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Matrices

A matrix is a two-dimensional array of numbers. Sometimes it is natural to classify
data in two ways—for example, you might classify your music collection by media
(MP3 or CD) or by type (folk, heavy metal, . . . ); a realtor might classify her listings
by area or by price. Matrices are useful for representing this type of data. Matrices
arise in many parts of mathematics; usually they are studied as part of linear algebra.

There are many applications of matrices in discrete mathematics. They are par-
ticularly important in the study of relations and graphs, so we have included a section
that briefly introduces those applications. Many other properties of graphs and rela-
tions can be deduced using further algebraic properties of matrices.

8.1 Vectors and Matrices

Vectors

A vector is an ordered finite set of numbers. We say real vector if all the elements
are real numbers; we can also talk about integer vectors, and so on. If it is required
that all elements belong to some number set, those numbers are called the scalars for
those vectors.

The number of elements in a vector is called its dimension or length. The set of all
real vectors of dimension n will be denoted R

n. The set R2 is familiar from geometry
because the coordinates of points in the plane are just members of R2. Similarly, R3

is the set of coordinates of points in three-dimensional space.

When we talk about the elements of a vector and specify their positions we usu-
ally call them entries. The usual notation for a vector is to denote its ith entry by
subscript i. The vector v has entries v1, v2, . . . , and we write v = (v1, v2, . . .).
Two vectors are equal if and only if they are equal in every position (componentwise
equal): u = v if and only if ui = vi for every i. It follows that equal vectors must be
of the same dimension.
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In physics or in geometry we encounter vectors as directed line segments. If
you prefer to think of them in this way, then the vector (1, 2, 1) corresponds to the
directed line from the origin to point (1, 2, 1) in three-dimensional space.

There are two standard operations on vectors: one may multiply by a scalar, and
one may add vectors. They are defined as follows.

If v = (v1, v2, . . . , vn), and k is any scalar, then kv = (kv1, kv2, . . . , kvn). If
u = (u1, u2, . . . , un), and v = (v1, v2, . . . , vn), then

u + v = (
(u1 + v1), (u2 + v2), . . . , (un + vn)

)
.

If u and v are vectors of different lengths, then u + v is not defined.

It is easy to see that vector addition satisfies the commutative and associative
laws: if u and v are any two vectors of the same length, then

u + v = v + u,

and any three vectors t,u, and v of equal length satisfy

t + (u + v) = (t + u) + v.

We usually omit brackets when writing the sum of three or more vectors, so this
common value is simply denoted t + u + v.

There are also two laws involving multiplication by a scalar. If a and b are any
numbers and u and v are any two equal-length vectors, then

a(bu) = (ab)u,

and
a(u + v) = (au) + (av).

Again we follow the same convention as ordinary arithmetic and omit brackets, writ-
ing the last expression as simply au + av.

Sample Problem 8.1. Calculate 3(1,−1, 3) and (2, 2) + (−1, 3).

Solution. 3(1,−1, 3) = (3,−3, 9); (2, 2) + (−1, 3) = (1, 5).

Practice Exercise. Calculate 4(2, 0,−1) + (1, 4,−3).

Subtraction is defined in the natural way: u − v = ((u1 − v1), (u2 − v2), . . . ,

(un − vn)). If we write −v = (−v1,−v2, . . . ,−vn), then u − v = u + (−v), and
moreover −v = (−1)v.

It is natural to define a zero vector 0 = (0, 0, . . . , 0) (in fact, a family of zero
vectors, one for each possible dimension). Then v + (−v) = 0, as one would expect.
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Lines; the Scalar Product

The equation of a straight line in coordinate geometry can be written in the form

ax + by = c,

where a, b, and c are numbers and x, y are the usual variables. The equation involves
two vectors, the vector (a, b) of coefficients and the vector (x, y) of variables. For
this reason it is natural to associate ax + by with the two vectors (a, b) and (x, y).

We define the scalar product of two vectors u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) to be

u · v = (u1v1 + u2v2 + · · · + unvn) =
n∑

k=1

ukvk.

This is also called the dot product of the two vectors. In this notation a typical straight
line in two-dimensional geometry has an equation of the form

a · x = c,

where a is some vector of two real numbers, x is the vector of variables (x, y), and
c is a constant. If a and x are of length three, then a · x = c can be the equation of a
plane in three-dimensional space.

Sample Problem 8.2. Suppose t = (1, 2, 3),u = (−1, 3, 0), and v = (2,−2, 2).
Calculate u · v, (t − u) · v, and 3(v · t).

Solution. u · v = −2 − 6 + 0 = −8; (t − u) · v = (2,−1, 3) · (2,−2, 2) = 4 +
2 + 6 = 12; 3(v · t) = 3 × 8 = 24.

Practice Exercise. Calculate u · t and (2u − 3v) · t .

Sample Problem 8.3. Suppose (x, 3) = (4, x + y). What are x and y?

Solution. Two vectors are equal if and only if their components are equal. So
we have the two equations x = 4 and 3 = x + y. So x = 4 and y = −1.

Practice Exercise. Suppose (2x, 2) = (y, x). What are x and y?

It is not hard to see that the scalar product is commutative. There is no need to
discuss the associative law because scalar products involving three vectors are not
defined. For example, consider t · (u · v). Since (u · v) is a scalar, not a vector, we
cannot calculate its dot product with anything.



266 8 Matrices

Matrices

Just as one linear equation can be written as one vector equation, a set of linear
equations can be written as a set of vector equations. For example, the equations

2x + y = 3,

3x − 2y = 1,

can be written as

(
(2, 1) · (x, y), (3,−2) · (x, y)

) = (3, 1),

or, a little easier to read,
[

(2, 1) · (x, y)

(3,−2) · (x, y)

]
=

[
3
1

]
.

This can be seen as the two-dimensional array of numbers
[

2 1
3 −2

]
,

acting on the vector (x, y) to produce the vector (3, 1). We shall call this array a
matrix. We usually denote matrices by capital letters, to distinguish them from scalars
(numbers).

Just as a vector generalizes a number, a matrix generalizes a vector. A matrix is
any rectangular (two-dimensional) array of numbers. A typical matrix is

M =
⎡

⎣
1 −1 4 3
2 3 −4 1
4 −4 4 8

⎤

⎦ .

This example is a 3 × 4 real matrix (and it is, in fact, a 3 × 4 integer matrix). We call
3×4 the shape or size of the matrix, and the two numbers 3 and 4 are its dimensions.

A vector can be interpreted as a matrix with one of its dimensions 1. A 1 × n

matrix is called a row vector and an n × 1 matrix is called a column vector. An
m × n matrix can be viewed as a vertical stack of m row vectors, and those vectors
are called the rows of the matrix. Alternatively, we can see it as a horizontal array of
column vectors, called the columns of the matrix. Our example M can be viewed as

⎡

⎣
(1 −1 4 3)

(2 3 −4 1)

(4 −4 4 8)

⎤

⎦ or

⎡

⎣

⎡

⎣
1
2
4

⎤

⎦

⎡

⎣
−1
3

−4

⎤

⎦

⎡

⎣
4

−4
4

⎤

⎦

⎡

⎣
3
1
8

⎤

⎦

⎤

⎦ .

The element in the ith row and j th column is called the (i, j) element of the matrix.
It is standard to denote the (i, j) element of a matrix A by aij , and write A = (aij ).



8.1 Vectors and Matrices 267

This is particularly useful when a formula is given for aij . For example, we might
refer to the 3 × 3 matrix whose (i, j) element equals i + j , namely

⎡

⎣
2 3 4
3 4 5
4 5 6

⎤

⎦ ,

as “the 3 × 3 matrix (i + j).”

