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Systems with Markovian Parameters

This chapter concerns the identification of systems with time-varying par-
ameters. The parameters are vector-valued and take values in a finite set.
As in the previous chapters, only binary-valued observations are available.

Our study is motivated by applications in the areas of smart sensors,
sensor networks, networked mobile agents, distributed power generation
networks, etc. For instance, consider an array of mobile sensors being dis-
patched to survey an area for potential land contamination. Each sensor
travels along a trajectory, measures a surface, and communicates the mea-
sured values via a wireless network to the command center. Some of the
features include

(1) The parameter of interest takes only a few possible values represent-
ing regions such as “no contamination,” “low contamination,” and
“high contamination.”

(2) When the sensor travels, the parameter values switch randomly de-
pending on the actual contamination.

(3) Due to communication limitations, only quantized measurements are
available. Here when the sensor moves slowly, the parameter values
switch infrequently. This problem may be described as a system with
an unknown parameter that switches over finite possible values ran-
domly. This application represents problems in ocean survey, detec-
tion of water pipe safety, mobile robots for bomb, chemical, biological
threats, etc.
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FIGURE 13.1. Mobile sensor systems for area survey

To capture the essence of such problems as those above, we formu-
late a class of identification problems with randomly switching parameters
and binary-valued observations. We shall focus on time-varying parame-
ters modeled by a discrete-time Markov chain with a finite state space.
The limited information due to binary-valued sensors makes identification
a difficult task. Our approach for identifying regime-switching systems with
binary observations relies on the basic idea of Wonham-type filters. Based
on the key ideas of such filters, we derive mean-square estimators and
analyze their error bounds. To obtain the error bounds for mean-square
estimators, we utilize asymptotic distributional results. We first establish
weak convergence of functional central limit results, followed by strong ap-
proximation of the scaled sequences. Then these distributional results are
used to obtain error bounds.

In applications, the frequency of the switching processes plays a crucial
role. Consider two typical cases for tracking and identification. The first
case is concerned with Markov chains whose switching movements occur
infrequently. Here, the time-varying parameter takes a constant value for
a relatively long time and switches to another value at a random time.
The jumps happen relatively infrequently. We develop maximum poste-
rior (MAP) estimators and obtain bounds on estimation or tracking errors
based on Wonham filters. We also point out that a simplified estimator
can be developed using empirical measures. The second class of systems
aims at treating fast-switching systems. One motivation of such systems is
the discretization of a fast-varying Markovian system in continuous time.
Suppose the precise transition probabilities are unknown. When parame-
ters frequently change their values, the system becomes intractable if one
insists on tracking instantaneous changes. In fact, if the jump parameter
switches too frequently, it would be impossible to identify the instanta-
neous jumps even with regular linear sensors, let alone binary observations.
As a result, an alternative approach is suggested. Instead of tracking the
moment-by-moment changes, we examine the averaged behavior of the sys-
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tem. The rationale is as follows: Because the Markov chain varies at a fast
pace, within a short period of time, it should settle down at a stationary
or steady state. In the steady state, the underlying system is a weighted
average with the weighting factors the components of the stationary dist-
ribution of the Markov chains.

Section 13.1 begins with the setup of the tracking and identification prob-
lem with a Markov parameter process. Section 13.2 presents Wonham-type
filters for the identification problem. Section 13.3 concerns mean-square
criteria. Section 13.4 proceeds with the study of infrequently switching sys-
tems. Section 13.5 takes up the issue of fast-switching systems.

13.1 Markov Switching Systems with Binary
Observations

Consider a single-input–single-output (SISO), discrete-time system repre-
sented by

yk = φ′
kθk + dk, (13.1)

where φk = (uk, . . . , uk−n0+1)′ and {dk} is a sequence of random distur-
bances. The θk is a Markov chain that takes m0 possible vector values
θ(j) ∈ R

n0 , j = 1. . . . ,m0. yk is measured by a binary-valued sensor with
the known threshold C. After applying an input u, the output sk is mea-
sured for k = 0, . . . , N − 1 with observation length N ≥ n0. We will use
the following assumptions throughout this chapter.

(A13.1) The time-varying process {θk} is a discrete-time Markov chain
with a transition probability matrix P and a finite state space M =
{θ(1), θ(2), . . . , θ(m0)}.

(A13.2) The {dk} is a sequence of i.i.d. random variables with a con-
tinuously differentiable distribution function F (·) whose density function
is denoted by f(·). The inverse F−1(·) exists and is continuous, and the
moment generating function of dk exists.

13.2 Wonham-Type Filters

Tracking θk or identifying the system under binary-valued observations is
a nonlinear filtering problem. A crucial step toward this goal is to build a
good estimator of the probability distribution given the observations. The
identification problem may be stated as follows.

Denote the observation data up to k by Sk = {sl, l ≤ k} and the sequence
of increasing σ-algebras of the observations up to time k by FSk

= σ{sl :
l ≤ k}. Note that FS0 ⊂ FS1 · · · ⊂ FSk

. Similarly, denote the sequence of
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σ-algebras generated by θk as FΘk
= σ{θl : l ≤ k}, and the σ-algebras

generated by the observation noise as FDk
= σ{dl : l ≤ k}. We wish to find

the probabilities

w
{j}
N = P (θN = θ(j)|FSN

), N ≥ 0, j = 1, . . . , m0. (13.2)

Denote the initial probability distribution by p
{j}
0 = P (θ0 = θ(j)). Recall

that P = (p{ij}) ∈ R
m0×m0 , with

p{ij} = P (θN = θ(j)|θN−1 = θ(i)), i, j = 1, . . . ,m0,

are the entries in the transition matrix P . The development uses the Won-
ham filter techniques in [59], which is a discrete version of the original
Wonham filter in [114]. Nevertheless, in our case, we only have binary-
valued observations. The noise does not appear additive either. For each
j = 1, . . . , m0, we denote

G{j}(sN ) := P (sN |θN = θ(j)) = I{sN=1}F (C − φ′
Nθ(j))

+[1 − I{sN=1}](1 − F (C − φ′
Nθ(j)),

(13.3)

which is a function of the random variable sN .

Theorem 13.1. Assume (A13.1) and (A13.2). The Wonham-type filter
for the binary-valued observations can be constructed as

w
{j}
0 =

p
{j}
0 G{j}(s0)

m0∑

j1=1

p
{j1}
0 G{j1}(s0)

, j = 1, . . . ,m0
(13.4)

and

w
{j}
N =

G{j}(sN )
m0∑

i=1

p{ij}w
{i}
N−1

m0∑

i=1

m0∑

j1=1

G{j1}(sN )p{ij1}w
{j1}
N−1

, j = 1, . . . , m0. (13.5)

Proof. To verify (13.4), applying Bayes’ theorem leads to

w
{j}
0 = P (s0|θ0 = θ(j))P (θ0 = θ(j))

m0∑

j1=1

P (s0, θN = θ(j1))
=

p
{j}
0 G{j}(s0)

m0∑

j1=1

p
{j1}
0 G{j1}(s0)

.

