
Chapter 7 

Smooth and Heavy 
Viable Solutions 

Introduction 

Let us still consider the problem of regulating a control system 

(i) for almost all t;:::: 0, x'(t) = f(x(t), u(t)) where u(t) E U(x(t)) 

where U : K --v+ Z associates with each state x the set U(x) of 
feasible controls (in general state-dependent) and f: Graph(U) f---> X 
describes the dynamics of the system. 

For simplicity, we take for viability subset the domain K := 

Dom(U) of U1. We have seen in the preceding chapter that viable 
controls (which provide viable solutions x(t) E K := Dom(U)) are 
the ones obeying the regulation law 

V t 2': 0, u(t) E RK(t) (or (x(t), u(t)) E Graph(RK )) 

where 

V x E K, RK(x) = { u E U(x) I f(x,u) E TK(x)} 

In this chapter, we are looking for a system of differential equa
tions or of differential inclusions governing the evolution of both viable 
states and controls, so that we can look for 

1or we replace U by its restriction to K. It is closed whenever U : X"'-+ Z is 
upper semicontinuous. 
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236 7- Smooth and Heavy Viable Solutions 

heavy solutions, which are evolutions where the controls 
evolve with minimal velocity 

punctuated equilibria, i.e., evolutions in which the control 
u remains constant whereas the state may evolve in the associated 
viability cell, which is the viability domain of x 1-t f(x, u), 

regulation by ramp controls, i.e., evolutions in which the 
open-control is linear, and more generally, polynomial open-loop con
trols 

and other related ideas. 
The idea which allows us to achieve these aims is quite simple: 

we differentiate the regulation law. 
This is possible whenever we know how to differentiate set-valued 

maps. Hence the first section is devoted to the definition and the 
elementary properties of the contingent derivative2 D F ( x, y) of a set
valued map F: X~ Y at a point (x, y) of its graph: By definition, 
its graph is the contingent cone to the graph ofF at (x, y). We refer 
to Chapter 5 of SET-VALUED ANALYSIS for further information on 
the differential calculus of set-valued maps. 

In the second section, we differentiate the regulation law and 
deduce that 

(ii) for almost all t ~ 0, u'(t) E DRK(x(t), u(t))(f(x(t), u(t))) 

whenever the viable control u( ·) is absolutely continuous, 
This is the second half of the system of differential inclusions we 

are looking for. 
Observe that this new differential inclusion has a meaning when

ever the state-control pair (x(·), u(·)) remains viable in the graph of 
RK. 

Fortunately, by the very definition of the contingent derivative, 
the graph of RK is a viability domain of the new system (i), (ii). 

Unfortunately, as soon as viability constraints involve inequali
ties, there is no hope for the graph of the contingent cone, and thus, 
for the graph of the regulation map, to be closed, so that, the Via
bility Theorem cannot apply. 

2 We set D J(x) := D J(x, f(x)) whenever f is single-valued. When f is Frechet 
differentiable at x, then Df(x)(v) = J'(x)v is reduced to the usual directional 
derivative. 
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However, if the contingent derivative of U obeys a growth condi
tion: 

(Q) V (x, u) E Graph(U), inf llvll ~ c(llull + llxll + 1) 
vEDU(x,u)(f(x,u)) 

then there exists an absolutely continuous solution (x(·),u(·)) of (i) 
verifying 

(iii) for almost all t ~ 0, llu'(t)ll ~ c(llu(t)ll + llx(t)ll + 1) 

So, a strategy to overcome the above difficulty is to introduce3 the 
a priori growth condition {iii) and to look for graphs of closed set
valued maps R contained in Graph(U) which are viable under this 
system of differential inclusions. We already illustrated that in the 
simple economic example of Section 6.2. 

Such set-valued maps R are solutions to the partial differential 
inclusion 

V x E K, 0 E DR(x,u)(f(x,u))- c(llxll + llull + 1)B 

satisfying the constraint 

V (x, u) E Graph(R), R(x) C U(x) 

Since we shall show that such closed set-valued maps Rare all con
tained in the regulation map RK, we call them subregulation maps 
associated with the system i), iii). In particular, there exists a largest 
subregulation map denoted Rc. 

In particular, any single-valued r : K 1---t Z with closed graph 
which is a solution to the partial differential inclusion 

V x E K, 0 E Dr(x)(f(x, r(x)))- c(llxll + llr(x)ll + 1)B 

satisfying the constraint 

V x E K, r(x) E U(x) 

provides feedback controls regulating smooth solutions to the control 
system. 

3even if growth conditions on the contingent derivative of U are absent. 
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The set-valued and single-valued solutions to these partial differ
ential inclusions are studied in Section 6 of Chapter 8. 

Let us consider such a subregulation map R. Theorem 4.1.2 im
plies that whenever the initial state xo is chosen in Dom( R)) and 
the initial control uo in R( xo), there exists a solution to the system 

of differential inclusions i), iii) viable in Graph(R). The regulation 
law for the viable state-controls becomes 

(iv) u'(t) E DR(x(t), u(t))(J(x(t), u(t))) n c(llx(t)ll + llu(t)ll + l)B 

We call it the metaregulation law associated with the subregula
tion map R. 

This is how we can obtain smooth viable state-control solutions to 
our control problem by solving the system of differential inclusions 
i), v ). 

Actually, the graphs of all such regulation maps are contained in 
the viability kernel of Graph(U) for the system of differential inclu
sions i), iii). This viability kernel is then the graph of the largest 
subregulation map Rc cU. 

We shall construct explicitly in the third section such a regulation 
map in the case of the simplest economic model we can think of. 

To the extent where second order differential equations and in
clusions are first-order systems in disguise, we devote section 7.4 

to viability problems for second order differential inclusions. The 
situation is not as simple as in the first order case, because the 
viability constraint x(t) E K becomes x'(t) E TK(x(t)), or again, 
(x(t), x'(t)) E Graph(TK ). It no longer defines closed (or even, lo
cally compact) viability domains. So, here again, we shall overcome 
this type of difficulty by using the concept of viability kernel. 

We can naturally follow the same route to obtain smoother open
loop controls by setting bounds on the m-th derivatives: for almost 

all t ~ 0, 

(v) llu(m)(t)ll :S c(llu(m-l)(t)ll + · · · + llu(t)ll + llx(t)ll + 1) 

This is the topic of the fifth section. 
We devote the sixth section to the particular case when c = 0. 

We observe that equation (iii) then yields constant controls uo and 
thus solutions x(·) to the problem x'(t) = f(x(t), uo) which are viable 
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in the closed subset u-1(u0 ) (whenever this subset is not empty.) If 
this is the case, we shall say that uo is a punctuated equilibrium and 
that ( R 0 ) -l ( u0 ) is the associated viability cell, the closed subset of 
states regulated by the constant control uo. 

In the general case of smooth systems of order m, the 0-growth 
condition yields open-loop controls which are polynomial of degree m. 
In particular, form= 1, first-degree polynomials open-loop controls 
are known under the more descriptive label of ramp controls. 

The seventh section is devoted to selection procedures of dynam
ical closed loops, and, among them, of heavy viable solutions. 

Instead of looking for closed loop control selections of the regu
lation map RK as we did in Chapter 6, we now look for selections 
g(·, ·)of the metaregulation map 

(x, u) "-t DR(x, u)(f(x, u)) n c(llxll + llull + l)B 

called dynamical closed-loops. 
Naturally, under adequate assumptions, Michael's Theorem im

plies the existence of a continuous dynamical closed loop. But under 
the same assumptions, we can take as dynamical closed-loop the min
imal selection g0 (·, ·)defined by llg0 (X, u)ll = minvEDR(x,u)(f(x,u)) llvll, 
which, in general, is not continuous. 

However, we shall prove that this minimal dynamical feedback 
still yields smooth viable control-state solutions to the system of 
differential equations 

x'(t) = f(x(t), u(t)) & u'(t) = g0 (x(t), u(t)) 

called heavy viable solutions, (heavy in the sense of heavy trends.) 
They are the ones for which the control evolves with minimal veloc
ity. In the case of the usual differential inclusion x' E F(x), where 
the controls are the velocities, they are the solutions with minimal 
acceleration (or maximal inertia.) 

Heavy viable solutions obey the inertia principle: "keep the con
trols constant as long as they provide viable solutions". 

