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Worst-Case Identification under
Binary-Valued Observations

This chapter focuses on the identification of systems where the disturbances
are formulated in a deterministic framework as unknown but bounded. Dif-
ferent from the previous chapters, here the identification error is measured
by the radius of the set that the unknown parameters belong to, which is
a worst-case measure of the parameter uncertainties. By considering sev-
eral different combinations of the disturbances and unmodeled dynamics,
a number of fundamental issues are studied in detail: When only binary-
valued observations are available, how accurately can one identify the par-
ameters of the system? How fast can one reduce uncertainty on model par-
ameters? What are the optimal inputs for fast identification? What is the
impact of unmodeled dynamics and disturbances on identification accuracy
and time complexity?

The rest of this chapter is arranged as follows. In Section 9.1, the problem
is formulated and the main conditions on the disturbances and unmodeled
dynamics are given. In Section 9.2, lower bounds on the identification errors
and time complexity of the identification algorithms are established, under-
scoring an inherent relationship between identification time complexity and
the Kolmogorov ε-entropy. Identification input design and upper bounds
on identification errors are then derived in Section 9.3, demonstrating that
the Kolmogorov ε-entropy indeed defines the complexity rates. For the sin-
gle parameter case, the results are refined further in Section 9.4. Section
9.5 presents a comparison between the stochastic and deterministic frame-
works. In contrast to the common perception that these two are competing
frameworks, we show that they complement each other in binary sensor
identification.
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120 9. Worst-Case Identification

9.1 Worst-Case Uncertainty Measures

Recall the linear system defined in Chapter 2 and further detailed in Chap-
ter 4,

yk =
∞∑

i=0

aiuk−i + dk, k = k0 + 1, k0 + 2, . . . ,

where {dk} is a sequence of disturbances, {uk} is the input with uk = 0,
k < k0, and a = {ai, i = 0, 1, . . .}, satisfying ‖a‖1 =

∑∞
i=0 |ai| < ∞, is the

vector-valued parameter.
As in Chapter 4, for a given model order n0, the system parameters

can be decomposed into the modeled part θ = [a0, . . . , an0−1]′ and the
unmodeled dynamics θ̃ = [an0 , an0+1, . . .]′, and the system input–output
relationship can be expressed as

yk = φ′
kθ + φ̃′

kθ̃ + dk, k = k0 + 1, k0 + 2, . . . , (9.1)

where
φk = [uk, uk−1, . . . , uk−n0+1]′,

φ̃k = [uk−n0 , uk−n0−1, . . .]′.

Under a selected input sequence uk, the output sk from a binary-valued
sensor of threshold C is measured for k = k0 +1, . . . , k0 +N . We would like
to estimate θ on the basis of input–output observations on uk and sk. The
issues of identification accuracy, time complexity, and input design will be
discussed.

Because some results in this chapter will be valid under any lp norm,
the following assumption is given in a generic lp norm. The norm will be
further specified if certain results are valid only for some p values.

(A9.1) For a fixed p ≥ 1, to be specified later,

1. the unmodeled dynamics θ̃ is bounded in the lp norm by ‖θ̃‖p ≤ η;

2. the disturbance d is uniformly bounded in the l∞ norm by ‖d‖∞ ≤ δ;

3. the prior information on θ is given by Ω0 = Ballp(θ0, ε0) ⊂ R
n0 for

θ0 ∈ R
n0 and ε0 > 0.

For a selected input sequence uk, let s = {sk, k = k0 + 1, . . . , k0 + N}
be the observed output. Define

ΩN (k0, u, s) = {θ : sk = I{φ′
kθ+φ̃′

k θ̃+dk≤C} for some ‖θ̃‖p ≤ η,

‖d‖∞ ≤ δ and k = k0 + 1, . . . , k0 + N}

and

eN = inf
‖u‖∞≤umax

sup
k0

sup
s

Radp (ΩN (k0, u, s) ∩ Ballp(θ0, ε0)) ,
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where Radp(Ω) is the radius of Ω in the lp norm. eN is the optimal (in terms
of the input design) worst-case (with respect to initial time, unmodeled dy-
namics, and disturbances) uncertainty after N steps of observations. For a
given desired identification accuracy ε, the time complexity of Ballp(θ0, ε0)
is defined as

N(ε) = min{N : eN ≤ ε}.
We will characterize eN , determine optimal or suboptimal inputs u, and
derive bounds on time complexity N(ε).

9.2 Lower Bounds on Identification Errors and
Time Complexity

We will show in this section that identification time complexity is bounded
below by the Kolmogorov entropy of the prior uncertainty set.

Noise-Free and No Unmodeled Dynamics

Theorem 9.1. Assume Assumption (A9.1). Let δ = 0 and η = 0. Suppose
that for a given p ≥ 1 the prior uncertainty Ω0 = Ballp(θ0, ε0). Then,
for any ε < ε0, the time complexity N(ε) is bounded below by N(ε) ≥
n0 log(ε0/ε).

Proof. Ballp(c, ε) in R
n0 has volume ap,n0ε

n0 , where the coefficient ap,n0

is independent of ε. To reduce the identification error from ε0 to below ε,
the volume reduction must be at least

ap,n0ε
n0/(ap,n0ε

n0
0 ) = (ε/ε0)n0 .

Each binary sensor observation defines a hyperplane in the parameter
space R

n0 . The hyperplane divides an uncertainty set into two subsets,
with the volume of the larger subset at least half of the volume of the
original set. As a result, in a worst-case scenario, one binary observation
can reduce the volume of a set by 1/2 at best. Hence, the number N of
observations required to achieve the required error reduction is at least

(1/2)N ≤ (ε/ε0)n0 , or N ≥ n0 log(ε0/ε).

The proof is concluded. �

It is noted that n log(ε0/ε) is precisely the Kolmogorov ε-entropy of the
prior uncertainty set Ω0 [50, 125]. Hence, Theorem 9.1 provides an interest-
ing new interpretation of the Kolmogorov entropy in system identification,
beyond its application in characterizing model complexity [125]. Theorem
9.1 establishes a lower bound of exponential rates of time complexity. Upon
obtaining an upper bound of the same rates in the next section, we will
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show that the Kolmogorov ε-entropy indeed defines the time complexity
rates in this problem. Next, we present an identifiability result, which is
limited to p = 1.

Proposition 9.2. The uncertainty set Ball1(0, C/umax) is not identifi-
able.

Proof. For any θ ∈ Ball1(0, C/umax), the output

yk = φ′
kθ ≤ ‖φk‖∞‖θ‖1 ≤ umax

C

umax
= C.

It follows that sk = 1, ∀k. Hence, the observations could not provide further
information to reduce uncertainty. �

Bounded Disturbances

In the case of noisy observations, the input–output relationship becomes

yk = φ′
kθ + dk, sk = I{yk≤C}, (9.2)

where |dk| ≤ δ. For any given φk, an observation on sk from (9.2) defines,
in a worst-case sense, two possible uncertainty half-planes:

Ω1 = {θ ∈ R
n0 : φ′

kθ ≤ C + δ}, sk = 1,

Ω2 = {θ ∈ R
n0 : φ′

kθ > C − δ}, sk = 0.