To prove (13.5), we first introduce the one-step prediction

w
{j}
N |N−1 = P (θN = θ(j)|FSN−1). (13.6)
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Since {dk} is a sequence of i.i.d. random variables and {θN} is Markovian,
we have

P (θN = θ(j)|θN−1 = θ(j1),FSN−1) = θ(j1)) = p{j1j}.

By the law of total probability,

E(w{j}
N |FSN−1) = P (θN = θ(j)|FSN−1) =

m0∑

j1=1

p{j1j}w
{j1}
N−1. (13.7)

Now, by Bayes’ theorem and (13.7),

w
{j}
N = P (θN = θ(j)|sN ,FSN−1)

=
P (sN |θN = θ(j),FSN−1)P (θN = θ(j)|FSN−1)

m0∑

j1=1

P (sN |θN = θ(j1),FSN−1)P (θN = θ(j1)|FSN−1)

=

G{j}(sN )
m0∑

i=1

p{ij}w
{i}
N−1

m0∑

j1=1

Gj1(sN )
m0∑

i=1

p{ik}w
{i}
N−1

.

The last line above follows from (13.6). �

13.3 Tracking: Mean-Square Criteria

Based on Wonham-type filters, under different criteria, we may develop sev-
eral different estimators. First, consider the following optimization problem:
Choose θ to minimize the mean-square errors conditioned on the informa-
tion up to time N . That is, find θ to minimize minθ E(|θN − θ|2|SN ). Just
as in the usual argument for Kalman filters, bearing in mind the use of
conditional expectation, we obtain the minimizer of the cost, which leads
to the following mean-square estimator:

θ̂N = E(θN |FSn
) =

m0∑

j=1

θ(j)w
{j}
N .

To derive the error estimates of θ̂N −θN , we need the associated asymptotic
distribution for

eN =
1√
N

N−1∑

k=0

(θk − θ̂k).
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Note that {eN} is a sequence of centered and scaled deviations of the
Markov chain from its mean-square tracker with a scaling factor

√
N . For

future use, we note that

eN =
1√
N

∑

j∈M

N−1∑

k=0

θ(j){[I{θk=θ(j)} − P (θk = θ(j))]

+[P (θk = θ(j)) − w
{j}
k ]}.

(13.8)

To examine the deviation, in lieu of working with a discrete-time formula
directly, we focus on a continuous-time interpolation of the form

vN (t) =
1√
N

∑

j∈M


Nt�−1∑

k=0

θ(j)[I{θk=θ(j)} − w
{j}
k ], t ∈ [0, 1], (13.9)

where �z� denotes the integer part of z ∈ R. We shall show that the limit
of vN (·) is a Brownian motion, whose properties help us to derive the
desired error bounds. Obtaining the weak convergence to the Brownian
motion requires verifying that the sequence under consideration is tight (or
compact). Then we characterize the limit by means of martingale problem
formulation.

To use weak convergence theory, it is common and more convenient to use
the so-called D space, which is a space of functions that are right continuous
and have left limits, with a topology weaker than uniform convergence,
known as the Skorohod topology. The main advantage of using such a setup
is that it enables one to verify the tightness or compactness relatively easily.
The exact definitions of these are somewhat technical; we refer the reader
to [55, Chapter 7] for further reference.

Lemma 13.2. Assume the conditions of Theorem 13.1, and suppose the
Markov chain is irreducible.

(a) Then for each δ > 0, each t ≥ 0, and each s > 0 with 0 ≤ s ≤ δ,

sup
N

E|vN (t + s) − vN (t)|2 ≤ Ks, (13.10)

for some K > 0.

(b) The sequence vn(·) is tight in D([0, 1]; Rm0), the space of R
m0-valued

functions that are right continuous, have left limits, and are endowed
with the Skorohod topology.

Proof. We first prove (a). In view of the second line of (13.8), for each
δ > 0, for t > 0, s > 0 satisfying 0 ≤ s ≤ δ, we have

E|vN (t + s) − vN (t)|2 ≤ LN,1 + LN,2,
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where

LN,1 =
2
N

∑

j1,j2∈M


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

i=
Nt�
θ(j1),′θ(j2)EI

{j1}
k I

{j2}
i ,

LN,2 =
2
N

∑

j1,j2∈M


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

i=
Nt�
θ(j1),′θ(j2)Ew̌

{j1}
k w̌

{j2}
i ,

I
{j}
k = I{θk=θ(j)} − P (θk = θ(j)),

w̌
{j}
k = P (θk = θ(j)) − w

{j}
k ,

w̃
{j}
k = I{θk=θ(j)} − w

{j}
k .

(13.11)

To proceed, we estimate LN,1 and LN,2. We need only look at a fixed
pair j1 and j2. First, consider LN,1 without the first sum. Without loss of
generality, assume k ≥ i. Then we obtain that for fixed j1 and j2 ∈ M,

∣
∣
∣
∣
∣
∣


N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

k=
Nt�
θ(j1),′θ(j2)EI

{j1}
k I

{j2}
i

∣
∣
∣
∣
∣
∣

≤ 2

N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

i≤k

θ(j1),′θ(j2)
∣
∣
∣E[I{j2}

i EiI
{j1}
k ]
∣
∣
∣ ,

(13.12)

where El denotes the expectation conditioned on Fl = σ{dk, θk : k ≤ l},
the past information up to l. Since the Markov chain is irreducible, it is
ergodic. That is, there is a row vector ν, the stationary distribution of the
Markov chain such that

|PN − 11ν| ≤ KλN for some 1 > λ > 0,

where 11 is a column vector with all its component being 1. Using this
spectrum gap estimate,

|EiI
{j1}
k | ≤ λk−i.

It then follows that for the term in (13.12), we have

∣
∣
∣
∣
∣
∣


N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

k=
Nt�
θ(j1),′θ(j2)EI

{j1}
k I

{j2}
i

∣
∣
∣
∣
∣
∣

≤ K (�N(t + s)� − �Nt�) .

Dividing the above by N leads to supN LN,1 ≤ Ks. As for the terms
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involved in LN,2,
∣
∣
∣
∣
∣
∣


N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

i≤k

θ(j1),′θ(j2)Ew̌
{j1}
k w̌

{j2}
i

∣
∣
∣
∣
∣
∣

≤ K


N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

k≥i

λk−i ≤ KNs.

Dividing the above by N and taking supN yields supN LN,2 ≤ Ks. Thus,
(a) is true.

By using (a), with arbitrary δ > 0 and the chosen t and s, we have

lim
δ→0

lim sup
N→∞

E|vN (t + s) − vN (t)|2 ≤ lim
δ→0

Kδ = 0.

Thus, the tightness follows from the criterion [53, Theorem 3, p. 47]. The
lemma is proved. �

To proceed, let us point out:

(i) Since vN (·) is tight, we can extract weakly convergent subsequences
by means of Prohorov’s theorem (see [55, Chapter 7]). Loosely, se-
quential compactness enables us to extract convergent subsequences.
Without loss of generality, still index the selected subsequence by N ,
and assume vN (·) itself is the weakly convergent subsequence. Denote
the limit by v(·). We shall characterize the limit process.

