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Preface

This book concerns the identification of systems in which only quantized
output observations are available, due to sensor limitations, signal quanti-
zation, or coding for communications. Although there are many excellent
treaties in system identification and its related subject areas, a system-
atic study of identification with quantized data is still in its early stage.
This book presents new methodologies that utilize quantized information
in system identification and explores their potential in extending control
capabilities for systems with limited sensor information or networked sys-
tems.

The book is an outgrowth of our recent research on quantized identi-
fication; it offers several salient features. From the viewpoint of targeted
plants, it treats both linear and nonlinear systems, and both time-invariant
and time-varying systems. In terms of noise types, it includes independent
and dependent noises, stochastic disturbances and deterministic bounded
noises, and noises with unknown distribution functions. The key method-
ologies of the book combine empirical measures and information-theoretic
approaches to cover convergence, convergence rate, estimator efficiency, in-
put design, threshold selection, and complexity analysis. We hope that it
can shed new insights and perspectives for system identification.

The book is written for systems theorists, control engineers, applied
mathematicians, as well as practitioners who apply identification algo-
rithms in their work. The results presented in the book are also relevant
and useful to researchers working in systems theory, communication and
computer networks, signal processing, sensor networks, mobile agents, data
fusion, remote sensing, tele-medicine, etc., in which noise-corrupted quan-



xiv Preface

tized data need to be processed. Selected materials from the book may also
be used in a graduate-level course on system identification.

This book project could not have been completed without the help and
encouragement of many people. We first recognize our institutions and
colleagues for providing us with a stimulating and supportive academic
environment. We thank the series editor Tamer Başar for his encouragement
and consideration. Our thanks also go to Birkhäuser editor Tom Grasso for
his assistance and help, and to the production manager, and the Birkhäuser
professionals for their work in finalizing the book. Our appreciation also
goes to three anonymous reviewers, who read an early version of the book
and offered many insightful comments and suggestions. During the years
of study, our research has been supported in part by the National Science
Foundation and the National Security Agency of the United States, and by
the National Natural Science Foundation of China. Their support is greatly
appreciated. We are deeply indebted to many researchers in the field for
insightful discussions and constructive criticisms, and for enriching us with
their expertise and enthusiasm. Most importantly, we credit our families for
their unconditional support and encouragement even when they question
our wisdom in working so tirelessly on mathematics symbols.

Detroit Le Yi Wang
Detroit George Yin
Beijing Ji-Feng Zhang
Beijing Yanlong Zhao



Conventions

This book uses a chapter-indexed numbering system for equations, theo-
rems, etc., divided into three groups: (1) equations; (2) definitions, the-
orems, lemmas, corollaries, examples, propositions, and remarks; (3) as-
sumptions. Each group uses its own number sequencing. For example, equa-
tion (3.10) indicates the tenth equation in Chapter 3. Similarly, group 2
entries are sequenced as Definition 4.1, Theorem 4.2, Corollary 4.3, Re-
mark 4.4, Example 4.5 in Chapter 4. Assumptions are marked with the
prefix “A” such as (A6.1), which indicates the first-listed assumption in
Chapter 6.

In this book, the subscript is mainly used as a time index or iteration
number for a sequence, such as yk for signals at time k, al for the lth value of
the system impulse response, and θN for the estimate at the Nth iteration.
We limit the usage of superscripts whenever possible to avoid confusion
with polynomial powers, or double subscripts to reduce convoluted nota-
tion, and will confine them in local sections when they must be used. The
further dependence of a symbol on other variables such as vector or matrix
indices, parameters, data length, etc., will be included in parentheses. For
example, for a vector process yk, y

{i}
k denotes its ith element; M(i, j) or

M{i,j} represents the element at the ith row and jth column of a matrix M ;
eN (θ, μ) or M(i, j; θ, μ) indicates their dependence on parameters θ and μ,
although such a dependence will be suppressed when it becomes clear from
the context. For a quick reference, in what follows we provide a glossary of
symbols used throughout the book.



Glossary of Symbols

A′ transpose of a matrix or a vector A
A−1 inverse of a matrix A
Ballp(c, r) closed ball of center c and radius r in the lp norm
C space of complex numbers
Ci ith threshold of a quantized sensor
CR lower bound Cramér–Rao lower bound
Eξ expectation of a random variable ξ
F (·) probability distribution function
F σ-algebra
{Ft} filtration {Ft, t ≥ 0}
G(v) componentwise operation of a scalar function G

on a vector v = [v{1}, . . . , v{n}]′, G(v) =
[
G(v{1}) ,

. . . , G(v{n})
]′

G−1(v) componentwise inverse of a scalar invertible
function G on a vector v: G−1(v) =

[
G−1(v{1}) ,

. . . , G−1(v{n})
]′

H(eiω) scalar or vector complex function of ω
I identity matrix of suitable dimension
IA indicator function of the set A
N set of natural numbers
ODE ordinary differential equation
QCCE quasi-convex combination estimate
O(y) function of y satisfying supy �=0 |O(y)|/|y| < ∞
R

n n-dimensional real-valued Euclidean space



xviii Glossary of Symbols

Radp(Ω) radius of an uncertainty set Ω in lp

S binary-valued or quantized sensor
T Toeplitz matrix
Z+ set of positive integers

a+ = max{a, 0} for a real number a
a− = −max{−a, 0} for a real number a
a.e. almost everywhere
a.s. almost sure
diag(A1, . . . , Al) diagonal matrix of blocks A1, . . . , Al

f(·) probability density function f(x) = dF (x)/dx
gx or ∇xg gradient of a function g with respect to (w.r.t.) x
i pure imaginary number with i2 = −1
i.i.d. independent and identically distributed
ln x natural logarithm of x
log x or log2 x base 2 logarithm of x
o(y) function of y satisfying limy→0 o(y)/|y| = 0
q one-step delay operator: qxk = xk−1

sk = S(yk) output of a sensor, either scalar or vector
tr(A) trace of the matrix A
v{i} ith component of the vector v
w.p.1 with probability one
�x� ceiling function: the smallest integer that is ≥ x
�x� floor function: the largest integer that is ≤ x
‖x‖p lp norm of a sequence of real numbers x = {xk;k ∈N}

ΦN = [φ0, . . . , φN−1]′, regression matrix at iteration N
(Ω,F , P ) probability space

�(c, r) neighborhood about c of radius r
θ system parameter (column) vector of the modeled

part
θ̃ system parameter vector of the unmodeled

dynamics, usually infinite dimensional
θN estimate of θ at iteration step N
φk regression (column) vector of θ at time k

φ̃k regression vector of θ̃ at time k, usually infinite
dimensional

:= or def= defined to be
11 column vector with all elements equal to one
� end of a proof
| · | absolute value of a scalar or the Euclidean norm
‖ · ‖ of a vector largest singular value of a matrix
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1
Introduction

This book studies the identification of systems in which only quantized
output observations are available. The corresponding problem is termed
quantized identification.

Sampling and quantization were initially introduced into control systems
as part of the computer revolution when controllers became increasingly im-
plemented in computers. When computers had very limited memory and
low speeds, errors due to sampling and quantization were substantial. Dra-
matic improvements in computer memory, speed, precision, and computa-
tional power made these considerations more an academic delicacy than a
practical constraint. This seems to be the case even for wired and dedicated
computer networks for which fiber optic networks can carry large quantities
of data with lightning speed.

The recent explosive development in computer and communication net-
works has ushered in a new era of information processing. Thousands, even
millions, of computers are interconnected using a heterogeneous network of
wireless and wired systems. Due to fundamental limitations on bandwidth
resources in wireless communications and large numbers of customers who
share network resources, bandwidths have become a bottleneck for nearly
all modern networks. Similar concerns arise in special-purpose networks
such as smart sensors, MEMS (micro electromechanical systems), sensor
networks, mobile agents, distributed systems, and remote-controlled sys-
tems, which have very limited power for communications and whose data-
flow rates carry significant costs and limitations. These developments have
made the issue of sampling and quantization once again fundamental for
theoretical development and practical applications [13, 61, 80, 81, 82].

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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4 1. Introduction

Consider, for example, computer information processing of a continuous-
time system whose output is sampled with a sampling rate of N Hz and
quantized with a precision word-length of B bits. Its output observations
carry the data-flow rate of NB bits per second (bps). For a typical 16-bit
precision and 2-KHz sampling rate, a 32K-bps bandwidth of data trans-
mission resource is required, on observations of one output alone. This is
a significant resource demand, especially when wireless communications of
data are involved.

Additionally, quantized sensors are commonly employed in practical sys-
tems [10, 42, 49, 73, 90, 98, 99]. Usually they are more cost-effective than
regular sensors. In many applications, they are the only ones available dur-
ing real-time operations. There are numerous examples of binary-valued or
quantized observations such as switching sensors for exhaust gas oxygen,
ABS (anti-lock braking systems), and shift-by-wire in automotive applica-
tions; photoelectric sensors for positions, and Hall-effect sensors for speed
and acceleration for motors; chemical process sensors for vacuum, pressure,
and power levels; traffic condition indicators in the asynchronous transmis-
sion mode (ATM) networks; and gas content sensors (CO, CO2, H2, etc.)
in the gas and oil industries. In medical applications, estimation and pre-
diction of causal effects with dichotomous outcomes are closely related to
binary sensor systems. The following examples represent some typical sce-
narios.

1.1 Motivating Examples

ATM ABR Traffic Control
An ATM network, depicted in Figure 1.1, consists of sources, switches,
and destinations. Due to variations in other higher-priority network traffic
such as constant bit rate (CBR) and variable bit rate (VBR), an available
bit rate (ABR) connection experiences significant uncertainty on the avail-
able bandwidth during its operation. A physical or logical buffer is used
in a switch to accommodate bandwidth fluctuations. The actual amount
of bandwidth an ABR connection receives is provided to the source using
rate-based closed-loop feedback control. One typical technique for provid-
ing traffic information is relative rate marking, which uses two fields in the
Resource Management (RM) cell—the No Increase (NI) bit and the Con-
gestion Indication (CI) bit. The NI bit is set when the queue reaches length
C1, and the CI bit is set when the queue length reaches C2 (C2 > C1).

In this system, the queue length is not directly available for traffic control.
The NI and CI bits indicate merely that it takes values in one of the three
uncertainty sets [0, C1], (C1, C2], and (C2,∞). This can be represented by
two binary sensors. It is noted that the desired queue length is usually a
value different than C1 or C2.
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Threshold C2

Threshold C1

data RM data RM

RM RM RM

Source Destination

NI bit: no increase, queue length > C
1

CI bit: congestion indicator, queue length > C
2

Quantized sensor with two thresholds

FIGURE 1.1. ATM network control

LNT and Air-to-Fuel Ratio Control with an EGO Sensor

Linear Sensors:

Uniform Sensitivity and Measurement Errors

Smooth Nonlinear Sensors:

Invertible and Finite Sensitivity

Variable Sensitivity and Measurement Errors

Switching Sensors:

Non-invertible and Infinite Sensitivity

Switching Point Errors

Input

Input

Input

Output

Output

Output

Input

Output

Binary-Valued Sensors

Practical Switching Sensors

FIGURE 1.2. Sensor types

In automotive and chemical process applications, oxygen sensors are widely
used for evaluating gas oxygen contents. Inexpensive oxygen sensors are
switching types that change their voltage outputs sharply when excess
oxygen in the gas is detected; see Figure 1.2. In particular, in automo-
tive emission control, the exhaust gas oxygen sensor (EGO or HEGO) will
switch its outputs when the air-to-fuel ratio in the exhaust gas crosses the
stoichiometric value. To maintain the conversion efficiency of the three-way
catalyst or to optimize the performance of a lean NOx trap (LNT), it is es-
sential to estimate the internally stored NOx and oxygen. In this case, the
switching point of the sensor has no direct bearing on the control target.
The idea of using the switching sensor for identification purposes, rather
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than for control only, can be found in [98, 99, 112].

Identification of Binary Perceptrons
There is an interesting intersection between quantized identification and
statistical learning theory in neural networks. Consider an unknown bi-
nary perceptron depicted in Figure 1.3 that is used to represent a dynamic
relationship:

y(t) = S(w1x1 + w2x2 + · · · + wnxn − C + d),

where C is the known neuron firing threshold, w1, . . . , wn are the weighting
coefficients to be learned, and S(·) is a binary-valued function switching at
0. This learning problem can be formulated as a special case of binary sen-
sor identification without unmodeled dynamics. Traditional neural models,
such as the McCulloch–Pitts and Nagumo–Sato models, contain a neural
firing threshold that naturally introduces a binary function [13, 38, 42, 73].
Fundamental stochastic neural learning theory studies the stochastic up-
dating algorithms for neural parameters [94, 95, 96].

w1
x1

w2
x2

wn
xn

d

Firing

Threshold
y

inputs system disturbance
binary

sensor

FIGURE 1.3. Artificial neural networks

Networked Systems
In a networked system, see Figure 1.4, signals must be transmitted through
communication channels. Since communications make quantization manda-
tory, it is essential to understand identification with quantized observations.
Unlike physical sensors whose characteristics such as switching thresholds
cannot be altered during identification experiments, quantization for com-
munication may be viewed generally as a partition of the signal range into
a collection of subsets. Consequently, quantization thresholds may be se-
lected to reduce identification errors, leading to the problems on threshold
selection. Furthermore, source coding and channel coding after quantiza-
tion play an important role in identification error characterization when
communication channels are noisy.
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FIGURE 1.4. Communication networks

1.2 System Identification with Quantized
Observations

The most common example of quantization is to divide the output range
into equal-length intervals. This book considers a general class of quantized
observations that allows a partition of the output range into a finite collec-
tion of subsets. The subsets may have unequal lengths or be unbounded,
may be fixed due to sensor configuration limitations, or may be design vari-
ables such as quantization or coding in communication systems. This sub-
ject is of importance in understanding the modeling capability for systems
with limited sensor information, establishing relationships between commu-
nication resource limitations and identification complexity, and studying
sensor networks [1, 10, 13, 34, 61, 80, 81, 90, 112, 115].

The use of quantized observations introduces substantial difficulties since
only very limited information is available for system modeling, identifica-
tion, and control. Since switching sensors are nonlinear components, studies
of their roles and impact on systems are often carried out in nonlinear sys-
tem frameworks, such as sliding mode control, describing function analysis,
switching control, hybrid control, etc. In these control schemes, the switch-
ing thresholds of the sensors are directly used to define a control target.
However, their fundamental impact on system modeling and identification
is a relatively new area. This book presents recent developments on the
inherent consequences of using quantized observations in system identifi-
cation as well as methods and algorithms that use quantized observations
effectively to extend control capabilities.

The main motivation is embodied in many applications in which mod-
eling of such systems is of great importance in performing model predic-
tive control, model-based diagnosis, outcome predictions, optimal control
strategy development, control adaptation, etc. When inputs can be arbi-
trarily selected within certain bounds and outputs are measured by regular
sensors, system identification problems have been studied extensively in
the traditional setup under the frameworks of either stochastic systems or
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worst-case identification. The issues of identification accuracy, convergence,
model complexity, time complexity, input design, persistent excitation,
identification algorithms, etc. have been pursued by many researchers. A
vast literature is now available on this topic; see [17, 55, 62, 67], among
others.

It should be clarified that the treatments of this book will be meaning-
ful only for the application problems in which quantization levels carry a
substantial system cost or operational penalty. If an application can use
cheaper sensors of high precision and data-flow rates do not carry a cost,
traditional system identification methods will suffice. On the other hand,
when a sensor of lower precision is cheaper than a higher-precision sen-
sor, it is important to understand what the performance penalty will be
if the cheaper sensor is used. Similarly, when communication bandwidths
are limited, the reduction of quantization levels will save communication
resources. Intrinsically, one may choose to use coarse quantization (lower
space complexity) so that more data points can be transmitted (higher time
complexity) with the same bandwidth resource demand. This tradeoff be-
tween sampling rates and quantization accuracy is a fundamental issue in
complexity analysis for understanding the impact of communication chan-
nels on system performance.

Some fundamental issues emerge when the output observation is quan-
tized: How accurately can one identify the parameters of the system? How
fast can one reduce uncertainty on model parameters? What are the op-
timal inputs for fast identification? What are the conditions that ensure
the convergence of the identification algorithms? What are the impacts
of unmodeled dynamics and disturbances on identification accuracy and
time complexity? In contrast to classical system identification, answers to
these familiar questions under switching sensors differ substantially from
the traditional setup.

This book demonstrates that quantized observations increase time com-
plexity significantly; the optimal inputs differ from those in traditional iden-
tification; identification characteristics depart significantly between stochas-
tic and deterministic noise representations; and unmodeled dynamics have
a fundamental influence on identification accuracy of the modeled part. In
contrast to traditional system identification, in which the individual mer-
its of stochastic versus worst-case frameworks are sometimes debated, it
is beneficial to combine these two frameworks in quantized identification
problems.

1.3 Outline of the Book

This book is organized into five parts as follows: I. Overview; II. Stochastic
Methods for Linear Systems; III. Deterministic Methods for Linear Sys-
tems; IV. Identification of Nonlinear and Switching Systems; V. Complexity
Analysis.
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Part I is an overview that provides motivational applications for system
identification with quantized observations in Chapter 1 and that introduces
the common systems settings for the entire book in Chapter 2. After a gen-
eral introduction of the problems in Chapter 1, generic system settings
are formulated in Chapter 2. Special cases of systems are then delineated,
such as gain systems, finite impulse-response systems, rational systems,
and nonlinear systems. The main issues of system identification are further
explained, including typical inputs and signal ranks. System uncertainties
considered in this book consist of unmodeled dynamics for linear dynam-
ics, model mismatch for nonlinear functions, and disturbances in either a
stochastic or deterministic worst-case description. Identification in differ-
ent system configurations is outlined, in which distinct issues arising from
open-loop and closed-loop systems, and input and actuator noises are fur-
ther discussed.

In this book, unmodeled dynamics are always described as a bounded
but unknown uncertainty. In contrast, disturbances are modeled either in
a stochastic framework, or as an unknown but bounded uncertainty. Since
these two frameworks require vastly different input design, employ distinct
analysis methods, and entail diversified convergence properties, they are
presented in their elementary but fundamental forms in Parts II and III,
respectively.

Part II covers stochastic methods for linear systems with quantized ob-
servations. It presents identification algorithms, properties of estimators,
and various convergence results in a stochastic system framework. Chap-
ter 3 introduces the main methodology of empirical measures and derives
convergence properties, including strong convergence, convergence in distri-
bution, and mean-square convergence. When noise is modeled as a stochas-
tic process and the system is subject to unmodeled dynamics, it becomes
mandatory to deal with a combined framework, which is investigated in
Chapter 4. Upper and lower error bounds are derived.

When dealing with a complicated system structure, a fundamental idea is
to reduce the identification of its parameters to a finite set of identification
of gains. This is achieved by employing some intrinsic properties of periodic
inputs and invertible mappings. In Chapter 3, we show how a full-rank peri-
odic input can reduce the problem of identifying a finite impulse-response
system to a number of core identification problems of gains. When the
system is rational, the problem becomes much more difficult. We show in
Chapter 5 that this difficulty can be overcome by full-rank periodic inputs
when the rational model is co-prime.

The convergence and efficiency of estimators in quantized identifica-
tion are studied in Chapter 6. When the observation becomes quantized
with a finite number of thresholds, an algorithm, termed optimal quasi-
convex combination estimation (optimal QCCE), is introduced to derive
an estimate from multiple thresholds. The resulting estimate is shown
to be asymptotically efficient by comparing its convergence speed to the
Cramér–Rao (CR) lower bound.



10 1. Introduction

The utility of full-rank periodic inputs is further investigated in Chapter 7
in typical system configurations such as cascade and feedback connections.
It is revealed that periodicity and full-rankness of a signal are two funda-
mental input properties that are preserved after the signal passes through
a stable system with some mild constraints. Consequently, it becomes clear
that the input design, identification algorithms, and convergence properties
are inherently invariant under open-loop and closed-loop configurations.
Furthermore, we present in Chapter 8 the joint identification of system par-
ameters, unknown thresholds, and unknown noise distribution functions.
The main idea is to use signal scaling to excite further information on
sensor thresholds and noise distribution functions.

Part III is concerned with deterministic methods for linear systems. Here
the emphasis is shifted to the deterministic framework for disturbances.
Under this framework, noise is modeled as unknown but bounded. Our ex-
ploration starts in Chapter 9 with the case of binary-valued observations.
Input design that utilizes the idea of bisection is shown to reduce uncer-
tainty exponentially. This idea is employed when both observation noise
and unmodeled dynamics are present. Explicit error bounds are derived.
Chapter 10 considers the case of quantized observations. The utility of
multiple thresholds in accelerating convergence speed is investigated.

Part IV concentrates on the identification of nonlinear and switching
systems. The first concentration is on Wiener and Hammerstein systems
in which the nonlinearity is confined to be memoryless. The algorithms for
identifying such nonlinear systems closely follow the ideas of signal scaling
in Chapter 8 to separate the identification of the linear dynamics and non-
linear function and to extract information on the nonlinear part. This is es-
pecially apparent in Chapter 11 for Wiener systems. Hammerstein systems
are treated in Chapter 12. Although there are similarities between Wiener
and Hammerstein systems, input design is more stringent in Hammerstein
systems. Some new concepts of input ranks are introduced. Systems with
switching parameters are discussed in Chapter 13. In such systems, param-
eters are themselves Markov chains. Two essential cases are included. In
the first case, parameters switch their values much faster than identification
convergence speeds. Consequently, it is only feasible to identify the average
of the switching parameters. On the other hand, if the parameter jumps
occur infrequently with respect to identification speeds, parameter tracking
by identification algorithms can be accomplished. Algorithms, convergence,
and convergence rates toward an irreducible uncertainty set are established.

Part V explores fundamental complexity issues in system identification
with quantized observations. The main tool is the asymptotic efficiency that
defines the impact of observation time complexity (data length) and space
complexity (number of thresholds) on identification accuracy. The tradeoff
between time complexity and space complexity points to a broad utility
in threshold selection, optimal resource allocations, and communication
quantization design. These discussions are contained in Chapter 14. This
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understanding is further utilized to study the impact of communication
channels on system identification in Chapter 15. The concept of the Fisher
information ratio is introduced.

In addition to the aforementioned chapters and an extensive list of ref-
erences at the end of the book, each chapter (except for Chapter 1) has
a section of notes in which historical remarks, developments of related
work and references, and possible future study topics are presented and
discussed.



2
System Settings

This chapter presents basic system structures, sensor representations, input
types and characterizations, system configurations, and uncertainty types
for the entire book. This chapter provides a problem formulation, shows
connections among different system settings, and demonstrates an overall
picture of the diverse system identification problems that will be covered in
this book. Other than a few common features, technical details are deferred
to later chapters.

Section 2.1 presents the basic system structure and its special cases of
FIR (finite impulse response), IIR (infinite impulse response), rational, and
nonlinear systems that will be discussed in detail in later chapters. Quan-
tized observations and their mathematical representations are described in
Section 2.2. Essential properties of periodic input signals that are critical
for quantized identification are established in Section 2.3. When a system
is embedded in a larger configuration, its input and output are further
confined by the system structure, introducing different identification prob-
lems. Section 2.4 shows several typical system configurations and their cor-
responding unique features in system identification. There are many types
of uncertainties that can potentially impact system identification. These
are summarized in Section 2.5.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
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2.1 Basic Systems

The basic system structure under consideration is a single-input–single-
output stable system in its generic form

yk = G(Uk, θ) + Δ(Uk, θ̃) + dk, k = 0, 1, 2, . . . , (2.1)

where Uk = {uj , 0 ≤ j ≤ k} is the input sequence up to the current time k,
{dk} is a sequence of random variables representing disturbance, θ is the
vector-valued parameter to be identified, and θ̃ represents the unmodeled
dynamics. All systems will assume zero initial conditions, which will not
be mentioned further in this book. We first list several typical cases of the
system in (2.1).

1. Gain Systems:
yk = auk + dk.

Hence, θ = a, G(Uk, θ) = auk, and Δ(Uk, θ̃) = 0.

2. Finite Impulse Response (FIR) Models:

yk = a0uk + · · · + an0−1uk−n0+1 + dk.

This is usually written in a regression form

G(Uk, θ) = a0uk + · · · + an0−1uk−n0+1 = φ′
kθ,

where θ = [a0, . . . , an0−1]′ is the unknown parameter vector and φ′
k =

[uk, . . . , uk−n0+1] is the regressor. In this case, the model order is n0,
which is sometimes used as a measure of model complexity. Again,
Δ(Uk, θ̃) = 0.

3. Infinite Impulse Response (IIR) Models:

yk =
∞∑

n=0

anuk−n + dk,

where the system parameters satisfy the bounded-input–bounded-
output (BIBO) stability constraint

∞∑

n=0

|an| < ∞.

For system identification, this model is usually decomposed into two
parts:

n0−1∑

n=0

anuk−n +
∞∑

n=n0

anuk−n = φ′
kθ + φ̃′

kθ̃, (2.2)
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where θ = [a0, . . . , an0−1]′ is the modeled part and θ̃ = [an0 , an0+1, . . .]′

is the unmodeled dynamics, with corresponding regressors

φ′
k = [uk, . . . , uk−n0+1] and

φ̃′
k = [uk−n0 , uk−n0−1, . . .],

respectively. In this case, the model order is n0. For the selected n0,
we have

G(Uk, θ) = φ′
kθ; Δ(Uk, θ̃) = φ̃′

kθ̃.

4. Rational Transfer Functions:

yk = G(q, θ)uk + dk. (2.3)

Here q is the one-step shift operator quk = uk−1 and G(q) is a stable
rational function2.1 of q:

G(q) =
B(q)

1 − A(q)
=

b1q + · · · + bn0q
n0

1 − (a1q + · · · + an0q
n0)

.

In this case, the model order is n0 and the system has 2n0 unknown
parameters θ = [a1, . . . , an0 , b1, . . . , bn0 ]

′. Note that in this scenario,
the system output is nonlinear in parameters. To relate it to sensor
measurement errors in practical system configurations, we adopt the
output disturbance setting in (2.3), rather than the equation distur-
bance structure in

yk + a1yk−1 + · · · + an0yk−n0 = b1uk−1 + · · · + bn0uk−n0 + dk,

which is an autoregressive moving average (ARMA) model structure.
The ARMA model structure is more convenient for algorithm devel-
opment. But output measurement noises in real applications occur in
the form of (2.3).

5. Wiener Models:

G(Uk, θ) = H(G0(q, θ1)uk, β),

or in a more detailed expression

xk =
n0−1∑

n=0

anuk−n, yk = H(xk, β) + dk.

2.1When G(q, θ) is used in a closed-loop system, it will be allowed to be unstable,
but is assumed to be stabilized by the feedback loop.
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Here, β is the parameter (column) vector of the output memory-
less nonlinear function H and θ1 = [a0, . . . , an0−1]′ is the parameter
vector of the linear part. The combined unknown parameters are
θ = [θ′1, β

′]′.

6. Hammerstein Models:

G(Uk, θ) = G0(q, θ1)H(uk, β)

or

yk =
n0−1∑

n=0

anxk−n + dk, xk = H(uk, β).

Here, β is the parameter vector of the input memoryless nonlinear
function H and θ1 = [a0, . . . , an0−1]′ is the parameter vector of the
linear part. The combined unknown parameters are θ = [θ′1, β

′]′.

2.2 Quantized Output Observations

Let us begin with Figure 2.1. The output yk in (2.1) is measured by a

s

y

1

0 C1 C2 Cm

m

FIGURE 2.1. Quantized observations

sensor of m0 thresholds −∞ < C1 < . . . < Cm0 < ∞. The sensor can be
represented by a set of m0 indicator functions sk = [sk(1), . . . , sk(m0)]′,
where sk(i) = I{−∞<yk≤Ci}, i = 1, . . . , m0, and

I{yk∈A} =

⎧
⎨

⎩
1, if yk ∈ A,

0, otherwise.

In such a setting, the sensor is modeled as m0 binary-valued sensors
with overlapping switching intervals, which imply that if sk(i) = 1, then
sk(j) = 1 for j ≥ i. An alternative representation of the sensor is by
defining s̃k(i) = I{Ci−1<yk≤Ci} with C0 = −∞, and Cm0+1 = ∞ with the
interval (Cm0 ,∞). This representation employs distinct switching intervals.
Consequently, only one sk(i) = 1 at any k.

Under a quantized sensor of m0 thresholds, each sample of the signal can
be represented by a code of length log2 m0 bits. This will be viewed as the
space complexity of the signal measurements.
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2.3 Inputs

In this book, we use extensively periodic input signals in identification
experiments under a stochastic framework. A signal vk is said to be n0-
periodic if vk+n0 = vk. We first establish some essential properties of peri-
odic signals, which will play an important role in the subsequent develop-
ment.

Toeplitz Matrices

Recall that an n0 × n0 Toeplitz matrix [37] is any matrix with constant
values along each (top-left to bottom-right) diagonal. That is, a Toeplitz
matrix has the form

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn0 . . . v2 v1

vn0+1
. . . . . . v2

...
. . . . . .

...

v2n0−1 . . . vn0+1 vn0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is clear that a Toeplitz matrix is completely determined by its entries in
the first row and the first column {v1, . . . , v2n0−1}, which is referred to as
the symbol of the Toeplitz matrix.

Circulant Toeplitz Matrices and Periodic Signals

A Toeplitz matrix T is said to be circulant if its symbol satisfies vk = vk−n0

for k = n0 + 1, . . . , 2n0 − 1; see [25]. A circulant matrix [57] is completely
determined by its entries in the first row [vn0 , . . . , v1], so we denote it as
T ([vn0 , . . . , v1]). Moreover, T is said to be a generalized circulant matrix if
vk = ρvk−n0 for k = n0 + 1, . . . , 2n0 − 1, where ρ > 0, which is denoted by
T (ρ, [vn0 , . . . , v1]) and

T (ρ, [vn0 , . . . , v1]) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn0 . . . v2 v1

ρv1
. . . . . . v2

...
. . . . . .

...

ρvn0−1 . . . ρv1 vn0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Definition 2.1. An n0-periodic signal generated from its one-period val-
ues v = (v1, . . . , vn0) is said to be full rank if T ([vn0 , . . . , v1]), the circulant
matrix, is full rank.

An important property of circulant matrices is the following frequency-
domain criterion.
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Lemma 2.2. If T = T (ρ, [vn0 , . . . , v1]) is a generalized circulant matrix,
then the eigenvalues of T are {ργk, k = 1, . . . , n0} and the determinant of
T is det(T ) =

∏n0
k=1 ργk, where γk is the discrete Fourier transform (DFT)

of vjρ
−(j/n0), j = 1, . . . , n0:

γk =
n0∑

j=1

vjρ
− j

n0 e−iωkj , ωk =
2πk

n0
, k = 1, . . . , n0.

Hence, T is full rank if and only if γk �= 0, k = 1, . . . , n0.

Proof. Let

M =

⎡

⎣ 0 In0−1

ρ 0

⎤

⎦ ,

whose characteristic polynomial is λn0−ρ and eigenvalues are ρ−(j/n0)eiωk , k =
1, . . . , n0. Then, T can be represented as T =

∑n0
j=1 vjM

n0−j . For k =
1, . . . , n0, if xk is the corresponding eigenvector of the eigenvalue ρ−(1/n0)eiωk

for M , then

Txk =
n0∑

j=1

vjM
n0−jxk

=
n0∑

j=1

vj(ρ
1

n0 eiωk)n0−jxk

= ργkxk.

Therefore, ργk is an eigenvalue of T and the expression for det(T ) is con-
firmed. By hypothesis, ρ > 0. Hence, T is full rank if and only if γk �= 0,
k = 1, . . . , n0. �

For the special case when ρ = 1, we have the following property.

Corollary 2.3. An n0-periodic signal generated from v = (v1, . . . , vn0) is
full rank if and only if its discrete Fourier transform γk =

∑n0
j=1 vje

−iωkj

is nonzero at ωk = 2πk/n0, k = 1, . . . , n0.

Recall that Γ = {γ1, . . . , γn0} are the frequency samples of the n0-
periodic signal v. Hence, Definition 2.1 may be equivalently stated as “an
n0-periodic signal v is said to be full rank if its frequency samples do not
contain 0.” In other words, the signal contains n0 nonzero frequency com-
ponents.

2.4 System Configurations

The basic system (2.1) is a typical open-loop identification setting in which
the input can be selected directly by the user and the output noise is the
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only disturbance. Practical systems are far more complicated in which a
system to be identified is often a subsystem interconnected in different
system configurations. Consequently, the input to the plant may not be
directly accessible for design and there may be multiple noise corruptions.
In this book, we recognize and treat some of these configurations.

2.4.1 Filtering and Feedback Configurations

Consider the system configurations in Figure 2.2. The filtering configuration
is an open-loop system where M is linear, time invariant, and stable but
may be unknown. The feedback configuration is a general structure of two-
degree-of-freedom controllers where K and F are linear, time invariant, may
be unstable, but are stabilizing for the closed-loop system. The mapping
from r to u is the stable system M = K/(1 + PKF ). When K = 1, it is a
regulator structure, and when F = 1, it is a servo-mechanism or tracking
structure. Note that system components M , K, F are usually designed for
achieving other goals and cannot be tuned for identification experiment
design.

M P P

F

Kr ru
y u

(a) Filtering Configuration (b) Feedback Configuration

_

d

y

d

FIGURE 2.2. Typical system configurations

In these configurations, the input u to the plant P may be measured but
cannot be directly selected. Only the external input r can be designed.

2.4.2 Systems with Communication Channels

The parameters of the system G in Figure 2.3 are to be identified. Two sce-
narios of system configuration are considered. System identification with
quantized sensors is depicted in Figure 2.3(a) in which the observations on
uk and sk are used. On the other hand, when sensor outputs of a system are
transmitted through a communication channel and observed after transmis-
sion, the system parameters must be estimated by observing uk and wk,
as shown in Figure 2.3(b). Since communication channels are subject to
channel uncertainties, such as channel noises, the identification of system
parameters is influenced by channel descriptions. Furthermore, when the
channel contains unknown parameters such as unknown noise distribution
functions, they must be incorporated into the overall identification problem.



20 2. System Settings
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Channel Uncertainty

(a) System identification with quantized observations

(b) System identification with communication channels

FIGURE 2.3. System configurations

2.5 Uncertainties

The main purpose of system identification is to reduce uncertainty on the
system by using information from input-output observations. There are
multiple sources of uncertainty in system configuration, modeling, and en-
vironments that will have a significant bearing on system identification. In
addition to the unknown model parameters that are to be identified, we
list below some of the uncertainties to be considered in this book.

2.5.1 System Uncertainties: Unmodeled Dynamics

In practical applications, a dynamic system is usually infinite dimensional.
For cost reduction on system analysis, design, and implementation, it is
desirable to use a low-order model to represent the system. A typical case
is the IIR system (2.2)

n0−1∑

n=0

anuk−n +
∞∑

n=n0

anuk−n = φ′
kθ + φ̃′

kθ̃.

Here, the unmodeled dynamics θ̃ impact the system output through the
term φ̃′

kθ̃. The unmodeled dynamics are characterized by certain saline
features: (1) They are unknown but bounded when the system is stable.
(2) They are better modeled as a deterministic uncertainty since they usu-
ally do not change randomly with time. (3) It is a multiplicative uncertainty,
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in contrast to observation noise, which is commonly additive. While an
additive uncertainty can be reduced by employing larger signals (namely a
larger signal-to-noise ratio), a multiplicative uncertainty cannot be reduced
by signal scaling. Consequently, its fundamental impact and reduction must
be analyzed through different means. (4) The size of the unmodeled dy-
namics,

∑∞
n=n0

|an|, is a monotonically decreasing function of the model
complexity n0.

2.5.2 System Uncertainties: Function Mismatch

When a system model involves a nonlinear function g(x), such as in the
Wiener and Hammerstein models, the nonlinear function is often parame-
terized by g(x;μ) with a finite parameter vector μ. This parameterization
introduces model mismatch:

δ(x;μ) = g(x) − g(x;μ).

Function mismatch is similar to multiplicative uncertainty, albeit in a non-
linear form, in which the reduction of δ(x, μ) cannot be achieved in general
by signal scaling.

2.5.3 Sensor Bias and Drifts

A quantized sensor is characterized by its thresholds. In many applica-
tions, sensor thresholds may not be exactly known or change with time.
System identification in which sensor thresholds are unknown must consider
the thresholds as part of unknown parameters to be identified. Including
thresholds in parameter vectors inevitably leads to a nonlinear structure.

2.5.4 Noise

The additive observation noise dk in (2.1) may be modeled either as an
unknown-but-bounded noise in a deterministic framework or as a random
process in a stochastic framework.

In a deterministic framework, prior information on {dk} is limited to its
uniform bound |dk| ≤ δ. In other words, the uncertainty set is Γd = {dk ∈
R : |dk| ≤ δ}. Identification errors resulting from this type of observation
noise are characterized by the worst-case bound over all possible noises in
Γd.

In contrast, in a stochastic framework, {dk} is described as a random pro-
cess. Typical cases include independent and identically distributed (i.i.d.)
processes whose probability distribution function of d1 is F (·), and mixing
processes for dependent noises.
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2.5.5 Unknown Noise Characteristics

Identification methodologies and algorithms in this book utilize extensively
information on noise distribution functions F (·) or density functions f(·).
Such functions may not be available or may be subject to deviations and
drifting. Unknown noise distribution functions compel their inclusion in
identification. While it is possible to model distribution and density func-
tions either parametrically or nonparametrically, the parameterization ap-
proach is more consistent with the methods of this book. As a result, in
this book, F (·) is represented by a parameterized model F (·;μ) when it is
unknown.

2.5.6 Communication Channel Uncertainties

In networked systems, sensor outputs are not directly measured, but rather
are transmitted through a communication channel, shown in Figure 2.3(b).
When sk is transmitted through a communication channel, the received
sequence wk is subject to channel noise and other uncertainties. When
identification must be performed with observations on wk, instead of sk,
channel noise and uncertainties will directly influence identification accu-
racy and convergence rates.

2.6 Notes

The basic system configurations presented in this chapter are represen-
tative in control systems, although they are not exhaustive. There are
many other system settings that can be considered when essential issues
are understood from the basic configurations. Quantization is an essential
part of digital signals that have been extensively studied, mostly in uni-
formly spaced quantization. Its theoretical foundation and main properties
have been studied in a different context beyond sampled date systems;
see [1, 34, 80]. Quantized information processing occurs in many different
applications beyond system identification [13, 38, 39, 73, 96]. Identifica-
tion input design is an integral part of an identification experiment. This
book is mostly limited to periodic signals due to their unique capability
in providing input richness, in simplifying identification problems, and in
their invariance when passing through systems. Most textbooks on system
identification under stochastic formulations contain some discussions on
uncertainties; see, for example, [17, 62]. The worst-case identification un-
der set membership uncertainty is covered comprehensively in [66, 67, 68].
Models of noisy communication channels and their usage in information
theory can be found in [22].
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3
Empirical-Measure-Based
Identification: Binary-Valued
Observations

This chapter presents a stochastic framework for systems identification
based on empirical measures that are derived from binary-valued observa-
tions. This scenario serves as a fundamental building block for subsequent
studies on quantized observation data.

In a stochastic framework, we work with a probability space (Ω,F , P ).
Our study of system identification for binary-valued and quantized ob-
servations is largely based on the application of empirical measures. It is
deeply rooted in the law of large numbers and the central limit theorem.
To a large extent, Part II is concerned with empirical processes associated
with the identification task, their convergence, their moment behaviors,
and associated efficiency issues.

The rest of the chapter is arranged as follows. We begin in Section 3.1
with an overview of our key methodology, its fundamental capability, and
the main issues that limit its applications and their remedies. Section 3.2
extends discussions on empirical measures and their utility in system iden-
tification with binary-valued observations. Then Section 3.3 provides the
almost sure convergence of the empirical processes for our identification
problems. Section 3.4 is concerned with the scaled sequence of the empirical
processes and their limits. Section 3.5 focuses on mean-square convergence
of our identification problems with binary observations. Empirical measure
based identification algorithms are strongly convergent under a broad class
of noises. Section 3.6 summarizes and illustrates convergence under depen-
dent noises of the basic algorithm of this chapter. To assist the reading
and to streamline the presentation, some technical proofs are relegated to
Section 3.7.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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3.1 An Overview of Empirical-Measure-Based
Identification

We first outline the basic ideas of using empirical measures for identifying
a constant. The detailed results will be presented later. Consider a noise-
corrupted sequence {yk}:

yk = θ + dk,

where θ is the parameter of interest, and {dk} is a sequence of independent
and identically distributed random variables with a known distribution
function F (·) whose density function f(x) �= 0 and is continuously differ-
entiable. This implies that F has a continuous inverse. yk is observed via
a binary-valued sensor of threshold C, and sk = S(yk).

Since

p = P{sk = 1} = P{θ + dk ≤ C} = P{dk ≤ C − θ} = F (C − θ),

and F is invertible, we have a relationship

θ = C − F−1(p).

Consequently, if p̂ is an estimate of p, then

θ̂ = C − F−1(p̂)

is a natural choice for an estimate of θ. In our method, p̂ is obtained by
the empirical measure

ξN =
1
N

N−1∑

k=0

sk,

which leads to

θ̂N = C − F−1(ξN ).

Since ξN converges to p w.p.1, and F−1 is continuous, it is expected that
θ̂N will converge to θ w.p.1.

Implementation of this algorithm encounters a technical issue. For any
finite N , ξN takes the value 0 or 1 with a positive probability. Since F (·) is
usually not invertible at these two points, the algorithm must be modified.
It is noted that if the prior information on θ includes its upper and lower
bounds, then the upper and lower bounds on C − θ are known. If 0 <
F (C − θmax) < F (C − θmin) < 1, noting that F is monotone, there exists
a small constant z for which 0 < z < F (C − θ) < 1− z < 1 for all θ within
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the bounds. This enables us to modify the algorithm by defining

ξN =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N

N−1∑

k=0

sk, if z ≤ 1
N

N−1∑

k=0

sk ≤ 1 − z,

z, if
1
N

N−1∑

k=0

sk < z,

1 − z, if
1
N

N−1∑

k=0

sk > 1 − z.

(3.1)

With this modification,

θ̂N = C − F−1(ξN )

is well defined for all N .
Since ξN → p w.p.1 and z < p < 1−z, the bounds in (3.1) will not affect

the sample path convergence. As a result, the strong convergence θ̂N → θ
w.p.1 is ensured; see Section 3.3. In addition, we will show in Sections 3.4
and 3.5 that θ̂N also converges to θ in the mean-square sense and

NE(θ̂N − θ)2 → F (C − θ)(1 − F (C − θ))
f2(C − θ)

.

We will establish in Chapter 6 that

F (C − θ)(1 − F (C − θ))
Nf2(C − θ)

(3.2)

is the Cramér–Rao (CR) lower bound. Hence, this algorithm is asymptoti-
cally efficient.

Of course, these desirable convergence properties are so far only valid for
identification of a constant. The above results, however, are fundamental.
We will show in the subsequent chapters that in many system configura-
tions, the identification of a complicate system, such as FIR systems in
this chapter, rational systems in Chapter 5, systems with unknown noise
distributions in Chapter 8, and Wiener and Hammerstein systems in Chap-
ters 11 and 12, that involve many parameters and nonlinearity, can often
be reduced to a finite set of identification problems for constants. Further-
more, strong convergence and asymptotical efficiency for identification of
constants carry over to identification of the parameters for the more compli-
cated systems. The main task in this endeavor is to find suitable input sig-
nals that can generate an invertible mapping that relates the parameters to
the constants. Input design, establishment of the invertible mappings, and
convergence properties constitute the main tasks of the remaining chapters.

Since the CR lower bound F (C − θ)(1 − F (C − θ))/(Nf2(C − θ)) is
independent of algorithms, it reveals the fundamental information on θ
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that is contained in {sk}. A closer look at the CR lower bound tells us the
following informational aspects of quantized identification problems.

First, if C − θ lies outside the support of the density function f(x)
(the support of f is the set {x : f(x) �= 0}), then f(C − θ) = 0 and
F (C − θ)(1 − F (C − θ))/(Nf2(C − θ)) = ∞. In other words, the data do
not contain any statistical information on θ. When this happens, sk = 1 for
all k or sk = 0 for all k. This, however, does not imply that the data do not
contain other nonstatistical information on θ. By carefully designing the
input, the nonstatistical information can be used to reduce uncertainty on
θ, just as statistical information does, albeit in different senses. This leads
to deterministic frameworks for quantized identification in Chapters 9 and
10. A typical scenario for this to happen is when the disturbance is bounded
|dk| ≤ δ, such as a uniform random variable. This issue becomes especially
relevant when the disturbance is bounded and small. Interestingly, under
this scenario the deterministic approach, which uses input design to ex-
tract nonstatistical information on the unknown parameters, becomes very
effective, which will be explored in Part III. On the other hand, determinis-
tic worst-case identification will leave an irreducible error and convergence
will be lost. It is then intuitive that in such a scenario, it might be best to
combine these two frameworks so that both nonstatistical and statistical
information can be used collaboratively, to reduce uncertainty on θ first by
a deterministic method, and then switch to a stochastic method to achieve
convergence. This will be discussed in Chapter 9.

Even when f(C − θ) �= 0, one must pay attention to the actual values
of the CR bound. For example, if the noise is a standard Gaussian noise
(mean zero and variance one), the CR bounds as a function of C − θ are
listed in the following table.

x = C − θ 0 1 2 3 4 5 6

F (x)(1 − F (x))

f2(x)
1.57 2.28 7.63 69 1768 1.3 × 105 2.7 × 107

Only when the threshold C is close to the true parameter θ, the con-
vergence rate becomes fast enough for the data to be practically useful for
parameter estimation. This implies that the threshold C must be correctly
designed from the outset or adapted during identification. While detailed
analysis and algorithm development are postponed until Chapter 14, we
illustrate the idea of threshold adaptation by an example.

Denote
v = C − θ.

To have the best CR lower bound in (3.2), we choose

v∗ = arg min
v

F (v)(1 − F (v))
f2(v)

. (3.3)



3.2 Empirical Measures and Identification Algorithms 29

Since F and f are known, v∗ can be calculated off-line. The optimal thresh-
old is related to v∗ by C∗ = v∗ + θ. Consequently, when C is adapted with
value Ck at time k, one may simply choose

θ̂k = Ck − v∗.

Define μ = F (v∗). In particular, if dk is Gaussian distributed with mean 0,
then v∗ = 0 and μ = 0.5.

Consider the following stochastic approximation algorithm with a con-
stant step size β:

sk =

⎧
⎨

⎩
1, θ + dk ≤ Ck,

0, θ + dk > Ck,

ξk+1 = ξk + β(sk − ξk),

Ck+1 = Ck + β(v∗ − F−1(ξk)),

θ̂k = Ck − v∗.

(3.4)

The first line is the sensor characterization with a time-varying threshold
Ck; the second is for empirical measure update in a recursive form with
step size β; the third is threshold adaptation; and the last line is for par-
ameter estimation. Convergence properties of this class of algorithms with
threshold adaptation will be discussed in Chapter 14.

Example 3.1. Suppose θ = 100. The noise is normally distributed with
mean zero and variance σ2 = 100. In this case, v∗ = 0 and the optimal
threshold is C = θ = 100. The initial threshold is set at C0 = 40. Under
the constant step size β = 0.05, Figure 3.1 shows how the threshold is
adapted and the parameter estimates move toward the true value.

3.2 Empirical Measures and Identification
Algorithms

We begin with a single-input–single-output (SISO), linear time-invariant
(LTI), stable, and discrete-time system

yk =
∞∑

i=0

aiuk−i + dk, k = 1, 2, . . . , (3.5)

where {dk} is a sequence of random noises. System parameters ai satisfy∑∞
i=0 |ai| < ∞. The input u is uniformly bounded |uk| ≤ umax but can be

arbitrarily selected otherwise. The output {yk} is measured by a binary-
valued sensor with threshold C. We assume that for a given model order
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FIGURE 3.1. Threshold adaptation and estimation of a constant when β = 0.05.
The x-axis is the number of algorithm iterations

n0, the system parameters can be decomposed into the modeled part

θ = [a0, . . . , an0−1]′

and the unmodeled dynamics

θ̃ = [an0 , an0+1, . . .]′.

Using such a setting, the system’s input–output relationship becomes

yk = φ′
kθ + φ̃′

kθ̃ + dk, (3.6)

where

φk = [uk, uk−1, . . . , uk−(n0−1)]′ and φ̃k = [uk−n0 , uk−n0−1, . . .]′.

Under a selected input sequence {uk}, the output sk is measured. We would
like to estimate θ on the basis of this input–output observation. To develop
an estimator of the parameter θ and to analyze its asymptotic properties,
we pose the following conditions.

(A3.1) {dk} is a sequence of i.i.d. random variables whose distribution
function F (·) and its inverse F−1(·) are twice continuously differentiable
and known.

(A3.2) ‖θ̃‖1 ≤ εu, where ‖·‖1 is the l1 norm (the subscript u in εu stands
for “unmodeled”).
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For notational simplicity, assume the total data length is Nn0 for some
integer N > 0. As a result, we can group the input–output equations into
N blocks of size n0:

Yl = Φlθ + Φ̃lθ̃ + Dl, l = 0, 1, . . . , N − 1,

where
Yl = [yk0+ln0+1, . . . , yk0+ln0+n0 ]

′,

Φl = [φk0+ln0+1, . . . , φk0+ln0+n0 ]
′,

Φ̃l = [φ̃k0+ln0+1, . . . , φ̃k0+ln0+n0 ]
′,

Dl = [dk0+ln0+1, . . . , dk0+ln0+n0 ]
′.

In particular, if the input is n0-periodic, i.e., uk+n0 = uk, ∀k, we have

Φl = Φ0 and Φ̃l = Φ̃0 = [Φ0,Φ0, . . .] = Φ0[I, I, . . .], l = 0, . . . , N − 1.

Moreover, if the n0-period input is full rank (see Definition 2.1), then Φ0

is invertible. As a result,

Yl = Φ0θ + Φ0[I, I, . . .]θ̃ + Dl = Φ0θ̂ + Dl,

where θ̂ = θ + [I, I, . . .]θ̃. In what follows, a scalar function applied to a
vector will mean componentwise operation of the function.

For each θ (fixed but unknown) and θ̃, define

ξ
{i}
N =

1
N

N−1∑

l=0

sk0+ln0+i, i = 0, . . . , n0 − 1, (3.7)

ξN = [ξ{0}N , . . . , ξ
{n0−1}
N ]′. Note that the event {yk0+ln0+i ≤ C} is the same

as the event {dk0+ln0+i ≤ v{i}}, where v{i} = C − γ{i} and γ{i} is the ith
component of Φ0θ̂. Denote

γ = [γ{0}, γ{n0−1}]′ ∈ R
n0 ,

v = [v{0}, . . . , v{n0−1}]′ = C11 − γ.
(3.8)

Then ξ
{i}
N is precisely the value of the N -sample empirical distribution,

denoted by FN (x), of the noise d1 at x = v{i} and

ξN = [FN (v{0}), . . . , FN (v{n0−1})]′

= [FN (C − γ{0}), . . . , FN (C − γ{n0−1})]′.
(3.9)

The identification algorithm for θ is given by

ζ
{i}
N = F−1(ξ{i}

N ),

ζN = [ζ{0}N , . . . , ζ
{n0−1}
N ]′,

θ̂N = Φ−1
0 (C11 − ζN ).

(3.10)
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3.3 Strong Convergence

We are in a position to present a strong convergence result here. Recall
that FN (x) denotes the N -sample empirical distribution. We first derive a
general result of strong convergence of FN (·), and then use it to obtain the
strong convergence of the parameter estimator θ̂N by noting the relation-
ship given in (3.9).

Theorem 3.2. Under condition (A3.1), for any compact set S ⊂ R as
N → ∞,

sup
x∈S

|FN (x) − F (x)| → 0 w.p.1. (3.11)

This theorem will be proved by using a result of the law of large numbers
type. Let us first consider {Zk}, a real-valued sequence of i.i.d. random
variables with E|Z1| < ∞. For each z ∈ R, set

GN (z) =
1
N

N∑

i=1

I{Zi≤z}. (3.12)

The dependence of GN (z) on the sample point ω ∈ Ω may be written as
GN (z, ω). However, we often suppress the ω-dependence. The independence
of {Zk} implies that of {I{Zk≤z}}. It is easily seen that the sequence has
a finite mean. In fact, it is a sequence of i.i.d. Bernoulli random variables
with EI{Zk≤z} = G(z) the distribution function of Zk evaluated at z. Thus,
the well-known strong law of large numbers due to Kolmogorov [19, p. 123]
yields that

GN (z) → G(z) w.p.1 as N → ∞.

For a fixed z, our quest would stop here. Nevertheless, since z takes values
in (−∞,∞), naturally, we further seek uniform convergence of GN (·) →
G(·). As a prelude, we first present a proposition, which is known as the
Glivenko–Cantelli theorem [8, p. 103]. It is also referred to by Loéve [63]
as the “fundamental theorem of statistics.” The proof of the result is post-
poned until Section 3.7.

Proposition 3.3. Suppose that {Zk} is a sequence of i.i.d. random vari-
ables. Then, for any compact set S ⊂ R,

sup
z∈S

|GN (z) − G(z)| → 0 w.p.1 as N → ∞. (3.13)

Proof of Theorem 3.2. It follows immediately from Proposition 3.3. �

Example 3.4. To illustrate convergence of empirical measures, consider a
uniformly distributed noise on [−1.2, 1.2]. The actual distribution function
is F (z) = (z + 1.2)/2.4. For different values of z, Figure 3.2 shows conver-
gence of the empirical measures at several points in [−1.2, 1.2] when the
sample size is increased gradually from N = 20 to N = 1000.
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FIGURE 3.2. Convergence of empirical measures

With the preparations thus far, we proceed to analyze convergence prop-
erties of the estimator in (3.10). The next theorem establishes strong con-
vergence of θ̂N . Recall that

θ̂ = θ + [I, I, . . .]θ̃.

Theorem 3.5. Under Assumptions (A3.1) and (A3.2), and assuming that
the input {uk} is n0-periodic and full rank, then

θ̂N → θ̂ w.p.1 and ‖θ̂ − θ‖1 ≤ εu, (3.14)

where ‖ · ‖1 denotes the l1 norm. If εu = 0, i.e., no unmodeled dynamics,
then the estimator is strongly consistent in that θ̂N → θ w.p.1.

Proof. By virtue of Theorem 3.2, as N → ∞,

ξN → [F (C − γ{0}), . . . , F (C − γ{n0−1})]′ w.p.1.

By the continuity of F−1(·), we have that F−1(ξ{i}
N ) → C−γ{i} w.p.1. Due

to the periodicity of the input uk, γ is given as in (3.8). It follows that

ζN → C11 − γ = C11 − (Φ0θ + Φ̃0θ̃) w.p.1.
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Note that by the periodicity of uk,

Φ̃0 = [φ̃1, . . . , φ̃n0 ]
′ = [Φ0,Φ0, . . .] = Φ0[I, I, . . .].

That is,
θ̂N = Φ−1

0 (C11 − ζN ) → θ + Φ−1
0 Φ̃0θ̃ = θ̂ w.p.1.

Moreover, by Assumption (A3.2),

‖θ̂ − θ‖1 = ‖[I, I, . . .]θ̃‖1 ≤ εu.

The assertion is proved. �

3.4 Asymptotic Distributions

For the empirical measures defined in (3.7), we present a result of asymp-
totic distributions for a centered and scaled sequence. Define a sequence of
scaled and centered estimation errors as

BN (x) =
√

N(FN (x) − F (x)), for each x ∈ R. (3.15)

To begin our query about asymptotic distributions of the empirical mea-
sures, let us first recall a few definitions and basic results. A random vector
x = [x{1}, . . . , x{r}]′ is said to be Gaussian if its characteristic function is
given by

φ(y) = exp
(
i〈y, μ〉 − 1

2
〈Σy, y〉

)
,

where μ ∈ R
r is a constant vector, 〈y, μ〉 is the usual inner product, i

denotes the pure imaginary number satisfying i2 = −1, and Σ is a sym-
metric nonnegative definite r× r matrix. μ and Σ are the mean vector and
covariance matrix of x, respectively.

Suppose that X(t), t ≥ 0, is a stochastic process (either real-valued, or
vector-valued, or defined in a more general measurable space). By finite-
dimensional distributions, we mean the joint distributions of

(X(t1),X(t2), . . . , X(tk))

for any choice of 0 ≤ t1 < t2 < · · · < tk and any k = 1, 2, . . .
We say that a stochastic process X(t), t ≥ 0, is a Gaussian process, if any

finite-dimensional distribution of (X(t1),X(t2), . . . , X(tk)) is Gaussian. A
random process X(·) has independent increments if, for any 0 ≤ t1 < t2 <
· · · < tk and k = 1, 2, . . .,

X(t1) − X(0), X(t2) − X(t1), . . . , X(tk) − X(tk−1)

are independent.
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A sufficient condition for a process to be Gaussian (see Skorohod [85,
p.7]) is: Suppose that the process X(·) has independent increments and
continuous sample paths with probability one. Then X(·) is a Gaussian
process.

An R
r-valued random process B(t) for t ≥ 0 is a Brownian motion, if

• B(0) = 0 w.p.1;

• B(·) is a process with independent increments;

• B(·) has continuous sample paths with probability one;

• the increments B(t)−B(s) have a Gaussian distribution with E(B(t)−
B(s)) = 0 and Cov(B(t), B(s)) = Σ|t− s| for some nonnegative defi-
nite r × r matrix Σ, where Cov(B(t), B(s)) denotes the covariance.

A process B(·) is said to be a standard Brownian motion if Σ = I. Note
that a Brownian motion is necessarily a Gaussian process. For an R

r-valued
Brownian motion B(t), the σ-algebra filtration generated by B(·) is denoted
by Ft = σ{B(s) : s ≤ t}.

We next recall the notion of a Brownian bridge. Rather than proving its
existence, we simply construct it from a Brownian motion. The definition
is given below.

Definition 3.6. Let B(·) be a standard real-valued Brownian motion. A
process B0(t) is a Brownian bridge process or tied-down Brownian motion
if

B0(t) = B(t) − tB(1), 0 ≤ t ≤ 1. (3.16)

Note that a Brownian bridge is a function of a Brownian motion defined
on [0, 1]. Loosely speaking, it is a Brownian motion tied down at both
endpoints of the interval [0, 1]. Between the two endpoints, the process
evolves just as a Brownian motion. Sometimes, when t is allowed to take
real values outside [0, 1], the Brownian bridge is said to be a stretched one.
The terminology “stretched Brownian bridge” follows from that of [76].
Throughout the rest of the book, we will not use the modifier “stretched”
but will still call it a Brownian bridge for simplicity.

We note the following properties of a Brownian bridge:

B0(0) = B(0) = 0 w.p.1,

E[B0(t) − B0(s)]2 = (t − s)(1 − (t − s)), if s ≤ t,

E[B0(s2) − B0(s1)][B0(t2) − B0(t1)]

= −(s2 − s1)(1 − (t2 − t1)), if s1 ≤ s2 ≤ t1 ≤ t2.

(3.17)

To study the asymptotic distribution, we need to use the notion of weak
convergence of probability measures. Let XN and X be R

r-valued random
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variables. We say that XN converges weakly to X if and only if for any
bounded and continuous function b(·),

Eb(XN ) → Eb(X).

{XN} is said to be tight if and only if for each η > 0, there is a compact
set Kη such that

P (XN ∈ Kη) ≥ 1 − η for all N.

The definitions of weak convergence and tightness extend to random vari-
ables in a metric space. The notion of weak convergence is a substantial
generalization of convergence in distribution. It implies much more than
just convergence in distribution since b(·) can be chosen in many interesting
ways. On a complete and separable metric space, the notion of tightness is
equivalent to sequential compactness. This is known as Prohorov’s theorem.
By virtue of this theorem, we are able to extract convergent subsequences
once tightness is verified. Let Dr[0,∞) denote the space of R

r-valued func-
tions that are right continuous and have left-hand limits, endowed with the
Skorohod topology. For various notations and terminologies in the weak
convergence theory such as the Skorohod topology, Skorohod representa-
tion etc., we refer the reader to [28, 55] and references therein; see also
Section A.3 in the appendix of this book for a summary of results on weak
convergence.

Remark 3.7. In the analysis to follow for empirical processes, one may fo-
cus on sequences of i.i.d. random variables with a uniform [0, 1] distribution.
The rationale is that arbitrary distributions can be treated by using the
approach of inverse transformations. In fact, for a random variable with an
arbitrary distribution function G(·), we can define a left-continuous inverse
to G(·) as

G−1(t) = inf{s : G(s) ≥ t} for 0 < t < 1.

Then t ≤ G(s) if and only if G−1(t) ≤ s. Now consider a sequence of i.i.d.
random variables {Zk} for which Z1 has distribution G(·). Let {Yk} be a
sequence of i.i.d. uniform [0, 1] random variables. Since

P (G−1(Yk) ≤ t) = P (Yk ≤ G(t)) = G(t),

we may represent Zk as Zk = G−1(Yk). Therefore, without loss of general-
ity, suppose that {Zk} is a sequence of uniform [0, 1] random variables in
what follows.

Proposition 3.8. Let {Zk} be a sequence of i.i.d. random variables uni-
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formly distributed on [0, 1]. For any t ∈ [0, 1], define

GN (t) =
1
N

N∑

i=1

I{Zi≤t},

B̂N (t) =
√

N(GN (t) − G(t)) =
1√
N

N∑

i=1

[I{Zi≤t} − G(t)],

(3.18)

where G(·) is the distribution function of Z1. Then B̂N (·) converges weakly
to B0(·), the Brownian bridge process, with

EB0(t) = 0, E[B0(t)B0(s)] = s(1 − t), s ≤ t. (3.19)

Remark 3.9. It is easily seen that the function g(x) = supt∈[0,1] |x(t)| is
a continuous function. Thus, Proposition 3.8 yields that supt∈[0,1] |B̂N (t)|
converges in distribution to supt∈[0,1] |B0(t)|. Now using the property of a
Brownian bridge (see (11.39) in [8]), we obtain that

P

(

sup
t∈[0,1]

|B̂N (t)| ≤ a

)

→ 1 − 2
∞∑

k=1

(−1)k+1 exp
(
−2k2a2

)
, ∀a ≥ 0.

The proof of Proposition 3.8 is postponed until Section 3.7. With the help
of this proposition and the inverse transformation mentioned in Remark 3.7,
we can obtain the following result for our identification problems, whose
proof is omitted.

Theorem 3.10. Define BN (x) =
√

N(FN (x) − F (x)). Under condition
(A3.1), for each v{i} defined in (3.8) with i = 0, . . . , n0 − 1, BN (v{i})
converges in distribution to B0(v{i}), where B0(·) is the Brownian bridge
process such that the covariance of B0(·) is given by

EB0(x1)B0(x2) = min(F (x1), F (x2)) − F (x1)F (x2), ∀x1, x2. (3.20)

Remark 3.11. Note that BN (·) converges weakly to B0(·). By virtue of
the Skorohod representation [55, p. 230] (with a slight abuse of notation),
we may assume that BN (·) → B0(·) w.p.1 and the convergence is uniform
on any compact set.

3.5 Mean-Square Convergence

This section focuses on the mean-square convergence of the parameter esti-
mator θ̂N − θ̂. Similarly to Theorem 3.5, we have the following result. With
θ̂N satisfying (3.14), denote the ith component of θ̂N by θ̂

{i}
N , of θ by θ{i},

and of θ̂ by θ̂{i}, for i = 0, . . . , n0 − 1.
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Theorem 3.12. In addition to the assumptions of Theorem 3.5, suppose
that the true parameter θ belongs to a compact set. Assume that for each
v{i} = C − γ{i} defined in (3.8) with i = 0, . . . , n0 − 1, there is a neighbor-
hood �(v{i}, εi) (centered at v{i} with radius εi) of v{i} in which the second
derivative of the distribution function F (·) exists and is continuous, and
there is a neighborhood �(ξ{i}, Ri) with ξ{i} = F (v{i}) in which the in-
verse F−1(·) exists together with its first and second derivatives such that
(d2/dv2)F−1(v{i}) is bounded. Then as N → ∞,

E(
√

N(θ̂{i}
N − θ̂{i}))2 → dF−1(ξ{i})

dξ{i} F (v{i})(1 − F (v{i})). (3.21)

In particular, in case the unmodeled dynamics are absent, we have

E(
√

N(θ̂{i}
N − θ{i}))2 → dF−1(ξ{i})

dξ{i} F (v{i})(1 − F (v{i})).

This theorem will be proved when we invoke the following assertion. Since
the following result will also be used later, we present it as a proposition.

Proposition 3.13. Let {Zk} be a sequence of i.i.d. random variables with
a common distribution function G(·). Let t0 be fixed but otherwise arbitrary,
and t0 ∈ Kc ⊂ R, where Kc is a compact subset of R. Denote p = G(t0)
and q = 1 − p. Assume that there is a neighborhood �(t0, ε0) in which the
second derivative of the distribution function G(·) exists and is continuous
and that there is a neighborhood �(p,R0) in which the inverse G−1(·) exists
together with its first and second derivatives such that (d/dt)G−1(·) and
(d2/dt2)G−1(·) are bounded there. Define

GN =
1
N

N∑

k=1

I{Zk≤t0}, xN = G−1(GN ). (3.22)

Let x = G−1(p) belong to a compact subset of R. Then

NE(xN − x)2 → dG−1(p)
dp

pq as N → ∞.

Proof. We divide the proof into several steps.
Step 1: Since {I{Zk≤t0}} is a sequence of i.i.d. Bernoulli random variables,

clearly

EI{Zk≤t0} = G(t0) = p and E(I{Zk≤t0} − p)2 = pq.

Then the law of large numbers implies that GN → p w.p.1. Moreover,
EGN = p and E(GN − p)2 = pq/N. By the well-known central limit theo-
rem,

√
N(GN − p)/

√
pq → N(0, 1) in distribution as N → ∞.
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By independence,

supN E[
√

N(GN − p)]2 = sup
N

N
1

N2

N∑

k=1

E[I{Zk≤t0} − p]2 = pq < ∞.

(3.23)
Thus {

√
N(GN − p)} is uniformly integrable. Likewise, it can be shown

that {[
√

N(GN − p)]l} is also uniformly integrable for each positive integer
l.

Step 2: Note that x is in a compact set Kc ⊂ [a, b] for some a, b ∈ R. The
monotonicity yields that for any η > 0,

0 < η < F (a) ≤ p = F (x) ≤ F (b) < 1 − η < 1.

In reference to the xN defined in (3.22), define

G̃N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

GN , η ≤ GN ≤ 1 − η,

η, GN < η,

1 − η, GN > 1 − η.

(3.24)

Step 3: We demonstrate that P (GN �= G̃N ) is exponentially small. To do
so, denote X = (I{Z1≤t0} − p)/

√
pq. Note that EX = 0 and EX2 = 1. By

the i.i.d. assumption, it is easily seen that the moment generating function
of

√
N(GN − p)/

√
pq is

MN (y) = E

(
exp
(

yX√
N

))N

.

Taking a Taylor expansion of MN (z), we obtain

MN (y) =
[
E[1 +

yX√
N

+
y2X2

2N
+ O(N−3/2)]

]N

=
[
1 +

y2

2N
+ O(N−(3/2))

]N
.