Sums and Products

The sum of two matrices and the product of a scalar with a matrix are defined
analogously to the vector case. We again define negatives by −A = (−1)A. Ad-
dition satisfies the commutative and associative laws, and the scalar product laws
a(bC) = (ab)C and a(C + D) = aC + aD.

Sample Problem 8.4. Suppose A,B, and C are the matrices

A =
[

1 3
−1 2

]
, B =

[−2 0
1 4

]
, C =

[−1 4 3
−1 −2 −1

]
.

Find A + B, 2A − 3B, 3A + C, −C.

Solution.

A + B =
[−1 3

0 6

]
, 2A − 3B =

[−4 6
−5 −8

]
,

−C =
[

1 −4 −3
1 2 1

]
.

3A + C is not defined, as A and C are of different sizes.

Practice Exercise. Calculate −A, 3A − B, B + C.

We define the product of two matrices as a generalization of the scalar product
of vectors. Suppose the rows of the matrix A are a1, a2, . . . , and the columns of the
matrix B are b1, b2, . . . . Then AB is the matrix with (i, j) entry ai ·bj . These entries
will only exist if the number of columns of A equals the number of rows of A, so this
is a necessary condition for the product AB to exist.

Sample Problem 8.5. Suppose

A =
[

1 2
1 −1

]
, B =

[−1 1
2 0

]
.

Find AB and BA.
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Solution. First we find AB. The rows of A are a1 = (1, 2) and a2 = (1,−1).
The columns of B are b1 = (−1, 2) and b2 = (1, 0). (Since we are treating them
as vectors, it does not matter whether we write them as row or column vectors.)
Then a1 · b1 = −1 + 4 = 3, and similarly a1 · b2 = 1, a2 · b1 = −3 and
a2 · b2 = 1. So

AB =
[

a1 · b1 a1 · b2
a2 · b1 a2 · b2

]
=

[
3 1

−3 1

]
.

Similarly we find

BA =
[

0 −3
2 4

]
.

The entries in AB will only exist if the number of columns in A equals the num-
ber of rows in B. For example, if A were 3 × 2 and B were 4 × 4, the product will
not exist. In general, we can say the following.

Theorem 52. Suppose A is an m × n matrix and B is an r × s matrix. If n = r , then
AB exists and is an n × s matrix. If n �= r , then AB does not exist.

If A were 2 × 3 and B were 3 × 4, then AB would be a 2 × 4 matrix but BA

would not exist. It is also possible that AB and BA might both exist, but might be of
different shapes. For example, if A and B have shapes 2 × 3 and 3 × 2, respectively,
then AB is 2 × 2 and BA is 3 × 3. And we observe from the preceding example that,
even when AB and BA both exist and are the same shape, they need not be equal.
There is no commutative law for matrix multiplication.

We shall look at some more properties of matrix multiplication in the next sec-
tion.

Transposition

If A is an m × n matrix, then we can form an n × m matrix whose (i, j) entry equals
the (j, i) entry of A. This new matrix is called the transpose of A, and written AT .
A matrix A is called symmetric if A = AT .

Sample Problem 8.6. What is the transpose of the matrix A from Sample Prob-
lem 8.5?

Solution.

AT =
[

1 1
2 −1

]
.

Practice Exercise. What is the transpose of the matrix B from Sample Prob-
lem 8.5?
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The transposition symbol is applied only to the matrix nearest to it. For example,
the expression ABT means A(BT ), not (AB)T .

Exercises 8.1

1. Verify that real matrices satisfy the commutative and associative laws.

Carry out the vector computations in Exercises 2 to 23.

2. 4(2,−2). 3. −(2,−2).

4. 2(5, 1,−1). 5. 3(3, 6, 1).

6. (2, 3) + (1, 4). 7. 3(2, 3) − 2(1, 4).

8. (1, 0, 3) + 3(4, 4, 4). 9. 2(−1,−1, 2) − 2(2,−1,−1).

10. 3(−1, 2, 3) + 2(1, 1,−1). 11. 3(1,−2, 2) + 2(2, 3,−1).

12. 3(1, 0, 1, 0) − 4(2, 0,−1,−1). 13. 2(4,−1, 2, 3) − 3(1, 6,−2,−3).

14. (2, 3) · (1,−1). 15. (1,−1) · (2, 3).

16. (1, 1,−1) · (2, 0, 3). 17. (1, 3, 3) · (1, 0,−2).

18. (4, 2, 1) · (1, 2, 4). 19. (1,−1,−2) · (3, 2,−1).

20. (0, 2, 1, 1) · (3, 4, 2, 1). 21. (−1, 2,−1, 3) · (2, 4,−3,−1).

22. (3,−1, 3, 2) · (−1,−1, 2, 1). 23. (1,−2, 5, 2) · (2, 2, 3, 1).

A is a 2 × 4 matrix; B is 2 × 4; C is 1 × 3; D is 4 × 2; E is 3 × 4; F is 4 × 3; G is
4 × 4. In Exercises 24 to 41, say whether the indicated matrix exists. If it does exist,
what is its shape?

24. A + B. 25. 2A − B. 26. CE.

27. AD. 28. D(A + B). 29. CF .

30. FT . 31. CFT . 32. 2FC.

33. DA. 34. AD + DA. 35. BFE.

36. GG. 37. FF . 38. DA + 3G.

39. CEF . 40. CFE. 41. AGF .

42. Suppose a, b are any two real numbers and C,D are any two real matrices of
the same shape. Prove the following equalities.

(i) a(bC) = (ab)C.

(ii) a(C + D) = aC + aD.

(iii) (a + b)C = aC + bC.

In Exercises 43 to 48, carry out the matrix computations.
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43.
[

4 −1
−2 0

]
+

[
3 −1

−1 2

]
. 44. 3

[
1 −1 −1

−2 0 10

]
.

45. 3

[
10 −1
2 7

]
− 2

[
1 −1

−1 1

]
. 46.

[
3 −4
3 0

] [
6 −2

−7 4

]
.

47.
[

2 0 1
3 −1 1

] ⎡

⎣
2 −1
1 −1

−1 1

⎤

⎦. 48.

⎡

⎣
2 −1
1 −1

−1 1

⎤

⎦
[

2 0 1
3 −1 1

]
.

In Exercises 49 to 64,

A =
[

1 −1
−2 3

]
, B =

[
3 0 −1

−1 4 4

]
, C =

[
6
2

]
,

D =
⎡

⎣
−1 1 −1
1 3 3

−2 2 0

⎤

⎦ , E =
⎡

⎣
1 −1
1 0
2 2

⎤

⎦ , F =
⎡

⎣
2

−1
2

⎤

⎦ ,

G = [
2 1 −1

]
, H = [

2 2
]
, K = [−1 2

]
.

Carry out the matrix computations, or explain why they are impossible.

49. 2A. 50. BD. 51. AC. 52. EF .

53. BF . 54. BT . 55. 2H − 3K . 56. HA + 2K .

57. CF . 58. D − EB. 59. BG. 60. KB.

61. GD. 62. CET . 63. EK + KB. 64. 2F + G.

65. Suppose [
x −1

−1 2

]
=

[
y + 1 −1
−1 x

]
.

What are the values of x and y?

66. Find x, y, and z so that
[

x − 2 3 z

y x 2y

]
=

[
y z 3
3z y + 2 6z

]
.

67. A and B are any two matrices such that AB exists. Prove that BT AT exists and
that

BT AT = (AB)T .
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8.2 Properties of the Matrix Product

Identity Elements

Suppose A is an r ×s matrix. Adding 0 to every entry will not change A. So the r ×s

matrix with every entry 0 will act like a zero element, or additive identity, for A. We
shall denote this matrix by Or,s and call it a zero matrix. Usually the subscripts can
be omitted because the shape can be deduced from the context. For any matrix A, the
appropriate zero matrix satisfies

A + O = O + A = A and A + (−A) = (−A) + A = O.