(ii) From the defining relationship of vN (t), it is readily seen that

EvN (t) =
1√
N

∑

j∈M


Nt�−1∑

k=0

θ(j)
{

E
[
I{θk=θ(j)} − P

(
θk = θ(j)

)]

+E
[
P
(
θk = θ(j)

)
− w

{j}
k

]}
= 0 for each t ≥ 0.

(13.13)

To determine the limit process, we consider a vector-valued process ṽN (t) =
(ṽ1

N (t), . . . , ṽm0
N (t)) ∈ R

m0 , where

ṽ
{i}
N (t) =

1√
N


Nt�−1∑

k=0

θ(i)
[
I{θk=θ(i)} − w

{i}
k

]
.

Define ΣN (t) = (Σ{ij}(t)) = EṽN (t)ṽ′
N (t), where Σ{ij}

N (t) denotes the ijth
entry of the partitioned matrix ΣN (t), namely,

Σ{ij}
N (t) =

1
N


Nt�−1∑

k=0


Nt�−1∑

l=0

Eζ
{i}
k ζ

{j},′
l , (13.14)
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where
ζ
{i}
k = θ(i)

[
I{θk=θ(i)} − w

{i}
k

]
∈ R

m0 .

Using the notation of ṽN (t), we can rewrite vN (t) as vN (t) = 11′m0
ṽN (t),

where 11′m0
= (1, . . . , 1) ∈ R

1×m0 . To proceed, we first determine the limit
covariance function of EvN (t)v′

N (t) = 11′m0
[EṽN (t)ṽ′

N (t)]11m0 . From the
above expression, it is seen that to accomplish this goal, we need only
consider the limit covariance of EṽN (t)ṽ′

N (t). The following lemma details
the calculation of the asymptotic covariance.

Lemma 13.3. Assume the conditions of Lemma 13.2. Then

(a) the limit covariance of ṽN (t) is given by

lim
N→∞

ΣN (t) = tΣ0, Σ0 = diag
(
Σ{11}

0 , . . . ,Σ{m0m0}
0

)
,

Σ{i}
0

def= Σ{ii}
0 = lim

N→∞

1
N

N∑

k=0

Eζ
{i}
k ζ

{i},′
k , i ∈ M;

(13.15)

(b) as N → ∞,

EvN (t)v′
N (t) → tΣ = t

m0∑

i=1

Σ{i}
0 .

Proof. To prove (a), it suffices to work with the partitioned matrix Σ{ij}
N (t).

Note that

Nt�−1∑

k<l

Eζ
{i}
k ζ

{j},′
l =


Nt�−1∑

k<l

E
[
ζ
{i}
k Ekζ

{j},′
l

]
= 0 for i �= j.

Likewise,

Nt�−1∑

l<k

Eζ
{i}
k ζ

{j},′
l = 0 for i �= j.

This leads to

Σ{ij}
N (t) = δij

1
N


Nt�−1∑

k=0

Eζ
{i}
k ζ

{j},′
k +

1
N


Nt�−1∑

l=0


Nt�−1∑

k<l

Eζ
{i}
k ζ

{j},′
l

+
1
N


Nt�−1∑

k=0


Nt�−1∑

l<k

Eζ
{i}
k ζ

{j},′
l

= δij
�Nt�
N

1
�Nt�


Nt�−1∑

k=0

Eζ
{i}
k ζ

{j},′
k

→
{

tΣ{i}
0 , if i = j,

0, otherwise,
(13.16)
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as N → ∞, where δij = 1 if i = j, δij = 0 otherwise, and Σ{ij}
0 denotes the

ijth partitioned matrix in Σ0.
Finally, (b) is a direct consequence of Lemma 13.3. The lemma is thus

proved. �

Note that by (13.15), Σ{i}
0 = Σ{ii}

0 , the partitioned matrix of Σ0. To
proceed, we prove that vN (·) converges weakly to a Brownian motion. We
characterize the limit process by means of identifying the limit covariance
function. The analysis is carried out by using the martingale problem for-
mulation. For a twice continuously differentiable function h : R

m0 �→ R,
define an operator as

Lh(v) =
1
2
tr
[
Σhvv(v)

]
, (13.17)

where hvv denotes the Hessian matrix (the second partial derivatives with
respect to v). We have the following result.

Theorem 13.4. Assume the conditions of Lemma 13.2. Then

(a) vN (·) converges weakly to v(·), which is a Brownian motion with co-
variance Σt;

(b) vN (1) converges in distribution to a normal random variable with
mean 0 and covariance Σ.

Proof. Part (b) is a direct consequence of (a). Thus, we need only prove
(a). Since vN (·) converges weakly, there is a convenient device known as
the Skorohod representation (see [55, Chapter 7]) that enables us to work
with w.p.1 convergence on an enlarged space. Without loss of generality
and with a slight abuse of notation, we may assume vN (·) → v(·) in the
sense of w.p.1. We want to show that v(·) is a solution to the martingale
problem with operator L defined in (13.17). To this end, it suffices to show
that

h(v(t)) − h(v(0)) −
∫ t

0

Lh(v(ρ))dρ is a martingale.

To verify the above, it only needs to be shown (see [55]) that for any
bounded and continuous function H(·), any t, s > 0, any integers �, and
any tι ≤ t,

EH(v(tι) : ι ≤ �)[ h(v(t + s)) − h(v(t))

−
∫ t+s

t

Lh(v(ρ))dρ] = 0.
(13.18)

To verify (13.18), use vn(·). By the weak convergence and the Skorohod
representation, as N → ∞,

EH(vN (tι) : ι ≤ �)[h(vN (t + s)) − h(vN (t))]

→ EH(v(tι) : ι ≤ �)[h(v(t + s)) − h(v(t))].
(13.19)
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On the other hand, direct computation reveals that

lim
N→∞

EH(vN (tι) : ι ≤ �)[h(vN (t + s)) − vN (t))]

= lim
N→∞

EH(vN (tι) : ι ≤ �)

⎡

⎣ 1√
N

∑

i∈M
h′

v(vN (t))θ(i)


N(t+s)�−1∑

k=
Nt�
w̃

{i}
k

+
1

2N

∑

i∈M

∑

i1∈M
tr[hvv(vN (t))θ(i)θ(i1)]


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

l=
Nt�
w̃

{i}
k w̃i1

l

⎤

⎦ ,

(13.20)
where w̃

{i}
k is given by (13.11). Using nested expectation and inserting

E
Nt�, since vN (tι) : ι ≤ � and vN (t) are all F
Nt�-measurable, by inserting
E
Nt� we have

EH(vN (tι) : ι ≤ �)

⎡

⎣ 1√
N

∑

i∈M
h′

v(vN (t))θ(i)E
Nt�


N(t+s)�−1∑

k=
Nt�
w̃

{i}
k

⎤

⎦

→ 0 as N → ∞.