In the above, we have used the uniform integrability of [
√

N(GN − p)]l

provided in Step 1. Consequently, for any τ ∈ R,

inf
y

[exp(−yτ)MN (y)]

= inf
y

[
exp(−yτ)[1 +

y2

2N
+ O(N−(3/2))]

]N

≤ K exp
(
−τ2

2

)
,

(3.25)

where K > 0 is a positive constant.
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By means of Chernoff’s bound [83, p. 326], for any τ satisfying −∞ <
τ ≤ p,

P (GN ≤ τ) = P

(
SN ≤ N

(τ − p)
√

pq

)

≤
(

inf
y

[
exp
(
−y(τ − p)

√
pq

)
MN (y)

])N

,

(3.26)

where

SN =
N∑

k=1

I{Zk≤t0} − p
√

pq
.

Then, for any p ≤ τ < ∞,

P (GN ≥ τ) ≤
(

inf
y

[
exp
(
−y(τ − p)

√
pq

)
MN (y)

])N

. (3.27)

By (3.25), (3.26), and (3.27),

P (G̃N �= GN ) = P (G̃N �= GN ; GN ≤ η) + P (G̃N �= GN ; GN ≥ 1 − η)

≤ P (GN ≤ η) + P (GN ≥ 1 − η)

≤ K exp
(
− (η − p)2N

2pq

)
+ K exp

(
− (1 − η − p)2N

2pq

)
.

(3.28)
This verifies the claim in Step 3.

Step 4: Recall that xN = G−1(G̃N ). Since G−1 is continuous and GN →
p w.p.1, xN → x w.p.1. Since (d/dx)G−1(x) and (d2/dx2)G−1(x) are
bounded and continuous in the neighborhood �(p,R0),

sup
x∈�(p,R0)

∣
∣
∣
∣
dG−1(x)

dx

∣
∣
∣
∣ = β < ∞,

sup
x∈�(p,R0)

∣
∣
∣
∣
d2G−1(x)

dx2

∣
∣
∣
∣ = γ < ∞.

Then,

xN = EG−1(G̃N )

=
[
G−1(p) +

dG−1(p)
dp

(G̃N − p) +
1
2

d2G−1(αN )
dp2

(G̃N − p)2
]

= G−1(p) +
dG−1(p)

dp
(GN − p)

+
1
2

d2G−1(αN (G̃N ))
dp2

(GN − p)2 + o(1),
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where αN lies between G̃N and p, and o(1) → 0 w.p.1 as N → ∞. Moreover,
by Step 3, P (G̃N �= GN ) → 0 exponentially fast. Thus,

P (αN �∈ [η, 1 − η]) → 0,

and as a result,
P (αN �∈ [η, 1 − η] ∩ �(p,R0)) → 0.

In addition,

E

∣
∣
∣
∣
d2G−1(αN )

dx2
(GN − p)2

∣
∣
∣
∣

≤ KE(GN − p)2

=
1
N

KEN(GN − p)2 → 0

since EN(GN −p)2 → pq. These together with the dominated convergence
theorem imply the desired result. �

3.6 Convergence under Dependent Noise

Since it appears to be best to convey the main ideas without undue nota-
tional and technical complexity, most of the results in this book are stated
under i.i.d. noises with finite variances, rather than considering sequences
of random variables in most general forms or weakest conditions. For ex-
ample, in the previous sections, we developed the convergence and rates of
convergence (asymptotic distribution of estimation errors) of the empirical-
measure-based algorithms under “white noise” sequences.

However, most results can be extended to much more general noise pro-
cesses under much weaker conditions, without changing the algorithms. We
shall illustrate such extensions by using a typical case of dependent noises,
namely, the dependence asymptotically diminishing.

In lieu of (A3.1), assume that {dk} is a stationary sequence whose distri-
bution function F (·) and its inverse F−1(·) are twice continuously differen-
tiable and known, and that {dk} is φ-mixing with mixing measure ψ̌k; see
[8, 28], among others, for a definition of φ-mixing processes. Some common
examples of φ-mixing sequences are listed below.

• Recall that {dk} is said to be m-dependent if the random vectors
(di, di+1, . . . , dk) and (di+n, di+n+1, . . . , dl) are independent whenever
n > m. A particular example is

dk =
m∑

i=0

ciwk−i,

where ci are constants and {wk} is a sequence satisfying (A3.1). For
such a {dk}, it is φ-mixing with mixing rate ψ̌k such that ψ̌k = 0 for
k > m.
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• Suppose that {dk} is a finite state Markov chain with state space
M = {1, . . . , m0} and a one-step transition matrix P such that the
chain or its transition matrix is irreducible and aperiodic. Then the
sequence is also φ-mixing. In fact, it is known that such a Markov
chain is ergodic with stationary measure ν = (ν1, . . . , νm0). In this
case, we have |Pn − ν| ≤ λn for some 0 < λ < 1. This spectrum
gap conditions yields that the Markov chain {dk} is φ-mixing with
exponential mixing rate.

Strong convergence of the empirical measure based identification algo-
rithms holds under φ-mixing noises. In view of the discussions in Karlin
and Taylor [47, p. 488], a stationary φ-mixing sequence is strongly ergodic.
Consequently, a strong law of large numbers holds for the sequence. As
a result, ξN defined in Section 3.1 is still strongly convergent. Together
with the smoothness of the distribution function and its inverse mentioned
above, the strong consistency of the parameter estimator of θ introduced in
Section 3.1 remains true. In fact, the Glivenko–Cantelli theorem continues
to hold, yielding the desired uniform convergence as before, so does the
weak convergence to the Brownian bridge process.

To illustrate further, we can follow the ideas presented in Section 3.3,
Section 3.4, and Section 3.5, with the modification of dependent noises.
For any x, consider FN (x), the N -sample empirical distribution. Then, for
any compact set S ⊂ R, supx∈S |FN (x) → F (x)| → 0 w.p.1 as N → ∞. To
explore the rates of convergence (or to study the scaled estimation errors),
for any x ∈ R, write

sk,x = I{dk≤x},

denote
hk,x = sk,x − F (x),

and define BN (x) =
√

N(FN (x) − F (x)) as in (3.15). Then we can use
the techniques as in [8, p. 197] to show that BN (·) converges weakly to a
Brownian bridge B(·), whose covariance is given by

EB(u)B(t) = E[h0,uh0,t] +
∞∑

k=1

E[h0,uhk,t] +
∞∑

k=1

E[hk,uh0,t],

provided the mixing measure satisfies

∞∑

k=0

k2ψ̌
1/2
k < ∞.

With such a framework of strong convergence and asymptotic distributions,
we can proceed to the detailed studies as done in Sections 3.3–3.5.

There are no essential difficulties in applying the identification algorithms
under the φ-mixing processes and/or other mixing processes as defined in
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[58]; see also [41]. Furthermore, we may even extend the results to certain
nonstationary processes as long as the underlying sequence verifies an er-
godicity condition, the dependence and the correlation are asymptotically
diminishing, and there is a limit function F (·) together with its inverse F−1

such that both F and F−1 are suitably smooth.

3.7 Proofs of Two Propositions

In this section, we provide a couple of technical complements. The proof
of Proposition 3.3 is essentially in [65]. The reader is also referred to
[19, 21, 84], among others, for additional reading. We adopt the usual defi-
nition that the distribution F (·) of a random variable is a right-continuous
function with a left-hand limit. Note that in [19], a distribution function is
defined to be left continuous, however.

Proof of Proposition 3.3

We use G(t−) and G(t+) to denote the limit from the left [limx→t−0 G(x)]
and the limit from the right [limx→t+0 G(x)], respectively. By the strong
law of large numbers, for each fixed t ∈ R,

GN (t) → G(t) w.p.1 and GN (t−) → G(t−) w.p.1.

Let tj,k be the smallest real number t that satisfies

G(t−) ≤ k/j ≤ G(t+) = G(t) for k = 1, 2, . . . , j.

Then, the w.p.1 convergence implies that

GN (tj,k) → G(tj,k) w.p.1 and GN (tj,k−) → G(tj,k−) w.p.1.

Define

Jj,k = {ω ∈ Ω : GN (tj,k) → G(tj,k) as N → ∞},
J−

j,k = {ω ∈ Ω : GN (tj,k−) → G(tj,k−) as N → ∞},

Jj =
j⋂

k=1

Jj,k, J−
j =

j⋂

k=1

J−
j,k.

The w.p.1 convergence implies that P (Jj) = P (J−
j ) = 1 for all j.

Set

J =
∞⋂

j=1

Jj , J− =
∞⋂

j=1

J−
j , J0 = J ∩ J−.
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We claim that P (J0) = 1. First consider J . Note that for each j, Jc
j , the

complement of Jj , has probability 0. Thus, for Jc =
⋃∞

j=1 Jc
j ,

P (Jc) = P
( ∞⋃

j=1

Jc
j

)
≤

∞∑

j=1

P (Jc
j ) = 0.

It follows that P (Jc) = 0, and hence, P (J) = 1. Likewise, P (J−) = 1 and
P (J0) = 1.

Choose t and k such that tj,k ≤ t < tj,k+1. Then

GN (tj,k) ≤ GN (t) ≤ G(tj,k+1−),

G(tj,k) ≤ G(t) ≤ G(tj,k+1−),

G(tj,k+1−) − G(tj,k) ≤ 1
j
.

Set

Xj,N = max
1≤k≤j

{|GN (tj,k) − G(tj,k)|, |GN (tj,k−) − G(tj,k−)|}.

Then
GN (t) − G(t) ≤ GN (tj,k+1−) − G(tj,k)

≤ GN (tj,k+1−) − G(tj,k+1−) +
1
j

≤ GN (tj,k−) − G(tj,k−) +
1
j
.

Thus, for each t ∈ R,

|GN (t) − G(t)| ≤ Xj,N +
1
j
. (3.29)

Finally, let XN = supt∈R
|GN (t)−G(t)|. Note that for each j, the definitions

of Jj,k and J−
j,k imply that

Jj =
{

ω ∈ Ω : max
|GN (tj,k)−G(tj,k)|→0

}

and

J−
j =
{

ω ∈ Ω : max
|GN (tj,k−)−G(tj,k−)|→0

}
.

Then, the event J ∩ J− happens if and only if Xj,N → 0 for each j.
Moreover, if ω ∈ J ∩ J−, then ω ∈ {ω : XN → 0} by (3.29). Thus,

1 = P (J ∩ J−) ≤ P ({ω : XN → 0}).

The desired result then follows. �
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Proof of Proposition 3.8

This section provides a proof of the weak convergence of a scaled sequence
of empirical processes. We will prove the assertion by carrying out the
following steps. In the first step, we show that GN (·) is tight; in the second
step, we show the finite-dimensional distributions converge and identify the
limit process.

Step 1: Tightness. Note that t = G(t) = EI{Zk≤t} for each t ∈ [0, 1],
and that for each Δ > 0 and 0 ≤ s ≤ Δ, G(t + s) − G(t) = s. By the
independence of the sequence {Zk} and hence that of I{Zk≤t}, we have

E|B̂N (t + s) − B̂N (t)|2

= E

∣
∣
∣
∣

1√
N

N∑

k=1

(I{Zk≤t+s} − I{Zk≤t} − s)
∣
∣
∣
∣

2

=
1
N

N∑

k=1

E[(I{Zk≤t+s} − I{Zk≤t})2 − 2E(I{Zk≤t+s} − I{Zk≤t})s + s2]

= s(1 − s) ≤ Δ.

(3.30)
Thus,

lim
Δ→0

lim sup
N

E|B̂N (t + s) − B̂N (t)|2 = lim
Δ→0

Δ = 0.

This together with the tightness criterion (see [53, p. 47] and also [55,
Chapter 7]) yields that B̂N (·) is tight.

Step 2: Convergence of finite-dimensional distributions. First, observe
that NGN (t) represents the number of points among Z1, . . . , ZN satisfying
Zi ≤ t. That is, NGN (t) is a frequency count. Let 0 = t0 < t1 < · · · <
tk = 1 be an arbitrary partition of [0, 1]. Then for i = 1, . . . , k, NGN (ti)−
NGN (ti−1) follow a multinomial distribution with parameters N and pi =
ti−ti−1. The well-known central limit theorem then implies that the vector-
valued sequence

B̃N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

B̂N (t1) − B̂N (t0)

B̂N (t2) − B̂N (t1)

. . .

B̂N (tk) − B̂N (tk−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

converges in distribution to a normal random vector. Let us examine its
ith component. We have for each i = 1, . . . , k,

e′iB̃N = B̂N (ti) − B̂N (ti−1) =
1√
N

(NGN (ti) − NGN (ti−1) − Npi),
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where ei denotes the ith standard unit vector. It follows that e′iB̂N con-
verges in distribution to a normal random variable with mean 0 and vari-
ance pi(1−pi) and covariance −pipj . Thus, Definition 3.6 and (3.17) imply
that the limit is B0(ti) − B0(ti−1).

It is also easily seen that EB̂N (t) = 0 for t ∈ [0, 1] and similarly to (3.30),
for s, t ∈ [0, 1] with s ≤ t,

Cov[B̂N (t), B̂N (s)] = E[B̂N (t)B̂N (s)]

=
1
N

N∑

k=1

E(I{Zk≤t} − (t))(I{Zk≤s} − s)

= s − ts = s(1 − t).

As a result, the limit of the covariance is also given by s(1 − t). Thus, the
desired Brownian bridge limit is obtained. �

3.8 Notes

The subject matter of this chapter is about empirical measures. An excel-
lent survey containing many results can be found in Shorack and Wellner
in [84]. Related work can also be found in [76]. Extensive studies on weak
convergence are contained in [8, 28, 55] and references therein. Related
results on almost sure convergence can also be found in [87].

The study for identification of systems with binary observations was
initiated in our work [111]. This line of research has been continued in
[108, 109, 110]. Subsequently, quantized observations are treated. In [104],
efficiency of empirical measure-based algorithms was established.

For some related but different identification algorithms such as binary
reinforcement and some applications, the reader is referred to [2, 13, 18, 27,
29, 33, 73, 119]. The main tools for stochastic analysis and identification
methodologies can be found in [8, 17, 30, 31, 55, 62, 76, 83].

When the disturbance has a finite support, i.e., the density fd(x) = 0,
x < −κ or x > κ with a finite κ, the corresponding F (x) is not invertible
outside the interval [−κ, κ]. The results in this section are not applicable
if C − θ �∈ [−κ, κ]. Consequently, the identification capability of the binary
sensor will be reduced. In other words, it is possible that for a selected
input, sk is a constant (0 or 1) for all k; hence, no information is obtained.
One possible remedy for this situation is to add a dither to the sensor input.
Hence, assume the disturbance dk contains two parts: dk = d0

k + hk, where
d0

k is an i.i.d. disturbance with density f0 and hk is an i.i.d. stochastic
dither, independent of d0, with density fh. In this case, the density fd

of d is the convolution: fd = f0 ∗ fh. By choosing an appropriate fh, fd

will have a larger support and possess the desired properties for system
identification. Another approach is to combine deterministic and stochastic
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methods, which will be covered in Chapter 9. Furthermore, one may adapt
C to make C − θ ∈ (−κ, κ). This is discussed in Chapter 14.



4
Estimation Error Bounds: Including
Unmodeled Dynamics

In Chapter 3, we derived convergent estimators of the system parameters
using binary-valued observations. Our aim here is to obtain further bounds
on estimation errors from unmodeled dynamics. In this book, unmodeled
dynamics are treated as a deterministic uncertainty which is unknown but
has a known bound in an appropriate space. Due to the coexistence of
deterministic uncertainty from unmodeled dynamics and stochastic distur-
bances, we are treating necessarily a mixed environment. Consequently,
estimation error characterization has a probabilistic measure that is com-
pounded with a worst-case scenario over unmodeled dynamics, an idea
introduced in our earlier work [101, 102].

In Section 4.1, we formulate system identification problems with binary-
valued observations and under mixed deterministic and stochastic uncer-
tainties. An identification error characterization is defined. Section 4.2 de-
rives upper bounds on estimation errors. Here one of the techniques used is
the large deviations type of upper bounds. Based on the bounds, we obtain
further properties of the estimation algorithms. Section 4.3 is devoted to
lower bounds on estimation errors. Lower bounds from normal distribu-
tions are used first. Then a class of identification problems is treated using
the central limit theorem and normal approximation techniques. The lower
bounds provide some basic understanding of the information contents and
complexity aspects of our identification problems.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
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4.1 Worst-Case Probabilistic Errors and Time
Complexity

Recall the linear system given in (3.5):

yk =
∞∑

i=0

aiuk−i + dk = φ′
kθ + φ̃′

kθ̃ + dk, k = 0, 1, 2, . . . , (4.1)

where dk and θ̃ satisfy Assumptions (A3.1) and (A3.2).
The following framework was introduced in [101, 102]. It treats un-

modeled dynamics as an unknown-but-bounded uncertainty. On the other
hand, random disturbances are stochastic processes. Consequently, a worst-
case probability measure is used to evaluate error bounds. For a given set
L(k0, u,N) of admissible estimates θ̂N of the true parameter θ, on the ba-
sis of N measurements on sk starting at k0 with input uk, and an error
tolerance level ε, we define

λN (ε) = inf
‖u‖∞≤umax

sup
k0

inf
θ̂N∈L(k0,u,N)

sup
‖θ̃‖1≤ηεu

P
(
‖θ̂N − θ‖1 ≥ ε

)
. (4.2)

This is the optimal (over the input u and admissible estimate θ̂N ) worst-
case (over θ̃ and k0) probability of errors larger than the given level ε.
By considering the worst case of k0, we are dealing with a “persistent
identification” problem, a concept introduced in [97]. Then, for a given
confidence level α ∈ [0, 1),

Nα(ε) = min {N : λN (ε) ≤ α} (4.3)

is the probabilistic time complexity. It is noted that if α = 0, Nα(ε) is
reduced to (modulo a set of probability measure 0) deterministic worst-
case time complexity for achieving estimation accuracy ε. We will derive
upper and lower bounds on λN (ε) and Nα(ε) in subsequent sections.

4.2 Upper Bounds on Estimation Errors and Time
Complexity

To derive an upper bound, we select a specific input, usually an n0-periodic
input of full rank. Under such an input, θ̂ = θ + [I, I, . . .]θ̃ and the identi-
fication algorithm (3.10) will be used. We shall establish bounds on identi-
fication errors and time complexity for a finite N . For a fixed N > 0,

θ̂N − θ̂ = Φ−1
0 (C11 − ζN ) − (θ + [I, I, . . .]θ̃)

= Φ−1
0

(
C11 − ζN − (Φ0θ + Φ̃0θ̃)

)

= Φ−1
0 (v − ζN ) ,

(4.4)
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where ζN is defined in (3.10) and v = C11 − (Φ0θ + Φ̃0θ̃). Since

‖θ̂N − θ̂‖1 ≤ ‖Φ−1
0 ‖I‖v − ζN‖1,

where ‖ · ‖I is the l1-induced operator norm, for any ε1 > 0,

P
(
‖θ̂N − θ̂‖1 ≥ ε1

)
≤ P

(
‖ζN − v‖1 ≥ ε1

‖Φ−1
0 ‖I

)

≤ P

(
‖ζN − v‖∞ ≥ ε1

n0‖Φ−1
0 ‖I

)

≤ P

(
n0−1⋃

i=0

{
|ζ{i}

N − v{i}| ≥ ε1

n0‖Φ−1
0 ‖I

})

≤
n0−1∑

i=0

P

(
|ζ{i}

N − v{i}| ≥ ε1

n0‖Φ−1
0 ‖I

)
.

The inequality
|ζ{i}

N − v{i}| ≥ ε1

n0‖Φ−1
0 ‖I

is equivalent to

ζ
{i}
N ≥ v{i} +

ε1

n0‖Φ−1
0 ‖I

or ζ
{i}
N ≤ v{i} − ε1

n0‖Φ−1
0 ‖I

. (4.5)

Note that ζ
{i}
N = F−1(ξ{i}

N ). Since F−1(·) is monotone,

ζ
{i}
N ≥ v{i} +

ε1

n0‖Φ−1
0 ‖I

⇔ ξ
{i}
N ≥ F

(
v{i} +

ε1

n0‖Φ−1
0 ‖I

)
(4.6)

and

ζ
{i}
N ≤ v{i} − ε1

n0‖Φ−1
0 ‖I

⇔ ξ
{i}
N ≤ F

(
v{i} − ε1

n0‖Φ−1
0 ‖I

)
. (4.7)

It follows that

P

(∣∣
∣
∣θ̂N − θ̂

∣
∣
∣
∣ ≥ ε1

)
≤

n0−1∑

i=0

P

(
|ζ{i}

N − v{i}| ≥ ε1

n0‖Φ−1
0 ‖I

)

≤
n0−1∑

i=0

P

(
ξ
{i}
N ≥ F

(
v{i} +

ε1

n0‖Φ−1
0 ‖I

))

+
n0−1∑

i=0

P

(
ξ
{i}
N ≤ F

(
v{i} − ε1

n0‖Φ−1
0 ‖I

))
.

(4.8)

For simplicity, we adopt the short-hand notation s
{i}
l = sk0+ln0+i. Since

{dk} is a sequence of i.i.d. random variables, for each i = 0, 1, . . . , n0 − 1,
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{s{i}
l } is also a sequence of i.i.d. random variables with respect to l. Denote

the moment generating function of s
{i}
0 by Gi(z) = E exp(zs

{i}
0 ) with z ∈ R.

Let
gi(t) = inf

z
E exp(z(s{i}

0 − t)) = inf
z

exp(−zt)Gi(z).

By the definition of s
{i}
0 , Es

{i}
0 = F (v{i}). By the monotonicity of F (·), we

have

F

(
v{i} +

ε1

n0‖Φ−1
0 ‖I

)
> F
(
v{i}
)

and

F

(
v{i} − ε1

n0‖Φ−1
0 ‖I

)
≤ F (v{i}).

Consequently, an application of Chernoff’s inequality ([83, p. 326]) yields

P

(
ξ
{i}
N ≥ F

(
v{i} +

ε1

n0‖Φ−1
0 ‖I

))
≤
(

gi

(
v{i} +

ε1

n0‖Φ−1
0 ‖I

))k

(4.9)

and

P

(
ξ
{i}
N ≤ F

(
v{i} − ε1

n0‖Φ−1
0 ‖I

))
≤
(

gi

(
v{i} − ε1

n0‖Φ−1
0 ‖I

))k

.

(4.10)
Combining (4.8), (4.9), and (4.10), we obtain the following upper bounds.

Theorem 4.1. For any ε1 > 0,

P

(∣∣
∣
∣θ̂N − θ̂

∣
∣
∣
∣ ≥ ε1

)
≤ Hε1,N , (4.11)

where

Hε1,N =
n0−1∑

i=0

[(
gi

(
v{i} +

ε1

n0‖Φ−1
0 ‖I

))N

+
(
gi

(
v{i} − ε1

n0‖Φ−1
0 ‖I

))N]
.

Corollary 4.2. For any ε > εu > 0 with εu given in Assumption (A3.2),
we have

(a)
λN (ε) ≤ Hε−εu,N , (4.12)

where λN (ε) is defined in (4.2) and Hε−εu,N in Theorem 4.1.

(b)
Nα(ε) ≤ n0 min{N : Hε−εu,N ≤ α}. (4.13)
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Proof. To prove part (a), by Theorem 4.1 the selected input and the esti-
mate θ̂N defined in (3.10) guarantee that

P (‖θ̂N − θ‖1 ≥ ε) ≤ P
(
‖θ̂N − θ̂‖1 + ‖θ̂ − θ‖1 ≥ ε

)

≤ P
(
‖θ̂N − θ̂‖1 ≥ ε − εu

)

≤ Hε−εu,N .

Since this is valid for all k0 and θ̃, (4.12) follows.
Now, for part (b),

Nα(ε) = min{N : λN (ε) ≤ α}
≤ min{Nn0 : Hε−εu,N ≤ α}
≤ n0 min{N : Hε−εu,N ≤ α},

which yields (4.13). �

4.3 Lower Bounds on Estimation Errors

To obtain lower bounds on the estimation error when the above full-rank
periodic input is used, we use a similar argument as that of the upper
bound case.

From Φ0(θ̂N − θ̂) = v − ζN , we have ‖v − ζN‖1 ≤ ‖Φ0‖I‖θ̂N − θ̂‖1. In
view of (4.4), the independence of ξ

{i}
N for i = 0, . . . , n0 − 1 implies that for

any ε1 > 0,

P

(∣∣
∣
∣θ̂N − θ̂

∣
∣
∣
∣ ≥ ε1

)

≥ P (‖ζN − v‖1 ≥ ε1‖Φ0‖I)

≥ P

(
n0−1⋂

i=0

{
|ζ{i}

N − v{i}| ≥ ε1‖Φ0‖I

n0

})

≥
n0−1∏

i=0

P

(
|ζ{i}

N − v{i}| ≥ ε1‖Φ0‖I

n0

)

≥
n0−1∏

i=0

P

(
ξ
{i}
N ≥ F

(
v{i} +

ε1‖Φ0‖I

n0

))

+
n0−1∏

i=0

P

(
ξ
{i}
N ≤ F

(
v{i} − ε1‖Φ0‖I

n0

))
.

(4.14)

Our approach of obtaining the lower bounds involves two steps. First,
if the random variables are normally distributed, the lower bounds can
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be obtained using an inequality in [30] together with the properties of a
normal distribution. The second step deals with the situation in which the
noises are not normal, but are approximately normal by the Barry–Esseen
estimate.

Assume that {dk} is a sequence of normally distributed random variables
with mean 0 and variance σ2. Suppose that Z(x) is the distribution of the
standard normal random variable, i.e.,

Z(x) =
∫ x

−∞
z(ζ)dζ,

where

z(x) =
1√
2π

exp
(
−x2

2

)
, −∞ < x < ∞.

It was shown in [30, Lemma 2, p. 175] that
(

1
x
− 1

x3

)
z(x) < 1 − Z(x) <

1
x

z(x), for x > 0. (4.15)

Since dk is normally distributed with mean zero and variance σ2, ξ
{i}
N

is also normally distributed with mean F (v{i}) and variance F (v{i})(1 −
F (v{i}))/N . Therefore,

√
N(ξ{i}

N − F (v{i}))/
√

F (v{i})(1 − F (v{i}))

is normally distributed with mean 0 and variance 1. As a result, to obtain
the desired lower bounds using (4.14), for any ε1 > 0, it suffices to consider

P

(
ξ
{i}
N ≥ F

(
v{i} +

ε1‖Φ0‖I

n0

))

and

P

(
ξ
{i}
N ≤ F

(
v{i} − ε1‖Φ0‖I

n0

))
.

Denote

α̃+
i = α̃+

i (ε1) =

√
N
(
F
(
v{i} + ε1‖Φ0‖I

n0

)
− F (v{i})

)

√
F (v{i})(1 − F (v{i}))

.

Then

P

(
ξ
{i}
N ≥ F

(
v{i} +

ε1‖Φ0‖I

n0

))

= P

( √
N(ξ{i}

N − F (v{i}))
√

F (v{i})(1 − F (v{i}))
≥ α̃+

i

)

.
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Therefore, by (4.15),

P

(
ξ
{i}
N ≥ F

(
v{i} +

ε1‖Φ0‖I

n0

))

= 1 − Z(α̃+
i )

≥ 1√
2π

(
1

α̃+
i

−
(

1
α̃+

i

)3
)

exp
(
− (α̃+

i )2

2

)
.

(4.16)

Likewise, denote

α̃−
i = α̃−

i (ε1) =

√
N
(
F
(
v{i} − ε1‖Φ0‖I

n0

)
− F (v{i})

)

√
F (v{i})(1 − F (v{i}))

.

Note that α̃−
i (ε1) < 0. We obtain

P

(
ξ
{i}
N ≤ F

(
v{i} − ε1‖Φ0‖I

n0

))

= 1 − Z(−α̃−
i )

≥ 1 +
1√
2π

1
α̃−

i

exp
(
− (α̃−

i )2

2

)
.

(4.17)

Combining (4.16) and (4.17), we obtain the following lower bounds.

Theorem 4.3. For any ε1 > 0,

P (||θ̂N − θ̂||1 ≥ ε1)

≥
n0−1∏

i=0

1√
2π

(
1

α̃+
i (ε1)

−
(

1
α̃+

i (ε1)

)3
)

e−
(α̃

+
i

(ε1))2

2

+
n0−1∏

i=0

(
1 +

1√
2π

1
α̃−

i (ε1)
e−

(α̃
−
i

(ε1))2

2

)
.

Furthermore, we also obtain the following corollary with ε1 = ε + εu.

Corollary 4.4. Setting ε1 = ε + εu in Theorem 4.3, we have

P (||θ̂k − θ||1 ≥ ε + εu)

≥
n0−1∏

i=0

1√
2π

(
1

α̃+
i (ε + εu)

−
(

1
α̃+

i (ε + εu)

)3
)

e−
(α̃

+
i

(ε+εu))2

2

+
n0∏

i=1

(
1 +

1√
2π

1
α̃−

i (ε + εu)
e−

(α̃
−
i

(ε+εu))2

2

)
.
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Lower Bounds Based on Asymptotic Normality

The idea here is to approximate the underlying distribution by a normal
random variable. It is easily seen that

ρ
{i}
N :=

√
N(ξ{i}

N − F (v{i}))
√

F (v{i})(1 − F (v{i}))

converges in distribution to the standard normal random variable. By virtue
of the Barry–Esseen estimate [31, Theorem 1, p. 542], the following lemma
is in force.

Lemma 4.5. |P (ρ{i}
N ≤ z)−P (Z ≤ z)| ≤ ΔN , where ΔN = O(1/

√
N) as

N → ∞ and Z is the standard normal random variable.

Theorem 4.6. The following lower bounds hold:

P (||θ̂N − θ||1 ≥ ε + εu)

≥
n0−1∏

i=0

1√
2π

(
1

α̃+
i (ε + εu)

−
(

1
α̃+

i (ε + εu)

)3
)

e−
(α̃

+
i

(ε+εu))2

2

+
n0∏

i=1

(
1 +

1√
2π

1
α̃−

i (ε + εu)
e−

(α̃
−
i

(ε+εu))2)
2

)
+ ΔN ,

where ΔN = O(1/
√

N) as N → ∞.

Proof. Note that by Lemma 4.5,

P

(
ξ
{i}
N ≥ F

(
v{i} +

(ε + εu)‖Φ0‖I

n0

))

= P (ρ{i}
N ≥ α̃+

i (ε + εu))

≥ P (Z ≥ α̃+
i (ε + εu)) − ΔN .

Similarly,

P

(
ξ
{i}
N ≤ F

(
v{i} − (ε + εu)‖Φ0‖I

n0

))

= P (ρ{i}
N ≤ α̃−

i (ε + εu))

≥ P (Z ≤ α̃−
i (ε + εu)) − ΔN .

Using the estimates of lower bounds as in Theorem 4.3 for the normal
random variable Z, the desired result then follows. �

4.4 Notes

This chapter is based on our work [111], which initiated the work on identi-
fication with binary-valued observations. The main focus of this chapter is
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on the derivation of the upper and lower bounds of estimation errors, which
were also obtained in [111]. The framework for combining stochastic and
deterministic approaches for identification was introduced in [101, 102]. For
some related but different identification algorithms, we refer the reader to
[2, 13, 18, 27, 29, 33, 38, 73, 96, 119] and references therein.



5
Rational Systems

The systems in Chapters 3 and 4 are finite impulse-response models. Due to
nonlinearity in output observations, switching or nonsmooth nonlinearity
enters the regressor for rational models. A common technique for solving
this problem is to use the methods of nonlinear filtering. One difficulty of us-
ing such nonlinear filtering is that it normally leads to infinite-dimensional
filters. To overcome this difficulty, a two-step identification procedure is
introduced that employs periodic signals, empirical measures, and identifi-
ability features so that rational models can be identified without resorting
to complicated nonlinear search algorithms. Identification errors and input
design are examined in a stochastic information framework.

This chapter begins with a description of the problems in Section 5.1.
Our development starts in Section 5.2 with estimation of plant outputs.
Section 5.3 establishes the identifiability of plant parameters. A basic prop-
erty of rational systems is established. It shows that if the input is periodic
and full rank, system parameters are uniquely determined by its periodic
outputs. Consequently, under such inputs, the convergence of parameter
estimates can be established when the convergence results of Section 5.2
are utilized.

5.1 Preliminaries

Consider the system

yk = G(q)uk + dk = xk + dk, (5.1)

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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which is in an output error form. Here q is the one-step backward shift
operator quk = uk−1; {dk} is a sequence of random sensor noises; xk =
G(q)uk is the noise-free output of the system; G(q) is a stable rational
function of q:

G(q) =
B(q)

1 − A(q)
=

b1q + · · · + bn0q
n0

1 − (a1q + · · · + an0q
n0)

.

The observation {yk} is measured by a binary-valued sensor of threshold
C > 0, and the parameters

θ = [a1, . . . , an0 , b1, . . . , bn0 ]
′

are to be identified.
For system identification, the system (5.1) is commonly expressed in its

regression form

yk = A(q)yk + B(q)uk + (1 − A(q))dk = ψ′
kθ + d̃k, (5.2)

where
ψk = [yk−1, . . . , yk−n0 , uk−1, . . . , uk−n0 ]

′,

and d̃k = (1 − A(q))dk. The sequence {d̃k} may not be independent even
if {dk} is.

Most identification algorithms, especially recursive ones, have been de-
veloped from the observation structure (5.2). Direct application of this
structure in our problem encounters a daunting difficulty since yk is not
directly measured. Using sk in this structure introduces nonlinearities that
make it more difficult to design feasible algorithms or to establish their
fundamental properties such as convergence and accuracy. In addition, use
of the indicator function makes the problem nonsmooth.

In this chapter, we consider a two-step approach:

(i) First, xk in (5.1) is estimated on the basis of sk;

(ii) θ is identified from the input uk and the estimated xk, using the
structure (5.2).

The first step is accomplished by using periodic inputs and empirical mea-
sures. The second step is validated by using identifiability arguments and
computed by recursive algorithms. Convergence of the algorithms will be
derived.

5.2 Estimation of xk

To estimate xk, select uk to be 2n0-periodic. Then the noise-free output
xk = G(q)uk is also 2n0-periodic, after a short transient duration. Since
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the system is assumed to be stable, all transient modes decay exponen-
tially, much faster than the convergence rates of empirical measures. As a
consequence, their impact is negligible and will be ignored in the analy-
sis. Hence, xj+2ln0 = xj , for any positive integer l. The 2n0-periodic se-
quence {xk} is determined entirely by its first 2n0 unknown real numbers
γ{j}, j = 1, . . . , 2n0;

xj = γ{j}, j = 1, . . . , 2n0; (5.3)

and Γ = [γ{1}, . . . , γ{2n0}]′ are to be estimated. For each j = 1, . . . , 2n0,
the observations can be expressed as

yj+2ln0 = xj+2ln0 + dj+2ln0 = γ{j} + dj+2ln0 , l = 0, 1, . . . (5.4)

Note that (5.4) indicates that for a fixed j, γ{j} is an unknown constant,
and empirical measures can be calculated with respect to the index l. Let
the observation length be 2n0N for some positive integer N . For a given
j = 1, . . . , 2n0, define

ξ
{j}
N =

1
N

N−1∑

l=0

sj+2ln0 . (5.5)

The event {sj+2ln0 = 1} = {yj+2ln0 ≤ C} is the same as that of {dj+2ln0 ≤
C − γ{j}}. Then ξ

{j}
N is precisely the value of the N -sample empirical dis-

tribution FN (z) of the noise d at z = C − γ{j}. The well-known Glivenko–
Cantelli theorem presented in Chapter 3 guarantees the convergence of ξ

{j}
N ;

see Theorem 3.2 and Theorem 3.10.
We note that the pointwise convergence of FN (z) at z = C − γ{j}, j =

1, . . . , 2n0, will suffice for our purpose. To proceed, we first construct an
estimate of γ{j}, which will then be used to identify the system parameter
θ. Since F (·) is invertible and known, we define

γ̂
{j}
N = C − F−1(ξ{j}

N ). (5.6)

Theorem 5.1. Under Assumption (A3.1),

γ̂
{j}
N → γ{j} w.p.1 as N → ∞.

Proof. By Theorem 3.2, as N → ∞,

ξ
{j}
N → F (C − γ{j}) w.p.1.

Hence, the continuity of F−1(·) implies that F−1(F̂N (C−γ{j})) → C−γ{j}

w.p.1. Therefore,
F−1(ξ{j}

N ) → C − γ{j} w.p.1,

or, equivalently, C − F−1(ξ{j}
N ) → γ{j} w.p.1. �

Example 5.2. Consider the case γ{j} = 2.1: yk = 2.1 + dk and the sensor
threshold C = 3.5. The disturbance is uniformly distributed in [−2, 2].
Figure 5.1 shows estimates of γ{j} as a function of sample sizes.
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FIGURE 5.1. Convergence of Estimates of γ{j}

5.3 Estimation of Parameter θ

Under a sequence of periodic inputs {uk}, the one-to-one mapping between
θ and the periodic output xk of the system G will first be established. This
relationship will be used to derive an estimate of θ from that of xk.

5.3.1 Parameter Identifiability

Recall that the noise-free system output is

xk = G(q)uk =
b1q + · · · + bn0q

n0

1 − (a1q + · · · + an0q
n0)

uk

or in a regression form
xk = φ′

kθ, (5.7)

where
φk = [xk−1, . . . , xk−n0 , uk−1, . . . , uk−n0 ]

′,

θ = [a1, . . . , an0 , b1, . . . , bn0 ]
′.

Then under a 2n0-periodic input, the noise-free output x and system par-
ameters θ are related by X = Φθ with

X = [xk0 , . . . , xk0+2n0−1]′,

Φ = [φk0 , . . . , φk0+2n0−1]′.
(5.8)
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Apparently, if Φ is full rank, then there is a one-to-one correspondence
between X and θ.

Since Φ contains both input uk and output xk, in general, the invertibility
of Φ depends on both uk and xk, hence on the true (but unknown) plant
G(q). Furthermore, the invertibility may also vary with the starting time
k0. However, it will be shown that such complications dissipate when uk is
2n0-periodic.

Theorem 5.3. Suppose that the pair D(q) = 1 − A(q) and B(q) are co-
prime. If uk is 2n0-periodic and full rank, then

(a) Φ given by (5.8) is invertible for all k0;

(b) ‖Φ−1‖ is independent of k0, where ‖ · ‖ is the largest singular value.
Hence, μ = ‖Φ−1‖ < ∞ is a constant for all k0.

Proof. (a) The proof will follow from certain arguments of identifiability.
The true plant G(q) is of order n0 with transfer function

G(q) =
b1q + · · · + bn0q

n0

1 − a1q − · · · − an0q
n0

=
B(q)
D(q)

,

where D(q) and B(q) are coprime polynomials. The observation equation
is X = Φθ. Note that Φ is invertible if and only if θ can be uniquely
determined from the observation equation. Assume that there exists an-
other n0th-order system G̃(q) = B̃(q)/D̃(q), with D̃ and B̃ coprime and
D̃(0) = 1, also satisfying the observation. In particular, x̃k = (G̃u)k = xk,
for k = 1, . . . , 2n0. Define

Δ(q) = G(q) − G̃(q) =
B(q)D̃(q) − B̃(q)D(q)

D(q)D̃(q)
:=

qN(q)
R(q)

,

where R(q) is a polynomial of order 2n0 and N(q) a polynomial of order
2n0 − 1.

For the given 2n0-periodic input u, by hypothesis we have hk = (Δu)k =
0, k = 1, . . . , 2n0. It follows that

H̃(ω) =
1√
2n0

2n0∑

k=1

hke−iωk = 0.

On the other hand, by frequency-domain analysis,

H̃(ω) = Δ(eiω)U(ω) + Q(ω),

where

U(ω) =
1√
2n0

2n0∑

k=1

uke−iωk
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and Q(ω) = 0, for ω = 2πj/(2n0), j = 1, . . . , 2n0. By the hypothesis,
U(ω) �= 0, for ω = 2πj/(2n0), j = 1, . . . , 2n0. Hence,

Δ(eiω) = 0, for ω = 2πj/(2n0), j = 1, . . . , 2n0.

However, since N(q) is of order 2n0 − 1, if Δ �≡ 0, Δ(eiω) can have a
maximum of 2n0−1 finite zeros. Consequently, Δ(q) ≡ 0, i.e., G(q) ≡ G̃(q).
Now, this equality, together with the coprimeness of G(q) and G̃(q), implies
that there exists a constant c for which B(q) = cB̃(q) and D(q) = cD̃(q).
Finally, D(0) = D̃(0) = 1 implies c = 1. Therefore, B(q) = B̃(q), D(q) =
D̃(q). Namely, B(q) and D(q), or equivalently θ, are uniquely determined
by the observation equation.

(b) For Φ given in (5.8), to emphasize the dependence of Φ on k0, we
write it as Φ(k0). To show that ‖Φ−1(k0)‖ is independent of k0, we observe
that since both uk and xk are 2n0-periodic, Φ(k0 + 1) = JΦ(k0), where

J =

⎡

⎣ 0 I(2n0−1)×(2n0−1)

1 0

⎤

⎦

is a (2n0) × (2n0) unitary matrix obtained by permuting the rows of the
identity matrix. As a result,

‖Φ−1(k0)‖ = ‖JΦ−1(k0 + 1)‖ = ‖Φ−1(k0 + 1)‖

since the norm ‖ · ‖ is unitary-invariant. �

Example 5.4. Suppose that the true system has the transfer function
G(p) = (q +0.5q2)/(1− 0.5q +0.2q2). Hence, the true plant has the regres-
sion model

xk = 0.5xk−1 − 0.2xk−2 + uk−1 + 0.5uk−2.

Since the order of the system is n0 = 2, we select the input to be 4-periodic
with u1 = 1, u2 = −0.2, u3 = 1.5, u4 = −0.1. For a selected k0 = 20,

Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.4884 −0.6889 −0.1000 1.5000

−1.2564 −1.4884 1.0000 −0.1000

−1.2805 −1.2564 −0.2000 1.0000

−0.6890 −1.2805 1.5000 −0.2000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Φ−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.8079 −1.9384 1.3004 1.4118

1.0345 0.7749 −1.6066 −0.6619

0.5624 −0.4417 −0.7069 0.9044

0.3776 −1.5969 0.5053 1.1572

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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and ‖Φ−1‖ = 3.8708. It can be verified that for different k0, Φ will be
different only by permutation of its rows. Consequently, ‖Φ−1‖ = 3.8708
for all k0.

5.3.2 Identification Algorithms and Convergence Analysis

For each j = 1, . . . , 2n0, the estimate γ̂
{j}
N of γ{j} can be written as

γ̂
{j}
N = γ{j} + e

{j}
N ,

where, by Theorem 5.1, e
{j}
N → 0 w.p.1 as N → ∞.

Define an estimated 2n0-periodic output sequence of G(q) by periodic
extension

x̂j+2ln0 = x̂j = γ̂
{j}
N , (5.9)

for j = 1, . . . , 2n0 and l = 1, . . . , N − 1. Then

x̂j+2ln0 = xj+2ln0 + e
{j}
N , j = 1, . . . , 2n0.

To estimate the parameter θ, we use x̂k in place of xk in (5.7),

x̂k = φ̂′
kθ̂N ,

where φ̂k = [x̂k−1, . . . , x̂k−n0 , uk−1, . . . , uk−n0 ]
′. Then

X̂N = Φ̂N θ̂N (5.10)

for the estimated system, where

X̂N = [x̂k0 , . . . , x̂k0+2n0−1]′,

Φ̂N = [φ̂k0 , . . . , φ̂k0+2n0−1]′.

Since Φ̂′
N Φ̂N is invertible w.p.1, the estimate θ̂N is calculated from

θ̂N = (Φ̂′
N Φ̂N )−1Φ̂′

N X̂N w.p.1. (5.11)

Since Φ̂N is a square matrix, one may also write θ̂N = Φ̂−1
N X̂N , but (5.11)

is the standard least-squares expression. We proceed to establish the con-
vergence of θ̂N to θ.

Theorem 5.5. Suppose that D(q) and B(q) are coprime. If {uk} is 2n0-
periodic and full rank, then

θ̂N → θ w.p.1 as N → ∞.
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Proof. From x̂j+2ln0 = xj+2ln0 + e
{j}
N , (5.10) can be expressed as

XN + EN = (ΦN + ς(EN ))θ̂N , (5.12)

where both EN and ς(EN ) are perturbation terms, EN → 0 w.p.1 as N →
∞, and ς(·) is a continuous function of its argument satisfying ς(EN ) → 0
as EN → 0.

Since ΦN has a bounded inverse and ς(EN ) → 0, w.p.1, ΦN + ς(EN ) is
invertible w.p.1 for sufficiently large N . It follows that for sufficiently large
N , by (5.12),

Φ′
NXN + Φ′

NEN = (Φ′
NΦN + Φ′

N ς(EN ))θ̂N .

This implies that

θ̂N = (Φ′
NΦN + Φ′

N ς(EN ))−1(Φ′
NXN + Φ′

NEN )

→ (Φ′Φ)−1Φ′X = θ

w.p.1 as N → ∞. �

5.4 Notes

This chapter is a continuation of the early chapters by generalizing the
simpler FIR models to rational systems. It is based on our work [108]. The
idea of persistent identification, which considers worst-case identification
errors over all possible starting times, can be found in [97]. When sensors
are nonlinear and nonsmooth such as the switching sensors investigated
in this book, system identification for plants in ARMA structures usually
becomes difficult, due to the lack of constructive and convergent identifi-
cation algorithms. Our two-step approach employs the periodic signals to
avoid this difficulty.



6
Quantized Identification and
Asymptotic Efficiency

Up to this point, we have been treating binary-valued observations. The
fundamental principles and basic algorithms for binary-valued observations
can be modified to handle quantized observations as well. One way to under-
stand the connection is to view a quantized observation as a vector-valued
binary observation in which each vector component represents the output
of one threshold, which is a binary-valued sensor. The dimension of the
vector is the number of the thresholds in the quantized sensor.

However, since a binary-valued sensor is already sufficient for achiev-
ing strong convergence and mean-square convergence for the parameter
estimates, and weak convergence of the centered and scaled estimation er-
rors, it is natural to ask: Why do we need quantized observations? What
benefits can be gained from using more complicated sensors? To answer
these questions, we study the efficiency issue that is characterized by the
Cramér–Rao (CR) lower bounds. We are seeking algorithms that utilize all
statistical information in the data about the unknown parameters, in the
sense that they achieve asymptotically the best convergence rates given by
the CR lower bound. Consequently, the CR lower bounds become a charac-
terization of the system complexity in this problem. Comparisons of such
complexities among sensors of different thresholds permit us to answer the
above questions rigorously and completely.

Section 6.1 begins with basic identification algorithms and their con-
vergence properties. To utilize information from all thresholds collabora-
tively, Section 6.2 introduces an algorithm named by the authors as the
quasi-convex combination estimator (QCCE). Expressions for identifica-
tion errors are derived. Section 6.3 develops some important expressions of

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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identification error covariances that are essential for deriving the efficiency
of the optimal QCCE algorithms. The main results of this chapter are con-
tained in Section 6.4, in which the asymptotic efficiency of the optimal
QCCE is established.

6.1 Basic Algorithms and Convergence

Consider a single-input–single-output, linear, time-invariant, stable, discrete-
time system G given by

yk = Guk + dk, k = 1, 2, . . . , (6.1)

where uk is the input, dk is the disturbance, and G is either a rational
transfer function or an FIR (finite impulse response) system, or in the
simplest case, a gain. The output yk is measured by a sensor of m0 thresh-
olds −∞ < C1 < · · · < Cm0 < ∞. The sensor is represented by a set of
m0 indicator functions sk = [s{1}k , . . . , s

{m0}
k ]′, where s

{i}
k = I{−∞<yk≤Ci},

i = 1, . . . ,m0.
First, consider the simplest case of identifying a constant θ:

yk = θ + dk.

Under Assumption (A3.1), {dk} is a sequence of i.i.d. random variables
with distribution function F (·). Thus, for each threshold Ci, {s{i}

k } is also
an i.i.d. sequence. Then

pi = E(s{i}
k ) = F (Ci − θ) := Fi(θ).

Since Fi(θ) is invertible, we denote its inverse by Gi(·), and hence Gi(pi) =
θ. Define

ξ
{i}
N =

1
N

N−1∑

k=0

s
{i}
k ; θ

{i}
N = Gi(ξ

{i}
N ).

By virtue of the results in Chapter 3, θ
{i}
N is asymptotically unbiased. Let

θ
{i}
N , i = 1, . . . ,m0, be m0 asymptotically unbiased estimators of θ based

on samples of size N . Denote

ΘN = [θ{1}N , . . . , θ
{m0}
N ]′,

e
{i}
N = θ

{i}
N − θ,

eN = [e{1}N , . . . , e
{m0}
N ]′,

11 = [1, 1, . . . , 1]′ ∈ R
m0 .

Then eN = ΘN − θ11. Define

VN (θ) = EeNe′N . (6.2)



6.1 Basic Algorithms and Convergence 69

Note that EeN → 0 as N → ∞, and that VN (θ) is a covariance matrix
of eN that is positive semidefinite. Although the calculation of VN (θ) may
be cumbersome, the following asymptotic result shows that VN (θ) can be
approximated by a computable function.

From pi = Fi(θ), define

hi(θ) = ∂Fi(θ)/∂θ.

Then
∂Gi(pi)/∂pi = 1/hi(θ).

Denote

p = [p1, . . . , pm0 ]
′,

h(θ) = [h1(θ), . . . , hm0(θ)]
′,

G(p) = [G1(p1), . . . , Gm0(pm0)]
′,

(6.3)

and

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 p1 . . . p1

p1 p2 . . . p2

...
...

p1 p2 . . . pm0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

U = diag
(

1
h1(θ)

, . . . ,
1

hm0(θ)

)
.

(6.4)

Theorem 6.1. As N → ∞,

NVN (θ) → U(M − pp′)U := Ψ(θ). (6.5)

Proof. As mentioned in Remark 3.11, the weak convergence of BN (·) and
the Skorohod representation (without changing notations) enable us to as-
sume that BN (·) → B0(·) w.p.1. Let ξN = [ξ{1}N , . . . , ξ

{m0}
N ]′. Consider

eN = ΘN − θ11 = G(ξN ) − G(p).

By Theorem 3.12,

Υ{i}
N =

√
Ne

{i}
N =

√
n(Gi(ξ

{i}
N ) − Gi(pi))

converges to

Υ{i}
N → Υ{i} =

∂Gi(pi)
∂pi

B0(v{i}) =
B0(v{i})

hi(θ)
w.p.1 as N → ∞. (6.6)
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As a result, Υ = U(B0)′ with

Υ = [Υ{1}, . . . ,Υ{m0}]′,

B0 = [B0(v{1}), . . . , B0(v{m0}]′,

U = [
∂G1(p1)

∂p1
, . . . ,

∂Gm0(pm0)
∂pm0

]′.

It follows from Theorem 3.12 that

EΥNΥ′
N → EUB0(B0)′U

and

EB0(B0)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 − p2
1 p1 − p1p2 . . . p1 − p1pm0

p1 − p1p2 p2 − p2
2 . . . p2 − p2pm0

...
...

p1 − pm0p1 p2 − pm0p2 . . . pm0 − p2
m0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= M − ppT .

Therefore,
EΥNΥ′

N → U(M − pp′)U.

The proof of the theorem is thus completed. �

The covariance in Theorem 6.1 reflects identification errors from each
threshold and their correlations. However, it does not consider the unique
feature here that all estimates are for the same parameter θ. Combining
these estimates will eventually lead to an efficient algorithm.

6.2 Quasi-Convex Combination Estimators
(QCCE)

Define β = [β1, . . . , βm0 ]
′ such that β1 + · · · + βm0 = 1. One can construct

an estimator θ̂N of θ by

θ̂N =
m0∑

i=1

βiθ
{i}
N = β′ΘN . (6.7)

θ̂N is called a quasi-convex combination estimator (QCCE). The term “quasi-
convex” is used since βi need not be nonnegative. Since θ

{i}
N is asymptoti-

cally unbiased,

Eθ̂N = β′EΘN → β′θ11 = θ as N → ∞.
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Hence, θ̂N is an asymptotically unbiased estimate of θ. Moreover, the vari-
ance of the estimation error θ̂N − θ is given by

σ2
N : = E(β′ΘN − θ)2 = E(β′ΘN − β′θ11)2

= β′EeNe′Nβ = β′VN (θ)β.

That is, the variance is in a quadratic form with respect to the vector β.
The estimator that minimizes σ2

N is called the optimal quasi-convex com-
bination estimator (optimal QCCE), which is obtained from

σ2
N = min

β,β′11=1
σ2

N = min
β,β′11=1

β′VN (θ)β. (6.8)

Theorem 6.2. Under Assumption (A3.1) and assuming VN (θ) is positive
definite, the optimal QCCE can be obtained by choosing

β∗ =
V −1

N (θ)11
11′V −1

N (θ)11
, θ̂N = (β∗)′ΘN , (6.9)

and the minimal variance is

σ2
N =

1
11′V −1

N (θ)11
. (6.10)

Proof. The estimator that solves (6.8) is in fact the Gauss–Markov esti-
mator [64, p. 84] (linear minimum variance unbiased estimator) and (6.9)
follows directly. For an elementary derivation, one defines the Hamiltonian

H(β, λ) = β′VN (θ)β + λ(1 − β′11),

where λ is a Lagrange multiplier. Using standard techniques in optimization
(see [64, Chapter 10]) yields the stationary point (λ∗, β∗) of H(β, λ) with
λ∗ = 2/(11′V −1

N (θ)11) and β∗ given in (6.9). It can be verified that the
stationary point is indeed a minimum. Substituting the above solutions
into σ2

N , we obtain the optimal variance as in (6.10). �

Remark 6.3. The optimal QCCE naturally gives more weights on the
thresholds that provide more accurate information. To gain insights, sup-
pose hypothetically that the estimators θ

{i}
N , i = 1, . . . , m0, are indepen-

dent. Then VN is diagonal: VN = diag(v1
N , . . . , vm0

N ). It follows that the
optimal weighting is

βN =
[(v1

N )−1, . . . , (vm0
N )−1]′

(v1
N )−1 + · · · + (vm0

N )−1
. (6.11)

In other words, the estimators with smaller variances will be more heavily
weighted.
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6.3 Alternative Covariance Expressions of Optimal
QCCEs

Recall from Section 2.2 that s̃
{i}
k = I{Ci−1<yk≤Ci}, i = 1, . . . ,m0 + 1, with

C0 = −∞ and s̃k(m0 + 1) = I{Cm0<yk<∞}. Let

p̃i = P{s̃{i}
k = 1} = P{Ci−1 < yk ≤ Ci}

= F (Ci − θ) − F (Ci−1 − θ) := F̃i(θ).

Define

h̃i(θ) =
∂F̃i(θ)

∂θ
= −f(Ci − θ) + f(Ci−1 − θ).

The following relationships between p̃i, h̃i and pi, hi in (6.3) can be easily
established:

m0+1∑

i=1

p̃i = 1,

m0+1∑

i=1

h̃i = 0,

pj =
j∑

i=1

p̃i, hj =
j∑

i=1

h̃i, j = 1, . . . ,m0,

p̃1 = p1, p̃i = pi − pi−1, i = 2, . . . ,m0,

p̃m0+1 = 1 − pm0 .

Denote
p̃(θ) = [p̃1, . . . , p̃m0 ]

′,

Ũ(θ) = diag(1/h̃1, . . . , 1/h̃m0),

M̃(θ) = diag(p̃1, . . . , p̃m0),

and
Ψ̃(θ) = Ũ(M̃ − p̃p̃′)Ũ . (6.12)

For notational simplicity, we suppress the θ dependence in the expressions.
Assume that p̃i �= 0, i = 1, . . . ,m0 + 1. If p̃j = 0, the threshold Cj can be
eliminated since the interval (Ci−1, Cj ] contains no useful information on
θ. Then, M̃ is invertible. Let

W̃ = M̃1/2 = diag(
√

p̃1, . . . ,
√

p̃m0).

We now prove an important lemma that will be essential for establishing
the efficiency of the optimal QCCE algorithms in the next section.

Lemma 6.4. 11′Ψ̃−111 =
m0+1∑

i=1

h̃2
i /p̃i.
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Proof. Note that

Ψ̃−1 = (Ũ(W̃ 2 − p̃p̃′)Ũ)−1

= (W̃ Ũ)−1(I − W̃−1p̃p̃′W̃−1)−1(ŨW̃ )−1.

By the well-known matrix inversion lemma ([62, p. 306, eq. (11.10)]),

(I − W̃−1p̃p̃′W̃−1)−1 = I +
W̃−1p̃p̃′W̃−1

1 − p̃′M̃−1p̃
.

Observe that

1 − p̃′M̃−1p̃ = 1 −
m0∑

i=1

p̃i = p̃m0+1,

p̃′W̃−1(ŨW̃ )−111 = [
√

p̃1, . . . ,
√

p̃m0 ]
[ h̃1√

p̃1

, . . . ,
h̃m0√
p̃m0

]′
=

m0∑

i=1

h̃i,

and

11′(W̃ Ũ)−1(ŨW̃ )−111 =
m0∑

i=1

h̃2
i

p̃i
.

Consequently,

11′Ψ̃−111 = 11′(Ũ(W̃ 2 − p̃p̃′)Ũ)−111

= 11′(W̃ Ũ)−1(I − W̃−1p̃p̃′W̃−1)−1(ŨW̃ )−111

=
m0∑

i=1

h̃2
i

p̃i
+

(
∑m0

i=1 h̃i)2

p̃m0+1
.

However, from
∑m0+1

i=1 p̃i = 1, we have

m0+1∑

i=1

h̃i =
m0+1∑

i=1

∂p̃i

∂θ
= 0,

or h̃m0+1 = −
∑m0

i=1 h̃i. It follows that

(
∑m0

i=1 h̃i)2

p̃m0+1
=

h̃2
m0+1

p̃m0+1
.

Therefore,

11′Ψ̃−111 =
m0+1∑

i=1

h̃2
i

p̃i
, (6.13)

which completes the proof. �

We have introduced Ψ̃ to provide a convenient way of expressing the
CR lower bound in the next section. Next, we establish the connection
between Ψ̃ in (6.12) and Ψ in (6.5). Denote h̃ = [h̃1, . . . , h̃m0 ]

′, and refer to
(6.3)–(6.5) for related expressions.



74 6. Quantized Identification and Asymptotic Efficiency

Lemma 6.5. 11′Ψ−111 = 11′Ψ̃−111.

Proof. First, note that

11′Ψ−111 = h′(M − pp′)−1h,

11′Ψ̃−111 = h̃′(M̃ − p̃p̃′)−1h̃.

Let V1 be the matrix

V1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 . . . −1

0 1 . . . 0
...

...

0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which is formed by subtracting columns i = 2, . . . ,m0 from the first column
of the identity matrix. Then,

h′(M − pp′)−1h = h′V1(V ′
1MV1 − V ′

1pp′V1)−1V ′
1h.

It is easy to verify that

V ′
1MV1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 0 . . . 0

0 p2 − p1 . . . p2 − p1

...
...

0 p2 − p1 . . . pm0 − p1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= M1,

V ′
1p = [p1, p2 − p1, . . . , pm0 − p1]′ := W1,

V ′
1h = [h1, h2 − h1, . . . , hm0 − h1]′ := H1.

Hence,
11′Ψ−111 = H ′

1(M1 − W1W
′
1)H1.

This process can be repeated, but restricting to the lower right (m0 −
1) × (m0 − 1) submatrix of M1. In other words, using

V2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0

0 1 −1 . . . −1

0 0 1 . . . 0
...

...

0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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we obtain

11′Ψ−111 = H ′
1V2(V ′

2M1V2 − V ′
2W1W

′
1V2)−1V ′

2H1

= H ′
2(M2 − W2W

′
2)H2.

After (m0 − 1) such elementary operations, we obtain

Mm0−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 0 0 . . . 0

0 p2 − p1 0 . . . 0

0 0 p3 − p2 . . . 0
...

...

0 0 0 . . . pm0 − pm0−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= M̃,

Wm0−1 = [p1, p2 − p1, . . . , pm0 − pm0−1]′ = p̃,

Hm0−1 = [h1, h2 − h1, . . . , hm0 − hm0−1]′ = h̃,

since p̃1 = p1, p̃i = pi − pi−1, i = 2, . . . ,m0. Consequently,

11′Ψ−111 = h̃′(M̃ − p̃p̃′)−1h̃ = 11′Ψ̃−111.

�

6.4 Cramér–Rao Lower Bounds and Asymptotic
Efficiency of the Optimal QCCE

We first recall the notion of efficiency from estimation theory. Suppose
that X1, . . . , XN is a random sample of size N from a distribution with
probability density function f(x;ϑ), where ϑ is an unknown parameter.
For two unbiased estimators ϑ̂i of ϑ, with Eϑ̂2

i < ∞ (i = 1, 2), we say that
ϑ̂1 is more efficient than ϑ̂2 if the relative efficiency effϑ(ϑ̂1|ϑ̂2) < 1, where

effϑ(ϑ̂1|ϑ̂2) =
varϑ(ϑ̂1)

varϑ(ϑ̂2)
.

Let ϑ̂ = ϑ(X1, . . . , Xm) be an unbiased estimator of ϑ. Under certain reg-
ularity conditions (that are usually fulfilled for the identification problems
we are working with), the well-known Cramér–Rao (CR) bound states that
the variance σ2

ϑ̂
of the estimator ϑ̂ is bounded below by

σ2
ϑ̂
≥ 1

NE[(∂/∂ϑ)f(X;ϑ)]2
. (6.14)
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We say that an estimator ϑ̂ is efficient or most efficient if the CR bound
is attained. For any unbiased estimator ϑ̂1, the efficiency of the estimator
is defined as effϑ(ϑ̂1|ϑ̂), where ϑ̂ is an efficient estimator. An estimator ϑ̂1

with sample size N is asymptotically efficient if

(i) ϑ̂1 is at least asymptotically unbiased in the sense that Eϑ̂1 → ϑ as
N → ∞, and

(ii) limN effϑ(ϑ̂1|ϑ̂) = 1.

For further discussion on related issues, we refer the reader to [78, Section
8.5] and the references therein.

Let ξ̃
{i}
N = 1

N

∑N
k=1 s̃

{i}
k , which is the sample relative frequency of yk

taking values in (Ci−1, Ci]. In the statement of the following lemma, we
note that information contained in {sk} is the same as that in {s̃k}.

Lemma 6.6. The CR lower bound for estimating θ based on observations
of {sk} is

σ2
CR(N,m0) =

(
N

m0+1∑

i=1

h̃2
i

p̃i

)−1

. (6.15)

Proof. Augment sk to sak = [s′k, 1]′, where the added element represents
1 = P{−∞ < yk < ∞}. Let xk ∈ R

m0+1 be some possible sample values
of sak. Noting the i.i.d. assumption, the likelihood function of sa1, . . . , saN

taking values x1, . . . , xN , conditioned on θ, is given by

�(x1, . . . , xN ; θ) = P{sa1 = x1, . . . , saN = xN ; θ}

=
N∏

k=1

P{sak = xk; θ}.

Due to the sensor structure, xk always takes the form of [0, . . . , 0, 1, 1, . . . , 1]′.
Let i0(k) be the index of the first 1 in xk. Then

P{sak = xk; θ} = P{s̃k(i0(k)) = 1; θ} = p̃i0(k).

Hence,

�(x1, . . . , xN ; θ) =
N∏

k=1

p̃i0(k). (6.16)

Replace the particular realizations xk by their corresponding random
elements vk, and denote the resulting quantity by � = �(v1, . . . , vN ; θ).
Note that � is random by its definition. In (6.16), for a given i, i0(k) = i if
and only if s̃

{i}
k = 1. Consequently, for a given sample path, the number of

occurrences of a particular p̃i in (6.16) is
∑N

k=1 s̃
{i}
k = ξ̃

{i}
N N . As a result,



6.4 Cramér–Rao Lower Bounds and Asymptotic Efficiency of the Optimal QCCE 77

by grouping all occurrences of p̃i in (6.16), we have

� =
m0+1∏

i=1

p̃i( ξ̃
{i}
N N).

Consequently, log � = N
∑m0+1

i=1 ξ̃
{i}
N log p̃i, and

∂ log �

∂θ
= N

m0+1∑

i=1

ξ̃
{i}
N

1
p̃i

h̃i,

∂2 log �

∂θ2
= N

m0+1∑

i=1

ξ̃
{i}
N

[
−1
p̃2

i

h̃2
i +

1
p̃i

∂2p̃i

∂θ2

]
.

Since
∑m0+1

i=1 p̃i = 1, we have

m0+1∑

i=1

∂2p̃i

∂θ2
= 0.

As a result,

E

m0+1∑

i=1

ξ̃
{i}
N

p̃i

∂2p̃i

∂θ2
=

m0+1∑

i=1

∂2p̃i

∂θ2
= 0.

Hence,

E
∂2 log �

∂θ2
= −N

m0+1∑

i=1

h̃2
i

p̃i
.

The CR lower bound is then given by

σ2
CR(N,m0) = −

(
E

∂2 log �

∂θ2

)−1

=
(
N

m0+1∑

i=1

h̃2
i

p̃i

)−1

. (6.17)

�

Recall that from Theorem 6.2, the variance of the optimal QCCE is

σ2
N =

1
11′V −1

N (θ)11
.

One of the main results of this chapter is the following theorem, which
reveals that the optimal QCCE is asymptotically efficient.

Theorem 6.7. The optimal QCCE is asymptotically efficient in the sense
that

Nσ2
N − Nσ2

CR(N,m0) → 0 as N → ∞.
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Proof. By Theorems 6.1 and 6.2, the variance of the optimal QCCE sat-
isfies

Nσ2
N = N

1
11′V −1

N (θ)11

=
1

11′N−1V −1
N (θ)11

→ 1
11′Ψ−1(θ)11

as N → ∞,

where Ψ−1(θ) is the limit of N−1V −1
N (θ). On the other hand, by Lemma 6.6,

Nσ2
CR(N,m0) =

(m0+1∑

i=1

h̃2
i

p̃i

)−1

. (6.18)

Now, Lemmas 6.4 and 6.5 yield

11′Ψ−111 =
m0+1∑

i=1

h̃2
i

p̃i
,

which leads to the desired result. �

Remark 6.8. Expression (6.18) delineates the contribution of each sensor
interval (Ci−1, Ci] to the reduction of identification errors as h̃2

i (θ)/p̃i(θ).
The smaller the sensitivity h̃2

i /p̃i, the less useful is the threshold interval
(Ci−1, Ci] in error reduction. This may be used as a guide in deciding
if increasing the quantization accuracy (that is, adding more thresholds)
is worthwhile. Furthermore, the quantity

∑m0+1
i=1 h̃2

i /p̃i can be used for
threshold selection.

A numerically less complex implementation of the optimal QCCE algo-
rithm is to use the sample mean and sample covariance in place of θ and
VN . From the estimates {Θj = G(ξj), j = 1, . . . , N}, we compute its arith-
metic average ΘN =

∑N
j=1 Θj/N . Since ΘN is asymptotically unbiased, by

elementary analysis, we also have
∑N

j=1 EΘj/N → θ11 as N → ∞. This
leads to the following algorithm:

ΘN =
N∑

j=1

Θj/N,

V̂N =
1

N − 1

N∑

j=1

(Θj − ΘN )(Θj − ΘN )′,

βN =
V̂ −1

N 11

11′V̂ −1
N 11

,

θ̂N = (βN )′ΘN .

(6.19)
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This algorithm can be written recursively as

ΘN = ΘN−1 −
1
N

ΘN−1 +
ΘN

N
,

V̂N = V̂N−1 −
1

N − 1
V̂N−1 +

(ΘN − ΘN )(ΘN − ΘN )′

N − 1
.

