
Chapter 5 

Invariance Theorems for 
Differential Inclusions 

Introduction 

We devote this chapter to subsets invariant under a set-valued 
map, to invariance domains, kernels and envelopes, and to some of 
their properties. 

Since the invariance property of a subset K involves the behavior 
of F outside of K, we need to extend the contingent cone to a subset 
K to the whole domain ofF: we define for that purpose the concept 
of external contingent cone to K at any element x E X. 

Also, to proceed further, we need some regularity property of the 
subset, a kind of "C1-regularity", which here takes the following form: 
the set-valued map K 3 x ~ TK(x) is lower semicontinuous. Since 
this property will be used quite often, we give it a name: sleekness. 
We shall check that the contingent cones to sleek subsets are convex. 
Convex subsets as well as smooth manifolds are sleek. 

Since we have seen the crucial role played by these contingent 
cones in viability theorems, we take this opportunity to study them 
further and to mention their calculus summarized in Table 5.2 for 
the convenience of the reader. Details are provided in chapter 4 of 
SET-VALUED ANALYSIS. 

The second section is devoted to criteria for a subset to be in­
variant under a set-valued map. These criteria involve the concepts 
of external contingent cone introduced in the first section. 
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158 5- Invariance Theorems 

In the third section, we shall derive from Filippov's Theorem1 

the characterization of closed subsets K locally invariant under a 
Lipschitz set-valued map F as closed invariance domains. 

We define in the fourth section the invariance kernel of a closed 
subset K, which is the largest closed subset of K invariant under 
F. We prove its existence when the solution map of the differential 
inclusion is lower semicontinuous. We also introduce the invariance 
envelopes, which are the smallest closed subsets containing K invari­
ant under F, and relate them to the backward invariance kernel of 
the complement of K. 

We study the stability of sequences of closed subsets invariant by 
set-valued maps Fn and invariance kernels, by showing for instance 
that the lower limit of invariance kernels of closed subsets Kn is 
contained in the invariance kernel of the lower limit. 

We devote the fifth section to the study of semipermeability and 
viability properties of the boundaries of the viability and invariance 
kernels of a closed subset. We apply these results to define the defeat 
and victory domains of an open target and show that the boundary 
of the victory domain is a semipermeable barrier. 

We illustrate in the sixth section the notions and results obtained 
so far with the example of linear differential inclusions x' E F(x), 
where the right-hand side F is a closed convex process. We mention 
in particular that in the case of linear differential inclusions, a closed 
convex cone is an invariance domain if and only if its polar cone is 
a viability domain of the transpose. In this sense, one can say that 
the concepts of viability and invariance are dual. 

5.1 External Contingent Cones 

5.1.1 External Contingent Cones 

We begin by introducing the following notation: 

DtdK(x)(v) := liminf(dK(x + hv)- dK(x))/h 
h--->0+ 

1that we shall not prove here. We refer to Helene Frankowska's monograph 
CONTROL OF NONLINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS or to DIF­

FERENTIAL INCLUSIONS for an exposition of the fundamental Filippov's Theorem 
and its numerous applications. 
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which will be justified later2 • We observe that when x E K, a direc­
tion vis contingent to Kat x if and only if DrdK(x)(v) ~ 0. 

In order to study invariance properties of a subset K which in­
volve the behavior of the set-valued map F outside of K, we need to 
extend our definition of the contingent cone to points outside of K: 

Definition 5.1.1 Let K be a subset of a finite dimensional vector­
space X and x belong to X. We extend the notion of contingent cone 
to the one of external contingent cone to K at points outside of K 
in the following way: 

We point out an easy but important relation between the external 
contingent cone at a point and the contingent cone at its projection: 

Lemma 5.1.2 Let K be a closed subset of a finite dimensional vector­
space and IIK (y) be the set of projections of y onto K, i.e., the subset 
of z E K such that IIY- zll = dK(y). Then the following inequalities: 

hold true. Therefore, 

Proof- Choose z E IIK(Y) and wE TK(z). Then 

l dK(Y + hv)- dK(Y) < IIY- zll + dK(z + hv)- dK(Y) 
h - h 

dK(z + hv) < dK(z + hw) II _ II 
h h + v w 

Since z belongs to K and w E TK(z), the above inequality implies 
that 

2 this is the contingent epiderivative of the distance functions dK. (See Defini­
tion 9.1.2 of Chapter 9.) 
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5.1.2 Sleek Subsets 

We define now the tangent cone CK(x) introduced in 1975 by F. H. 
Clarke. 

Definition 5.1.3 Let K c X be a subset of a normed space X and 
x E K belong to the closure of K. We define the (Clarke) tangent 
cone (or circatangent cone) CK(x) by 

CK(x) :={vI lim dK(x' + hv)jh = 0} · 
h-+O+,K3x1-+x 

We see at once that CK(x) c TK(x) and that if x belongs to 
Int(K), then CK(x) =X. 

It is very convenient to observe that when x belongs to K, 

{ 
v E CK(x) if and only if V hn -t 0+, V K 3 Xn -t x, 
3 Vn -t v such that V n, Xn + hn Vn E K 

The charm of the tangent cone CK at x is that it is always 
conveafi. Unfortunately, the price to pay for enjoying this convex­
ity property of the Clarke tangent cones is that they may often be 
reduced to the trivial cone { 0}. 

However, we shall show that the Clarke tangent cone and the 
contingent cone do coincide at those points x where the set-valued 
map x -v+ TK(x) is lower semicontinuous: 

Definition 5.1.4 {Sleek Subsets) We shall say that a subset K 
of X is sleek at x E K if the set-valued map 

K 3 x' "--+ TK(x') is lower semicontinuous at x 

and that it is sleek if and only if it is sleek at every point of K. 

3 Let Vi and v2 belong to CK(x). To prove that Vi+ v2 belongs to this cone, 
let us choose any sequence hn > 0 converging to 0 and any sequence of elements 
Xn E K converging to x. There exists a sequence of elements Vin converging to Vi 

such that the elements X in := Xn + hnVin do belong to K for all n. But since X in 

does also converge to x in K, there exists a sequence of elements v2n converging 
to v2 such that 

v n, Xin + hnV2n = Xn + hn(Vin + V2n) E K 

This implies that Vi + v2 belongs to CK(x) because the sequence of elements 
Vin + V2n converges to Vi+ v2. 
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Theorem 5.1.5 Let K be a closed subset of a finite dimensional 
vector-space X. Consider a set-valued map F : K '""'-'+ X satisfying 

{ i) F is lower semicontinuous at x 
ii) :3 8 > 0 such that V z E BK(x, 8), F(z) C TK(z) 

Then F(x) c CK(x). 
In particular, if K is sleek at x E K, then TK(x) = CK(x) is a 

closed convex cone. 

Proof- Let us take x E K and v E F(x), assumed to be 
different from 0. Since F is lower semicontinuous at x, Corollary 2.1.7 

implies that we can associate with any E > 0 a number 'TJ E]O, 8[ such 

that d(v,F(z)) ~ d(v,F(x)) + E = E for any z E BK(X,'TJ) (because 

d(v, F(x)) = 0). Therefore, for any y E B(x, TJ/4) and T ~ TJ/4IIvll, 
the inequality 

V Z E IIK(Y +Tv), liz- xll ~ 2IIY +TV- xll ~ 2llx- Yll + 2TIIvll ~ 'TJ 

implies that 

d(v, F(IIK(Y +Tv))) 

d(v, F(x)) + E = E 

We set g(T) := dK(Y +Tv). By Lemma 5.1.2, we obtain 

{ liminfh--.0+ (g(T +h)- g(T)) /h = DtdK(Y + Tv)(v) 
~ d(v, TK(IIK(Y +Tv))) ~ E 

The function g being Lipschitz, it is almost everywhere differentiable, 
so that g' ( t) ~ E for almost all t small enough. Integrating this 

inequality from 0 to h, we obtain 

dK(Y + hv) = g(h) = g(h)- g(O) ~ ch 

for any y E B(x, TJ/4) and T ~ TJ/41\vll· This shows that v belongs to 
CK(x). 

By taking F(x) = TK(x), we deduce that TK(x) C CK(x) when­
ever K is sleek at x E K, and thus, that they coincide. D 
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5.1.3 Tangent Cones to Convex Sets 

For convex subsets K, the Clarke tangent cone and the contingent 
cone coincide with the closed cone spanned by K- x: 

Proposition 5.1.6 (Tangent Cones to Convex Sets) We denote 
by 

K-x 
SK(x) := U --

h>O h 

the cone spanned by K - x. If K zs convex, the contingent cone 
TK(x) to K at x is convex and 

The subnormal cone is equal to 

NK(x) := SK(x)- = { p EX* I max< p,y >=< p,x >} 
yEK 

Furthermore, the normal cones N K ( x) to a convex subset K are con­
tained in the barrier cone of K: for every x E K, N K ( x) C b( K). 