Uncertainty reduction via observation is possible only if the uncertainty set
before observation is not a subset of each half-plane (so that the intersection
of the uncertainty set and the half-plane results in a smaller set).

Theorem 9.3. If ε ≤ δ/umax, then for any θ0 ∈ R
n0 , either Ball1(θ0, ε) ⊆

Ω1 or Ball1(θ0, ε) ⊆ Ω2. Consequently, in a worst-case sense, Ball1(θ0, ε)
is not identifiable.

Proof. Suppose that Ball1(θ0, ε) �⊆ Ω1. Then, there exists θ1 ∈ Ball1(θ0, ε)
such that φ′

kθ1 > C + δ. θ ∈ Ball1(θ0, ε) satisfies ‖θ − θ1‖1 ≤ 2ε. We have

φ′
kθ = φ′

kθ1 + φ′
k(θ − θ1)

> C + δ + φ′
k(θ − θ1)

≥ C + δ − umax2ε ≥ C − δ,

for any θ ∈ Ball1(θ0, ε). This implies that Ball1(θ0, ε) ⊆ Ω2. Likewise, we
can show that if Ball1(θ0, ε) �⊂ Ω2, then it is contained in Ω1. �

Theorem 9.3 shows that worst-case disturbances introduce irreducible
identification errors of size at least δ/umax. This is a general result. A
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substantially higher lower bound can be obtained in the special case of
n0 = 1.

Consider the system yk = auk + d. Suppose that at time k the prior
information on a is that a ∈ Ω = [a, a] with a > C/umax for identifiability
(see Proposition 9.2). The uncertainty set has center a0 = (a + a)/2 and
radius ε = (a − a)/2. To minimize the posterior uncertainty in the worst-
case sense, the optimal uk can be easily obtained as uk = C/a0.

Theorem 9.4. If δ < C, then the uncertainty set [a, a] cannot be reduced
if

ε ≤ δ/umax

1 − δ/C
.

Proof. Let ε = δ/umax
1−δ/C . Then, δ = εC

C/umax+ε . For any a ∈ [a, a], noting
a0 = a + ε, we have |a − a0| ≤ ε, and

auk = a
C

a0
= (a0 + (a − a0))

C

a0
= C + (a − a0)

C

a0

≤ C +
εC

a + ε
< C +

εC

C/umax + ε
= C + δ.

Hence, the observation sk = 1 does not provide any information. Similarly,
if sk = 0, we can show that all θ ∈ [a, a] will result in auk > C − δ. Again,
the observation does not reduce uncertainty. �

At present, it remains an open question if Theorem 9.4 holds for higher-
order systems.

Unmodeled Dynamics

When the system contains unmodeled dynamics, the input–output rela-
tionship becomes

yk = φ′
kθ + φ̃′

kθ̃, sk = I{yk≤C}, (9.3)

where ‖θ̃‖1 ≤ η. We will show that unmodeled dynamics will introduce an
irreducible identification error on the modeled part.

For any φ̃k, the set {φ̃′
kθ̃ : ‖θ̃‖1 ≤ η} = [−ηmk, ηmk], where mk =

‖φ̃k‖∞.

Theorem 9.5. If ε ≤ η, then in a worst-case sense, for any θ0, Ball1(θ0, ε)
is not identifiable.

Proof. Under (9.3), an observation on sk provides observation information

Ω1 = {θ ∈ R
n0 : φ′

kθ ≤ C + ηmk}, sk = 1,

Ω2 = {θ ∈ R
n0 : φ′

kθ > C − ηmk}, sk = 0.
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In the worst-case sense, Ball1(θ0, ε) can be reduced by this observation only
if Ball1(θ0, ε) is a subset of neither Ω1 nor Ω2.

Suppose that Ball1(θ0, ε) �⊆ Ω2. We will show that Ball1(θ0, ε) ⊆ Ω1.
Indeed, in this case, there exists θ1 ∈ Ball1(θ0, ε) such that φ′

kθ1 ≤ C−ηmk.
Since any θ ∈ Ball1(θ0, ε) satisfies ‖θ − θ1‖1 ≤ 2ε, we have

φ′
kθ = φ′

kθ1 + φ′
k(θ − θ1)

≤ C − ηmk + φ′
k(θ − θ1)

≤ C − ηmk + mk2ε

≤ C + ηmk.

This implies Ball1(θ0, ε) ⊆ Ω1. �

9.3 Upper Bounds on Time Complexity

In this subsection, general upper bounds on identification errors or time
complexity will be established.

For a fixed p ≥ 1, suppose that the prior information on θ is given
by Ballp(θ0, ε0). For identifiability, assume that the signs of ai have been
detected and

a = min{|ai|, i = 1, . . . , n} >
C

umax
.

The sign of ai can be obtained easily by choosing an initial testing se-
quence of u. Also, those parameters with |ai| < C/umax can be easily
detected. Since uncertainty on these parameters cannot be further reduced
(see Proposition 9.2), they will be left as remaining uncertainty. a defined
here will be applied to the rest of the parameters. The detail is omitted for
brevity. Denote

a = max
θ∈Ballp(θ0,ε0)

‖θ‖∞.

We will establish upper bounds on the time complexity N(ε) to reduce the
size of the uncertainty from ε0 to ε, in the lp norm.

Noise-Free and No Unmodeled Dynamics

Let η = 0 and δ = 0 and consider yk = φ′
kθ.

Theorem 9.6. Suppose that umax > C/a. Then the time complexity to
reduce the uncertainty from ε0 to ε is bounded by

N(ε) ≤ (n0
2 − n0 + 1)

⌈
1
p

log n0 + log
ε0

ε

⌉
. (9.4)
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Since n0 is a constant independent of N , this result, together with Theo-
rem 9.1, confirms that the Kolmogorov entropy defines the time complexity
rates in binary sensor identification. The accurate calculation for N(ε) re-
mains an open and difficult question, except for n0 = 1 (gain uncertainty),
which is discussed in the next section.

The proof of Theorem 9.6 utilizes the following lemma. Consider the first-
order system yk = auk, sk = I{yk≤C}, where a ∈ [a, a] and a > C/umax > 0.
Let ε0 = (a − a)/2.

Lemma 9.7. There exists an input sequence u such that N observations
on sk can reduce the radius of uncertainty to ε = 2−Nε0.

Proof. Let [ak, ak] be the prior uncertainty before a measurement on sk.
Then εk = (ak−ak)/2. By choosing uk = C/(ak+εk), the observation on sk

will determine uniquely either a ∈ [ak, ak +εk] if sk = 1; or a ∈ [ak−εk, ak]
if sk = 0. In either case, the uncertainty is reduced by half. Iterating on
the number of observations leads to the conclusion. �

The proofs of this section rely on the following idea. Choose uk = 0 except
those with index j(n0

2 −n0 + 1) + i, i = 1, n0 + 1, . . ., (n0 − 1)n0 −n0 + 3,
j = 0, 1, . . . This input design results in a specific input–output relationship:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yj(n02−n0+1)+n0 = an0−1uj(n02−n0+1)+1,

yj(n02−n0+1)+n0+1 = a0uj(n02−n0+1)+n0+1,
...

yj(n02−n0+1)+(n0−1)n0+1 = an0−2uj(n02−n0+1)+(n0−1)n0−n0+3.