Writing −A for (−1)A is an extension of the notation we used for zero vectors, and
is consistent with the usual arithmetical notations for zero and negatives.

The zero matrix also behaves under multiplication the way you would expect:
provided zero matrices of appropriate size are used,

OA = O and AO = O.

This is not just one rule, but an infinite set of rules. If we write in the subscripts, then
the full statement is as follows.

If A is any r×s matrix, then Om,rA = Om,s for any positive integer m, and AOs,n =
Or,n for any positive integer n.

There are also multiplicative identity elements. We define In to be the n×n matrix
with its (1, 1), (2, 2), . . . , (n, n) entries 1 and all other entries 0. For example,

I3 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

If A is any r × s matrix, then IrA = A = AIs .

We call In an identity matrix of order n.

Commutativity

We saw that the commutative law does not hold for matrices in general. Even if AB

and BA are both defined and are the same size, it is possible for the two products
to be different (see Sample Problem 8.5). On the other hand, some pairs of matrices
have the same product in either order. If AB = BA we say that A and B commute,
or A commutes with B. For example, any 3 × 3 matrix commutes with I3. There are
many other examples.
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Sample Problem 8.7. Show that the following matrices commute.

A =
[

1 −2
1 −1

]
, B =

[
1 2

−1 3

]
.

Solution.

AB = BA =
[

3 −4
2 −1

]
.

Practice Exercise. Show that the following matrices commute.

C =
[

3 1
−1 1

]
, D =

[
2 1

−1 0

]
.

Suppose A has shape m × n and B is r × s. If both AB and BA exist, then
necessarily n = r and m = s; then AB is m × m and BA is n × n. In order for A

and B to commute, we must have m = n. Both A and B must have the same number
of rows as columns. Such a matrix is called square, and the common dimension is
called its order.

If A is square, we can evaluate the product AA. We call this A squared, and write
it as A2, just as with powers of numbers. We define other positive integer powers
similarly: A3 = AAA = AA2, and in general An+1 = AAn.

Inverses

If the matrices A and B satisfy AB = BA = I , we say that B is an inverse of A.

In the real numbers, everything but 0 has an inverse. In the integers, only 1 and
−1 have integer inverses, but we know that we can obtain inverses of other nonzero
integers by going to the rational numbers. The situation is obviously more compli-
cated for matrices because only a square matrix can have an inverse. Moreover, there
are nonzero square matrices without inverses, even if we restrict our attention to the
2 × 2 case.

Sample Problem 8.8. Show that the matrix

A =
[

2 1
2 1

]

has no inverse.

Solution. Suppose A has inverse

B =
[

x y

z t

]
.
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Then AB = I , so
[

2 1
2 1

] [
x y

z t

]
=

[
2x + z 2y + t

2x + z 2y + t

]
=

[
1 0
0 1

]
.

The (1, 1) entries of the two matrices must be equal, so 2x +z = 1; but the (2, 1)

entries must also be equal, so 2x + z = 0. This is impossible.

Practice Exercise. Show that the matrices

C =
[

1 0
0 0

]
and D =

[
0 1
0 0

]

have no inverses.

A matrix that has an inverse will be called invertible or nonsingular; a square
matrix without an inverse is called singular.

We used the phrase “an inverse” above. However, we shall prove that, if a matrix
has an inverse, it is unique.

Theorem 53. If matrices A, B, C satisfy AB = BA = I and AC = CA = I , then
B = C.

Proof. Suppose A,B, and C satisfy the given equations. Then

C = CI = C(AB) = (CA)B = IB = B,

so B and C are equal. �
In fact, it can be shown that either of the conditions AB = I or BA = I is

enough to determine that B is the inverse of A. However, this requires more algebra
than we shall cover in this book.

Sample Problem 8.9. Suppose

A =
[

3 2
4 3

]
, B =

[
2 1
1 1

]
.

What is the inverse of A if it exists?

Solution. Suppose the inverse is

C =
[

x z

y t

]
.

Then AC = I means
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[

3 2
4 3

] [
x z

y t

]
=

[
1 0
0 1

]
,

which is equivalent to the four equations

3x + 2y = 1, 3z + 2t = 0,

4x + 3y = 0, 4z + 3t = 1.

The left-hand pair of equations is easily solved to give x = 3 and y = −4, while
the right-hand pair gives z = −2 and t = 3. So the inverse exists, and is

A−1 = C =
[

3 −2
−4 3

]
.

Practice Exercise. What is the inverse of B if it exists?

The above procedure can be used to invert square matrices of any order; if there
is no inverse, then the equations will have no solution. In the next section we shall
show how to reduce the number of computations required.

The usual notation for the inverse of A, if it exists, is A−1. If we define A0 = I

whenever A is square, then the powers of matrices satisfy the usual index laws

AmAn = Am+n,
(
Am

)n = Amn,

for all nonnegative integers m and n, and for negative values also provided that A−1

exists. If x and y are nonzero reals, then (xy)−1 = x−1y−1. The fact that matrices
do not necessarily commute means that we have to be a little more careful.

Theorem 54. If A and B are invertible matrices of the same order, then AB is in-
vertible, and

(AB)−1 = B−1A−1.

Proof. We need to show that both (B−1A−1)(AB) and (AB)(B−1A−1) equal the
identity. But (B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I =
AA−1 = AIA−1 = A(BB−1)A−1 = (AB)(B−1A−1). �

There are two cancellation laws for matrix multiplication. If A is an invertible
r × r matrix and B and C are r × s matrices such that AB = AC, then

AB = AC ⇒ A−1(AB) = A−1(AC)

⇒ (
A−1A

)
B = (

A−1A
)
C ⇒ IB = IC ⇒ B = C,

so B = C. Similarly, if A is an invertible s ×s matrix and B and C are r ×s matrices
such that BA = CA, then B = C.

The requirement that A be invertible is necessary. We can find matrices A, B,
and C such that AB and AC are the same size, A is nonzero, and AB = AC, but B

and C are different. One very easy example is
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[

1 0
0 0

] [
1 −1
2 3

]
=

[
1 0
0 0

] [
1 −1
1 4

]
.

Some other examples are given in the exercises.

Moreover we can only cancel on one side of an equation; we cannot mix the two
sides. Even if A is invertible it is possible that AB = CA but B �= C (see Exercises
8.2.21 and 8.2.22).

Exercises 8.2

1. Is it correct to say that, for any matrix A, AO = O = OA? Why or why not?

2. Prove the following: if A is an invertible s × s matrix and B and C are r × s

matrices such that BA = CA, then B = C.

In Exercises 3 to 8, find the products AB and BA. Do the two matrices commute?

3. A =
[

0 1
2 3

]
, B =

[
1 2

−1 1

]
. 4. A =

[
1 −1
1 1

]
, B =

[
2 1

−1 2

]
.

5. A =
[

2 0
1 −1

]
, B =

[−2 4
3 2

]
. 6. A =

[
1 2
3 4

]
, B =

[
4 3
2 1

]
.

7. A =
[

3 1
−1 3

]
, B =

[
1 3

−3 1

]
.

8. A =
⎡

⎣
3 1 −2
1 2 −1

−1 −1 3

⎤

⎦ , B =
⎡

⎣
2 0 1

−1 3 0
0 1 2

⎤

⎦.

In Exercises 9 to 14, A is given. Find A2 and A3.

9.
[

1 1
−1 1

]
. 10.

[
2 −1

−1 0

]
.

11.
[−1 −1

−1 −1

]
. 12.

[
1 3

−1 1

]
.

13.

⎡

⎣
2 0 3
0 3 −1

−1 −1 1

⎤

⎦. 14.

