
Chapter 14 

Differential Games 

Introduction 

We consider two players, Xavier and Yvette, and a differential 
game whose dynamics are described by 

a) { i) x'(t) = f(x(t), y(t), u(t)) 
ii) u(t) E U(x(t), y(t)) 

{ i) y'(t) = g(x(t), y(t), v(t)) 
b) ii) v(t) E V(x(t), y(t)) 

where u, v, the controls, are regarded as strategies used by the players 
to govern the evolution of the states x, y of the game. 

The rules of the game are set-valued maps P : Y ~ X and 
Q : X ~ Y, describing the constraints imposed by one player on the 
other. They replace the traditional intertemporal optimality and/ or 
end-point criteria used in differential games. 

The playability domain of the game K c X x Y is defined by: 

K := {(x,y)EXxY I xEP(y) and yEQ(x)} 

(We consider only the time-independent case for the sake of simplic­
ity). We single out the following properties: 

The playability property: it states that for any initial 
state (xo, yo) E K, there exists a solution to the differential game 
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452 14- Differential Games 

which is playable in the sense that 

"i/ t 2: 0, x(t) E P(y(t)) & y(t) E Q(x(t)) 

Xavier's discriminating property: It states that for 
any initial state (xo, Yo) E K and for any continuous closed loop 
strategy ii(·, ·) played by Yvette, there exists a playable solution to 
the differential game. 

Xavier's leading property: It states that there exists 
a continuous closed loop strategy u(·, ·) played by Xavier such that 
for any initial state (xo, Yo) E K, there exists a playable solution to 
the differential game. 

Our first task is to characterize the rules satisfying such prop­
erties as somewhat generalized solutions to Isaacs equations. Since 
the rules are set-valued maps and not functions, we may character­
ize them by the indicators 'l1 p and 'l1 Q of their graphs, defined by 
'llp(x, y) := 0 when x E P(y) and Wp(x, y) := +oo when x ~ P(y). 
But these functions, which are only lower semicontinuous (when the 
graphs are closed) are not differentiable in the usual sense. Hence 
we must replace the concept of derivative by the one of contingent 
epiderivative in the Isaacs equations. 

This being done, we shall interpret the solutions to contingent 
Isaacs equations in game theoretical terms and characterize the above 
properties of the rules P and Q by checking whether the function 
max('l!p, WQ) is a solution to the corresponding contingent Isaacs 
equation. 

We focus our attention in the second section to the playability 
property. 

We shall characterize it by constructing retroaction rules 

(x,y,v) '"'-+ C(x,y;v) & (x,y,u) '"'-+ D(x,y;u) 

which involve the contingent derivatives of the set-valued maps P 
and Q, with which we build the regulation map R mapping each 
(x, y) E K to the regulation set 

R(x,y) = {(u,v)luEC(x,y;v) and vED(x,y;u)} 

The strategies belonging to R(x, y) are called playable. 
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The Playability Theorem states that under technical assump­
tions, the playability property holds true if and only if 

V (x,y) E K, R(x,y) f= 0 

and that playable solutions to the game are regulated by the regula­
tion law: 

V t ~ 0, u(t) E C(x(t), y(t); v(t)) & v(t) E D(x(t), y(t); u(t)) 

We then deal in the third section with the construction of single­
valued playable feedbacks ( u, ii), such that the differential system 

{ 
x'(t) = f(x(t), y(t), u(x(t), y(t)) 

y'(t) - g(x(t), y(t), ii(x(t), y(t)) 

has playable solutions for each initial state. By the Playability The­
orem, they must be selections of the regulation map R in the sense 
that 

V (x, y) E K, (x, y) f-t (u(x, y), ii(x, y)) E R(x, y) 

We shall prove the existence of such continuous single-valued 
playable feedbacks, as well as more constructive, but discontinuous, 
playable feedbacks, such as the feedbacks associating the strategies 
of R(x, y) with minimal norm (the playable slow feedbacks, as in 
Chapter 6). More generally, we shall show the existence of feed­
backs (possibly set-valued) associating with any (x, y) E K the set 
of strategies (u, v) E R(x, y) which are solutions to a (static) opti­
mization problem of the form: 

(u,v) E R(x,y) I a(x,y;u,v) ~ inf a(x,y;u',v') 
u',v'ER(x,y) 

or solutions to a noncooperative game of the form: 

V(u',v') E R(x,y), a(x,y;u,v') ~ a(x,y;u,v) ~ a(x,y;u',v) 

In other words, 
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the players can implement playable solutions to the differential 

game by playing for each state (x, y) E K a static game on the 

strategies of the regulation subset R( x, y). 

We also consider in the fourth section the issue of finding dis­

criminating feedbacks by providing for instance sufficient conditions 
implying that for all continuous feedback v(x, y) E V(x, y) played 
by Yvette, Xavier can find a feedback (continuous or of minimal 

norm) u(x, y) such that the differential equation above has playable 
solutions for each initial state. 

We address the question of whether Xavier has a leading role, 
i.e., the problem of constructing continuous pure feedbacks u(x, y) 

which have the property of yielding playable solutions to the above 

differential game whatever the strategy played by Yvette. 

The last section is devoted to closed loop decision rules, which op­

erate on the velocities of the strategies (regarded as decisions) rather 
than on the controls. We need to provide first regulation maps which 
yield absolutely continuous strategies which are then almost every­
where differentiable. We distinguish among them the ones which 
guarantee or which allow victory or defeat of players adequately de­
fined. The indicator functions of their graphs are characterized as 

solutions of contingent partial differential inequalities. We apply 
analogous selection procedures which yield closed loop decision rules 
allowing, say, a game to remain stable. 

14.1 Contingent Isaacs Equations 

Let us consider two players, Xavier and Yvette. Xavier acts on a 
state space X and Yvette on a state spaceY. For doing so, they have 
access to some knowledge about the global state (x, y) of the system 
and are allowed to choose strategies u in a global state-dependent set 
U(x, y) and v in a global state-dependent set V(x, y) respectively. 

But Xavier does not know Yvette's choice of controls v nor is 
Yvette assumed to know Xavier's controls. 

Their actions on the state of the system are governed by the 
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system of differential inclusions: 

a) { i) x'(t) f(x(t), y(t), u(t)) 
ii) u(t) E U(x(t), y(t)) 

(14.1) 

b) { i) y'(t) g(x(t), y(t), v(t)) 
ii) v(t) E V(x(t), y(t)) 

We now describe the influences (power relations) that Xavier ex­
erts on Yvette and vice versa through rules of the game. They are 
set-valued maps P: Y ~X and Q: X~ Y which are interpreted 
in the following way. When the state of Yvette is y, Xavier's choice 
is constrained to belong to P(y). In a symmetric way, the set-valued 
map Q assigns to each state x the set Q(x) of states y that Yvette 
can implement1 . 

Hence, the playability subset of the game is the subset K C X x Y 
defined by: 

K := { (x, y) EX x Y I x E P(y) and y E Q(x) } (14.2) 

Naturally, we must begin by providing sufficient conditions im­
plying that the playability subset is nonempty. Since the playabil­
ity subset is the subset of fixed-points (x, y) of the set-valued map 
(x, y) ~ P(y) x Q(x), we can use one of the many fixed point theo­
rems to answer these types of questions2 . 

From now on, we shall assume that the playability subset associ­
ated with the rules P and Q is not empty. 

