Chapter 12

Functional Viability

Introduction

Differential equations and inclusions describe the evolution of sys-
tems where, at each instant, the velocity of the state depends upon
the value of the state at this very instant (in a single or multivalued
way).

Differential inclusions with memory, also called functional dif-
ferential inclusions, express that at each instant, the velocity of the
state depends upon the history of its evolution up to this instant.

By functional viability, we mean viability constraints which also
depend upon the history of the evolution of the state of the system,
or even, when the constraints act not only on the state of the system,
but on its past evolution.

This allows us to take into account delays, anticipations, cumu-
lated consequences of the past, etc., in both the dynamics of the
system and the viability constraints.

We shall adapt the techniques devised for the usual viability prob-
lems for differential inclusions to functional viability problems for
differential inclusions with memory.

This will leas to a characterization of the functional viability
property by a “functional tangential condition” stating that for any
past evolution, there exists at least a velocity “tangent” to the set of
past evolutions satisfying the functional viability constraints.

This characterization does not solve completely the problem, since,
for concrete examples, we have to prove that it is satisfied. It is well
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402 12— Functional Viability

known that invariance problems for differential equations with delays
are difficult to solve.

But as in the case of differential equations and inclusions, the
characterization of functional viability by functional tangential con-
ditions offers easier routes to solve the problem since these conditions
do not require the resolution of the functional differential inclusion.

The first section is devoted to the definitions and the presentation
of the main classes of examples (differential inclusion with delays,
Volterra type differential inclusions, etc.) and Haddad’s functional
viability theorem is proved in the third section.

We treat in the third section the particular cases of functional
viability constraints of the form

V>0, z(t) € M( /_t ) A(t—s)m(s)du(s))

and sufficient conditions involving the derivative of the set-valued
map M are presented.

We end this chapter by adapting to the functional viability case
the concepts of viability kernels and viability tubes.

12.1 Definitions and Examples

Our first task is to translate the concept of history of the evolution
of the state up to the instant ¢ > 0. We achieve this purpose by
using the operator T'(t) from the Fréchet space C(—o0,+00; X) to
C := C(—00,0; X) which associates with any continuous function
z(-) its history T'(t)x up to time t defined by:

V1€l —00,0, Tt)z(r) == xz(t+7)
A differential inclusion with memory describes in the following
way the link between the velocity z'(t) and the history T'(t)z up to

time ¢ through a set-valued map F from C to X in the following
manner:

for almost all t € [0,00[, Z'(t) € F(T(t)z) (12.1)
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Figure 12.1: Translation T'(¢)

"
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Initial conditions express that the history of the evolution of the
state up to the initial state 0 is known: it is a function ¢ € C. Hence
the initial condition is written in the form:

T(O)z = ¢ (12.2)

The viability constraints bear not only on the state of the system,
but on its evolution, by requiring that at each instant,

Vte 0,00, T(t)x € K (12.3)

where K C C is a given closed subset of state evolutions.

Definition 12.1.1 We shall say that a subset K C C is viable under
F (or enjoys the viability property for F : C ~ X ) if and only if
for any initial evolution ¢ € K, there exists a solution z(-) to (12.1)
starting at ¢ (in the sense of (12.2)) and viable in K (in the sense

of (12.3))
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We first observe that by taking
i) Flp) = F(e(0))

it) K:={pelC|p0)eK}

where K C X and F : X ~ X, usual viability problems are partic-
ular cases of functional viability problems because

i) '(t) € F(T(t)z) = F((T(H)2)(0)) = F(z(t))

i) z(t) = (T()z)(0) € K <= T(t)z €K

We can also extend this time-independent functional viability
problem to the time-dependent case. We introduce for that purpose

i) aset-valued map P: R~ C
it) a set-valued map F : Graph(P) ~ X

We thus say that P enjoys the functional viability property if and
only if for any ¢y and ¢ € P;,, there exists a solution z(-) to

for almost all t > to, '(t) € F(t,T(t)z) (12.4)

satisfying the initial condition T'(tp)z = ¢, and which is viable in the
sense that:
Vi>ty, T(t)z € P(t)

Before characterizing closed subsets K enjoying the viability prop-
erty, we show that this class of viability problems covers many ex-
amples.

