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THE SPAN OF MULTIPLY CONNECTED DOMAINS

BY MENAHEM SCHIFFER

1. Let Dn be a domain in the z-plane, containing the point z and bounded
by n continua C ( 1, n). A function F(z) belongs to the family O(D),
if it is univalent and regular in Dn, the point z excepted, at which it has
the development

(1) F(z) z - A--A + .A3 . ....
z z

There exists a function f(z) C (Dn), mapping D on a domain bounded by slits
parallel to the real axis. It can be characterized by the following extremM
property [5]:
Among all functions F(z) C (D), f(z) yields the maximal value of 9{A}.
For the function g(z) C (D), mapping D on a domain bounded by slits

parallel to the imaginary axis, an analogous result holds, namely:
Among all functions F(z) C O(D), g(z) yields the minimal value of R{A2}.

The functions

a.A2(2) f(z) z - - - g(z) z - + b +
Z Z Z Z

will be called henceforth the slit functions of Dn.
The number

(3) S(On) 9{a2 52}
gives the breadth of the interval in which [R{A.} varies for all functions of
o(D). S(D,) is a functional of D and will be called the span of D. The aim
of this paper is to discuss some of its properties and to connect this number with
other characteristics of the domain.

In this chapter some elementary theorems on S(Dn) will be recalled. Let us
remark first:

I. The span is a non-increasing function of the domain.

This theorem is obvious; for suppose D C D’ then (D) C (Dn); hence,
the interval of variation of 9 A is not smaller for Dn than for D’. This proves
the assertion.

iI. The span of all domains which can be mapped on each other with the aid of
univalent and normalized functions p(z) z p - p/z is the same.

Indeed, take z z(F) F + r r2/F - as the univalent function
mapping An in the F-plane on Dn in the z-plane. F(z) C (Dn) only if F[z(’)]
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210 MENAHEM SCHIFFER

rl (ZX=). To the second coefficient A of each function F(z) corresponds the
coefficient A2 -- r2 of F[z()] 1 Hence:

IIa. A conformal and normalized mapping of Dn involves a translation in the
space of the coeicients A

Therefore the span of these coefficients is not changed by this mapping, as
was to be proved.

III. If the domain D+ is obtained from Dn by a homothetic transformation with
the factor d, then

(4) S(D+ d2S(Dn).
For the slit function f+ (z+) of D is obtained.from the slit function f(z) for

Dn by the identity

(5) f+(z+) df() z + ___j__ ooo.,
\Ub / Z

and in the same way we have

(5’) g+(z+) dg z -- b.d___ +
Hence (4) follows at once.
The unit circle U "1 z] > 1 has the slit functions

1f(z) z + g(z) z -’z
Hence S(U) 2. A circle C with radius d, z > d, has according to (4) the
span S(C) 2d and an arbitrary simply connected domain with the mapping
radius d also has by Theorem II the span 2d.

IV. The function
(6) H(z) e-i[f(z) cos + ig(z) sin ]

belongs for each real value of to (Dn) and maps D on a domain bounded by slits
parallel to the vector e-i.

Indeed, the function h,(z) ei*H,(z) has a simple pole at z and is
regular elsewhere in Dn on the boundaries C it is bounded. The integral

1 h(z) _dz N(o) 1

(N(a) denoting the number of points in Dn where h(z) a) has the value
zero at infinity. Because it is an integer, it can change only when a reaches a
value , assumed by h(z) on C On the other hand, by definition of the slit

137



MULTIPLY CONNECTED DOMAINS 211

functions, h,(z) has a constant imaginary part k on each boundary continuum
C of Dn. Hence, the integral (7) changes its value only if {a} passes the value
k Now each finite value in the a-plane can obviously be connected with
infinity by a path avoiding all the lines ({a} k. If, therefore, we run from
infinity along this path to the point a considered, the value of integral (7)
remains always equal to zero. Hence N(a) 1. Thus, h,(z) is univalent in
Dn and has on each C a constant imaginary part. Hence, H,(z) has just the
properties asserted in Theorem IV.
The functions H,(z) can also be characterized by an extremal property:

