CHAPTER 7

Hecke Algebras and K-Theory

7.1 Affine Weyl Groups and Hecke Algebras

From now on fix a complex torus T. Let P = Hom 4,(T,C*) denote the
weight lattice and PY = Hom 4,(C*, T) the coweight lattice. Both P and
PV are free abelian groups of rank dim T. There is a natural duality
pairing

:PxP' 7
(y)

defined as follows. Let o € P and a € PV. Then the composition C* =
T = C* is an algebraic group homomorphism C* — C*, hence is of the
form z — 2", for a certain n = n(a,a) € Z. We set (a,a) := n(a,a). The
pairing is perfect, i.e., induces natural group isomorphisms

PY = Hom(P,Z), and P =Hom (PY,Z).

Let R C P be a reduced (not necessarily finite) root system as defined,
e.g., in 3.1.22. There is a slight difference with 3.1.22, since now we are
working with lattices instead of vector spaces. This makes axiom 3.1.22(3)
superfluous. Thus it is assumed only that, in addition to the above data,
a subset RV C PV, called the dual root system, and a specified bijection
R < RV, a < & are given such that the following three properties hold.

(1) (a,a) =2 for any a € R;

(2) For any a € R the transformation s, : P — P (resp. ss : PV — PV)
given by the formula s, (z) = z—(z, &@)-a (resp. ss(y) = y—(a,y) &)
preserves the subset R C P (resp. RV C PV).

(3) f a € Rthen c-a € R if and only if c = +1.

Throughout this chapter we view W, the Weyl group of the root system
R, as a Coxeter group with respect to the set of simple reflections corre-
sponding to a fixed choice of simple roots § C R. Later on, R will be the
root system of a complex semisimple group G. In this case T and W will
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362 7. Hecke Algebras and K-Theory

become the “abstract” maximal torus and the “abstract” Weyl group of G
introduced in Section 3.1.22. Abusing the notation we will write W instead
of W in this chapter.

Let w € W. A factorization w = s;-...-$,, 8; € S, is said to be a reduced
expression if it has a minimal possible number of factors. Although the
reduced expression of a given element is by no means unique, all reduced
expressions have the same number of factors, to be denoted ¢(w). We put
¢(1) = 0, where 1 € W is the identity element. The function £ : w — £(w)
on W is called the length function.

We can now introduce

Definition 7.1.1. The Hecke algebra of the Coxeter group (W,S5) is a
Z|q,q"')-algebra Hy with generators Ty, s € S subject to the following
defining relations, cf. (3.1.24)-(3.1.25):

(i) T, Ty To...=Tsy Ty, Typ..., m(a, ) factors;

(i) (To. +1)(Ts, —q)=0.

These relations specialize at ¢ = 1 to the relations (3.1.24)-(3.1.25) in
the group algebra of the Weyl group. Thus, one may think of Hy as a ¢-
analogue of Z[W]. The definition above will not be used in this book, since
it is typically rather difficult to verify the braid relation 7.1.1(i) in practice.
Instead, we will use the following result, proved e.g. in [Bour, Chap. IV, sec.
2, Ex 34}, that provides a very convenient “characterization” of the Hecke
algebra. This ‘characterization’ is most useful in applications, so that we
will sometimes refer to it as a “definition.”

Proposition 7.1.2. The Hecke algebra H = Hy associated to W, has a
free Z[q,q7)-basis {T,, | w € W} such that the following multiplication
rules hold:

(@) (T, +1)(T, — q) =0 ifs €S is a simple reflection.
(b) Ty - Ty = Ty 1f £(y) + &(w) = L(yw) .

Note that (b) implies T, = T,, -... T, if w =8y ... 8 is a reduced
expression for w. It then follows that the rules above completely determine
the ring structure in Hy . Thus, any algebra satisfying the properties of the
proposition is isomorphic to the Hecke algebra Hy,.

We next define the affine Weyl group associated to the quadruple
(P,PY,R,RY) to be the semidirect product W,;; = W x P where the
group W acts naturally on the lattice P by group automorphisms.

Remark 7.1.3. The group W,;; as defined above is not a Coxeter group.
Classically, the affine Weyl group has been defined as the semidirect prod-
uct W x Q, where Q is the subgroup in P generated by the set R, the
root lattice. The group W x Q is indeed the Coxeter group associated to an
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affine root system. This group is a normal subgroup of finite index in Wy,
since @ is clearly a W-stable subgroup of finite index in P.

Definition 7.1.4. Call a root system (P, R) simply connected if the coroots
RY generate the lattice PV.

The following claim, whose proof is left to the reader, may be taken as
an alternative definition of a simply connected root system (P, R).

Claim 7.1.5. If (P, R) is a simply connected root system with simple roots
{ey,...,a,}, then there exists a basis e, ..., e, of the lattice P such that
(ei,dj) = (S,'J'.

Remark 7.1.6. Let G be a connected linear algebraic group over C. Let
T C G be a maximal torus; let P = Hom 44(T,C*), and let R C P be the
roots of (G,T'). Then if G is simply connected in the sense of Lie groups
then (P, R) is simply connected in the sense of root systems.

For the rest of this chapter we will assume that all the semisimple groups
and all the root systems under consideration are simply connected.

Recall that the group algebra Z[P] is isomorphic to R(T'), the represen-
tation ring of the torus T. We write e for the element of Z[P] = R(T)
corresponding to a weight A € P.

The natural group embeddings P W,z; and W< W,;; induce the
corresponding group algebra embeddings

(7.1.7) R(T) = Z[Wags) and ZIW]— Z[Wayy,

and the multiplication map in Z[W,y] gives rise to a Z-module (but not
algebra) isomorphism

(7.1.8) Z{W,y5] ~ R(T) ®, Z|W).

We now define the affine Hecke algebra associated to the simply con-
nected root system (R, P). The algebra presented below was introduced by
J. Bernstein (unpublished; relation 7.1.9(d) first appeared in [Lu3]), and is
isomorphic to the so-called Iwahori-Hecke algebra of a split p-adic group
with connected center, see Introduction. The latter was discovered by Iwa-
hori and Matsumoto, see [IM].

Definition 7.1.9. The affine Hecke algebra H is a free Z[q,q~']-module
with basis {e* - T,, | w € W, A € P}, such that

(a) The {T,} span a subalgebra of H isomorphic to Hy.

(b) The {e*} span a Z[g, g~']-subalgebra of H isomorphic to R(T)(g,q"!].
(c) For s = s, € S with (), &,) = 0 we have T,e* = €’T,.

(d) For s = s, € S with (A, &,) = 1 we have T,e*T, = q - €*.
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Conditions (c) and (d) together are equivalent to the following more
general formula which will be useful in some later calculations.

Lemma 7.1.10. Let o be a simple root and s, the corresponding simple
reflection. Then for X\ € P,

A _ pdalN)
(7.1.11) T,,e® - &'T,, = (1 - 4)51‘—%‘-?-

Proof. Note that if (7.1.11) holds for A and X’ then it clearly holds for
nA + X, n € Z. Therefore it is enough to prove the equality for any set of
generators of P. But claim 7.1.5 yields a set of generators e,,...,e, (n =
rank R) such that, e.g., (e;,d) = 1, and (e;, &) = 0,i > 1. Thus it is enough
to prove (7.1.11) for elements A € P such that (),&) =0 and (), &) = 1.

Now if (A, &) = 0, then Definition 7.1.9(c) implies T}, e* = e*T,,. Thus

T,oe""'(’\) - e"T,n = T,ﬂeA - e’\T,a = 0.

But then the RHS of (7.1.11) is equal to

eA - ea,.(A)
“g-D)g—==0
-e
proving the lemma for this case. Suppose now that (A\,a) = 1. Then
Definition 7.1.9(d) says
(7.1.12) T, e=NT, =gq-¢€.

From 7.1.2(a) we immediately compute that T,7' = ¢7! - T, +(¢g"' - 1).
Thus, T, e*** =¢q-€e* - T,7' = &*T,, + (1 — q)e*. Rewriting we have

T, ™ — T, =(1-q)e.
Evaluating the RHS of (7.1.11) in the case (), &) = 1 we see

e — e
(1-9= =

and the lemma is proved. =

- e,\~cc

=(1- q)e—;—_—e-:a— = (1-g)e,

— e"u

By properties (a) and (b) in Definition 7.1.9, there are canonical algebra
embeddings

(7.1.13) R(T)[g,¢')—H and Hy—H.

Furthermore, multiplication in H gives rise to a Z[q,¢~!]-module (but not
algebra) isomorphism

H~R(T)lg,q7"]®
which is a g-analogue of (7.1.8).

Hy

2[a,q— )
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It is rather important to know the center of H. To that end, view
R(T)Y C R(T), the subring of W-invariants, as a subring of Z[W,;/] by
means of the embedding (7.1.7). One verifies easily that R(T)Y is in fact
the center of the algebra Z[W,;]. The following g-analogue of this result is
due to J. Bernstein (see [Lu5)).

Proposition 7.1.14. The algebra R(T)%¥|q,q7], identified with a subset
of H by means of (7.1.13), is the center of the algebra H.

Proof. For A\ € P let W - X be the W-orbit of A\. Then let

(7.1.15) z(e*) = Z e
NEW-A
be the corresponding W-invariant element in R(T"). We will prove that the
z(e*)’s belong to Z, the center of H. We then show that Z is a free Z[q, ¢7!]-
module with base {2(e*)}.
A direct calculation using (7.1.11) yields

(7.1.16) T, (e**™ +€*) = (e*W +€")T,,, A€ Pa€R.

o)

Set 21(e*) = Lyew €™, and fix s, € S, a simple reflection. Let W' C¢ W
be the set of w’' € W such that £(s,w’) = £(s,)+£4(w’). Write W' = W\ W'
Using the bijection

W e W\W | e s,

we may write the sum ¥, ¢y €™ in the form

n(et) = Z (e“"(’\) + e""”/()‘)) .
wew’
Thus by (7.1.16) we get 2,(e*)T,, = T,_ z(e*), for any o € R, ) € P, and
therefore by 7.1.2(b) 2,(e*)T,, = T\, 21 (e*) for each w € W.
To prove that the element (7.1.15) is central, observe that z(e*) =
k- z(e*) where k is the order of the stabilizer of A in W. Since the algebra
H has no Z-torsion it follows that

0=2(eMT, — Tyzi(e!) = 0=2z(eMT, - T, z(e*).

Furthermore, each z(e*) clearly commutes with each e*, u € P. Since the
T, and the e* generate H, we deduce that z(e*) € Z.

We next use a specialization argument due to Lusztig [Lu4] to show
that the z(e*)’s form a Z[g,q~'}-basis of Z. Mapping ¢ — 1 defines a
specialization homomorphism of Z[q, ¢~!]-modules

(7.1.17) Sp: H- Z[Waff].
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This map is surjective and its kernel is the two-sided ideal in H generated
by m := (1 — q), the principal ideal in Z[g, g~!] with generator 1 - g.

Write R for the Z[g, g~!]-span of the z(e*)’s. Clearly R is a subring in Z
isomorphic to R(T' x C*)%. To show that R = Z recall that the center
of Z[W,ys] is known to be isomorphic to R(T)". Therefore specializing
g — 1 defines a ring homomorphism sp: Z — R(T)". Observe further
that if a € H is such that (1 —q)-a € Z then a € Z. This implies that

Ker[Z = R(T)"] = (1-q)Z, and one gets an exact sequence of R-modules
(7.1.18) 0-mZ—-Z3RT)Y —0.

Let R, be the local ring obtained by localizing R at the maximal ideal m.
Since the localization is an exact functor the short exact sequence above
yields an isomorphism of Ry-modules Zn/mZ, ~ R(T)". On the other
hand, obviously we have an isomorphism Ry /mRy ~ R(T)W . Thus

(7.1.19) Ra/MRy ~ Zy/mZy, .

Observe further that R ~ R(T x C*)¥ is a polynomial ring (see [Bour])
and hence noetherian. By the Pittie-Steinberg Theorem 6.1.2 we know that
H is a finitely generated R-module. Hence Z is finitely generated over R
as a submodule of the finitely generated noetherian R-module H. It follows
that Z, is finitely generated over R,, and the Nakayama Lemma applied to
isomorphism (7.1.19) yields Ry = Zy, .

We see that every element z € Z can be written as a finite linear com-
bination of 2(e*)’s with coefficients possibly in the localization Z[g,q™!|m.
Since z € H the coefficients must be in fact in Z[q, ¢~!]. Finally, the 2(e*)’s
are clearly independent. This completes the proof. =

7.2 Main Theorems

We return now to our basic geometric setup, so that G is a complex
semisimple simply connected group with Lie algebra g, B is the flag variety
of G, N is the nilpotent cone in g, and p : N — N is the Springer
resolution and N ~ T*B.

Let Za C N x N be the diagonal copy of N'. Recall that the variety Z
gets identified, under the isomorphism

N x N ~T*(B x B)

(cf. the sign convention as in section 3.3.3), with Tj, (B x B), the conormal
bundle to the diagonal B C B x B. This yields the following canonical
isomorphisms of R(G)-algebras

(7.2.1) K®(Z) = K€ (T3, (B x B)) = K%(Ba) = R(T),
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where the second isomorphism is the Thom isomorphism 5.4.17, the last
one is the canonical isomorphism (6.1.6), and algebra structures are given
by the tensor product in K-theory, see (5.2.12). Here and below T and
W stand for the ‘abstract’ maximal torus and the abstract Weyl group
associated to G.