We can reformulate this differential game in a more compact 
form, by denoting 

• by z := (x, y) E Z :=X x Y the global state, 

• by h(z, u, v) := (f(x, y, u, v ), g(x, y, u, v)) the values of the map 
h: Rn x RP x Rq ---t Rn describing the dynamics of the game, 

1 We can extend the results below to the time-dependent case using the meth­
ods of Chapter 11. 

2 For instance, Kakutani's Fixed Point Theorem 3. 7. 7 furnishes such conditions: 
Let L C X and M C Y be compact convex subsets and P : M "-' L and Q : L "-' 
M be closed maps with nonempty convex images. Then the playability subset is 
not empty. 
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• by L := Graph(P) Xavier's closed domain of definition, 

• by M := Graph(Q-1) Yvette's one and by K := L n M the 
playability subset. 

We shall also identify the set-valued maps U and V with their 
restrictions to L and M respectively by setting U(z) := 0 whenever 
z ~Land V(z) := 0 when z ~ M. 

Hence the differential game can be written in the compact form 

{ 
i) 
. ") 
~~i) 

z'(t) = h(z(t), u(t), v(t)) 
u(t) E U(z(t)) 
v(t) E V(z(t)) 

(14.3) 

We denote by S(zo) the subset of solutions z(·) to (14.3) starting at 
zo. 

Let us associate with this differential game the following four 
Hamilton-Jacobi-lsaacs partial differential equations: 

i) infuEU(z) infvEV(z) d~~z) · h(z, u, V) = 0 

ii) SUPuEU(z) SUPvEV(z) d~~z) · h(z, u, v) = 0 

,;,;,;) . f d<l>(z) h( ) ... SUPvEV(z) m uEU(z) dz . z, u, v 0 

· ) · f d<l>(z) h( ) 0 zv m uEU(z) SUPvEV(z) dz . z, u, v = 

We would like to study the properties of the solutions to these 
partial differential equations, and in particular, characterize the so­
lutions which are indicators of closed subsets L. Hence we are led to 
weaken the concept of usual derivatives involved in these partial dif­
ferential equations by replacing them by contingent epiderivatives3 . 

3since any extended function <I> : X -+ RU { +oo} has contingent epiderivative, 
and in particular, indicators, for which we have the relation 

Dr'h(z)(v) = WrL(z)(v) := { ~00 if v E TL(z) 
if v f{_ TL(z) 
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Theorem 14.1.1 Let us assume at least that h: Rn xRPxRq---+ Rn 
is continuous, has linear growth, and that the set-valued maps U and 
V are closed with linear growth. 

We assume that all extended functions <I> are nonnegative and 
contingently epidifferentiable4 and that their domains are contained 
in the intersection K of the domains of U and V. 

1 If the values of the set-valued maps U and V are convex 
and if h is affine with respect to the controls, <I> is a solution to the 
contingent inequality 

if and only if 

inf inf Dr<I>(z)(h(z, u, v)) < 0 
uEU(z) vEV(z) 

V z EDam( <I>), :3 z(·) E S(z) IV t 2: 0, <I>(z(t)) ~ <I>(z) 

(14.4) 

2 Assume that h is uniformly Lipschitz with respect to x. 
Then <I> is a solution to the contingent inequality 

if and only if 

sup sup Dr<I>(z)(h(z, u, v)) < 0 
uEU(z) vEV(z) 

V z EDam( <I>), V z(·) E S(z), V t 2: 0, <I>(z(t)) ~ <I>(z) 

(14.5) 

3 Assume that V is lower semicontinuous, that the values 
of U and V are convex and that h is affine with respect to u. Then 
<I> is a solution to the contingent inequality 

sup inf Dr<I>(z)(h(z, u, v)) ~ 0 
vEV(z) uEU(z) 

(14.6) 

if and only if for any continuous closed-loop strategy v(z) E V(z) 
played by Yvette and any initial state z E Dom( <I>), there exists a 
solution z(·) to Xavier's control problem 

{ i) z'(t) = h(z(t), u(t), v(z(t))) 
ii) u(t) E U(z(t)) 

4This means that for all z E Dom(<I>), V vEX, Dr<I>(z)(v) > -oo and that 
Dr<I>(z)(v) < oo for at least one vEX. 
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starting at z and satisfying V t;::: 0, <I>(z(t))::; <I>(z). 
4 Assume that V is lower semicontinuous with convex 

values. Then <I> is a solution to the contingent inequality 

inf sup Dr<I>(z)(h(z, u, v)) ::; 0 
uEU(z) vEV(z) 

(14.7) 

if and only if Xavier can play a closed-loop strategy u(z) E U(z) such 
that, for any continuous closed-loop strategy v(z) E V(z) played by 
Yvette and for any initial state z E Dom( <I>), there exists a solution 
z(·) to 

z'(t) = h(z(t), u(z(t)), v(z(t)) (14.8) 

starting at z and satisfying for all t ;::: 0, <I>(z(t)) < <I>(z). The 
converse is true if 

{ 
Bq,(z) := {u E U(z) such that 
supvEV(z) Dr<I>(z)(h(z, u, v)) 
= infuEU(z) supvEV(z) Dr<I>(z)(h(z, u, v))} 

is lower semicontinuous with closed convex values. 

Proof 
The two first statements are translations of the theo­

rems characterizing Lyapunov and global Lyapunov functions (see 
Chapter 9) applied to the differential inclusion z'(t) E H(z(t)) where 

H(z) := f(z, U(z), V(z)). 

Let us prove the third one. Assume that <I> satisfies the 
stated property. Since V is lower semicontinuous with convex values, 
Michael's Theorem 6.5. 7 implies that for all zo E Dom(V) and vo E 

V(zo), there exists a continuous selection v(·) of V such that v(zo) = 
vo. Then <I> enjoys the Lyapunov property for the set-valued map 
Hv(z) := h(z, U(z), v(z)), and thus, there exists u0 E U(zo) such 
that 

Dr<I>(zo)(h(zo, uo, v(zo))) ::; 0 

Hence <I> is a solution to (14.6). 
Conversely, assume that <I> is a solution to (14.6). Then for any 

closed-loop strategy v, the set-valued map Hv satisfies the assump­

tions of the theorem characterizing Lyapunov functions, so that there 
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exists a solution to the inclusion z' E H:v(z) for any initial state 
z E Dom(<I>) satisfying for all t ~ 0, <I>(z(t)) ~ <I>(z). 

- Consider finally the fourth statement. Assume that Xavier 
can find a continuous closed-loop strategy u such that for any closed­
loop strategy v, <I> enjoys the stated property. Since Vis lower semi­
continuous with convex values, Michael's Theorem implies that for 
all z0 E Dom(V) and v0 E V(zo), there exists a continuous selection 
v(·) of V such that v(zo) = vo. Since for any continuous closed-loop 
strategy v(·), <I> enjoys the Lyapunov property for the single-valued 
map z-+ h(z, u(z), v(z)), we deduce that for all zoE Dom(<I>), there 
exists u := u(z) such that for all v E V(z), Dr<I>(z)(h(x, u, v)) ~ 0, 
so that <I> is a solution to (14.6). 

