
Chapter 3 

Viability Theorems for 
Differential Inclusions 

Introduction 

This is the basic chapter of this book, where the main viability 
theorems for differential inclusions in finite dimensional vector spaces 
are gathered and proved. (Invariance Theorems are the topic of 
Chapter 5.) 

We must begin by defining the class of functions in which to seek 
solutions to differential inclusions. An adequate choice is a weighted 
Sobolev space, made of absolutely continuous functions. The first 
section is devoted to these spaces and the derivatives in the sense of 
distributions. 

Viability domains K of a set-valued map F are presented and 
studied in the second section: They are defined by 

V x E K, F(x) nTK(x) f= 0 

or, equivalently, when K is closed and F is upper semicontinuous 
with convex compact values, by 

V x E K, F(x) nco (TK(x)) f= 0 

or also, by a dual condition involving the polar cone of the contingent 
cone (called the subnormal cone). 
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Viability Theorems are stated in the third section. They claim 
that a subset K is viable under F (in the sense that for any initial 
state xo, there exists one solution starting at x0 which is viable in 
K) if and only if K is a viability domain of F. 

We consider successively the cases when K is locally compact, 
open and closed. The proofs are gathered in the fourth section. 

We then show in the fifth section that the solution map S associ
ating with any initial state the (possibly empty) subset of solutions 
to the differential inclusion is upper semicontinuous. 

We also prove Kurzhanski's Representation Theorem stating that 
the restriction of a set-valued map to a closed convex subset is a 
countable intersection of unconstrained set-valued maps. In the same 
way that Lagrange multipliers allows us to replace a constrained 
optimization problem with unconstrained problems by "adding the 
constraints to the functional" , this representation theorem enables us 
to represent the set of viable solutions to a differential inclusion as a 
countable intersection of sets of solutions to unconstrained differen
tial inclusions obtained by "adding the constraints" to the right-hand 
of the original differential inclusion. 

We recall that the upper limit of a sequence of subsets Kn is 
the set of cluster points of sequences of elements Xn E Kn. We 
then answer in the sixth section a natural stability question: does 
the upper limit of a sequence of viability domains remain a viability 
domain? We also extend this result to the case when the subsets Kn 
are viability domains of maps Fn. We define the upper graphical limit 
pU of a sequence of set-valued maps Fn by saying that the graph of 
pU is the upper limit of the graphs of Fn 's. We then prove that the 
upper limit of viability domains of set-valued maps Fn is a viability 
domain of the map co(FU). 

We proceed by giving examples of closed viability domains. In 
the seventh section, we show that the limit sets of solutions to a 
differential inclusion are closed viability domains. In particular, tra
jectories of periodic solutions are closed viability domains and thus, 
limits of solutions when t ---t +oo, if they exist, are equilibria. These 
limit sets are among the most interesting features of a dynamical 
system. They are naturally subsets of the largest closed viability 
domain contained in a closed set K, the existence of which is proved 
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in Chapter 4. This set, which we call the viability kernel of K, plays 
such an important role that we devote the whole chapter 4 to some 
of its properties, which we shall use throughout this book. 

This motivates a further study of existence theorems of an equi
librium. We begin by pointing out that an equilibrium does exist if 
there exists a solution x( ·) viable in a compact subset such that a 
sequence of average velocities 

converges to 0. 
The question arises as to whether a closed viability domain K 

contains an equilibrium. This is the case when K is compact and 
the range F(K) is convex. 

This is also the case when K is compact and convex. This strik
ing statement, linking viability and nonlinear analysis, is actually 
equivalent to the Brouwer Fixed Point Theorem. In both cases, one 
can say that viability implies stationarity. 

In Section 8, we adapt to the set-valued case an efficient result 
of D. Saari on the chaotic behavior of discrete systems. Assume 
that the domain of a differential inclusion is covered by a family of 
compact subsets Ka satisfying an adequate controllability property: 
Any point can be reached from any subset Ka. Take any arbitrary 
sequence Ka0 , Ka 1 , Ka2 , ••• of such sets. Then there exist a solution 
x(·) to the differential inclusion x' E F(x) and a sequence of instants 
tj such that x( tj) E Kai for all j. 

Throughout this chapter, X denotes a finite dimensional vector
space so long as it is not explicitly mentioned that this is not the 
case. 

3.1 Solution Class 

We are going to extend Nagumo's Theorem 1.2.1 to the case of dif
ferential inclusions x'(t) E F(x(t)). But we have first to agree on 
what we shall call a solution to such differential inclusions. 

In the case of differential equations, there is no ambiguity since 
the derivative x' ( ·) of one solution x( ·) to a differential equation 
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x'(t) f(t,x(t)) inherits the properties of the map f and of the 
function x(·). It is continuous whenever f is continuous and mea
surable whenever f is continuous with respect to x and measurable 
with respect to t. 

This is no longer the case with differential inclusions. We have 
to choose a space of functions or distributions in which we shall look 
for a solution. 

We cannot hope to obtain without further restrictions a continu
ously differentiable, or even a plain differentiable solution. We shall 
be content to deal only with functions which are almost everywhere 
differentiable. Namely, we shall look for solutions among absolutely 
continuous functions, as it was proposed by T. Wazewski at the be
ginning of the sixties. 

We denote by L1 (0, oo; X, e-btdt) the weighted Lebesgue space of 
(classes of) measurable functions x(·) from [0, oo[ to X satisfying 

Definition 3.1.1 (Absolutely Continuous Functions} A contin
uous function x : [0, T] f---t X is said to be absolutely continuous if 
there exists a locally integrable function v such that 

for all t, s E [0, T], 18 v(T)dT = x(s)- x(t) 

In this case, 

for almost all t E [0, T], x'(t) := v(t) 

and we shall say that x' ( ·) is the weak derivative of the function x( ·). 
We shall denote by W 1•1 (0, oo; X; e-btdt) (for some b 2: 0} the space 

of absolutely continuous functions defined by 

and, when T < +oo, by W1•1 (0, T; X) the space 

{x(·) E L1(0, T; X) I x'(·) E L1(0, T; X)} 
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We shall supply them with the topology for which a sequence Xn ( ·) 
converges to x( ·) if and only if 

i) Xn(·) converges uniformly to x(·) 
(on compact intervals if T = oo) 

ii) x~(-) converges weakly to x'(·) in £ 1(0, T; X) 
(in £ 1 (0, oo; X, e-btdt) if T = +oo) 

Remark- The above spaces are weighted Sobolev spaces. To define 
them, it may be best to recall what distributions and derivatives in the 
sense of distributions are1. 

We denote by V(O, T; X) the space of indefinitely differentiable func
tions from )0, T[ to the finite dimensional vector space X with compact 
support in )0, T[. The choice of the simplest scalar product 

< x, y >:= 1T x(t)y(t)dt 

allows us to identify the space V{O, T; X) with a subspace of the dual 
D*(O, T; X) of continuous linear functionals on V{O, T; X), called distri
butions since their discovery by Laurent Schwartz. 

For that purpose, we identify a function x( ·) with the continuous linear 
functional 

y f--t 1T x(t)y(t)dt 

which belongs to the dual of V{O, T; X). 
In other words, the fundamental idea is to regard the usual functions 

in a novel way: Instead of viewing them as maps from )0, T[ to X, we shall 
also regard them as continuous linear functionals on the infinite dimensional 
space V(O, T; X). In particular, integrable functions (actually, classes of 
measurable and integrable functions) are instances of distributions. 

This very same scalar product defines the topology of quadratic con
vergence on V{O, T; X). Taking the completion of this space for this scalar 
product, we obtain the celebrated space £ 2{0, T; X). Since this scalar prod
uct was already used to identify V{O, T, X) with a subspace of its dual, it 
will also be used to identify £ 2{0, T, X) with its dual thanks to Riesz' The
orem. We thus obtain the inclusions: 

V(O, T; X) c £ 2{0, T; X) = £ 2{0, T; X)* c V*(O, T; X) 

1We refer to the text APPLIED FUNCTIONAL ANALYSIS by the author or any 
of the many books on distributions for more details. 
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The first (and most important) consequence of this concept is the pos
sibility of differentiating integrable functions, and more generally, distribu
tions. 

Definition 3.1.2 (Distributional Derivative) If x( ·) is a measurable 

locally integrable function from ]0, T[ to a finite dimensional vector space X, 

we shall say that the continuous linear functional x' E D*(O, T; X) defined 

on the space D(O, T; X) by 

y(·) ~ -1T x(t)y'(t)dt 

is the weak derivative (or the distributional derivative) of x( ·). 

A distributional derivative defined in such a way does not need to be a 
function, even measurable. In any case, it is a distribution. The weak 
derivative of a function of D(O, T, X) naturally coincides with the usual 
derivative. 

