CHAPTER 1

Symplectic Geometry

1.1 Symplectic Manifolds

Let X be a C* manifold in the R-case, or a smooth holomorphic or
algebraic variety in the C-case. Let O(X) denote the algebra of C™ (resp.
holomorphic, algebraic) functions on X and call it the algebra of regular
functions on X. We write TX and T*X for the tangent and cotangent
bundles on X respectively, and T, X, resp. T; X, for the fiber of TX, resp.
T*X, at a point z € X.

Definition 1.1.1. A symplectic structure on X is a non-degenerate regular
(i.e., C™, resp. holomorphic, algebraic) 2-form w such that dw = 0.

Example 1.1.2. Let X = C?* with coordinates gi,...,qn,P1,... Pn-
Then

w=dp; Adg + -+ + dp, Adg,
is a symplectic structure.

There are two essential differences between symplectic and Riemannian
geometries. First, the Riemannian geometry is “rigid” in the sense that two
Riemannian manifolds chosen at random are most likely to be locally non-
isometric. On the contrary, any two symplectic manifolds are locally iso-
metric in the sense that the symplectic 2-form on any symplectic manifold
always takes the canonical form of Example 1.1.2 in appropriate local coor-
dinates, due to Darboux’s theorem [GS1]. Second, in symplectic geometry
the symplectic structure is usually intrinsically associated with the mani-
fold under consideration, while in Riemannian geometry, usually there is no
a priori given preferred metric on the manifold under consideration. Here
are a few most fundamental examples of such symplectic structures.

Example 1.1.3. Let M be any manifold. Then the cotangent bundle
T*M = X has a canonical symplectic structure.
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22 1. Symplectic Geometry

CONSTRUCTION. Assume, for concreteness, that the ground field is C. We
will construct a 1-form A on T*M and set w = dA. Then the condition
dw = 0 is automatically satisfied.

To construct A, choose z € M and « € Ty M, a covector in the fiber over
z. Let # : T*M — M be the standard projection and =, : T,(T°M) —
T, M the tangent map. Let £ be a tangent vector to T*M at a. Then define
A(€) to be the image of £ under the following composition

E-mér<ané>€eC.

Here <, > is the natural pairing Th M x T, M — C.

It is instructive to describe the above in coordinates. Let qi,...,qn
be local coordinates on M, either a C*® or a holomorphic manifold, and
P1,... ,Pn the additional dual coordinates in T*M. These give a chart in
T*M, and in this chart we write T*M 3 a = (q1(a),... ,¢n(a), p1(2), ...,
pa(a)). A tangent vector £ € T,(T*M) has the form £ = ):b.;,‘—:; + 2%‘3',
for some b;,¢; € C. Thus, for z = n(a) = (q:(a),.-.. ,q.(c)), the tangent
map 7, : Ty (T*M) — T, M is given by

a i} i}
f = Zbi%i + ZCVBT]‘ — ﬂ'.(f) == Zcigt;i.
We see that A(¢) =< a,7.(€) >= ¥ pi(a)c;. Therefore in our coordinates
we find

A=Y pdg and dA=)_dp; Adg

Thus, dX is locally the 2-form from example 1.1.2, hence, non-degenerate.

Let G be a Lie group. Throughout this book we let g denote the Lie
algebra of G, viewed as the tangent space T,G of G at the identity. The
action of G on itself by conjugation G 3 g : h— g-h-g~! naturally induces
a G-action on T.G, the adjoint action on g. For example, if G = GL,(C)
then g = M,(C) is the matrix algebra and, for g € G and x € M,(C) the
adjoint action is again given by conjugation: g: z+ g-z-g~'. We adopt
the same notation in general. That is, for any Lie group G, we let gzg~!
denote (by some abuse of notation) the result of the adjoint action of g € G
on z € g. Thus, in the general case, the symbol gzg~! stands for a single
object and not a product of 3 factors. Recall further that differentiating
the adjoint action at g = e one obtains a g-action ad on g given by the Lie
bracket adz : y — [z,y].

Example 1.1.4. Let G be a Lie group with Lie algebra g and ¢, the dual
of g. The adjoint G-action on g gives rise to the transposed coadjoint G-
action on g, to be denoted by Ad"*. Differentiating the latter at g = e, we
obtain a g-action, ad*, on g*.



1.1 Symplectic Manifolds 23

Proposition 1.1.5. Any coadjoint orbit © C g* has a natural symplectic
structure.

This symplectic structure sometimes called the Kirillov-Kostant-Souriau
symplectic structure is at the heart of the orbit method in representation
theory (cf., [AuKo),[Ki},[K02],[Sou]).

Proof. Pick up a point & € O C g*. We must produce a skew symmetric
form on T,Q, the tangent space at the point a. We have a natural isomor-
phism O ~ G/G*, where G* = the isotropy group of «. Therefore

,0= Ta(G/Ga) = 9/90:
where g* = Lie G*. We want to define a skew symmetric 2-form on T,0 =
g/9°. We define first a skew symmetric form
Wa:gXxg—C,  wa:(z,y)r aflz,y])

To show that the form w, descends to g/g* we will show that if z € g*
then a([z,y]) = wa(z,y) = 0 for all y € g. To that end, let us examine more
closely the definition of g*. We have ¢ € G* & Ad'g(a) = a. Therefore,
differentiating at g = e, for z € g, we obtain Ad"z(a) =0 & € g*. Now
let y € g. Then, for z € g, one has ad z(y) = [z, y], hence ad*z(e) is a linear
function on g given by

ad™z(a) : y — o[z, y]).
Therefore, since a([z,y]) = wa(z,y), we obtain
wa(z,y) =0 Vy€ge>ze€g™

Thus, w, descends to g/g*. The assignment o — w, clearly gives a regular
2-form, w, on Q.

Claim 1.1.6. dw = 0.

To prove the claim, recall the following well-known Cartan formula for
the exterior differential. Given any vector fields &;,£;, &3 on @, one has

(1'1-7) (dw)(Eh fz,fz) =§ 'W(fzafs) + &3 'w(fhfz) + &2 'w(fs,&)
- (w(lfh &2l,€3) + w([§3, &1, &2) + w([€a, &a, f:))-

Any element x € g gives rise, via the infinitesimal g-action on O, to &;, a
vector field on Q. Observe that vector fields of the form &, , = € g span the
tangent space at each point of ©@. Hence, to show that dw = 0 it is enough
to show that, for any z,y, z € g, we have (dw)(¢,,&,,£,) = 0.

Observe that, for y, z,w € g, the following formulas hold:

w(éy &:)(@) =a(ly,2]), and (&w)(e) = af[z,w))
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Applying this and the Jacobi identity to the first and second line of the
right hand side of (1.1.7) yields that each of these two lines vanishes
separately. ®

1.2 Poisson Algebras

Let A be a commutative, associative unital C-algebra with multiplica-
tion -: Ax A— A

Definition 1.2.1. A commutative algebra (A4, -) endowed with an addi-
tional C-bilinear anti-symmetric bracket { , }: Ax A — A is called a
Poisson algebra if the following conditions hold

(1) Ais a Lie algebra with respect to { , };
(2) Leibniz rule: {a,b-c} = {a,b} - ¢+ b- {a,c}, Ya,b,c € A.

The Lie bracket { , } will be called a Poisson bracket on A. We say that
{ , } gives a Poisson structure on the commutative algebra (A4, -).

We are going to construct a natural Poisson algebra associated with any
symplectic manifold. This is the most typical way Poisson algebras arise in
geometry.

Let (M,w) be a symplectic manifold. The non-degenerate 2-form w
gives a canonical isomorphism TM ~ T*M. Define a unique C-linear map
O(M) — { Vector fields on M}, denoted f — &;, by the requirement

w(-, &) = df, thatis —df =igw
where i, stands for the contraction with respect to £:
i¢ : {n-forms} — {(n — 1)-forms}.

Observe that for any vector field n and any function f, by definition of &;
we have

(1.2.2) w(éy,m) = —nf

‘We define a bracket on O{M) by any of the following equivalent expres-
sions

(1.2.3) {f,9} = wlés, &) = —&f = &9

Let L be the Lie derivative with respect to £ (see, e.g. [Spiv]). The Lie
derivative is related to the contraction operation via the following Cartan
homotopy formula to be frequently used in the future: L;a = i;da + dica.

Definition 1.2.4. A vector field ¢ is called symplectic if it preserves the
symplectic form, i.e. Lew = 0.
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Lemma 1.2.‘5.. For any f € O(M), one has L¢,w = 0, i.e. & is symplec-
tic.

Proof. Observe that: (1) w is closed and (2) dig,w = —d(df) = 0. We
obtain:

Lew=igdw+d(ig,w)=0+0=0. =

We are going to show that { , } together with pointwise multiplication
of functions gives O(M) a Poisson algebra structure. First we prove

Proposition 1.2.6. The assignment: f — &; intertwines the bracket on
O(M) with the commutator, i.e., we have a bracket preserving map

(O(M),{ , }) — (Symplectic Vector Fields on M |, ]).

Proof. We have to show that [£;,€,] = &(s,0)- In general, for the Lie
derivative, one has an identity (where - stands for the action of a vector
field on a function)

§ - w(é1,€2) = Le(w(éry €2)) = (Lew) (1 €2) + w(Lebr, €2) + w(&sy Lebo)

for any vector fields &,&;,é; on M. Therefore if Liw = 0 we have the
equality

€& w(ér, &) = w([§, &), 6) +w(r, €, &)
Then, for any vector field 7, we get by Lemma 1.2.5

& ""'(‘Egl 7]) = W([éf) 'Eg]a n) + w(ggv [‘gf) ”ID

Using 1.2.2, the LHS can be rewritten as —{;ng, and the second term on
the RHS as —[£;,m]g = —€;mg + nfs9. Thus we obtain

—-&rmg = w([€s, &), m) — €gmg + nésg.

Canceling terms on the left and on the right and using ;9 = —{f,9} we
find w([¢s,4,),m) = —n{f, g} The latter equality holds for all vector fields
n if and only if [£,&,] = (4,6}, and the proposition follows. =

Theorem 1.2.7. The algebra O(M) of regular functions (with pointwise
maultiplication) on a symplectic manifold M together with { , } is a Poisson
algebra.