Further, let Z = N x,, N' C T*(B x B) be the Steinberg variety. Clearly
Za C Z. Furthermore, we have Z5 0 Zp = Za, and Z o Z = Z. Hence, the
K-groups K¢(Z,) and K€(Z) acquire natural associative algebra struc-
tures by means of convolution, and K#(Z,) is a subalgebra in K¢(Z). Note
that by Lemma 5.2.25 the convolution product on K“(Z,) coincides with
the ring structure introduced in the preceding paragraph, by means of ten-
sor product in K-theory. Thus, the leftmost term of (7.2.1) may be viewed
as a convolution algebra. Moreover, the natural map K4(Z,) — K#(2) is
injective, see Corollaries 6.2.6 - 6.2.7.

The first main result of this chapter is the following equivariant K-
theoretic counterpart to Theorem 3.4.1.

Theorem 7.2.2. There is a natural algebra isomorphism K¢(Z) ~ Z{W,/|
making the following diagram commute

KS(Z5)— K°(2)
(7.2.1) |1 H

(1.1.7)
R(T)—— Z[W,y/]

We now introduce an extra variable ¢. To that end note that any irre-
ducible representation of the group C* is an integral tensor power of the
tautological representation q : C* — C* given by the identity map. There-
fore we have the natural ring isomorphisms

(7.2.3) R(C*)~Z[g,q"'] and R(T x C*)~ R(T)[g,q""].

For the rest of this book we put A := G x C*. In §6.2 we have defined
natural A-actions on T*B, T*"Bx T*B, Z,and Z, = Tg, (B x B). There is
the following “A-counterpart” of isomorphism (7.2.1):

(7.24)  K*(Za) = KA(T3,(B x B)) ~ KA(Bs) ~ R(T)[g,q7"] .

Here is the second main result of this chapter which is the g-analogue of
Theorem 7.2.2 above.

Theorem 7.2.5. There is a natural algebra isomorphism KA(Z) ~ H
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making the following diagram commute

KAZp)—— K4(2)
(7.2.6) (12.9) |2 lz

R(T)lg |2 H

Remark 7.2.7. Note that Theorem 7.2.2 follows from Theorem 7.2.5 by
setting the parameter q equal to 1. We will, however, give a separate proof
of 7.2.2 along the lines of the proof of the analogous theorem for the finite

Weyl group. Though the two theorems look very similar Theorem 7.2.2 is
far more elementary than Theorem 7.2.5.

We now discuss the role of the center of H from the geometric point of
view. Observe first that

(7.2.8)
R(4) = R(G x C") = R(G) 8, R(C") = R(G)[g,q”"] °=* R(T)¥[¢,q7"].

Next, recall that for any A-variety X there is a natural homomorphism
R(4) = KA(pt) & K*(X)

induced by the constant map p : X — pt. The image of R(A) is formed by
trivial vector bundles on X with possibly non-trivial A-actions. Tensoring
with those vector bundles makes K4(X) an R(A)-module.

For the Steinberg variety Z, the R(A)-module K4(Z) has its own alge-
bra structure by means of convolution. From the convolution point of view,
tensoring with a representation E € R(A) amounts to taking convolution
with the sheaf E ®c Oz, supported on the diagonal Z,. Thus, the diagram
of Theorem 7.2.5 can be supplemented by the following natural commuta-
tive diagram.

R(A)——— K*4(Za)
(7.2.9) 11(7.2.8) (7.2.4)1:
R(T)¥[g,q7 "] R(T)[g,q7"]
Observe that, for any F, ' € K4(Z) and E € R(A), one has
(72100 E@F+F)=(E®@F)+F =F+(E®F).

Equation (7.2.10) shows that the natural homomorphism R(A) — K4(Z)
given by the composition of the top rows of the diagrams (7.2.6) and (7.2.9)
maps R(A) into the center of the algebra K4(Z). Looking now at the
bottom rows of the diagrams and using Theorem 7.2.5, we see that the
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image of the composition

R(I)lg,a7) > R(Dlg,a] "= B
belongs to the center of the algebra H, which is nothing but Proposition
7.1.14. Thus, Theorem 7.2.5 gives a geometric proof of an essential part
of Proposition 7.1.14, and conversely the proposition says that the whole
center of the algebra K4(Z) is given by the representation ring R(4).
We also mention the following result, which indicates somewhat why we
require G to be simply connected.

Lemma 7.2.11. The algebra H is a free R(T)¥|q,q"']-module of rank
#W)*.

Proof. By Theorem 6.1.2 which applies since G is simply connected,
R(T) is a free R(T)"-module of rank #W. Let r,,w € W be a basis for
that module. Then the elements {r, - T, | w,y € W} form a free basis of H
viewed as a R(T)%[g,¢"'}-module. =

Let I°™ denote the ideal in R(T) generated by all W-invariant func-
tions vanishing at 1 € T. The results announced in this section may be
summarized in the following commutative diagram of algebra homomor-
phisms:

(7.2.12)
KOxC (z) [T go(g) Jrating | pe(zy et g(z)
7.2.5 7.2.2 ' 3.4.1
H q—1 Z[Wa”]"mZ[W] X (R(T)/In('r)) T—1 Z[W]

where H(Z) stands for the top Borel-Moore homology group of the Stein-
berg variety and the square on the right commutes due to the bivariant

Riemann-Roch Theorem 5.11.11.

7.2.13. QUANTIZED W-ACTION AND DEMAZURE-LUSZTIG FORMULAS.
Recall that the restriction to the Steinberg variety Z C T*(B x B) of either
of the two projections T*(B x B) — T*(B) is proper. Thus, the general
procedure of section 5.4.22 yields a K“(Z)-module structure on K4(T*B).
Recall that we have K4(T*B) ~ K4(B) ~ R(T)[g,q"'] by (7.2.4), and
K4(Z) ~ H by Theorem 7.2.5. Hence, there is a natural action of the al-
gebra H on the polynomial ring R(T')[g,q™!] arising from the convolution-
action. This action can be written out explicitly. Its restriction to the finite
Hecke algebra Hy C H is especially interesting and is given by the so
called “Demazure-Lusztig” operators, which we now describe.
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We begin with the special case ¢ = 1. Thus we forget about the C*-
action and replace the group A = G x C* by G everywhere. By Theorem
7.2.2 we have an isomorphism C[W,;] =~ K¢(Z). Hence, the natural em-
bedding W — W,;; makes Z[W] a subalgebra of K°(Z) and hence makes
KC¢(T*B) a W-module.

Proposition 7.2.14. The W-action on K®(T*B) by convolution with
KC(Z) gets identified, by means of the canonical isomorphism K€(T*B) =~
R(T) of (6.1.6), with the W-action on R(T) induced by the standard W -
action on T.

Corollary 7.2.15. The composition

LW ZW, ]~ K(Z) =5 K(2) "% H(Z) —> Z[W),

cycle
is the identity map.

The situation is more complicated if ¢ # 1. Recall that the finite Hecke
algebra Hy is generated, as an algebra, by the elements T,_, one for each
reflection with respect to a simple root o € R.

Theorem 7.2.16. The T, -action on K4(T*B) arising from convolution
with K4(Z) gets transported, by means of the canonical isomorphism
KA(T*B) ~ R(T)[g,q"Y], to the following map T, €End, _, R(T)aq):

8'\ - eaa()‘) eA — es.,(;\)+a

-1 1 ea-1

This formula was discovered by Lusztig in [Lu6], and it was the starting
point of the K-theoretic approach to Hecke algebras. Observe that if ¢ = 1
the RHS of (7.2.17) reduces to e*»™ in accordance with Proposition 7.2.14.
The expression —ﬁ—l in the first term of (7.2.17) was introduced much

earlier by Demazure {Dem] in his study of the K-theory of the flag variety
(cf. [BGG] for a similar formula).

(7.2.17) T, : e

7.3 Case q = 1: Deformation Argument

In this section we prove Theorem 7.2.2 following the lines of the proof
of Theorem 3.4.1, which is based on a deformation argument. Recall the
notation of the proof of Theorem 3.4.1 and a basic diagram

N—3

L N

N8 9
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For any (h,b) € g, where h € g (= semisimple regular elements) and
b=Hh+ne€B,set g* =v~'(h) C g. Then there is a natural projection

(7.3.1) T:§"~Gx,(h+n)—G/B=8B

making §* a G-equivariant affine bundle over B with fiber h + n.

Recall next that the map p: g’ — g°" is a Galois covering with Galois
group W, the abstract Weyl group. For each w € W the action of w gives
an isomorphism §* = §* and we let

R

denote the graph of that action. The composition A% =5 g - B gives
rise to the following isomorphisms of K-groups

(7.3.2) RT)SKS(B) 29" KS(AR),

where the first map is the canonical isomorphism assigning to A € P the
line bundle Ly on B, and the second map is the Thom isomorphism, since
pr, maps A" isomorphically to g* and g* — B is an affine fibration. We set
Ly = (m o pr,)*Ly, a G-equivariant line bundle on A%,

Using the tensor product decomposition (7.1.8) we may write a direct
sum decomposition

Z[Wags) = D R(T) -w,
weWw

where w on the right is viewed as an element of Z[W] C Z[W,yy]. Given
h € g°" as above and w € W, define an isomorphism of R(T')-modules

(7.3.3) ©":R(T)-w 5 K°(A*), & -wwr L,

Lemma 7.3.4. The following diagram, whose first row is induced by mul-
tiplication in Z[W,ys] and the second row is induced by convolution, com-
mutes for any w,y € W:

R(T) - w® R(T) -y —— R(T) - wy

ehget l e"l

KS(AL) ® KG(AY™) — KC(AL).

Proof. Note that, for any R;, R, € R(T), the map of the top row of the
diagram sends (R, - w) ® (R; - y) to (R, RY) - wy, where RY stands for the
action of w on R,. The result follows now by a straightforward computation
using the definition of convolution and the fact that A% o AY™® = A% and
that all the intersections involved in this composition are transverse. =
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With this lemma in hand, to prove 7.2.2 we can just copy the proof
of Theorem 3.4.1 step by step. First fix a regular semisimple element h,
introduce the line 1 = C - h, and set 1* = C* - h. Then we have a locally
trivial fibration §' = v~!(1) — 1. Letting in the previous construction
the element h vary within 1*, we obtain in particular, for each w € W,
the graph variety Al fibered over I*, and an R(T)-linear homomorphism
0" : R(T) - w — KS(A") satisfying an analogue of Lemma 7.3.4.

We now extend AL to a closed subvariety A, as in the proof of Theorem
3.4.1 and observe that

AL N (v71(0) x v™1(0)) = Z = Steinberg variety.
Hence, there is a well defined specialization map in equivariant K-theory
limp—o : K¢(AY) = K€(2).

Form the composite

(7.3.5) 0™ : R(T) - w 2> KO(AL) 52 k(7).

Proof of the following analogue of Lemma 3.4.11 will be postponed until
after the end of the proof of the theorem.

Claim 7.3.6. The above map ©%" does not depend on the choice of h.

In view of the claim we drop the superscript 0 - h from the notation
and write © instead of ©%*. Assembling the homomorphisms (7.3.5) for all
w € W we get a map

(7.3.7) ©:Z{W,ys) = €D R(T)-w — K°(Z).
weW

Lemma 7.3.4 combined with the fact that the specialization homomorphism
limy, .o commutes with convolution (see 5.3.9) implies that the map (7.3.7)
is an algebra homomorphism.

It remains to show that that map (7.3.7) is bijective. We need some
preparations.

We enumerate G-diagonal orbits on B x B in some order pt = 11, Y5,...,
Y, so that dimY; > dimY; > .-+ > dimY,,, cf. proof of Theorem 6.2.4.
This way we get a total linear order on the set W by declaring y < w if
Y, goes after Y, in our enumeration. It is clear that, for i = 1,2,...,m,
the sets U;>;Y; are closed in B x B. Thus, our total linear order extends
the Bruhat order on W, a partial order given by the closure relation of the
G-diagonal orbits.

7.3.8. CONVENTION. For the rest of this chapter we will fix such a total
linear order on W and use the notation “<" for this order, and not for the
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Bruhat order. Thus an expression such as y < w, y,w € W will always be
with respect to this total order.

We now define certain filtrations analogous to those used in the proof of
Theorem 6.2.4. For each w € W set

ZeuwWassl= @ R(T) -y and Z[Waopl= @ R(T)-y.

y<w y<w

The submodules Z<,,[W,s;] form a filtration on Z[W,ss] by the totally
ordered set W and there is an obvious isomorphism

8y Z[Wass) = Zeu[Wass)/Zew[Wags] ~ R(T) - w.
We also filter the Steinberg variety Z by G-stable closed subvarieties
Zgw = Uycw Ty, (Bx B), endput Zoy = Uycw Ty (B x B).

Clearly y < w implies Z¢, C Z<y, and we have Z¢, \ Z<y = Ty, (B x B).
The arguments of section 6.2, based on the Cellular Fibration Lemma, yield
the following result.

Lemma 7.3.9. (1) For any y < w, the homomorphism K¢(Z¢,) —
K®(Z<,) induced by the inclusion Zg, — Zg,, is injective; in particular,
all the maps K®(Z¢,) — K€(Z) are injective.

(2) For any w € W, we have a short ezact sequence KC(Z.,)—
K%(Z<w) - KCS(T}, (B x B)), which gives a natural isomorphism

(7.3.10) K¢(Z<w)/K®(Z<w) S K°(Ty, (B x B)).