Among all functions F(z) C (D), H,(z) yields the maximal value of
The second coefficient of H, (z) is

(8) A2(9) (a2 cos 9 + ib2 sin 9)e- 1/2(a2 + b2) + 1/2(a2 b2)e-.
Thus, the locus of all the extremal coefficients A2(.) is a circumference about
1/2(a + 52)with radius 1/2 la2 52 ]. Since 9{a2} 9{A2(0)} and {b2}
{A2(1/2r)} are extremal values for {A2()}, a2 and b2 must obviously have
equal imaginary parts, whence

(9) a2 b2 {a2 b2} S(D).

Combining (8) with the extremal property ofH (z) yields the result that outside
the circumference C there are no possible values for the coefficients A of
F(z) C (D,). To show that each point interior to this circumference is a
possible coefficient A2 let us suppose (without loss of generality in view of
IIa) that b 0, that is, D is a domain with slits parallel to the imaginary axis.
Then the coefficients A.() cover a circumference with radius 1/2a2 1/2S(D),
touching the imaginary axis at the origin. By enlarging D (preserving its
connectivity), S(D) will decrease by Theorem I, and it will do so continuously
if D changes continuously [1]. Since all the domains so obtained remain slit
domains, their corresponding circumferences touch the imaginary axis at the
origin. If D,, finally becomes the z-plane n times punctured, S(D,) O. There-
fore, the intermediate circumferences fill all the interior of the original circum-
ference and each point inside this latter is a coefficient of a function F(z) C (D).
Summarizing we get"

V. The coejcients A2 of all functions F(z) C (D,,) cover exactly a circle with
diameter S(D) [3],

2. Henceforth we shall suppose that at least one of the boundary continua
C of Dn does not reduce to a point. The domain D: is called conformly equivalent
to D if D is mapped on D by a function of the family (D). Denote the
(generalized) Green’s function of D with the logarithmic pole at infinity by
G(z) and let

lim (G(z) log[z I)
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212 MENAHEM SCHIFFER

Then e-x d(Dn), the transfinite diameter (a concept due to Fekete, who defined
it without conformal mapping [2]) of Dn, and we derive easily from our definition

(10) d(D) d(Dn).

Further let F(D,) be the inner measure of the complementary set D of D.
We have the remarkable inequality [4]

(11) F(Dn)

_
rd(Dn),

which shows that F(D,O has a common upper bound for all domains which are
conformally equivalent to a given domain D There arises therefore the
problem"

Given a domain Dn to find the maximum of F(D) for all domains D con-
formally equivalent to D

The existence of a domaih D for which F(D) attains its maximal value is a
consequence of the compactness of the family (D).
Suppose Dn to be a domain with F(Dn)

__
F(D) for all D conformally equiv-

alent to D. Then D,, surely has exterior points. We subdivide the complement
D into an "areal" part A, consisting of all points exterior to the closure of D.
and of the limit points of this exterior, and into the remaining "linear" part L
(if such there be). If Zo C A, then the function

ap(12) z* ----Z+z_Zo, P > 0, al 1

belongs to (D) for an arbitrary sign of a, if p is smaller than the distance of Zo
from D It therefore maps Dn on a conformally equivalent domain D.*, and
we shall now compute F(D*). For this purpose, we describe a circle K with
radius p1/2 around Zo choosing p so small that this circle also lies entirely in A,
and find

(13) F(D,* f
A-K

(Z Zo)
dr "-t- F(K*),

where F(K*) denotes the area of the map of K. This latter is an ellipse with
3/2the semi-axes p1/2 + pS/: p1/2 p and area r(p pS), while the area K is

rp. Thus we have

dr ._ O(pS)(14) F(D*,) F(D,,) 29 af f
A-K

with 0(p) < Cp. Denote

(15) lim f dr =f dr
-o (z Zo) (z Zo)

A-K
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MULTIPLY CONNECTED DOMAINS 213

and get from (14), in virtue of the extremal property of D, F(D) <_ F(D,),
by passing to the limit p 0 the condition

{ f
(z -dr}zo)(16) a

j
>_ 0.