⎡

⎣
1 2 1
0 −1 1
0 0 −2

⎤

⎦.

15. Consider the matrix

A =
[

1 3
5 3

]
.

(i) Find A2 and A3.

(ii) Evaluate A3 − 2A − I .

(iii) Show that A2 − 4A − 12I = O.
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In Exercises 16 to 19, show that the matrices are inverses.

16.
[

2 5
1 3

]
and

[
3 −5

−1 2

]
. 17.

[
3
2 −1
0 1

]
and

[
2
3

2
3

0 1

]
.

18.
[

1
2 −1
1 −1

]
and

[−2 2
−2 1

]
. 19.

[
2 −3

−1 2

]
and

[
2 3
1 2

]
.

20. Find a matrix A such that

A

[
2 1
3 2

]
=

[
1 −1
1 4

]
.

In Exercises 21 and 22, show that AB = AC.

21. A =
[

1 −1
2 −2

]
, B =

[
2 1
1 4

]
, C =

[
4 0
3 3

]
.

22. A =
⎡

⎣
1 0 1
1 1 1
1 2 1

⎤

⎦ , B =
⎡

⎣
1 1 2
1 1 0
1 2 2

⎤

⎦ , C =
⎡

⎣
2 2 1
1 1 0
0 1 3

⎤

⎦.

In Exercises 23 and 24, show that A−1 exists, but AB = CA, even though B �= C.

23. A =
[−1 3

1 −2

]
, B =

[
1 2
1 1

]
, C =

[
5 7

−2 −3

]
.

24. A =
[

2 −1
1 1

]
, B =

[
3 0
4 1

]
, C =

[
1 0
2 3

]
.

25. The (leading) diagonal of a matrix is the set of entries in positions (1, 1),
(2, 2), (3, 3), . . . . A diagonal matrix is a square matrix with all of its elements
zero except those on the diagonal. Prove that any two diagonal matrices of the
same order commute.

26. Suppose Mx denotes the 2 × 2 matrix
[

1 x

0 1

]
,

where x may be any real number.

(i) Compute MxMy , and show that the matrices Mx and My commute for any
real numbers x and y.

(ii) Find Mx
2, Mx

3, and Mx
4.

(iii) Find a formula for Mx
n, where n is any positive integer.

(iv) What is Mx
−1?

27. A square matrix A is called idempotent if it satisfies A2 = A.
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(i) Which of the following matrices are idempotent?
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ ,

⎡

⎣
1 −1 0
0 0 −2

−2 1 1

⎤

⎦ ,

⎡

⎣
2 −2 −4

−1 3 4
1 −2 −3

⎤

⎦ .

(ii) Prove that, if A is an idempotent matrix, then I − A is idempotent.

8.3 Systems of Linear Equations

Matrix Representation of Equations

The solution set of a system of equations such as

2x + 4y − 4z = 4,

−2y + 4z = 6,

x − y + 4z = 10,

is the set of all assignments of values to the variables that make all the equations true.
For example, the above system has solution x = 3, y = 1, z = 2. We often write
the solutions as vectors with the variables taken in standard (alphabetical) order, and
would say the solution set is {(3, 1, 2)}. Other systems have infinite solution sets, or
the set could be empty, in which case we say the system is inconsistent.

We introduced matrices in Section 8.1 by pointing out their relationship to sets
of linear equations. The above system of equations can be written as

⎡

⎣
(2, 4,−4) · (x, y, z)

(0,−2, 4) · (x, y, z)

(1,−1, 4) · (x, y, z)

⎤

⎦ =
⎡

⎣
4
6

10

⎤

⎦ ,

which can be seen as the matrix
⎡

⎣
2 4 −4
0 −2 4
1 −1 4

⎤

⎦ ,

acting on the vector (x, y, z) to produce the vector (4, 6, 10)
⎡

⎣
2 4 −4
0 −2 4
1 −1 4

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
4
6

10

⎤

⎦ .

The typical set of m linear equations in n unknowns can be written

Ax = b,
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where A is an m × n matrix of coefficients, x is an n × 1 matrix (column vector) of
unknowns, and b is the m × 1 matrix (column vector) of the right-hand sides of the
equations.

The usual way of solving such a system of equations is to use one equation to
express one variable in terms of the other variables and substitute for that variable in
other equations. Repeat this process in the new set of m−1 equations. Continue until
only one equation remains. This equation is used to evaluate one variable (either as
a constant, or in terms of those other variables not yet eliminated), and the remain-
ing variables are evaluated from the equations used earlier. If this process fails (for
example, if two contradictory equations result), the equations were inconsistent and
there are no solutions.

We shall formalize this process. We define the augmented matrix of the system
Ax = b to be the matrix [A | b] formed by adjoining the vector of constants b to
the matrix A of coefficients. The vertical line indicates the division between the two
types of element. The augmented matrix of the system given above is

⎡

⎣
2 4 −3 4
0 −2 4 6
1 −1 4 10

⎤

⎦ .

The first step is to select a variable to eliminate. This is equivalent to choosing
a column in the augmented matrix and selecting a row—an equation—to use for
substitution. The only requirement is that the matrix has a nonzero entry in that
row and column. Let us choose row 3, column 1, representing variable x in the first
equation. It will be convenient to interchange rows 1 and 3, so that we are operating
on the (1, 1) entry. This is equivalent to rewriting the equations in a different order.
The matrix is now

⎡

⎣
1 −1 4 10
0 −2 4 6
2 4 −3 4

⎤

⎦
R1 ← R3

R3 ← R1,

where the annotations mean the new row 1 is the old row 3 and the new row 3 is the
old row 1.

Now substitute for x in the other equations. No action is required in the second
equation, but x must be eliminated from the third. So we subtract twice the first
row from the third row. This yields precisely the equation we would get if we used
equation 1 to substitute for x in equation 3, but for consistency we have kept all the
variables on the left-hand side of the equation. The augmented matrix becomes

⎡

⎣
1 −1 4 10
0 −2 4 6
0 6 −11 −16

⎤

⎦
R3 ← R3 − 2R1,
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where the legend means the new row 3 is (the old row 3) −2(the old row 1). (When
we say old we are referring to the preceding augmented matrix, not to the original
one.)

Now multiply row 2 by − 1
2 . Then eliminate the 6y from the third equation. The

result is

⎡

⎣
1 −1 4 10
0 1 −2 −3
0 0 1 2

⎤

⎦ R2 ← 1

2
R2

R3 ← R3 − 6

(
1

2
R2

)
.

This could have been broken into two steps.

So far we have done the equivalent of substituting in the later equations. Now we
substitute back to find the values. We know from the third equation that z = 3. To
substitute this in the earlier equations, we add twice row 3 to row 2 and subtract four
times row 3 from row 1:

⎡

⎣
1 −1 0 2
0 1 0 1
0 0 1 2

⎤

⎦ R1 ← R1 − 4R3
R2 ← R2 + 2R3.

Next add row 2 to row 1:
⎡

⎣
1 0 0 3
0 1 0 1
0 0 1 2

⎤

⎦ R1 ← R1 + R2.

The resulting array can be translated into the equations

x = 3, y = 1, z = 2.

Elementary Operations

In our example, we used three operations:

E1: permute the rows of the matrix;

E2: multiply a row by a (nonzero) constant;

E3: add a multiple of one row to another row.

We shall call them elementary row operations. Their importance comes from the
following theorem.

Theorem 55. Suppose P is the augmented matrix of a system of linear equations and
Q is obtained from P by a sequence of elementary row operations. Then the system
of equations corresponding to Q has the same solutions as the system corresponding
to P .
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Proof. Operation E1 does not change the system.

The equations a · x = b and ka · x = kb have the same solutions when k is
nonzero. So E2 does not change the solution set.