(9.5)
In other words, within each block of n0

2 −n0 + 1 observations, each model
parameter can be identified individually once. Less conservative inputs can
be designed. However, they are more problem-dependent and ad hoc, and
will not be presented here.

Proof of Theorem 9.6. By Lemma 9.7, the uncertainty radius on each
parameter can be reduced by a factor of 2−N1 after N1 observations. This
implies that by using the input (9.5), after N = (n0

2 − n0 + 1)N1 observa-
tions, the uncertainty radius can be reduced to

radp(ΩN ) ≤ n0
1/prad∞(ΩN ) ≤ n0

1/p2−
N

n02−n0+1 rad∞(Ω0)

≤ n0
1/p2−

N
n02−n0+1 radp(Ω0) = n0

1/p2−
N

n02−n0+1 ε0.

Hence, for
n0

1/p2−
N

n02−n0+1 ε0 ≤ ε,

it suffices to have

N = (n0
2 − n0 + 1)

⌈
1
p

log n + log
ε0

ε

⌉
.
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The desired result follows. �

Bounded Disturbances

Consider yk = φ′
kθ + dk, where |dk| ≤ δ.

Theorem 9.8. Suppose δ < C. Let

β =
δ

C
, ρ =

1
2
(1 − β), and σ =

δa

2C(1 − ρ)
=

aβ

1 + β
.

If ε0 > ε > σ and umax > C/a, then the time complexity N(ε) to reduce
the uncertainty from ε0 to ε is bounded in the lp norm by

N(ε) ≤ (n0
2 − n0 + 1)

⌈
1
p

log n0 +
log ε−σ

ε0−σ

log ρ

⌉

. (9.6)

Proof. Using the input in (9.5), the identification of the n parameters a0,
. . . , an0−1 is reduced to identifying each parameter individually. Now for
identification of a single parameter yk = auk +dk, we can derive the follow-
ing iterative uncertainty reduction relationship. If the prior uncertainty at
k is [ak − εk, ak + εk], then the optimal worst-case input uk can be shown
as uk = C/ak. (More detailed derivations are given in the next section.)
The posterior uncertainty will be either [ak − εk, (1 + β)ak], if sk = 1; or
[(1 − β)ak, ak + εk], if sk = 0. Both have the radius

εk+1 =
1
2

(εk + βak) =
1 − β

2
εk +

β

2
(ak + εk) ≤ ρεk +

βa

2
.

Starting from ε0, after N1 observations, we have

ε(N1) ≤ ρN1ε0 +
βa

2

N1−1∑

i=0

ρi = ρN1ε0 +
βa

2
1 − ρN1

1 − ρ

= ρN1ε0 + σ(1 − ρN1) = ρN1(ε0 − σ) + σ.

To achieve ε(N1) ≤ ε, it suffices that

ρN1(ε0 − σ) + σ ≤ ε or N1 ≥
log ε−σ

ε0−σ

log ρ
.

Following the same arguments as in the proof of Theorem 9.6, we conclude
that

N = (n0
2 − n0 + 1)

⌈
1
p

log n0 +
log ε−σ

ε0−σ

log ρ

⌉

suffices to reduce the uncertainty from ε0 to ε in the lp norm. �
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Unmodeled Dynamics

Consider yk = φ′
kθ + φ̃′

kθ̃. The results of this case hold for p = 1 only. The
unmodeled dynamics introduce an uncertainty on the observation on yk:
{φ̃′

kθ̃ : ‖θ̃‖1 ≤ η} = [−ηmk, ηmk], mk = ‖φk‖∞.

Theorem 9.9. Suppose 0 < η < C/umax. Let

ρ1 =
1
2

(
1 − ηumax

C

)
, σ1 =

ηumaxa

2C(1 − ρ1)
.

Then

N(ε) ≤ (n0
2 − n0 + 1)

⌈

log n0 +
log ε−σ1

ε0−σ1

log ρ1

⌉

. (9.7)

Proof. By using the input (9.5), the identification of θ is reduced to each
of its components. For a scalar system yk = auk +φ̃′

kθ̃, since |φ̃′
kθ̃| ≤ ηumax,

we can apply Theorem 9.8 with δ replaced by ηumax. Inequality (9.7) then
follows from Theorem 9.8. �

9.4 Identification of Gains

In the special case n = 1, explicit results and tighter bounds can be ob-
tained. When n = 1, the observation equation becomes

yk = auk + φ̃′
kθ̃ + dk.

Assume that the initial information on a is that a0 ≤ a ≤ a0, a0 �= 0,
a0 �= 0, with radius ε0 = (a0 − a0)/2.

Case 1: yk = auk

It is noted that this is a trivial identification problem when regular sensors
are used: After one input u0 �= 0, a can be identified uniquely.

Theorem 9.10. The following assertions hold.

(1) Suppose the sign of a is known, say, a0 > 0, and umax ≥ C/a0.
Then the optimal identification error is eN = 2−Ne0 and the time
complexity is N(ε) = �log(ε0/ε)�.
If, at k − 1, the information on a is that a ∈ [ak−1, ak−1], then the
one-step optimal uk is

uk =
2C

ak−1 + ak−1
, (9.8)
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where ak and ak are updated by

ak =
{

(ak−1 + ak−1)/2, if sk = 0,
ak−1, if sk = 1;

ak =
{

ak−1, if sk = 0,
(ak−1 + ak−1)/2, if sk = 1.

(2) If a0 and a0 have opposite signs and

δl = max
{

a0,−
C

umax

}
, δh = min

{
a0,

C

umax

}
,

then the uncertainty interval (δl, δh) is not identifiable. Furthermore,
in the case of a0 ≤ δl and a0 ≥ δh, if δh − δl ≤ ε and ε0 ≥ 2ε, then
the time complexity N(ε) is bounded by

⌈
log

ε0

ε

⌉
≤ N(ε) ≤

⌈
log

ε0 − (δh − δl)
ε

⌉
+ 2.

Proof. The proof is divided into a couple of steps.

(1) The identification error and time complexity follow directly from The-
orems 9.1 and 9.6 with n = 1. As for the optimal input, note that
starting from the uncertainty [ak, ak], an input uk defines a testing
point C/uk on a. The optimal worst-case input is then obtained by
placing the testing point at the middle. That is,

C

uk
=

1
2
(ak + ak),

which leads to the optimal input and results in posterior uncertainty
sets.

(2) When the input is bounded by uk ∈ [−umax, umax], the testing points
cannot be selected in the interval [−C/umax, C/umax]. Consequently,
this uncertainty set cannot be further reduced by identification. Fur-
thermore, by using u1 = −umax and u2 = umax as the first two input
values, a can be determined as belonging uniquely to one of the three
intervals:

[a0,−C/umax), [−C/umax, C/umax], [C/umax, a0].