By part (1) of the lemma we may view the groups K¢(Z¢,),y € W,
as subgroups of K¢(Z). The subgroups form a filtration of K¢(Z) indexed
by the totally ordered set W. The associated graded group, gr K¢(2), is
described by part (2) of the lemma; that is

gr, K6(Z) =~ K¢(Ty, (B x B)).
Lemma 7.3.11. The morphism © in (7.3.7) is filtration preserving.

Proof. Recall the natural projection 72 : A" < gh x gv®) "X B x B. It
was shown in 3.4.4 that n%(A%) C Y,,. This inclusion holds for any h, in
particular for all h € I*. It follows that 72(AL)) C Y,,. Hence n2(AT) C Y.
Therefore the specialization at h = 0 gives a morphism

limh_’o : KG(A:;) - KG (Z n (”2)_1(?10)) ’

where 72 : T*B x T*B — B_x B is the projection. But it is immediate from
definitions that ZN (n2)7'(¥,) = Z<.,, and the lemma follows. =
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By Lemma 7.3.11 the map (7.3.7) induces the associated graded map
(7.3.12) gr © : gr Z[W,4) — gr K6(2).

To describe the morphism gr © explicitly we let 7, : Ty, (B x B) = Y,
denote the bundle projection and let pr, : Y,, < B x B — B denote the map
induced by the first projection.

Lemma 7.3.13. For any w € W the composition morphism
R(T)-w = gr, LWers) &5 g1, K%(2) = KO(T;, (B x B))
is given by assignment e* - w — =}, 0 priLy, A € P.

Proof. Given (h,b) € g°", we have the following commutative diagram,
cf., (3.4.3).

A g x g >
(7.3.14) ,,:l ,,,1 l
Yol—>Bx B——>B

In more concrete terms, this diagram is isomorphic, by means of
Lemma 3.4.3 and the definition of g*, to the following natural diagram,
where n¥ and B" stand for w-conjugates of n and B respectively:

G X gy (B +0010%) 225 G x (h+ 1)
(7.3.15) ,al ,rl
G/(Bn BY) L G/B

For ) € P, we have by (7.3.3) and the commutativity of (7.3.14):
(7.3.16) Oe* - w) = pr} - 7" Ly = (v*)* pr;Ly.

Replace now h by the line 1 through h everywhere in (7.3.15). Observe that
for h = 0 the morphism 72 on the LHS of (7.3.15) gets identified with the
projection 7y, : G X, o (nNn?) = Ty (B x B) — Y,,. Hence taking the
specialization at h = 0 in formula (7.3.16) we find

im *(e* -u)]

T BX8) [’lli_r.x‘l)('lrz)' pr;L'\”T;..,wxs) =7y, PriLa.
The lemma follows. =

We see that the map of Lemma 7.3.13 equals the one given by formula
(7.3.2). Since the latter is an isomorphism, it follows that gr © is an isomor-
phism. Hence, by Proposition 2.3.20(ii), © is itself an isomorphism, and the
theorem is proved. =
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It remains to prove Claim 7.3.6. We can not apply an argument of the
type used in the proof of the analogous result 3.4.11 in Borel-Moore homol-
ogy, since the argument there was not completely algebraic: in the course
of that proof we connected two lines 1 and I by a path built out of R-linear
segments. Instead, we will now use an algebraic homotopy construction,
which is an algebraic adaptation of the construction used in the proof of
Lemma 2.6.35 on the specialization in Borel-Moore homology. Note that
the specialization in Borel-Moore homology was defined for a smooth base
of arbitrary dimension, while the specialization in the algebraic K-theory
was only defined for a 1-dimensional base. The argument below shows that,
in some favorable situations, one can in effect define specialization in K-
theory over a higher dimensional base.

Though our proof works in greater generality, we will not attempt to
formulate it in the most general form, and will stick to the framework of
Claim 7.3.6 that we intend to prove.

Thus we fix two linearly independent regular elements hy,hy € §. We
must show that the two maps (7.3.5) corresponding respectively to h; and
h, are equal. To that end, consider the complez path

Ty(r)=(1-7)-hy+7-hy, TEC.

We have, v(0) = h; and (1) = h,. Observe further that the path «
intersects the root hyperplanes in §) at finitely many points. Thus, there
is a finite set § C C such that, for all 7 € C\ S, the element v(7) € § is
regular. We put Cg := C\ S for convenience. We would like to emphasize
at this point that a very essential special feature of the situation we are
dealing with is that the points h; and h, in the base of the specialization
are connected by a straight line, more precisely, by a set of the form Cg, as
opposed to an arbitrary complex curve.

Following the pattern of the proof of Lemma 2.6.35 we consider the map

P:CxCs—9H, (t,7)—=t-y(1)=t(1~-7) -hi+t T hy.
Clearly, the image of ® is a Zariski open subset in the 2-dimensional
complex vector space h C § spanned by h; and h,. Note also that
©(0,Cs) = {0} . Now, fix w € W, and define a variety AR by

AL = (3™ xp, §) N (§%45),
which is obtained from formula (3.4.10) by replacing everywhere the line 1

by the 2-dimensional vector space h. Following the strategy of the corre-
sponding argument in the Borel-Moore homology case, we define a variety
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X by means of the cartesian diagram

p——

(7.3.17) l luxu

CXCsTk

where v : § — 9 is the standard map (z,b) — zmod [b,b]. It is convenient
at this stage to formalize the properties of the map X — C x Cg resulting
from this construction as follows.

7.3.18. ALGEBRAIC HOMOTOPY ARGUMENT. Let C be a smooth complex

curve with base point o, and let X be a G-variety over C x Cg (with G

acting trivially on both C and Cg). We write 7 : ¥ = C and p: X — Cg

for the compositions of the map X — C'xCg with the projections of CxCg

to the factors C and Cg, respectively. Set X° = m~1(0), our usual notation

for the special fiber. We assume the following holds:

(P1) The projection p: X — Cg is flat;

(P2) The projection p : X° — Cg is split, that is, there is a G-variety X
and a G-equivariant isomorphism AX° ~ X x Cg making the projection
&° — Cg into the second projection X x Cg — Cg.

In the case we are interested in, we have C = C, o = 0, and X is the
space defined by diagram (7.3.17). Property (P1) is then clear. Property
(P2) holds because the map ® maps {0} x Cs to {0}, and the fiber of AX
over 0 € §j is Z, the Steinberg variety. We thus put X := Z in our case.

In the general case, the embedding X° <« X’ gives by property (P2) a
natural diagram

XxCs=XC" > y Ioxr=x\x°
(7.3.19) lp lp 1::
{O}XCSQ CXCS "——)(C \ {0})XCS

Also, for any 7 € Cg, put X, = p~!(r) and X} = p~!(r) N X*, and let
i, : X} — X" denote the embedding. The embedding induces a well defined
pullback morphism i : K¢(X*) — K¢(X?), since the map X — Cg is
flat. Note finally that, for each 7 € Cg, the projection 7 : X, — C has the
special fiber over o isomorphic to X x {r} = X, due to property (P2). Thus,
there is a specialization map lim,_o : K¢(X}) — K¢(X).

The key result, that clearly implies Claim 7.3.6, is

Proposition 7.3.20. (Homotopy Invariance of Specialization) If the con-
ditions (P1)-(P2) hold, then the following composite map is independent of
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TECs.'
KC(x") -5 KS(xy) "= KO(X).

The proof of the proposition will be based on three general lemmas.

Let (C,0) be a smooth curve and f : Y — C an arbitrary G-variety
over C (with trivial G-action on C). Let € : Y° <Y be the embedding
of the special fiber over o. Although the variety Y is not assumed to be
smooth, the restriction functor * : K¢(Y) — KS(Y°) can still be defined
as it was implicitly done in the course of the definition of the specialization
in K-theory, see 5.3. Namely, choose a local coordinate ¢t on C such that
t(0) = 0. We may view ¢ as a function on Y by means of pullback. Then,
Y° =t-1(0), and for any sheaf 7 € K¢(Y), we put

(7.3.21) €"[F]:= Torg (F, Oy/t-Oy) - Tor, (F, Oy/t-Oy)
= Coker(F & F)—Ker(F & F) € K¢(Y°).

Lemma 7.3.22. The composite map €* €, : K¢(Y°) —» KG(Y°) is the
zero-map.

Proof. In view of the above definition of £* by means of equation (7.3.21),
the two term complex Oy 2 Oy given by multiplication by ¢ plays here the
role of the Koszul resolution of the sheaf €,0y.. Thus, for any F € K¢(Y°),
we deduce (either directly or as in Lemma 5.4.9) e*¢,F = A(N)® F , where
N is the “conormal bundle” to Y°. We put quotation marks because Y is
singular in general, and the bundle N is by definition given by the pullback
by means of f of the cotangent space T;C. Since C is a curve, T;C is a 1-
dimensional vector space, and N is the trivial 1-dimensional vector bundle
on Y°. Hence A(N) = [A°N] — [A’N] = [N] - [N] = 0, and the lemma
follows. =

The second lemma is a variation of Lemma 5.3.6.

Lemma 7.3.23. In the G',bO'U_e_ setting, let G be a G-equivariant coherent
sheaf onY* =Y \Y°, and G its G-equivariant coherent extension to Y,
that is, Gly- = G. Then in K°(Y°) we have lim;_o[G] =€'G.

Proof. If the sheaf G is a lattice, i.e., is t-torsion free, then the equation
of the lemma is just the definition of the specialization. The point is that
we do not assume G to be t-torsion free. In this general case we argue as
follows (cf. proof of Lemma 5.3.6).

Let G be the maximal subsheaf of G supported on Y° and G= G/Goo.
Then lim,_4[G] = ¢ [g] since G is a lattice for G. On the other hand, in
KC(Y) we have [G] = [Goo) + [G]. It follows that e*[G] = e*[Goo]+ €*[G],
since €* is a homomorphism of K-groups. Thus, it suffices to prove that
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€*[Gw) = 0. But any sheaf supported on Y* is represented in K¢(Y) by
a class of the form ¢,F for some F € K¢(Y°). Hence, G,, = €.F, and
Lemma 7.3.21 implies €*G, = €*c, F =0. n

Lemma 7.3.24. For any G-variety X and any finite set S C C, the
projection p : X x Cs — X induces an isomorphism p* : K¢(X)>
KG(X X Cs) .

Proof. The obvious diagram X x §— X xC « X x Cg gives rise to the
standard exact sequence of K-groups, see 5.2.14:

(7.325) KX x8)— K°(X xC) = KX xCs) = 0.

We claim that the first map in (7.3.25) vanishes, and hence, the second map
is an isomorphism.

To prove the claim, we may assume without loss of generality, that the
finite set S consists of a single point and that this point is 0 € C, the origin.
Let € : X x {0} — X x C denote the corresponding embedding. It suffices
to show that the composite map e*c, : K¢(X x {0}) » K¢(X x C) —
KC(X x {0}) vanishes, since the second map &* is the Thom isomorphism.
But ¢*¢, = 0 by Lemma 7.3.21, applied to the projection X x C — C, and
the claim follows.

To complete the proof of the lemma, we observe that the pullback
morphism p* : K¢(X) — K¢(X x Cs) may be factored as the composition
K%(X) = K%(X x C) » K°(X x Cg), where the first map is the Thom
isomorphism and the second map is the restriction map in (7.3.25), which
is also an isomorphism, due to the claim. =

7.3.26. Proof of Proposition 7.3.20. Fix 7 € Cg and consider the following
commutative diagram of embeddings

XTI s X X

(7.3.27) i f i f i f

XszLf___>X4.____)X*

Let F be a G-equivariant coherent sheaf on X* and F its G-equivariant
coherent extension to X. Then the restriction 7.# (notation i, and i, is
clear from (7.3.27)) is a well-defined coherent sheaf on X, due to condition
(P1). Hence, by Lemma 7.3.23 we obtain
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lim [F]=€eF , lm [i7F] = 7).

Set G = lim,_o[F] € K°(X x Cs). Using the commutativity of diagram
(7.3.27) and functoriality of restriction, one therefore finds

lim [i;F] = € LF =1 eF =1i:G.

We see that the only thing that has to be shown in order to prove the
Proposition is that the class 7*G € K¢(X) is independent of the choice of 7.
But using Lemma 7.3.24 we can write G = p*G’, for some class G’ € K%(X)
and p : X x Cs — X . Hence, for any 7, we have i*G = 1*p*G’ = G'. This
proves the proposition, hence completes the proof of Claim 7.3.6. =

Proof of Proposition 7.2.14. We adapt to the K-theoretic setup the
argument used in the proof of the corresponding result 3.6.17 in homology.
In the notation of the proof of Theorem 7.2.2 write O% € KC(Ah) for the
class of the structure sheaf of the smooth variety A%. We have the following
commutative diagram, which is an analogue of (3.6.22).

KG(B) standard w-action . KG(B)
(7328) Ko@) 2% KOG -
/ \
KG(G/T) right w-action N KG(G/T)

Here the rectangle along the perimeter commutes by the definition of the
standard W-action on K¢(B), see (6.4.15). The isomorphism + is induced
m

by composition of the isomorphisms g* = AdG-h and AdG-h ~ G/T, so
that the triangles p oy = m commute. Also, the trapezoid at the bottom of
(7.3.28) commutes since A" = Graph(w-action). Hence, it follows from the
diagram that the upper “inverted trapezoid” in diagram (7.3.28) commutes.