Indeed, if zero belongs to DR(x(t1), u(ti))(f(x(ti), u(t1))), then 
the control will remain equal to u(t1) as long as fort~ t1, a solution 
x(·) to the differential equation x'(t) = f(x(t), u(ti)) satisfies the 
condition 0 E DR(x(t1), u(ti))(f(x(ti), u(t1))). 
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If at some time t 1, u( t 1) is a punctuated equilibrium, then the 
solution enters the viability cell associated to this control and may 
remain in this viability cell forever4 and the control will remain equal 
to this punctuated equilibrium. 

The concept of a heavy viable solution will be extended to the m

th order, where we look for controls whose m-th derivative evolves as 
slowly as possible. They obey an m-th order inertia principle: keep 

an m-degree polynomial open-loop control as long as the solution it 

regulates is viable. 

7.1 Contingent Derivatives 

By coming back to the original point of view proposed by Fermat, 
we are able to geometrically define the derivatives of set-valued maps 
from the choice of tangent cones to the graphs, even though they yield 
very strange limits of differential quotients. 

Definition 7.1.1 Let F : X """' Y be a set-valued map from a 

normed space X to another normed spaceY andy E F(x). 

The contingent derivative DF(x, y) ofF at (x, y) E Graph( G) is 

the set-valued map from X to Y defined by 

Graph(DF(x,y)) := TGraph(F)(x,y) 

When F := f is single-valued, we set Df(x) := Df(x,J(x)) and 

Cf(x) := Cf(x,f(x)). 
We shall say that F is sleek at (x, y) E Graph( F) if and only if 

the map 
(x',y') E Graph(F)"""' Graph(DF(x',y')) 

is lower semicontinuous at (x, y) {i.e., if the graph ofF is sleek at 

(x, y).) The set-valued map F is sleek if it is sleek at every point of 

its graph. 

Naturally, when the map is sleek at (x, y), the contingent deriva
tive DF(x, y) is a closed convex process. 

4 as long as the viability domain does not change for external reasons which 
are not taken into account here. 
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We can easily compute the derivative of the inverse of a set-valued 
map F (or even of a noninjective single-valued map): The contingent 
derivative of the inverse of a set-valued map F is the inverse of the 
contingent derivative: 

D(F-1 )(y,x) = DF(x,y)-1 

If K is a subset of X and f is a single-valued map which is Frechet 
differentiable around a point x E K, then the contingent derivative 
of the restriction off to K is the restriction of the derivative to the 
contingent cone: 

D(JIK )(x) = D(JIK )(x, f(x)) = f'(x)lrK(x) 

These contingent derivatives can be characterized by adequate 
limits of differential quotients5 : 

Proposition 7.1.2 Let (x, y) E Graph( F) belong to the graph of a 
set-valued map F : X "'-" Y from a normed space X to a normed 
space Y. Then 

{ 
v E DF(x,y)(u) if and only if 
l. · f d ( F(x+hu')-y) O 1m1n h->O+,u'->u V, h = 

If x E Int(Dom(F)) and F is Lipschitz around x, then 

v E DF(x, y)(u) if and only if liminf d (v, F(x + ~u)- y) = 0 
h->0+ 

5 We can reformulate Proposition 7.1.2 by saying that the contingent derivative 
DF(x, y) is the graphical upper limit {See Definition 3.6.3} of the differential 
quotients 

u '"""' "\hF(x, y)(u) := F(x + hu)- y 
h 

Indeed, we know that the contingent cone 

. Graph( F)- (x, y) 
TGraph(F)(x,y) = Limsuph-o+ h 

is the upper limit of the differential quotients Graph<[)-(x,y) when h -> 0+. It 
is enough to observe that 

Graph(F)- (x,y) 
Graph(DF(x,y)) := TGraph(F)(x,y) & Graph(V'hF(x,y)) = h 

to conclude. 



242 7- Smooth and Heavy Viable Solutions 

If moreover the dimension of Y is finite, then 

Dom(DF(x, y)) = X and DF(x, y) is Lipschitz 

Proof- The first two statements being obvious, let us check 
the last one. Let u belong to X and l denote the Lipschitz constant 
ofF on a neighborhood of x. Then, for all h > 0 small enough and 
y E F(x), 

y E F(x) C F(x + hu) + lhlluiiB 
Hence there exists Yh E F(x+hu) such that vh := (Yh -y)jh belongs 
to llluiiB, which is compact. Therefore the sequence vh has a cluster 
point v, which belongs to DF(x, y)(u). D 

Remark - Lower Semicontinuously Differentiable Maps 
The lower semicontinuity of the set-valued map 

(x,y,u) E Graph(F) x X~ DF(x,y)(u) 

at some point (xo, yo, uo) is often needed. Observe that it implies 
that F is sleek at (xo, Yo). The converse needs further assumptions. 
We derive for instance from Theorem 2.5. 7 the following criterion: 

Proposition 7.1.3 Assume that X andY are Banach spaces and 

that F is sleek on some neighborhood U of (xo, Yo) E Graph( F). If 
the boundedness property 

\::1 u EX, sup inf llvll < +oo 
(x,y)EUnGraph(F) vEDF(x,y)(u) 

holds true, then the set-valued map 

(x,y,u) E Graph(F) x X~ DF(x,y)(u) 

is lower semicontinuous on (U n Graph( F)) x X 

7.2 Smooth Viable Solutions 

7.2.1 Regularity Theorem 

Let us consider a finite dimensional vector space Z and a control 
system (U, f) defined by a set-valued map U: X~ Z and a single
valued map f : Graph(U) f---t X, where X is regarded as the state 
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space, Z the control space, f as a description of the dynamics and 
U as the a priori feedback. The evolution of a state-control solution 
(x(·),u(·)) viable in Graph(U) is governed by 

x'(t) = f(x(t), u(t)), u(t) E U(x(t)) (7.1) 

We shall look for viable solutions inK:= Dom(U) which are smooth 
in the following sense: 

Definition 7.2.1 (Smooth State-Control) We say that the pair 
( x( ·), u( ·)) is smooth if both x( ·) and u( ·) are absolutely continuous 
and m-smooth if both x(·) and u<m-l)(·) are absolutely continuous. 

It is said to be cp-smooth (respectively r.p-smooth ofm-th order) if 
in addition for almost all t ~ 0, llu'(t)ll ~ r.p(x(t), u(t)) (respectively 
llu{m)(t)ll ~ r.p(x(t), u(t), u'(t), ... , u<m-l)(t))}, where <p : X X Z ~ 
R+ (respectively r.p : X x zm ~ R+ } is a given function. 

We obtain smooth viable solutions by setting a bound to the 
growth to the evolution of controls, as we did in the simple economic 
example of Section 6.2. 

For that purpose, we associate to this control system and to any 
nonnegative continuous function u ~ r.p(x, u) with linear growth6 the 
system of differential inclusions 

x'(t) = f(x(t), u(t)) 

u'(t) E r.p(x(t), u(t))B 
(7.2) 

Observe that any solution (x(·), u(·)) to (7.2) viable in Graph(U) 
is a r.p-smooth solution to the control system (7.1). 

We thus deduce from the Viability Theorem applied to the system 
(7.2) on the graph of U the following Regularity Theorem: 

Theorem 7.2.2 Assume that U is closed and f, r.p are continuous 
with linear growth. Then the following two statements are equivalent: 

a) For any initial state xo E Dom(U) and control uo E 

U ( xo), there exists a r.p-smooth state-control solution ( x( ·), u( ·)) to 
the control system (7.1} starting at (xo, uo). 

6 which can be a constant p, or the function (x,u) ---+ cllull, or the function 
(x, u) ---+ c(llull + llxll + 1). One could also take other dynamics u' E <I>(x, u) where 
<I> is a Marchaud map. 
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b) The set-valued map U satisfies 

V (x, u) E Graph(U), 0 E DU(x, u)(J(x, u))- cp(x, u)B (7.3) 

Proof- The conclusion of the theorem amounts to saying that 
the closed subset Graph(U) enjoys the viability property. By Viabil
ity Theorem 3.3.5, which we can apply because (x, u) -vt {!(x, u)} x 
cp(x, u)B is a Marchaud map, this is the case if and only if it is a 
viability domain, i.e., if and only if 

v (x,u) E Graph(U),TGraph(u)(x,u) n ({f(x,u)} X cp(x,u)B) =I= 0 

By the very definition of the contingent derivative of U, this is the 
necessary and sufficient condition of the theorem. D 

We know that whenever the right-hand side of an ordinary differ
ential equation is differentiable, its solutions are twice differentiable. 
The extension of this property to the case of differential inclusions is 
just a consequence of the above theorem when we take f(x, u) = u: 

Corollary 7.2.3 Let F : X -vt X be a closed set-valued map such 
that 

V x E Dom(F), V v E F(x), 0 E DF(x, v)(v)- cp(x, v)B 

where (x, u) ---t cp(x, u) is a nonnegative continuous function with 
linear growth. 