Finally, suppose x0 is a solution of the system of two equations a · x = b,
a′ · x = b′. Then a · x0 = b and a′ · x0 = b′, so (a + ka′) · x0 = b + kb′,
and x0 is a solution of the system a · x = b, a + ka′ · x = b + kb′; conversely, any
solution of the second system is a solution of the first set. If the same further set of
equations is appended to each system, the two resulting systems still have the same
solutions, so E3 does not change the solution set. �

The Solution Algorithm

It is clear that the repeated application of the three steps to the augmented matrix
will provide a solution. The algorithm for solving systems of linear equations works
as follows.

Stage 1

1. Find the leftmost column in the matrix of coefficients that contains a nonzero
element, say column j . Use E1 to make the row containing this element into the
first row, and E2 to convert its leftmost nonzero element to 1. This is called a
leading 1. Then use E3 to change all entries below the leading 1 to zero. That is,
if the (i, j) entry is aij , then subtract aij × (row 1) from row j .

At this stage we say column j is processed. Processed rows are not disturbed in
the first stage.

2. Find the leftmost unprocessed column in the augmented matrix that contains a
nonzero element, say column k. Use E1 to make this row the first row under the
processed row(s), and E2 to convert its leftmost nonzero element to 1, another
leading 1. Use E3 to change all entries below the leading 1 to zero (but do not
change the processed row or rows). Now column k is also processed.

3. If you have not either reached the last column of coefficients (the vertical line) or
the bottom of the matrix, go back to step 2, make another leading 1, and proceed
from there.

Stage 2

4. Choose the bottommost leading 1 and eliminate all elements above it in its col-
umn by use of E3. Do the same to the next leading 1 up, then the next, until you
reach the top.

The process is now finished. We shall illustrate the interpretation of the results
with an example.
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Sample Problem 8.10. Solve the system

2x + 2y + 4z = 0,

3x − y + 2z = 1,

8x + 8z = 2,

by row operations.

Solution. The augmented matrix is
⎡

⎣
2 2 4 0
3 −1 2 1
8 0 8 2

⎤

⎦ .

At step 1 we choose the element in the (1, 1) position and divide row 1 by 2:
⎡

⎣
1 1 2 0
3 −1 2 1
8 0 8 2

⎤

⎦ R1 ← 1

2
R1 (using E2).

Then we eliminate the rest of column 1:⎡

⎣
1 1 2 0
0 −4 −4 1
0 −8 −8 2

⎤

⎦ R2 ← R2 − 3 × R1 (using E3)
R3 ← R3 − 8 × R1 (using E3).

In step 2 we choose the (2, 2) position and divide by −4, then eliminate the
entries below the (2, 2) position, obtaining successively

⎡

⎣
1 1 2 0
0 1 1 − 1

4
0 −8 −8 2

⎤

⎦
R2 ← −1

4
× R2 (using E2),

⎡

⎣
1 1 2 0
0 1 1 − 1

4
0 0 0 0

⎤

⎦
R3 ← R3 − 8 × R2 (using E3).

There are no further numbers available for leading 1’s, so we move to step 4. We
use the (2, 2) element:

⎡

⎣
1 0 1 1

4
0 1 1 − 1

4
0 0 0 0

⎤

⎦
R1 ← R1 − R2 (using E3).

The process is finished. There is no restriction on z. The final augmented matrix
converts to the system

x + z = 1

4
,

y + z = −1

4
,

(the third equation can be ignored) and the final solution can be expressed as
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x = 1

4
− z, y = −1

4
− z, any real number z.

It is important to notice that the sequence of calculations is completely deter-
mined by the matrix of coefficients, the left-hand part of the augmented matrix.

If the column corresponding to a variable receives a leading 1, we shall call that
variable dependent; the others are independent. One standard way of recording the
answer is to give an equation for each dependent variable, with a constant and the
independent variables on the right; the independent variables take any real number
value. Another way to express the above solution would be to use set notation

{(
1

4
− z,−1

4
− z, z

) ∣∣∣ z ∈ R

}
,

or perhaps
{(

t + 1

4
, t,−1

4
,−t

) ∣∣∣ t ∈ R

}
.

In this case t is a parameter.

Sometimes there will be no solution to a system of equations. As we said above,
the equations are then inconsistent.

Sample Problem 8.11. Solve the system

2x + 2y + 4z = 0,

3x − y + 2z = 1,

8x + 8z = 3.

Solution. The augmented matrix is
⎡

⎣
2 2 4 0
3 −1 2 1
8 0 8 3

⎤

⎦ .

The left-hand part of this equation is the same as in Sample Problem 8.10, so
we go through the same steps, making the appropriate changes to the right-hand
column. At the end of Stage 1, we have

⎡

⎣
1 1 2 0
0 1 1 − 1

4
0 0 0 1

⎤

⎦ .

When we convert back to equations, the third row gives the equation

0 = 1,

which is impossible. No values of x, y, and z make this true, so the equations are
inconsistent. There is no need to implement Stage 2.
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In set-theoretic terms, we can report that the solution set is ∅.

Exercises 8.3

In Exercises 1 to 14, the augmented matrix of a system of equations is shown. As-
suming the variables are x, y, z, what is the solution of the system?

1.

⎡

⎣
1 0 0 3
0 1 0 1
0 0 0 0

⎤

⎦. 2.

⎡

⎣
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤

⎦.

3.

⎡

⎣
1 0 1 2
0 1 −1 1
0 0 0 0

⎤

⎦.
4.

⎡

⎢⎢
⎣

1 1 0 2
0 0 1 −1
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦.

5.

⎡

⎣
1 0 1 2
0 1 2 1
0 0 0 2

⎤

⎦. 6.

⎡

⎣
1 0 0 3
0 1 0 1
0 0 1 2

⎤

⎦.

7.

⎡

⎣
1 0 1 2
0 1 1 1
0 0 0 1

⎤

⎦.
8.

⎡

⎢⎢
⎣

1 0 0 2
0 1 0 1
0 0 1 1
0 0 0 1

⎤

⎥⎥
⎦.

9.

⎡

⎣
1 1 1 4

−1 2 1 −1
3 2 4 6

⎤

⎦. 10.

⎡

⎣
4 2 −3 1
3 −1 −1 1
1 −7 3 1

⎤

⎦.

11.

⎡

⎣
4 3 1 11
2 −2 4 2
1 3 −2 5

⎤

⎦. 12.

⎡

⎣
0 1 −1 −1
1 0 1 1
1 2 −1 0

⎤

⎦.

13.

⎡

⎣
2 −1 1 −2
3 2 3 8
1 −1 −1 0

⎤

⎦. 14.

⎡

⎣
2 3 1 −1
1 2 1 0
3 2 −1 −4

⎤

⎦.

In Exercises 15 to 36, solve the system of equations.

15. 2x + 6y = 6,

4x + 11y = 10.

16. 3x − 2y = 4,

−6x + 4y = 2.

17. 2x + 3y = 5,

4x + 6y = 10.

18. x − y = 3,

2x + y = 3.
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19. 3x − y = 4,

6x − 2y = 2.

20. 3x − 2y = −1,

−6x + 4y = 2.

21. x − 2y = 4,

−3x − 4y = −2,

2x + 3y = 1.

22. 3x + 2y = 4,

2x + 3y = 1,

5x − 4y = 14.

23. x + 2y + z = 3,

x + y − 2z = 2.

24. x + y + 3z = 2,

4x + 2y + 2z = 10.

25. x + y + z = 3,

x + 2y + 2z = 3,

x + y + 2z = 1.

26. 2x + 4z = 6,

2x + y + 5z = 7,

x − y + z = 2.

27. 2x + 2z = 2,

x + 2y + 6z = 3,

2x − 2y = 1.