Conversely, assume that the set-valued map Bif> is lower semicon­
tinuous with closed convex values. Hence Michael's Theorem implies 
that there exists a continuous selection u of Bif>. Then for any contin­
uous closed-loop strategy v(·) E V(·), we deduce from {14.7) that <I> is 
a Lyapunov function for the single-valued map z-+ h(z,u(z),v(z)), 
so that, for all z E Dom(<I>), there exists a solution z(·) to the system 
(14.8) satisfying for all t ~ 0, <I>(z(t)) ~ <I>(z). D 

Let L be a closed subset of the intersection K of the domains of 
U and V. The problem we investigate is of finding that one (or all) 
solution(s) z(·) of the game is (are) viable in L. There are several 
ways to achieve that purpose, according to the cooperative or nonco­
operative behavior of the players. Here, we shall investigate several 
of them. 

Definition 14.1.2 We shall say the a subset L enjoys: 
1 the "playability property" if and only if 

V z E L, 3 z(·) E S(z) IV t ~ 0, z(t) E L 

2 the "winability property" if and only if 

V z E L, V z(-) E S(z), V t ~ 0, z(t) E L 

3 "Xavier's discriminating property" if and only if for 
any continuous closed-loop strategy v(z) E V(z) played by Yvette 
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and any initial state z E L, there exists a solution z ( ·) to X a vier's 

control problem 

{ 
i) z'(t) = h(z(t), u(t), v(z(t))) 
ii) u(t) E U(z(t)) 

starting at z and viable in L. 

4 "Xavier's leading property" if and only if Xavier can 

play a closed-loop strategy u(z) E U(z) such that, for any continuous 

closed-loop strategy v(z) E V(z) played by Yvette and for any initial 

state z E L, there exists a solution z ( ·) to {14. 8) starting at z and 

viable in L. 

We shall characterize these properties: for that purpose we asso­

ciate with L the following set-valued maps: 
The regulation map RL defined by 

V z E L, RL(z) := { (u, v) E U(z) x V(z) I h(z, u, v) E TL(z) } 

Xavier's discriminating map AL defined by 

V z E L, AL(z,v) := { u E U(z) I (u,v) E RL(z)} 

Xavier's leading map BL defined by 

V z E L, BL(z) := n AL(z, v) 
vEV(z) 

Definition 14.1.3 We shall say that 

L is a playability domain if V z E L, RL(z) =/= 0 
Lis a winability domain if V z E L, RL(z) := U(z) x V(z) 

L is a Xavier's discriminating domain if 

V z E L, V v E V(z), AL(z, v) =/= 0 (14.9) 

L is a Xavier's leading domain if V z E L, BL(z) =/= 0 

We begin by translating these properties in terms of contingent 

Isaacs' equations: 
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Proposition 14.1.4 Let us assume that h : Rn x RP x Rq -+ Rn 
is continuous, has linear growth, and that the set-valued maps U, V 
are closed with linear growth. 

L is a playability domain if and only if W L is a solution 
to (14.4) 

L is a winability domain if and only if W L is a solution to 

L is a discriminating domain for Xavier if and only if w L 

is a solution to (14.6} 
L is a leading domain for Xavier if and only if W L is a 

solution to (14. 7) 

Therefore, Theorem 14.1.1 implies the following characterization 
of these domains: 

Corollary 14.1.5 Let us assume at least that h: Rn x RP x Rq-+ 
Rn is continuous, has linear growth, and that the set-valued maps 
are closed with linear growth. 

1 If the values of the set-valued maps U and V are convex 
and if h is affine with respect to the controls, then L enjoys the 
playability property if and only if it is a playability domain. 

2 Assume that h is uniformly Lipschitz with respect to x. 
Then L enjoys the winability property if and only if it is a winability 
domain. 

3 Assume that V is lower semicontinuous, that the val-
ues of U and V are convex and that h is affine with respect to u. 
Then L enjoys Xavier's discriminating property if and only if it is a 
discriminating domain for Xavier. 

4 Assume that V is lower semicontinuous with convex 
values. If L enjoys Xavier's leading property, then it is a leading 
domain for him. The converse is true if BL is lower semicontinuous 
with closed convex values. 

The existence theorems of the viability and invariance kernels 
imply the following consequence: 

Proposition 14.1.6 Let us assume that h: Rn x RP x Rq -+ Rn 
is continuous, has linear growth, and that the set-valued maps are 
closed with linear growth. 
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1 If the values of the set-valued maps U and V are convex 
and if h is affine with respect to the controls, then there exists a 
largest closed playability domain contained in L, whose indicator is 
the smallest lower semicontinuous solution to {14.4) larger than or 
equal to the indicator W L of L. 

2 Assume that h is uniformly Lipschitz with respect to 
x. Then there exists a largest closed winability domain contained in 
L, whose indicator is the smallest lower semicontinuous solution to 
(14.5) larger than or equal to the indicator WL of L. 

14.2 Playable Differential Games 

We now proceed with the case of the game described by (14.1), where 
the playability domain is defined from rules P and Q by 

K := { (x, y) EX x Y I x E P(y) and y E Q(x)} 

enjoys the playability property, which becomes in this case: for any 
initial state (xo, Yo) E K, there exists a solution to the differential 
game (14.1) which is playable in the sense that 

V t 2 0, x(t) E P(y(t)) & y(t) E Q(x(t)) 

We now need to define playable rules. For that purpose, we as­
sociate with the rules P and Q acting on the states retroaction rules 
C and D acting on the strategies defined in the following way: 

Definition 14.2.1 Xavier's retroaction rule is the set-valued map 
C defined by 

{ 
C(x,y;v) 
= { u E U(x,y) I f(x,y,u) E DP(y,x)(g(x,y,v))} 

and Yvette's retroaction rule is the set-valued map D defined by 

{ D(x,y;u) 
= { v E V(x,y) I g(x,y,v) E DQ(x,y)(f(x,y,u))} 

We associate with them the regulation map R defined by 

R(x,y) = { (u,v) I u E C(x,y;v) & v E D(x,y;u)} (14.10) 
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The subset R(x, y) is called the regulation set and its elements are 
called playable controls. 

In other words, we have associated with each state ( x, y) of the playa­
bility domain a static game on the strategies defined by the retroac­
tion rules. This new game on strategies is playable if the subset 
R(x, y) is nonempty. This property deserves a definition. 

Definition 14.2.2 We shall say that P and Q are playable rules if 
their graphs are closed, the playability domain K defined by {14.2) 
is nonempty and if for all pairs (x, y) E K, the values R(x, y) of the 
regulation map are nonempty. 

We still need a definition of transversality of the rules before 
stating an adequate characterization of playability. 

Definition 14.2.3 We shall say that the rules P and Q are transver­
sal if for all ( x, y) E K and for all perturbations ( e, f) E X x Y, there 
exists ( u, v) satisfying 

u E DP(y, x)(v) + e 

v E DQ(x,y)(u) + f 

We shall say that they are strongly transversal if 

V(x, y) E K, :3c > 0, b > 0 such that V(x', y') E BK((x, y), b), 
V ( e, f) E X x Y, there exist solutions ( u, v) to the system 

{ i) u E DP(y', x')(v) + e 
ii) v E DQ(x', y')(u) + f 

satisfying 
max(llull, llvll) ::; max(llell, llfll) 

We also assume that the rules are sleek (See Definition 5.1.4). 
We shall now derive from Corollary 14.1.5 a characterization of 

the playability property. 