Likewise,

EH(vN (tι) : ι ≤ �)

[
1

2N

∑

i∈M

∑

i1∈M
tr[hvv(vN (t))θ(i)θ(i1)]

×

N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

l=
Nt�
w̃

{i}
k w̃i1

l

⎤

⎦

= EH(vN (tι) : ι ≤ �)

[
1

2N

∑

i∈M

∑

i1∈M
tr[hvv(vN (t))θ(i)θ(i1)]

× E
Nt�


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

l=
Nt�
w̃

{i}
k w̃i1

l

⎤

⎦ .

Dividing the cases into l ≤ k and k < l, we can handle the last equation
above as in the proof of Lemma 13.3 by inserting El and Ek, respectively.
It follows that the double summations above reduce to a single one. The
last two equations together with (13.20) then imply that

EH(vN (tι) : ι ≤ �)
[ 1
2N

∑

i∈M

∑

i1∈M
tr[hvv(vN (t))θ(i)θ(i1)]

×E
Nt�


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

l=
Nt�
w̃

{i}
k w̃i1

l

]

→ EH(v(tι) : ι ≤ �)
[ ∫ t+s

t

Lh(ρ)dρ
]

as N → ∞.
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This establishes the desired theorem. �

By virtue of Theorem 13.4, we further obtain a strong approximation
result. This strong approximation will aid us in obtaining error bounds in
what follows.

Lemma 13.5. Under the conditions of Theorem 13.4, there is a constant
γ > 0 such that

sup
0≤t≤1

|vN (t) − v(t)| = o(N−γ) w.p.1.

Proof. Note that

Ek−1ζ
{i}
k = Ek−1[I{θk=θ(i)} − w

{i}
k ] = 0.

Thus, it is a martingale difference sequence. Using the martingale version of
the Skorohod representation (see [41, p. 269]), we can establish the result.
The details are omitted. �

We next show that the tracking error in the average sense is exponentially
small. The result is based on part (b) in Theorem 13.4 and large deviations
for normal random variables. There are different ways to obtain the error
bounds. We do one as follows, whose proof is also in the appendix.

Theorem 13.6. Under the conditions of Lemma 13.2,

P

(
1√
N

∣
∣
∣
∣
∑

i∈M

N∑

k=0

θ(i)[I{θk=θ(i)} − w
{i}
k ]
∣
∣
∣
∣
1

≥ ε

)

≤ 2m0 exp

(

− Nε2

2m0
2σ2

v{i}(1)

)

,

(13.21)

where | · |1 denotes the l1 norm.

Proof. Note that v{i}(1) = e′iv(1), where ei is the ith standard unit vector.
Note also that v{i}(1) is normally distributed with mean 0 and variance
σ2

v{i}(1)
= e′iΣei. We then have that for any α > 0,

P

(
1√
N

|v{i}(1)| ≥ ε

m0

)
≤ exp

(
− αε

m0

)
E exp

(
α|v{i}(1)|√

N

)

≤ 2 exp

(

− αε

m0
+

σ2
v{i}(1)

α2

2N

)

.

(13.22)

Choosing the α to minimize the index in the exponent leads to

α = (Nε/(m0σ
2
v{i}(1))).
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Using this in (13.22) yields the upper bound

P

(
1√
N

|v{i}(1)| ≥ ε

m0

)
≤ 2 exp

(

− Nε2

2m0
2σ2

v{i}(1)

)

.

Thus,

P

(
1√
N

m0∑

i=1

|v{i}(1)| ≥ ε

)

≤ 2m0 exp

(

− Nε2

2m0
2σ2

v{i}(1)

)

. (13.23)

Note that

P

(
1√
N

∣
∣
∣
∣
∑

i∈M

N∑

k=0

θ(i)w̃
{i}
k

∣
∣
∣
∣
1

≥ ε

)

= P

(

exp

(
α√
N

∣
∣
∣
∣
∑

i∈M

N∑

k=0

θ(i)w̃
{i}
k

∣
∣
∣
∣
1

)

≥ exp(αε)

)

.

We can approximate the

(α/
√

N)
N∑

k=0

θ(i)w̃
{i}
k

by v{i}(t) by using Lemma 13.5. Adding and subtracting v{i}(t) in the
above and using the triangle inequality yield that

P

(
1√
N

∣
∣
∣
∣
∑

i∈M

N∑

k=0

θ(i)w̃
{i}
k

∣
∣
∣
∣
1

≥ ε

)

≤ exp
(
− αε

m0

)
E exp

(
α√
N

∣
∣
∣
∣
∣

∑

i∈M

N∑

k=0

{θ(i)w̃
{i}
k − v{i}(t)}

∣
∣
∣
∣
∣
1

+
α√
N

∑

i∈M
|v{i}(t)|1

)

≤ exp
(
− αε

m0

)
E exp(o(N−γ)) exp

(
α√
N

∑

i∈M
|v{i}(t)|1

)

.

Using (13.23) in the above estimate, the desired result then follows. �

13.4 Tracking Infrequently Switching Systems:
MAP Methods

Here, we construct a sequence of estimates of the Markov chain by maxi-
mizing the a posterior probabilities. The estimator is given by

θ̂N = θ(jN ), jN = argmaxj∈Mw
{j}
N . (13.24)
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Our goal is to derive an error bound on P (θ̂N �= θN ). We are interested in
the case that for each i ∈ M,

∑
j �=i pij = ε and pii = 1−ε, for ε sufficiently

small. One such model assumes the transition probability of the Markov
chain to be P ε = I + εQ, where Q is a generator of a continuous-time
Markov chain. It indicates that most of the time, the system will remain at
a constant value, but it has infrequent jumps from one parameter value to
another at random times. This is a class of “infrequent switching” systems.
It is intuitively understood that the data size n should be neither too
small for lack of information from data nor too large since old data will
contain diminishing information about the current θN . It is also conceivable
that for smaller ε, a larger N may be used. It is our desire to establish a
concrete relationship between N and ε to guarantee a desired accuracy of
identification. For a selected N , the implementation is the standard moving-
window method: To identify θk, the data in the time window l = k − N ,
k − N + 1, . . ., k, will be used. It is noted for a large window size N ,
the initial distribution of θk−N will have diminishing effects on the MAP
estimates θ̂N , at the end of the window k − 1 ≤ l ≤ N . Consequently, one
may choose any initial distribution, such as the uniform distribution, to
start the MAP algorithm. The following discussion is generic for a given
moving window with a chosen initial distribution. For simplicity, we make
the following assumption.

(A13.3) yk = θk + dk and the initial probability distribution of the
Markov chain satisfies p{j}(0) > 0 for j = 1, . . . ,m0.

In what follows, we choose ε to be sufficiently small and N sufficiently
large. Let pj = F (C − θ(j)) and δ = mini�=j |pi − pj |. Define

ξN+1 =
1

N + 1

N∑

k=0

sk, (13.25)

and denote the data set by SN = {sk, k = 0, . . . , N}. For a given β < δ/2,
define

M
{j}
N = {sk : 0 ≤ k ≤ N, |ξN+1 − pj | < β},

MN =
m0⋃

j=1

M
{j}
N .

