Maxwell. Much of this mate-

1 

1 

1 

-1 

-1 
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rial is taken from [MTW73], where the interested student can find many more
applications of differential forms to physics.

Maxwell’s Equations describe the relationship between electric and mag-
netic fields. Classically, both electricity and magnetism are described as a
3-dimensional vector field which varies with time:

E = 〈Ex, Ey, Ez〉,
B = 〈Bx, By, Bz〉,

where Ex, Ez , Ez, Bx, By and Bz are all functions of x, y, z and t.
Maxwell’s Equations are then

∇ ·B = 0,

∂B

∂t
+∇×E = 0,

∇ · E = 4πρ,

∂E

∂t
−∇×B = −4πJ.

The quantity ρ is called the charge density and the vector J = 〈Jx, Jy, Jz〉 is
called the current density.

We can make all of this look much simpler by making the following def-
initions. First, we define a 2-form called the Faraday, which simultaneously
describes both the electric and magnetic fields:

F = Ex dx ∧ dt+ Ey dy ∧ dt+ Ez dz ∧ dt

+Bx dy ∧ dz + By dz ∧ dx+Bz dx ∧ dy.

Next, we define the “dual” 2-form, called the Maxwell:

∗F = Ex dy ∧ dz + Ey dz ∧ dx+ Ez dx ∧ dy

+Bx dt ∧ dx+By dt ∧ dy +Bz dt ∧ dz.

We also define the 4-current J and its “dual” ∗J:

J = 〈ρ, Jx, Jy, Jz〉,
∗J = ρ dx ∧ dy ∧ dz,

−Jx dt ∧ dy ∧ dz,

−Jy dt ∧ dz ∧ dx,

−Jz dt ∧ dx ∧ dy.

Maxwell’s four vector equations now reduce to

dF = 0,

d∗F = 4π∗J
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6.32. Show that the equation dF = 0 implies the first two of Maxwell’s Equa-
tions.

6.33. Show that the equation d∗F = 4π∗J implies the second two of Maxwell’s
Equations.

The differential form version of Maxwell’s Equation has a huge advantage
over the vector formulation: It is coordinate-free! A 2-form such as F is an
operator that “eats” pairs of vectors and “spits out” numbers. The way it acts
is completely geometric; that is, it can be defined without any reference to
the coordinate system (t, x, y, z). This is especially poignant when one realizes
that Maxwell’s Equations are laws of nature that should not depend on a man-
made construction such as coordinates.
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Manifolds

7.1 Pull-backs

Before moving on to defining forms in more general contexts, we need to
introduce one more concept. Let’s reexamine Equation 4.3:

∫
M

ω = ±
∫
R

ωφ(x1,...,xn)

(
∂φ

∂x1
(x1, ..., xn), ...,

∂φ

∂xn
(x1, ..., xn)

)
dx1 ∧ · · · ∧ dxn.

The form in the integrand on the right was defined so as to integrate to
give the same answer as the form on the left. This is what we would like to
generalize. Suppose φ : Rn → R

m is a parameterization and ω is a k-form on
R

m. We define the pull-back of ω under φ to be the form on R
n which gives

the same integral over any k-cell, σ, as ω does when integrated over φ(σ).
Following convention, we denote the pull-back of ω under φ as “φ∗ω.”

So how do we decide how φ∗ω acts on a k-tuple of vectors in TpR
n? The

trick is to use φ to translate the vectors to a k-tuple in Tφ(p)R
m and then plug

them into ω. The matrix Dφ, whose columns are the partial derivatives of φ,
is an n×m matrix. This matrix acts on vectors in TpR

n and returns vectors
in Tφ(p)R

m. So, we define (see Figure 7.1)

φ∗ω(V 1
p , ..., V

k
p ) = ω(Dφ(V 1

p ), ..., Dφ(V k
p )).

Example 45. Suppose ω = y dx+ z dy+ x dz is a 1-form on R
3 and φ(a, b) =

(a + b, a − b, ab) is a map from R
2 to R

3. Then φ∗ω will be a 1-form on R
2.

To determine which one, we can examine how it acts on the vectors 〈1, 0〉(a,b)
and 〈0, 1〉(a,b).

DOI 10.1007/978-0-8176-830 - _7, © Springer Science+Business Media, LLC 2012
, D. Bachman
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TpR
n

TpR
m

Dφ

ω

V 1
p

V 2
p

Dφ(V 1
p )

Dφ(V 2
p )

φ∗ω

ω(Dφ(V 1
p ), Dφ(V 2

p ))

Fig. 7.1. Defining φ∗ω.

φ∗ω(〈1, 0〉(a,b)) = ω(Dφ(〈1, 0〉(a,b)))

= ω

⎛
⎝
⎡
⎣ 1 1
1 −1
b a

⎤
⎦[1

0

]
(a,b)

⎞
⎠

= ω(〈1, 1, b〉(a+b,a−b,ab))

= (a− b) + ab+ (a+ b)b

= a− b+ 2ab+ b2.

Similarly,

φ∗ω(〈0, 1〉(a,b)) = ω(〈1,−1, a〉(a+b,a−b,ab))

= (a− b)− ab+ (a+ b)a

= a− b+ a2.

Hence,

φ∗ω = (a− b+ 2ab+ b2) da+ (a− b+ a2) db.

7.1. If ω = x2dy∧dz+y2dz∧dw is a 2-form on R
4 and φ(a, b, c) = (a, b, c, abc),

then what is φ∗ω?

7.2. If ω is an n-form on R
m and φ : Rn → R

m, then
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φ∗ω = ωφ(x1,...,xn)

(
∂φ

∂x1
(x1, ..., xn), ...,

∂φ

∂xn
(x1, ..., xn)

)
dx1 ∧ · · · ∧ dxn.

In light of the preceding exercise, Equation 4.3 can be rewritten as∫
M

ω =

∫
R

φ∗ω.

7.3. If σ is a k-cell in R
n, φ : Rn → R

m, and ω is a k-form on R
m, then∫

σ

φ∗ω =

∫
φ(σ)

ω.

7.4. If φ : Rn → R
m and ω is a k-form on R

m, then d(φ∗ω) = φ∗(dω).

These exercises prepare us for the proof of the generalized Stokes’ Theorem
(recall that in Chapter 6 we only proved this theorem when integrating over
cubes and their boundaries). Suppose σ is an n-cell in R

m, φ : In ⊂ R
n → R

m

is a parameterization of σ, and ω is an (n − 1)-form on R
m. Then we can

combine Problems 7.3, 7.4 and 6.7 to give us

∫
∂σ

ω =

∫
φ(∂In)

ω =

∫
∂In

φ∗ω =

∫
In

d(φ∗ω) =
∫
In

φ∗(dω) =
∫

φ(In)

dω =

∫
σ

dω.

7.2 Forms on subsets of Rn

The goal of this chapter is to slowly work up to defining forms in a more
general setting than just on R

n. One reason for this is because the generalized
Stokes’ Theorem actually tells us that forms on R

n are not very interesting.
For example, let’s examine how a 1-form ω on R

2, for which dω = 0 (i.e., ω is
closed), integrates over any 1-chain C such that ∂C = ∅ (i.e. C is closed). It is
a basic result of topology that any such 1-chain bounds a 2-chain D. Hence,∫
C

ω =
∫
D

dω = 0!

Fortunately, there is no reason to restrict ourselves to differential forms
which are defined on all of Rn. Instead, we can simply consider forms which
are defined on subsets, U , of Rn. For technical reasons, we will always assume
such subsets are open. This is a technical condition which means that for each
p ∈ U , there is an ε such that

{q ∈ R
n|d(p, q) < ε} ⊂ U.

In this case, TUp = TRn
p . Since a differential n-form is nothing more than a

choice of an n-form on TRn
p , for each p (with some condition about differen-

tiability) it makes sense to talk about a differential form on U .
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Example 46.

ω0 = − y

x2 + y2
dx +

x

x2 + y2
dy

is a differential 1-form on R
2 − (0, 0).

7.5. Show that dω0 = 0.

7.6. Let C be the unit circle, oriented counterclockwise. Show that
∫
C

ω0 = 2π.

(Hint: Let ω′ = −y dx+ x dy. Note that on C, ω0 = ω′.)

If C is any closed 1-chain in R
2− (0, 0), then the quantity 1

2π

∫
C

ω0 is called

the winding number of C, since it computes the number of times C winds
around the origin.

7.7. Let x+ denote the positive x-axis in R
2 − (0, 0) and let C be any closed

1-chain. Suppose Vp is a basis vector of TCp which agrees with the orientation
of C at p. A positive (respectively, negative) intersection of C with x+ is one
where Vp has a component which points “up” (respectively, “down”). Assume
all intersections of C with x+ are either positive or negative. Let P denote
the number of positive ones and N the number of negative ones. Show that
1
2π

∫
C

ω0 = P −N . (Hint: Use the generalized Stokes’ Theorem.)

We will explore the idea of winding number further in the next section.

7.3 Forms on parameterized subsets

Recall that at each point, a differential from is simply an alternating, mul-
tilinear map on a tangent plane. So all we need to define a differential
form on a more general space is a well-defined tangent space. One case in
which this happens is when we have a parameterized subset of R

m. Let
φ : U ⊂ R

n → M ⊂ R
m be a (one-to-one) parameterization of M . Then

recall that TMp is defined to be the span of the partial derivatives of φ at
φ−1(p) and is a n-dimensional Euclidean space, regardless of the point p.
Hence, we say the dimension of M is n.

A differential k-form on M is simply an alternating, multilinear, real-
valued function on TMp, for each p ∈ M , which varies differentiably with p.
In other words, a differential k-form on M is a whole family of k-forms, each
one acting on TMp for different points p. It is not so easy to say precisely
what we mean when we say the form varies in a differentiable way with p.
Fortunately, we have already introduced the tools necessary to do this. Let’s
say that ω is a family of k-forms, defined on TMp, for each p ∈M . Then φ∗ω
is a family of k-forms, defined on TRn

φ−1(p) for each p ∈M . We say that ω is
a differentiable k-form on M if φ∗ω is a differentiable family on U .
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This definition illustrates an important technique which is often used when
dealing with differential forms on manifolds. Rather than working in M di-
rectly, we use the map φ∗ to translate problems about forms on M into prob-
lems about forms on U . These are nice because we already know how to work
with forms which are defined on open subsets of Rn. We will have much more
to say about this later.

Example 47. The infinitely long cylinder L of radius 1, centered along the z-

axis, is given by the parameterization, φ(a, b) =
(

a√
a2+b2

, b√
a2+b2

, ln
√
a2 + b2

)
,

whose domain is R2− (0, 0). We can use φ∗ to solve any problem about forms
on L by translating it back to a problem about forms on U .