Example 1. Viability problems with delays. We consider
p delay functions r; from [0,00[ to [0,00[. A differential inclusion
with delays is described by a set-valued map F : XP ~ X in the
following way:

T'(t) € F(z(t—ri(t)),...,z(t —rp(t)))

In the same way, viability constraints with delays are described
by ¢ delay functions s; from [0, 00[ to [0,00[ and a set-valued map
D: X%~ X:

Vie 0,00, z(t) € D(a(t—si(t),...,z(t— sq(t))
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This viability problem fits the general framework of functional via-
bility by taking

i) F(e) == Flo(-r1(t), ..., 0(-rp(1)))

i) K= {peC|p(0)€D(p(=s1(t)),...,0(=54(t))) } O

Example 2. Volterra viability problems. We consider a
function £ : R x R x X — Y (called a kernel) which expresses the
cumulated consequences [*__ k(t,s,z(s))ds in Y of the evolution of
the solution up to t.

A Volterra differential inclusion is described by a set-valued map
F:Y ~ X in the following way:

t
for almost all t € [0,00[, 2'(t) € F (/ k(t,s,w(s))ds)
— 00

In the same way, Volterra viability constraints are described by a
kernel I : R x R x X — Z and a set-valued map D : Z ~ X through
¢

Vte 0,00, x(t)eD(/

-0

I(t, s, x(s))ds)

Volterra viability problems are particular cases of functional viability
problems when we take

i) Flp) = F(J2u k(t,t + 5,¢(s))ds)

i) K := {peC|p0)e [0 I(tt+s,p(s)ds} O

12.2 Functional Viability Theorem

To proceed, we have to adapt to functional viability problems the
concept of viability domains;

Definition 12.2.1 (Functional Viability Domains) Let ¢ be gi-
ven in a subset K C C. We denote by Dx(p) C X the subset of
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elements v € X such that, for any € > 0, there exist h €]0,¢] and
op € C(—00, h; X) satisfying

i) TO)pn = ¢, T(h)pr € K
(12.5)

i) (pn(h) —on(0))/h € v+eB

Let F : C ~ X be a set-valued map. We shall say that K C
Dom(F) is a functional viability domain of F if and only if

Voek, Flp)NDrlp) # 0 (12.6)

We denote by C), the closed convex subset of A-Lipschitz functions
from ] — 00, 0] to X. Ascoli’s Theorem states that a closed subset K C
C» is compact if and only if K(0) := {©(0)}pex is bounded, because it
is closed and equicontinuous (by assumption) and pointwise bounded
because, for all ¢y € K and 7 <0,

[ < (7)) =B + 19(0)]] < Alr| + 10}

Theorem 12.2.2 [Haddad] Let F : Cy ~ X be a Marchaud map
and K C Dom(F) a closed subset of C.

Then K enjoys the functional viability property if and only if it
is a functional viability domain.

Remark — We observe that when K := {p €C | ¢(0) € K },
then
Dr(p) = Tk(»(0))

and that when F(p) := F(¢(0)), K is a functional viability domain of
F if and only if K is a viability domain of F'. Hence the Viability The-
orem for differential inclusions is a consequence of Theorem 12.2.2.
O

Proof of the necessary condition — Assume that a solu-
tion z(-) to the functional differential inclusion (12.1) satisfies: there
exists a sequence t, converging to 0 such that T'(t,)z € K.

Since F is upper hemicontinuous at ¢, we can associate with any
p € X* and € > 0 a neighborhood V of 0 in C such that

Yo ep+V, o(F(¥),p) <o(Fle)p) +e



12.2.  Functional Viability Theorem 407

Since T'(0)z = ¢, there exists 7 > 0 such that T'(7)z — ¢ € V for
|7| < n. Hence, integrating inequalities
<a'(r),p >< o(F(T(r)z),p) < o(F(p),p) +¢

from 0 to t,,, we obtain

z(tn) — xo

n

VpeX*, <p, > < o(F(p),p) +e€

This implies that the sequence v, := Z t"tn_xo is relatively com-
pact in X. Therefore, a subsequence (again denoted by) v, converges

to some v € X. Since for all p € X*, for n large enough,
<p,vn ><0(F(p),p) +e
we deduce that the limit v satisfies
Vpe X*, <p,v><o(F(p),p) +e
Letting € converge to 0, we obtain
Vp€ X*, <p,v><a(F(p),p)

so that v belongs to the closed convex hull of F(¢), which is equal
to F(p) because it is closed and convex.