Sobolev spaces are then defined in the following way: 

Definition 3.1.3 Let a(·) be a strictly positive measurable function. We 

denote by 

W 1·P(O,T;X;a) ·- {x E LP(O,T;X;a) I x' E LP(O,T;X;a)} 

the weighted Sobolev space of measurable pth -integrable functions x( ·) (for 

the measure a(t)dt) whose derivative x'(·) in the sense of distributions be

longs to the space LP(O,T;X;a). 

If a = 1, we set W 1·P(O, T; X) := W 1·P(O, T; X; a) This is a Sobolev 
space. If p = 2, we often use the notation 

They are Banach spaces for the norm: 

For our study, we endowed W 1•1 (0, oo; X; e-btdt) with a weaker topol
ogy, for reasons which will soon become clear. D 

The generalization of the concept of derivative provided by the theory 
of distributions is not the only one we can conceive. This approach allows us 
to keep the linearity properties of the differential operator x f--+ x'. Actually, 
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one can show that the distribution x' is the limit in the space V*(O, T; X) 
of the differential quotients 

x(· +h)- x(·) 
h 

The topology of V*(O, T; X) is so much weaker than the pointwise con
vergence topology that not only do differential quotients of any function 
converge, but also differential quotients of distributions. In this distribu
tional sense, functions and distributions are indefinitely differentiable. 

The price one pays to obtain this paradisiac situation is that the space 
of distributions may be too large, and that distributions are no longer 
functions. 

We will propose in Chapter 9 another concept of derivative (contingent 
epiderivative) for studying Lyapunov functions: They are lower epilimits of 
these difference quotients, as we shall explain later, and are usual functions 
instead of distributions. But the contingent epiderivative of a function no 
longer depends linearly on this function. 

3.2 Viability Domains 

Let X be a finite dimensional vector-space. We describe the (nonde
terministic) dynamics of the system by a set-valued map F from the 
finite dimensional vector-space X to itself. 

The contingent cone was introduced by G. Bouligand2 in the early 
thirties: When K is a subset of X and x belongs to K, we recall that 
the contingent cone TK(x) to K at x is the closed cone of elements 

2who wrote: " ... Nous poserons les definitions suivantes: 

1. Une demi-droite OT, issue du point d'accumulation 0 de !'ensemble E, 
sera dite une demi-tangente au point 0, al'ensemble E, si tout cone droit 
a base circulaire, de sommet 0 et d'axe OT, contient (si faibles en soient la 
hauteur et l'angle au sommet) un point de !'ensemble E distinct du point 
0; 

2. L'ensemble de toutes les demi-=tangentes al'ensemble E en un meme point 
d'accumulation sera appele, moyennant une designation abregee conforme 
al'etymologie, le contingent de !'ensemble E au point 0. 

Le mot contingent a deja ete employe comme adjectif, en matiere philosophique, 
ou comme substentif, au point de vue militaire. L'emploi nouveau que nous en 
faisons ne peut evidemment creer aucune equivoque." 
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v such that 
l. . f d(x + hv, K) 0 Imm h = 
h-+0+ 

(see Definition 1.1.3 and Section 5.1 below3 .) 

3.2.1 Definition of Viability Domains 

There are two ways to extend the concept of viability domain K to 
set-valued maps. The first one is to require that for any state x, there 
exists at least one velocity v E F(x) which is contingent to Kat x. 
The second demands that all velocities v E F(x) are contingent to 
Kat x. 

Definition 3.2.1 (Viability Domain) Let F: X~ X be a non
trivial set-valued map. We shall say that a subset K c Dom(F) is a 
viability domain ofF if and only if 

V x E K, F(x) n TK(x)-/= 0 

Since the contingent cone to a singleton is obviously reduced to 
0, we observe that a singleton {x} is a viability domain if and only if 
xis an equilibrium ofF, i.e., a stationary solution to the differential 
inclusion, which is a solution to the inclusion 

0 E F(x) (3.1) 

In other words, the equilibria of a set-valued map provide the first ex
amples of viability domains, actually, the minimal viability domains. 

Remark- If K is a viability domain of a set-valued map F, the 
subset 

D := n (TK(x)- F(x)) 
xEK 

is the subset of disturbances of the system which do not destroy the fact 

that K is still a viability domain, because K remains a viability domain of 

any perturbed set-valued map x '"'-" F(x) + G(x) where x r--+ G(x) maps K 

into D. D 

3 By using the concept of upper limits of sets introduced in Definition 3.6.1 of 
Section 3.3.6 below, we observe that the contingent cone TK(x) is the upper limit 
of the differential quotients K ;;x when h --> 0+. 
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3.2.2 Subnormal Cones 

In order to provide a dual characterization of viability domains, we 
need to introduce the dual concept of a contingent cone: the subnor
mal cone. 

Definition 3.2.2 Let x belong to K c X. We shall say that the 
(negative) polar cone 

N~(x) := TK(x)- = {p EX* I V v E TK(x), < p, v >::; 0} 

is the subnormal cone to K at x. 

We see at once that 

The subnormal cone is equal to the whole space whenever the tangent 
cone TK(x) is reduced to 0. 

Let us point out the following property: 

Proposition 3.2.3 Let K be a subset of a finite dimensional vector
space and IIK denote its projector of best approximation. Then 

\;f y ¢_ K, \;f x E ITK(y), y- x E N~(x) 

Proof- Let v belong to the contingent cone TK(x): there 
exists a sequence hn > 0 converging to 0 and a sequence Vn con
verging to v such that x + hn Vn belongs to K for all n. Since 
IIY- xll ~ IIY- x- hnvnll, we deduce that < x- y,v >2: 0 for 
all v E TK(x). 0 

3.2.3 Dual Characterization of Viability Domains 

We now prove a very important characterization of viability domains: 

Theorem 3.2.4 Assume that the set-valued map F : K ~ X is 
upper semicontinuous with convex compact values. Then the three 
following properties are equivalent: 

i) \;f x E K, F(x) n TK(x) =/= 0 

ii) \;f x E K, F(x) nco (TK(x)) =/= 0 (3.2) 

iii) \;f x E K, \;f p E Nj}(x), a(F(x), -p) > 0 
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Proof~ Since property i) implies ii), assume that ii) holds true 
and fix x E K. Let u E F(x) and v E TK(x) achieve the distance 
between F(x) and TK(x): 

llu- vii = inf IIY- zll 
yEF(x), zETK(x) 

and set w := utv. We have to prove that u = v. Assume the 
contrary. 

Since v is contingent to K at x, there exist sequences hn > 0 
converging to 0 and Vn converging to v such that x + hnvn belongs 
to K for every n 2: 0. We also introduce a projection of best approx
imation 

Xn E ITK(x + hnw) of x + hnw onto K and we set Zn ·-

so that, by Proposition 3.2.3, we know that 

By assumption ii), there exists an element Yn E F(xn) nco (TK(xn)). 
Consequently, 

(3.3) 

Since Xn converges to x, the upper semicontinuity ofF at x im
plies that for any E > 0, there exists NE: such that for n 2: NE:, Yn be
longs to the neighborhood F(x) +sB, which is compact. Thus a sub
sequence (again denoted by) Yn converges to some element y E F(x). 

We shall now prove that Zn converges to v. Indeed, the inequality 

{ 
llw- Znll = hln llx + hnw- Xnll 

< hln llx + hnW- X- hnvnll - llw- Vnll 

implies that the sequence Zn has a cluster point and that every cluster 
point z of the sequence Zn belongs to TK(x), because x+hnZn = Xn E 

K for every n 2: 0. Furthermore, every such z satisfies llw - zll ::; 
llw-vll· 

We now observe that v is the unique best approximation of w by 
elements of TK(x). If not, there would exist p E TK(x) satisfying 
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either llw- PII < llw- vii or p i= v and llw- PII = llw- vii = llw- ull· 
In the latter case, we have (u- w, w- p) < llu- wllllw- PII, since the 
equality holds true only for p = v. Each of these conditions together 
with the estimates 

{ llu- Pll 2 = llu- wll 2 + llw- Pll 2 + 2(u- w,w- p) 
~ (llu- wll + llw- Pll)2 ~ llu- vll 2 

imply the strict inequality llu- Pll < llu- vii, which is impossible 
since vis the projection of u onto TK(x). Hence z = v. 

Consequently, all the cluster points being equal to v, and we 
conclude that Zn converges to v. 

Therefore, we can pass to the limit in inequality (3.3) and obtain, 
observing that w - v = ( u- v) /2, 

(u- v, y) = 2(w- v, y) ~ 0 where y E F(x) (3.4) 

Since F(x) is closed and convex and since u E F(x) is the projection 
of v onto F(x), we infer that 

(u- v, u- y) ~ 0 (3.5) 

Finally, TK(x) being a cone and v E TK(x) being the projection of u 
onto this cone, and in particular onto the half-line vR+, we deduce 
that 

(u-v,v) = 0 (3.6) 

Therefore, properties (3.4), (3.5) and (3.6) imply that 

llu- vll 2 = (u- v, -v) + (u- v, u- y) + (u- v, y) < 0 

and thus, that u = v. 