7.8. Consider the 1-form τ ′ = −y dx + x dy on R
3. In particular, this form

acts on vectors in TLp, where L is the cylinder of the previous example and
p is any point in L. Let τ be the restriction of τ ′ to vectors in TLp. So, τ is a
1-form on L. Compute φ∗τ . What does this tell you that τ measures?

If ω is a k-form on M , then what do we mean by dω? Whatever the
definition, we clearly want dφ∗ω = φ∗dω. So why do we not use this to define
dω? After all, we know what dφ∗ω is, since φ∗ω is a form on R

n. Recall that
Dφp is a map from TRn

p to TRm
p . However, if we restrict the range to TMp,

then Dφp is one-to-one, so it makes sense to refer to Dφ−1
p . We now define

dω(V 1
p , ..., V

k+1
p ) = dφ∗ω(Dφ−1

p (V 1
p ), ..., Dφ−1

p (V k+1
p )).

7.9. If τ ′ and τ are the 1-forms on R
3 and L, respectively, defined in the

previous problem, compute dτ ′ and dτ .

7.4 Forms on quotients of Rn (optional)

This section requires some knowledge of topology and algebra. It is not essen-
tial for the flow of the text.

While we are on the subject of differential forms on subsets of Rn, there
is a very common construction of a topological space for which it is very
easy to define what we mean by a differential form. Let’s look again at the
cylinder L of the previous section. One way to construct L is to start with
the plane R

2 and “roll it up.” More technically, we can consider the map
μ(θ, z) = (cos θ, sin θ, z). In general, this is a many-to-one map, so it is not
a parameterization in the strict sense. To remedy this, one might try and
restrict the domain of μ to {(θ, z) ∈ R

2|0 ≤ θ < 2π}; however, this set is not
open.

Note that for each point (θ, z) ∈ R
2, Dμ is a one-to-one map from TR2

(θ,z)

to TLμ(θ,z). This is all we need in order for μ∗τ to make sense, where τ is the
form on L defined in the previous section.
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7.10. Show that μ∗τ = dθ.

In this case, we say that μ is a covering map, R2 is a cover of L, and dθ is
the lift of τ to R

2.

7.11. Suppose ω0 is the 1-form on R
2 which we used to define the winding

number (see Section 7.2). Let μ(r, θ) = (r cos θ, r sin θ). Let U = {(r, θ)|r > 0}.
Then μ : U → {R2 − (0, 0)} is a covering map. Hence, there is a one-to-one
correspondence between a quotient of U and R

2 − (0, 0). Compute the lift of
ω0 to U .

Let’s go back to the cylinder L. Another way to look at things is to ask:
How can we recover L from the θz-plane? The answer is to view L as a quotient
space. Let’s put an equivalence relation R on the points of R

2: (θ1, z1) ∼
(θ2, z2) if and only if z1 = z2 and θ1 − θ2 = 2nπ, for some n ∈ Z. We will
denote the quotient of R2 under this relation as R2/R. μ now induces a one-
to-one map μ̄ from R

2/R onto L. Hence, these two spaces are homeomorphic.

Let’s suppose now that we have a form on U , an open subset of Rn, and
we would like to know when it descends to a form on a quotient of U . Clearly,
if we begin with the lift of a form, then it will descend. Let’s try and see why.
In general, if μ : U ⊂ R

n → M ⊂ R
m is a many-to-one map, differentiable

at each point of U , then the sets {μ−1(p)} partition U . Hence, we can form
the quotient space U/μ−1 under this partition. For each x ∈ μ−1(p), Dμx is a
one-to-one map from TUx to TMp and, hence, Dμ−1

x is welldefined. If x and y
are both in μ−1(p), then Dμ−1

y ◦Dμx is a one-to-one map from TUx to TUy.
We will denote this map as Dμxy. We say a k-form ω on R

n descends to a
k-form on U/μ−1 if and only if ω(V 1

x , ..., V
k
x ) = ω(Dμxy(V

1
x ), ..., Dμxy(V

1
x )),

for all x, y ∈ U such that μ(x) = μ(y).

7.12. If τ is a differential k-form on M , then μ∗τ (the lift of τ) is a differential
k-form on U which descends to a differential k-form on U/μ−1.

Now, suppose that we have a k-form ω̃ on U which descends to a k-form
on U/μ−1, where μ : U ⊂ R

n →M ⊂ R
m is a covering map. How can we get a

k-form on M? As we have already remarked, μ̄ : U/μ−1 →M is a one-to-one
map. Hence, we can use it to push forward the form ω. In other words, we can
define a k-form on M as follows: Given k vectors in TMp, we first choose a
point x ∈ μ−1(p). We then define

μ∗ω(V 1
p , ..., V

k
p ) = ω̃(Dμ−1

x (V 1
p ), ..., Dμ−1

x (V k
p )).

It follows from the fact that ω̃ descends to a form on U/μ−1 that it does
not matter which point x we choose in μ−1(p). Note that although μ is not
one-to-one, Dμx is, so Dμ−1

x makes sense.
If we begin with a form on U , there is a slightly more general construction

of a form on a quotient of U , which does not require the use of a covering
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map. Let Γ be a group of transformations of U . We say Γ acts discretely if
for each p ∈ U , there exists an ε > 0 such that Nε(p) does not contain γ(p),
for any nonidentity element γ ∈ Γ . If Γ acts discretely, then we can form the
quotient of U by Γ , denoted U/Γ , as follows: p ∼ q if there exists γ ∈ Γ such
that γ(p) = q. (The fact that Γ acts discretely is what guarantees a “nice”
topology on U/Γ .)

Now, suppose ω̃ is a k-form on U . We say ω̃ descends to a k-form ω on
U/Γ if and only if ω̃(V 1

p , ..., V
k
p ) = ω̃(Dγ(V 1

p ), ..., Dγ(V k
p )), for all γ ∈ Γ .

Now that we have decided what a form on a quotient of U is, we still have
to define n-chains and what we mean by integration of n-forms over n-chains.
We say an n-chain C̃ ⊂ U descends to an n-chain C ⊂ U/Γ if γ(C̃) = C̃, for
all γ ∈ Γ . The n-chains of U/Γ are simply those which are descendants of
n-chains in U .

Integration is a little more subtle. For this we need the concept of a funda-
mental domain for Γ . This is nothing more than a closed subset of U , whose
interior does not contain two equivalent points. Furthermore, for each equiva-
lence class, there is at least one representative in a fundamental domain. Here
is one way to construct a fundamental domain: First, choose a point p ∈ U .
Now, let D = {q ∈ U |d(p, q) ≤ d(γ(p), q), for all γ ∈ Γ}.

Now, let C̃ be an n-chain on U which descends to an n-chain C on U/Γ
and let ω̃ be an n-form that descends to an n-form ω. Let D be a fundamental
domain for Γ in U . Then we define∫

C

ω ≡
∫

C̃∩D

ω̃.

Technical Note: In general, this definition is invariant of which point
was chosen in the construction of the fundamental domain D. However, a
VERY unlucky choice will result in C̃ ∩D ⊂ ∂D, which could give a different
answer for the above integral. Fortunately, it can be shown that the set of such
“unlucky” points has measure zero; that is, if we were to choose the point at
random, then the odds of picking an “unlucky” point are 0%. Very unlucky
indeed!

Example 48. Suppose Γ is the group of transformations of the plane generated
by (x, y)→ (x+1, y) and (x, y)→ (x, y+1). The space R2/Γ is often denoted
T 2 and referred to as a torus. Topologists often visualize the torus as the
surface of a donut. A fundamental domain for Γ is the unit square in R

2. The
1-form dx on R

2 descends to a 1-form on T 2. Integration of this form over a
closed 1-chain C ⊂ T 2 counts the number of times C wraps around the “hole”
of the donut.
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7.5 Defining manifolds

As we have already remarked, a differential n-form on R
m is just an n-form

on TpR
m, for each point p ∈ R

m, along with some condition about how the
form varies in a differentiable way as p varies. All we need to define a form
on a space other than R

m is some notion of a tangent space at every point.
We call such a space a manifold. In addition, we insist that at each point of a
manifold, the tangent space has the same dimension, n, which we then say is
the dimension of the manifold.

How do we guarantee that a given subset of R
m is a manifold? Recall

that we defined the tangent space to be the span of some partial derivatives
of a parameterization. However, insisting that the whole manifold is capable
of being parameterized is very restrictive. Instead, we only insist that every
point of a manifold lies in a subset that can be parameterized. Hence, if M
is an n-manifold in R

m, then there is a set of open subsets, {Ui} ⊂ R
n, and

a set of differentiable maps, {φi : Ui → M}, such that {φi(Ui)} is a cover of
M (i.e., for each point p ∈ M there is an i, and a point q ∈ Ui, such that
φi(q) = p).

Example 49. S1, the unit circle in R2, is a 1-manifold. Let Ui = (−1, 1) for
i = 1, 2, 3, 4, φ1(t) = (t,

√
1− t2), φ2(t) = (t,−√1− t2), φ3(t) = (

√
1− t2, t)

and φ4(t) = (−√1− t2, t). Then {φi(Ui)} is certainly a cover of S1 with the
desired properties.

7.13. Show that S2, the unit sphere in R
3, is a 2-manifold.

7.6 Differential forms on manifolds

Basically, the definition of a differential n-form on an m-manifold is the same
as the definition of an n-form on a subset of Rm which was given by a single
parameterization. First and foremost, it is just an n-form on TpM , for each
p ∈M .

Let’s say M is an m-manifold. Then we know there is a set of open sets
{Ui} ⊂ R

m and a set of differentiable maps {φi : Ui →M} such that {φi(Ui)}
covers M . Now, let’s say that ω is a family of n-forms, defined on TpM for
each p ∈M . Then we say that the family ω is a differentiable n-form on M if
φ∗i ω is a differentiable n-form on Ui, for each i.

Example 50. In the previous section, we saw how S1, the unit circle in R
2, is

a 1-manifold. If (x, y) is a point of S1, then TS1
(x,y) is given by the equation

dy = −x
y dx in TR2

(x,y) as long as y = 0. If y = 0, then TS1
(x,y) is given by

dx = 0. We define a 1-form on S1, ω = −y dx+x dy. (Actually, ω is a 1-form
on all of R2. To get a 1-form on just S1, we restrict the domain of ω to the
tangent lines to S1.) To check that this is really a differential form, we must
compute all pull-backs:
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φ∗1ω =
−1√
1− t2

dt, φ∗2ω =
1√

1− t2
dt,

φ∗3ω =
1√

1− t2
dt, φ∗4ω =

−1√
1− t2

dt.

Since all of these are differentiable on Ui = (−1, 1), we can say that ω is a
differential form on S1.

