
Chapter 1 

Viability Theorems for 
Ordinary and Stochastic 
Differential Equations 

Introduction 

This chapter is meant to be an independent introduction to the 
basic theorems of viability theory in the simple framework of ordinary 
differential equations x' = f(x) and stochastic differential equations 

d~ = f(~(t))dt + g(~(t))dW(t) 

It can be omitted by readers who are only interested in the theory 
for differential inclusions. 

So, we begin by tackling the viability issue by isolating it in the 
framework of ordinary differential equations in the first section. A 
function [0, T] 3 t ---t x(t) is said to be viable in a given subset K on 
[0, T] if, for any t E [0, T], the state x(t) remains inK. 

Actually, even in the simpler situation of differential equations, 
we have to be careful and make a distinction between two neighbor
ing concepts: viability property and invariance property. The first 
one requires that, starting from any initial point of K, at least one 
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20 1- Differential Equations 

solution to the differential equation is viable in K whereas the second 
one demands that all solutions are viable in K. 

We shall characterize the first one by saying that K is a viability 
domain, i.e., that for any state x in the boundary of K, the velocity 
is tangent in some sense to Kat x. 

We may require for that purpose that K is a smooth manifold 
and therefore, that f is a vector field, the velocity f ( x) lying in the 
tangent space. 

But first, we do not need the fact that the space of "tangent" 
directions (adequately defined) is a vector space. The added luxury 
of linearity does not compensate for its fragility, in the sense that, 
for instance, the intersection of two smooth manifolds is no longer 
smooth. Since we shall regard in most of our applications the subset 
K as a subset defined by constraints (and above all, inequality con
straints), then it is very exceptional that such a subset is smooth. As 
in optimization, we are quickly led to assume that K is convex, since 
convex subsets are defined by linear inequality constraints. But, here 
again, it would be nice to dispense with this assumption if this is pos
sible (with no added mathematical cost), for it allows us to consider 
also union of convex subsets, for instance. 

As we know since 19421 , one can characterize such a viability 
property for any closed subset K, with an adequate mathematical 
implementation of the concept of tangency. The one chosen is actu
ally equivalent to the concept of "contingency" introduced ten years 
earlier by Bouligand. We can then define the contingent cone to K 
at x E K for any subset K, the price to pay being that the set of 
tangent directions (the contingent cone) is a closed cone instead of a 
vector space. 

We shall only give in this introductory chapter the definition 
of the contingent cone and provide further properties in Chapter 5 
after the presentation of the viability theorems for both ordinary dif
ferential equations, stochastic differential equations and differential 
inclusions. 

Nagumo's Theorem states that when f is continuous, a closed 

11n a seminal paper written in German by the Japanese mathematician M. 
Nagumo. As it could be expected, this theorem was forgotten and rediscovered 
(at least) fourteen times up to 1968, in different contexts, with various concepts 
of tangency. 
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subset K enjoys the viability property if and only if it is a viability 
domain. We prove only this theorem, and shall derive the other 
properties as corollaries of statements we shall prove later in the 
case of differential inclusions. 

Many proofs of viability theorems are now available: we chose 
the most elementary (which is not the shortest) for several reasons: 
it is the prototype of the extensions of the viability theorems (to 
functional differential inclusions, partial differential inclusions, ... ) 
we shall present later in this book. It is just a modification of the 
Euler method of approximating a solution by piecewise linear func
tions (polygonal lines) in order to force the solution to remain in K. 
Despite its "constructionist" look, this method is not a finite differ
ence scheme (explicit or implicit.) We shall present a rudimentary 
numerical introduction in the third section, but are forced to post
pone the proofs to chapter 10, because they use more properties of 
the contingent cones which are presented later in Chapter 5. 

The fourth section is dedicated to the "replicator systems" . This 
is because the most popular viability domain is the probability sim
plex. Indeed, it is often too difficult to provide a mathematical de
scription of the state space of problems arising in biology, economics, 
etc. So, this difficulty is bypassed by studying instead of the evolu
tion of the state itself, the evolution of frequencies, concentrations, 
probabilities, ... ,of the states (without forgetting mixed strategies in 
game theory), which all range over the probability simplex sn c Rn. 

Replicator systems 

X~(t) = Xi(t)(gi(x(t))- u(x(t))) 

are the differential equations derived from evolutions 

x~(t) = xi(t)gi(x(t)), (i = 1, ... , n) 

governed by specific growth rates 9i ( ·), corrected by subtracting the 
closed-loop control 

n 

u(x) := LXj9j(x) 
j=l 

for obeying the viability constraints. The celebrated logistic equation 
belongs to this class (for constant growth rates.) Dynamical models 
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arising in population genetics, prebiotic evolution, sociobiology and 
population ecology devised independently are replicator systems for 
specific linear growth rates2 . 

Finally, we conclude this introductory chapter with a brief pre
sentation of viability and/or invariance properties of closed subsets 
for stochastic differential equations. 

Let us consider Lipschitz maps f and g and the stochastic differ
ential equation 

d1. = f(e(t))dt + g(e(t))dw(t) 

the solution of which is given by the formula 

We want to characterize the (stochastic) viability property of a 
closed convex subset K of X with respect to the pair (!,g): for any 
random variable X in K' there exists a solution e to the stochastic 
differential equation starting at x which is viable inK, in the sense 
that 

V t E [0, T], for almost all w E 0, ew(t) E K 

For that purpose, we adapt to the stochastic case the concept 
of contingent cone to a subset K at a random variable x E K as 
the set TK(t, x) of pairs ('y, v) of random variables satisfying the 
following property: There exist sequences of hn > 0 converging to 0 
and of measurable random variables an and bn satisfying for almost 
all wE 0, 

V n ~ 0, Xw + Vw(Ww(t + hn)- W(t)) + hnrw + hna~ + .}h;;b~ E K 

and converging to 0 in some sense. 
Then we shall prove in essence that the following conditions are 

equivalent: 
1. The subset K enjoys the viability property with respect 

to the pair (!,g) 

2 Replicator systems are the central theme of the monograph THE THEORY OF 
EVOLUTION AND DYNAMICAL SYSTEMS by J. Hofbauer and K. Sigmund. 
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2. for every Ft-random variable x viable inK, 

(J(x),g(x)) E TK(t,x) 

For instance, this condition means that for every Ft-random vari
able x viable in K 

f(x) E K & g(x) E K 

when K is a vector subspace, that 

1 2 
(x, g(x)) = 0 & (x, f(x)) + 2llg(x)ll 0 

when K is the unit sphere and that 

1 2 
(x, g(x)) = 0 & (x, f(x)) + 2llg(x)ll < 0 

when K is the unit ball. 