It remains to show that v belongs to Dx(y). Indeed, T'(t,)r € K
by assumption, T'(0)z = ¢, so that condition (12.5) is satisfied with

on = x(:).

Proof of the sufficient condition — Let us consider an
initial evolution ¢ and choose T := 1. We shall construct a viable
solution to (12.1) on [0, 1], so that it will be possible to extend it on
[0, 00[. Let us set

Ko = {¢ € K[ [l¥(0) — o(0)]| <2X}

Since K C Cy and Ky(0) is bounded, we deduce that this subset Ky
is compact thanks to Ascoli’s Theorem. Since F is upper semicon-

tinuous with compact images, we know that F(Kp) is bounded. We
set C := F(Ky) + B which is bounded.
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For any integer m, we denote by V% the neighborhood of C defined

by
Ve, = {yecC| swp [o(r)|<a}
T€[~m,0]
We shall construct a sequence of approximate solutions in a first step,
show that this sequence converges to some limit in a second step and
prove that this limit is a viable solution in the third one.
— Construction of approximate solutions.
We begin by proving

Lemma 12.2.3 There ezists 0,, €]0, i[ such that, for any x € Ko,
we can find h € [0, %], 1 € C(—00,400; X) and v € F(Kp) satisfy-
ing

i) TOWeK, T(hyy ek, ((h)-¢(0)/hev+ B

W) T €x+vn"

iii) (T(0)y,v) € Graph(F)
(12.7)

Proof — Condition (12.6) allows us to associate with any ¥ € Ko
elements v € F (), hy €]0, =] and 9, € C such that

Yn(hy) — $(0)

1
cv+—B
P m

T(0)gn =1, T(hy)pn €K &
We point out that the Lipschitz constant of 1, on the interval
] — 00, hy] is less than or equal to A because T'(hy)in belongs to
K CCy.

Since Ky is compact, it can be covered by ¢ neighborhoods v; +

h¢j/m . 1
Vm . We set 0,, := ming<;<gq h¢i E]O, E]'

Let us take any x € K. It belongs to one of these neighborhoods:
then there exist elements v, h; := hy, > 0, ¥p, and v; € F(ip,)
satisfying properties (12.7). Hence the lemma ensues with h := h;,
Y =1, and v :=v;. O

We take m > 1/X. We thus deduce
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Lemma 12.2.4 There ezist a finite sequence of h; € [Hm,%], of
functions ¢; € C(—o0,+00; X) and elements v; € F(Ko) such that
Yo = p,ho =0 and

(i) T(0)y; € Ko, T(hy)¥; € ’C{),

(¥(hs) = ¥;(0))/hj € v; + 7B

i) T(0); € T(hjmy)jo1 + Vid'™

(i.e., SUP_,,<7<0 1%;(1) = Yj—1(r + hj—1)|| < hj/m)

[ 3it) (T(0)y;,v;) € Graph(F)
(12.8)

Proof — We proceed by induction. By Lemma 12.2.3, starting
with 1 := ¢, there exist h; € [0, %L—], 11 and v; € C such that the
above properties (12.7) hold true. It remains to check that T'(h1)y
belongs to Ky to deduce that properties (12.8) are also satisfied, i.e.,
that ||T'(h1)¥1(0) — (0)]] < 2A. This follows from the fact that

[T'(h1)1(0) — 0(0)]| < [l¢h1(h1) = %1(0)|| + [[%2(0) — ¢(0)]|
< A+ 2k < 2ARy

We apply Lemma 12.2.3 to the function x := T'(h1)¥1 and infer
the existence of hy € [0, %], 1o and vy satisfying properties (12.7)
and we verify that

1 1 1
T(h - < - “Vhy < -
IT(h)2(0) = 9(O)]| Mo+ —ha+ -+ Vs < (At =) + o)
We proceed until the index J such that
1 1
A+ —)(hathet-+hyo1) <23 < A+ —)(hithe+---+hy) O