Theorem 14.2.4 {Playability Theorem) Let us assume that the 
functions f and g are continuous, affine with respect to the strategies 
and have a linear growth, that the feedback maps U and V are upper 
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semicontinuous with compact convex images and have a linear growth 

and that the rules P and Q are sleek and transversal. 
Then the rules P and Q enjoy the playability property if and 

only if they are playable. Furthermore, the strategies u( ·) and v( ·) 
which provide playable solutions obey the following regulation law: 
for every t 2 0, 

u(t) E C(x(t), y(t); v(t)) & v(t) E D(x(t), y(t); u(t)) (14.11) 

Proof- We apply Corollary 14.1.5 and prove that the playa­
bility subset of the differential game is a playability domain, i.e., that 
for any global state (x, y) E K of the system, there exist strate­
gies u and v such that the pair (f(x,y,u),g(x,y,v)) belongs to the 
contingent cone TK(x, y). 

Since K is the intersection of the graphs of Q and p-1, we need 

to use a sufficient condition for the contingent cone to an intersection 
to be equal to the intersection of the contingent cones. 

The graphs of Q and p-1 are sleek because the rules of the game 
are supposed to be so. Furthermore, 

Tcraph(P- 1)(x,y)- Tcraph(Q)(x,y) = X x Y 

because the maps P and Q are transversal: For any ( e, f) E X x Y, 
there exists ( u, v) such that ( u, v - f) belongs to the graph of Q and 
(u+e, v) to the graph of p-I, i.e., that (e, f)= (u+e, v)- (u, v- !). 
We deduce that 

{ TK(X, y) = Tcraph(P-l)(x, y) n Tcraph(Q)(x, y) 
= Graph(DP(y, x))-1 n Graph(DQ(x, y)) 

Therefore, K is a viability domain if and only if the regulation 
map R has nonempty values, i.e., if and only if the rules of the game 
are playable. D 

The regulation law (14.11) describes how the players must behave 
to keep the state of the system playable. A first question arises: Do 
the domains of the set-valued maps 

C(x, y) : v ~ C(x, y; v) 

D(x, y) : u -vt D(x, y; u) 
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coincide with U(x, y) and V(x, y) respectively? 

Proposition 14.2.5 We posit the assumptions of Theorem 14.2.4. 
Let us assume that for all ( x, y) E K, 

Dom(C(x, y)) - V(x, y) 
(14.12) 

Dom(D(x, y)) = U(x, y) 

Then the rules are playable. 

Proof- We deduce it from Kakutani's Fixed Point Theorem, 
since the set R(x, y) is the set of fixed points of the set-valued map 

(u,v) ~ C(x,y;v) x D(x,y;u) 

defined on the convex compact subset U(x, y) x V(x, y) to itself. 
This set-valued map has non empty values by assumption, which are 
moreover convex since the rules P and Q being sleek, the graphs of 
the contingent derivatives DP(x, y) and DQ(x, y) are convex. They 
are also closed. This implies that the graph of ( u, v) ~ C ( x, y; v) x 
D(x, y; u) is closed. Hence we can apply Kakutani's Fixed Point 
Theorem5. D 

14.3 Feedback Solutions 

When we know the regulation law (14.11), playing the game amounts 
to choosing for each pair ( x, y) E K playable strategies ( u, v) in the 
regulation set R( x, y) through playable feedbacks. 

We begin by looking for single-valued playable feedbacks (u, v), 
which are selections of the regulation map R in the sense that 

V (x,y) E K, (x,y) ~---+ (u(x,y),v(x,y)) E R(x,y) 

5 We can also use Theorem 3.7.11 and replace condition (14.12) by a sufficient 
condition of the form: 

{ V (u, v) E U(x, y) x V(x, y), 
0 E (f(x, y; u), g(x, y; v))- TK(x, y)- A(Tu(:z:,y)(u) x Tv(z,y)(v)) 

where A is a linear operator from Zx x Zy to X x Y. This provides many 
sufficient conditions for playability. 
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or, equivalently, solutions to the system 

V (x,y) E K, { 
u(x,y) E 

and 
v(x, y) E 

C(x, y; v(x, y)) 

D(x, y; u(x, y)) 

For instance, continuous selections of the set-valued map R pro­
vide continuous playable feedbacks ( u, v) such that the system of 
differential equations 

{ x'(t) = f(x(t), y(t), u(x(t), y(t))) 
y'(t) = g(x(t), y(t), v(x(t), y(t))) 

does have solutions which are playable. 

(14.13) 

Michael's Continuous Selection Theorem, as well as other selec­
tion procedures we shall use, require the lower semicontinuity of the 
regulation map R. 

Our next objective is then to provide criteria under which the 
regulation map is lower semicontinuous. For that purpose, we need 
to strengthen the concept of playable rules. 

Definition 14.3.1 We associate with any perturbation (e, f) the retro­
action rules C(e,J) and D(e,J) defined by: 

{ C(e,f)(x, y; v) 
= { u E U(x, y) I f(x, y; u) E DP(y, x)(g(x, y, v)- f)+ e} 

and 

{ D(e,f)(x, y; u) 
= { v E V(x,y) I g(x,y,v) E DQ(x,y)(f(x,y;u)- e)+ f} 

and regulation map R(e,J) defined by 

R(e,f)(x,y) = { (u,v) I u E C(e,f)(x,y;v) & v E D(e,f)(x,y;u)} 

We shall say that the rules P and Q are strongly playable if 

{ 
V(x, y) E K, :3)' > 0, 8 > 0 such that V(x', y') E BK((x, y), 8), 

V (e, f) E 1B, R(e,!)(x', y') =/= 0 
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Theorem 14.3.2 Let us assume that the functions f and g are con­
tinuous, affine with respect to the strategies and have a linear growth, 
that the feedback maps U and V are upper semicontinuous with com­
pact convex images and have a linear growth and that the rules P 
and Q are sleek, strongly transversal and strongly playable. 

Then the regulation map R is lower semicontinuous with closed 
convex images. 

Consequently, there exist continuous playable feedbacks ( u, v). 

Proof - We use the Lower Semicontinuity Criterion of the 
intersection and the inverse image of lower semicontinuous set-valued 
maps (see Theorem 6.3.1). 

First, we need to prove that the set-valued map 

(x, y) ~ TK(x, y) := Graph(DP(y, x)-1) n Graph(DQ(x, y)) 

is lower semicontinuous. But this follows from the strong transver­
sality of the rules P and Q and the Lower Semicontinuity Criterion. 

We observe that U x V being upper semicontinuous with compact 
values, it maps a neighborhood of each point to a compact set. Since 
we can write 

R(x,y) = {(u,v) E (U x V)(x,y) I (f(x,y;u),g(x,y;v)) E TK(x,y)} 

and since both U x V and T are lower semicontinuous with convex 
images, strong playability of the retroaction rules implies that the 
regulation map R is lower semicontinuous. D 

Unfortunately, the proof of Michaels's Continuous Selection The­
orem is not constructive. We would rather trade the continuity of the 
playable control with some explicit and computable property, such 
as u0 (x, y) being the element of minimal norm in R(x, y), or other 
properties. Hence we need to prove the existence of a solution to the 
differential equation (14.13) for such discontinuous feedbacks. 