28. x + z = 4,

x + 4y + z = 7,

x − 2y + z = 3.

29. x + 2y + z = −1,

2x + 3y − 2z = 7,

−2x + 2y − 3z = −2.

30. x + y − z = 4,

3x + 4y − 7z = 8,

−y + 4z = 4.

31. x + y = 2,

x − y + 5z = 3,

−3x − 3y + 2z = −6.

32. x + 2y + 3z = 4,

4x + 5y + 6z = 16,

7x + 8y + 9z = 28.

33. 3x − 2y − 8z + 7t = 1,

x + y − z − t = 3,

x − y − 3z + 3t = −1.

34. 2x − y + z − 3t = 2,

−4x − 3y + t = 1,

2x − 6y + 3z − 8t = 4.

35. x + 2y + 3z + 4t = 8,

x − 3y + 4z + 4t = 8,

2x − 2y − z + t = −3,

x − 7y − 7z − 3t = −11.

36. 2x + 2y − 2z + 3t = 2,

4x − 2y − z + t = −4,

6x − 3z + 4t = −2,

2x + 8y − 5z + 8t = 10.

8.4 More About Linear Systems and Inverses

Classification of Systems of Equations

We say that a matrix is in reduced row echelon form if it has the following properties:

• All rows with every element zero lie at the bottom of the matrix;
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• The leftmost nonzero element of each row is a 1 (called a leading 1);

• Every other entry in the same column as a leading 1 is zero;

• Each leading 1 is to the right of the leading 1 in the preceding row.

So the process of solving a system of equations consists of converting its augmented
matrix to reduced row echelon form. For this reason we often speak of reducing the
matrix (or reducing the system).

The system is inconsistent when the reduction process results in a leading 1 in the
right-hand column of the augmented matrix. In this case there is no need to complete
the algorithm.

Suppose the system is consistent. There are two possibilities.

Sometimes the reduced matrix will have a leading 1 in each column so that it is
an identity matrix, possibly with some zero rows appended. In this case there will be
exactly one solution.

Alternatively, there will be some columns that contain no leading 1. The corre-
sponding variables are independent, and can take any real value, so the system has
infinitely many solutions.

To illustrate these possibilities, consider the following three sets of equations:

x + y = 2, x + y = 2, x + y = 2,

3x + 3y = 5, 2x + 3y = 5, 2x + 2y = 4.

The matrix forms are as follows:
[

1 1 2
3 3 5

]
,

[
1 1 2
2 3 5

]
,

[
1 1 2
2 2 4

]
.

In each case subtract twice row 1 from row 2, obtaining
[

1 1 2
0 0 1

]
,

[
1 1 2
0 1 1

]
,

[
1 1 2
0 0 0

]
.

The first system is inconsistent and there are no solutions. The second system
can be reduced further; subtracting row 2 from row 1, we get

[
1 0 1
0 1 1

]
,

and the solution is x = 1, y = 1. In the third system, y can take any value, and
correspondingly x = 2 − y.

So we have a classification of systems of equations into three classes. A system
can have no solutions, exactly one solution, or infinitely many solutions. Alterna-
tively, we can say that the solution set is empty, a singleton set, or infinite. There can
be no system whose solution set is finite but has more than one member.
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Calculating the Inverse

The inverse of a square matrix can be calculated by the algorithm used for solving
equations. Suppose A is an n × n matrix with inverse B. Write b1, b2, . . . , bn for
the columns of B, and write u1,u2, . . . ,un for the columns of the identity matrix of
order n. Consider the equation AB = I . Column j of the left-hand side is Abj . So
the equation is equivalent to the set of n systems

Ab1 = u1, Ab2 = u2, . . . , Abn = un.

If all these systems have solutions, then the inverse is formed by putting the solution
vectors next to each other in order. If any system has no solution, there is no inverse.

To solve Abj = uj , we reduce the augmented matrix [A | uj ] to reduced row
echelon form. The same steps will produce this result, no matter what vector is on
the right-hand side. It follows that we can carry out the reduction simultaneously for
all n systems of equations. So we have the following technique for inverting an n×n

matrix A.

Row reduce the matrix [A | In]. If the resulting matrix has form [In | B] then A is
invertible, and B is A−1. Otherwise, A is singular.

It follows from this that if a matrix has a row with every entry zero, it must
be singular. This is also true if the matrix has a column with every entry zero. For
example, if A has every entry of its first column zero, then BA has every element zero
in its first column for any choice of B, so the equation A−1A = I cannot possibly
be true—it must fail in the (1, 1) position.

Sample Problem 8.12. For the following matrices, find the inverse or show that
the matrix is singular:

A =
⎡

⎣
1 2 −1
0 −2 1
1 1 −1

⎤

⎦ , B =
⎡

⎣
2 3 2
3 −1 2
1 7 2

⎤

⎦ .

Solution. For A, we have
⎡

⎣
1 2 −1 1 0 0
0 −2 1 0 1 0
1 1 −1 0 0 1

⎤

⎦ ⇒
⎡

⎣
1 2 −1 1 0 0
0 −2 1 0 1 0
0 −1 0 −1 0 1

⎤

⎦

⇒
⎡

⎣
1 2 −1 1 0 0
0 1 0 1 0 −1
0 −2 1 0 1 0

⎤

⎦

⇒
⎡

⎣
1 0 −1 −1 0 2
0 1 0 1 0 −1
0 0 1 2 1 −2

⎤

⎦

⇒
⎡

⎣
1 0 0 1 1 0
0 1 0 1 0 −1
0 0 1 2 1 −2

⎤

⎦ .
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So A has inverse ⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦ .

For B, we get
⎡

⎣
2 3 2 1 0 0
3 −1 2 0 1 0
1 7 2 0 0 1

⎤

⎦ ⇒
⎡

⎣
1 7 2 0 0 1
2 3 2 0 1 0
3 −1 2 1 0 0

⎤

⎦

⇒
⎡

⎣
1 7 2 0 0 1
0 −11 −2 0 1 −2
0 −22 −4 1 0 −3

⎤

⎦

⇒
⎡

⎣
1 7 2 0 0 1
0 −11 −2 0 1 −2
0 0 0 1 −2 1

⎤

⎦ ,

and the zero row on the left tells us that B is singular.

Practice Exercise. In the above calculations, identify the steps that have been
taken at each stage. (For example, for A, the first step was R3 ← R3 − R1.)

This method can be used to get a general solution for the inverse of a 2×2 matrix.

Theorem 56. The matrix

A =
[

a b

c d

]
,

is singular if ad − bc = 0. Otherwise it is invertible, with inverse

1

(ad − bc)

[
d −b

−c a

]
. (8.1)

Proof. If a = c = 0, then ad − bc = 0, and A has no inverse.

First, suppose a and c are both nonzero. The inverse procedure is
[

a b 1 0
c d 0 1

]

⇒
[

ac bc c 0
ac ad 0 a

]
R1 ← cR1
R2 ← aR2

⇒
[

ac bc c 0
0 ad − bc −c a

]

R2 ← R2 − R1

⇒
[

ac 0 (1 + bc
ad−bc

)c − abc
ad−bc

0 ad − bc −c a

]
R1 ← R1 − bc

ad−bc
R2.

If ad − bc = 0, then we are finished and there is no inverse. Otherwise, notice that
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1 + bc

ad − bc
= ad − bc + bc

ad − bc
= ad

ad − bc
,

so we have
[

ac 0 acd
ad−bc

− abc
ad−bc

0 ad − bc −c a

]

⇒
[

1 0 d
ad−bc

− b
ad−bc

0 1 − c
ad−bc

a
ad−bc

]
R1 ← 1

ac
R1

R1 ← 1
ad−bc

R2

as required.