Proof. We first prove the Jacobi identity. By Proposition 1.2.6 we have
(128) [ff:fy]h =£{f|9}h= {{fig})h‘}’
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and

(1'2'9) [Ehgslh = ffégh - ‘E.!l{fh = {f: {g! h}} - {ga {f! h‘}}

Now subtracting (1.2.8) from (1.2.9) yields the desired result.
Proving the Leibniz rule is straightforward, since differentiation along

any vector field, hence the map: g — &g, is a derivation of the algebra
OM). =

1.3 Poisson Structures arising from
Noncommutative Algebras

Let B be an associative filtered (non-commutative) algebra with unit. In
other words there is an increasing filtration by C-vector spaces

e
CCBQCB]C..., UB,'=B,
i=0
such that Bl' . B] - B‘H']' Vl,j Z 0.
Set A = gr B = @;(B;/B;-,). The multiplication in B gives rise to a well
defined product

B;/B;_1 x Bj/Bj—l — Bi+j/Bi+j—11
making A = gr B an associative algebra.

Definition 1.3.1. Call B almost commautative if gr B is commutative with
respect to the above product.

Proposition 1.3.2. If B is almost commutative then gr B has a natural
Poisson structure.

Proof. First we define a bilinear map
{, }:Bi/Bi-1 x B;j/Bj-1 = Bi4j-1/Bisj-2

as follows: Let a; € B;/B;_; and a; € B;/B;_; and let b, (resp. b,) be a
representative of a, in B; (resp. ay in B;). Set

{a1,a2} = byby — byby (mod Biyj_2).

Note that biby — byb; € Biyj- by the almost commutativity of B. There-
fore {a,,az} is a well-defined element of Biy;_y/Biy;-2. Furthermore, one
verifies that this element in B;;;_1/B;;;-2 does not depend on the choices
of representatives b; and b,.

‘To prove the axioms for a Poisson algebra, define for any b;,b; € B,
{b1,b2} = biby — byby. Axioms (2) and (3) of Definition 1.2.1 are satisfied
for B with its usual algebra multiplication and { , }, although B is not



1.3 - Poisson Structures arising from Noncommutative Algebras 27

commutative, so it is not a Poisson algebra. Now, moving { , } from B to
gr B does not affect the axioms. The proposition follows. =

Here are some examples.

Example 1.3.3. (cf. [Di]) Let B be the associative C-algebra with genera-
tors

Piyv yPns @1y - yqn,y
and relations
[Pop;) =0=[gi,q;] and [p;,q;] = 6;; (Kronecker delta).

Note that B is filtered but not graded, since the above relations are not
homogeneous (the relation [p;, g;] = 6;; is not degree preserving: [p;, g;] is of
degree 2 and §;; is degree 0). One has a concrete realization of B given as
follows. Let

Okt +kn
Diff = {Zﬂk('ﬂ)m, ax(z) € Clzy,...,z,), k= (ky,... , kn)
... 0zk

be the algebra of the polynomial differential operators on C*. Define an
assignment

pi e N g & Ti.
This assignment preserves the relations above, hence, extends to an algebra,
isomorphism B « Diff.

We will now give another construction of the same algebra in a coor-
dinate free way. Let (V,w) be a symplectic vector space, and ¢ a dummy
central variable. By the well-known theorem about the canonical form of a
skew-symmetric bilinear form, we may find a basis py,... ,pn,q1,... ,gn of
V such that

w(pi)pj) =0= w(Qh Qj): w(pis ‘Ij) = 61'_',"-

Form the algebra TV @ C[c] where TV is the tensor algebra of V. Endow
both C[c] and TV with their standard gradings by assigning ¢ and every
element v € V grade degree 1, and put the natural total grading on the
tensor product TV ® C|c]. Set

B= TV ®Clc]/(vy ® v — v, ® vy — ¢~ w(vy,v,)).

The ideal of relations that we quotient out is not graded, since v; ® v, has
grade degree 2, while ¢ - w(v;, v;) has grade degree 1. Therefore the algebra
B is not graded. It inherits however a natural increasing filtration, F,. By
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definition, its k-th term, F), is spanned by all monomials of degree < k in
the generators, written in any order. Moreover, we have

gt‘Fﬁ = S(V)[C] = C[Ph-w +Pra iy« »Gn, €]

where S(V) is the symmetric algebra on V. Since RHS is a commutative
algebra, we see that B is almost commutative. :

Since B is almost commutative, Proposition 1.3.2 says that gr. B has
a canonical Poisson structure. An explicit computation yields the following
formula for the Poisson bracket

oy (L2200,

(1.34) tha} = Z (319-' Og:;  g; Op: “

Note that if f is a homogeneous element of deree r and g is a homogeneous
element of degree s then the RHS has correct degree

(deg f—1)+ (degg—1)+ 1 =deg f +degg— 1.

To prove formula (1.3.4) we use the following general argument, to be
exploited many times later on. We observe first that both sides of (1.3.4)
satisfy the Leibniz rule (LHS by Proposition 1.3.2, and RHS as a first
order differential operator in both f and g). Hence to show that the above
formula yields the Poisson bracket given in Proposition 1.3.2, it is enough to
check the equality LHS = RHS only on the generators py,...,Pn, @1, -- - qn.
This, however, is trivial and is left to the reader.

One can get a Poisson bracket on the symmetric algebra SV itself
by specializing the central variable ¢ to a concrete complex number. For
example, taking the quotient of B modulo the relation ¢ = 1 we see that
(cf. beginning of Example 1.3.3) B ~ B/(c — 1) and

grB~grB/(c-1)~S8V.

The Poisson bracket on grB induces the Poisson bracket on SV =
Clp1y. .- yPny G15--- »4n), given by formula (1.3.4) specialized at ¢ = 1.

Further, we may identify SV with the algebra C[V*] of polynomial
functions on V*, the dual space. Also, the non-degenerate 2-form w on V
yields a vector space isomorphism V ~ V*. Transferring the 2-form w to V*
via this isomorphism makes V* a symplectic manifold. The base elements
Piy.v ,PnsQ1s.+- 3qn € V become canonical linear coordinates on V*. In
these coordinates, the symplectic 2-form on V* takes the standard form of
Example 1.1.2. Thus, we arrive at the following important

OBSERVATION. The Poisson bracket { , } on gr B given by formula (1.3.4),
specialized at ¢ = 1, is the one coming from the symplectic structure on V*.

The reader is suggested to return to this point after Proposition 1.3.18.
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Note next that if f,g € SV are homogeneous elements of degree 2, then
it is clear from (1.3.4) that deg{f, g} is a homogeneous element of degree
deg f +degg—2 = 2+2 -2 = 2. Therefore the Poisson bracket { , } makes
the space S?V of degree 2 homogeneous elements a Lie algebra.

Lemma 1.3.5. The elements of degree 2 form a Lie algebra isomorphic
canonically to spy, = sp(V), the symplectic Lie algebra.

Proof. Observe that if f,g are homogeneous of degrees 2 and 1 respec-
tively, then {f, g} is again homogeneous and we have

deg {f,g} =degf+degg—2=2+1-2=1.

This implies that the Lie algebra S?V acts, via the Poisson bracket, on the
vector space V of degree 1 homogeneous elements. Qbserve also that, for
f1g € V, one has {f,g} = w(f,g). Hence, for homogeneous f,g,h with
degh =2 and deg f = deg g = 1, the Jacobi identity for { , } yields

w({h, f},9) + w(f,{h,g}) = {h,w(f,9)} =0.

This equation shows that the $?V-action on V is compatible with the
symplectic structure on V. We therefore get a Lie algebra morphism

S2V Zsp(V).

We leave to the reader to check that both sides have the same dimension.
We claim further that the morphism above is injective. Indeed, if f € S?V
commutes with any element of V then it commutes with the whole algebra
SV, due to the Leibniz rule. It is clear however from (1.3.4) that the
Poisson algebra SV has no center with respect to the Lie bracket. Thus,
the above map is an isomorphism. =

Example 1.3.6. Let D(X) be the algebra of of regular (in the correspond-
ing category) differential operators on a manifold X. In general, the notion
of a regular differential operator requires the use of sheaf theory. We con-
sider here the following three special cases where the sheaf theoretic lan-

guage can be avoided, at least in the definitions. Thus we assume that X
is

e a C*™-manifold in the R-case, or
¢ an open subset in C¢ in the holomorphic case, or
¢ a smooth complex affine algebraic variety.

In each of these cases we write 7(X) for the vector space of regular (in
the corresponding category) vector fields on X, and define D(X) to be
the subalgebra of End O(X) generated by O(X) and 7(X), where O(X)
acts on itself via multiplication, and vector fields act via derivations. By
definition, the algebra D(X) comes equipped with an increasing filtration
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filtration O(X) = Dy(X) C Dy(X) C Dp(X) C ..., where Di(X) =
O(X) + T(X) and, for any n > 1, we put D,(X) = Dy(X) -... - Di(X
(n factors). This clearly makes D(X) a filtered algebra. Elements of D,(X)
are called differential operators of order n.

Let X be an open subset of C¢ and z = (zi,...,24) be some coor-
dinates on C¥. In these coordinates an element v € D(X) can be written
uniquely as a finite sum

137 u= Y Un w28 0" Ungyma € O(X),
N1y ,ma >0

where 0; stands for a_i? It is clear that ¥ € D,(X) if and only if the
coefficients u,,, . », vanish whenever 3, n; > n. If X is a C*°-manifold then
an element © € D(X) has the form (1.3.7) in any local chart. Moreover,
using partition of unity (this is the instance where sheaf theory implicitly
enters), one can prove the following. Let u : O(X) — O(X) be an operator
such that in any local chart it restricts (on functions supported there) to an
operator of the form (1.3.7), where the summation goes over n; + -+ +ng <
n. Then u is a regular differential operator on X of order n, i.e., u € Du(X).

In the algebraic case, no local coordinates are available so that formula
(1.3.7) does not make sense. This obstacle can be (partially) overcome as
follows. For any point z €. X, one may find a Zariski open affine subset
U C X such that the tangent bundle on U is trivial, i.e., 7(U) is a free
O(U)-module. To construct U one proves first that regular vector fields on
an affine variety span the tangent space at each point of the variety. Choose
a collection {8;,% = 1,2,...,d} of (not necessarily commuting) regular
vector fields on X whose values at the point z form a base of the tangent
space T, X. Let U be the affine subset of X consisting of the points where
the fields 8; are linearly independent. It is then clear that these vector
fields form a free basis of T(U) regarded as a O(U)-module. One can prove
that any regular differential operator on U can be written uniquely in the
form (1.3.7), where 8] ...8;" now stands for the product of the first order
differential operators §; written in this particular order.