1.1 Viability & lnvariance Properties 

Definition 1.1.1 {Viable functions) Let K be a subset of a finite 
dimensional vector-space3 X. We shall say that a function x( ·) from 
[0, T] to X is viable inK on [0, T] if"' t E [0, T], x(t) E K. 

Let us describe the (deterministic) dynamics of the system by 
a (single-valued) map f from some open subset 0 of X to X. We 
consider the initial value problem (or Cauchy problem) associated 
with the differential equation 

V t E [0, T], x'(t) = f(x(t)) 

satisfying the initial condition x(O) = xo. 

{1.1) 

Definition 1.1.2 {Viability & Invariance Properties) Let K be 
a subset ofO. We shall say that K is locally viable under f (or enjoys 
the local viability property for the map f} if for any initial state xo 
of K, there exist T > 0 and a viable solution on [0, T] to differential 

3 or even, a normed space. 
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equation {1.1} starting at xo. It is said to be (globally) viable under 
f (or to enjoy the global viability property or, simply, the viability 
property) if we can always take T = oo. 

The subset K is said to be invariant under f (or enjoy the in
variance property) if for any initial state xo of K, all solutions to 
differential equation ( 1.1) (a priori defined on n) are viable in K. 

Remark - We should emphasize that the concept of invari
ance depends upon the behavior of f on the domain 0 outside K. 
But we observe that viability property depends only on the behavior 
off on K. D 

So, the viability property requires only the existence of at least 
one viable solution whereas the invariance property demands that all 
solutions are viable. 

We shall begin by characterizing the subsets K which are viable 
under f. The idea is simple, intuitive and makes good sense: A 
subset K is viable under f if at each state x of K, the velocity f ( x) 
is ''tangent" to K at x, so to speak, for bringing back a solution to 
the differential equation inside K. 

But we do not want to restrict ourselves to the case of smooth 
domains (i.e., differential manifolds) only for the pleasure of obtain
ing a vector space of tangent directions or to conform to tradition. 
There are many reasons for this, the first one being that simple oper
ations on subsets - such as the intersection of manifolds - destroy 
their smoothness. Since we shall perform operations on viability sub
sets, we have to dispense with this requirement and look for other 
ways of implementing the idea of tangency to any subset. In eco
nomics and ecology, for instance, viability subsets are defined by a 
family of equality or inequality constraints. They are not differential 
manifolds. The best we can hope for is that they are convex, which 
happens, for instance, when the constraints are linear. 

Naturally, by trying to define adequate concepts of tangency to 
nonsmooth subsets, we expect to lose some nice properties of the 
tangent space, and, among them, the fact that tangent spaces are 
vector spaces. The price to pay is then to deal with closed cones 
instead. Actually, under some regularity conditions, we shall do even 
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better, and obtain, closed conve:tl cones. 
We shall postpone the study of tangent cones to Chapter 5, when 

we will need them, after having provided a strong justification of their 
usefulness. An exhaustive presentation can be found in Chapter 4 of 
SET-VALUED ANALYSIS. 

Meanwhile, we shall just provide the definition of the contingent 
cone, introduced by Bouligand in the early thirties, with which we 
shall characterize the viability property by following our intuitive 
idea. 

Definition 1.1.3 Let X be a norrned space, K be a nonempty subset 
of X and x belong to K. The contingent cone to K at x is the set 

T ( ) { X I l. . f dK(X + hv) o} 
K X = V E 1mm h = 

h->0+ 

where dK(Y) denotes the distance of y to K, defined by 

dK(Y) := inf IIY- zll 
zEK 

In other words, v belongs to TK ( x) if and only if there exist a sequence 
of hn > 0 converging to 0+ and a sequence of Vn E X converging to 
v such that 

v n ~ 0, X+ hnVn E K 

We see easily that 

V x E lnt(K), TK(x) =X (1.2) 

Therefore, when K is open, the contingent cone to K at any point 
x E K is always equal to the whole space. The converse is not true. 

We also observe that when K is a differential manifold, the con
tingent cone TK(x) coincides with the tangent space to Kat x, and 
we shall check later that when K is convex, it coincides with the tan
gent cone of convex analysis. The lemma below shows right away why 
these cones will play a crucial role: they appear naturally whenever 
we wish to differentiate viable functions. 

4 In this case, we will be able to use duality, by associating biunivocally polar 
cones to closed convex cones, and use the bipolar Theorem (Theorem 2.3.3.) 
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Lemma 1.1.4 Let x( ·) be a differentiable viable function from [0, T] 
to K. Then 

V t E [0, T[, x'(t) E TK(x(t)) 

Definition 1.1.5 (Viability Domain) Let K be a subset ofO. We 
shall say that K is a viability domain of the map f : n r-+ X if 

V x E K, f(x) E TK(x) (1.3) 

Example - We first give the simple example of finite dimen
sional vector-spaces which are viability domains of linear operators. 

Definition 1.1.6 Let A be a linear operator from a finite dimen
sional vector-space X to itself. We shall say that a finite dimensional 
vector-subspace K is invariant under A if 

A(K) c K 

The following statement is naturally obvious. 

Proposition 1.1. 7 Let us consider a linear operator A from a fi
nite dimensional vector-space X to itself, elements b, c E X and a 
subspace K of X. 
The affine space K + c is a viability domain of the affine operator 
x ---t Ax + b if and only if 

K is invariant under A 

Ac+b E K D 

1.2 Nagumo Theorem 

Nag•1mo was the first one to prove the viability theorem for ordi
nary differential equations in 1942. This theorem was apparently 
[c,cgotten, for it was rediscovered many times during the next twenty 
yc'1rs5. 

, 5This does not prove that the statement is true ... 
• 
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Theorem 1.2.1 (Nagumo) Let us assume that 

{ i) K is locally compact 
ii) f is continuous from K to X 

(1.4) 

Then K is locally viable under f if and only if K is a viability domain 
of f. 

Since the contingent cone to an open subset is equal to the whole 
space (see (1.2)), an open subset is a viability domain of any map. So, 
it enjoys the viability property because any open subset of a finite 
dimensional vector-space is locally compact. The Peano existence 
theorem is then a consequence of Theorem 1.2.1. 

Theorem 1.2.2 (Peano) Let n be an open subset of a finite di
mensional vector-space X and f : n f--+ X be a continuous map. 

Then, for every xo E n, there exists T > 0 such that differential 
equation ( 1.1) has a solution on the interval [0, T] starting at xo. 