Lemma 13.7. For sufficiently small ε and sufficiently large N and some
constant c > 0,

P (MN ) ≥ (1 − e−Nβ2c)(1 − ε)N , (13.26)

which implies
lim

N→∞
lim
ε→0

P (MN ) = 1.
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Proof. Note that

P (M{j}
N ) =

m0∑

i=1

P (M{j}
N |θ0 = θ(i))p{i}

0

=

⎡

⎣p{j}
0 P (M{j}

N |θ0 = θ(j)) +
∑

i�=j

P (M{j}
N |θ0 = θ(i))p{i}

0

⎤

⎦

≥ p
{j}
0 P (M{j}

N |θ0 = θ(j)).

Then,

P (M{j}
N ) ≥ p

{j}
0 P (M{j}

N |θk = θ(j), k = 0, . . . , N)

×P (θk = θ{j}, k = 1, . . . , N |θ0 = θ(j))

= p
{j}
0 P (M{j}

N |θk = θ(j), k = 0, . . . , N)(1 − ε)N

= p
{j}
0 P (|ξN+1 − pj | ≤ β|θk = θ(j), k = 0, . . . , N)(1 − ε)N .

By the large deviations principle,

P (|ξN+1 − pj | ≤ β|θk = θ(j), k = 0, . . . , N) ≥ 1 − e−Nβ2c

for some c > 0. This implies

P (M{j}
N ) ≥ p

{j}
0 (1 − e−Nβ2c)(1 − ε)N .

Since β < δ/2, M
{j}
N , j = 1, . . . , m0, are disjoint. Hence,

P (MN ) =
m0∑

j=1

P (M{j}
N )

and (13.26) follows. This completes the proof. �

A sequence in {MN} is called a typical sequence. Lemma 13.7 indicates
that for small ε and large N , the probability for a sequence to be typical
is nearly 1. For this reason, to derive error bounds in probability, we may
consider only the data set in MN .

Lemma 13.8. For sufficiently small ε and β, and sufficiently large N , if
SN ∈ M

{j}
N , then θ̂N = θ(j).

Proof. Suppose SN ∈ M
{j}
N . Using the MAP estimator, θ̂N = θ(j) if and

only if
P (θN = θ(j)|SN ) > P (θN = θ(i)|SN ), i �= j.

Since

P (θN = θ(i)|SN ) =
P (θN = θ(i), SN )

P (SN )
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the conclusion is true if

P (θN = θ(j), SN ) > P (θN = θ(i), SN ), i �= j.

In the following derivation, K1, K2, and K are some positive constants.
Now

P (θN = θ(i), SN )

=
m0∑

l=1

P (θN = θ(i), SN |θ0 = θ(l))pl
0

= p
{i}
0 P (θN = θ(i), SN |θ0 = θ(i)) + εK1

= p
{i}
0 P (SN |θk = θ(i), k = 0, . . . , N)

×P (θk = θ(i), k = 1, . . . , N − 1|θ0 = θ(i)) + εK2 + εK1

= p
{i}
0 P (SN |θk = θ(i), k = 0, . . . , N)(1 − ε)N + εK.

By the definition of ξN+1, SN contains (N +1)ξN+1 of 1’s and (N +1)(1−
ξN+1) of 0’s:

P (SN |θk = θ(i), k = 0, . . . , N) = p
(N+1)ξN+1
i (1 − pi)(N+1)(1−ξN+1).

Consequently,

P (θN = θ(i), SN )

=
1

m0
p
(N+1)ξN+1
i (1 − pi)(N+1)(1−ξN+1)(1 − ε)N + εK.

(13.27)

For sufficiently small ε, the first term is dominant. As a result, to prove

P (θN = θ(j), SN ) > P (θN = θ(i), SN ), i �= j,

we need only show

p
(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1)

> p
(N+1)ξN+1
i (1 − pi)(N+1)(1−ξN+1),

or equivalently, if

ξN+1 log pj + (1 − ξN+1) log(1 − pj)

> ξN+1 log pi + (1 − ξN+1) log(1 − pi).
(13.28)

Since SN ∈ M
{j}
N , pj −β ≤ ξN+1 ≤ pj +β. Now, the convex inequality [74,

p. 643], which is, in fact, the relative entropy or Kullback–Leibler distance
[22, p. 18],

pj log pj + (1 − pj) log(1 − pj) > pj log pi + (1 − pj) log(1 − pi), pi �= pj ,
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and the continuity imply that for sufficiently small β, (13.28) holds. This
concludes the proof. �

We now derive error bounds on the MAP algorithm.

Theorem 13.9. Let 0 < β < δ/2 be a sufficiently small constant. For
sufficiently small ε and sufficiently large N ,

P (θ̂N = θN ) ≥ (1 − β)2−(N+1)β(1 − ε)N . (13.29)

Proof. By Lemma 13.7, we may focus on SN ∈ MN . The probability of
correct identification of θN is

P (θ̂N = θN ) =
∑

SN

P (θ̂N = θN |SN )P (SN )

≥
∑

SN∈MN

P (θ̂N = θN |SN )P (SN )

=
m0∑

j=1

∑

SN∈M
{j}
N

P (θ̂N = θN |SN )P (SN ).

By Lemma 13.8, for SN ∈ M
{j}
N , θ̂N = θ(j), which implies

P (θ̂N = θN ) ≥
m0∑

j=1

∑

SN∈M
{j}
N

P (θN = θ(j)|SN )P (SN ).

By (13.27),

P (θN = θ(j)|SN )P (SN ) = P (θN = θ(j), SN )

= p
{j}
0 p

(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1)(1 − ε)N + εK.

Let λ
{j}
N be the cardinality of M

{j}
N . Then,

∑

SN∈M
{j}
N

p
(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1)

= λ
{j}
N p

(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1).

By [22, Theorem 3.1.2, p. 51], for sufficiently small ε and sufficiently large
N ,

λ
{j}
N ≥ (1 − β)2(N+1)(H(pj)−β)

for any small β, where

H(pj) = −pj log pj − (1 − pj) log(1 − pj)
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is the entropy of pj . Denote

H(pj , ξN+1) = −ξN+1 log pj − (1 − ξN+1) log(1 − pj).

Since ξN → pj w.p.1 as N → ∞, H(pj , ξN+1) → H(pj) w.p.1 as N → ∞.
It follows that

λ
{j}
N p

(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1)

≥ (1 − β)2(N+1)(H(pj)−H(pj ,ξN+1)−β)

= (1 − β)2−Nβ2−β+o(1),

where o(1) → 0 w.p.1 as N → ∞. For sufficiently small β and sufficiently
large N , 2−β+o(1) > 1 − β since β > 1 − 2−β . As a result, for sufficiently
small ε and sufficiently large N ,

∑

SN∈M
{j}
N

P (θN = θ(j)|SN )P (SN ) > p
{j}
0 (1 − β)22−Nβ(1 − ε)N .

Therefore, (13.29) is obtained. �

Theorem 13.9 provides a guideline for window size selection. To achieve
a required estimation accuracy for 0 < η < 1, we may select the window
size to be (1 − β)22−Nβ(1 − ε)N = η provided that ε is sufficiently small
and β is sufficiently small.