To any differential operator u of order n on X, one can associate its
principal symbol, o, (u), a regular function (in the corresponding category)
on T*X which is a degree n homogeneous polynomial along each fiber of
T*X. Consider the holomorphic case first. Let X be an open subset of C¢
and 7,,...,Z4,P1,..- ,Pa be the canonical coordinates on T*X. Then, for
u € Dy (X) written in the form (1.3.7), the principal symbol is given by (see

e.g. [Bi])

(1.38)  oalt)= Y Un,.n(2) PPyt € O(TX).

nytetng=n
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A similar formula applies in the C*-case in local coordinates.

The principal symbol of a first order differential operator has an es-
pecially simple meaning. By definition, any such operator is of the form
u = € + f where £ is a regular vector field and f is a regular function (this
presentation is canonical, because we have f = u(1)). Since o;(f) = 0, it
follows that o,(u) = o,(£). Further, the principal symbol o,(£) is nothing
but the linear function on T*X obtained by contracting covectors with £,
i.e., given by the assignment T; X 3 a =< @, &, >, where §, is the value of
¢ at x € X. Thus, we have defined ¢1(£) in an intrinsic coordinate free way.
Note that, for a coordinate vector field §; in the canonical coordinates we
have ¢,(3;) = p:.

We can now show that, for a differential operator v of any order n
on a C*®-manifold X, there is a well-defined regular function o,(u) on
T*X which restricts to the previously defined one (1.3.8) in any local
chart. To see this, write u as a linear combination of operators of the type
£1-&2-... &, 7 < n, where £; are regular vector fields on X. Now fix some
local chart. One verifies easily that in this chart, the corresponding symbol
o, takes a linear combination of such operators into the corresponding
linear combination of symbols; furthermore we have o (& - & - ... &) =
o1(é1) - 01(€2) - ... - 01(¢,) if 7 = n and zero otherwise. Thus we get a
coordinate free expression for the principal symbol. Hence, o,(u) is a well-
defined regular function on T*X. Note that while this expression shows
the invariance of the principal symbol, it cannot be taken as a definition,
since the presentation of a differential operator as a linear combination of
operators of the type & - & - ... - £ is by no means unique.

We now define the principal symbol in the algebraic case. For a first
order differential operator, use the above given intrinsic definition in the
C™-case. Let u be a regular differential operator of order n > 1 on an
affine algebraic variety X. We may find a finite covering of X by Zariski
open affine subsets U such that the tangent bundle on U is trivial. As
we have explained (two paragraphs above), on U the operator u can be
written in the form (1.3.7), which depends of course on the choice of a
basis {9;,1 = 1,2,...,d} of T(U) regarded as a O(U)-module. Using this
basis, we define o,(u) by formula (1.3.8), where p; is now understood as
0‘1(;,%). The argument of the preceding paragraph shows that these “local”
constructions on the subsets U give rise to a global regular function on
T*X, and that this function is independent of the choices involved.

Observe further that for any differential operator u of order < n we have

on(u) = 0. We therefore get a well-defined morphism given by the principal
symbol:
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Homaogeneous polynomial
functions on T*X
of degree n

(1.3.9) o : Da(X)/Dn-1(X)

One can prove that for each of the three types of the variety X we are
considering here, the above morphism is an isomorphism. This is immediate
“locally” from formulas (1.3.7) and (1.3.8). The corresponding global result
requires some extra work in “patching local results together” using sheaf
theory, see e.g. [Bob). The idea is that the local result yields a short exact
sequence of sheaves

OﬁDn—l—’anOn'_’Oi

where D; is the sheaf of order i differential operators on X, and O, is
the sheaf (on X) formed by homogeneous polynomial functions on T*X
of degree n. Proving that (1.3.9) is an isomorphism amounts to showing
that the short exact sequence of sheaves induces a short exact sequence
of the corresponding vector spaces of global sections. In the C*®-case this
can be established using the partition of unity, and in the case of an affine
algebraic variety, this can be deduced, cf. [Bj], from Theorem 2.2.7(ii).

Summing up isomorphisms (1.3.9) over all n > 0 we obtain an algebra
isomorphism (cf., [Bj])

~ Polynomial functions — Opat(T* X).
gr D(X) rg} onT*X of degree n u )

Here Opo(T*X) is the algebra of regular functions on T*X polynomial
along the fibers (in the algebraic case we have O,,(T*X) = O(T* X)).

Let &,7n are regular vector fields on X viewed as first order differen-
tial operators. Then [£,7)] is again a first order differential operator corre-
sponding to the vector field given by the Lie bracket of £ and 7, viewed
as vector fields. Thus, in D(X) we have [T(X),T(X)] C 7(X) and also
[T(X),0(X)] ¢ O(X). Since the algebra D(X) is generated by D,(X),
it follows by the Leibniz rule that [D;(X),D;(X)] C Diyj-1(X), for any
i,j = 0. Therefore gr D(X) is commutative so that D(X) is an almost com-
mutative algebra. Thus, Proposition 1.3.2 yields a canonical Poisson struc-
ture on gr D(X) = O, (T* X).

On the other hand, T" X is a symplectic manifold and therefore O(T* X))
has a Poisson algebra structure arising from its symplectic structure. It
turns out that these two structures are the same.

Theorem 1.3.10. (cf., [GS1],|AM]) The Poisson structure on Opo(T*X)
gtven by Proposition 1.3.2 is the same as the one arising from the symplectic
structure on T* X.
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Proof. One can prove that, under our assumptions on X, the algebra
Opai(T*X) is generated by the subalgebra O(X) C Opo(T*X) formed by
the pullbacks of functions on X (these are constant along the fibers of
T*X — X) and by the space of functions that are linear along the fibers,
i.e., symbols of vector fields on X. As has been explained, checking that
the two Poisson brackets in question are the same amounts, due to the
Leibniz rule, to checking this on generators. We leave the more simple case
involving O(X) to the reader. For the vector fields, the claim is equivalent
to saying that if £,7 are regular vector fields on X viewed as first order
differential operators, then the commutator of these differential operators
corresponds to the vector field given by the Lie bracket of £ and 7, viewed
as vector fields. This latter result which follows from definitions has been
already used in proving that D(X) is an almost commutative algebra.

Remark. Note that we may avoid any appeal to the fact that Opu(T*X)
is generated by O(X) and by the symbols of regular vector fields, using a
covering of X by appropriate open subsets U for which the analogous fact
is obvious (e.g., in the algebraic case this is obvious if the tangent bundle
on U is trivial). Since each of the Poisson brackets has a local definition, it
suffices to check that the two brackets are the same when restricted to each
T*U. To prove the latter, the argument of the previous paragraph applies.

It is instructive to check the equality of the two Poisson brackets of the
theorem by an explicit computation in local coordinates (assuming X is
either an open domain in C" or a C*°-manifold). Given two vector fields,
u, v, in coordinates we get

0 o
u= ZU,(J:)EE v=£v,v(:n)a—zj.
Writing ¢ = ¢, for the symbol of first order differential operators, we have

o(u) = Zu,-(z)p,— o(v) = Z v;(T)p;.

We compute

_ dv; 8 ou; 0
[u,v] = %;(ui dz; oz, 1)355‘53:)

so that

dv; 8u,~
o([u,v]) = Z(uia_:;:pj - Uj'é;‘;pi)'
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By formula (1.3.4) (with ¢ = 1) of Example 1.3.3 we obtain

_ do(u) do(v) Bo(v) do(u)
{J(U),O’(U)}—?( apk amk - apk axk )

Bv; du
= %;(uaa—:ﬂ‘:p; - Uj-a:-ipi) = o(fur)). =

To a vector field « on X one associates canonically a vector field @ on
T*X as follows: u gives rise to an infinitesimal diffeomorphism of X which
naturally induces an infinitesimal diffeomorphism of T*X, that is it gives
rise to the vector field 4.

u = Vector field on X

Infinitesimal diffeomorphism of X

A

Infinitesimal diffeomorphism of T*X

i = vector field on T* X

We sketch here a more explicit construction of the vector field i, assum-
ing for concretness that we are in the algebraic setup. Observe that the
infinitesimal diffeomorphism of X corresponding to the vector field u acts
on T(X) and on O(X) via the Lie derivative, see [Ster]. The Lie derivative
gives a map

(1.3.11)
4:T(X)+O0(X) = T(X)+0(X), £+ fr [ué]+u(f),

where £ € T(X) and f € O(X).

We proceed now in two steps. Assume first that 7(X) is a free O(X)-
module. Then O(T*X) = ST(X), the symmetric algebra on 7(X) over
O(X). Note that giving a vector field @ on T*X is equivalent to giving
a derivation of the algebra O(T*X). But one can verify easily that the
assignment (1.3.11) extends uniquely to a derivation of the symmetric
algebra ST(X). This completes the first step.

In general, a regular vector field on T*X is a global section of the
sheaf of regular vector fields on T*X. Therefore, to construct i as a global
section, we may cover X by appropriate open subsets U, as we have done
before, and construct @ on each T*U separately. The first step yields such
a construction of the vector % on T*U. The naturality of the construction
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insures that the vector fields we obtain in this way for different U’s agree
with each other.
For any z € X and any covector « € T; X, we have by the definition of

~

u
(1.3.12) Te(lg) =u, where 7:T°X — X.

Claim 1.3.13. For any vector field u on X, @ is a symplectic vector field
onT"X,

Proof. Recall that w = d) is the symplectic 2-form on T*X. The form ),
being constructed in a canonical way, is invariant under all automorphisms
of T* X arising from automorphisms of X. Infinitesimally, this means that
LzA = 0. It follows that Lyw = LzdA = dLzA = 0 so that i is a symplectic
vector field. m

Observe next that to any function h on T X, one can associate the sym-
plectic vector field &, on T*X. This applies, in particular, to the function
h, = o1(u), the linear function on T* X attached to the vector field w on X.
The following result clarifies the relationship between the objects u, 4 and
h, introduced above.

Lemma 1.3.14. We have @ = §,, and, moreover h, = \(i).
Proof. We have

(1315) 0=L;A=izd\+digh=i;w+ d(z,;/\)

Set h = igA so that d(iz\) = dh. Then w(-,u) = d(izA) = dh. We want
to show that h, = h = A(&). Recall the definition of A: let ¢ be a tangent
vector at a point a € T* X. Then A(¢) = a(n.¢) where n, : T(T*X) - TX
is the tangent map to the projection 7 : T*X — X, whence,

h(a) = (M(@))(@) = a(m.(@)) = a(u) = hy(e),
and the lemma follows. m

Second Proof of Theorem 1.3.10. We must prove {hy,h,} = hj.j. We
already know, by Lemma 1.3.14, that &,, = @ and h, = A(@). Observe

further that [u,v] = [i, 3]. Hence, we get {hy, h,} = &, h, = @(A(%)). But
@(A(9)) = Lg (A(®)) = (LaA)(®) + A(Lad) = M([&, 7)) (because Ly = 0)
Hence we find @A(7) = )\(m) = hyu,v)- This proves the claim. =

Remark. All the above holds in the C®-setup provided we take D(X) to
be the algebra of differential operators with C*-coefficients and O(T* X)
to be the algebra of C*-functions on T*X which are polynomial along the
fibers. An argument involving partition of unity may then be used every
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time the assumption that X is affine is exploited in the algebraic setup
above.