Remark- We shall denote by TK(x) the common value of 
these cones, and call it the tangent cone to the convex subset K at 
x. The subnormal cone coincides with the normal cone of Kat x of 
convex analysis. D 

Actually, closed convex subsets are sleek: 

Theorem 5.1. 7 Any closed convex subset of a finite dimensional 
vector-space X is sleek. 

We refer to Theorem 4.2.2 of SET-VALUED ANALYSIS for the 
proof of this Theorem. D 

It may be useful to recall the characterization of the interior of 
the tangent cone to a convex subset. 

Proposition 5.1.8 (Interior of a Tangent Cone) Assume that 
the interior of K C X is not empty. Then 

\j X E K, Int(TK(x)) = u ( lnt(K)- x) 
h>O h 
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Furthermore, the graph of the set-valued map K 3 x "-" Int(TK(x)) 
is open. 

For the convenience of the reader, we list in the Table 5.1 some 
useful formulas of the calculus of tangent cones to convex subsets 
(see Section 4.1. of APPLIED NONLINEAR ANALYSIS, in which the 
subsets K, Ki, L, M, ... are assumed to be convex.) 

We shall need the following characterization of the normal cone 
to a convex cone: 

Lemma 5.1.9 Let K C X be a convex cone of a normed space X 
and x E K. Then 

p E NK(x) ~ x E K, p E K- & < p, x > = 0 ~ x E NK- (p) 

where NK-(P) := {x E K I \f q E K-, < q- p,x >:::; 0}. 

Proof- To say that p E NK(x) means that< p, x >= ax(p), 
which is equal to 0 if and only if p E K-, and the first statement of 
the lemma follows. D 

5.1.4 Calculus of Contingent Cones 

We summarize in Table 5.2 the calculus of contingent cones. For­
mulas (1) to (4) are straightforward. The other properties are valid 
when K is sleek, and are a consequence of the Constrained Inverse 
Function Theorem, which we do not prove in this book4 . 

See also Quincampoix's Theorem 4.3.3 and the remark following 
it for another set of sufficient conditions. 

4 We refer to Chapter 4 of SET-VALUED ANALYSIS for the proofs of these for­
mulas and more detailed results. 

We mention also that transversality condition of formula (5) implies the con­
straint qualification assumption 0 E Int(f(L) - M) and that the stronger 
transversality condition 

:3 c > 0 I v X E K, By c j'(x)(TL(x) n cBx)- TM(Ax) 

implies that if L and M are sleek and f is continuously differentiable, then K is 
also sleek. 
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Table 5.1: Properties of Tangent Cones to Convex Sets. 

( 1) 1> If x E K C L C X, then 
TK(x) C TL(x) & NL(x) C NK(x) 

(3) I> If Xi E Ki c xi, (i = 1, ... ,n), then 

TI1~= 1 K/xi, ... ,xn) = Ilf=ITKi(xi) 

NI1~= 1 Ki(xi, ... ,xn) = Ilf=INKi(xi) 
(4)a) 1> If A E C(X, Y) and x E K C X, then 

TA(K)(Ax) = A(TK(x)) 

NA(K)(Ax) = A*- 1 NK(x) 
(4)b) 1> If KI, K2 C X, Xi E Ki, i = 1, 2, then 

TK1+K2(XI + x2) = TK1 (xi)+ TK2(x2) 
NK1+K2(XI + X2) = NKl (xi) n NK2(x2) 

In particular, if XI E K and x2 belongs to 
a closed subspace P of X, then 

TK+P(XI + x2) = TK1 (xi)+ P 
NK+P(xi + x2) = NK(xi) n pl_ 

(5) 1> If L C X and M C Yare closed convex subsets and 
A E C(X, Y) satisfies the 
constraint qualification assumption 
0 E Int(M- A(L)), then, for every x E L n A-I(M), 

TLnA-l(M) = TL(x) n A-IrM(Ax) 
NLnA-l(M) = NL(x) +A* NM(Ax) 

(5)a) 1> If M C Y is closed convex and if A E C(X, Y) 
satisfies 0 E Int(Im(A) - M), 
then, for any x E A-I(M), 

TA-l(M)(x) = A-IrM(Ax) 
NA-l(M)(x) = A* NM(Ax) 

(5)b) 1> If KI, K2 C X are closed convex and satisfy 
0 E Int(KI- K2), then, for any x E KIn K2 

TKlnK2(x) = TKl(x) nTK2(x) 
NK1nK2(x) = NK1 (x) + NK2(x) 

(5)c) 1> If Ki c X, (i = 1, ... , n), are closed and convex, 
X E ni=I Ki and if there exists 'Y > 0 satisfying 
\fxi such that llxill :-::; "(, ni=I (Ki- Xi) =/=- 0, then 
Tn~= 1 Ki(x) = ni=I TKi(x) 

Nn~=l Ki(x) = I:~I NKi(x) 
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Table 5.2: Properties of Contingent Cones. 

(1) [> 

(2) [> 

(3) [> 

( 4) [> 

(5) [> 

(5)a) t> 

(5)b) [> 

(5)c) t> 

If K c Land x E K, then TK(x) c TL(x) 
If Ki c X, (i = 1, ... 'n) and X E ui Ki, then 

Tut=lKi(x) = uiEl(x)TKi(x) 
where I(x) := {i I x E Ki} 
If Ki c xi, (i = 1, ... 'n) and Xi E Ki, then 

Tn:~Ki(xb···,xn) c Ili=ITKi(xi) 
If g E C1(X, Y), if K C X, x E K and M C Y, then 

g'(x)(TK(x)) C Tg(K/g(x)) 
Ty-l(M)(x) C g'(x)- TM(g(x)) 

If L c X and M c Y are closed sleek subsets, 
f E C1 (X, Y) is a continuously differentiable map 
and x E L n f-1(M) satisfies the transversality condition 

f'(x)TL(x)- TM(J(x)) = Y, then 
TLnJ-l(M)(x) = TL(x) n f'(x)- 1TM(J(x)) 

If M C Y is a closed sleek subset, 
f E C1(X, Y) is a continuously differentiable map 
and x E f- 1(M) satisfies Im(J'(x))- TM(J(x)) = Y, then 

TJ-l(M)(x) = f'(x)- 1TM(J(x)) 
If K 1 and K2 are closed sleek subsets contained in X 
and x E K1 n K2 satisfies TK1 (x)- TK2(x) =X, then 

TKlnK2(x) = TKl (x) n TK2(x) 
If Ki c X, (i = 1, ... , n), are closed sleek 
and X E ni Ki satisfies 
\fvi = 1, ... , n, nf=l (TKi (x) -Vi) f= 0 

then, Tn:1 K/x) = nf=l TKi(x) 
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5.1.5 Inequality Constraints 

We also state the following example of the contingent cone to a set 
defined by equality and inequality constraints5: 

Theorem 5.1.10 Let us consider a closed subset L of a finite di­
mensional vector-space X and two continuously differentiable maps 
g := (gt, ... , gp) : X t---t RP and h := (h1, ... , hq) : X t---t Rq defined 
on an open neighborhood of L. 

Let K be the subset of L defined by the constraints 

K := {x ELI gi(x) 2: 0, i = 1, ... ,p, & hj(x) = 0, j = 1, ... , q} 

We denote by I(x) := {i = 1, ... ,pI gi(x) = 0} the subset of active 
constraints. 

We posit the following transversality condition at a given x E K: 

ii) :3 vo E CL(x) such that h'(x)vo = 0 

and \f i E I ( x), < gH x), vo > > 0 

Then u belongs to the contingent cone to K at x if and only if u 
belongs to the contingent cone to L at x and satisfies the constraints 

ViEJ(x), <g~(x),u>2: 0 & \fj=l, ... ,q, hj(x)u=O 

Unfortunately, the graph of TK ( ·) is not necessarily closed. How­
ever, there exists a closed set-valued map TK(-) contained in TKO 
introduced by N. Maderner. Set 

( ) . gi(X) l ] 
rK X := _mm II '( )II E 0, +oo 

~fi.I(x) gi X 
(5.1) 

We observe that rK is upper semicontinuous whenever the functions 
gi are continuously differentiable. Indeed, let Xn E K converge to 
xo and an ~ rK(xn) converge to ao. Since gi(xo) > 0 whenever i fj. 
I(xo), we infer that i fj. I(xn) for n large enough. Hence inequalities 

5See Proposition 4.3.6 of SET-VALUED ANALYSIS 
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anllgHxn)ll ~ gi(xn) hold true for any i ¢ I(xo) and imply at the 
limit that ao ~ 'YK(xo). 