This being true for each sign of a, we get the equation

f dr
0,(17)

(z Zo)
valid for each Zo C A.
To deal with (17) which is a rather unusual type of functional equation for

D,, we introduce the function

U(x) lglz x dr, dr(18)
z u + iv, x + i,

representing the potentiul of the surface distribution with density 1 on A. U(x)
is continuous all over the x-plane and so are its first partial derivatives U and
U,. For the second derivatives

=- l-zl -z

we have ghe Laplaee-Poisson equagion

(20) U 2r

in A and from (17)

(21) U= U, U, 0

in A. From (20) and (21) we find for z + in ingerior go each eomponeng of
A

(22) U(x) -- (2 + 72) + + + ",

with real constants c, , ,; these constants, however, may be different for different
eomponengs of A. The funegion

(23) V(x) 1_ (U iU,) 1 dr
r z x
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214 MENAHEM SCHIFFER

has in the/-th component A of A the value -x* -}- c and is analytic outside A.
From its continuity in the whole x-plane, we conclude that the functions

(2) qh(x) x- V(x), ((x) x + V(x)
are analytic in the exterior of A and approach the values 29{Xot W c
2i( {x0} -t- c as x converges to a point Xo on the boundary of A and have a
simple pole at x o. Hence, (x) and @(x) are the slit functions for the
exterior of A. From (24) we have

’(x) (’(x) V’(x) - f d-(25)
i’(x) + (’(x) (z x)"

Now the left side member of (25) is invariant with respect to normalized con-
formal mapping of the exterior of A; we can, therefore, compute its value on the
boundary of A, by mapping first the exterior of A on the exterior of analytic
curves ’(t) and taking the value of the corresponding function

Q() ’(’) F’()
’() + r’()

at the corresponding point. But, by definition of the slit functions, ’()d/dt
is real and F’()d/dt is purely imaginary on the analytic boundary of the domain
considered; thus, the quotient Q() has the modulus 1, and consequently we have

(26) ’(x) @’(x) 1 on the boundary of A
’(x) + ’(x)

hence, by the principle of the maximum, we get

(26’) f dr <: r for all x exterior to A.
(z- x)

We now turn to the lineur part L of D. Let Zo be a point of L; we take
continuum C of L containing Zo, such that its exterior can be mapped univalently
on the domain z* Zol > p by a mapping function

dp(27) z*
(Z Zo) (Z Zo) (Z Zo) (Z Zo?

It is known [6]thatla _< 1, bl _< 4, cl -< 4, dt -< 4, We choose
now another number 0 < < 1 and form the function

ee p2(28) z** z* +
Z$ Zo

which maps the domain z* Zo > P univalently on the exterior of an ellipse E
with semi-axes p(l + e), p(1 e) and area p(l e). Comparing (27) and
(28) yields

(29) z** z + kp + (a + e’)p -t- 0(p);
Z Zo
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MULTIPLY CONNECTED DOMAINS 215

this function maps Dn on a domain D.** with the area (see (14))

{ f(z d}o)(30) F(D**) p2(1 2) + F(D,,) 29 (a + e’’)p + 0(p3).

The first term on the right side comes from the area of the ellipse E. In view
of the extremal property of Dn, we have F(D**) <_ F(Dn); hence, from p --, 0,
we obtain

(31) r(l- e)< 2{(a A_ e,)fa dr} dr
(z Zo) - 2: a-t-,e’ !" (Z--Zo)

We now choose in such a way that sgn(-a) e"; since then a -t- Ce

_
1 e, we get

(32) r(1 -}-)

_
2

Hence

(0 < , < 1).

f
(32’) r <

(z Zo)
(Zo C L).