We set 70, := 0,7}, = h1,..., 7 := 3.7_1 hj so that 77, > 1. We
define the functions y,,(-) on | — 0o, 72, [ by
i) ym(t):=(t) if t<0
i) ym(t) = Yj1(t — ) + Slo(Wi(hi) — $i41(0))

if te[rd, i
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and their values

Z; = ym( ¢J+1 +Z d’z ¢1+1(0))

We interpolate this sequence by piecewise linear functions defined on
each interval [7J,, 77F![ by

Tm(t) = z; + (t — ) (Tj1 — 25)/hjn

and we set Tp,(7) := ym(7) := (1) when 7 < 0.
Properties of the functions z,(-) are summarized in the following

Lemma 12.2.5 The functions () :] — 00, 1] are A-Lipschitz, sat-
isfy
i) Vte[o,1], z,(t)eC
(12.9)
i) Yte[0,1, [lzm(t) —(0)] < At

and

i) TO)zm = ¢
i) Vte] 00,1, (T(t)zm,z}(t)) € Graph(F) + (Vir x L1B)

1) Vte€l—o0,1], T(t)xm € K+ Vi
(12.10)
where €y, converges to 0.

Proof — The functions v; being A-Lipschitz, as translations
of functions of K, so are the functions yn,(-) and z,,(-).
The velocities of the approximate solutions belong to C' because

' (t) = 25T () ()
m hjt1 hj+1

z

_ Yit1(h)—¥;+1(0) 1
bt €vjy1+ ;B

On the other hand, since T'(0)z,, = ¢, we deduce that

[2m () = (0| = l|lzm(t) — zm(0)]] < AL
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It remains to prove properties (12.10).
For that purpose, we shall prove by induction that for any j =
0,...,J — 1, we have
j+1 !
sup [T Yum(r) = T(hisa Wyl < T2 (12.11)

-m<7<0

For j = 0 and 7 € [—hy,0], we obtain
1T (h1)ym (7) = T (1)1 (7) | = [[ym (7 + R1) = 91(7 + ha) |

= [|91(7 + h1 + 0) + 10(0) — $1(0) — 1 (7 + h1)|| = [|[¥1(0) — o (0)]|

= [[91(0) — p(0)[| < 22
When 7 € [-m, —h;], then

Ym (T + h1) = PY1(1 + h1) = (7 + h1) — 1 (7 + ha)

By (12.8)ii) with j = 1, we know that T'(hy)¥1 € ¢ + Vi/™. Then

property (12.11) is satisfied for j = 0. Assume that it is satisfied for
j — 1 and prove that it holds true for j.
First, when 7 € [—h;41,0], we get

IT (T Yy () — T(hj1) b (7))

= i1 (7 + T4 = 7)) = i1 (T + hyjz1) + Tlo(Wi(hi) — 1i1(0))

- ; : j AH
< I ls(hs) — i1 (0)]| < g b= Ta < T

When 7 € [-m, —hj11], we obtain
1T (% ym(T) = T(hj1) i (1)
< NT () ym(T + hj1) = T(hi)eh5 (7 + hjp) |

HIT(hj)¥i(T + hj+1) — it (T + hj4a)|| O
Induction hypothesis (12.11) and condition (12.8)iii) imply that
for all 7 € [-m, —h;1],

i J hs
IIT(T',]n+1)ym(T) - T(hj+1)1/)j+1(7-)” < %” + _Ln_‘:_l_ — m7
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Hence property (12.11) is established, from which we have to

deduce properties (12.10).
We observe that

sup [ (1) — yn(8)] < 2 (12.12)

t<r

This is obvious when ¢ < 0 because these functions are equal in this
case. Otherwise, when t € [r7,, 75.t1[, we obtain

[m(t) = m(O)] < lom(t) = 2 + 125 — un(] < 2

Therefore, inequalities (12.12) and (12.11) imply that
IT () am — T(hjp )il < (A + 751 /m
and thus, that for all t € [r7,, 7311],
IT(#)zm — T(hjr1)tjll
< |NTO)zm — TG @ml + 1T(r5 ) zm = T(hjr1) gl
<Arjg1+ A+ /m <3(A+ 1)/m =1 em
Consequently, when t € [],, 73],
T()xm € T(hjt1)bjr + V' CK+ Ve
and
(T(t)xm, T (1)) € (T(hj1)jt1,v41) + Vir X B
C Graph(F) + Ver x LB O
— Convergence of approximate solutions
Conditions (12.9) of Lemma 12.2.5 allow us to apply Ascoli’s
Theorem. Hence a subsequence (again denoted by) z,, converges

uniformly on every compact interval to a continuous function z(-) :
] = o0,1] — X, so that for all ¢ > 0, T(t)z,, converges to T'(t)x