The growth of the function 'YK is linear whenever we assume that 
there exists a constant c > 0 such that 

w . II '( )II gi(x) 
v ~ = 1, ... ,p, gi x 2: c llxll + 1 

Theorem 5.1.11 {Maderner) We posit the assumptions of Theo­
rem 5.1.10. Then the set-valued map TKO : K "'-'+X defined by: 

u E T_K(x) if and only ifu E TL(x) and 

{ Vi=1, ... ,p, gi(x)+<g~(x),u>2: 0 
V j = 1, ... , q, hj(x)u = 0 

is contained in the contingent cone TK(x) and satisfy 

TK(x) n 'YK(x)B C ~(x) 

Its graph is closed whenever the graph of x "'-'+ TL(x) is closed. 

Proof - Let u belong to TK ( x). Then, when i E I ( x), we see 
that (gHx), u) = gi(x) + (gHx), u) 2: 0, so that u E TK(x). 

Conversely, let us choose u in TK(x) satisfying llull ~ 'YK(x). 
Then either i E I(x) and gi(x) + (g~(x), u) = (gHx), u) 2: 0 or gi(x) > 
0 so that 

i ¢ I(x) & gi(x) + (g~(x),u) 2: gi(x) - llg~(x)llllull 2: 0 

because llull ~ 'YK(x) ~ gi(x)/llg~(x)ll· Thus, in both cases, gi(x) + 
(g~(x), u) 2: 0, so that u belongs to T_K(x). D 

5.2 Invariance Domains 

Let us consider the differential inclusion 

for almost all t 2: 0, x'(t) E F(x(t)) (5.2) 

We recall the definition of invariant subsets K under a set-valued 
map F: A subset K is said to be (locally) invariant under F (or 
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enjoys the invariance property) if for any initial state xo of K, all 
solutions to the differential inclusion (5.2} starting at xo are viable 
(on some interval [0, T]). 

We emphasize again that the concept of invariance depends upon 
the behavior ofF on the domain ofF outside of K. But we can 
tackle this issue since we have extended the concept of contingent 
cone to K at points outside of K (Definition 5.1.1). This enables 
us to provide an Invariance Criterion (by contrast with the Strict 
Invariance Theorem 4.3.6). 

Theorem 5.2.1 Let K be a subset of the domain of a nontrivial 
set-valued map F. If F is locally bounded and if 

V x E Dom(F), F(x) C TK(x) 

then K is invariant under F. 

Proof- Let x(·) E S(xo) be any solution to the differential 
inclusion (5.2) defined on some interval [0, T]. Let us set g(t) := 

dK(x(t)), which is absolutely continuous. Let t be a point where 
both x'(t) and g'(t) exist. Then there exists c(h) converging to 0 
with h such that x(t +h)= x(t) + hx'(t) +he( h) and 

{ 
'(t) _ 1· dK(x(t)+hx'(t)+hc(h))-dK(x(t)) 

g - lmh--+0+ h 

= DrdK(x(t))(x'(t)) 

Since x'(t) E F(x(t)) c TK(x(t)) almost everywhere, we infer that 
g'(t) ~ 0 for almost all t. Therefore x(-) is viable whenever the initial 
state xo is in K. If not, there would exist t > 0 such that x(t) rt K. 
But we derive a contradiction since: 

0 < dK(x(t)) = dK(x(t))-dK(x(O)) = g(t)-g(O) =lot g1(T)dT ~ 0 0 

We are tempted to call an invariance domain of F a subset K c 
Dom(F) satisfying the condition F(x) c TK(x) for all x E Dom(F). 
But actually, we shall study the stronger property where the above 
condition holds true only for x E K. 
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Definition 5.2.2 (Invariance Domain) Let F : X ""-+ X be a 
nontrivial set-valued map. We shall say that a subset K c Dom(F) 
is an invariance domain ofF if 

Vx E K, F(x) C TK(x) 

Since the contingent cone to a singleton is reduced to 0, we ob­
serve that a singleton { x} is an in variance domain if and only if x is 
a "stopping point" ofF, i.e., a solution to the inclusion 

F(x) = { o} 

(No velocity can take such a stopping point away.) 

Corollary 5.2.3 Let K be a subset of the domain of a nontrivial 
set-valued map F. Assume that F satisfies 

V x E Dom(F), F(x) C F(ITK(x)) 

If K is an in variance domain, then it is invariant under F. 

Proof- It follows from Theorem 5.2.1, since F(x) c F(IIK(x)) c 
TK(IIK(x)) c TK(x) thanks to Lemma 5.1.2. D 

For instance, when K is a closed convex set, w! can extend a 
set-valued map F : K ""-+ X to a set-valued map F : X ""-+ X by 
setting 

V x EX, F(x) := F('nx(x)) 

Corollary 5.2.4 Let K be a closed convex subset and F : K ""-+.X 
be a set-valued map satisfying 

V x E K, F(x) C TK(x) 

Then K is invariant under the extension F ofF. 

Corollary 5.2.5 Let K be a closed subset of the domain of a non­
trivial set-valued map F. If 

V x E Dom(F), V v E F(x), V y E IIK(x), < x- y, v > < 0 

then K is invariant under F. 
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Proof~ It follows trivially from Corollary 5.2.3 and Proposi­
tion 3.2.3. D 

We can regard the next result as a structural stability property: 

Proposition 5.2.6 Let us assume that K is convex with nonempty 
interior. Assume that the graph of F is compact and that 

V x E K, F(x) C Int(TK(x)) 

Then there exists a neighborhood U of the graph ofF such that the 
above condition is verified for all set-valued maps G whose graph is 
contained in U. 

Proof~ Since the graph of F is compact and contained in the 
graph of K 3 x'""' Int (TK(x)) which is open by Proposition 5.1.8, 
the latter is such a neighborhood U. D 

5.3 Invariance Theorem 

5.3.1 Filippov's Theorem 

In order to characterize the local invariance property of a closed 
subset K, i.e., to prove that K is an invariance domain ofF, we 
need to know that given any x E K and v E F(x), there exists a 
solution x(·) to differential inclusion (5.2) such that x(O) = x and 
x'(O) = v. 

This is the case when the right-hand side F is Lipschitz in a 
neighborhood of K, thanks to the Filippov Theorem6 . Actually, 
Filippov's Theorem is much more than a mere existence theorem. It 
also provides an estimate of the distance between a function y( ·) and 
the set Sp(xo) of solutions starting at some initial state xo. 

Theorem 5.3.1 (Filippov) Assume that F: X'""' X is >.-Lipschitz 
with closed values on the interior of its domain. Let y( ·) be a given 

6 We do not provide the proof of the Filippov Theorem, but refer the reader to 
Corollary 2.4.1, p.l21 of DIFFERENTIAL INCLUSIONS or to Helene Frankowska's 

CONTROL OF NONLINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS. 
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absolutely continuous function such that t -+ d(y'(t), F(y(t))) is in­
tegrable(for the measure e->..sds}. We associate with a fixed x0 the 
function 'f/ defined by 

TJ(t) = e>..t (11xo- y(O)II + lot d(y'(s),F(y(s)))e->..8 ds) 

Let T > 0 be finite or infinite chosen such that the tube 

{y(t) + TJ(t)BhE[O,T[ 

is contained in the interior of the domain ofF. 
Then there exists a solution x(·) to differential inclusion {5.2} 

such that, for all t E [0, T[, 

llx(t)- y(t)ll ~ e>..t (11xo- y(O)II +lot d(y'(s), F(y(s)))e->..sds) 

(5.3) 
and for almost all t E [0, T[, 

{ 
llx'(t) - y'(t)ll ~ d(y'(t), F(y(t))) 

+.\e>..t (llxo- y(O)II + JJ d(y'(s), F(y(s)))e->..sds) 

Proof- Filippov's Theorem yields an estimate on any finite 
interval [0, T] such that the tube {y(t) + TJ(t)BhE[O,T] is contained in 
the interior of the domain of F. 

Actually, we can extend it to the interval [0, +oo[ if the tube 

{y(t) + TJ(t)BhE[O,+oo[ 

is contained in the interior of the domain of F. Indeed, there exists 
a solution x( ·) to differential inclusion (5.2) defined on [0, T] starting 
at xo satisfying estimate (5.3) and in particular 

llx(T)- y(T)II ~ e>..T (11xo- y(O)II + loT d(y'(s), F(y(s)))e->..sds) 

There also exists a solution z( ·) to differential inclusion (5.2) starting 
at x(T) estimating the function t 1--t y(t + T) and satisfying 

{ 
llz(t)- y(t + T)ll 
~ e>..t (llx(T)- y(T)II + JJ d(y'(s + T), F(y(s + T)))e->..8 ds) 
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Hence we can extend x(·) on the interval [0, 2T] by concatenating 
it with the function t f-+ x(t) := z(t - T) on the interval [T, 2T] 
and we observe that the above estimates yield (5.3) for t E [0, 2T]. 
We reiterate this process as long as the tube {y(t) + 1J(t)BhE[O,nT] is 
contained in the interior of the domain of F. 0 

It implies the existence of a solution: 

Corollary 5.3.2 Assume that F is Lipschitz on the interior of its 
domain. Then, for any xo E Int(Dom(F)) and vo E F(xo), there 
exist T > 0 and a solution x(·) to differential inclusion (5.2} defined 
on [0, T] and satisfying x(O) = xo and x'(O) = vo. 