Then, for any xo E Dom(F) and vo E F(xo), there exists a solu
tion x( ·) to the differential inclusion 

x'(t) E F(x(t)), x(O) = xo & x'(O) = vo 

which belongs to the Sobolev space W2•1(0, oo; X; e-btdt) {both x(·) 
and x' (-) are absolutely continuous.) 

Remark- Naturally, we can consider other evolution laws of 
open-loop controls associated with the control system (U, f) which 
provide smooth open-loop controls yielding viable solutions. 
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First, we can introduce an observation space Y, replace the initial 
control space Z by another finite dimensional space Z1, an observa
tion map f3 : X 1--t Y and relate the new controls v E Z1 and the 
observation y to the former controls u E Z by a single-valued map 
of the form 

u = o:(f3(x), v) 

where 
o: : Y x z1 1--t z 

We then define a new control system (g, V) defined by 

g(x, v) := f(x, o:(f3(x), v)) 

V(x) := {v E zl I o:(f3(x), v) E U(x)} 

Therefore the new control system governed by 

x'(t) = g(x(t), v(t)) 

v(t) E V(x(t)) 
(7.4) 

provides the same dynamics of the state although through another 
parametrization. 

This being done, we can propose any evolution law of the open
loop controls as long as they are compatible with the constraints 
v(t) E V(x(t)) (or u(t) E U(x(t)).) 

For instance, if A E .C(Z1, Z1) and ~ : X x Z1 ~ Z1 and c.p : 
X x Z1 ~ Z1 is a Marchaud map, we can replace system (7.2) by 
the system of differential inclusions 

x'(t) g(x(t), v(t)) 
(7.5) 

v'(t) E Av(t) + ~(x(t), v(t)) 

(With an adequate choice of A, we are able to study the evolution 
of m time differentiable open-loop controls in next section.) 

Then the Regularity Theorem becomes: 
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Theorem 7.2.4 Assume that U is closed and sleek, that f, c.p are 
continuous with linear growth, that the maps a and (3 are continu
ously differentiable with linear growth and that 

V (x, v) E Graph(V), a~((3(x), v) is surjective 

Then the following two statements are equivalent: 
a) For any initial state xo E Dom(V) and control vo E 

V(xo), there exists a solution (x(·), v(·)) to the control system {1.5) 
starting at (xo, vo) {so that x(·) is still a solution to the control system 
{7.1)). 

b) The set-valued map V satisfies: for every (x, v) E 

Graph(V), 

Av E -.P(x, v)+ 

a~((3(x), v)-1 [DU(x, a((3(x), v))(g(x, v))- a~((3(x), v)(3'(x)g(x, v) J 

Proof- By the Viability Theorem 3.3.5, we have to check 
that the graph of V is a viability domain for the set-valued map 

(x, v) ~ {g(x, v)} x (Av + .P(x, v)) 

Since the graph of V is the inverse image of the graph of U under 
the differentiable map h :X X z1 I--+ X E z defined by 

h(x, v) = (x, a((3(x), v)) 

we can derive a formula to compute its contingent cone whenever U 
is sleek and the following transversality condition holds true: 

Im(h'(x, v))- TGraph(u)(h(x, v)) = X x Z 

But the surjectivity of a~ ((3( x), v) implies obviously the surjectivity 
of h' ( x, v), so that this condition is satisfied. Hence, the contingent 
derivative of V is given by the formula 

{ 
DV(x, v)(x') = a~((3(x), v)-1 [ 

DU(x, a((3(x), v))(x')- a~((3(x), v)(3'(x)x'] 

Therefore, we observe that the second statement of the theorem 
states that the graph of V is a viability domain. D 
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7.2.2 Subregulation and Metaregulation Maps 

The assumption of the above theorem is too strong, since it requires 
that property (7.3) is satisfied for all controls u of U(x) (so that we 
have a solution for every initial control chosen in U(xo).) This means 
that, setting 

RK(x) := { u E U(x) I f(x, u) E TK(x)} 

we are in the situation where RK = U. 
We may very well be content with the existence of a smooth 

solution for only some initial control in a subset R(xo) of U(xo). 
So, we can relax the problem by looking for closed set-valued 

feedback maps R contained in U in which we can find the initial 
state-controls yielding smooth viable solutions to the control system. 

The Viability Theorem implies the following 

Theorem 7.2.5 Let us assume that the control system (1.1) satisfies 

{ 
i) Graph(U) is closed 
ii) f is continuous and has linear growth (7·6) 

Let (x, u) ---t tp(x, u) be a nonnegative continuous function with linear 
growth and R : Z "'--+ X a closed set-valued map contained in U. Then 
the two following conditions are equivalent: 

a) R regulates tp-smooth viable solutions in the sense that 
for any initial state xo E Dom(R) and any initial control uo E R(xo), 
there exists a tp-smooth state-control solution (x( · ), u(-)) to the con
trol system (1.1) starting at (xo, uo) and viable in the graph of R. 

b) R is a solution to the partial differential inclusion 

V (x, u) E Graph(R), 0 E DR(x, u)(f(x, u))- tp(x, u)B (7.7) 

satisfying the constraint: V x E K, R(x) c U(x). 
In this case, such a map R is contained in the regulation map 

RK, and is thus called a tp-subregulation map of U or simply a sub
regulation map . The metaregulation law regulating the evolution of 
state-control solutions viable in the graph of R takes the form of the 
system of differential inclusions 

x'(t) = f(x(t), u(t)) 
(7.8) 

u' (t) E G R(x(t), u(t)) 
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where the set-valued map G R defined by 

GR(x, u) := DR(x, u)(f(x, u)) n cp(x, u)B 

is called the metaregulation map associated with R. 
Furthermore, there exists a largest cp-subregulation map denoted 

R'~' contained in U. 

Proof - Indeed, to say that R is a regulation map regulating cp
smooth solutions amounts to saying that its graph is viable under 
the system (7.2). 

In this case, we deduce that for any (xo, uo) E Graph(R), there 
exists a solution ( x( ·), u( ·)) viable in the graph of U, so that x( ·) is 
in particular viable in K. Since x'(t) = f(x(t), u(t)) is absolutely 
continuous, we infer that f(xo, uo) is contingent to Kat xo, i.e., that 
uo belongs to RK(xo). 

The regulation map for the system (7.2) associates with any 
(x, u) E Graph(R) the set of pairs (x', u') E {f(x, u)} x cp(x, u)B 
such that ( x', u') belongs to the contingent cone to the graph of R 
at (x, u), i.e., such that 

u' E DR(x,u)(f(x,u))ncp(x,u)B =: CR(x,u) 

The graph of R"' is the viability kernel of Graph(U) for the system 
of differential inclusions (7.2). 0 

Proposition 7 .2.6 Let us assume that the control system (7.1) sat
isfies 

{ 
i) 
. ") 
~~-) 
'/,zt 

U maps a neighborhood of every point to a compact subset 
Graph(U) is upper semicontinuous with compact values 
f is continuous and has linear growth 

Then the domain of every subregulation map is closed. 

Proof- Let Xn E Dom(R) be a sequence converging to xo and 
let Un belong to R(xn) C U(xn)· By assumption, the sequence Un 
remains in a compact subset, so that a subsequence (again denoted 
by) Un converges to some u E U ( x). Since R is a subregulation map, 
there exist solutions (xn(·),un(·)) to the system (7.2) of differential 



7.2. Smooth Viable Solutions 249 

inclusions viable in the graph of R. Theorem 3.5.2 implies that a 
subsequence (again denoted by) ( Xn ( ·), Un ( ·)) converges to a solution 
(x(·), u(·)) starting at (x, u). Hence u E R(x) and thus, x E Dom(R). 
0 

We can be particularly interested in single-valued regulation maps 
r : K ~--+ Z, which are closed-loop (feedback) controls regulating <p

smooth viable solutions: 

Proposition 7.2. 7 A closed single-valued continuous map r is a 
feedback control regulating cp-smooth viable solutions to the control 
problem if and only if r is a single-valued solution to the inclusion 

V x E K, 0 E Dr(x)(J(x, r(x)))- cp(x, r(x))B 

satisfying the constraint 

V x E K, r(x) E U(x) 

Then for any xo E K, there exists a solution to the differential equa
tion x'(t) = f(x(t), r(x(t))) starting at xo such that 

V t 2: 0, u(t) := r(x(t)) E U(x(t)) 

and 
for almost all t 2:0, llu'(t)ll ~ cp(x(t),r(x(t))) 