By taking the worst-case scenario of

a0 − C/umax = ε0 − (δh − δl),

the time complexity for reducing the remaining uncertainty to ε is⌈
log ε0−(δh−δl)

ε

⌉
. This leads to the upper bound on N(ε). The lower

bound follows from Theorem 9.1 with n = 1.
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�

In this special case, the actual value C > 0 does not affect the identi-
fication accuracy. This is due to noise-free observation. The value C will
become essential in deriving optimal identification errors when observation
noises are present. C = 0 is a singular case in which the uncertainty on
a cannot be reduced (in the sense of the worst-case scenario). Indeed, in
this case, one can only test the sign of a. It is also observed that the opti-
mal uk depends on the previous observation sk−1. As a result, uk can be
constructed causally and sequentially, but not off-line.

Case 2: yk = auk + dk

Here we assume |dk| ≤ δ < C. The prior information on a is given by
a ∈ Ω0 = [a0, a0], and a0 > 0.

Theorem 9.11. Suppose that

umax ≥ C

a0

and
a0

a0

≥ 1 + β

1 − β
.

Then

(1) the optimal input uk is given by the causal mapping from the available
information at k − 1:

uk =
2C

ak−1 + ak−1
.

The optimal identification error satisfies the iteration equation

ek =
1
2
ek−1 +

1
2
β(ak−1 + ak−1), (9.9)

where ak and ak are updated by the rules

ak = ak−1, ak =
C − δ

uk
, if sk = 0,

ak = ak−1, ak =
C + δ

uk
, if sk = 1.

(2)
a(k)
a(k)

≥ 1 + β

1 − β
for all k ≥ 1;

{ak} is monotonically increasing, {ak} and
{

ak

ak

}
are monotonically

decreasing;

limk→∞
ak

ak

=
1 + β

1 − β
.
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(3) At each time k, uncertainty reduction is possible if and only if

ak−1

ak−1

>
1 + β

1 − β
.

Proof. (1) Since uk > 0, the relationship (9.2) can be written as a = yk−dk

uk
.

The observation outcome yk ≥ C will imply that

a ≥ C − dk

uk
≥ C − δ

uk
,

which will reduce uncertainty from a ∈ [ak−1, ak−1] to [C−δ
uk

, ak−1] with
error e1(k) = ak−1 − C−δ

uk
. Similarly, y < C implies a < C+δ

uk
and a ∈

[ak−1,
C+δ
uk

] with e2(k) = C+δ
uk

− ak−1. In a worst-case scenario,

ek = max{e1(k), e2(k)}.

Consequently, the optimal uk can be derived from infuk
ek. Hence, the

optimal uk is the one that causes e1(k) = e2(k), namely,

C + δ

uk
− ak−1 = ak−1 −

C − δ

uk
,

or
uk =

2C

ak−1 + ak−1
.

The optimal identification error is then

ek =
(C + δ)(ak−1 + ak−1)

2C
− ak−1

=
(

1
2

+
β

2

)
(ak−1 + ak−1) − ak−1

=
1
2
ek−1 +

β

2
(ak−1 + ak−1).

(2) We prove ak

ak
≥ 1+β

1−β by induction. Suppose that ak−1
ak−1

≥ 1+β
1−β . Then

we have ukak−1 ≥ C + δ and ukak−1 ≤ C − δ, which, respectively, leads
to ak

ak
= ukak−1

C−δ ≥ 1+β
1−β in the case of sk = 1, and ak

ak
= C+δ

ukak−1
≥ 1+β

1−β in

the case of sk = 0. Thus, by the initial condition that ε0 ≥ 1+β
1−β , we have

ak

ak
≥ 1+β

1−β for all k ≥ 1.

By ak−1
ak−1

≥ 1+β
1−β , we have ukak−1 ≤ C−δ and ukak−1 ≥ C+δ, which gives

ak = ak−1 and ak

ak−1
= C−δ

ukak−1
≥ 1 in the case of sk = 1, and ak = ak−1

and ak

ak−1
= C+δ

ukak−1
≤ 1 in the case of sk = 0. Thus, {ak} is monotonically

increasing and {ak} is monotonically decreasing.



9.4 Identification of Gains 131

Furthermore, by ak

ak−1
≥ 1 and ak−1

ak
≥ 1, we obtain akak−1

akak−1
≥ 1, i.e.,

ak−1
ak−1

≥ ak

ak
. Hence,

{
ak

ak

}
is monotonically decreasing.

The dynamic expression (9.9) can be modified as

ek =
1
2

(1 − β) ek−1 + βak−1, (9.10)

or
ek =

1
2

(1 + β) ek−1 + βak−1. (9.11)

By taking k → ∞ on both sides of (9.10) and (9.11), we obtain a(∞) =
C+δ
2δ e(∞) and a(∞) = C−δ

2δ e(∞). This leads to limk→∞
ak

ak
= 1+β

1−β .
(3) From (9.9) it follows that the uncertainty is reducible if and only if

β(ak−1 + ak−1) < ek−1 = a(k − 1) − ak−1.

This is equivalent to
ak−1

ak−1

>
1 + β

1 − β
.

�

Theorem 9.12. Let

α1 =
1
2

(1 − β) , α2 =
1
2

(1 + β) .

Then under the conditions and notation of Theorem 9.11,

(1) for k ≥ 1, the optimal identification error ek is bounded by

αk
1e0 + β

a(1 − αk
1)

α2
≤ αk

1e0 + β
ak−1(1 − αk

1)
α2

≤ ek ≤ αk
2e0 + β

ak−1(1 − αk
2)

α1

≤ αk
2e0 + β

a(1 − αk
2)

α1
;

(9.12)

(2) let ε0 = e0/2 and ε0 > ε > βa
α1

= 2βa
1−β . Then the time complexity

N(ε) for reducing the uncertainty from ε0 to ε is bounded by
⎡

⎢
⎢
⎢
⎢
⎢

log
ε− βa

α2

ε0− βa
α2

log α1

⎤

⎥
⎥
⎥
⎥
⎥

≤ N ≤

⎡

⎢
⎢
⎢
⎢
⎢

log
ε− βa

α1

ε0− βa
α1

log α2

⎤

⎥
⎥
⎥
⎥
⎥

;

(3) there exists an irreducible relative error

2β

1 + β
≤ e(∞)

a
≤ 2β

1 − β
; (9.13)
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(4) the parameter estimation error is bounded by

0 ≤ a(∞) − a

a(∞)
≤ 2β

1 + β
, 0 ≤ a − a(∞)

a(∞)
≤ 2β

1 − β
. (9.14)

Proof. We prove the assertions step by step as follows.

(1) From (9.10) and the monotonically decreasing property of ak, we have

ek ≥ αk
1e0 +

δak−1

C

k−1∑

i=0

αi
1,

and from (9.11) and the monotonically increasing property of ak,

ek ≤ αk
2e0 +

δak−1

C

k−1∑

i=0

αi
2.

The results follow from
∑k−1

i=0 αi
1 = 1−αk

1
1−α1

,
∑k−1

i=0 αi
2 = 1−αk

2
1−α2

, 1−α1 =
α2, and ak ≤ a ≤ ak.