The interesting case from the viability point of view is the one 
when the viability subset is closed. In this case, we derive from 
Theorem 1.2.1 a more precise statement. 

Theorem 1.2.3 (Viability) Let us consider a closed subset K of 
a finite dimensional vector-space X and a continuous map f from 
K to X. 

If K is a viability domain, then for every initial state xo E K, 
there exist a positive T and a viable solution on [0, T] to differential 
equation ( 1.1) starting at xo such that 

{ either T = oo 
or T < oo and lim supt--+T- llx(t) II = oo (l.S) 

Further adequate information - a priori estimates on the growth 
off- allows us to exclude the case when limsupt--+r-llx(t)ll = oo . 

This is the case for instance when f is bounded on K, and, in 
particular, when K is bounded. 

More generally, we can take T = oo when f enjoys linear growth: 
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Theorem 1.2.4 Let us consider a subset K of a finite dimensional 
vector-space X and a map f from K to X. We assume that the map 
f is continuous from K to X, that 

:3 c > 0 such that \f x E K, llf(x)ll < c(llxll + 1) 

and that 
K is a closed viability domain of f 

Then K is viable under f: for every initial state xo E K, there 
exists a viable solution on [0, oo] to differential equation (1.1} starting 
at x0 . 

We shall prove only Theorem 1.2.1. The proofs of the other 
theorems are classical and are the same as the ones for analogous 
statements for differential inclusions (see Chapter 3). 

Proof of Theorem 1.2.1 

a) Necessary Condition 
Let us consider a viable solution x( ·) to differential equation ( 1.1.) 

It is easy to check that f(xo) = x'(O) belongs to the contingent cone 
TK(xo) because x(h) belongs to K and consequently, the inequality 

dK(xo + hf(xo))/h :S llx(O) + hx'(O)- x(h)ll/h 

implies that 
lim dK(xo + hf(xo))/h 0 

h-->0+ 

Hence K is a viability domain. 

b) Sufficient Condition 
As quite often happens in analysis, the existence proof can be 

split into three steps. We begin by constructing approximate solu
tions by modifying Euler's method to take into account the viability 
constraints, we then deduce from available estimates that a subse
quence of these solutions converges uniformly to a limit, and finally 
check that this limit is a viable solution to differential equation ( 1.1.) 
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1. - Construction of Approximate Solutions 
Since K is locally compact, there exists r > 0 such that the ball 

BK(xo, r) := K n (xo + rB) is compact. When Cis a subset, we set 

IICII := sup llvll 
vEC 

and 

Ko := BK(xo, r), C := B(f(Ko), 1), T := r/IICII 

We observe that C is bounded since Ko is compact. We begin by 
proving 

Lemma 1.2.5 For any integer m, there exists Om E]O, 1/m[ such 
that for all x E Ko, there exist h E [Om, 1/m] and u E X satisfying 

{ 
i) 
. ") 
~~-) 
1/l/l 

uEC 
x+hu E K 
(x, u) E B(Graph(f), 1/m) 

Proof of Lemma 1.2.5 - Since K is a viability domain of f, 
we know that for all y E K, f (y) belongs to TK (y). By definition of 
the contingent cone, there exists hy E]O, 1/m[ such that 

We introduce the subsets 

N(y) := {x E K I dK(x + hyf(y)) < hy/2m} 

These subsets are obviously open. Since y belongs to N(y), there 
exists T}y E]O, 1/m[ such that B(y, TJy) c N(y). The compactness of 
K0 implies that it can be covered by q such balls B(yj,TJj), j = 
1, ... ,q. We set 

Om := min hy· > 0 
j=l, ... ,q J 

Let us choose any x E Ko. Since it belongs to one of the balls 
B(yj, TJj) c N(yj), there exists Zj E K such that 

llx + hyJ(yj)- Zjll/hyi 

:S dK(x + hyJ(yj))/hyi + 1/2m :S 1/m. 
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Let us set Uj := z~~x. We see that llx - Yj II ~ 'r/j ~ 1/m, that 

x + hyjUj = Zj E K and that lluj- f(yj)ll ~ 1/m. Therefore, 

(x, Uj) E B((yj, f(yj)), 1/m) C B(Graph(f), 1/m) 

and Uj E B(f(Ko), 1/m) C C. The Lemma ensues. D 

We can now construct by induction a sequence of positive num

bers hj E]Om, 1/m[ and a sequence of elements Xj E Ko and Uj E C 
such that 

(xj,uj) E B(Graph(f), 1/m) 

. 1 
so long as ~i:::o hi ~ T. 

Indeed, the elements Xj belong to Ko, since 

Since the hj 's are larger than or equal to ()m > 0, there exists J such 
that 

h1 + · · · + h1-1 ~ T ~ h1 + · · · + h1 

We introduce the nodes T/n := ho + · · · + hj_ 1 ,j = 1, ... , J + 1 and 
we interpolate the sequence of elements Xj at the nodes T/n by the 
piecewise linear functions Xm ( t) defined on each interval [T/n, T/n+1 [ 

by 
\:j t E [Th, Th+1 [, Xm(t) := Xj + (t- Th)uj 

We observe that this sequence satisfies the following estimates 

\:j t E [0, T], Xm(t) E co(Ko) 
(1.6) 

V t E [0, T], llx~(t)ll ~ IICII 

Let us fix t E h?P T/n+1 [. Since llxm(t)-xm(T/n)ll = hjllujll ~ IICII/m, 
and since (xj,Uj) belongs to B(Graph(f), 1/m) by Lemma 1.2.5, we 
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deduce that these functions are approximate solutions in the sense 
that 

{ 
i) 

ii) V t E [0, T], (xm(t), x~(t)) E B(Graph(f), em) 

V t E [0, T], xm(t) E B(Ko, em) 
(1.7) 

where em:= (IICII + 1)/m converges to 0. 

2. Convergence of the Approximate Solutions 
Estimates (1.6) imply that for all t E [0, T], the sequence Xm(t) 

remains in the compact subset co(Ko)6 and that the sequence xm(·) is 
equicontinuous, because the derivatives x~ ( ·) are bounded. We then 
deduce from Ascoli's Theorem 7 that it remains in a compact subset 
of the Banach space C(O, T; X), and thus, that a subsequence (again 
denoted) xm(·) converges uniformly to some function x(·). Further
more, the sequence x~(-) also converges to x'(·) because x~(t) 
f(xm(t)) and f is uniformly continuous on the compact co(Ko). 

3. The Limit is a Solution 
Condition (1. 7)i) implies that 

VtE[O,T], x(t)EKo 

6 The {closed) convex hull of a subset is the intersection of the (closed) convex 
subsets which contain it. The convex hull of a compact subset is also compact. 