Remark- The study of set-valued and single-valued solutions 
to partial differential inclusion (7.7) will be carried over in Chapter 8 
in the framework of the more general "tracking property". 0 

Remark - We observe that any cp-subregulation map remains 
a ,P-subregulation map for ,P 2: <p and in particular, that the largest 
subregulation maps R'~' are increasing with cp. 0 

Example: Equality Constraints 

Consider the case when h : X ~--+ Y is a twice continuously differen
tiable map and when the viability domain is K := h-1(0). 
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Since TK(x) = ker h'(x) when h'(x) is surjective, we deduce that 
the regulation map is equal to 

RK(x) = { u E U(x) I h'(x)f(x, u) = 0} 

Proposition 7.2.8 Assume that h'(x) E £(X, Y) is surjective when
ever h(x) = 0, that the graph of U is sleek and that for any y E Y 
and v E X, the subsets 

DU(x, u)( v )n (h' (x )f~(x, u) )-1 (y- h" (x)(f(x, u), v)- h' (x )f~(x, u)v) 

are not empty. Then the contingent derivative DRK(x, u)(v) of the 
regulation map is equal to 

DU(x, u)( v) n -(h' (x )f~(x, u) )-1 (h" (x )(f(x, u), v) - h' (x )f~(x, u)v) 

when h'(x)v = 0 and DRK(x, v) = 0 if not. In particular, if U(x) = 
Z, then it is sufficient to assume that h' ( x) f~ ( x, u) is surjective and 
we have in this case 

DRK(x, u)( v) = -(h' (x )f~(x, u) )-1 (h" (x )(f(x, u), v )-h' (x )f~(x, u)v) 

when h'(x)v = 0 and DRK(x, v) = 0 if not. 

Proof- The graph of RK can be written as the subset of pairs 
(x,u) E Graph(U) such that C(x,u) := (h(x),h'(x)f(x,u)) = 0. 
Since the graph of U is closed and sleek, we know that the transver
sality condition 

C'(x, u)TGraph(u)(x, u) = C'(x, u)Graph(DU(x, u)) = Y x Y 

implies that the contingent cone to the graph of U is the set of 
elements (v, w) E Graph(DU(x, u)) such that 

{ 
C'(x, u)(v, w) = 
(h'(x)v, h'(x)f~(x, u)w + h'(x)f~(x, u)v + h"(x)(f(x, u), v)) = 0 

But the surjectivity of h' ( x) and the nonemptiness of the inter
section imply this transversality condition. D 

Therefore, the right-hand side of the metaregulation rule is equal 
to 

{ 
-(h'(x)f~(x, u))-1 (h"(x)(f(x, u), f(x, u))- h'(x)f~(x, u)f(x, u)) 

nDU(x, u)(f(x, u)) n 'P(x, u)B 
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Example: Inequality Constraints 

Consider the case when 

K := {x EX : Vi= 1, ... ,p, 9i(x) 2 0} 

251 

is defined by inequality constraints (for simplicity, we do not include 
equality constraints.) 

We denote by I(x) := {i = 1, ... ,p I 9i(x) = 0} the subset of 
active constraints and we assume once and for all that for every 
xEK, 

:3 vo E CL(x) such that ViE I(x), < g~(x),vo >> 0 

so that, by Theorem 5.1.10, 

RK(x) := {u E U(x) I ViE I(x), (gHx),J(x,u)) 2 0} 

We set g(x) := (g1(x), ... , gp(x)). 
We have seen that the graph of the set-valued map x ~ RK(x) is 

not necessarily closed. However, we ·can find explicit subregulation 
maps by using Theorem 5.1.11. We thus introduce the set-valued 
map RK : X ~ Z defined by 

R'K(x) := {u E U(x) I g(x) + g'(x)f(x,u) 2 0} C RK(x) 

We can regulate solutions viable inK by smooth open-loop con
trols by looking for solutions to the system of differential inclusions 
(7.2) which are viable in the graph of RK· 

We thus need to compute the derivative of RK in order to char
acterize the associated metaregulation map: 

Proposition 7.2.9 Assume that the stronger viability condition7 

V x E K, R'K(x) =/= 0 

7 which holds true whenever K is a viability domain for the control system and 

V x E K, 3 u E U(x) such that llf(x, u)ll :S /K(x) 

where the function /K is defined by (5.1) in Section 5.1. See Theorem 5.1.11. 
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is satisfied. We set 

I (X' u) : = { i = 1' ... 'p I 9i (X) + (g~ (X) ,J (X' u)) = 0} 

Assume that U is sleek and closed and that for every ( x, u) E Graph( RK), 
there exists u~ E DU(x, u)(x~) satisfying 

ViE I(x, u), (g~(x), x~+ f~(x, u)x~+ f~(x, u)u~)+g~'(x)(f(x, u), x~) ~ 0 

Then the contingent derivative D RK ( x, u) ( v) of the subregulation 
map RK is defined by: u' E DJtK(x, u)(x') if and only if u' E 

DU(x, u)(x') and 

ViE I(x,u), (g~(x),x'+f~(x,u)x'+f~(x,u)u')+g~'(x)(f(x,u),x') ~ 0 

If U(x) = Z, then it is sufficient to assume that g'(x)f~(x, u) is 
surjective. We then have in this particular case 

{ 
DJtK(x, u)(x') := { u' E Z IV i E I(x, u), 
(g~(x), f~(x, u)u') ~ -(g~(x), x' + f~(x, u)x')- g?(x)(f(x, u), x')} 

Proof- By Theorem 5.1.10 applied to L := Graph(U) and to the 
constraints defined by 9i(x,u) := gi(x) + (gHx),f(x,u)), we deduce 
that u' E DJtK(x, u)(x') if and only if u' E DU(x, u)(x') and 

ViE I(x,u), (g~(x),x'+f~(x,u)x'+f~(x,u)u')+g?(x)(f(x,u),x') ~ 0 D 

We then deduce from the above Proposition and the Regularity 
Theorem the following consequence: 

Proposition 7.2.10 We posit the assumptions of Proposition 7.2.9. 
If for any (x,u) E Graph(RK), there exists u' such that llu'll ~ 
cp(x,u), then for any initial state xo and any uo E JtK(xo), there 
exists a solution (x(·), u(·)) to the control system {7.2) such that x(·) 
is viable in the set K defined by inequality constraints. The metareg
ulation law can then be written 

{ 
i) x'(t) 

ii) u'(t) 

= f(x(t), u(t)) 

E G(x(t), u(t)) 
(7.9) 
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where the metaregulation map G associated to RK 

G(x, u) := DflK(x, u)(f(x, u)) n cp(x, u)B 

defined by: 
wE G(x, u) if and only if wE DU(x, u)(f(x, u)) n cp(x, u)B and 

{ Vi E I(x, u), (gHx), f~(x, u)u') 
~ -(gHx), f(x, u) + f~(x, u)f(x, u))- g~'(x)(f(x, u), f(x, u)) 

Naturally, the graph of the metaregulation map G is not neces
sarily closed. However, we can still use Theorem 5.1.11 to obtain 
a "submetaregulation map" of this system of differential inclusions. 
We introduce the set-valued map G0 defined by: u' E G0 (x, u) if and 
only if llu'll ~ cp(x, u) and 

{ Vi= 1, ... ,p, (gHx), f~(x, u)u') 
~ -gi(x)- (gHx), 2f(x, u) + f~(x, u)f(x, u)) - g~'(x)(f(x, u), f(x, u)) 

Hence the system of differential inclusions 

x'(t) = f(x(t), u(t)) 
(7.10) 

u'(t) E G0 (x(t), u(t)) n cp(x(t), u(t))B 

regulates cp-smooth solutions which are viable in K. 

7.3 Second Order Differential Inclusions 

Viability problems for second order differential inclusions also require 
the use of viability kernels. 

Let us consider a set-valued map F: X x X"-+ X and the second 
order differential inclusion 

for almost all t ~ 0, x"(t) E F(x(t),x'(t)) (7.11) 

If we are looking for differentiable solutions x( ·) which are viable 
in K, we know that V t ~ 0, x'(t) E TK(x(t)), i.e., (x(t), x'(t)) E 

Graph(TK)· So the viability condition x(t) E K involves the un
derlying viability condition x'(t) E TK(x(t)). Hence, a necessary 
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condition for having viable solutions is that the closure of the graph 
of TK is contained in the domain of F. 