Theorem 6.6.6 on the regulation of control systems becomes 

Theorem 14.3.3 We posit the assumptions of Theorem 14.2.4 and 
we suppose that K is a playability domain. 
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Let S R be a selection procedure with convex images of the regula­
tion map R. Then, for any initial state (xo, yo) E K, there exists a 
playable solution starting at (xo, Yo) to the differential inclusion 

{ 
i) 
. ") 
~~.) nz 

x'(t) = f(x(t), y(t); u(t)) 
y'(t) = g(x(t), y(t); v(t)) 
for almost all t, (u(t), v(t)) E S(R(x(t), y(t))) 

In particular, if for every (x, y) the intersection 

SR(x, y) n R(x, y) := (u(x, y)), v(x, y)) 

is single-valued, then the strategies (x,y) ~---+ (u(x,y)),v(x,y)) are 
single-valued playable feedback controls. 

We can now multiply the possible corollaries, by supplying several 
instances of selection procedures of set-valued maps. 

We begin by cooperative procedures, where the players agree 
on criteria u(x, y; ·, ·) for selecting strategies in the regulation sets 
R(x, y). 

Example- COOPERATIVE BEHAVIOR 

Proposition 14.3.4 We posit the assumptions of Theorem 14.3.2. 
Let u be continuous on Graph(R) and convex with respect to the pair 
( u, v). Then, for any initial state ( xo, Yo) E K, there exist a playable 
solution starting at (xo, Yo) and playable strategies to the differential 
game (14.1} which are regulated by: 

{ 
for almost all t ~ 0, (u(t), v(t)) E R(x(t), y(t)) and 

u(x(t), y(t); u(t), v(t)) = infu',v'ER(x(t),y(t)) u(x(t), y(t); u', v') 

In particular, the game can be played by the slow feedbacks of 
minimal norm: 
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Proof- We introduce the set-valued map SR defined by: 

SR(x,y) := {(u,v) I a(x,y;u,v)::; inf a(x,y;u',v')} 
( u' ,v')ER(x,y) 

which is a convex-valued selection procedure of R since R is lower 
semicontinuous (see Theorem 6.5.3). We then apply Theorem 14.3.3. 
We observe that when we take 

a(x, y; u, v) := llull 2 + llvll 2 

the selection procedure yields the elements of minimal norm. 0 

Example- NONCOOPERATIVE BEHAVIOR We can also choose 
strategies in the regulation sets R( x, y) in a non cooperative way, as 
saddle points of a function a(x, y; ·, ·). 

Proposition 14.3.5 We posit the assumptions of Theorem 14.3.2 
and we suppose that K is a playability domain. Let us assume that 
a : X x Y x U x V ---t R satisfies 

a is continuous 
{ 

i) 
. ") 
~~i) 

V(x,y,v) EX x V, u t--t a(x,y;u,v) is convex 
V(x, y; u) EX xU, v t--t a(x, y; u, v) is concave 

Then, for any initial state (xo, yo) E K, there exist a playable solution 
starting at (xo, Yo) and playable strategies to the differential game 
(14.1) which are regulated by: for almost all t ~ 0, 

i) (u(t), v(t)) E R(x(t), y(t)) 

ii) V (u', v') E R(x(t), y(t)), 

a(x(t), y(t); u(t), v') ::; a(x(t), y(t); u(t), v(t)) 

::; a(x(t), y(t); u', v(t)) 

Proof- The set-valued map SR associating with any (x, y) E 
K the subset 

SR(x, y) := {(u, v) such that 
V(u',v') E R(x,y), a(x,u,v')::; a(x,u',v)} 
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is a convex-valued selection procedure of R. The associated selection 
map S(R(·)) associates with any (x, y) EX x Y the subset 

S(R(x, y)) := { (u, v) E R(x, y) such that 
\:f(u',v') E R(x,y), a(x,y;u,v'):::;: a(x,y;u',v)} 

of saddle-points of a(x, y; ·,·)in R(x, y). We then apply Theorem 14.3.3. 
D 

14.4 Discriminating and Leading Feedbacks 

We now address the question of finding criteria for the playability 
domain K to be Xavier's discriminating domain, and for finding 
Xavier's feedback strategies which are selections of the set-valued 
map (x, y, v) "'* A(x, y, v) C U(x, y) defined by 

A(x, y; v) := { u E U(x, y) I (u, v) E R(x, y) } 

Such feedbacks are called discriminating feedbacks. If we assume 
that Xavier has access to the strategies chosen by Yvette, he can 
keep the states of the system playable by "playing" a discriminat­
ing control whatever the choice of Yvette through a discriminating 
feedback. Then, we shall investigate whether we can find (possibly, 
single-valued) selections of such a set-valued map A, and for that, 
provide sufficient conditions for A to be lower semicontinuous. 

We first observe that A can be written in the form 

A(x, y; v) := C(x, y; v) n (D(x, y))-1(v) 

The first assumption we must make for obtaining discriminat­
ing feedbacks for Xavier is that the domain of the set-valued maps 
A(x, y; ·)) are not empty. i.e., that 

{ 
\:1 v E V(x, y), :3 u E U(x, y) such that 
f(x, y; u) E DP(y, x)(g(x, y; v)) n DQ(x, y)- 1(g(x, y; v)) 

We shall actually strengthen it a bit to get the lower semicontinuity 
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of A, by assuming that 

\:1 (x,y) E K, \:1 v E V(x,y), 3 8 > 0, 31 > 0 such that 

\;/ (x', y') E BK(x, y, 8), \;/ v' E B(v, 8) n V(x', y'), \;/ lleiil ~ 'Y 

(i = 1, 2), 3 u E U(x', y') such that f(x', y'; u) belongs to 
(DP(y', x')(g(x', y'; v'))- e1) n (DQ(x', y')-1(g(x', y'; v'))- e2) 

(14.14) 

Proposition 14.4.1 We posit the assumptions of Theorem 14.3.2, 
where we replace strong playability by assumption (14.14}, and we as­
sume further that the norms of the closed convex processes DP(y, x) 
and DQ(x, y)-1 are bounded. Then the set-valued map A is lower 
semicontinuous. 

Proof - First, we have to prove that C is lower semicontin­
uous, and, for that purpose, that (x,y,w) ~ DP(y,x)(w) is lower 
semicontinuous. 

By Theorem 2.5.7, we know that it is sufficient to prove that 

(x, y) ~ Graph(DP(y, x)) is lower semicontinuous 

and that 

IIDP(y,x)ll := sup inf llull < +oo 
llwll9 uEDP(y,x)(w) 

This is the case because P is assumed to be sleek and because we 
have assumed that the norms of the derivatives are bounded. 

Therefore, the set-valued map 

(x, y, v) ~ DP(y, x)(g(x, y; v)) 

is also lower semicontinuous. 
The Lower Semicontinuity Criterion and assumption (14.14) im­

ply that (x, y, v) ~ C(x, y; v) is lower semicontinuous. 
The same proof shows that the map (x, y, v) ~ DQ(x, y)-1(v) is 

also lower semicontinuous. Since A is the intersection of these two 
set-valued maps, we apply again the Lower Semicontinuity Criterion 
to deduce that A is lower semicontinuous, which is possible thanks 
to assumption (14.14). D 
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Theorem 14.4.2 We posit the assumptions of Theorem 14.2.4. For 
any continuous feedback control (x, y) ~--+ ii(x, y) played by Yvette, 
there exits a continuous single-valued feedback u( x, y) played by X a vier 
such that the differential equation (14.13} has playable solutions for 
any initial state (xo, Yo) E K. 