The equivalence between ii) and iii) follows from the Separation 
Theorem. Indeed, by ii), to saying that K is a viability domain 
amounts to say that for all x E K, 0 belongs to F(x)- co(TK(x)), 
which is closed and convex whenever F(x) is compact. Hence the 
Separation Theorem implies that this condition is equivalent to the 
one stated in the Theorem. D 

We can deduce right away from Theorem 3.2.4 the following very 
useful fact: 



88 3- Viability Theorems 

Proposition 3.2.5 Let us assume that two set-valued maps F1 and 
F2 are upper semicontinuous with compact convex images. If K is a 
viability domain of F1 and F2, it is still a viability domain of .A1F1 + 
.A2F2 (where ..\1, ..\2 > 0.} 

3.3 Statement of Viability Theorems 

We now consider initial value problems (or Cauchy problems) asso
ciated with the differential inclusion 

for almost all t E [0, T], x'(t) E F(x(t)) (3.7) 

satisfying the initial condition x(O) = xo. 

Definition 3.3.1 (Viability and Invariance Properties) Let K 
be a subset of the domain of F. A function x( ·) : I f--t X is said to 
be viable in K on the interval I if and only if 

V t E I, x(t) E K 

We shall say that K is locally viable under F (or enjoys the local 
viability property for the set-valued map F) if for any initial state 
xo in K, there exist T > 0 and a solution on [0, T] to differential 
inclusion (3. 7) starting at xo which is viable in K. It is said to be 
(globally) viable under F (or to enjoy the (global) viability property) 
if we can take T = oo. 

The subset K is said to be locally invariant (respectively invari
ant) under F if for any initial state xo of K, all solutions to differ
ential inclusion (3. 7) are viable inK on some interval (respectively 
for all t ~ 0). We also say that F enjoys the local invariance (re
spectively invariance) property. 

Remark - We should emphasize as we did for ordinary dif
ferential equations that the concept of invariance depends upon the 
behavior ofF on its domain outside of K. D 

We would naturally like to characterize closed subsets viable un
der F as closed viability domains. This is more or less the situation 
that we shall meet: The main viability theorems hold true for the 
class of Marchaud maps, i.e., the nontrivial upper hemicontinuous 
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set-valued maps with nonempty compact convex images and with lin

ear growth (or equivalently, in the case of finite dimensional state 
spaces, closed set-valued maps with closed domain, convex values and 
linear growth. (See Corollary 2.2.3).) 

We observe that the only truly restrictive condition is the con
vexity of the images of these set-valued maps, since the continuity 
requirements are kept minimal. But we cannot dispense with it, as 
the following counter example shows. 

Example- Let us consider X := R, K := [-1, +1] and the set
valued map F: K -vt R defined by 

{ 
-1 if X> 0 

F(x) := {-1,+1} if x=O 
+1 if X< 0 

Obviously, no solution to the differential inclusion x'(t) E F(x(t)) can start 
from 0, since 0 is not an equilibrium of this set-valued map! 

We note however that 

• The graph of F is closed 

• F is bounded 

• K is convex and compact 

• K is a viability domain of F. 

But the value F(O) ofF at 0 is not convex. Observe that if we had set 
F(O) := [-1, +1], then 0 would have been an equilibrium. 

This example shows that upper semicontinuity is not strong enough to 
compensate the lack of convexity. Stronger continuity or differentiability 
requirements allow us to relax this assumption. 

But we shall keep our continuity requirements minimal, and thus, be 

ready to pay the price of considering systems whose sets of velocities are 

convex. This is possible thanks to the extension of the Nagumo Theo

rem 1.2.1. D 

Theorem 3.3.2 Let us assume that 

{ 
i) F : X "-'t X is upper semicontinuous 
ii) the images ofF are convex and compact 
iii) K is locally compact 

Then K is locally viable under F if and only if K is a viability domain 
of F. 
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Figure 3.1: Example of a Map without Convex Values 

0 

There is no solution starting at 0 

Since open subsets of finite dimensional vector spaces are locally 
compact viability domains of any set-valued map, we obtain the ex
tension of Peano's Theorem 1.2.2 to differential inclusions due to 
Marchaud, Zaremba4 and Wazewski5 : 

Theorem 3.3.3 Let 0 be an open subset of a finite dimensional 
vector space X and F : 0 '"'-'+ X be a strict upper semicontinuous 
set-valued map with convex compact images. 

Then, for any Xo E n, there exists T > 0 such that differential 
inclusion {3. 7) has a solution on the interval [0, T] starting from xo. 

4 who proved independently in the thirties the existence of respectively contin
gent and paratingent solutions to differential inclusions (called champs de demi
cones at the time.) The generalization of the concept of derivative to the notion 
of contingent derivative is due to B. Bouligand, who wrote: " ... Nous ferons tout 
d'abord observer ... que la notion de contingent eclaire celle de differentielle" .) 

5 who wrote: "... I learned the results of Zaremba's dissertation before the 
second world war, since I was a referee of that paper. Then a few years ago 
I came across with some results on optimal control and I have noticed a close 
connection between the optimal control problem and the theory of Marchaud
Zaremba." The author learned that this "coming across" happened during a 
seminar talk of C. Olech on a paper by LaSalle at Wazewski's seminar. 

Wa:Zewski proved that one can replace the contingent or paratingent deriva
tives of functions by derivatives of absolutely continuous functions defined almost 
everywhere in the definition of a solution to a differential inclusion, that he called 
orienior field. 
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The interesting case from the viability point of view is the one 
when the viability subset K is closed. In this case, we derive from 
Theorem 3.3.2 a more precise statement. 

Theorem 3.3.4 (Local Viability Theorem) Consider a nontriv
ial upper semicontinuous set-valued map F with compact convex 
images from X to X and a closed subset K c Dom(F). 

If K is a viability domain, then for any initial state xo E K, 
there exist a positive T and a solution on [0, T] to differential inclu
sion (3. 7} starting from xo, viable inK and satisfying 

{ 
either 

or 
T=oo 
T < oo and limsupt--+T-IIx(t)ll = oo 

Further adequate information - a priori estimates on the growth 
ofF- allow us to exclude the case when limsupt--+T-IIx(t)ll = oo . 

This is the case for instance when F is bounded on K, and, in 
particular, when K is bounded. 

More generally, we can take T = oo when F enjoys linear growth: 

Theorem 3.3.5 (Viability Theorem) Consider a Marchaud map 
F : X~ X and a closed subset K c Dom(F) of a finite dimensional 
vector space X. 

If K is a viability domain, then for any initial state xo E K, there 
exists a viable solution on [0, oo[ to differential inclusion (3. 7.) More 
precisely, if we set 

C ·-.- sup IIF(x)ll 
xEDom(F) llxll + 1 

then every solution x ( ·) starting at xo satisfies the estimates 

{ 
V t 2:: 0, llx(t)ll :S (llxoll + 1)ect 
and 
for almost all t 2:: 0, llx'(t)ll < c(llxoll + 1)ect 

and thus belongs to the space W 1•1(0,oo;X;e-btdt) forb> c. 

Actually, we shall also use another more convenient formulation 
of this theorem. We agree for that purpose to set the distance d(x, 0) 
to the empty set equal to +oo. 
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Theorem 3.3.6 (Second Viability Theorem) Let us consider a 
Marchaud map F : X "'-'> X and a closed subset K c Dom(F) of 
a finite dimensional vector space X. We assume that there exists a 
constant c > 0 such that 

d(O, F(x) n TK(x)) 
sup II II ::; c < +oo 
xEK X + 1 

(3.8) 

Then for any initial state xo E K, there exists a viable solution on 
[0, oo[ to differential inclusion (3. 7} starting from xo, which belongs 
to the space W 1•1(0, oo; X; e-btdt) forb> c. 

One can look right away at the control version of the viability 
Theorems in Section 6.1 in the framework of control systems and a 
very simple economic example in Section 6.2, in which other con
cepts such as viability kernels and heavy solutions are illustrated. 
Viability (and in variance) theorems for linear differential inclusions 
are presented in section 5.6 and can be checked over now. 

3.4 Proofs of the Viability Theorems 

We gather in this section the proofs of the theorems stated in the 
preceding one. 

Since viable absolutely continuous functions x(·) : [0, T] f--7 K 
satisfy x'(t) E TK(x(t)) for almost all t E [0, T], we could be tempted 
to derive viability theorems from existence theorems of solutions 
to differential inclusion x'(t) E RK(x(t)) where we set RK(x) := 

F(x) nTK(x). Unfortunately, this is not possible because TK(-) may 
be neither upper semi continuous nor lower semicontinuous6. For 
instance, it is not upper semicontinuous as soon as inequality con
straints are involved: take for example K := [-1, +1]. The graph of 
TK(·), equal to 

{ -1} x R+u]- 1, +1[xR u { +1} x R_ 

is not closed, and not even locally compact: See figure 3.2. 