As usual, we regard the second order differential inclusion as the 
system of first order differential inclusions 

{ 
i) for almost all t 2: 0, x'(t) = u(t) 
ii) and u'(t) E F(x(t),u(t)) 

and the viability condition x(t) E K as the first order viability con
straint 

Vt 2:0, (x(t),x'(t)) E Graph(TK) 

So, by the very definition of contingent derivatives, the necessary 
condition of viability can be expressed in the form 

V (x, u) E Graph(TK ), F(x, u) n DTK(x, u)(u) -=f: 0 (7.12) 

Viability Theorem 3.3.5 implies the following result: 

Proposition 7.3.1 Assume that the graph of the contingent cone 
TK(·) is closed and contained in the domain of a Marchaud map F. 

Then the necessary and sufficient condition for the second order 
differential inclusion {7.11) to have viable solutions starting from 
any initial state xo E K and any initial velocity uo E TK(xo) is that 
condition (7.12) is satisfied. 

This condition is satisfied whenever K is a smooth subset of the 
form h-1(0): 

Corollary 7.3.2 Let h : X ~ Y be a twice continuously differen
tiable map such that h'(x) E £(X, Y) is surjective whenever h(x) = 0 
and K := h-1(0). Then differential inclusion (7.11) has a viable so
lution starting from any initial state xo E K and any initial velocity 
uo satisfying h' ( xo )uo = 0 if and only if 

V x E K, VuE ker h'(x), -h'(x)F(x, u) n h"(x)(u, u) -=f: 0 

Proof- We already know that TK(x) = kerh'(x) because 
h' ( x) is surjective, so that the transversality condition is satisfied. 
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Since the graph of TK can be described by the equation B(x, u) = 
0 where 

B(x, u) := (h(x), h'(x)v) 

Its derivative B'(x, u) E .C(X n X, X n X) is equal to 

B'(x, u)(v, w) = (h'(x)v, h"(x)(u, v) + h'(x)w) 

and is surjective thanks to the surjectivity of h'(x). Therefore, the 
contingent cone to the graph of the set-valued map TK(·) is the subset 
of elements (v, w) such that B'(x, u)(v, w) = 0, i.e., the subset of 
elements v E TK(x) and wE -h'(x)-1h"(x)(u, v). In other words, 

DT ( )( ) = { -h'(x)-1h"(x)(u, v) if v E TK(x) 
K x, u v 0 if v ~ TK(x) 

Hence tangential condition (7.12) is equivalent to the condition of 
the corollary. D 

Unfortunately, the graph of the contingent cone is not closed, 
nor even locally compact, as soon as the viability constraints involve 
inequality constraints. In this case, this condition is no longer suffi
cient, as the following example shows. 

Example Take X := R and K := R+ and the differential 
inclusion x" ( t) = x( t) + 1. We see easily that the tangential condition 
(7.12) is satisfied. However, there is no solution to this second order 
differential equation starting from (0, 0). D 

If the graph of TK( ·) is not closed, we can look for explicit closed 
set-valued maps contained in TK(·), such as the maps TJ<(-) (see 
Definition 4.4.1), or the maps Tk(-) introduced by N. Maderner in 
the case of inequality constraints (see Theorem 5.1.11). 

In the general case, we can regard the viability kernel of its clo
sure as the graph of a closed set-valued map (possibly empty) R. 
Theorem 4.1.2 implies the following consequence: 

Theorem 7.3.3 Assume that F : X x X~ X is a Marchaud map. 
Let K be a subset such that Graph(TK) C Dom( F). 
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Then there exists a largest closed set-valued map R : X ~ X such 
that second order differential inclusion (7.11) has a viable solution 
for any initial state xo E Dom(R) and initial velocity uo E R(xo). 

If we are not interested by global properties, but are satisfied with 
local properties, we can look for locally compact viability domains 
of u x F(x, u) comprised between the graph of R (the largest closed 
viability domain) and the graph of TK (a viability domain which may 
not be locally compact), because Viability Theorem 3.3.2 requires 
only local compactness for having local viable solutions. 

This happens whenever the graph of the interior of the contin
gent cone Int(TK) is open (this is the case when the interior of a 
closed convex subset K is not empty, for instance.) Then, by taking 
initial velocities uo E lnt(TK(xo)), we deduce from Theorem 3.3.2 
the existence of a viable solution x(·) on some [0, T]. 

In the nonconvex case, one can take initial velocities uo in the 
Dubovitsky-Miliutin cone DK(xo) (see Definition 4.3.1.) 

7.4 Metaregulation Map of High Order 

The above results can naturally be extended to the regulation of 
control systems by smooth controls of order m > 1. 

We introduce a set-valued map Um: X x zm-2 ~ Z satisfying 

if :3 uo, ... , Um-1 I Um-1 E Um(x, uo, ... , Um-2), then uo E U(x) 

We can take for instance Graph(Um) := Graph(U) X zm-2' but we 
shall propose later other choices of closed maps Um. 

Let us consider a nonnegative continuous function 

(x, uo, ... , Um-d E Graph(Um) --+ c.p(x, uo, ... , Um-1) E R+ 

with linear growth. 
We obtain smooth viable solutions of order m by setting a bound 

to the m-th derivative of the control. For that purpose, we associate 
with this control system and <p the system of differential inclusions 

x'(t) = f(x(t), u(t)) 
(7.13) 

u(m)(t) E <p(x(t), u(t), u'(t), ... , u(m-l)(t))B 
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Let us consider a closed set-valued map Rm :X x zm-1 ~ Z. 
We also regard the graph of Rm as the graph of the set-valued map 
Nm : zm ~ X defined by 

x E Nm(uo, ... , Um-1) if and only if Um-1 E Rm(x, uo, ... , Um-2) 

and Km := Im(Nm) its image. 

Theorem 7.4.1 Let us assume that the control system {7.1} satisfies 

{ i) Graph(Um) is closed 
ii) f is continuous and has linear growth 

Let us consider a closed set-valued map Rm : X x zm-2 ~ Z 
contained in Um. Then the two following conditions are equivalent: 

a) Rm regulates r.p-smooth viable solutions of order m in 
the sense that for any initial (xo, uo, UI, ... , Um-1) E Graph(Rm), 
there exists a solution x(·) E W1•1(0, oo; X, ebt) and a control u(·) E 

wm•1(0, oo; Z, ebt) to the control system {7.1} satisfying the initial 
conditions 

x(O) = xo, u(O) = uo, u'(O) = u1 ... , u<m-1)(0) = Um-1 

the growth condition 

and the constraintaB 

'tit~ 0, x(t) E Nm(u(t),u'(t), ... ,u<m-2)(t)) 

b) Rm is a solution to the partial differential inclusion9 

{ 
'V (x, uo, ... , Um-1) E Graph(Rm), 
0 E DRm(x, UQ, ••• , Um-1){f(x, UO), UI, ... , Um-I) 
-r.p(x, uo, ... , Um-1)B 

8which can also be written in the form 

\:It~ 0, u<m-l)(t) E Rm(x(t),u(t),u'(t), ... ,u<m-2 )(t)) 

9or Nm is a solution to the partial differential inclusion 

0 E DNm(uo, ... 'Um-l)(ul, ... 'Um-1, cp(x, ... 'Um-d)- f(x, uo) 
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satisfying the constraint: Rm(x, uo, ... , Um-2) C Um(x, uo, ... , Um-2)· 
In this case, such a map Rm is called a cp-growth subregulation 

map of order m of U or simply a subregulation map of order m . 
The metaregulation law of order m regulating the evolution of 

state-control solutions viable in the graph of R takes the form of the 
system of differential inclusions 

x'(t) = f(x(t), u(t)) 
(7.14) 

u(m)(t) E GRm (x(t), u(t), u'(t), ... , u(m-1)(t)) 

where the metaregulation map G Rm of order m is defined by 

{ 
GRm(x,uo, ... ,um-1) := 

DRm(x, uo, ... 'Um-1)(J(x, uo), ... 'Um-1) n cp(x, uo, ... 'Um-1)B 

There exists a largest cp-growth subregulation map denoted R':f:.,_ 
contained in Urn. 

Proof- We introduce the differential inclusion 

x'(t) = f(x(t), uo(t)) 

U~(t) = U1(t) 

(7.15) 

u~_ 1 (t) E cp(x(t),uo(t), ... ,um-1(t))B 

where the state space is Xxzm and the set of constraints is Graph(Um) c 
Xxzm. 

To say that Rm is a subregulation map regulating smooth solu
tions of order m amounts to saying that its closed graph is viable 
under the above system (7.15). 