Proof- We apply Filippov's Theorem with y(t) := x0 + tvo and 
xo := y(O). Then d(y'(t), F(y(t))) ::; -Xtllvoll and 

17(t) :S e>.t lot -Xrllvolle->.7 dT ::; 11~11 (e>-t -1- -Xt) 

Filippov's Theorem implies the existence of a solution x(·) to differ­
ential inclusion (5.2) starting at x0 and satisfying 

llx(t)-xo-tvoll::; 11~11 (e>-t_1--Xt) 

Dividing by t > 0 and letting t converge to 0+, we infer x' ( 0) = vo. 
0 

It also implies the Lipschitz dependence of the solution map on 
the initial condition: 

Corollary 5.3.3 Let y(·) E SF(Yo) and assume that F, y(·) satisfy 
the assumptions of Filippov's Theorem 5.3.1. Then 

d (y(t), SF(xo)(t)) :S llxo- Yo II e>.t 

so that the solution map SF is lower semicontinuous. 

Remark- Observe that if we set 

8(t) := d (ExitF(K, t), 8K) 

Filippov's Theorem 5.3.1 implies that for all 0 <To < T, 

. ( 8 ( T - To) ) . 
V x E ExitF(K, T), B x, e>-To C ExitF(K, To) 0 
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5.3.2 Characterization of Local Invariance 

We are ready to prove the characterization of invariant domains un­
der a Lipschitz map: 

Theorem 5.3.4 Let us assume that F is Lipschitz on the interior 
of its domain and has compact values. Then a closed subset K c 
Int(Dom(F)) is locally invariant under F if and only if K is an 
invariance domain. 

Proof- Let us assume that K is an invariance domain and let 
x(·) be any solution to differential inclusion (5.2) starting at xo and 
defined on some interval [0, T]. Let us set g(t) := dK(x(t)), which is 
absolutely continuous on [0, T]. 

Let t be a point such that both x' ( t) and g' ( t) exist and x' ( t) 
belongs to F(x(t)). Then there exists c(h) converging to 0 with h 
such that 

x(t +h) = x(t) + hx'(t) + hc(h) 

and 

{ 
g'(t) = limh-+O+(dK(x(t) + hx'(t) + hc(h))- dK(x(t)))/h 

= DrdK(x(t))(x'(t)) 

Lemma 5.1.2 implies that 

DjdK(x)(x'(t)) :S d(x'(t), TK(IIK(x(t)))) 

Let us denote by >. > 0 the Lipschitz constant of F and choose 
any yin IIK(x(t)). We deduce that: 

d(x'(t), TK(IIK(x(t)))) :S d(x'(t), TK(y)) :S d(x'(t), F(y)) 
(since K is an in variance domain) 

:S d(x'(t), F(x(t))) +.AllY- x(t)ll (since F is Lipschitz) 

= 0 + >.dK(x(t)) = >.g(t) 

Then g is a solution to 

for almost all t E [0, T], g'(t) < >.g(t) & g(O) = 0 
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We deduce that g(t) = 0 for all t E [0, T], and therefore, that x(t) is 
viable inK on [0, T]. 

Let us assume that K is locally invariant under F. Let 
xo E K. We have to prove that any uo E F(xo) is contingent to 
K at xo. Corollary 5.3.2 implies that for all x0 and uo E F(x0 ), 

there exists a solution x(·) to differential inclusion (5.2) satisfying 
x(O) = xo and x'(O) = uo. Since K is locally invariant under F, it 
is viable on some interval [0, T]. We thus infer that uo belongs to 
TK(xo). Hence F(xo) is contained in TK(xo). D 

5.3.3 Graphical Lower Limits of Solution Maps 

Let us recall the concepts of lower limits of subsets and of graphical 
lower limit of set-valued maps. 

Let Kn be a sequence of subsets of a metric space X. We say 
that 

Kb := Liminfn--.ooKn := {y E X I lim d(y, Kn) = 0} n-->oo 

is its lower limit. In other words, it is the closed subset of limits of 
sequences of elements Xn E K n. 

We shall say that the set-valued map Limb n--.ooFn from X to X 
defined by 

Graph(Limb n--.ooFn) := Liminfn--.00 Graph(Fn) 

is the graphical lower limit of the set-valued maps Fn. For simplicity, 
we set pb := Limb n-->ooFn. 

When L C X and M C X are two closed subsets of a metric 
space, we denote by 

b.(L,M) := sup inf d(y,z) = supd(y,M) 
yELzEM yEL 

their semi-Hausdorff distance7 , and recall that b.(L, M) = 0 if and 
only if L C M. If <P and W are two set-valued maps, we set 

b.(<P, w)oo = sup b.(<P(x), w(x)) 
xEX 

7The Hausdorff distance between L and M is equal to 
max (~(L, M), ~(M, L)). 
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Filippov's Theorem provides an example of a situation where the 
solution map SF is the graphical lower limit of a sequence of solution 
maps SFn· 

Theorem 5.3.5 Let Fn : X"'-" X and F : X"'-" X be >..-Lipschitz 
set-valued maps with closed images and uniform linear growth: there 
exists c > 0 such that 

V n 2: 0, V x EX, IIFn(x)ll < c(ilxll + 1) 

Then 

and 
e>.t - 1 

~(SF, SpJ= :'S >.. ~(F, Fn)oo 

Consequently, if limn--+oo ~(F, Fn)oo=O, then 

Proof- Let us consider any solution x(-) E Sp(xo) to differ­
ential inclusion (5.2). Therefore, 

d(x'(t), Fn(x(t))) :'S ~(F(x(t)), Fn(x(t))) :'S ~(F, Fn)oo 

By Filippov Theorem 5.3.1 applied to the map Fn, there exists a 
solution Xn(-) E SFn (xon) such that 

lllxn(t)- x(t)il :'S e>.tllxo- Xonll +lot e>.(t-s)~(F,Fn)oods 

>.t e>.t - 1 
= e iixo- Xonll + ~(F, Fn)oo >.. 

Then for any t 2: 0, x ( t) is the limit of Xn (t), so that our claim is 
proved. 0 

8 This implies that F is contained in the graphical lower limit F' of the set­
valued maps Fn. 
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Remark - We can obtain other estimates. Set 

~(<P w) = ~(<P(x), w(x)) 
' 1 =~~ llxll + 1 

Let Fn : X "-'t X and F : X "-'t X be A-Lipschitz set-valued maps 
with closed images and uniform linear growth. Then, for any A > c, 

e>.t - ect 
~ (Sp, SFnh :S A_ c ~(F, Fnh 

so that ~ (Sp, SpJ1 converges to 0 and thus 

Sp c Lim11 n->= (SFn) 

when limn->= ~(F, Fnh = 0. 

Indeed, consider any solution x(-) E Sp(xo) to differential inclu­
sion (5.2). Since 

{ 
d(x'(t),Fn(x(t))) :S ~(F(x(t)),Fn(x(t))) :S ~(F,Fnh(llx(t)ll + 1) 

:S ~(F, Fnh(llxoll + 1)ect 

Filippov Theorem 5.3.1 applied to the map Fn implies that there 
exists a solution Xn ( ·) E S Fn ( xo) such that 

{ 
llxn(t) - x(tJII ~ e"' JJ :(~'Fnh(llxoll + l)e-(>-•)'ds 

= ~(F,Fnh(llxoll+1)e;..=~ D 

5.3.4 Accessibility Map 

We recall that the reachable map Rp is defined by 

(See Definition 3.5.4.) 

Definition 5.3.6 We shall denote by Rp :X "-'t X the map defined 
by 

T~O 

and call it the accessibility map. 
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Proposition 5.3. 7 Assume that F : X ~ X is Lipschitz with non­
empty closed values. Then RF maps open subsets onto open subsets. 
If K is a closed subset satisfying K = Int(K), then 

lnt (RF(K)) = RF (Int(K)) 

Proof- Let n be an open subset and fix any y E RF(x) where 
x E 0: By definition, there exist T > 0 and a solution x( ·) on [0, T] to 
the differential inclusion (5.2) starting at x such that x(T) = y. Let 
y(·) be a solution to the backward inclusion y' E -F(y) starting at 
x and consider the solution y(-) E S_F(Y) to the reverse differential 
inclusion defined by 

-(s) ·= { x(T- s) if 0 ~ s ~ T 
y . y(s- T) if T ~ s < oo 

Since -F is Lipschitz, Filippov's Theorem 5.3.1 implies that there 
exists a neighborhood N(y) of y such that, for every z E N(y), one 
can find a solution z(·) E S_F(z) satisfying z(T) E n. This means 
that z can be reached from n in finite time. 