Now replace h by the line 1 = C - h, and set O,, = limy_,o O, . By the
proof of Theorem 7.2.2 the class O,, € K¢(Z) is the image of the element
1w € Z[W) under the composition

7.2.2
ZW)— Z[Ways) — K°(Z).

Taking the specialization of the upper inverted trapezoid in (7.3.28) as
h — 0, and using the fact that specialization commutes with convolution
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(see 5.3.9), we obtain the following commutative diagram

KG(B) standard w-action KG(B)

P

% convolution .
K(T*B) 22222 KS(T*B)

P

Thus, convolution with @, transferred to K¢(B) by means of the Thom
isomorphism 7*, is the same thing as the right w-action on K¢(G/T)
transferred by means of p*. This proves the proposition. m

Proof of Corollary 7.2.15. We retain the notation of the previous proof.
By construction, the composition

¢: ZW])—2ZW.yy] 23 K6(2) - K(2)

takes w € W to O,,. Since assigning the support cycle to a sheaf intertwines
the specialization map in K-theory with the one in homology, we compute

_ . 1oy 5.9.17 . T "
[supp Ou] = supp(lim 0,) “=" lim[supp O, ] = lim[A,] = [Au].

This agrees with the deformation proof of Theorem 3.4.1 and the result
follows. =

7.3.29. SOME COMPATIBILITIES FOR W-ACTION. We complete this section
by analyzing compatibility of the various natural isomorphisms introduced
earlier in the book. These results are a bit technical and may be omitted
by the reader without much trouble.

A linear map f : V; — V; of two W-modules is said to be sign-
commuting with the W-actions if we have

flw-v)= (=1 w. flv), Vv, e i,weW.
First recall the Poincaré duality isomorphism 2.6(4),
H(B)~ H™*B), 2n=dimgB.

This isomorphism does not commute with the W-actions on homology
and cohomlogy. The reason is that the W-action does not preserve the
orientation (= fundamental) class of BB, hence does not commute with the
intersection pairing (see the warning directly before 2.6.19). Specifically,
the Weyl group acts on H,,(B), hence on the fundamental class of B, by
the sign representation w — (—1)4%), It follows that the Poincaré duality
isomorphism sign-commutes with the W-action. For example, for i = 2n we
have

H®(B) ~ sign ® H,,(B) = sign ® sign = trivial representation.
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On the contrary, the Weyl group acts on G/T (on the right) by holomorphic
transformations, hence, preserves the orientation (arising from the complex
structure). It follows that the intersection pairing on G/T commutes with
the W-action. Thus the Poincaré duality isomorphism

(7.3.30) H(G/T) ~ H*™(G/T)

commutes with the natural W-action.

We turn next to the case of the cotangent bundle = : T*B — B with zero-
gection i : B— T*B. In the following lemma, the W-action related to B is
always understood to be the “standard” one (see 6.4.15) and the W-action
related to T*B is always understood to be the one arising by convolution.

Lemma 7.3.31. Let n = dim B. Then

(i) The Thom isomorphism w*: H;(B) = Hiy2,(T*B) sign-commutes
with the W -actions; hence, the same holds for the inverse, i*: Hipon(T*B)=
H;(B), see 2.6.43.

(ii) The Thom isomorphism 7 : K¢(T*B) — K¢(B) commutes with the
W -actions; hence the same holds for the inverse i* : KS(T*B) — K¢(B).
The same statement also holds for non-equivariant K -groups.

(iii) The homological Chern character map K(T*B) — H,(T*B) (5.8.1),
commutes with the W-actions, while the the homological Chern character
map K(B) — H.(B) sign-commutes with the W -actions.

(iv) The co-homological Chern character map K(B) — H*(B) commutes
with the Weyl group actions.

Proof of Lemma 7.3.31. (i) It suffices to prove the statement for i*.
This is a restriction with support map which is constructed by definition,
by means of intersecting in T*B with [B], the fundamental class of the
zero-section. Thus, proving the claim for i* amounts to proving two facts:
(1) convolution with H(Z) acts on [B] as the sign representation of W;
and (2) convolution with H(Z) acts on [T*B] as the trivial representation
of W. The first fact follows from Claim 3.6.17 and the remark above it.
The second fact follows from the equation [T*B] = lim,_o[§""], since the
fundamental class of g" ~ G/T is preserved by the convolution (cf. the
discussion leading to formula (7.3.30)).

(ii) Let L, be the G-equivariant line bundle on B associated with a
character A € X*(T') and let n*L, be its pullback to 7"B. The deformation
argument in the proof of Theorem 7.2.2 shows that, for any w € W,
convolution with O} = structure sheaf of A%, takes m*Ly to m* L. Since
the standard w-action on K(B) takes Ly to L, as well, the map =~
commutes with the W-actions.

(iv) is clear from the construction of the W-action on H*(B), cf. 6.4.15.
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(iii) Observe first that for a smooth variety, the homological Chern char-
acter is obtained from the cohomological Chern character by means of
Poincaré duality. By the discussion preceding the Lemma we know that
the Poincaré duality isomorphism for B sign-commutes with W. The coho-
mological Chern character for B commutes with W by (iv). Further, the
cohomological Chern character always commutes with restriction. But re-
striction to the zero-section in homology sign-commutes with W, by (i) and
the restriction map in K-theory commutes with W by (ii). This proves that
the homological Chern character map on T*B commutes with W. =

So far, we have always used the “standard” W-action as long as the
variety B was concerned. There is, however, a convolution action of W on
H,(B) and on K(B) arising from convolution with H(Z), resp. K(Z), due
to the set-theoretic equation Z o B = B. The two actions, the “standard”
action and the “convolution” action, turn out to be equal on the homology
of B due to Claim 3.6.17. This is not the case in K-theory, as is shown by
the result below.

Let ¢ € R(T) denote the element corresponding to the half-sum of
positive roots (recall that there is a preferred choice of “geometric” positive
roots, see 6.1.9, for the “abstract” maximal torus).

Lemma 7.3.82. The W-action on K¢(B) arising from convolution with
KS(Z) is expressed in terms of the “standard” W -action on K°(B) by

w: R (=1)"e? . w(e’ R), R € R(T).

Proof. The zero section i: B~ T*B induces the following two diagrams
in K-theory

(7.3.33)
G (T conv G (T* G (* conv G (s
K ?f B) ke (TT B K (I“ B) o ksl (1T B)
G conv Tel G standard re)
K (B) with K4(Z) K (B) K (B) w-action K (B)

_ The diagram on the left commutes due to Lemma 5.2.23 (put M; = pt,
Y = B, Y = T*B in the discussion after the lemma). The diagram on
the right commutes due to Lemma 7.3.31(ii). Hence for any R € R(T) and
weW,

i*i.(convolution action of w on R) = w(i*i.R).

By Lemma 5.4.9 the map i*i, is given by the tensor product with the class
A(T*B). The cotangent bundle on B is isomorphic to G x , n, where n is the
nilradical of the Lie algebra of a Borel subgroup B. Recall that the weights
of the torus action on n are the negative roots relative to the “geometric”
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choice of positive roots. Hence we find

NT*B) = [Ja-e®) °E° e [[(e*/?-e/?) = e A.

a>0 a>0

We get
e A-(convolution with w on R) = w(e™*-A-R) = (-1)*).A-w(e™*-R),

since A is a skew-symmetric element. The ring R(T) being an integral
domain, it follows that

convolution action of w on R = (—=1)!®) . ¢ . w(e™” R).

This completes the proof. =

7.4 Hilbert Polynomials and Orbital Varieties

In this section we digress from the main theme of this chapter, as set
out in §7.2. Our aim here is to prove an important result (Theorem 7.4.1
below) relating harmonic polynomials on the Cartan subalgebra to some
equivariant Hilbert polynomials, see §6.6, and to Springer representations
of the Weyl group.

Let O C NV be a nilpotent orbit. Throughout this section we fix a Borel
subalgebra b = h@®n C g, where b is a fixed Cartan subalgebra and n
is the nilradical of b. Write £ for the closure of u~1(0) C N, the orbital
variety associated to Q.

Recall next that at the end of section 6.5 we have introduced a map
€ : H(X) — M. Let H(O) denote the image of ¢, a linear subspace of H¢
with a distinguished basis formed by the images of the fundamental classes
of the irreducible components of X. The latter are, by (6.5.10), in bijective
correspondence with the irreducible components of the variety @ N n. Given
such a component A, write £, for the irreducible component of the orbital
variety ¥ associated to A by means of (6.5.9), and let e(X,) € H(O)
be the corresponding harmonic polynomial. We shall now proceed to an
alternative direct construction of those distinguished polynomials.

Let T C B be the maximal torus and the Borel subgroup with Lie
algebras h C b, respectively. Clearly, A, the closure of A, is a B-stable,
hence a T-stable, closed subvariety of n which can be equivalently defined as
an irreducible component of O Nn. Let Py € C[h] denote the T-equivariant
Hilbert polynomial (see §6.6) of the subvariety A A C n and write Comp(ON
n) for the set of irreducible components of O N n.

Fix a point € ONn and put d = dim B;. The following result plays an
important role in representation theory of semisimple Lie algebras.
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Theorem 7.4.1. ([BBM],[Jo3],[Ve]) The equivariant Hilbert polynomials
{Pr, A €Comp(OnNn)}

are homogeneous W -harmonic polynomials on by of degree d. Moreover, for
any A, the polynomial P, is proportional to €(X,). In particular, the Hilbert
polynomials form the distinguished basis of the vector space H(Q).

Let C?[h] denote the vector space of degree d homogeneous polynomials
on b, and I the ideal in C[h] generated by W-invariant polynomials
without constant term. We have a natural projection

C[hl

(7.4.2) proj : C[h] — C*[hl/(C[h] N T
We will deduce Theorem 7.4.1 from the following two results.
Proposition 7.4.3. proj(Py) = proj (e(EA)) , for any A € Comp(ONn).

Proposition 7.4.4. The equivariant Hilbert polynomials {Pr, A €
Comp(0Nn)} span a W-stable subspace in C[h).

To begin the proof, we first reformulate the results about equivariant
Hilbert polynomials proved in section 6.6 in a slightly different way.

Recall that to any T-equivariant coherent sheaf M on n (here n may
be replaced by any finite dimensional vector space with a contracting T-
action) we have associated its formal character, chy(M), which has the
form, see Proposition 6.6.6

Xm
chr(M) = =—=F——r, where x,, € R(T).
naESpn(l - ea) M
We may view x,, as a function on T and pull it back to h by means of
the exponential map. Taking the Taylor expansion at 0 € h we get, by
additivity of formal characters, a well-defined group homomorphism:

(7.4.5) x:KT(n) > C[h]] , M exp’(xu)-

This map should be rather denoted "exp* o x”, but abusing the notation,
we will write x for short, thinking of the function x,, in terms of its Taylor
expansion on §.

Let I C C[[h]] denote the augmentation ideal consisting of the formal
power series without constant term (not to be confused with Z vl , the ideal
generated by the augmentation ideal of the subalgebra C[[h]]"). On C([n]]
introduce the I-adic filtration C[[h]] = I° D I' D I? D ... where I*, the k-
th power of I, is the ideal of the power series vanishing at 0 € b up to order
> k. Put n = dimn. Then, Theorem 6.6.12 clearly implies the following
claim.



7.4 Hilbert Polynomials and Orbital Varieties 385

Claim 7.4.6. The map x takes I';KT(n) to I"~9, for any ¢ > 0.

By the crucial dimension equality 3.3.6 we have dim (ONn) = 1/2dim O =
dimn — d, where d = dim_B; is the dimension of the Springer fiber. There-
fore the map x restricts by Claim 7.4.6 to a homomorphism

(74.7) x: KT(@©nn) - I

Next, recall our basic diagram

where p : T*B — N is the Springer resolution and 7 is the cotangent
bundle projection. Let i : B T*B denote the zero-section. Let ¥ = the
closure of p~1(0) C T*B, be our orbital variety. The projection 7 : X — B
makes £ a G-equivariant fibration over B with fiber O N n so that we get
the commutative diagram

ExGx,0Nn s T"BxGxpn <08

(7.4.8) J | J J ;

ONn¢ — 1 pt

The second row of the diagram is obtained from the first by restriction
to Ty B = n, the fiber over the base point b = our fized Borel subalgebra.
This gives the induced commutative diagram of K-groups where “res” is
the isomorphism induced by restriction:

(7.4.9)
KS(2) —Z> KO(T*B) > KO(8) 2LLL R(T) 22, C[jp]
KT@An) —2> KT(n) — KT(pt)“ R(T) 22> C[fh]]

Let Wyop, resp. Wy, denote the composition of maps in the top, resp. bot-
tom, row of diagram (7.4.9). The main point we need about this diagram
in order to prove Proposition 7.4.3 is the following result.

Lemma 7.4.10. (i) ¥, = x, see (7.4.5);
(ii) The image of Wy, is contained in I8.

Proof. Part (1) is due to claim 6.6.8, and part (ii) is immediate from (i)
and (7.4.7).
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A few general remarks are in order. Write 7 = Z° ™ for short. An obvious
isomorphism I*/I*¥*+! ~ Ck[p] yields

(7.4.11)  I*/(I**'+I*NT) ~ C*p)/CHHINZT ~ H™*(B),

where the last isomorphism is the Borel isomorphism f3, see (6.4.13). Recall
further that there is an increasing I'-filtration on K-groups, the filtration
by dimension of support, defined in 5.9. By equation (6.4.25) the cohomo-
logical Chern character maps I'n_cK(B) to @,5x H??(B). Note that the
latter space corresponds to I*/I¥* N T under the Borel isomorphism.