Example 1.3.16. Let g be a finite dimensional Lie algebra. Let g be its
enveloping algebra, that is the quotient of the tensor algebra T'g modulo
the ideal generated by expressions 2@y —y®z ~ [z,y] for all 2,y € g. The
algebra Ug has a canonical filtration

C=Uyg C Uyg C--- such that U;g U;g C Uiy ;8.

Here U;g is the C-linear span of all monomials of degree < j formed by
elements of g, i.e., the image of C® g ® T?g® - - - ® T’g under the canonical
projection T'g —» Ug. For the proof of the following well-known result, the
reader is referred to [Di].

Theorem 1.3.17. (Poincaré-Birkhoff- Witt) There are canonical graded al-
gebra isomorphisms:

gridg ~ Sg = Clg*].

Thus Ug is almost commutative. Hence by Proposition 1.3.2, there is a
canonical Poisson bracket { , } on C[g*]. We will now describe this bracket
explicitly.

Let ey, ... ,e, be a base of g, and cf; € C the structure constants defined
by [ei, ;] = L cfjex. Observe that any element of g may be viewed, via the
canonical isomorphism (g*)* ~ g as a linear function on g*. In particular
let z;,...,z, be the coordinate functions on g* corresponding to the base
€1y.:. yEn.

Proposition 1.3.18. One has the following two ezpressions for the Pois-
son bracket {f,g} of f,g € Clg"]:

af a
{f,9}=zﬂfj‘$"5?£55% y {figliam (o, [daf,dag)), a € g%,

where d,f € (g*)" = g denotes the differential of f at a point o, and [, ]
denotes the Lie bracket on g.

Proof. Observe first that the polynomial algebra, C[g*] is generated by
linear functions. Observe further, that both the LHS and RHS of either
formula clearly satisfies the Leibniz rule. Thus, by our standard argument,
we have only to show that the formulas hold for linear functions on g*.
Such functions may be identified naturally with elements of g = (g*)*. For
f ==z,9 =z € g, by construction of the Poisson structure (cf. 1.3.18) we
have

(1.3.19)
{z,y} = [z,y] in particular {e;e;}=[es, 5] =) clex. m
k
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Remark 1.3.20. Observe that for homogeneous polynomials f,g € Clg*],
the RHS of Proposition 1.3.18 is a homogeneous polynomial of degree
deg f + degg — 1, in accordance with the degree of the LHS.

We now reinterpret the Poisson algebra of Example 1.3.3 in our present
Lie algebra setup. Thus, given a symplectic vector space (V,w), set g =
V & C and write c for a base vector in the second direct summand. One
verifies easily that the following bracket makes g a Lie algebra

op-cydr- =068 p- 2 w(z,y), Vz,yeV,preC.

The Lie algebra g is called the Heisenberg algebra. By our general construc-
tion we get a Poisson structure on Sg. But we have

S(p)~S(VeC)~SV)R’Cld.

The rightmost term here is nothing but the algebra gr B considered in Ex-
ample 1.3.3. In fact we have a natural algebra isomorphism Ug = B. Thus,
the Poisson bracket of Example 1.3.3 is essentially the Poisson bracket on
the symmetric algebra of the Heisenberg Lie algebra, and formula 1.3.4 is
nothing but a special case of the first formula of Proposition 1.3.18.

We recall next that g* is a union of coadjoint orbits, and that each
coadjoint orbit @ has a canonical symplectic structure.

Proposition 1.3.21. (¢f,, [Ki]) For any regular functions f,g € C|g*], and
any coedjoint orbit @ C g* we have

{£,9}o = {flo» Glo }symptectic-

The bracket on the right hand side comes from the symplectic structure on
O while the bracket on the left hand side comes from the Poisson bracket
on Clg*] restricted to O.

Proof. Again, by our standard argument, we have only to show that the
two brackets are the same for linear functions on g*. By formula 1.3.19,
{z,y} = [z,] is also a linear function on g*. Now, take @ € O C g*. We
calculate

[z,3](2) = a((z,9]) = (ad 2(¥))la = (& - Y)la = {Zlo, Ylo teymplectic- ®

Let ;(V’ w) be a symplectic vector space. Given a vector subspace W ¢ V
let W™ C V denote the annihilator of W with respect to w, to be
distinguished from W+, the annihilator in V*.

Definition 1.3.22. A linear subspace W C V is called

(1) Isotropic if w|w = 0, equivalently W ¢ W™,
(2) Coisotropic if W** is isotropic, equivalently, W** ¢ W;
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(3) lagrangian if W is both isotropic and coisotropic, i.e., W = W™**.

Example 1.3.23. Let V = C** and {e,,... ,en, f1,... , 2} a basis and let
the 2-form w be given by (cf. Example 1.1.2):

w(e'iaej) =0= '-‘-’(fhfj)a w(einfj) = 5ij = —w(fj,ei)-
Then we have, for any k < n,

(1) W = {ey,...,ex) is isotropic,
(2) W' = (e1,... ,€n, fes1, ..., fn) is coisotropic,
(3) (e1,...,en) and (fi,..., fa) are lagrangian.

One can show that, in general, a lagrangian subspace of V' is always of
dimension 1/2 - dim V; an isotropic subspace is of dimension less than or
equal to 1/2-dim V; a coisotropic subspace is of dimension greater than or
equal to 1/2 - dim V. These are easy exercises in linear algebra and are left
to the reader.

We now extend the “linear setup” above to the nonlinear case. Let M
be a symplectic manifold.

Definition 1.3.24. A (possibly singular) subvariety Z of M is called an
isotropic (resp. coisotropic, lagrangian) subvariety of M, if for any smooth
point z € Z, T, Z is an isotropic (resp. coisotropic, lagrangian) subspace of
T.M.

Example 1.3.25. Let X be any manifold, and M = T*X its cotangent
bundle with canonical 2-form w. Let f € O(X). Then df, the image of a
section X — T*X given by the differential of f, is a lagrangian subvariety
of T*X. This is clear if dim X = 1; for a proof of the general case, see e.g.
[GS1).

Assume from now on that X is a manifold and let T X be its cotangent
bundle. Given a submanifold Y C X, define Ty X, the conormal bundle of
Y, to be the set of all covectors over Y which annihilate the subbundle
TY C (T*X)|y. We note that Ty X is a vector bundle over Y, and we have
a natural diagram '

(T*X)y DT X - Y.

Proposition 1.3.26. The total space of the bundle Ty X is a lagrangian
submanifold of T* X stable under dilations along the fibers of T* X.

Proof. To see this we observe first that Ty X has the correct dimension,
ie.,

dimTpX =1/2 - dimT"X.
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This follows by observing that if X were a vector space then T*X = X@ X",
in which case we have Ty X = Y @ Y+, and dimY + dimY?' = dim X, so
that dim7y X = dim X = 1/2- dim T* X. The general case follows similarly
since any manifold is locally isomorphic to a vector space.

Thus, to show that Ty X is lagrangian, it is enough to show that Ty X is
isotropic, that is w|r, x = 0. It is enough to show that Alrgx = 0 where A
is the canonical 1-form such that dA = w. But the latter follows from the
definition of A and of Ty X. =

A subvariety of T*X stable under dilations along the fibers will be
referred to as a cone subvariety of T*X. Let Eu be the Euler vector
field generating the C*-action along the fibers of T* X. First we note that
ipyw = A(=standard 1-form). This is easy to verify in local coordinates: if
g1,--. ,gn are local coordinates on X, and p;,... ,p, are the dual “cotan-
gent” coordinates, then we find

A= E.’Pid% Eu = Zpi—a%—_, and w = Edpi A dg;.

We now give a useful characterization of lagrangian cone-subvarieties in
a cotangent bundle. It is due to Kashiwara, though we could not find an
appropriate reference in the literature.

Lemma 1.3.27. Let X be a smooth algebraic variety. Assume A C T*X
is a closed irreducible (possibly singular) algebraic C*-stable lagrangian
subvariety. Write Y for the smooth part of n(A), where # : T*X — X
is the projection. Then A =Ty X.

Proof. 1t is clear by construction of Y that A ¢ #~!(Y). Since A is
C*-stable, Eu is tangent to A™9, the regular locus of A. Further, A being
lagrangian, for any vector £ tangent to A™9, we have

0=w(Eu,&) =), VeeTA™

and therefore A|;, = 0. Fix a € A™ such that y = n(a) € Y. This implies,
by the definition of the 1-form A, that the covector a vanishes on the image
of the map

a : ToA — T,Y.

Furthermore, the Bertini-Sard lemma implies that there exists a Zariski
open dense subset A%*"¢""® C AT such that this map is surjective at any

point @ € A%, Hence o(T,Y) = 0, whence o € Ty X. This yields an
inclusion

Ayer:eﬂ‘c C T;;X
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Both sets here are irreducible varieties (for A is irreducible) of the same

dimension. Therefore they have the same closure. Hence, we have A =
Agenenc _— T*X ™

APPLICATION. Let V be a finite dimensional vector space, P(V) the
corresponding projective space, and P(V*) the projectivization of the dual.
Let G C PGL(V) be an algebraic subgroup of the group of projective
transformations of P(V).

Theorem 1.3.28. [Pi] Assume that G has finitely many orbits on P(V).
There is a natural bijection between the G-orbits on P(V) and the G-orbits
on P(V*).

Proof. Let G be the inverse image of G under the projection GL(V) —
PGL(V). Thus G is a subgroup of GL(V) containing the scalars, that is
to say, containing the matrices consisting of a scalar times the identity. It
suffices to set up a bijection between G-orbits in V and V*.

We have canonical isomorphisms T*V = V x V* = T*(V*); let p, and
P,. denote the 1st and 2nd projections of V' x V'* respectively. Observe that
V xV* is a C* x C*-variety, the first copy of C* acting on V and the second
on V* by scalar multiplication.

Any G-orbit O C V* is a cone, hence Tg(V*) is a C* x C*-stable
subvariety of V x V*. Let @ denote the closure in V of the set o, (Tg(V*)).
We claim:

(a) @ is the closure of a single G-orbit OV C V.
(b) The orbit @ can be recovered from the orbit QV.