More generally, let SA be a convex-valued selection procedure of 
the set-valued map A. Then, for any continuous feedback control 
(x, y) 1-+ ii(x, y) played by Yvette, for any initial state (xo, Yo) E K, 
there exists a playable solution starting at (xo, Yo) to the differential 
game 

where 

{ 
i) x'(t) = f(x(t), y(t); u(t)) 
ii) y'(t) = g(x(t), y(t); ii(x(t), y(t))) 
iii) u(t) E S(A(x(t), y(t); ii(x(t), y(t)))) 

S(A(x, y; ii(x, y))) := SA(x, y; ii(x, y)) n A(x, y; ii(x, y)) 

In particular, if the selection procedure yields single-valued selections, 
then the control u(x, y) defined by 

uv(x,y) := S(A(x,y;ii(x,y))) 

is a single-valued feedback control. 
This is the case, for instance, when we posit the assumptions 

of Proposition 14.4.1 and when Xavier plays the feedback control 
u~(x, y) of minimal norm in the set A(x, y; ii(x, y)). In this case, 
there exists also a continuous control u(x, y) E A(x, y; ii(x, y)) 

Proof- Whenever Yvette plays a continuous feedback ii(x, y), 
K remains a playability domain for the system 

{ 
i) 
. ") 
~~.) 
't'l't 

x'(t) = f(x(t), y(t); u(t)) 
y'(t) = g(x(t), y(t); ii(x(t), y(t))) 
u(t) E SA(x(t), y(t); ii(x(t), y(t))) 

So playable solutions to this system satisfy also the condition 

u(t) E A(x(t), y(t); ii(x(t), y(t))) 
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so that actually, 

u(t) E S(A(x(t), y(t); v(x(t), y(t)))) 

When the set-valued map (x,y) ,_,. A(x,y;v(x,y)) is lower semi­
continuous, it contains continuous selections u(x, y) which therefore 
yield playable selections. 

We can also use more constructive selection procedures of the set­
valued map (x,y) ,_,. A(x,y;v(x,y)) with convex values and deduce 
that Xavier can implement playable solutions by playing strategies 
u(t) in the selection S(A(x(t), y(t); v(x(t), y(t)))). D 

A much better situation for Xavier occurs when he can find feed­
back strategies u which are selections of the set-valued map B defined 
by 

B(x,y) := n A(x,y;v) 
vEV(x,y) 

In other words, such a feedback allows him to implement playable 
solutions whatever the control v E V(x, y) chosen by Yvette, since 
in this case the pair ( u, v) belongs to the regulation set R( x, y) for 
any v. Such feedbacks are called pure feedbacks. 

In order to obtain continuous single-valued feedbacks, we need to 
prove the lower semicontinuity of the set-valued map B, which is an 
infinite intersection of lower semicontinuous set-valued maps. 

Theorem 14.4.3 We posit the assumptions of Proposition 14.4.1. 
We assume further that there exist positive constants 8 and 'Y such 
that for all (x',y') E BK((x,y),8), we have 

V v E V(x', y'), Vet E "(B, (i = 1, 2), :3 u E U(x', y') such that 

f(x', y'; u) E DP(y', x'; v) + e~ 
and 
g(x', y'; v) E DQ(x', y'; u) + e~ 

(14.15) 
Then the set-valued map B is lower semicontinuous and there exist 
continuous single-valued pure feedback strategies for Xavier. 
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Proof - We observe that V is upper semicontinuous with 
compact values, that A is lower semicontinuous and has its images 
in a fixed compact set, and that assumption (14.15) implies obviously 
that there exist positive constants 8 and 1 such that for all ( x', y') E 

BK((x, y), 8), we have 

cBn n (F(x', y)- z) =/= 0 
yEH(x'},zE-yB 

This theorem follows then from Theorem 6.3.3 on the lower semi­
continuity of an infinite intersection of lower semicontinuous set­
valued maps. D 

14.5 Closed Loop Decision Rules 

Actually, although differential games can be played through retroac­
tion rules, there are many games where players act on the velocities 
of the strategies regarded as decisions of players. 

This leads us to introduce the following definition: We shall call 
decisions the derivatives of the strategies. 

Then, in order to deal with decisions defined in such a sense, we 
must now assume that players use open-loop strategies u(·) and v(·) 
which are absolutely continuous and obey a growth condition of the 
type6 

{ i) llu'(t)ll ::::; P(iiu(t)ll + 1) 
ii) llv'(t)ll ::::; u(llv(t)ll + 1) 

(14.16) 

We shall refer to them as "smooth open-loop controls", the non­
negative parameters 7 p and l7 being fixed once and for all. We denote 
by K the subset 

{ 
(z,u,v) ERn x RP x Rq such that 
u E U(z) & v E V(z) 

Instead of finding largest playability or winability domains in the 
state space, we shall look for analogous concepts in the state-strategy 

6one can replace p(llull+l) by any continuous function cp(u) with linear growth. 
7or any other linear growth condition cp(·) or '1/J(·). 
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space. We shall determine set-valued maps which allow players to 
win in the sense that either property 

V t 2: 0, u(t) E U(z(t)) (14.17) 

or property 
V t 2: 0, v(t) E V(z(t)) (14.18) 

or both hold. Roughly speaking, Xavier may win as long as his 
opponent allows him to choose at each instant t 2: 0 strategies u(t) 
in the subset U(z(t)), and must lose if for any choice of open-loop 
controls, there exists a timeT> 0 such that u(T) (j. U(z(T)). 

Definition 14.5.1 Let ( uo, vo, zo) be an initial situation such that 
initial strategies uo E U(zo) and vo E V(zo) of the two players are 
consistent with the initial state zo. 

We shall say that 
Xavier must win if and only if for all smooth open-loop 

strategies u( ·) and v ( ·) starting at uo and vo, there exists a solution 
z(·) to {14.3) and {14.16} starting at zo such that {14.17) is satisfied. 

- Xavier may win if and only if there exist smooth open-loop 
strategies u(·) and v(·) starting at uo and vo and a solution z(·) to 
{14.3) and {14.16} starting at zo such that {14.17) is satisfied. 

Xavier must lose if and only if for any smooth open-loop 
strategy u(·) and v(·) starting at uo and vo and solution z(·) to {14.3) 
and {14.16} starting at zo, there exists a timeT> 0 such that 

u(T) (j. U(z(T)) 

The initial situation is stable if and only if there exist open­
loop strategies u(·) and v(·) starting at uo and vo and a solution z(·) 
to {14.3) and {14.16) starting at zo satisfying both relations {14.17) 
and {14.18}. 

Naturally, if both Xavier and Yvette must win, then both rela­
tions (14.17) and (14.18) are satisfied. This is not necessarily the 
case when both Xavier and Yvette may win, and this is the reason 
why we need to introduce the concept of stability. 
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Table 14.1: The 10 areas of the domain of the differential game 
I (zo,uo,vo) E II Graph(Su) I Graph(Ru) I K\Graph(Ru) 

Xavier must win Xavier may win Xavier must lose 
Graph(Sv) 

Yvette must win Yvette must win Yvette must win 
Xavier must win ? ? ? Xavier must lose 

Graph(Rv) ? I STABILITY I ? 
Yvette may win ? ? ? Yvette may win 
Xavier must win Xavier may win Xavier must lose 

K\Graph(Rv) 
Yvette must lose Yvette must lose Yvette must lose 

Theorem 14.5.2 Let us assume that h is continuous with linear 
growth and that the gmphs of U and V are closed. Let the growth 
mtes p and u be fixed. 