Proof of Proposition 7.4.3. By definition, the equivariant Hilbert poly-
nomial of a sheaf M is given by the first non-vanishing term in the Taylor
expansion of the function exp*(x,,). In the case we are interested in, the
polynomials P, are obtained this way from the structure sheaves of the
components of @ N n. Thus, in view of Lemma 7.4.10(i) and isomorphisms
(7.4.11), the Hilbert polynomials P, are the images of the corresponding
classes [0,] under the composition

(7.4.12)
KT(@n0n) = I - 14/1¢ S 14)(1* + 1°NT), d=dimB,,

where the first arrow is the map ¥,,, and all the others are natural projec-
tions.

By commutativity of diagram (7.4.9), we may replace the map ¥, in
(7.4.12) by ¥,0p. To study the latter, recall that dimX = 2n — d by 6.5.12.
We see that the isomorphism res : K¢(Z) — KT(0Nn) from (7.4.9)
composed with all the maps in (7.4.12) is equal to the composition of maps
along the top row and then along the right vertical arrows of the following
diagram.

(7.4.13)
KS(E) —2 s Tyn_K(T*B) —~—> T _sK(B) 2> 14/14n T

NN N

H(D) 2 & Hy(T'B) &, © HyB) L. & H?(B)

p<2n-d p<2n- p2d

proj 1 proj l proj l pro} 1

H(Z) —2 Hyon_a)(T*B) — > Hyna)(B) =2=— H?(B)

B8

In this diagram, D stands for Poincaré duality and H(X) stands for the top
dimensional Borel-Moore homology group of ¥, as usual. The compositions
ch. o proj of the vertical maps in each of the three left columns are
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given by the support cycle map (Lemma 5.9.4). Clearly, the above diagram
commutes. Thus, two paths from the top left corner to the bottom right
corner, the first all the way down along left vertical arrows and then right,
and the second along the top row and then along the right vertical arrows,
coincide. Combining this last observation with Lemma 7.4.10(i), and with
the commutativity of diagram (7.4.9), we deduce commutativity of the left
square in the following diagram, where i* and j. are as in (7.4.13):

(7.4.14)
KO(D) == KT(@nn) > 4 > C4fh]
auppl projl pmﬂl

e=j,0i* oD

H(E) S22 H29(B) === [4/(J%+} 4 [4 N T) == C4[})/C¢p] N T

The map p : I¢ — C¢[h] = I¢/I%*! in (7.4.14) is the projection, so that
the right square of (7.4.14) trivially commutes. Thus, the whole diagram
commutes.

Observe further that if X, denotes the irreducible component of
corresponding to A € Comp(Q N n) then, for the map res in diagram
(7.4.14), we have

res(Og,) = Op and supp(Usg,) = [E4).

By definition, for any irreducible component of A of @ Nn, the composi-
tion p o x in the top row of (7.4.14) sends O, to the equivariant Hilbert
polynomial P,. It follows by commutativity of the diagram that the com-
position in the bottom row of (7.4.14) sends the fundamental class [Z,] to
proj(Py). Observe finally that the map € = j. 0 i* o D in the diagram, com-
posed with the isomorphism H?(B) ~ H? is exactly the map assigning to
an irreducible component of ¥ a distinguished harmonic polynomial. This
proves Proposition 7.4.3. =

Proof of Proposition 7.4.4. Let ®,,,, resp. ®p,;, be the composition of
the map ¥y, resp. Wy, in the top (resp. bottom) row of diagram (7.4.9)
followed by the projection I¢ — I4/I%+' = C?[h] (thus, B}, equals the
composition of all the maps in (7.4.12) but the last one). We must show
that the subspace spanned by the polynomials

{240(O4) € C’[9] | A € Comp(ON )}

is W-stable. To that end, observe first that this subspace equals the whole
image of the map ®,,;, due to part (ii) of Theorem 6.6.12. By commutativ-
ity of diagram (7.4.9) this is the same as Image(®.,,).

To show that the image of ®,,, is W-stable, consider the Steinberg
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variety Z C T*B x T*B, and recall that
ZoT*B=T"B, ZoX =1L

Hence, convolution in K-theory makes K¢(T*B) and K°(Z) into K°(Z2)-
modules, in particular, into W-modules. Furthermore, the map j,:
KS6(Z) - KS(T*B) commutes with the K¢(Z)-action, by Lemma 5.2.23.
This shows that the first map in the top row of (7.4.9) is W-equivariant.
The second map is W-equivariant, by Lemma 7.3.31(ii). The third map is
W-equivariant by definition of the map, see 6.1.11. That last map, exp*,
is clearly W-equivariant. Thus, the composition ®;,, commutes with the
W-action, and Image(®,,,) is a W-stable subspace. =

Proof of Theorem 7.4.1. We have already shown in the course of the
proof of Proposition 7.4.4 that all of the maps in the top row of diagram
(7.4.9) commute with the W-actions. Therefore, the map ®,,, : K¢(Z) —
C?[h] is a W-map. The map ®,,, also equals the composition of maps in the
top row of diagram (7.4.14). The map reso in that diagram is completely
determined-due to Theorem 6.6.12(ii)-by its value on the structure sheaves
of the irreducible components of X. The latter project isomorphically onto
the basis of H(Z) under the support cycle map K¢(X) — H(Z). It follows
that the map ®,,, descends to a well-defined W-equivariant linear map
T : H(T) — C4[h).

Next, we use the W-stable direct sum decomposition C[h] = H & Z (see
section 6.4) and write @ as the sum of two W-maps

$=9,+9, &, :H(E)—-H, & :HE)—-CHNI.

To analyze the map ®,, observe that, by definition, projo &, = 0, where
proj : C4[p] —» C2[h}/C%[h] N I. Hence, proj o ¥,,, = projo d = projo ¥,,.
Therefore, Proposition 7.4.3 yields projo ®, = projo e. But the projection
proj restricted to the subspace H? becomes an isomorphism. Thus we get
d, =
To study the map & we compose it with the isomorphism ¢:

H(B,)°“® S5 H(X) of Proposition 6.5.13, where C(z) stands for the com-
ponent group of the centralizer of z in G. This way we get a map
@ =¢od, : H(B,)°® — C4[b) NZ™ . Since the map ® is W-equivariant,
it follows that @, is W-equivariant. Therefore, its image is a W-stable sub-
space in C4[p)NZ""" isomorphic to the irreducible representation H(B,)°),
corresponding to the trivial representation of C(z). But the graded space
factorization C[h] ~ C[h]" ® H shows that the simple W-modules appear-
ing in the decomposition of C?[h) N Z are only those that occur in H*, for
some ¢ < d with non-zero multiplicity. By Corollary 6.5.3, the representa-
tion H(B,)°® never occurs in H* for i < d. Hence the map ®, vanishes.
Thus, ®, = 0, and we obtain ® = &, = €. The theorem follows. =
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7.5 The Hecke Algebra for SL,

Before proving Theorem 7.2.5 in the general case, we consider in more
detail the special case G = SL,(C). Let T be the standard maximal torus,
the group of (2 x 2)-diagonal matrices with determinant 1, and B the Borel
subgroup of (2 x 2)-upper triangular matrices with determinant 1. The

group Hom , (T,C*) is isomorphic to Z with the generator chosen to be
the homomorphism

t 0 -
(7.5.1) w: (0 t“) -t

the dominant fundamental weight of SL,(C) with respect to the geomet-
ric choice of positive roots, see 6.1.9. We write the group Hom ,, (T, C*)
additively, so that any element of the group is of the form

A=mu:(t 0)—-)t'" , NEL

aly

0 t!

Let X = e“ denote the element of the group algebra Z[P] = R(T) corre-
sponding to w. Thus R(T) = Z[X, X"}].

The group SLy(C) acts transitively on C2?\ {0}, by linear transforma-
tions. The isotropy group of the vector (;) is the subgroup U of upper tri-
angular unipotent matrices in SLy(C). The subgroup B stabilizes the line
spanned by ((l,) Thus, there are natural SL,{C)-equivariant isomorphisms:

(7.5.2) G/U~C2\{0} , B=G/B=P{C?=P.

Observe further that there is a T-action on G/U on the right. An
element t = ([,%) € T acts by the assignment ¢ : g- U — g -¢-U. This
action is well defined, since the torus T normalizes U. The right T-action

clearly commutes with the standard left G-action.

Lemma 7.5.3. For any t € C*, the right (O‘t_o,)-actz’on on G/U corre-
sponds by means of isomorphism (7.5.2) to the standard t-action on C?\ {0}
by dilations, i.e., the action t : (z1,25) — (t- 21,t - 22).

Proof. Note that G-actions on G/U and C?\ {0} are transitive and both
T-actions commute with the G-action. Hence it suffices to show that the
two T-actions correspond on a single vector, say the base vector (). But in

that case we find
t 0\ (1Y _(t\_,. [
0o t1) \o) o)™ o) "™

Recall that O(n) denotes the line bundle (invertible sheaf) on P! whose
germs of sections are regular homogeneous functions of degree n on open
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C*-stable subsets of C?\ {0}. On the other hand, to any weight A: T — C*
we have associated in section 6.1.11 a canonical line bundle Ly on B = P*.

Lemma 7.5.4. For any weight n € Z, there is a natural G-equivariant
isomorphism Ly, ~ O(n).

Proof. A germ of a section of L, may be viewed, see (6.1.12), as the
germ of function f on G/U such that, for any t € T and g € G, we have:

flg-t-U)=(mw)t)"- f(g-U)=t"-f(g-U).

This equation translates, by means of the isomorphism (7.5.2) and Lemma
7.5.3, to the condition that f is homogeneous of degree n on C?\ {0}. =

We now discuss the Weyl Character Formula 6.1.17 for G = SLy(C).
First note that in this case we have W = Weyl group = Z/2. The constant
map p : P! — pt induces a morphism of equivariant K-groups: p. :
KS(P') — K¢(pt). The generator of the Weyl group Z/2 acts on R(T) =
Z[X,X '] as the involution X < X~!, and we identify KC(pt) with the
subring stable under this involution. Then in our special case Corollary
6.1.17 reads

Lemma 7.5.5. For any integer n € Z we have

xntt X—(n-H) w
p.(’)(n) = ——X—:Y:T— € R(T) .

Proof. Although the result is a special case of Corollary 6.1.17 it is
instructive, we believe, to give here a direct argument. Since dim P = 1,
for any coherent sheaf F on P!, we have H(P!,F) = 0, for all i > 1, see
[Ha]. Therefore, for F = O(n) we find

p.O(n) = H'(P!,O(n)) — H' (P!, O(n)) € R(T),

and we have only to compute the two cohomology groups on the right.

The space H*(P!, O(n)) consists by definition of homogeneous algebraic
regular functions on C? \ {0} of degree n. Observe that there are no non-
zero regular homogeneous functions on C? \ {0} of degree n < 0. To see
this, view such a function f as a holomorphic function. Then, since the
origin in C? is a codimension 2 subset, the function f can be extended to a
holomorphic function on the whole of C?, due the the removable singularity
theorem. But clearly, a homogeneous function of negative degree cannot be
regular at the origin. Thus, we get

(7.5.6) H°(P,0O(n)) =0 ifn<0.
The second thing that we use is Serre duality, cf. [GH]:
(7.5.7) H'(P!, O(n))* =~ H°(P',Qp ® O(~n)) = H'(P*,O(-n - 2)).
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Formulas (7.5.6) and (7.5.7) combined together show that the group
H'(P!,O(n)) vanishes for all n > 0. Furthermore, the class H°(P!, O(n)) -
H'(P',0(n)) only changes sign under substitution n — —n ~ 2, due to
Serre duality (7.5.7). If, in particular, n = —1 then both cohomology groups
vanish. Thus everything is reduced to computing the class H°(P!, O(n)) €
KC¢(pt) forn > 0.

Any regular homogeneous function on C? \ {0} of non-negative degree
is a polynomial (see [Ha] or note that it is an entire holomorphic function
on C? of polynomial growth). Hence, for n > 0, the space H°(P!,O(n)) is
the vector space of homogeneous polynomials of degree n in two variables
21, 2. The monomials 2} - 23~ ,i = 0,1,... ,n, form a weight basis of this
(n + 1)-dimensional vector space. The torus T acts on 2z; and z, by means
of the weights —w and +w respectively. Hence a monomial zi - 23~* has
weight —iw + (n — i)w = (n — 2i)w . Therefore the class of H°(P!, O(n)) in
R(T) = Z[X, X '] is represented by the element

X—(n+1) — X+l
Xn+Xn—2+”.+X2—n+X—n=__)(_~_l_T_. -

From now on set P = P!. There are two G-orbits of the diagonal action
on P x P. The first one is P4, the diagonal copy of P in P x PP, the closed
orbit, and the second one is Y’ = (PxP) \ P, , a Zariski open subset in PxP.
Thus, the Steinberg variety Z consists of two components Z, = Tg, (P x P),
and Zy = T3(P x P) = T3, p(P x P) = zero-section of T*(P x P). Thus the
projection 7, : Zy — P x P is an isomorphism.

Let p,p/p be the sheaf of relative 1-forms along the projection to the
first factor P x P — P. Put @ = 7, Q},p/p, & sheaf on Zy C T*(P x P).
Further, for an integer n we set O0,, = 7% O(n) where 7, : Zpo — Pa is the
natural projection.

Recall now that the affine Hecke algebra H for SLy(C) is an associative
C[g, ¢ !]-algebra on 3 generators, T, X and X! subject to the relations

(7.5.8) T+1)(T-¢)=0, X-X'=X1.X=1,

(7.5.9) and T -X'-X.T=(1-¢)X

where T is the unique generator of the subalgebra Hy, the finite Hecke
algebra.