(6.20)

It can be shown that

V̂N − VN (θ) → 0, V̂ −1
N − V −1

N (θ) → 0, as N → ∞. (6.21)

If we work with the implementable estimates defined in (6.19), we can
define σ̂2

N = 1/(11′V̂ −1
N 11), and obtain the following result.

Corollary 6.9. For the estimators given in (6.19),

Nσ̂2
N − Nσ2

CR(N,m0) → 0 as N → ∞.

Proof. By virtue of Theorem 6.7, it suffices to show that Nσ̂2
N −Nσ2

N → 0
as N → ∞. In fact, a simple calculation shows that

1

11′V̂ −1
N 11

− 1
11′V −1

N 11
=

11′(V −1
N − V̂ −1

N )11

(11′V̂ −1
N 11)(11′V −1

N 11)
→ 0 as N → ∞. (6.22)

Hence, the result follows. �

6.5 Notes

This chapter introduces the optimal quasi-convex combination estimators
and establishes their asymptotic efficiency. These optimality results lay a
foundation in which complexity issues in system identification with quan-
tized observations can be rigorously investigated. This chapter follows [104].

Space complexity (the number of intervals in quantization, or the word
length of each measurement) is a relatively new paradigm in system iden-
tification. Traditional quantization uses uniform quantization intervals and
ubiquitously employs quantization errors in analysis. However, when the
signal range is large or even unbounded, such uniform quantization suffers
from high or infinite space complexity. The results of this chapter provide a
foundation to evaluate if finite quantization levels are sufficient. Studies of
the impact of quantization errors can also be conducted in a worst-case or
probabilistic framework, depending on how quantization errors are modeled
[1, 2, 39, 34, 80].



7
Input Design for Identification in
Connected Systems

Input design is of essential importance in system identification to provide
sufficient probing capabilities to guarantee the convergence of parameter
estimators to their true values; namely, the estimators are consistent. In-
put conditions for consistent estimation depend on sensor characteristics,
system configurations, noise locations and distributions, and identification
algorithms. The previous chapters consider only the basic formulation in
which the input uk can be directly designed. This chapter covers input
design in more general system configurations.

The system configurations illustrated in Figure 2.2 represent typical sce-
narios in which identification experiments must be performed. They intro-
duce challenges in input design, signal measurements, and interaction with
control tasks. In these configurations, the input u to the plant P , which
is either FIR or rational with n0 parameters, may be measured with noise
corruption but cannot be directly selected. Only the external input r can
be designed. In these configurations, uk is the output of a possibly unknown
stable system with input rk. This chapter resolves several issues that are
critical for applying the methods of this book to system identification in
filtering and closed-loop systems.

Section 7.1 establishes conditions under which a periodic and full-rank
signal will retain these features after passing through a stable system, even
when the system is unknown. As a result, the design of external probing
signals or dithers can be easily accomplished. Section 7.2 details such a
design, especially for the typical case of tracking control. In general, in-
put noises, including input measurement noises and actuator noises, will
affect signal rank and introduce identification bias. Sections 7.3 and 7.4 are

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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devoted to developing input design principles and modified algorithms to
recover signal richness and gain convergence.

7.1 Invariance of Input Periodicity and Rank in
Open- and Closed-Loop Configurations

A condition for uk to provide sufficient probing capability for the conver-
gence of parameter estimates is that u is n0-periodic and full rank. In this
chapter, such conditions will be called “sufficient richness” conditions, to
avoid confusion with the typical input “persistent excitation” conditions.
Here we would like to establish relationships between periodicity and rank
properties of the external signal r and those of u.

Let H be a linear time-invariant and stable system with impulse response
{hk}. Suppose that u = Hr, or in the time domain

uk =
∞∑

l=0

hlrk−l. (7.1)

Suppose that the discrete Fourier transform (DFT) of H is

H(eiω) =
∞∑

l=0

hle
−iωl.

Theorem 7.1. Suppose that r is n0-periodic and full rank. Then u is
also n-periodic and full rank if and only if H(eiω) �= 0, for ω = ωk :=
(2πk/n0), k = 1, . . . , n0.

Proof. Since r is n0-periodic and full rank, by Corollary 2.3, the frequency
samples of r are nonzero, Rk =

∑n0
l=1 rle

−iωkl �= 0, k = 1, . . . , n0. Since r
is n0-periodic, and H is LTI and stable, u is also n0-periodic after a short
transient. Furthermore, the frequency samples Uk of u are related to Rk by

Uk =
n0∑

l=1

ule
−iωkl =

n0∑

l=1

∞∑

t=0

htrl−te
−iωkl

=
∞∑

t=0

hte
−iωkt

n0∑

l=1

rl−te
−iωk(l−t) = H(eiωk)Rk.

Here, the cyclic property of the DFT is applied:

Rk =
n0∑

l=1

rle
−iωkl =

n0∑

l=1

rl−te
−iωk(l−t).

By Corollary 2.3, u is full rank if and only if Uk �= 0, k = 1, . . . , n0. However,
by hypothesis, Rk �= 0, k = 1, . . . , n0. As a result, Uk �= 0 if and only if
H(eiωk) �= 0, k = 1, . . . , n0. �
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Example 7.2. The necessity of the condition of Theorem 7.1 can be veri-
fied by examining the following second-order system: uk = rk +rk−1. When
r is a 2-periodic signal and full rank, uk is a constant and hence is not rank
2. This is due to the fact that H(eiω) = 1+eiω and for ω = ω1 = 2π/2 = π,
H(eiω1) = 0.

Remark 7.3. Theorem 7.1 claims that for any system H not having anni-
hilating zeros at n0 points eiωk , ωk = (2πk/n0), k = 1, . . . , n0, on the unit
circle, sufficient richness capability of the signal r is always preserved after
passing through H. In particular, for the feedback configuration in Figure
2.2, we have the following result indicating that input richness properties
are invariant under a feedback mapping.

(A7.1) Consider the feedback configuration in (b) of Figure 2.2. Assume
that for ωk = (2πk/n0), k = 1, . . . , n0, K(eiω) does not have zeros at ωk;
and P (eiω) and F (eiω) do not have singularities (such as poles) at ωk.

Corollary 7.4. Under Assumption (A7.1), M = K/(1 + PKF ) does not
have annihilating zeros at ωk = 2πk/n0, k = 1, . . . , n0. As a result, if r is
n0-periodic and full rank, so is u.

Proof. From

M(eiω) =
K(eiω)

1 + P (eiω)K(eiω)F (eiω)
,

it is clear that the zeros of M are either the zeros of K or the singularities
(such as poles) of P or F . By assumption (A7.1), K(eiωk) �= 0, and ωk is not
a singularity point of P (eiω) or F (eiω). Hence, M(eiωk) �= 0, k = 1, . . . , n0.
Now by Theorem 7.1, u is n0-periodic and full rank whenever r is n0-
periodic and full rank. �

7.2 Periodic Dithers

Consider the tracking configuration in Figure 7.1. When the desired output
is r0, usually r = r0 is the set point. However, a constant r0 �= 0 is 1-
periodic. It is only good for the identification of a gain system (namely,
n0 = 1). This is an indication that the goals of control and identification
are usually not consistent.

To enhance probing capability, one may add a small n0-periodic dither
�k to r0, leading to rk = �k + r0. Since

uk = Mrk = M�k + Mr0 = vk + μ,

where vk is an n0-periodic signal and μ = Mr0 a constant, we need to
establish rank conditions on uk.
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FIGURE 7.1. Tracking configuration

More generally, consider an input signal u: uk = vk + ek, which is a
perturbation of v. Suppose that vk is n0-periodic and full rank. We would
like to establish conditions under which uk is also n0-periodic and full rank.

(A7.2) Both vk and ek are n0-periodic.

Under Assumption (A7.2), the Toeplitz matrices for v, e, and u, denoted
by Φv, Φe, and Φu, respectively, are circulant matrices. Let their corre-
sponding frequency samples be

Γu = F [u] = {γu
k , k = 1, . . . , n0},

Γv = F [v] = {γv
k , k = 1, . . . , n0},

Γe = F [e] = {γe
k, k = 1, . . . , n0}.

Theorem 7.5. Under Assumption (A7.2), u is full rank if and only if
γv

k + γe
k �= 0, k = 1, . . . , n0.

Proof. This follows immediately from γu
k = γv

k + γe
k and the fact that Φu

is full rank if and only if its frequency samples do not contain 0. �

We now consider the special case when ek ≡ μ, which is a typical case
in tracking problems as shown above.

Corollary 7.6. Suppose vk is n0-periodic and full rank and ek = μ. Then
uk is n0-periodic. Let η = 1

n0

∑n0
j=1 vj. u is full rank if and only if μ �= −η.

Proof. Since vk is full rank, by Corollary 2.3 we have γv
k �= 0, k = 1, . . . , n0.

In particular,

γv
n =

n0∑

j=1

vj = n0η.

Moreover, the frequency samples of ek ≡ μ are

γe
k = 0, k = 1, . . . , n0 − 1, and γe

n0
= n0μ.

Consequently, by Theorem 7.5, uk is full rank if and only if

γv
n0

+ γe
n0

�= 0.



7.3 Sufficient Richness Conditions under Input Noise 85

That is, n0η + n0μ �= 0, or μ �= −η, as claimed. �

Corollary 7.6 may be verified directly by matrix manipulations. Toeplitz
matrices Φu, Φv, and Φe for u, v, and e, respectively, are

Φu = Φv + Φe

∼

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n0η + n0μ 0 . . . 0

v1 + μ vn0 − v1
. . . v2 − v1

...
. . . . . .

...

vn0−1 + μ vn0−2 − vn0−1 . . . vn0 − vn0−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

by adding the second to nth rows to the first row, followed by subtracting
the first column from the second to nth columns. The last matrix is full
rank since η+μ �= 0 and the lower right (n0−1)×(n0−1) submatrix, which
is obtained by performing elementary operations from Φv, is full rank.

7.3 Sufficient Richness Conditions under Input
Noise

Under the system configurations in Figure 2.2, u = Mr is generated from
r by a possibly unknown system M . In the previous sections, u is assumed
to be accurately measured. When u is further corrupted by noise, it can no
longer be exactly measured. Furthermore, the actual values of u cannot be
directly derived from r since M is unknown. Sufficient richness conditions
and identification algorithms under this scenario will be explored in this
section.7.1

We will consider two cases of input noises shown in Figure 7.2:

1. Input measurement noise εk: When u is measured by a regular sensor,
the measured values are related to u by wk = uk + εk, where εk is
the measurement noise.

2. Actuator noise ek: In this case, the actual input to the plant is uk =
vk + ek, where vk = Mr, and ek is the actuator noise.

As a result, the measured input is wk = vk + ek + εk and identification
of the plant must be performed from the observation data on wk and sk =
S(yk).

7.1Input noises cause errors in the regressors, leading to a case of errors-in-
variables. It is well known in statistical analysis that errors-in-variables will in-
troduce estimation bias. The discussions here involve further complications since
the input u cannot be directly designed and measurements are binary valued.
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FIGURE 7.2. Input noise configuration

(A7.3) {vk} is n0-periodic and full rank. {ek} and {εk} are sequences of
i.i.d. random variables with zero mean and finite variances such that {ek}
and {εk} are independent.

Denote the n0 × n0 Toeplitz matrices for w and v by

Φw
l =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

wln0 wln0−1 . . . wln0−n0+1

wln0+1 wln0

. . . wln0−n0+2

...
. . . . . .

...

wln0+n0−1 wln0+n0−2 . . . wln0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Φv =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn0 vn0−1 . . . v1

v1 vn0

. . . v2

...
. . . . . .

...

vn0−1 vn0−2 . . . vn0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Although Φw
l is not circulant and varies with l, the limit of their averages

is a full-rank circulant matrix.

Lemma 7.7. Under Assumption (A7.3),
∑N

l=1 Φw
l /N → Φv w.p.1 as N →

∞.

Proof. This follows directly from the strong law of large numbers, applied
to each element of the matrices. �

We consider first the case of measurement noise only. Actuator noises
will be discussed in the next section. In this case, ek = 0, for all k. Hence,
uk = vk, wk = uk + εk, and Φu = Φv := Φ. Due to measurement noise, the
actual uk is unknown. As a result, Φ is unknown and cannot be used directly
in identification algorithms. However, by Lemma 7.7 it can be estimated
asymptotically by averaging. The following algorithm utilizes this idea to
estimate θ.

We shall use the FIR model for discussion here,

yk = φ′
kθ + dk. (7.2)
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Assume that yk is measured by a binary-valued sensor of threshold C.
We use the following notation for elementwise vector functions. For the
distribution function F (·) and a vector x = [x1, . . . , xn0 ]

′ ∈ R
n0 , we define

F (x) = [F (x1), . . . , F (xn0)]
′ ∈ R

n0 ,

G(x) = [F−1(x1), . . . , F−1(xn0)]
′ ∈ R

n0 .
(7.3)

Similarly, for

α = [α1, . . . , αm0 ]
′ and c = [c1, . . . , cm0 ]

′ ∈ R
n0 ,

write
I{α≤c} = [I{α1≤c1}, . . . , I{αm0≤cm0}]

′.

We use 11
 and 0
 ∈ R

 to denote column vectors of dimension � with all

components being 1 and 0, respectively.
Recall that if Φ were known, a consistent estimator of θ would be

θN = Φ−1(C11 − G(ξN )).

Define sl = [sln0 , . . . , sln0+n0−1]′. This estimator is no longer causal since
it employs the unknown Φ in computing θN . In other words, one needs the
future information on the sequence {wk} in computing θN . The following
algorithm replaces the future information Φ by a sample average.

Let

ΦN =
1
N

N∑

l=1

Φw
l .

When ΦN is nonsingular, define

θN = Φ−1
N (C11 − G(ξN )).

This estimator can be recursively defined as follows.

1. Initial conditions: ξ1 = s1, Φ1 = Φw
1 is generated from initial data on

w, θ1 = 0.

2. Recursion: Suppose that at N , ξN , ΦN , and θN have been obtained.
Then at N + 1, we update

ξN+1 = ξN − 1
N + 1

ξN +
1

N + 1
sN+1,

ΦN+1 = ΦN − 1
N + 1

ΦN +
1

N + 1
Φw

N+1,

θN+1 =

⎧
⎨

⎩
Φ−1

N+1(C11 − G(ξN+1)), if ΦN+1 is nonsingular,

θN , if ΦN+1 is singular.
(7.4)
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Theorem 7.8. Under Assumption (A7.3), θN → θ w.p.1 as N → ∞.

Proof. Since the true input to the plant is u, ξN → ξ = F (C11−Φθ) w.p.1.
Then θN − θ = Φ−1

N (G(ξ) − G(ξN )) + (Φ−1
N − Φ−1)(C11 − G(ξ)). By the

strong law of large numbers, the convergence θN −θ → 0 w.p.1 follows from
ΦN → Φ and ξN → ξ w.p.1, the continuity of F−1, and the invertibility of
Φ. �

7.4 Actuator Noise

Unlike measurement noise εk that affects measured input values but does
not enter the plant, actuator noise ek affects the output yk of the plant.
Consider the case uk = vk + ek and wk = uk. To understand the impact
of ek, we express the regressor in (7.2) by φu

k or φv
k, depending on which

signal is used in the regressor. Under Assumption (A7.3), v is n0-periodic
and full rank, but u is not periodic. However, by Lemma 7.7,

1
N

N∑

l=1

Φu
l → Φv w.p.1 as N → ∞.

Since uk = vk + ek, we have

yk = (φu
k)′θ + dk = (φv

k)′θ + (φe
k)′θ + dk

= (φv
k)′θ + zk.

Observe that the equivalent noise zk is

zk = (φe
k)′θ + dk

= a0ek + · · · + an0−1ek−n0+1 + dk.

Under Assumption (A7.3), although {zk} may not be independent, it is
strictly stationary. Recall that {zk} is strictly stationary if for any posi-
tive integer ν, points t1, . . . , tν ∈ Z+ and l ∈ Z+, the joint distribution
of {zt1 , . . . , ztν

} is the same as that of {zt1+l, . . . , ztν+l} (i.e., its finite-
dimensional distributions are translation invariant; see [47, p. 443]). De-
note the distribution function by Fz(x; θ). A moment of reflection reveals
that the sequence is (n0 − 1)-dependent. A precise definition of (n0 − 1)-
dependence can be found in [8, p. 167, Example 1]. Since an (n0 − 1)-
dependent sequence belongs to the class of φ-mixing signals, whose remote
past and distant future are asymptotically independent, the sequence is
strongly ergodic [47, p. 488]. That is, a strong law of large numbers still
holds.
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Following (7.4), define

ξN =
1
N

N∑

j=1

sj .

Let θN be the solution to

ξN = Fz(C11 − ΦθN ; θN ). (7.5)

For any ϑ, define the Jacobian matrix

J(ϑ) =
∂Fz(C11 − Φϑ;ϑ)

∂ϑ
.

A sufficient condition for invertibility of the function in (7.5) is that J(θN )
is full rank. In this case, by denoting the inverse of ξ = Fz(C11 − Φϑ;ϑ)
as ϑ = H(ξ), the estimate θN in (7.5) may be symbolically written as
θN = H(ξN ).

Proposition 7.9. If H(·) exists and is continuous, then θN → θ w.p.1 as
N → ∞.

Proof. By the strong law of large numbers, ξN → ξ = Fz(C11 − Φθ; θ)
w.p.1. Since H(·) exists and is continuous, θN = H(ξN ) → H(ξ) = θ w.p.1.

�

For a given ϑ, denote the inverse of Fz(x;ϑ) (with respect to x) by

Gz(x;ϑ) = F−1
z (x;ϑ). (7.6)

Computationally, it is observed that for a given ξ, the implicit function
ξ = Fz(C11 − Φϑ;ϑ) of ϑ may be expressed as a fixed-point equation ϑ =
Φ−1(C11 − Gz(ξ;ϑ)).

Next, a special case will be considered. Suppose that {ek} is a sequence
of i.i.d. normal random variables with zero mean and variance σ2

e , and {dk}
is a sequence of i.i.d. normal random variables with zero mean and variance
σ2

d. Then,
z = a0ek + · · · + an0−1ek−n0+1 + dk

is also normally distributed and has zero mean and variance

σ2
z(θ) = (a2

0 + · · · + a2
n0−1)σ

2
e + σ2

d = σ2
e‖θ‖2 + σ2

d.

Let F0(x) be the normal distribution function of zero mean and variance
1. Then Fz(x;ϑ) = F0(x/σz(ϑ)). It follows that

Fz(C11 − Φϑ;ϑ) = F0

(
C11 − Φϑ

σz(ϑ)

)
,
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and the Jacobian matrix is

J(ϑ) =
dFz(C11 − Φϑ;ϑ)

dϑ

= − 1
σz

dF0

dx

[
Φ
(

In0 −
σ2

eϑϑ′

σ2
z

)
+

σ2
eC11ϑ′

σ2
z

]
,

where
x =

C11 − Φϑ

σz(ϑ)
.

Since
dF0

dx
= diag(fz(C − φ′

1ϑ), . . . , fz(C − φ′
n0

ϑ))

is full rank, where fz is the density function of Fz, the Jacobian matrix
J(ϑ) is full rank if and only if

Φ(In0 − σ2
eϑϑ′/σ2

z) + σ2
eC11ϑ′/σ2

z

is full rank.

Remark 7.10. It is easily verified that if A is an n0-dimensional square
matrix with ‖A‖ < 1, then In0 + A is invertible, where In0 denotes the
n0 × n0 identity matrix. Moreover, if A is an n0-dimensional invertible
matrix and ‖B‖ < ‖A−1‖−1, then A + B is invertible.

Theorem 7.11. If

‖Φ−1‖ <
2σ3

d

Cσe
√

n0(σ2
e‖θ‖2 + σ2

d)
, (7.7)

then θN = H(ξN ) → θ w.p.1 as N → ∞.

Proof. Noting that
∥
∥
∥
∥

σ2
eθθ′

σ2
z

∥
∥
∥
∥ =
∥
∥
∥
∥

σ2
eθθ′

σ2
eθ′θ + σ2

d

∥
∥
∥
∥ =

σ2
eθ′θ

σ2
eθ′θ + σ2

d

< 1,

by Remark 7.10, In0 − σ2
eθθ′/σ2

z is full rank. Since
∥
∥
∥
∥

σ2
eC11θ′

σ2
z

∥
∥
∥
∥ ≤

σ2
e‖C11‖‖θ‖

σ2
eθ′θ + σ2

d

≤ σ2
eC

√
n‖θ‖

2σeσd‖θ‖
=

σeC
√

n

2σd
,

we have ∥
∥
∥
∥
∥

σ2
eC11θ′

σ2
z

(
In0 −

σ2
eθθ′

σ2
z

)−1
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

σ2
eC11θ′

σ2
z

∞∑

i=0

(
σ2

eθθ′

σ2
z

)i
∥
∥
∥
∥
∥

< ‖Φ−1‖−1.
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By Remark 7.10,

Φ +
σ2

eC11θ′

σ2
z

(
In0 −

σ2
eθθ′

σ2
z

)−1

is invertible. Then,

Φ
(

In0 −
σ2

eθθ′

σ2
z

)
+

σ2
eC11θ′

σ2
z

is invertible. So, J(θ) is invertible. Hence, Proposition 7.9 confirms that
θN → θ w.p.1. �

Remark 7.12. Equation (7.7) can be used to design input signals. Indeed,
suppose that the prior information on the unknown parameters is that
‖θ‖ ≤ β. By using β2 in place of ‖θ‖2, one can design an input such that Φ
satisfies (7.7). Consequently, consistency of the estimates will be guaranteed
for any θ ∈ {ϑ : ‖ϑ‖ ≤ β}.

Example 7.13. Suppose the true system is yk = 0.9uk + 1.1uk−1 + dk.
Hence, the true parameters are θ = [0.9, 1.1]′ and ‖θ‖2 = 1.93. Assume that
the prior information on θ is that ‖θ‖2 ≤ 2. The output measurement noise
dk is i.i.d. normally distributed with zero mean and variance σ2

d = 4. The
input signal uk = vk + ek, where vk is 2-periodic with its one-period values
v1 = 3, v2 = 15, and ek is a sequence of i.i.d., normally distributed noise of
zero mean and variance σ2

e = 1. By direct calculation, ‖Φ−1‖ = 0.083. For
C = 20, and the prior information ‖θ‖2 ≤ 2, the right-hand side of (7.7) is
0.094. Hence, the input satisfies condition (7.7). In fact, under this input,
(7.7) is satisfied for all θ ∈ {ϑ : ‖ϑ‖2 ≤ 2}.

An identification algorithm is devised for this example. At each step N ,
ξN is calculated from (7.4). Then the estimate θN is derived by solving (7.5).
The inverse function of normal distribution is calculated by the Matlab
function norminv. The simulation in Figure 7.3 illustrates the convergence
of parameter estimates. The relative estimation error ‖θN − θ‖/‖θ‖ is used
to evaluate the accuracy and convergence of the estimates. Figure 7.3 shows
the parameter convergence of this algorithm.

7.5 Notes

This chapter presents conditions on input ensembles that provide suffi-
ciently rich probing power for convergence of parameter estimates. It is an
extension of the basic input design covered in the previous chapters and
is based on [109]. We summarize here several reasons that periodic signals
are of essential importance for quantized identification.

The classical control theory of Bode and Nyquist characterizes systems by
using periodic input signals (frequency responses). They are relatively easy
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FIGURE 7.3. Relative errors of parameter estimates

to apply and there are many special devices for obtaining system frequency
responses. Periodic inputs are especially useful for quantized identification
for several technical reasons:

(1) Periodic inputs are uniformly bounded. In contrast, to identify stochas-
tic systems, a typical method uses Gaussian-distributed signals that
are unbounded and more difficult to apply in practical systems. The
truncation of unbounded signals due to input saturation may cause
bias in system identification.

(2) Essential features for a periodic signal to be rich for identification are
certain rank conditions, rather than the magnitudes of the signals.
As a result, one may use small probing inputs for identification with
the benefit of contained perturbation to system operations.

(3) Periods and ranks of periodic signals are shift invariant. As such,
they are natural choices for achieving “persistent identification” for
time-varying systems [97, 103].

(4) As established in this chapter, periods and ranks of periodic sig-
nals are invariant after passing through a linear-time-invariant system
(with some mild conditions). Consequently, an externally applied pe-
riodic signal can be easily designed for identification of a plant in a
closed-loop setting [103].
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(5) As shown in the previous chapters, under periodic inputs, the identifi-
cation of a system with multiple parameters under quantized sensors
can often be reduced to a number of greatly simplified identification
problems for gains.

(6) Under periodic inputs, our algorithms have been shown to be asymp-
totically optimal, since they achieve the CR lower bounds asymptot-
ically.



8
Identification of Sensor Thresholds and
Noise Distribution Functions

The developments in the early chapters rely on the knowledge of the dist-
ribution function F (·) or its inverse, as well as the threshold C. However,
in many applications, the noise distributions are not known, or only lim-
ited information is available. On the other hand, input–output data from
the system contain information about the noise distribution. By viewing
unknown distributions and system parameters jointly as uncertainties, we
develop a methodology of joint identification.

Section 8.1 deals with unknown sensor thresholds. The threshold C is
added as an additional unknown parameter to be identified together with
the primary system parameters. Unknown distribution functions are more
difficult to handle and are treated in the remaining sections. Section 8.2
discusses parameterization of distribution functions so that joint identifi-
cation remains parametric. Joint identification problems are formulated in
Section 8.3. Section 8.4 delineates input conditions that will render the sys-
tem identifiable. The main algorithms are introduced in Section 8.5, whose
convergence properties are derived in Section 8.6. For practical implemen-
tations, Section 8.7 introduces some recursive algorithms, followed by a
graphical summary of the algorithms in Section 8.8 and some illustrative
examples in Section 8.9.

8.1 Identification of Unknown Thresholds

The main relationship in computing estimates is the equation ξ = F (C11−
Φθ). When C is unknown, this relationship is not sufficient to determine θ

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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and C, since it has n0 equations but n0 + 1 unknowns. We introduce the
following modified algorithm to estimate C and θ collectively.

We carry out our discussions under both input and output measurement
noises. Namely, wk = uk + εk, and yk = φ′

kθ +dk, where {dk} is a sequence
of random variables satisfying (A3.1).

8.1.1 Sufficient Richness Conditions

(A8.1) Suppose that {uk} is (n0 + 1)-periodic and full rank, and that
{εk} is an i.i.d. sequence with zero mean.

From yk = φ′
kθ + dk, k = 1, 2, . . ., define

Ỹj = [y(j−1)(n0+1)+1, . . . , yj(n0+1)]′ ∈ R
(n0+1),

Φ̃j = [φ(j−1)(n0+1)+1, . . . , φj(n0+1)]′ ∈ R
(n0+1)×n0 ,

D̃j = [d(j−1)(n0+1)+1, . . . , dj(n0+1)]′ ∈ R
(n0+1),

S̃j = [s(j−1)(n0+1)+1, . . ., sj(n0+1)]′ ∈ R
(n0+1).

Then,

Ỹj = Φ̃jθ + D̃j , for j = 1, 2, . . .

Note that {Φ̃j} is a sequence of (n0 + 1) × n0 matrices, generated from u.
Due to measurement noise, the actual uk is unknown and only wk can be
used in algorithms. Define

ξ̃N =
1
N

N∑

l=1

S̃l,

Ψ̃w
N =

1
N

N∑

l=1

Φ̃w
l ,

where

Φ̃w
l =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

wl(n0+1) wl(n0+1)−1 . . . wl(n0+1)−n0+1

wl(n0+1)+1 wl(n0+1)

. . . wl(n0+1)−n+2

...
. . . . . .

...

wl(n0+1)+n0 wl(n0+1)+n0−1 . . . wl(n0+1)+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Under Assumption (A8.1), Ψ̃w
N → Ψ̃ w.p.1, where

Ψ̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

un0+1 un0 . . . u2

u1 un0+1
. . . u3

...
. . . . . .

...

un0 un0−1 . . . u1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Define Ψ
w

N = [11n0+1,−Ψ̃w
N ] and Ψ = [11n0+1,−Ψ̃]. Note that Ψ is an (n0 +

1) × (n0 + 1) matrix.

Lemma 8.1. The following assertions hold.

(i) Under Assumption (A8.1), Ψ is full rank.

(ii) Conversely, if uk is (n0+1)-periodic but not full rank, and
∑n0+1

j=1 uj �=
0, then Ψ is not full rank.

Proof.

(i) Ψ̃ is the first n0 columns of the (n0 + 1) × (n0 + 1) circulant matrix
T = T ([un0+1, . . . , u1]). Since {uj , j = 1, . . . , n0 +1} is full rank, T is
full rank and

∑n0+1
j=1 uj �= 0. Adding the first n0 columns to the last

column, transferring the last column to be the first one, and dividing
the first column by

∑n0+1
j=1 uj result in

T ∼

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

un0+1 un0 . . . u2

n0+1∑

j=1

uj

u1 un0+1 . . . u3

n0+1∑

j=1

uj

...
. . . . . . . . .

...

un0 un0−1 . . . u1

n0+1∑

j=1

uj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n0+1∑

j=1

uj un0+1 un0 . . . u2

n0+1∑

j=1

uj u1 un0+1
. . . u3

...
. . . . . . . . .

...
n0+1∑

j=1

uj un0 un0−1 . . . u1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼ Ψ.

(8.1)
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This implies that Ψ is full rank.

(ii) Conversely, if uk is not full rank, T is not full rank. Since
∑n0+1

j=1 uj �=
0, (8.1) is valid. It follows that Ψ is not full rank.

�

By Lemma 8.1, under Assumption (A8.1), Ψ is invertible. Define an
augmented parameter vector Θ = [C, θ′]′. Let ΘN = (Ψ

w

N )−1G(ξ̃N ), where
G(x) = F−1(x).

Theorem 8.2. The following assertions hold.

(i) Suppose that {dk} is a sequence of i.i.d. random variables whose dis-
tribution function F (·) and its inverse F−1(·) are twice continuously
differentiable and known, and that (A8.1) holds. Then ΘN → Θ w.p.1
as N → ∞. This implies that u = {uk} is sufficiently rich.

(ii) Conversely, if uk is (n0+1)-periodic but not full rank, and
∑n0+1

j=1 uj �=
0, then uk is not sufficiently rich.

Proof.

(i) Recall that
Ψ

w

N = [11n0+1,−Ψ̃w
N ].

Under Assumption (A8.1), Ψ
w

N → Ψ w.p.1. Under Assumption (A3.1),
by the strong law of large numbers,

ξ̃N → ξ̃ = F (ΨΘ) w.p.1 as N → ∞.

This implies, by the continuity of F−1(·),

G(ξ̃N ) → ΨΘ w.p.1 as N → ∞.

As a result, by Lemma 8.1, ΘN = (Ψ
w

N )−1G(ξ̃N ) → Θ w.p.1 as
N → ∞.

(ii) Under the hypothesis, by Lemma 8.1, Ψ is not full rank. Hence, there
exists δ �= 0 such that Ψδ = 0. Suppose C1 and θ1 are true parameters,
and [C2, θ

′
2]

′ = [C1, θ
′
1]

′ + δ. Then

yk(θ1) = φ′
kθ1 + dk ≤ C1

if and only if
yk(θ2) = φ′

kθ2 + dk ≤ C2, ∀k.

It follows that the output sequences satisfy sk(C1, θ1) = sk(C2, θ2).
In other words, uk is information insufficient, which implies that uk

is not sufficiently rich.

�
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8.1.2 Recursive Algorithms

A causal and recursive algorithm for computing ΘN can be constructed as
follows.

1. Initialization: ξ̃1 = S̃1, Ψ̃1 = Φ̃w
1 , Θ1 = 0.

2. Recursion: Suppose that at N , ξ̃N , Ψ̃w
N , and ΘN = [CN , θ′N ]′ have

been obtained. Then at N + 1, we update

ξ̃N+1 = ξ̃N − 1
N + 1

ξ̃N +
1

N + 1
S̃N+1,

Ψ̃w
N+1 = Ψ̃w

N − 1
N + 1

Ψ̃w
N +

1
N + 1

Φ̃w
N+1,

Ψ
w

N+1 = [11n0+1,−Ψ̃w
N+1],

ΘN+1 =

⎧
⎨

⎩
ΘN , if Ψ

w

N+1 is singular,

(Ψ
w

N+1)
−1G(ξ̃N+1), otherwise.

The following theorem claims convergence of ΘN , whose proof is sim-
ilar to that of Theorem 7.8 and is omitted.

Theorem 8.3. Under the assumptions of Theorem 8.2, ΘN → Θ w.p.1
as N → ∞.

8.2 Parameterized Distribution Functions

To estimate the distribution function η = F (λ), one needs interpolation
data in the form of η{i} = F (λ{i}), i = 1, 2, . . . , l. When F (·) is not param-
eterized, the estimation of F can become sufficiently accurate only if the
data points {λ{i}} are sufficiently dense, rendering an estimation problem
of high complexity. Consequently, we adopt a parameterization approach
for treating F (·).

Our approach involves three key ideas.

(a) F (·) is approximately parameterized by a model with unknown par-
ameter vector α.

(b) We have shown that the empirical measure ξ
{j}
N is an approximation

of F (C − γ{j}), where γ{j} is to be estimated as well. Since the
underlying system is linear, when the input uk is scaled to ρuk and the
threshold C is shifted to Ci, we shift the data point from F (C−γ{j})
to F (Ci −ργ{j}). This allows us to generate more data points for the
estimation of F .

(c) Since γ{j} is also unknown, we jointly estimate γ{j} and α. As a
result, we can simultaneously estimate γ{j} for system identification
and α for distribution functions.
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Suppose that the unknown noise distribution function is F (·), which is
approximated by a parameterized model F̂ (x, α), where α = [α1, . . . , αL]′

is the unknown model parameter vector of size L. For a given class F of
possible distribution functions, the representation error of F (x) ∈ F by
F̂ (x, α) is

ε = sup
F∈F

inf
α

sup
x∈X

|F (x) − F̂ (x, α)|, (8.2)

where X is a domain for function approximation. For a given F ∈ F, if the
corresponding minimizer of (8.2) is α, then

F (x) = F̂ (x, α) + Δ(x) (8.3)

with |Δ(x)| ≤ ε,∀x ∈ X . When α is estimated from the data, its estimate
α̂ induces an estimated distribution function F̂ (x, α̂). The overall represen-
tation error becomes

F (x) − F̂ (x, α̂) = F̂ (x, α) − F̂ (x, α̂) + Δ(x).

When a class F of distribution functions is given, explicit structures of
the parameterization may become apparent. As an explanation, we note
the following two cases.

1. If F is the class of normal distributions with unknown mean μ and
variance σ2, then F (x) = F0((x−μ)/σ), where F0(x) is the standard
normal distribution of μ = 0 and σ2 = 1. In this case, F can be
parameterized by α = [μ, σ2]′ with ε = 0.

2. Suppose F is a uniform distribution of a fixed but unknown interval
X = [a, b]. For x ∈ X , F (x) is completely parameterized by F (x) =
α1 + α2x with ε = 0. On the other hand, if the uniform distribution
is known to have zero mean, then X = [−δ, δ] and

F (x) =
x

2δ
+

1
2
, x ∈ X .

In these examples, the parameterization F̂ (x, α) comes naturally and
represents F (x) precisely for all x. However, in general, one may need to
use more generic structures of parameterization. For example, for compu-
tational convenience, it is common to use a set of L base functions bj(·),
j = 1, . . . , L, to represent F (·). Then

F̂ (x, α) =
L∑

j=1

αjbj(x) = b′(x)α, (8.4)

where b(x) = [b1(x), . . . , bL(x)]′.
It is noted that some routine modifications to (8.4) may be needed. For

example, suppose polynomials of x are used as base functions. If F (x) is
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a normal distribution, then for any finite L, F (x) cannot be well approxi-
mated by F̂ (x, α) over all x ∈ R. In this case, one may limit (8.4) to a finite
interval [a, b] and modify F̂ (x, α) for x �∈ [a, b] so that F̂ (x, α) decreases
toward 0 for x → −∞ and F̂ (x, α) increases toward 1 when x → ∞. Since
these techniques are standard in function approximations, they will not be
discussed further.

8.3 Joint Identification Problems

The main idea of our approach is to explore input scaling, possibly together
with threshold shifting, to provide joint information on the unknown dist-
ribution function and system parameters. Due to parameterization of the
uncertainty set F, the identification of F is reduced to parameter estimation
of α.

To be more specific, the n0-periodic full-rank input u employed in the
previous chapters for parameter identification can be expanded by scaling.
Let ρi, i = 1, . . . , κ, be κ nonzero scaling factors. Define u{i} = ρiu. Note
that by linearity of the system, when the input is u{i}, for a given j =
1, . . . , n0, the corresponding output becomes

y
{i}
ln0+j = ρiγ

{j} + dj+ln0 , l = 0, 1, . . . , N − 1.

In addition, the threshold C may also be shifted to Ci.
Under the periodic signal u, scaling factors ρi, and thresholds Ci, let the

corresponding sequences of the sensor output be {s{i}
k }. Now, the empirical

measures

ξ
{i,j}
N =

1
N

N−1∑

l=0

s
{i}
ln0+j → ξ{i,j} w.p.1.

= F (Ci − ρiγ
{j}).

(8.5)

The limit of the empirical measures satisfies, for a given j = 1, . . . , n0,

ξ{i,j} = F̂ (Ci−ρiγ
{j}, α)+[F (Ci−ρiγ

{j})−F̂ (Ci−ρiγ
{j}, α)], i = 1, . . . , κ.

(8.6)
Our task is to calculate Γ = [γ{1}, . . . , γ{n0}]′ and α. When uk is n0-periodic
and full rank, θ can be identified from γ. As a result, joint identification of
α and θ is reduced to joint identification of α and Γ.

8.4 Richness Conditions for Joint Identification

An essential property for identifying α and Γ is that the systems of equa-
tions (8.6) have a unique solution. It is noted that for a given j, the κ
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equations
ξ̃{i,j} = F (Ci − ρiγ

{j}, α), i = 1, . . . , κ, (8.7)

contain L + 1 unknowns: γ{j} and α. Hence, we should take κ ≥ L + 1. If
Ci and ρi are selected such that (8.7) has a unique solution α and γ, then
by repeating the procedure for γ = γ{j}, j = 1, . . . , n0, (8.6) will have a
unique solution α and Γ. Denote Λ = {(Ci, ρi), i = 1, . . . , κ}. Suppose the
prior information on α and γ is that [α′, γ]′ ∈ Ω ⊆ R

L+1.

Definition 8.4. Given a parameterization F̂ (x, α), a set of pairs Λ =
{(Ci, ρi), i = 1, . . . , κ} is said to be sufficiently rich for joint identification
of α and Γ if, under Λ, (8.7) has a unique solution α and γ in Ω.

Remark 8.5. A sufficient condition for Λ to be sufficiently rich is that the
κ × (L + 1) Jacobian matrix

J =

⎡

⎢
⎢
⎢
⎣

∂F̂ (C1−ρ1γ,α)
∂α −ρ1

∂F̂ (C1−ρ1γ,α)
∂(C1−ρ1γ)

...
...

∂F̂ (Cκ−ρκγ,α)
∂α −ρκ

∂F̂ (Cκ−ρκγ,α)
∂(Cκ−ρκγ)

⎤

⎥
⎥
⎥
⎦

is full rank for all [α′, γ′]′ ∈ Ω.

Example 8.6. Suppose F is a normal distribution function with unknown
μ and σ, F (x) = F0((x − μ)/σ), where F0 is the normal distribution of
μ = 0 and σ = 1. Then for κ = L + 1 = 3, (8.7) becomes

ξ{i} = F0((Ci − ρiγ − μ)/σ), i = 1, 2, 3.

Define xi = F−1
0 (ξ{i}), i = 1, 2, 3. Then we have

xi =
Ci − ρiγ − μ

σ
, i = 1, 2, 3,

or ⎡

⎢
⎢
⎢
⎣

C1 −ρ1 −1

C2 −ρ2 −1

C3 −ρ3 −1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1/σ

γ/σ

μ/σ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

x1

x2

x3

⎤

⎥
⎥
⎥
⎦

.

In this case, (8.7) has a unique solution if the matrix

M =

⎡

⎢
⎢
⎢
⎣

C1 −ρ1 −1

C2 −ρ2 −1

C3 −ρ3 −1

⎤

⎥
⎥
⎥
⎦
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is full rank. For example, if C1 = 1, C2 = 2, C3 = 4, ρ1 = 1, ρ2 = 3, and
ρ3 = 5, then it can be calculated that

M =

⎡

⎢
⎢
⎢
⎣

1 −1 −1

2 −3 −1

4 −5 −1

⎤

⎥
⎥
⎥
⎦

,

which is full rank for any μ, σ, γ.
In this example, it is easy to verify that shifting the threshold is necessary

for M to be full rank. Indeed, if C1 = C2 = C3 = C, then M is not full
rank. In fact, the expression

Ci − ρiγ − μ

σ
=

C − μ

σ
− ρi

γ

σ

cannot be used to determine the three parameters μ, σ, γ.
On the other hand, if it is known that the noise is zero mean, namely,

μ = 0, then one may use a fixed threshold. In this case, we have

x1 =
C

σ
− ρ1

γ

σ
, x2 =

C

σ
− ρ2

γ

σ
.

γ and σ can be solved uniquely if ρ1 �= ρ2.

8.5 Algorithms for Identifying System Parameters
and Distribution Functions

Note that the event {y{i}
j+ln0

≤ Ci} is the same as {dj+ln0 ≤ Ci − ρiγ
{j}}.

Then ξ
{i,j}
N is precisely the value of the N -sample empirical distribution

FN (x) of the noise d at x = Ci − ρiγ
{j}: ξ

{i,j}
N = FN (Ci − ρiγ

{j}). Con-
sequently, in consideration of parameterized models of F , over κ input
sequences, we obtain the following κ-sample values of F̂ (x, α) at

ξ
{i,j}
N = F̂ (Ci − ρiγ

{j}, α) + e
{i,j}
N + Δ, i = 1, . . . , κ,

where e
{i,j}
N is the identification error and Δ is the representation error in

(8.3).
For a fixed j, let γ = γ{j}. Consider

ξ
{i,j}
N = F̂ (Ci − ρiγ, α) + e

{i,j}
N + Δ, i = 1, . . . , κ.

In general, parameterization F̂ (x, α) is a nonlinear mapping with respect
to α. Consequently, the nonlinear equations ξ

{i,j}
N = F̂ (Ci − ρiγ

{j}, α̂)
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will be used to derive an estimate α̂. For simplicity of discussions, we will
present our algorithms for linear parameterization since it renders a simpler
sequential procedure.

By the linear representation of F (x) in (8.4), we have that for i =
1, . . . , κ,

ξ
{i,j}
N = b′(Ci − ρiγ)α + Δ(Ci − ρiγ) + e

{i,j}
N .

By defining

ΞN = [ξN (1, j), . . . , ξN (κ, j)]′,

B(γ) = [b(C1 − ρ1γ), . . . , b(Cκ − ρκγ)]′,

Δ = [Δ(C1 − ρ1γ), . . . ,Δ(Cκ − ρκγ)]′,

ẼN = [eN (1, j), . . . , eN (κ, j)]′,

we obtain the relationship

ΞN = B(γ)α + Δ + ẼN . (8.8)

The goal here is to select α and γ to minimize ‖ΞN (γ, α)−B(γ)α‖2
2, where

‖ · ‖2 is the Euclidean norm. The following joint identification algorithm is
introduced.

We shall write (8.8) as

Ξ = B(γ)α + Δ + Ẽ.

For any given γ, if the corresponding B(γ) is full rank, the optimal least-
squares estimation error for α is

V (γ) = ‖(I − B(γ)(B′(γ)B(γ))−1B′(γ))Ξ‖2
2.

Then the following optimal line search optimization is conducted:

min
γ

V (γ). (8.9)

Denote the optimal solution by γ̂. Then

α̂ = (B′(γ̂)B(γ̂))−1B′(γ̂)Ξ. (8.10)

This algorithm is based on the consecutive marginal optimization

inf
γ

(
inf
α

‖Ξ − B(γ)α‖2
2

)
= inf

γ
V (γ). (8.11)

Observe that, in general, the joint identification

inf
α,γ

‖Ξ − B(γ)α‖2
2 (8.12)

is a nonlinear optimization problem, which bears a higher computational
complexity. Although for a finite observation, the consecutive optimization
(8.11) may not be equivalent to the estimates from the joint optimization
(8.12), convergence results on γ̂ and α̂ can be established. Note that for
algorithm execution, (8.11) will be repeated for γ = γ{j}, j = 1, . . . , n0.
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8.6 Convergence Analysis

We now derive convergence properties of γ̂ and α̂.

(A8.2) {dk} is a sequence of i.i.d. random variables whose distribution
function F (·) and inverse F−1(·) are twice continuously differentiable. F (·)
is unknown but belongs to a class F.

Theorem 8.7. Suppose that Λ = {(Ci, ρi), i = 1, . . . , κ} is sufficiently
rich. Then under the representation error bound (8.2), there is an α̂N such
that for any compact subset X ⊂ R,

lim sup
N→∞

sup
x∈X

|F̂ (x, α̂N ) − F (x)| ≤ cε w.p.1,

for some constant c ≥ 0, where ε is defined in (8.2).

Proof. From (8.3) and (8.4), we have that for i = 1, . . . , κ,

F (Ci − ρiγ) = b′(Ci − ρiγ)α + Δ(Ci − ρiγ),

in a vector form
Ξ = Bα + Δ.

Since Λ is sufficiently rich, B′B is invertible. Hence, by the least-squares
method, we obtain

α̂N = (B′B)−1B′Ξ
and

α̂N − α = (B′B)−1B′Δ,

which implies
‖α̂N − α‖2 ≤ β1ε,

for some constant β1 > 0. Consequently, for some β2 > 0,

|F̂ (x, α̂N )−F (x)| ≤ |b′(x)(α−α̂N )+Δ(x)| ≤ β2β1ε+ε = βε. �

Theorem 8.8. Under Assumption (A8.2) and the representation of error
bound (8.2), if (8.11) holds, then the γ̂N obtained by solving (8.9) satisfies

lim sup
N→∞

|γ̂N − γ| ≤ β0ε w.p.1,

for some constant β0 > 0.

Proof. From (8.3) and (8.4), we have

F (Ci − ρiγ) − F (Ci − ρiγ̂N )

= [F (Ci − ρiγ) − FN (Ci − ρiγ)] + [FN (Ci − ρiγ) − b′(Ci − ρiγ̂N )α]

+[b′(Ci − ρiγ̂N )α − F (Ci − ρiγ̂N )]

= [F (Ci − ρiγ) − FN (Ci − ρiγ)] + [FN (Ci − ρiγ) − b′(Ci − ρiγ̂N )α]

−Δ(Ci − ρiγ̂N ),
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which leads to

|F (Ci − ρiγ) − F (Ci − ρiγ̂N )|
≤ |F (Ci − ρiγ) − FN (Ci − ρiγ)|

+|FN (Ci − ρiγ) − b′(Ci − ρiγ̂N )α| + ε.

(8.13)

Note that by (8.11),

|FN (Ci − ρiγ) − b′(Ci − ρiγ̂N )α|
≤ ‖Ξ − B(Ci − ρiγ̂N )α‖2

≤ ‖Ξ − B(Ci − ρiγ)α‖2 = ‖Δ‖2.

Then from
lim

N→∞
|F (Ci − ρiγ) − FN (Ci − ρiγ)| = 0

and (8.13), we have

|F (Ci − ρiγ) − F (Ci − ρiγ̂N )| ≤ β1ε

for some constant β1. Thus, by the differentiability of F−1(·), we conclude
that

|(Ci − ρiγ̂N ) − (Ci − ρiγ)| ≤ β1|Ḟ−1(ξ)|ε
for some value

ξ ∈ [min{F (Ci − ρiγ), F (Ci − ρiγ̂N )}, max{F (Ci − ρiγ), F (Ci − ρiγ̂N )}].

This together with the continuity of Ḟ−1(·) implies that

lim sup
N→∞

|γ̂N − γ| ≤ β0ε,

as stated. �

In particular, if F is well represented by the parameterized model, i.e.,
ε → 0, then γ̂N → γ w.p.1 as N → ∞.

8.7 Recursive Algorithms

In this section, we develop a class of recursive algorithms for estimating α
and γ. In lieu of the line search (8.9) and least squares procedure (8.10), the
estimate α̂N will be constructed via an adaptive filtering algorithm to re-
duce the computational complexity, and the estimate γ̂N will be recursified.
This section is divided into three parts: First, we present the algorithms.
Then, we establish the convergence of the schemes. Finally, we make some
additional remarks on alternatives.
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The identification problem involves several indices which can be confus-
ing in our recursive algorithms: (a) the time index k. (b) The time-block
index N . Iteration from N to N + 1 represents an acquisition of n0 obser-
vation points on sk. (c) The cyclic index j = 1, . . . , n0. This index indicates
rotation of parameters γ{j} in identification, in other words, indicating one
of the sequential optimization problems. (d) The index i in ρi, i = 1, . . . , κ.
This represents the ith scaling factor ρi is applied at input.

For example, due to the cyclic nature, γ̂{j} can only be updated once
every n0 data points. As a result, it is indexed as γ̂

{j}
N . On the other hand,

all data points contain information on α. Hence, it can be indexed as α̂k.
In case we choose to update α̂ at the same time as updating γ{j}, we shall
use α̂N instead.

8.7.1 Recursive Schemes

The following two typical classes of recursive algorithms will be considered.
(A) Adaptive Filtering Algorithms
For each i = 1, . . . , κ of scaling values at the input, and j = 1, . . . , n0,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ
{i,j}
N+1 = ξ

{i,j}
N − 1

N + 1
[ξ{i,j}

N − s
{i}
j+(N+1)n0

],

α̂
{i,j}
N+1 = α̂

{i,j}
N +

1
N + 1

bN [ξ{i,j}
N − b′N α̂

{i,j}
N ],

γ̂
{i,j}
N+1 = γ̂

{i,j}
N +

1
N + 1

[

γ̂
{i,j}
N − Ci − F̂−1(ξ{i,j}

N , α̂
{i,j}
N )

ρi

]

,

(8.14)
where

bN = b(Ci − ρiγ̂
{i,j}
N ),

with b(·) given in (8.4), and F̂−1(z, α̂) denotes the inverse of F̂ (z, α) when α
is fixed. Note that, in fact, bN is j-dependent, so it should have been written
as b

{j}
N . We have suppressed j-dependence for notational simplicity.

(B) Combined Adaptive Filtering and Least-Squares Algorithm
For each i = 1, . . . , κ of scaling values at the input, j = 1, . . . , n0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ
{i,j}
N+1 = ξ

{i,j}
N − 1

N + 1
[ξ{i,j}

N − s
{i}
j+(N+1)n0

],

α̂
{i,j}
N+1 = α̂

{i,j}
N + aNΨNbN [ξ{i,j}

N − b′N α̂
{i,j}
N ],

ΨN+1 = ΨN − aNΨNbNbT
NΨN ,

aN = (1 + b′NΨNbN )−1,

γ̂
{i,j}
N+1 = γ̂

{i,j}
N +

1
N + 1

[

γ̂
{i,j}
N − Ci − F̂−1(ξ{i,j}

N , α̂
{i,j}
N )

ρi

]

.

(8.15)
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8.7.2 Asymptotic Properties of Recursive Algorithm (8.14)

In what follows, we present asymptotic properties of the algorithms given
in (8.14) and (8.15). To proceed, we need some conditions, which are listed
below.

(A8.3) The following system of differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
α{i,j}(t) = b(Ci − γ{i,j}(t))F (Ci − γ{i,j})

−b(Ci − γ{i,j}(t))b′(Ci − γ{i,j}(t))α{i,j}(t),
d

dt
γ{i,j}(t) = γ{i,j}(t)

−Ci − F̂−1(F (Ci − γ{i,j}ρi), α{i,j}(t))
ρi

,

(8.16)

has a unique solution for each initial condition. In addition, (8.16) has a
unique asymptotically stable point (α{i,j},0, γ{i,j},0) in the sense of Lya-
punov.

(A8.4) The following conditions hold.

• The sequences {γ̂{i,j}
N } for j = 1, . . . , n0 are bounded w.p.1.

• Denoting Aj = b(Ci − ρiγ
{i,j},0)b′(Ci − ρiγ

{i,j},0), Aj is symmetric
and positive definite.

• Both b(·) and F̂−1(·, ·) are continuous.

Remark 8.9. To ensure the boundedness, we can use a projection algo-
rithm

γ̂
{i,j}
N+1 = ΠG

⎡

⎣γ̂{i,j}
N +

γ̂
{i,j}
N − [Ci−F̂−1(ξ

{i,j}
N ,α̂

{i,j}
N )]

ρi

N + 1

⎤

⎦ ,

where ΠG is the projection operator onto the bounded set G (see [55] for
more details). Owing to the use of {s{i}

N }, {ξ{i,j}
N } is bounded. Note that we

can choose G to be as simple as a box, and choose it to be large enough so
that it contains the true parameter γ{j}. However, to simplify notation
and for convenience, we have assumed that the boundedness of {γ̂{j}

N }
in Assumption (A8.4). The continuity of b(·) implies that F̂ (·, ·) is also
continuous since it is linear in α. We require that the matrix Aj be positive
definite, which is essentially a solvability or identifiability condition.
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We claim that {α̂{i,j}
N } is bounded w.p.1 uniformly in N . To see this,

write

α̂
{i,j}
N+1 = AN,0α̂

{i,j}
0 +

N∑

l=0

1
l + 1

AN,l[Aj − blb
T
l ]α̂{i,j}

l

+
N∑

l=0

1
l + 1

AN,lblξ
{j}
l ,

(8.17)

where

AN,l =

⎧
⎪⎨

⎪⎩

N∏

i=l+1

(
I − 1

i + 1
Aj
)
, l < N ,

I, l = N .

Note that following the convention for bN , we suppressed the j-dependence
in the notation AN,l. Thus, taking the norm in (8.17), an application of the
Gronwall’s inequality yields that

|α̂{i,j}
N+1| ≤ K1,N exp(K2,N ), (8.18)

where

K1,N = |AN,0α̂
{i,j}
0 | +

N∑

l=0

1
l + 1

|AN,l||blξ
{i,j}
l |,

K2,N =
N∑

l=0

1
l + 1

|AN,l||Aj − blb
′
l|,

with

aN,l =

⎧
⎪⎨

⎪⎩

N∏

i=l+1

(
1 − 1

i + 1
λ

)
, l < N ,

1, l = N ,

where λ is the minimal eigenvalues of Aj ,

N∑

l=0

1
l + 1

|AN,l| ≤
N∑

l=0

1
l + 1

aN,l

=
K0

λ

N∑

l=0

[aN,l+1 − aN,l] = K0(1 − aN,0) < ∞.

(8.19)

Note that in the above, we used K0 as a generic positive constant whose
value may change for different appearances. The bound in (8.19) together
with (8.17), the boundedness of {ξ{i,j}

N } and {γ̂{i,j}
N }, implies that K1,N is

bounded w.p.1 uniformly in N , so is K2,N . The w.p.1 boundedness (uniform
in N) of {α̂{i,j}

N } then follows from (8.18).
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Next, consider the joint process z
{i,j}
N = (α̂{i,j}

N , γ̂
{i,j}
N )′. Set

tN =
N−1∑

l=0

1
l + 1

and m(t) = max{N : tN ≤ t}.

Denote zN = (z{i,j}
N : i = 1, . . . , κ, j = 1, . . . , n0) and define the piecewise-

constant interpolation

z0(t) = zN for t ∈ [tN , tN+1) and zN (t) = z0(t + tN ).

Note that zN (·) is a shifted sequence for bringing the asymptotic proper-
ties of the sequence to the foreground. We also define the component of
the interpolation zN,{i,j}(·) as αN,{i,j}(·) and γN,{i,j}(·). The boundedness
on {ξ{i,j}

N , α̂
{i,j}
N , γ̂

{i,j}
N } yields that zN,{i,j}(·) is uniformly bounded. The

continuity condition in Assumption (A8.4) and the continuity of the dist-
ribution function and its inverse imply zN,{i,j}(·) is equicontinuous in the
extended sense as defined in [55, p. 102]. By the Arzelà–Ascoli theorem
[55, p. 102] applied to a sequence of equicontinuous functions (in the ex-
tended sense), we can extract a convergent subsequence zN1,{i,j}(·) such
that zN1,{i,j}(·) converges to z{i,j}(·) w.p.1 and the convergence is uniform
on any bounded interval. For convenience, in what follows, we simply write
N1 as N . Using the usual ODE approach (see [55]), we can show that
(αN,{i,j}(·), γN,{i,j}(·)) → (α{i,j}(·), γ{i,j}(·)). Then α{i,j}(·) and γ{i,j}(·)
satisfy the differential equation in (8.16).

Next, let {τN} be a sequence of positive real numbers satisfying τN →
∞ as N → ∞. Then it can be shown (see [55] for more details) that
(αN,{i,j}(· + τN ), γN,{i,j}(· + τN )) → (α{i,j},0, γ{i,j},0) as N → ∞. Thus,
(α̂{i,j}

N , γ̂
{i,j}
N ) → (α{i,j},0, γ{i,j},0) w.p.1 as N → ∞.

Note that the stationary point γ{i,j},0 is given by

γ{i,j},0 = [Ci − F̂−1(F (Ci − γ{i,j},0ρi), α{i,j},0)]/ρi.

As in the previous section, it can be shown that for some β0 > 0,

lim sup
N→∞

|Ci − F−1(ξj
N ) − γ{i,j},0| ≤ β0ε. (8.20)

Summarizing what has been proved, we obtain the following theorem.

Theorem 8.10. Assume (A8.1)–(A8.4). Then, {ξ{i,j}
N , α̂

{i,j}
N , γ̂

{i,j}
N }, the

sequence of triples converges w.p.1. Moreover, we have the following upper
bound on the deviation γ̂

{i,j}
N − γ{j}:

lim sup
N→∞

|γ̂{i,j}
N − γ{j}| ≤ β0ε, w.p.1 for some β0 > 0.
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8.8 Algorithm Flowcharts

Our algorithms for joint identification of system parameters and noise dis-
tributions are summarized in Figure 8.1. We now use an example to demon-

Estimate plant parameters 

Construct estimated plant output  

and regressors  

Select a n0-periodic full rank input u

Select a sufficiently rich set (  pairs) of 

  scaling factors i  and thresholds i
C

For each  i = 1,2,…, 

Use the input i
u  and threshold 

i
C

Measure sensor outputs

For each j = 1,2,…, n0

Solve the  equations

for estimates of  and 
j

For each  i = 1,2,…, 

Calculate n0 empirical measures  

Recursion 

Experimental

Design 

Identification 

Experiments

Step 1: 

Identify Noise 

Distribution

and

Plant Outputs 

Step 2:

Identify  

Plant Parameters 

FIGURE 8.1. An algorithm flowchart

strate the identification algorithms presented so far. Suppose that the true
plant is a first-order system

xk = −a0xk−1 + b0uk−1, yk = xk + dk,

where a0 = 0.4, and b0 = 1.6. {dk} is an i.i.d. sequence, uniformly dis-
tributed on [−1.2, 1.2]. Hence, the true distribution function is ξ = F (x) =
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(1/2.4)x + 0.5 for x ∈ [−1.2, 1.2]. The true system parameters and the
distribution function interval are unknown.

1. Experimental design: Here we need to select the parameterization of
the unknown distribution function, input signal, scaling, and thresh-
old selections.

(a) For this example, we assume the linear function parameteriza-
tion of F : ξ = F̂ (x, α) = α1 + α2x. Since this is a correct pa-
rameterization, the function representation error satisfies ε = 0.

(b) To identify the two system parameters a0 and b0, the base input
is 2-periodic with u1 = 0.7 and u2 = 0.2, which is full rank.

(c) Signal scaling factors ρi and thresholds Ci are to be selected such
that (8.7) can be solved uniquely for α and γ. In this example,
we have

ξ{1} = α1 + α2(C1 − ρ1γ),

ξ{2} = α1 + α2(C2 − ρ2γ),

ξ{3} = α1 + α2(C3 − ρ3γ).

This system has a unique solution if

M =

⎡

⎢
⎢
⎢
⎣

1 C1 ρ1

1 C2 ρ2

1 C3 ρ3

⎤

⎥
⎥
⎥
⎦

is full rank. For example, we use the following three sets of val-
ues: ρ1 = 0.3, C1 = −0.4; ρ2 = 0.5, C2 = 0.4; ρ3 = 0.8, C3 = 0.8.
This leads to

M =

⎡

⎢
⎢
⎢
⎣

1 −0.4 0.3

1 0.4 0.5

1 0.8 0.8

⎤

⎥
⎥
⎥
⎦

,

which is full rank.

2. Identification: Identify α and θ.

(a) The system output yk is simulated by

yk = −a0xk−1 + b0uk−1 + dk,

for a total of 900 sample steps.

(b) The sensor outputs are observed and empirical measures are
calculated.
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(c) The recursive identification algorithms (8.9) and (8.10) are ap-
plied to identify the plant parameters and distribution function
simultaneously.

3. Evaluation: The plant parameter estimates are compared to the true
values a0 = 0.4, b0 = 1.6, and the distribution function parameters
[α1, α2] are compared to their true values [0.5, 1/2.4]. The results are
shown in Figure 8.2, where relative errors are plotted as a function
of sample sizes.
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FIGURE 8.2. Joint identification of distribution functions and plant parameters

8.9 Illustrative Examples

In this section, we use two examples to demonstrate the algorithms devel-
oped in this chapter. Example 8.11 illustrates the case when the switching
threshold is unknown. It shows that when the input is n0 + 1 full rank,
both the threshold C and system parameters θ can be estimated simulta-
neously. Example 8.12 covers the scenario of unknown noise distributions.
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The input design and joint identification algorithms are shown to lead to
consistent estimates.

Example 8.11. Suppose that the threshold C is unknown and that the
input has measurement noise. Consider a third-order system: yk = φ′

kθ +
dk, where the output is measured by a binary-valued sensor with un-
known threshold C. Suppose the true parameters are C = 28 and θ =
[2.1, 2.7, 3.6]′, and that {dk} is a sequence of i.i.d. normal variables with
mean zero and variance σ2

d = 4. The noise-free input v is 4-periodic with
one-period values (3.1, 4.3, 2.3, 3.5), which is full rank. The actual input is
uk = vk + εk, where {εk} is a sequence of i.i.d. normal variables with mean
zero and variance σ2

ε = 1.
For n = 3, define

Ỹj = [y4(j−1)+1, . . . , y4j ]′ ∈ R
4,

Φ̃j = [φ4(j−1)+1, . . . , φ4j ]′ ∈ R
4×3,

D̃j = [d4(j−1)+1, . . . , d4j ]′ ∈ R
4,

S̃j = [s4(j−1)+1, . . . , s4j ]′ ∈ R
4.

It follows that Ỹj = Φ̃jθ + D̃j , for j = 1, 2, . . . Since {D̃j} is a sequence of
i.i.d. normal variable vectors, we have ξ̃N = 1

N

∑N
j=1 S̃j → F (ΨΘ). Since

v is full rank, Ψ is invertible. If Ψ is known, by the continuity of F and
G, an estimate of θ can be constructed as (Ψ)−1G(ξ̃N ) → Θ w.p.1. Due to
the input measure noise, Ψ is not measured directly. What we can use is
Ψ̃w

N . Theorem 8.3 confirms that ΘN = (Ψ
w

N )−1G(ξ̃N ) will be a consistent
estimate of Θ.

Set initial conditions as ξ̃1 = S̃1 = [1, 1, 1, 1]′, Ψ̃1 = Φ̃1, Θ1 = 0. We
construct a causal and recursive algorithm as in Section 8.1.2. The relative
estimation error ‖ΘN −Θ‖/‖Θ‖ is used to evaluate the accuracy and con-
vergence of the estimates. Figure 8.3 shows that ΘN converges to the true
parameters Θ = [C, θ′]′.

Example 8.12. When the noise distribution function is unknown, joint
identification is used to estimate the system parameters and noise distribu-
tion function jointly. Consider a gain system (n = 1): yk = auk +dk, where
the true value a = 2, and {dk} is a sequence of i.i.d. normal variables. The
sensor has threshold C = 12. Let F0(x) be the normal distribution function
of zero mean and variance 1, and let G0(x) be the inverse of F0(x). Then
the distribution function of dk is

F (x; [μ, σ]) = F0((x − μ)/σ).

Let μ = 3 be given, and the true value of variance σ = 3. If μ is known,
F (x; [μ, σ]) is jointly identifiable. Let v = 4. For k = 1, 2, . . ., the scaled
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FIGURE 8.3. Recursive algorithm to estimate the parameters when C is unknown

input is defined as u2k−1 = v; u2k = qv, where q = 1.05. It is easy to verify
that u is an exponentially scaled full-rank signal (see Definition 11.2). Set
U = [4, 4.2]′ and

ξN =
[ 1
N

N∑

i=1

s2i−1,
1
N

N∑

i=1

s2i

]′
.

Then ξN → ξ w.p.1 and G0(ξN ) → [(C − μ)112 − aU ]/σ. Since F̂ (x, α)
is jointly identifiable, we obtain the estimates of a and σ: [âN , σ̂N ]′ =
[U,G0(ξN )]−1[8, 8]′. Figure 8.4 illustrates that the estimated values of the
system parameter and distribution function parameter converge to the ac-
tual ones.

8.10 Notes

The material in this chapter is based on the results in [108]. Unknown
noise distribution functions introduce a static nonlinearity as part of the
unknowns. Combined with the linear system, we are in fact dealing with an
identification of a Wiener structure, using binary-valued or quantized ob-
servations. The main idea for dealing with this more complicated problem
remains the same: Find a suitable input signal under which the identifi-
cation of this nonlinear system with many unknown parameters can be
transformed into a finite set of simple identification problems for gains.
The input turns out to be a scaled periodic signal and the nonlinear map-
ping for the transformation is derived. Consequently, the basic convergence
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conclusions of Chapter 3 can be applied. This idea will also be employed
in later chapters when we deal with nonlinear systems.
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Deterministic Methods for Linear
Systems



9
Worst-Case Identification under
Binary-Valued Observations

This chapter focuses on the identification of systems where the disturbances
are formulated in a deterministic framework as unknown but bounded. Dif-
ferent from the previous chapters, here the identification error is measured
by the radius of the set that the unknown parameters belong to, which is
a worst-case measure of the parameter uncertainties. By considering sev-
eral different combinations of the disturbances and unmodeled dynamics,
a number of fundamental issues are studied in detail: When only binary-
valued observations are available, how accurately can one identify the par-
ameters of the system? How fast can one reduce uncertainty on model par-
ameters? What are the optimal inputs for fast identification? What is the
impact of unmodeled dynamics and disturbances on identification accuracy
and time complexity?

The rest of this chapter is arranged as follows. In Section 9.1, the problem
is formulated and the main conditions on the disturbances and unmodeled
dynamics are given. In Section 9.2, lower bounds on the identification errors
and time complexity of the identification algorithms are established, under-
scoring an inherent relationship between identification time complexity and
the Kolmogorov ε-entropy. Identification input design and upper bounds
on identification errors are then derived in Section 9.3, demonstrating that
the Kolmogorov ε-entropy indeed defines the complexity rates. For the sin-
gle parameter case, the results are refined further in Section 9.4. Section
9.5 presents a comparison between the stochastic and deterministic frame-
works. In contrast to the common perception that these two are competing
frameworks, we show that they complement each other in binary sensor
identification.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010

9,
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9.1 Worst-Case Uncertainty Measures

Recall the linear system defined in Chapter 2 and further detailed in Chap-
ter 4,

yk =
∞∑

i=0

aiuk−i + dk, k = k0 + 1, k0 + 2, . . . ,

where {dk} is a sequence of disturbances, {uk} is the input with uk = 0,
k < k0, and a = {ai, i = 0, 1, . . .}, satisfying ‖a‖1 =

∑∞
i=0 |ai| < ∞, is the

vector-valued parameter.
As in Chapter 4, for a given model order n0, the system parameters

can be decomposed into the modeled part θ = [a0, . . . , an0−1]′ and the
unmodeled dynamics θ̃ = [an0 , an0+1, . . .]′, and the system input–output
relationship can be expressed as

yk = φ′
kθ + φ̃′

kθ̃ + dk, k = k0 + 1, k0 + 2, . . . , (9.1)

where
φk = [uk, uk−1, . . . , uk−n0+1]′,

φ̃k = [uk−n0 , uk−n0−1, . . .]′.