We now move on to integration of n-chains on manifolds. The definition
of an n-chain is no different than before; it is just a formal linear combination
of n-cells in M . Let’s suppose that C is an n-chain in M and ω is an n-form.
Then how do we define

∫
C

ω? If C lies entirely in φi(Ui), for some i, then we

could define the value of this integral to be the value of
∫

φ−1
i (C)

φ∗i ω. However,

it may be that part of C lies in both φi(Ui) and φj(Uj). If we define
∫
C

ω to

be the sum of the two integrals we get when we pull-back ω under φi and φj ,
then we end up “double counting” the integral of ω on C ∩ φi(Ui) ∩ φj(Uj).
Somehow, as we move from φi(Ui) into φj(Uj), we want the effect of the pull-
back of ω under φi to “fade out” and the effect of the pull-back under φj to
“fade in.” This is accomplished by a partition of unity.

The technical definition of a partition of unity subordinate to the cover
{φi(Ui)} is a set of differentiable functions fi : M → [0, 1] such that fi(p) = 0
if p /∈ φi(Ui) and

∑
i

fi(p) = 1 for all p ∈M . We refer the reader to any book

on differential topology for a proof of the existence of partitions of unity.
We are now ready to give the full definition of the integral of an n-form

on an n-chain in an m-manifold:∫
C

ω ≡
∑
i

∫
φ−1
i (C)

φ∗i (fiω).

We illustrate this with a simple example.

Example 51. Let M be the manifold which is the interval (1, 10) ⊂ R. Let
Ui = (i, i+ 2) for i = 1, ..., 8. Let φi : Ui → M be the identity map. Let {fi}
be a partition of unity, subordinate to the cover, {φi(Ui)}. Let ω be a 1-form
on M . Finally, let C be the 1-chain which consists of the single 1-cell [2, 8].
Then we have

∫
C

ω ≡
8∑

i=1

∫
φ−1
i (C)

φ∗i (fiω) =
8∑

i=1

∫
C

fiω =

∫
C

8∑
i=1

(fiω) =

∫
C

(
8∑

i=1

fi

)
ω =

∫
C

ω,

as one would expect!
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Example 52. Let S1, Ui, φi and ω be defined as in Examples 49 and 50. A
partition of unity subordinate to the cover {φi(Ui)} is as follows:

f1(x, y) =

{
y2, y ≥ 0
0, y < 0

, f2(x, y) =

{
0, y > 0
y2, y ≤ 0

,

f3(x, y) =

{
x2, x ≥ 0
0, x < 0

, f4(x, y) =

{
0, x > 0
x2, x ≤ 0

.

(Check this!) Let μ : [0, π]→ S1 be defined by μ(θ) = (cos θ, sin θ). Then the
image of μ is a 1-cell, σ, in S1. Let’s integrate ω over σ:

∫
σ

ω ≡
4∑

i=1

∫
φ−1
i (σ)

φ∗i (fiω)

=

∫
−(−1,1)

−
√
1− t2 dt+ 0 +

∫
[0,1)

√
1− t2 dt+

∫
−[0,1)

−
√
1− t2 dt

=

1∫
−1

√
1− t2 dt+ 2

1∫
0

√
1− t2 dt

= π.

CAUTION: Beware of orientations!

7.7 Application: DeRham Cohomology

One of the predominant uses of differential forms is to give global information
about manifolds. Consider the space R2− (0, 0), as in Example 46. Near every
point of this space we can find an open set which is identical to an open set
around a point of R2. This means that all of the local information in R

2−(0, 0)
is the same as the local information in R

2. The fact that the origin is missing
is a global property.

For the purposes of detecting global properties, certain forms are interest-
ing and certain forms are completely uninteresting. We will spend some time
discussing both. The interesting forms are the ones whose derivative is zero.
Such forms are said to be closed. An example of a closed 1-form was ω0, from
Example 46. For now, let’s just focus on closed 1-forms so that you can keep
this example in mind.

Let’s look at what happens when we integrate a closed 1-form ω0 over a
1-chain C such that ∂C = 0 (i.e., C is a closed 1-chain). If C bounds a disk
D, then Stokes’ Theorem states
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C

ω0 =

∫
D

dω0 =

∫
D

0 = 0.

In a sufficiently small region of every manifold, every closed 1-chain bounds a
disk. So integrating closed 1-forms on “small” 1-chains gives us no information.
In other words, closed 1-forms give no local information.

Suppose now that we have a closed 1-form ω0 and a closed 1-chain C such
that

∫
C

ω0 = 0. Then we know C does not bound a disk. The fact that there

exists such a 1-chain is global information. This is why we say that the closed
forms are the ones that are interesting, from the point of view of detecting
only global information.

Now, let’s suppose that we have a 1-form ω1 that is the derivative of a
0-form f (i.e., ω1 = df). We say such a form is exact. Again, let C be a closed
1-chain. Let’s pick two points – p and q – on C. Then C = C1 + C2, where
C1 goes from p to q and C2 goes from q back to p. Now, let’s do a quick
computation:

∫
C

ω1 =

∫
C1+C2

ω1

=

∫
C1

ω1 +

∫
C2

ω1

=

∫
C1

df +

∫
C2

df

=

∫
p−q

f +

∫
q−p

f

= 0.

So integrating an exact form over a closed 1-chain always gives zero. This
is why we say the exact forms are completely uninteresting. Unfortunately, in
Problem 5.9 we learned that every exact form is also closed. This is a problem,
since this would say that all of the completely uninteresting forms are also
interesting! To remedy, this we define an equivalence relation.

We pause here for a moment to explain what this means. An equivalence
relation is just a way of taking one set and creating a new set by declaring
certain objects in the original set to be “the same.” This is the idea behind
telling time. To construct the clock numbers, start with the integers and de-
clare two to be “the same” if they differ by a multiple of 12. So, 10 + 3 = 13,
but 13 is the same as 1 — so if it’s now 10 o’clock, then in three hours it will
one o’clock.

We play the same trick for differential forms. We will restrict ourselves
to the closed forms, but we will consider two of them to be “the same” if
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Hn

dd

(n− 1)-forms n-forms (n+ 1)-forms

closedexact

0

Fig. 7.2. Defining Hn.

their difference is an exact form. The set which we end up with is called the
cohomology of the manifold in question. For example, if we start with the
closed 1-forms, then after our equivalence relation, we end up with the set
which we will call H1, or the first cohomology (see Figure 7.2).

Note that the difference between an exact form and the form which always
returns the number 0 is an exact form. Hence, every exact form is equivalent
to zero in Hn, as in Figure 7.2.

For each n, the set Hn contains a lot of information about the manifold in
question. For example, if H1 ∼= R

1 (as it turns out is the case for R2− (0, 0)),
then this tells us that the manifold has one “hole” in it. Studying manifolds via
cohomology is one topic of a field of mathematics called Algebraic Topology.
For a complete treatment of this subject, see [BT82].

7.8 Application: Constructing invariants

7.8.1 Linking number

A classical problem in the field of topology is to find ways to distinguish
various knots and links from each other. Loosely speaking, a knot is a map
from the circle S1 into R

3 that is one-to-one and differentiable at each point.
In particular, a knot is a closed 1-chain. A link is a collection of disjoint knots,
called its components.

Knots and links are abstractions of the corresponding physical objects of
the same name. The problem is that it may be very difficult to look at a
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physical link and tell if the individual components can be separated without
cutting one of the links. In this section we will see that integrating a differential
form in an appropriate way over a link can yield a measure of just how “linked”
its components are.

To begin, recall the 1-form ω0 from Section 7.2 whose integral yields the
winding number

ω0 = − y

x2 + y2
dx+

x

x2 + y2
dy.

7.14. Let A(x, y) = tan−1 y
x . Thinking of A as a 0-form, show that dA = ω0.

7.15. The function A(x, y) from the previous problem gives the angle θ of the
point (x, y) in polar coordinates; that is, θ = A(x, y). Another way to view
this is to think of A as a function from R

2− (0, 0) to S1, the circle.1 The form
dθ is the one on S1 that gives the length of any tangent vector to it. Such a
form is called a length form. Show that dA = A∗dθ.

Combining the previous two problems gives the result A∗dθ = ω0; that
is, the winding number is computed by integrating the pull-back of the length
form on S1. This interpretation is precisely what we generalize to define the
linking number of a two-component link.

Now, suppose α : S1 → R
2 − (0, 0) is a parameterization of a loop (i.e.,

closed 1-chain). One way to think about integrating ω0 over the image of α is
to pull-back the 1-form ω0 by the map α∗ and integrate the resulting 1-form
over the domain of α. Since ω0 = A∗dθ, this is equivalent to integrating the
form (A ◦ α)∗dθ over the domain of α. Here A ◦ α is the map from S1 to S1

given by the composition of A and α. So for each point t in the domain of α,
A ◦ α(t) gives the angle θ of the point α(t) in R

2. Finally, we conclude that
the winding number of α is given by

1

2π

∫
α

ω0 =
1

2π

∫
α

A∗dθ =
1

2π

∫
S1

(A ◦ α)∗dθ.

To make the transition to parameterized curves in three dimensions, first
note that the form ω0 can itself be thought of as a 1-form on the complement
of the z-axis in R

3. As such, its integral over a knot (i.e., a closed, connected
1-chain) tells us how much the knot winds around, or “links,” the z-axis.
Just as the winding number in the plane can be computed by counting the
intersections with the positive x-axis in the appropriate way (see Problem 7.7),
the winding number around the z-axis in R

3 can be computed by counting
the intersections with the half of the xz-plane where x > 0.

The linking number of a two-component link is precisely the analogous
measure that you get when you treat one of the components as the z-axis
and the other as the 1-chain over which we integrate. Given any knot K in

1 Here we are thinking of the circle S1 as the interval [0, 2π], where 0 has been
identified with 2π
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R
3, there is a function A : R3 − K → S1. (The existence of such a function

is, unfortunately, beyond the scope of this book.) If we think of A as a 0-
form, then we can differentiate it to get a 1-form on R

3 −K. This 1-form is
precisely what we can integrate over a second knot to measure how many times
it “links” with K. Interestingly, there is also a point p ∈ S1 such that A−1(p)
is a surface whose boundary is K. Just as before, the linking number can also
be computed just by appropriately counting the number of intersections with
this surface.

There is a second way to view the linking number that may be of more
historical importance than practical. Suppose α : S1 → R

3 and β : S1 → R
3

are parameterizations of the two components of some link. So, for each value
of s and t, α(s) is a point on the first component and β(t) is a point on the
second. The vector α(s)−β(t) then connects one of these points to the other.
We can turn this into a unit vector in R

3 by dividing it by its magnitude.
This defines a map

φ(s, t) =
α(s) − β(t)

|α(s) − β(t)| .

Note that the domain of φ consists of pairs of points – s and t – from two
different circles. This is more commonly denoted S1 × S1, or even T 2. The
range of φ is a set of unit vectors in R

3. We can thus think of it as points on
the unit sphere, commonly denoted S2. Thus, φ is a map from T 2 to S2. This
is completely analogous to the function A ◦ α that we encountered earlier in
the section.