Write ¢ = —(T' + 1) € H. Note that the set {c,X, X!} also generates
H, and the relations (7.5.8) and (7.5.9) can be written

(7.5.10) A=—(g+1)c, X '-Xe=gX-X""
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Our aim is to construct an algebra isomorphism
(7.5.11) H S K6%¢(2),

where the algebra structure on the right hand side is given by convolution,
see 5.2.20.

As a first step towards constructing the isomorphism (7.5.11) we define
a map

0:{¢,X,X '} - KC(2)
by the following assignment
Xm0, X'w(0], c—[qQ),
where ¢ € R(C*) as in 7.2.3.

Theorem 7.5.12. The map © can be eztended to an algebra homomor-
phism © : H — K6%C°(Z), that is, the following relations (cf. (7.5.10))
hold in the algebra K€% (2):

(7.5.13) (4Q)*(qQ) =—(g+1)qQ, and

(7.5.14) (¢Q)*01—0_1%(qQ)=¢0_1 -0, 0,%x0_; =0,.

Proof of Theorem 7.5.12. If pr, : P x P — PP is the second projection,
then by definition we get

Q = W:prp/p = Qll’xP/P = pr;Q,}, = Op ® Qil, .

It will be useful for us, in order to perform convolution computations, to
know the class of @ in the K-group of P x T*IP, where Q is viewed as a
sheaf supported on the subset P x T3P ~ P x P. To that end, write

P<=T"P

for the zero section and vector bundle projection respectively. We have the
Koszul complex

(7.5.15) 0 — Op.p — T Qp — . — 0,

given by viewing 2} as a sheaf, sitting on the zero section of T*P. Tensoring
with Op we obtain the resolution

(7.5.16) 0 OpROp 5 OpRT*QL — Q- 0.

The differential § in the Koszul complex is a linear function along the
fibers, hence is not a morphism of C*-equivariant sheaves. We may restore
C*-equivariance of the above complex by tensoring Op ® Or.p with the
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character ¢~! € R(C*), normalized as in (7.2.3). This way, we obtain the
following equality in K¢*¢" (P x T*P)

(7517) qQ =q- (0]? ® W‘Q:’) - Op & OTop.

We can now compute the convolution ¢Q * ¢Q in K-theory, using (5.2.29)
and the above equation as follows:

qQ*qQ = (q'(?rﬁﬂ'ﬂ}»—(?r@@r p) * (q0p B Q)
708, Op)Op B QL — (Orp, Op) - qOp R QL

q-(m
7 (0.%) - (g9) — (p.0p) - ¢Q
7' (7.0p(-2)) - (¢Q) — (p.Op) - ¢Q=—(¢+1)q Q,

where p : P — {pt} is the projection and in the last equality we used
Lemmas 7.5.4 and 7.5.5 to find p.Op(—2) = —1 and p.Op = 1. This proves
7.5.13.

To verify (7.5.14), we first transport this equation from K¢*€*(Z) to a
more easily computable K-group. To that end, consider the maps

ZEPXTP PP,

where 7 is the restriction to Z of the natural projection T*P x T*P == i

P x T*P and i = idx (zero-section). We now apply Corollary 5.4.34 to the
vector bundle E = T*B and M = B. It is implicit in the statement of that
Corollary that the map

® :=i*7, : K9 (2) - K€ (P x P),

is an algebra homomorphism. Moreover, it will be shown in the next section
(see proof of 7.6.7) that this homomorphism is injective. Thus to verify
(7.5.14) it suffices to prove the following equality in KX (P x PP):

(7.5.18) ®(qQ) * (0;) — B(O-1) * ®(¢Q) = ¢®(0O-,) — B(O,).

This equation is much easier to handle than the original equation (7.5.14)
because we know by the Kiinneth formula that

KGxC’ (P X IP) = KGxC‘ (P) ®R(ch‘ KGxC‘ (]P’) ,

so that we have only to present explicitly each side of (7.5.18) as an element
of K9 (P)®rxcr) K€" (P).

To that end, write O, (n) for the direct image of the sheaf O(n) under
the diagonal embedding A : P — P x P. Using 7.5.17 one verifies immedi-
ately that we have

©7.(9Q) =qORO(-2) -ORO , 7#.(0n) = Oa(n), Vne Z.
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Recall the general fact that, for a sheaf £, supported on the diagonal
Pp, C Px P and F € K (P x P), we have the general equalities, see
Corollary 5.2.25, F « Lo = pryLa ® F and Ly x F = prila ® F, where
pr; : P x P — P stands for the projection to the i-th factor. Thus we find

(7.5.19) LHS of (7.5.18) =1*7,(qQ) * Oa(1) — Oa(-1) ¥1*7,(¢Q) =
=q0RO(-1)-O0ROQ1) - qO(-1)RO(-2) + O(-1) R O.
To compute RHS of (7.5.18) resolve the sheaves Oa(£1) by locally free

sheaves on IP x IP. For this we use Beilinson’s resolution (5.7.4), which in the
special case of P = P! yields

(7.5.20) 0-0-1)RN(1) 20RO —>0,—0

To get a resolution of Os(+1) we tensor the above exact sequence by
O(%1) on the right hand side and note that Q! = O(—2). Thus we obtain
exact sequences:

0— O(-1)RO(~2) » ORO(~1) = Oa(~1) = 0
0> O(-1)RO - ORO(1) - Oa(1) — 0.

This yields the following equality in K¢*¢" (P x P):

(7.5.21) qOa(~1) — Oa(1)
= qORO(-1) - qO(-1)RO(-2) - OB O(1) + O(-1) R O.

Comparing the RHS of (7.5.19) with the RHS of (7.5.21) we see that
(7.5.18) is indeed an equality in K¢*¢" (P x P).

Proving the second equation in (7.5.14) is trivial and is left to the reader.
This completes the proof of the theorem. =

‘We now prove

Theorem 7.5.22. The algebra homomorphism © : H — K¢*€*(Z) is an
isomorphism.

Proof. Write Hy C H for the subalgebra of H generated by X and X~
Then by construction we see ©(Hy) C K¢*C°(Z,). Furthermore, it is easy
to see that the map © is nothing but the composition of the following
natural isomorphisms, see (7.2.4)

H, S R(T)[g,q7"] ~ K& (P) ~ K (Z,)

where the first one sends e* — e~*. Hence © maps H, isomorphically onto
KG&x¢ ( ZA)
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Observe next that the Cellular Fibration Lemma 5.5 applied to Z yields
the short exact sequence of R(G x C*)-modules:

(7.5.23) 0 — KC*€(Z,) = K%' (2) = K (T3 (P x P)) — 0.
By the Thom isomorphism Theorem 5.4.17 we have the isomorphisms
K€ (Ty (P x P)) ~ KC*C'(Y) ~ K€ (P).

By 5.2.16 and 5.2.18 respectively we have K¢*C'(P) ~ R(B x C*) ~ R(T x
C*), so that it is clear that K> (Ty (P x P)) is a free R(T x C*)-module
with generator [Or; (pxp)]- Thus, from (7.5.23) we deduce an isomorphism

K®%C(Z2)/K®*€(Z5) ~ R(T x C*).
This shows that the induced map
(7.5.24) © : H/Hy — K% (2)/K®*C"(Z2,) ~ K% (T3 (P x P)),

sends T to u - [OT;,(PxP)], where u is an invertible element of R(T x C*).
Hence, (7.5.24) is an isomorphism (of free R(T)-modules of rank 1). Since
H, ~ K¢*€(Z,) we deduce, by Proposition 2.3.20(ii), that the map © is
itself an isomorphism. =

7.6 Proof of the Main Theorem

This section is entirely devoted to proving Theorem 7.2.5, i.e., to construct-
ing an algebra isomorphism © : H> K4(Z), where A = G x C*, and Z
is the Steinberg variety, see 3.3. As in the G = SL,(C)-case, worked out in
the previous section, we begin with defining the map © on generators. Let
S be the set of simple reflections in W, the Weyl group. Observe that the
Z{q,q "]-algebra H is generated by definition by the following set

S={e*| e P}U{T,|s€ 8} c H.

We construct a map © : § — K*(Z) as follows. The assignment e* —
©(e*) is given, up to sign, by isomorphism (7.2.4). In more detail, to any
A € P we have associated a canonical G-equivariant line bundle Ly on B.
Identify B with the diagonal By C Bx B. Let 7, : Za ~ T3, (B x B) — By
be the natural projection (cf. 7.1). Set O, = 7y L. Thus O, is a line bundle
on Za which comes equipped with a natural G x C*-equivariant structure.
Thus, we may view O, as an G x C*-equivariant sheaf on Z supported on
Za C Z.

Next, for each s € S, let Y, C B x B be the corresponding G-orbit. We
observe that the closure, Y, = Y, U B,, is a smooth variety, fibered over B
by means of the first projection ¥, < B x B — B with 1-dimensional fibers
isomorphic to the projective line P'. Denote by 02}, ,e the sheaf on ¥, of
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relative 1-forms with respect to the first projection. Further, the conormal
bundle =, : T3 (B x B) — Y, is a smooth irreducible component of Z.
Set @, = 'n';Q%,. ;- The sheaf Q, comes equipped with a natural G x C*-
equivariant structure. We now define the map © : S — K#4(Z) by the
following assignment (which agrees with the definition of © given in the
previous section in the special case G = SL,y(C)):

(761) e —[0.], T,— —([gQ)+[0]), (AePseb).

Our first task is to show that (7.6.1) can be extended to an algebra
homomorphism H — K4(Z), i.e., that the above defined elements ©(u) €
KA(Z),u € S, satisfy all the relations that hold for the w’s in H. It is
rather difficult to verify the relations among the ©(u)’s directly, as we did
in the SL,-case, so we will adopt the following strategy. We will construct
a C-vector space M and we will define an action on M of both the algebra
H and the algebra K4(Z). These actions make M an H-module as well as
an K4(Z)-module, i.e., give rise to algebra homomorphisms

pr:H—-EndcM |, py: K4(Z) - EndcM.

We first show that M is a faithful module with respect to each of the
two actions, that is, the above homomorphisms are both injective. We then
prove, by a direct computation, that for any u € S, the u-action on M and
the ©(u)-action on M are given by the same operator, in other words that
p1(u) = p2(O(u)). This clearly implies, due to the faithfulness of the two
actions, that the elements ©(u) € K4(Z), u € S, satisfy all the relations
that hold for the u’s themselves.
To construct the vector space M we need an

ALGEBRAIC DIGRESSION. Set e =Y ,cw Tw € Hyw C H.

Lemma 7.6.2. (1) The assignment T, — ¢“*) eztends by Zlg,q7'}-
linearity to an algebra homomorphism

€: Hy — Zlg,q7Y).

(2) For any a € Hy we have the equation a-e = €(a)e=e-a.
(3) H - e is a free R(T)|q, q~]-module with generator e.

Proof. It is immediate to check that the assigment T, — ¢, 8 € § is
compatible with relations 7.1.1(i)-(ii), hence extends to an algebra homo-
morphism Hy — Z[g,q!]. Then, for any element w € W, given a reduced
expression w = 8; -...- s; we have T, = Ty, - ... - Tj,, and hence the ho-
momorphism takes T, to ¢* = ¢“*). This is exactly the formula of part

(1).
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To prove (2), fix s € S and observe that we have a decomposition
W =W'uW", where

W' = {weW| {(w)={(s) + {(sw)},

W' = {veW| £(sv) ={s)+£(v)}.
Thus for w € W', we can write w = sw' where w’' = sw, and f(w) =
£(s) + £(w'"). Hence T, = T,T,,. Using the relation T? = (¢ — 1)T, + ¢, see
7.1.2(a), we rewrite this as T,T,, = (¢ — 1)T, + qT. Likewise, for v € W*,
we have T,T, = T,,. Note that y € W’ & sy € W". Now we calculate

Te=T,- Y T,= Y TT.,+ Yy LT,

weWw weW' veEW!
= z ((q—' I)Tw+qu') + Z Tw
wew’ vEW"
w=sw’
=) qT,+ Y qTw=gq-e
weWI wler/

This gives the first equality in (2). The second equality in (2) is proved
similarly.

To prove part (3), recall that the elements {e*T,,, A € P, w € W}
form a Z[q,q™']-basis for H. It follows that the elements {¢*e, A\ € P},
are Z[q, ¢~*}-linearly independent. On the other hand, it is immediate from
part (2) that these elements span the Z[g,¢7!}-module H-e. =

Let H-e C H be the left ideal in H generated by the element e.
Thus, H - e has a natural left H-module structure. Furthermore, Lemma
7.6.2(1)-(2) implies that the map u ® 1 +— u - e gives rise to a well-defined
homomorphism Ind}f, e — H-e, where Ind}{ e = H®, ¢ is the induced
module. Part (3) of the same lemma shows that this homomorphism is
bijectitive. Thus we have an H-module isomorphism

(7.6.3) H:e~Ind} e

The space H - e is the vector space M we have mentioned earlier while
sketching the strategy of the proof. The H-module structure on H-e clearly
gives rise to an algebra homomorphism

(7.6.4) Py H — End z[q,q-ll(H : e).