There exist five (possibly empty) closed set-valued feedback maps 
from Rn to RP x Rq having the following properties: 

Ru C U is such that whenever ( uo, vo) E Ru ( zo), X a vier 
may win and that whenever ( uo, vo) rf. Ru ( zo), X a vier must lose 

If h is Lipschitz, Su c Ru is the largest closed set-valued 
map such that whenever (uo, vo) E Su(zo), Xavier must win. 

Sv C Rv c V, which have analogous properties. 
Ruv c Ru n Rv is the largest closed set-valued map such 

that any initial situation satisfying ( uo, vo) E Ruv ( zo) is stable. 

Knowing these five set-valued feedback maps, we can split the 
domain K', of initial situations in ten areas which describe the behav­
ior of the differential game according to the position of the initial 
situation. 

In particular, the complement of the graph of Ruv in the inter­
section of the graphs of Ru and Rv is the instability region, where 
either Xavier or Yvette may win, but not both together. 

The problem is to characterize these five set-valued maps, the 
existence of which is now guaranteed, by solving the "contingent 
extension" of the partial differential equation8 

81£ ~ is a solution to this partial differential equation, one can check that 
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~~ . h(z, u, v)- p(llull + 1) 11 ~: 11-u(llvll + 1) 11 ~: 11 :So (14.19) 

which can be written in the following way: 

oil! ( ) . ail! I • oil! I -·hzuv+ mf -·u+ mf -·v<O 
oz ' ' llu'II~P(IIull+l) ou llv'll~u(llvll+l) ov -

We shall also introduce the partial differential equation9 

~~ . h(z, u, v) + p(llull + 1) 11 ~: 11 + u(llvll + 1) 11 ~: 11 :So (14.20) 

which can be written in the following way: 

oil! ( ail! I oil! I - · h z, u, v) + sup - · u + sup - · v :S 0 
oz llu'II~P(IIull+l) ou llv'll~u(llvll+l) ov 

The link between the feedback maps and the solutions to the so­
lutions to these partial differential equations is provided by the indi­
cators of the graphs: we associate with the set-valued maps Su, Ru 
and Ruv the functions if!u, Wu and Wuv from Rn x RP x Rq to 
R+ U {+co} defined by 

for any initial situation (zo,u0 ,vo) E Dom(4.>), there exists a smooth solutidn 
(z(·),u(·),v(·)) such that 

t-+ 4.>(z(t), u(t), v(t)) is nonincreasing 

This property remains true for the solutions to the contingent partial differential 
equation (14.22). 

9We can check that if h is Lipschitz and 4.> is a solution to this partial differen­
tial equation, for any initial situation ( z0 , u0 , vo) E Dom( 4.>), any smooth solution 
(z(·),u(·),v(·)) satisfies 

t -+ 4.>(z(t), u(t), v(t)) is non increasing 

This property remains true for the solutions to the contingent partial differential 
equation (14.23). 
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i) ~u(z, u, v) 
0 if (u, v) E Su(z) ·-
+oo if (u, v) ~ Su(z) 

ii) 'llu(z, u, v) 
0 if (u, v) E Ru(z) 

(14.21) ·-
+oo if (u, v) ~ Ru(z) 

iii) Wuv(z,u,v) 
0 if (u, v) E Ruv(z) ·-
+oo if (u, v) ~ Ruv(z) 

and the functions 'llv and ~v associated to the set-valued map Rv 
and Sv in an analogous way. 

These functions being only lower semicontinuous, but not differ­
entiable, cannot be solutions to either partial differential equations 
(14.19) and (14.20). But we can use the contingent epiderivatives of 
any function ~ : Rn x RP x Rq --+ R U { +oo} and replace the partial 
differential equations (14.19) and (14.20) by the contingent partial 
differential equations 

inf Dr~(z,u,v)(h(z,u,v),u',v') < 0 
llu'II:5P(IIull+l) 

(14.22) 

llv'll::;u(llvll+l) 

and 

sup Dr~(z,u,v)(h(z,u,v),u',v') < 0 {14.23) 
llu'II:5P(IIull+l) 

llv'll::;u(llvll+l) 

respectively. 
Let Ou and Ov be the indicators of the graphs of the set-valued 

maps U and V defined by 

l. i 0 if u E U(z) z) Ou(z, u, v) := +oo if u ~ U(z) 

. . 0 if v E V(z) 
zz) Ov(z, u, v) := +oo if v ~ V(z) 

Theorem 14.5.3 We posit the assumptions of Theorem 14.5.2. Then 
Wu is the smallest lower semicontinuous solution to the 

contingent partial differential equation (14.22} larger than or equal 
to Ou 
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'lTv is the smallest lower semicontinuous solution to the 
contingent partial differential equation {14.22) larger than or equal 
to nv 

'lT uv is the smallest lower semicontinuous solution to the 
contingent partial differential equation {14.22) larger than or equal 
to max(Ou, Ov) 

If h is Lipschitz, il>u is the smallest lower semicontinuous 
solution to the contingent partial differential equation {14.23) larger 
than or equal to nu 

If h is Lipschitz, il>v is the smallest lower semicontinuous 
solution to the contingent partial differential equation {14.23} larger 
than or equal to nv 

If any of the above solutions is the constant +oo, the correspond­
ing feedback map is empty. 

Proof of Theorem 14.5.2- Let us denote by B the unit 
ball and introduce the set-valued map F defined by 

H(z, u, v) := {h(z, u, v)} x p(llull + 1)B x u(llvll + 1)B 

The evolution of the differential game described by equations (14.3) 
and (14.16) is governed by the differential inclusion 

(z'(t), u'(t), v'(t)) E H(z(t), u(t), v(t)) 

Since the graph of U is closed, we take the graph of Ru to 
be the viability kernel of Graph(U) xRq. Indeed, if (uo, vo) E Ru(zo), 
there exists a solution to the differential inclusion remaining in the 
graph of U, i.e., Xavier may win. If not, all solutions starting at 
(zo, uo, vo) must leave this domain in finite time. 

The set-valued feedback map Rv is defined in an analogous way. 
- For the same reasons, the graph of the set-valued feedback 

map Ruv is the viability kernel of the set IC of initial situations. 
When h is Lipschitz, so is H. We define the graph of Su 

as the invariance kernel of Graph(U) x Rq. 0 

Proof of Theorem 14.5.3- We recall that thanks to the 
viability Theorem, a subset L c Rn x RP x Rq is a viability domain 
of F if and only if 

V (z, u, v) E L, TL(z, u, v) n H(z, u, v) i= 0 
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Let \II L denote the indicator of L. We know that the Viability The­
orem can be reformulated in the following way: 

The set L is a closed viability domain if and only if its indica­
tor function \II L is a solution to the contingent partial differential 
equation (14.22). 

Hence to say that the graph of Ru is the largest closed 
viability domain contained in the graph of U amounts to saying that 
its indicator \II u is the smallest lower semicontinuous solution to the 
contingent partial differential equation (14.22) larger than or equal 
to the indicator Ou of Graph(U) x Rq. The same reasoning shows 
that indicator \llv of Rv is the smallest lower semicontinuous solution 
to the contingent partial differential equation (14.22) larger than or 
equal to Ov and that the indicator \II uv of the graph of Ruv is 
the smallest lower semicontinuous solution to the contingent partial 
differential equation (14.22) larger than or equal to the indicator of 
K, which is equal to max(Ou, Ov). 