Let μ denote the area form on S2; that is, μ is the 2-form that gives the
area of the parallelogram spanned by the pair tangent vectors to S2 that you
plug into it. This is analogous to the 1-form dθ which computed the length of
tangent vectors to the circle S1.

The linking number of α and β is given by

1

4π

∫
T 2

φ∗μ.

In other words, the linking number is computed by integrating the pull-back of
the area form on S2.

7.16. Show that∫
T 2

φ∗μ =

∫∫ ∣∣∣∣∂φ∂s × ∂φ

∂t

∣∣∣∣ ds dt

=

∫∫ (
dα

ds
× dβ

dt

)
· α(s) − β(t)

|α(s)− β(t)|3 ds dt

Historical note: The linking number was first defined by Gauss when he
was studying the orbits of celestial bodies. Note that the orbits of two such
objects forms a link in space. Later it was shown that linking number can be
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used to compute the current that is induced in one loop of wire when a given
current flows through another.

7.8.2 The Hopf Invariant

The mathematician Heinz Hopf was interested in studying functions from S3,
the unit sphere in R

4, to S2, the unit sphere in R
3. In particular, he was

looking for a quantity that did not change under small alterations of such
a map. Such a quantity is called a homotopy invariant. Finding maps with
different homotopy invariants then says they are fundamentally different; you
can’t get from one to another by small alterations.

Hopf’s invariant illustrates many of the tools we have developed thus far.
It is not difficult for us to construct, as long as we are willing to assume one
unsurprising result from algebraic topology: The first and second cohomology
of S3 is trivial. One might expect this, as cohomology is designed to detect
nontrivial topology.

Let f : S3 → S2 be a (continuous, differentiable) function. Let ω be any
2-form on S2 such that

∫
S2

ω = 1. Then f∗ω, the pull-back of ω under f , is a

2-form on S3.
Since ω is a 2-form on a 2-manifold, its derivative dω must be zero. By

Exercise 7.4, it follows that d(f∗ω) = 0; that is, f∗ω is a closed 2-form on S3.
However, since the second cohomology of S3 is trivial, it must be the case that
f∗ω is also exact; that is, there must be a 1-form ν on S3 such that dν = f∗ω.

Now, we consider the 3-form ν∧(f∗ω) = ν∧dν. The choice of antiderivative
ν of f∗ω was not unique, so the 3-form ν∧dν is in no way canonical. However,
presently we will use the generalized Stokes’ Theorem to show the amazing
fact that the integral ∫

S3

ν ∧ dν

defines an integer that is independent of our choice of ν. It is this quantity
that is precisely the definition of the Hopf Invariant of f .

Suppose ν1 and ν2 are two antiderivatives of f∗ω. Then∫
S3

ν1 ∧ dν1 −
∫
S3

ν2 ∧ dν2 =

∫
S3

(ν1 − ν2) ∧ (f∗ω).

Note that d(ν1 − ν2) = dν1 − dν2 = f∗ω − f∗ω = 0. Hence, ν1 − ν2 is a
closed 1-form on S3. As the first cohomology of S3 is trivial, it must also be
exact; that is, there is a 0-form g on S3 such that dg = ν1 − ν2. Hence, the
above integral becomes
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S3

(ν1 − ν2) ∧ (f∗ω) =
∫
S3

dg ∧ (f∗ω)

=

∫
S3

d(gf∗ω)

=

∫
∂S3

gf∗ω

= 0.

There is a beautiful relationship between the Hopf Invariant and linking
number. For two points x and y of S2, the sets f−1(x) and f−1(y) will be
knots in S3. Amazingly, another way to compute the Hopf Invariant of f is
to compute the linking number between these two knots!!

7.8.3 The Godbillon–Vey Invariant

In Section 5.6 we saw how we can use differential forms to tell if a plane field
is integrable. Recall that a plane field is defined by the kernel of a 1-form ω.
This plane field is integrable precisely when ω∧dω = 0. However, one may still
wonder if there is more we can say about ω, assuming its kernel is integrable.
Let’s look a little closer at the form ω∧dω. Since ω is a 1-form, dω is a 2-form,
and, hence, ω ∧ dω is a 3-form.

A 3-form on TpR
3 measures the volume of the parallelepiped spanned by

three vectors, multiplied by a constant. For example, if ψ = α ∧ β ∧ γ is a
3-form, then the constant it scales volume by is given by the volume of the
parallelepiped spanned by the vectors 〈α〉, 〈β〉 and 〈γ〉 (where “〈α〉” refers to
the vector dual to the 1-form α introduced in Section 3.3). If it turns out that
ψ is the zero 3-form, then the vector 〈α〉 must be in the plane spanned by the
vectors 〈β〉 and 〈γ〉.

On R
3, the results of Section 3.3 tell us that a 2-form such as dω can

always be written as α ∧ β for some 1-forms α and β. If ω is a 1-form with
integrable kernel, then we have already seen that ω ∧ dω = ω ∧ α ∧ β = 0.
However, this tells us that 〈ω〉 must be in the plane spanned by the vectors
〈α〉 and 〈β〉. Now we can invoke Lemma 1 of Chapter 3, which implies that
we can rewrite dω as ω ∧ ν for some 1-form ν. (See also Problem 3.29.)

If we start with a foliation on a manifold M and choose a 1-form ω whose
kernel consists of planes tangent to the foliation, then the 1-form ν that we
have just found is in no way canonical. We made a lot of choices to get to
ν, and different choices will end up with different 1-forms. Now, here is the
amazing fact: Just as for the Hopf Invariant, the integral∫

M

ν ∧ dν
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does not depend on any of our choices! It is completely determined by the
original foliation. This quantity is referred to as the Godbillon–Vey Invariant
of the foliation. It is a topic of current research to identify exactly what
information this number tells us about the foliation.

Note the similarity between the integrals that define the Godbillon–Vey
Invariant and the Hopf Invariant. As one would expect, there is a fascinating
relationship between them. Unfortunately, making this relationship explicit is
beyond the scope of this book.
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Differential Geometry via Differential Forms

In this chapter we present a brief introduction to some basic concepts of
differential geometry. As the reader will see, the facility we have developed
with differential forms will greatly aid us in this endeavor.

8.1 Covariant derivatives

In first-year calculus we learn how to measure the rate of change of a real-
valued function of a single variable by taking its derivative. Later, we learn
how to vary a real-valued function of several variables in the direction of
a particular vector, thereby leading us to the definition of the directional
derivative. Here, we go one step further and vary a vector field in the direction
of a vector, leading us to the idea of a covariant derivative.

We will use a vector field on R
2 for illustrative purposes, but the reader

should remain aware that there is nothing special about two dimensions in
this section. Suppose W is a vector field on R

2 and α(t) is a parameterization
of a curve.

At t = 0, we compute d
dtW(α(t)) (see Figure 8.1). Geometrically, what

is happening is the following. As we walk along the curve α(t) we watch the
vector field W. From our perspective, we can think of ourselves as being
stationary and the vector W(α(t)) as changing. The tip of this vector traces
out a parameterized curve in TR2. Differentiating then gives a tangent vector
U to this curve, which is precisely d

dtW(α(t)) (see Figure 8.2).

Example 53. Suppose W = 〈xy2, x+ y〉 and α(t) = (t2, t). Then

W(α(t)) = 〈t4, t2 + t〉

and, hence,
d

dt
W(α(t))

∣∣∣∣
t=0

= 〈4t3, 2t+ 1〉∣∣
t=0

= 〈0, 1〉.
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W(α(−ε))

W(α(0))

W(α(+ε))
U

α′(0)

Fig. 8.1. The derivative of a vector field W at the point p = α(0), in the direction
of the vector α′(0), is the vector U .

W(α(−ε))

W(α(0))

W(α(+ε))

U

Fig. 8.2. Superimposing vectors from the field W creates a parameterized curve.
The derivative vector U is then a tangent vector to this curve.

Abstractly, W is really a function from R
2 to TR2, so we can write W =

〈w1(x, y), w2(x, y)〉. The parameterization α : R
1 → R

2 can be written as
α(t) = (α1(t), α2(t)). So, in general, we can use the chain rule to obtain

d

dt
W(α(t))

∣∣∣∣
t=0

=
d

dt
〈w1(α(t)), w2(α(t))〉

∣∣∣∣
t=0

=

〈
dw1(α(t))

dt
,
dw2(α(t))

dt

〉∣∣∣∣
t=0

=

〈
∂w1

∂x

dα1

dt
+

∂w1

∂y

dα2

dt
,
∂w2

∂x

dα1

dt
+

∂w2

∂y

dα2

dt

〉∣∣∣∣
t=0

=

〈
∂w1

∂x
α′1(0) +

∂w1

∂y
α′2(0),

∂w2

∂x
α′1(0) +

∂w2

∂y
α′2(0)

〉

=

[
∂w1

∂x
∂w1

∂y
∂w2

∂x
∂w2

∂y

](
α′1(0)
α′2(0)

)
.

To make this a bit easier to write, we define the following matrix:
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∇W =

[
∂w1

∂x
∂w1

∂y
∂w2

∂x
∂w2

∂y

]
.

Then we have
d

dt
W(α(t))

∣∣∣∣
t=0

= [∇W]α′(0).

Example 54. We continue with the previous example, where W = 〈xy2, x+y〉
and α(t) = (t2, t). Then

∇W =

[
y2 2xy
1 1

]
.

At the point α(0) = (0, 0), this becomes

∇W =

[
0 0
1 1

]
.

The vector α′(0) = 〈2t, 1〉|t=0 = 〈0, 1〉. So,
d

dt
W(α(t))

∣∣∣∣
t=0

= [∇W]α′(0) =
[
0 0
1 1

](
0
1

)
= 〈0, 1〉

as we saw before.

The previous example illustrates an important point. Our final answer
doesn’t depend on the curve α, only the tangent vector α′(0). Hence, if we
define

∇V W = [∇W]V

and α is any parameterized curve with α′(0) = V , then

d

dt
W(α(t))

∣∣∣∣
t=0

= ∇V W.

Before we end this section, we present one final way to think about ∇V W
called the covariant derivative of W in the V direction. By definition,

∇V W = [∇W]V =

[
∂w1

∂x
∂w1

∂y
∂w2

∂x
∂w2

∂y

](
v1
v2

)

=

〈
∂w1

∂x
v1 +

∂w1

∂y
v2,

∂w2

∂x
v1 +

∂w2

∂y
v2

〉
= 〈dw1(V ), dw2(V )〉 .

Here, we are thinking of wi as a 0-form and dwi as the 1-form that is its
derivative. We can simplify this a bit further and define dW to be the vector
of 1-forms 〈dw1, dw2〉. Thus, we now have

∇V W = dW(V ).

This is completely analogous to the statement ∇V f = df(V ), where ∇V f is
the directional derivative of the real-valued function f .
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Example 55. We continue with the previous example, where W = 〈xy2, x+y〉.
Then dW is the vector of 1-forms 〈y2 dx+2xy dy, dx+dy〉. At the point (0, 0),
this becomes 〈0, dx + dy〉. If we plug the vector 〈0, 1〉 into this, the result is
the vector 〈0, 1〉, as before.

