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Epigraph 

Viability theory is a mathematical theory that offers mathemati
cal metaphors1 of evolution of macrosystems arising in biology, eco
nomics, cognitive sciences, games, and similar areas, as well as in 
nonlinear systems of control theory. 

We shall specifically be concerned with three main common fea
tures: 

• A nondeterministic (or contingent) engine of evolution, pro
viding several (and even many) opportunities to explore the 
environment, 

• Viability constraints that the state of the system must obey at 
each instant under "death penalty", 

• An inertia principle stating that the "controls" of the system 
are changed only when viability is at stake. 

The first two features are best summarized by the deeply intuitive 
statement attributed to Democritus by Jacques Monod: "Everything 
that exists in the Universe is due to Chance and Necessity". The in
ertia principle is a mathematical formulation of the concept of punc
tuated equilibrium introduced recently in paleontology by Elredge 
and Gould. It runs against the teleological trend assigning aims to 

1 Like other means of communications (languages, painting, music, etc.), math
ematics provides metaphors that can be used to explain a given phenomenon by 
associating it with some other phenomenon that is more familiar, or at least is 
felt to be more familiar. This feeling of familiarity, individual or collective, in
born or acquired, is responsible for the inner conviction that this phenomenon is 
understood. 
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be achieved (in even an optimal way) by the state of the system and 
the belief that actors control the system for such purposes. 

Nondeterminism: We shall mean by this term that les 
jeux ne sont jamais faits, in the sense that at each instant, there 
are several available, or feasible, evolutions which depend upon the 
state, or even the history of the evolution of the state of the system 
up to this time. Therefore, the concept of evolution borrowed from 
Newtonian mechanics is no longer adequate for such systems. It has 
led to the misleading identification of mathematics with a determin
istic paradigm, which implies that the evolution of macrosystems can 
be predicted. Even if we were to accept the existence of determin
istic mechanisms2 underlying the evolution of biological, economic 
and social macrosystems, we know that such systems often can be 
inherently unstable - and this places the actual computation of their 
solutions beyond the capabilities of even the most sophisticated of 
present-day computers! To "run" models which have some inbuilt 
structural instability can serve no useful purpose. 

Thus, we suppose here that the dynamics responsible for the evo
lution are not deterministic. This lack of determinism has many dif
ferent features: it may be due to nonstochastic "uncertainty" 3 , to 
"disturbances" and "perturbations" of various kinds, or to errors in 
modeling due to the impossibility of a comprehensive description of 
the dynamics of the system. 

In several instances, the dynamics of the system are related to 
certain "controls", which, in turn, are restricted by state-dependent 
constraints (closed systems.) Such controls, which we do not dare to 
call regulees instead of controls, are typically 

1. prices or other fiduciary goods in economics (when the evolu
tion of commodities and services is regulated by Adam Smith's 
invisible hand or the market, the planning bureau, ... ) , 

2 And now we discover that some of our "perfectly deterministic" models can 
exhibit all sorts of different trajectories. These are chaotic systems, making 
prediction virtually impossible. 

3 No a priori knowledge of an underlying probability law on the state of events is 
made. Fuzzy viability provides models where the available velocities can be ranked 
through a membership cost function to take into account that some velocities are 
more likely to be chosen than others. 
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2. genotypes or fitness matrices in genetics and population ge
netics (when the evolution of phenotypes of a population is 
regulated by sexual reproduction and mutations), 

3. conceptual controls or synaptic matrices in pattern recogni
tion mechanisms and neural networks (when the sensory-motor 
state is regulated by learning processes), 

4. affinity matrices in immunological systems, 

5. strategies in differential games (when the state of the system is 
regulated by the decision rules for the players), 

6. coalitions in cooperative games, 

7. cultural codes in sociology (when the evolution of societies is 
regulated by every individual believing and obeying such codes), 
etc .. 

Viability: For a variety of reasons, not all evolutions 
are possible. This amounts to saying that the state of the system 
must obey constraints, called viability constraints. These constraints 
include homeostatic constraints in biological regulation, scarcity con
straints in economics, state constraints in control, power constraints 
in game theory, ecological constraints in genetics, sociability con
straints in sociology, etc. Therefore, the goal is to select solutions 
which are viable in the sense that they satisfy, at each instant, these 
constraints. 

Viability theorems thus yield selection procedures of viable evo
lutions, i.e., characterize the connections between the dynamics and 
the constraints for guaranteeing the existence of at least one viable 
solution starting from any initial state. These theorems also pro
vide the regulation processes (feedbacks4) that maintain viability, or, 
even as time goes by, improve the state according to some preference 
relation. 

Contrary to optimal control theory, viability theory does not re
quire any single decision-maker (or actor, or player) to "guide" the 

4 thus providing the central concept of cybernetics as a solution to the regula
tion problem. 
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system by optimizing an intertemporal optimality criterion5 . 

Furthermore, the choice (even conditional) of the controls is not 
made once and for all at some initial time, but they can be changed 
at each instant so as to take into account possible modifications of 
the environment of the system, allowing therefore for adaptation to 
viability constraints. 