We thus deduce that RF(Int(K)) is contained in Int(RF(K)), so 
that the inclusion 

RF(Int(K)) C lnt (RF(K)) 

holds true. It remains to prove the converse inclusion when we as­
sume that K = Int(K). We shall actually prove that any y E RF(K) 
belongs to RF(Int(K)). We know that there exist x E K, T > 0 and 
a solution x(·) to differential inclusion (5.2) defined on [0, T] starting 
at x such that x(T) = y. Take any € > 0. Since x E Int(K), Filip­
pov's Theorem 5.3.1 implies that there exists 8 > 0 such that for any 
z E B(x, 8) n Int(K), one can obtain a solution z(·) to differential 
inclusion (5.2) starting at z and satisfying z(T) E B(y, €). Hence y 
can be approximated by elements z(T) E RF(Int(K)). D 
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5.3.5 Proof of Convergence of the Fast Viability Ker­
nel Algorithm 

Proposition 5.3.8 Assume that F is both Marchaud and A-Lipschitz. 
Let x belong to the outward area K~ and set 

8K(x) := d(F(x), TK(x))/2 > 0 

We denote by (} K ( x) > 0 the largest positive number 0 such that 

\f h E]O, OJ, d (x + h (F(x) + 8K(x)B), K) > 0 

{which does exist). Let us fix r > 0 and set 

Cx := F(B(x,r)), T := min{r/IICxll, 1/A} 

Then cK(x), which depends only upon x and K and does not involve 
Viab F ( K), satisfies 

0 

B (x, cK(x)) n Viabp(K) = 0 

Proof - The compactness of F(x) + 8K(x)B and the very 
definition of the contingent cone imply that there exists a positive 
(} > 0 such that 

\f h E]O, OJ, d (x + h (F(x) + 8K(x)B), K) > 0 

(See the proof of Proposition 4.3.5.) Therefore OK(x) > 0 is positive 
and we observe that 

Let us consider any solution x(·) E S(x) starting at x. Since 
F(y) C Cx when y ranges over the ball B(x, r), we first infer that 



5.3.- Invariance Theorems 

Since F is .A-Lipschitz, we deduce that 

{ 
x(t)- x E JJ F(x(T)dT C JJ(F(x) + .AIIx(T)- xiiB)dT 

C t(F(x)+ 6KJx)B) 
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whenevert < tK(x) := min{8K(x)/2.AIICxii,OK(x),T}. Consequently, 
for every positive t < t K ( x), 

Furthermore, by the Filippov Theorem 5.3.1, we know that for any 
y(·) E S(y), there exists a solution x(·) E S(x) such that 

llx(t)- y(t)ll :S e>.tllx- Yll 

We set EK(x) := 8K(x)tK(x)f2e>.tK(x). This implies that for any 
0 

y EB (x, EK(x)), 

{ 
d(y(tK(x)), K) ~ d(x(tK(x)), K) -llx(tK(x))- y(tK(x))ll 

> DK(x)tK(x)/2-e>.tK(x)llx-yll > 0 

This means that such initial states y do not belong to the viability 
kernel of K, because all solutions leave K in finite time. D 

We shall need the following result. 

Lemma 5.3.9 Let P be a convex closed cone with compact sole9 and 
M be a compact subset of X. Then there exists y E M such that: 

(y + P) n M = {y} 

9 Let P be a closed convex cone. We recall that the following conditions are 
equivalent: 

{ 
i) P is spanned by a convex compact set disjoint from 0 
ii) the interior of the polar cone p+ is not empty 
iii) S := {x E PI< po,x >= 1} where PoE Int(P+) spans P; 

The compact convex subsetS is called the sole, and such closed convex cones are 
called cones with compact sole. 
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Proof- The proof follows from Zorn's lemma. Let us define 
the following preorder relation on M: 

a:::; b ~ bE a+P 

which is actually an order since P has a compact sole. We next prove 
that every subset L of M which is totally ordered has a majorant. 

Clearly, for any a E L, (a+ P) n M i= 0. Since these sets are 
nonempty and compact and since (b+P)nM c (a+P)nM whenever 
a :::; b, we deduce that: 

n((a+P)nM) i= 0 
aE L 

Let b belong to naE L (a + P) n M. Obviously, b is larger than any 
element of L for the order :::;. According to Zorn's lemma, there 
exists a maximal element y E M: Namely, if z E M is different from 
y, then, y tf_ z + P. Hence, (y + P) n M = {y}. D 

Proof of Theorem 4.4.6 - By Lemma 4.4.5, we already 
know that 

ViabF(K) = ViabF(Koo) C K 00 

Assume that K 00 is not a viability domain: there would exist x E 

Koo =>· Set 

and 
000 := ()Koo (x) > 0 

We shall derive a contradiction by constructing a sequence of ele­
ments Xn E Kn => converging to x such that cKn (xn) is bounded 
below by some c00 > 0 that we shall define: In this case, we would 
have llxn- xll 2:: cKn (xn) 2:: coo because 

- - 0 

X E Kn+l C Kn \ B (xn, cKn (xn)) 

by the very definition of the algorithm and thus, the contradiction 
ensues. We thus have to define this positive lower bound c00 • 
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Since the convex compact set F(x) + 800B does not contain 0, 
the cone P spanned by this set has a compact sole. Set 

Mn := Kn n (x + [0, Ooo](F(x) + 8ooB)) 

We can assert, thanks to Lemma 5.3.9, that: 

3 Xn E Mn such that (xn + P) n Mn = {xn} 

On the other hand, by the very definition of K 00 and the choice of 
x, the sequence Xn converges to x. Hence for all n large enough, 

Thus, 

Kn n (xn + [o, ~] (F(x) + 800 B)) c 

Kn n (x + [0, Ooo] (F(x) + 800B)) n (xn + P) = (xn + P) n Mn = {xn} 

Since F is Lipschitz, we have for n large enough, F(xn) C F(x) + 
800 B /2, so that for any t < 000 /2, 

Thus d(F(xn), TKn (xn)) ;::: 800 /2, i.e., 8Kn (xn) ;::: 800 /4. By Proposi­
tion 5.3.8, we deduce that OKn (xn) ;::: 000 /2 and thus, setting 

. { Ooo 8oo } 
too := mm 2' 2AIICxll 'T 

that tKn (xn);::: t 00 /2. Since t ~---+ tje>.t is increasing for 0 ~ t ~ 1/A, 
we infer that 

coo := 

We have thus constructed a lower bound c00 of the radii cKn (xn) for 
n large enough which implies the contradiction we claimed at the 
beginning of the proof. D 
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5.4 Invariance Kernels 

We now introduce the concepts of invariance kernel and envelope: 

Definition 5.4.1 {Invariance Kernels and Envelopes) Let K be 
a subset of the domain of a set-valued map F : X ~ X. The largest 
closed subset of K invariant under F, which we denote by InvF(K) 
or Inv(K), is called the invariance kernel of K. We shall say that 
the smallest closed subset invariant under F containing K is the in­
variance envelope EnvF(K) of K. 

Since the intersection of closed subsets invariant under F is still 
a closed subset invariant under F, the in variance envelope of a closed 
subset does exist. 

5.4.1 Existence of the Invariance Kernel 

We now prove the existence of the invariance kernel of a closed subset 
(possibly empty). 

Recall that SF denotes the solution map associating with any xo 
the set of solutions to differential inclusion x' E F(x) starting at xo 
and that it is lower semicontinuous when F is Lipschitz with closed 
values (see Corollary 5.3.3.) We shall set 

0 := Dom (SF) 

Naturally, invariant subsets are necessarily contained in 0. We sup­
ply the space C(O, oo; X) with the topology of pointwise convergence. 

Theorem 5.4.2 Let us assume that the solution map SF is lower 
semicontinuous from 0 to C(O, oo; X). Then, for any closed subset 
K c 0, there exists an invariance kernel (possibly empty) of K. It is 
the subset of initial points such that all solutions starting from them 
are viable in K. 

Proof- Let us denote by JC C C(O, +oo; X) the subset of 
continuous functions x( ·) which are viable in K and by Inv(K) the 
subset of initial state x E K such that SF(x) c JC, possibly empty. 

Since the solution map SF is lower semicontinuous from K to 
C(O, oo; X) supplied with the topology of pointwise convergence and 
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since K is closed, we deduce that lnv(K) is also a closed subset of K 
(See Proposition 1.4.4 of SET-VALUED ANALYSIS.) 