6See Section 4.1., p. 178 of DIFFERENTIAL INCLUSIONS for an example of subset 
K such that TK(-) is neither upper semicontinuous nor lower semicontinuous. 
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Figure 3.2: The Graph of T[a,b] ( ·) 
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So we have to devise a specific proof of Theorem 3.3.2, which 
consists in proving Propositions 3.4.1 and 3.4.2 below. 

Proposition 3.4.1 (Necessary Condition) Let us assume that 

F : X '"'-'> X is upper hemicontinuous 

the images ofF are convex and compact 

Let us consider a solution x(·) to differential inclusion (3. 7) starting 
at xo and satisfying 

\:f T > 0, :3 t E]O, T] such that x(t) E K (3.9) 

(Naturally, viable solutions do satisfy this property.) Then 

F(xo) n TK(xo) # 0 

Proof~ By assumption (3.9), there exists a sequence tn --t 0+ 
such that x(tn) E K. Since F is upper hemicontinuous at x 0 , we can 
associate with any p E X* and E: > 0 an 'f/p > 0 such that 

\:f T E [0, 'f/p], < p, x'(T) >:::;; u(F(x(T)),p) :S u(F(xo),p) + ciiPII* 
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By integrating this inequality from 0 to tn, setting Vn := x(t~~-xo 
and dividing by tn > 0, we obtain for n larger than some Np 

Therefore, Vn lies in a bounded subset of a finite dimensional vector 
space, so that a subsequence (again denoted) Vn converges to some 
v E X satisfying 

V p EX*, < p, v > ~ cr(F(xo),p) + ciiPII* 

By letting c converge to 0, we deduce that v belongs to the closed 
convex hull of F(xo). 

On the other hand, since for any n, x(tn) = xo + tnvn belongs to 
K, we infer that v belongs to the contingent cone TK(xo) since 

{ 
liminfn->oo dK(Xo + hv)/h 

~ limn->oo llxo + tnv- x(tn)ll/tn = limn->oo llvn- vii = 0 

The intersection F(xo) n TK(xo) is then nonempty, so that the nec
essary condition ensues. D 

Proposition 3.4.2 (Sufficient Condition) Let us assume that 

F : X ~ X is upper semicontinuous 

the images ofF are convex and compact 

Let K be a locally compact subset of the domain ofF and Ko C K 
be a compact neighborhood of xo such that 

V x E Ko, F(x) n TK(x) =/= 0 

Then there exist T > 0 and a solution to differential inclusion (3. 1} 
starting at xo and viable in K on [0, T]. 

Proof- We adapt the proof of Nagumo's Theorem 1.2.1 to the 
case of differential inclusion by following the same strategy: con
struct approximate solutions by modifying Euler's method to take 
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into account the viability constraints, then deduce from available es
timates that a subsequence of these solutions converges in some sense 
to a limit, and finally, check that this limit is a viable solution to dif
ferential inclusion ( 3. 7). The two first steps are slight variations of 
the analogous steps of the proof of Nagumo's Theorem. The third 
step, which is specific to the set-valued case, uses the Convergence 
Theorem 2.4.4. 

1. Construction of Approximate Solutions 

By assumption, there exists r > 0 such that the compact neigh
borhood K 0 c K contains the ball BK(xo, r) := K n (xo + rB). We 
set 

C := F(Ko) + B, T := r/IICII 
We observe that C is bounded. We begin by proving 

Lemma 3.4.3 We posit the assumptions of Proposition 3.4.2. For 
any integer m, there exists Om E]O, 1/m[ such that for any x E Ko, 
there exist h E [Om, 1/m] and u E X satisfying 

{ 
i) 
. ") 
~~-) zzz 

u E C 
x+hu E K 
(x, u) E B(Graph(F), 1/m) 

Proof of Lemma 3.4.3 - By assumption, we know that for 
ally E Ko, there exists an element f(y) E F(y)nTK(y). By definition 
of the contingent cone, there exists hy E]O, 1/m[ such that 

We introduce the subsets 

N(y) := {x E Ko I dK(x + hyf(y)) < hy/2m} 

These subsets are obviously open. Since y belongs to N(y), there 
exists 'r/y E]O, 1/m[ such that B(y, 'r/y) c N(y). The compactness of 
Ko implies that it can be covered by q such balls B(yj, 'r/j), j = 
1, ... , q. We set 

E'lin hyi 
J-l, ... ,q 
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Let us choose any x E K 0 . Since it belongs to one of the balls 
B(yj, r/j) c N(yj), there exists Zj E K such that 

{ 
\\x + hyJ(yj)- Zj\1/hyi 

:::; dK(x + hyJ(yj))/hyi + 1/2m:::; 1/m. 

Let us set 
z· -x 

U ·- J j .- -h-
Yi 

We see that 1\x- Yj\1 :::; TJj :::; 1/m, that x + hyiUj = Zj E K and that 
1\uj- J(yj)\1 :::; 1/m. Hence, 

(x, uj) E B((yj, f(yj)), 1/m) C B(Graph(F), 1/m) 

and Uj E B(F(Ko), 1/m) c C. Hence the Lemma ensues. 0 

We can now construct by induction a sequence of positive num
bers hj E]Om, 1/m[ and a sequence of elements Xj E Ko and Uj E C 
such that 

(xj, Uj) E B(Graph(F), 1/m) 

as long as E{:-5 hi :::; T. 
Indeed, the elements Xj belong to K 0 , since 

Since the hj 's are larger than or equal to Om > 0, there exists J such 
that 

We introduce the nodes r/n := ho + · · · + hj-1, j = 1, ... , J + 1 and 
we interpolate the sequence of elements x j at the nodes r/n by the 
piecewise linear functions Xm ( t) defined on each interval [ r/n, rJn+l [ 
by 



3.4. Proofs of Viability Theorems 97 

We observe that this sequence satisfies the following estimates 

'it E [0, T], Xm(t) E co(Ko) 
(3.10) 

'it E [O,T], llx~(t)ll:::; IICII 

Letusfixt E [rk,rk+1 [. Since llxm(t)-xm(rk)ll:::; hilluill:::; IICII/m, 
and since (xj, Uj) E B(Graph(F), 1/m) by Lemma 3.4.3, we deduce 
that these functions are approximate solutions in the sense that 

V t E [0, T], xm(t) E B(Ko, em) 
(3.11) 

V t E [0, T], (xm(t), x~(t)) E B(Graph(F), em) 

where em := (IICII + 1)/m converges to 0. 

2. Convergence of the Approximate Solutions 

Estimates (3.10) imply that for all t E [0, T], the sequence Xm(t) 
remains in the compact subset co(Ko) and that the sequence Xm(·) is 
equicontinuous, because the derivatives x~(-) are bounded. We then 
deduce from Ascoli's Theorem that it remains in a compact subset 
of the Banach space C(O, T; X), and thus, that a subsequence (again 
denoted) xm(-) converges uniformly to some function x(·). 

Furthermore, the sequence x~ ( ·) being bounded in the dual of 
the Banach space £ 1(0, T; X) which is equal to £''0 (0, T; X), it is 
weakly relatively compact thanks to Alaoglu's Theorem7. But since 
Tis finite, the Banach space £ 00 (0, T; X) is contained in £ 1 (0, T; X) 
with a stronger topology8 . The identity map being continuous for the 

7 Alaoglu's Theorem states that any bounded subset of the dual of a Banach 
space is weakly compact. 

8 Since the Lebesgue measure on [0, T] is finite, we know that 

L""(O,T;X) c L 1 (0,T;X) 

with a stronger topology. The weak topology o-(L""(O, T; X), £ 1 (0, T; X)) 
(weak-star topology) is stronger than the weakened topology o-(£ 1 (0, T; X), 
L""(O, T; X)) since the canonical injection is continuous. Indeed, we observe 
that the seminorms of the weakened topology on L 1 (0, T; X), defined by finite 
sets of functions of L""(O, T; X), are seminorms for the weak-star topology on 
L""(O,T;X)), since they are defined by finite sets offunctions of L1 (0,T;X). 
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norm topologies, is still continuous for the weak topologies. Hence 
the sequence x~ ( ·) is weakly relatively compact in L1 (0, T; X) and a 
subsequence (again denoted) x~(-) converges weakly to some func
tion v(·) belonging to L1 (0, T; X). Equations 

imply that this limit v(·) is actually the weak derivative x'(·) of the 
limit x(·). 

In summary, we have proved that 

xm(·) converges uniformly to x(·) 

x~(t) converges weakly to x'(·) in L1 (0, T; X) 

3. The Limit is a Solution 

Condition (3.11)i) implies that 

V t E [0, T], x(t) E Ko 

i.e., that x(·) is viable. The Convergence Theorem 2.4.4 and proper
ties (3.11)ii) imply that 

for almost all t E [0, T], x'(t) E F(x(t)) 

i.e., that x( ·) is a solution to differential inclusion (3. 7). D 

Proof of Theorem 3.3.4- First, K is locally compact since 
it is closed and the dimension of X is finite. 