The metaregulation map of order m, which is the regulation map 
of the system (7.15) yielding viable solutions in the graph of Rm, is 
the set of velocities 

(J(x, uo), u1, ... , Um-1, u') 
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where u' E cp(x, uo, ... , Um-l)B which are contingent to the graph of 
Rm at (x, uo, ... , urn), i.e., which satisfy 

u' E DRm(x, uo, u1, ... , Um-l)(f(x, uo), u1, ... , Um-1) 

The graph of the largest subregulation map R'fn of order m is the 
viability kernel of Graph(Um) for this system of differential inclu
sions. D 

7.5 Punctuated Equilibria, Ramp Controls 
and Polynomial Open-Loop Controls 

The case when the growth cp is equal to 0 is particularly interesting, 
because the inverse N° of the 0-growth regulation map R0 determines 
the areas N° ( u) regulated by constant control u. 

One could call N°(u) the viability cell or niche of u. A control u 
is called a punctuated equilibrium if and only if its viability cell is not 
empty. Naturally, when the viability cell of a punctuated equilibrium 
is reduced to a point, this point is an equilibrium. 

So, punctuated equilibria are constant controls which regulate 
the control systems (in its viability cell): 

Proposition 7 .5.1 The viability cell of a control u is the viabil
ity kernel of u- 1(u) for the differential equation x'(t) = f(x(t), u) 
parametrized by the constant control u. 

Proof- Indeed, viability cells describe the regions of Dom(U) 
which are controlled by the constant control u because for any initial 
state xo given in N°(u), there exists a viable solution x(·) to the 
differential inclusion 

{ 
i) x'(t) = f(x(t), u(t)) 
ii) u'(t) = 0 

starting at (xo, u), i.e., of the differential equation x'(t) = f(x(t), u) 
which is viable in the viability cell N°(u) because u E R 0 (x(t)) for 
every t ~ 0. D 
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One can ask more generally whether linear open-loop controls 
u(t) := uo + tu1 can regulate viable solutions to the control systems, 
and what are the largest areas of the viability domain which can be 
regulated by linear controls. Such controls are called ramp controls . 

The advantage is that in such areas, finding the ramp controls 
amounts to looking only for two elements uo and u1 in the finite di
mensional space Z 2 rather than a general function u( ·) in an infinite
dimensional space W1•1(0, oo; z, ebt). 

Pursuing this point of view, the problem arises of regulating vi
able solutions to a control system by polynomial open-loop controls of 
degree m. For m = 0, we find the punctuated equilibria, for m = 1 
the ramp controls, and so on. 

We consider the graph Graph(R~) of the largest m-smooth 0-
growth regulation map of the system (7.15) and we denote by K~ := 

Im(N~). 

Proposition 7.5.2 We posit the assumptions of Theorem 1.4.1. Then 
K~ C K is the largest subset of initial states from which there exist 
viable solutions regulated by m-degree polynomial open-loop controls. 

Controlling the system from xo E K~ amounts to choosing initial 
controls (uo, U!, ... 'Um) E (N~) - 1 (xo) c zm+l. In this case, there 
exists a viable solution x( ·) to the control system 

( 
tm-1 ) 

x'(t) = f x(t), uo + u1t + ... + Um-1 (m _ 1)! 

satisfying 

x(O) = xo, u(O) = uo, u'(O) = u1, ... , u(m-1)(0) = Um-1 

and the regulation law written in the form 

0 (m-1 ti m-k-1 ti ) 
V t ~ 0, x(t) E Nm L Uj"7j, ... , L Uj+k"7j' ... , Um-1 

j=O J. j=O J. 

We naturally obtain 

K 0 := K? c K? c . . . c K~ c . . . K := Dom(U) 
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and, for k ~ m, 

N2(uo, ... , Uk-d = N~(uo, ... , Uk-b 0, ... , 0) 

Remark - In the case of the general evolution of open-loop 
controls, the regulation maps are solutions to the partial differential 
inclusion 

V (x, v) E Graph(V), Av E DR(x, v)(g(x, v))- ~(x, v) 

subject to the constraint 

V x EX, R(x) C V(x) 

In particular, for ~ = 0, we obtain the subset of initial states x0 

from which there exist viable solutions to the control system 

x'(t) = f(x(t), eAtvo) 

regulated by open-loop controls 

v(t) = eAtvo 

which are solutions to the system of differential equations 

v'(t) = Av(t), v(O) = vo 

7.6 Heavy Viable Solutions 

7.6.1 Dynamical Closed Loops 

Let us consider a control system ( U, f), a regulation map R c U 
which is a solution to the partial differential inclusion (7.7) and the 
metaregulation map 

(x, u) ~ GR(x, u) := DR(x, u)(f(x, u)) n cp(x, u)B 

regulating smooth state-control solutions viable in the graph of R 
through the system (7.8) of differential inclusions. 

The question arises as to whether we can construct selection pro
cedures of the control component of this system of differential in
clusions. It is convenient for this purpose to introduce the following 
definition. 
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Definition 7.6.1 (Dynamical Closed Loops) Let R be a cp-growth 
subregulation map of U. We shall say that a selection g of the con
tingent derivative of the meta regulation map G R associated with R 
mapping every (x, u) E Graph(R) to 

g(x, u) E GR(x, u) := DR(x, u)(f(x, u)) n cp(x, u)B (7.16) 

is a dynamical closed loop of R. 
The system of differential equations 

x'(t) f(x(t), u(t)) 
(7.17) 

u'(t) g(x(t), u(t)) 

is called the associated closed loop differential system. 

Clearly every solution to (7.17) is also a solution to (7.8). There
fore, a dynamical closed loop being given, solutions to the system 
of ordinary differential equations (7.17) (if any) are smooth state
control solutions of the initial control problem (7.1). 

Such solutions do exist when g is continuous (and if such is the 
case, they will be continuously differentiable.) But they also may 
exist when g is no longer continuous, as we saw when we built closed 
loop controls in Chapter 6. This is the case for instance when g(x, u) 
is the element of minimal norm in G R ( x, u). 

In both cases, we need to assume that the metaregulation map 
G R associated with R is lower semicontinuous with closed convex 
images. By Proposition 7.1.3, it will be sufficient to assume that: 

{ i) R is sleek 

ii) sup(x,u)EGraph(R) IIDR(x,u)ll < +oo 
(7.18) 

Indeed, assumptions (7.18)i) and ii) imply that the set-valued 
map ( x, u, v) ~ DR( x, u, v) is lower semicontinuous. Since cp is con
tinuous, we infer from Proposition 6.3.2 that the metaregulation map 
G R is also lower semicontinuous. 

We thus begin by deducing from Michael's Theorem 6.5.7 the 
existence of continuously differentiable viable state-control solutions. 
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Theorem 7.6.2 Assume that U is closed and that f, <p are con
tinuous and have linear growth. Let R(·) C U(·) be a <p-growth 
subregulation map satisfying assumption (7.18). Then there exists 
a continuous dynamical closed loop g associated with R. The as
sociated closed loop differential system (7.17) regulates continuously 
differentiable state-control solutions to (7.1) defined on [0, oo[. 

7.6.2 Heavy Viable Solutions 

Since we do not know constructive ways to build continuous dynami
cal closed loops, we shall investigate whether some explicit dynamical 
closed loop provides closed loop differential systems which do possess 
solutions. 

The simplest example of dynamical closed loop control is the 
minimal selection of the metaregulation map GR, which in this case 
is equal to the map gR_ associating with each state-control pair ( x, u) 
the element gR_ ( x, u) of minimal norm of DR( x, u) (f ( x, u)) because 
for all (x,u), llgR_(x,u)ll ~ <p(x,u) whenever GR(x,u) =/= 0. 

Definition 7.6.3 (Heavy Viable Solutions) Denote by gR_(x, u) 
the element of minimal norm of DR(x, u)(f(x, u)). We shall say 
that the solutions to the associated closed loop differential system 

x'(t) f(x(t), u(t)) 

u'(t) gR_(x(t), u(t)) 

are heavy viable solutions to the control system (U, f) associated with 
R. 

Theorem 7 .6.4 (Heavy Viable Solutions) Let us assume that U 
is closed and that f, <p are continuous and have linear growth. Let 
R( ·) c U ( ·) be a <p-growth subregulation map satisfying assumption 
(7.18}. Then for any initial state-control pair (xo, uo) in Graph(R), 
there exists a heavy viable solution to the control system (7.1). 

Remark- Any heavy viable solution (x(·), u(·)) to the control 
system (7.1) satisfies the inertia principle: Indeed, we observe that 
if for some h, the solution enters the subset CR(u(h)) where we set 

CR(u) := {x E K I 0 E DR(x, u)(f(x, u))} 
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the control u(t) remains equal to u(t1) as long as x(t) remains in 
CR(u(ti)). Since such a subset is not necessarily a viability domain, 
the solution may leave it. 