In this section we have encountered three ways to think about/compute the
derivative of a vector field, at a point p, in the direction of a vector V ∈ TpR

n.
The reader would be well advised to remember these, as we will be switching
between them frequently to suit our needs. We summarize as follows:

1. ∇V W = d
dtW(α(t))

∣∣
t=0

, where α(t) is any parameterized curve such that
α′(0) = V .

2. ∇V W = [∇W]V , where ∇W is the matrix

[
∂w1

∂x
∂w1

∂y
∂w2

∂x
∂w2

∂y

]
.

3. ∇V W = dW(V ), where dW is the vector of 1-forms whose components
are the derivatives of the components of W, thought of as 0-forms.

8.1. In advanced settings we often refer to the analog of the “product rule” for
differentiation as a “Leibniz rule.” For example, the Leibniz rule for directional
derivatives is

∇V (fg) = (∇V f)g + f(∇V g).

Prove the following Leibniz rules for covariant differentiation:

∇V (X ·Y) = (∇VX) ·Y +X · (∇VY),

∇V (fW) = (∇Vf)W + f(∇VW).

8.2. Suppose V and W are vector fields. ThenV ·W is a real-valued function,
which we can think of as a 0-form. We can then differentiate this to get a 1-
form. Prove the following Leibniz rule for derivatives of dot products:

d(V ·W) = dV ·W +V · dW.

8.3. It will be useful later to be able to take dot products of vectors of 1-forms
and vectors of real numbers. Show that this commutes with evaluation on a
third vector; that is, if W is a vector field and U and V are vectors in TpR

n

for some p ∈ R
n, show that

dW(V ) · U = dW · U(V ).

8.4. Often we parameterize surfaces in R
3 by starting with cylindrical or

spherical coordinates and expressing one of the parameters in terms of the
other two. So, for example, by starting with spherical coordinates and ex-
pressing ρ as a function of θ and φ, we may end up with a parameterization
of the form Ψ(θ, φ) = (x, y, z). However, we may also view θ(x, y, z) as a
function on R

3 that gives the θ coordinate of the point (x, y, z), when it is
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expressed in spherical coordinates. Hence, it is often the case that we have
parameterizations of the form Ψ(θ, φ) such that

θ(Ψ(θ, φ)) = θ and φ(Ψ(θ, φ)) = φ.

When we think of θ(x, y, z) as a 0-form on R
3, we can differentiate to get

a 1-form dθ. Show that

dθ

(
∂Ψ

∂θ

)
= dφ

(
∂Ψ

∂φ

)
= 1 and dθ

(
∂Ψ

∂φ

)
= dφ

(
∂Ψ

∂θ

)
= 0.

8.2 Frame fields and Gaussian curvature

Our approach to the subject of differential geometry loosely follows Cartan’s
method of moving frames. Roughly speaking, this involves a choice of a partic-
ularly nice basis for the tangent space at each point of a surface S in R

n, called
a frame field. Geometric properties of S can then be derived from the way the
frame field varies from one point to the next. This is where the language of
differential forms comes in handy.

Definition 3. Let S be a surface in R
3. A frame field on S is a choice of

vector fields {E1,E2} such that at each point p of S, E1(p) and E2(p) form
an orthonormal basis for TpS.

The orthonormality condition is equivalent to

E1 · E2 = 0, E1 · E1 = E2 · E2 = 1.

Geometric properties of S follow from the way E1 and E2 vary from one
point of S to the next. To this end, we now examine the covariant derivatives
of E1 and E2. Let V be a tangent vector to S at some point. We can then
take the directional derivative of both sides of the equation

E1 · E1 = 1

to obtain
∇V (E1 ·E1) = ∇V 1.

Using the appropriate Leibniz rule this becomes

(∇V E1) · E1 +E1 · (∇V E1) = 0.

and thus, (∇V E1) · E1 = 0. We conclude that ∇V E1 is a vector that is
perpendicular to E1 and is thus in the plane spanned by E2 and the normal
vector N to S.

Now, suppose S is a plane. Then a normal vector N to S is constant
(i.e., it does not depend on a choice of p ∈ S). Since E1 is tangent to S, we
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have E1 ·N = 0. Again, taking the directional derivative of both sides of this
equation and applying the appropriate Leibniz rule gives us

(∇V E1) ·N +E1 · (∇V N) = 0.

However, since N is constant, ∇V N = 0. We conclude (∇V E1) ·N = 0, and,
thus, when S is a plane, ∇V E1 is also perpendicular to N . We already knew
∇V E1 was perpendicular to E1, so we may now conclude that ∇V E1 points
in the same direction as E2.

Now, suppose for some surface S that the vector ∇V E1 does not point in
the same direction as E2 at a point p ∈ S. Then, near p, it must be the case
that S does not look like a plane (i.e., it has some curvature). This motivates us
to look toward the projection of ∇V E1 onto E2 as a measure of the curvature
(or lack thereof) of S. This projection is a linear function of the vector V and
is thus a 1-form. We define

Ω(V ) = (∇V E1) ·E2.

Since (∇V E1) · E2 = dE1(V ) · E2 = dE1 · E2(V ), it is sometimes more
convenient to write

Ω = dE1 ·E2.

We now define a numerical measure of the curvature of S at each point,
which does not depend on a choice of tangent vector at that point.

Definition 4. The Gaussian curvature at each point of S is defined to be the
number

K = −dΩ(E1,E2).

The amazing thing about the Gaussian curvature is that it is independent
of the choice of frame field. It is a number that is completely determined by
the shape of S. We prove this now.

Theorem 3. At each point of S, the Gaussian curvature is independent of
the choice of frame field.

Proof. Suppose E1 = 〈E1
1 , E

2
1 , E

3
1〉 and E2 = 〈E1

2 , E
2
2 , E

3
2 〉. Then note that

dΩ = d(dE1 · E2)

= d(〈dE1
1 , dE

2
1 , dE

3
1〉 · 〈E1

2 , E
2
2 , E

3
2〉)

= d(dE1
1E

1
2 + dE2

1E
2
2 + dE3

1E
3
2 )

= dE1
1 ∧ dE1

2 + dE2
1 ∧ dE2

2 + dE3
1 ∧ dE3

2 .

We can rewrite this more compactly using summation notation:

dΩ =

3∑
i=1

dEi
1 ∧ dEi

2.
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Now, suppose {F1,F2} is some other frame field on S. Let φ : S → R
1

be the angle between E1 and F1. As any orthonormal basis can be obtained
from any other by rotation, it must be the case that

F1 = cosφE1 + sinφE2,

F2 = − sinφE1 + cosφE2.

Let Ω′ = dF1 · F2. Then the Gaussian curvature computed by using the
frame field {F1,F2} is given by evaluation of the 2-form dΩ′ on these two
vectors. We now calculate

dΩ′ =
3∑

i=1

dF i
1 ∧ dF i

2

=

3∑
i=1

d(cosφEi
1 + sinφEi

2) ∧ d(− sinφEi
1 + cosφEi

2)

=

3∑
i=1

(− sinφEi
1dφ+ cosφdEi

1 + cosφEi
2dφ+ sinφdEi

2)

∧(− cosφEi
1dφ− sinφdEi

1 − sinφEi
2dφ+ cosφdEi

2)

=

3∑
i=1

Ei
1dφ ∧ dEi

1 + Ei
2dφ ∧ dEi

2 + dEi
1 ∧ dEi

2

= dφ ∧
(

3∑
i=1

Ei
1dE

i
1

)
+ dφ ∧

(
3∑

i=1

Ei
2dE

i
2

)
+

3∑
i=1

dEi
1 ∧ dEi

2

= dφ ∧ (E1 · dE1) + dφ ∧ (E2 · dE2) + dΩ.

Now, note that differentiating the equation E1 · E1 = 1 tells us that
E1 · dE1 = 0. Identical reasoning leads us to conclude E2 · dE2 = 0, and thus
we have dΩ′ = dΩ. Finally, note that since these 2-forms are the same, then
evaluating either one on any pair of vectors that span a parallelogram of area
one in a fixed plane will always produce the same number. Thus,

K ′ = dΩ′(F1,F2) = dΩ(E1,E2) = K,

as desired.

Example 56. We compute the Gaussian curvature of a sphere S of radius R.
We begin by defining a frame field on it. As usual, a parameterization for S
is given by

Ψ(θ, φ) = (R sinφ cos θ,R sinφ sin θ,R cosφ).

The partial derivatives of this give tangent vectors to S:
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∂Ψ

∂θ
= 〈−R sinφ sin θ,R sinφ cos θ, 0〉,

∂Ψ

∂φ
= 〈R cosφ cos θ,R cosφ sin θ,−R sinφ〉.

Since the dot product of these two vectors is zero, they are orthogonal. To
get a frame field then, we must simply divide each vector by its magnitude to
get unit vectors:

E1 =
1

R sinφ

∂Ψ

∂θ
= 〈− sin θ, cos θ, 0〉,

E2 =
1

R

∂Ψ

∂φ
= 〈cosφ cos θ, cosφ sin θ,− sinφ〉.

Now, we find the 1-form Ω. Since

dE1 = 〈− cos θ dθ,− sin θ dθ, 0〉,
we have

Ω = dE1 · E2 = − cosφ cos2 θ dθ − cosφ sin2 θ dθ = − cosφ dθ.

Thus,
−dΩ = − sinφ dφ ∧ dθ.

To compute K = −dΩ(E1,E2), we will need to know the following:

dθ(E1) = dθ

(
1

R sinφ

∂Ψ

∂θ

)
=

1

R sinφ
dθ

(
∂Ψ

∂θ

)
=

1

R sinφ
,

dφ(E1) = dφ

(
1

R sinφ

∂Ψ

∂θ

)
=

1

R sinφ
dφ

(
∂Ψ

∂θ

)
= 0,

dθ(E2) = dθ

(
1

R

∂Ψ

∂φ

)
=

1

R
dθ

(
∂Ψ

∂φ

)
= 0,

dφ(E2) = dφ

(
1

R

∂Ψ

∂φ

)
=

1

R
dφ

(
∂Ψ

∂φ

)
=

1

R
.

We are now prepared to compute the Gaussian curvature:

K = −dΩ(E1,E2)

= − sinφ dφ ∧ dθ(E1,E2)

= − sinφ

∣∣∣∣dφ(E1) dθ(E1)
dφ(E2) dθ(E2)

∣∣∣∣
= − sinφ

∣∣∣∣ 0 1
R sinφ

1
R 0

∣∣∣∣
= sinφ

1

R2 sinφ

=
1

R2
.
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8.5. Let (f(t), 0, g(t)) be a unit speed curve in the xz-plane (thus, f ′(t)2 +
g′(t)2 = 1). Then Ψ(θ, t) = (f(t) cos θ, f(t) sin θ, g(t)) is the surface obtained
by revolving this curve about the z-axis.