Second, we claim that starting from any xo, there exists a maxi
mal solution. Indeed, denote by S[o,T[(xo) the set of solutions to the 
differential inclusion defined on [0, T[. 

We introduce the set of pairs {(T, x(·))}T>O, x(-)ES[o,r[(xo) on which 
we consider the order relation -< defined by 

(T, x(·)) -< (S, y(·)) if and only if T ~ S & V t E [0, T[, x(t) = y(t) 



3.4. Proofs of Viability Theorems 99 

Since every totally ordered subset has obviously a majorant, Zorn's 
Lemma implies that any solution y(·) E S[o,s[(xo) defined on some 
interval [0, S[ can be extended to a solution x(·) E S[o,r[(xo) defined 
on a maximal interval [0, T[. 

Third, we have to prove that if T is finite, we cannot have 

c := lim sup llx(t)ll < +oo 
t--->T-

Indeed, if c < +oo, there would exist a constant 'f/ E]O, T[ such that 

V t E [T- 'f/, T[, llx(t)ll ~ c + 1 

Since F is upper semicontinuous with compact images on the com
pact subset K n ( c + 1 )B, we infer that 

V t E [T-ry, T[, x'(t) E F(K n (c + 1)B), which is compact 

and thus bounded by a constant p. Therefore, for all T, u E [T-ry, T[, 
we obtain: 

llx(T)- x(u)ll ~ i 7 llx'(s)dsll ~ PIT- ul 

Hence the Cauchy criterion implies that x(t) has a limit when t --t 
T-. We denote by x(T) this limit, which belongs to K because it is 
closed. Equalities 

x(Tk) = XQ + foTk x1(T)dT 

and Lebesgue's Theorem imply that by letting k --too, we obtain: 

x(T) = XQ +loT x1(T)dT 

This means that we can extend the solution up to T and even beyond, 
since Theorem 3.3.2 allows us to find a viable solution starting at 
x(T) on some interval [T, S] where S > T. Hence c cannot be finite. 
D 

Proof of Theorem 3.3.5- Since the growth ofF is linear, 

:3 c 2:: 0, such that V x E Dom(F), IIF(x)ll ~ c(llxll + 1) 
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Therefore, any solution to differential inclusion ( 3. 7) satisfies the 
estimate: 

llx'(t)ll ~ c(llx(t)ll + 1) 

The function t ___. llx(t)ll being locally Lipschitz, it is almost every
where differentiable. Therefore, for any t where x(t) is different from 
0 and differentiable, we have 

:t llx(t) II = \II:~~~ II, x' (t) J < llx' (t) II 

These two inequalities imply the estimates: 

llx(t)ll ~ (llxoll + 1)ect & llx'(t)ll ~ c(llxoll + 1)ect (3.12) 

Hence, for any T > 0, we infer that 

limsup llx(t)ll < +oo 
t-->T~ 

Theorem 3.3.4 implies that we can extend the solution on the interval 
[O,oo[. 

Furthermore, estimates (3.12) imply that for b > c, the solu
tion x(·) belongs to the weighted Sobolev space W 1•1(0, oo; X; e~btdt) 
since the multiplication by e~(b~c)t is continuous from L00 (0, oo; X) 

to L1 (0, oo; X). o 

Proof of Theorem 3.3.6 ~ We introduce the set-valued map 
G defined on K by 

G(x) := F(x) n c(llxll + 1)B 

Corollary 2.2.3 implies that G is a Marchaud map. Assumption 
(3.8) implies that K is a viability domain of G. Therefore by Theo
rem 3.3.5, we know that for any xo E K, there exists a viable solution 
to differential inclusion 

x'(t) E G(x(t)) 

on [0, oo [, which is also a solution to differential inclusion ( 3. 7) viable 
inK. 0 
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3.5 Solution Map 

We denote by S(xo) or by Sp(xo) the (possibly empty) set of solu
tions to differential inclusion (3.7.) 

Definition 3.5.1 (Solution Map) We shall say that the set-valued 
mapS defined by Dom(F) 3 x ~---+ S(x) is the solution map ofF (or 
of differential inclusion {3. 7).) 

When a closed subset K is viable under F, we denote 

S}f (x) := Sp(x)(K) n K 

the set of solutions starting from x E K and viable in K. 

We shall devote this section to the study of the solution map. 

3.5.1 Upper Semicontinuity of Solution Maps 

We recall that the space W 1•1(0, oo; X; e-btdt) is supplied with the 
topology for which a sequence Xn(·) converges to x(·) if and only if 

Xn(-) converges uniformly to x(-) on compact sets 

x~(-) converges weakly to x'(-) in L1 (0, T; X, e-btdt) 

Theorem 3.5.2 (Continuity of the Solution Map) Let us con
sider a finite dimensional vector space X and a Marchaud map F : 
X~ X. We set 

C ·-.- sup IIF(x)ll 
xEDom(F) llxll + 1 

Then the solution map S is upper semicontinuous with compact 
images from its domain to the space C(O, oo; X) supplied with the 
compact convergence topology. 

Actually, for b > c, the solution map S is upper semicontinuous 
with compact images from its domain to the space Wl,l(O, oo; X; e-btdt). 

Furthermore, the graph of the restriction of SIL to any compact 
subset L ofDom(F) is compact in X x W1,1(0,oo;X;e-btdt). 
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Proof- We shall show that the graph of the restriction SIL 
of the solution mapS to a compact subset L c Dom(F) (assumed 
to be nontrivial) is compact. 

Let us choose a sequence of elements ( xon, Xn ( ·)) of the graph of 
the solution map S. They satisfy: 

x~(t) E F(xn(t)) & Xn(O) = xon E L 

A subsequence (again denoted) xon converges to some xo E L because 
Lis compact. 

Then inequalities 

for almost all t ~ 0, 

imply that 

Vn ~ 0, llxn(t)ll ~ (llxonll + l)ect & llx~(t)ll ~ c(llxonll + l)ect 

Therefore, by Ascoli's Theorem, the sequence xn(·) is relatively com
pact in the Frechet space C(O, oo; X) and by Alaoglu's Theorem, the 
sequence x~(·)e-ct is weakly relatively compact in L00 (0, oo; X). 

Let us take b > c. Since the multiplication by e-(b-c)t is contin
uous from L00 (0, oo; X) to £ 1 (0, oo; X), it remains continuous when 
these spaces are supplied with weak topologies9. 

We have proved that the sequence x~ ( ·) is weakly relatively com
pact in the weighted space £ 1 (0, oo; X; e-btdt). 

We thus deduce that a subsequence (again denoted) Xn converges 
to x in the sense that: 

xn(·) converges uniformly to x(·) on compact sets 

x~(-) converges weakly to x'(-) in L1(0, oo; X; e-btdt) 

9Ifun converges weakly to u in L 00 (0, oo; X), then e-(b-c)tun converges weakly 
to e-(b-c)tu in £ 1 (0, oo; X), because, for every <p E L 00 (0, oo; X)= £ 1 (0, oo; X)*, 
the values 

converge to 

< u,e-(b-c)t<p >:= 1oo e-(b-c)tu(t)<p(t)dt 

since e-(b-c)t<p(·) belongs to L 1 (0,oo;X). 
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Inclusions 
V n > 0, (xn(t), x~(t)) E Graph( F) 

imply that 

for almost all t > 0, x'(t) E F(x(t)) 

thanks to the Convergence Theorem 2.4.4. 

We thus have proved that a subsequence of elements (xon, xn(-)) 
of the graph of SIL converges to an element (xo,x(·)) of this graph. 
This shows that it is compact, and thus, that the solution map S is 
upper semicontinuous with compact images. D 

Remark - We shall prove in Chapter 4 that the domain of 
the solution map SF associated with a Marchaud map is a closed 
subset, called the viability kernel of Dom(F). Chapter 4 is devoted 
to the study of viability kernels. D 

Remark- The "contingent derivative" of the solution map is 
contained in the solution map of the "variational inclusion", which 
is a "set-valued linearization" of the differential inclusion. (See Sec
tion 5, Chapter 10 of SET-VALCED ANALYSIS.) D 

3.5.2 Closure of a Viability Domain 

The first application of the upper semicontinuity of the solution map 
is that the closure of any subset viable under F is a viability domain: 

Proposition 3.5.3 Let us consider a Marchaud map F : X '"'--+ X 
and a subset n c Dom(F) viable under F. Then its closure n is still 
viable under F. 

Proof- Indeed, let a sequence Xn E n converge to X given in 
n. It remains in a compact subset L of the finite dimensional vector 
space X. Let us choose a sequence of solutions xn(-) E SF(xn) viable 
in n, which exist by assumption. 