(2) From item (2) of Theorem 9.11, it follows that the error ek = ak −
ak is monotonically decreasing. Thus, the upper bound on the time
complexity is obtained by solving the inequality for the smallest N
satisfying

eN ≤ αN
2 ε0 +

βa(1 − αN
2 )

α1
≤ ε.

Similarly, the lower bound can be obtained by calculating the largest
N satisfying

ε ≤ αN
1 ε0 +

βa(1 − αN
1 )

α2
≤ ek.

(3) This follows from (9.12) and item (2) of Theorem 9.11, which implies
the existence of limt→∞ek.

(4) From the last two lines of the proof of item (2) of Theorem 9.11, it
follows that a(∞) = C+δ

2δ e(∞) and a(∞) = C−δ
2δ e(∞). This, together

with (9.13), gives (9.14).

�

Remark 9.13. It is noted that the bounds in item (2) of Theorem 9.12
can be easily translated to sequential information bounds by replacing a
with the on-line inequalities ak−1 ≤ a ≤ ak−1.
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Case 3: yk = auk + φ̃′
kθ̃

Let uk = {uτ , τ ≤ k}. Then ‖uk‖∞ is the maximum |uτ | up to time k.
Since we assume no information on θ̃, except that ‖θ̃‖1 ≤ η, it is clear that
sup‖θ̃‖1≤η |φ̃′

kθ̃| = ηmk, where mk = ‖φ̃k‖∞. Let wk = φ̃′
kθ̃. Then

{φ̃′
kθ̃ : ‖θ̃‖1 ≤ η} = {wk : |wk| ≤ ηmk}.

Theorem 9.14. Suppose that a0 > 0, umax ≥ C/a0, η < a0. Then

(1) the optimal input uk, which minimizes the worst-case uncertainty at
k, is given by the causal mapping from the available information at
k − 1:

uk =
2C

ak−1 + ak−1
. (9.15)

The optimal identification error at k satisfies the iteration equation

ek =
1
2
ek−1 +

ηmk

2C
(ak−1 + ak−1), (9.16)

where ak and ak are updated by the rules

ak = ak−1, ak =
C − ηmk

uk
, if sk = 1,

ak = ak−1, ak =
C + ηmk

uk
, if sk = 0;

(2) the uncertainty is reducible if and only if ak−1 > ak−1 + 2η;

(3) for k ≥ 1, the optimal identification error ek is bounded by

(∏k

j=1
β1(j)

)
e0 +

ηa

C

k∑

i=1

mi

∏k

j=i+1
β1(j)

≤ ek ≤
(∏k

j=1
β2(j)

)
e0 +

ηa

C

k∑

i=1

mi

∏k

j=i+1
β2(j),

(9.17)

where β1(k) = 1
2

(
1 − ηmk

C

)
and β2(k) = 1

2

(
1 + ηmk

C

)
;

(4) let ε0 = e0/2 and ε0 > ε > 2ηa(0)
a0−η . Also, denote β1 = 1

2

(
1 − η

a0

)
,

β2 = 1
2

(
1 + η

a0

)
. Then the time complexity N(ε) for reducing the

uncertainty from ε0 to ε is bounded by
⎡

⎢
⎢
⎢
⎢

log
ε− ηa

a0β2
ε0− ηa

a0β2

log β1

⎤

⎥
⎥
⎥
⎥
≤ N(ε) ≤

⎡

⎢
⎢
⎢
⎢

log
ε− ηa

a0β1
ε0− ηa

a0β1

log β2

⎤

⎥
⎥
⎥
⎥

. (9.18)
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Proof. The proof is arranged as follows.

(1) The results follow from the definition of mk and Theorem 9.12, with
δ replaced by ηmk.

(2) From (9.16) and (9.15), it follows that the uncertainty is reducible
if and only if ηmk

uk
< 1

2ek−1 = 1
2 (ak−1 − ak−1). This is equivalent to

η < 1
2 (ak−1 − ak−1) or ak−1 > ak−1 + 2η, since mk

uk
≥ 1.

(3) By (9.16), we have

ek =
1
2

(
1 +

ηk

C

)
ek−1 +

ηmk

C
ak−1 (9.19)

and
ek =

1
2

(
1 − ηmk

C

)
ek−1 +

ηmk

C
ak−1. (9.20)

Furthermore, from ak ≤ a ≤ ak for all k ≥ 0,

ek ≤ β2(k)ek−1 +
ηmk

C
a

and
ek ≥ β1(k)ek−1 +

ηmk

C
a.

Then, the inequalities in (9.17) can be obtained by iterating the above
two inequalities in k.

(4) Since for all k ≥ 1, a0 ≥ ak ≥ ak ≥ a0,

uk =
2C

ak−1 + ak−1
≤ C

a0

,

which implies that C
a0

≤ uk ≤ C
a0

. This leads to

β1(k) ≥ β1 =
1
2
(1 − η

a0

)

and

β2(k) ≤ β2 =
1
2

(
1 +

η

a0

)
.

Hence,

β1ek−1 +
ηa

a0
≤ ek ≤ β2ek−1 +

ηa

a0

for all k ≥ 1. (9.21)

As a result, the inequalities of Theorem 9.12 can be adopted here to
get (9.18).

�

Note that β2(k) ≥ β1(k) and β1(k) + β2(k) = 1; and β1 → β2 as η → 0,
uniformly in k.
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9.5 Identification Using Combined Deterministic
and Stochastic Methods

This section highlights the distinctive underlying principles used in design-
ing inputs and deriving posterior uncertainty sets in the stochastic and
deterministic information frameworks.

In the deterministic worst-case framework, the information on noise is
limited to its magnitude bound. Identification properties must be evalu-
ated against worst-case noise sample paths. As shown earlier, the input is
designed on the basis of choosing an optimal worst-case testing point (a
hyperplane) for the prior uncertainty set. When the prior uncertainty set is
large, this leads to an exponential rate of uncertainty reduction. However,
when the uncertainty set is close to its irreducible limits due to distur-
bances or unmodeled dynamics, its rate of uncertainty reduction decreases
dramatically due to its worst-case requirements. Furthermore, when the
disturbance magnitude is large, the irreducible uncertainty will become
too large for identification error bounds to be practically useful.

In contrast, in a stochastic framework, noise is modeled by a stochas-
tic process and identification errors are required to be small with a large
probability. Binary sensor identification in this case relies on the idea of
averaging. Typically, in identification under stochastic setting, the input is
designed to provide sufficient excitation for asymptotic convergence, rather
than fast initial uncertainty reduction. Without effective utilization of prior
information in designing the input during the initial time interval, the ini-
tial convergence can be slow. This is especially a severe problem in binary
sensor identification since a poorly designed input may result in a very
imbalanced output of the sensor in its 0 or 1 values, leading to a slow con-
vergence rate. In the case of large prior uncertainty, the selected input may
result in nonswitching at the output, rendering the stochastic binary-sensor
identification inapplicable. On the other hand, averaging disturbances re-
stores estimation consistency and overcomes a fundamental limitation of
the worst-case identification.