Under a selected input sequence uk, the output sk from a binary-valued
sensor of threshold C is measured for k = k0 +1, . . . , k0 +N . We would like
to estimate θ on the basis of input–output observations on uk and sk. The
issues of identification accuracy, time complexity, and input design will be
discussed.

Because some results in this chapter will be valid under any lp norm,
the following assumption is given in a generic lp norm. The norm will be
further specified if certain results are valid only for some p values.

(A9.1) For a fixed p ≥ 1, to be specified later,

1. the unmodeled dynamics θ̃ is bounded in the lp norm by ‖θ̃‖p ≤ η;

2. the disturbance d is uniformly bounded in the l∞ norm by ‖d‖∞ ≤ δ;

3. the prior information on θ is given by Ω0 = Ballp(θ0, ε0) ⊂ R
n0 for

θ0 ∈ R
n0 and ε0 > 0.

For a selected input sequence uk, let s = {sk, k = k0 + 1, . . . , k0 + N}
be the observed output. Define

ΩN (k0, u, s) = {θ : sk = I{φ′
kθ+φ̃′

k θ̃+dk≤C} for some ‖θ̃‖p ≤ η,

‖d‖∞ ≤ δ and k = k0 + 1, . . . , k0 + N}

and

eN = inf
‖u‖∞≤umax

sup
k0

sup
s

Radp (ΩN (k0, u, s) ∩ Ballp(θ0, ε0)) ,
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where Radp(Ω) is the radius of Ω in the lp norm. eN is the optimal (in terms
of the input design) worst-case (with respect to initial time, unmodeled dy-
namics, and disturbances) uncertainty after N steps of observations. For a
given desired identification accuracy ε, the time complexity of Ballp(θ0, ε0)
is defined as

N(ε) = min{N : eN ≤ ε}.
We will characterize eN , determine optimal or suboptimal inputs u, and
derive bounds on time complexity N(ε).

9.2 Lower Bounds on Identification Errors and
Time Complexity

We will show in this section that identification time complexity is bounded
below by the Kolmogorov entropy of the prior uncertainty set.

Noise-Free and No Unmodeled Dynamics

Theorem 9.1. Assume Assumption (A9.1). Let δ = 0 and η = 0. Suppose
that for a given p ≥ 1 the prior uncertainty Ω0 = Ballp(θ0, ε0). Then,
for any ε < ε0, the time complexity N(ε) is bounded below by N(ε) ≥
n0 log(ε0/ε).

Proof. Ballp(c, ε) in R
n0 has volume ap,n0ε

n0 , where the coefficient ap,n0

is independent of ε. To reduce the identification error from ε0 to below ε,
the volume reduction must be at least

ap,n0ε
n0/(ap,n0ε

n0
0 ) = (ε/ε0)n0 .

Each binary sensor observation defines a hyperplane in the parameter
space R

n0 . The hyperplane divides an uncertainty set into two subsets,
with the volume of the larger subset at least half of the volume of the
original set. As a result, in a worst-case scenario, one binary observation
can reduce the volume of a set by 1/2 at best. Hence, the number N of
observations required to achieve the required error reduction is at least

(1/2)N ≤ (ε/ε0)n0 , or N ≥ n0 log(ε0/ε).

The proof is concluded. �

It is noted that n log(ε0/ε) is precisely the Kolmogorov ε-entropy of the
prior uncertainty set Ω0 [50, 125]. Hence, Theorem 9.1 provides an interest-
ing new interpretation of the Kolmogorov entropy in system identification,
beyond its application in characterizing model complexity [125]. Theorem
9.1 establishes a lower bound of exponential rates of time complexity. Upon
obtaining an upper bound of the same rates in the next section, we will
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show that the Kolmogorov ε-entropy indeed defines the time complexity
rates in this problem. Next, we present an identifiability result, which is
limited to p = 1.

Proposition 9.2. The uncertainty set Ball1(0, C/umax) is not identifi-
able.

Proof. For any θ ∈ Ball1(0, C/umax), the output

yk = φ′
kθ ≤ ‖φk‖∞‖θ‖1 ≤ umax

C

umax
= C.

It follows that sk = 1, ∀k. Hence, the observations could not provide further
information to reduce uncertainty. �

Bounded Disturbances

In the case of noisy observations, the input–output relationship becomes

yk = φ′
kθ + dk, sk = I{yk≤C}, (9.2)

where |dk| ≤ δ. For any given φk, an observation on sk from (9.2) defines,
in a worst-case sense, two possible uncertainty half-planes:

Ω1 = {θ ∈ R
n0 : φ′

kθ ≤ C + δ}, sk = 1,

Ω2 = {θ ∈ R
n0 : φ′

kθ > C − δ}, sk = 0.

Uncertainty reduction via observation is possible only if the uncertainty set
before observation is not a subset of each half-plane (so that the intersection
of the uncertainty set and the half-plane results in a smaller set).

Theorem 9.3. If ε ≤ δ/umax, then for any θ0 ∈ R
n0 , either Ball1(θ0, ε) ⊆

Ω1 or Ball1(θ0, ε) ⊆ Ω2. Consequently, in a worst-case sense, Ball1(θ0, ε)
is not identifiable.

Proof. Suppose that Ball1(θ0, ε) �⊆ Ω1. Then, there exists θ1 ∈ Ball1(θ0, ε)
such that φ′

kθ1 > C + δ. θ ∈ Ball1(θ0, ε) satisfies ‖θ − θ1‖1 ≤ 2ε. We have

φ′
kθ = φ′

kθ1 + φ′
k(θ − θ1)

> C + δ + φ′
k(θ − θ1)

≥ C + δ − umax2ε ≥ C − δ,

for any θ ∈ Ball1(θ0, ε). This implies that Ball1(θ0, ε) ⊆ Ω2. Likewise, we
can show that if Ball1(θ0, ε) �⊂ Ω2, then it is contained in Ω1. �

Theorem 9.3 shows that worst-case disturbances introduce irreducible
identification errors of size at least δ/umax. This is a general result. A
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substantially higher lower bound can be obtained in the special case of
n0 = 1.

Consider the system yk = auk + d. Suppose that at time k the prior
information on a is that a ∈ Ω = [a, a] with a > C/umax for identifiability
(see Proposition 9.2). The uncertainty set has center a0 = (a + a)/2 and
radius ε = (a − a)/2. To minimize the posterior uncertainty in the worst-
case sense, the optimal uk can be easily obtained as uk = C/a0.

Theorem 9.4. If δ < C, then the uncertainty set [a, a] cannot be reduced
if

ε ≤ δ/umax

1 − δ/C
.

Proof. Let ε = δ/umax
1−δ/C . Then, δ = εC

C/umax+ε . For any a ∈ [a, a], noting
a0 = a + ε, we have |a − a0| ≤ ε, and

auk = a
C

a0
= (a0 + (a − a0))

C

a0
= C + (a − a0)

C

a0

≤ C +
εC

a + ε
< C +

εC

C/umax + ε
= C + δ.

Hence, the observation sk = 1 does not provide any information. Similarly,
if sk = 0, we can show that all θ ∈ [a, a] will result in auk > C − δ. Again,
the observation does not reduce uncertainty. �

At present, it remains an open question if Theorem 9.4 holds for higher-
order systems.

Unmodeled Dynamics

When the system contains unmodeled dynamics, the input–output rela-
tionship becomes

yk = φ′
kθ + φ̃′

kθ̃, sk = I{yk≤C}, (9.3)

where ‖θ̃‖1 ≤ η. We will show that unmodeled dynamics will introduce an
irreducible identification error on the modeled part.

For any φ̃k, the set {φ̃′
kθ̃ : ‖θ̃‖1 ≤ η} = [−ηmk, ηmk], where mk =

‖φ̃k‖∞.

Theorem 9.5. If ε ≤ η, then in a worst-case sense, for any θ0, Ball1(θ0, ε)
is not identifiable.

Proof. Under (9.3), an observation on sk provides observation information

Ω1 = {θ ∈ R
n0 : φ′

kθ ≤ C + ηmk}, sk = 1,

Ω2 = {θ ∈ R
n0 : φ′

kθ > C − ηmk}, sk = 0.
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In the worst-case sense, Ball1(θ0, ε) can be reduced by this observation only
if Ball1(θ0, ε) is a subset of neither Ω1 nor Ω2.

Suppose that Ball1(θ0, ε) �⊆ Ω2. We will show that Ball1(θ0, ε) ⊆ Ω1.
Indeed, in this case, there exists θ1 ∈ Ball1(θ0, ε) such that φ′

kθ1 ≤ C−ηmk.
Since any θ ∈ Ball1(θ0, ε) satisfies ‖θ − θ1‖1 ≤ 2ε, we have

φ′
kθ = φ′

kθ1 + φ′
k(θ − θ1)

≤ C − ηmk + φ′
k(θ − θ1)

≤ C − ηmk + mk2ε

≤ C + ηmk.

This implies Ball1(θ0, ε) ⊆ Ω1. �

9.3 Upper Bounds on Time Complexity

In this subsection, general upper bounds on identification errors or time
complexity will be established.

For a fixed p ≥ 1, suppose that the prior information on θ is given
by Ballp(θ0, ε0). For identifiability, assume that the signs of ai have been
detected and

a = min{|ai|, i = 1, . . . , n} >
C

umax
.

The sign of ai can be obtained easily by choosing an initial testing se-
quence of u. Also, those parameters with |ai| < C/umax can be easily
detected. Since uncertainty on these parameters cannot be further reduced
(see Proposition 9.2), they will be left as remaining uncertainty. a defined
here will be applied to the rest of the parameters. The detail is omitted for
brevity. Denote

a = max
θ∈Ballp(θ0,ε0)

‖θ‖∞.

We will establish upper bounds on the time complexity N(ε) to reduce the
size of the uncertainty from ε0 to ε, in the lp norm.

Noise-Free and No Unmodeled Dynamics

Let η = 0 and δ = 0 and consider yk = φ′
kθ.

Theorem 9.6. Suppose that umax > C/a. Then the time complexity to
reduce the uncertainty from ε0 to ε is bounded by

N(ε) ≤ (n0
2 − n0 + 1)

⌈
1
p

log n0 + log
ε0

ε

⌉
. (9.4)
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Since n0 is a constant independent of N , this result, together with Theo-
rem 9.1, confirms that the Kolmogorov entropy defines the time complexity
rates in binary sensor identification. The accurate calculation for N(ε) re-
mains an open and difficult question, except for n0 = 1 (gain uncertainty),
which is discussed in the next section.

The proof of Theorem 9.6 utilizes the following lemma. Consider the first-
order system yk = auk, sk = I{yk≤C}, where a ∈ [a, a] and a > C/umax > 0.
Let ε0 = (a − a)/2.

Lemma 9.7. There exists an input sequence u such that N observations
on sk can reduce the radius of uncertainty to ε = 2−Nε0.

Proof. Let [ak, ak] be the prior uncertainty before a measurement on sk.
Then εk = (ak−ak)/2. By choosing uk = C/(ak+εk), the observation on sk

will determine uniquely either a ∈ [ak, ak +εk] if sk = 1; or a ∈ [ak−εk, ak]
if sk = 0. In either case, the uncertainty is reduced by half. Iterating on
the number of observations leads to the conclusion. �

The proofs of this section rely on the following idea. Choose uk = 0 except
those with index j(n0

2 −n0 + 1) + i, i = 1, n0 + 1, . . ., (n0 − 1)n0 −n0 + 3,
j = 0, 1, . . . This input design results in a specific input–output relationship:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yj(n02−n0+1)+n0 = an0−1uj(n02−n0+1)+1,

yj(n02−n0+1)+n0+1 = a0uj(n02−n0+1)+n0+1,
...

yj(n02−n0+1)+(n0−1)n0+1 = an0−2uj(n02−n0+1)+(n0−1)n0−n0+3.

(9.5)
In other words, within each block of n0

2 −n0 + 1 observations, each model
parameter can be identified individually once. Less conservative inputs can
be designed. However, they are more problem-dependent and ad hoc, and
will not be presented here.

Proof of Theorem 9.6. By Lemma 9.7, the uncertainty radius on each
parameter can be reduced by a factor of 2−N1 after N1 observations. This
implies that by using the input (9.5), after N = (n0

2 − n0 + 1)N1 observa-
tions, the uncertainty radius can be reduced to

radp(ΩN ) ≤ n0
1/prad∞(ΩN ) ≤ n0

1/p2−
N

n02−n0+1 rad∞(Ω0)

≤ n0
1/p2−

N
n02−n0+1 radp(Ω0) = n0

1/p2−
N

n02−n0+1 ε0.

Hence, for
n0

1/p2−
N

n02−n0+1 ε0 ≤ ε,

it suffices to have

N = (n0
2 − n0 + 1)

⌈
1
p

log n + log
ε0

ε

⌉
.
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The desired result follows. �

Bounded Disturbances

Consider yk = φ′
kθ + dk, where |dk| ≤ δ.

Theorem 9.8. Suppose δ < C. Let

β =
δ

C
, ρ =

1
2
(1 − β), and σ =

δa

2C(1 − ρ)
=

aβ

1 + β
.

If ε0 > ε > σ and umax > C/a, then the time complexity N(ε) to reduce
the uncertainty from ε0 to ε is bounded in the lp norm by

N(ε) ≤ (n0
2 − n0 + 1)

⌈
1
p

log n0 +
log ε−σ

ε0−σ

log ρ

⌉

. (9.6)

Proof. Using the input in (9.5), the identification of the n parameters a0,
. . . , an0−1 is reduced to identifying each parameter individually. Now for
identification of a single parameter yk = auk +dk, we can derive the follow-
ing iterative uncertainty reduction relationship. If the prior uncertainty at
k is [ak − εk, ak + εk], then the optimal worst-case input uk can be shown
as uk = C/ak. (More detailed derivations are given in the next section.)
The posterior uncertainty will be either [ak − εk, (1 + β)ak], if sk = 1; or
[(1 − β)ak, ak + εk], if sk = 0. Both have the radius

εk+1 =
1
2

(εk + βak) =
1 − β

2
εk +

β

2
(ak + εk) ≤ ρεk +

βa

2
.

Starting from ε0, after N1 observations, we have

ε(N1) ≤ ρN1ε0 +
βa

2

N1−1∑

i=0

ρi = ρN1ε0 +
βa

2
1 − ρN1

1 − ρ

= ρN1ε0 + σ(1 − ρN1) = ρN1(ε0 − σ) + σ.

To achieve ε(N1) ≤ ε, it suffices that

ρN1(ε0 − σ) + σ ≤ ε or N1 ≥
log ε−σ

ε0−σ

log ρ
.

Following the same arguments as in the proof of Theorem 9.6, we conclude
that

N = (n0
2 − n0 + 1)

⌈
1
p

log n0 +
log ε−σ

ε0−σ

log ρ

⌉

suffices to reduce the uncertainty from ε0 to ε in the lp norm. �
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Unmodeled Dynamics

Consider yk = φ′
kθ + φ̃′

kθ̃. The results of this case hold for p = 1 only. The
unmodeled dynamics introduce an uncertainty on the observation on yk:
{φ̃′

kθ̃ : ‖θ̃‖1 ≤ η} = [−ηmk, ηmk], mk = ‖φk‖∞.

Theorem 9.9. Suppose 0 < η < C/umax. Let

ρ1 =
1
2

(
1 − ηumax

C

)
, σ1 =

ηumaxa

2C(1 − ρ1)
.

Then

N(ε) ≤ (n0
2 − n0 + 1)

⌈

log n0 +
log ε−σ1

ε0−σ1

log ρ1

⌉

. (9.7)

Proof. By using the input (9.5), the identification of θ is reduced to each
of its components. For a scalar system yk = auk +φ̃′

kθ̃, since |φ̃′
kθ̃| ≤ ηumax,

we can apply Theorem 9.8 with δ replaced by ηumax. Inequality (9.7) then
follows from Theorem 9.8. �

9.4 Identification of Gains

In the special case n = 1, explicit results and tighter bounds can be ob-
tained. When n = 1, the observation equation becomes

yk = auk + φ̃′
kθ̃ + dk.

Assume that the initial information on a is that a0 ≤ a ≤ a0, a0 �= 0,
a0 �= 0, with radius ε0 = (a0 − a0)/2.

Case 1: yk = auk

It is noted that this is a trivial identification problem when regular sensors
are used: After one input u0 �= 0, a can be identified uniquely.

Theorem 9.10. The following assertions hold.

(1) Suppose the sign of a is known, say, a0 > 0, and umax ≥ C/a0.
Then the optimal identification error is eN = 2−Ne0 and the time
complexity is N(ε) = �log(ε0/ε)�.
If, at k − 1, the information on a is that a ∈ [ak−1, ak−1], then the
one-step optimal uk is

uk =
2C

ak−1 + ak−1
, (9.8)
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where ak and ak are updated by

ak =
{

(ak−1 + ak−1)/2, if sk = 0,
ak−1, if sk = 1;

ak =
{

ak−1, if sk = 0,
(ak−1 + ak−1)/2, if sk = 1.

(2) If a0 and a0 have opposite signs and

δl = max
{

a0,−
C

umax

}
, δh = min

{
a0,

C

umax

}
,

then the uncertainty interval (δl, δh) is not identifiable. Furthermore,
in the case of a0 ≤ δl and a0 ≥ δh, if δh − δl ≤ ε and ε0 ≥ 2ε, then
the time complexity N(ε) is bounded by

⌈
log

ε0

ε

⌉
≤ N(ε) ≤

⌈
log

ε0 − (δh − δl)
ε

⌉
+ 2.

Proof. The proof is divided into a couple of steps.

(1) The identification error and time complexity follow directly from The-
orems 9.1 and 9.6 with n = 1. As for the optimal input, note that
starting from the uncertainty [ak, ak], an input uk defines a testing
point C/uk on a. The optimal worst-case input is then obtained by
placing the testing point at the middle. That is,

C

uk
=

1
2
(ak + ak),

which leads to the optimal input and results in posterior uncertainty
sets.

(2) When the input is bounded by uk ∈ [−umax, umax], the testing points
cannot be selected in the interval [−C/umax, C/umax]. Consequently,
this uncertainty set cannot be further reduced by identification. Fur-
thermore, by using u1 = −umax and u2 = umax as the first two input
values, a can be determined as belonging uniquely to one of the three
intervals:

[a0,−C/umax), [−C/umax, C/umax], [C/umax, a0].

By taking the worst-case scenario of

a0 − C/umax = ε0 − (δh − δl),

the time complexity for reducing the remaining uncertainty to ε is⌈
log ε0−(δh−δl)

ε

⌉
. This leads to the upper bound on N(ε). The lower

bound follows from Theorem 9.1 with n = 1.
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�

In this special case, the actual value C > 0 does not affect the identi-
fication accuracy. This is due to noise-free observation. The value C will
become essential in deriving optimal identification errors when observation
noises are present. C = 0 is a singular case in which the uncertainty on
a cannot be reduced (in the sense of the worst-case scenario). Indeed, in
this case, one can only test the sign of a. It is also observed that the opti-
mal uk depends on the previous observation sk−1. As a result, uk can be
constructed causally and sequentially, but not off-line.

Case 2: yk = auk + dk

Here we assume |dk| ≤ δ < C. The prior information on a is given by
a ∈ Ω0 = [a0, a0], and a0 > 0.

Theorem 9.11. Suppose that

umax ≥ C

a0

and
a0

a0

≥ 1 + β

1 − β
.

Then

(1) the optimal input uk is given by the causal mapping from the available
information at k − 1:

uk =
2C

ak−1 + ak−1
.

The optimal identification error satisfies the iteration equation

ek =
1
2
ek−1 +

1
2
β(ak−1 + ak−1), (9.9)

where ak and ak are updated by the rules

ak = ak−1, ak =
C − δ

uk
, if sk = 0,

ak = ak−1, ak =
C + δ

uk
, if sk = 1.

(2)
a(k)
a(k)

≥ 1 + β

1 − β
for all k ≥ 1;

{ak} is monotonically increasing, {ak} and
{

ak

ak

}
are monotonically

decreasing;

limk→∞
ak

ak

=
1 + β

1 − β
.
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(3) At each time k, uncertainty reduction is possible if and only if

ak−1

ak−1

>
1 + β

1 − β
.

Proof. (1) Since uk > 0, the relationship (9.2) can be written as a = yk−dk

uk
.

The observation outcome yk ≥ C will imply that

a ≥ C − dk

uk
≥ C − δ

uk
,

which will reduce uncertainty from a ∈ [ak−1, ak−1] to [C−δ
uk

, ak−1] with
error e1(k) = ak−1 − C−δ

uk
. Similarly, y < C implies a < C+δ

uk
and a ∈

[ak−1,
C+δ
uk

] with e2(k) = C+δ
uk

− ak−1. In a worst-case scenario,

ek = max{e1(k), e2(k)}.

Consequently, the optimal uk can be derived from infuk
ek. Hence, the

optimal uk is the one that causes e1(k) = e2(k), namely,

C + δ

uk
− ak−1 = ak−1 −

C − δ

uk
,

or
uk =

2C

ak−1 + ak−1
.

The optimal identification error is then

ek =
(C + δ)(ak−1 + ak−1)

2C
− ak−1

=
(

1
2

+
β

2

)
(ak−1 + ak−1) − ak−1

=
1
2
ek−1 +

β

2
(ak−1 + ak−1).

(2) We prove ak

ak
≥ 1+β

1−β by induction. Suppose that ak−1
ak−1

≥ 1+β
1−β . Then

we have ukak−1 ≥ C + δ and ukak−1 ≤ C − δ, which, respectively, leads
to ak

ak
= ukak−1

C−δ ≥ 1+β
1−β in the case of sk = 1, and ak

ak
= C+δ

ukak−1
≥ 1+β

1−β in

the case of sk = 0. Thus, by the initial condition that ε0 ≥ 1+β
1−β , we have

ak

ak
≥ 1+β

1−β for all k ≥ 1.

By ak−1
ak−1

≥ 1+β
1−β , we have ukak−1 ≤ C−δ and ukak−1 ≥ C+δ, which gives

ak = ak−1 and ak

ak−1
= C−δ

ukak−1
≥ 1 in the case of sk = 1, and ak = ak−1

and ak

ak−1
= C+δ

ukak−1
≤ 1 in the case of sk = 0. Thus, {ak} is monotonically

increasing and {ak} is monotonically decreasing.
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Furthermore, by ak

ak−1
≥ 1 and ak−1

ak
≥ 1, we obtain akak−1

akak−1
≥ 1, i.e.,

ak−1
ak−1

≥ ak

ak
. Hence,

{
ak

ak

}
is monotonically decreasing.

The dynamic expression (9.9) can be modified as

ek =
1
2

(1 − β) ek−1 + βak−1, (9.10)

or
ek =

1
2

(1 + β) ek−1 + βak−1. (9.11)

By taking k → ∞ on both sides of (9.10) and (9.11), we obtain a(∞) =
C+δ
2δ e(∞) and a(∞) = C−δ

2δ e(∞). This leads to limk→∞
ak

ak
= 1+β

1−β .
(3) From (9.9) it follows that the uncertainty is reducible if and only if

β(ak−1 + ak−1) < ek−1 = a(k − 1) − ak−1.

This is equivalent to
ak−1

ak−1

>
1 + β

1 − β
.

�

Theorem 9.12. Let

α1 =
1
2

(1 − β) , α2 =
1
2

(1 + β) .

Then under the conditions and notation of Theorem 9.11,

(1) for k ≥ 1, the optimal identification error ek is bounded by

αk
1e0 + β

a(1 − αk
1)

α2
≤ αk

1e0 + β
ak−1(1 − αk

1)
α2

≤ ek ≤ αk
2e0 + β

ak−1(1 − αk
2)

α1

≤ αk
2e0 + β

a(1 − αk
2)

α1
;

(9.12)

(2) let ε0 = e0/2 and ε0 > ε > βa
α1

= 2βa
1−β . Then the time complexity

N(ε) for reducing the uncertainty from ε0 to ε is bounded by
⎡

⎢
⎢
⎢
⎢
⎢

log
ε− βa

α2

ε0− βa
α2

log α1

⎤

⎥
⎥
⎥
⎥
⎥

≤ N ≤

⎡

⎢
⎢
⎢
⎢
⎢

log
ε− βa

α1

ε0− βa
α1

log α2

⎤

⎥
⎥
⎥
⎥
⎥

;

(3) there exists an irreducible relative error

2β

1 + β
≤ e(∞)

a
≤ 2β

1 − β
; (9.13)
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(4) the parameter estimation error is bounded by

0 ≤ a(∞) − a

a(∞)
≤ 2β

1 + β
, 0 ≤ a − a(∞)

a(∞)
≤ 2β

1 − β
. (9.14)

Proof. We prove the assertions step by step as follows.

(1) From (9.10) and the monotonically decreasing property of ak, we have

ek ≥ αk
1e0 +

δak−1

C

k−1∑

i=0

αi
1,

and from (9.11) and the monotonically increasing property of ak,

ek ≤ αk
2e0 +

δak−1

C

k−1∑

i=0

αi
2.

The results follow from
∑k−1

i=0 αi
1 = 1−αk

1
1−α1

,
∑k−1

i=0 αi
2 = 1−αk

2
1−α2

, 1−α1 =
α2, and ak ≤ a ≤ ak.

(2) From item (2) of Theorem 9.11, it follows that the error ek = ak −
ak is monotonically decreasing. Thus, the upper bound on the time
complexity is obtained by solving the inequality for the smallest N
satisfying

eN ≤ αN
2 ε0 +

βa(1 − αN
2 )

α1
≤ ε.

Similarly, the lower bound can be obtained by calculating the largest
N satisfying

ε ≤ αN
1 ε0 +

βa(1 − αN
1 )

α2
≤ ek.

(3) This follows from (9.12) and item (2) of Theorem 9.11, which implies
the existence of limt→∞ek.

(4) From the last two lines of the proof of item (2) of Theorem 9.11, it
follows that a(∞) = C+δ

2δ e(∞) and a(∞) = C−δ
2δ e(∞). This, together

with (9.13), gives (9.14).

�

Remark 9.13. It is noted that the bounds in item (2) of Theorem 9.12
can be easily translated to sequential information bounds by replacing a
with the on-line inequalities ak−1 ≤ a ≤ ak−1.
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Case 3: yk = auk + φ̃′
kθ̃

Let uk = {uτ , τ ≤ k}. Then ‖uk‖∞ is the maximum |uτ | up to time k.
Since we assume no information on θ̃, except that ‖θ̃‖1 ≤ η, it is clear that
sup‖θ̃‖1≤η |φ̃′

kθ̃| = ηmk, where mk = ‖φ̃k‖∞. Let wk = φ̃′
kθ̃. Then

{φ̃′
kθ̃ : ‖θ̃‖1 ≤ η} = {wk : |wk| ≤ ηmk}.

Theorem 9.14. Suppose that a0 > 0, umax ≥ C/a0, η < a0. Then

(1) the optimal input uk, which minimizes the worst-case uncertainty at
k, is given by the causal mapping from the available information at
k − 1:

uk =
2C

ak−1 + ak−1
. (9.15)

The optimal identification error at k satisfies the iteration equation

ek =
1
2
ek−1 +

ηmk

2C
(ak−1 + ak−1), (9.16)

where ak and ak are updated by the rules

ak = ak−1, ak =
C − ηmk

uk
, if sk = 1,

ak = ak−1, ak =
C + ηmk

uk
, if sk = 0;

(2) the uncertainty is reducible if and only if ak−1 > ak−1 + 2η;

(3) for k ≥ 1, the optimal identification error ek is bounded by

(∏k

j=1
β1(j)

)
e0 +

ηa

C

k∑

i=1

mi

∏k

j=i+1
β1(j)

≤ ek ≤
(∏k

j=1
β2(j)

)
e0 +

ηa

C

k∑

i=1

mi

∏k

j=i+1
β2(j),

(9.17)

where β1(k) = 1
2

(
1 − ηmk

C

)
and β2(k) = 1

2

(
1 + ηmk

C

)
;

(4) let ε0 = e0/2 and ε0 > ε > 2ηa(0)
a0−η . Also, denote β1 = 1

2

(
1 − η

a0

)
,

β2 = 1
2

(
1 + η

a0

)
. Then the time complexity N(ε) for reducing the

uncertainty from ε0 to ε is bounded by
⎡

⎢
⎢
⎢
⎢

log
ε− ηa

a0β2
ε0− ηa

a0β2

log β1

⎤

⎥
⎥
⎥
⎥
≤ N(ε) ≤

⎡

⎢
⎢
⎢
⎢

log
ε− ηa

a0β1
ε0− ηa

a0β1

log β2

⎤

⎥
⎥
⎥
⎥

. (9.18)
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Proof. The proof is arranged as follows.

(1) The results follow from the definition of mk and Theorem 9.12, with
δ replaced by ηmk.

(2) From (9.16) and (9.15), it follows that the uncertainty is reducible
if and only if ηmk

uk
< 1

2ek−1 = 1
2 (ak−1 − ak−1). This is equivalent to

η < 1
2 (ak−1 − ak−1) or ak−1 > ak−1 + 2η, since mk

uk
≥ 1.

(3) By (9.16), we have

ek =
1
2

(
1 +

ηk

C

)
ek−1 +

ηmk

C
ak−1 (9.19)

and
ek =

1
2

(
1 − ηmk

C

)
ek−1 +

ηmk

C
ak−1. (9.20)

Furthermore, from ak ≤ a ≤ ak for all k ≥ 0,

ek ≤ β2(k)ek−1 +
ηmk

C
a

and
ek ≥ β1(k)ek−1 +

ηmk

C
a.

Then, the inequalities in (9.17) can be obtained by iterating the above
two inequalities in k.

(4) Since for all k ≥ 1, a0 ≥ ak ≥ ak ≥ a0,

uk =
2C

ak−1 + ak−1
≤ C

a0

,

which implies that C
a0

≤ uk ≤ C
a0

. This leads to

β1(k) ≥ β1 =
1
2
(1 − η

a0

)

and

β2(k) ≤ β2 =
1
2

(
1 +

η

a0

)
.

Hence,

β1ek−1 +
ηa

a0
≤ ek ≤ β2ek−1 +

ηa

a0

for all k ≥ 1. (9.21)

As a result, the inequalities of Theorem 9.12 can be adopted here to
get (9.18).

�

Note that β2(k) ≥ β1(k) and β1(k) + β2(k) = 1; and β1 → β2 as η → 0,
uniformly in k.
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9.5 Identification Using Combined Deterministic
and Stochastic Methods

This section highlights the distinctive underlying principles used in design-
ing inputs and deriving posterior uncertainty sets in the stochastic and
deterministic information frameworks.

In the deterministic worst-case framework, the information on noise is
limited to its magnitude bound. Identification properties must be evalu-
ated against worst-case noise sample paths. As shown earlier, the input is
designed on the basis of choosing an optimal worst-case testing point (a
hyperplane) for the prior uncertainty set. When the prior uncertainty set is
large, this leads to an exponential rate of uncertainty reduction. However,
when the uncertainty set is close to its irreducible limits due to distur-
bances or unmodeled dynamics, its rate of uncertainty reduction decreases
dramatically due to its worst-case requirements. Furthermore, when the
disturbance magnitude is large, the irreducible uncertainty will become
too large for identification error bounds to be practically useful.

In contrast, in a stochastic framework, noise is modeled by a stochas-
tic process and identification errors are required to be small with a large
probability. Binary sensor identification in this case relies on the idea of
averaging. Typically, in identification under stochastic setting, the input is
designed to provide sufficient excitation for asymptotic convergence, rather
than fast initial uncertainty reduction. Without effective utilization of prior
information in designing the input during the initial time interval, the ini-
tial convergence can be slow. This is especially a severe problem in binary
sensor identification since a poorly designed input may result in a very
imbalanced output of the sensor in its 0 or 1 values, leading to a slow con-
vergence rate. In the case of large prior uncertainty, the selected input may
result in nonswitching at the output, rendering the stochastic binary-sensor
identification inapplicable. On the other hand, averaging disturbances re-
stores estimation consistency and overcomes a fundamental limitation of
the worst-case identification.

Consequently, it seems a sensible choice of using the deterministic frame-
work initially to achieve fast uncertainty reduction when the uncertainty
set is large, then using the stochastic framework to modify estimation
consistency. In fact, we shall demonstrate by an example that these two
frameworks complement each other precisely, in the sense that when one
framework fails, the other starts to be applicable.
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9.5.1 Identifiability Conditions and Properties under
Deterministic and Stochastic Frameworks

We first establish identifiability conditions of the two frameworks for a gain
system

yk = auk + dk, k = 1, 2, . . . , (9.22)

where {dk} is a sequence of disturbances, and a is an unknown parameter.
The prior information on a is given by a ∈ [a, a], with 0 < a ≤ a < ∞.
uk > 0 is the input. The output yk is measured by a binary-valued sensor
with threshold C.

Deterministic Framework.
The idea of deterministic framework is to reduce the parameter uncertainty
based on the bound of disturbances. Denote rk = ak/ak as the relative
error.

Starting from the initial uncertainty Ω0 = [a, a] and input u0 = u∗, we
check the output of binary sensor. If s1 = 0, which means au∗ + d1 > 0,
we obtain au∗ + δ ≥ au∗ + d1 > C. Hence, a > (C − δ)/u∗ and e1 =
a − (C − δ)/u∗ < e0. This means the parameter bound is reducible if
a < (C − δ)/u∗. Otherwise, we have s1 = 1. Then, au∗− δ ≤ au∗ +d1 ≤ C;
hence, a ≤ (C + δ)/u∗ and e1 = (C + δ)/u∗ − a < e0 if a > (C + δ)/u∗. So,
the parameter bound is reducible if

a <
C − δ

u∗ and a >
C + δ

u∗

in the worst-case sense, or equivalently,

r0 <
C − δ

C + δ
:= Δ. (9.23)

Furthermore, by the above analysis, we arrive at the new uncertainty set

e1 = max
{

a − C − δ

u∗ ,
C + δ

u∗ − a

}

in the worst-case sense. The uncertainty set is minimized at the optimal
input

u∗
1 =

2C

a + a
and e∗1 =

(1 + β)a − (1 − β)a
2

(9.24)

with β = δ/C.
The one-step optimal input design and parameter error was introduced

in [111]. This, however, is not an overall optimal design if N steps are
considered. The N -step optimal input design was developed in [14].

Theorem 9.15 [14]. For binary observations with threshold C, the optimal
parameter bound is

e∗N = 2β
a(1 + β)(2

N−1) − a(1 − β)(2
N−1)

(1 + β)(2N ) − (1 − β)(2N )
(9.25)
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and the optimal inputs are

u∗
k =

C

ãk|N
, k = 1, 2, . . . , N,

where

ãk|N =
ak−1(1 + β)(2

N−k−1) + ak−1(1 − β)(2
N−k−1)

(1 + β)(2N−k) + (1 − β)(2N−k)
.

Example 9.16. For system (9.22) with C = 40, δ = 0.5, a = 1, and
a = 10, the optimal error provided by (9.25) is shown in Figure 9.1. It is
shown that at first the uncertainty is reduced very fast, but uncertainty
reduction gradually slows down toward an irreducible error bound.
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e* N

FIGURE 9.1. Optimal parameter error

Stochastic Framework
The essence of stochastic framework is to utilize the probabilistic properties
of disturbances. Define the empirical measure ξ0

N =
∑N

k=1 sk/N . If there
exists u∗ such that C − au∗ is on the support of F (·), which means

− δ < C − au∗ < δ, (9.26)

then ξ0
N is the empirical measure of F (·) at C − au∗, and

ξ0
N → F (C − au∗), w.p.1. (9.27)
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(A9.2) The noise {dk} is a sequence of i.i.d. random variables bounded
by |dk| ≤ δ whose distribution function F (x), x ∈ (−δ, δ), and its inverse
F−1(·) are twice continuously differentiable in (−δ, δ) and known.

Throughout the rest of the chapter, we assume Assumption (A9.2) also
holds. Note that F is a monotone function in view of Assumption (A9.2). If
a is bounded, then there exists z > 0 such that p = F (C −au∗) is bounded
by

z < p < 1 − z. (9.28)

Since F (·) is not invertible at 0 and 1, we modify ξ0
N to avoid these points

as in (3.1):

ξN =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ0
N , if z ≤ ξ0

N ≤ 1 − z,

z, if ξ0
N < z,

1 − z, if ξ0
N > 1 − z.

(9.29)

As shown in Chapter 3, ξN → p w.p.1. Define

âN = (C − F−1(ξN ))/u∗. (9.30)

Then
âN → a w.p.1.

For a ∈ [a, a], the identifiability condition (9.26) becomes

−δ < C − au∗ ≤ C − au∗ < δ.

So for a given threshold C, u∗ can be chosen to construct the estimation
algorithm if and only if

r0 > Δ, (9.31)

which complements exactly (9.23) for the deterministic framework. Under
(9.31) and C > δ, the admissible input set is

u∗ ∈ Γ =
(

C − δ

a
,
C + δ

a

)
. (9.32)

By Chapter 6, for a given u∗, the optimal CR lower bound with binary-
valued observations is

η∗
N (a, u∗) = E (â∗

N − a)2 =
F (C − au∗)(1 − F (C − au∗))

N(u∗)2f2(C − au∗)
(9.33)

and N(ηN − η∗
N (a, u∗)) = N [E(âN − a)2 − η∗

N ] → 0 as N → ∞, which
means the algorithm (9.30) of the stochastic framework is asymptotically
efficient.
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Remark 9.17. The foregoing analysis indicates that the identifiability con-
dition for the deterministic framework is that r0 < Δ in the worst case and
r0 > Δ for the stochastic framework. Due to the strict inequalities, there
is a dividing line r0 = Δ between the two frameworks under binary obser-
vations. A key problem in combining the two frameworks is to find a way
to connect the two sets of identifiability regions.

9.5.2 Combined Deterministic and Stochastic Identification
Methods

In this subsection, we introduce a method to connect the two frameworks
and develop the criteria for switching from one framework to another.

Connection of Two Frameworks by Input Design
Since there is no intersection between the two identifiability sets (9.23) and
(9.31), one cannot design a strategy to switch from one framework to an-
other. Consequently, it is necessary to find an approach to connect the sets.
Here, we modify the stochastic methods by using two input values, rather
than one. Since each input value creates one identifiability set, by choos-
ing the inputs appropriately, we can create a scenario that these two sets
collectively intersect to the identifiability set of the deterministic method.

For the initial uncertainty [a, a], let b ∈ (a, a). Then, b divides the interval
into two parts, [a, b] and (b, a]. For a ∈ [a, b], the identifiability condition
(9.31) becomes a/b > Δ. Similarly, for a ∈ (b, a], the requirement is b/a >
Δ. Since

max
b

min
{

a

b
,
b

a

}
=
√

a

a

with b∗ =
√

aa, the parameter can be estimated if r0 > Δ2. Since Δ =
(C − δ)/(C + δ) < 1, we have Δ2 < Δ; thus, there is an intersection
between the identifiability sets of two frameworks.

This analysis indicates that it is possible to connect the two frameworks
if two input values are used for the stochastic framework. We discuss next
the switching strategies. This will be done by using convergence speeds.
We first use an example to illustrate the basic ideas.

Example 9.18. Consider the one-step optimal worst-case error in Theo-
rem 9.15

e∗1
e∗0

=
(1 + β)a − (1 − β)a

2e0
=

1 − β

2
+

β

1 − r0
,

which decreases with r0. For the same system as in Example 9.16, the ratio
is plotted as a function of r0 in Figure 9.2 with β = 0.2. We can see that
the ratio goes to 1 when r0 approaches (1 − β)/(1 + β), which means the
uncertainty is almost irreducible.
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FIGURE 9.2. Optimal parameter reduction ratio

Consider the identifiability condition of the stochastic framework r0 > Δ.
The convergence speed may be slow in the worst case as r0 is small and
close to Δ. The optimal covariance of the stochastic method with threshold
C and constant input u∗ is

η∗
N (a, u) =

F (C − au∗)(1 − F (C − au∗))
N(u∗)2f2(C − au∗)

.

Let

η∗(Ω0, u
∗) = sup

a∈Ω0

F (C − au∗)(1 − F (C − au∗))
(u∗)2f2(C − au∗)

,

and
η∗(Ω0) = inf

u∗
η∗(Ω0, u

∗). (9.34)

Then, the optimal convergence speed by designing an optimal input value
can be derived as

η∗
N (Ω0) = η∗(Ω0)/N. (9.35)

For Ω0, if we use the η∗
N (Ω0), we can first design identification algorithms

for Ψ1 = [a, b∗] and Ψ2 = [b∗, a], and then calculate η∗
N (Ψ1) and η∗

N (Ψ2).
Hence, the switch time Ns can be decided by the following rule:

Ns = min
N

{
ε2
2N > min{η∗

N ([a,
√

aa)), η∗
N ([
√

aa, a])}
}

. (9.36)
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With this switching rule, the joint identification algorithm can be con-
structed as follows:

1. In the case of rk < Δ2, apply the deterministic method.

2. Denote the first time that rk ≥ Δ2 as K, and calculate Ns by
(9.36) with the information of parameter uncertainty lower and upper
bounds at that time K.

3. Keep using deterministic methods for another Ns −1 steps. Then get
the parameter lower and upper bounds, namely, as and as.

4. Switch to the stochastic method.

9.5.3 Optimal Input Design and Convergence Speed under
Typical Distributions

We now solve (9.34) concretely for some typical noise distribution func-
tions. We will derive specific expressions for the uniform distribution and
truncated normal distribution. For other distributions, similar methods
can be used, although derivation details may vary. For simplification, let
η∗

N = η∗
N (Ω0) and η∗(u∗) = η∗(Ω0, u

∗).

Uniform Distribution
Suppose that the density function of dk is f(x) = 1/(2δ) for the support
set (i.e., strictly positive) in (−δ, δ). Then, F (x) = δ+x

2δ . We have

η∗(u∗) = sup
a∈Ω0

{δ2 − (C − au∗)2},

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ2, if u∗ ∈ Γ1 = (C
a , C

a ),

δ2 − (C − au∗)2, if u∗ < C
a ,

δ2 − (C − au∗)2, if u∗ > C
a .

(9.37)

Theorem 9.19. Suppose dk has a uniform distribution on (−δ, δ). Then
for Ω0, η∗ defined in (9.34) can be expressed as

η∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ2a2

(C+δ)2 , if r ≤ C
C+δ ,

δ2a2

C2 , if r > C
C+δ and C > δ,

(a−a)[(C+δ)a−(C−δ)a]
C+δ , if r > C

C+δ and C ≤ δ,

(9.38)

and the optimal input can be derived concretely by the above cases, respec-
tively.
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Proof. By (9.32), the feasible input set is u∗ ∈ Γ. The set is nonempty if
and only if r > Δ in case of C > δ.

Case (i): In case of Δ < r ≤ C−δ
C , since C−δ

C ≤ C
C+δ , we have C−δ

a ≥ C
a

and C+δ
a ≤ C

a , namely, Γ ⊂ Γ1 = (C
a , C

a ). So for ∀u∗ ∈ Γ, there exists
a ∈ Ω0 such that a = C/u∗, which induces η∗(u∗) = δ2. Hence,

η∗ = inf
u∗∈Γ

δ2

(u∗)2
=

δ2a2

(C + δ)2

with u∗ = (C + δ)/a.
Case (ii): In case of C−δ

C < r ≤ C
C+δ , we have C−δ

a < C
a and C+δ

a ≤ C
a .

For u∗ ∈ Γ2 = (C
a , C+δ

a ), we have η∗(u∗) = δ2. So

inf
u∗∈Γ2

δ2

(u∗)2
=

δ2a2

(C + δ)2
.

For u∗ ∈ Γ3 = (C−δ
a , C

a ], notice that C − au∗ > C − aC
a ≥ 0, which

means a ≤ C/u∗. So η∗(u∗) = δ2 − (C − au∗)2 for u∗ ∈ Γ3. Since

inf
u∗∈Γ3

δ2 − (C − au∗)2

(u∗)2
= inf

u∗∈Γ3

{
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

}

and C > δ, δ2−C2
1

(u∗)2 + 2aC
u∗ − a2, as a function of 1/u∗, is symmetric about

1/u∗ = aC
C2−δ2 .

Since

r =
a

a
≤ C

C + δ
≤ C2 + δ2

C(C + δ)
,

we have (
a

C − δ
− aC

C2 − δ2

)
−
(

aC

C2 − δ2
− a

C

)

=
aC(C + δ) − a(C2 + δ2)

C(C2 − δ2)
≤ 0.

As a result,
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

is minimized at u∗ = C/a on Γ3, namely,

inf
u∗∈Γ3

{
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

}
=

δ2a2

C2
.

Hence, we have

η∗ = min
{

δ2a2

(C + δ)2
,
δ2a2

C2

}
=

δ2a2

(C + δ)2
.
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Case (iii): In the case of r > C
C+δ , we have C−δ

a < C
a and C+δ

a > C
a . For

u∗ ∈ Γ1, we have η∗(u∗) = δ2 and η∗(u∗) = δ2 − (C −au∗)2 for u∗ ∈ Γ3. So

inf
u∗∈Γ1

δ2

(u∗)2
=

δ2a2

C2
and inf

u∗∈Γ3

δ2 − (C − au∗)2

(u∗)2
=

δ2a2

C2
.

For u∗ ∈ Γ4 = [C/a, C+δ
a ), note that C−au∗ ≤ C−aC

a ≤ 0, which means
a ≥ C/u∗. So η∗(u∗) = δ2 − (C − au∗)2 for u∗ ∈ Γ4. The minimization
problem is

inf
u∗∈Γ4

δ2 − (C − au∗)2

(u∗)2
= inf

u∗∈Γ4

{
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

}
.

Since C > δ, δ2−C2
1

(u∗)2 + 2aC
u∗ −a2, as a function of 1/u∗, is symmetric about

1/u∗ = aC
C2−δ2 . Since

r >
C

C + δ
≥ C − δ

C
≥ C(C − δ)

C2 + δ2
,

we have (
a

C
− aC

C2 − δ2

)
−
(

aC

C2 − δ2
− a

C + δ

)

=
aC(C − δ) − a(C2 + δ2)

C(C2 − δ2)
≥ 0.

As a result,
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

is minimized at u∗ = C/a on Γ4, namely,

inf
u∗∈Γ4

{
δ2 − C2

1

(u∗)2
+

2aC

u∗ − a2

}
=

δ2a2

C2
.

Hence, η∗ = δ2a2/C2.
The proof for C < δ is similar and omitted. �

Truncated Normal Distribution
Suppose dk has a truncated normal distribution with probability density
function

fσ(x) =

1
σ

λ
(x

σ

)

Λ
(

δ

σ

)
− Λ
(
−δ

σ

) ,

where x ∈ (−δ, δ), λ(·) is the probability density function of the standard
normal distribution, and Λ(·) its cumulative distribution function. Here,
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we discuss the case of σ = 1; general cases can be derived similarly. Then,
we have the density function

f(x) =
λ(x)

Λ(δ) − Λ(−δ)

and the distribution function given by

F (x) =
Λ(x) − Λ(−δ)
Λ(δ) − Λ(−δ)

.

Denote
λ1(x) = λ(x)(1 − 2Λ(x)),

λ2(x) = (Λ(x) − Λ(−δ))(Λ(δ) − Λ(x)),

and

G(x) =
λ2(x)
λ2(x)

.

Hence,
η∗(u∗) = sup

C−au∗≤x≤C−au∗
G(x)

and
η∗ = inf

u∗
η∗(u∗).

First, we analyze the property of G(x). The derivative of G(x) can be
written as

G′(x) =
λ1(x) + 2xλ2(x)

λ2(x)
.

Let
g1(x) = λ1(x) + 2xλ2(x).

Then, we have g1(0) = 0 and g1(δ) = λ(δ)(1 − 2Λ(δ)) < 0.
Note that

g2(x) = g′1(x) = xλ1(x) − 2λ2(x) + 2λ(x).

Then
g2(δ) = δλ(δ)(1 − 2Λ(δ)) − 2λ2(δ) < 0

and

g2(0) = 2
(

Λ(δ) − 1
2

)2

− 2λ2(0) < 0

in the case of Λ(δ) < 1
2 + λ(0), and g2(0) ≥ 0 in the case of

Λ(δ) ≥ 1
2

+ λ(0).
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Lemma 9.20. g2(x) < 0 on (0, δ) for Λ(δ) ≤ 1
2 + λ(0). And for Λ(δ) >

1
2 +λ(0), there exists exactly one x2 ∈ (0, δ) such that g2(x2) = 0, g2(x) > 0
on (0, x2), and g2(x) < 0 on (x2, δ).

Theorem 9.21. G′(x) < 0 on (0, δ) for Λ(δ) ≤ 1
2 + λ(0). In addition, for

Λ(δ) > 1
2 + λ(0), there exists x3 ∈ (0, δ) such that G′

1(x3) = 0, G′(x) > 0
on (0, x3), and G′(x) < 0 on (x3, δ).

Proof. Note that G′(x) = g(x)/λ2(x), so we need only prove the same
conclusion for g1(x). By Lemma 9.20, g2(x) < 0 on (0, δ) for Λ(δ) ≤ 1

2 +
λ(0). In addition, g1(0) = 0, and we have g1(x) < 0 on (0, δ). For Λ(δ) >
1
2 + λ(0), g2(x) > 0 on (0, x2) and g2(x) < 0 on (x2, δ) by Lemma 9.20, so
g1(x2) > g1(0) = 0. Since g1(δ) < 0 and g2(x) < 0 on (x2, δ), the second
part is true. �

Here, we only derive the case of C > δ, and Λ(δ) ≤ 1
2 + λ(0). We

can discuss other cases similarly. Recall (9.32); the feasible input set is
u∗ ∈ Γ =

(
C−δ

a , C+δ
a

)
and the set is nonempty if and only if r > Δ. Then,

we have the following theorem.

Theorem 9.22 Suppose d has a truncated normal distribution on (−δ, δ).
Then for Ω0, η∗ defined in (9.34) can be expressed as

η∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G(0)a2

(C+δ)2 , if Δ < r ≤ C−δ
C ,

min{ G(0)a2

(C+δ)2 ,H(C − C−δ
a a)a2}, if C−δ

C < r ≤ C
C+δ ,

min{G(0)a2

C2 ,H(0)a2,H(C − C−δ
a a)a2, a2H(C − C+δ

a a)},
if r > C

C+δ ,

(9.39)

where

H(t) =
λ2(t)

(C − t)2λ2(t)
.

For system (9.22) with C = 40, a = 1, a = 50, and the actual parameter
a = 15. The disturbance has a uniform distribution on (−δ, δ) with δ = 6,
by the algorithm developed in Section 9.5.2:

We have K = 2, aK = 9.8, and aK = 15. Then, we calculate Ns = 1 by
(9.36). We turn to stochastic method and get ã.

It is shown that the parameter uncertainty is reduced to a certain bound
using the deterministic method in the first stage and convergent to the real
parameter using the stochastic method afterwards.

9.6 Notes

The material in this chapter is derived mostly from [111]. This chapter
presents input design, uncertainty reduction rates, and time complexity
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FIGURE 9.3. Simulation on the combined deterministic and stochastic identifi-
cation methods

for system identification under binary-valued observations. This chapter
deals with nonstatistical information from the observed data. We show
that to enhance the nonstatistical information, the input must be properly
designed.

Our input design is based on the idea of one-step optimal design: From
the current uncertainty set on the unknown parameter, we select the best
input value of the input such that the next uncertainty set can be maxi-
mally reduced, assuming no further information toward the future. Casini,
Garulli, and Vicino have shown in [14] that if one has additional information
on the number N of remaining steps toward the end of the identification
data window, a better input design can be achieved. A dynamic program-
ming method was introduced to optimize such an input design. It can be
shown that in that case, the one-step optimal input design employed in
Section 9.4 is no longer optimal for this N -step optimal input design. On
the other hand, to achieve convergence with growing data sizes (namely,
N → ∞, rather than a fixed integer from the outset), the one-step design is
a simple choice to achieve exponential convergence toward the irreducible
uncertainty set.

The deterministic approaches are subject to an irreducible identification
error; hence convergence is lost. They work well when the magnitude of the
noise error bounds is relatively small since the irreducible set is a function
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of the size of the noise. Also, the input design can achieve exponential con-
vergence rates toward the irreducible set, which is much faster than the
polynomial rates of convergence in a stochastic framework. On the other
hand, stochastic information in the data can produce a convergent esti-
mator. A combined identification algorithm that employs the input design
first to reduce the parameter uncertainty set exponentially, followed by a
statistical averaging approach to achieve convergence with periodic inputs,
seems to be the best choice in overcoming the shortcomings of each indi-
vidual framework.



10
Worst-Case Identification Using
Quantized Observations

In this chapter, the parameter identification problem under unknown-but-
bounded disturbances and quantized output sensors is discussed. In Chap-
ter 9, an input sequence in (9.5) was used to generate observation equations
in which only one parameter appears, reducing the problem to the identifi-
cation of gain systems. A more general input design method is introduced
in this chapter to achieve parameter decoupling that transforms a multi-
parameter model into a single-parameter model. The input sequence with
the shortest length that accomplishes parameter decoupling is sought. Iden-
tification algorithms are introduced, and their convergence, convergence
rates, and time complexity for achieving a predefined estimation accuracy
are investigated.

Section 10.1 formulates the problem and derives a lower bound on iden-
tification errors. Section 10.2 studies the input design that achieves par-
ameter decoupling. Parameter decoupling reduces the original identification
problem to a one-parameter identification problem. Section 10.3 presents al-
gorithms for identifying one parameter with quantized observations. Time-
complexity issues are further studied in Section 10.4. Finally, Section 10.5
illustrates the identification algorithms and their convergence properties by
several examples.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010

10,
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10.1 Worst-Case Identification with Quantized
Observations

Consider an FIR system

yk =
n0−1∑

i=0

aiuk−i + dk, k = k0, k0 + 1, . . . , (10.1)

where {dk} is a sequence of disturbances, {ai} are unknown system par-
ameters, and the input uk ∈ U = {uk : 0 < uk ≤ umax, k = k0, k0 + 1, . . .}.
The output yk is measured by a quantized sensor with m0 thresholds
C1 < C2 < · · · < Cm0 . Namely, the sensor s = S(y) is represented by
the indicator function

sk = S(yk) =
m0∑

i=1

iI{yk∈(Ci,Ci+1]}, (10.2)

where i = 1, . . . ,m0 with C0 = −∞ and Cm0+1 = ∞. Although a sum is
presented in (10.2), at any time k, only one term is nonzero. Hence, sk = j,
j = 0, 1, . . . ,m0, implies that yk ∈ (Cj , Cj+1].

Define θ = [a0, . . . , an0−1]′. Then the system input–output relationship
becomes

yk = φ′
kθ + dk, (10.3)

where φk = [uk, uk−1, . . . , uk−n0+1]′. The system will be studied under the
following assumptions.

(A10.1) For a fixed p ≥ 1,

(i) the sequence of disturbances d = {dk : k ≥ 0} is bounded by ‖d‖∞ ≤
δ;

(ii) the prior information on θ is given by Ω0 = Ballp(θ0, e0) ⊂ R
n0 for

some known θ0 ∈ R
n0 and e0 > 0.

For a selected input sequence uk, let s = {sk, k = k0, . . . , k0 + N − 1} be
the observed output. Define

ΩN (k0, u, s) =
{

θ : sk =
m1∑

i=0

iI{φ′
kθ+dk∈(Ci,Ci+1]}

for some |dk| ≤ δ, k = k0, . . . , k0 + N − 1
}

,

and the optimal worst-case uncertainty after N steps of observations as

eN = inf
‖u‖∞≤umax

sup
k0

sup
s

Radp(ΩN (k0, u, s) ∩ Ballp(θ0, e0)).
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Proposition 10.1. Assuming Assumption (A10.1), for (10.3), the uncer-
tainty set Ball1(0, (C1 − δ)/umax) is not identifiable.

Proof. For any θ ∈ Ballp(0, (C1 − δ)/umax), the output

yk = φ′
kθ + dk ≤ ‖φ(k)‖∞‖θ‖1 + δ

≤ umax
C1 − δ

umax
+ δ = C1.

It follows that sk = 1,∀k. Hence, the observations could not provide further
information to reduce uncertainty. �

10.2 Input Design for Parameter Decoupling

In order to simplify the problem, an input design method was introduced in
[111] to decouple system parameters for identification. We are seeking the
shortest input sequence lengths to decouple (10.1) into n0 single-parameter
observation equations.

Definition 10.2. An input sequence {ui, i = k0, . . . , k0 + N0 − 1} is said
to be n0-parameter-decoupling if, for each j = 0, . . . , n0−1, there exists ukj

such that yk = ajukj
+dk for some k0 ≤ k ≤ k0+N0−1 and without consid-

ering inputs before time k0. In other words, the N0 observation equations
contain at least one single-parameter observation equation for each param-
eter aj . The input sequence is called the shortest n0-parameter-decoupling
sequence if N0 is minimal.

Example 10.3. The shortest n0-parameter-decoupling input segment is
not unique. For example, when n0 = 3 and k0 = 0, input u = {u1, 0, 0, u4, 0,
u6, 0}, we have

y5 = a1u4, y8 = a2u6, y4 = a3u1.

That is, u is a three-parameter-decoupling input segment. By exhaustive
testing, we can verify that u is shortest. It can be easily checked that
{0, u∗

2, 0, u∗
4, 0, 0, u∗

7} is also three-parameter decoupling.

Since parameter decoupling is independent of the actual values of ukj
,

for simplicity we will always use ukj
= 1 to represent the nonzero input

value at kj .

Definition 10.4. A vector is called a {0, 1}-vector if its components are 1
or 0.

Definition 10.5. A {0, 1}-vector is said to contain the jth row of the n0×
n0 identity matrix if the jth row of the n0 × n0 identity matrix is a block
of it. In this case, the 1 in the block is said to map to the jth row of the
n0 × n0 identity matrix.
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Definition 10.6. A {0,1}-vector is said to be complete if

(i) it contains every row of the n0 × n0 identity matrix;

(ii) each 1 maps to at most one row of the n0 × n0 identity matrix.

Two complete {0,1}-vectors are equivalent if they have the same length.

Definition 10.7. For a given {0, 1}-vector b = [b1, b2, . . . , bN ]′ and c =
[c1, c2, . . . , cN ]′, if ci = bN−i+1 for i = 1, 2, . . . , N , then b and c are said to
be converse to each other.

Definition 10.8. Assume a {0,1}-vector b = (b1, b2, . . . , bN ) is complete,
and bl maps to the first row of the n0×n0 identity matrix. If c = (c1, . . . , cN )
satisfies ci = bl+i−1 for i = 1, . . . , N − n0 + 1 and cN−l+j+2 = bj for
j = 1, . . . , l − 1, then the transfer from b to c is called initial-1.

Proposition 10.9. For a complete {0, 1}-vector b = (b1, . . . , bN ), after
converse and/or initial-1 transfers, the new vector is equivalent to b.

Proof. Assume that bki
(i = 1, . . . , n0) maps to the ith row of the n0 × n0

identity matrix.
Converse: Denote c = (bN , . . . , b1) as the vector that is converse to b.

By definition, bN−ki+1 is the component of c that maps to the ith row of
the n0 × n0 identify matrix, so c has property (i) in Definition 10.6. Since
ki �= kj for i �= j, we have N − ki + 1 �= N − kj + 1. Hence, c has property
(ii). In addition, b and c have the same length. So b is equivalent to c.

It is similar to prove for the initial-1 transfer. �

Definition 10.10. Two 1’s in a {0,1}-vector are called neighbors if there’s
no 1 between them.

Proposition 10.11. For a complete {0, 1}-vector, if there are more than
(n0−1) 0s between two neighboring 1s, then keeping only (n0−1) 0s between
them will not change its completeness.

Lemma 10.12. The shortest length of complete {0, 1}-vectors is

ν(n0) =

⎧
⎨

⎩

n0
2+2n0−1

2 , if n0 is odd,
n0

2+2n0−2
2 , if n0 is even.

(10.4)

Proof. By Propositions 10.11 and 10.9, any {0,1}-vector is equivalent to
the one with first ν(n0) components:

n0+1
︷ ︸︸ ︷
1, 0, . . . , 0, 1,

n0+1
︷ ︸︸ ︷
0, 1, 0, . . . , 0, 1, . . . ,

n0+1
︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0,

︸ ︷︷ ︸
n0−l

1,

l−1
︷ ︸︸ ︷
0, . . . , 0, (10.5)
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where l = n0+1
2 (or n0

2 ) when l is odd (or even). For k ≤ n0, let

lk =

⎧
⎨

⎩

k+1
2 , if k is odd,

n0 − k
2 + 1, if k is even.

Then, the kth 1 in (10.5) maps to the lkth row of the n0 × n0 identity
matrix.

Hence, the first to the ν(n0)th components of the vector in (10.5) is
complete. �

Theorem 10.13. For system (10.1), the length of the shortest n0-parameter-
decoupling input segment is ν(n0). Furthermore,

(i) if n0 is even, uk = 0 for all k except k = k0 + i(n0 + 2), k0 + (i +
1)(n0 +1)−1, or, for all k except k = k0 +ν(n0)− i(n0 +2)−1, k0 +
ν(n0) − (i + 1)(n0 + 1), where i = 0, 1, . . . , n0

2 − 1;

(ii) if n0 is odd, uk = 0 for all except k = k0 + i(n0 + 2) + 1, k0 + (i +
1)(n0 + 1), and k0 + n2

0+n0
2 ; or, all except k0 + ν(n0)− i(n0 + 2), k0 +

ν(n0) − (i + 1)(n0 + 1) + 1, and k0 + n0−1
2 , where i = 0, 1, . . . , n0−3

2 .

Proof. Suppose u = [uk0 , uk0+1, . . . , uk0+N−1]′ is a shortest n0-parameter-
decoupling input segment. By definition, there exists k1 such that

uk1 �= 0 and uk = 0 for k = k1 − n0 + 1, . . . , k1 − 1. (10.6)

So we have yk1 = a0uk1 , and hence a0 is decoupled.
Consider the nonzero components of u as 1, u becomes a {0, 1}-vector.

Then, (10.6) can be considered as the n0th row of the n0 × n0 identity
matrix. Namely, the {0, 1}-vector u must satisfy condition (i) of Lemma
10.12. Furthermore, by the definition of the shortest parameter-decoupling
input vector, ki �= kj for i �= j, So the {0, 1}-vector u is required with
condition (ii) of Lemma 10.12. Lemma 10.12 confirms the first part of
Theorem 10.13. The second part follows the proof of Lemma 10.12. �

10.3 Identification of Single-Parameter Systems

In this section, the identification of single-parameter systems is studied.
The conditions of identification using quantized sensors are given, and the
effect of threshold values to identification is discussed.

Consider the single-parameter system

yk = auk + dk, k = k0, k1 + 2, . . . , (10.7)

where a ∈ [a0, a0] and a0 > 0, d = {dk0 , dk0+1, . . .} is the sequence of
disturbances satisfying ‖d‖∞ ≤ δ, uk is the input, and the output yk is
measured by the quantized sensor (10.2).
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Remark 10.14. Proposition 10.1 confirms that the uncertainty is irre-
ducible when |a| < (C1 − δ)/umax, but in order to investigate the rela-
tionship between identification and all threshold values, we assume |a| >

(Cm0−δ)/umax. In this case, input u0 = Cm0+δ

C1−δ umax. If s(0) = 0, y(0) ≤ C1,
which indicates a > 0; else, s(0) �= 0 indicates a < 0. Thus, the sign of a is
known. Without loss of generality, we assume a0 > (Cm0 − δ)/umax.

For simplification, the following symbols will be used in this chapter:

1. ak, ak: the uncertainty upper and lower bounds of a at time k;

2. ek = ak − ak;

3. Lk = ek/ek−1;

4. rk = ak/ak;

5. ΔCl = Cl+1 − Cl, l = 0, . . . , m0 − 1;

6. max ΔCl = max1≤l≤m0−1 ΔCl and min ΔCl = min1≤l≤m0−1 ΔCl;

7. R = C1−max ΔCl−δ
Cm0+max ΔCl+δ ;

8. Pk(i, j) =
(Ci+δ)ak−1−(Cj−δ)ak−1

(Ci+Cj)ek−1
, i ≤ j;

9. Qk(i, j) = ak−1(maxi≤l≤j−1 ΔCl+2δ)

(Cj+maxi≤l≤j−1 ΔCl+δ)ek−1
, i ≤ j;

10. ∨{x1, x2} = max{x1, x2} and ∧{x1, x2} = min{x1, x2};

11. Lk(i, j) = ∧{∨{Pk(i, j), Qk(i, j)}, 1};

12. L̃k(i) = ∧{Pk(i, i), 1}.

10.3.1 General Quantization

A quantized sensor is binary when m0 = 1. By Chapter 9, when the decou-
pled observations (10.7) are measured by a binary sensor with threshold
C1, in the worst case, the minimum of Lk is L̃k(1) and the optimal input
is uk = 2C1

ak−1+ak−1
. Subsequently, we will consider m0 ≥ 2.

Theorem 10.15. For (10.7), when ek−1 < (min ΔCl + 2)./umax, the min-

imum of Lk is Lk = L̃k(m0) in the worst-case sense.

Proof. By (10.7), we have a = (yk − dk)/uk. The necessary condition of
Lk < 1 is that for all uk ∈ U, so there exists some threshold Ci such that

ak−1 ≤ Ci − δ

uk
≤ Ci + δ

uk
≤ ak−1. (10.8)
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Suppose Ci0 satisfies (10.8), since

ek−1 < (min ΔCl + 2δ)/umax ≤ (Ci0 − Ci0−1 + 2δ)/umax,

we have
Ci0−1 − δ < Ci0 + δ − umax(ak−1 − ak−1).

By (10.8), Ci0 + δ < ak−1umax, so

Ci0−1 − δ

uk
< ak−1.

Since C1 < C2 < · · · < Cm0 , for i < i0, Ci does not satisfy (10.8). Similarly,
for i > i0, Ci does not satisfy (10.8). Namely, for a given uk ∈ U, there exists
one threshold at most, which satisfies (10.8). By Chapter 9, in a worst-case
sense, the minimum of Lk is L̃i0(k) when only Ci0 satisfies (10.8), and the
optimal input is uk = 2Ci0/(ak−1 + ak−1).

Furthermore, since L̃i(k) is monotonically decreasing for i and C1 <

C2 < · · · < Cm0 , the minimum of Lk is L̃1(k) and the optimal input is
uk = 2C1/(ak−1 + ak−1). �

In order to design input with quantized sensors to make Lk less than
L̃k(C1), we now describe how to identify systems with quantized observa-
tions.

Theorem 10.16. Assume δ < min ΔCl/2, umax ≥ (Cm0 − δ)/a0, and
ek−1 ≥ (Cm0 − C1 + 2δ)/umax. Then

Lk = Lk(1,m0). (10.9)

Furthermore,

(i) if rk−1 ≤ R, then Lk = Pk(1,m) and the optimal input is uk =
C1+Cm0

ak−1+ak−1
;

(ii) if rk−1 > R, then Lk = Qk(1,m) and the optimal input is uk =
Cm0+max ΔC+δ

ak−1
.