Since the graph of the restriction SF I L of SF to the compact 
subset Lis compact, Theorem 3.5.2 implies that (xn, Xn(·)) belongs 
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to the compact subset Graph(SFIL). Therefore a subsequence con
verges to some (x, x(·)) of the graph of SFIL, so that x(·) belongs to 
sF (X). Since Xn ( t) E n for all t ;::: 0, we infer the limit x(.) is viable 
in 0. D 

3.5.3 Reachable Map 

We associate with the solution map Sp : X '"V> C(O, oo; X) of the 
differential inclusion (3. 7) the reachable map, (or flow, or set-valued 
semi-group) defined in the following way: 

Definition 3.5.4 For anyt;::: 0, we denote by Rp(t)(x) := (Sp(x))(t) 
the set of states x(t) reached from x through differential inclusion 

(3. 7), by 

{ 
R~ (t) := (Sp(K))(t) 

Q~ (t) := (SJf (K))(t) 

the set of states x(t) reached from K by solutions x(-) E Sp(x) and 
by solutions x( ·) E SJf (x) viable in K respectively. They are called 
the reachable map and viable reachable map respectively. 

The reachable map Rp(t)(x) enjoys the semigroup property: 

V t, s ;::: 0, Rp(t + s)(x) = Rp(t) (Rp(s)(x)) 

The maps t '"V> R~ (t) and t '"V> Q~ (t) are examples of viability 
tubes which shall be studied in Chapter 11. For the time, let us prove 
that these maps are closed: 

Proposition 3.5.5 Assume that F : X '"V> X is a Marchaud map 
and that a closed subset K is contained in the domain of Sp. Then 
the graphs of the maps t '"V> R~ ( t) and t '"V> Q~ ( t) are closed. 

Proof~ Let us consider a sequence (tn, Xn) of the graph of 
R~ ( ·) converging to ( t, x). By definition, there exist solutions Xn ( ·) E 

Sp(Xon) such that Xon E K and Xn(tn) = Xn· Since the sequence Xn 
is bounded, so that a subsequence converges to some x E K, a slight 
modification of the proof of Theorem 3.5.2 obtained by writing that 

Xn(t) = Xn + 1t X~(T)dT 
fn 
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implies that a subsequence converges to some solution x*(·) such that 
Xn' = Xn'(tn') converges to x = x*(t). Since a subsequence of Xon 
converges to x*(O), hence x*(O) belongs to K and we deduce that 
x E RjF(t). 0 

The reachable maps play an important role in control theory. One 
can state that under adequate assumptions, co(F) is its infinitesimal 
generator: 

Theorem 3.5.6 (Frankowska) If F is continuous with compact 
values, then 

l . RF(h)(x)- x (F( )) 
1m h =CO X 

h--tO+ 

We shall see in Chapter 7 that the left-hand side of this formula 
is the derivative of the reachable map RF(·)(x) at (0, x), so that 
this theorem states that the when F is continuous, co(F(x)) is the 
derivative of the reachable map at (0, x). 

We refer to Helene Frankowska's monograph CoNTROL OF NoN
LINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS for a proof of this 
basic theorem which plays a very important role for studying local 
controllability and value functions in optimal control. 

3.5.4 Representation Property 

When the viability subset is convex, we can represent the set of 
viable solutions in K as a countable intersection of solution sets to 
unconstrained differential inclusions, a property which is analogous 
to the duality property in convex minimization. 

Theorem 3.5. 7 (Kurzhanski) Consider a set-valued map F : X"--* 
X with nonempty compact values. Assume that K := A-1(M) is the 
inverse image of a closed convex subset M C Y by a surjective linear 
operator A E C(X, Y). Denote by FIK the restriction ofF to K. 
Then, for any right-inverse B E C(Y, X) of A, 

v X EX, FIK(x) = n (F(x) + nBAx- nB(M)) 
nEZ 

Consequently, for any x E K, the set SIK(x) of solutions to the 
differential inclusion x'(t) E F(x(t)) viable inK is the intersection of 
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the sets of solutions Sn ( x) to the unconstrained differential inclusions 
x'(t) E F(x(t)) + nBAx(t)- nB(M) when n ranges over Z. 

Proof- Consider first the case when x E K. Since F(x) = 
F(x) + OB(Ax- M), the intersection of the subsets F(x) + nBAx
nB(M) is contained in F(x). On the other hand, 0 belonging to 
Ax- M, we infer that F(x) c F(x) + nB(Ax- M) for any n E Z, 
so that 

F(x) c n (F(x) + nBAx- nB(M)) 
nEZ 

Consider now the case when x ~ K and let us show that 

n (F(x) + nBAx- nB(M)) = 0 
nEZ 

Since any right inverse B of A is injective, 0 does not belong to the 
closed convex subset B(Ax- M), and thus can be separated from 0: 
There exist p E X* and E > 0 such that 

a(B(Ax- M),p) = -E < 0 

Now, we observe that F(x) being bounded, the support function 
a(F(x)- F(x)),p) is nonnegative and bounded. We claim that for 
any n > (a(F(x)- F(x)),p)/2E, 

(F(x)- nB(Ax- M)) n (F(x) + nB(Ax- M)) = 0 

Otherwise, there would exist u1 and u2 in F(x) such that u1 - u2 
would belong both to F ( x) - F ( x) and to 2nB (Ax - M), so that we 
would obtain the contradiction 

-a(F(x)- F(x),p) ::; < p, u1 - u2 > ::; -2nE D 

3.6 Stability of Viability Domains 

Let us recall the definition of Painleve-Kuratowski upper limit10 of 
sets: 

10The concepts of upper and lower limits of sets were introduced by Painleve in 
1902 and popularized by Kuratowski in his famous book TOPOLOGIE, to the point 
that they are often Christened K uratowski upper limits. See the first chapter of 
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Definition 3.6.1 Let Kn be a sequence of subsets of a metric space 
X. we say that 

KU := Limsupn_.00 Kn := {y E Y I liminf d(y, Kn) = 0} n-+oo 

is its upper limit. 

In other words, it is the closed subset of cluster points of sequences 
of elements Xn E Kn. 

We observe that the contingent cone 

K-x 
TK(x) = Limsuph-+O+_h_ 

is the upper limit of the differential quotients Khx when h---+ 0+. 

Let us consider now a sequence of closed subsets Kn viable under 
a set-valued map F. Is the upper limit of these closed subsets still 
viable under F? The answer is positive. 

Theorem 3.6.2 Let us consider a Marchaud map F : X ~ X. 
Then the upper limit of a sequence of closed subsets viable under F 
is still viable under F. 

In particular, the intersection of a decreasing family of closed 
viability domains is a closed viability domain. 

Proof- We shall prove that the upper limit KU of a sequence 
of subsets Kn viable under F is still viable under F. 

Let x belong to KU. It is the limit of a subsequence Xn' E Kn'. 
Since the subsets K n are viable under F, there exist solutions Yn' ( ·) to 
differential inclusion x' E F(x) starting at Xn' and viable in Kn'· The 
upper semicontinuity of the solution map implies that a subsequence 
(again denoted) Yn'(·) converges uniformly on compact intervals to a 

SET-VALUED ANALYSIS for an exhaustive study of these upper and lower limits 
of sequences of sets. Recall only that if the space X is compact , then the upper 
limit KU enjoys 

for all neighborhood U of KU, 3N such that Vn > N, Kn C U 
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solution y(·) to differential inclusion x' E F(x) starting at x. Since 
Yn•(t) belongs to Kn' for all n', we deduce that y(t) does belong to 
KU for all t > 0. 

When the sequence Kn is decreasing, we know that its upper 
limit is equal to the intersection of the Kn. D 

What happens if we deal with the upper limit K~ of a sequence 
of closed viability domains Kn of set-valued maps Fn? 

For that purpose, we introduce the concept of graphical upper 
limit of a sequence of set-valued maps Fn. 

Definition 3.6.3 We shall say that the set-valued maps LimUn-+ooFn 
from X to X defined by 

Graph(Lim~n-+ooFn) := Limsupn-+ooGraph(Fn) 

is the graphical upper limit of the set-valued maps Fn. 

For simplicity, we set F~ := Lim~n-+ooFn. One can find more 
details on graphical limits in Chapter 7 of SET-VALUED ANALYSIS. 

The question then arises whether the upper limit K~ of a sequence 
of closed subsets Kn viable under set-valued maps Fn is viable under 
the closed convex hull of the upper graphical limit coF~ of the set
valued maps Fn? 

Theorem 3.6.4 (Stability of Solution Maps) Let us consider a 
sequence of nontrivial set-valued maps Fn : X ~ X satisfying a 
uniform linear growth: there exists c > 0 such that 

V x EX, IIFn(x)JI :::; c(JJxJJ + 1) 

Then 
1. The upper limit of the solution maps SFn is contained 

in the solution map 8co(F") of the convex hull of the graphical upper 
limit of the set-valued maps Fn 

2. If the subsets Kn C Dom(Fn) are viable under the set-
valued maps Fn, then the upper limit KU is viable under co(F~). 

It follows from the adaptation of the Convergence Theorem to 
limits of set-valued maps: 
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Theorem 3.6.5 Let X be a topological vector space, Y be a finite di
mensional vector space and Fn be a sequence of nontrivial set-valued 
maps from X to Y satisfying a uniform linear growth. 