Consequently, it seems a sensible choice of using the deterministic frame-
work initially to achieve fast uncertainty reduction when the uncertainty
set is large, then using the stochastic framework to modify estimation
consistency. In fact, we shall demonstrate by an example that these two
frameworks complement each other precisely, in the sense that when one
framework fails, the other starts to be applicable.
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9.5.1 Identifiability Conditions and Properties under
Deterministic and Stochastic Frameworks

We first establish identifiability conditions of the two frameworks for a gain
system

yk = auk + dk, k = 1, 2, . . . , (9.22)

where {dk} is a sequence of disturbances, and a is an unknown parameter.
The prior information on a is given by a ∈ [a, a], with 0 < a ≤ a < ∞.
uk > 0 is the input. The output yk is measured by a binary-valued sensor
with threshold C.

Deterministic Framework.
The idea of deterministic framework is to reduce the parameter uncertainty
based on the bound of disturbances. Denote rk = ak/ak as the relative
error.

Starting from the initial uncertainty Ω0 = [a, a] and input u0 = u∗, we
check the output of binary sensor. If s1 = 0, which means au∗ + d1 > 0,
we obtain au∗ + δ ≥ au∗ + d1 > C. Hence, a > (C − δ)/u∗ and e1 =
a − (C − δ)/u∗ < e0. This means the parameter bound is reducible if
a < (C − δ)/u∗. Otherwise, we have s1 = 1. Then, au∗− δ ≤ au∗ +d1 ≤ C;
hence, a ≤ (C + δ)/u∗ and e1 = (C + δ)/u∗ − a < e0 if a > (C + δ)/u∗. So,
the parameter bound is reducible if

a <
C − δ

u∗ and a >
C + δ

u∗

in the worst-case sense, or equivalently,

r0 <
C − δ

C + δ
:= Δ. (9.23)

Furthermore, by the above analysis, we arrive at the new uncertainty set

e1 = max
{

a − C − δ

u∗ ,
C + δ

u∗ − a

}

in the worst-case sense. The uncertainty set is minimized at the optimal
input

u∗
1 =

2C

a + a
and e∗1 =

(1 + β)a − (1 − β)a
2

(9.24)

with β = δ/C.
The one-step optimal input design and parameter error was introduced

in [111]. This, however, is not an overall optimal design if N steps are
considered. The N -step optimal input design was developed in [14].

Theorem 9.15 [14]. For binary observations with threshold C, the optimal
parameter bound is

e∗N = 2β
a(1 + β)(2

N−1) − a(1 − β)(2
N−1)

(1 + β)(2N ) − (1 − β)(2N )
(9.25)
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and the optimal inputs are

u∗
k =

C

ãk|N
, k = 1, 2, . . . , N,

where

ãk|N =
ak−1(1 + β)(2

N−k−1) + ak−1(1 − β)(2
N−k−1)

(1 + β)(2N−k) + (1 − β)(2N−k)
.

Example 9.16. For system (9.22) with C = 40, δ = 0.5, a = 1, and
a = 10, the optimal error provided by (9.25) is shown in Figure 9.1. It is
shown that at first the uncertainty is reduced very fast, but uncertainty
reduction gradually slows down toward an irreducible error bound.
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FIGURE 9.1. Optimal parameter error

Stochastic Framework
The essence of stochastic framework is to utilize the probabilistic properties
of disturbances. Define the empirical measure ξ0

N =
∑N

k=1 sk/N . If there
exists u∗ such that C − au∗ is on the support of F (·), which means

− δ < C − au∗ < δ, (9.26)

then ξ0
N is the empirical measure of F (·) at C − au∗, and

ξ0
N → F (C − au∗), w.p.1. (9.27)
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(A9.2) The noise {dk} is a sequence of i.i.d. random variables bounded
by |dk| ≤ δ whose distribution function F (x), x ∈ (−δ, δ), and its inverse
F−1(·) are twice continuously differentiable in (−δ, δ) and known.

Throughout the rest of the chapter, we assume Assumption (A9.2) also
holds. Note that F is a monotone function in view of Assumption (A9.2). If
a is bounded, then there exists z > 0 such that p = F (C −au∗) is bounded
by

z < p < 1 − z. (9.28)

Since F (·) is not invertible at 0 and 1, we modify ξ0
N to avoid these points

as in (3.1):

ξN =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ0
N , if z ≤ ξ0

N ≤ 1 − z,

z, if ξ0
N < z,

1 − z, if ξ0
N > 1 − z.

(9.29)

As shown in Chapter 3, ξN → p w.p.1. Define

âN = (C − F−1(ξN ))/u∗. (9.30)

Then
âN → a w.p.1.

For a ∈ [a, a], the identifiability condition (9.26) becomes

−δ < C − au∗ ≤ C − au∗ < δ.

So for a given threshold C, u∗ can be chosen to construct the estimation
algorithm if and only if

r0 > Δ, (9.31)

which complements exactly (9.23) for the deterministic framework. Under
(9.31) and C > δ, the admissible input set is

u∗ ∈ Γ =
(

C − δ

a
,
C + δ

a

)
. (9.32)

By Chapter 6, for a given u∗, the optimal CR lower bound with binary-
valued observations is

η∗
N (a, u∗) = E (â∗

N − a)2 =
F (C − au∗)(1 − F (C − au∗))

N(u∗)2f2(C − au∗)
(9.33)

and N(ηN − η∗
N (a, u∗)) = N [E(âN − a)2 − η∗

N ] → 0 as N → ∞, which
means the algorithm (9.30) of the stochastic framework is asymptotically
efficient.
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Remark 9.17. The foregoing analysis indicates that the identifiability con-
dition for the deterministic framework is that r0 < Δ in the worst case and
r0 > Δ for the stochastic framework. Due to the strict inequalities, there
is a dividing line r0 = Δ between the two frameworks under binary obser-
vations. A key problem in combining the two frameworks is to find a way
to connect the two sets of identifiability regions.

9.5.2 Combined Deterministic and Stochastic Identification
Methods

In this subsection, we introduce a method to connect the two frameworks
and develop the criteria for switching from one framework to another.

Connection of Two Frameworks by Input Design
Since there is no intersection between the two identifiability sets (9.23) and
(9.31), one cannot design a strategy to switch from one framework to an-
other. Consequently, it is necessary to find an approach to connect the sets.
Here, we modify the stochastic methods by using two input values, rather
than one. Since each input value creates one identifiability set, by choos-
ing the inputs appropriately, we can create a scenario that these two sets
collectively intersect to the identifiability set of the deterministic method.

For the initial uncertainty [a, a], let b ∈ (a, a). Then, b divides the interval
into two parts, [a, b] and (b, a]. For a ∈ [a, b], the identifiability condition
(9.31) becomes a/b > Δ. Similarly, for a ∈ (b, a], the requirement is b/a >
Δ. Since

max
b

min
{

a

b
,
b

a

}
=
√

a

a

with b∗ =
√

aa, the parameter can be estimated if r0 > Δ2. Since Δ =
(C − δ)/(C + δ) < 1, we have Δ2 < Δ; thus, there is an intersection
between the identifiability sets of two frameworks.