7 Let us recall that a subset 'H of continuous functions of C(O, T; X) is equicon
tinuous if and only if 

V t E [0, T], V E > 0, 3 71 := 77('H, t, 71) IV s E [t-77, t+77], sup llx(t)-x(s)ll S E 
x(·)E?i 

Locally Lipschitz functions with the same Lipschitz constant form an equicontin
uous set of functions. In particular, a subset of differentiable functions satisfying 

is equicontinuous. 

sup llx'(t)ll S c < +oo 
tE[O,T] 

Ascoli's Theorem states that a subset 'H of functions is relatively compact in 
C(O, T; X) if and only if it is equicontinuous and satisfies 

V t E [0, T], 'H(t) := {x(t)}x(·)E?t is compact. 
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i.e., that x(·) is viable. 
Since f is uniformly continuous on Ko, then for all c > 0, there 

exists 'f/ E]O, c[ such that 

llf(x)- f(y)ll :::; c whenever llx- Yll :::; rJ 

Since the sequence Xm(-) converges uniformly to x(·) and since prop
erty (1. 7)ii) holds true, we deduce that for large m and for all t E 

[0, T], there exists u~ EX such that 

{ 
llx~(t)- f(x(t))ll 
:::; llx~(t)- f(u~)ll + llf(u~)- f(xm(t))ll + llf(xm(t))- f(x(t))ll 
:::; 3c 

so that 

\\xm(t)- xo- lot f(x(s))ds\\ :::; lot llx~(s)- f(x(s))llds < 3ct 

By letting m go to oo, these inequalities imply that 

V t E [0, T], x(t) = xo +lot f(x(s))ds 

Hence the limit x(·) is a solution to differential equation (1.1), and 

thus, K enjoys the viability property. D 

1.3 Numerical Schemes 

A natural approximation scheme for approximating viable solutions 
to differential equations is the projected explicit difference scheme 

where h > 0 is fixed and where 7rK denotes a selection of the projector 
of best approximation IlK defined by 

y E IIK(x) ¢=:=? y E K & IIY- xll = dK(x) 

Let us observe that 7rK satisfies the property 

V z E K, V x EX, ll1rK(x)- zll :::; 2llx- zll 
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because, whenever y E IIK(x), 

IIY- zll :S IIY- xll + llx- zll = dK(x) + llx- zll :S 2llx- zll 

When K is convex, IlK is a Lipschitz single-valued map (with 
Lipschitz constant equal to 1.) 

Projectors of best approximation are instances of quasi-projectors: 

Definition 1.3.1 We shall say that a map rK from X onto K sat
isfying 

V z E K, rK(z) = z 

:3 .X > 0 such that 

V x EX, V z E K, llrK(x)- zll < .XIIx- zll 
is a quasi-projector onto K. 

There are many other examples of quasi-projectors. They enjoy 
the following property: 

Lemma 1.3.2 Let rK be a quasi-projector from X onto K. Then 

llrK(x + hv)- x- hvll :::; (.X+ l)dK(x + hv) so that, for instance, 

w T ( ) 1. . f llrK(x + hv)- x- hvll 0 v V E K X, 1mm h = 
h--.0+ 

We can associate with any quasi-projector a projected explicit dif

ference scheme providing a sequence Xj starting from xo and defined 

by 
(1.8) 

and an approximate viable solution xh(·) which is the piecewise linear 
function interpolating this sequence on the nodes r/,_ := jh defined 

by xh(t) := Xj + (t- jh)(xj+l- Xj)/h on the intervals [jh, (j + l)h[. 

Theorem 1.3.3 Let us consider a continuous map f from a compact 

subset K C X to X such that, for every x E K, f(x) E TK(x), and a 

quasi-projector r K. Then, starting from Xo E K' the solutions to the 
projected explicit difference scheme ( 1. 8) converge to a viable solution 

to differential equation x' = f(x) when h ---> 0+, in the sense that 

a subsequence of the piecewise linear functions Xh which interpolates 

the Xj 'son the nodes jh converges uniformly to a viable solution x(·). 
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This is a corollary of the set-valued version Theorem 10.3.2 of our 
statement. 

Remark- Actually, when f is not continuous, the proof shows 
that the solutions to the projected explicit scheme converge to viable 
solutions so long as property 

V x E K, lim dK(Y + hf(y)) = 0 D (1.9) 
h-->O+,K3y-->x h 

(which is a consequence of the continuity of f) holds true. 

Remark- When the viability domain K off is convex and 
compact, we can derive from the Equilibrium Theorem 3.7.6 below 
that there exists a viable solution to the implicit finite difference 
scheme 

Xj+l = Xj + hf(xj+l) & Xj+l E K 

starting from xo. D 

1.4 Replicator Systems 

We begin by studying the viability property of the probability sim
plex 

sn := {x E R~ I txi = 1} 
t=l 

This is the most important instance of a viability set, because, in 
many problems, it is too difficult to describe the state of the system 
mathematically. We shall provide examples later in this section. 

But for recognizing whether the simplex is the viability domain of 
some differential equation, we need to compute its contingent cones. 

Lemma 1.4.1 The contingent cone Tsn(x) to sn at x E sn is the 
cone of elements v E Rn satisfying 

n 

2: Vi = 0 & Vi ~ 0 whenever Xi = 0 
i=l 

(1.10) 
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We provide a direct proof of this lemma, which is a consequence of the 
calculus of contingent cones. 

Proof - Let us take v E Tsn ( x). There exist sequences hp > 0 
converging to 0 and Vp converging to v such that Yp := x + hpvp belongs to 
sn for any p 2: 0. Then 

so that l::~=l vi = 0. On the other hand, if Xi = 0, then Vp; = Yp; / hp 2: 0, 
so that vi 2: 0. 

Conversely, let us take v satisfying (1.10) and deduce that y := x + hv 

belongs to the simplex for h small enough. First, the sum of the Yi is 
obviously equal to 1. Second, Yi 2: 0, either when Xi = 0 because in this 
case vi is nonnegative, or when Xi > 0, because it is sufficient to take 
h < xdlvil for having Yi 2: 0. Hence y does belong to the simplex. D 

We shall investigate now how to make viable the evolution of a 
system for which we know the growth rates gi(-) of the evolution 
without constraints (also called "specific growth rates"): 

V i = 1, ... , n, x~(t) = xi(t)gi(x(t)) 

There are no reasons8 for the solutions to this system of differen
tial equations to be viable in the probability simplex. 