Iffor some t1 > 0, u(tt) is a punctuated equilibrium, then u(t) = 
Utf for all t;::: t1 and thus, x(t) remains in the viability cell NP(u(tt)) 
for all t ;::: t 1. D 

The reason why this theorem holds true is that the minimal se
lection is obtained through the selection procedure defined by 

S'GR(x, u) := llg_R(x, u)ll B (7.19) 

It is this fact which matters. So, Theorem 7.6.4 can be extended 
to any selection procedure of the metaregulation map G R(x, u) de
fined in Chapter 6 (See Definition 6.5.2). 

Theorem 7.6.5 Let us assume that the control system (7.1} satisfies 

{ 
i) Graph(U) is closed 
ii) f is continuous and has linear growth 

(7.20) 

Let (x, u) --t <p(x, u) be a nonnegative continuous function with linear 
growth and R : Z ""' X a closed set-valued map contained in U. 

Let ScR : Graph(R) ""' X be a selection procedure with convex 
values of the metaregulation map GR. Then, for any initial state 
(xo, uo) E Graph(R), there exists a state-control solution to the as
sociated closed loop system 

x' = f(x, u), u' E GR(x, u) n ScR(x, u) (7.21) 

defined on [0, oo[ and starting at (xo, uo). In particular, if for any 
(x, u) E Graph(R), the intersection 

is a singleton, then there exists a state-control solution defined on 
[0, oo[ and starting at (xo, uo) to the associated closed loop system 

x'(t) = f(x(t), u(t)), u'(t) = s (GR(x(t), u(t))) 
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Proof- Consider the system of differential inclusions 

x' = f(x, u), u' E Scn(x, u) n cp(x, u)B 

subject to the constraints 

V t;:::: 0, (x(t), u(t)) E Graph(R) 
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(7.22) 

Since the selection procedure Sen has a closed graph and convex val
ues, the right-hand side is an upper semicontinuous set-valued map 
with nonempty compact convex images and with linear growth. On 
the other hand Graph( R) is a viability domain of the map {! ( x, u)} x 
(Scn(x, u) x cp(x, u)B). Therefore, the Viability Theorem can be 
applied. For any initial state-control (xo, uo) E Graph(R), there 
exists a solution (x(·), u(·)) to (7.22) which is viable in Graph(R). 
Consequently, for almost all t ;:::: 0, the pair ( x' ( t), u' ( t)) belongs to 
the contingent cone to the graph of Rat (x(t),u(t)), which is the 
graph of the contingent derivative DR(x(t), u(t)). In other words, 
for almost all t ;:::: 0, u'(t) E DR(x(t), u(t))(f(x(t), u(t))). Since 
llu'(t)ll ~ cp(x(t),u(t)), we deduce that u'(t) E GR(x(t),u(t)) for al
most all t ;:::: 0. Hence, the state-control pair ( x( ·), u( ·)) is a solution 
to (7.21). D 

Proof of Theorem 7.6.4- By the Maximum Theorem 2.1.6 
the map (x, u) ~----+ IIYR(x, u)ll is upper semicontinuous. It has a linear 
growth on Graph(R). Thus the set-valued map (x, u) ~ IIYR(x, u) II B 
is a selection procedure satisfying the assumptions of Theorem 7.6.5. 
D 

Since we know many examples of selection procedures, it is pos
sible to multiply examples of dynamical closed-loops as we did for 
usual closed loops. We shall see some examples in the framework of 
differential games in Chapter 14. 

7.6.3 Heavy Viable Solutions under Equality Con
straints 

Consider the case when h : X ~ Y is a twice continuously differentiable 
map, when the viability domain is K := h-1 (0) and when there are no 
constraints on the controls (U(x) = Z for all x E K). We derive from 
Proposition 7.2.8 the following explicit formulas for the dynamical closed 
loop yielding heavy solutions. 
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Proposition 7.6.6 We posit assumptions of Theorem 7.2.8. Assume fur
ther that U ( x) = Z, that the regulation map 

R(x) := {u E Z I h'(x)f(x, u) = 0} 

has nonempty values, that h( x) is surjective whenever x E K and that 

h'(x)f~(x,u) E C(Z, Y) is surjective whenever u E R(x). 
Then there exist heavy solutions viable in K, which are the solutions to 

the system of differential equations 

x' = f(x, u) 

u' =-f~(x, u)*h'(x)*p(x, u) where 

p(x, u) := (h'(x)f~(x, u)f~(x, u)*h'(x)*)- 1 h'(x)f~(x, u)f(x, u) 

Proof- The element g(x, u) E G(x, u) of minimal norm, being a 
solution to the quadratic minimization problem with equality constraints 

h'(x)f~(x, u)w = -h' (x)f~(x, u)f(x, u) - h" (x)(f(x, u), f(x, u)) 

is equal to 

g(x, u) = - f~(x, u)*h'(x)*(h'(x)f~(x, u)f~(x, u)* h'(x)*)-1 

(h'(x)f~(x, u)f(x, u) + h"(x)(f(x, u), f(x, u))) 

because the linear operator B := h'(x)f~(x, u) E C(Z, Y) is surjective. 

Example: Heavy solutions viable in affine spaces. Consider 
the case when K := {x EX I Lx = y} where L E C(X, Y) is surjective. 

Let us assume that 

{ i) V x E K, R(x) := {u E Z such that Lf(x, u) = 0} -=J 0 
ii) V x E K, VuE R(x), Lf~(x,u) is surjective 

Then, for any initial state xo E K and initial velocity u0 satisfying Lf(xo, u0 ) = 
0, there exists a heavy viable solution given by the system of differential 
equations 

{ i) x' = f(x, u) 
ii) u' =-f~(x, u)* L*(Lf~(x, u)f~(x, u)* L*)- 1 Lf~(x, u)f(x, u) 

When Y :=Rand K := {x EX I < p,x >= y} is an hyperplane, the 
above assumption becomes 

{ i) V x E K, R(x) := {u E Z such that < p, f(x, u) >= 0} -=J 0 
ii) V x E K, VuE R(x), f~(x, u)*p # 0 
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and heavy viable solutions are solutions to the system of differential equa
tions 

x' = f(x,u) 

u' - - <p,f~(x,u),J(x,u)> f' (x u)*p 
- IIJ;.(x,u)*pll2 u ' 

Example: Heavy solutions viable in the sphere. 
Let L E C(X, X) be a symmetric positive-definite linear operator, with 

which we associate the viability subset 

K := {xEXI <Lx,x>=l} 

We assume that 

{ i) VxEK, R(x):={uEZ suchthat <Lx,J(x,u)>=0}#0 
ii) V x E K, VuE R(x), f~(x, u)* Lx # 0 

Then there exist heavy viable solutions in the sphere, which are solutions 
to the system of differential equations 

x' = f(x,u) 

1 f~(x,u)* Lx ( ) h 
u = -IIJ;.(x,u)*Lx112P x, u w ere 

p(x, u) :=< Lf(x, u), f(x, u) > + < Lx, f~(x, u)f(x, u) > 

7.6.4 Heavy Viable Solutions of High Order 

We shall extend the concept of heavy viable solutions to higher order. 
For simplicity, we explain what happens for the first order, in the 

case when we want to satisfy both the inertia principle and a first
order inertia principle: keep a ramp control as long as it regulates a 
viable smooth solution. 

We begin with the control system (U, f), we set U1 := U and 
c.p1 := c.p, we choose a <p1-growth subregulation map R1(·) := R(·) c 
U ( ·) and we denote by 

G 1(x,u) := DR1(x,u)(f(x,u))nc.pl(x,u)B 

the metaregulation rule associated with R1. 
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Since we know that the evolution of heavy viable solutions is 
governed by the differential equation 

u~(t) = u1(t) = g~(x(t),uo(t)) 

where gJ. is the minimal selection of G1, the instinctive idea which 
comes to mind is to take for set-valued map U1 the (single-valued) 
map gJ.. Unfortunately, its graph is not closed. 

Since the minimal selection gl. is obtained through the selection 
procedure defined by (7.19), another idea is to use any selection 
procedure Sa1 of the set-valued map G1 and in particular the one 
defined by (7.19): 

S(;1 (x,u) ·- llg~(x,u)IIB 

We then define U2 by 

Graph(U2) := (Graph(RI) X Z) n Graph(Scl) 

and we introduce a continuous function 'P2 : Graph(U2) ~----+ R+ with 
linear growth. 