If a �= 0 and c = 0 the calculations are simpler. We obtain the inverse
[

1
a

− b
ad

0 1
d

]

,

and this is the form taken by (8.1) when c = 0.

The case where a = 0, c �= 0 is left as an exercise. �
The number ad − bc is called the determinant of the matrix A, written det(A).

Determinants may be defined for square matrices of any order, and it is a general
theorem that a matrix is invertible if and only if its determinant is nonzero. For more
details, see books on linear algebra.

Sample Problem 8.13. Find the determinants of the following matrices and use
them to find their inverses, if possible:

A =
[

3 1
2 2

]
, B =

[
2 −2

−1 1

]
.

Solution. det(A) = 3·2 − 1·2 = 4, so

A−1 = 1

4

[
2 −1

−2 3

]
=

[ 1
2 − 1

4− 1
2

3
4

]
.

det(B) = 2·1 − (−2)·(−1) = 0, so B has no inverse.

Practice Exercise. Repeat for

C =
[

1 1
3 4

]
, D =

[
2 4
1 2

]
.

Using the Inverse

Consider the system of equations Ax = b, where A is an invertible matrix. Mul-
tiplying by A−1, x = A−1Ax = A−1b, so the equations have the unique solution
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A−1b. This can be used to solve the equations. This technique is not usually helpful
in practical situations because the process of finding the inverse takes at least as long
as solving the equations, but it is useful when there are several sets of equations with
the same left-hand sides, or when the inverse is already known. It is also important
in theoretical studies.

Sample Problem 8.14. Solve the following systems:

x + 2y − z = 3, x + 2y − z = −1,

−2y + z = 1, −2y + z = −2,

x + y − z = 0, x + y − z = 2.

Solution. We saw in Sample Problem 8.12 that the matrix of coefficients has
inverse ⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦ .

Now ⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦

⎡

⎣
3
1
0

⎤

⎦ =
⎡

⎣
4
3
7

⎤

⎦ ,

so the first system has solution x = 4, y = 3, z = 7.
⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦

⎡

⎣
−1
−2

2

⎤

⎦ =
⎡

⎣
−3
−3
−8

⎤

⎦ ,

and the second has solution x = −3, y = −3, z = −8.

Practice Exercise. Solve the following systems:

x + 2y − z = 2, x + 2y − z = 4,

−2y + z = 2, −2y + z = −1,

x + y − z = 1, x + y − z = 3.

Exercises 8.4

In Exercises 1 to 6, the reduced row echelon form of an augmented system is shown.
Say whether its solution set is empty, singleton, or infinite.

1.

⎡

⎣
1 0 3 1
0 1 1 1
0 0 0 1

⎤

⎦. 2.

⎡

⎣
1 0 0 2
0 1 0 1
0 0 1 −1

⎤

⎦.
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3.

⎡

⎣
1 0 0 1
0 1 0 2
0 0 0 0

⎤

⎦. 4.

⎡

⎣
1 1 3 1
0 0 0 2
0 0 0 0

⎤

⎦.

5.

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦. 6.

⎡

⎣
1 0 2 3
0 1 1 3
0 0 0 0

⎤

⎦.

In Exercises 7 to 24, use row reduction either to find the inverse of the given matrix
or to show that the matrix is singular.

7.
[

2 −2
4 0

]
. 8.

[
2 −2
3 −3

]
.

9.
[

3 7
2 5

]
. 10.

[
1 1
1 0.5

]
.

11.
[

4 2
2 1

]
. 12.

[
3 1

−4 −2

]
.

13.

⎡

⎣
0 0 1
0 1 0
1 0 1

⎤

⎦. 14.

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦.

15.

⎡

⎣
2 3 2
1 2 2
3 1 3

⎤

⎦. 16.

⎡

⎣
9 8 7
6 5 4
3 2 1

⎤

⎦.

17.

⎡

⎣
0 1 1
5 1 −2
2 −3 −3

⎤

⎦. 18.

⎡

⎣
1 −2 3
3 5 1
6 4 2

⎤

⎦.

19.

⎡

⎣
1 3 3
1 4 3
1 3 4

⎤

⎦. 20.

⎡

⎣
2 3 −1
4 2 3
2 7 −6

⎤

⎦.

21.

⎡

⎣
1 1 −1

−2 −1 7
3 2 −8

⎤

⎦. 22.

⎡

⎣
1 0 2
2 −1 3
4 1 8

⎤

⎦.

23.

⎡

⎣
1 2 3
2 5 1
3 7 4

⎤

⎦. 24.

⎡

⎣
1 2 3
2 5 5
3 8 8

⎤

⎦.

In Exercises 25 to 30, find the determinant, and use it to invert the matrix or show
that it is singular.
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25.
[

7 4
2 3

]
. 26.

[
6 4
3 2

]
. 27.

[−2 2
2 3

]
.

28.
[

3 5
1 4

]
. 29.

[
4 2
8 4

]
. 30.

[
6 4
7 5

]
.

31. (i) Prove that the following matrices are inverses:
[

3 2
1 1

]
,

[
1 −2

−1 3

]
.

(ii) Use part (i) to solve the following systems:

(a) 3x + 2y = 4, (b) x − 2y = −1,

x + y = 1; −x + 3y = 2.

32. (i) Prove that the following matrices are inverses:
⎡

⎣
2 −2 1
1 0 1
1 −3 0

⎤

⎦ ,

⎡

⎣
3 −3 −2
1 −1 −1

−3 4 2

⎤

⎦ .

(ii) Use part (i) to solve the following systems:

(a) 2x − 2y + z = 3, (b) 3x − 3y − 2z = 2,

x + z = 2, x − y − z = −1,

x − 3y = 1; −3x + 4y + 2z = 2.

33. Suppose a system of equations has 0 for every right-hand side. Can it be incon-
sistent?

34. Prove Theorem 56 in the case where a = 0 (and c �= 0).

8.5 Adjacency Matrices

Representing a Relation by a Matrix

Suppose A = {a1, . . . , am} and B = {b1, . . . , bn} are two finite sets, and let α be a
relation from A to B. We define the adjacency matrix of α to be the m × n matrix
Mα with (i, j) entry

αij =
{

1 if ai α bj ,

0 otherwise.

Obviously this definition depends on the order in which we take the elements of the
two sets. If you change the order of the elements of A, this will reorder the rows
of Mα , while changing the order of the elements of B will reorder the columns of the
matrix.
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Sample Problem 8.15. Suppose A = {1, 2}, B = {1, 2, 3} and α is the relation
from A to B defined by

α = {
(1, 1), (1, 3), (2, 2), (2, 3)

}
.

What is the adjacency matrix of α?

Solution.

Mα =
[

1 0 1
0 1 1

]
.

Practice Exercise. For the same sets A and B, what is the adjacency matrix of
the relation

π = {
(1, 2), (1, 3), (2, 1), (2, 2)

}
?

Conjunction of Adjacency Matrices

Again suppose A = {a1, . . . , am} and B = {b1, . . . , bn}, and consider also a third
set C = {c1, c2, . . . , cp}. Suppose α is a relation from A to B and β is a relation
from B to C. Then Mβ is an n × p matrix with (i, j) entry

βij =
{

1 if biβcj ,

0 otherwise.

We define the conjunction of Mα and Mβ , written Mα ∨ Mβ , to be the m × p

array with (i, j) entry

γij =
{

1 if
∑n

i=1 αikβkj ≥ 1,

0 otherwise.
(8.2)

(If Mα is m × n and Mβ is n′ × p, where n �= n′, then Mα ∨ Mβ is not defined.)

Sample Problem 8.16. Let A, B, and α be as in Sample Problem 8.15. Further
define C = {1, 2, 3, 4} and

β = {
(1, 2), (1, 3), (2, 1), (2, 4), (3, 3)

}
.