It obviously contains any closed subset of K invariant under F. 
It remains to be shown that it is also invariant under F. For 

that purpose, let us take x E Inv(F) and show that any solution 
x(·) E Sp(x) is viable in Inv(K) (by checking that for any T > 0, 
x(T) E Inv(K)). Let y(·) belongs to Sp(x(T)). Hence the function 
z ( ·) defined by 

{ 
x(t) 

z(t) := y(t- T) 
if t E [0, T] 
if t E [T, oo[ 

is a solution to the differential inclusion (5.2) starting at x at time 
0, and thus, is viable in K by the very definition of Inv(K). Hence 
for all t 2: 0, y(t) = z(t + T) belongs to K, so that we have proved 
that Sp(x(T)) c K, i.e., x(T) E lnv(K). D 

Remark- It is clear that 

and more generally, that the invariance kernel of any intersection of 
closed subsets Ki ( i E J) is the intersection of the invariance kernels 
of the Ki. D 

5.4.2 Complement of the lnvariance Kernel 

Proposition 5.4.3 Assume that K c n := Dom(SF) is compact 
with nonempty interior, that F(K) is bounded and that its invari­
ance kernel lnvp(K) is contained in the interior of K. Then the 
complement !1\lnvp(K) of the invariance kernel is viable under F. 

Proof- Since we assume that the invariance kernel is compact, 
there exists TJ > 0 such that Inv F ( K) + 2'T]B C K. 

We observe that property 

V x(·) E Sp(x), :3 t s TK(x(·)) such that x(t) E Invp(K) 

implies that x belongs to the in variance kernel of K. 
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Therefore, if xo E K\Invp(K), there exists a solution x1(·) E 

Sp(xo) such that x1(t) ~ Invp(K) for every t E [0, TK(xl(·))]. 
If TK(xl(·)) = +oo, we deduce that x1(·) is viable in K\Invp(K). 

If not, we set t1 := TK(xl(·)) and Xl := X1(t1) E 8K. 
Let x2(·) E Sp(xl) and define p(x2(·)) := inf{t 2: 0 I x2(t) E 

Invp(K) + 'TlB}. Then either p(x2(·)) = +oo and the solution ob­
tained in concatenating x1(-) and x2(·) is viable in 0\Invp(K), or 
t2 := p(x2(·)) is finite and x2 := x2(t2) E 8(Invp(K) + "7B). 

We also check that t2 - t1 2: "7/IIF(K)II because llx2 - x1ll :S 
(t2- tl)IIF(K)II and llx2- x1ll 2: "7· 

Now we iterate this procedure to construct a solution x(·) which 
is viable in X\Invp(K). D 

Let us point out this easy but useful remark: 

Proposition 5.4.4 If the boundary 8K of a closed subset K c 
Dom(SF) is invariant under F, so is K. 

Proof- Indeed, take xo in the interior of K and any solution 
x(·) E Sp(xo). If it is not viable inK, there would exist a finite exit 
timeT := inf{s 2: 0 I x(s) ~ K}, at which x(T) E 8K. Since the 
boundary is invariant, any solution starting at x(T) remains in 8K. 
This is the case of the solution y(·) defined by y(t) := x(t+T), so 
that x(t) E 8K for every t 2: T. This contradicts the assumption 
that x(·) is not viable inK. D 

5.4.3 Stability of Invariance Domains 

Let us consider now a sequence of closed subsets Kn invariant under 
a set-valued map F. Is their lower limit still invariant under F '? 

Proposition 5.4.5 Let us assume that the solution map Sp is lower 
semicontinuous from 0 to C(O, oo; X). Then the lower limit of closed 
subsets Kn c 0 invariant under F is also invariant under F. 

In particular, the lower limit of the invariance kernels of a se­
quence of closed subsets Kn c 0 contains the invariance kernel of 
the lower limit of the sequence Kn: 

Liminfn-+oo (Inv(Kn)) ::J Inv (Liminfn-.ooKn) 
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Proof - Let the initial set xo := limn-+oo xon belong to the 
lower limit K~ of the sequence Kn and x( ·) E SF ( xo) be any solution 
to differential inclusion (5.2). Since the solution map is lower semi­
continuous, there exist solutions Xn(·) E SF(Xon) converging point­
wise to x(·). The subsets Kn being invariant under F, we conclude 
that for any t 2: 0, Xn(t) E Kn. This implies that x(t) E K~ for every 
t 2: 0. Hence K~ is invariant under F. D 

More generally, we can prove that the lower limit K~ of a sequence 
of closed subsets Kn invariant under set-valued maps Fn are invariant 
under some set-valued map F. 

Theorem 5.4.6 (Stability) Let us consider set-valued maps Fn : 
X -vt X and F : X -vt X such that the solution map SF is contained 
in the graphical lower limit of the solution maps SFn. Then if the 
closed subsets Kn C Dom(SFn) are invariant under the set-valued 
maps Fn, their lower limit K~ is invariant under F. 

In particular, the lower limit of the invariance kernels of closed 
subsets Kn for the set-valued maps Fn contains the invariance kernel 
of the lower limit K~ for F: 

5.4.4 Global Exit and Hitting Functions 

When the solution map SF is lower semicontinuous, we can deduce 
from Proposition 4.2.2 and the Maximum Theorem 2.1.6 that the 
function 0~ : K ~--+ R+ U { +oo} defined by 

O~(x) := sup OK(x(·)) 
x(·)ESp(x) 

is lower semicontinuous and that the function rk : K ~--+ R+ U { +oo} 
defined by 

rk(x) .-

is upper semicontinuous. 

inf TK(x(·)) 
x(·)ESp(x) 
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Therefore the graphs of the "tubes" associating with t E [0, +oo[ 
the subsets 

are closed. 

{ 
{ x E K 1 ot ( x) ~ r} 

{X E K I Tk (X) 2: T} 
(5.4) 

The first subset is the subset of initial states x E K such that 
the boundary 8K is reached before T by all solutions x( ·) to the 
differential inclusion (5.2) starting at x. 

The second subset is the subset of initial states x E K such 
that all solutions x(·) to the differential inclusion (5.2) starting at x 
remain in K for all t E [0, T]. 

We then observe that the invariance kernel is equal to 

Inv F ( K) = n {X E K I Tk (X) 2: T} 
T~O 

5.4.5 lnvariance Envelopes 

One can relate invariance envelopes with the accessibility map: 

Proposition 5.4. 7 Assume that F : X ~ X is Lipschitz with non­
empty closed values. Then the invariance envelope and the accessi­
bility map are related by 

Envp(K) = Rp(K) 

Proof- The subset Rp(K) is obviously contained in any 
closed invariant subset M containing K and in particular, in the 
in variance envelope of K. 

Conversely, it is enough to prove that Rp(K) is invariant. If not, 
there would exist xo E Rp(K), a solution x(·) E Sp(xo) and T > 0 
such that x(T) does not belong to Rp(K). Let c > 0 be such that 

B(x(T), c) n Rp(K) = 0 

By Filippov's Theorem 5.3.1, there exists 8 > 0 such that for 
every Yo E B(xo, 8), one can find a solution y(·) E Sp(yo) starting 
from Yo such that 

y(T) E B(x(T), c) c X\ Rp(K) 
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Since xo belongs to the closure of RF(K), one can choose such an 
initial state Yo in RF(K), so that there exists zo E K, a solution 
z(·) E SF(zo) and To > 0 satisfying z(To) =YO· We then introduce 
the concatenation y( ·) defined by 

y(s) := { z(s) if 0 :'S s :'S To 
y ( s - To) if To ::::; s < oo 

Therefore y(-) E SF(zo) is a solution starting from K such that 
y(T +To) = y(T), so that y(T) belongs to RF(K), a contradiction. 
D 

Proposition 5.4.8 Assume that F : X ~ X is Lipschitz with nonem­
pty closed values and that K = Int(K). Then 

EnvF(K) = X\ Inv_F(K) where K := X\ K 

Proof~ Since these two sets contain K, it is enough to prove 
the equality for the elements outside of K. 

Let xo be outside of both K and Inv_F(K). We infer that there 
exists a solution x(·) E S_F(xo) and T > 0 such that x(T) E X\K = 
Int(K). Let us associate with a solution y(-) E SF(xo) the solution 
y(-) E SF(x(T)) defined by 

_( ) ·= { x(T - s) if 0 :'S s :'S T 
y 8 . y( s - T) if T :'S s < oo 

which thus satisfies y(T) = x 0 E RF(Int(K)). Proposition 5.4.7 
implies that the latter subset is contained in EnvF(K). 

Conversely, let y belong to Int(RF(K))\K. Since the interior 
of RF(K) is equal to RF(Int(K)) by Proposition 5.3.7, there exist 
xo E Int(K), a solution x(·) E SF(xo) and T > 0 such that y = 
x(T) E X\K. We then associate with a solution y(-) E SF(xo) the 
solution y(-) E SF(Y) defined by 

_( ) ·= { x(T- s) if 0 ::::; s ::::; T 
y s . y(s- T) if T < s < oo 
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which thus satisfies fj(T) = xo E Int(K). Hence such a solution is 
not viable in K = X\lnti_K) and thus, y = x(T) does not belong to 
the invariance kernel of K, so that we have proved that 

We conclude, thanks to Proposition 5.4.7. D 

5.5 Boundaries of Viability and Invariance 
Kernels 

5.5.1 Semipermeability of the Boundary of the Via­
bility Kernel 

We shall prove in this section that if the solution map is lower semi­
continuous, then every viable solution starting on the boundary of 
the exit tube (respectively the viability kernel) remains on it. 