This analysis indicates that it is possible to connect the two frameworks
if two input values are used for the stochastic framework. We discuss next
the switching strategies. This will be done by using convergence speeds.
We first use an example to illustrate the basic ideas.

Example 9.18. Consider the one-step optimal worst-case error in Theo-
rem 9.15

e∗1
e∗0

=
(1 + β)a − (1 − β)a

2e0
=

1 − β

2
+

β

1 − r0
,

which decreases with r0. For the same system as in Example 9.16, the ratio
is plotted as a function of r0 in Figure 9.2 with β = 0.2. We can see that
the ratio goes to 1 when r0 approaches (1 − β)/(1 + β), which means the
uncertainty is almost irreducible.
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FIGURE 9.2. Optimal parameter reduction ratio

Consider the identifiability condition of the stochastic framework r0 > Δ.
The convergence speed may be slow in the worst case as r0 is small and
close to Δ. The optimal covariance of the stochastic method with threshold
C and constant input u∗ is

η∗
N (a, u) =

F (C − au∗)(1 − F (C − au∗))
N(u∗)2f2(C − au∗)

.

Let

η∗(Ω0, u
∗) = sup

a∈Ω0

F (C − au∗)(1 − F (C − au∗))
(u∗)2f2(C − au∗)

,

and
η∗(Ω0) = inf

u∗
η∗(Ω0, u

∗). (9.34)

Then, the optimal convergence speed by designing an optimal input value
can be derived as

η∗
N (Ω0) = η∗(Ω0)/N. (9.35)

For Ω0, if we use the η∗
N (Ω0), we can first design identification algorithms

for Ψ1 = [a, b∗] and Ψ2 = [b∗, a], and then calculate η∗
N (Ψ1) and η∗

N (Ψ2).
Hence, the switch time Ns can be decided by the following rule:

Ns = min
N

{
ε2
2N > min{η∗

N ([a,
√

aa)), η∗
N ([
√

aa, a])}
}

. (9.36)
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With this switching rule, the joint identification algorithm can be con-
structed as follows:

1. In the case of rk < Δ2, apply the deterministic method.

2. Denote the first time that rk ≥ Δ2 as K, and calculate Ns by
(9.36) with the information of parameter uncertainty lower and upper
bounds at that time K.

3. Keep using deterministic methods for another Ns −1 steps. Then get
the parameter lower and upper bounds, namely, as and as.

4. Switch to the stochastic method.

9.5.3 Optimal Input Design and Convergence Speed under
Typical Distributions

We now solve (9.34) concretely for some typical noise distribution func-
tions. We will derive specific expressions for the uniform distribution and
truncated normal distribution. For other distributions, similar methods
can be used, although derivation details may vary. For simplification, let
η∗

N = η∗
N (Ω0) and η∗(u∗) = η∗(Ω0, u

∗).

Uniform Distribution
Suppose that the density function of dk is f(x) = 1/(2δ) for the support
set (i.e., strictly positive) in (−δ, δ). Then, F (x) = δ+x

2δ . We have

η∗(u∗) = sup
a∈Ω0

{δ2 − (C − au∗)2},

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ2, if u∗ ∈ Γ1 = (C
a , C

a ),

δ2 − (C − au∗)2, if u∗ < C
a ,

δ2 − (C − au∗)2, if u∗ > C
a .

(9.37)

Theorem 9.19. Suppose dk has a uniform distribution on (−δ, δ). Then
for Ω0, η∗ defined in (9.34) can be expressed as

η∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ2a2

(C+δ)2 , if r ≤ C
C+δ ,

δ2a2

C2 , if r > C
C+δ and C > δ,

(a−a)[(C+δ)a−(C−δ)a]
C+δ , if r > C

C+δ and C ≤ δ,

(9.38)

and the optimal input can be derived concretely by the above cases, respec-
tively.
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Proof. By (9.32), the feasible input set is u∗ ∈ Γ. The set is nonempty if
and only if r > Δ in case of C > δ.

Case (i): In case of Δ < r ≤ C−δ
C , since C−δ

C ≤ C
C+δ , we have C−δ

a ≥ C
a

and C+δ
a ≤ C

a , namely, Γ ⊂ Γ1 = (C
a , C

a ). So for ∀u∗ ∈ Γ, there exists
a ∈ Ω0 such that a = C/u∗, which induces η∗(u∗) = δ2. Hence,

η∗ = inf
u∗∈Γ

δ2

(u∗)2
=

δ2a2

(C + δ)2

with u∗ = (C + δ)/a.
Case (ii): In case of C−δ

C < r ≤ C
C+δ , we have C−δ

a < C
a and C+δ

a ≤ C
a .

For u∗ ∈ Γ2 = (C
a , C+δ

a ), we have η∗(u∗) = δ2. So

inf
u∗∈Γ2

δ2

(u∗)2
=

δ2a2

(C + δ)2
.

For u∗ ∈ Γ3 = (C−δ
a , C

a ], notice that C − au∗ > C − aC
a ≥ 0, which

means a ≤ C/u∗. So η∗(u∗) = δ2 − (C − au∗)2 for u∗ ∈ Γ3. Since

inf
u∗∈Γ3

δ2 − (C − au∗)2

(u∗)2
= inf

u∗∈Γ3

{
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

}

and C > δ, δ2−C2
1

(u∗)2 + 2aC
u∗ − a2, as a function of 1/u∗, is symmetric about

1/u∗ = aC
C2−δ2 .

Since

r =
a

a
≤ C

C + δ
≤ C2 + δ2

C(C + δ)
,

we have (
a

C − δ
− aC

C2 − δ2

)
−
(

aC

C2 − δ2
− a

C

)

=
aC(C + δ) − a(C2 + δ2)

C(C2 − δ2)
≤ 0.

As a result,
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

is minimized at u∗ = C/a on Γ3, namely,

inf
u∗∈Γ3

{
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

}
=

δ2a2

C2
.

Hence, we have

η∗ = min
{

δ2a2

(C + δ)2
,
δ2a2

C2

}
=

δ2a2

(C + δ)2
.
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Case (iii): In the case of r > C
C+δ , we have C−δ

a < C
a and C+δ

a > C
a . For

u∗ ∈ Γ1, we have η∗(u∗) = δ2 and η∗(u∗) = δ2 − (C −au∗)2 for u∗ ∈ Γ3. So

inf
u∗∈Γ1

δ2

(u∗)2
=

δ2a2

C2
and inf

u∗∈Γ3

δ2 − (C − au∗)2

(u∗)2
=

δ2a2

C2
.

For u∗ ∈ Γ4 = [C/a, C+δ
a ), note that C−au∗ ≤ C−aC

a ≤ 0, which means
a ≥ C/u∗. So η∗(u∗) = δ2 − (C − au∗)2 for u∗ ∈ Γ4. The minimization
problem is

inf
u∗∈Γ4

δ2 − (C − au∗)2

(u∗)2
= inf

u∗∈Γ4

{
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

}
.