But this combined with (26’) (applicable to all points of L) yields

(z Zo)

on L and consequently (by the principle of the maximum) everywhere outside
A, including the point at infinity. But at this point the integral considered
vanishes. Thus the assumption of the existence of L leads to a contradiction;
D coincides therefore with A, and (x) and @(x) are identical with f(x) and
g(x).
We summarize:

The extremal domain Dn has a complement consisting of n domains; its slit
functions satisfy the equations

f (x) + g’(x) 2; f (x) (x) fo d7-(33)
..(z- z)"

Comparing the coefficients of x-2 on both sides of the last equality, we find

(34) S(D.) 2_ f(D).

Now S(D,,) is, by Theorem II, the same for all conformally equivalent domains;
F(D=), on the other hand, furnishes the maximal value within this family of
domains. Hence, we proved for an arbitrary domain D.

(35) F(D.) <_ - S(D,).

Thus we have obtained for the span a new definition:
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216 MENAHEM SCHIFFER

The span of a domain is 2/- times the maximal area, the complement of which is
conformally equivalent to this domain.

By integrating the first equality (33) we get 1/2[f(x) -t- g(x)] x in the case of
an extremal domain D. If D is an arbitrary domain of the z-plane, let x x(z)
be the function of O(D) mapping it on an extremal domain in the x-plane with
the slit functions f(x) and g(x). Then we have 1/2[f(x(z)) + g(x(z))] x(z), but
f(x(z)) and g(x(z)) are the slit functions of D. Hence:

In each domain D, the arithmetic mean of the slit functions belongs to (D,,) and
renders maximum the area of the complements of all maps, obtained by functions
of (Dn).
From this theorem it can easily be shown that an extremal domain is always

bounded by convex curves.
Finally we apply the inequality (11) to an extremal domain D using (34),

we get in this particular case,

(36) S(Dn)

_
2d(D) 2.

Since both members of the inequality are invariants for conformal normalized
mapping, the inequality holds for each domain D Equality occurs in (36)
only if for the corresponding extremal domain F(D) -d(D) holds. But
this equality is known to be valid only in the case of a circle; hence, we have
equality in (36) only in the case of simply connected domains, as already pointed
out in 1. Thus we get for S(Dn) the double estimate

(37) 2 F(D.)

_
S(Dn)

_
2d(D)2.
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Commentary on
[14] The span of multiply connected domains,

Duke Math. J. 10 (1943), 209–216.
In this seminal paper, Schiffer introduced an

important conformal invariant for multiply con-
nected plane domains, the span. The definition is
in terms of conformal mappings onto canonical
slit domains, and there is a complementary char-
acterization (almost literally), in terms of an ex-
tremal problem for area under a conformal map-
ping. While the foundational results on conformal
mapping of multiply connected domains concern
the existence and uniqueness of mappings onto
various canonical domains, Schiffer’s paper is an
early example of using the mappings as a tool in
geometric function theory. Moreover, his study of
the extremal problem is clearly influenced by his
development of variational methods.

Let D be a finitely connected domain con-
taining ∞ in its interior and consider univalent
functions F in D with

F(z) = z+
A
z
+

B
z2 + · · · (1)

near ∞. Let p(z) = z+ a/z+ · · · and q(z) = z+
b/z+ · · · be the unique conformal mappings of
D onto a domain bounded by horizontal slits and
vertical slits, respectively. Then

Re b ≤ Re A ≤ Re a.

Thus Re A can vary in an interval of length
Re{a−b}, and Schiffer calls this length the span
of D. It is the same for any domain that is the
image of D under a mapping of the form (1),
so in that sense it is a conformal invariant of
D. Schiffer proves, among other basic results,
that the coefficients A in (1) cover a disk with
diameter equal to the span of D.