Theorem 5.5.1 Let F : X ~ X be a strict Marchaud map and 
K c X be a closed subset. Assume that the solution map SF is 
lower semicontinuous from K to C(O, oo; X). 

Then, if 

x E a(ExitF(K, T)) n Limsupt-->T- (ExitF(K, t)\ExitF(K, T}) 

every solution x(·) E SF(x) viable in K on [0, T] remains on the 
boundary of the exit tube: 

VtE[O,T], x(t) E o(ExitF(K,T-t)) 

Proof- Let x(·) E SF(x) be a solution viable inK on [0, T], 
which exists by assumption, and which thus satisfies 

V t E [0, T], x(t) E ExitF(K, T- t) 

Also by assumption, there exists a sequence of Tn < T converging 
to T and a sequence of elements Xn E ExitF(K, Tn)\ExitF(K, T) 
converging to x. 

Since the solution map is assumed to be lower semicontinuous, 
there exist solutions xn(·) to the differential inclusion (5.2) starting 
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at Xn defined on [0, T] converging pointwise to x(·). On the other 
hand, by Proposition 4.2.8, we know that for any t E [0, Tn], 

Xn(t) E Exitp(K, Tn- t)\Exitp(K, T- t) 

Consequently, by passing to the limit, we obtain for all t E [0, T], 

x(t) E Exitp(K, T- t) n X\Exitp(K, T- t) = {) (Exitp(K, T- t)) 

i.e., the solution remains in the boundary of the exit tube. D 

By using Proposition 4.2.9 instead of Proposition 4.2.8 in the 
proof of Theorem 5.5.1, we obtain the following statement: 

Theorem 5.5.2 Let F : X ""Vt X be a strict Marchaud map and 
K C X be a closed subset. Assume that the solution map Sp is 
lower semicontinuous from K to C(O, oo; X) and that Exitp(K, T) is 
contained in the interior of K. Then, if x E 8(Exitp(K, T)), every 
solution x(·) E Sp(x) viable inK on [0, T] remains on the boundary 
of the exit tube: 

V t E [0, T], x(t) E {) (Exitp(K, T- t)) 

ForT= +oo, we obtain the following consequence: 

Theorem 5.5.3 (Quincampoix) Let F: X ""Vt X be a strict Mar­
chaud map and K C X be a closed subset. Assume that the solution 
map Sp is lower semicontinuous from K to C(O, oo; X) and that the 
viability kernel of K is contained in the interior of K. Then the via­
bility kernel is semipermeable in the sense that if x E 8(Viabp(K)), 
every solution x(·) E Sp(x) viable inK remains in the boundary of 
the viability kernel. 

In other words, this means that every solution starting from the 
boundary of the viability kernel can either remain in the boundary or 
leave the viability kernel, or equivalently, that no solution starting 
from outside of the viability kernel can cross its boundary: such 
solutions can only remain on the boundary of the viability kernel, or 
leave it. 
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5.5.2 Viability of the Boundary of the Invariance Ker­
nel 

In a symmetric way, we can prove that the boundary of the invariance 
kernel is viable: 

Theorem 5.5.4 (Quincampoix) Let F: X""'-'+ X be a strict Mar­
chaud map and K C X be a compact subset. Assume that the solution 
map Sp is lower semicontinuous from K to C(O, oo; X) and that the 
invariance kernel of K is contained in the interior of K. Then, the 
boundary a(Invp(K)) is viable under F. 

Proof- Let Xo belong to a(Inv F ( K)) and consider a sequence 
of elements Xn E K\lnvp(K) converging to xo. 

By Proposition 5.4.3, we know that X\lnvp(K) is viable under 
F: there exist solutions xn(·) to differential inclusion (5.2) starting 
at Xn which are viable in X\Invp(K). 

Since F is a Marchaud map, we infer from Theorem 3.5.2 that 
a subsequence (again denoted by) xn(·) converges to some x(·) E 

Sp(xo) which is viable in the closure of the complement of Invp(K). 
Theorem 5.4.2 implies that this solution is also viable in the invari­
ance kernel of K, and thus, that it is viable in the boundary of 
a(Invp(K)). D 

5.6 Defeat and Victory domains of a Target 
and its Barrier 

We can apply the above theorems to the complement of an open 
target 0. Let us introduce the following notations: 

i) Defeatp(O) := Invp(X\0) 

ii) Stalp(O) := Viabp(X\0) \ Invp(X\0) 

iii) Victp(O) := X\ Viabp(X\0) 

Theorem 5.6.1 (Quincampoix) Let F : X""'-'+ X be a Marchaud 
and Lipschitz map. Consider an open target 0 c X. Then 
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Figure 5.1: Victory and Defeat Domains 

The target n, the defeat domain, the barrier and the victory domains are symbolically 

re resented. 
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1. Defeatp(O) is the defeat domain: \:1 xo E Defeatp(O), every 
solution starting from xo never reaches the target 0 

2. Victp(O) is the victory domain: \:1 xo E Victp(O), every solu­
tion reaches the target 0 in finite time 

3. Stalp(O) is the stalemate domain: \:1 xo E Stalp(O) 

• there exists one solution which never reaches the target 0 

• there exists one solution hitting the target 0 

4. [) (Viabp(X\0)) is the barrier: \:1 xo E 8 (Viabp(X\0)), there 
exists a solution which is viable in the barrier as long as it does 
not reach the target 0, and no solution enters the interior of 
Stalp(O) 

5. [) (Defeat F ( 0)) is viable under F 

We can also introduce 

Victp(O, T) ·- X\Exitp(X\0, T) 

which is the open subset 

Victp(O, T) = { x such that Tl\0 (x) < T} 

of initial states from which all solutions reach the target 0 before T. 
We deduce that the victory domain is equal to: 

Victp(O) = U Victp(O, T) 
T>O 

The subset 

{ 
victp(O, T) := Hitp(X\0, T) 

= {X~ 0 I :J x(·) E Sp(x), :J t E [0, T] such that x(t) E 0} 

is the set of initial states such that at least one solution to the dif­
ferential inclusion reaches the closure of 0 at some t ~ T. 

For compact targets C, we obtain the following characterization: 



5. 7. Viability Theorems Linear Differential Inclusions 193 

Proposition 5.6.2 Let F: X""-+ X be a strict Marchaud map and 
C c X be a nonempty compact subset. The set 

{x rt C I :3 x(·) E Sp(x), :3 t E [0, T] such that x(t) E C} 

of initial states such that at least one solution to the differential in­
clusion reaches the target C at some t ~ T is equal to 

U n victp(B {C,c),T) 
71>00<e~7J 

Proof- Let us choose x rt C. Then we know that there exists 
rJ > 0 such that for any c ~ rJ, there exists at least one solution 
Xe{-) E Sp(x) to the differential inclusion reaching the ball B{C,c) 

0 

at some te ~ T, thanks to the above remark with n :=B (C, c). 
Since Sp(x) is compact in C{O, oo; X) supplied with the compact 
convergence topology, subsequences (again denoted by) xeO and te 
converge to x(·) E Sp(x) and t E [0, T] respectively, so that the limit 
x(t) of Xe(te) E B{C,c) belongs to the closed target C. D 

5. 7 Linear Differential Inclusions 

5. 7.1 Viability Cones 

Let us consider the case when the right-hand side of the differential 
inclusion is a closed convex process. Since closed convex processes are 
set-valued analogues of continuous linear operators, it is legitimate 
to call such differential inclusions linear differential inclusions. 

The domain of a closed convex process being a convex cone, it 
is quite natural to restrict the class of viability domains of closed 
convex processes to closed convex cones. 

Theorem 5.7.1 {Linear Differential Inclusions) Let X be a fi­
nite dimensional vector-space, F : X ""-+ X be a closed convex process 
and K c X be a closed convex cone. We posit the following assump­
tions: 

{ 
i) 'V x E K, R(x) := F(x) n {K + Rx) =/= 0 
ii) the norm (see Definition 2.5.3) of IIRII is finite 
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Then, for any initial state xo E K, there exists a solution x(·) to the 
linear differential inclusion 

for almost all t ~ 0, x'(t) E F(x(t)) (5.5) 

starting at xo and viable in the cone K. 