Since C > δ, δ2−C2
1

(u∗)2 + 2aC
u∗ −a2, as a function of 1/u∗, is symmetric about

1/u∗ = aC
C2−δ2 . Since

r >
C

C + δ
≥ C − δ

C
≥ C(C − δ)

C2 + δ2
,

we have (
a

C
− aC

C2 − δ2

)
−
(

aC

C2 − δ2
− a

C + δ

)

=
aC(C − δ) − a(C2 + δ2)

C(C2 − δ2)
≥ 0.

As a result,
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

is minimized at u∗ = C/a on Γ4, namely,

inf
u∗∈Γ4

{
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

}
=

δ2a2

C2
.

Hence, η∗ = δ2a2/C2.
The proof for C < δ is similar and omitted. �

Truncated Normal Distribution
Suppose dk has a truncated normal distribution with probability density
function

fσ(x) =

1
σ

λ
(x

σ

)

Λ
(

δ

σ

)
− Λ
(
−δ

σ

) ,

where x ∈ (−δ, δ), λ(·) is the probability density function of the standard
normal distribution, and Λ(·) its cumulative distribution function. Here,
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we discuss the case of σ = 1; general cases can be derived similarly. Then,
we have the density function

f(x) =
λ(x)

Λ(δ) − Λ(−δ)

and the distribution function given by

F (x) =
Λ(x) − Λ(−δ)
Λ(δ) − Λ(−δ)

.

Denote
λ1(x) = λ(x)(1 − 2Λ(x)),

λ2(x) = (Λ(x) − Λ(−δ))(Λ(δ) − Λ(x)),

and

G(x) =
λ2(x)
λ2(x)

.

Hence,
η∗(u∗) = sup

C−au∗≤x≤C−au∗
G(x)

and
η∗ = inf

u∗
η∗(u∗).

First, we analyze the property of G(x). The derivative of G(x) can be
written as

G′(x) =
λ1(x) + 2xλ2(x)

λ2(x)
.

Let
g1(x) = λ1(x) + 2xλ2(x).

Then, we have g1(0) = 0 and g1(δ) = λ(δ)(1 − 2Λ(δ)) < 0.
Note that

g2(x) = g′1(x) = xλ1(x) − 2λ2(x) + 2λ(x).

Then
g2(δ) = δλ(δ)(1 − 2Λ(δ)) − 2λ2(δ) < 0

and

g2(0) = 2
(

Λ(δ) − 1
2

)2

− 2λ2(0) < 0

in the case of Λ(δ) < 1
2 + λ(0), and g2(0) ≥ 0 in the case of

Λ(δ) ≥ 1
2

+ λ(0).
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Lemma 9.20. g2(x) < 0 on (0, δ) for Λ(δ) ≤ 1
2 + λ(0). And for Λ(δ) >

1
2 +λ(0), there exists exactly one x2 ∈ (0, δ) such that g2(x2) = 0, g2(x) > 0
on (0, x2), and g2(x) < 0 on (x2, δ).

Theorem 9.21. G′(x) < 0 on (0, δ) for Λ(δ) ≤ 1
2 + λ(0). In addition, for

Λ(δ) > 1
2 + λ(0), there exists x3 ∈ (0, δ) such that G′

1(x3) = 0, G′(x) > 0
on (0, x3), and G′(x) < 0 on (x3, δ).

Proof. Note that G′(x) = g(x)/λ2(x), so we need only prove the same
conclusion for g1(x). By Lemma 9.20, g2(x) < 0 on (0, δ) for Λ(δ) ≤ 1

2 +
λ(0). In addition, g1(0) = 0, and we have g1(x) < 0 on (0, δ). For Λ(δ) >
1
2 + λ(0), g2(x) > 0 on (0, x2) and g2(x) < 0 on (x2, δ) by Lemma 9.20, so
g1(x2) > g1(0) = 0. Since g1(δ) < 0 and g2(x) < 0 on (x2, δ), the second
part is true. �

Here, we only derive the case of C > δ, and Λ(δ) ≤ 1
2 + λ(0). We

can discuss other cases similarly. Recall (9.32); the feasible input set is
u∗ ∈ Γ =

(
C−δ

a , C+δ
a

)
and the set is nonempty if and only if r > Δ. Then,

we have the following theorem.

Theorem 9.22 Suppose d has a truncated normal distribution on (−δ, δ).
Then for Ω0, η∗ defined in (9.34) can be expressed as

η∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G(0)a2

(C+δ)2 , if Δ < r ≤ C−δ
C ,

min{ G(0)a2

(C+δ)2 ,H(C − C−δ
a a)a2}, if C−δ

C < r ≤ C
C+δ ,

min{G(0)a2

C2 ,H(0)a2,H(C − C−δ
a a)a2, a2H(C − C+δ

a a)},
if r > C

C+δ ,

(9.39)

where

H(t) =
λ2(t)

(C − t)2λ2(t)
.

For system (9.22) with C = 40, a = 1, a = 50, and the actual parameter
a = 15. The disturbance has a uniform distribution on (−δ, δ) with δ = 6,
by the algorithm developed in Section 9.5.2:

We have K = 2, aK = 9.8, and aK = 15. Then, we calculate Ns = 1 by
(9.36). We turn to stochastic method and get ã.

It is shown that the parameter uncertainty is reduced to a certain bound
using the deterministic method in the first stage and convergent to the real
parameter using the stochastic method afterwards.

9.6 Notes

The material in this chapter is derived mostly from [111]. This chapter
presents input design, uncertainty reduction rates, and time complexity
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FIGURE 9.3. Simulation on the combined deterministic and stochastic identifi-
cation methods

for system identification under binary-valued observations. This chapter
deals with nonstatistical information from the observed data. We show
that to enhance the nonstatistical information, the input must be properly
designed.

Our input design is based on the idea of one-step optimal design: From
the current uncertainty set on the unknown parameter, we select the best
input value of the input such that the next uncertainty set can be maxi-
mally reduced, assuming no further information toward the future. Casini,
Garulli, and Vicino have shown in [14] that if one has additional information
on the number N of remaining steps toward the end of the identification
data window, a better input design can be achieved. A dynamic program-
ming method was introduced to optimize such an input design. It can be
shown that in that case, the one-step optimal input design employed in
Section 9.4 is no longer optimal for this N -step optimal input design. On
the other hand, to achieve convergence with growing data sizes (namely,
N → ∞, rather than a fixed integer from the outset), the one-step design is
a simple choice to achieve exponential convergence toward the irreducible
uncertainty set.

The deterministic approaches are subject to an irreducible identification
error; hence convergence is lost. They work well when the magnitude of the
noise error bounds is relatively small since the irreducible set is a function
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of the size of the noise. Also, the input design can achieve exponential con-
vergence rates toward the irreducible set, which is much faster than the
polynomial rates of convergence in a stochastic framework. On the other
hand, stochastic information in the data can produce a convergent esti-
mator. A combined identification algorithm that employs the input design
first to reduce the parameter uncertainty set exponentially, followed by a
statistical averaging approach to achieve convergence with periodic inputs,
seems to be the best choice in overcoming the shortcomings of each indi-
vidual framework.
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