1. Show that the Gaussian curvature of this surface is − f ′′

f .
2. Find the Gaussian curvature of a cylinder of radius R.
3. Find the Gaussian curvature of a right-angled cone.
4. Confirm that the Gaussian curvature of a sphere of radius R is 1

R2 by
viewing it as a surface of revolution.

5. A unit-speed parameterization for the tractrix is given by

(et,
√
1− e2t − tanh−1

√
1− e2t),

where t < 0. The surface of revolution of a tractrix is called a tractricoid
(see Figure 8.3). Calculate its Gaussian curvature. Why is this surface
sometimes called a pseudo-sphere?

0 0.25 0.5 0.75 1 1.25

-2

-1.5

-1

-0.5

(a) (b)

Fig. 8.3. (a) The tractrix; (b) the tractricoid.

6. A unit speed parameterization for the catenary, the graph of x = cosh z,
is given by

(
√

1 + t2, sinh−1 t).

The surface of revolution of the catenary is called a catenoid (see Figure
8.4). Calculate its Gaussian curvature.

8.6. The helicoid (see Figure 8.5) is the surface parameterized by

Ψ(t, θ) = (t cos θ, t sin θ, θ).
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0.8

1.2

1.6

(a) (b)

Fig. 8.4. (a) The catenary; (b) the catenoid.

Fig. 8.5. The helicoid.

1. Calculate the Gaussian curvature of the helicoid.
2. Show that there is a continuous function f from the helicoid to the

catenoid such that the Gaussian curvature at p is the same as the Gaussian
curvature at f(p).

8.3 Parallel vector fields

Let α(t) be a parameterized curve in a surface S and let Y be a unit vector
field defined on α, tangent to S, that turns as little as possible; that is, we
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assume that Y is a vector field which has been chosen so that there is no
component of Y′ that is tangent to S. Said another way, we assume that the
projection of ∇α′Y onto the tangent space to S is zero. Such a vector field is
said to be parallel along α.

For each t, let φ(t) denote the angle between Y(t) and E1. Then

cosφ = Y · E1.

We now take the derivative of both sides of this equation in the direction
of α′:

− sinφ∇α′φ = (∇α′Y) ·E1 +Y · (∇α′E1).

Since we are assuming ∇α′Y has no component tangent to S, its dot product
with E1 (a tangent vector to S) must be zero. We now have

− sinφ∇α′φ = Y · (∇α′E1).

As Y is tangent to S, we may compute the right-hand side above by
first projecting ∇α′E1 into the tangent space to S and then taking the dot
product with Y. Earlier we observed that for any tangent vector V , ∇V E1

is perpendicular to E1. Thus, to project this vector into the tangent space to
S, we can take its dot product with E2, and then multiply by the vector E2.
Hence, we will replace the expression ∇α′E1 with (∇α′E1) ·E2 E2. This gives
us

− sinφ∇α′φ = Y · [(∇α′E1) · E2 E2]

= Ω(α′)Y ·E2.

Now, observe that since E1 and E2 are orthogonal, Y is in the tangent
plane defined by these two vectors, and φ is the angle between E1 and Y, it
follows that Y ·E2 = sinφ. Incorporating this into the above equation gives

− sinφ∇α′φ = Ω(α′) sinφ

and, thus, −∇α′φ = Ω(α′). Finally, note that ∇α′φ is precisely the definition
of φ′, giving

−φ′ = Ω(α′).

What is particularly striking now is what happens when we integrate both
sides of this equation. Suppose t, the parameter for α, ranges from a to b.
Then we get

φ(a)− φ(b) =

∫
α

Ω.

In other words, the integral of the 1-formΩ along α is precisely the net amount
of turning done by E1, relative to a parallel vector field. This number is called
the holonomy of α and will be denoted H(α).
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Example 57. Let S be the sphere of radius 1. Then S is parameterized by

Ψ(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ).

Now, suppose α is a circle of constant latitude; that is, α is a loop for
which φ is a constant. In Example 56 we computed Ω = − cosφ dθ. Thus,
going once around the circle α will mean a parallel vector field will have to
rotate in relation to E1 (which happens to be tangent to α) by a total angle
of

H(α) = −
∫
α

Ω =

2π∫
0

cosφ dθ = 2π cosφ.

See Figure 8.6. Note that at the equator, where φ = π
2 and thus cosφ = 0,

parallel vector fields do not rotate at all. Near the poles, parallel vector fields
will rotate close to a full circle (but in opposite directions at each pole.) You
can physically observe this effect with a Foucault Pendulum.

Fig. 8.6. A parallel vector field along a latitude rotates in relation to a tangent to
the latitude.

8.7. We continue the study of surfaces of revolution begun in Problem 8.5.
Recall that such a surface is parameterized by

(f(t) cos θ, f(t) sin θ, g(t)),

where we assume f ′(t)2 + g′(t)2 = 1. Determine how much a parallel vector
field rotates as you go once around a loop with t constant and 0 ≤ θ ≤ 2π.

8.8.

1. Suppose α is the boundary of a disk D in a surface S. Then show that
the the holonomy H(α) is

H(α) =

∫∫
D

K dA.
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It follows that if K is the average Gaussian curvature over the disk D,
then

H(α) = KArea(D).

2. Suppose p is a point of a surface S and Dr is a disk of radius r centered
at p. Conclude that that Gaussian curvature K at p is given by

K = lim
r→0

H(∂Dr)

Area(Dr)
.

8.9. For any vector V tangent to a surface S, let V ⊥ denote the orthogonal
tangent vector obtained by rotating it clockwise (with respect to the orienta-
tion of S) by π

2 . As above, let α be a curve in S. Let T be the surface defined
by α(t)+λα′(t)⊥ (so that α is a curve on T as well). Show that the holonomy
of α as a curve on S is the same as the holonomy of α on T .

8.10. Show that the holonomy around any curve on a cone is the same as the
holonomy around the corresponding curve on the “unrolled” cone.

8.11. Combine the previous two problems to deduce the formula for the ro-
tation of a parallel vector field around the latitude of a sphere by unrolling
the cone that is tangent to it so that it is flat and using basic trigonometry.
See Figure 8.7.

Fig. 8.7. The holonomy around the unrolled cone (right) gives the rotation of a
parallel vector field around a latitude of the sphere (left).

8.12. A geodesic is a parameterized curve on a surface whose tangent vector
field is parallel.
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1. Show that the only circle of latitude on a sphere that is a geodesic is the
equator.

2. Show that the only geodesics in a plane are lines.

8.4 The Gauss–Bonnet Theorem

In this section we prove the fundamental result that ties Differential Geometry
to Topology. Here, S will always denote a compact, closed surface in R

3. For
our purposes, this just means S has finite area and ∂S = ∅. A triangulation of
S is a decomposition into triangles. Each such triangle is called a face. Each
face has three edges and three vertices. We denote the number of Faces, Edges
and Vertices by F,E and V , respectively.

Definition 5. The Euler Characteristic is the number

χ(S) = V − E + F.

It is a basic result of topology that the Euler Characteristic is a homeo-
morphism invariant; that is, if there is a continuous, 1-1 function from S to
S′ with continuous inverse, then χ(S) = χ(S′). It follows that χ(S) does not
depend on the choice of triangulation of S.

8.13. Both the tetrahedron and the octahedron (see Figure 8.8) are homeo-
morphic to the sphere. Confirm that the Euler Characteristic of a sphere is 2
by computing V − E + F for each.

Fig. 8.8. A tetrahedron (left) and an octahedron (right) are homeomorphic to the
sphere.

We now come to the most amazing theorem of Differential Geometry.

Theorem 4 (Gauss–Bonnet).∫∫
S

K dA = 2πχ(S).
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It follows that the total Gaussian curvature over a surface is a homeomor-
phism invariant. So, for example, if you try to increase the curvature of S in
one spot by deforming it in some way, you must also decrease the curvature
elsewhere by the same amount.

Proof. As the Euler characteristic is a homeomorphism invariant, we are free
to choose any triangulation of S to compute it. We pick one so that each edge
is a geodesic segment (see Problem 8.12). Furthermore, we will assume that
each triangle is small enough so that the vector field E1 is roughly parallel on
it. We do not have to be terribly precise about this. All we need is for Figure
8.9 to be close to correct. These are simplifying assumptions only and are not
strictly necessary for the proof.

Recall that the Gaussian curvature K is defined by the equation K =
−dΩ(E1,E2). Hence, −dΩ is a 2-form on S which takes a parallelogram of
area 1 and returns the number K. It follows that the integral of K over the
surface S is equivalent to the integral of the 2-form −dΩ over S. In other
words, ∫∫

S

K dA = −
∫
S

dΩ.

Now, let T be a triangle of the triangulation. Then by the generalized
Stokes’ Theorem we have ∫

T

dΩ =

∫
∂T

Ω.

Let α, β and γ denote the three edges of T , where α goes from the vertex
x to the vertex y, β goes from y to z, and γ goes from z back to x. Then we
have

∫
∂T

Ω =

∫
α∪β∪γ

Ω

=

∫
α

Ω +

∫
β

Ω +

∫
γ

Ω

= [φα(x)− φα(y)] + [φβ(y)− φβ(z)] + [φγ(z)− φγ(x)]

= [φα(x)− φγ(x)] + [φβ(y)− φα(y)] + [φγ(z)− φβ(z)].

Here, φα, φβ and φγ are functions that measure the angles made between
the parallel vector fields α′, β′ and γ′ and the vector field E1. Let ε(v) denote
the exterior angle at vertex v. Inspection of Figure 8.9 reveals that at vertex
y, the difference φβ(y)−φα(y) is −ε(y). Similarly, from Figure 8.9 we can see
that at vertex z, the difference φβ(y)− φα(y) is precisely −ε(z). However, at
x, the difference φγ(z) − φβ(z) is 2π − ε(x). Putting this all together allows
us to rewrite the above equation as
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E1
E1

E1

x

y

z

α

β

γ

+

+

+

−

−

−

α′

γ′

β′

α′

γ′

φγ(z)− φβ(z)

φβ(y)− φα(y)

φβ(y)− φα(y)

β′

Fig. 8.9. At vertex y, the difference between the angle made by β′ and E1 and
the angle made by α′ and E1 is the negative of the exterior angle ε(y). Similarly, at
vertex z, the difference is −ε(z). However, at x, the difference is 2π − ε(x).

∫
∂T

Ω = 2π − ε(x) − ε(y)− ε(z).

It will be more convenient to express this in terms of the interior angles.
Let ι(v) denote the interior angle at v. Then ε(v) = π − ι(v). Thus, we now
have ∫

∂T

Ω = −π + ι(x) + ι(y) + ι(z).