The next step is to construct a K4(Z)-action on the same vector space.
Recall that the geometric meaning of the variable g was explained in 7.2.3,
so throughout we keep the convention that ¢ € R(C*) is as in 7.2.3. The
crucial role in relating the algebraic construction above to geometry is
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played by a Z[g, g~!)-module isomorphism given by the composition

(165 KAT'B) 3 KAB) S RT)aq) 5 oo

where the map Th is the Thom isomorphism, the map a is the canonical
isomorphism, cf. (6.1.6),

KA(B) = K®€(G/B) ~ K®*“(pt) =~ R(T xC") = R(T)(g,q7"],

and the map (3 is given by the assignment e* — e~ - e, A\ € P, which is an
isomorphism due to Lemma 7.6.2(3).

Further, in the setup of section 5.4.22 put M; = M, = B and E; =
E, = T*B. Observe that the natural projection id x v : T*B x T*B —
(T*B) x B becomes a closed embedding when restricted to the Steinberg
variety (this is obvious if Z is viewed as the variety of triples, see the second
formula at the beginning of §3.3). Hence the assumption 5.4.24 holds for
the Steinberg variety Z. The construction of that section yields a K4(Z)-
module structure on K4(T*B), that is, an algebra homomorphism

(76.6) pT‘B . KA(Z) — End R(A)(KA(T‘B)).
We now make the following claims whose proofs will be delayed.

Claim 7.6.7. The homomorphism p,., in (7.6.6) is injective, i.e., K4(T*B)
is a faithful K4(Z)-module.
Now, isomorphism (7.6.5) induces an algebra isomorphism
)
End z[q,q-qKA(T'B) 5 End zjg-H - €
and we have
Claim 7.6.8. The following diagram (with the exception of the dashed
arrow) commutes:

P

S > H Y > End z[q,q-l](H . e)

N |

KA(Z) 225 End g0,y KA(T*B)

From these claims we obtain the following result.

Proposition 7.6.9. The map © in the diagram can be uniquely extended
to an algebra homomorphism H — K#(Z) that makes the above diagram
(including the dashed arrow) commute.
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Proof of the Proposition. Let T(S) be the free associative Z[q,q!}-
algebra generated by S, that is the tensor algebra on the free Z[g,q ']
module with base S. The universal property of free algebras ensures that,
for any Z[g,q']-algebra B and any map S — B, there exists a unique
algebra homomorphism T'(§) — B extending that map. In particular,
there is an algebra homomorphism 6 : T(S) — K4(Z) that extends
the map (7.6.1) and a homomorphism 7 : T(S) — H that extends the
tautological embedding S — H. The homomorphism 7 is surjective, since
the set S generates H. Hence, proving the existence of the dashed arrow
in the diagram amounts to showing that © vanishes on Ker (T'(S) — H).
To that end, assume a is in the kernel of T(S) — H. Then 7(a) = 0,
hence, @ o p, 0 7(a) = 0. By Claim 7.6.8 we obtain p,., 0 ©(a) = 0. Now,
the injectivity of p,.,, ensured by Claim 7.6.7, yields é(a,) = 0 and the
proposition follows. m

The proofs of Claims 7.6.7 and 7.6.8 will be postponed until the end
of this section. We first prove the following result, which is a more precise
version of the main Theorem 7.2.5.

Theorem 7.6.10. The algebra homomorphism © : H — K4(Z) con-
structed in Proposition 7.6.9 is a bijection.

The strategy of proof of Theorem 7.6.10 is quite similar to the argument
used in the proof of Theorem 7.2.2. We recall that we have fixed a total
linear order on W extending the Bruhat order, see 7.3.8. Write Y,, for the
G-diagonal orbit in B x B corresponding to w € W. We have an A-stable
filtration of Z indexed by the elements of W

Zgw = Uygu Ty, (B x B).

The following analogue of Lemma 7.3.9 follows from the Cellular Fibra-
tion Lemma 5.5.

Lemma 7.6.11. (1) The natural maps K4(Z¢,,) — K4(Z) induced by the
embeddings Z¢,, — Z are injective and their images form a filtration on
KA(Z) indezed by the set W;

(2) For any w € W, the restriction to the open subset Ty, (B x B)
— Z¢y induces an isomorphism

K*(Z<u)/K*(Z<w) = KA(T3, (B x B)).
Moreover, the RHS is a free R(T x C*)-module with generator [Or; (8x8)]-

Similarly, on H we introduce a filtration Hey, w € W, setting He,,
to be the span of the basis elements {€’T, | A € P,y < w}. Clearly
Hg, C Hg, whenever y < w and Hg,,/Hc, is a free left R(T x C*)-
module with generator T,.
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Proposition 7.6.12. We have

(1) The homomorphism © : H — KA4(Z2) is filtration preserving, i.e.,
for any w € W, we have ©(Hg,) C K*(Z<,); Moreover,
(2) for any w € W the induced map

© : Hey/Hey, — K4(Z<,)/K*(Zew) ~ KA(T} (B x B))

takes T, to ¢, - [OT;u(ng)], where c,, is an invertible element of
R(T x C*).

We note at this point that part (2) of Proposition 7.6.12 implies that
the associated graded map gr ©: H — gr K4(Z), corresponding to the
above defined filtrations, is an isomorphism of R(T x C*)-modules. Hence
Proposition 7.6.12, combined with Proposition 2.3.20(ii), yields Theorem
7.6.10.

To prove Proposition 7.6.12 we first make a few general remarks con-
cerning composition of sets.

Let M be a manifold, and Y C M x M a subset. There are two maps
Y — M by means of the two projections M x M 2 M, i =1,2. Given two
subsets Y}, and Y23 of M x M one may form a fiber product

Yi2 x,, Yas = {(¥12, Y23) € Y12 X Ya3 | pa(912) = p1(y23)}.

Explicitly, writing y12 = (m;, m;) and ya3 = (m4, m3), we have
Y2 %, Yoz = {(m1, mg, m3, m3) | ma = ma}.

Let p, : M x M x M — M x M denote the projection along the factor
not named. Then the map (m;, ma, mj, m3) — (my, mz, m3) gives a natural
isomorphism

(7.6.13) Yz x, Y = p!(Yi2) N p;'(Yas) € M x M x M.

On the other hand we have defined, see (2.7.6), a subset Yj3 0 Y3 C
M x M. By definition, Y}, o Yz3 is the image of the projection p,, :
p;'(Yi2) N p;'(Yas) = M x M. Using (7.6.13) we may view this projection
as a map Yj; X,, Ya3 — Yjp 0 Yo3. More generally, given several subsets
Yia, Yo3,... ,Yeo16 C M X M, we have a natural surjective map

(7614) le XMY'23 Xpg oo XMYk—l,k - },12°y§3°--'°)/k—1,k-

We now turn to the case M = B, the flag manifold. Fix an element
w € W and a reduced expression, cf. 7.1, w = s;-...-8,, 8; € S. Recall that
each of the varieties Y,, is smooth and the fibers of ¥,, — B, with respect
to either of the projections B x B — B, are isomorphic to P!. It follows that
Y,, xgY,, x -+ x, Y,, is a smooth compact variety. On the other hand one
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finds, computing the set-theoretic composition (see 2.7), that
(7.6.15) Y, 0.--0Y, =Y,.
Further, one has the following well-known result [Dem].

Proposition 7.6.16. (Demazure resolution) The natural projection
(7.6.14)

p: }_’,l Xg X oo X, l_/h —» 17,,'o-~~ol7," (7.8.15) Y,
gives a resolution of singularities of Y, (i.e., is birational and proper).
Moreover, it induces the isomorphism of Zariski open subsets

p:Y, Xy x o x, Y, SY,.

We remark that the first claim of the proposition can be easily proved
by induction on the Bruhat order.

Proof of Proposition 7.6.12. Fix some w and choose a reduced de-
composition w = s; - ... - s,. Clearly, each Ty (B x B) is a smooth ir-
reducible component of the Steinberg variety Z. Hence, the composition
T{;.l (BxB)o:--o T3, (B x B) is a closed subvariety of Z. Observe further
that the natural projection T*(B x B) — B x B commutes with the com-
positions of subsets in T*(B x B) and B x B, respectively. It follows easily
that, set-theoretically, we have

(76.17) Ty, (BxB)o---oTy, (BxB) =Ty, (BxB) UV,

where V C Z., is a closed subset. In particular, the LHS belongs to Z,,.
Hence, in the notation of (7.6.1), we get supp(Q,, * - * Q,,) C Z<y,
so that in K-theory one has [Q,,] *--- % [Q, ] € K#(Z,). Thus, for any
A € P, formula (7.6.1) yields

O(e*) xO(T,,) * - x O(T,,.) € KA (Z<w).

On the other hand, the multiplication rule 7.1.2(b) for the Hecke algebra
H yields T,, - ... T, = T,, since £(s;) + --- + £(s,) = £(w). The map
© : H — K4(Z) being an algebra homomorphism, we obtain 6(e’T,) =
O(e*) x O(T,,) x--- x O(T, ) € K*4(Z<,,), and part (1) of the proposition
follows.

To prove part (2) note first that by (7.6.1), we have

(7.6.18) o(T,)]

- = Qa-
TY.‘ (BxB) i

is a line bundle on Ty, (B x B).
Next put wy = 81, we = 8;-83,...,w, = 8;-...-8, = w. For each
1 <j < rclearly, wy = sy-...-83; is a reduced expression for w;.
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Proposition 7.6.16 shows that, for any j = 1,2,3,...,7 — 1, the varieties
Y1 =Y,, and Y; = Y,,,, satisfy the assumptions of Remark 2.7.27(ii).
Write pr, (T‘B)'“‘1 — T*(B x B) for the natural projection to the
(4,5 + 1)- factor, and put Z; = pr; +l(Ty (B x B)). The repeated use of

Remark 2.7.27(iii) yields an isomorphism
(7.6.19) ZN2N...02, 3Ty (BxB),

and implies, moreover, that the intersections on the LHS of (7.6.19) are
transverse. Let @,, denote the direct image of the sheaf pr;,,, Qs under the
embedding Z; — (T*B)™+!. It now follows from (7.6.18) and the definition
of convolution that under isomorphism (7.6.19) we get

[O(Ty,) *O(T,,) % - - - * @(Ta,)hr;w(sxa) = [Qs,] ®...8 [Qa,] .

The RHS represents the class of a line bundle on Ty, (BxB). This completes
the proof of part (2) of the proposition. =

The rest of this section is devoted to proving Claims 7.6.7 and 7.6.8.
Recall that the projection T*(Bx B) = T*Bx T*B '3 (T*B) x B becomes

injective when restricted to the Steinberg variety Z C T*(B x B). Thus we
get the following natural embeddings

AN (T*B) x B <10 B x B, i = (zero section) x id g

We introduce the following expanded version of the diagram of Claim
7.6.8.

(7.6.20)
H—2 .~ End(H-e)
incl
ST . KA(Z) 28> En dKA(T* =22 End R(T)[g,¢7"]

o 1” | /

KA(B x B) 22> End KA(B)

The maps Th, a and 3 on the right of the diagram arise from the corre-
sponding isomorphisms (7.6.5). This part of the diagram is just a more
detailed definition of the isomorphism ® in Claim 7.6.8. The rectangle
at the bottom of the diagram comes from Lemma 5.4.27. Thus there are
three paths in the diagram starting at S on the left and ending up at.
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Endz¢-4 (R(T) lq, q"]) on the right. They are given by the compositions

(76.21) ¥, =pPopyoinc, ¥y=aoThop,., 00,
‘I’3=00p30;‘_-7:¢09.

Using the notation above, Claim 7.6.8 amounts to the equation ¥; = ¥,.
By Corollary 5.4.34 we know that the rectangle at the bottom of diagram
(7.6.20) commutes. This yields ¥5 = ¥3. Thus, it suffices to prove that
¥, = ¥;. The strategy of the proof of this last equation is based on a
reduction from G xC*-equivariant K-theory to T'x C*-equivariant K-theory.

Fix a point b € B. Let B be the Borel subgroup corresponding to b
and T C B a maximal torus. Identify B with G/B (using the choice of
B) and view B x B as a G-equivariant fibration over G/B by means of
the second projection. Restricting to the fiber B of this fibration over the
base point 1 € G/B gives an isomorphism K¢(Bx B) ~ K2(B), see 5.2.16.
Composing it with the reduction isomorphism K2(B) ~ K7(B), see 5.2.18,
one obtains an isomorphism

(7.6.22) res: K¢(Bx B) = KT(B).
Further, let B = UyewB,, be the Bruhat cell stratification by B-orbits.
Let Zy := Uwew Tg B C T*B be the fiber over {b} of the composition

z < (1B)xB 2 B.
We have the following commutative diagram

(7.6.23)
z 3, (T"B)xB<3_OBxB

p

2. B G/B

Zy x {b}Ls (T*B) x {b} ~—OB x {b} 2> {b} ==1-B/B

All the varieties in the top row of the diagram are fibered naturally over B
by means of the second projection pr,, and the corresponding varieties in
the second row are obtained as fibers of those fibrations over the base point
b € B. The fibrations being G x C*-equivariant, the above diagram induces,
as in (7.6.22) (by the induction property 5.2.16 and the identification
B = G/B given by the base point b), the following commutative diagram
of K-groups:

KOxC(2) 255 K6xC (B x B) === KE(B x B)[g,qY]
(7.624) oo

res

res

i*oj.

KTxC(Z,) —> KT*C"(B) =—— KT(B)(q,q"}]
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In this diagram one writes B instead of T first and then replaces B by a
maximal torus ' C B by the reduction property 5.2.18. Thus the vertical
isomorphism res in the middle is essentially the isomorphism (7.6.22).