Find Mα ∨ Mβ .

Solution. The matrix of β is

Mβ =
⎡

⎣
0 1 1 0
1 0 0 1
0 0 1 0

⎤

⎦ .

To find Mα∨Mβ it suffices to find the ordinary matrix product MαMβ and replace
any non-zero element by 1

MαMβ =
[

0 1 2 0
1 0 1 1

]
and Mα ∨ Mβ =

[
0 1 1 0
1 0 1 1

]
.
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Practice Exercise. If A, B, C, and α are as stated and

τ = {
(1, 1), (1, 3), (2, 2), (3, 1), (3, 4)

}
,

find Mα ∨ Mτ .

Notice that αβ = {(1, 2), (1, 3), (2, 1), (2, 3), (2, 4)} and Mα ∨ Mβ = Mαβ . We
prove that this happens in general.

Theorem 57. Let A,B,C, α, and β be as before. Then

(i) Mαβ = Mα ∨ Mβ ,

(ii) Mα−1 = MT
α , the transpose of Mα ,

(iii) MT
αβ = MT

β ∨ MT
α .

Proof. (i) Let μ = αβ, so that Mμ = Mαβ is the m × p array (σij ), where

σij =
{

1 if aiμcj ,

0 otherwise.

We see that the conjunction Mα ∨ Mβ is also an m × p array. Suppose its (i, j)

entry is defined by γ , as in (8.2). Now γi,j = 1 if and only if

n∑

i=1

αikβkj ≥ 1,

that is, if and only if αikβkj = 1 for at least one value of k. This is true if and only if
αik = 1 = βkj for at least one k, or equivalently if and only if aiαbk and bkβcj for
at least one k. But this is just the statement that aiαβcj , so σi,j = 1.

Conversely, σi,j = 1 if and only if aiαβcj , which is equivalent to the existence
of at least one bk such that aiαbk and bkβcj . But now αik = 1 = βkj , so γi,j = 1.

Hence Mα ∨ Mβ = Mαβ .

(ii) Let MT = (εij )n×m, where εij = αji . Then Mα is the correct size array
for α−1 : B → A, as Mα−1 is n × m. Suppose the (i, j) element of Mα−1 is δij ;
then δij = 1 if and only if biα

−1aj , or equivalently ajαbi , so δij = 1 if and only if
εij = 1, which implies MT = Mα−1 .

(iii) MT
αβ = by (ii)

= Mβ−1α−1 by Theorem 22
= Mβ−1 ∨ Mα−1 by (i)
= MT

β ∨ MT
α by (ii). �

We observe some of the properties of these matrices. If α is a relation on a set A

with m elements, then Mα is m × m. If α is reflexive, then Mα has 1’s down its diag-
onal; if α is symmetric, then Mα is symmetric in the usual matrix sense (aij = aji);
if α is transitive and Mαα = Mα ∨ Mα has 1 in the (i, j) position, then so does Mα .
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Adjacency Matrices of Graphs

If the relation α is represented both by the adjacency matrix Mα and by a graph G,
then Mα is also called the adjacency matrix of the graph G. This is such a funda-
mental idea that we define it separately.

Suppose G is a graph with v vertices {x1, x2, . . . , xv}. Then the adjacency matrix
MG of G is the v × v matrix MG with (i, j) entry

mij =
{

1 if xi ∼ xj ,

0 otherwise.

The adjacency matrix depends on the order in which the vertices are taken. However,
changing the order of the vertices results in a matrix that can be derived from the
original by carrying out a reordering of the rows, and then carrying out an identi-
cal reordering of the columns. Many properties of matrices are left unchanged by
operations like this.

The adjacency matrix of a graph is necessarily symmetric.

If G has e edges {y1, y2, . . . , ye}, then the incidence matrix NG of G is the v × e

matrix with (i, j) entry

nij =
{

1 if vertex xi is incident with edge aj ,

0 otherwise.

Sample Problem 8.17. What are the adjacency and incidence matrices of K2,3?

Solution. We take the vertices of K2,3 to be the sets {1, 2} and {3, 4, 5}. Taking
the vertices in numerical order, the adjacency matrix is

⎡

⎢⎢⎢⎢
⎣

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

⎤

⎥⎥⎥⎥
⎦

.

If we take the edges in order (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), the inci-
dence matrix is

⎡

⎢⎢⎢⎢
⎣

1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎤

⎥⎥⎥⎥
⎦

.

Practice Exercise. What are the adjacency and incidence matrices of K4?
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The powers of the adjacency matrix of a graph G give information about G.
Suppose MG = (mij ). Write x1, x2, . . . for the vertices of G, and assume i �= j . If
mik = mkj = 1, this means there are edges xixk and xkxj , so there is a path from
xi to xj passing through xk . The number of two-edge paths from xi to xj equals
the number of vertices xk for which this is true. The adjacency matrix has entries 0
and 1, so we have actually observed that mikmkj = 1 when there is an xixkxj path
and 0 otherwise. So

∑
mikmkj equals the number of different two-edge paths from

xi to xj . The ith diagonal entry is
∑

mikmki = ∑
m2

ik . As mik = 1 or 0, m2
ik = mik ,

so
∑

mikmki equals the number of times mik = 1, the degree of xi .

Theorem 58. M2
G has the degrees of the vertices on the diagonal, and the number of

paths of length 2 joining the relevant vertices in its other positions.

For n larger than 2, the off-diagonal entries of Mn
G give the number of walks

between the relevant vertices (not necessarily paths; for larger n, repeated vertices
can occur). The situation with the diagonal entries is more complicated (see, for
example, Exercise 8.5.23).

Exercises 8.5

In Exercises 1 to 7, write down the adjacency matrix of the relations. These relations
were all defined in exercises in Section 4.1.

1. Exercises 4.1.1 and 4.1.2, relations α, β.

2. Exercises 4.1.3 and 4.1.4, relations γ, δ.

3. Exercises 4.1.5 and 4.1.6, relations ε, φ.

4. Exercise 4.1.7, relations α, β.

5. Exercise 4.1.8, relations ρ, σ .

6. Exercises 4.1.1 and 4.1.2, relations αβ, βγ .

7. Exercise 4.1.8, relations ρσ, σρ.

8. Suppose α is a relation between finite sets A and B. What is the relationship
between Mα and M�α?

9. Let A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bn}, C = {c1, c2, . . . , cp} and
D = {d1, d2, . . . , dq} be finite sets and α, β and γ be relations from A to B, B

to C, and C to D, respectively. Show that Mα ∨ (Mβ ∨Mγ ) = (Mα ∨Mβ)∨Mγ

(i) using the fact that composition of relations is associative;

(ii) working directly from the definition of matrix conjunction.

10. Let α and β be relations from A to B. What can you say about Mα and Mβ if
β ⊆ α?

11. Suppose α is a relation from A to itself. What can you say about Mα if α is
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(i) irreflexive? (ii) antisymmetric? (iii) atransitive?

In Exercises 12 to 18, write down the adjacency matrix and the incidence matrix of
the graph.

12. The complete graph K5.

13. The cycle C6.

14. The path P5.

15. The wheel W5.

16. The union C3 ∪ C3.

17. The star K1,5.

18. The Petersen graph.

In Exercises 19 and 20, use the adjacency matrix to answer the question.

19. Find the number of paths of length 2 joining two vertices in the complete
graph K6.

20. Find the number of paths of length 2 joining two vertices in the wheel W6. (You
will need to consider separately the various types of pairs of vertices.)

21. Suppose G is a regular graph. What does this tell you about MG?

22. Suppose G is any graph. What is the relationship between MG and MG? Com-
pare your answer to Exercise 8.

23. What information do the diagonal elements of M2
G give about the graph G?
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