To prove part (a), recall that the number of G-orbits in V' is finite, by
assumption. We have the following simple result

Lemma 1.3.29. Let G be a connected algebraic group acting on an alge-
braic variety X. Then any irreducible G-stable algebraic subvariety of X is
the closure of a G-orbit.

Proof. Let Y be this G-stable subvariety, let O be an orbit of maximal
dimension contained in Y. Since O cannot be contained in the closure of
any other orbit O' C Y, and there are only finitely many orbits in Y, we
conclude that @ is an open subset of ¥ (in the Zariski topology). It follows
that O, the closure of ), is an irreducible component of Y. Since Y is itself
irreducible we get Y = 0. =

The lemma implies that O (notation of the claim before the lemma), be-
ing an irreducible G-stable subvariety of V, is the closure of a single orbit.
This proves claim (a). To prove (b), view TO(V') as an irreducible C*-stable

lagrangian subvariety of T*V. By Lemma 1.3.27, we have T§(V*) = T}V,
where Y is the smooth locus of the image of T§(V*) under the projection
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p,: V x V* — V. This image is nothing but 0. Hence Y = OV, and we
obtain

L) =T, (V)

Observe now that this equation is symmetric with respect to O and QV.
Applying Lemma 1.3.27 once again, we find similarly that O is the smooth

locus of the image of T (V) under the projection p,.: V x V* — V=
Thus, the assignment O — OV is the bijection we are seeking. =

Proof of the following result requires a bit of algebraic geometry and will
be sketched in 1.5 below.

Proposition 1.3.30. Let M be a smooth algebraic symplectic variety and
Z a possibly singular isotropic (reduced) algebraic subvariety of M. Then
any subvariety of Z is isotropic again.

The proposition is obvious if Z is a submanifold of M. The point is that
the claim holds for a subvariety contained in the singular locus of Z.

1.4 The Moment Map

Let (M,w) be a symplectic manifold. We have the following exact sequence
first considered by Kostant [Kod4]:

constant

functions — O(M) 2, Symplectic

vector fields on M

where the map & sends a function f to the vector field £;. Note that this
map need not be surjective. Indeed, the Cartan homotopy formula shows
that a vector field £ is symplectic (i.e. Lew = 0) if and only if the 1-form
iew is closed. Notice that if £ = £; for some f € O(X), then ig,w = —df is
an exact form. This way one obtains an isomorphism

Coker(d) =~ {closed 1-forms}/{ezact 1-forms}.

Thus, in the C®-setup, for instance, we get Coker(d) ~ H'(M), the first
de Rham cohomology of M. Thus, in the real case, we get a 4-term exact
sequence:

Symplectic
00— R —> O(M) — vector fields — H'(M,R) — 0.
on M

Suppose that a Lie group G acts on M, preserving the symplectic form,
that is w(z,y) = w(gz,gy) for all 7,y € T,,M, m € M and g € G. The
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infinitesimal G-action gives a Lie algebra homomorphism

Symplectic

g:= LieG vector fields on M

Definition 1.4.1. ([Ko4]) A symplectic G-action is said to be Hamiltonian
if a Lie algebra homomorphism H : g — O(M),  +— H, is given, making
the following diagram of Lie algebra maps commute:

Symplectic
vector fields on M

In other words a symplectic G-action is Hamiltonian if the Lie algebra
homomorphism from g to symplectic vector fields lifts to O(M). In case of
a Hamiltonian G-action, we assume the Lie algebra lifting g — O(M) to
be fixed once and for all. This map H : g 3 z — H, € O(M) is called the
Hamiltonian. We may view H as a function on the cartesian product M x g,
i.e., as a function in 2 variables. Define the moment map u: M — g* by
assigning to m € M the linear function p(m) : g — C, z — H(m), so that
u(m)(z) = Hz(m).

Lemma 1.4.2. [Kod] (i) For any z € g we have H, = p*z, where p*z

denotes the pull-back to M of a linear function on g*.
(ii) The map

u*: Clg"] — O(M)

induced by p: M — g* commutes with the Poisson structure.
(iii) If the group G is connected then the moment map u is G-equivariant
(relative to the coadjoint action on g*).

Proof. Claim of part (i) is essentially the definition of the moment map.
Indeed, we have to show that the following two functions on M are equal:
m +— H_(m) and m — (u(m),z). But by definition we have (u(m),z) =
w(m)(z) = H.(m), and the claim follows.

To prove the second claim, it suffices by our usual argument, to verify
the assertion on linear functions, that is, elements of g. For z,y € g we
want to check that

(e, p'y} = p'lz,y) = u*{z,y}.

The first equality here holds since = + H, is a Lie algebra homomorphism;
the second follows from the definition of the Poisson bracket {z,y}.

To prove the last claim, write £, for the vector field on M corresponding
to the infinitesimal action of z € g on M. Pickup m € M, let A = pu(m),
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and let p, : T,M — g* denote the differential of the moment map at the
point m. The “infinitesimal” Lie algebra version of the G-equivariance of
the moment map reads

(14.3) po(&:) =ad’z()), YmeM,z€g.

To prove this equation holds, it suffices to check that any linear function
on g* takes the same value on both LHS and RHS. For the LHS and any
y € g, viewed as a linear function on g*, we have
(Y 1a(62)) = &e(p'y) = {Hoy 17y} = {0z, 17y}
where the last equality is due to part (i). For the RHS of (1.4.3) we find
using part (ii):
(y,ad"z(N)) = A([z,y)) = (W*[z,y])(m) = {*z, u*y}(m).

This proves (1.4.3), hence, shows that g is “infinitesimally” G-equivariant.
It remains to observe that, for a connected Lie group, “infinitesimal” G-
equivariance implies G-equivariance. =

Example 1.4.4. Let M = C? with coordinates (p, q), and w = dp A dg. Set

(1.4.5) G=SL(C) , g=shk(C)= {(i fa) la,b,c € C} .

Then G acts on M = C? in a natural way. The induced g = sl,(C)-action is
given by the following symplectic vector fields on C?

01 0 00 7]
00 an_p:'{q’/?: 10 Hpa_q'zf—p"/h

0 —1) 7P T 95q T 5w

This action is clearly Hamiltonian with the Hamiltonian functions

01 00 1 0
(O O)an/& (1 O)H“P2/2; )(0 _I)Hpqr

To compute the moment map p : M — sl,(C)* explicitly, we identify
sl3(C)* and sl,(C) via the non-degenerate bilinear form: (4, B) — Tr(A-B).
Then the above formulas yield

1({pg ¢
pyg)— = .

Notice that this matrix has zero determinant, and hence is nilpotent.
Therefore 4 maps C? into the set of nilpotent matrices. This map yields a
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2-fold covering of the nilpotent cone in sly(C) ramified at the origin, which
illustrates the phenomena to be studied in more detail in Chapter 3.

The above example is a special case of the following result (cf., e.g.
[GS2)).

Proposition 1.4.6. Let (V,w) be a symplectic vector space. Then the nat-
ural action on V of the symplectic group Sp(V) is Hamiltonian with
quadratic Hamiltonian functions given by

Ha(v) =1/2w(A-v,v), Aesp(V),veV.

Proof. Let A € sp(V). Set H = 1/2w(A - v,v) and let d,H denote the
differential of the function H at a point v € V. We have to check that, for
any vector w € V, the following equation holds: d,H(w) = w(A4 - v,w).
We calculate the differential of the quadratic function H = Hy : v —
1/2w(A-v,v) at v € V. One finds

dH,(w) =1/2w(A - v,w) + 1/2w(A - w,v) = w(A - v,w),

(the last equality is due to the skew-symmetry of A). This proves the
claim. Thus, it remains only to show that the assignment A — H, is a
Lie algebra homomorphism. But this amounts essentially to Lemma 1.3.5
which says that the Poisson bracket on the space of quadratic polynomials
on V corresponds to the Lie algebra bracket on sp(V). =

Example 1.4.7. Let M = T*X and let G act on X. We have Lie algebra
homomorphisms

g — Vector fields _, Vector fields =~ 71y, 4,
on X onT*X

The G-action on T*X arising in this way is clearly symplectic, since any
diffeomorphism of X induces a symplectic diffeomorphism of T*X. More-
over, Lemma 1.3.14 implies

Proposition 1.4.8. For any G-manifold X, the G action on T*X is al-
ways Hamiltonian with Hamiltonian

z— H, = \i;) € O(T"X),

where X is the canonical 1-form on T*X.

Let X be a G-manifold. The Lie algebra homomorphism g — {vector
fields on X'} given by the “infinitesimal action” can be uniquely extended,
by the universal property of the enveloping algebra Ug, to an associative
algebra homomorphism

a:Ug — D(X) = regular differential operators on X.
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Recall that taking differential operators of order < 1,7 =0,1,2,... gives a
natural increasing filtration on the algebra D(X) of differential operators.
Similarly, there is the standard increasing filtration C = Upg C Uig C - --
on the enveloping algebra, where U;g is the finite-dimensional subspace
spanned by all the monomials z-y-...- 2, z,y,...,z € g of length < 4.
Now the map a : Ug — D(X) is clearly filtration preserving. The leftmost
column of the diagram below corresponds to the associated graded map.

gr Ifg Sa C[f‘]
grD(X) =—=0(T"X)

Using the identifications provided by the horizontal isomorphisms in the
diagram, we get an algebra homomorphism C[g*] — O(T*X) depicted
in the rightmost vertical column. This map turns out to be induced by
the moment map: T*X — g* of the underlying varieties. Thus, the map
Ug — D(X) may be thought of as a “quantization” of the moment map
above.

We need an explicit description of the moment map in a special case.
Let G be a Lie group and P C G a Lie subgroup. Let p = Lie P and write
p* for the annihilator of vector subspace p in g*. By Claim 1.4.8 the left
G-action on G/P induces a Hamiltonian G-action on T*(G/P). The latter
gives rise to the moment map

u:T(G/P)—g*.

We would like to calculate u explicitly. We first describe the cotangent
bundle to G/P.

Lemma 1.4.9. There is a natural G-equivariant isomorphism
T*(G/P) =G x, p,
where P acts on pt by the coadjoint action.

Proof. Let e =1-P/P € G/P be the base point. We have T.(G/P) = g/p
and T(G/P) = (g/p)* = p* C g*. It follows that, for any g € G

T;.(G/P) = go*g™"

This shows that the vector bundles T*(G/P) and G x, p* have the same
fibers at each point of G/P, hence are equal as sets. To prove that they are
isomorphic as manifolds, one can refine the argument as follows.