13.5 Tracking Fast-Switching Systems

We begin this section by considering the scenario that the process θ(t) is a
continuous-time Markov chain whose states vary on a fast pace. It is now
understood that depending on the actual scenarios, only when the speed
or frequency of state variations is relatively small, one expects to track
the time-varying parameters with reasonable accuracy [6]. For instance,
consider a continuous-time system whose observation is given by

y(t) = ϕ′(t)θ(t) + w(t),

where ϕ(t) is the input. Suppose that the parameter process θ(t) is a
continuous-time Markov chain with a finite state space M and genera-
tor Qη = Q/η with η > 0 a small parameter. With Q being irreducible,
when η → 0, within a very short period of time θ(t) reaches its stationary
distribution. In this case, it is virtually impossible to track the instanta-
neous variation of the process from observations of binary-valued outputs
s(t) = I{y(t)≤C}. For such systems, the main goal becomes identifying an
averaged system (averaging with respect to the stationary measure of the
Markov chain). The main reason for focusing on the averaged system is
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the following: When a system performance is measured by some averaged
outputs, as in most performance indices for optimal or adaptive control,
the net effect of fast-switching parameters on the system performance can
be approximated by using their average values.

The development of this section is motivated by the following scenario:
For the above parameter process θ(t), denote its transition matrix by
P (t) = P η(t). Then P η(t) satisfies the forward equation

Ṗ η(t) = P η(t)Q/η.

A change of variables τ = t/η and P (τ) = P η(t) leads to

d

dτ
P (τ) = P (τ)Q.

Discretizing the equation with a step size h > 0, we obtain a discrete matrix
recursion

P k+1 = P k[I + hQ].

By choosing h > 0 properly, I+hQ becomes a one-step transition matrix of
a discrete-time Markov chain θN and P k represents the kth-step transition
probability. In terms of the original fast-changing θ(t), we see that θN is
corresponding to θ(Nηh). When η is small, for a fixed time t, we have
N = t/(ηh). That is, for the discrete-time system, we need to look at its
property for N being large enough. We call such a chain a fast switching
discrete-time Markov chain. Consequently, estimation of θ(t) for small η
is reduced to estimation of θN for large n. For the problem treated in
this section, in addition to the conditions posed previously, we make the
following additional assumptions.

(A13.4) The Markov chain {θn} is irreducible and aperiodic.

It is observed that under Assumptions (A13.1), (A13.2), and (A13.4),
if both M and P are unknown, then the stationary distribution ν =
(ν1, ν2, . . . , νm0) can be derived from P and the average w.r.t. the sta-
tionary measure can be calculated directly from

θ =
m0∑

j=1

νjθ
(j).

We will develop algorithms that estimate θ without prior knowledge on P .
Hence, we assume that M is known, but P is unknown. In this case, the
goal is to identify ν from which θ can be calculated.

13.5.1 Long-Run Average Behavior

Since νm0 = 1−(ν1+· · ·+νm0−1), we need only identify m0−1 parameters.
For simplicity, we consider the observation horizon L with L = N(m0 − 1)
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for some positive integer N . Denote by N0 the following class of input
signals:

N0 := {u ∈ l∞ : |u|∞ ≤ Ku, u is (m0 − 1) − periodic and full rank}.

Define the (m0 − 1) × (m0 − 1) matrix M̃ = (m̃ij), where

m̃ij = F (C − φ′
iθ

(j)) − F (C − φ′
iθ

(m0)).

Let N := {u ∈ N0: M̃ is full rank}, define

ξ
{i}
N =

1
N

N−1∑

l=0

sl(m0−1)+i, i = 1, . . . , m0 − 1, (13.30)

and denote ξN = (ξ{1}N , . . . , ξ
{m0−1}
N )′. It is easy to verify that

pi = Eξ
{i}
N =

m0−1∑

j=1

νj(F (C − φ′
iθ

(j)) − F (C − φ′
iθ

(m0))) + F (C − φ′
iθ

(m0)).

Hence, ξ
{i}
N represents the empirical measure of pi. By defining

p = [p1, . . . , pm0−1]′,

b = [F (C − φ′
1θ

(m0)), . . . , F (C − φ′
m0−1θ

(m0))]′,

and
ν̃ = (ν1, . . . , νm0−1) ∈ R

1×(m0−1),

we obtain p = M̃ν̃ + b. This implies a relationship between p and ν̃, ν̃ =
M̃−1(p − b). Since M̃ and b are known from the input, this relationship
implies that an estimate of ν̃ can be derived from the empirical measures
of p, ν̂N = M̃−1(ξN − b). From

ν̂N − ν̃ = M̃−1(ξN − p),

the analysis of error bounds, convergence, and convergence rates of ν̂N

can be directly derived from that of ξN . For this reason, the remaining
part of this section is devoted to the analysis of error bounds on empirical
measures.

Example 13.10 The selection of inputs that will make the matrix M full
rank is not difficult. For instance, suppose that the distribution is uniform
with support on [−30, 30]. Let the threshold be C = 10. The system has
three states: θ1 = [1, 3]′, θ2 = [5,−3]′, and θ3 = [10, 2]′. The input is
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randomly selected to generate three regressors: φ′
1 = [0.4565, 0.0185], φ′

2 =
[0.8214, 0.4447], and φ′

3 = [0.6154, 0.7919]. The M matrix becomes

M̃ =

⎛

⎜
⎜
⎜
⎝

0.6581 0.6296 0.5900

0.6307 0.6205 0.5149

0.6168 0.6550 0.5377

⎞

⎟
⎟
⎟
⎠

,

which is full rank.

13.5.2 Empirical Measure-Based Estimators

One immediate question is, what can one say about the asymptotic proper-
ties of the empirical measures defined above? From the well-known result of
the Glivenko–Cantelli theorem ([8, p. 103]), in the usual empirical measure
setup, the law of large numbers yields the convergence to the distribu-
tion function of the noise process if no switching is present. However, in
the current setup, the empirical measures are coupled by a Markov chain.
Intuitively, one would not doubt the existence of a limit. However, the ad-
ditional random elements due to the Markov chain make the identification
of the limit a nontrivial task. Corresponding to the above-mentioned law
of large numbers, we first obtain the following result.

Theorem 13.11. Under (A13.1), (A13.2), and (A13.4),

ξ
{i}
N →

m0∑

j=1

νjF (C − φ′
iθ

(j))

in probability as N → ∞ uniformly in i = 0, 1, 2, . . . ,m0 − 1.

Proof. For each i = 0, 1, 2, . . . ,m0 − 1, the equalities φlm0+i = φi and
φ̃lm0+i = φ̃i hold for all l = 0, 1, . . . , N − 1 due to the periodicity of the
inputs, so

slm0+i = I{ylm0+i≤C} = I{φ′
lm0+iθlm0+i+dlm0+i≤C}

=
m0∑

j=1

I{dlm0+i≤C−φ′
iθ

(j)}I{θlm0+i=θ(j)}

=
m0∑

j=1

[I{dlm0+i≤C−φ′
iθ

(j)} − νj ]I{θlm0+i=θ(j)}

+
m0∑

j=1

νjI{θlm0+i=θ(j)}.