Proof of the Injectivity Claim 7.6.7. By 5.4.27 we have, see (7.6.20),
aoThop,., =a0p,01],.
Since a is an isomorphism, it follows that
Tho py., = py 0 TJ.-

It is clear that p,., is injective if and only if so is Th o p,,,, since
Th is the Thom isomorphism. Further, the Kiinneth theorem for the flag
variety 6.1.19(b) implies that pg is injective. Thus, to show that p,., is
injective it is enough to prove that i*j, is injective. Using commutativity
of (7.6.24) we see that proving the injectivity claim reduces to showing
injectivity of the composition

(7.6.25) i*5. : KT%€(2,) &5 KT*¢ (T°B) £ KT*¢ (B),

For this we apply the Localization Theorem in equivariant K-theory.
Choose a complex number z # 1 and set a = (1,2) € T x C*. Write
KT*€ (o), for the K-groups localized at the maximal ideal in R(T x C*)
corresponding to a. The maps (7.6.25) induce the corresponding maps of
the localized groups

(7.6.26) ], : KT¥C'(Z,), 25 KT*C(T°B), - KT*C'(B),.

Observe that each K-group in (7.6.25) is a free R(T x C*)-module (this
follows from the Cellular Fibration Lemma, see 6.2.8), hence any morphism
between these modules which is injective under localization is itself injec-
tive. Thus, we must only prove that both maps in (7.6.26) are injective.
Consider the cartesian square of G x C*-equivariant morphisms given by
the left diagram below:

Z, 1 . T8 Z, =——(T"B)’

| |

(7.6.27) iz i
ZyNB— s (Zb n B)u = 3¢

i

where the vertical map iz : Z, N B Z, is viewed as being induced by
the embedding ¢ : B—T*B of the corresponding smooth ambient spaces
given by the other vertical arrow of the square. We apply the Localization
Theorem for cellular fibrations 5.10.5 in this situation. The theorem says

that the composite map in (7.6.26) gets identified, by means of restriction
to the a-fixed point sets, to the map i* : KT*C*(Z;), — KT*¢ (Z, NB"),.
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The latter is the restriction with supports corresponding to the fixed-point
cartesian square on the right of (7.6.27). But the a-fixed point sets in the
four varieties are all the same:

Z,=(T"B)' =B"=2Z,nB".

Thus, the map i* for the fixed point sets is an isomorphism, and Claim
7.6.7 follows. ®=

We begin proving Claim 7.6.8 with some preparations that will facilitate
an explicit computation of the operators p,.,(©(u)), v € S.

Recall that we have fixed T € B C G. Compose the natural “forgetful”
morphism K¢(B) — KT(B) with the duality pairing (5.2.27) to define a
morphism “tr” as the composition

tr: KT(B) ® K°(B) —» K™(B)® KT(B) “~ R(T).
The result below provides a technical tool for computing the convolution

action K¢(B x B) ® K¢(B) = K°(B).

Lemma 7.6.28. The following diagram, where the isomorphism res is
given by (7.6.22), commutes

KS(B x B) ® KS(B) —— KS(B)
res®id

KT(B) ® K¢(B) —— R(T).

(6.1.6)

Proof. Recall the isomorphisms (6.1.19)(a) and (6.1.22)(a):
K®(B x B) ~ K°(B) ®,,, K°(B) and KT (B)~ R(T) ®r) K°(B)
Using these morphisms the diagram of the lemma can be written as
(K(B) ®pc, K°(B)) ® K°(B) — K°(B)
#®id ®id 11 ¢11
(R(T) ® e, K(B)) ® K(B) —— R(T),
where ¢ is the canonical isomorphism 6.1.6. Let F1, 7>, G € K¢(B). Writing

R to distinguish external tensor product from the tensor product in K-
theory we find:

¢(FrBF2) x G) = ¢(F1 - (F2,9)) = 6(F1) - (F, G)
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and also

tro(¢®id ®id)(FiRFRG)
= tr(¢(F1) - (F2BG)) = ¢(F1) - tr(F2 ® G) = ¢(F1) - (F2,G) -

Thus, the two expressions are equal. (Note that the steps here are similar
to those used in the proof of Lemma 5.2.28.) =

Proposition 7.6.29. For any p € X*(T) we have ¥3(e*) : e* — e7#+,
and for any simple root a € R, the operator V3(T, ) is given by formula
(7.2.17).

Proof. We keep the setup of diagram (7.6.20), choose a simple reflection
8 = s, € W, and let b be the Borel subalgebra corresponding to the fixed
Borel subgroup B. Recall that ¥, = Y, UB,s C B x B is the closure of
the G-diagonal orbit of pairs of Borel subalgebras in relative position s.
The second projection pr, : Y, — B is a G-equivariant fibration with fiber
pr;'{b} = B, ~ P!, where B, is the set of all Borel subalgebras in relative
position < s with b. Write ¢ : B, — B for the embedding. We have defined
in (7.6.1) the sheaf Q, on T}, (B x B) and, for any A € X*(T'), the sheaf O,
on the diagonal B, C B x B.

We claim first that, in the setup of (7.6.24), the following equations hold
in K7€ (B):
(7.6.30)

resoi'ju[Q] =e.(q- [y, = [03,]) , resoiG[Ox] = [Ciepal,

where Cy), is the skyscraper sheaf on {b} with one dimensional fiber and
the T-action given by A and trivial C*-action. We begin proving the first

equation.
Using the commutativity of diagram (7.6.24) we find

res01°5,[Q,] = i*j. o res [Q,],

where i : B— T*B is the zero section. To compute res[Q,], note that the
embedding Z, x {b} < Z restricted to Ty (B x B) gives the embedding
T3, Bx {b} = T¢ (BxB), since (Z, x {b}) N T3 (Bx B) = T3, B . Therefore,
it is clear that res[Q,] = W;Q};‘, where m, : T§ B — B, is the natural
projection. Thus, we are reduced to computing i* j.vr:ﬂbl =1i*(€ oi).w;Q}g' )
where £ and j are the embeddings defined in the diagrams (so, j = £0 )

(7.6.31)
T*Bls, 5> T*B

R

B,— 1B TE.B « 1 . TB|s
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We apply the base change (case (b) of Proposition 5.3.15) for the cartesian
square on the left in (7.6.31) to deduce
*jomQy, = ©"EJm0, = im0y, .

Decompose the map 2_3—, —T"B3, as i = joi, where (see triangle on the
right of (7.6.31)) i, : B, — T B is the zero section. Thus, we have:

.m0, = 6,40, = el .
We first compute j*j. using Proposition 5.4.10. We have the canonical short
exact sequence of vector bundles on B,
(7.6.32) 0— 13,8 -1 T*Bjg, - T*B, - 0.

The short exact sequence shows that the normal bundle to T B in T*Bj3,
is isomorphic to the pullback by means of =, : Tz B — B, of the cotangent
bundle T8, on B, Hence, applying Proposition 5.4.10 we find :

€7 hm0L, = e dilmi(MTB,) ® %) = e.(A(TB,) ® 0},).

The class A(T'B,) has been, in effect, computed in Section 7.5, since TB, is
a 1-dimensional vector bundle on P!. We have (see (7.5.15) and (7.5.17)):

(7.6.33) NTB,) = 0, — ¢"'TB,,

where the factor ¢~ takes into account that the differential in the Koszul
complex is not C*-equivariant, see 7.5.17. Combining all the previous com-
putations together we obtain
(7.6.34) reso ?3.[(]Q,] =1i"j.mq- Q%?,] =eg- ’\(TB—a) ® Qg.]

= €.[(¢0s, — TB,) ® Q] = .(q[%,] - [08.]) -

This proves the first equation in (7.6.30). The proof of the second equation
is much simpler and is left to the reader.

We can now continue the proof of Proposition 7.6.29. By definition, for
a simple reflection s € W, we have

Us(T,) = a0 p, 077, 0 O(T,) = a0 p, 0 7'7.(Q,).

Set F = i"j.(Qs) € K¢ (B x B). By Lemma 7.6.28 the operator p, :
K%' (B) — KS*€(B) is given by

L p (F)L) = tr(res(F)® L).

Thus, using equation (7.6.30) and putting L = L, we see that the operator
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ps ©1*j. 0 O(T,) is given by

(7.6.35)
ps 0130 0 O(T,) : [La] = tr (e.(—¢s, + O3, — C(s) ® L)
= —q- [p.(Qp, ®€"Ly)] + pue’[Ls] — [La],

where p : B, = {pt} is a constant map.

To complete the proof of the proposition we must express the class in
the second line of (7.6.35) as an element of R(T)[q,q™}]. Let P, be the
unique parabolic subgroup of G of type s containing B, and let R C P,
be the centralizer of T in P,. Then R is a reductive subgroup of G, a Levi
component of P,. Let B := R/R N B be a Borel subgroup in R. Note that

B, ~ P,/B ~ R/Bg

is the flag manifold for R. Observe further that T is a maximal torus in
'R. Therefore, we have K**C"(R/Bg) = KB~r*C'(pt) = R(T)[g,q7!]. We
see that in order to compute the rightmost term in (7.6.35) there will be
no loss of information if Ly is replaced by its restriction to B,, viewed as
an element of K**C*(R/Bg). Thus, we have reduced our computation from
the case of the semisimple group G to that of R.

DIGRESSION: SEMISIMPLE RANK 1 CASE. By construction, the group R
is a connected reductive group, and R%", the derived group, is a semisimple
group of rank 1. We will say that R has semisimple rank 1. Such a group
can always be written as a semidirect product R = R+ H, where R is either
SL;(C) or PGL,(C), and H is a torus. Therefore, we have

LieR = LieR @ LieT = sl3(C) @ abelian Lie algebra.

Hence the variety Bp of all Borel subalgebras in Lie R is isomorphic to
that for slz(C). Thus, writing By for a Borel subgroup of R, we have an
isomorphism Bg ~ R/Bp ~ P! = P(C?), where By is, of course, the flag
manifold for R. We fix such an isomorphism once and for all.

For concreteness, we choose the Borel subgroup By C R to be the
stabilizer of the line spanned by the vector ( (‘)) We also let T C R be
the maximal torus with eigenvectors (}) and (9). Since the group R is of
semisimple rank 1, it has a unique positive root, a € X*(T) (with respect
to the geometric choice of positive roots). Write & for the corresponding
coroot. The Weyl group, Wg, of R is generated by the reflection s : A +
A-(\d)a.

The following result is a generalization of Lemma 7.5.4: for any A €
X*(T) there is a natural R-equivariant isomorphism of line bundles on P!

(7.6.36) Ly ~ O((\, &)).

The proof is very similar to that of Lemma 7.5.4 and is left to the reader.
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We would like to use the Weyl character formula 6.1.17. Note that in our
case p = a/2, since we have only one positive root a. Therefore the RHS of
the formula in Corollary 6.1.17 reads

ertr — g#(Atn) erta/2 _ gita/2-(A+af2,a)a \ e®/2 — ga/2-(\é)a—a

ea/2 — g-af2 T ea/2 _ g~a/2 € ea/2 — g-0/2

Since e2/2/(e*/? — ¢~*/?) = 1/(1 — ™), applying Corollary 6.1.17 to the
line bundle L, on Bg and a constant map p : By — pt, we obtain
‘\1 - e—((,\.&)-H)u

1—e @

(7.6.37) p.Ly = e € K®(pt) = R(T)".

Recall further that Qp = Op:(—2). Now using the identification B, =
R/Bg and K**¢"(R/Bg) ~ R(T)[g,q"!], we view the class ¢*[L,] in the
last line of (7.6.35) as an element e* € R(T)[g,¢!]. Using formula (7.6.37)
we see that the last line of equation (7.6.35) takes the form

yog 1 — e~ (A8)=De 31— e~ (hane

—_q- — €
7€ T—ea ¢ 1 ¢a
_ —qe)\—a - eA-a—((A,&)-—l)a + eX e* — ea—(().,&)+1a N e —1
l1—-e@ e* -1 e*—1
eA _ eA—((A.&)-l)a eA - eA—(A,&)a
=T e —~1 er~1
et — ea(,\) e — e?(N)+e

ee—1 ey

which is precisely the formula (7.2.17). This completes the proof of Propo-
sition 7.6.29. =m

Proposition 7.6.38. For any p € X*(T) we have ¥,(e*) : e* — e+t
and for any simple Toot a € R, the operator ¥(T,,) is given by formula
(7.2.17).

Proof. The claim for ¥,(e*) is clear. It remains to compute the action of
¥1(T,) on e* which is by definition py(T,)(e~*e). First, by Lemma 7.1.10
in H we have

_ _ e-—a(A) _ e—A
(7639) T, c€e A= [ "()‘)T, - (q - 1)—1:7
Thus
—s(A) _ o=
pa(T)(ee) = Tre e = (0T, - (g~ )T e

By Lemma 7.6.2(2) we have the equality T,e = ge and therefore the
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equation above becomes

~s(\) _ o=A
(7640)  pu(T.)(ee) = (qe"‘*’ - (a- 1>e—1.—e-i—) e.

To complete the computation we must map the RHS of (7.6.40) into
R(T)[g, ¢!] by means of the isomorphism 8 : H-e = R(T)[q, ¢~']. Applying
B to the RHS of (7.6.40) we find

~s(A) _ o=X s(N) — oA
ﬁ(qe-'“)—(q-l)f-l—e—_;‘i-—e) = e~ (g- ) 5—-

— ea )
Finally we note the equality

ge'® _ (g — 1)e"’(") - _ e — 5 qea(AH—a e
1—e e*—1 er—1

This completes the proof. =

The preceding two propositions show that indeed ¥; = ¥3 and hence the
main theorem is proved.