But we can correct it by subtracting to each initial growth rate the 
common "feedback control u(·)" (also called "global flux" in many 
applications) defined as the weighted mean of the specific growth 
rates 

n 

v X E sn, u(x) := L Xj9j(x) 
j=l 

Indeed, the probability simplex sn is obviously a viability domain of 
the new dynamical system, called replicator system (or system under 

8 By Nagumo's Theorem and Lemma 1.4.1, the functions gi should be contin
uous and satisfy: 

n 

't/ X E Sn, L:x;g;(x) = 0 
i=l 
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constant organization): 

{ 
\f i = 1, ... , n, X~(t) = Xi(t)(gi(x(t))- u(x(t))) 

= Xi(t)(gi(x(t))- LJ=l Xj(t)gj(x(t))) 
{1.11) 

As we shall see at the end of the section, these equations come 
up in many biological models related to the concept of "replicator" 
in the sense of Dawkins, who coined the term. They lead to many 
mathematical problems. 

Remark- There are other methods for correcting a dynamical 
system to make a given closed subset a viability domain. A general 
method consists in projecting the dynamics onto the contingent cone 
(see chapter 10.) Here, we have taken advantage of the particular 
nature of the simplex. D 

An equilibrium a of the replicator system {1.11) is a solution to 
the system 

Vi= 1, ... , n, ai(9i(a)- u(a)) = 0 

(Such an equilibrium does exist, thanks to Equilibrium Theorem 3. 7.6 
below.) These equations imply that either ai = 0 or 9i(a) = u(a) or 
both, and that 9io (a) = u( a) holds true for at least one io. We shall 
say that an equilibrium a is nondegenerate if 

vi= 1, ... ,n, 9i(a) = u(a) {1.12) 

Equilibria a which are strongly positive (this means that ai > 0 for 
all i = 1, ... , n) are naturally non degenerate. 

We associate with any a E sn the function Va defined9 on the 
simplex sn by 

n 

Va(x) := II xfi := II xfi 
i=l iEla 

9 The reason why we introduce this function is that a is the unique maximizer 
of Va on the simplex sn. This follows from the concavity of the function cp := log: 
Setting 0 log 0 = 0 log oo = 0, we get 

t Oi log :: = L a; log :: :::; log ( L Xi) :::; log 1 = 0 
i=l a; >0 a; >0 
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where we set 0° := 1 and Ia := {i = 1, ... ,n I ai > 0}. 
Let us denote by 81 the subsimplex of elements x E sn such that 

Xi > 0 if and only if i E J. 

Theorem 1.4.2 Let us consider n continuous growth rates gi. For 
every initial state Xo E Sn, there exists a solution to replicator system 
( 1.11) starting from XQ and which is viable in the subsimplex S1xo . 

The viable solutions satisfy 

n 

V t ~ 0, Lgi(x(t))x~(t) ~ 0 (1.13) 
i=l 

and, whenever a E sn is a nondegenerate equilibrium, 

d n 
dt Va(x(t)) = -Va(x(t)) L(xi(t)- ai)(gi(x(t))- gi(a)) (1.14) 

i=l 

Proof- We first observe that 

v X E S1zo' L Xi(gi(x)- u(x)) = 0 
iEix0 

because, Xi = 0 whenever i fl. lx0 , i.e., whenever xoi = 0. Therefore, 
the subsimplex S1zo is a viability domain of the replicator system 
(1.11.) 

Inequality (1.13) follows from the Cauchy-Schwarz inequality be
cause 

n 

LXigi(x)2 

i=l 

We deduce formula (1.14) from 

{ =
eft Va(x(t)) = LiEI,. a~i Va(x(t))xHt) 

( ( )) x~(t) 
Va X t LiE I a ai x:{t) 

so that 
n n 

L O:i log Xi :::; L O:i log O:i 

i=l i=l 

and thus, V,.(x) :::; V,.(o:) with equality if and only if x = o:. 
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and from 

Then we take into account that o: being a non degenerate equilibrium, 
equation (1.12) implies that 

n 

L(o:i- Xi(t))gi(a) 0 D 
i=l 

Remark - When the specific growth rates are derived from a 
differentiable potential function U by 

'v'i=1, ... ,n, gi(x) 

condition (1.13) implies that 

dU 
\it 2: 0, dt(x(t)) > 0 

because 

dU n 8U n 
dt(x(t)) = ~ oxi (x(t))x~(t) = ~gi(x(t))x~(t) 2: 0 

Therefore the potential function U does not decrease along the viable 
solutions to the replicator system ( 1.11.) 

Furthermore, when this potential function U is homogeneous with 
degree p, Euler's formula implies that 

u(x) = pU(x) 

(because 'Li=l Xi&~; U(x) = pU(x)) so that in this case, the global 
flux u(x(t)) also does not decrease along the viable solutions to the 
replicator system ( 1.11.) 

On the other hand, if we assume that the growth rates - gi are 
"monotone " in the sense that 

n 

\i x, y E sn, L(Xi- Yi)(gi(x)- gi(Y)) < 0 
i=l 
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then inequality (1.14) implies that for any non degenerate equilib
rium a E sn, 

\f t 2: 0, d~a (x(t)) 2: 0 

When g(x) := U'(x) is derived from a concave differentiable potential 
U, it is decreasing so that, for a concave potential, both U(x(·)) and 
Va(x(·)) are not decreasing. D 

Example: Replicator systems for constant growth rates. 
The simplest example is the one where the specific growth rates 

gi(·) = ai are constant. Hence we correct constant growth systems 
x~ = aiXi whose solutions are exponential Xo;ea;t, by the 0-order 
replicator system 

Vi=1, ... ,n, x~(t) 
n 

Xi(t)(ai- L ajXj(t)) 
j=l 

whose solutions are given explicitly by: 

xo;ea;t 
Xi(t) = L:n a t whenever xo; > 0 

j=l xoje J 

(and Xi(t) = 0 whenever xo; = 0.) 
Furthermore, the functions L:i=l aiXi ( ·) are increasing and con

verge to a defined by 

where Ja := {i = 1, ... ,n, I ai := maxj=l, ... ,naj}· Indeed, set 
ao := maxj=l, ... ,n aj; the above claim follows obviously from formula 

Observe that the limit points of the viable solutions achieve the max
imum of the function X ----+ I:i=l aiXi on sn' since any a E sJa 
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achieves the maximum of this linear functional10 . Observe also that 

the elements a E SJa are equilibria of the 0-order replicator sys

tem. Actually, the equilibria of the 0-order replicator system are the 

elements of the each subsimplex sLk where Lk := {j I aj = ak}11 . 