Now, we add over all triangles. Around each vertex we end up adding
all of the interior angles and therefore get 2π. Hence, when we sum over all
triangles, the sum of all interior angles is just 2πV . We also add −π for each
triangle, so this sum is −πF . Putting everything together thus gives us
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S

K dA = −
∫
S

dΩ

= −
F∑
i=1

∫
Ti

dΩ

= −
F∑
i=1

∫
∂Ti

Ω

= πF − 2πV.

Now, notice that every triangle has three edges, but these edges are counted
twice when we sum over all triangles. Hence, E = 3

2F , or 2E = 3F . This allows
us to rewrite the above as

∫∫
S

K dA = πF − 2πV

= −2πF + 3πF − 2πV

= −2πF + 2πE − 2πV

= −2πχ(S).
8.14. Show by direct computation that the integral of the Gaussian curvature
over a sphere of radius R is −4π.
8.15. Derive the formula for the area of a sphere of radius R from the Gauss–
Bonnet Theorem and the fact that the Euler Characteristic of a sphere is
2.

8.16. A geodesic triangle is a triangle in a surface whose sides are geodesics.
Find formulas for the area of geodesic triangles on a sphere of radius 1 and
a pseudo-sphere (whose Gaussian curvature is −1) in terms of their interior
angles. Why can’t you find such a formula for geodesic triangles in a plane?
What can you conclude about the sum of the angles of a geodesic triangle,
compared to π, on a sphere, plane and psuedo-sphere?

8.17. Let α(t) be a unit-speed parameterization of a simple, closed curve in
R

3, where a ≤ t ≤ b. Let T = α′, N be a unit vector pointing in the direction
of α′′, and B = T ×N . Let S be the surface parameterized by

Ψ(t, θ) = α(t) + cos θN(t) + sin θB(t),

where a ≤ t ≤ b and 0 ≤ θ ≤ 2π.

1. Describe S.
2. Show that at the point Ψ(t, θ), the vectors E1 = T (t) and E2 = ∂Ψ

∂θ are
orthogonal unit tangent vectors to S and thus form a frame field.
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3. Compute the Gaussian curvature of S.
4. Compute the holonomy of a loop on S where a ≤ t ≤ b and θ is fixed.
5. Compute the total Gaussian curvature of S by integration.
6. What can you conclude about the Euler Characteristic of S?
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frame field, 123, 135
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Gauss’ Divergence Theorem, 98
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Gauss–Bonnet Theorem, 132
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geodesic, 131, 133

triangle, 135
Godbillon–Vey Invariant, 116
grad, 93
gradient, 10, 71

field, 96
vector, 13

Green’s Theorem, 93
group, 107

helicoid, 127, 128
holonomy, 129–131, 136
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invariant, 132, 133
homotopy invariant, 115
Hopf Invariant, 115, 116, 117
Hopf, Heinz, 115

kernel, 78–81, 116
knot, 112, 113, 116

latitude, 13, 130–132
lattice, 5, 43–47, 86
Legendrian curve, 81
Leibniz rule, 122–124
length form, 113
level curve, 13
lift, 106
line field, 78
line integral, 69, 96
linear algebra, 38, 78
linear function, 1, 5, 67
link, 112–114
linking number, 112, 116
longitude, 13

manifold, 101, 112
Maxwell, 99
Maxwell’s Equations, 98
measure zero, 107
method of moving frames, 123

multilinear, 38, 73, 104
multivariable calculus, 7

neighborhood, 79

octahedron, 132
open set, 77, 103, 105, 106, 108, 110
orientation, 45, 50

induced, 52
of a cell, 83
of a point, 83

orthonormal basis, 123, 125

parallel vector field, 128, 133
parallelepiped, 37–39, 116
parameterized

cell, 90, 91
curve, 16, 21, 53–55, 69, 79, 89, 95,

113, 119–122, 128, 131
line, 16
manifold, 108
region, 6, 21, 53, 56, 60, 62, 63, 75,

83, 88, 97, 104
surface, 19, 41, 44, 46, 49, 52, 53,

95–97, 127, 130, 135
partition of unity, 109–110
plane field, 77–81, 116
pseudo-sphere, 127, 135
pull-back, 101, 108, 109, 113–115

Reeb Foliation, 80, 82
Riemann Sum, 3, 5, 6, 46, 48, 87

scalar, 32, 34, 35
second partial, 8
signed area, 30, 33
skew-symmetric, 31, 33
spherical coordinates, 14
Stokes’ Theorem, 86

classical, 97
generalized, 87, 103, 133

substitution rule, 57
surface

area, 1, 67, 67, 68
integral, 68, 98
of revolution, 127, 130

tangent
cone, 131
line, 8, 10–13, 17, 25, 26, 74, 108
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131

vector field, 128, 129, 131, 135

tetrahedron, 132

topology, 103, 105, 107, 112, 132

algebraic, 112, 115

differential, 109

torus, 7, 80, 82, 107

tractricoid, 127

tractrix, 127
transformation, 107
triangulation, 132, 133
trigonometric substitution, 57

u-substitution, 57

vector calculus, 35, 92
vector field, 42, 71, 73, 93–99, 119, 120,
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volume form, 39, 57
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Solutions to Selected Exercises

Chapter 2

2.2

1. x+ y
2.
√
4− x2 − y2

3.
√
1− (2− x2 − y2)2

4.
√
1− (y − x)2

2.3

1. 21
2. 3
3. 16
4. 2

5 (33−
√
2
5 −√3

5
)

2.4

1. ∂f
∂x = 2xy3, ∂f

∂y = 3x2y2

2. ∂f
∂x = 2xy3 cos(x2y3), ∂f

∂y = 3x2y2 cos(x2y3)

3. ∂f
∂x = sin(xy) + xy cos(xy), ∂f

∂y = x2 cos(xy)

2.7 −4√2

2.8 −2
√
5

5

2.9 1
2 + π

4

2.10

1.
〈
y2, 2xy

〉
2. 69
3.
〈

9
15 ,

12
15

〉
4. 15
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2.11 5

2.13
r = ρ sinφ ρ =

√
r2 + z2

θ = θ θ = θ
z = ρ cosφ φ = tan−1

(
r
z

)
2.15

1. z =
√
x2 + y2, z = r, φ = π

4
2. y = 0, θ = 0, θ = 0
3. z = 0, z = 0, φ = π

2
4. z = x+ y, z = r(sin θ + cos θ), cotφ = sin θ + cos θ

5. z = (x2 + y2)
3
2 , z = r

3
2 , z = (ρ sinφ)

3
2

2.16

1. S is the top half of a “two-sheeted hyperboloid.” You can see it as the
surface obtained from the graph of z =

√
x2 + 1 (in the xz-plane) by

rotating it around the z-axis.
2. z =

√
x2 + y2 + 1

2.17

1. b
a

2. They are parallel. The one parameterized by φ can be obtained from the
other by shifting c units to the right and d units up.

2.19

1. (cos2 θ, cos θ sin θ)
2. (x, sin x)

2.20 φ(t) = (t, 4t− 3), 1 ≤ t ≤ 2 (There are many other answers.)

2.22

1. (t2, t)
2. 〈4, 1〉
2.24

1. The x-axis
2. The z-axis
3. The line y = z and x = 0
4. The line x = y = z

2.25 φ(t) = (t, 1− t,
√
1− 2t+ 2t2)

2.26

1. φ(θ) = (2 cos θ, 2 sin θ, 4), 0 ≤ θ ≤ 2π
2. ψ(t) = (t,±√4− t2, 4), −2 ≤ t ≤ 2

Solutions to Selected Exercises
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2.27 Ψ(θ) = (sin θ cos θ, sin2 θ, cos θ)

2.28

1. φ(u, z) = (u, u, z)
2. φ(r, θ) = (r cos θ, r sin θ, r2)
3. ψ(θ, φ) = (φ sin φ cos θ, φ sinφ sin θ, φ cosφ)
4. ψ(θ, φ) = (cosφ sin φ cos θ, cosφ sinφ sin θ, cosφ cosφ)
5. φ(θ, z) = (cos2 θ, sin θ cos θ, z)
6. φ(r, θ) = (r cos θ, r sin θ,

√
r2 − 1)

7. φ(r, θ) = (r cos θ, r sin θ,
√
r2 + 1)

8. φ(θ, z) = (θ cos θ, θ sin θ, z)

2.29 φ(x, y) = (x, y, f(x, y))

2.30

1. Ψ(x, y) = (x, y, 4 − x2 − y2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
2. Ψ(r, θ) = (r cos θ, r sin θ, 4− r2), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

2.32 ψ(θ, φ) = (2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ), 0 ≤ θ ≤ 2π, π
4 ≤ φ ≤ π

2

2.34 〈2, 0, 4〉, 〈0, 3, 2〉
2.36

1. ψ(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ), 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π,
0 ≤ φ ≤ π

2. ψ(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ), 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ π
2 ,

0 ≤ φ ≤ π
2

3. ψ(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ), 0 ≤ ρ ≤ 1, π ≤ θ ≤ 3π
2 ,

π
2 ≤ φ ≤ π

2.37

1. φ(r, θ, z) = (r cos θ, r sin θ, z), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1
2. φ(r, θ, z) = (r cos θ, r sin θ, z), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 2

2.38

φ(t, θ) = ([tf2(θ) + (1 − t)f1(θ)] cos θ, [tf2(θ) + (1− t)f1(θ)] sin θ),

0 ≤ t ≤ 1, a ≤ θ ≤ b

2.39 φ(r, θ) = (3r cos θ, 2r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

Chapter 3

3.2

1. −1, 4, 10

Solutions to Selected Exercises
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2. dy = −4dx
3.3

1. 3dx
2. 1

2dy
3. 3dx+ 1

2dy
4. 8dx+ 6dy

3.5

1. ω(V1) = −8, ν(V1) = 1, ω(V2) = −1 and ν(V2) = 2.
2. −15
3. 5

3.15 −127
3.16 c1 = −11, c2 = 4 and c3 = 3

3.17

1. 2dx ∧ dy
2. dx ∧ (dy + dz)
3. dx ∧ (2dy + dz)
4. (dx + 3dz) ∧ (dy + 4dz)

3.27 4

3.28 8

3.31 252

3.32

1. −87
2. −29
3. 5

3.33 dx ∧ dy ∧ dz

3.34

1. −2dx ∧ dy ∧ dz
2. −2
3.36

1. z(x− y)dz ∧ dx+ z(x+ y)dz ∧ dy
2. −4dx ∧ dy ∧ dz

Solutions to Selected Exercises



149

Chapter 4

4.1

1. 〈2, 3, 1〉,〈2, 3, 2〉
2. 6dx ∧ dy + 3dy ∧ dz − 2dx ∧ dz
3. 5
4. x2yz2 − x5z2 − y3 + x3y2

4.2 1
6

4.3

1. a) 4π
b) −4π (Don’t worry that the sign is not the same as in the previous part.

Right now you really don’t have enough information yet to properly
tell what the right sign should be.)