By virtue of the same argument as that of [122, p. 74], we have

E

∣
∣
∣
∣
1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}(I{θlm0+i=θ(j)} − νj)
∣
∣
∣
∣

2

→ 0 (13.31)



246 13. Systems with Markovian Parameters

as N → ∞, so

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}(I{θlm0+i=θ(j)} − νj) → 0

in probability and in the second moment as N → ∞. Thus, it follows that

ξ
{i}
N =

m0∑

j=1

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}νj + o(1), (13.32)

where o(1) → 0 in probability as N → ∞. Note that

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}

is the empirical distribution of the noise {dN} at x = C − φ′
iθ

(j). Thus, by
virtue of the well-known Glivenko–Cantelli theorem, for each j = 1, . . . ,m0

and i = 0, 1, . . . ,m0 − 1,

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)} → F (C − φ′(t0 + i)θ(j)) as N → ∞.

Thus, the desired result follows from the familiar Slutsky’s result. �

The above result may be considered as the first approximation of the
empirical measures to the weighted average of the distribution functions.
Naturally, one would also like to know how fast the convergence will take
place. This is presented in Theorem 13.12, which entails the study of the
asymptotics of a centered and scaled sequence of errors or deviations. Com-
pared with the results with a fixed parameter, it can be viewed as a hybrid
coupling of discrete events with the normalized deviations. Conceptually,
one expects that a rescaled sequence of the empirical measures should con-
verge to a Brownian bridge suitably combined or coupled owing to the
Markov chain in the original observation. In view of the above law of large
numbers for empirical measures, one expects that the weak limit of the
rescaled sequence should also be suitably combined by the stationary dis-
tributions of the Markov chain. Thus, it is not difficult to guess the limit.
However, verifying this limit is not at all trivial. To illustrate, if we have two
sequences X

{1}
N and X

{2}
N satisfying X

{i}
N → X{i}, i = 1, 2, in distribution

as N → ∞, we cannot conclude X
{1}
N +X

{2}
N → X{1}+X{2} in distribution

generally. In our case, the difficulties are incurred by the presence of the
Markov chain. In the proof of Theorem 13.12, we overcome the difficulty
by establishing several claims. We first derive its asymptotic equivalence
by bringing out the important part and discarding the asymptotically neg-
ligible part. We may call this step the decorrelation step. Next, we consider
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a suitably scaled sequence with a fixed-θ process. That is, we replace the
“random jump” process with a fixed value. This replacement enables us
to utilize a known result on the empirical process with a fixed parameter.
The third step is to use finite-dimensional distributions convergence due to
weak convergence of the empirical measures to treat an m-tuple

(
η
{1}
N (θ(1)), . . . , η{2}

N (θ(m0))
)

[the definition of η
{i}
N (θ) is given in (13.34) in what follows]. Finally, we use

a Wold’s device [8, p. 52] to finish the proof. The proof itself is interesting
in its own right.

Theorem 13.12. Assume the conditions of Theorem 13.11. The sequence

√
N

⎡

⎣ξ{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

⎤

⎦

converges weakly to
m0∑

j=1

νjB(C − φ′
iθ

(j)),

where B(·) is a Brownian bridge process such that the covariance of B(·)
(for x1, x2 ∈ R) is given by

EB(x1)B(x2)

= min(F (x1), F (x2)) − F (x1)F (x2).

Proof. Step 1: Asymptotic equivalence: By virtue of [122, p. 74], similarly
to (13.31), we can show that for each j = 1, . . . ,m0 and i = 0, 1, . . . ,m0−1,

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}I{θlm0+i=θ(j)}

=
1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}νj + o(1),

where o(1) → 0 in probability (and also in the second moment) as N → ∞.
This together with (13.32) leads to

√
N

⎡

⎣ξ{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

⎤

⎦

=
m0∑

j=1

1√
N

N−1∑

l=0

[I{dlm0+i≤C−φ′
iθ

(j)} − F (C − φ′
iθ

(j))]νj + o(1),

(13.33)
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where o(1) → 0 in probability as N → ∞.
Step 2: Convergence in distribution of a fixed-θ process: Consider now a

typical term in the last line of (13.33). For convenience, for a fixed θ, define

η
{i}
N (θ) =

1√
N

N−1∑

l=0

[
I{dlm0+i≤C−φ′

iθ} − F (C − φ′
iθ)
]
. (13.34)

It is readily seen that η
{i}
N (θ) is a centered empirical measure (with a fixed

θ) re-scaled by
√

N . The results on empirical measures (see [8, p. 141],
[76], and also [84]) then imply that η

{i}
N (·) converges weakly to a Brownian

bridge process B(C − φ′
i ·) with mean 0 and covariance

EB(C − φ′
iθ1)B(C − φ′

iθ2)

= min(F (C − φ′
iθ1), F (C − φ′

iθ2)) − F (C − φ′
iθ1)F (C − φ′

iθ2).

Step 3: Convergence of finite-dimensional distributions: Since η
{i}
N (·) con-

verges weakly to B(C − φ′
i·), its finite-dimensional distributions converge.

That is, for any integer p and any (x1, . . . , xp), (η{i}
N (x1), . . . , η

{i}
N (xp))

converges in distribution to (B(C − φ′
ix1), . . . , B(C − φ′

ixp)). In partic-
ular, we have that (η{i}

N (θ(1)), . . . , η{i}
N (θ(p))) converges in distribution to

(B(C − φ′
iθ

(1)), . . . , B(C − φ′
iθ

(p))).
Step 4: The weak convergence and the form of the finite-dimensional

distributional convergence in Step 3 imply that

(ν1, . . . , νm0)
′
(
η
{i}
N (θ(1)), . . . , η{i}

N (θ(m0))
)

converges in distribution to
∑m0

j=1 νjB(C − φ′
iθ

(j)) by Wold’s device [8, p.
52]. Finally, putting all the steps together, the desired result follows. �

Note that a Brownian bridge is a Brownian motion tied down at both
ends. Here we emphasize that the process considered is allowed to take
values not just in [0, 1], but in the entire real line; thus, what we have
is a “stretched” Brownian bridge as discussed in Chapter 3; see also [76].
Similarly to Lemma 13.5, the next lemma provides a strong approximation
result for empirical measures. Its detailed proof is omitted for brevity.

Lemma 13.13 Under the conditions of Theorem 13.4, there is a constant
γ > 0 such that

sup
0≤i≤m0−1

∣
∣
∣
∣
∣
∣

√
N

⎡

⎣ξ{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

⎤

⎦−
m0∑

j=1

νjB(C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣

= o(N−γ) w.p.1.
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13.5.3 Estimation Errors on Empirical Measures: Upper and
Lower Bounds

In the context of system identification, estimation error bounds are of cru-
cial importance. This section obtains such bounds for the fast-varying sys-
tems. As a preparation, we first present a lemma, which is an exponential
estimate for a Gaussian process.