Let us consider measurable functions Xm and Ym from [0, oo[ to 
X and Y respectively, satisfying: 

for almost all t E [0, oo[ and for all neighborhood U of 0 in the 
product space X x Y, there exists M := M(t,U) such that 

V m > M, (xm(t),ym(t)) E Graph(Fm) +U (3.13) 

If we assume that 

Xm(·) converges almost everywhere to a function x(·) 

YmO E L1(0, oo, Y; a) and converges weakly in L1(0, oo, Y; a) 
to a function y(·) E L1 (0, oo, Y; a) 

then, 
for almost all t E [0, oo[, y(t) E co(F#(x(t)) 

We refer to Theorem 7.2.1 of SET-VALUED ANALYSIS for a proof. 

3. 7 w-Limit Sets and Equilibria 

3. 7.1 w-Limit Sets 

The w-limit sets of the solutions to differential inclusion 

for almost all t 2:: 0, x'(t) E F(x(t)) 

provide examples of closed viability domains: 

(3.14) 

Definition 3. 7.1 (w-Limit set) Let x(·) be a function from [0, oo[ 
to X. We say that the subset 

w(x(-)) := n cl(x([T, oo[)) = Limsupt--++oo{x(t)} 
T>O 

of its cluster points when t ---+ oo is the w-limit set of x( ·). 
IfF is a set-valued map, K a subset of Dom(Sp) and Rff: (-) the 

reachable map, we denote by 

wp(K) := Limsupt--++ooRff: (t) 
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the w-limit set of the subset K. If K is a closed subset viable under 
F, the viable w-limit set of K is defined by 

wjf (K) := Limsupt--++ooQ~ (t) 

Being upper limits, the w-limit sets of solutions and sets are 
closed subsets. They also are viable under F. We begin with the 
case of w-limit sets of solutions: 

Theorem 3.7.2 (w-Limit sets are viability domains) Let us con
sider a Marchaud map F : X '"Vt X. Then thew-limit set of a solution 

to the differential inclusion (3.14) is a closed viability domain11 . 

In particular, the limits of solutions to the differential inclusion 
(3.14), when they exist, are equilibria ofF and the trajectories of 
periodic solutions to the differential inclusion ( 3.14) are also closed 
viability domains. 

If K is a viability domain ofF, then the w-limit sets of viable 
solutions are contained in K. 

Proof- Let x belong to thew-limit set of a solution x(-). It 
is the limit of a sequence of elements x(tn) when tn __, oo. We then 
introduce the functions YnO defined by Yn(t) := x(t + tn)· They 
are solutions to the differential inclusion (3.14) starting at x(tn)· By 
Theorem 3.5.2 on the upper semicontinuity of the solution map, a 
subsequence (again denoted) Yn ( ·) converges uniformly on compact 
intervals to a solution y(·) to the differential inclusion (3.14) starting 
at x. On the other hand, for all t > 0, 

y(t) = lim Yn(t) = lim x(t + tn) E w(x(-)) 
n--+oo n--+oo 

i.e., y(·) is viable in thew-limit set w(x(·)). Hence thew-limit set 
is viable under F. The necessary condition of the Viability Theo
rem 3.3.2 implies that this w-limit set is a viability domain. 

11 which is connected when w(x(·)) is compact. If not, w(x(·)) would be covered 
by two nonempty disjoint closed subsets K1 and K2. So, they can be separated 
by two disjoint open neighborhoods U1 :J K1 and U2 :J K2. 

Since U1 U U2 is a neighborhood of the compact subset w(x(·)), there exists T 
such that the subset r := {x(t)}t>T is contained in ul uu2. This set is connected 
as the continuous image of [T, ool We observe that the subsets r; := r n U; are 
not empty, open, disjoint and cover r: this is a contradiction of the connectedness 
of r. 
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When a solution has a limit x when t ----. oo, the subset {x} is a 
viability domain, and thus, x is an equilibrium. D 

We consider now the case of w-limit sets of closed subsets: 

Proposition 3. 7.3 Let us consider a Marchaud map F : X ~ X 
and a closed subset K of the domain of SF. Then the w-limit set 
WF(K) is viable under F. 

If there exists T 2: 0 such that Ut>T Rjf (t) is bounded, then 
w F ( K) is an universal attractor in the s~nse that 

V x E K, V x(-) E SF(x), lim d(x(t), WF(K)) = 0 
t---'>00 

If K is viable under F, then the viable w-limit set wif (K) is a 
closed viability domain contained in K. 

If K is compact, it is an attractor in the sense that 

V x E K, :3 x(-) E S{f(x) such that lim d(x(t),wjf(K)) = 0 
t---'>00 

Proof~- The closed subset WF(K) is viable under F. Indeed, 
let ~ belong to wF(K). Then~ = lim~n where ~n E Rjf (tn)· We 
associate with the solutions Xn ( ·) to the differential inclusion 

x~(t) E F(xn(t)), Xn(tn) = ~n 

the functions Yn(·) defined by Yn(t) := Xn(t + tn) which are solutions 
to 

y~(t) E F(yn(t)), Yn(O) = ~n 

Theorem 3.5.2 implies that these solutions remain in a compact 
subset of C(O, oo; X). Therefore, a subsequence (again denoted by) 
Yn (-) converges to y(-), which is a solution to 

y'(t) E F(y(t)), y(O) = ~ 

Furthermore, this solution is viable in wF(K) since for all t 2: 0, y(t) 
is the limit of a subsequence of Yn ( t) = Xn ( t + tn) E Rjf ( t + tn), and 
thus belongs to w F ( K). 
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Let us prove now that WF(K) is an universal attractor. If not, 
there would exist xo E K, a solution x(·) E SF(xo), 8 > 0 and a 
sequence tn ---+ oo such that 

V n ~ 0, d (x(tn), WF(K)) ~ 8 > 0 

Since the closure of Ut>T R~ (t) is compact by assumption, a 
subsequence (again denoted-by) x(tn) converges to some x* which 
belongs to thew-limit set WF(K). We thus obtain a contradiction. 

The proofs of the statements about w~ ( K) are analogous. 0 

We shall see in Chapter 11 that upper limits of viability tubes 
t 1---t P(t) when t ---+ oo are closed subsets viable under F which are 
attractors when Ut>T P(t) is relatively compact. If we regard such 
w-limit sets as "asymptotic targets" (because they are made of cluster 
points of solutions viable in such tubes), we must look for asymptotic 
targets among the closed subsets viable under F. 0 

3. 7.2 Cesaro means of the velocities 

The property of the Cesaro means described in the assumptions of 
the next theorem implies the existence of an equilibrium: 

Theorem 3. 7.4 Let us assume that F is upper hemicontinuous with 
closed convex images and that K c Dom(F) is compact. If there 
exists a solution x( ·) viable in K such that 

lint inf- llx'(r)lldr = 0 
t>O t 0 

then there exists a viable equilibrium x, i.e., a state x E K solution 
to the inclusion 0 E F(x). 

Proof - Let us assume that there is no viable equilibrium, 
i.e., that for any x E K, 0 does not belong to F(x). Since the 
images of F are closed and convex, the Separation Theorem implies 
that there exists p E ~' the unit sphere, and cp > 0 such that 
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a(F(x), -p) < -cp· In other words, we can cover the compact subset 
K by the subsets 

Vp := { x E K I a(F(x), -p) < -cp} 

when p ranges over E. They are open thanks to the upper hemicon
tinuity of F, so that the compact subset K can be covered by q open 
subsets Vp;. Set c := mini=l, ... ,q cpi > 0. 

Consider now any viable solution to differential inclusion (3.14). 
Hence, for any t;:::: 0, x(t) belongs to some VP;• so that 

-llx'(t)ll ~ (-pi,x'(t)) ~ a(F(x(t)),-pj) < -c 

and thus, by integrating from 0 tot, we have proved that there exists 
c > 0 such that, for all t > 0, 

c < ! {t llx'(T)iidT 
t lo 

a contradiction of the assumption of the theorem. D 

3. 7.3 Viability implies Stationarity 

When K is a compact viability domain, then the convexity of either 
F(K) or of K implies the existence of a viable equilibrium. 

Theorem 3.7.5 Let F be a Marchaud map. If K C Dom(F) is a 
compact viability domain and if F(K) is convex, then there exists an 
equilibrium. 

Proof - Assume that there is no equilibrium. Hence, this 
means that 0 does not belong to the closed convex subset F(K), so 
that the Separation Theorem implies the existence of some p E X* 
and c > 0 such that 

sup < v, -p > = a(F(K), -p) < -c 
xEK,vEF(x) 

Hence, let us take any viable solution x( ·) to differential inclusion 
(3.14), which exists by the Viability Theorem. We deduce that 

\::It;:::: 0, < -p,x'(t) > ~ -c 
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so that, integrating from 0 tot, we infer that 

Et :S<p,x(t)-x(O)> 

But K being bounded, we thus derive a contradiction. D 

We shall state now that any convex compact viability domain 
contains an equilibrium. 