Proof. Since ek−1 ≥ (Cm0−1 − C1 + 2δ)/umax, there exists uk ∈ U such
that

C1 + δ

uk
≥ ak−1,

Cm0 + δ

uk
≤ ak,

which together with δ < min ΔCl/2 gives

Cl+1 − δ ≥ Cl + δ, for l = 1, 2, . . . ,m0 − 1.

Hence, there exists uk ∈ U such that

ak−1 ≤ C1 − δ

uk
≤ C1 + δ

uk
≤ · · · ≤ Cm0 − δ

uk
≤ Cm0 + δ

uk
≤ ak−1. (10.10)
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By (10.4), a = (yk − dk)/uk. For the input in (10.10), consider sk: If
sk = m0, then a > (Cm0 − δ)/uk, and hence,

ak = ∨{(Cm0 − δ)/uk, ak−1} = (Cm0 − δ)/uk, ak = ak−1.

Denote γk = ukek−1. Then, we have

Lk = (ak−1uk − (Cm0 − δ))/γk.

If sk = j, j = 1, . . . , m0 − 1, then (Cj − δ)/uk < a ≤ (Cj+1 + δ)/uk, and
hence,

ak = (Cj − δ)/uk, ak = (Cj+1 + δ)/uk, Lk = (ΔCj + 2δ)/γk.

If sk = 0, then a ≤ (C1 − δ)uk, and hence,

ak = ak−1, ak = (C1 + δ)/uk, Lk = (C1 + δ − ak−1uk)/γk.

So, in the worst case, we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lk ≥ (ak−1uk − (Cm0 − δ))/γk,

Lk ≥ (ΔCj + 2δ)/γk,

Lk ≥ (C1 + δ − ak−1uk)/γk.

(10.11)

Since uk > 0, (10.11) is equivalent to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uk ≤ Cm0−δ

ak−1−Lkek−1
,

uk ≥ ΔCj+2δ
Lkek−1

,

uk ≥ C1+δ
ak−1+Lkek−1

,

which means that there exists uk ∈ U satisfying (10.10) such that

Lk ≥ Pk(1,m0), Lk ≥ Qk(1,m0), (10.12)

and the equalities in (10.12) are achieved in the case of

uk =
Cm0 + C1

ak−1 + ak−1

and uk =
Cm0 + max{Ci − Ci+1} + d

ak−1
,

respectively. So, (10.9) is true.
Furthermore, when rk−1 ≤ R, we have Pk(1,m0) ≥ Qk(1,m0). Let uk =

C1+Cm0
ak−1−ak−1

. Then, by

uk =
C1 + Cm0

ak−1 + ak−1

≤ Cm0 − δ + C1 + δ

2ak−1

≤ Cm0 − δ

ak−1

≤ umax,
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uk ∈ U. From (10.11), one can get Lk = Pk(1,m0).
Similarly, when rk−1 > R, let uk = Cm0+max ΔCl+δ

ak−1
. Then, uk ∈ U and

Lk = Qk(1,m0). �

Theorem 10.16 shows that when rk−1 ≤ R, which means that the un-
certainty bound is large, ak−1 − (Cm0 − δ)/uk and (C1 + δ)/uk − ak−1

are larger than (max ΔCl + 2δ)/uk. So, Lk is determined by C1 and Cm0 .
When ak−1/ak−1 > R, which means the uncertainty bound is small, ak−1−
(Cm0 − δ)/uk and (C1 + δ)/uk − ak−1 are less than (max ΔCl + 2δ)/uk.
Then Lk is determined by the two neighboring thresholds with the maxi-
mum space between them. As a result, Lk derived from m0 − 1 thresholds
may be less than the one derived from m0 thresholds.

Example 10.17. Let C1 = 85, C2 = 94, C3 = 97, C4 = 100, and δ = 1.
Compare Lk derived from {C1, C2, C3, C4} and {C2, C3, C4}.

1. For {C1, C2, C3, C4}, if r0 ≤ C1−(C2−C1)−δ
C4+(C2−C1)+δ = 15

22 , then

L1 = P1(1, 4) =
86a0 − 99a0

185e0
.

If r0 > 15
22 , then

L1 = Q1(1, 4) =
a0

10e0
.

2. For {C2, C3, C4}, if r0 ≤ C2−(C3−C2)−δ
C4+(C3−C2)+δ = 45

52 , then

L1 = P1(2, 4) =
95a0 − 99a0

194e0
.

If r0 > 45
52 , then

L1 = Q1(2, 3) =
a0(C4 − C3 + 2δ)
(2C4 − C3 + δ)e0

=
5a0

104e0
.

The curves of L1 with r0 are plotted in Figure 10.1. It is shown that we
have L1(1, 4) ≤ L1(2, 4) as r0 ≤ 0.77 and L1(1, 4) > L1(2, 4) as r0 > 0.77.
The reason is that the space between C1 and C2 is larger than others, so
max1≤l≤3 ΔCl > max2≤l≤3 ΔCl, which causes the result in Figure 10.1 by
(10.9).

Before studying the general case, we start from the case m0 = 2.

Corollary 10.18. For system (10.7) with m0 = 2 and uk ∈ U, in the
worst case, the minimum value of Lk is

Lk = ∧{∨{Pk(1, 2), Qk(1, 2)}, L̃k(1)}. (10.13)

Furthermore,
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FIGURE 10.1. Lk derived from C1 ∼ C4 and C2 ∼ C4

(i) if

rk−1 ≤ 2C1 − C2 − δ

2C2 − C1 + δ
,

then Lk = P1(1, 2) and the optimal input is

uk =
C1 + C2

ak−1 + ak−1

;

(ii) if
2C1 − C2 − δ

2C2 − C1 + δ
≤ rk−1 ≤ C1 − δ

2C2 − C1 + δ
,

then Lk = Qk(1, 2) and the optimal input is

uk =
2C2 − C1 + δ

ak−1
;

(iii) if
C1 − δ

2C2 − C1 + δ
< rk−1 ≤ C2 − δ

C2 + δ
,

then Lk = L̃k(1) and the optimal input is

uk =
2C2

ak−1 + ak−1

;
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(iv) if

rk−1 >
C2 − δ

C2 + δ
,

then Lk = 1 for any uk ∈ U.

Proof. Since m0 = 2, we can construct inputs with one or two thresholds.
By Chapter 9, the minimum Lk with a single threshold is Lk = L̃k(2). In
addition to Theorem 10.16, (10.13) is true.

For (i), we have Pk(1, 2) ≥ Qk(1, 2), which together with C1 < C2 gives

Pk(1, 2) =
(C1 + δ)ak−1 − (C2 − δ)ak−1

(C1 + C2)ek−1
≤ L̃k(2).

Hence, Lk = L̃k(C2).
For (ii), we have Pk(1, 2) ≤ Qk(1, 2), which together with rk−1 ≤ C1−δ

2C2−C1+δ

gives Qk(1, 2) ≤ L̃k(2). Hence, Lk = Qk(1, 2). By Theorem 10.16, one can
get the optimal input of (i)–(iii).

For (iii), we have Lk = L̃k(m0). By Chapter 9, the optimal input is
uk = 2C2

ak−1+ak−1
.

For (iv), by Chapter 9 we have Lk = 1 for any inputs. �

10.3.2 Uniform Quantization

Consider that Lk is affected by C1, Cm0 , and max ΔCl, and Qk(1,m0)
decreases with decreasing max ΔCl. In order to minimize max ΔCl, we
assume

C2 − C1 = C3 − C2 = · · · = Cm0 − Cm0−1 := ΔC.

Lemma 10.19. Consider (10.7). Assume that δ < ΔC/2, umax ≥ (Cm0 −
δ)/a0, and ek−1 ≥ (Cm0 − C1 + 2δ)/umax. For 2 ≤ i ≤ j ≤ m0, denote

L̃k(i, j) = ∨{Pk(i, j), Qk(i − 1, i)}.

In the worst case, we have

L̃k(1,m0) ≤ ∧{L̃k(1,m0 − 1), L̃k(C2, Cm0)}. (10.14)

Proof. By C1 < C2, we have Pk(1,m0) ≤ Qk(1,m0 − 1) and L̃k(1,m0) ≤
L̃k(1,m0 − 1). To prove (10.14), we need only show that L̃k(1,m0) ≤
L̃k(2,m0).

For rk−1 ≤ C1−ΔC−δ
Ci+ΔC+δ , i = m0 − 1,m0, we have Pk(1, i) ≤ Qk(i − 1, i),

and hence, L̃k(1, i) = Pk(1, i). Similarly, for rk−1 > C1−ΔC−δ
Ci+ΔC+δ , we have

L̃k(1, i) = Qk(i − 1, i).
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Considering that L̃k(1, i) is piecewise about ak−1/ak−1, we study the
following three cases:

(i) When rk−1 ≤ C1−ΔC−δ
Cm0+ΔC+δ , we have

L̃k(1, i) = Pk(1, i), i = m0 − 1, m0.

Noting that

Pk(1, i) =
(C1 + δ)ak−1 − (Ci − δ)ak−1

(C1 + Ci)ek−1

=
(C1 + δ)(ak−1 + ak−1)

(C1 + Ci)ek−1
− ak−1

ek−1
,

and Cm0 ≥ C2, we have Pk(1,m0) ≤ Pk(2,m0), and hence, L̃k(1,m0) ≤
L̃k(C2, Cm0).

(ii) When rk−1 ≥ C1−ΔC−δ
Cm0−1+ΔC+δ , we have

L̃k(1, i) = Qk(i, i + 1), i = m0 − 1,m0.

Noticing that

Qk(i, i + 1) =
ak−1(ΔC + 2δ)

(Ci + ΔC + δ)ek−1
=

ak−1(ΔC + 2δ)
(Ci + ΔC + δ)ek−1

and Cm0−1 < Cm0 , we have Qk(m0 − 2,m0 − 1) ≤ Qk(m0 − 1,m0), and
hence, L̃k(1,m0) ≤ L̃k(1,m0 − 1).

(iii) When C1−ΔC−δ
Cm0+ΔC+δ < rk−1 < C1−ΔC−δ

Cm0−1+ΔC+δ , we have

L̃k(1,m0) = Qk(m0 − 1,m0) and L̃k(1, Cm0−1) = Pk(1,m0 − 1).

By (ii), we have rk−1 = C1−ΔC−δ
C2+ΔC+δ , and hence, L̃k(1,m0) ≤ L̃k(1,m0 − 1).

Notice that L̃k(1,m0) = Qk(m0 − 1,m0) increases about ak−1/ak−1. Then
L̃k(1,m0 − 1) = Qk(m0 − 1,m0) decreases about rk−1. Thus, for case (iii),
we have L̃k(1,m0) ≤ L̃k(1,m0 − 1). To summarize, (10.14) is true. �

Theorem 10.20. Consider (10.7). Assume δ < ΔC/2 and ek−1 ≥ (Cm0−
C1 + 2δ)/umax. Then for uk ∈ U, in the worst case, the minimum Lk is
that

Lk = ∧{∨{Pk(1,m0), Qk(m0 − 1,m0)}, L̃k(m0)}. (10.15)

Furthermore,

(i) for rk−1 ≤ Cm0−m0ΔC−δ

Cm0+ΔC+δ , Lk = Pk(1,m0) and the optimal input is

uk = C1+Cm0
ak−1+ak−1

;
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(ii) for Cm0−m0ΔC−δ

Cm0+ΔC+δ < rk−1 ≤ Cm0−1−δ

Cm0+ΔC+δ , Lk = Qk(m0 − 1,m0) and

the optimal input is uk = Cm0+ΔC+δ

ak−1
;

(iii) for Cm0−1−δ

Cm0+ΔC+δ < rk−1 ≤ Cm0−δ

Cm0+δ , Lk = L̃k(m0) and the optimal input

is uk = 2Cm0
ak−1+ak−1

;

(iv) for rk−1 >
Cm0−δ

Cm0+δ , Lk = 1 for any uk ∈ U.

Proof. By Corollary 10.18, (10.15) is true for m0 = 2. Assume that for
i ≥ 2, (10.15) is true for m0 = i. Then for m0 = i + 1, we have

Lk = ∧{L̃k(1, i + 1), L̃k(1, i), L̃k(2, i + 1), L̃k(i + 1)}.

By Lemma 10.19, we have L̃k(1, i + 1) ≤ ∧{L̃k(1, i), L̃k(2, i + 1)}, which
implies that (10.15) is true for m = i + 1. Thus, by induction we have
(10.15).

The rest can be obtained by comparing Pk(1,m0), Qk(m0 − 1,m0), and
L̃k(m0). �

By Theorem 10.20, Lk < L̃k(m0) is equivalent to L̃k(1,m0) < L̃k(m0),
or equivalently, rk−1 <

Cm0−1−δ

Cm0+ΔC+δ .

Theorem 10.21. Consider (10.7). Assume δ < ΔC/2 and denote

K = {k : ek−1 ≥ (Cm0 − C1 + 2δ)/umax}.

For each k, choose the optimal uk to minimize Lk; then in the worst case,
there exists at most one k ∈ K such that Lk = Qk(m0 − 1,m0).

Proof. Since ak and ak are increasing and decreasing with respect to k, by
Theorem 10.20, for

Cm0 − m0ΔC − δ

Cm0 + ΔC + δ
< rk−1 ≤ Cm0−1 − δ

Cm0 + ΔC + δ
,

the minimum of Lk is Lk = Qk(m0 − 1,m0). Hence, if there exist two k’s
in K such that Lk = Qk(m0 −1,m0), then they must be neighbors. Denote
them as k0, k0 + 1, respectively. Then,

Lk0+1

Lk0

=
ak0

ak0−1

ek0−1

ek0

=
ak0

ak0−1

1
Lk0

,

or equivalently,

Lk0+1 =
ak0

ak0−1
.
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Since ak0 = ak0+1 in the worst case, we have Lk0+1 = 1, which contradicts
the fact that Lk0+1 < L̃k0+1(m0) < 1 for

Cm0 − m0ΔC − δ

Cm0 + ΔC + δ
<

ak0

ak0

≤ Cm0−1 − δ

Cm0 + ΔC + δ
.

�

By Theorem 10.21, we can figure out how many k’s there exist such that
Lk < L̃k(m0).

Theorem 10.22. Consider (10.7). Assume δ < ΔC/2 and denote K =
{k : ek−1 ≥ (Cm0 − C1 + 2δ)/umax}. In the worst case, choose the optimal
input to minimize Lk. Then, the total number K of the elements k ∈ K
such that Lk < L̃k(m0) satisfies

ln α4 − ln(1 − α4)
ln α3

≤ K ≤ ln α2 − ln(1 − α2)
ln α1

+ 1, (10.16)

where

α1 =
C1 + δ

C1 + Cm0

, α2 =
(Cm0 − C1 − 2δ)a0

(Cm0 − δ)
,

α3 =
Cm0 − δ

C1 + Cm0

, α4 =
(Cm0 − C1 − 2δ)a0

(Cm0 + δ)
.

Proof. By Theorem 10.20, Lk = ∧{∨{Qk(1,m0), Qk(m0−1,m0)}, L̃k(m0)}
for k ∈ K and Lk < L̃k(m0) only for

ak−1
ak−1

<
Cm0−1−δ

Cm0+ΔC+δ .

Furthermore, for rk−1 ≤ Cm0−m0ΔC−δ

Cm0+ΔC+δ , we have

Lk = Pk(1,m0), (10.17)

and for Cm0−m0ΔC−δ

Cm0+ΔC+δ < rk−1 ≤ C2−δ
Cm0+ΔC+δ ,

Lk = Qk(m0 − 1,m0). (10.18)

Thus, by Theorem 10.21, there exists at most one k satisfying (10.18).
From (10.17), one obtains

ek = α1ek−1 −
(Cm0 − C1 − 2δ)

(C1 + Cm0)
ak−1 (10.19)

and

ek = α3ek−1 −
(Cm0 − Cm0 − 2δ)

(C1 + Cm0)
ak−1. (10.20)

By (10.19) and the fact that ai decreases about i, we have

ek = αk
1e0 −

(Cm0 − C1 − 2).
(C1 + Cm0)

k−1∑

i=0

αi
1ak−i−1

≤ αk
1e0 − α2(1 − αk

1)

= (1 − α2)αk
1 − α2.



10.4 Time Complexity 163

By ek > 0, or equivalently, (1 − α2)αk
1 − α2 > 0, we have

k ≤
ln

α2

1 − α2

ln α1
.

Similarly,

k ≥ ln α4 − ln(1 − α4)
ln α3

.

Thus, by (10.18), we have (10.16). �

Remark 10.23. In Theorem 10.22, K is estimated by using the prior in-
formation of parameters. Since the bound of the unknown parameters de-
creases, the estimate of K is more accurate if updated parameter bounds
are used.

10.4 Time Complexity

Section 10.3.2 shows that for uniform quantization with m0 thresholds, in
the worst case, the minimum Lk is

Lk = ∧{∨{Pk(1,m0), Qk(m0 − 1,m0)}, L̃k(m0)}.

Considering that L̃k(m0) is about the largest threshold, and

rk−1 <
Cm0−1 − δ

Cm0 + ΔC + δ
,

we have Lk < L̃k(m0). Furthermore, by Theorem 10.21, in the worst case,
there exists at most one k ∈ K = {k : ek−1 ≥ (Cm0 −C1 + 2δ)/umax} such
that Lk = Qk(m0 − 1,m0). So, we will study the effect of Pk(1,m0) on the
parameter estimation and its time complexity.

(A10.2) C2 − C1 = C3 − C2 = · · · = Cm0 − Cm0−1 := ΔC, δ < ΔC/2,
and e > (Cm0 − C1 + 2δ)/umax.

Lemma 10.24. Consider (10.7). Let

σ =
m0ΔC + 2δ

Cm0 + ΔC − δ
a0.

For e ∈ (σ, e0), N(e) is the time complexity of the parameter’s unknown
bound from e0 to e. Choose optimal inputs in each time k. Then,

N(e) ≤ ln(α2 + e) − ln[(1 − α2)e0]
ln α1

, (10.21)

where

α1 =
C1 + δ

C1 + Cm0

, α2 =
(Cm0 − C1 − 2δ)a0

(Cm0 − δ)
.
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Proof. Since ek−1 > e > σ and a0 ≥ ak−1,

rk−1 ≤ Cm0 − m0ΔC − δ

Cm0 + ΔC + δ
.

By Theorem 10.20, the minimum of Lk is Pk(1,m0). Hence,

ek = α1ek−1 −
Cm0 − C1 − 2δ

C1 + Cm0

ak−1

≤ αk
1e0 −

(Cm0 − C1 − 2δ)a0

C1 + Cm0

k−1∑

i=0

αi
1

= (1 − α2)αk
1e0 − α2.

In the worst case, a necessary and sufficient condition of ek ≤ e is

(1 − α2)αk
1e0 − α2 ≤ e,

or equivalently,

k ≥
ln

α2 + e

(1 − α2)e0

ln α1
.

Thus, (10.21) is true. �

Theorem 10.25. For (10.3), let

θ0 = max
1≤i≤n0

a0(i), θ0 = min
1≤i≤n0

θ0(i),

σ =
m0ΔC + 2δ

Cm0 + ΔC − δ
a0, e0 = Radp(Ω0).

Then, for any given e ∈ (σ, e0), we have

N(e) ≤ ν(n0)
ln(α2 + e/n

1/p
0 ) − ln[(1 − α2)e0]

ln α1
, (10.22)

where

α1 =
C1 + δ

C1 + Cm0

and α2 =
(Cm0 − C1 − 2δ)θ0

(Cm0 − δ)
.

Proof. For the inputs constructed in Theorem 10.13, after N = ν(n0)N1

steps, each parameter bound can be updated N1 times. In addition to
Lemma 10.24, we have

Radp(ΩN ) ≤ n
1/p
0 Rad∞(ΩN )

≤ n
1/p
0 [(1 − α2)α

N/ν(n0)
1 Rad∞(Ω0) − α2]

≤ n
1/p
0 [(1 − α2)α

N/ν(n0)
1 Radp(Ω0) − α2]

= n
1/p
0 [(1 − α2)α

N/ν(n0)
1 e0 − α2].
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So, (10.22) is true. �

Replace the lp norm in Theorem 10.25 by the l∞ norm. Then the follow-
ing theorem can be derived.

Corollary 10.26. For (10.3), let θ0 = max1≤i≤n0 ai, θ0 = min1≤i≤n0 ais,
σ = m0ΔC+2δ

Cm0+ΔC−δ θ0, and e0 = Rad∞(Ω0). For any given e ∈ (σ0, e), we have

N(e) ≤ ν(n0)
ln (α2 + e) − ln [(1 − α2)e0]

ln α1
,

where α1 and α2 were introduced in Theorem 10.25.

10.5 Examples

Two examples are used to demonstrate the methods developed in this chap-
ter. In Example 10.27, the parameters are estimated, and then the input is
designed to track a target output. In Example 10.28, the difference between
the estimation of quantized observations (m0 > 2) and binary observations
is discussed.

Example 10.27 (Tracking problem). For given target output y∗, design
inputs such that yk = y∗. It is worth mentioning that the yk is measured
by a quantized sensor with thresholds Ci, i = 1, 2, . . . , m0. For the classical
tracking problem, the target output y∗ must be equal to some threshold,
and for y∗ �= Ci, i = 1, 2, . . . ,m0, the tracking problem cannot be solved by
classical methods. However, by using the results developed in this chapter,
the unknown parameter can be estimated first, then the inputs can be
designed to track y∗.

Consider

yk = a1uk + a2uk−2 + a3uk−3 + dk, k = 3, 4, . . . ,

where d ≤ 1; the real a1, a2, a3 are 12, 10, 5, but unknown; the prior
information is: ai ∈ [1, 70], i = 1, 2, 3, umax = 30, y∗ = 70, and yk is
measured by a two-threshold sensor with C1 = 70, C2 = 80.

By Theorem 10.13, let

u = {u0, 0, 0, u3, 0, u5, 0, u7, 0, u9, 0, 0, u8, . . .};
then

y13i+3 = a3u13i, y13i+12 = a3u13i+9, i = 1, 2, . . . ,

y13i+4 = a1u13i+3, y13i+13 = a1u13i+12, i = 1, 2, . . . ,

y13i+7 = a2u13i+5, y13i+9 = a2u13i+7 i = 1, 2, . . .

Hence, the parameters are decoupled and then estimated. The estimate is
aimed at reducing the unknown bound of each parameter to be less than 1
(see Figure 10.2).
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FIGURE 10.2. Reducing unknown parameter bound
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FIGURE 10.3. Tracking target output y∗
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TABLE 10.1. Two-threshold sensor

Item k = 0 k = 1 k = 2 k = 3 k = 4

ak 1 1 1 8.26 11.35

ak 60 30.03 15.28 15.28 12.19

ek 59 29.03 14.28 7.01 0.8

Lk 1 0.49 0.49 0.49 0.12

TABLE 10.2. Binary sensor

Item k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

ak 1 1 1 8.45 8.45 10.31 11.23 11.69

ak 60 30.82 16.08 16.08 12.39 12.39 12.39 12.39

ek 59 29.82 15.08 7.63 3.94 2.08 1.16 0.70

Lk 1 0.51 0.51 0.51 0.52 0.53 0.56 0.61

Consequently, consider the center of each unknown parameter interval
â1, â2, â3 as the estimate of a1, a2, a3. For y∗, let

uk =
1
â1

(y∗ − â2uk − â3uk−2).

At some k, change the parameters to a1 = 14, a2 = 5, a3 = 8. Then yk

no longer tracks yk. However, the quantized sensor can detect it and the
parameters can be estimated again (Figures 10.2 and 10.3).

Example 10.28 (Comparison of estimations with quantized and binary
sensors). Consider

yk = auk + dk, (10.23)

where the real parameter a = 12 but is unknown. The prior information is
that a ∈ [1, 60], δ = ‖dl‖∞ ≤ 1, and umax = 30. There are two-threshold
sensors with C1 = 95, C2 = 100 and a binary sensor with C = 95. The
estimation aim is to reduce the unknown parameter bound to be less than
1.

Then,

(i) increasing thresholds makes the estimation faster (Tables 10.1, 10.2,
and Figure 10.4);
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FIGURE 10.4. Comparison of estimations with two thresholds and binary sensors

(ii) from Table 10.1, we can find that Lk < 1/m0, because the m0 thresh-
olds divided the parameter space into m0 + 1 intervals, and Lk is de-
cided by the longest interval in the worst case. However, for a given
question, Lk may be decided by a smaller interval.

10.6 Notes

Based on the shortest decoupling input and analysis of gain system, the
identification of an FIR system with quantized observations is studied.

In this chapter, the shortest decoupling input starting from k0 is defined
and designed without utilizing the information of inputs before k0 and the
length is ν(n0). In some special cases assuming uk = 0 for k = k0 − n0 +
2, . . . , k0, the shortest length of inputs to decouple each parameter once
can be designed to be n0(n0 + 1)/2, which can be generalized to decouple
each parameter p times with only pn0(n0 + 1)/2 (see [14]). For example, if
n0 = 3 and uk = 0 for k = −1, 0, by input u = {u1, u2, 0, 0, u5, 0}, one can
get

y2 = a1u1, y5 = a3u2, y7 = a2u5.

That is, u is a three-parameter-decoupling input segment and the length is
n0(n0 + 1)/2 = 6.

However, the condition that uk = 0 for k = k0−n0+2, . . . , k0 may not be
reasonable. For example, after the input segments, in the above example,
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we have k′
0 = 6, but the condition that uk = 0 for k = k′

0 − 1, k′
0 is not

satisfied. The decoupling method developed in this chapter has a benefit
of being independent of such conditions, and it is the optimal one in this
case.
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11
Identification of Wiener Systems with
Binary-Valued Observations

This chapter studies the identification of Wiener systems whose outputs are
measured by binary-valued sensors. The system consists of a linear FIR (fi-
nite impulse response) subsystem of known order, followed by a nonlinear
function with a known parameterization structure. The parameters of both
linear and nonlinear parts are unknown. Input design, identification algo-
rithms, and their essential properties are presented under the assumptions
that the distribution function of the noise is known and the nonlinearity is
continuous and invertible. We show that under scaled periodic inputs, the
identification of Wiener systems can be decomposed into a finite number of
core identification problems. The concept of joint identifiability of the core
problem is introduced to capture the essential conditions under which the
Wiener system can be identified with binary-valued observations. Under
scaled full-rank conditions and joint identifiability, a strongly convergent
algorithm is constructed. The algorithm is shown to be asymptotically ef-
ficient for the core identification problem, hence achieving asymptotic op-
timality in its convergence rate. For computational simplicity, recursive
algorithms are also developed.

This chapter is organized as follows. The structure of Wiener systems
using binary-valued observations is presented in Section 11.1. Section 11.2
shows that under scaled periodic inputs, the identification of Wiener sys-
tems can be decomposed into a number of core identification problems. Ba-
sic properties of periodic signals and the concepts of joint identifiability are
introduced in Section 11.3. Based on the algorithms for the core problems,
Section 11.4 presents the main identification algorithms for Wiener systems.
Under scaled full-rank inputs and joint identifiability, the identification

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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algorithms for Wiener systems are shown to be strongly convergent. Iden-
tification algorithms for the core problems are constructed in Section 11.5.
By comparing the estimation errors with the CR lower bound, the algo-
rithms are shown to be asymptotically efficient, hence achieving asymp-
totically optimal convergence speed. For simplicity, recursive algorithms
are discussed in Section 11.6 that can be used to find system parameters
under certain stability conditions. Illustrative examples are presented in
Section 11.7 to demonstrate input design, identification algorithms, and
convergence results of the methodologies discussed in this chapter.

11.1 Wiener Systems

u x w

d

y sLinear
Dynamics

Nonlinear
Function

Binary
Sensor

� � � � � �⊗

FIGURE 11.1. Wiener systems with binary-valued observations

Consider the system in Figure 11.1, in which
⎧
⎪⎪⎨

⎪⎪⎩

yk = H(xk, η) + dk,

xk =
n0−1∑

i=0

aiuk−i,
(11.1)

where uk is the input, xk the intermediate variable, and dk the measurement
noise. H(·, η): DH ⊆ R → R is a parameterized static nonlinear function
with domain DH and vector-valued parameter η ∈ Ωη ⊆ R

m0 . Both n0 and
m0 are known. By defining φk = [uk, . . . , uk−n0+1]′ and θ = [a0, . . . , an0−1]′,
the linear dynamics can be expressed compactly as xk = φ′

kθ. The output
yk is measured by a binary sensor with threshold C.

(A11.1) The noise {dk} is a sequence of i.i.d. random variables whose
distribution function F (·) and its inverse F−1(·) are twice continuously
differentiable and known. For any given η ∈ Ωη, H(x, η) is bounded for any
finite x, continuous and invertible in x.

Parameterization of the static nonlinear function H(·, η) depends on spe-
cific applications. Often, the structures of actual systems can provide guid-
ance in selecting function forms whose parameters carry physical
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meanings ([103, 107]). On the other hand, when a black-box approach is
employed, namely, the models represent input–output relationships based
on data only, one may choose some generic structures for theoretical and
algorithmic development. For instance, a common structure is H(x, η) =∑m0−1

i=0 bihi(x), where hi(x), i = 0, . . . ,m0 − 1, are base functions and
η = [b0, b1, . . . , bm0−1]′ ∈ R

m0 is a vector of m0 unknown parameters. For
example, the typical polynomial structure is

H(x, η) =
m0−1∑

i=0

bix
i. (11.2)

In this chapter, we discuss input design, derive joint estimators of θ and
η, and establish their identifiability, convergence, convergence rates, and
efficiency (optimality in convergence rate).

11.2 Basic Input Design and Core Identification
Problems

We first outline the main ideas of using 2n0(m0 +1)-scaled periodic inputs
and empirical measures to identify Wiener systems under binary-valued
observations. It will be shown that this approach leads to a core identifica-
tion problem, for which identification algorithms and their key properties
will be established.

The input signal u to be used to identify the system is 2n0(m0 + 1)-
periodic, whose one-period values are (ρ0v, ρ0v, ρ1v, ρ1v, . . . , ρm0v, ρm0v),
where v = (v1, . . . , vn0) is to be specified. (The reason for repeating each
scaled vector, such as ρ0v, ρ0v, etc., is to simplify the algorithm devel-
opment and convergence analysis, not a fundamental requirement.) The
scaling factors ρ0, ρ1, . . . , ρm0 are assumed to be nonzero and distinct.

If, under the 2n0 input values u = (v, v), the linear subsystem has the
following n0 consecutive output values at n0, . . . , 2n0 − 1:

δi = a0un0+i + · · · + an0−1u1+i, i = 0, . . . , n0 − 1,

then the output under the scaled input (qv, qv) is

xn0+i = qδi, i = 0, . . . , n0 − 1.

Without loss of generality, assume δ0 �= 0. (When v is full rank, there
exists at least one i such that δi �= 0.) The output of the linear subsystem
contains the following (m0 + 1)-periodic subsequence with its one-period
values {ρ0δ0, ρ1δ0, . . . , ρm0δ0}:

xn0 = ρ0δ0, x3n0 = ρ1δ0, . . . ,

x(2m0+1)n0 = ρm0δ0, . . .
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By concentrating on this subsequence of xk, under a new index l with l =
1, 2, . . ., the corresponding output of the nonlinear part may be rewritten
as

Ỹl(m0+1) = H(ρ0δ0, η) + D̃l(m0+1),

Ỹl(m0+1)+1 = H(ρ1δ0, η) + D̃l(m0+1)+1,
...

Ỹl(m0+1)+m0 = H(ρm0δ0, η) + D̃l(m0+1)+m0 .

(11.3)

The equations in (11.3) form the basic observation relationship for identi-
fying η and δ0.

For ρ = [ρ0, . . . , ρm0 ]
′ and a scalar δ, denote

H(ρδ, η) = [H(ρ0δ, η), . . . , H(ρm0δ, η)]′. (11.4)

Then, (11.3) can be expressed as

Ỹl = H(ρδ, η) + D̃l, l = 0, 1, . . . , (11.5)

where δ �= 0,

Ỹl = [Ỹl(m0+1), . . . , Ỹl(m0+1)+m0 ]
′ and

D̃l = [D̃l(m0+1), . . . D̃l(m0+1)+m0 ]
′.

Correspondingly, the outputs of the binary-valued sensor on Ỹl are S̃l =
S(Ỹl), l = 0, 1, . . . Let τ = [τ0, . . . , τm0 ]

′ := [δ, η′]′. We introduce the follow-
ing core identification problem.

Core Identification Problem

Consider the problem of estimating the parameter τ from observations on
S̃l. Denote ζi = H(ρiδ, η), i = 0, 1, . . . ,m0. Then ζ = [ζ{1}, . . . , ζ{m0+1}]′ =
H(ρδ, η) and (11.5) can be rewritten as

Ỹl = ζ + D̃l, l = 0, 1, . . . (11.6)

The main idea of solving the core identification problem is first to esti-
mate ζ, and then to solve the interpolation equations

ζi = H(ρiδ, η), i = 0, 1, . . . ,m0, (11.7)

for δ and η. The basic properties on signals and systems that ensure solv-
ability of the core identification problem will be discussed next.
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11.3 Properties of Inputs and Systems

We first establish some essential properties of periodic signals and present
the idea of joint identifiability, which will play an important role in the
subsequent development. Some related ideas can be found in [43, 57, 108].

Generalized Circulant Matrices and Periodic Inputs

An n0 × n0 generalized circulant matrix ([57])

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn0 vn0−1 vn0−2 . . . v1

qv1 vn0 vn0−1
. . . v2

qv2 qv1 vn0

. . . v3

...
. . . . . . . . .

...

qvn0−1 qvn0−2 qvn0−3 . . . vn0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.8)

is completely determined by its first row [vn0 , . . . , v1] and q, which will be
denoted by T (q, [vn0 , . . . , v1]). In the special case of q = 1, the matrix in
(11.8) is a circulant matrix and will be denoted by T ([vn0 , . . . , v1]).

Definition 11.1. A 2n0(m0 + 1)-periodic signal u is called a scaled full-
rank signal if its one-period values are (ρ0v, ρ0v, ρ1v, ρ1v, . . . , ρm0v, ρm0v),
and v = (v1, . . . , vn0) is full rank; ρj �= 0, j = 1, . . . ,m0, and ρi �= ρj , i �= j.
We use U to denote the class of such signals.

Definition 11.2. An n0(m0 + 1)-periodic signal u is called an exponen-
tially scaled full-rank signal if its single-period values are (v, qv, . . . , qm0v)
with q �= 0 and q �= 1, and v = (v1, . . . , vn0) is full rank. We use Ue to
denote this class of input signals.

Joint Identifiability

Joint identifiability conditions mandate that the unknown parameters δ and
η can be uniquely and jointly determined by the interpolation conditions
(11.7).

Prior Information. The prior information on the unknown parameters
τ = [δ, η′]′ for the core identification problem is τ ∈ Ω ⊆ R

m0+1. Denote
R

m0
d = {ρ = [ρ1, . . . , ρm0 ]

′ ∈ R
m0 : ρj �= 0,∀j; ρi �= ρj , i �= j}, namely, the

set of all vectors in R
m0 that contain nonzero and distinct elements.

Definition 11.3. Suppose that Υ ⊆ R
m0+1
d . H(x; η) is said to be jointly

identifiable in Ω with respect to Υ if, for any ρ = [ρ0, . . . , ρm0 ]
′ ∈ Υ,

H(ρδ; η) is invertible in Ω; namely, ζ = H(ρδ; η) has a unique solution
τ ∈ Ω. In this case, elements in Υ are called sufficiently rich scaling factors.
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Depending on the parametric function forms H(·, η) and the domain DH ,
the set of sufficiently rich scaling factors can vary significantly. For example,
the polynomial class of functions of a fixed order has a large set Υ. The
polynomial class has been used extensively as the nonlinear part of Wiener
systems and their approximations in [15, 72, 113].

When the base functions are polynomials of order m0, H(x, η) can be
expressed as

H(x, η) =
m0∑

j=0

bjx
j , with bm0 �= 0.

Then H(ρiδ, η) =
∑m0

j=0 bjδ
jρj

i , i = 0, 1, . . . ,m0. Apparently, one cannot
uniquely determine m0+2 parameters δ, b0, . . . , bm0 from m0+1 coefficients
of the polynomial. A typical remedy to this well-known fact is normalization
of the parameter set by assuming one parameter, say, bl = 1 for some l.
In this case, the coefficient equations become bjδ

j = cj , j �= l, and δl = cl.
For a given cj , to ensure uniqueness of solutions bj , j �= l, and δ to the
equations, l must be an odd number.

We now show that H(x, η) satisfying Assumption (A11.1) contains at
least one nonzero odd-order term. Indeed, if H(x, η) contains only even-
order terms, it must be an even function. It follows that H(x, η) = H(−x, η);
namely, it is not an invertible function. This contradicts Assumption (A11.1).

Since H(x, η) contains at least one nonzero odd-order term blx
l for some

odd integer l, without loss of generality we assume bl = 1. The reduced-
parameter vector is η0 = [b0, . . . , bl−1, bl+1, . . . , bm0 ]

′, which contains only
m0 unknowns. Such polynomials will be called normalized polynomial func-
tions of order m0.

Proposition 11.4. Under Assumption (A11.1), all normalized polynomial
functions of order m0 are jointly identifiable with respect to R

m0
d .

Proof. For any given ρ = [ρ0, . . . , ρm0 ] ∈ R
m0+1
d , the interpolation equa-

tions
m0∑

j=0

cjρ
j
i = ζi, i = 0, . . . , m0,

can be rewritten as �c = ζ, where ζ is defined in (11.6) and

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ρ0 . . . ρm0
0

1 ρ1
. . . ρm0

1

...
. . . . . .

...

1 ρm0 . . . ρm0
m0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, c =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c0

c1

...

cm0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Since the determinant of the Vandermonde matrix is

det� =
∏

0≤i<j≤m0−1

(ρj − ρi) �= 0

for distinct ρi, i = 0, . . . , m0 − 1, we have c = �−1ζ. Furthermore, the
equation δl = cl yields the unique solution δ = (cl)1/l �= 0 by hypothesis.
Then, bj = cj/δj , j �= l; solve uniquely for the remaining parameters.
Consequently, H(ρδ; η0) is invertible as a joint function of δ and η0. This
implies that H(x, η0) is jointly identifiable with respect to any vector in
R

m0
d . �

Other bases can also be used. For instance, H(x, η) = η + ex, where
η �= 0. Under the prior information Ω = {[δ, η′]′ : δ > 0, η �= 0}, consider
Υ = {(ρ0, ρ1) : ρ0 > 0, ρ1 < 0}. The interpolation equations are

⎧
⎨

⎩
η + eρ0δ = ζ{1},

η + eρ1δ = ζ1.
(11.9)

These imply
eρ0δ − eρ1δ = ζ{1} − ζ1. (11.10)

It is easily seen that for ρ0 > 0 and ρ1 < 0, the derivative of (11.10) is

d(eρ0δ − eρ1δ)
dδ

= ρ0e
ρ0δ − ρ1e

ρ1δ > 0.

Hence, (11.10) has a unique solution, which indicates that H(x, η) is jointly
identifiable with respect to Υ.

Joint identifiability is not a trivial condition. For the above function
form H(x, η) = η + ex, Υ cannot be expanded to R

2
d. Indeed, if one selects

ρ0 = −2, ρ1 = −1, ζ{1} = 1.075, ζ1 = 1.2, then (11.9) becomes
⎧
⎨

⎩
η + e−2δ = 1.075,

η + e−δ = 1.2.

Both δ = 1.921, η = 1.054 and δ = 0.158, η = 0.346 solve the equations.
By definition, H(x, η) = η + ex is not jointly identifiable with respect to
R

2
d.

11.4 Identification Algorithms

Based on periodic inputs and joint identifiability, we now derive algorithms
for parameter estimates and prove their convergence.

(A11.2) The following conditions hold.
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(i) The prior information on θ and η is that θ �= 0, η �= 0, θ ∈ Ωθ,
and η ∈ Ωη such that under Ωθ and Ωη, the set Υ of sufficiently rich
scaling factors is nonempty. C−yk lies within the support of the noise
density f(·) for k = 1, 2, . . .

(ii) H(x, η) is jointly identifiable with respect to Υ and continuously dif-
ferentiable with respect to both x and η.

By using the vector notation, for j = 1, 2, . . .,

Xj = [x2(j−1)(m0+1)n0+n0 , . . . , x2j(m0+1)n0+n0−1]′,

Yj = [y2(j−1)(m0+1)n0+n0 , . . . , y2j(m0+1)n0+n0−1]′,

Φ̃j = [φ2(j−1)(m0+1)n0+n0 , . . . , φ2j(m0+1)n0+n0−1]′,

Dj = [d2(j−1)(m0+1)n0+n0 , . . . , d2j(m0+1)n0+n0−1]′,

Sj = [s2(j−1)(m0+1)n0+n0 , . . . , s2j(m0+1)n0+n0−1]′,

(11.11)

the observations can be rewritten in block form as
⎧
⎨

⎩
Yj = H(Xj , η) + Dj ,

Xj = Φ̃jθ.

The input is a scaled 2n0(m0 + 1)-periodic signal with single-period values
(ρ0v, ρ0v, ρ1v, ρ1v, . . . , ρm0v, ρm0v) with v = (v1, . . . , vn0) full rank.

By periodicity, Φ̃j = Φ̃, for all j and Φ̃, can be decomposed into 2(m0+1)
submatrices Φi, i = 1, . . . , 2(m0 + 1), of dimension n0 × n0:

Φ̃ = [Φ′
1,Φ

′
2, . . . ,Φ

′
2(m0+1)]

′.

Denote the n0 × n0 circulant matrix Φ = T ([vn0 , . . . , v1]). Then the odd-
indexed block matrices satisfy the simple scaling relationship

Φ1 = ρ0Φ, Φ3 = ρ1Φ, . . . , Φ2m0+1 = ρm0Φ. (11.12)

Note that the even-indexed block matrices are not used in the proof.

Remark 11.5. In (ρ0v, ρ0v, ρ1v, ρ1v, . . . , ρm0v, ρm0v), there are always
two identical subsequences ρiv, i = 0, . . . , m0, appearing consecutively. The
main reason for this input structure is to generate block matrices that sat-
isfy the above scaling relationship (11.12).

Algorithms for the Core Identification Problem

For the core problem (11.6), let

ξ̃0
N =

1
N

N−1∑

l=0

S̃l

=
1
N

N−1∑

l=0

I{D̃l≤C11−H(ρδ,η)},
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which is the empirical distribution of D̃k at C11 − H(ρδ, η). Then, by the
strong law of large numbers,

ξ̃0
N → p = F (C11 − H(ρδ, η)) w.p.1.

Note that F is a monotone function and H(x, η) is bounded by Assump-
tion (A11.1). Then, there exists z̃ > 0 such that

z̃11 ≤ p̃ := F (C11 − H(ρδ, η)) ≤ (1 − z̃)11.

Since F (·) is not invertible at 0 and 1, we modify ξ̃0
N to avoid these points.

Let

ξ̃N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̃0
N , if z̃11 ≤ ξ̃0

N ≤ (1 − z̃)11,

z̃11, if ξ̃0
N < z̃11,

(1 − z̃)11, if ξ̃0
N > (1 − z̃)11.

(11.13)

Then,
ξ̃N → p = F (C11 − H(ρδ, η)) w.p.1. (11.14)

Hence,

ζN = C11 − F−1(ξ̃N )

→ ζ = C11 − F−1(p̃) = H(ρδ, η) w.p.1.

By Assumption (A11.2), H is invertible as a function of τ = [δ, η′]′. As
a result, τN = H−1(ζN ) → τ w.p.1. In summary, we have the following
theorem.

Theorem 11.6. Under Assumptions (A11.1) and (A11.2), let

τN = H−1(ζN ) = H−1(C11 − F−1(ξ̃N )).

Then
τN → τ w.p.1 as N → ∞. (11.15)

Proof. Under Assumption (A11.1), H−1 and F−1 are continuous. By the
above analysis, we have

τN = H−1(C11 − F−1(ξ̃N ))

→ H−1(C11 − F−1(p̃)) = H−1(ζ) = τ w.p.1 as N → ∞.�

Parameter Estimates of the Original Problem

Parameter estimates are generated as follows. Define ξ0
N = 1

N

∑N−1
l=0 Sl and

ξN =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ0
N , if z11 ≤ ξ0

N ≤ 1,

z11, if ξ0
N > z11,

(1 − z)11, if ξ0
N < (1 − z)11.

(11.16)
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Then, we have

ξN → ξ = F (C11 − H(Φ̃θ, η)) w.p.1 as N → ∞. (11.17)

Denote ξ{i:j} as the vector of the ith to jth components of ξ. Then, equa-
tions in (11.17) for system (11.1) contain the following equations by ex-
tracting the odd-indexed blocks:

H(ρjΦθ; η) = C11 − F−1(ξ{2jn0+1:2jn0+n0}), j = 0, . . . ,m0. (11.18)

We now show that this subset of equations is sufficient to determine θ and
η uniquely.

Theorem 11.7. Suppose u ∈ U . Under Assumptions (A11.1) and (A11.2),

F (C11 − H(Φ̃θ, η)) = ξ (11.19)

has a unique solution (θ∗, η∗).

Proof. Consider the first block Φ1θ of Φ̃θ. Since v is full rank, Φ1 is a
full-rank matrix. It follows that for any nonzero θ, Φ1θ �= 0n0 . Without
loss of generality, suppose that the i∗th element δ of Φ1θ is nonzero. By
construction of Φ̃, we can extract the following m0 nonzero elements from
Φ̃θ: The (2nl + i∗)th element, l = 0, . . . ,m0, is ρlδ. Extracting these rows
from the equation H(Φ̃θ, η) = C11 − F−1(ξ) leads to a core problem

H(ρδ, η) = C11 − F−1(ξ̃), (11.20)

where ρ = [ρ0, ρ1, . . . , ρm0 ]
′. Since δ �= 0 and ρ has distinct elements, ρδ has

distinct elements. By hypothesis, H(x; η) is jointly identifiable. It follows
that (11.20) has a unique solution (δ∗, η∗).

From the derived η∗, we denote the first n0 equations of H(Φ̃θ, η) =
C11 − F−1(ξ) by

H(Φθ, η∗) = C11 − F−1(ξ{1:n0}). (11.21)

By Assumption (A11.1), H−1(x; η∗) exists (as a function of x). Since v is
full rank, Φ = T ([vn0 , . . . , v1]) is invertible. As a result,

θ∗ = Φ−1H−1(C11 − F−1(ξ1), η∗)

is the unique solution to (11.21). This completes the proof. �

A particular choice of the scaling factors ρj is ρj = qj , j = 0, 1, . . . ,m0,
for some q �= 0 and q �= 1. In this case, the period of input u can be
shortened to n0(m0 + 1) under a slightly different condition.

Let ξN be defined as in (11.16), with dimension changed from 2n0(m0+1)
to n0(m0 + 1). By the strong law of large numbers, as N → ∞,

ξe
N → ξe = F (C11 − H(Φeθ, η)) w.p.1
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for some (n0(m0+1))×n0 matrix Φe. Partition Φe into (m0+1) submatrices
Φe

i , i = 1, . . . , m0 + 1, of dimension n0 × n0:

Φe = [(Φe
1)

′, (Φe
2)

′, . . . , (Φe
m0+1)

′]′.

If u ∈ Ue, then it can be directly verified that

Φe
l+1 = qlΦe = qlT (q, [vn0 , . . . , v1]), l = 0, 1, . . . ,m0.

We have the following result, whose proof is similar to that of Theorem
11.7 and hence is omitted.

Theorem 11.8. Suppose u ∈ Ue. Under Assumptions (A11.1) and (A11.2),

F (C11 − H(Φeθ, η)) = ξe

has a unique solution (θ∗, η∗).

Identification Algorithms and Convergence

The ξN = [ξ{1}N , . . . , ξ
{2n0(m0+1)}
N ]′ in (11.16) has 2n0(m0 + 1) components

for a scaled full-rank signal u ∈ U , but there are only n0 + m0 unknown
parameters. Consider Φθ = [δ0, . . . , δn0−1]′. We separate the components
to n0 groups, for i = 1, . . . , n0, εN (i) = [ξ{i}

N , ξ
{i+2n0}
N , . . . , ξ

{i+2n0m0}
N ]′. Let

δN (i) and ηN (i) satisfy

εN (i) = [ε{1}N (i), . . . , ε{m0+1}
N (i)]′

= F (C11 − H(ρδN (i), ηN (i))).
(11.22)

Then, by (11.17), we have

εN (i) → εi = F (C11 − H(δ(i)ρ, η)). (11.23)

If δ(i) �= 0, (11.23) becomes a core identification problem. Furthermore,
since θ �= 0n0 and Φ is full rank, there exists i∗ such that δ(i∗) �= 0. The
identification algorithms include the following steps:

1. Calculate i∗ = argmaxi|δi| to choose nonzero δ(i∗). If there exists
j �= k such that ε

{j}
N (i) = ε

{k}
N (i), then let δN (i) = 0 and ηN (i) =

0m0 . Otherwise, δN (i) and ηN (i) are solved from (11.22). Let i∗N =
argmaxi|δN (i)|, where “argmax” means the argument of the maxi-
mum.

2. Estimate η from the core identification problem, ηN = ηN (i∗).

3. Estimate θ: θN = Φ−1H−1(C11−F−1(ξ∗N ), ηN ), where ξ∗N = [ξ{1}N , ξ
{2}
N ,

. . . , ξ
{n0}
N ]′.
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Theorem 11.9. Suppose u ∈ U . Under Assumptions (A11.1) and (A11.2),

θN → θ and ηN → η w.p.1 as N → ∞.

Proof. By Assumption (A11.1), δN (i) and ηN (i) can be solved from step 1.
By core identification problems, if δ(i) �= 0, δN (i) → δ(i) w.p.1 as N → ∞.
Hence,

i∗N = argmaxi|δN (i)| → i∗ = argmaxi|δ(i)| w.p.1.

Since there exists δ(i) �= 0, we have δi∗ �= 0. By (11.15), we have δN →
δ(i∗), ηN → η, as w.p.1 as N → ∞. For ξ∗N = [ξ∗{1}N , ξ

∗{2}
N , . . . , ξ

∗{n0}
N ]′,

ξ∗N → ξ∗ = F (C11 − H(Φθ, η)) w.p.1, so as N → ∞,

θN = Φ−1H−1(C11 − F−1(ξ∗N ), ηN )

→ Φ−1H−1(C11 − F−1(ξ∗), η) = θ w.p.1.

�

Similarly, for an exponentially scaled full-rank signal u ∈ Ue, the identi-
fication algorithms can be constructed and its convergence can be derived
similarly.

11.5 Asymptotic Efficiency of the Core
Identification Algorithms

The identification of the core problem uses the main idea of the algorithms
constructed in Section 11.4. In this section, the efficiency of the core iden-
tification algorithms will be established by comparing the error variance
with the CR lower bound.

Asymptotic Analysis of Identification Errors

The following analysis of identification errors is generic, and hence is de-
scribed without reference to specific algorithms. For simplicity, for x ∈ R,
denote B(x) = C − F−1(x). Then, by (11.14), we have

p = [p{1}, . . . , p{m0}]′ = F (C11 − ζ) = B−1(ζ), (11.24)

where ζ is denoted as ζ = [ζ{1}, . . . , ζ{m0+1}]′. Let g(ζ) = [g0(ζ), . . .,
gm0(ζ)]′ = H−1(ζ). Then, ζN , τN in Theorem 11.6 and τ = [τ{1}, . . .,
τ{m0+1}]′ can be written as

ζN = B(ξ̃N ), τN = g(ζN ), τ = g(B(p)). (11.25)

The estimation error for τ is eN = [e{1}N , . . . , e
{m0+1}
N ]′ = τN − τ.
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For τ = g(ζ), the Jacobian matrix is

J(g(ζ)) =
∂g(ζ)
∂ζ

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂g0(ζ)
∂ζ{1}

. . .
∂g0(ζ)

∂ζ{m0+1}
...

. . .
...

∂gm0(ζ)
∂ζ{1}

. . .
∂gm0(ζ)
∂ζ{m0+1}

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and for ζ = H(τ),

J(H(τ)) =
∂H(τ)

∂τ
=

⎡

⎢
⎢
⎢
⎢
⎣

∂h0(τ)
∂τ{1} . . .

∂h0(τ)
∂τ{m0+1}

...
. . .

...
∂hm0(τ)
∂τ{1} . . .

∂hm0(τ)
∂τ{m0+1}

⎤

⎥
⎥
⎥
⎥
⎦

.

Since ζ = H(τ), we have

J(g(ζ))J(H(τ)) =
∂g(ζ)
∂ζ

∂H(τ)
∂τ

=
∂g(H(τ))

∂τ
=

∂τ

∂τ
= Im0+1.

As a result, J(g(ζ)) = J(H(τ))−1. From (11.24), we have ζ{i} = B(p{i}),
i = 0, 1, . . . , m0. It follows that the Jacobian matrix for ζ = B(p) is

J(B(p)) = diag
(

∂B(p{1})
∂p{1}

, . . . ,
∂B(p{m0+1})

∂p{m0+1}

)
,

and for p = B−1(ζ),

J(B−1(p)) = diag
(

∂B−1(ζ{1})
∂ζ{1}

, . . . ,
∂B−1(ζ{m0+1})

∂ζ{m0+1}

)
.

Theorem 11.10. Under Assumptions (A11.1) and (A11.2),

Nσ2(eN ) = NEeNe′N → Λ as N → ∞, (11.26)

where Λ = WV W ′ with W = J(g(ζ))J(B(p)) and

V = diag(p{1}(1 − p{1}), . . . , p{m0}(1 − p{m0})).

Proof. Consider

e
{i+1}
N = τ

{i+1}
N − τ{i+1} = gi(ζN ) − gi(ζ), i = 0, . . . , m0,

where ζN = [ζ{1}N , . . . , ζ
{m0+1}
N ]′, τ(N) = [τ{1}

N , . . . , τ
{m0+1}
N ]′, and τ and ζ

are given by (11.6) and (11.25), respectively. Denote

ΩN = [min{ζ{1}N , ζ{1}},max{ζ{2}N , ζ{2}}] × · · ·
×[min{ζ{m0+1}

N , ζ{m0+1}},max{ζ{m0+1}
N , ζ{m0+1}}]
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as the Cartesian product ([79, p. 3]) of the sets [min{ζ{i}
N , ζ{i}}, max{ζ{i}

N , ζ{i}}],
for i = 1, . . . ,m0 + 1.

For j = 1, . . . ,m0, denote

ζ̃N (j) = [ζ{1}, . . . , ζ{j}, ζ
{j+1}
N , . . . , ζ

{m0+1}
N ]′,

ζ̃N (0) = [ζ{1}N , . . . , ζ
{m0+1}
N ]′, and ζ̃N (m0 + 1) = ζ. Then

e
{i}
N = gi(ζN ) − gi(ζ)

=
m0−1∑

j=−1

[gi(ζ̃N (j)) − gi(ζ̃N (j + 1))].

Since H(·) is continuous, by the well-known mean-value theorem, there
exists λN (i, j) ∈ ΩN for j = 0, . . . ,m0 such that

gi(ζ̃N (j)) − gi(ζ̃N (j + 1)) =
∂gi(λN (i, j))

∂ζ{j} (ζ{j}
N − ζ{j}),

which implies

e
{i}
N =

m0∑

j=0

∂gi(λN (i, j)),
∂ζ{j} (ζ{j}

N − ζ{j})

=
[
∂gi(λN (i, 0))

∂ζ{1}
, . . . ,

∂gi(λN (i,m0))
∂ζ{m0+1}

]
(ζN − ζ).

Thus,
eN = LN (ζN − ζ), (11.27)

where

LN =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂g0(λN (0, 0))
∂ζ{1}

. . .
∂g0(λN (0,m0))

∂ζ{m0+1}
...

. . .
...

∂gm0(λN (m0, 0))
∂ζ{1}

. . .
∂gm0(λN (m0,m0))

∂ζ{m0+1}

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Since ζ
{i}
N = B(ξ̃N (i)), i = 1, . . . ,m0 +1, by the mean-value theorem, there

exists κN (i) on the line segment ξ̃N (i) and p{i} such that

ζN − ζ = diag
(

∂B(κN (1))
∂p{1}

, . . . ,
∂B(κN (m0 + 1))

∂p{m0+1}

)
(ξ̃N − p).

(11.28)
Moreover, as N → ∞,

LN = diag
(

∂B(κN (1))
∂p{1}

, . . . ,
∂B(κN (m0 + 1))

∂p{m0+1}

)
→ W w.p.1. (11.29)

Hence, (11.26) is true. �
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CR Lower Bound and Asymptotic Efficiency

Consider N blocks of m0+1 observations for the core identification problem.
We first derive the CR lower bound based on these N(m0+1) observations.
The CR lower bound is denoted as σ2

CR(N). To proceed, we first derive a
lemma and then Theorem 11.12 follows.

Lemma 11.11. The CR lower bound for estimating the parameter τ , based
on observations of {S̃k}, is σ2

CR(N) = Λ/N.

Proof. Let xk take values in {0,1}. The likelihood function, which is the
joint distribution of S̃1, . . . , S̃N(m0+1), depending on

τ = [τ{1}, . . . , τ{m0+1}]′ = [δ, η′]′,

is given by

lN = P{S̃1 = x1, . . . , S̃N(m0+1) = xN(m0+1); τ}

=
m0+1∏

k=1

P{S̃kN+1 = xkN+1, . . . , S̃kN+m0+1 = x(k+1)N ; τ}.

Replace the xk’s by their corresponding random elements S̃k’s, and denote
the resulting quantity by l in short. Then, we have

log lN = log

[
m0+1∏

k=1

p(k, τ)Nξ̃N (k)(1 − p(k, τ))N(1−ξ̃N (k))

]

= N

m0+1∑

k=1

[ξ̃N (k) log p(k, τ) + (1 − ξ̃N (k)) log(1 − p(k, τ))],

∂ log lN
∂τ{i} = N

m0+1∑

k=1

(
ξ̃N (k)
p{k} − 1 − ξ̃N (k)

1 − p{k}

)
∂p{k}

∂ζ{k}
∂ζ{k}

∂τ{i} ,

∂ log lN
∂τ

=
[∂ log lN

∂τ{1} , . . . ,
∂ log lN

∂τ{m0+1}

]′
.

Furthermore, for i, j = 0, . . . ,m0,

∂2 log lN
∂τ{i}∂τ{j} = N

m0+1∑

k=1

[(
− ξ̃N (k)

(p{k})2
− 1 − ξ̃N (k)

(1 − p{k})2
)
∂p{k}

∂τ{i}
∂p{k}

∂τ{j}

+
( ξ̃N (k)

p{k} − 1 − ξ̃N (k)
1 − p{k}

) ∂2p{k}

∂τ{i}∂τ{j}

]
.
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As a result,

E
∂2 log lN

∂τ{i}∂τ{j} = NE

m0+1∑

k=1

[(
− ξ̃N (k)

(p{k})2
− 1 − ξ̃N (k)

(1 − p{k})2

)∂p{k}

∂τ{i}
∂p{k}

∂τ{j}

+
( ξ̃N (k)

p{k} − 1 − ξ̃N (k)
1 − p{k}

) ∂2p{k}

∂τ{i}∂τ{j}

]

= −N

m0+1∑

k=1

1
p{k}(1 − p{k})

∂p{k}

∂τ{i}
∂p{k}

∂τ{j}

= −N

m0+1∑

k=1

1
p{k}(1 − p{k})

(∂p{k}

∂ζ{k}

)2 ∂ζ{k}

∂τ{i}
∂ζ{k}

∂τ{j} ,

and

E
∂2 log lN

∂τ∂τ
= −NW−1V −1(W ′)−1.

The CR lower bound is then given by

σ2
CR(N) = −

(
E

∂2 log lN
∂τ∂τ

)−1

=
WV W ′

N
=

Λ
N

.

�

Theorem 11.12. Under Assumptions (A11.1) and (A11.2),

N [σ2(eN ) − σ2
CR(N)] → 0 as N → ∞.

Proof. This follows directly from Theorem 11.10 and Lemma 11.11. �

11.6 Recursive Algorithms and Convergence

This section develops a recursive algorithm for estimating (θ∗, η∗). The
essence is to treat the parameters (θ, η) jointly. Define Θ = [θ′, η′]′ ∈
R

(n0+m0)×1. For an (n0 + m0) × 2n0(m0 + 1) matrix M , and for each
ξ̃, define

G(Θ, ξ̃) = M [ξ̃ − F (C112n0(m0+1) − H(Φ̃θ, η)]. (11.30)

It is easily seen that the purpose of the matrix M is to make the function
under consideration “compatible” with the dimension of the vector Θ. We
use the following recursive algorithm for parameter estimation:

⎧
⎨

⎩

ξk+1 = ξk − 1
k + 1

ξk +
1

k + 1
Sk+1,

Θk+1 = Θk + βkG(Θk, ξk), k = 0, 1, . . . ,

(11.31)
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where Sk+1 is defined in (11.11). In the above algorithm, βk is a sequence
of step sizes satisfying βk ≥ 0,

∑∞
k=1 βk = ∞, βk → 0, and

βk − βk+1

βk
= O(βk) as k → ∞. (11.32)

Take, for instance, βk = 1/kα with 0 < α ≤ 1. Then, condition (11.32) is
satisfied. Commonly used step sizes include βk = O(1/kα) with α ∈ (1/2, 1].

Associated with (11.31), consider an ordinary differential equation (ODE)

Θ̇ = G(Θ), (11.33)

where G(Θ) = M(ξ − F (C112(m0+1)n0 − H(Φ̃θ, η)). Θ∗ is the unique sta-
tionary point of (11.33). To proceed, we assume the following assumption
holds.

(A11.3) The ODE (11.33) has a unique solution for each initial condi-
tion; Θ∗ = (θ∗, η∗) is an asymptotically stable point of (11.33); H(·, ·) is
continuous in its arguments together with its inverse.

Remark 11.13. A sufficient condition to ensure the asymptotic stability of
(11.33) can be obtained by linearizing M [ξ − F (C112n0(m0+1) − H(Φ̃θ, η))]
about its stationary point Θ∗. Under this linearization, if the Jacobian
matrix −M(∂F (C11−H(Φ̃θ∗, η∗))/∂Θ) is a stable matrix (that is, all of its
eigenvalues are on the left-hand side of the complex plane), the required
asymptotic stability follows.

Theorem 11.14. Under Assumptions (A11.1)–(A11.3), ξk → ξ and Θk →
Θ∗ w.p.1 as k → ∞.

Proof. Note that we have already proved that ξk → ξ w.p.1. Thus, to
obtain the desired result, we need only establish the convergence of {Θk}.
To this end, we use the ODE methods to complete the proof.

We will use the basic convergence theorem ([55, Theorem 6.1.1, p. 166]).
Thus, we need only verify the conditions in the aforementioned theorem
hold. Note that we do not have a projection now, but in our recursion F is
used and is uniformly bounded. In view of assumptions (A11.1)–(A11.3),
as explained in [55, Section 6.2, p. 170], to verify the conditions in the
theorem, we need only show that a “rate of change” condition (see [55, p.
137], for a definition) is satisfied. Thus, the remaining proof is to verify this
condition.

Define t0 = 0, tk =
∑k−1

i=0 βi, and let m(t) be the unique value k such
that tk ≤ t < tk+1 when t ≥ 0, and set m(t) = 0 when t < 0. Define
the piecewise-constant interpolation as Θ0(t) = Θk for tk ≤ t < tk+1, and
define the shifted sequence by Θk(t) = Θ0(t + tk), t ∈ (−∞,∞). Using the
ODE methods, we can show that the sequence of functions Θk(·) converges
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to the solution of desired limit ODE. For m = 1, 2, . . ., and a fixed Θ,
denote

Ξ(m) =
m−1∑

i=0

[G(Θ, ξ(i)) − G(Θ)],

and Ξ0 = 0. In view of (11.30), G(·, ·) is a continuous function in both
variables.

We note that by a partial summation, for any m, j ≥ 0,

m∑

i=j

βi[G(Θ, ξ(i)) − G(Θ)]

= βmΞ(m + 1) − βmΞ(j) +
m−1∑

i=j

[Ξ(i + 1) − Ξj ](βi − βi+1).

Taking m = m(t) − 1 and j = 0, and recalling Ξ0 = 0, we obtain

m(t)−1∑

i=0

βi[G(Θ, ξ(i)) − G(Θ)]

= βm(t)Ξ(m(t)) +
m(t)−2∑

i=0

Ξ(i + 1)
βi − βi+1

βi
βi.

It is readily seen that as k → ∞, βkΞk → 0 w.p.1. Thus, the asymptotic
rate of change of

∑m(t)−1
i=0 βi[G(Θ, ξi)−G(Θ)] is zero w.p.1. Then by virtue

of Theorem 6.1.1 in [55], the limit ODE is precisely (11.33). The asymptotic
stability of the ODE then leads to the desired result. �

Remark 11.15. Note that in (11.31), we could include additional random
noises (representing the measurement noise and other external noise). The
treatment remains essentially the same. We choose the current setup for
notational simplicity.

11.7 Examples

In this section, we illustrate the convergence of estimates from the algo-
rithms developed in this chapter. The noise is Gaussian with zero mean
and known variance, although the algorithms are valid for all distribution
functions that satisfy Assumption (A3.1). The identification algorithm of
Section 11.4 is shown in Example 11.16, and the asymptotic efficiency is
also illustrated for the core identification problem. Example 11.17 illus-
trates the recursive algorithm. The estimates of parameters are shown to
be convergent in both cases.
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Example 11.16. Consider
⎧
⎨

⎩
yk = H(xk, η) + dk = b0 + exk + dk,

xk = a1uk−1 + a2uk−2,
(11.34)

where the noise {dk} is a sequence of i.i.d. normal random variables with
Ed1 = 0, σ2

d = 1. For a normal distribution, the support is (−∞,∞).
The output is measured by a binary-valued sensor with threshold C = 3.
The linear subsystem has order n0 = 2. The nonlinear function is param-
eterized as b0 + ex. The prior information on b0 and ai, i = 1, 2, is that
b0, ai ∈ [0.5, 5]. Suppose the true values of the unknown parameters are
θ = [a1, a2] = [0.7, 0.63] and η = b0 = 1.1.

For n0 = 2 and m0 = 1, the input should be 2n0(m0 + 1) = 8-periodic
with single period u = [ρ0v, ρ0v, ρ1v, ρ1v]. Using the results of the section
on joint identifiability, H(x, η) is jointly identifiable with respect to Υ =
{(ρ0, ρ1) : ρ0 > 0, ρ1 < 0}. Let v = [1, 1.2], ρ0 = 1, and ρ1 = −1. Define the
block variables Xj , Yj , Φ̃j ,Dj , and Sj , in the case of an 8-periodic input,

Φ̃j = Φ̃ = [Φ′
1, . . . ,Φ

′
4]

′, where Φ1 = ρ0Φ = Φ =

[
v2 v1

v1 v2

]

and Φ3 = ρ1Φ.

Using (11.16), we can construct the algorithms as described above Theorem
11.9.