When n = 2, after setting x(·) := x1(·) and r := a1 - a2, we 

obtain the celebrated Verhust-Pearl's logistic equation 

V t 2: 0, x'(t) = rx(t)(1- x(t)) 

the solutions of which are the logistic curves (the S-curves) 

1 
x(t) := -bt 

1 + ce 

The logistic equation played an important role in population dy

namics. In the simplest case, assume that the growth rate of an or

ganism is constant whenever there are no constraints on the resources 

needed for growth. This is no longer valid when the resources are 

limited for whatever reason. This fact is translated by saying that 

the growth rate becomes negative for large populations: the larger 

the population, the more severe the inhibition on further growth. 

The simplest growth rate fitting these requirements is the function 

r(1- x), so that the evolution of the population obeys the logistic 

equation. D 

10Since ao := maxj=l, ... ,n aj, we deduce that 

{ 
~~=l a;~a;- x;) = ~iEJa a;(a; -_x;)- L;vtJ~a;(a;- x;) 

- ao(l LiEJa x,) L;oa a,x,- L;EJa(ao a,)x,::;. 0 

for any i = 1, ... , n. 

n 

a;(a; -2:.:::: aiai) = 0 
j=l 
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Example: Replicator systems for linear growth rates. 
The next class of examples is provided by linear growth rates 

n 

\;/ i = 1, ... , n, gi(x) := L aijXj 
j=l 

Let A denote the matrix the entries of which are the above aij 's. 
Hence the global flux can be written 

n 

\;/X E sn, u(x) = L aklXkXl = < Ax,x > 
k,l=l 

Therefore, first order replica tor systems can be written12 . 

n n 

\;/ i = 1, ... , n, x~(t) = Xi(t)(L aijXj(t)- L aklXk(t)xl(t)) 
j=l k,l=l 

Such systems have been investigated independently in 
population genetics (allele frequencies in a gene pool) 
theory of prebiotic evolution of self replicating polymers 

(concentrations of polynucleotides in a dialysis reactor) 
sociobiological studies of evolutionary stable traits of an

imal behavior (distributions of behavioral phenotypes in a given 
species) 

population ecology (densities of interacting species) 
In population genetics, Fisher- Wright-Haldane's model regards 

the state X E Sn as the frequencies of alleles in a gene pool and 
the matrix A:= (aij)i,j=l, ... ,n as the fitness matrix, where aij repre
sents the fitness of the genotype (i,j). In this case, the matrix A is 
obviously symmetric and we denote by 

u(x) :=<Ax, X> the average fitness 

Since the growth rate can be derived from the potential U(x) .
u(x)/2, we conclude that whenever A is positive-definite, the average 
adaptability does not decrease13 along viable solutions. 

120bserve that if for each i, all the Uij are equal to bi, we find 0-order replicator 
systems 

13This property is known as the fundamental theorem of natural selection in 
population genetics. 
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In the theory of prebiotic evolution, the state represents the con
centrations of polynucleotides. It is assumed in Eigen-Schuster's 

"hypercycle" that the growth rate of the ith_polynucleotide is pro
portional to the concentration of the preceding one: 

Vi= 1, ... , n, 9i(x) = CiXi-1 where X-1 := Xn 

In other words, the growth of polynucleotide i is catalyzed by its 
predecessor by Michaelis-Menten type chemical reactions. 

The feedback u(x) = I:i=1 CiXiXi-1 can be regarded as a selective 
pressure to maintain the concentration. 

The equilibrium o: of such a system is equal to 

1 n 1 ( ) 

-1 

V i = 1, ... , n, O:i = -- L - where 
Ci+l j=1 Cj 

First order replicator systems also offer a quite interesting model 
of dynamic game theory proposed in 1974 by J. Maynard-Smith to 

explain the evolution of genetically programmed behaviors of indi
viduals of an animal species. 

We denote by i = 1, ... , n then possible "strategies" used in in

terindividual competition in the species and denote by aij the "gain" 
when strategy i is played against strategy j. The state of the sys

tem is described by the "mixed strategies" X E Sn, which are the 

probabilities with which the strategies are implemented. Hence the 

growth rate 9i(x) := I:j=1 aijXj is the gain obtained by playing strat
egy i against the mixed strategy x and u(x) := I:f,j=1 aijXiXj can be 
interpreted as the average gain . 

So the growth rate of the strategy i in the replicator system is 
equal to the difference between the gain of i and the average gain (a 
behavior which had been proposed in 1978 by Taylor and Jonker.) 

We shall say that an equilibrium o: is evolutionary stable if and 
only if the property 

n 

3 TJ > 0 such that xi= o:, L9i(x)(o:i- xi)> 0 
i=1 

holds true in a neighborhood of o:. 
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This implies that 

d n 
dt Va(x(t)) = -Va(x(t)) t;(xi(t)- ai)(gi(x(t))- gi(a)) > 0 

in a neighborhood of a. 
It is interesting to observe that first order replicator systems can 

be used at the two extremes of biological evolution, prebiotic evo
lution at the molecular level and behavioral evolution in ethology 
(animal behavior.) 

In ecology, the main models are elaborations of the Latka- Volterra 
equations 

\i i = 1, ... , n, x~(t) = Xi(t) (aiO + t aijXj(t)) 
J=l 

where the growth rate of each species depend in an affine way upon 
the number of organisms of the other species. A very simple trans
formation replaces this system by a first order replicator system. We 
compactify R+ by introducing homogeneous coordinates. We set 
xo := 1 and we introduce the map 

x· 
\i i = 0, ... 'n, Yi := r_:n t . 

j=l XJ 

from R+ onto sn+l' the inverse of which is defined by Xi:= yi/yo. 
We set aoj = 0 for all j, so that Lotka-Volterra's equation be

comes 

\i i = 1, ... , n, y: 

because 

This is, up to the multiplication by ..!.. , i.e., up to a modification of 
Yo 

the time scale, a ( n + 1 )-dimensional first order replica tor system. 
So, first-order replicator systems appear as a common denomina

tor underlying these four biological processes. 
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1.5 Stochastic Viability and Invariance 

The aim of this section is to extend to the stochastic case Nagumo's Theo
rem on viability and/or invariance properties of closed subsets with respect 
to a differential equation. 

1.5.1 Stochastic Tangent Sets 

Let us consider a a-complete probability space (0, F, P), an increasing 
family of a-sub-algebras Ft C F and a finite dimensional vector-space X := 
Rn. 

The constraints are defined by closed subsets Kw c X, where the set
valued map 

K:wEO~Kw eX 

is assumed to be Fo-measurable (which can be regarded as a random set
valued variable.) 