Consider the trivial bundle g, = G/P x g on G/P with fiber g.
The infinitesimal g-action on G/P gives rise to a vector bundle morphism
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9s,» — T(G/P). It is clear that the kernel of this morphism is the
subbundle E C g,,, whose fiber at a point 2 € G/P is the isotropy
Lie algebra p, C g at z. This gives an isomorphism T(G/P) ~ g,,,./E.
Further, the description of the fibers of E gives an isomorphism E =~
G x,(g/p). Hence, T(G/P) ~ G x,(g/p), and the result follows by taking

the dual on each side. =

Observe next that there are two “types” of tangent vectors to T*(G/P).
First there are “vertical” vectors, i.e., vectors which are tangent to the
fibers of the projection T*(G/P) — G/P; since these fibers are themselves
vector spaces, we may identify these vertical tangent vectors with elements
of the fibers of T*(G/P). Second, there are tangent vectors of the form &,,
x € g. Note that gpg~! is the Lie algebra of the isotropy group of the point
g-e € G/P. Hence, for any z € gpg~! the vector £, is tangent to the fiber
T,.(G/P) of T*(G/P), hence, is a vertical vector.

Proposition 1.4.10. Under the isomorphism T*(G/P) ~ G x, p* the
moment map p is given explicitly by

(9,@) = gag™, ge€G,acp'.
Note that this map is well-defined on G xp p*, a quotient of G x p*.

Proof. The moment map sends (g,a) to the linear function pu(g,a) :
g — C given by z — H,(g,a), = € g, where H, is the Hamiltonian for
z. By Lemma 1.3.14 we have H, = A(Z). The differential of the projection
7 : T*(G/P) — G/P takes i to z. Hence, we find

A#)(g, @) = gpg™" (m:&) = gpg™" (2).
Thus, u(g,a)(z) = gpg~'(z) as was shown. =m

It is often useful in concrete computations to also have an explicit de-
scription of the canonical symplectic form, w, on T*(G/P). This is provided
by

Proposition 1.4.11. The canonical symplectic form w is given by the
formulas:

(a) w(ay,az) =0, for any vertical vectors a,,az € T, (G/P).

(b) w(éz &))la = alglz,ylg™") forz,y € 9, a € T, (G/P), a covector.

(c) w(B,&:)la = Blgzg™") for any vertical 8 € T, ,(G/P) viewed as a
tangent vector to T*(G/P) at a € Ty (G/P).

Proof. Given a l-form o on X = G/P, let & denote the vertical vector
field on T*X whose restriction to any fiber of T X is the constant vector
field a,, the value of o at z.
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Proving (a) amounts to showing that w(&;,&2) = 0 for any 1-forms
a; and a;. Now the canonical 1-form A on T X vanishes on any vertical
vector field. Hence A(&;) = A(&;) = 0. Furthermore, the field [&;, &;] is also
vertical. Hence, A([é1, &2]) = 0 and part (a) follows from

W(@y, @g) = dA(G1,@2) = &1 - M(G2) — @2+ A(@) — M|é1,é2)) =0+0+0.

The left hand side of the equality in (b) can be rewritten as {u"z, u*y}(a)
and the right hand side as u*([z, y])(@). The claim now follows from Lemma
14.2. o

To prove (c¢) observe first that = (&, B8] = LB = (L.B) (the first
equality is due to Lemma 1.3.14). Then we obtain

w(Br6s) = ([@AN)(B, &) = B (&) — & - MB) - A(L.5) = B M&x),

for A vanishes on vertical vector fields 3 and (L.8). To compute 3 - M¢.)
note that the restriction of A(£;) to a fiber T;X is a linear function:
a — Mé) (@) = MZ)(a) = a(z). Hence the derivative of that function in
the direction of the constant vector field 3, is the constant function S;(¢;).

n

The following elementary result will be frequently used in the future.

Lemma 1.4.12. Let P be an algebraic group with Lie algebra p. Let V
be a finite-dimensional representation of P and E C V a P-stable linear
subspace. Then

(i) If P is connected, then for v € V, the following conditions are equivalent:

(1) The affine linear subspace v+ E C V is P-stable;
(2) We have p-v C E, that is the image of p under the induced
“infinitesimal” Lie algebra action-map p — V, z — z-v is contained
in E.
(it) Moreover, if the linear map p — E, £ — x - v is surjective, then P - v,
the P-orbit of v is a Zariski open dense subset of v+ E.

Proof. If condition (1) holds, then we have P-v C v+ E. Differentiating
this condition at the identity of the group P yields p-v C E, hence,
condition (2). Conversely, assume condition (2) holds. The tangent space to
v + E at any point u € v + E clearly gets identified with E. Given z € p,

let £, be the vector field on V arising from the action of  on V. Then, for
any u € v+ E, we find

(1.4.13)
&Lw=z-uez(v+E)=z-v+z-EC p-v+z-E C E,

since p-v C E by (2) and p+- E C E by the P-invariance of E. Formula
(1.4.13) shows that the vector field &, is tangent to the subspace (v + E)
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at any of its points. Hence, this subspace is stable under the action of a
small neighborhood of the identity in P. Since P is connected, it follows
that v + E is P-stable.

To prove (ii) consider a morphism of algebraic varieties f : P — v+ E
given by p ~ p v (which is well-defined due to part (i)). The image,
f(P), is connected and is known to be a locally closed subset of v + E
in the Zariski topology. Observe that the differential of the map f at the
identity is the map p ~— V given by the linear p-action on v as in (2). If the
differential is surjective, then f(P) contains an open neighborhood (in the
usual topology) of v in v+ E by the implicit function theorem. Hence, f(P)
cannot be contained in any proper closed algebraic subvariety of v + E.
Hence f(P) is an irreducible Zariski open subset of v + E. Since v + E is
itself irreducible, it follows that f(P) is densein v+ E. =

We conclude this section with the following generalization of Proposition
1.4.11.

Proposition 1.4.14. Let G be a Lie group with Lie algebra g, P a closed
connected subgroup of G with Lie algebra p. Let ) be a linear function on g
such that |, = 0. Then

(1) The affine linear subspace A + p* C g* is stable under the coadjoint
P-action of g*.

(2) The space G X, (A + p*) has the natural G-invariant symplectic
structure, w, it is given by formulas, cf. (1.4.11)

(1) w(ay, as) =0 if a1, ay are vertical, i.e., tangent to the fibers of the
projection 7 : G x, (A+pt) = G/P.

(2) W(Eey &)l = alglz, ylg™) for any point (9,0) € G x, (A+ p*) and
any € g.

(3) w(B,&:) = B(gzg™") for any B tangent to gP x, (A +p*). In partic-
ular, the fibers of the projection 7 are lagrangian affine subspaces.

Proof. Part (1) follows from Lemma 1.4.12. Proof of part (2) is similar
to the proof of Proposition 1.4.11 and is left to the reader. =

The first projection 7 : G x, (A + pt) — G/P clearly has a natural
structure of an affine fibration, i.e., a locally trivial fibration with canonical
affine linear space strucure on every fiber (put differently, the structure
group of the fibration is reduced from the whole group of diffeomorphisms
of A+ pt to the subgroup of affine automorphisms). It is clear also that we
have

dim (A + p*) = dim (p*) = dimg/p = dim G/P.

We see that the fiber dimension equals half the dimension of the total
space of the fibration. Furthermore, looking at formulas of Proposition
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1.4.14, one finds that the symplectic 2-form w vanishes on each fiber.
Thus, all fibers are lagrangian submanifolds. For this reason one calls
7 : G %, (A+pt) = G/P an affine lagrangian fibration. Motivated by
comparison with Proposition 1.4.11, the space G x, (A + p*) should be
thought of as a “twisted cotangent bundle” on G/P.

We mention the following interesting result about general lagrangian
fibrations. If M is a symplectic manifold and p : M — B a smooth fibra-
tion with lagrangian fibers, then it is shown in [AG] that every fiber of the
fibration has a natural affine linear structure, i.e., has a canonical infinites-
imal transitive free action of the additive group of a vector space. It follows
that any lagrangian fibration with connected and simply connected fibers
is isomorphic (as lagrangian fibration) to an open subset of an appropriate
twisted cotangent bundle.

1.5 Coisotropic Subvarieties

Let (M,w) be a symplectic manifold with Poisson bracket { , } on O(M).
Recall that a subvariety £ C M is called coisotropic if the tangent space
at any smooth point m € I is a coisotropic subspace of the whole tangent
space, i.e.,

T,.Z2T,2™,

where L, stands for the annihilator in T}, M with respect to the symplectic
form. Let Jx C O(M) be the defining ideal of Z.

Proposition 1.5.1. (cf., [Bj], [GS1]) The subvariety ¥ is coisotropic if and
only if {Jz, Tz} C Tx, that is, if and only if Jx is a Lie subalgebra (not
necessarily a Lie ideal) in O(M).

Proof. Suppose {Jg, Jz} C Jg- This occurs if and only if the following
implication holds

(1.5.2) fige Tz = w(ln)(m)=0, YmeX™.

Let f € Jg. Write W = T,,X and V = T,,M for the tangent spaces at
a smooth point m € X. The differential df clearly vanishes on W = T, %,
hence df € W where W+ C V*. Therefore £, € W C V. Furthermore,
the vectors of the form &;, f € Jx, span W', This combined with (1.5.2)
implies
wW™, W) =0.

But this occurs if and only if W™ is isotropic which occurs if and only if W
is coisotropic. This proves the “if” part of the proposition. The argument
can be reversed to complete the proof. =
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Let ¥ C M be a smooth coisotropic subvariety and m € X. The
restriction of the symplectic form w to T, is a degenerate 2-form, and
one checks easily that

Rad(w|r,5) = (TnZ) ™ C TaL.

Thus the radicals of the form w at each fiber of the tangent bundle as-
sembled together form the vector subbundle (TE)™ C TT of the tangent
bundle TZ. We claim that this subbundle is integrable, i.e., we have

Proposition 1.5. 3 There ezists a foliation on ¥ such that, for any m €
L, the space (T, E}) “, the fiber of the subbundle given above is equal to the
tangent space at m to the leaf of the foliation.

The foliation arising in this way is called the 0-foliation on the coiso-
tropic subvariety ¥. Its existence is guaranteed by the following general
criterion:

Theorem 1.5.4. (Frobenius Integrability Theorem) Let E C TE be a vec-
tor subbundle of the tangent bundle on a manifold ¥. Then E is integrable
if and only if sections of E form a Lie subalgebra, i.e., for any sections £,
of E, viewed as vector fields on X, we have [€,n)] € E.