12.2.  Functional Viability Theorem 413

in C. Condition (12.9)i) and Alaoglu’s Theorem imply also that a
subsequence (again denoted by) z.,(-) converges weakly to z'(-) in
L(0,1; X) for some positive constant b.

— The limit is a solution
Conditions (12.10) of Lemma 12.2.5 allow us to apply the Con-
vergence Theorem 2.4.4, where C plays the role of X, X the role of Y,
T (t)xm the role of z,,(t) and z/,() the role of y,(-). Hence the limit
z(-) is a solution to the functional differential inclusion (12.1), which
is viable since K is closed. The proof of the Functional Viability
Theorem is completed. O

12.3 History-dependent Viability Constraints

We consider the case when
K = {p €C suchthat ¢(0) € M({U(y))} (12.13)

where U € L(C,Y) is a continuous linear operator and where M :
Y ~ X is a closed set-valued map.

We introduce the affine subspace I'(z) C C(0,1; X) of functions
¥ € C(0,1; X) satisfying (0) = . With any ¢ € Cy and ¢ €
I'(p(0)) we associate the concatenated function ¢ V¢ € C(—o0,1; X)
equal to ¢ on | — 00,0] and to ¥ on [0, 1].

We denote by A : C ~ C the set-valued map! associating with
any @ € C the subset Ay of functions v € C such that there exist
sequences of h, > 0 converging to 0+, of v, converging to v in C and
of functions ¢, € I'(p(0)) such that

Vn>0, T(hu)(eVen) = @+ hpiy

Observe that if ¢ is the restriction to | — 0o, 0] of a differentiable
function @ defined on | — 00,1], then Ap := ¢ and that Ap # 0
whenever ¢ is the restriction to | — 0o, 0] of a Lipschitz function @
defined on | — 00, 1]. In this case, every selection v € Ay is almost
everywhere equal to ¢':

for almost allt > 0, v(t) = ¢'(t)

'We can regard A as a contingent infinitesimal generator of the semi-group
T().
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We introduce now the adjacent derivative D’M(y,z) of M at
(y,z) defined? in the following way: u € D’ M(y,x)(v) if and only
if for all sequences h,, > 0 converging to 0, there exist sequences u,
converging to u and v, converging to v such that

Vn>0, z+hpu, € M(y+ hpvn)

If M is sleek at (y,z), then both contingent and adjacent derivatives
at (y,z) coincide. This is then the case when the graph of M is
either convex or a smooth manifold. See Chapter 5 of SET-VALUED
ANALYSIS for further details on adjacent derivatives of set-valued
maps.

We provide more and more general sufficient conditions for sub-
sets K defined by (12.13) to be viability domains.

Theorem 12.3.1 We posit the following “surjectivity condition” on
U: there exists a constant ¢ > 0 such that for all h > 0,

V(v,u) €Y x X, 3¢, €C(0,1; X) such that
PYr(0) =0, Yp(h)=u, UT(R)(pVep)=v

and satisfying

[ ¥nlle,x) < elllull + llvl)

Therefore
D'M(Ugp,9(0))(U(Ap)) C Dk(y)

The next statement trades surjectivity condition on U with re-
strictions on the size of the norm of U and the norm || D" M (y, z)||

2Recall that the adjacent tangent cone T}}(z) to a subset K at z € K is defined
by

Tk (2) := Liminfs_o+ (K}:z) = {v| limdi(—?h—@ = 0}

Then
Graph(DbM(ya z)) = T&raph(M)(y’x)
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defined by

o
HDbM(y"")” . uepbiﬁg,z)(v)ﬁ

Theorem 12.3.2 Assume that for any (y,z) € Graph(M), the do-
main Dom(D’M(y,z)) =Y and that

V (y, ¢) € Graph(M),

D'M(y,2)| < B < +o0
and that there exists v > 0 such that

IUT(R)(OV )| < vhlY]

Therefore
D’M(Up,#(0))(U(Ap)) C Dx(v)

These results follow from the more general sufficient condition,
which looks quite involved, but which is flexible enough to cover a
wide variety of examples.