The estimates of θ and η are shown in Figure 11.2, where the errors are
measured by the Euclidean norm. The algorithms are simulated five times.
It is shown that both parameter estimates of the linear and nonlinear sub-
systems converge to their true values. In this simulation ηN demonstrates
a higher convergence speed than θN . A possible explanation is that ηN is
updated first, and then used to obtain θN . As a result, convergence of θN

can occur only after the error ηN − η is reduced.
To understand the reliability of the estimation schemes, the estimation

algorithms are performed 500 times of total data length 2000 each. Estima-
tion errors for each run are recorded at N = 500, N = 1000, and N = 2000.
The error distributions are calculated by histograms in Figure 11.3, which
illustrate improved estimation accuracy with respect to data length N and
are consistent with the theoretical analysis.

Consider the core identification problem of (11.34),

Ỹl = H(ρδ, η) + D̃l = b0112 + eρδ + D̃l,

where δ = a0v2+a1v1 �= 0 and ρ = [ρ0, ρ1]′. The convergence of N [σ2(eN )−
σ2

CR(N)] in Theorem 11.12 is shown in Figure 11.4, where the error is mea-
sured by the Frobenius norm.

Example 11.17. We use the same system and inputs as in Example 11.16.
The recursive algorithms in Section 11.6 are now used.
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FIGURE 11.2. Joint identification errors of θ and η

Let ρ1 = 0.5 and Θ = [θ′, η′]′. For system (11.34), the ODE (11.33)
becomes

Θ̇ = M [ξ − F ((C − b)118 − exp(Φ̃θ))].

Choose βk = 1/k and

M = −

⎡

⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎦

.
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FIGURE 11.3. Estimation error distributions

Then the Jacobian matrix can be calculated to be

J(Θ) = −M [∂F ((C − b)118 − exp(Φ̃θ))/∂Θ]

=

⎡

⎢
⎢
⎢
⎣

−0.660 −0.247 −0.429

−0.242 −0.645 −0.434

−0.210 −0.079 −0.397

⎤

⎥
⎥
⎥
⎦

.

The eigenvalues of J(Θ) are [−1.08,−0.402,−0.220], which are all less than
0. As a result, the Jacobian matrix J(η) is stable.

Let Θk = [θ′k, η′
k]′ be the estimates of Θ = [θ′, η′]′. Then the recursive

algorithms can be constructed as follows: First, set βk = 1/k, Θ(1) =
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FIGURE 11.4. Asymptotic efficiency

[1.5, 1.5, 1.5]′, and ξ1 = 08. The estimates are then updated according to
(11.31). Convergence of Θ is shown in Figure 11.5, where the errors are
measured by the Euclidean norm and the algorithms are simulated five
times.

11.8 Notes

In this chapter, the identification of Wiener systems with binary-valued
output observations is studied. There is an extensive literature on Wiener
model identification under regular sensors. In a way, a binary-valued out-
put sensor becomes an added output nonlinearity to the Wiener model,
leading to a different structure than the traditional Wiener model iden-
tification. We refer the reader to [3, 15, 16, 44, 51, 56, 72, 113] for more
detailed information on typical Wiener model identification methodologies.
The material of this chapter is from [127]. Unlike traditional approximate
gradient methods or covariance analysis, we employ the methods of em-
pirical measures. Under assumptions of known noise distribution function,
invertible nonlinearity, and joint identifiability, identification algorithms,
convergence properties, and identification efficiency are derived.

We have assumed that the structure and order of the linear dynamics
and nonlinear function are known. The issues of unmodeled dynamics (for
the linear subsystem when the system order is higher than the model order)
and model mismatch (for the nonlinear part when the nonlinear function
does not belong to the model class) are not included in this chapter. Irre-
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FIGURE 11.5. Estimation errors of Θ using recursive algorithms

ducible identification errors due to unmodeled dynamics were characterized
in Chapter 4.



12
Identification of Hammerstein Systems
with Quantized Observations

This chapter concerns the identification of Hammerstein systems whose
outputs are measured by quantized sensors. The system consists of a mem-
oryless nonlinearity that is polynomial and possibly noninvertible, followed
by a linear subsystem. The parameters of linear and nonlinear parts are
unknown but have known orders. We present input design, identification al-
gorithms, and their essential properties under the assumptions that the dis-
tribution function of the noise and the quantization thresholds are known.
Also introduced is the concept of strongly scaled full-rank signals to cap-
ture the essential conditions under which the Hammerstein system can be
identified with quantized observations. Then under strongly scaled full-rank
conditions, we construct an algorithm and demonstrate its consistency and
asymptotic efficiency.

The structure of Hammerstein models using quantized observations is
formulated in Section 12.1. The concepts of strongly full-rank signals and
their essential properties are introduced in Section 12.2. Under strongly full
rank inputs, estimates of unknown parameters based on individual thresh-
olds are constructed in Section 12.3. Estimation errors for these estimates
are established. The estimates are integrated in an optimal quasi-convex
combination estimator (QCCE) in Section 12.4. The resulting estimates
are shown to be strongly convergent. Their efficiency is also investigated.
The algorithms are expanded in Section 12.5 to derive identification algo-
rithms for both the linear and nonlinear parts. Illustrative examples are
presented in Section 12.6 on input design and convergence properties of
the methodologies and algorithms.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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12.1 Problem Formulation

Consider the system in Figure 12.1, in which

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yk =
n0−1∑

i=0

aixk−i + dk,

xk = b0 +
q0∑

j=1

bju
j
k, bq0 = 1,

where uk is the input, xk the intermediate variable, and dk the measurement
noise. Both n0 and q0 are known.

u x ζ

d

y sNonlinear
Function

Linear
Dynamics

Quan−
tized

Sensor
� � � � � �⊗

FIGURE 12.1. Hammerstein systems with quantized observations

The output yk is measured by a sensor, which is represented by the
indicator functions

s
{i}
k = I{yk≤Ci}, i = 1, . . . , m0,

where Ci for i = 1, . . . , m0 are the thresholds. Denote θ = [a0, . . . , an0−1]′,
φ0

k = [1, . . . , 1]′, and φj
k = [uj

k,. . . , uj
k−n0+1]

′, j = 1, . . . , q0. Then

yk =
n0−1∑

i=0

ai(b0 +
q0∑

j=1

bju
j
k−i) + dk

= b0

n0−1∑

i=0

ai +
q0∑

j=1

bj

n0−1∑

i=0

aiu
j
k−i + dk

=
q0∑

j=0

bj(φ
j
k)′θ + dk.

(12.1)
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By using the vector notation, for k = 1, 2, . . .,

Yl = [y2(l−1)n0(q0+1)+n0 , . . . , y2ln0(q0+1)+n0−1]′ ∈ R
2n0(q0+1),

Φj
l = [φj

2(l−1)n0(q0+1)+n0
, . . . , φj

2ln0(q0+1)+n0−1]
′ ∈ R

2n0(q0+1)×n0 ,

j = 0, . . . , q0,

Dl = [d2(l−1)n0(q0+1)+n0 , . . . , d2ln0(q0+1)+n0−1]′ ∈ R
2n0(q0+1),

S
{i}
l = [s{i}

2(l−1)n0(q0+1)+n0
, . . . , s

{i}
2ln0(q0+1)+n0−1]

′ ∈ R
2n0(q0+1),

i = 1, . . . , m0, l = 1, 2, . . . ,

(12.2)
we can rewrite (12.1) in block form as

Yl =
q0∑

j=0

bjΦ
j
l θ + Dl, l = 1, 2, . . . (12.3)

We proceed to develop identification algorithms of parameters θ and η =
[b0, . . . , bq0−1]′ with the information of the input uk and the output sk of
the quantized sensor.

The input signal, which will be used to identify the system, is a 2n0(q0 +
1)-periodic signal u whose one-period values are

(v, v, ρ1v, ρ1v, . . . , ρq0v, ρq0v),

where the base vector v = (v1, . . . , vn0) and the scaling factors are to be
specified. The scaling factors 1, ρ1, . . ., ρq0 are assumed to be nonzero and
distinct. Under 2n0(q0 + 1)-periodic inputs, we have

Φj
l = Φj

1 := Φj , l = 1, 2, . . .

Thus, (12.3) can be written as

Yl =
q0∑

j=0

bjΦjθ + Dl := ζ + Dl. (12.4)

The identification algorithm will be divided into two steps: (i) to estimate
ζ (which can be reduced to estimation of gain systems), and (ii) to estimate
θ from the estimated ζ.

12.2 Input Design and Strong-Full-Rank Signals

This section is to introduce a class of input signals, called strongly full-rank
signals, which will play an important role in what follows. First, some basic
properties of periodic signals will be derived.
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Recall that an n0 × n0 generalized circulant matrix

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn0 vn0−1 vn0−2 . . . v1

λv1 vn0 vn0−1
. . . v2

λv2 λv1 vn0
. . . v3

...
. . . . . . . . .

...

λvn0−1 λvn0−2 λvn0−3 . . . vn0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.5)

is completely determined by its first row [vn0, . . . , v1] and λ, which will be
denoted by T (λ, [vn0, . . ., v1]). In the special case of λ = 1, the matrix in
(12.5) is called a circulant matrix and will be denoted by T ([vn0, . . . , v1]).

Definition 12.1. An n0-periodic signal generated from its one-period val-
ues (v1, . . . , vn0) is said to be strongly full rank with order m0 if the circulant
matrices T ([vin0, . . . , v

i
1]) are all full rank for i = 1, . . . , m0.

Obviously, an n0-periodic signal generated from v = (v1, . . . , vn0) is
strongly full rank with order m0 if it is strongly m0 + 1 full rank. An
important property of circulant matrices is the following frequency-domain
criterion. By Lemma 2.2, we have the following theorem.

Lemma 12.2. An n0-periodic signal generated from v = (v1, . . . , vn0) is
strongly full rank with order m0 if and only if for l = 1, 2, . . . ,m0,

γk,l =
n0∑

j=1

vl
je

−iωkj

are nonzero at ωk = 2πk/n0, k = 1, . . . , n0.

Proposition 12.3. For n0 = 1, 2, an n0-periodic signal u generated from
v = (v1, . . . , vn0) is strongly full rank with order m0 if and only if it is full
rank.

Proof. For n0 = 1, by Corollary 2.3, u is full rank if and only if γ1 =
v1 �= 0. By Lemma 12.2, u is strongly full rank with order m0 if and only
if γ1,l = vl

1 �= 0,∀l. So, γ1 �= 0 is equivalent to γ1,l �= 0.
For n0 = 2, by Corollary 2.3, u is full rank if and only if γ1 = v2−v1 �= 0

and γ2 = v2 + v1 �= 0, that is, v2 �= ±v1. By Lemma 12.2, u is strongly full
rank with order m0 if and only if

γ1,lγ2,l = (vl
1e

−iπ + vl
2e

−i2π)(vl
1e

−i2π + vl
2e

−i4π) = v2l
2 − v2l

1 .

Thus, we have γ1γ2 = v2
2 − v2

1 �= 0 if and only if u is full rank. �
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Remark 12.4. For n0 > 2, the conditions of strongly full rank with order
m0 may be different from the conditions of full rank. For example, for
n0 = 3 and l = 1, . . . , m0,

γ1,lγ2,lγ3,l = (vl
3 + vl

2 + vl
1)
[
(vl

2 −
1
2
(vl

3 + vl
1))

2 +
3
4
(vl

3 − vl
1)

2
]
�= 0

is not equivalent to

γ1γ2γ3 = (v3 + v2 + v1)
[
(v2 −

1
2
(v3 + v1))2 +

3
4
(v3 − v1)2

]
�= 0

except m0 = 1.

Definition 12.5. A 2n0(m0 + 1)-periodic signal u is strongly scaled m0

full rank if its one-period values are (v, v, ρ1v, ρ1v, . . . , ρm0v, ρm0v), where
v = (v1, . . . , vn0) is strongly full rank with order m0, i.e., 0 �∈ F [v]; ρj �= 0,
ρj �= 1, j = 1, . . . ,m0, and ρi �= ρj , i �= j. We use U(n0, q0) to denote the
class of such signals.

Definition 12.6. An n0(m0+1)-periodic signal u is exponentially strongly
scaled full rank with order m0 signal if its one-period values are (v, λv, . . .,
λm0v), where λ �= 0 and λ �= 1, and Tj = Tj(λj , [vjn0, . . . , v

j
1]) are all

full rank for j = 1, . . . ,m0. We use Uλ(n0, q0) to denote this class of input
signals.

By Definition 12.6 and Lemma 2.2, we have the following result.

Lemma 12.7. An n0(q0+1)-periodic signal u with one-period values (v, λv,
. . ., λm0v) is exponentially strongly scaled full rank with order m0 if λ �= 0,
λ �= 1, and for l = 1, . . . ,m0,

γk,l =
n0∑

j=1

vl
jλ

− jl
n0 e−iωkj

are nonzero at ωk = (2πk)/n0, k = 1, . . . , n0.

Remark 12.8. Definitions 12.5 and 12.6 require that T (λi, [vin0, . . . , v
i
1]),

i = 1, . . . ,m0, are all full rank for λ = 1 and λ �= 0, 1, respectively. However,
since the event of singular random matrices has probability zero, if v is
chosen randomly, almost all v will satisfy the conditions in Definitions 12.5
and 12.6, which will be shown in the following example.

Example 12.9. For n0 = 4, m0 = 4, λ = 0.9, v = (0.5997, 0.9357, 0.9841,
1.4559) is generated randomly by Matlab, v is strongly 4 full rank since

det(T ([v4, v3, v2, v1])) = 0.4041, det(T ([v2
4 , v2

3 , v2
2 , v2

1 ])) = 2.4823,

det(T ([v3
4 , v3

3 , v3
2 , v3

1 ])) = 7.7467, det(T ([v4
4 , v4

3 , v4
2 , v4

1 ])) = 19.8312.
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Furthermore, for λ = 0.9,

det(T (λ, [v4, v3, v2, v1])) = 0.3796, det(T (λ2, [v2
4 , v2

3 , v2
2 , v2

1 ])) = 1.7872,

det(T (λ3, [v3
4 , v3

3 , v3
2 , v3

1 ])) = 4.2853, det(T (λ4, [v4
4 , v4

3 , v4
2 , v4

1 ])) = 8.5037.

v is generated randomly 10000 times, it is shown that all T ([vi
4, v

i
3, v

i
2, v

i
1])

and T (λi, [vi
4, v

i
3, v

i
2, v

i
1]), i = 1, . . . , 4, are nonsingular.

12.3 Estimates of ζ with Individual Thresholds

Based on strongly scaled full-rank signals, we now derive the estimation
algorithms for ζ and analyze their convergence. To this end, estimation
algorithms based on the information of individual thresholds are first in-
vestigated.

(A12.1) The noise {dk} is a sequence of i.i.d. random variables whose
distribution function F (·) and its inverse F−1(·) are twice continuously
differentiable and known.

(A12.2) The prior information on θ = [a0, . . . , an0−1]′ and η = [b0,. . . ,
bq0−1]′ is that

∑n0−1
i=0 ai �= 0, bq0 = 1, η �= 0, θ ∈ Ωθ, and η ∈ Ωη, where Ωθ

and Ωη are known compact sets.

The input is a scaled 2n0(q0 + 1)-periodic signal with one-period values

(v, v, ρ1v, ρ1v, . . . , ρq0v, ρq0v),

where v = (v1, . . . , vn0) is strongly q0 full rank.
By periodicity, Φj

l = Φj for j = 0, . . . , n0, and Φj can be decomposed
into 2(q0 +1) submatrices Φj(i), i = 1, . . . , 2(q0 +1), of dimension n0×n0:
Φj = [(Φj(1))′, (Φj(2))′, . . . , (Φj(2(q0 + 1)))′]′. Actually, for k = 1, . . .,
2(q0 + 1),

Φj(k) =
[

φj
kn0

, φj
kn0+1, . . . , φ

j
kn0+n0−1

]′
.

Denote the n0 × n0 circulant matrices

V 0 = T ([1, . . . , 1]), and V j = T ([vj
n0

, . . . , vj
1]), j = 1, . . . , q0.

Then, for j = 0, . . . , q0, the odd-indexed block matrices satisfy the simple
scaling relationship

Φj(1) = V j , Φj(3) = ρj
1V

j , . . . , Φj(2q0 + 1) = ρj
q0

V j , (12.6)

and the even-indexed block matrices are

Φj(2l) = ρj
l−1T ((ρl/ρl−1)j , [vn0 , vn0−1, . . . , v1]), l = 1, . . . , q0 + 1,
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where ρ0 = ρq0+1 = 1. Denote

τ{j} = [τ{j,1}, . . . , τ{j,n0}]′ = V jθ, j = 0, . . . , q0. (12.7)

Then, we have

Φj(1)θ = τ{j}, Φj(3)θ = ρj
1τ

{j}, . . . , Φj(2q0 + 1)θ = ρj
q0

τ{j}. (12.8)

Let
Ψθ = [Φ0θ,Φ1θ, . . . ,Φq0θ].

Then, from (12.4), we have

Yl = Ψθ[η′, 1]′ + Dl = ζ + Dl. (12.9)

Remark 12.10. In (v, v, ρ1v, ρ1v, . . . , ρq0v, ρq0v), there are always two iden-
tical subsequences ρiv, i = 1, . . . , q0, appearing consecutively. The main
reason for this input structure is to generate block matrices that satisfy
the above scaling relationship (12.6).

For (12.9) and i = 1, . . . , m0, let

μ
{i}
N = [μ{i,1}

N , . . . , μ
{i,2n0(q0+1)}
N ]′

=
1
N

N∑

k=1

S
{i}
k =

1
N

N∑

k=1

I{Dk ≤ Ci112n0(q0+1) − Ψθ[η′, 1]′},

which is the empirical distribution of Dl at

Ci112n0(q0+1) − ζ = Ci112n0(q0+1) − Ψθ[η′, 1]′.

Then, by the strong law of large numbers,

μ
{i}
N → p{i} = F (Ci112n0(q0+1) − Ψθ[η′, 1]′) w.p.1.

Denote S
{i}
N = [S{i,1}

N , . . . , S
{i,2n0(q0+1)}
N ]′, where S

{i}
N is as defined in

(12.2) and S
{ij}
N denotes its jth component. By Assumption (A12.1), for

each i = 1, . . . ,m0, {S{i}
k } is an i.i.d. sequence. Since j = 1, . . . , 2n0(q0+1),

ES
{i,j}
k = p{i,j} = F (Ci − ζj) and

E(S{i,j}
k − p{i,j})2 = p{i,j}(1 − p{i,j}) := Δ2

i,j .

Define z
{ij}
N =

∑N
k=1 S

{ij}
k /N . Then,

Ez
{i,j}
N =

1
N

N∑

k=1

ES
{i,j}
k = p{i,j},
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E(μ{i,j}
N − p{i,j})2 =

Δ2
i,j

N
. (12.10)

Note that F is a monotone function by Assumption (A12.1), and Ωθ and
Ωη are bounded by Assumption (A12.2). Then, there exists z > 0 such that

z ≤ p{i,j} = F (Ci − ζj) ≤ 1 − z, i = 1, . . . , m0, j = 1, . . . , 2n0(q0 + 1).

Since F (·) is not invertible at 0 and 1, we modify μ
{i,j}
N to avoid this

“singularity.” Let

ξ
{i,j}
N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ
{i,j}
N , if z ≤ μ

{i,j}
N ≤ 1 − z,

z, if μ
{i,j}
N < z,

1 − z, if μ
{i,j}
N > 1 − z.

(12.11)

Since μ
{i,j}
N → p{i,j}, w.p.1 and z < p{i,j} < 1−z, we have ξ

{i,j}
N → p{i,j},

w.p.1. Denote
ξ
{i}
N = [ξ{i,1}

N , . . . , ξ
{i,2n0(q0+1)}
N ]′. (12.12)

By Assumption (A12.1), F has a continuous inverse. Hence, for each
i = 1, . . . ,m0,

ζ
{i}
N = [ζ{i,1}

N , . . . , ζ
{i,2n0(q0+1)}
N ]′

:= Ci112n0(q0+1) − F−1(ξ{i}
N )

→ Ci112n0(q0+1) − F−1(pi) = Ψθ[η′, 1]′ as N → ∞
= ζ = [ζ1, . . . , ζ2n0(q0+1)]′ w.p.1.

(12.13)

12.4 Quasi-Convex Combination Estimators of ζ

Since ζ
{i}
N is constructed from each individual threshold Ci, this enables us

to treat the coefficients of the quasi-convex combination as design variables
such that the resulting estimate has the minimal variance. This resulting
estimate is exactly the optimal QCCE in Chapter 6.

For j = 1, . . . , 2n0(q0 + 1), define ζN (j) = [ζ{1,j}
N , . . . , ζ

{m0,j}
N ]′ and

cN (j) = [cN (j, 1), . . . , cN (j,m0)]′ with cN (j, 1)+ · · ·+ cN (j,m0) = 1. Con-
struct an estimate of ζj by defining

ζ̂N (j) = c′N (j)ζN (j) =
m0∑

k=1

cN (j, k)ζ{k,j}
N .

Denote c(j) = [c(j, 1), . . . , c(j,m0)]′ such that cN (j) → c(j). Then c(j, 1)+
· · · + c(j,m0) = 1, and by (12.13),

ζ̂N (j) =
m0∑

k=1

cN (j, k)ζ{k,j}
N → ζj

m0∑

k=1

c(j, k) = ζj .
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Denote the estimation errors

eN (j) = ζ̂N (j) − ζj ,

εN (j) = ζN (j) − ζj11m0 ,

and their covariances

σ2
N (j) = EeN (j)e′N (j), QN (j) = EεN (j)ε′N (j),

respectively. Then the covariance of estimation error is

σ2
N (j) := E

(
ζ̂N (j) − ζj

)2
= E

(
m0∑

k=1

cN (j, k)(ζ{k,j}
N − ζj)

)2

= c′N (j)EεN (j)ε′N (j)cN (j) = c′N (j)QN (j)cN (j).

That is, the variance is a quadratic form with respect to the variable c(j).
To obtain the quasi-convex combination estimate, we choose c(j) to

minimize σ2
N (j), subject to the constraint c′N (j)11m0 = 1.

Theorem 12.11. Under Assumptions (A12.1) and (A12.2), suppose u ∈
Uq0 and RN (j) = NQN (j) = NEεN (j)ε′N (j) for j = 1, . . . , 2n0(q0 + 1)
is positive definite. Then, the quasi-convex combination estimate can be
obtained by choosing

c∗N (j) =
R−1

N (j)11m0

11′m0
R−1

N (j)11m0

, ζ̂N (j) =
m0∑

i=1

c∗(j, i)ζ{i,j}
N , (12.14)

and the minimal variance satisfies

Nσ2∗
N (j) =

1
11′m0

R−1
N (j)11m0

. (12.15)

Consistency and Efficiency

From (12.14), ζ̂(j) can be regarded as an estimate of ζj . In this subsection,
consistency and efficiency properties of this estimate will be analyzed.

By Assumption (A12.1), G(x) = F−1(x) is continuous on (0, 1). As
a result, G(x) is bounded on the compact set [z, 1 − z]. Since ζ

{i,j}
N =

Ci − G(ξ{i,j}
N ) → ζ{i,j} w.p.1, we have ζ

{i,j}
N → ζ{i,j} in probability. Fur-

thermore, by the Lebesgue dominated convergence theorem [19, p. 100],
Eζ

{i,j}
N → ζ{i,j}. Hence,

Eζ̂N (j) = E

m0∑

k=1

cN (j, k)ζ{k,j}
N → ζj as N → ∞,

which means the estimate of ζj is asymptotically unbiased.
Subsequently, the efficiency of the estimate will be studied. To this end,

the properties of ξ
{i,j}
N in (12.11) will be introduced first.
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Lemma 12.12. Suppose u ∈ U(n0, q0), where U(n0, q0) is defined in
Definition 12.5. Under Assumptions (A12.1) and (A12.2), there exist Ki,j ∈
(0,∞) and Li,j ∈ (0,∞), i = 1, . . . ,m0, j = 1, . . . , 2n0(q0 + 1), such that

P{ξ{i,j}
N �= μ

{i,j}
N } ≤ Ki,je

−Li,jN . (12.16)

Proof. Denote X{i,j} = (S{i,j}
1 − p{i,j})/Δi,j . Note that EX{i,j} = 0 and

E(X{i,j})2 = 1. By the i.i.d. assumption, taking a Taylor expansion of
M

{i,j}
N (h) = [E exp(hX{i,j}/

√
N)]N , the moment generating function of√

N(μ{i,j}
N − p{i,j})/Δi,j , we obtain

M
{i,j}
N (h) =

[
E[1 +

hX{i,j}
√

N
+

h2(X{i,j})2

2N
+ O(N−3/2)]

]N

=
[
1 +

h2

2N
+ O(N−(3/2))

]N
.

Consequently, for any t ∈ R,

infh e−htM
{i,j}
N (h) = inf

h
e−ht
[
1 +

h2

2N
+ O(N−(3/2))

]N
≤ Ke−

t2
2 ,

(12.17)
where K > 0 is a positive constant.

By means of the Chernoff bound [83, p. 326], for any t ∈ (−∞, p{i,j}],

P
{

μ
{i,j}
N ≤ t

}
= P

{
N∑

k=1

(S{i,j}
k − pi,j) ≤ N

(t − pi,j)
Δi,j

}

≤
{

inf
h

[
e
−h(t−pi,j)

Δi,j M
{i,j}
N (h)

]}N
(12.18)

and for any pi,j ≤ t < ∞,

P{μ{i,j}
N ≥ t} ≤

{
inf
h

[
e
−h(t−pi,j)

Δi,j M
{i,j}
N (h)

]}N

. (12.19)

Considering

P{ξi,j(N) �= μ
{i,j}
N } = P (μ{i,j}

N ≤ z) + P (μ{i,j}
N ≥ 1 − z)

and (12.17)–(12.19), (12.16) is true. �

Theorem 12.13. Under the conditions of Lemma 12.12, we have

NE(ξ{i,j}
N − p{i,j})2 → Δ2

i,j as N → ∞, (12.20)

and

NE|(ξ{i,j}
N − p{i,j})|q0 → 0 as N → ∞, q0 = 3, 4, . . . (12.21)
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Proof. (i) By Theorem 12.12, there exist Ki,j ∈ (0,∞) and Li,j ∈ (0,∞)
such that

EN(ξ{i,j}
N − μ

{i,j}
N )2 ≤ NzP{ξ{i,j}

N �= μ
{i,j}
N }

≤ zKi,jNe−Li,jN → 0.

This together with

EN(μ{i,j}
N − p{i,j})(ξ{i,j}

N − μ
{i,j}
N )

≤
√

EN(μ{i,j}
N − p{i,j})2EN(ξ{i,j}

N − μ
{i,j}
N )2

= Δi,j

√
EN(ξ{i,j}

N − μ
{i,j}
N )2

implies that

EN(ξ{i,j}
N − p{i,j})2 − EN(μ{i,j}

N − p{i,j})2

= 2EN(μ{i,j}
N − p{i,j})(ξ{i,j}

N − μ
{i,j}
N )

+EN(ξ{i,j}
N − μ

{i,j}
N )2

→ 0 as N → ∞.

(12.22)

Thus, by (12.10), we obtain (12.20).
(ii) Similarly, for q0 = 3, 4, . . ., one obtains

NE|(ξ{i,j}
N − p{i,j})|q0 − NE|(μ{i,j}

N − p{i,j})|q0 → 0.

By Hölder’s inequality,

NE|μ{i,j}
N − p{i,j}|q0 ≤ Δi,j

√
NE(μ{i,j}

N − p{i,j})2(q0−1). (12.23)

Notice that for each i, j, S
{i,j}
k is i.i.d. Then, we have

NE(μ{i,j}
N − p{i,j})2(q0−1) = NE

[ 1
N

N∑

k=1

(S{i,j}
k − p{i,j})

]2(q0−1)

= N−2(m0−2)E(S{i,j}
1 − p{i,j})2(q0−1)

≤ N−2(q0−2),

which together with (12.23) results in

NE|μ{i,j}
N − p{i,j}|q0 ≤ Δi,jN

−(q0−2) → 0.

Hence, (12.21) is obtained. �

From (12.15), the covariance of the estimation ζ̂N (j) is decided by RN (j).
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Theorem 12.14. Suppose u ∈ U(n0, q0). If, in addition to Assumptions
(A12.1) and (A12.2), the density function f(x) is continuously differen-
tiable, then as N → ∞,

RN (j) := NQN (j) = NEεN (j)ε′N (j) → Λ(j)W (j)Λ(j) := R(j), (12.24)

where
εN (j) = ζN (j) − ζj11m0 ,

Λ(j) = diag−1{f(C1 − ζj), . . . , f(Cm0 − ζj)},
and

W (j) =

⎡

⎢
⎢
⎢
⎣

p{1,j}(1 − p{1,j}) . . . p{1,j}(1 − p{m0,j})
...

. . .
...

p{1,j}(1 − p{m0,j}) . . . p{m0,j}(1 − p{m0,j})

⎤

⎥
⎥
⎥
⎦

. (12.25)

Proof. Denote εN (j, i) as the ith component of εN (j), Ġ(x) = dG(x)/dx,
and G̈(x) = dĠ(x)/dx. Then

Ġ(x) =
dG(x)

dx
=

dG(x)
dF (G(x))

=
1

f(G(x))
,

G̈(x) =
dĠ(x)

dx
= − 1

f2(G(x))
ḟ(G(x))Ġ(x).

Since ḟ(x) is continuous, by Assumption (A12.1), both Ġ(x) and G̈(x) are
continuous, and hence bounded in [z, 1 − z]. Let

β{i,j} = sup
x∈[z,1−z]

{|Ġ(x)|} and γ{i,j} = sup
x∈[z,1−z]

{|G̈(x)|}.

Then, there exists a number λ
{i,j}
N between p{i,j} and ξ

{i,j}
N such that

εN (j, i) = ζ
{i,j}
N − ζj = G(ξ{i,j}

N ) − G(p{i,j})

= Ġ(p{i,j})(ξ{i,j}
N − p{i,j}) +

1
2
G̈(λ{i,j}

N )(ξ{i,j}
N − p{i,j})2.

This implies that for i, k = 1, . . . , m0,

NEεN (j, i)εN (j, k)

= NE(ζ{i,j}
N − ζj)(ζ

{k,j}
N − ζj)

= NĠ(p{i,j})Ġ(p{k,j})E(ξ{i,j}
N − p{i,j})(ξ{k,j}

N − p{k,j})

+NEĠ(p{i,j})(ξ{i,j}
N − p{i,j})(ξ{k,j}

N − p{k,j})2G̈(λ{k,j}
N )

+NEG̈(λ{i,j}
N )(ξ{i,j}

N − p{i,j})2(ξ{k,j}
N − p{k,j})Ġ(p{k,j})

+NEG̈(λ{i,j}
N )(ξ{i,j}

N − p{i,j})2(ξ{k,j}
N − p{k,j})2Ġ(λ{k,j}

N ).

(12.26)
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By Hölder’s inequality and Theorem 12.13, we have

|NEĠ(p{i,j})(ξ{i,j}
N − p{i,j})(ξ{k,j}

N − p{k,j})2G̈(λ{k,j}
N )|

≤ β{i,j}γ{i,j}
√

NE(ξ{i,j}
N − p{i,j})2NE(ξ{k,j}

N − p{k,j})4|

≤ β{i,j}γ{i,j}Δi,j

√
NE(ξ{k,j}

N − p{k,j})4| → 0.

(12.27)

Similarly,

|NEG̈(λ{i,j}
N )(ξ{i,j}

N − p{i,j})2(ξ{k,j}
N − p{k,j})Ġ(p{k,j})| → 0, (12.28)

|NEG̈(λ{i,j}
N )(ξ{i,j}

N − p{i,j})2(ξ{k,j}
N − p{k,j})2Ġ(λ{k,j}

N )| → 0. (12.29)

Thus, similarly to (12.22), we have

N
[
E(ξ{i,j}

N − p{i,j})(ξ{k,j}
N − p{k,j})

− E(μ{i,j}
N − p{i,j})(μ{k,j}

N − p{k,j})
]
→ 0.

(12.30)

Since dk, k = 1, 2, . . ., are i.i.d.,

NE(μ{i,j}
N − p{i,j})(μ{k,j}

N − p{k,j})

=
1
N

E
[( N∑

l1=1

I{dl1 ≤ p{i,j}} − p{i,j})(
N∑

l2=1

I{dl2 ≤ p{k,j}} − p{k,j}
)]

=
1
N

E
N∑

l1=1

I{dl1 ≤ p{i,j}}I{dl1 ≤ p{k,j}} − p{i,j}p{k,j}

= p{min{i,k},j} − p{i,j}p{k,j}

(12.31)
and

Ġ(p{i,j}) =
1

f(G(p{i,j}))
=

1
f(Ci − ζj)

. (12.32)

Therefore, (12.24) follows from (12.26)–(12.32). �

Proposition 12.15. R(j), j = 1, . . . , 2n0(q0 + 1), defined by (12.24), is
positive definite, and

11′m0
R−1(j)11m0 =

m0+1∑

k=1

h2(j, k)
p̃{k,j} , (12.33)

where
p̃{i,j} = F (Ci − ζj) − F (Ci−1 − ζj),

h(j, i) = f(Ci−1 − ζj) − f(Ci − ζj),

with C0 = −∞ and Cl+1 = ∞.
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Proof. Since
RN (j) = NEεN (j)ε′N (j) ≥ 0,

so is R(j). Noting

R(j) = Λ(j)W (j)Λ(j),

Λ(j) = diag−1{f(C1 − ζj), . . . , f(Cm0 − ζj)},

and f(Ci − ζj) > 0, i = 1, . . . ,m0, we need only to show that W (j) is
positive definite.

From (12.25),

det(W (j)) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

p{1,j}(1 − p{1,j}) . . . p{1,j}(1 − p{m0,j})
...

. . .
...

p{1,j}(1 − p{m0,j}) . . . p{m0,j}(1 − p{m0,j})

∣
∣
∣
∣
∣
∣
∣
∣
∣

= p{1,j}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 − p{1,j} p{1,j} − p{2,j} . . . p{1,j} − p{m0,j}

1 − p{2,j} 0 p{2,j} − p{m0,j}

...
. . .

...

1 − p{m0,j} 0 · · · 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= p{1,j}(p{1,j} − p{2,j}) . . . (p{m0,j} − p
{j}
m0−1)(1 − p{m0,j}) �= 0.

Thus, R(j) > 0. Furthermore, by Lemma 6.4,

11′R−1(j)11 =
m0+1∑

k=1

h2(j, k)
p̃{k,j} .

Thus, (12.33) is also true. �

Lemma 12.16. The Cramér–Rao lower bound for estimating ζj based on
{sk} is

σ2
CR(N, j) =

⎛

⎝N

m0+1∑

j=1

h2(j, i)
p̃{i,j}

⎞

⎠

−1

.

Next, we demonstrate that the aforementioned algorithms are asymptot-
ically efficient based on the following theorem.

Theorem 12.17. Under the conditions of Theorem 12.14, for j = 1, . . .,
2n0(q0 + 1),

lim
N→∞

N
(
σ2∗

N (j) − σ2
CR(N, j)

)
= 0 as N → ∞.

Proof. This theorem can be proved directly by Theorem 12.14, Proposition
12.15, and Lemma 12.16.
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Recursive Quasi-Convex Combination Estimates

Since σ2
N (j) = EεN (j)ε′j(N) contains an unknown parameter ζj , it cannot

be directly computed. As a result, the quasi-convex combination estimate
ζN (j) in (12.14) cannot be computed. In this section, we will derive com-
putable estimates. The basic idea is to employ a recursive structure in which
the unknown ζj is replaced by the current estimate ζ̂N (j). Convergence of
the algorithms will be established.

For i = 1, . . . ,m0 and j = 1, . . . , 2n0(q0 + 1), let ξ0(i) = 02n0(q0+1),
ĉ0(j) = 0q0 , R̂0(j) = 0q0×q0 , and ζ̂0(j) = 02n0(q0+1). Suppose that at step
N − 1 (N ≥ 1), ξN−1(i), cN−1(j), and R̂N−1(j) have been obtained. Then
the estimation algorithms can be constructed as follows.

(i) Calculate the sample distribution values

ξ
{i}
N =

1
N

S
{i}
N +

N − 1
N

ξ
{i}
N−1.

(ii) Calculate the data points

ζ
{i}
N = F−1(ξ{i}

N ).

Let
ζN (j) = [ζ{1,j}

N , . . . , ζ
{q0,j}
N ]′, j = 1, . . . , 2n0(q0 + 1).

(iii) Calculate each covariance estimate RN (j).

Let

p
{i,j}
N = F (Ci − ζ

{i,j}
N−1),

Λ̂N (j) = diag−1{f(p{1,j}
N ), . . . , f(p{1,m0}

N )},

WN (j) =

⎡

⎢
⎢
⎢
⎣

p
{1,j}
N (1 − p

{1,j}
N ) . . . p

{1,j}
N (1 − p

{1,m0}
N )

...
. . .

...

p
{1,j}
N (1 − p

{1,m0}
N ) . . . p

{1,m0}
N (1 − p

{1,m0}
N )

⎤

⎥
⎥
⎥
⎦

.

Calculate RN (j) by

R̂N (j) = Λ̂N (j)WN (j)Λ̂N (j).

(iv) If R̂N (j) is nonsingular, then let

ĉN (j) =
R̂−1

j (N)11

11′R̂−1
N (j)11

,
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and compute

ζ̂
{j}
N = ĉ′N (j)([C1, . . . , Cm0 ]

′ − ζN (j)).

Otherwise, ζ̂
{j}
N = ζ̂

{j}
N−1.

(v) Let ζ̂N = [ζ̂{1}N , . . . , ζ̂
{2n0(q0+1)}
N ]′. Go to step 1.

This algorithm depends only on sample paths. At each step, it mini-
mizes the estimation variance based on the most recent information on the
unknown parameter. In addition, the following asymptotic properties hold.

Theorem 12.18. Under the conditions of Theorem 12.14, for j = 1, . . .,
2n0(q0 + 1), the above recursive algorithms have the following properties:

lim
N→∞

ζ̂N (j) = ζj w.p.1, (12.34)

lim
N→∞

R̂N (j) = R(j) w.p.1, (12.35)

lim
N→∞

NE(ζ̂N (j) − ζj)2 =
1

11′R−1(j)11
w.p.1. (12.36)

Proof. Note that ξ
{i}
N → F (Ci112n0(q0+1) − ζ) w.p.1 and the convergence is

uniform in Ci112n0(q0+1) − ζ. Since F (·) and F−1(·) are both continuous,

ζ
{i}
N = Ci112n0(q0+1) − F−1(ξ{i}

N )

→ Ci112n0(q0+1) − F−1(F (Ci112n0(q0+1) − ζ) = ζ

w.p.1 as N → ∞. Thus, the quasi-convex combination ζ̂N (j) converges to
ζ w.p.1. That is, (12.34) holds.

By Assumption (A12.1), F (·) and f(·) are both continuous. Hence,

Λ̂N (j) → Λ(j) and WN (j) → Wj .

As a result, (12.35) holds, and by (12.15),

E(ζ̂N (j) − ζj)2 =
1

11′m0
R̂−1

N (j)11m0

→ 1
11′m0

R−1(j)11m0

,

which results in (12.36). �

12.5 Estimation of System Parameters

Identification algorithms of the system parameters will be constructed
based on the estimate of ζ. The parameters of the linear part are first
estimated, then the nonlinearity is identified.
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Identifiability of the Unknown Parameters

Theorem 12.19. Suppose u ∈ U(n0, q0). Then,

Ψθ[η′, 1]′ = ζ

has a unique solution (θ∗, η∗).

Proof. (i) To obtain θ∗.
By the first component of (12.13), we have ζ = [ζ1, . . . , ζ2n0(q0+1)]′, and

b0τ
{0,1} + b1τ

{1,1} + · · · + bq0τ
{q0,1} = ζ1.

From (12.8), the 2in0 +1 (i = 1, . . . , q0) component of (12.13) turns out to
be

b0τ
{0,1} + ρib1τ

{1,1} + · · · + ρq0
i bq0τ

{q0,1} = ζ2in0+1,

or equivalently,

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0τ
{0,1}

b1τ
{1,1}

...

bq0τ
{q0,1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ1

ζ2n0+1

...

ζ2q0n0+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where � =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 . . . 1

1 ρ1 . . . ρq0
1

... · · · . . .
...

1 ρq0 . . . ρq0
q0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since ρj �= 0, ρj �= 1, j = 1, . . . , q0, and ρi �= ρj , the determinant of the
Vandermonde matrix

det� =
∏

0≤i<j≤q0−1

(ρj − ρi) �= 0 with ρ0 = 1.

Hence, bjτ
{j,1}, j = 0, . . . , q0, can be solved by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0τ
{0,1}

b1τ
{1,1}

...

bq0τ
{q0,1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= �−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ1

ζ2n0+1

...

ζ2q0n0+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Similarly, we have

Γ = �−1Ξ, (12.37)
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where

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0τ
{0,1} b0τ

{0,2} . . . b0τ
{0,n0}

b1τ
{1,1} b1τ

{1,2} . . . b1τ
{1,n0}

...

bq0τ
{q0,1} bq0τ

{q0,2} . . . bq0τ
{q0,n0}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ1 ζ2 . . . ζn0

ζ2n0+1 ζ2n0+2 . . . ζ3n0

...

ζ2q0n0+1 ζ2q0n0+2 . . . ζ2q0+1)n0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Denote r(i) as the ith column of (�−1)′. Then, by bq0 = 1, we have

τ{q0} = [τ{q0,1}, . . . , τ{q0,n0}]′ = Ξ′r(q0).

Note that u ∈ U(n0, q0) implies that V q0 is full rank. Then, by (12.7), one
can get θ∗ = V −1

q0
τ{q0}.

(ii) To obtain η∗.
By Assumption (A12.2),

∑n0−1
i=0 ai �= 0, or V 0θ �= 0n0 . For u ∈ U(n0, q0)

and j = 1, . . . , q0, V j = T ([vj
n0

, . . . , vj
1]) is full rank by Definition 12.1, and

so V jθ �= 0n0 . Thus, for each j = 0, . . . , q0, τ{j} = V jθ has a nonzero
component τ{j,i∗N (j)}. For any given positive integer k and j = 1, . . . , k,
let βj(k) be a k-dimensional vector with all components being zero except
the jth being 1, that is,

βj(k) = [0, . . . , 0
︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

k−j

]′.

Then, from (12.37), we have

bjτ
{j,i∗N (j)} = β′

j(m0 + 1)�−1Ξβi∗(j)(n0), j = 0, . . . , q0,

which gives bj , j = 0, . . . , q0, since τ{j,i∗N (j)} can be calculated from V j and
θ∗ via (12.7). Thus, η∗ is obtained. �

A particular choice of the scaling factors ρj is ρj = λj , j = 0, 1, . . . , q0,
for some λ �= 0 and λ �= 1. In this case, the period of input u can be
shortened to n0(q0 + 2) under a slightly different condition.

Identification Algorithms and Convergence Properties

The ζN = [ζ{1}N , . . . , ζ
{2n0(q0+1)−1}
N ]′ in (12.12) has 2n0(q0 + 1) components

for a strongly scaled q0 full-rank signal u ∈ U(n0, q0).
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Let

Vq0 = T ([vq0
n0

, . . . , vq0
1 ]), [r1, . . . , r(q0)] := (�′)−1,

ΞN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ
{1}
N ζ

{2}
N . . . ζ

{n0}
N

ζ
{2n0+1}
N ζ

{2n0+2}
N . . . ζ

{3n0}
N

...

ζ
{2q0n0+1}
N ζ

{2q0n0+2}
N . . . ζ

{(2q0+1)n0}
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then, we have the following identification algorithm:

(i) Estimate θ. The estimate of θ is taken as

θN = V −1
q0

Ξ′
Nr(q0). (12.38)

(ii) Estimate η. Let b0(j) = 0 and

bN (j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ζ{i∗N (j)}
N , . . . , ζ

{2q0n0+i∗N (j)}
N ]rN (i∗N (j))/τ

{j,i∗N (j)}
N ,

if τ{j,i∗N (j)} �= 0,

bN−1(j), if τ{j,i∗N (j)} = 0,

where

i∗N (j) = min{argmax1≤i≤n0
|τ{j,i}|}, j = 0, 1, . . . , q0 − 1; (12.39)

r(i∗N (j)) is the i∗N (j)th column of (�′)−1, and τ{j,i∗N (j)} is the i∗N (j)-th
component of τ

{j}
N = V jθN . Then, the estimate of η is taken as

ηN = [bN (0), . . . , bN (q0 − 1)]′. (12.40)

Theorem 12.20. Suppose u ∈ U(n0, q0). Then, under Assumptions (A12.1)
and (A12.2),

θN → θ and ηN → η w.p.1 as N → ∞.

Proof. By (12.13), ζN → ζ w.p.1. as N → ∞. So,

θN = V −1
q0

Ξ′
Nrq0 → V −1

q0
Ξ′r(q0) = θ,

which in turn leads to

τ
{j}
N = [τ{j,1}

N , . . . , τ
{j}
N (n0)]′ := V jθN → V jθ = τ{j} w.p.1.

and τ{j,i} → τ j(i) w.p.1 for i = 1, . . . , n0. Thus, for j = 0, . . . , q0 − 1, we
have

i∗N (j) = min{argmax1≤i≤n0
|τ{j,i}|} → min{argmax1≤i≤n0

|τ j(i)|} := i∗(j),
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and
τ
{j,i∗N (j)}
N → τ{j,i∗N (j)} �= 0.

This means that with probability 1, there exists N0 > 0 such that

τ
{j,i∗N (j)}
N �= 0, ∀N ≥ N0.

Let

bN (j) =
r(i∗N (j))

τ
{j,i∗N (j)}
N

[ζN (i∗N (j)), ζN (2n0 + i∗N (j)), . . . , ζN (2q0n0 + i∗N (j)].

Then by

bN (j)τ{j,i∗N (j)}
N → [ζi∗(j), ζ2n0+i∗(j), . . . , ζ2q0n0+i∗(j)]r(i∗(j))

= bjτ
{j,i∗N (j)},

we have bN (j) → bj for j = 0, . . . , q0 − 1. Hence, ηN → η w.p.1 as N → ∞.
�

Algorithms under Exponentially Scaled Inputs

Let u be n0(q0+2)-periodic with one-period values (v, λv, . . . , λq0v, λq0+1v).
The ζN = [ζ

{1}
N , . . . , ζ

{q0+1}
N ]′ can be estimated by the algorithms in Section

12.4 with dimension changed from 2n0(q0 + 1) to n0(q0 + 2), and

ζN → ζ =
q0∑

j=0

bjΦ
j
θ.

Partition Φ
j

into (q0 +2) submatrices Φ
j
(i), i = 1, . . . , q0 +2, of dimension

n0 × n0:
Φ

j
= [(Φ

j
(1))′, (Φ

j
(2))′, . . . , (Φ

j
(q0 + 2))′]′.

If u ∈ Uλ(n0, q0), then it can be directly verified that

Φ
j
(l + 1) = λjlτ{j}, l = 0, 1, . . . , q0,

Φ
j
(q0 + 2) = λj(q0+2)T (λ−j(q0+2), [vn0 , . . . , v1]),

where τ{j} = T (λj , [vj
n0

, . . . , vj
1]). With these notations, we have the fol-

lowing result, whose proof is similar to that of Theorem 12.19, and hence,
is omitted.

Theorem 12.21. Suppose u ∈ Uλ(n0, q0). Then, under Assumptions (A12.1)
and (A12.2),

Ψθ[η′, 1]′ = ζ

has a unique solution (θ∗, η∗), where

Φθ = [Φ(0)θ,Φ(1)θ, . . . ,Φ(q0)θ].
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Let

ζN = [ζ
{1}
N , . . . , ζ

{n0(q0+1)}
N ]′,

and

V
q0 = T (λq0 , [vq0

n0
, . . . , vq0

1 ]), [r1, . . . , r(q0)] := (�′)−1,

ΞN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ
{1}
N ζ

{2}
N . . . ζ

{n0}
N

ζ
{n0+1}
N ζ

{n0+2}
N . . . ζ

{2n0}
N

...

ζ
{q0n0+1}
N ζ

{q0n0+2}
N . . . ζ

{n0(q0+1)}
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then, we have the following identification algorithm:

(i) Estimate θ. The estimate of θ is taken as

θe
N = (Φ(q0))−1(ΞN )′rN (q0).

(ii) Estimate η. Let be
0(j) = 0 and

be
N (j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ζ
{ie

N (j)}
N , ζ

2n0+ie
N (j)

N , . . . ,

ζ
{2q0n0+ie

N (j)}
N ]rN (ieN (j))/τ

{j,ie
N (j)}

N , if τ
{j,ie

N (j)}
N �= 0,

be
N−1(j), if τ

{j,ie
N (j)}

N = 0,

where

ieN (j) = min{argmax1≤i≤n0
|τ{j}

N (i)|}, j = 0, 1, . . . , q0 − 1,

r(ieN (j)) is the ieN (j)-th column of (�′)−1, and τ
{j,ie

N (j)}
N is the ieN (j)-

th component of

τN (j) = τ{j}θN .

Then, the estimate of η is taken as

ηe
N = [be

N (0), . . . , be
N (q0 − 1)]′.

Theorem 12.22. Suppose u ∈ Uλ(n0, q0). Then, under Assumptions (A12.1)
and (A12.2),

θe
N → θ and ηe

N → η w.p.1 as N → ∞.
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12.6 Examples

In this section, we illustrate the convergence of the estimates given by
the algorithms described above. The noise is Gaussian with known mean
and variance. In Example 12.23, the identification algorithm with quantized
sensors is shown. Example 12.24 concerns the identification of systems with
non-monotonic nonlinearities. Example 12.25 illustrates an algorithm based
on the prior information, which is more simplified than the one described
by (12.38)–(12.40). The parameter estimates are shown to be convergent
in all cases.

Example 12.23. Consider a gain system yk = a + dk. Here the actual
value of the unknown a is 5. The disturbance is a sequence of i.i.d. Gaus-
sian variables with zero mean and standard deviation σ = 5. The sensor
has three switching thresholds, C1 = 2, C2 = 6, and C3 = 10. Then,
the recursive algorithm in Section 12.4 is used to generate quasi-convex
combination estimates. For comparison, estimates derived by using each
threshold individually (i.e., binary-valued sensors) are also calculated. Fig-
ure 12.2 compares quasi-convex combination estimates to those using each
threshold. It is shown that the estimate with three thresholds converges
faster than the ones with each threshold individually. The weights of the
estimates of each threshold are shown in Figure 12.3, which illustrates that
the weights are not sure to be positive.
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FIGURE 12.2. Identification with quantized output observations
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FIGURE 12.3. Weights of estimates with each threshold

Example 12.24. Consider
⎧
⎨

⎩
yk = a0xk + a1xk−1 + dk,

xk = b0 + b1uk + b2u
2
k + u3

k,

where the noise {dk} is a sequence of i.i.d. Gaussian variables with Ed1 = 0,
σ2

d = 1. The output is measured by a binary-valued sensor with thresh-
old C = 13. The linear subsystem has order n0 = 2, and the nonlin-
ear function has order q0 = 2. The prior information on ai, i = 0, 1, is
that ai ∈ [0.5, 5]. Suppose the true values of unknown parameters are
θ = [a0, a1]′ = [1.31, 0.85]′ and η = [b0, b1, b2]′ = [4, 1.4,−3]′. The non-
linearity is not monotone, which is illustrated in Figure 12.4. It is shown
that not all values of v, ρ1v, ρ2v, ρ3v are situated in the same monotone
interval of the nonlinearity.

The input is chosen to be 2n0(q0 + 1) = 12-periodic with one period
(v, v, ρ1v, ρ1v, ρ2v, ρ2v), where v = [1.2, 0.85], ρ1 = 0.5, ρ2 = 1.65, and
ρ3 = 0.75. Define the block variables Xl, Yl, Φj

l , Dl, and Sl, in the case of a
six-periodic input. Using (12.12), we can construct the algorithms (12.38)–
(12.40) to identify θ and η.

The estimation errors of θ and η are illustrated in Figure 12.5, where the
errors are measured by the Euclidean norm. Both parameter estimates of
the linear and nonlinear subsystems converge to their true values, despite
the nonlinearity being non-monotonic.

Example 12.25. For some prior information, algorithms (12.38)–(12.40)
can be simplified. For example, the estimation algorithms of η can be sim-
plified when the prior information on θ is known to be positive and the
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FIGURE 12.4. Nonmonotonic nonlinearity

periodic input u is positive. Both the mean and the variance of disturbance
are not zero in this example.

Consider ⎧
⎨

⎩
yk = a0xk + a1xk−1 + dk,

xk = b0 + b1uk + u2
k,

where the noise {dk} is a sequence of i.i.d. Gaussian variables with Ed1 = 2,
σ2

d = 4. The output is measured by a binary-valued sensor with threshold
C = 13. The linear subsystem has order n0 = 2, and the nonlinear function
has order q0 = 2. The prior information on ai, i = 0, 1, is that ai ∈ [0.5,
5]. Suppose the true values of the unknown parameters are θ = [a0, a1]′ =
[1.17, 0.95]′ and η = [b0, b1]′ = [3, 1.3]′.

The input is 12-periodic with one period (v, v, ρ1v, ρ1v, ρ2v, ρ2v), where
v = [1.2, 0.85], ρ1 = 0.65, and ρ2 = 1.25. Define the block variables Xl, Yl,
Φj

l , Dl and Sl, in the case of a 12-periodic input. Using (12.12), we can
construct the algorithms (12.38)–(12.40) to identify θ.

Considering the prior information on θ, a more simplified algorithm can
be constructed to identify η than the one given by (12.38)–(12.40). Note
that ai ∈ [0.5, 5], i = 1, 2, and u is positive. Then, τ{j,1}, the first compo-
nent of V jθ, is

τ{j,1} = a0v
2
2 + a1v

2
1 ≥ 0.5(v2

2 + v2
1) �= 0,

where the last inequality is derived from the fact that v is strongly 2 full
rank. So, it is not necessary to calculate i∗N (j) in (12.39), which aims to
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FIGURE 12.5. Identification errors of θ and η with nonmonotonic nonlinearity

find the nonzero component of τ{j}. And η can be estimated as follows:

η0 = 0

ηN =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΛN�c[ζ{1}N , ζ
{2n0+1}
N , . . . , ζ

{2q0n0+1}
N ]′, if

q0−1∏

j=0

τ
{j,1}
N �= 0,

ηN−1, if
q0−1∏

j=0

τ
{j,1}
N = 0,

where ΛN = diag−1(τ{0,1}
N , . . . , τ

{q0−1,1}
N ), �c is a q0 × (q0 + 1) matrix

containing the first to q0−1th rows of �−1, and τ
{j,1}
N is the first component

of τ
{j}
N = V jθN .

The estimation errors of θ and η are shown in Figure 12.6, where the
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errors are measured by the Euclidean norm. Both parameter estimates of
the linear and nonlinear subsystems converge to their true values.
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FIGURE 12.6. Identification errors of θ and η

12.7 Notes

In this chapter, the identification of Hammerstein systems with quantized
output observations is studied. The development follows [128]. Hammer-
stein systems have been used to model practical systems with memoryless
actuators and have been studied extensively in system identification, see
for example [3, 45, 69, 71].
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Structurally, a Hammerstein system with a quantized sensor may be
viewed as Hammerstein–Wiener system which contains both input and out-
put nonlinearity. However, our approaches are quite different from typical
studies of such nonlinear system identification problems in which the out-
put nonlinearities usually contain some sections of smooth functions. Un-
like traditional approximate gradient methods or covariance analysis, we
employ the methods of empirical measures and parameter mappings. Un-
der assumptions of known noise distribution functions and strongly scaled
full-rank inputs, identification algorithms, convergence properties, and the
estimation efficiency are derived.



13
Systems with Markovian Parameters

This chapter concerns the identification of systems with time-varying par-
ameters. The parameters are vector-valued and take values in a finite set.
As in the previous chapters, only binary-valued observations are available.

Our study is motivated by applications in the areas of smart sensors,
sensor networks, networked mobile agents, distributed power generation
networks, etc. For instance, consider an array of mobile sensors being dis-
patched to survey an area for potential land contamination. Each sensor
travels along a trajectory, measures a surface, and communicates the mea-
sured values via a wireless network to the command center. Some of the
features include

(1) The parameter of interest takes only a few possible values represent-
ing regions such as “no contamination,” “low contamination,” and
“high contamination.”

(2) When the sensor travels, the parameter values switch randomly de-
pending on the actual contamination.

(3) Due to communication limitations, only quantized measurements are
available. Here when the sensor moves slowly, the parameter values
switch infrequently. This problem may be described as a system with
an unknown parameter that switches over finite possible values ran-
domly. This application represents problems in ocean survey, detec-
tion of water pipe safety, mobile robots for bomb, chemical, biological
threats, etc.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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FIGURE 13.1. Mobile sensor systems for area survey

To capture the essence of such problems as those above, we formu-
late a class of identification problems with randomly switching parameters
and binary-valued observations. We shall focus on time-varying parame-
ters modeled by a discrete-time Markov chain with a finite state space.
The limited information due to binary-valued sensors makes identification
a difficult task. Our approach for identifying regime-switching systems with
binary observations relies on the basic idea of Wonham-type filters. Based
on the key ideas of such filters, we derive mean-square estimators and
analyze their error bounds. To obtain the error bounds for mean-square
estimators, we utilize asymptotic distributional results. We first establish
weak convergence of functional central limit results, followed by strong ap-
proximation of the scaled sequences. Then these distributional results are
used to obtain error bounds.

In applications, the frequency of the switching processes plays a crucial
role. Consider two typical cases for tracking and identification. The first
case is concerned with Markov chains whose switching movements occur
infrequently. Here, the time-varying parameter takes a constant value for
a relatively long time and switches to another value at a random time.
The jumps happen relatively infrequently. We develop maximum poste-
rior (MAP) estimators and obtain bounds on estimation or tracking errors
based on Wonham filters. We also point out that a simplified estimator
can be developed using empirical measures. The second class of systems
aims at treating fast-switching systems. One motivation of such systems is
the discretization of a fast-varying Markovian system in continuous time.
Suppose the precise transition probabilities are unknown. When parame-
ters frequently change their values, the system becomes intractable if one
insists on tracking instantaneous changes. In fact, if the jump parameter
switches too frequently, it would be impossible to identify the instanta-
neous jumps even with regular linear sensors, let alone binary observations.
As a result, an alternative approach is suggested. Instead of tracking the
moment-by-moment changes, we examine the averaged behavior of the sys-
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tem. The rationale is as follows: Because the Markov chain varies at a fast
pace, within a short period of time, it should settle down at a stationary
or steady state. In the steady state, the underlying system is a weighted
average with the weighting factors the components of the stationary dist-
ribution of the Markov chains.

Section 13.1 begins with the setup of the tracking and identification prob-
lem with a Markov parameter process. Section 13.2 presents Wonham-type
filters for the identification problem. Section 13.3 concerns mean-square
criteria. Section 13.4 proceeds with the study of infrequently switching sys-
tems. Section 13.5 takes up the issue of fast-switching systems.

13.1 Markov Switching Systems with Binary
Observations

Consider a single-input–single-output (SISO), discrete-time system repre-
sented by

yk = φ′
kθk + dk, (13.1)

where φk = (uk, . . . , uk−n0+1)′ and {dk} is a sequence of random distur-
bances. The θk is a Markov chain that takes m0 possible vector values
θ(j) ∈ R

n0 , j = 1. . . . ,m0. yk is measured by a binary-valued sensor with
the known threshold C. After applying an input u, the output sk is mea-
sured for k = 0, . . . , N − 1 with observation length N ≥ n0. We will use
the following assumptions throughout this chapter.

(A13.1) The time-varying process {θk} is a discrete-time Markov chain
with a transition probability matrix P and a finite state space M =
{θ(1), θ(2), . . . , θ(m0)}.

(A13.2) The {dk} is a sequence of i.i.d. random variables with a con-
tinuously differentiable distribution function F (·) whose density function
is denoted by f(·). The inverse F−1(·) exists and is continuous, and the
moment generating function of dk exists.

13.2 Wonham-Type Filters

Tracking θk or identifying the system under binary-valued observations is
a nonlinear filtering problem. A crucial step toward this goal is to build a
good estimator of the probability distribution given the observations. The
identification problem may be stated as follows.

Denote the observation data up to k by Sk = {sl, l ≤ k} and the sequence
of increasing σ-algebras of the observations up to time k by FSk

= σ{sl :
l ≤ k}. Note that FS0 ⊂ FS1 · · · ⊂ FSk

. Similarly, denote the sequence of
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σ-algebras generated by θk as FΘk
= σ{θl : l ≤ k}, and the σ-algebras

generated by the observation noise as FDk
= σ{dl : l ≤ k}. We wish to find

the probabilities

w
{j}
N = P (θN = θ(j)|FSN

), N ≥ 0, j = 1, . . . , m0. (13.2)

Denote the initial probability distribution by p
{j}
0 = P (θ0 = θ(j)). Recall

that P = (p{ij}) ∈ R
m0×m0 , with

p{ij} = P (θN = θ(j)|θN−1 = θ(i)), i, j = 1, . . . ,m0,

are the entries in the transition matrix P . The development uses the Won-
ham filter techniques in [59], which is a discrete version of the original
Wonham filter in [114]. Nevertheless, in our case, we only have binary-
valued observations. The noise does not appear additive either. For each
j = 1, . . . , m0, we denote

G{j}(sN ) := P (sN |θN = θ(j)) = I{sN=1}F (C − φ′
Nθ(j))

+[1 − I{sN=1}](1 − F (C − φ′
Nθ(j)),

(13.3)

which is a function of the random variable sN .

Theorem 13.1. Assume (A13.1) and (A13.2). The Wonham-type filter
for the binary-valued observations can be constructed as

w
{j}
0 =

p
{j}
0 G{j}(s0)

m0∑

j1=1

p
{j1}
0 G{j1}(s0)

, j = 1, . . . ,m0
(13.4)

and

w
{j}
N =

G{j}(sN )
m0∑

i=1

p{ij}w
{i}
N−1

m0∑

i=1

m0∑

j1=1

G{j1}(sN )p{ij1}w
{j1}
N−1

, j = 1, . . . , m0. (13.5)

Proof. To verify (13.4), applying Bayes’ theorem leads to

w
{j}
0 = P (s0|θ0 = θ(j))P (θ0 = θ(j))

m0∑

j1=1

P (s0, θN = θ(j1))
=

p
{j}
0 G{j}(s0)

m0∑

j1=1

p
{j1}
0 G{j1}(s0)

.

To prove (13.5), we first introduce the one-step prediction

w
{j}
N |N−1 = P (θN = θ(j)|FSN−1). (13.6)
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Since {dk} is a sequence of i.i.d. random variables and {θN} is Markovian,
we have

P (θN = θ(j)|θN−1 = θ(j1),FSN−1) = θ(j1)) = p{j1j}.

By the law of total probability,

E(w{j}
N |FSN−1) = P (θN = θ(j)|FSN−1) =

m0∑

j1=1

p{j1j}w
{j1}
N−1. (13.7)

Now, by Bayes’ theorem and (13.7),

w
{j}
N = P (θN = θ(j)|sN ,FSN−1)

=
P (sN |θN = θ(j),FSN−1)P (θN = θ(j)|FSN−1)

m0∑

j1=1

P (sN |θN = θ(j1),FSN−1)P (θN = θ(j1)|FSN−1)

=

G{j}(sN )
m0∑

i=1

p{ij}w
{i}
N−1

m0∑

j1=1

Gj1(sN )
m0∑

i=1

p{ik}w
{i}
N−1

.

The last line above follows from (13.6). �

13.3 Tracking: Mean-Square Criteria

Based on Wonham-type filters, under different criteria, we may develop sev-
eral different estimators. First, consider the following optimization problem:
Choose θ to minimize the mean-square errors conditioned on the informa-
tion up to time N . That is, find θ to minimize minθ E(|θN − θ|2|SN ). Just
as in the usual argument for Kalman filters, bearing in mind the use of
conditional expectation, we obtain the minimizer of the cost, which leads
to the following mean-square estimator:

θ̂N = E(θN |FSn
) =

m0∑

j=1

θ(j)w
{j}
N .

To derive the error estimates of θ̂N −θN , we need the associated asymptotic
distribution for

eN =
1√
N

N−1∑

k=0

(θk − θ̂k).
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Note that {eN} is a sequence of centered and scaled deviations of the
Markov chain from its mean-square tracker with a scaling factor

√
N . For

future use, we note that

eN =
1√
N

∑

j∈M

N−1∑

k=0

θ(j){[I{θk=θ(j)} − P (θk = θ(j))]

+[P (θk = θ(j)) − w
{j}
k ]}.

(13.8)

To examine the deviation, in lieu of working with a discrete-time formula
directly, we focus on a continuous-time interpolation of the form

vN (t) =
1√
N

∑

j∈M


Nt�−1∑

k=0

θ(j)[I{θk=θ(j)} − w
{j}
k ], t ∈ [0, 1], (13.9)

where �z� denotes the integer part of z ∈ R. We shall show that the limit
of vN (·) is a Brownian motion, whose properties help us to derive the
desired error bounds. Obtaining the weak convergence to the Brownian
motion requires verifying that the sequence under consideration is tight (or
compact). Then we characterize the limit by means of martingale problem
formulation.

To use weak convergence theory, it is common and more convenient to use
the so-called D space, which is a space of functions that are right continuous
and have left limits, with a topology weaker than uniform convergence,
known as the Skorohod topology. The main advantage of using such a setup
is that it enables one to verify the tightness or compactness relatively easily.
The exact definitions of these are somewhat technical; we refer the reader
to [55, Chapter 7] for further reference.

Lemma 13.2. Assume the conditions of Theorem 13.1, and suppose the
Markov chain is irreducible.

(a) Then for each δ > 0, each t ≥ 0, and each s > 0 with 0 ≤ s ≤ δ,

sup
N

E|vN (t + s) − vN (t)|2 ≤ Ks, (13.10)

for some K > 0.

(b) The sequence vn(·) is tight in D([0, 1]; Rm0), the space of R
m0-valued

functions that are right continuous, have left limits, and are endowed
with the Skorohod topology.

Proof. We first prove (a). In view of the second line of (13.8), for each
δ > 0, for t > 0, s > 0 satisfying 0 ≤ s ≤ δ, we have

E|vN (t + s) − vN (t)|2 ≤ LN,1 + LN,2,
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where

LN,1 =
2
N

∑

j1,j2∈M


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

i=
Nt�
θ(j1),′θ(j2)EI

{j1}
k I

{j2}
i ,

LN,2 =
2
N

∑

j1,j2∈M


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

i=
Nt�
θ(j1),′θ(j2)Ew̌

{j1}
k w̌

{j2}
i ,

I
{j}
k = I{θk=θ(j)} − P (θk = θ(j)),

w̌
{j}
k = P (θk = θ(j)) − w

{j}
k ,

w̃
{j}
k = I{θk=θ(j)} − w

{j}
k .

(13.11)

To proceed, we estimate LN,1 and LN,2. We need only look at a fixed
pair j1 and j2. First, consider LN,1 without the first sum. Without loss of
generality, assume k ≥ i. Then we obtain that for fixed j1 and j2 ∈ M,

∣
∣
∣
∣
∣
∣


N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

k=
Nt�
θ(j1),′θ(j2)EI

{j1}
k I

{j2}
i

∣
∣
∣
∣
∣
∣

≤ 2

N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

i≤k

θ(j1),′θ(j2)
∣
∣
∣E[I{j2}

i EiI
{j1}
k ]
∣
∣
∣ ,

(13.12)

where El denotes the expectation conditioned on Fl = σ{dk, θk : k ≤ l},
the past information up to l. Since the Markov chain is irreducible, it is
ergodic. That is, there is a row vector ν, the stationary distribution of the
Markov chain such that

|PN − 11ν| ≤ KλN for some 1 > λ > 0,

where 11 is a column vector with all its component being 1. Using this
spectrum gap estimate,

|EiI
{j1}
k | ≤ λk−i.