We denote by K the subset 

K := {u E L2(0,F,P) I for almost allw En, Uw E Kw} 

For simplicity, we restrict ourselves to scalar Ft-Wiener processes W(t). 

Definition 1.5.1 {Stochastic Contingent Set) Let us consider an Ft
random variable x E K {i.e., an Ft-measurable selection of K.) 

We define the stochastic contingent set TK(t, x) to K at x {with respect 
to Ft) as the set of pairs ('y, v) of Ft-random variables satisfying the fol
lowing property: There exist sequences of hn > 0 converging to 0 and of 
Ft+h.,. -random variables an and bn such that 

and satisfying 

{ 
i) 
. ") 
~~ ") nz 
iv) 

E(llanll2 ) ~ 0 
E(llbnll 2 ) ~ 0 
E(bn) = 0 
bn is independent of Ft 

1.5.2 Stochastic Viability 

We consider the stochastic differential equation 

df. = f(e(t))dt + g(e(t))dW(t) 

where f and g are Lipschitz. 

(1.15) 

(1.17) 
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We say that a stochastic process e(t) defined by 

e(t) = e(o) +lot f(e(s))ds +lot g(e(s))dW(s) (1.18) 

is a solution to the stochastic differential equation (1.17) if the functions f 
and g satisfy: 

for almost allw E 0, f(e(·)) E L 1(0,T;X) & g(e(·)) E L2 (0,T;X) 

Definition 1.5.2 We shall say that a stochastic process x(·) is viable in 
K if and only if 

Vt E [O,T], x(t) E K (1.19) 

i.e., if and only if 

V t E [0, T], for almost all wE 0, ew(t) E Kw 

The random set-valued variable K is said to be (stochastically) invariant 
by the pair (!,g) if every solution e to the stochastic differential equation 
starting at a random variable x E K is viable in K. 

When K is a subset of X (i.e., a constant set-valued random variable} 
and when the maps (!, g) are defined on K, we shall say that K enjoys the 
(stochastic) viability property with respect to the pair (!,g) if for any ran
dom variable X in K' there exists a solution e to the stochastic differential 
equation starting at a x which is viable in K. 

Since Kw and ew(O) are :Fa measurable, the projection IIK..,(ew(O)) is 
also a :Fa-measurable map (see Theorem 8.2.13, p. 317 of SET-VALUED 

ANALYSIS.) Then there exists a :Fa-measurable selection Yw E IIK..,(ew(O)), 
which we call a projection of the random variable e(o) onto the random 
set-valued variable K. 

Theorem 1.5.3 {Stochastic Viability) Let K be a closed convex subset 
of X. Then the following conditions are equivalent: 

1. The subset K enjoys the stochastic viability property with 
respect to the pair (!, g) 

2. for every :Ft -random variable x viable in K, 

(f(x),g(x)) E TK(t,x) (1.20) 

We shall deduce this theorem from more general Theorems 1.5.4 and 
Theorems 1.5.5 below dealing with set-valued random variables instead of 
closed convex subsets. 
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1.5.3 Necessary Conditions 

Let K be a set-valued random variable. 

Theorem 1.5.4 If the random set-valued variable K is invariant by the 
pair (!,g), then for every :Ft-random variable x viable inK, 

(f(x),g(x)) E TK(t,x) (1.21) 

Proof- We consider the viable stochastic process ~(t) 

~(h) = x + 1h f(~(s))ds + 1h g(~(s))dW(s) (1.22) 

which is a solution to the stochastic differential equation ( 1.17) starting at 
x. 

We can write it in the form 

~(t) = ~(0) + hf(~(O)) + g(~(O))W(h) + 1h a(s)ds + 1h b(s)dW(s) 

where 

{ a(s) = 
b(s) 

f(~(s))- f(~(O)) 
g(~(s)) - g(~(O)) 

converge to 0 with s. 
We set 

llt+h 
ah := h t a(s)ds 

and 
1 1t+h 

bh := Jh t b(s)dW(s) 

and we observe that 

{ 
E (iiahin = ~E (llftt+h a(s)dsll

2
) 

:::; t ftt+hE (11(a(s)ll 2)) ds 

converges to 0 because E (IIJ; rp(s)dsll 2
) :::; t J; E(llrp(s)ll 2)ds. 

In the same way, 

{ 
E (llbhln = kE (IIItt+h b(s)dW(s)ll 2

) 

= i ftt+h E (llb(s)ll 2 ) ds 
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also converges to 0 because E (III~ rp(s)dW(s)ll 2
) =I~ E(jjrp(s)ll 2 )ds. 

The expectation of bh is obviously equal to 0 and bh is independent of 
:Ft. Since ~(h)w belongs to Kw for almost all w, we deduce that the pair 
(f(x),g(x)) belongs to TK(t,x). 0 

1.5.4 Sufficient Conditions for Stochastic lnvariance 

Theorem 1.5.5 (Stochastic Invariance) Assume that the set-valued ran
dom variable K satisfies the following property: for every :Ft-random vari
able x, there exists an :Ft- measurable projection y E IIK(x) such that 

(f(x),g(x)) E TK(t,y) (1.23) 

Then the set-valued random variable K is invariant by (!,g) 

Remark - Observe that the sufficient condition of invariance re
quires the verification of the "stochastic tangential condition" (1.23) for 
every stochastic process y, including stochastic processes which are not 
viable in K. 0 

In order to prove Theorem 1.5.5, we need the following: 

Lemma 1.5.6 Let K be a random set-valued variable, ~(0) a :Fa-adapted 
stochastic process. 

We define 

~(t) = ~(0) + 1t f(~(s))ds + 1t g(~(s))dW(s) 

and we choose a :Fa- measurable projection y E IIK(~(O)). 
Then, for any pair of :Fa-random variable ("y, v) in the stochastic con

tingent set TK(O, y), the following estimate 

{ 
lim inftn _,a (E( dk(~( tn)) - E( dk(~(O))) /tn 

:S 2E ( (~(0)- y, f(~(O)) -1)) + E(jjg(~(O))- vll 2 ) 

holds true. 