Theorem 12.3.3 We posit that the following “stability condition”
linking U and M : there erist constants ¢,l > 0 and a €)0,1] such
that for all h > 0,

[V (y,z) € Graph(M), V (v,u) € Y x X,
Jp €C(0,1;X), ug € X, v €Y such that ¥p(0) =0 &

Yr(h) € D"M (U, 0(0))(UT(R)(OV ¢p) — v — va) + u + Uq

and satisfying

L Iellex) < clllull + vl luall + llvall < alllull + [l0])
Therefore
DM (Ug,¢(0)(U(Ap)) C D(p)

Proof — Let us pick v € Ay and u € D" M (U, (0))(Uv) and
check that u belongs to Dx(p).

We know that there exist sequences h,, > 0 converging to 0+, u,
converging to v and v, converging to Uv such that

Vn>0, ¢0)+hpu, € M(Up+ hpvy)
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But we also know by definition of A that there exist sequences v,
converging to v and ¢, € I'(¢(0)) such that

Vn>0, T(hy)(eVen) = @+ hny

Denote by A, the Fréchet differentiable operator from C(0,1; X) x
Y X X toY x X defined by

An(¥,y,x) = (UT(hn)(o VY) = y,¥(hn) — z)
We observe that
An(@n, Up + v, 9(0) + hntin) = i (Ut — v, v (0) — )
and that
A (¥, 9,2) (& v,u) = (UT(ha)(0V €) — y,€(hn) — 2)

We the apply Theorem 3.4.5 of SET-VALUED ANALYSIS which we
now recall:

Theorem 12.3.4 Let X be a Banach space, L C X be a closed
subset and 'Y a normed space. Consider a sequence of Fréchet differ-
entiable operators A, from X toY and elements zq, € L such that
Zon converges to o € L and An(zon) to yo.

We assume that A, wverify the following stability assumption:
there ezist constants ¢ > 0, a € [0,1] and n > 0 such that

Yz € LNB(xg,n), By C A, (z)(Tr(z) NecBx)+ aBy (12.14)

Then there ezist [ > 0 and v > 0 such that

Y9n € Bo,7), @ (on A7 (un) VL) < Iyn — An(zon)]
We apply this theorem with

X =C0,1X)xYxX, Y:=YxX
L :=T((0)) x Graph(M)
Yn =0 & zon := (¢n, Up + hnvp, ©(0) + hpu,)

We have seen that An(zon) converges to yo := 0.
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By the stability assumption, there exist ¢ > 0 and « €]0, 1] such
that for any (¢, y,z) and any (v,u), there exists a solution

(Y, Yn, Th) €
F(O) X TGraph(M)(USOa ‘P(O)) = TI"((p(O))XGI‘aph(M)(QO’ U‘P7 90(0))

to the equation A}, (v, y, z)((¥n, yn, zn)) = (v, u) satisfying the above
estimates.

Then we can apply Theorem 12.3.4: for each n, there exists a
solution (¢n, Yn, Zn) to the equation Ay (tn,Yn,Zrn) = 0 belonging to

(BnsYn,zn) € T(p(0)) x Graph(M)
and satisfying the inequalities
|| ttm, — SOan(o,1;x) + lyn = Up = hnval| + [lzn — ¢(0) — Anun||

< ha([Uvn = va | + [lvn(0) = unl|)

This implies in particular that there exists a sequence e, converging
to 0 such that

pn(hn) = zn = @(0) + hpun + hnen € M(UT(hp)(@ V tin))

and such that

pin(hn) — ¢(0)

5 = up + e, converges to u
(13

Since p, belongs to I'(¢(0)), we infer that the function ¢, := ¢V puy
satisfies the properties

T(hn)pn € K & @n(hn) = ©(0) + hn(un + €n)

where u, + e, converges to 0. We thus conclude that u belongs to
Dr(p). O

Proof of Theorem 12.3.2 — We have to prove that the
stability condition of Theorem 12.3.3 holds true. We take i) €
C(0,1; X) defined by ¥n(t) := tu/h if t € [0,h] and Yn(t) == (1 —
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t)u/((1 - h)) if t € [h, 1], so that ||| < ||lu| satisfies 1,(0) = 0 and
Yr(h) = u. Let us set p := Tj-L,@ We then take