The graph of U2 is closed. This choice being made, we associate 
a cp2-growth subregulation map R2 c U2 (for instance, the viability 
kernel of the graph of U2.) We know that the evolution of the second 
derivative of the control is governed by the metaregulation law 

u"(t) E G2(x(t), u(t), u'(t)) 

where we denote by 

the metaregulation map associated with R2. We propose to govern 
the evolution of the second derivative of the control by selections of 
the map G2, and in particular, by its selection of minimal norm g2, 
which then yields a second-order heavy viable solution. 

Theorem 7.6.7 (Second-Order Heavy Viable Solutions) Let us 
assume that U1 is closed and that j, 'PI, 'P2 are continuous and have 
linear growth, that conditions (1.18) and 

{ 
i) the subregulation map R2 is sleek 

ii) sup(x,u0 ,ul)EGraph(R2 ) IIDR2(x, uo, UI)II < +oo (7.23) 
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hold true. Then for any initial data u1 E R2(xo, uo), there exists a 
second-order heavy viable solution to the control system (7.1}, i.e., a 
solution to the system 

x'(t) f(x(t), u(t)) 

u'(t) g]'(x(t), u(t)) 

u" ( t) = g2 (x( t), u( t), u' ( t)) 

Remark- Any second-order heavy viable solution satisfies the 
first-order inertia principle. 

For explaining why , let us introduce the subsets 

{ 
Ck(uo, ... , uk-1) 
:= { x E KIO E DRk(x, uo, ... , Uk-1)(f(x, uo), ... , Uk-1)} 

fork= 1, 2. 
If for some to, the solution enters the subset C1(u(to), then the 

open-loop control u(t) becomes constant as long as x(t) remains in 
C1(u(to)). 

If for some t1, the solution enters the subset C2(u(t1), u'(ti)), 
then the open-loop control u(t) becomes a ramp control as long as 
x(t) remains in C2(u(t),u'(t)). In this case, it is regulated by 

Since such a subset is not necessarily a viability domain, the solution 
may leave it. 

If for some tr > 0, the solution x( t) enters the subset K~, then 
it will be regulated by a ramp control, until some time10 t1 E [tr, oo[ 
where x(tJ) E KP. Then Ut1 E R1(x(tJ)) is a punctuated equilib
rium, and u(t) = Ut1 for all t 2 tf, so that x(t) remains in the 
viability cell NP(u(tJ)) for all t 2 tf. D 

Naturally, as for heavy viable solutions, this theorem follows 
from: 

10which may never be reached 
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Theorem 7 .6.8 Let us assume that the control system {1.1) and the 
functions 'Pl, 'P2 satisfy 

{ i) Graph(U) is closed 
ii) f & 'Pi are continuous and have linear growth ( i = 1, 2) 

Let Sc1 : Graph( R1) "-+ X be a selection procedure of the metareg
ulation map G1, U2 be defined by 

Graph(U2) := (Graph(Rl) X Z) n Graph(Scl) 

R2 C U2 be a subregulation map and Sc2 : Graph(R2) "-+ Z be a 
selection procedure of the metaregulation map G2 with convex values. 
Set 

{ S (G1) (x, u) := G1(x, u) n Sc1 (x, u) 
S ( G2) (x, u, u') := G2(x, u, u') n Sc2 (x, u, u') 

Then, for any initial state (xo,uo,ul) E Graph(R2), there exists a 
solution to the system 

x'(t) = f(x(t), u(t)) 

u'(t) E S(Gl)(x(t),u(t)) (7.24) 

u"(t) E S(G2)(x(t), u(t), u'(t)) 

defined on [0, oo[ and starting at (xo, uo, u!). 
In particular, if for any (x, u, u') E Graph(R2), the intersections 

S(GI) (x,u) & S(G2) (x,u,u') 

are singleta { s ( GI) (x, u)} and { s ( G2) (x, u, u')}, then there exists a 
state-control solution defined on [0, oo[ and starting at (xo, uo) to the 
associated closed loop system 

x'(t) f(x(t), u(t)) 

u' ( t) s ( G 1) ( x ( t), u ( t)) 

u"(t) = s(G2)(x(t),u(t),u'(t)) 
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Proof- We consider the system 

i) x'(t) = f(x(t), uo(t)) 

ii) Uo(t) = U1(t) 

iii) u~ (t) E Sc2 (x(t), uo(t), u1(t)) n cp2(x(t), uo(t), u1(t))B 
(7.25) 

Since the selection procedure Sc2 has a closed graph and convex 
values, the right-hand side of this system of differential inclusions is 
a Marchaud map. 

The closed subset Graph(R2) is a viability domain. Indeed, we 
know that there exists an element win the selection S(G2)(x, u0 , ui). 
Since w E G2(x,uo,ui)) C DR2(x,uo,ui)(!(x,uo),ui)), we infer 
that 

Hence (! ( x, uo), u 1, w) is a velocity which is contingent to the graph 
of R2. 

Therefore the Viability Theorem implies the existence of a solu
tion (x(·),uo(·),u1(·)) to the system of differential inclusions (7.25) 
viable in the graph of R2. This implies that for almost all t ~ 0, 
setting u(·) := uo(·), 

u" ( t) = u~ ( t) E DR2(x( t), u( t), u' ( t) )(!(x( t), u( t) ), u' ( t)) 

This, together with (7.25)iii), implies that for almost all t ~ 0, 

u"(t) E G2(x(t), u(t), u'(t)) n Sc2 (x(t), u(t), u'(t)) 

Furthermore, since Graph(R2) is contained in Graph(RI) x Z, we 
deduce that 

V t ~ 0, u(t) := uo(t) E R1(x(t)) 

so that 

Vt ~ 0, u'(t) E DR1(x(t),u(t))(!(x(t)),u(t)) C G1(x(t),u(t)) 
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On the other hand, by the very choice of U2, we know that 

V t ~ 0, u'(t) := u1(t) E R2(x(t), u(t)) C Sa1 (x(t), u(t)) 

Hence we have proved the existence of a solution to the second-order 
system of partial differential inclusions (7.24) with a right-hand side 
which is not a Marchaud map. 0 

Naturally, we can extend this theorem up to the order m, by 
recursively choosing the map U m by formula 

Graph(Um) := (Graph(Rm-I) x Z) n Graph(Scm_ 1 ) 

and by taking a subregulation map Rm CUm (for instance, the map 
whose graph is a viability kernel for the system (7.15).) 

In the case of the minimal selection, we take as selection proce
dure 

S(;m(x,uo, ... ,Um-1) := llg~(x,uo, ... ,Um-diiB 

where actually, g~(x, uo, ... , Um-1) is the element of minimal norm 
of 

DRm(x, uo, ... , Um-1)(f(x, uo), ... , Um-d 

Theorem 7.6.9 (m-th Order Heavy Viable Solutions) Assume 
that U is closed and that f, t.pk are continuous and have linear growth 
for 0 ~ k ~ m. We assume further that for 0 ~ k ~ m, 

{ i) the subregulation map Rk c Uk is sleek 

ii) sup(x,uo, ... ,uk-l)EGraph(Rk) IIDRk(x, uo, ... 'uk-1)11 < +oo 

Then for any initial data Um-1 E Rm(xo, uo, ... , Um-2), there 
exists an m-th order heavy viable solution to the control system 

x'(t) f(x(t), u(t)) 

u'(t) g0(x(t), u(t)) 

u(m)(t) g~(x(t), u(t), u'(t), ... , u(m-1)(t)) 
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It obeys an m-th order inertia principle: keep an m-degree poly
nomial open-loop control as long as the solution it regulates is viable. 

This theorem follows from the more general 

Theorem 7.6.10 Let us assume that the control system (7.1) and 
the functions 'Pk satisfy for 0 ::; k ::; m 

{ i) Graph(U) is closed 
ii) f & 'Pk are continuous and have linear growth 

Let Sak : Graph(Rk) "-+ X be selection procedures with convex 
values of the set-valued maps Gk. Set 

S ( Gk) (x, uo, ... , Uk-1) := Sak (x, uo, ... , uk-l)nGk(x, uo, ... , uk-d 

Then, for any initial state (xo, uo, u~, ... , Um-d E Graph(Rm), there 
exists a solution to the system 

x'(t) = f(x(t), u(t)) 

u'(t) E S(GI)(x(t), u(t)) 

u(m)(t) E S(Gm)(x(t), u(t), u'(t), ... , u(m-l)(t)) 

defined on [0, oo[ and starting at (xo, uo, u~, ... Um-d· 