It then follows that for the term in (13.12), we have

∣
∣
∣
∣
∣
∣


N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

k=
Nt�
θ(j1),′θ(j2)EI

{j1}
k I

{j2}
i

∣
∣
∣
∣
∣
∣

≤ K (�N(t + s)� − �Nt�) .

Dividing the above by N leads to supN LN,1 ≤ Ks. As for the terms
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involved in LN,2,
∣
∣
∣
∣
∣
∣


N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

i≤k

θ(j1),′θ(j2)Ew̌
{j1}
k w̌

{j2}
i

∣
∣
∣
∣
∣
∣

≤ K


N(t+s)�−1∑

i=
Nt�


N(t+s)�−1∑

k≥i

λk−i ≤ KNs.

Dividing the above by N and taking supN yields supN LN,2 ≤ Ks. Thus,
(a) is true.

By using (a), with arbitrary δ > 0 and the chosen t and s, we have

lim
δ→0

lim sup
N→∞

E|vN (t + s) − vN (t)|2 ≤ lim
δ→0

Kδ = 0.

Thus, the tightness follows from the criterion [53, Theorem 3, p. 47]. The
lemma is proved. �

To proceed, let us point out:

(i) Since vN (·) is tight, we can extract weakly convergent subsequences
by means of Prohorov’s theorem (see [55, Chapter 7]). Loosely, se-
quential compactness enables us to extract convergent subsequences.
Without loss of generality, still index the selected subsequence by N ,
and assume vN (·) itself is the weakly convergent subsequence. Denote
the limit by v(·). We shall characterize the limit process.

(ii) From the defining relationship of vN (t), it is readily seen that

EvN (t) =
1√
N

∑

j∈M


Nt�−1∑

k=0

θ(j)
{

E
[
I{θk=θ(j)} − P

(
θk = θ(j)

)]

+E
[
P
(
θk = θ(j)

)
− w

{j}
k

]}
= 0 for each t ≥ 0.

(13.13)

To determine the limit process, we consider a vector-valued process ṽN (t) =
(ṽ1

N (t), . . . , ṽm0
N (t)) ∈ R

m0 , where

ṽ
{i}
N (t) =

1√
N


Nt�−1∑

k=0

θ(i)
[
I{θk=θ(i)} − w

{i}
k

]
.

Define ΣN (t) = (Σ{ij}(t)) = EṽN (t)ṽ′
N (t), where Σ{ij}

N (t) denotes the ijth
entry of the partitioned matrix ΣN (t), namely,

Σ{ij}
N (t) =

1
N


Nt�−1∑

k=0


Nt�−1∑

l=0

Eζ
{i}
k ζ

{j},′
l , (13.14)
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where
ζ
{i}
k = θ(i)

[
I{θk=θ(i)} − w

{i}
k

]
∈ R

m0 .

Using the notation of ṽN (t), we can rewrite vN (t) as vN (t) = 11′m0
ṽN (t),

where 11′m0
= (1, . . . , 1) ∈ R

1×m0 . To proceed, we first determine the limit
covariance function of EvN (t)v′

N (t) = 11′m0
[EṽN (t)ṽ′

N (t)]11m0 . From the
above expression, it is seen that to accomplish this goal, we need only
consider the limit covariance of EṽN (t)ṽ′

N (t). The following lemma details
the calculation of the asymptotic covariance.

Lemma 13.3. Assume the conditions of Lemma 13.2. Then

(a) the limit covariance of ṽN (t) is given by

lim
N→∞

ΣN (t) = tΣ0, Σ0 = diag
(
Σ{11}

0 , . . . ,Σ{m0m0}
0

)
,

Σ{i}
0

def= Σ{ii}
0 = lim

N→∞

1
N

N∑

k=0

Eζ
{i}
k ζ

{i},′
k , i ∈ M;

(13.15)

(b) as N → ∞,

EvN (t)v′
N (t) → tΣ = t

m0∑

i=1

Σ{i}
0 .

Proof. To prove (a), it suffices to work with the partitioned matrix Σ{ij}
N (t).

Note that

Nt�−1∑

k<l

Eζ
{i}
k ζ

{j},′
l =


Nt�−1∑

k<l

E
[
ζ
{i}
k Ekζ

{j},′
l

]
= 0 for i �= j.

Likewise,

Nt�−1∑

l<k

Eζ
{i}
k ζ

{j},′
l = 0 for i �= j.

This leads to

Σ{ij}
N (t) = δij

1
N


Nt�−1∑

k=0

Eζ
{i}
k ζ

{j},′
k +

1
N


Nt�−1∑

l=0


Nt�−1∑

k<l

Eζ
{i}
k ζ

{j},′
l

+
1
N


Nt�−1∑

k=0


Nt�−1∑

l<k

Eζ
{i}
k ζ

{j},′
l

= δij
�Nt�
N

1
�Nt�


Nt�−1∑

k=0

Eζ
{i}
k ζ

{j},′
k

→
{

tΣ{i}
0 , if i = j,

0, otherwise,
(13.16)
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as N → ∞, where δij = 1 if i = j, δij = 0 otherwise, and Σ{ij}
0 denotes the

ijth partitioned matrix in Σ0.
Finally, (b) is a direct consequence of Lemma 13.3. The lemma is thus

proved. �

Note that by (13.15), Σ{i}
0 = Σ{ii}

0 , the partitioned matrix of Σ0. To
proceed, we prove that vN (·) converges weakly to a Brownian motion. We
characterize the limit process by means of identifying the limit covariance
function. The analysis is carried out by using the martingale problem for-
mulation. For a twice continuously differentiable function h : R

m0 �→ R,
define an operator as

Lh(v) =
1
2
tr
[
Σhvv(v)

]
, (13.17)

where hvv denotes the Hessian matrix (the second partial derivatives with
respect to v). We have the following result.

Theorem 13.4. Assume the conditions of Lemma 13.2. Then

(a) vN (·) converges weakly to v(·), which is a Brownian motion with co-
variance Σt;

(b) vN (1) converges in distribution to a normal random variable with
mean 0 and covariance Σ.

Proof. Part (b) is a direct consequence of (a). Thus, we need only prove
(a). Since vN (·) converges weakly, there is a convenient device known as
the Skorohod representation (see [55, Chapter 7]) that enables us to work
with w.p.1 convergence on an enlarged space. Without loss of generality
and with a slight abuse of notation, we may assume vN (·) → v(·) in the
sense of w.p.1. We want to show that v(·) is a solution to the martingale
problem with operator L defined in (13.17). To this end, it suffices to show
that

h(v(t)) − h(v(0)) −
∫ t

0

Lh(v(ρ))dρ is a martingale.

To verify the above, it only needs to be shown (see [55]) that for any
bounded and continuous function H(·), any t, s > 0, any integers �, and
any tι ≤ t,

EH(v(tι) : ι ≤ �)[ h(v(t + s)) − h(v(t))

−
∫ t+s

t

Lh(v(ρ))dρ] = 0.
(13.18)

To verify (13.18), use vn(·). By the weak convergence and the Skorohod
representation, as N → ∞,

EH(vN (tι) : ι ≤ �)[h(vN (t + s)) − h(vN (t))]

→ EH(v(tι) : ι ≤ �)[h(v(t + s)) − h(v(t))].
(13.19)
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On the other hand, direct computation reveals that

lim
N→∞

EH(vN (tι) : ι ≤ �)[h(vN (t + s)) − vN (t))]

= lim
N→∞

EH(vN (tι) : ι ≤ �)

⎡

⎣ 1√
N

∑

i∈M
h′

v(vN (t))θ(i)


N(t+s)�−1∑

k=
Nt�
w̃

{i}
k

+
1

2N

∑

i∈M

∑

i1∈M
tr[hvv(vN (t))θ(i)θ(i1)]


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

l=
Nt�
w̃

{i}
k w̃i1

l

⎤

⎦ ,

(13.20)
where w̃

{i}
k is given by (13.11). Using nested expectation and inserting

E
Nt�, since vN (tι) : ι ≤ � and vN (t) are all F
Nt�-measurable, by inserting
E
Nt� we have

EH(vN (tι) : ι ≤ �)

⎡

⎣ 1√
N

∑

i∈M
h′

v(vN (t))θ(i)E
Nt�


N(t+s)�−1∑

k=
Nt�
w̃

{i}
k

⎤

⎦

→ 0 as N → ∞.

Likewise,

EH(vN (tι) : ι ≤ �)

[
1

2N

∑

i∈M

∑

i1∈M
tr[hvv(vN (t))θ(i)θ(i1)]

×

N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

l=
Nt�
w̃

{i}
k w̃i1

l

⎤

⎦

= EH(vN (tι) : ι ≤ �)

[
1

2N

∑

i∈M

∑

i1∈M
tr[hvv(vN (t))θ(i)θ(i1)]

× E
Nt�


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

l=
Nt�
w̃

{i}
k w̃i1

l

⎤

⎦ .

Dividing the cases into l ≤ k and k < l, we can handle the last equation
above as in the proof of Lemma 13.3 by inserting El and Ek, respectively.
It follows that the double summations above reduce to a single one. The
last two equations together with (13.20) then imply that

EH(vN (tι) : ι ≤ �)
[ 1
2N

∑

i∈M

∑

i1∈M
tr[hvv(vN (t))θ(i)θ(i1)]

×E
Nt�


N(t+s)�−1∑

k=
Nt�


N(t+s)�−1∑

l=
Nt�
w̃

{i}
k w̃i1

l

]

→ EH(v(tι) : ι ≤ �)
[ ∫ t+s

t

Lh(ρ)dρ
]

as N → ∞.
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This establishes the desired theorem. �

By virtue of Theorem 13.4, we further obtain a strong approximation
result. This strong approximation will aid us in obtaining error bounds in
what follows.

Lemma 13.5. Under the conditions of Theorem 13.4, there is a constant
γ > 0 such that

sup
0≤t≤1

|vN (t) − v(t)| = o(N−γ) w.p.1.

Proof. Note that

Ek−1ζ
{i}
k = Ek−1[I{θk=θ(i)} − w

{i}
k ] = 0.

Thus, it is a martingale difference sequence. Using the martingale version of
the Skorohod representation (see [41, p. 269]), we can establish the result.
The details are omitted. �

We next show that the tracking error in the average sense is exponentially
small. The result is based on part (b) in Theorem 13.4 and large deviations
for normal random variables. There are different ways to obtain the error
bounds. We do one as follows, whose proof is also in the appendix.

Theorem 13.6. Under the conditions of Lemma 13.2,

P

(
1√
N

∣
∣
∣
∣
∑

i∈M

N∑

k=0

θ(i)[I{θk=θ(i)} − w
{i}
k ]
∣
∣
∣
∣
1

≥ ε

)

≤ 2m0 exp

(

− Nε2

2m0
2σ2

v{i}(1)

)

,

(13.21)

where | · |1 denotes the l1 norm.

Proof. Note that v{i}(1) = e′iv(1), where ei is the ith standard unit vector.
Note also that v{i}(1) is normally distributed with mean 0 and variance
σ2

v{i}(1)
= e′iΣei. We then have that for any α > 0,

P

(
1√
N

|v{i}(1)| ≥ ε

m0

)
≤ exp

(
− αε

m0

)
E exp

(
α|v{i}(1)|√

N

)

≤ 2 exp

(

− αε

m0
+

σ2
v{i}(1)

α2

2N

)

.

(13.22)

Choosing the α to minimize the index in the exponent leads to

α = (Nε/(m0σ
2
v{i}(1))).
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Using this in (13.22) yields the upper bound

P

(
1√
N

|v{i}(1)| ≥ ε

m0

)
≤ 2 exp

(

− Nε2

2m0
2σ2

v{i}(1)

)

.

Thus,

P

(
1√
N

m0∑

i=1

|v{i}(1)| ≥ ε

)

≤ 2m0 exp

(

− Nε2

2m0
2σ2

v{i}(1)

)

. (13.23)

Note that

P

(
1√
N

∣
∣
∣
∣
∑

i∈M

N∑

k=0

θ(i)w̃
{i}
k

∣
∣
∣
∣
1

≥ ε

)

= P

(

exp

(
α√
N

∣
∣
∣
∣
∑

i∈M

N∑

k=0

θ(i)w̃
{i}
k

∣
∣
∣
∣
1

)

≥ exp(αε)

)

.

We can approximate the

(α/
√

N)
N∑

k=0

θ(i)w̃
{i}
k

by v{i}(t) by using Lemma 13.5. Adding and subtracting v{i}(t) in the
above and using the triangle inequality yield that

P

(
1√
N

∣
∣
∣
∣
∑

i∈M

N∑

k=0

θ(i)w̃
{i}
k

∣
∣
∣
∣
1

≥ ε

)

≤ exp
(
− αε

m0

)
E exp

(
α√
N

∣
∣
∣
∣
∣

∑

i∈M

N∑

k=0

{θ(i)w̃
{i}
k − v{i}(t)}

∣
∣
∣
∣
∣
1

+
α√
N

∑

i∈M
|v{i}(t)|1

)

≤ exp
(
− αε

m0

)
E exp(o(N−γ)) exp

(
α√
N

∑

i∈M
|v{i}(t)|1

)

.

Using (13.23) in the above estimate, the desired result then follows. �

13.4 Tracking Infrequently Switching Systems:
MAP Methods

Here, we construct a sequence of estimates of the Markov chain by maxi-
mizing the a posterior probabilities. The estimator is given by

θ̂N = θ(jN ), jN = argmaxj∈Mw
{j}
N . (13.24)
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Our goal is to derive an error bound on P (θ̂N �= θN ). We are interested in
the case that for each i ∈ M,

∑
j �=i pij = ε and pii = 1−ε, for ε sufficiently

small. One such model assumes the transition probability of the Markov
chain to be P ε = I + εQ, where Q is a generator of a continuous-time
Markov chain. It indicates that most of the time, the system will remain at
a constant value, but it has infrequent jumps from one parameter value to
another at random times. This is a class of “infrequent switching” systems.
It is intuitively understood that the data size n should be neither too
small for lack of information from data nor too large since old data will
contain diminishing information about the current θN . It is also conceivable
that for smaller ε, a larger N may be used. It is our desire to establish a
concrete relationship between N and ε to guarantee a desired accuracy of
identification. For a selected N , the implementation is the standard moving-
window method: To identify θk, the data in the time window l = k − N ,
k − N + 1, . . ., k, will be used. It is noted for a large window size N ,
the initial distribution of θk−N will have diminishing effects on the MAP
estimates θ̂N , at the end of the window k − 1 ≤ l ≤ N . Consequently, one
may choose any initial distribution, such as the uniform distribution, to
start the MAP algorithm. The following discussion is generic for a given
moving window with a chosen initial distribution. For simplicity, we make
the following assumption.

(A13.3) yk = θk + dk and the initial probability distribution of the
Markov chain satisfies p{j}(0) > 0 for j = 1, . . . ,m0.

In what follows, we choose ε to be sufficiently small and N sufficiently
large. Let pj = F (C − θ(j)) and δ = mini�=j |pi − pj |. Define

ξN+1 =
1

N + 1

N∑

k=0

sk, (13.25)

and denote the data set by SN = {sk, k = 0, . . . , N}. For a given β < δ/2,
define

M
{j}
N = {sk : 0 ≤ k ≤ N, |ξN+1 − pj | < β},

MN =
m0⋃

j=1

M
{j}
N .

Lemma 13.7. For sufficiently small ε and sufficiently large N and some
constant c > 0,

P (MN ) ≥ (1 − e−Nβ2c)(1 − ε)N , (13.26)

which implies
lim

N→∞
lim
ε→0

P (MN ) = 1.
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Proof. Note that

P (M{j}
N ) =

m0∑

i=1

P (M{j}
N |θ0 = θ(i))p{i}

0

=

⎡

⎣p{j}
0 P (M{j}

N |θ0 = θ(j)) +
∑

i�=j

P (M{j}
N |θ0 = θ(i))p{i}

0

⎤

⎦

≥ p
{j}
0 P (M{j}

N |θ0 = θ(j)).

Then,

P (M{j}
N ) ≥ p

{j}
0 P (M{j}

N |θk = θ(j), k = 0, . . . , N)

×P (θk = θ{j}, k = 1, . . . , N |θ0 = θ(j))

= p
{j}
0 P (M{j}

N |θk = θ(j), k = 0, . . . , N)(1 − ε)N

= p
{j}
0 P (|ξN+1 − pj | ≤ β|θk = θ(j), k = 0, . . . , N)(1 − ε)N .

By the large deviations principle,

P (|ξN+1 − pj | ≤ β|θk = θ(j), k = 0, . . . , N) ≥ 1 − e−Nβ2c

for some c > 0. This implies

P (M{j}
N ) ≥ p

{j}
0 (1 − e−Nβ2c)(1 − ε)N .

Since β < δ/2, M
{j}
N , j = 1, . . . , m0, are disjoint. Hence,

P (MN ) =
m0∑

j=1

P (M{j}
N )

and (13.26) follows. This completes the proof. �

A sequence in {MN} is called a typical sequence. Lemma 13.7 indicates
that for small ε and large N , the probability for a sequence to be typical
is nearly 1. For this reason, to derive error bounds in probability, we may
consider only the data set in MN .

Lemma 13.8. For sufficiently small ε and β, and sufficiently large N , if
SN ∈ M

{j}
N , then θ̂N = θ(j).

Proof. Suppose SN ∈ M
{j}
N . Using the MAP estimator, θ̂N = θ(j) if and

only if
P (θN = θ(j)|SN ) > P (θN = θ(i)|SN ), i �= j.

Since

P (θN = θ(i)|SN ) =
P (θN = θ(i), SN )

P (SN )
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the conclusion is true if

P (θN = θ(j), SN ) > P (θN = θ(i), SN ), i �= j.

In the following derivation, K1, K2, and K are some positive constants.
Now

P (θN = θ(i), SN )

=
m0∑

l=1

P (θN = θ(i), SN |θ0 = θ(l))pl
0

= p
{i}
0 P (θN = θ(i), SN |θ0 = θ(i)) + εK1

= p
{i}
0 P (SN |θk = θ(i), k = 0, . . . , N)

×P (θk = θ(i), k = 1, . . . , N − 1|θ0 = θ(i)) + εK2 + εK1

= p
{i}
0 P (SN |θk = θ(i), k = 0, . . . , N)(1 − ε)N + εK.

By the definition of ξN+1, SN contains (N +1)ξN+1 of 1’s and (N +1)(1−
ξN+1) of 0’s:

P (SN |θk = θ(i), k = 0, . . . , N) = p
(N+1)ξN+1
i (1 − pi)(N+1)(1−ξN+1).

Consequently,

P (θN = θ(i), SN )

=
1

m0
p
(N+1)ξN+1
i (1 − pi)(N+1)(1−ξN+1)(1 − ε)N + εK.

(13.27)

For sufficiently small ε, the first term is dominant. As a result, to prove

P (θN = θ(j), SN ) > P (θN = θ(i), SN ), i �= j,

we need only show

p
(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1)

> p
(N+1)ξN+1
i (1 − pi)(N+1)(1−ξN+1),

or equivalently, if

ξN+1 log pj + (1 − ξN+1) log(1 − pj)

> ξN+1 log pi + (1 − ξN+1) log(1 − pi).
(13.28)

Since SN ∈ M
{j}
N , pj −β ≤ ξN+1 ≤ pj +β. Now, the convex inequality [74,

p. 643], which is, in fact, the relative entropy or Kullback–Leibler distance
[22, p. 18],

pj log pj + (1 − pj) log(1 − pj) > pj log pi + (1 − pj) log(1 − pi), pi �= pj ,
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and the continuity imply that for sufficiently small β, (13.28) holds. This
concludes the proof. �

We now derive error bounds on the MAP algorithm.

Theorem 13.9. Let 0 < β < δ/2 be a sufficiently small constant. For
sufficiently small ε and sufficiently large N ,

P (θ̂N = θN ) ≥ (1 − β)2−(N+1)β(1 − ε)N . (13.29)

Proof. By Lemma 13.7, we may focus on SN ∈ MN . The probability of
correct identification of θN is

P (θ̂N = θN ) =
∑

SN

P (θ̂N = θN |SN )P (SN )

≥
∑

SN∈MN

P (θ̂N = θN |SN )P (SN )

=
m0∑

j=1

∑

SN∈M
{j}
N

P (θ̂N = θN |SN )P (SN ).

By Lemma 13.8, for SN ∈ M
{j}
N , θ̂N = θ(j), which implies

P (θ̂N = θN ) ≥
m0∑

j=1

∑

SN∈M
{j}
N

P (θN = θ(j)|SN )P (SN ).

By (13.27),

P (θN = θ(j)|SN )P (SN ) = P (θN = θ(j), SN )

= p
{j}
0 p

(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1)(1 − ε)N + εK.

Let λ
{j}
N be the cardinality of M

{j}
N . Then,

∑

SN∈M
{j}
N

p
(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1)

= λ
{j}
N p

(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1).

By [22, Theorem 3.1.2, p. 51], for sufficiently small ε and sufficiently large
N ,

λ
{j}
N ≥ (1 − β)2(N+1)(H(pj)−β)

for any small β, where

H(pj) = −pj log pj − (1 − pj) log(1 − pj)
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is the entropy of pj . Denote

H(pj , ξN+1) = −ξN+1 log pj − (1 − ξN+1) log(1 − pj).

Since ξN → pj w.p.1 as N → ∞, H(pj , ξN+1) → H(pj) w.p.1 as N → ∞.
It follows that

λ
{j}
N p

(N+1)ξN+1
j (1 − pj)(N+1)(1−ξN+1)

≥ (1 − β)2(N+1)(H(pj)−H(pj ,ξN+1)−β)

= (1 − β)2−Nβ2−β+o(1),

where o(1) → 0 w.p.1 as N → ∞. For sufficiently small β and sufficiently
large N , 2−β+o(1) > 1 − β since β > 1 − 2−β . As a result, for sufficiently
small ε and sufficiently large N ,

∑

SN∈M
{j}
N

P (θN = θ(j)|SN )P (SN ) > p
{j}
0 (1 − β)22−Nβ(1 − ε)N .

Therefore, (13.29) is obtained. �

Theorem 13.9 provides a guideline for window size selection. To achieve
a required estimation accuracy for 0 < η < 1, we may select the window
size to be (1 − β)22−Nβ(1 − ε)N = η provided that ε is sufficiently small
and β is sufficiently small.

13.5 Tracking Fast-Switching Systems

We begin this section by considering the scenario that the process θ(t) is a
continuous-time Markov chain whose states vary on a fast pace. It is now
understood that depending on the actual scenarios, only when the speed
or frequency of state variations is relatively small, one expects to track
the time-varying parameters with reasonable accuracy [6]. For instance,
consider a continuous-time system whose observation is given by

y(t) = ϕ′(t)θ(t) + w(t),

where ϕ(t) is the input. Suppose that the parameter process θ(t) is a
continuous-time Markov chain with a finite state space M and genera-
tor Qη = Q/η with η > 0 a small parameter. With Q being irreducible,
when η → 0, within a very short period of time θ(t) reaches its stationary
distribution. In this case, it is virtually impossible to track the instanta-
neous variation of the process from observations of binary-valued outputs
s(t) = I{y(t)≤C}. For such systems, the main goal becomes identifying an
averaged system (averaging with respect to the stationary measure of the
Markov chain). The main reason for focusing on the averaged system is
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the following: When a system performance is measured by some averaged
outputs, as in most performance indices for optimal or adaptive control,
the net effect of fast-switching parameters on the system performance can
be approximated by using their average values.

The development of this section is motivated by the following scenario:
For the above parameter process θ(t), denote its transition matrix by
P (t) = P η(t). Then P η(t) satisfies the forward equation

Ṗ η(t) = P η(t)Q/η.

A change of variables τ = t/η and P (τ) = P η(t) leads to

d

dτ
P (τ) = P (τ)Q.

Discretizing the equation with a step size h > 0, we obtain a discrete matrix
recursion

P k+1 = P k[I + hQ].

By choosing h > 0 properly, I+hQ becomes a one-step transition matrix of
a discrete-time Markov chain θN and P k represents the kth-step transition
probability. In terms of the original fast-changing θ(t), we see that θN is
corresponding to θ(Nηh). When η is small, for a fixed time t, we have
N = t/(ηh). That is, for the discrete-time system, we need to look at its
property for N being large enough. We call such a chain a fast switching
discrete-time Markov chain. Consequently, estimation of θ(t) for small η
is reduced to estimation of θN for large n. For the problem treated in
this section, in addition to the conditions posed previously, we make the
following additional assumptions.

(A13.4) The Markov chain {θn} is irreducible and aperiodic.

It is observed that under Assumptions (A13.1), (A13.2), and (A13.4),
if both M and P are unknown, then the stationary distribution ν =
(ν1, ν2, . . . , νm0) can be derived from P and the average w.r.t. the sta-
tionary measure can be calculated directly from

θ =
m0∑

j=1

νjθ
(j).

We will develop algorithms that estimate θ without prior knowledge on P .
Hence, we assume that M is known, but P is unknown. In this case, the
goal is to identify ν from which θ can be calculated.

13.5.1 Long-Run Average Behavior

Since νm0 = 1−(ν1+· · ·+νm0−1), we need only identify m0−1 parameters.
For simplicity, we consider the observation horizon L with L = N(m0 − 1)
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for some positive integer N . Denote by N0 the following class of input
signals:

N0 := {u ∈ l∞ : |u|∞ ≤ Ku, u is (m0 − 1) − periodic and full rank}.

Define the (m0 − 1) × (m0 − 1) matrix M̃ = (m̃ij), where

m̃ij = F (C − φ′
iθ

(j)) − F (C − φ′
iθ

(m0)).

Let N := {u ∈ N0: M̃ is full rank}, define

ξ
{i}
N =

1
N

N−1∑

l=0

sl(m0−1)+i, i = 1, . . . , m0 − 1, (13.30)

and denote ξN = (ξ{1}N , . . . , ξ
{m0−1}
N )′. It is easy to verify that

pi = Eξ
{i}
N =

m0−1∑

j=1

νj(F (C − φ′
iθ

(j)) − F (C − φ′
iθ

(m0))) + F (C − φ′
iθ

(m0)).

Hence, ξ
{i}
N represents the empirical measure of pi. By defining

p = [p1, . . . , pm0−1]′,

b = [F (C − φ′
1θ

(m0)), . . . , F (C − φ′
m0−1θ

(m0))]′,

and
ν̃ = (ν1, . . . , νm0−1) ∈ R

1×(m0−1),

we obtain p = M̃ν̃ + b. This implies a relationship between p and ν̃, ν̃ =
M̃−1(p − b). Since M̃ and b are known from the input, this relationship
implies that an estimate of ν̃ can be derived from the empirical measures
of p, ν̂N = M̃−1(ξN − b). From

ν̂N − ν̃ = M̃−1(ξN − p),

the analysis of error bounds, convergence, and convergence rates of ν̂N

can be directly derived from that of ξN . For this reason, the remaining
part of this section is devoted to the analysis of error bounds on empirical
measures.

Example 13.10 The selection of inputs that will make the matrix M full
rank is not difficult. For instance, suppose that the distribution is uniform
with support on [−30, 30]. Let the threshold be C = 10. The system has
three states: θ1 = [1, 3]′, θ2 = [5,−3]′, and θ3 = [10, 2]′. The input is
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randomly selected to generate three regressors: φ′
1 = [0.4565, 0.0185], φ′

2 =
[0.8214, 0.4447], and φ′

3 = [0.6154, 0.7919]. The M matrix becomes

M̃ =

⎛

⎜
⎜
⎜
⎝

0.6581 0.6296 0.5900

0.6307 0.6205 0.5149

0.6168 0.6550 0.5377

⎞

⎟
⎟
⎟
⎠

,

which is full rank.

13.5.2 Empirical Measure-Based Estimators

One immediate question is, what can one say about the asymptotic proper-
ties of the empirical measures defined above? From the well-known result of
the Glivenko–Cantelli theorem ([8, p. 103]), in the usual empirical measure
setup, the law of large numbers yields the convergence to the distribu-
tion function of the noise process if no switching is present. However, in
the current setup, the empirical measures are coupled by a Markov chain.
Intuitively, one would not doubt the existence of a limit. However, the ad-
ditional random elements due to the Markov chain make the identification
of the limit a nontrivial task. Corresponding to the above-mentioned law
of large numbers, we first obtain the following result.

Theorem 13.11. Under (A13.1), (A13.2), and (A13.4),

ξ
{i}
N →

m0∑

j=1

νjF (C − φ′
iθ

(j))

in probability as N → ∞ uniformly in i = 0, 1, 2, . . . ,m0 − 1.

Proof. For each i = 0, 1, 2, . . . ,m0 − 1, the equalities φlm0+i = φi and
φ̃lm0+i = φ̃i hold for all l = 0, 1, . . . , N − 1 due to the periodicity of the
inputs, so

slm0+i = I{ylm0+i≤C} = I{φ′
lm0+iθlm0+i+dlm0+i≤C}

=
m0∑

j=1

I{dlm0+i≤C−φ′
iθ

(j)}I{θlm0+i=θ(j)}

=
m0∑

j=1

[I{dlm0+i≤C−φ′
iθ

(j)} − νj ]I{θlm0+i=θ(j)}

+
m0∑

j=1

νjI{θlm0+i=θ(j)}.

By virtue of the same argument as that of [122, p. 74], we have

E

∣
∣
∣
∣
1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}(I{θlm0+i=θ(j)} − νj)
∣
∣
∣
∣

2

→ 0 (13.31)
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as N → ∞, so

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}(I{θlm0+i=θ(j)} − νj) → 0

in probability and in the second moment as N → ∞. Thus, it follows that

ξ
{i}
N =

m0∑

j=1

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}νj + o(1), (13.32)

where o(1) → 0 in probability as N → ∞. Note that

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}

is the empirical distribution of the noise {dN} at x = C − φ′
iθ

(j). Thus, by
virtue of the well-known Glivenko–Cantelli theorem, for each j = 1, . . . ,m0

and i = 0, 1, . . . ,m0 − 1,

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)} → F (C − φ′(t0 + i)θ(j)) as N → ∞.

Thus, the desired result follows from the familiar Slutsky’s result. �

The above result may be considered as the first approximation of the
empirical measures to the weighted average of the distribution functions.
Naturally, one would also like to know how fast the convergence will take
place. This is presented in Theorem 13.12, which entails the study of the
asymptotics of a centered and scaled sequence of errors or deviations. Com-
pared with the results with a fixed parameter, it can be viewed as a hybrid
coupling of discrete events with the normalized deviations. Conceptually,
one expects that a rescaled sequence of the empirical measures should con-
verge to a Brownian bridge suitably combined or coupled owing to the
Markov chain in the original observation. In view of the above law of large
numbers for empirical measures, one expects that the weak limit of the
rescaled sequence should also be suitably combined by the stationary dis-
tributions of the Markov chain. Thus, it is not difficult to guess the limit.
However, verifying this limit is not at all trivial. To illustrate, if we have two
sequences X

{1}
N and X

{2}
N satisfying X

{i}
N → X{i}, i = 1, 2, in distribution

as N → ∞, we cannot conclude X
{1}
N +X

{2}
N → X{1}+X{2} in distribution

generally. In our case, the difficulties are incurred by the presence of the
Markov chain. In the proof of Theorem 13.12, we overcome the difficulty
by establishing several claims. We first derive its asymptotic equivalence
by bringing out the important part and discarding the asymptotically neg-
ligible part. We may call this step the decorrelation step. Next, we consider
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a suitably scaled sequence with a fixed-θ process. That is, we replace the
“random jump” process with a fixed value. This replacement enables us
to utilize a known result on the empirical process with a fixed parameter.
The third step is to use finite-dimensional distributions convergence due to
weak convergence of the empirical measures to treat an m-tuple

(
η
{1}
N (θ(1)), . . . , η{2}

N (θ(m0))
)

[the definition of η
{i}
N (θ) is given in (13.34) in what follows]. Finally, we use

a Wold’s device [8, p. 52] to finish the proof. The proof itself is interesting
in its own right.

Theorem 13.12. Assume the conditions of Theorem 13.11. The sequence

√
N

⎡

⎣ξ{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

⎤

⎦

converges weakly to
m0∑

j=1

νjB(C − φ′
iθ

(j)),

where B(·) is a Brownian bridge process such that the covariance of B(·)
(for x1, x2 ∈ R) is given by

EB(x1)B(x2)

= min(F (x1), F (x2)) − F (x1)F (x2).

Proof. Step 1: Asymptotic equivalence: By virtue of [122, p. 74], similarly
to (13.31), we can show that for each j = 1, . . . ,m0 and i = 0, 1, . . . ,m0−1,

1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}I{θlm0+i=θ(j)}

=
1
N

N−1∑

l=0

I{dlm0+i≤C−φ′
iθ

(j)}νj + o(1),

where o(1) → 0 in probability (and also in the second moment) as N → ∞.
This together with (13.32) leads to

√
N

⎡

⎣ξ{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

⎤

⎦

=
m0∑

j=1

1√
N

N−1∑

l=0

[I{dlm0+i≤C−φ′
iθ

(j)} − F (C − φ′
iθ

(j))]νj + o(1),

(13.33)
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where o(1) → 0 in probability as N → ∞.
Step 2: Convergence in distribution of a fixed-θ process: Consider now a

typical term in the last line of (13.33). For convenience, for a fixed θ, define

η
{i}
N (θ) =

1√
N

N−1∑

l=0

[
I{dlm0+i≤C−φ′

iθ} − F (C − φ′
iθ)
]
. (13.34)

It is readily seen that η
{i}
N (θ) is a centered empirical measure (with a fixed

θ) re-scaled by
√

N . The results on empirical measures (see [8, p. 141],
[76], and also [84]) then imply that η

{i}
N (·) converges weakly to a Brownian

bridge process B(C − φ′
i ·) with mean 0 and covariance

EB(C − φ′
iθ1)B(C − φ′

iθ2)

= min(F (C − φ′
iθ1), F (C − φ′

iθ2)) − F (C − φ′
iθ1)F (C − φ′

iθ2).

Step 3: Convergence of finite-dimensional distributions: Since η
{i}
N (·) con-

verges weakly to B(C − φ′
i·), its finite-dimensional distributions converge.

That is, for any integer p and any (x1, . . . , xp), (η{i}
N (x1), . . . , η

{i}
N (xp))

converges in distribution to (B(C − φ′
ix1), . . . , B(C − φ′

ixp)). In partic-
ular, we have that (η{i}

N (θ(1)), . . . , η{i}
N (θ(p))) converges in distribution to

(B(C − φ′
iθ

(1)), . . . , B(C − φ′
iθ

(p))).
Step 4: The weak convergence and the form of the finite-dimensional

distributional convergence in Step 3 imply that

(ν1, . . . , νm0)
′
(
η
{i}
N (θ(1)), . . . , η{i}

N (θ(m0))
)

converges in distribution to
∑m0

j=1 νjB(C − φ′
iθ

(j)) by Wold’s device [8, p.
52]. Finally, putting all the steps together, the desired result follows. �

Note that a Brownian bridge is a Brownian motion tied down at both
ends. Here we emphasize that the process considered is allowed to take
values not just in [0, 1], but in the entire real line; thus, what we have
is a “stretched” Brownian bridge as discussed in Chapter 3; see also [76].
Similarly to Lemma 13.5, the next lemma provides a strong approximation
result for empirical measures. Its detailed proof is omitted for brevity.

Lemma 13.13 Under the conditions of Theorem 13.4, there is a constant
γ > 0 such that

sup
0≤i≤m0−1

∣
∣
∣
∣
∣
∣

√
N

⎡

⎣ξ{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

⎤

⎦−
m0∑

j=1

νjB(C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣

= o(N−γ) w.p.1.
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13.5.3 Estimation Errors on Empirical Measures: Upper and
Lower Bounds

In the context of system identification, estimation error bounds are of cru-
cial importance. This section obtains such bounds for the fast-varying sys-
tems. As a preparation, we first present a lemma, which is an exponential
estimate for a Gaussian process.

Lemma 13.14 Under the assumptions of Theorem 13.11, for N suffi-
ciently large and for each j = 1, . . . , m0,

P

(∣∣
∣
∣

1√
N

B(C − φ′
iθ

(j))
∣
∣
∣
∣ ≥

ε

m0M

)
≤ 2 exp

(
− 2Nε2

m0
2M2

)
, (13.35)

where M = max{ν1, i ≤ m0} and B(·) is given by Theorem 13.12.

Proof. Let σ2
ij = Var(B(C−φ′

iθ
(j))). By direct computation, one can show

that for any α > 0,

E exp(α| 1√
N

B(C − φ′
iθ

(j))|) ≤ 2 exp(
α2σ2

ij

2N
).

Thus,

P

(
α

∣
∣
∣
∣

1√
N

B(C − φ′
iθ

(j))
∣
∣
∣
∣ ≥

αε

m0M

)

≤ exp
(
− αε

m0M

)
E exp

(
α

∣
∣
∣
∣

1√
N

B(C − φ′
iθ

(j))
∣
∣
∣
∣

)

≤ 2 exp

(
σ2

ij

2N
α2 − ε

m0M
α

)

.

Choose α = Nε/(m0Mσ2
ij) to minimize the quadratic form in the exponent

above and note that

σ2
ij = F (C − φ′

iθ
(j))(1 − F (C − φ′

iθ
(j))) ≤ 1

4
.

Then the upper bound is obtained. �

It can be seen that Lemma 13.14 derives an exponential type of upper
bound on the estimation errors. To some extent, it is a large deviations
result. Note that B(·), the Brownian bridge process, is a Gaussian process.
The deviation given above indicates that the “tail” probabilities of devi-
ations of the order O(

√
N) will be exponentially small. With this lemma,

we can proceed to obtain the “large deviations” of the empirical measures
from those of the averaged distribution functions (average with respect to
the stationary distributions of the Markov chain).
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Theorem 13.15. Under the assumptions of Theorem 13.11, for N large
enough and for any ε > 0,

P

⎛

⎝
∣
∣
∣
∣ξ

{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))
∣
∣
∣
∣ ≥ ε

⎞

⎠

≤ 2m0 exp
(
− 2Nε2

m0
2M2

)
.

(13.36)

Proof. It is easy to see that

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1√
N

m0∑

j=1

νjB(C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≤ P

⎛

⎝
m0∑

j=1

∣
∣
∣
∣

1√
N

B(C − φ′
iθ

(j))
∣
∣
∣
∣ ≥

ε

M

⎞

⎠ .

Recall that c̃ij is given in Theorem 13.16. Observe that
⎧
⎨

⎩
(c̃i1, . . . , c̃im0)

′ :
m0∑

j=1

∣
∣
∣
∣

1√
N

B(c̃ij)
∣
∣
∣
∣ ≥

ε

M

⎫
⎬

⎭

⊆
{

(c̃i1, . . . , c̃im0)
′ :
∣
∣
∣
∣

1√
N

B(c̃ij)
∣
∣
∣
∣ ≥

ε

m0M
for some j

}

⊆
m0⋃

j=1

{
(c̃i1, . . . , c̃im)′ :

∣
∣
∣
∣

1√
k

B(c̃ij)
∣
∣
∣
∣ ≥

ε

m0M

}
.

Thus, by (13.36),

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1√
N

m0∑

j=1

νjB(C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≤
m0∑

j=1

P

(∣∣
∣
∣

1√
N

B(c̃ij)
∣
∣
∣
∣ ≥

ε

m0M

)
≤ 2m0 exp

(
− 2Nε2

m0
2M2

)
.

For sufficiently large N , the desired result follows from Lemma 13.13 and
the same kind of argument as in the proof of Theorem 13.6. �

Next, we proceed to obtain lower bounds on the estimation error when
full-rank periodic inputs are used.

Theorem 13.16. Denote

c̃ij = C − φ′
iθ

(j)

for each i = 0, . . . ,m0 − 1 and j = 1, . . . , m0, and denote the matrix

Σ = (σ̃i1,i2 : i1, i2 = 1, . . . ,m0),
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where for i1, i2 = 1, . . . ,m0,

σ̃i1,i2 = min(F (c̃ii1), F (c̃ii2)) − F (c̃ii1)F (c̃ii2).

Let λ be the minimum eigenvalue of the covariance matrix Σ. Under the
assumptions of Theorem 13.11, for sufficiently large N and for any ε > 0,

P

⎛

⎝

∣
∣
∣
∣
∣
∣
ξ
{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≥
√

2
π

⎛

⎝
√

λ|ν|√
Nε

−
(√

λ|ν|√
Nε

)3
⎞

⎠ exp
(
− ε2

2λ|ν|2 N

)
.

(13.37)

Proof. Note that (B(c̃i1), . . . , B(c̃im0)) can be regarded as a multinormal
distributed vector with mean 0 and covariance Σ. Recall that

ν = (ν1, . . . , νm0) and Š =
m0∑

j=1

νjB(c̃ij).

Then Š is a one-dimensional Gaussian random variable with mean 0 and
variance ν′Σν. Direct computation yields that

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1√
N

m0∑

j=1

νjB(c̃ij)

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠ = P

(

|Z| ≥
√

Nε√
ν′Σν

)

,

where Z = Š/(
√

ν′Σν). Then

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1√
N

m0∑

j=1

νjB(c̃ij)

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠ ≥ 2P

(

Z ≥
√

Nε√
λ|ν|

)

= 2

(

1 − Φ

( √
Nε√
λ|ν|

))

≥ 2

⎛

⎝
√

λ|ν|√
Nε

−
(√

λ|ν|√
Nε

)3
⎞

⎠ ϕ̌

( √
Nε√
λ|ν|

)

,

where Φ(·) and ϕ̌(·) are the cumulative distribution and density function of
the standard normal variable, respectively. Thus, for sufficiently large N ,

P

⎛

⎝

∣
∣
∣
∣
∣
∣
ξ
{i}
N −

m0∑

j=1

νjF (C − φ′
iθ

(j))

∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≥
√

2
π

⎛

⎝
√

λ|ν|√
Nε

−
(√

λ|ν|√
Nε

)3
⎞

⎠ exp
(
− ε2

2λ|ν|2 N

)
.

The proof is concluded. �
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13.6 Notes

Although the problems considered in this chapter are centered around
switching systems with binary observations, the main ideas and results can
be generalized to quantized observations. Regime-switching systems often
appear as integrated parts of hybrid systems, discrete-event systems, logic-
based systems, finite automata, hierarchical systems, and complex systems.
Consequently, our results may have potential applications in these areas as
well. More information on regime-switching systems can be found in [123]
and its references.

The framework here is based on our recent work [120] for tracking Marko-
vian parameters with binary-valued observations. Several directions may be
pursued. The inclusion of unmodeled dynamics is a worthwhile research di-
rection. Quantized sensors may be treated. Optimal sensor placement in
conjunction with the filters developed in this chapter may be considered.
Optimal selection of the threshold values and sensor locations is an impor-
tant issue. Complexity is another direction for further investigation.
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14
Space and Time Complexities,
Threshold Selection, Adaptation

The number m0 of thresholds is a measure of space complexity, whereas the
observation length N is a measure of time complexity that quantifies how
fast uncertainty can be reduced. The significance of understanding space
and time complexities can be illustrated by the following example. For
computer information processing of a continuous-time system, its output
must be sampled (e.g., with a sampling rate N Hz) and quantized (e.g., with
a precision word-length of B bits). Consequently, its output observations
carry the data-flow rate of NB bits per second (bps). For instance, for 8-
bit precision and a 10-KHz sampling rate, an 80K-bps bandwidth of data
transmission resource is required. In a sensor network in which a large
number of sensors must communicate within the network, such resource
demand is overwhelming especially when wireless communications of data
are involved.

The problem is generic since any computerized information processing for
analog signals will inherently encounter the problem of data precision and
sampling rates. However, this problem is not acute when data-flow band-
widths are not limited, such as in wired systems with fast computers. New
technology developments in smart sensors, MEMS (micro electromechani-
cal systems), sensor networks, computer communication systems, wireless
systems, mobile agents, distributed systems, and remote-controlled systems
have ushered in new paradigms in which data-flow rates carry significant
costs and limitations.

Conceptually, it is well understood that increasing precision levels is de-
sirable for enhancing accuracy in information processing. Similarly, increas-
ing data size can be potentially useful for reducing identification errors.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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However, these will jointly demand more resources. A fundamental ques-
tion must be answered: Is such resource demand necessary for achieving a
required identification requirement? To answer this question, a framework
is required that can facilitate the analysis of both time complexity (such
as the sampling rate) and space complexity (such as the number of subsets
for output partition). This chapter addresses the following key issues:

(1) What are the main benefits in increasing the space complexity defined
by the number of output observation subsets, in terms of identification
accuracy?

(2) What is the relationship between the space complexity (measurement
precision) and the time complexity (speed of uncertainty reduction)?

(3) How should the output range be partitioned for the best identification
accuracy?

(4) What is the optimal resource allocation when communication chan-
nels provide only limited bandwidths?

Section 14.1 defines the concepts of space complexity and time com-
plexity and derives some basic properties of space complexity. Information
contents of the observed data can be improved by input and threshold de-
sign, which are covered in Sections 14.2, 14.3, and 14.4 with binary-valued
observations. It starts in Section 14.2 with a feasibility study on worst-
case threshold selection, followed by robust threshold selection in Section
14.3. Adaptive algorithms for thresholds are presented in Section 14.4. Sec-
tion 14.5 generalizes the results of 14.2 to quantized observations. Based
on these results, Section 14.6 discusses the utility of relationships between
space and time complexities in network design.

14.1 Space and Time Complexities

In an information processing problem that involves computer networks,
or communication data transmission, or wireless networks, the required
resource is usually represented by bandwidths in bits per second. In our
identification problems, if identification must be accomplished in τ seconds
to facilitate subsequent tasks (control, prediction, diagnosis, etc.), then the
time complexity N is translated into N samples per τ seconds. Correspond-
ingly, the required bandwidth will be R = N log(m0+1) bits per τ seconds,
or R/τ bps. Throughout the chapter, the simplified notation log = log2 is
used. Since τ is an external constant, we shall simply view R as the required
bandwidth on communication channels. For an available total resources R,
one may choose to assign more resources to space complexity (increasing
m0) or to time complexity (increasing N , i.e., the rate of data acquisi-
tion). The overall goal is to achieve the best uncertainty reduction for a



14.1 Space and Time Complexities 257

given resource, or to achieve minimum resource utilization for a given level
of uncertainty reduction. This section presents basic properties of space
complexity.

Separation of Time and Space Complexities

To understand the impact of sensor threshold values and the number of
thresholds on identification error variance, we use σ2

CR(N,m0, θ) in Lemma
6.6. We will interpret m0 exchangeably as space complexity, the number
of binary-valued sensors, or the number of sensor thresholds. Let us first
fix an integer m0. σ2

CR(N,m0, θ) indicates a basic relationship that delin-
eates a fundamental property of asymptotic separation of space and time
complexity in variance reduction.

From the Cramér–Rao (CR) lower bound in Chapter 6, we have the
following conclusion.

Corollary 14.1.

η(m0, θ) := Nσ2
CR(N,m0, θ) =

(
m0+1∑

i=1

h̃2
i

p̃i

)−1

(14.1)

is independent of N .

Remark 14.2. Corollary 14.1 shows that asymptotically the optimal vari-
ance σ2

CR(N,m0, θ) is reduced in the rate of 1/N in terms of its time com-
plexity. Its reduction by increasing space complexity m0 is characterized
entirely by η(m0, θ), which is independent of N . This separation of space
and time complexity in their capability for identification error reduction
provides a convenient foundation for complexity analysis. Consequently,
η(m0, θ) will be used for the analysis of space complexity.

Monotonicity of Space Complexity

To proceed, we make a couple of definitions first. Suppose that [ymin, ymax]
is the range of yk. A placement of m0 sensor thresholds is a partition
ymin < C1 < · · · < Cm0 < ymax of the interval [ymin, ymax]. In what follows,
we also use the notation

Tm0 = {ymin, C1, . . . , Cm0 , ymax}

to denote the set of points of the partition.

Definition 14.3. Suppose m1 < m2 are two positive integers, and Tm1 =
{ymin, C1

1 , . . . , C1
m1

, ymax} and Tm2 = {ymin, C2
1 , . . . , C2

m2
, ymax} are two

placements of sensor thresholds. We say that Tm2 is a refinement of Tm1 if

{ymin, C1
1 , . . . , C1

m1
, ymax} is a subset of {ymin, C2

1 , . . . , C2
m2

, ymax}.
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Remark 14.4. In the definition of placement of sensors, [ymin, ymax] can
be either finite or infinite. In case one of these values is ∞ or −∞, it
is understood that we work with the extended real number system. For
practical utility, we have assumed that no sensor is placed at either ymin

or ymax; otherwise, they do not provide any useful information for system
identification.

Note that the statement “Tm2 is a refinement of Tm1” means that Tm2

can be obtained by starting with the threshold points C1
1 < · · · < C1

m1
and

interposing m2 − m1 points between them to form a finer subdivision.

Theorem 14.5. Suppose that Tm1 and Tm2 are two placements of sensor
thresholds such that Tm2 is a refinement of Tm1 . Then η(m0, θ) given in
(14.1) satisfies

η(m2, θ) ≤ η(m1, θ).

Remark 14.6. Theorem 14.1 is a result about the monotonicity of space
complexity. It indicates that a reduction in error variance is achieved by
increasing space complexity.

Proof. The extra thresholds in Tm2 that are not in Tm1 can be added one
at a time. Hence, we need only show that if one additional threshold C is
added to Tm1 , we have η(m1 + 1, θ) ≤ η(m1, θ).

Suppose that one additional threshold C is inserted in Tm1 , between
C1, C2 ∈ Tm1 , C1 < C < C2. Denote

p = P{C1 < x ≤ C2},
p1 = P{C1 < x ≤ C},
p2 = P{C < x ≤ C2},

and
h =

∂p

∂θ
, h1 =

∂p1

∂θ
, h2 =

∂p2

∂θ
.

By (14.1), we need only show that

h2
1

p1
+

h2
2

p2
≥ h2

p
. (14.2)

Note that p = p1 + p2 and h = h1 + h2. Hence, (14.2) can be expressed
as

h2
1

p1
+

(h − h1)2

p − p1
− h2

p
≥ 0.

However, elementary derivations show that

h2
1

p1
+

(h − h1)2

p − p1
− h2

p
=

(h1p − p1h)2

p1(p − p1)p
≥ 0.

�
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14.2 Binary Sensor Threshold Selection and Input
Design: Feasibility Analysis

We now consider the problem of threshold selection and input design. An
interval Ii = (Ci−1, Ci] of the output range can provide useful information
for system identification only when h̃i �= 0. The contribution of a sensor
interval to error reduction depends on the actual parameter θ, the distri-
bution function F , the thresholds, and the input.

Example 14.7. To illustrate, suppose that F (·) is the distribution func-
tion of a uniform random variable on [0, 10], namely, F (x) = x/10, 0 ≤ x ≤
10. The prior information on θ is that θ ∈ [2, 5]. If one selects uk ≡ u0 = 1,
and places four sensor thresholds at C1 = 1, C2 = 6, C3 = 10, and C4 = 20,
then it can be verified that F (C1 − θ) = 0, F (C2 − θ) = (6 − θ)/10,
F (C3 − θ) = (10 − θ)/10, and F (C4 − θ) = 1. These imply

p̃1 = 0, p̃2 = (6 − θ)/10, p̃3 = 0.4, p̃4 = θ/10.

Since p̃1 and p̃3 do not depend on θ, the intervals (−∞, C1] and (C2, C3]
do not provide information about θ.

Even when the threshold does provide information, the selection of the
threshold value will have a significant impact on the convergence speed.

Example 14.8. Suppose that F (·) is the distribution function of a zero-
mean Gaussian random variable with variance σ2 = 625. The true param-
eter is θ = 100 and uk ≡ 1. In this case, Corollary 14.1 becomes, adding C
in notation,

ηC(1, 100) = Nσ2
CR(1, N, θ) =

(
h̃2

1

p̃1
+

h̃2
2

p̃2

)−1

=
F (C − θ)(1 − F (C − θ))

f2(C − θ)
.

For C = 20, 50, 80, 100, we obtain the values η20(1, 100) = 75506, η50(1, 100)
= 4767, η80(1, 100) = 1244, and η100(1, 100) = 982. In fact, it is easy to
verify that the optimal threshold choice is C = θ in this case.

In an identification problem, the parameter θ is unknown. Hence, one
must work with the prior uncertainty set on θ. While in most applications,
θ ∈ [θmin, θmax] is the typical prior information, we shall use the general
prior uncertainty set θ ∈ Ω to include other possibilities. We first concen-
trate on a binary-valued sensor of threshold C. Similar conclusions will
later be derived for general quantized sensors. It is assumed that C and
u0 can be either selected prior to an identification experiment, or tuned
during it. Let p̃(θ) = F (C − θu0) and h̃(θ) = ∂p̃(θ)/∂θ = −f(C − θu0)u0.

Definition 14.9. An interval I = (−∞, C] or a threshold C is said to be
(1) feasible for θ if the corresponding h̃(θ) �= 0; (2) robustly feasible for Ω if
the corresponding h̃(θ) �= 0 for all θ ∈ Ω.
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For a given Ω, the set of all feasible thresholds will be denoted by ΓΩ.
We will derive concretely ΓΩ for some typical cases.

Theorem 14.10. Suppose that the prior information on the unknown par-
ameter is θ ∈ Ω0 = [θmin, θmax], and the disturbance dk is zero mean and its
density function has support (i.e., strictly positive) in (−δ, δ). For u0 > 0,
there exists a robustly feasible C if and only if

δ >
(θmax − θmin)u0

2
. (14.3)

Under (14.3), the set of robustly feasible thresholds is

ΓΩ0 = {C : θmaxu0 − δ < C < θminu0 + δ}.

Proof. Under the hypothesis,

p = F (C − θu0) − F (−∞) = F (C − θu0).

Then h = ∂p/∂θ = −f(C − θu0)u0 �= 0 if and only if −δ < C − θu0 < δ.
Hence, for a given θ, C is feasible if and only if C ∈ (θu0 − δ, θu0 + δ). The
intersection of all such thresholds

⋂

θ∈Ω0

(θu0 − δ, θu0 + δ)

is nonempty if and only if

θmaxu0 − δ < θminu0 + δ,

or equivalently,

δ >
(θmax − θmin)u0

2
.

Note that under condition (14.3),

(θmaxu0 − δ, θminu0 + δ) =
⋂

θ∈[θmin,θmax]

(θu0 − δ, θu0 + δ).

Hence, for any C ∈ (θmaxu0 − δ, θminu0 + δ), C ∈ (θu0 − δ, θu0 + δ) for all
θ ∈ Ω0. This proves that it is robustly feasible for Ω0. �

Note that (14.3) can be rewritten as

u0 <
2δ

θmax − θmin
, (14.4)

which defines the maximum input value.
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14.3 Worst-Case Optimal Threshold Design

For a given prior uncertainty set Ω of the unknown parameter θ, the set
ΓΩ of robustly feasible thresholds can be used to select thresholds to re-
duce identification errors. Corollary 14.1 provides the main vehicle for this
pursuit.

Observe that

p̃1 = F (C − θu0), p̃2 = 1 − F (C − θu0),

h̃1 = −f(C − θu0)u0, h̃2 = f(C − θu0)u0.

By adding the dependence on C and u0 in the notation, Corollary 14.1
reduces to

ηC,u0(1, θ) = Nσ2
CR(1, N, θ) =

(
h̃2

1

p̃1
+

h̃2
2

p̃2

)−1

=
F (C − θu0)(1 − F (C − θu0))

f2(C − θu0)u2
0

.

If θ ∈ Ω and C ∈ ΓΩ, then f(C − θu0) �= 0. Therefore, ηC,u0(1, θ) is well
defined. The optimal worst-case design is achieved by solving the min-max
problem

η∗ = inf
C∈ΓΩ,u0>0

sup
θ∈Ω

ηC,u0(1, θ).

We shall solve this problem more concretely under some typical situations.

Bounded Disturbances
Suppose that the prior information on the unknown parameter is θ ∈ Ω0 =
[θmin, θmax], and the disturbance dk is zero mean and its density func-
tion has support in (−δ, δ). By Theorem 14.10, the set of robustly feasible
thresholds is ΓΩ0 = (θmaxu0 − δ, θminu0 + δ). The optimal threshold and
input selection is obtained by solving the following min-max optimization
problem:

η∗ = inf
C∈(θmaxu0−δ,θminu0+δ),u0>0

max
θ∈[θmin,θmax]

F (C − θu0)(1 − F (C − θu0))
f2(C − θu0)u2

0

.

(14.5)

Theorem 14.11. Suppose that dk is uniformly distributed with density
function f(x) = 1/(2δ) for x ∈ (−δ, δ).

(1) If
(θmax − θmin)u0/2 < δ ≤ (θmax − θmin)u0,

then

η∗ =
(θmax − θmin)2

4
(14.6)

and any C ∈ (θmaxu0 − δ, θminu0 + δ) is optimal in the worst-case
sense over θ ∈ [θmin, θmax].
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(2) If δ > (θmax − θmin)u0, then

η∗ = (θmax − θmin)2. (14.7)

Proof. For any C ∈ (θmaxu0 − δ, θminu0 + δ) and θ ∈ [θmin, θmax], we have

C − θu0 < θminu0 + δ − θminu0 = δ

and
C − θu0 > θmaxu0 − δ − θmaxu0 = −δ.

It follows that in (14.5), f(C−θu0) = 1/(2δ) and F (C−θu0) = (C−θu0 +
δ)/(2δ). As a result,

F (C − θu0)(1 − F (C − θu0))
f2(C − θ)u2

0

= (2δ)2
(C − θu0 + δ)

2δu2
0

(
1 − C − θu0 + δ

2δ

)

=
δ2 − (C − θu0)2

u2
0

.

(1) If
(θmax − θmin)u0/2 < δ ≤ (θmax − θmin)u0,

then
θminu0 ≤ θmaxu0 − δ, θminu0 + δ ≤ θmaxu0.

This implies that for any C ∈ (θmaxu0 − δ, θminu0 + δ), there exists θ ∈
[θmin, θmax] such that θu0 = C. Consequently, for any given C ∈ (θmaxu0 −
δ, θminu0 + δ),

max
θ∈[θmin,θmax]

δ2 − (C − θu0)2

u2
0

=
δ2

u2
0

.

It follows from this and (14.4) that

η∗ = inf
C∈(θmaxu0−δ,θminu0+δ),u0>0

max
θ∈[θmin,θmax]

F (C−θu0)(1−F (C−θu0))
f2(C − θu0)u2

0

= inf
u0<2δ/(θmax−θmin)

δ2

u2
0

=
δ2

4δ2/(θmax − θmin)2

=
(θmax − θmin)2

4
.

This proves (14.6).
(2) If δ > (θmax − θmin)u0, then

u0 <
δ

θmax − θmin
(14.8)

and
[θminu0, θmaxu0] ⊂ (θmaxu0 − δ, θminu0 + δ).
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For
C ∈ (θmaxu0 − δ, θminu0 + δ) but C /∈ [θminu0, θmaxu0],

we have that if C > θmaxu0,

max
θ∈[θmin,θmax]

δ2 − (C − θu0)2

u2
0

=
δ2 − minθ∈[θmin,θmax](C − θu0)2

u2
0

=
δ2 − (C − θmaxu0)2

u2
0

;

or if C < θminu0,

max
θ∈[θmin,θmax]

δ2 − (C − θu0)2

u2
0

=
δ2 − (θminu0 − C)2

u2
0

.

In the first case, the variance is minimized when C is closest to θminu0+δ,
and

η∗ = inf
u0<δ/(θmax−θmin)

δ2 − (θminu0 + δ − θmaxu0)2

u2
0

= inf
u0<δ/(θmax−θmin)

2δ(θmax − θmin)u0 − (θmax − θmin)2u2
0

u2
0

= inf
u0<δ/(θmax−θmin)

2δ(θmax − θmin)
u0

− (θmax − θmin)2

= (θmax − θmin)2.

In the second case, the variance is minimized when C is closest to θmaxu0−δ
and similarly,

η∗ = (θmax − θmin)2.

Thus, (14.7) is proved. �

Unbounded Disturbances
When the disturbance is unbounded such that f(x) > 0 for all x, for any
given u0, all C ∈ R is robustly feasible. In this case, the optimal threshold
selection becomes

η∗ = inf
C,u0∈R

max
θ∈Ω

F (C − θu0)(1 − F (C − θu0))
f2(C − θu0)u2

0

. (14.9)

The solutions to (14.9) can be obtained by first calculating

η̃(C, u0) = max
θ∈Ω

F (C − θu0)(1 − F (C − θu0))
f2(C − θu0)u2

0

, C, u0 ∈ R,

and then,
η∗ = inf

C,u0∈R

η̃(C, u0).

For example, suppose that the disturbance is Gaussian distributed with
zero mean and standard deviation σ = 25. The left plot of Figure 14.1 is
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the distribution function F (x). The middle plot is F (x)(1 − F (x))/f2(x).
Now, suppose that Ω = [10, 40]. Then, for given C and u0, we calculate

η̃(C, u0) = max
θ∈Ω

F (C − θu0)(1 − F (C − θu0))
f2(C − θu0)u2

0

.

These functions are plotted in the right plot of Figure 14.1. From the plots,
the optimal input and threshold are approximately u0 = 1.5 and C = 22.5.
The more accurate optimal values can be obtained by numerical search
methods and will not be discussed further here.
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FIGURE 14.1. Optimal worst-case threshold selection and input design for
θ ∈ [10, 40] with a Gaussian-distributed disturbance of zero mean and standard
deviation 25

14.4 Threshold Adaptation

In this subsection, assume |u0| ≤ umax. In the special case of Theorem
14.11, when the range of uncertainty θmax − θmin is large such that

(θmax − θmin)u0 > 2δ,

there exists no robustly feasible threshold. In other words, for any threshold
C ∈ R, there exists θ ∈ [θmin, θmax] for which C is not a feasible thresh-
old. In this case, the threshold C must be adaptively selected when more
information on θ can be extracted from output observations. More gener-
ally, adaptive threshold selection is useful even when a robustly feasible
threshold can be found since it can potentially further reduce the errors in
Theorem 14.11.
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Consider again Example 14.8. Figure 14.2 demonstrates an example of
Gaussian-distributed noise and the benefit to use the optimal threshold on
enhancing convergence speed. The top plot indicates the estimate trajec-
tory when a non-optimal threshold C = 50 is used. The bottom plot shows
the estimates when the threshold is optimally selected with C = 100. A
better convergence speed can be expected when the optimal threshold is
used.
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FIGURE 14.2. Comparison of identification accuracy under non-optimal and op-
timal thresholds: Top plot: estimates when a non-optimal threshold (C = 50) is
used. Bottom plot: estimates when an optimal threshold (C = 100) is used

Conceptually, when C is not feasible, either s(k) ≡ 0 with probability 1,
which indicates that C is too small, or s(k) ≡ 1 with probability 1, which
indicates that C is too big. On the other hand, when C is feasible and θ is
known, for any fixed u0, the optimal threshold C∗ can be derived from

x∗ = arg min
x

F (x)(1 − F (x))
f2(x)

, (14.10)

and C∗ = x∗+θu0. In particular, if f(x) is an even function, one can verify
that F (x)(1 − F (x))/f2(x) is also an even function. It follows that x∗ = 0
and C∗ = θu0.

Consequently, if θ is known, the optimal u0 = umax and C∗ = x∗ + θu0,

η =
F (x∗)(1 − F (x∗))

f2(x∗)u2
max

.
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When θ is unknown, since x∗ can be calculated off-line, a potential adaptive
threshold selection algorithm is simply

CN = x∗ + θNumax.

Without loss of generality, assume umax = 1 in the following algorithm.
When C is adaptively selected, there are two intervening dynamic pro-

cesses, one for C adaptation and the other for θ estimation. To enhance
convergence, we introduce the following two-level adaptation algorithm. Let
N0 be a positive integer, representing the step size for updating the thresh-
old. The time-line is first divided into window blocks of size N0 indexed
by l = 0, 1, . . . Then within a block, use index τ with τ = 0, 1, . . . , N0 − 1.
Threshold adaptation is done every N0 time steps only, while parameter
estimation is implemented within each block with index τ . The original
time index remains k. Consequently, for a sequence xk with k = lN0 + τ
(l and τ are easily obtained by module calculation), we will relabel the
empirical measure by ξk = ξlN0+τ .

We present an algorithm with a two-level structure, which is motivated
by an algorithm proposed in [116]. For simplicity, assume u0 = umax = 1.
However, unlike the aforementioned reference, in lieu of restarting the step
size, we use two levels for updating parameter estimation and threshold. In
view of (14.10), the inner level with index τ estimates θ with its estimate
denoted by θlN0+τ , and the outer level with index l adaptively estimates
the threshold with the new value denoted by ClN0+τ . The update algorithm
is done inductively.

Suppose that the threshold update Cl−1 is obtained and the parameter
estimate θ(l−1)N0+τ is calculated (the subscript i is omitted since only one
threshold is considered). Note that in accordance with our notation, θlN0 =
θ(l−1)N0+N0 . Construct

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ(l−1)N0+τ = G(ξlN0+τ ), 1 ≤ τ ≤ N0,

C(l−1)N0+τ = ClN0 , 0 ≤ τ ≤ N0 − 1,

ClN0 = x∗ + θlN0 .

(14.11)

The second equation indicates that the threshold is not updated within a
block. The second and third equations may be written together as

C(l−1)N0+τ = C(l−1)N0I{τ �=N0} + (x∗ + θlN0)(1 − I{τ �=N0}),

0 ≤ τ ≤ N0.

In the asymptotic analysis, we send N0 → ∞ and l → ∞. As N0 → ∞,
θlN0+τ → θ w.p.1. As a consequence, we also have ClN0 → C∗ = x∗ + θ,
w.p.1. In actual computations, it suffices to keep N0 as a fixed and large
constant. Then, iteration on C will gradually improve the error variance
toward the optimal threshold for the true parameter with a small deviation.
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14.5 Quantized Sensors and Optimal Resource
Allocation

Bandwidth resources that limit data-flow rates will be denoted by R in
bps. R is related to space and time complexities by R = N log(m0 + 1).
Suppose that the prior uncertainty set on θ is Ω.

Optimal Resource Allocation Problems

To understand the impact of increasing m0, we revisit the minimal variance
in Lemma 6.6:

σ2
CR(N,m0, θ) =

(

N

m0+1∑

i=1

h̃2
i

p̃i

)−1

.

The following two optimal resource allocation problems, being natural duals
of each other, are introduced, where Z+ denotes the set of positive integers.

1. Optimal Uncertainty Reduction: For a given resource R, it aims
at reducing σ2

CR(N,m0, θ):

ε(R) = min
m∈Z+

max
θ∈Ω

σ2
CR(N,m0, θ),

subject to N log(m0 + 1) ≤ R.
(14.12)

2. Optimal Resource Allocation: This aims at reducing R for a given
error tolerance level ε, i.e., σ2

CR(N,m0, θ) ≤ ε for a given resource R:

R(ε) = min
m0,N∈Z+

N log(m0 + 1),

subject to max
θ∈Ω

σ2
CR(N,m0, θ) ≤ ε.