Vo = UT(h)(0OV ¢p) — pv

and
€ (1—p)D"M(y, )(~v)

with minimal norm. We thus see that
n(h) € D*M(y,2)(UT(R)(0V %) — v~ va) + u ~ Ua
and that
lvall < YhlIgnll + pllvll & lluall < (1= p)Bllvll = pllv]l (12.15)

Therefore the stability assumption is satisfied with a €]p,1[ for h
small enough.

Proof of Theorem 12.3.1 — The stability assumption is
obviously satisfied with u, =0 and v, =0. O

12.3.1 Viability constraints with delays

Here, we take Y := X? and U(yp) := (p(—b61),...,9(—0p)). Then
the surjectivity assumption of Theorem 12.3.1 is satisfied, so that we
obtain the following consequence:

Corollary 12.3.5 Let us consider p positive delays 61,...,0,. As-
sume that

K = {¢€C suchthat p(0) € M(p(—61),...,0(—0p))}

Then

D’ M(p(=61),-- -, (=), 9(0))(Ap) (=61), - -, (Ap)(=6,)) C D(w)
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12.3.2 Volterra Viability constraints

Let us consider a finite dimensional space Y, a set-valued map M :
Y ~ X and A € L'(0,00; L(X,Y)). We consider the case when U is
defined by

0
Up := / A(—s)p(s)ds
—00
Corollary 12.3.6 Let us consider A € L*(0,00; L(X,Y)) satisfying

sup [|A(t)llcerx) < v < +oo
t€[0,1]

Assume that for all (y,z) € Graph(M), Dom(D°*M(y,z)) =Y and
that
sup ID"M(y,2)| < B < +oo
(y,z)eGraph(m)

Let K be the subset defined by
0
K = {(p € C such that ¢(0) € M(/ A(—s)cp(s)ds)}

Then

D'M (/_Ooo A(-s)go(s)ds,w(O)) (/io A(—s)cp'(s)ds) C Dx(p)

Proof — It follows from Theorem 12.3.2. O

12.4 Functional Viability Kernel

The proof of Theorem 12.2.1 shows also that the solution map is
upper semicontinuous and that there exist functional viability kernels
of closed subsets K C C,.

We denote by S(p) or by Sx(¢) the (possibly empty) set of solu-
tions to differential inclusion (12.1) starting from the initial evolution
. We shall say that the set-valued map S defined by

Dom(F) 3¢ +—— S(yp)

is the solution map of F (or of functional differential inclusion (12.1).)
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We shall say that F is a Marchaud map if it is a nontrivial up-
per hemicontinuous map with nonempty compact convex images and
with linear growth in the sense that there exists ¢ > 0 such that

Veoel, [IF@I < cleO)ll+1)

Theorem 12.4.1 (Continuity of the Solution Map) Let us con-
sider a Marchaud map F : Cy ~ X.

The solution map S is upper semicontinuous with compact images
from its domain to the space C(—o0,+00; X).

Actually, the graph of the restriction of S to any compact subset
K of Cy is compact.

Proof —  We shall show that for all ¢ € Dom(F) and for
all n > 0, the restriction to a compact subset X C Dom(F) of the
set-valued map § is compact.

Let us choose a sequence of elements (¢, z,(+)) of the graph of
the solution map S. They satisfy:

i) () € F(T(t)zn)
“’) T(O)mn = ¥n

The linear growth of F implies that
lzn @Il < c(llzn®)ll +1)
and thus, that
Vn20, zn@®l < (len(0)l+De” & llzn)l < clllen(0)]+1)e®

Therefore, since the sequence of ¢, (0) is bounded, the sequence z,(-)
is relatively compact in the Fréchet space C(0, 0o0; X)) by Ascoli’s The-
orem, and the sequence z) (-)e~® is weakly relatively compact in
L*(0,00; X) by Alaoglu’s Theorem. Let us take b > c.