In fact it suffices, for integrability, to check this only for all pairs within
a family of sections of E that span the fibers of E at every point m € I,
and not necessarily for all pairs (£, 7).

Proof of Proposition 1.5.3. Observe that
(1.55) fly = const & (£f)|; belongs to the subbundle (T,,,E)l"

Clearly the family of vector fields {ff, flg = const} spans the space
(TRXE) * for any m € L. Hence, proving integrability a.mounts to showing
that f|; = constant and g|, = constant implies [¢;,£,] € (TE)™. But this
follows from formula (1.5.5) and the equality {£f,4,] = £(s0)- ®

Example 1.5.6. Let M be symplectic and let f € O(M). Let £ be the
zero variety of f. Suppose that df does not vanish on X, so that ¥ is a
smooth coisotropic codimension 1 subvariety. Then the 0-foliation (“null”-
foliation) on X is generated by the vector field &;.

The rest of this section is devoted to the proof of the theorem below.
This theorem will play an important role in our study of the Springer
resolutions in Chapter 3.
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Theorem 1.5.7. Let A be a solvable algebraic group with a Hamiltonian
action on a symplectic algebraic variety M. Let a = Lie A and let u be the
moment map

w:M—>q*.

Then for any coadjoint orbit O C a* the set u~!(0) is either empty or is a
coisotropic subvariety of M.

In the theorem, u~!(0), stands for the set-theoretic preimage, which, in
the algebro-geometric language, means the reduced scheme associated to
the scheme-theoretic inverse image, cf. Remark 1.5.8 below and also §2.2.

Remark 1.5.8. For any Lie algebra a, the defining ideal Jo C C[a*] of
a coadjoint orbit @ C a* is stable under the natural Poisson structure
because

{f’g}|0 = {flm glo}sympleczic =0

if f,g vanish on Q (the first equality follows from Proposition 1.3.21). It
follows that the ideal O(M) - u*J, C O(M) is stable under the Poisson
bracket on M, due to Lemma 1.4.2. The above theorem is equivalent to

saying that in the solvable case the radical, (see §2.2), \/O(M) - p*J, is
stable with respect to { , }.

Remark 1.5.9. Assume that the orbit @ consists of regular values of the
moment map y, i.e., the differential du is surjective at every point of the

inverse image of O. Then J,-1 g, = +/O(M) - p*J, = O(M) - p*J, and the
theorem is well-known (see e.g. [GS2]) and holds without any solvability
assumption.

First, we prove some general results that will be used in the proof of the
theorem. Let (M,w) be a symplectic manifold with a Hamiltonian action of
a Lie group A. Set a = Lie A and let x: M — a* be the moment map. Let
P € Cl[a*] and write P = u*P. Then

Lemma 1.5.10. For a point m € M let o = u(m) € a*. Then
5(m) = dP(a).
Here (dP)(a) € a because it is a linear function on a*.

Proof. We will assume first that P is a linear function so that P = dP =
a € a. Then the statement of the lemma is true, since by definition of the
moment map we have

P=p*a=d(ua) = w(-a).

This implies a = €., = 5.
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Now we prove the lemma for arbitrary functions. Note that locally
P = P(a)+dP(a)+ “higher order terms”

where P(a) is constant and dP(a) is linear. The lemma is trivial for
constant functions (these give rise to zero vector fields) so we are done
because the higher order terms do not come into play, since both sides of
the equality are completely determined by first derivatives of P and P.

Lemma 1.5.11. Let (V,w) be a symplectic vector space. A vector subspace
¥ C V is coisotropic if and only if it contains a lagrangian subspace A C .

Proof. (i) If £ D A, then A is lagrangian implies £ O £ because
EOA=A"DOE™

Therefore ¥ is coisotropic.

(ii) Assume that ¥ is coisotropic. Then £ D £** and /=" is again
a symplectic vector space. Choose any lagrangian subspace A C 2/21“
and let A be the pre-image of A in £ with respect to £ — E/El“’. Then

—tlw —_
A D £ which implies £ D A™. Taking into account that A = &, we
obtain A =A™, and A is lagrangian.

Lemma 1.5.12. Let N C M be an irreducible subvariety in the smooth
algebraic variety M, and f € O(N), a nonconstant reqular function. For
any ¢ € C define the hypersurface D, = f~'(c) as the set-theoretic (reduced)
preimage of ¢ and assume Dy is nonempty. Then there is a Zariski-open
dense subset D§*" C D, with the following properties:

D§" is contained in the smooth locus of Dy and for any point z € D§*",
there exists a sequence of complex numbers ci,cs,... — 0 and a sequence of
points z; € D, ,i=1,2,... such that

(a) z; — z (in the ordinary Hausdorff topology), and z; is a smooth
point of the divisor D, ;

(b) Ty, D,, — T.Dy, where the convergence (in the ordinary topology)
takes place in the Grassmannian of (dim N — 1)-planes in TM;

(c) The values c;,c¢y,... of the function f are generic in the sense that
they can be chosen in the complement to any finite subset of C.

Proof. 1t suffices to prove the lemma locally so that we assume N and
M are affine and Dy is irreducible. Let N*"¢ and D§'™ be the singular loci
of N and D, respectively. There are two cases:

(i) First assume that Do ¢ N*"9 . Then set DI = D, \ (N*"9U D§™9),
a Zariski-open dense subset of Do. Let € D§*". Since z is a smooth point
of N and the claim of the lemma is local with respect to the ordinary



1.5 Coisotropic Subvarieties 53

Hausdorff topology, we may regard N as a holomorphic complex manifold
and choose a local chart on N with coordinates (t,,... ,t,) such that z = 0.
Moreover, since Dy is locally a codimension 1 smooth subvariety of N,
we may assume without loss of generality that Do = {t; = 0}. Since D,
is the zero set of f, the function f viewed as a holomorphic function in
the local coordinates ¢ must be of the form f(t) = t} - g(t), where g is a
holomorphic function such that g(0) # 0. Hence, locally one can define a
holomorphic function ¢ — g(t)% , & branch of the k-th root of g. It is easy
to see from the implicit function theorem that the functions (7, t3,...,t,),
where 7 = g(t)* - t;, form a local chart on N again. In this new chart we
have f(t) = 1", so that the level sets of f are disjoint unions of hyperplanes
T = const. Thus, the claim of the lemma is clear in this case.

(i) Assume now that Dy C N*"9. Since normal varieties are smooth
in codimension one [Ha] we can find a Zariski open subset U C N such
that (a) its normalization U is smooth; and (b) U N Dy is dense in Dy.

Remark. The non-expert in algebraic geometry may feel uneasy about
using such results as codimension 1 smoothness of normal varieties. Here
is another argument which is, hopefully, more convincing intuitively. Let
R(Do) be the field of all rational functions on Dy, let I C O(N) be
the defining ideal of the divisor Dy, and S = O(N) \ I. Let O(N)s
denote the localization with respect to the multiplicative set S. Thus,
O(N)s is a local ring with maximal ideal Is, the localization of I. We
have O(N)s/Is = R(D,) so that the field R(D,) may be thought of as
the “coordinate ring of the generic point of Dy” and the ring O(N)s as the
“coordinate ring of a small neighborhood” of that generic point in N. Let
R(Dy) be the normalization of R(Dy), cf., e.g., [Ha]. The local ring R(D,)
is 1-dimensional, hence, its normalization, R(Dy) is a regular local ring (it
is an elementary fact, see [Ha), that a normal curve is always smooth). In
geometric terms this translates into the existence of a Zariski open subset
U C N with the above specified properties (a)-(b).

We now complete the proof of the lemma. Shrinking U if necessary, one
may assume UN Dy to be smooth as well. Set D§** = UNDy, let v:U — U
be the normalization map and f = v* f the pullback of the function f. Since
U is smooth, the first part of the proof applies to the function f. Hence,
the lemma holds for f We may now transfer the information from U to U
because each component of Dy is the i image of an irreducible component of

f71(0) = v~!(Dy), and because the map U — M is smooth when restricted
to v~1(D§*"). The lemma follows. =

Let A be a solvable Lie group, with Lie algebra a. Choose a codimension
1 normal subgroup A; C A and let a;—a be the inclusion of Lie algebras.
If we let pu; be the corresponding moment map for a, then we have the
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following commutative diagram (left triangle)

M-—#*a‘ OC—sa*
k« l" A l”

> *
a; a;

where p is the natural projection induced by the inclusion a;<—a. We are
interested in the special case where M = O is a coadjoint orbit in a*. In
this case the map p : M — a* becomes the tautological inclusion and the
above diagram reduces to the right triangle above.

Claim 1.5.13. (cf. [Di]) There are only 2 alternatives.

(1) dimp(0) = dim Q. In this case p(0) is a single A,-orbit.
(2) dimp(0) < dimO. In this case the dimension of any A,-orbit in
p(0) equals dimQ - 2.

Proof. There is a natural A-action on a;, hence aj, since A, is normal
in A.

Observe that p(0) is an A-stable subvariety of aj which implies that
p(0) (being the image of an A-orbit) is an A-orbit.

Let o € p(Q). Then dim(a, - 0) > dima- o0 - 1, since dima, = dima - 1.
Hence, dim A; - 0 > (dim A - 0) — 1 = dimp(0) because p(0) is a single A-
orbit. Moreover, all A;-orbits in p(Q) are symplectic manifolds, hence have
even dimensions; similarly dim O is even. It follows that in alternative (1),
A;-orbits in p(Q) cannot have dimension equal to dimp(0) -1 = dim0-1,
hence they are of dimension equal to dimp (0), hence, p(0) is a single A4;-
orbit. Similarly, if dimp(0Q) = dim© — 1 then A,-orbits in p(0Q) cannot
have odd dimension dim p(Q), hence, are all of dimension dimp(0) -1 =
dimO0-2. =

Proof of Theorem 1.5.7. We proceed by induction on dim A. Choose a
codimension 1 normal subgroup A4; C A.

Assume we have alternative (2) above. In this case @ is an open part
of p~}(p (Q)) so it suffices to prove that u~'(p~'p(0)) = w:~'(p(0))
is coisotropic. But p(Q) is a union of A,-coadjoint orbits. This implies
w1~} (p(0)) is coisotropic by induction.

Now assume alternative (1) of claim 1.5.13. By induction p(p'p(0)) =
N is coisotropic (as a union of coisotropic subvarieties, the preimages of
coadjoint orbits in aj).