2. 4π
3. 4

√
2π

4.4 1
3

4.5

1. − 17
12

2. − 29
6

4.6 1
8

4.7 64

4.9 3π
5

4.10 1
6

4.11 14π
3

4.12

1. Opposite orientation
2. Same orientation
3. Does not determine an orientation

4.13 8
3

4.14 16

4.15 16

4.16 1
5

4.17 2
3 cos 6− 3

2 sin 4− 2
3

4.18 1
6

4.19 4

Solutions to Selected Exercises
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4.20 32
3

4.22 2

4.23 6π

4.25 1
2

4.26 14
3

4.27 −7π
6

4.28 π
3

(
23/2 − 1

)
4.29 2π

4.30 2π
3

4.31

1. 1
3

2. π
4

Chapter 5

5.1

1. ∇V ω(W ) = −62, ∇Wω(V ) = 4
2. −66
5.3 dω = (−2x− 1)dx ∧ dy

5.6 d(x2y dx ∧ dy + y2z dy ∧ dz) = 0

5.7 −1, 1, 1
5.11 (3x4y2 − 4xy6z)dx ∧ dy ∧ dz

5.12

1. 2x sin(y − z)dx+ x2 cos(y − z)dy − x2 cos(y − z)dz
2. (− sinx− cos y)dx ∧ dy
3. (z − x)dx ∧ dy + yz dx ∧ dz + x(z − 1)dy ∧ dz
4. (3x2z − 2xy)dx ∧ dy − (x3 + 1)dy ∧ dz
5. (2xz + z2)dx ∧ dy ∧ dz
6. (2x+ 2y)dx ∧ dy ∧ dz
7. (y2 − 9z8)dx ∧ dy ∧ dz
8. 0

5.13
(

∂f
∂x + ∂g

∂y + ∂h
∂z

)
dx ∧ dy ∧ dz

5.14

1. x dy

Solutions to Selected Exercises
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2. x dy ∧ dz
3. xyz
4. xy2z2

5. sin(xy2)dx+ sin(xy2)dy

Chapter 6

6.1

1. 2, −2
2. 1

6.4 A circle of radius 1, centered on the z-axis, and one unit above the
xy-plane. The orientation is in the direction of increasing θ.

6.12

1. 32
2. 1

6.13 1
2

6.14 2

6.15 27

6.16 35
3

6.17

1. 0
2.

∫
C1

ω =
∫
C2

ω = 1
3

3. − 2
3

6.18

1. 0
2. 0
3. If L,R, T and B represent the 1-cells that are the left, right, top and

bottom of Q, respectively, then∫
∂Q

ω =

∫
(R−L)−(T−B)

ω =

∫
R

ω−
∫
L

ω−
∫
T

ω+

∫
B

ω = 24−0−28
1

2
+4

1

2
= 0

4. Opposite
5. 4 1

2
6. 4 1

2
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6.19 8π

6.20 6π

6.21 2
3

(
e− 1

e

)
6.23 π

6.24 45π
4

6.28 0

6.29

1. 〈1, 0, 0〉
2. α = dy ∧ dz
3. − 2

3

6.30 4
3

Chapter 7

7.1 −b3c da ∧ dc+ (a2 − ab2c)db ∧ dc

7.8 φ∗τ = − b
a2+b2 da+

a
a2+b2 db. This is the form on R

2− (0, 0) that gives the
winding number around the origin, so τ measures how many times a curve
wraps around the cylinder L.

7.9 dτ ′ = 2 dx ∧ dy and dτ = 0

Chapter 8

8.4 A geometric argument is easiest (and most insightful) here. The 1-form dθ
projects vectors onto the vector∇θ, which points in the direction of increasing
θ. The vector ∂Ψ

∂θ is found by starting at a point on the surface and moving in
the direction of increasing θ. This is precisely the same as the vector∇θ at that
point, so the projection is 1. Similarly, the 1-form dφ projects vectors onto∇φ.
However, since ∇θ and ∇φ are orthogonal, we have dφ

(
∂Ψ
∂θ

)
= dφ(∇θ) = 0.

8.5

1. A frame field is given by

E1 =
1

f

∂Ψ

∂θ
= 〈− sin θ, cos θ, 0〉,

E2 =
∂Ψ

∂t
= 〈f ′(t) cos θ, f ′(t) sin θ, g′(t)〉.

Thus,

Solutions to Selected Exercises
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Ω = dE1 · E2

= 〈− cos θdθ,− sin θdθ, 0〉 · 〈f ′(t) cos θ, f ′(t) sin θ, g′(t)〉
= −f ′(t)dθ.

Thus,
−dΩ = f ′′(t)dt ∧ dθ.

The Gaussian curvature is thus

K = −dΩ(E1,E2)

= f ′′dt ∧ dθ(E1,E2)

= f ′′
∣∣∣∣dt(E1) dθ(E1)
dt(E2) dθ(E2)

∣∣∣∣
= f ′′

∣∣∣∣0 1
f

1 0

∣∣∣∣
= −f ′′

f
.

2. A cylinder of radius R is parameterized by (R cos θ,R sin θ, t), so f(t) = R

and g(t) = t. Hence, K = − f ′′

f = 0
R = 0.

3. A right-angled cone is parameterized by (
√
2
2 t cos θ,

√
2
2 t sin θ,

√
2
2 t), so

f(t) = g(t) =
√
2
2 t. Hence, K = − f ′′

f = 0√
2

2 t
= 0.

4. For a sphere of radius R, f(t) = R cos t
R and g(t) = R sin t

R . So K =

− f ′′
f = −− 1

R cos t
R

R cos t
R

= 1
R2 .

5. If f(t) = et, then K = − f ′′

f = − et

et = −1.
6. If f(t) =

√
1 + t2, then K = − f ′′

f = − (t2+1)−
3
2√

1+t2
= − 1

1+t2 .

8.6

1. A frame field is given by

E1 =
∂Ψ

∂t
= 〈cos θ, sin θ, 0〉,

E2 =
1√

t2 + 1

∂Ψ

∂θ
=

1√
t2 + 1

〈−t sin θ, t cos θ, 1〉.

Thus,

Ω = dE1 · E2

= 〈− sin θdθ, cos θdθ, 0〉 · 1√
t2 + 1

〈−t sin θ, t cos θ, 1〉

=
t√

t2 + 1
dθ.
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Thus,
−dΩ = −(t2 + 1)−

3
2 dt ∧ dθ.

The Gaussian curvature is thus

K = −dΩ(E1,E2)

= −(t2 + 1)−
3
2 dt ∧ dθ(E1,E2)

= −(t2 + 1)−
3
2

∣∣∣∣dt(E1) dθ(E1)
dt(E2) dθ(E2)

∣∣∣∣
= −(t2 + 1)−

3
2

∣∣∣∣1 0
0 1√

t2+1

∣∣∣∣
= − 1

t2 + 1
.

2. Let Ψ be the given parameterization of the helicoid. As Ψ is one-to-one,
it has an inverse, Ψ−1. Now, let Φ denote the parameterization

(
√
1 + t2 cos θ,

√
1 + t2 sin θ, sinh−1 t)

of the catenoid. Then ΦΨ−1 is the desired (many-to-one) function from the
helicoid to the catenoid, sending points at which the Gaussian curvature
is − 1

t2+1 to points with the same curvature.

8.7 According to the solution to Problem 8.5 given above, Ω = −f ′(t)dθ.
Thus, the holonomy is given by

H(α) =

∫
α

Ω =

2π∫
0

−f ′(t)dθ = −2πf ′(t).

8.8 By the generalized Stokes’ Theorem,

H(α) =

∫
α

Ω =

∫
∂D

Ω =

∫
D

dΩ =

∫∫
D

K dA.

8.9 Choose a frame field on both S and T so that at each point of α, E1 =
α′(t) and E2 = α′(t)⊥. Then, on either surface,

H(α) =

∫
α

Ω =

∫
Ω(α′(t)) dt.

By definition, Ω(α′) = (∇α′E1) · E2. Since E1 and E2 are the same on both
surfaces at points of α, Ω(α′) must be the same and, thus, H(α) is the same.

8.10 Thinking of the cone as a surface of revolution of a unit-speed curve,
we get a parameterization given by Ψ(t, θ) = (at cos θ, at sin θ, bt), where√
a2 + b2 = 1 and 0 ≤ θ ≤ 2π. A parameterization of the unrolled cone
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in the plane is given by Φ(t, θ) = (t cos aθ, t sin aθ), where 0 ≤ θ ≤ 2π. We
compute the 1-form Ω for the cone first. A frame field is given by

E1 =
∂Ψ

∂t
= 〈a cos θ, a sin θ, b〉

E2 =
1

at

∂Ψ

∂θ
= 〈− sin θ, cos θ, 0〉

Then

Ω = dE1 · E2 = 〈−a sin θdθ, a cos θdθ, 0〉 · 〈− sin θ, cos θ, 0〉 = atdθ.

Now, the unrolled cone: A frame field is given by

F1 =
∂Φ

∂t
= 〈cos aθ, sin aθ〉,

F2 =
1

at

∂Φ

∂θ
= 〈− sin aθ, cos aθ〉.

So, in this case,

Ω = dF1 ·F2 = 〈−a sinaθdθ, a cos aθdθ〉 · 〈− sin aθ, cos aθ〉 = atdθ.

As these 1-forms are the same, so must be the holonomy on each surface.

8.16 Let α, β and γ denote the interior angles. On a sphere, A = α+β+γ−π,
and hence the sum of the interior angles must always be bigger than π. On a
pseudo-sphere, A = π− (α+β+ γ) and thus the angle sum must be less than
π.

8.17

1. S is a tube of radius 1 around α.
2. As α is unit speed, α′ · α′ = 1. Differentiating this equation gives us

α′ · α′′ = 0 and thus α′ is orthogonal to α′′, and thus, also orthogonal to
N . E2 = ∂Ψ

∂θ = − sin θN(t) + cos θB(t). Since T is orthognonal to both N
and B, the result follows.

3. dE1 = T ′(t)dt = α′′(t)dt = κN(t)dt, where κ(t) = |α′′(t)|. Thus,

Ω = dE1 ·E2 = κN(t)dt · (− sin θN(t) + cos θB(t)) = −κ sin θdt,

and, hence,
−dΩ = κ cos θdθ ∧ dt.

Finally,

K = −dΩ(E1,E2) = κ cos θ

∣∣∣∣0 1
1 0

∣∣∣∣ = −κ cos θ.
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4. H(α) =
∫
α

Ω =
b∫
a

−κ sin θdt = − sin θ
b∫
a

κdt. The quantity
b∫
a

κdt is called

the total curvature of α. (When α is a plane curve, it can be shown that
its total curvature is precisely 2π.)

5.
∫∫
S

K dA =
b∫
a

2π∫
0

−κ cos θ dθ dt = 0

6. χ(S) = 0
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