Theorem 3. 7.6 (Equilibrium Theorem) Let X be a Banach spa
ce12 and F : X ~ X be an upper hemicontinuous set-valued map with 
closed convex images. 

If K C X is a convex compact viability domain ofF, then it 
contains an equilibrium ofF. 

This theorem is equivalent to the Kakutani and Brouwer Fixed 
Point Theorems; we shall not prove this equivalence here13 . 

We show only that the Equilibrium Theorem 3.7.6 implies the 
Kakutani Fixed Point Theorem14 , which is the set-valued version of 
the Brouwer fixed Point Theorem. 

Theorem 3. 7. 7 (Kakutani Fixed Point Theorem) Let K be a 
convex compact subset of a Banach space X and G : K ~ K be a 
strict upper hemicontinuous set-valued map with closed convex val
ues. Then G has a fixed point15 x E K n G(x). 

Proof- We set F(x) := G(x)-x, which is also upper hemicon
tinuous with convex values. Since K is convex, then K -x C TK(x), 
and since G(K) c K, we deduce that K is a viability domain of 
F because F(x) c TK(x). Hence there exists a viable equilibrium 
x E K ofF, which is a fixed point of G. D 

12 Actually, this theorem remains true for any Hausdorff locally convex topo
logical vector space and in particular, for spaces endowed with weak topologies. 

13See Appendix C of MATHEMATICAL METHODS OF GAME AND ECONOMIC 
THEORY for a proof of the Brouwer Fixed Point Theorem based on Sperner's 
Lemma and the second chapter of APPLIED NONLINEAR ANALYSIS for a proof 
based on differential geometry. We refer to these books or SET-VALUED ANALYSIS 
for a proof of the equivalence between these statements and the Ky Fan Inequality. 

14called Ky Fan's Fixed Point Theorem in infinite dimensional spaces. 
15which can be regarded as an equilibrium for the discrete set-valued dynamical 

system Xn+l E G(xn). 
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Actually, Equilibrium Theorem 3.7.6 can be derived from the 
Brouwer Fixed-Point Theorem via the Ky Fan Inequality. We recall 
it below not only because we shall use it later, but because of its 
efficiency for proving many results of nonlinear analysis. 

Theorem 3.7.8 (Ky Fan Inequality) Let K be a compact convex 
subset of a Banach space and 'P : K x K 1----t R be a function satisfying 

{ 
i) 
. ") 
~~-) uz 

Vy E K, 
VxE K, 
Vy E K, 

x 1----t cp(x, y) is lower semicontinuous 
y 1----t cp(x,y) is concave 
cp(y,y) ::::; 0 

Then, there exists x E K, a solution to 

Vy E K, cp(x,y) < 0 

(3.15) 

(3.16) 

The Ky Fan inequality implies readily the von Neumann Minimax 
Theorem: 

Theorem 3.7.9 (Minimax) LetX andY beBanachspaces16 , L c 
X and M C Y be compact convex subsets and f : L x M 1----t R be a 
real valued function satisfying 

V y EM, x 1----t f(x, y) is lower semicontinuous and convex 

V x E L, y 1----t f(x, y) is upper semicontinuous and concave 

Then there exists a saddle point (x, y) E L x M off: 

V (x, y) E L x M, f(x, y) ::::; f(x, y) ::::; f(x, y) 

Proof- We apply the Ky Fan Inequality with K := L x M 
and 'P defined by 

cp((x, y), (x, y)) := f(x, y)- f(x, Y) D 

Actually, we often need a weaker version of the Minimax The
orem, called the Lop-Sided Minimax Theorem. We recall its state
ment: 

16actually, Hausdorff locally convex topological vector spaces. 
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Theorem 3. 7.10 (Lop-Sided Minimax Theorem) Let X andY 
be Banach spacei 7, L c X be a compact convex subset, M c Y be a 
convex subset and f : L x M ~ R be a real valued function satisfying 

'V y EM, x ~ f(x, y) is lower semicontinuous and convex 

'V x E L, y ~ f(x, y) is and concave 

Then there exists x E L satisfying 

'V y EM, f(x, y) ~ inf sup f(x, y) = sup inf f(x, y) 
xEL yEM yEM xEL 

Proof- We refer to Theorem 6.2.7. of APPLIED NONLINEAR 

ANALYSIS for an instance of proof using only the Separation Theo
rem. D 

Remark - A slight modification of the proof of the Equilib
rium Theorem yields a whole family of sufficient conditions for the 
existence of zeros of a set-valued map from K c X to another space 
Y. D 

Theorem 3.7.11 Let K be a convex compact subset of a Banach 
space X and F be a nontrivial upper hemicontinuous set-valued map 
with closed convex values from X to another Banach space Y. 

Let us consider also a continuous map B : K ----t .C(X, Y). If K, 
F and B are related by the condition 

'V x E K, F(x) n B(x)TK(x) # 0 

then 

:3 x E K such that 0 E F(x) 
{ 

i) 

ii) 'V y E K, :3 x E K such that B(x)y E B(x)x- F(x) 

As an example, we derive the existence of a solution to the equa
tion f(x) = 0 where the solution x must belong to a compact convex 
subset K: 

17 or, more generally, an Hausdorff locally convex topological vector spaces. 
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Theorem 3.7.12 Let X and Y be Banach spaces, K c X be a 
compact convex subset, 0 :J K be an open neighborhood of K and f : 
0 r--t Y be a continuously differentiable single-valued map. Assume 
that 

V x E K, - f(x) E f'(x)TK(x) 

Then there exists a solution x E K to the equation f(x) = 0. In 
particular, when xo E K is given, there exists a sequence of elements 

Xn E K satisfying 

i.e., the implicit version of the Newton algorithm, studied in more 
details in Chapter 10. 

Proof- We take F(x) ·- {f(x)} and B(x) 
Theorem 3.7.11. D 

- f'(x) m 

3.8 Chaotic Solutions to Differential Inclu-. 
SIOnS 

Let F : X '"'--+ X be a Marchaud map, describing the dynamics of the 
differential inclusion 

for almost all t ~ 0, x'(t) E F(x(t)) (3.17) 

Theorem 3.8.1 (Chaotic Behavior) Let us assume that a com
pact viability domain K of the Marchaud map F is covered by a 
family of closed subsets Ka (a E A) such that the following control
lability assumption holds true: There exists T < oo such that 

V a E A, V y E K, ::3 x E Ka, x(·) E S(x) & t E [0, T[ with x(t) = y 

Then, for any sequence ao, a1, ... , an, ... , there exists at least one 
solution x(-) E S(x) to differential inclusion (3.17) and a sequence 
of elements tj ~ 0 such that x(tj) E Kaj for all j ~ 0. 

Proof- Let M c K be any closed subset. We associate with 
any solution x(·) starting at x E K and intersecting Mat some time 
t E [0, T] the number TM := inf(t E [0, T]l x(t) EM). 
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We associate with the sequence ao, a1, ... the subsets Ma0 a1 ···an 
defined by induction by Man := Kan, 

and, for j = n - 2, ... , 0, by: 

The controllability assumption implies that they are nonempty. They 
are closed thanks to Theorem 3.5.2. Since the family of subsets 
Ma0 a1 ···an form a nonincreasing family and since K is compact, the 
intersection Koo := n~o Ma0 a1 ···an is nonempty. 

Let us take an initial state x in Koo and fix n. Hence there exists 
xn(·) E S(x) and a sequence oft~ E [O,jT] such that 

Indeed, there exist Yl E S(x) and TMal an E [0, T] such that 
Yl(TMal···aJ belongs to Maj•••an· We set t~ := TMal an and Xn(t) := 
Yl(t) on [0, t~]. 

Assume that we have built Xn(·) on the interval [0, t~] such that 
Xn(t~) E Maj· .. an C Kaj for j = 1, ... , k. Since Xn(t~) belongs to 
Mak· .. an' there exist Yk+l E S(xn(t~)) and TMak+l an E [0, T] such 
that Yk+l(TMak+I ··aJ belongs to lvfak+ 1 ... an· We set 

tk+l := tk + TM a & Xn(t) := Yk+l (t + TMa ) n n ak+l. · n k+l ··an 

on [t~, t~+ 1 ]. 
Since for some b > 0, the sequence xn(·) E S(x) is compact in 

the space W 1,1(0, oo; X; e-btdt), a subsequence (again denoted Xn(·)) 
converges to some solution x(-) E S(x) to the differential inclusion. 
By extracting successive converging subsequences of t~ 1 , ••• , t~j, .. . , 
we infer the existence of tj's in [0, jT] such that Xnj ( t~) converges to 
x( tj) E Kaj, because the functions Xn (-) remain in an equicontinuous 
subset. D 