Hence a subsequence (again denoted by) z,, converges to z in the
sense that:

i) n(-) converges to z(-) uniformly on compact intervals

i) ),(-) converges to z'(-) weakly in L!(0, 00; X;e~%)
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Inclusions
Vn >0, (T(t)zn,z,(t)) € Graph(F)

imply that
for almost allt > 0, z'(t) € F(T(t)x)

thanks to the Convergence Theorem 2.4.4.

We thus have proved that a subsequence of the elements (¢n,, Z5(+))
of the graph of S restricted to K converges to an element (p, z(:)) of
this graph. This shows that it is compact, and thus, that the solution
map § is upper semicontinuous with compact images. O

Definition 12.4.2 (Functional Viability Kernels) Let K C Cy
be a subset of the domain of a set-valued map F : C ~ X. We shall
say that the largest closed functional viability domain contained in K
(which may be empty) is the viability kernel of KX and denote it by
Viabz(K) or, simply, Viab(K).

We can adapt to the functional case the existence theorem of a
viability kernel.

Theorem 12.4.3 Let us consider a Marchaud map F : C ~ X with
compact convex images. Then the viability kernel of K does ezist
and is the subset of initial evolutions ¢ € K such that at least one
solution starting from ¢ is viable in K.

12.5 Functional Viability Tubes

We can now extend this time-independent functional viability theo-
rem to the time-dependent case. We consider

i) a set-valued map P : R~ Cy
it) a set-valued map F : Graph(P) ~ X

Definition 12.5.1 For any ¢ € P(t), we denote by DP(t,¢)(1) C
X the subset of elements v € X such that, for any € > 0, there exist
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h €]0,¢€] and ¢p € C(—00,t + h) satisfying
i) T@en = o
ii) T(t+h)pn € P(t+h) (12.16)

i11) (pn(t+h) — en(t))/h € v+eB

We shall say that the set-valued map P is a functional viability tube
if and only if

Vi, e P(t), Ft,o) NDP(t, o)1) # 0

Theorem 12.5.2 Assume that the set-valued map P : R ~ C), takes
its values into A-Lipschitz functions and that its graph is closed.

Assume also that F is a Marchaud map. Then P enjoys the
functional viability property: for any ty and ¢ € Py,, there ezists a
solution z(-) to

for almost all t > to, z'(t) € F(t,T(t)x) (12.17)

satisfying the initial condition T (tg)x = ¢ which is viable in the sense
that:
Vit>ty, T(t)x € P(t)

if and only if is a functional viability tube.

Proof — The proof of the necessary condition is fully analo-
gous to the time-independent case. We deduce the sufficient condi-
tion from the time-independent case by observing that the functional
viability property for the new system

i) (s'(8),2'(t)) € {1} x F((T'()s)(0),T(t)x)
i) T(to)(s,z) = (to,¥)

and the closed subset £ defined by
L = {C(—0,0;R x X)1 | peP(s(0)) }

is equivalent to the functional viability property of the time-dependent
system (12.4).
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The assumptions of the Functional Viability Theorem 12.2.2 are
satisfied since the set-valued map G defined by G(s, ¢) := F(s(0), ¢)
is upper semicontinuous with compact convex images, taking its val-
ues in the subset of max(1, A)-Lipschitz functions.

It remains to check that £ is a functional viability domain of G
if and only if P is a functional viability tube of F.

Indeed, take ¢ > 0 and v € F(t,9) N DP(t,»)(1) and prove
that 1 x v belongs to the intersection of 1 x G(s,¢) and Dg(s, )
for any function s(:) such that s(0) = t. Then (s,9) € L since
v € P(s(0)) = P(¢).

We know that there exist h €]0,¢] and ¢p, € C(—o0,t + h) such
that properties (12.16) are satisfied. Let us define the functions s
and 1y, on | — oo, h| by

i) sp(7) = s(7) if 7<0 and sp(r)=t+7 if 7€[0,h]
@) Yn(T) = or(T +1)

Then, properties
T(0)(sh,¥n) = (s,9) & T(h)(sh,¥n) € L

(because T'(h)ir, = T(t + h)pp € P(t + h) = P((T(h)sr)(0))) and

sn(h) —sn(0) _ 1 & Yr(A) —¥n(0) _ en(t+R) — on(d)
h h h

imply that 1 x v belongs to Dz(s,¢) O