This is all right because increasing the dimension of a coisotropic sub-
variety keeps it coisotropic. Now © has codimension 1 in p~!p(Q). We may
argue locally. Let P be a local equation of O, i.e., a function on p~!p(0),
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such that P # 0, P¢ = 0. This implies
p~H0) = Nn{u"P =0}

Write f for u*P. Since we work locally assume that NV is irreducible and f
does not identically vanish on N. Put

L.=Nn{f=c}, ceC. =
Lemma 1.5.14. For generic ¢ € C we have X, is coisotropic.

Proof. From now on we will write L for the annihilator with respect to w
dropping the subscript w for short. We want to show (T},Z.)! is isotropic
(where m is a smooth point of £). We know that T,, N* is isotropic. Now
dim¥, = dim N — 1 which implies that dimT,,X.* = dimT,,N* + 1. We
have

ThX. = {dfleN = 0}-

Therefore T,,Z." = T,,N* + C¢;. The space T, N* is isotropic by induc-
tion. Further, the vector field {; is tangent to N by Lemma 1.5.10. Hence
we find

W(TnZet, TnZet) = w(TW Nt +C&y, T N* + CEf)
= w(TmNt, T N*t) + w(CEys, CE)) + w(TuN*, CEy)
=0+0+w(T,N*,C&)=0+0+0.

Thus, we see that T}, X" is isotropic, and Lemma 1.5.14 follows. =

We wish to show that ¥, is also coisotropic. By Lemma 1.5.12 choose a
sequence T; — T € Lo such that the lemma holds. Then

Tz; ):c.- - T:n 20

in the Grassmannian of dim N — 1 subspaces of TM. By 1.5.11 and 1.5.14
there exist lagrangian subspaces A; C T;,X.. Choose a subsequence i
such that A;, — A C T,%,. This is possible because Grassmannians
are compact. Then A is isotropic since all A;, are lagrangian. Therefore
dim A = dim A, implies A is lagrangian. Now we apply Lemma 1.5.11 again
to complete the result. This completes the proof of Theorem 1.5.7.

Example 1.5.15. We now give an example where Theorem 1.5.7 fails
because the group A is not solvable.

Let M = C?, w = dp A dg and A = SL,(C). The standard SL;(C)-action
on C? is Hamiltonian, see Example 1.4.4, and the corresponding moment
map has been computed to be

p:M = (s,(C)* ~C* , (pq)+ (6*/2,—P%/2,pq).



56 1. Symplectic Geometry

The origin in sl3(C)* constitutes a coadjoint orbit. But x~1(0,0,0) = (0,0)
is not coisotropic. Thus the solvability condition in Theorem 1.5.7 is really
necessary.

Proof 1.5.16 of Proposition 1.3.30. We must show that if Z is isotropic
then so is any (reduced) subvariety N C Z. This is obvious if dimN =
dim Z. Assume dim N = dimZ — 1. Our claim being local in Z, we may
assume without loss of generality that there is a non-constant regular
function f € O(Z) such that N = f~1(0). Hence we are in a position to
apply Lemma 1.5.12.

Let x € N. We must show that 7T,V is an isotropic vector subspace in
T.M. Lemma 1.5.12 implies that there exists a sequence {z;,i=1,2,...}
of regular points of Z and a sequence of vector spaces W; C T;,Z,i =
1,2,..., such that z; — z and moreover W; — T,N in an appropriate
Grassmannian. Each of the spaces W; is isotropic since Z is an isotropic
subvariety. It follows by continuity that T, N is also isotropic.

Assume finally that dimN < dimZ - 1. Then we may find, shrinking
N if necessary, a codimension one subvariety Z’ C Z that contains N. It
follows from the argument above that Z’ is isotropic. We now complete the
proof by induction on the codimension of N in Z using that codim,, N <
codim, N. =

We end this section with one more result involving coisotropic subva-
rieties, the so-called integrability of characteristics theorem ([Ga], [GQS],
[Ma], [SKK]). Although not directly related to the subject of this book,
this theorem has important applications in representation theory (cf. [Bj],
(Gi2], [Jo2]) and is somewhat reminiscent of Theorem 1.5.7.

Let A be a filtered ring such that gr A is a commutative ring. Let I be a
left ideal in A. Form gr I C gr A. This is an ideal, and moreover it is stable
under the Poisson bracket (see 1.3.2), i.e.,

{erI,grI} C grl

because z,y € I implies zy — yz € I (this is the case even though I is only
a left ideal.)

Integrability of Characteristics Theorem 1.5.17. Now assume that
grA is a commutative Noetherian ring. Then \/grl, the radical of grl,
is stable under the Poisson bracket { , }.

Remark 1.5.18. If gr A = O(M) then the theorem amounts to the claim
that the zero variety of gr I is a coisotropic subvariety.
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1.6 Lagrangian Families

In this section we introduce the notion of a coisotropic cone subvariety
which is of independent interest, and explain its relation to families of
lagrangian subvarieties in a symplectic manifold.

Definition 1.6.1. A symplectic cone variety is a symplectic manifold
(M,w) with a vector field £ on M such that Lew = w.

Remark 1.6.2. It is important not to confuse the vector field £ in defini-
tion 1.6.1 with a symplectic vector field, which would satisfy the condition
wa =0.

Example 1.6.3. Let T*X = M and £ = Fu. Then we have slready
verified that this is a symplectic cone variety.

Lemma 1.6.4. The symplectic form on any symplectic cone variety is
ezact, that is to say w = dApy. More precisely, if we set Ay = iew then
w= d)‘M'

Proof. We calculate
dAM = diEw = ng - 'Ledw = LEUJ

where the second equality is the Cartan homotopy formula and the last is

duetodw=0. m

Let (M,w) be a symplectic cone variety. A subvariety A C M is called a
cone subvariety if £ is tangent to A at any smooth point of A.

Let A;,z € X be a family of lagrangian cone subvarieties of M parame-
trized by a space X. Observe that giving such a family is the same thing as
giving the subset

L={mz)eMxX|meA,,ze X}

with the property that the fibers of the projection ¥ — X are lagrangian
cone subvarieties of M.

Example 1.6.5. Let M = T*X. Set {A, = T:X, z € X}. Then & ~
T X.

Theorem 1.6.6. (Resolution of lagrangian families) Suppose that M is
a symplectic cone variety, X is a manifold, and ¥ € M x X is a
submanifold such that the projections p,, : £ — M and p, : & — X to the
first and second factors are smooth fibrations with surjective differentials.
Assume moreover, that the fibers, A, C M, of the projection & — X are
lagrangian cone subvarieties. Then there ezists an immersion (i.e., a map
with injective differential) i : T~T*X making & an immersed coisotropic
subvariety of T*X. Moreover,
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(a) The following diagram commutes

L —>TX

DN

X

(b) p} Ay = i*Ap.x, where \,, and Ar.x are the canonical 1-forms on
M and T* X, respectively.
(c) the 0-foliation on X coincides with the fibration ¥ — M.

Proof. First we construct a map ¢ : £ — T*X as follows. Let ¢ € £
and z = p, (@) € X. The tangent map (p,), : TyX — T, X is surjective
by assumption. Hence, given € T, X, one can choose a tangent vector
71 € TyX such that (p, ).(77) = 7. We claim that for any fixed 7, the value
of the 1-form p} A,, on 7 does not depend on the choice of 7. To prove this,
let 7j be another vector such that (px).(ﬁ) = 1. Then, j — 7 = v is a vector
tangent to the fiber of the projection ¥ — X over z. This fiber can be
identified naturally via p,, with the lagrangian subvariety A, C M so that

we have

P Qa)(v) = Ay (Pur) ) = (1w )(Par)av) = wyy (§; (P )ev) =0,

for A, is a lagrangian cone subvariety. Hence, (p}, A,,)(%) = (p}, A, )(7%) and
the claim follows.

Thus, the map n +— (p} A, )(7) gives rise to a well-defined linear func-
tion on T, X, i.e., to an element i(¢) € T X. The assignment ¢ — i(¢) thus
defined gives a map i : ¥ — T™*X. Furthermore, it follows by the construc-
tion of i that p} A, = i*(Ar.x) and that the diagram of part (a) of the
proposition commutes.

We now show that the map 7 is an immersion. We have a commutative
diagram of linear maps of tangent spaces induced by the diagram in (a):

TyE —— Ty (T" X)

T.X

Let v € T,X be a nonzero vector such that i,(v) = 0. Then by the above
diagram we have (p, ).(v) = 0, hence v is tangent to the fiber A; of the
projection p, : ¥ — X. Hence (p,,).(v) # 0. Since the symplectic 2-
form w,, on M is non-degenerate, one can find a vector u € T,, M, where
m = p,,(#), such that w,,((p,,).v, u) = 0. The map (p,,)s : TyX = T, M is
surjective, by the hypothesis of the theorem, so that there exists 4 € TyX
such that (p,).(#) = u. Furthermore, by part (b) we have p} (w,) =
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i*wp. x, whence we obtain
0 # w,, ((py)ev,u) = p:,wM (v,%) = *wr-x (v, @) = w(i.v, i.4).

It follows that i,v # 0, a contradiction.

To complete the proof of the theorem, it suffices to show that i,(T4X)
is a coisotropic subspace of T;4)(T*X), for any ¢ € X. To that end, put
dim M = 2n, an even integer. Then dim A, = n, for any z € X, since A; is
lagrangian. Hence

(1.6.7) dim¥ =n +dim X,

since ¥ — X is a fibration with fiber A;.

Let W C T,Z be the kernel of the projection (p,,). : ToX — T,,M, the
tangent space to the fiber over m(:= p,,(4)) of the fibration p,, : £ — M.
Clearly, the space W is the radical of the 2-form p? w,,. Using the equality
P, w, = i"wr.x we see that the spaces i,W and i,T4Z are orthogonal with
respect to the symplectic form on T* X, i.e.,

(1.6.8) i(T,E) C (i, W)*

where L stands for L, for short. On the other hand, from (1.6.7) one
obtains

dimW =dimp_'(m) =dimE -dimM = (n +dim X) - 2n = dim X — n.

The map i. being injective, we get dim (i, W) = dimW —~dim X — n. It
follows that

dim (i, W)* = dim T* X — dim (i.W) = dim X + n.
Using (1.6.7) one obtains

(1.6.9) dim (i, W)! = dim ¥ = dim Ty ¥ = dimi, (T, Z).
Formulas (1.6.8) and (1.6.9) yield (i.W)! = i.T,X, hence (i,TyZ)* C
(.W)t = i, (T4Z) and the coisotropicness follows. Finally, we have

(2.W) = ((1.W)*)* = (i.(T4Z))* and part (c) follows. m

Remark 1.6.10. For any z € X we have A, = i~!(T}X) which explains
the name of the proposition.