(14.13)

We will consider two scenarios to increase space complexity. (1) Struc-
tured thresholds: The sets of thresholds are confined to a prespecified
class that satisfies the following condition. For m1 < m2, the correspond-
ing threshold sets Tm1 and Tm2 satisfy the ordered refinement condition:
Tm1 ⊂ Tm2 . For instance, in the typical situation of quantization, one may
start with a level of quantization. Then space complexity is increased by
subdividing each subset [Cj , Cj+1) by 2 (an increase of space complexity by
1 bit). (2) Unstructured thresholds: For a given m0, the threshold values in
Tm0 = {C1, . . . , Cm0} can be arbitrarily selected. This is the case, for ex-
ample, when the selection of the thresholds is considered part of coding for
communications. In this case, the thresholds can be designed to minimize
communication resource utility.
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Resource Allocation with Structured Thresholds

In this scenario, for all m0 the threshold sets Tm0 are fixed and satisfy the
monotone refinement structure Tm1 ⊂ Tm2 when ever m1 < m2. We have
the following monotonicity in terms of space complexity. Recall from (14.1)
that

η(m0, θ) = Nσ2
CR(N,m0, θ) =

(
m0+1∑

i=1

h̃2
i

p̃i

)−1

.

For threshold selection, for a given set of m0 thresholds Tm = {C1, . . . , Cm0},
we shall use the notation η(Tm0 , θ) = η(m0, θ).

Corollary 14.12. Under the conditions of Theorem 14.5,

η(Tm2 , θ) ≤ η(Tm1 , θ).

For a given resource R = N log(m0+1), N = R/ log(m0+1). As a result,
asymptotically

σ2
CR(N,m0, θ) =

η(Tm0 , θ)
N

=
log(m0 + 1)η(Tm0 , th)

R
.

An optimal resource allocation for the given R is

ε1(R) =
min1≤m≤2R−1 log(m0 + 1)η(Tm0 , θ)

R
. (14.14)

Example 14.13. Consider the system yk = θ + dk. Suppose the distur-
bance is Gaussian distributed with zero mean and variance 200. Hence, the
probability density function is

f(x) =
e−

x2
400

√
400π

.

The actual value of θ is 55. Thresholds are structured as follows. The in-
terval of thresholds is [−10, 70]. Initially, one sensor threshold is placed at
C = 30 (the middle point of the interval) with space complexity log(m0 +
1) = log 2 = 1 bit. To increase space complexity, the number m0 of thresh-
olds is gradually increased by dividing the interval [−10, 70] equally. Figure
14.3 shows η(Tm0 , θ) and log(m0 + 1)η(Tm0 , θ) as functions of the space
complexity m0. For this example, the optimal space complexity is m0 = 3
thresholds.

The space complexity depends on the actual values of θ and threshold
choices. Its dependence on θ is illustrated in Figure 14.4 in which the space
complexities for three different θ values are plotted. Furthermore, the space
complexity varies significantly with placement of the thresholds. Figure 14.5
shows the space complexity when the range of thresholds is changed from
[−10, 70] to [−10, 60]. The optimal number of thresholds becomes m0 = 2.
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FIGURE 14.3. Space complexity: η(Tm0 , θ) vs. log(m0 + 1) (top plot);
log(m0 + 1)η(Tm0 , θ) vs. log(m0 + 1) (bottom plot)

Resource Allocation with Unstructured Thresholds

When the thresholds are design variables, the space complexity is defined
as follows. Let

Qm0 = {Tm0 = {C1, . . . , Cm0} : ymin < C1 ≤ C2 ≤ · · · ≤ Cm0 < ymax}.

This is the set of all possible m0 thresholds. Note that in this definition, we
allow thresholds to be repeated. Consequently, for any Tm0 ∈ Qm0 , there
exists (infinitely many) Tm0+1 ∈ Qm0+1 such that Tm0+1 is a refinement of
Tm0 .

Definition 14.14. ηm0(θ) = infTm0∈Qm0
η(Tm, θ).

By Theorem 14.5, we have the following monotonicity in terms of space
complexity.

Corollary 14.15. If m1 < m2, then

ηm2(θ) ≤ ηm1(θ).

Proof. For any Tm1 ∈ Qm1 , there exists a Tm2 ∈ Qm2 such that Tm2 is a
refinement of Tm1 . By Theorem 14.5, we have

η(Tm2 , θ) ≤ η(Tm1 , θ).
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FIGURE 14.4. Different space complexity curves: θ = 50, 55, 60

Consequently,

ηm2(θ) = inf
Tm2∈Qm2

η(Tm2 , θ) ≤ inf
Tm1∈Qm1

η(Tm1 , θ) = ηm1(θ).

�

For a given resource R = N log(m0 + 1), we have N = R/ log(m0 + 1).
As a result, asymptotically

σ2
CR(N,m0, θ) =

ηm0(θ)
N

=
log(m0 + 1)ηm0(θ)

R
.

An optimal resource allocation for the given R is

ε2(R) =
min

1≤m≤2R−1
log(m0 + 1)ηm0(θ)

R
. (14.15)

Example 14.16. Consider the same system setting as in Example 14.13.
Suppose the disturbance is Gaussian distributed with zero mean and vari-
ance 150. The true value of θ = 55. Two scenarios are compared: (1) Thresh-
olds are structured. The interval of thresholds is [−20, 60]. Initially, one
sensor threshold is placed at C = 20, with space complexity log(m0 + 1) =
log 2 = 1 bit. To increase space complexity, the number of thresholds is
increased, and each time the range is divided equally. (2) Thresholds are
optimized for maximum reduction of variances. Figure 14.6 demonstrates
the benefit of choosing optimal thresholds for complexity reduction. The
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FIGURE 14.5. Space complexity curve varies with thresholds: θ = 55

plots show that (1) optimization of thresholds can greatly reduce identifi-
cation errors; (2) optimal space complexity can be greatly reduced. For the
structured thresholds, the optimal space complexity is m0 = 6 thresholds.
For optimized threshold selection, it becomes 1 bit; i.e., a binary sensor
is the optimal choice in terms of space complexity. The plots also show
the optimized thresholds reduce variance significantly (663 vs. 236 at the
respective optimal space complexities).

14.6 Discussions on Space and Time Complexity

The above examples highlight a number of interesting facts about space
and time complexities.

1. It is observed that the initial increase in space complexity induces a
sharp drop in variance. However, variances soon reach a near-constant
level that does not significantly reduce with increased space complex-
ity. The optimal space complexities in these examples are surprisingly
low, m0 = 3 in structured thresholds and m0 = 1 in unstructured
thresholds. It implies that when observations are corrupted by ran-
dom noises, many more resources should be devoted to increasing the
data size, rather than the data precision.

2. A simple calculation shows that resource allocation is a significant
issue in this identification problem. A common quantization scheme
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FIGURE 14.6. Comparison of space complexity: (i) Left plots: structured thresh-
olds; (ii) right plots: optimized thresholds

in data processing will carry B bits’ precision. Take an example of
B = 10, namely, m0 = 210 − 1 = 1023 thresholds. From Figure
14.3, η(T1023, θ) approaches a constant about 200 for large m0 val-
ues. To reduce the variance to, say, 0.1, the observation length N
must be larger than N ≥ 200/0.1 = 2000. Together, this amounts
to R0 ≥ NB = 20K bits’ resource. For a rational system containing
20 parameters, the total resource will be R = 20R0 = 400K bits.
Optimal resource allocations discussed in this chapter indicate that
this resource request can be greatly reduced if one wisely chooses
space complexity. For this example, from Figure 14.3 one may choose
m0 = 3 as the optimal space complexity. To achieve the same vari-
ance of 0.1, we only need R0 = 600/0.1 = 6K bits’ resource, a large
reduction from 20K bits.

14.7 Notes

The tradeoff between space complexity and time complexity is of funda-
mental importance in system modeling, identification, and information pro-
cessing when information processing speed and data-flow rates are limited.
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The issue is inherent in all problems involving signal digitization (sampling
and quantization), but most relevant in systems involving communications,
wireless connections, or computer networks. Following the development of
[110], this chapter introduces a basic framework and certain essential tools
for analyzing space and time complexities, characterizing the tradeoff in
terms of identification accuracy, and optimizing resource utility. Studies
on model complexity, time complexity, data compression, and information
based complexity can be found in [14, 22, 23, 50, 68, 77, 81, 92, 125, 126].



15
Impact of Communication Channels
on System Identification

This chapter deals with the identification of systems whose outputs must
be quantized, transmitted through a communication channel, and observed
afterwards. Communication errors introduce additional uncertainty that
influences identification accuracy. To accomplish an information-oriented
and algorithm-independent characterization of communication channels,
we compare the Fisher information [or, equivalently, Cramér–Rao (CR)
lower bound] of identification errors with and without communication chan-
nels. The concept of the Fisher information ratio (FI-R) is introduced. The
relationship between the Fisher information ratio and Shannon’s mutual
information and channel capacity is explained.

The main problem is formulated in Section 15.1. We use the Fisher in-
formation to characterize how much information is contained in the ob-
served data about unknown system parameters. Section 15.2 establishes
some monotonicity properties of the Fisher information that are related to
communication channel uncertainties. Section 15.3 introduces the concept
of the Fisher information ratio (FI-R) as a suitable measure for characteri-
zation of communication channels in terms of system identification. Section
15.4 extends the previous results to vector parameter cases. Relationships
between the FI-R and Shannon’s mutual information and channel capacity
are explained in Section 15.5. Based on these results, Section 15.6 dis-
cusses the tradeoff between space and time complexities in communication
channels. Section 15.7 shows a multiplicative property of interconnected
communication channels which will be useful for system analysis in metric
spaces.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010
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15.1 Identification with Communication Channels

Consider now the scenario of the system configuration in which sensor
outputs are not directly measured, but rather are transmitted through a
communication channel. For clarity, we will concentrate on the scalar ob-
servations first. That is, the sensor output sk is scalar and takes values
sk ∈ {1, . . . , m0 + 1}. When sk is transmitted through a communication
channel, the received sequence wk ∈ {1, . . . , m0 + 1} is subject to channel
noise and other uncertainties. When the communication channel is time
invariant and memoryless, the relationship between sk and wk is charac-
terized by the conditional probabilities

π{ji} = P{wk = i|sk = j}, i, j = 1, . . . , m0 + 1.

Denote ps
i = P{sk = i} and pw

i = P{wk = i}. Then

pw
i = P{wk = i} =

m0+1∑

j=1

P{wk = i|sk = j}P{s̃k = j} =
m0+1∑

j=1

ps
jπ

{ji}.

Let
pw = [pw

1 , . . . , pw
m0+1]

′, ps = [ps
1, . . . , p

s
m0+1]

′.

Note that 11′ps = 1 and 11′pw = 1. Then

(pw)′ = (ps)′Π, (15.1)

where

Π =

⎡

⎢
⎢
⎢
⎣

π{11} . . . π{1,m0+1}

...
. . .

...

π{m0+1,1} . . . π{m0+1,m0+1}

⎤

⎥
⎥
⎥
⎦

. (15.2)

(A15.1) (a) Π is invertible. (b) All ps
i are strictly positive.

Remark 15.1. Under Assumption (A15.1)(a), (15.1) yields ps = Π−T pw,
which ensures that the probability information pw obtained at the receiving
side of the communication channel can be used to deduce the probability ps

at the transmission site, which is then used to estimate the system param-
eters. Since dps/dpw = Π−T , the variance of the estimation error depends
proportionally on the operator norm of Π−T . Furthermore, if ps

i = 0, the
corresponding sensor threshold is not used. Such ps

i can be eliminated from
our consideration and the resulting ps will satisfy Assumption (A15.1)(b).

For notational simplicity, we shall start with the case of scalar parameter
estimation. Let β ∈ R be the parameter and ps

i be related to β by an
invertible mapping

ps
i = Ks

i (β), i = 1, . . . , m0 + 1,
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whose inverse is continuously differentiable. Denote

hs
i (β) = dps

i (β)/dβ and hs(β) = [hs
1(β), . . . , hs

m0+1(β)]′,

hw
i (β) = dpw

i (β)/dβ and hw(β) = [hw
1 (β), . . . , hw

m0+1(β)]′.

Then
hw =

dpw

dβ
= Π′ dps

dβ
= Π′hs.

Lemma 15.2 ([104]). The CR lower bound for estimating β with observa-
tions on wk is

σ2
CR,w(N,m0, β) =

(

N

m0+1∑

i=1

(hw
i )2

pw
i

)−1

.

Similarly, by defining the Fisher information

Jw(N,m0, β) = N

m0+1∑

i=1

(hw
i )2

pw
i

,

we have
σ2

CR,w(N,m0, β) =
1

Jw(N,m0, β)
.

15.2 Monotonicity of Fisher Information

Define
Ds = diag(ps

1, . . . , p
s
m0+1),

Dw = diag(pw
1 , . . . , pw

m0+1),

Ss =
√

Ds, and Sw =
√

Dw.

Then,
m0+1∑

i=1

(hs
i )

2/ps
i = (hs)′D−1

s hs,

and
m0+1∑

i=1

(hw
i )2/pw

i = (hw)′D−1
w hw = (hs)′ΠD−1

w Π′hs.

It follows that

Jw(N,m0, β) = N(hs)′ΠD−1
w Π′hs,

Js(N,m0, β) = N(hs)′D−1
s hs,
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and
m0+1∑

i=1

(hs
i )

2

ps
i

−
m0+1∑

i=1

(hw
i )2

pw
i

= (hs)′(D−1
s − ΠD−1

w Π′)hs

= (hs)′S−1
s [I − (SsΠS−1

w )(S−1
w Π′Ss)]S−1

s hs

= v′(I − M ′M)v,

where
v = S−1

s hs, M = S−1
w Π′Ss. (15.3)

Definition 15.3. M = S−1
w Π′Ss is called the characteristic matrix of the

communication channel.

Lemma 15.4 ([104]). γ(M) = 1, where γ(M) is the largest singular value
of M .

Theorem 15.5. Under Assumption (A15.1), Jw(N,m0, β) ≤ Js(N,m0, β),
or equivalently, σ2

CR,w(N,m0, β) ≥ σ2
CR,s(N,m0, β).

Proof. Lemma 15.4 implies that I−M ′M ≥ 0. As a result, v′(I−M ′M)v ≥
0. Hence,

m0+1∑

i=1

(hs
i )

2

ps
i

≥
m0+1∑

i=1

(hw
i )2

pw
i

.

Consequently,

Jw(N,m0, β) = N

m0+1∑

i=1

(hw
i )2

pw
i

≤ N

m0+1∑

i=1

(hs
i )

2

ps
i

= Js(N,m0, β).

�

15.3 Fisher Information Ratio of Communication
Channels

From
σ2

CR,s = 1/(N(hs)′D−1
s hs),

σ2
CR,w = 1/(N(hs)′ΠD−1

w Π′hs),

the error ratio is

χ(ps, hs,Π) =
σ2

CR,s

σ2
CR,w

=
Jw(N,m0, β)
Js(N,m0, β)

=
(hs)′ΠD−1

w Π′hs

(hs)′D−1
s hs

. (15.4)
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Note that hs depends on actual function forms of distribution functions
which always satisfy 11′hs = 0. Since hs is not part of the communication
channel, we introduce the following concept to characterize the worst-case
impact of a communication channel on identification accuracy.

Definition 15.6. The Fisher information ratio (FI-R) of a communication
channel is defined as

χ(ps,Π) = min
hs �=0

χ(ps, hs,Π), subject to 11′hs = 0.

Definition 15.7. The optimal FI-R is

χ(Π) = max
ps

χ(ps,Π),

where ps satisfies ps
i > 0 and

∑m0+1
i=1 ps

i = 1.

Since the actual code probability into the channel can be modified by
source coding, the optimal FI-R indicates the optimal information transfer
when the source code is optimally designed.

Definition 15.8. A communication channel is said to be degenerate if all
singular values of M are equal to 1.

Theorem 15.5 implies that χ(ps,Π) ≤ 1. If M is degenerate, then M ′M =
I. As a result,

m0+1∑

i=1

(hs
i )

2

ps
i

−
m0+1∑

i=1

(hw
i )2

pw
i

= v′(I − M ′M)v = 0,

and Jw(N,m0, β) = Js(N,m0, β). This is the case when the channel does
not introduce uncertainty and χ(ps,Π) = 1.

Theorem 15.9. Under Assumptions (A15.1), if the channel is not degen-
erate, then

χ(ps,Π) = γ2(M),

where γ is the smallest singular value.

Proof. The following basic relationships will be used in the derivations:

pw = Π′ps; 11′Π′ = 11′; 11′Π−T = 11′; 11′Ds = (ps)′; 11′Dw = (pw)′.

By defining v = S−1
s hs, we have hs = Ssv. Hence, 11′hs = 11′Ssv = 0, and

χ(ps, hs,Π) =
v′SsΠS−1

w S−1
w Π′Ssv

v′v
=

v′M ′Mv

v′v
.

As a result,

χ(ps,Π) = min
v′v=1

v′M ′Mv, subject to 11′Ssv = 0.
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Note that
χ(ps,Π) ≥ γ2(M).

On the other hand, since the communication channel is not degenerate,
γ2(M) < 1. Let α ∈ R and v ∈ R

m0+1 be an eigenvalue/eigenvector pair
for

M ′Mv = αv. (15.5)

Note that γ2(M) = min α. We will show that if α < 1, then v satisfies
11′Ssv = 0. This will prove that χ(ps,Π) = γ2(M).

From M = S−1
w Π′Ss, we have

αSsv = SsM
′Mv = DsΠD−1

w Π′Ssv.

It follows that
α11′Ssv = 11′DsΠD−1

w Π′Ssv

= (ps)′ΠD−1
w Π′Ssv

= (pw)′D−1
w Π′Ssv

= 11′DwD−1
w Π′Ssv

= 11′Π′Ssv

= 11′Ssv.

Since α < 1, this implies 11′Ssv = 0, as claimed. �

15.4 Vector-Valued Parameters

The previous discussions can be extended to the case of multiple parame-
ters. Let β = [β1, . . . , βn0 ]

′ be n unknown parameters. Let sk be the obser-
vation data before communications and wk be the observation data after
communications. Denote the Fisher information matrices for estimating β
based on observation data sk (or wk) by Js (or Jw).

Definition 15.10. The Fisher information ratio for vector-valued param-
eters is defined by

χ(ps, hs,Π) = inf
x�=0

x′Jwx

x′Jsx
, (15.6)

and
χ(ps,Π) = inf

hs
χ(ps, hs,Π), subject to 11′hs = 0 (15.7)

Since both Js and Jw are symmetric and semipositive definite, they
permit decomposition Js = M ′

sMs and Jw = M ′
wMw.
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Theorem 15.11. If Js is positive definite, then

χ(ps, hs,Π) = γ2(MwM−1
s ),

where γ is the smallest singular value. This implies that

χ(ps,Π) = inf
hs

γ2(MwM−1
s ), subject to 11′hs = 0.

Proof. By definition,

χ(ps, hs,Π) = inf
x�=0

x′Jwx

x′Jsx
.

Since Js is nonsingular, Ms is invertible. Define v = Msx. Then

x′Jsx = v′v and x′Jwx = (MwM−1
s v)′MwM−1

s v.

It follows that

χ(ps, hs,Π) = inf
v �=0

v′(MwM−1
s )′MwM−1

s v

v′v
= γ2(MwM−1

s ).

�

Most common system identification problems can be transformed into
the following scalar cases:

(A15.2) Suppose that {si
k} is the sequence of observations for βi, i =

1, . . . , n; {si
k} and {sj

k} are independent when i �= j. The communication
channel is memoryless.

Let
ps(β) = [ps1

(β1), . . . , psn0 (βn0)]
′ and

hs(β) = [hs1
(β1), . . . , hsn0 (βn0)]

′.

Then, under Assumption (A15.2), the Fisher information matrix for esti-
mating β based on observation data {si

k : i = 1, . . . , n; k = 0, . . . , N − 1}
is

Js(β) = diag[Js1(β1), . . . , Jsn0 (βn0)],

where Jsi(βi) is the Fisher information for estimating βi based on obser-
vation data {si

k : k = 0, . . . , N − 1}. Similarly,

Jw(β) = diag[Jw1(β1), . . . , Jwn0 (βn0)].

Theorem 15.12. Under Assumption (A15.2),

χ(ps(β), hs(β),Π) = min
i=1,...,n0

χ(psi

(βi), hsi

(βi),Π)

and
χ(ps(β),Π) = min

i=1,...,n0
χ(psi

(βi),Π).
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Proof. Under Assumption (A15.2),

Ms = diag[Ms1 , . . . ,Msn0 ] and

Mw = diag[Mw1 , . . . ,Mwn0 ].

Consequently, by Theorem 15.11,

χ(ps(β), hs(β),Π) = γ2(MwM−1
s )

= min
i=1,...,n0

γ2(MwiM−1
si )

= min
i=1,...,n0

χ(psi

(βi), hsi

(βi),Π).

Moreover,

χ(ps(β),Π) = inf
hs1 (β1),...,hsn0 (βn0 )

χ(ps, hs,Π)

= min
i=1,...,n0

inf
hsi (βi)

χ(psi

(βi), hsi

(βi),Π)

= min
i=1,...,n0

χ(psi

(βi),Π).

�

Theorem 15.12 shows that under Assumption (A15.2), all discussions and
conclusions on the FI-R for the scalar cases are applicable to the vector-
valued parameters.

Moreover, it is common that the function forms psi

(·) are identical, with
psi

(·) = p(·), i = 1, . . . , n0. The following result shows that this limitation
does not change the FI-R. Let

ps
0(β) = [p(β1), . . . , p(βn0)]

′ and

hs
0(β) = [h(β1), . . . , h(βn0)]

′.

Theorem 15.13. Under Assumption (A15.2),

χ(ps(β),Π) = χ(ps
0(β),Π).

Proof. In Theorem 15.12, let χ(ps(β),Π) be achieved by χ(psl

(βl), hsl

(βl),Π)
for some l and hsl

(βl). By taking h(·) = hsl

(·), we have the conclusion. �

15.5 Relationship to Shannon’s Mutual
Information

Fisher Information Ratio and Shannon’s Channel Capacity

The FI-R characterizes the accuracy of information during communication
and is different from Shannon’s mutual information and channel capacity
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C(Π), which defines a channel’s capability in passing a flow of information.
For example, when Π is not invertible, the accuracy of information for
system identification is lost. But the channel may still allow data to flow
through it. In this case, the channel capacity C(Π) > 0, but FI-R χ(ps,Π) =
0 for any p. However, the FI-R χ(ps,Π) and mutual information (channel
capacity C is the maximum mutual information) are closely related.

Theorem 15.14. If C = 0, then χ(Π) = 0.

Proof. C = 0 implies that sk and wk are independent. Let

Π = [Π1, . . . ,Πm0+1]′,

with Π′
i representing the ith row of Π. Then, for i = 1, . . . , m0 + 1 and

j = 1, . . . , m0 + 1,

pw
i = P{wk = i} = P{wk = i|sk = j} = πji,

which implies that

(ps)′Π = Π′
j , j = 1, . . . , m0 + 1.

In other words, Π has identical rows. Hence, Π is not full rank. Conse-
quently, for any ps,

χ(ps,Π) = γ2(M) = γ2(S−1
w Π′Ss) = 0.

�

15.6 Tradeoff between Time Information and
Space Information

The Fisher information Jw(N,m0, β) is a function of N , representing time
complexity, and sensor thresholds representing space information. The total
information Jw(N,m0, β) depends on Π, representing channel uncertainty.
In particular, when Π → I (the identity matrix), namely, the channel un-
certainty is reduced to zero, the space information becomes

m0+1∑

i=1

(hw
i )2

pw
i

→
m0+1∑

i=1

(hs
i )

2

ps
i

.

Shannon’s celebrated noisy channel theorem provides a vehicle to define
a relationship between time complexity and channel uncertainty. Observe
that although the channel is subject to channel uncertainty, the amount of
uncertainty can be reduced by appropriate channel coding. For example,
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instead of sending the binary digit “1” or “0,” one may use the longer code
“11111” to represent “1” and “00000” to represent “0.” It can be shown
that if the decoding is to select “1” if the received code contains more 1’s
than 0’s and vice versa, the channel uncertainty can be reduced. This coding
scheme, however, will reduce the actual data-flow rate by 5. Shannon’s noisy
channel theorem claims that using optimal coding schemes, one can reduce
channel errors, on average over large data blocks, to nearly zero when the
actual data-flow rate is reduced 1/C. Consequently, we have the following
relationship between the Fisher information and Shannon information.

Theorem 15.15. If χ(Π) < C, then channel coding can increase the Fisher
information ratio by a factor of λ = C/χ(Π).

Proof. Let L be the average code length. By Shannon’s noisy channel theo-
rem, one can find a sequence of coding schemes such that the corresponding
channel matrices ΠL have the asymptotic property

ΠL → Π, as L → 1/C.

It follows that the corresponding sequence of the Fisher information ratios
satisfies

χ(ΠL) =
Jw(ΠL)/L

Js(Π)
→ C, as L → 1/C,

which implies that

λ = lim
L→1/C

χ(ΠL)
χ(Π)

=
C

χ(Π)
.

�

15.7 Interconnections of Communication Channels

Consider now cascade connections of communication channels. Suppose sk

(with probability vector p) is first communicated through a channel C1

with probability matrix Π1 and output wk (with probability vector pw).
The output wk is further communicated through another channel C2 with
probability matrix Π2 and output zk (with probability vector pz).

Theorem 15.16. The following assertions hold.

(1) The probability transition matrix of the cascaded system is

Π = Π1Π2.

(2) Let the characteristic matrices for C1 and C2 be M1 and M2, re-
spectively. Then, the characteristic matrix M of the cascaded system
is

M = M2M1.
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(3) The Fisher information ratio satisfies

χ(ps,Π) ≥ χ(ps,Π1)χ(pw,Π2).

Proof. The proof is arranged as follows.
(1)

(pz)′ = (pw)′Π2 = (ps)′Π1Π2,

which implies that
Π = Π1Π2.

(2)

M = S−1
z Π′Ss = S−1

z Π′
2Π

′
1Ss = S−1

z Π′
2SwS−1

w Π′
1Ss = M2M1.

(3)

χ(ps,Π) = γ2(M) = γ2(M2M1)

≥ γ2(M2)γ2(M1)

= χ(ps,Π1)χ(pw,Π2).

�

Remark 15.17. Note Statement (1) above. There is a resemblance of the
well-known Chapman–Kolmogorov equation for Markov processes. State-
ment (2) indicates that such a probabilistic transition property also carries
over to the channel property.

15.8 Notes

This chapter concerns impact of communication channels on system iden-
tification. While the Shannon channel capacity defines a lower bound on
information flow, the Fisher information ratio is a precise characterization
of communication channels in terms of their effect on system identification.
Also, the Fisher information ratio can be easily computed as the largest
singular value of the channel characteristic matrix. The material of this
chapter is extracted from [105, 106]. We refer the reader to [22, 50, 81, 92]
for further details on the information theory and information based com-
plexity.



Appendix A
Background Materials

This appendix provides certain background materials to facilitate the read-
ing of the book. It presents short reviews on selected topics such as mar-
tingales, Markov chains, diffusions, switching diffusions, and weak conver-
gence. Although not all detailed proofs are spelled out, appropriate refer-
ences are given.

Throughout the book, we work with a probability space (Ω,F , P ), where
Ω is the sample space, F is a σ-algebra of subsets of Ω, and P (·) is a
probability measure on F . A collection of σ-algebras {Ft}, for t ≥ 0 or
t = 1, 2, . . ., or simply Ft, is called a filtration if Fs ⊂ Ft for s ≤ t. The Ft

is complete in the sense that it contains all null sets. A probability space
(Ω,F , P ) together with a filtration {Ft} is termed a filtered probability
space, denoted by (Ω,F , {Ft}, P ).

A.1 Martingales

The origin of martingales can be traced back to a class of betting strategies
popular in 18th-century France. In recent years, the idea of martingales has
been crucial in modern stochastic analysis and applications. The concept
of martingales in probability theory was introduced by Lévy, and much of
the original development of the theory was done by Doob.

Let {Xn} be a sequence of random variables that can be either real
valued or vector valued and that satisfies E|Xn| < ∞ for each n. If

E[Xn+1|Xi, i ≤ n] = Xn w.p.1 for all n,

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010

,



288 Appendix A. Background Materials

then {Xn} is said to be a martingale sequence. The difference

δXn = Xn+1 − Xn

is called a martingale difference. If, in addition, E|Xn|2 < ∞ for each n,
then it is said to be an L2 martingale. Moreover, the martingale differences
are uncorrelated in that for m �= n,

E[Xn+1 − Xn][Xm+1 − Xm]′ = 0.

Recall that A′ denotes the transpose of A.
We can also define martingales with respect to a sequence of σ-algebras.

Let {Fn} be a sequence of sub-σ-algebras of F such that Fn ⊂ Fn+1,
for all n. Suppose that Xn is measurable with respect to Fn. Denote the
expectation conditioned on Fn as En. If

EnXn+1 = Xn w.p.1 for all n,

then we say that either {Xn} is an Fn-martingale or {Xn,Fn} is a martin-
gale. If we simply say that {Xn} is a martingale without specifying Fn, then
we implicitly assume that it is just the σ-algebra generated by {Xi, i ≤ n}.
Martingales are one of the important classes of random processes. Note that
if an Fn-martingale is vector valued, then each of the real-valued compo-
nents is also an Fn-martingale. Likewise, a finite collection of real-valued
Fn-martingales is a vector-valued Fn-martingale.

Suppose that Xn is real valued. If, in the definition of martingale, we
replace the equality by ≤, i.e.,

EnXn+1 ≤ Xn w.p.1 for all n,

then we say either that {Xn,Fn} is a supermartingale or that {Xn} is an
Fn-supermartingale. If the Fn are understood, then we might just say that
{Xn} is a supermartingale. If

EnXn+1 ≥ Xn w.p.1 for all n,

then the process is called a submartingale.

Martingale Inequalities and Convergence Theory. For general dis-
cussions on martingales and related issues, we refer the reader to [26] and
[41] for further reading. Let {Xn,Fn} be a martingale, which is assumed
to be real valued with no loss in generality. Then we have the following
inequalities (see [11, Chapter 5], [32, Chapter 1], and [70, Chapter IV.5]).
Let c(·) be a nonnegative, nondecreasing convex function. Then for any
integers n < N and λ > 0,

Pn

{
sup

n≤m≤N
|Xm| ≥ λ

}
≤ Enc(XN )

c(λ)
.
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Commonly used forms of c(·) include c(x) = |x|, c(x) = |x|2, and c(x) =
exp(αx) for some positive α. In addition, the following inequality holds:

En

[
sup

n≤m≤N
|Xm|2

]
≤ 4En|XN |2.

If {Xn,Fn} is a nonnegative supermartingale, then for integers n < N ,

Pn

{
sup

n≤m≤N
Xm ≥ λ

}
≤ Xn

λ
.

Use x− to denote the negative part of the real number x. That is, x− =
max{0,−x}. Suppose that {Xn,Fn} is a real-valued submartingale with
supn E|Xn| < ∞. Then the martingale convergence theorem [11, Theorem
5.14] asserts that {Xn} converges with probability one, as n → ∞. A
supermartingale {Xn} converges with probability one if supn EX−

n < ∞.
A stopping time τ on (Ω,F , {Ft}, P ) is a nonnegative random variable

such that {τ ≤ t} ∈ Ft for all t ≥ 0. In particular, in discrete time, with Fn

denoting a sequence of nondecreasing σ-algebras, a random variable τ with
values in [0,∞] (the set of extended nonnegative real numbers) is said to
be an Fn-stopping time (or a stopping time if the σ-algebras are evident) if
{τ ≤ n} ∈ Fn for each n. Let Fn be the σ-algebra determined by a random
sequence {ξi, i ≤ n}. Then, if τ is an Fn-stopping time, whether or not the
event {τ ≤ n} occurred can be “determined” by looking at ξi up to and
including time n. If a stopping time is not defined at some ω, we set its
value equal to ∞ at that ω. Let {Xn,Fn} be a martingale (resp., a sub-
or supermartingale) and let τ be a bounded (uniformly in ω) Fn-stopping
time. Define τ ∧ n = min{τ, n}. Then {Xτ∧n,Fn} is a martingale (resp., a
sub- or supermartingale).

Burkholder’s Inequality and Higher-Moment Conditions for Mar-
tingales. An extension of the martingale inequality based on the idea of
Burkholder is used often. Define the martingale Xn =

∑n
i=1 εiξi, where

εn ≥ 0 is Fn−1-measurable and
∑

n≤N εn ≤ 1. Let supi E|ξi|p < ∞ for
some even integer p > 1. By Burkholder’s theorem [88, Theorem 6.3.10],
there is a constant β (not depending on p) such that for each N ,

E
∣
∣
∣ sup

n≤N
|Xn|p

]1/p

≤ βp5/2

p − 1
E
[
(

N∑

n=1

(Xn − Xn−1)
2)p/2
]1/p

. (A.1)

Define m = p/2, and let s, c1, . . . , cs be arbitrary positive integers such that∑s
i=1 ci = m. Then, for some K depending on supn E|ξn|p,

KE
[( N∑

n=1

(Xn − Xn−1)2
)p/2
]
≤ KE

∑

P

∑

i≤N

ε2c1
i

∑

i≤N

ε2c2
i . . .

∑

i≤N

ε2cs
i ,

(A.2)
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where
∑

P is the sum over all such partitions of [0,m]. Consider a typical
partition. Rewrite the inner sums in (A.2) as

E
∑

i≤N

εiε
2c1−1
i

∑

i≤N

εiε
2c2−1
i . . .

∑

i≤N

εiε
2cs−1
i ,

Now, use Hölder’s inequality to get the bound on (A.2):

E
[∑

i≤N

εi

]ls[∑

i≤N

εiε
(2c1−1)q1
i

]1/q1

. . .
[∑

i≤N

εiε
(2cs−1)qs

i

]1/qs

,

where ls =
∑s

i=1 1/pi and 1/pi + 1/qi = 1. Choose the qi such that∑s
i=1 1/qi = 1 and the exponents are equal in that, for some c > 0,

(2ci − 1)qi = c for all i. Then ls = s − 1 and

s∑

i=1

1/qi = 1 =
s∑

i=1

(2ci − 1)/c = (2m − s)/c.

Choose s so that c is the smallest, yielding the bound on (A.1)

K1E
[∑

i≤N

εi

]∑

i≤N

εi

[
εi

]m
,

where K1 depends on K, β, and p; see [5, Proposition 4.2] for a similar
calculation, and also [54, Example 6, Section 2.2].

Continuous-Time Martingales. There are definitions of martingale and
sub- and supermartingale to continuous-time random processes. Let X(t)
be a random process satisfying E|X(t)| < ∞ for each t ≥ 0, and let Ft be
a nondecreasing sequence of σ-algebras such that X(t) is Ft-measurable. If
EFt

X(t + s) = X(t) with probability one for each t ≥ 0 and s > 0, then
{X(t),Ft} is termed a martingale. If we only say that X(·) is a martingale
(without specifying the filtration Ft), Ft is taken to be the natural filtration
σ{X(s) : s ≤ t}. If there exists a sequence of stopping times {τn} such
that 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ τn+1 ≤ · · ·, τn → ∞ w.p.1 as n → ∞,
and the process X(n)(t) := x(t ∧ τn) is a martingale, then X(·) is a local
martingale.

A.2 Markov Chains

Here, we review some concepts of Markov chains. It is devoted to two
subsections. The discussion on discrete-time Markov chains follows that
of [122], whereas that of a continuous-time counterpart is from [121]. In
applications, one may wish to simulate a Markov chain. A guide on carrying
out such simulations may be found in [122, pp. 315–316].
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Discrete-Time Markov Chains

Working with discrete time k ∈ {0, 1, . . .}, consider a sequence {Xk} of R
r

vectors (or an R
r-valued random variable). If, for each k, Xk is a random

vector, we call {Xk} a stochastic process and write it as Xk, k = 0, 1, 2, . . .,
or simply Xk if there is no confusion. A stochastic process is wide-sense (or
covariance) stationary if it has a finite second moment, a constant mean,
and a covariance depending only on the time difference. The ergodicity
of a stationary sequence {Xk} refers to the convergence of the sequence∑n

i=1 Xi/n to its expectation in the almost sure or some weak sense; see
Karlin and Taylor [47, Theorem 5.6, p. 487] for a strong ergodic theorem of
a stationary process. Roughly, this indicates that the ensemble average can
be replaced by a time average in the limit. We say that a stochastic process
Xk is adapted to a filtration {Fk} if, for each k, Xk is an Fk-measurable
random vector.

Suppose that αk is a stochastic process taking values in M, which is
at most countable (i.e., it is either finite M = {1, 2, . . . ,m0} or countable
M = {1, 2, . . .}). We say that αk is a Markov chain if

p
{ij}
k,k+1 = P (αk+1 = j|αk = i)

= P (αk+1 = j|α0 = i0, . . . , αk−1 = ik−1, αk = i),
(A.3)

for any i0, . . . , ik−1, i, j ∈ M. In the above, p
{ij}
k,k+1 is the probability of

αk+1 being in state j given that αk is in state i and is called a one-step
transition probability. The matrix Pk,k+1 = (p{ij}

k,k+1) is named a transition
matrix. The notation indicates that in general the transition probabilities
are functions not only of the initial and final states, but also of the time of
transition. The defining property (A.3) is known as the Markov property.
Thus, αk is a Markov chain if it has the memoryless property. Roughly,
a Markov chain is one that given the values of αk, αn for n > k do not
depend on the values of αj for j < n.

Given i, j, if p
{ij}
k,k+1 is independent of time k, i.e., p

{ij}
k,k+1 = p{ij}, we say

that αk has stationary transition probabilities. The corresponding Markov
chains are said to be stationary or time-homogeneous or temporally homo-
geneous or simply homogeneous. In this case, let P = (p{ij}) denote the
transition matrix. Denote the n-step transition matrix by P (n) = (p(n),{ij}),
with

p(n),{ij} = P (xn = j|x0 = i).

Then P (n) = (P )n. That is, the n-step transition matrix is simply the
matrix P to the nth power. Note that

(a) p{ij} ≥ 0,
∑

j p{ij} = 1, and

(b) (P )k1+k2 = (P )k1(P )k2 , for k1, k2 = 1, 2, . . .
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The last identity is known as the Chapman–Kolmogorov equation. Working
with Markov chains with finite state spaces, certain algebraic properties of
Markov chains will be used in the book, some of which are listed next.

Suppose that A is an r× r square matrix. Denote the collection of eigen-
values of A by Λ. Then the spectral radius of A, denoted by ρ(A), is defined
by ρ(A) = maxλ∈Λ |λ|. Recall that a matrix with real entries is said to be
positive if it has at least one positive entry and no negative entries. If ev-
ery entry of A is positive, we call the matrix strictly positive. Similarly,
for a vector x = (x{1}, . . . , x{r}), by x ≥ 0, we mean that x{i} ≥ 0 for
i = 1, . . . , r; by x > 0, we mean that all entries x{i} > 0.

Let P = (p{ij}) ∈ R
m0×m0 be a transition matrix. Clearly, it is a positive

matrix. Then ρ(P ) = 1; see Karlin and Taylor [48, p. 3]. This implies that
all eigenvalues of P are on or inside the unit circle.

For a Markov chain αk, state j is said to be accessible from state i if
p(k),{ij} = P (αk = j|α0 = i) > 0 for some k > 0. Two states i and j,
accessible from each other, are said to communicate. A Markov chain is
irreducible if all states communicate with each other. For i ∈ M, let d(i)
denote the period of state i, i.e., the greatest common divisor of all k ≥ 1
such that P (αk+n = i|αn = i) > 0 [define d(i) = 0 if P (αk+n = i|αn = i) =
0 for all k]. A Markov chain is called aperiodic if each state has period one.
According to Kolmogorov’s classification of states, a state i is recurrent if,
starting from state i, the probability of returning to state i after some finite
time is 1. A state is transient if it is not recurrent. Criteria on recurrence
can be found in most standard textbooks on stochastic processes or Markov
chains.

Note that (see Karlin and Taylor [48, p. 4]) if P is a transition matrix
for a finite-state Markov chain, the multiplicity of the eigenvalue 1 is equal
to the number of recurrent classes associated with P . A row vector π =
(π{1}, . . . , π{m0}) with each π{i} ≥ 0 is called a stationary distribution of
αk if it is the unique solution to the system of equations

⎧
⎨

⎩

πP = π,
m0∑

i=1

π{i} = 1.

As demonstrated in [48, p. 85], for i in an aperiodic recurrent class, if
π{i} > 0, which is the limit of the probability of starting from state i and
then entering state i at the nth transition as n → ∞, then for all j in this
class of i, π{j} > 0, and the class is termed positive recurrent or strongly
ergodic. The following theorem is concerned with the spectral gaps.

Theorem A.1. Let P = (p{ij}) be the transition matrix of an irreducible
aperiodic finite-state Markov chain. Then there exist constants 0 < λ < 1
and c0 > 0 such that the kth-step transition probabilities satisfy

|(P )k − P | ≤ c0λ
k for k = 1, 2, . . . ,
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where P = 11m0π, 11m0 = (1, . . . , 1)′ ∈ R
m0×1, and π = (π{1}, . . . , π{m0})

is the stationary distribution of αk. This implies, in particular,

lim
k→∞

P k = 11m0π.

Continuous-Time Markov Chains

Working with continuous time, a right-continuous stochastic process is a
jump process if it has piecewise-constant sample paths. Suppose that α(·) =
{α(t) : t ≥ 0} is a jump process defined on (Ω,F , P ) taking values in either
M = {1, 2, . . . ,m0} or M = {1, 2, . . .}. Then {α(t) : t ≥ 0} is a Markov
chain with state space M if

P (α(t) = i|α(r) : r ≤ s) = P (α(t) = i|α(s)),

for all 0 ≤ s ≤ t and i ∈ M.
For any i, j ∈ M and t ≥ s ≥ 0, let p{ij}(t, s) denote the transition

probability P (α(t) = j|α(s) = i), and P (t, s) the matrix (p{ij}(t, s)). We
call P (t, s) the transition matrix of the Markov chain α(·), and postulate
that

lim
t→s+

p{ij}(t, s) = δ{ij},

where δ{ij} =
{

1 if i = j,
0, otherwise. It follows that for 0 ≤ s ≤ u ≤ t,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p{ij}(t, s) ≥ 0, i, j ∈ M,
∑

j∈M
p{ij}(t, s) = 1, i ∈ M,

p{ij}(t, s) =
∑

k∈M
p{ik}(u, s)p{kj}(t, u), i, j ∈ M.

The last identity is referred to as the Chapman–Kolmogorov equation.
If the transition probability P (α(t) = j|α(s) = i) depends only on (t−s),

then α(·) is stationary. In this case, we define p{ij}(h) := p{ij}(s + h, s) for
any h ≥ 0. The process is nonstationary otherwise.

Definition A.2 (q-property). Denote Q(t) = (q{ij}(t)), for t ≥ 0. It satis-
fies the q-property if

(a) q{ij}(t) is Borel measurable for all i, j ∈ M and t ≥ 0;

(b) q{ij}(t) is uniformly bounded; that is, there exists a constant K such
that |q{ij}(t)| ≤ K, for all i, j ∈ M and t ≥ 0;

(c) q{ij}(t) ≥ 0 for j �= i and q{ii}(t) = −
∑

j �=i q{ij}(t), t ≥ 0.
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For any real-valued function f on M and i ∈ M, denote

Q(t)f(·)(i) =
∑

j∈M
q{ij}(t)f(j) =

∑

j �=i

q{ij}(t)(f(j) − f(i)).

We are now ready to define the generator of a Markov chain.

Definition A.3 (Generator). A matrix Q(t), t ≥ 0, is an infinitesimal gen-
erator (or simply a generator) of α(·) if it satisfies the q-property, and for
all bounded real-valued functions f defined on M

f(α(t)) −
∫ t

0

Q(u)f(·)(α(u))du (A.4)

is a martingale.

Remark A.4. If the Markov chain is time-homogeneous, then the gener-
ator Q(t) = Q becomes a constant matrix. The above definition is more
general since it allows the Markov chain to be inhomogeneous.

Motivated by the many applications we are interested in, a generator is
defined for a matrix satisfying the q-property only in the above definition.
In fact, in this book, most of the Markov chains that we consider have finite
state spaces. Different definitions, including other classes of matrices, may
be found in Chung [20]. To proceed, we note the following equivalence for
a finite-state Markov chain generated by Q(·). The proof of this fact can
be found in [121, Lemma 2.4]; the details are omitted.

Lemma A.5. Let M = {1, . . . , m0}. Then α(t) ∈ M, t ≥ 0, is a Markov
chain generated by Q(t) if and only if

(
I{α(t)=1}, . . . , I{α(t)=m0}

)
−
∫ t

0

(
I{α(u)=1}, . . . , I{α(u)=m0}

)
Q(u)du (A.5)

is a martingale.

It is interesting to note that

f(α(t)) =
m0∑

i=1

I{α(u)=i}f(i)

=
(
I{α(t)=1}, . . . , I{α(t)=m0}

)
(f(1), . . . , f(m0))

′

and

Q(u)f(·)(α(u)) =
m0∑

i=1

I{α(u)=i}[Q(u)f(·)(i)]

=
(
I{α(u)=1}, . . . , I{α(u)=m0}

)
Q(u) (f(1), . . . , f(m0))

′
.
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It can be shown that for any given Q(t) satisfying the q-property, there
exists a Markov chain α(·) generated by Q(t). The construction follows
the piecewise-deterministic process approach of Davis [24]. One begins by
considering 0 = τ0 < τ1 < · · · < τl < · · ·, a sequence of jump times of
α(·) such that the random variables τ1, τ2 − τ1, . . ., τk+1 − τk, . . . are
independent. Let α(0) = i ∈ M. Then we can compute the probability
distribution P (τk ∈ B) of the jump time τk, where B ⊂ [0,∞) is a Borel
set, and specify the post jump location of α(t); the details can be found in
[121, p. 19]. Moreover, we obtain the following result.

Theorem A.6. Suppose that the matrix Q(t) satisfies the q-property for
t ≥ 0. Then

(1) The process α(·) constructed above is a Markov chain.

(2) The process

f(α(t)) −
∫ t

0

Q(u)f(·)(α(u))du (A.6)

is a martingale for any uniformly bounded function f(·) on M. Thus,
Q(t) is indeed the generator of α(·).

(3) The transition matrix P (t, s) satisfies the forward differential equa-
tion

dP (t, s)
dt

= P (t, s)Q(t), t ≥ s,

P (s, s) = I,

(A.7)

where I is the identity matrix.

(4) Assume further that Q(t) is continuous in t. Then P (t, s) also satisfies
the backward differential equation

dP (t, s)
ds

= Q(s)P (t, s), t ≥ s,

P (s, s) = I.

(A.8)

Diffusion and Switching Diffusion Processes

Diffusion Processes. Diffusion processes are referred to as the solutions of
stochastic differential equations (SDEs). The work on SDEs may be traced
back to the work of Einstein and Smoluchowski for describing Brownian
motions. One of the earliest works related to Brownian motion is in Bache-
lier’s 1900’s thesis, “Theory of Speculation.” The mathematical foundation
of stochastic differential equations was set up by Itô.
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Brownian motion, named after the Scottish botanist Robert Brown, was
initially used to describe the random movement of particles suspended in
a liquid or gas. In the analysis of stochastic systems, a useful way to model
the noise is to use a Brownian motion.

Let W (·) be an R
d-valued process with continuous sample paths such

that W (0) = 0, EW (t) = 0; for any set of increasing real numbers {ti}
the set {W (ti+1) − W (ti)} is mutually independent; and the distribution
of W (t + s) − W (t), s > 0, does not depend on t. Then W (·) is called
an R

d-valued Wiener process or Brownian motion, and there is a matrix
Σ, called the covariance, such that EW (t)W ′(t) = Σt, and the increments
are normally distributed [11]. When Σ = I, the corresponding Brownian
motion is said to be a standard Brownian motion. The next theorem gives
a criterion for verifying that a process is a Brownian motion.

Theorem A.7 ([28, Chapter 5, Theorem 2.12]). Let {X(t),Ft} be a vector-
valued martingale with continuous sample paths and let there be a matrix
Σ such that for each t and s ≥ 0,

EFt
[X(t + s) − X(t)] [X(t + s) − X(t)]′ = Σs w.p.1.

Then W (·) is a Brownian motion with mean 0 and covariance parameter
Σ.

For a stochastic process X(t), and for any k ∈ Z and 0 ≤ t1 ≤ · · · ≤ tk,
the distribution of (X(t1), . . . , X(tk)) is said to be a finite-dimensional dist-
ribution of X(t). Consider a stochastic process X(t), t ≥ 0. It is a Gaussian
process if its finite-dimensional distribution is Gaussian. A random process
X(·) is said to have independent increments if, for any k = 1, 2, . . . and
0 ≤ t1 < t2 < · · · < tk,

(X(t1) − X(0)), (X(t2) − X(t1)), . . . , (X(tk) − X(tk−1))

are independent. A sufficient condition for a process to be Gaussian is in
Skorohod [86, p. 7].

Lemma A.8. Suppose that the process X(·) has independent increments
and continuous sample paths almost surely. Then X(·) is a Gaussian pro-
cess.

Suppose that b(·) : R
r �→ R

r and σ(·) : R
r �→ R

r×d are nonrandom Borel-
measurable functions. A stochastic differential equation with drift b(·) and
diffusion coefficient σ(·) is given by

dX(t) = b(X(t))dt + σ(X(t))dW (t), (A.9)

where W (·) is a standard d-dimensional Brownian motion. For simplicity,
we only consider the time-homogeneous case. That is, the b(·) and σ(·)
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do not depend on t explicitly. Since W (·) is known to be continuous every-
where, but nowhere differentiable, the above stochastic differential equation
is understood in the integral sense (with the stochastic integrals carefully
defined; see [46] for instance).

A process X(·) satisfying

X(t) = X(0) +
∫ t

0

b(X(s))ds +
∫ t

0

σ(X(s))dW (s) (A.10)

is called a diffusion. Then X(·) defined in (A.10) is a Markov process in
the sense that it verifies the Markov property P (X(t) ∈ A|Fs) = P (X(t) ∈
A|X(s)),∀s ∈ [0, t] and for any Borel set A. A more general definition
allows b(·) and σ(·) to be time-dependent and Ft-measurable processes.
Nevertheless, the current definition is sufficient for our purposes.

Associated with the diffusion process, there is an operator L, known as
the generator of the diffusion X(·). Denote by C2 the class of real-valued
functions on (a subset of) R

r whose second-order partial derivatives with
respect to x are continuous. Define the operator L on C2 by

Lf(x) =
r∑

i=1

bi(x)
∂f(x)
∂xi

+
1
2

r∑

i,j=1

aij(x)
∂2f(x)
∂xi∂xj

, (A.11)

where A(x) = (aij(x)) = σ(x)σ′(x) ∈ R
r×r is an r × r matrix-valued

function. The above may also be written as

Lf(x) = b′(x)∇f(x) +
1
2
tr(Hf(x)A(t, x)),

where ∇f and Hf denote the gradient and Hessian of f , respectively.
The well-known Itô lemma (see Gihman and Skorohod [35, 36], Ikeda

and Watanabe [46], and Liptser and Shiryayev [60]) states that

df(X(t)) = Lf(X(t)) + ∇f ′(X(t))σ(X(t))dW (t),

or, in its integral form,

f(X(t)) − f(X(0))

=
∫ t

0

Lf(X(s))ds +
∫ t

0

∇f ′(X(s))σ(X(s))dW (s).

By virtue of Itô’s lemma,

Mf (t) = f(t,X(t)) − f(0,X(0)) −
∫ t

0

Lf(s,X(s))ds

is a square-integrable Ft-martingale. Conversely, suppose that X(·) is right
continuous. Then X(·) is said to be a solution to the martingale problem
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with operator L if Mf (·) is a martingale for each f(·) ∈ C2
0 (the class of C2

functions with compact support). For more discussions on multidimensional
diffusion processes, we refer the reader to Stroock and Varadhan [89] and
references therein.

Switching Diffusion Processes. Recently, switching diffusion processes
have gained popularity. In many applications, the usual diffusion processes
become inadequate. This is because the systems involve both continuous
dynamics and discrete events. The interactions of the continuous and dis-
crete processes provide a more realistic formulation. Nevertheless, the anal-
ysis is much more involved.

Suppose that α(·) is a stochastic process with right-continuous sample
paths, finite-state space M = {1, . . . ,m}, and x-dependent generator Q(x)
so that for a suitable function f(·, ·),

Q(x)f(x, ·)(i) =
∑

j∈M
qij(x)(f(x, j) − f(x, i)), for each i ∈ M. (A.12)

Let W (·) be an R
d-valued standard Brownian motion defined in the filtered

probability space (Ω,F , {Ft}, P ). Suppose that b(·, ·) : R
r × M �→ R

r

and that σ(·, ·) : R
r ×M �→ R

d. The two-component process (X(·), α(·)),
satisfying

dX(t) = b(X(t), α(t))dt + σ(X(t), α(t))dw(t),

(X(0), α(0)) = (x, α),
(A.13)

and for i �= j,

P{α(t + Δ) = j|α(t) = i,X(s), α(s), s ≤ t} = qij(X(t))Δ + o(Δ), (A.14)

is called a switching diffusion or a regime-switching diffusion. Naturally, for
the two-component process (X(t), α(t)), we call X(t) the continuous com-
ponent and α(t) the discrete component, in accordance with their sample
path properties. Associated with the process (X(t), α(t)), for each i ∈ M
and each f(·, i) ∈ C2, we have

Lf(x, i) = ∇f ′(x, i)b(x, i) + tr(Hf(x, i)A(x, i)) + Q(x)f(x, ·)(i)

=
r∑

i=1

bi(x, i)
∂f(x, i)

∂xi
+

1
2

r∑

i,j=1

aij(x, i)
∂2f(x, i)
∂xi∂xj

+Q(x)f(x, ·)(i),
(A.15)

where ∇f(x, i) and Hf(x, i) denote the gradient and Hessian of f(x, i) with
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respect to x, respectively,

Q(x)f(x, ·)(i) =
m∑

j=1

qijf(x, j), and

A(x, i) = (aij(x, i)) = σ(x, i)σ′(x, i) ∈ R
r×r.

Note that when Q(x) = Q is independent of x, the process becomes the so-
called Markovian regime-switching diffusion. That is, α(·) and W (·) are in-
dependent. While the Markovian regime-switching diffusions have been ex-
amined by many researchers, the switching diffusions with state-dependent
switching are much difficult to deal with. For example, if one is interested
in the Itô formula, then one can rewrite the pure jump process α(·) as a
stochastic integral with respect to a Poisson measure. Then one will get
a version of the Itô formula in which it has two martingale terms. One of
them, as in the diffusion cases, is a martingale with a driving noise be-
ing the Brownian motion. The other is a martingale with respect to the
jump measure. Some of the basic properties such as the Feller property,
the strong Feller property, and the smooth dependence on the initial data
become much more difficult to obtain. We refer the reader to Yin and Zhu
[123] for further details.

A.3 Weak Convergence

Convergence in distribution is a basic concept in elementary probability
theory. The notion of weak convergence is a generalization of convergence
in distribution. In what follows, we present definitions and results, including
tightness, tightness criteria, the martingale problem, Skorohod representa-
tion, and Prohorov’s theorem.

Definition A.9 (Weak convergence). Let P and Pk, k = 1, 2, . . ., be prob-
ability measures defined on a metric space S. The sequence {Pk} converges
weakly to P if ∫

fdPk →
∫

fdP

for every bounded and continuous function f(·) on S. Suppose that {Xk}
and X are random variables associated with Pk and P , respectively. The
sequence Xk converges to X weakly if, for any bounded and continuous
function f(·) on S, Ef(Xk) → Ef(X) as k → ∞.

Let D([0,∞); Rr) be the space of R
r-valued functions defined on [0,∞)

that are right continuous and have left-hand limits; let L be a set of strictly
increasing Lipschitz continuous functions ζ(·) : [0,∞) �→ [0,∞) such that
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the mapping is surjective with ζ(0) = 0, limt→∞ ζ(t) = ∞, and

γ(ζ) := sup
0≤t<s

∣
∣
∣
∣log
(

ζ(s) − ζ(t)
s − t

)∣∣
∣
∣ < ∞.

Similar to D([0,∞); Rr), we also use the notation D([0, T ]; S) to denote the
D-space of functions that take values in S.

Definition A.10 (Skorohod topology). For ξ, η ∈ D([0,∞); Rr), the Sko-
rohod topology d(·, ·) on D([0,∞); Rr) is defined as

d(ξ, η)= inf
ζ∈L

{
γ(ζ) ∨

∫ ∞

0

e−s sup
t≥0

(
1 ∧ |ξ(t ∧ s) − η(ζ(t) ∧ s)|

)
ds

}
.

Analogous definitions and results are available for D([0, T ]; S); see Ethier
and Kurtz [28] and Billingsley [8] for related references. Although we often
work with D([0, T ]; Rr) in this book, the results are often stated with re-
spect to the space D([0,∞); Rr). This enables us to apply them to t ∈ [0, T ]
for any T > 0.

Definition A.11 (Tightness). A family of probability measures P defined
on a metric space S is tight if, for each δ > 0, there exists a compact set
Kδ ⊂ S such that

inf
P∈P

P (Kδ) ≥ 1 − δ.

The notion of tightness is closely related to compactness. The following the-
orem, known as Prohorov’s theorem, gives such an implication. A complete
proof can be found in Ethier and Kurtz [28].

Theorem A.12 (Prohorov’s theorem). If P is tight, then P is relatively
compact. That is, every sequence of elements in P contains a weakly conver-
gent subsequence. If the underlying metric space is complete and separable,
the tightness is equivalent to relative compactness.

Although weak convergence techniques usually allow one to use weaker
conditions and lead to a more general setup, it is often more convenient to
work with probability one convergence for purely analytic reasons, however.
The Skorohod representation provides us with such opportunities.

Theorem A.13 (The Skorohod representation; Ethier and Kurtz [28]).
Let Xk and X be random elements belonging to D([0,∞); Rr) such that Xk

converges weakly to X. Then there exists a probability space (Ω̃, F̃ , P̃ ) on
which are defined random elements X̃k, k = 1, 2, . . . , and X̃ in D([0,∞); Rr)
such that for any Borel set B and all k < ∞,

P̃ (X̃k ∈ B) = P (Xk ∈ B) and P̃ (X̃ ∈ B) = P (X ∈ B),

satisfying
lim

k→∞
X̃k = X̃ w.p.1.



A.3 Weak Convergence 301

In this book, when we use the Skorohod representation, with a slight abuse
of notation, we often omit the tilde notation for convenience and notational
simplicity.

Let C([0,∞); Rr) be the space of R
r-valued continuous functions that

are equipped with the sup-norm topology, and C0 be the set of real-valued
continuous functions on R

r with compact support. Let Cl
0 be the subset of

C0 functions that have continuous partial derivatives up to the order l.

Definition A.14. Let S be a metric space and A be a linear operator on
B(S) (the set of all Borel-measurable functions defined on S). Let X(·) =
{X(t) : t ≥ 0} be a right-continuous process with values in S such that for
each f(·) in the domain of A,

f(X(t)) −
∫ t

0

Af(X(s))ds

is a martingale with respect to the filtration σ{X(s) : s ≤ t}. Then X(·) is
called a solution of the martingale problem with operator A.

Theorem A.15 (Ethier and Kurtz [28, p. 174]). A right-continuous pro-
cess X(t), t ≥ 0, is a solution of the martingale problem for the operator
A if and only if

E

(
i∏

j=1

hj(X(tj))
(
f(X(ti+1))−f(X(ti))−

∫ ti+1

ti

Af(X(s))ds

))

= 0

whenever 0 ≤ t1 < t2 < · · · < ti+1, f(·) in the domain of A, and h1, . . . , hi ∈
B(S), the Borel field of S.

Theorem A.16 (Uniqueness of martingale problems; Ethier and Kurtz
[28, p. 184]). Let X(·) and Y (·) be two stochastic processes whose paths
are in D([0, T ]; Rr). Denote an infinitesimal generator by A. If, for any
function f ∈ A (the domain of A),

f(X(t)) − f(X(0)) −
∫ t

0

Af(X(s))ds, t ≥ 0,

and

f(Y (t)) − f(Y (0)) −
∫ t

0

Af(Y (s))ds, t ≥ 0,

are martingales, and X(t) and Y (t) have the same distribution for each
t ≥ 0, X(·) and Y (·) have the same distribution on D([0,∞); Rr).
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A.4 Miscellany

Gronwall-Type Inequalities. Treating dynamic systems, Gronwall’s in-
equality is used most often. The first inequality below is the Gronwall
inequality, whereas the second one is the so-called generalized Gronwall
inequality. Both of them can be found in Hale [40, p. 36].

Lemma A.17. If γ ∈ R, β(t) ≥ 0, and ϕ(t) are continuous real-valued
functions for a ≤ t ≤ b, which satisfy

ϕ(t) ≤ γ +
∫ t

a

β(s)ϕ(s)ds, t ∈ [a, b],

then

ϕ(t) ≤ γ exp
(∫ t

a

β(s)ds

)
, t ∈ [a, b].

Lemma A.18. Suppose that ϕ(·) and γ(·) are real-valued continuous func-
tions on [a, b], that β(t) ≥ 0 is integrable on [a, b], and that

ϕ(t) ≤ γ(t) +
∫ t

a

β(s)ϕ(s)ds, t ∈ [a, b].

Then

ϕ(t) ≤ γ(t) +
∫ t

a

β(s)γ(s) exp
(∫ t

s

β(u)du

)
ds, t ∈ [a, b].

The following lemma is a discrete-time counterpart and is useful for
establishing bounds in difference equations. For a proof, see Yin and Zhang
[122, pp. 331–332].

Lemma A.19. Let {φk} be a nonnegative sequence satisfying

φk+1 ≤ C0 + εC1

k∑

j=0

φj , k = 0, 1, 2, . . . , T/ε, (A.16)

for some positive constants C0 and C1, and a parameter ε > 0. Then, for
k = 0, 1, 2, . . . , T/ε,

φk ≤ C0(1 + εC1)T/ε.

Moreover,
φk ≤ C0 exp(C1T ). (A.17)

Remark A.20. Several points are worth noticing.
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1. The inequality (A.16) may be written recursively as

φk+1 ≤ φk + εφk.

The parameter ε > 0 above is known as a constant stepsize. Its
introduction stems from many scenarios of recursive estimation.

2. There is also a version of the inequality corresponding to the gener-
alized Gronwall’s inequality in continuous time (Lemma A.18). We
state it as follows. Suppose that {φk} is a nonnegative sequence of
real numbers satisfying

φk+1 ≤ ψk+1 + ε
k∑

j=0

Cjφj , k = 0, 1, 2, . . . , T/ε,

for some ψk ≥ 0 and Ck ≥ 0 and a parameter ε > 0. Then

φk ≤ ψk + ε
k−1∑

j=0

k−1∏

i=j+1

(1 + εCi)Cjψj , k = 0, 1, 2, . . . , T/ε.

The proof is a modification of Lemma A.19.

3. Often, one is interested in a particular form of the Gronwall’s inequal-
ity, namely,

φk+1 ≤ C0 + C1

k∑

j=0

φj , k = 0, 1, 2, . . . , N. (A.18)

That is, ε = 1 in (A.16). In this case, we obtain

φk ≤ C0(1 + C1)N .

Likewise, for the inequality

φk+1 ≤ ψk+1 +
k∑

j=0

Cjφj , k = 0, 1, 2, . . . , N,

we have

φk ≤ ψk +
k−1∑

j=0

k−1∏

i=j+1

(1 + Ci)Cjψj , k = 0, 1, 2, . . . , N.

Borel–Cantelli Lemma. Let An be events (i.e., sets in F) and suppose
that ∑

n

P{An} < ∞.
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Then the Borel–Cantelli lemma [11] states that for almost all ω, only finitely
many of the events An will occur.

Chebyshev’s Inequality (see [11]). Let X be a real-valued random vari-
able. Then for any integer m and δ > 0,

P{|X| ≥ δ} ≤ E|X|m
δm

.

Hölder’s Inequality For an integer k, let Xi, i ≤ k be real-valued random
variables. for positive pi, i ≤ k, satisfying

∑
i 1/pi = 1,

E|X1 · · ·Xk| ≤ E1/p1 |X1|p1 · · ·E1/pk |Xk|pk .

Cauchy–Schwarz Inequality. This is a special case of the Hölder in-
equality with k = 2, p1 = p2 = 2.

Inequality for Sums. There is an analogous inequality for sums. Let Xi,n

be real-valued random variables and let an ≥ 0 with
∑

n an < ∞. Then

E

∣
∣
∣
∣
∣

∑

n

anX{1}
n · · ·X{k}

n

∣
∣
∣
∣
∣

≤
(

E
∑

n

an

∣
∣
∣X{1}

n

∣
∣
∣
p1

)1/p1

· · ·
(

E
∑

n

an

∣
∣
∣X{k}

n

∣
∣
∣
pk

)1/pk

.

Jensen’s Inequality. Let f(·) be a convex function and G a σ-algebra,
and suppose that E|X| < ∞ and E|f(X)| < ∞. Then

Ef(X) ≥ f(EX) or with conditioning,

EGf(X) ≥ f(EGX) w.p.1.
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trol, Birkhäuser, Boston, 1991.

[18] H.F. Chen and G. Yin, Asymptotic properties of sign algorithms for
adaptive filtering, IEEE Trans. Automat. Control, 48 (2003), 1545–
1556.

[19] Y.S. Chow and H. Teicher, Probability Theory, 3rd ed., Springer-
Verlag, New York, 1997.

[20] K.L. Chung, Markov Chains with Stationary Transition Probabilities,
2nd ed., Springer-Verlag, New York, 1967.

[21] K.L. Chung, A Course in Probability Theory, John Wiley, New York,
1974.

[22] T.M. Cover and J.A. Thomas, Elements of Information Theory, John
Wiley, New York, 1991.

[23] M.A. Dahleh, T. Theodosopoulos, and J.N. Tsitsiklis, The sample
complexity of worst-case identification of FIR linear systems, Sys.
Control Lett., 20 (1993), 157–166.



References 307

[24] M.H.A. Davis, Markov Models and Optimization, Chapman & Hall,
London, 1993.

[25] P.J. Davis, Circulant Matrices, 2nd ed., Chelsea, New York, 1994.

[26] J.L. Doob, Stochastic Processes, John Wiley, New York, 1990.

[27] C.R. Elvitch, W.A. Sethares, G.J. Rey, and C.R. Johnson Jr., Quiver
diagrams and signed adaptive fiters, IEEE Trans. Acoustics, Speech,
Signal Process., 30 (1989), 227–236.

[28] S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and
Convergence, John Wiley, New York, 1986.

[29] E. Eweda, Convergence analysis of an adaptive filter equipped with
the sign-sign algorithm, IEEE Trans. Automat. Control, 40 (1995),
1807–1811.

[30] W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. I, 3rd ed., John Wiley, New York, 1968.

[31] W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. II, 2nd ed., John Wiley, New York, 1971.

[32] A. Friedman, Stochastic Differential Equations and Applications,
Academic Press, New York, 1975.

[33] A. Gersho, Adaptive filtering with binary reinforcement, IEEE Trans.
Information Theory, 30 (1984), 191–199.

[34] A. Gersho and R.M. Gray, Vector Quantization and Signal Compres-
sion, Kluwer, Norwell, 1992.

[35] I.I. Gihman and A.V. Skorohod, Introduction to the Theory of Ran-
dom Processes, W.B. Saunders, Philadelphia, 1969.

[36] I.I. Gihman and A.V. Skorohod, Stochastic Differential Equations,
Springer-Verlag, Berlin, 1972.

[37] E. Golub and V. Loan, Matrix Computations, Johns Hopkins Univer-
sity Press, Baltimore, 1993.

[38] K. Gopalsamy and I.K.C. Leung, Convergence under dynamical
thresholds with delays, IEEE Trans. Neural Networks, 8 (1997), 341–
348.
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