We know that a closed subset L C Rn x RP x Rq is 
"invariant" by a Lipschitz set-valued map F if and only if 

V (z,u,v) E L, TL(z,u,v) C H(z,u,v) 

This condition can be reformulated in terms of contingent epideriva­
tive of the indicator function \II L of L by saying that 

V (z,u,v) E L, sup DtWL(z,u,v)(w) = 0 
wEH(z,u,v) 

Hence to say that the graph of Su is the largest closed invariance do­
main contained in the graph of U amounts to saying that its indicator 
~u is the smallest lower semicontinuous solution to the contingent 
partial differential equation (14.23) larger than or equal to the indi­
cator Ou of Graph(U) x Rq. D 

Let us denote by R one of the feedback maps Ru, Rv, Ruv 
and assume that the initial situation belongs to the graph of the 
set-valued feedback map R (when it is not empty). The theorem 
states only that there exists at least a solution (z(·), u(·), v(·)) to the 
differential game such that 

V t 2:: 0, (u(t), v(t)) E R(z(t)) 
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To implement these strategies, players must make decisions, i.e., 
to choose velocities of controls in an adequate way: 

We observe that stable solutions 

Proposition 14.5.4 The solutions to the game satisfying 

'v' t ~ 0, (u(t), v(t)) E R(z(t)) 

are the solutions to the system of differential inclusions 

{ i) z'(t) = h(z(t), u(t), v(t)) 
ii) (u'(t), v'(t)) E GR(z(t), u(t), v(t)) 

(14.24) 

where we have denoted by G R the R-decision map defined by 

GR(z, u, v) := DR(z, u, v)(h(z, u, v)) n (p(llull + 1)B x u(llvll + 1)B) 

For simplicity, we shall set G := G R whenever there is no ambi­
guity. 

Proof- Indeed, since the function (z(·),u(·),v(·)) takes its 
values into Graph(R) and is absolutely continuous, then its derivative 
( z' ( ·), u' ( ·), v' ( ·)) belongs almost everywhere to the contingent cone 

TGraph(R)(z(t), u(t), v(t)) := Graph(DR(z(t), u(t), v(t))) 

We then replace z'(t) by h(z(t), u(t), v(t)). 
The converse holds true because equation (14.24) makes sense 

only if (z(t), u(t), v(t)) belongs to the graph of R. D 

The question arises whether we can construct selection proce­
dures of the decision components of this system of differential inclu­
sions. It is convenient for this purpose to introduce the following 
definition. 

Definition 14.5.5 (Closed Loop Decision Rules) We say that 
a selection (c, d) of the contingent derivative of the smooth regulation 
map R in the direction h defined by: for all (z, u, v) E Graph(R). 

(c(z, u, v), d(z, u, v)) E DR(z, u, v)(h(z, u, v) (14.25) 

is a closed loop decision rule. 
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The system of differential equations 

{ 
i) 
.. ) 
~~.) 
'tZ't 

z'(t) 
u'(t) 
v'(t) 

h(z(t), u(t), v(t)) 
c(z(t), u(t), v(t)) 
d(z(t), u(t), v(t)) 

(14.26) 

is called the associated closed loop decision game. 

Therefore, closed loop decision rules being given for each player, 
the closed loop decision system is just a system of ordinary differen­
tial equations. 

It has solutions whenever the maps c and d are continuous (and 
if such is the case, they will be continuously differentiable). 

But they also may exist when c or d or both are no longer contin­
uous. This is the case when the decision map is lower semicontinuous 
thanks to Michael's Theorem: 

Theorem 14.5.6 Let us assume that the decision map G := G R is 
lower semicontinuous with non empty closed convex values on the 
graph of R. Then there exist continuous decision rules c and d, so 
that the decision system {14.26} has a solution whenever the initial 
situation (uo, vo) E R(zo) 

By using selection procedures (see Definition 6.5.2), we can obtain 
explicit decision rules which are not necessarily continuous, but for 
which the decision system (14.26) still has a solution. 

Hence, we also obtain the following existence theorem for closed 
loop decision rules obtained through convex-valued selection proce­
dures, which is analogous to Theorem 7.6.4. 

Theorem 14.5. 7 Let Sc be a selection of the set-valued map G with 
convex values. Then, for any initial state (zo, uo, vo) E Graph(R), 
there exists a solution starting at (zo, uo, vo) to the associated system 
of differential inclusions 

{ 
z'(t) 

(u'(t), v'(t)) E 

h(z(t), u(t), v(t)) 

G(z(t), u(t), v(t)) n Sc(z(t), u(t), v(t)) 
(14.27) 
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In particular, if for every (z, u, v) the intersection 

S(G(z,u,v)) := (c(z,u,v),d(z,u,v)) 

is single-valued, then the strategies ( x, y) t-t ( c( z, u, v), d( z, u, v)) are 

single-valued closed-loop decision rules, for which decision system 

14.26 has a solution for any initial state (zo, uo, vo) E Graph(R). 

We can now multiply the possible corollaries, since we have given 

several instances of selection procedures of set-valued maps. 

Example-- COOPERATIVE BEHAVIOR 

Let 0' : Graph( G) t-t G be continuous. 

Corollary 14.5.8 Let us assume that the set-valued map G is lower 

semicontinuous with nonempty closed convex images on Graph(R). 

Let 0' be continuous on Graph( G) and convex with respect to the pair 

(u,v). Then, for all initial situations (uo,vo) E R(zo), there exists a 

solution starting at (zo, uo, vo) to the differential game (14.3}-(14.16} 
which are regulated by: 

{ 

for almost all 2:0, (u'(t),v'(t)) E G(z(t),u(t),v(t)) and 

O'(z(t), u(t), v(t), u'(t), v'(t)) 

= infu',v'EG(z(t),u(t),v(t)) O'(z(t), u(t), v(t), u', v') 

In particular, the game can be played by the heavy decision of 

minimal norm: 

{ 
(c0 (z,u,v),d0 (z,u,v)) E G(z,u,v) 

\\c0 (Z, u, v)\\ 2 + \\d0 (z, u, v)\\ 2) = min(u',v')EG(z,u,v)(jju'\\ 2 + \\v'\\ 2) 

Example-- NONCOOPERATIVE BEHAVIOR 

We can also choose strategies in the regulation sets G(z, u, v) in 

a noncooperative way, as saddle points of a function a(z, u, v, ·, ·). 

Corollary 14.5.9 Let us assume that the set-valued map G is lower 

semicontinuous with nonempty closed convex images on Graph(R) 
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and that a: Rn x RP x Rq x RP x Rq---+ R satisfies 

{ 
i) 
.. ) 
~~.) zn 

a is continuous 
\f(z, u, v, d), c ~----> a(z, u, v, c, d) is convex 
V(z, u, v, c), d ~----> a(z, u, v, c, d) is concave 

Then, for all initial situation ( uo, vo) E R( zo), there exist solutions 
to the differential game (14.3}-{14.16} starting at (zo,uo,vo) which 
are regulated by: for almost all t :2: 0, 

i) (u'(t), v'(t)) E G(z(t), u(t), v(t)) 

ii) V (u', v') E G(z(t), u(t), v(t)), a(z(t), u(t), v(t), u'(t), v') 

~ a(z(t), u(t), v(t), u'(t), v'(t)) ~ a(z(t), u(t), v(t), u', v'(t)) 