Now consider conformal mappings of D by
functions as in (1) and ask: How large can the area
of the complement be? The answer is π/2 times
the span of D. Also, Φ(z) = (1/2)(p(z)+ q(z))
is the conformal mapping of D onto the extremal
domain, and Φ(D) is bounded by convex curves.
Schiffer’s proof is variational, in the course of
which he derives some striking identities for the

slit mappings of the extremal domain; see [K]
for later work on these. Apparently unbeknownst
to Schiffer at the time, the convexity property
of Φ had already been discovered by Grunsky
in his dissertation [G]. But convexity of the
boundary curves does not guarantee univalence,
a key property that was shown by Schiffer as part
of his analysis. This point is also discussed in
[34] as an independent observation and without
variational methods.

An alternate approach to the area problem,
once one knows that Φ is univalent and turns out
to be the extremal mapping, uses an expression
for Φ in terms of kernel functions and harmonic
measures, no less striking, and may be found
in [34]. Between [14] and [34], Schiffer revis-
ited the area problem in [22] as an application
of orthonormal families to conformal mappings,
then quite new. The correct upper bound for the
omitted area emerges easily, but the analysis of Φ
as the extremal mapping is troublesome, and the
full range of representations via kernel functions
was not yet realized. Nevertheless, this was a
new take on such problems and was influential
in subsequent papers. For example, similar area
problems were considered by Garabedian and
Schiffer in [26], no doubt motivated by [14]
and the ideas in [22]. See [N] as well for a
compact exposition. Kühnau [Ku] introduced a
notion of the span, together with an associated
area problem, using quasiconformal mappings
onto (inclined) parallel slit domains. He assumed
that the complex dilatation of the mapping is
identically zero near ∞, thus allowing for a local
expansion analogous to (1).

In [AB], analytic and geometric characteriza-
tions of the span were reconsidered by Ahlfors
and Beurling as examples of their general ap-
proach to defining conformal invariants and as-
sociated null-sets. Briefly, they define (relative)
conformal invariants by forming MF(z0,D) =

supF | f ′(z0)|, where z0 is a fixed point in D and
f varies in a class F(D) of analytic functions in D
that is invariant under conformal mappings of D.1

1In [AB] most results are given for z0 a finite point in
D, unlike Schiffer’s original normalization, but this is not
essential (nor was it essential for Schiffer to use z0 = ∞).
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If MF(z0,D) = 0 (which generally implies that it
vanishes identically), then the complement of D
is a null-set for the class F(D).

For an analytic approach to the span, consider
the class D(D) of analytic functions with a fixed
bound on the Dirichlet integral, specifically

∫∫

D
| f ′(z)|2 dxdy ≤ π .

Then MD(z0,D)2 = (1/2)span(D), and the ex-
tremal is given in terms of the slit mappings as
(p− q)/

√

2span(D). For a geometric character-
ization, the authors use omitted area to define a
class of competing functions. Namely, let SE(D)

be the set of univalent functions in D such that
1/( f (z)− f (z0)) omits a set of area at least π .
Then one has again

MSE(z0,D)2 = (1/2)span(D),

and the extremal is (p + q)/
√

2span(D); the
paper includes a proof that p+ q is univalent.

Since MD(z0,D) = MSE(z0,D), these results
serve to describe the identical classes of null-sets
for D(D) and SE(D). This direction of research
demonstrates the lasting influence of the span in
studying small boundaries and removable point
sets for classes of analytic functions on plane
domains, with similar applications to Riemann
surfaces. The latter is tied up with the classifica-
tion problem for Riemann surfaces, for example,
assessing the size of the boundary for the pur-

pose of supporting nonconstant analytic or har-
monic functions with a finite Dirichlet integral,
necessary for existence theorems. Schiffer him-
self contributed to this in [85], 22 years after [14].
For a technical discussion see [AS, RS, SN, SO].
For an informal and personal account, see [A].
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