Proof - It is a direct consequence of the Second Viability 
Theorem 3.3.6 and formula 

TK(x) = K +Rx 

since, by the very definition of the norm of R, we have: 

v X E K, d(O, F(x) n TK(x)) :::; IIRIIIIxll D 

Hence it remains to prove the following 

Lemma 5.7.2 Let K c X be a convex cone of a normed space X 
and x E K. Then10 TK(x) = K + Rx. 

The proof is left as an exercise (see also Lemma 4.2.5 of SET­
VALUED ANALYSIS.) D 

Example- Let A E C(X, X) be a linear operator and PC X and 
Q C X be closed convex cones. Then the set-valued map F defined by 

F(x) := Ax+Q if x E P & 0 if not (5.6) 

is a closed convex process. We then deduce a useful corollary for linear 
control systems with inequality constraints on both the state and the control 
variables: 

Corollary 5. 7.3 Let X be a finite dimensional vector-space, A E C(X, X) 
be a linear operator and P c X and Q c Y be closed convex cones. If 

{ 
i) V x E P, Ax E P + Rx - Q 
ii) 3 c > 0 such that inf (--) llull S cllxll 

uE P+Rx n(Q+Ax) 

then, for any initial state x0 E P, there exists a solution to the differential 
equation x'(t) = Ax(t) + u(t), where u(t) E Q, which is viable in the closed 
convex cone P. D 

10Ifwe assume that K- + {x}- =X* and that X is reflexive, then TK(x) = 
K - R+x thanks to Closed Range Theorem 2.3.4. 
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5. 7.2 Projection on the sphere 

We shall "project" the solutions x(·) onto the unit sphere E. We shall 
show that the evolutions of these projections are governed by a differen­
tial inclusion the right-hand side of which is the "projection" of the linear 
differential inclusion onto the tangent space to this sphere defined in the 
following way: we associate with any y E E the orthogonal projector 1r(y) 
onto the tangent space T"E(Y) toE at y defined by 

1r(y)z := z- < y,z > y 

We observe the following property: 

Lemma 5. 7.4 If K is a convex cone of a finite dimensional vector-space 
X, then, for any y E K n E, 1r(y)TK(y) C TKn"E(y). 

Proof- Let z E TK(y). We already know that 1r(y)z belongs to 
T"E(y). It belongs to TK(Y) because 

1r(y)z = z- < y,z > y E K +Ry+Ry c K +Ry 

Then it belongs to the intersection ofT"E(y) = {YV and TK(y). It is equal 
to TKn"E(Y) (see Table 5.2), because the transversality condition T"E(y)­
TK(Y) =X is satisfied since we can write 

't:/ z EX, z = 1r(y)z+ < y, z > y D 

We now associate with a closed convex process F : X """ X its "projec­
tion" defined by 

H(y) := 1r(y)(F(y) n IIRIIB) 
It is obviously a set-valued map with closed convex images contained in the 
ball IIRIIB, which is compact. 

We deduce from the above lemma that if a closed convex cone K is a 
viability domain ofF, then K n E is a viability domain of its projection H. 
This implies the following consequence: 

Proposition 5. 7.5 We posit the assumptions of Theorem 5. 7.1. 
Then x( ·) is a never vanishing viable solution to linear differential in­

clusion (5.5) if and only ify(·) := x(·)/llx(·)ll is a solution to the projected 
differential inclusion 

for almost all t ~ 0, y'(t) = 1r(y(t))z(t) where z(t) E F(y(t)) 

viable in K n E and we can write: 

x(t) = y(t)ilxolleJ; <y(T),z(T)>dT 
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Proof - The proof follows easily from the relation 

x(t) x'(t) 
y(t) = llx(t)ll & z(t) = llx(t)ll 

and the property 

d dtllx(t)ll = llx(t)ll < y(t),z(t) > D 

Remark - Let us introduce the constants 

>._ := inf < v,y > & >.+ := sup < v,y > 
yEEnK,vEF(y)niiRIIB yEEnK,vEF(y)niiRIIB 

We deduce that the solutions x( ·) obey the estimates 

We deduce that if .>.+ < 0, then the origin is an attmctor and that if 
>._ > 0, the origin is a source of the system. 

5. 7.3 Projection on a compact sole 

It may be advantageous to project a linear differential inclusion on the sole 
of a cone instead of the sphere, if one needs convexity, for instance. In 
particular, this allows us to prove that a closed convex process F does have 
an eigenvector in cones with compact soles. 

We associate with the closed convex cone K and an element Po E 
Int(K+) the "compact sole" 

S:={xEKI <po,x>= 1} 

We associate with any element y E S the projector ro(y) onto the 
orthogonal hyperplane to Po, defined by 

\::/ z EX, ro(y)z ·- z- < Po,z > y 

We then remark that: 

Lemma 5. 7.6 If K is a convex cone with compact sole of a finite dimen­
sional vector-space X, then, for any yES, ro(y)TK(Y) c Ts(y). 

Proof- The tangent cone to the sole S of K is equal to 

Ts(x) = {v E TK(x) I < po, v >= 0} (5.7) 
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since S can be written in the form K n p01(1). Indeed, the constraint 
qualification assumption 0 E Int(p0 (K) - 1) is satisfied because p0 (K) is 
a cone of R containing 1. We then deduce from Table 5.1 that Ts(x) = 
TK(x) np() 1T{1}(1), i.e., formula (5.7). 

We now check that 

V yES, w(y)TK(Y) C Ts(Y) (5.8) 

Indeed, Lemma 5.7.2 implies that if u E TK(y), then 

w(y)u:=u-<po,u>y E (K+Ry)+Ryc(K+Ry)=TK(Y) 

(because K is a closed convex cone) and 

<Po, w(y)u >=<Po, u >-<Po, u ><Po, Y >= 0 

(because< p0 , y >= 1). We deduce that w(y)u belongs to Ts(y) thanks to 
(5.7). D 

Let us project the closed convex process F to the set-valued map G 
defined on the compact sole S by 

G(y) := w(y)(F(y) n IIRJJB) 
which is naturally a set-valued map with closed convex images contained in 
the ball JJRJJB, which is compact. Since its graph is closed, we deduce that 
G is upper semicontinuous from S to X. By (5.8), Sis a viability domain 
of the set-valued map G since the cone K is a viability domain of the closed 
convex process F, so that: 

Proposition 5. 7. 7 We posit the assumptions of Theorem 5. 7.1. Therefore 
x ( ·) is a never vanishing viable solution to linear differential inclusion ( 5. 5) 
if and only if 

y(·) := x(·)/ < Po,x(·) > 
is a solution to the projected differential inclusion 

for almost all t :2': 0, y'(t) = w(y(t))z(t) where z(t) E F(y(t)) 

viable in the sole S and we can write: 

x(t) = y(t) <Po, Xo > efo' <y(r),z(r)>dr 

Proof~ The solutions x(·) andy(·) are related by 

x(t) & z t = x'(t) 0 
y(t) = < p0 , x(t) > ( ) <Po, x(t) > 

Since the compact sole is a compact viability domain of the projection 
G, the Equilibrium Theorem 3.7.6 implies the existence of eigenvectors: 
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Theorem 5. 7.8 {Eigenvector of a Closed Convex Process) Let X be 
a finite dimensional vector-space and F : X ~ X be a closed convex process. 
Assume that a closed convex cone K C X enjoys the following properties. 

{ 
i) 
") 
~~ ') nz 

K has a compact sole 
K is a viability domain of F 
the norm IIRII is finite 

Then there exists a nonzero eigenvector x E K of the closed convex process 
F associated with an eigenvalue X, i.e., a solution to the problem 

x E K, x =f. 0, X E R & Xx E F(x) (5.9) 

The eigenvalue X is therefore nonnegative whenever F(K) c K. 

Proof- Indeed, there exists an equilibrium x E S of G, i.e., a 
solution to 0 E G(x), in other words, a solution to 

x E S, 0 = w(y)(x)y = y- < p0 , y > x where y E F(x) 

By setting X :=<Po, y >,we see that the pair (X, x) is a solution to inclusion 
(5.9). D 

5.7.4 Duality between Viability and lnvariance 

Let us consider the case when the right-hand side of the differential 
inclusion is a closed convex process F whose domain is the whole 
space. 

Then we know that F is Lipschitz and that its transpose F* is 
upper semicontinuous with compact images on its domain F(o)+. 

Theorem 5.7.9 (Polar of a Viability Domain) Let X be a fi­
nite dimensional vector-space, F : X ~ X be a strict closed convex 
process and K be a closed convex cone. Then K is an invariance 
domain ofF if and only if K+ is a viability domain of its transpose: 

{ 
i) 

~) 
\:1 x E K, F(x) C TK(x) 

\:1 q E K+, F*(q) n TK+(q) =/= 0 

where K+ := -K- = {p EX* I \:1 x E K, < p, x > 2 0}. 

We refer to Section 4.2 (Theorem 4.2.6) of SET-VALUED ANAL­
YSIS for the proof of this Theorem. D 