Proof- Let us set x = ~(0), choose a projection y E IIK(x) and take 
("y, v) in the stochastic contingent set TK(O, y). This means that there exist 
sequences tn > 0 converging to 0 and :Ftn -measurable an and bn satisfying 
the assumptions (1.15) and 
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Therefore 

cf!K(e(tn))- dk(e(o)) < 

llx + J~n J(e(s))ds + J~n g(e(s))dW(s)- y- vW(tn)- "(tn- tnan- y'tnbnll 2 

-llx- Yll 2 

= ll(x- y) + J~n(f(e(s))- "f)ds + J~n(g(e(s))- v)dW(s)- tnan- y'tnbnll 2 

-llx- Yll 2 

=: I 

The latter term can be split in the following way: 

I = 2 < x- y, J~n (g(e(s))- v)dW(s) > h 

+ 2 < x- y, J~n(f(e(s))- "f)ds > h 

+II J~n(g(e(s))- v)dW(s))ll 2 I3 

+II J~n(f(e(s))- 'Y)dsll 2 I4 

+2 (J~n(g(e(s))- v)dW(s), J~n(f(e(s))- "f)ds) I5 

-2 ( x- y + J~n(f(e(s))- "f)ds + J~n(g(e(s))- v)dW(s), tnan) h 

-2 ( x- y + J~n(f(e(s))- "f)ds + J~n(g(e(s))- v)dW(s), y'tnbn) h 

Is 

We take the expectation in both sides of this inequality and estimate 
each term of the right hand-side. First, we observe that 

so that the expectation of the first term I 1 of the right-hand side of the 
above inequality vanishes. 

The second term I 2 is estimated by 2tnan where 

an := E ( \x- y, t~ 1tn (f(e(s))- "f)ds)) 
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converges to 
a := E ( (x- y, !(e(o)) - 'Y)) 

The third term !3 is estimated by tnf3n where 

converges to 

{ 
f3n := t~ E (11 I~"(g(e(s))- v)dW(s))ll2 ) 

= t~ I~" E (llg(e(s))- vll 2) ds 

f3 := E(llg(e(o)) - vll 2) 
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because E (III~ cp(s)dW(s)ll 2
) = I~ E(llcp(s)ll2)ds. The fourth term !4 is 

easily estimated by tn6n where 

{ 
6n := t~ E (11 I~"(J(e(s))- 'Y)dsll 2) 

~ I~" E (11/(e(s))- 'YII 2 ) ds ~ ctn 

because E (III~ cp(s)dsll 2
) ~ t I~ E(llcp(s)ll2)ds. 

By the Cauchy-Schwarz inequality, the term 15 is estimated by 2tn1Jn 
where 

1Jn := t~ E ( (I~" (g(e(s)) - v )dW(s ), I~" (J(e(s)) - 'Y)ds)) 

~ t~ E(ll I~"(g(e(s))- v)dW(s)II 2 ) 112E(II I~"(J(e(s))- 'Y)dsll2 ) 112 

.l 
~ ct~ 

We now estimate the three latter terms involving the errors an and bn. 
We begin with 16 • First, 

which converges to 0 by assumption (1.15)i). 
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Now, the Cauchy-Schwarz inequality implies that 

{ 

E((J~n(f(e(s))-'Y)ds,an)) 

:::; E (IIJ~n(f(e(s))- 'Y)dsll 2)! E (llanll 2)! 

Finally, the stochastic term is estimated in the following way: 

E ( (J~n(g(e(s))- v)dW(s),an)) 

1 

:::; E (IIJ~n(g(e(s))- v)dW(s)ll 2
) 

2 E (llanll 2)! 

which obviously converges to 0. 
We continue with h. We have 

since bn is independent of x- y and E(bn) = 0. 
The Cauchy-Schwarz inequality implies that 

E ( (J~n(f(e(s))- 'Y)ds, ~bn)) 

1 

:::; E (IIJ~n (f(e(s))- 'Y)dsll 2
) 

2 E (11 ~bnll 2)! 

Finally, the worst term of 17 is estimated in the following way: 

E ( (J~n(g(e(s))- v)dW(s), *bn)) 

< ~ E (IIJ~n(g(e(s))- v)dW(s)ll 2
) JE (llbnll 2 ) 
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which converges to 0 by assumption (1.15)ii). 
It remains to estimate the last term of ! 8 . There is no difficulty because 

converges to 0. 
Putting everything together, we deduce the inequality of the lemma. 

D 

Proof of Theorem 1.5.5 Since the solution to the stochastic differ
ential equation can be written for any h 2 0 

J
t+h Jt+h 

~(t +h) = ~(t) + t f(~(s))ds + t g(~(s))dW(s) 

we deduce from Lemma 1.5.6 that 

{ 
liminfh_,O+ (E(dk(~(t +h))- E(dk(~(t)))) /h 

:::; 2E ( (~(t)- y(t), g(~(t)) -')')) + E(jjg(~(t))- vll 2 ) 

for any Ft-measurable selection y(t) of IIK(~(t)) and any (v(t),')'(t)) E 
TK(t, y(t) ). 

Since there exists a selection y(t) of IIK(~(t)) such that we can take 
v(t) := g(~(t)) and 'Y(t) := f(~(t)) by assumption, we infer that setting 

'P(t) E (dk(~(t))) 

the contingent epiderivative 

Dr'P(t)(l) l . . f 'P( t + h) - 'P( t) 
Imm h h---->0+ 

is non positive. 
This implies that 'P(t) :::; 0 for all t E [0, T]. If not, there would exist 

T > 0 such that 'P(T) > 0. Since 'P is continuous, there exists TJ E]O, T[ 
such that 

\:/ t E ]T- TJ, T], 'P(t) > 0 

Let us introduce the subset 

A := {s E [O,T]I Vt E ]s,t], 'P(t) > 0} 

and t0 := inf A. 
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We observe that for any t E]to, T], cp(t) > 0 and that cp(to) = 0. Indeed, 
if cp(t0) > 0, there would exist t1 E ]t11 t0[ such that cp(t) > 0 for all 
t E ]tb to], i.e., t1 E A, so that to would no be an infimum. 

Therefore, Drcp(t)(l) ~ 0 for any t E]t0, T] and thus, we obtain the 
contradiction 

0 < cp(T) = cp(T)- cp(t0) < 0 

Consequently, for every t E [0, T], we have 

Since the integrand is nonnegative, we infer that dK.., (~w(t)) = 0 almost 
surely, i.e., that the stochastic process~ is viable inK. D 

Proof of Theorem 1.5.3 The necessary condition following obviously 
from Theorem 1.5.4, it remains to prove that it is sufficient. For that 
purpose, we extend the maps f and g defined on K by the maps J and g 
defined on the whole space by 

f(x) := f(7rK(x)) & g(x) := g(7rK(x)) 

Then the pair (J, g) satisfies obviously condition 

so that K is invariant by (J, g) thanks to Theorem 1.5.5. Since these maps 
do coincide on K, we infer that K is a viability domain of(!, g). D 