Lemma 13.14 Under the assumptions of Theorem 13.11, for N suffi-
ciently large and for each j = 1, . . . , m0,

P

(∣∣
∣
∣

1√
N

B(C − φ′
iθ

(j))
∣
∣
∣
∣ ≥

ε

m0M

)
≤ 2 exp

(
− 2Nε2

m0
2M2

)
, (13.35)

where M = max{ν1, i ≤ m0} and B(·) is given by Theorem 13.12.

Proof. Let σ2
ij = Var(B(C−φ′

iθ
(j))). By direct computation, one can show

that for any α > 0,

E exp(α| 1√
N

B(C − φ′
iθ

(j))|) ≤ 2 exp(
α2σ2

ij

2N
).

Thus,

P

(
α

∣
∣
∣
∣

1√
N

B(C − φ′
iθ

(j))
∣
∣
∣
∣ ≥

αε

m0M

)

≤ exp
(
− αε

m0M

)
E exp

(
α

∣
∣
∣
∣

1√
N

B(C − φ′
iθ

(j))
∣
∣
∣
∣

)

≤ 2 exp

(
σ2

ij

2N
α2 − ε

m0M
α

)

.

Choose α = Nε/(m0Mσ2
ij) to minimize the quadratic form in the exponent

above and note that

σ2
ij = F (C − φ′

iθ
(j))(1 − F (C − φ′

iθ
(j))) ≤ 1

4
.

Then the upper bound is obtained. �

It can be seen that Lemma 13.14 derives an exponential type of upper
bound on the estimation errors. To some extent, it is a large deviations
result. Note that B(·), the Brownian bridge process, is a Gaussian process.
The deviation given above indicates that the “tail” probabilities of devi-
ations of the order O(

√
N) will be exponentially small. With this lemma,

we can proceed to obtain the “large deviations” of the empirical measures
from those of the averaged distribution functions (average with respect to
the stationary distributions of the Markov chain).
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Theorem 13.15. Under the assumptions of Theorem 13.11, for N large
enough and for any ε > 0,

P

⎛

⎝
∣
∣
∣
∣ξ

{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))
∣
∣
∣
∣ ≥ ε

⎞

⎠

≤ 2m0 exp
(
− 2Nε2

m0
2M2

)
.

(13.36)

Proof. It is easy to see that

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1√
N

m0∑

j=1

νjB(C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≤ P

⎛

⎝
m0∑

j=1

∣
∣
∣
∣

1√
N

B(C − φ′
iθ

(j))
∣
∣
∣
∣ ≥

ε

M

⎞

⎠ .

Recall that c̃ij is given in Theorem 13.16. Observe that
⎧
⎨

⎩
(c̃i1, . . . , c̃im0)

′ :
m0∑

j=1

∣
∣
∣
∣

1√
N

B(c̃ij)
∣
∣
∣
∣ ≥

ε

M

⎫
⎬

⎭

⊆
{

(c̃i1, . . . , c̃im0)
′ :
∣
∣
∣
∣

1√
N

B(c̃ij)
∣
∣
∣
∣ ≥

ε

m0M
for some j

}

⊆
m0⋃

j=1

{
(c̃i1, . . . , c̃im)′ :

∣
∣
∣
∣

1√
k

B(c̃ij)
∣
∣
∣
∣ ≥

ε

m0M

}
.

Thus, by (13.36),

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1√
N

m0∑

j=1

νjB(C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≤
m0∑

j=1

P

(∣∣
∣
∣

1√
N

B(c̃ij)
∣
∣
∣
∣ ≥

ε

m0M

)
≤ 2m0 exp

(
− 2Nε2

m0
2M2

)
.

For sufficiently large N , the desired result follows from Lemma 13.13 and
the same kind of argument as in the proof of Theorem 13.6. �

Next, we proceed to obtain lower bounds on the estimation error when
full-rank periodic inputs are used.

Theorem 13.16. Denote

c̃ij = C − φ′
iθ

(j)

for each i = 0, . . . ,m0 − 1 and j = 1, . . . , m0, and denote the matrix

Σ = (σ̃i1,i2 : i1, i2 = 1, . . . ,m0),
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where for i1, i2 = 1, . . . ,m0,

σ̃i1,i2 = min(F (c̃ii1), F (c̃ii2)) − F (c̃ii1)F (c̃ii2).

Let λ be the minimum eigenvalue of the covariance matrix Σ. Under the
assumptions of Theorem 13.11, for sufficiently large N and for any ε > 0,

P

⎛

⎝

∣
∣
∣
∣
∣
∣
ξ
{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≥
√

2
π

⎛

⎝
√

λ|ν|√
Nε

−
(√

λ|ν|√
Nε

)3
⎞

⎠ exp
(
− ε2

2λ|ν|2 N

)
.

(13.37)

Proof. Note that (B(c̃i1), . . . , B(c̃im0)) can be regarded as a multinormal
distributed vector with mean 0 and covariance Σ. Recall that

ν = (ν1, . . . , νm0) and Š =
m0∑

j=1

νjB(c̃ij).

Then Š is a one-dimensional Gaussian random variable with mean 0 and
variance ν′Σν. Direct computation yields that

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1√
N

m0∑

j=1

νjB(c̃ij)

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠ = P

(

|Z| ≥
√

Nε√
ν′Σν

)

,

where Z = Š/(
√

ν′Σν). Then

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1√
N

m0∑

j=1

νjB(c̃ij)

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠ ≥ 2P

(

Z ≥
√

Nε√
λ|ν|

)

= 2

(

1 − Φ

( √
Nε√
λ|ν|

))

≥ 2

⎛

⎝
√

λ|ν|√
Nε

−
(√

λ|ν|√
Nε

)3
⎞

⎠ ϕ̌

( √
Nε√
λ|ν|

)

,

where Φ(·) and ϕ̌(·) are the cumulative distribution and density function of
the standard normal variable, respectively. Thus, for sufficiently large N ,

P

⎛

⎝

∣
∣
∣
∣
∣
∣
ξ
{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≥
√

2
π

⎛

⎝
√

λ|ν|√
Nε

−
(√

λ|ν|√
Nε

)3
⎞

⎠ exp
(
− ε2

2λ|ν|2 N

)
.

The proof is concluded. �
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13.6 Notes

Although the problems considered in this chapter are centered around
switching systems with binary observations, the main ideas and results can
be generalized to quantized observations. Regime-switching systems often
appear as integrated parts of hybrid systems, discrete-event systems, logic-
based systems, finite automata, hierarchical systems, and complex systems.
Consequently, our results may have potential applications in these areas as
well. More information on regime-switching systems can be found in [123]
and its references.

The framework here is based on our recent work [120] for tracking Marko-
vian parameters with binary-valued observations. Several directions may be
pursued. The inclusion of unmodeled dynamics is a worthwhile research di-
rection. Quantized sensors may be treated. Optimal sensor placement in
conjunction with the filters developed in this chapter may be considered.
Optimal selection of the threshold values and sensor locations is an impor-
tant issue. Complexity is another direction for further investigation.
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