Finally, by not appealing to intertemporal criteria, viability theory 
does not require any knowledge of the future6 (even of a stochastic 
nature.) This is of particular importance when experimentation 7 is 
not possible or when the phenomenon under study is not periodic. 
For example, in biological evolution as well as in economics and in 
the other systems we shall investigate, the dynamics of the system 
disappear and cannot be recreated. 

Hence, forecasting or prediction of the future are not the issues 
which we shall address in this book. 

However, the conclusions of the theorems allow us to reduce the 
choice of possible evolutions, or to single out impossible future events, 
or to provide explanation of some behaviors which do not fit any 
reasonable optimality criterion. 

Therefore, instead of using intertemporal optimization8 that in
volves the future, viability theory provides selection procedures of 
viable evolutions obeying, at each instant, state constraints which 
depend upon the present or the past. (This does not exclude antici
pations, which are extrapolations of past evolutions, constraining in 
the last analysis the evolution of the system to be a function of its 
history.) 

5 the choice of which is open to question even in static models, even when 
multicriteria or several decision makers are involved in the model. 

6 Most systems we investigate do involve myopic behavior; while they cannot 
take into account the future, they are certainly constrained by the past. 

7Experimentation, by assuming that the evolution of the state of the system 
starting from a given initial state for a same period of time will be the same 
whatever the initial time, allows one to translate the time interval back and 
forth, and, thus, to "know" the future evolution of the system. 

8which can be traced back to Sumerian mythology which is at the origin of 
Genesis: one Decision-Maker, deciding what is good and bad and choosing the 
best (fortunately, on an intertemporal basis, thus wisely postponing to eternity 
the verification of optimality), knowing the future, and having taken the optimal 
decisions, well, during one week ... 
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Nonetheless, selection through viability constraints may not be 
discriminating enough. Starting from any state at any instant, sev
eral viable solutions may be implemented by the system, including 
equilibria, which are stationary evolutions9 . 

Thus further selection mechanisms need to be devised or discov
ered. We advocate here a third feature to which a selection procedure 
must comply, the Inertia Principle. 

Inertia Principle: which states that "the controls are 
kept constant as long as viability of the system is not at stake". 

Indeed, as long as the state of the system lies in the interior of 
the viability set (the set of states satisfying viability constraints), any 
regularity control will work. Therefore, the system can maintain the 
control inherited from the past. This happens if the system obeys the 
inertia principle. Since the state of the system may evolve while the 
control remains constant, it may reach the viability boundary with 
an "outward" velocity. This event corresponds to a period of crisis: 
To survive, the system must find another regulatory control such 
that the new associated velocity forces the solution back inside the 
viability set. (See Figure 1.) Alternatively, if the viability constraints 
can evolve, another way to resolve the crisis is to relax the constraints 
so that the state of the system lies in the interior of the new viability 
set. When this is not possible, strategies for structural change fail: 
by design, this means the solution leaves the viability set and "dies". 

Naturally, there are several procedures for selecting a viable con
trol when viability is at stake. For instance, the selection at each 
instant of the controls providing viable evolutions with minimal ve
locity is an example that obeys this inertia principle. They are called 
"heavy" viable evolutions10 in the sense of heavy trends in economics. 

9 This touches on another aspect of viability theory - that concerned with 
complexity and robustness: It may be observed that the state of the system 
becomes increasingly robust the further it is from the boundary of the viability 
set. Therefore, after some time has elapsed, only the parts of the trajectories 
furthest away from the viability boundary will remain. This fact may explain the 
apparent discontinuities ("missing links") and hierarchical organization arising 
from evolution in certain systems. 

10When the controls are the velocities, heavy solutions are the ones with min
imal acceleration, i.e., maximal inertia. 
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Figure 0.1: Heavy Viable Solutions 
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Heavy viable evolutions can be viewed as providing mathemati
cal metaphors for the concept of punctuated equilibrium1 introduced 
recently in paleontology by Elredge and Gould. 

In a nutshell, the main purpose of viability theory is to explain the 
evolution of a system, determined by given nondeterministic dynam
ics and viability constraints, to reveal the concealed feedbacks which 
allow the system to be regulated and provide selection mechanisms 
for implementing them. 

It assumes implicitly an "opportunistic" and "conservative" be
havior of the system: a behavior which enables the system to keep 
viable solutions as long as its potential for exploration (or its lack 
of determinism) ~described by the availability of several evolutions 
~ makes possible its regulation. 

On the mathematical side, viability theory contributed to vigor
ous renewed interest in the field of "differential inclusions", as well as 
an engine for the development of a differential calculus of set-valued 
maps2. Indeed, as it often occurs in mathematics, these techniques 
have already found applications to other domains, for instance, to 
nonlinear systems theory (tracking, zero dynamics, local controlla
bility and observability3 , control under state constraints, etc.) and 

1 Excavations at Kenya's Lake Thrkana have provided clear evidence of evolu
tion from one species to another. The rock strata there contain a series of fossils 
that show every small step of an evolution journey that seems to have proceeded 
in fits and starts. Examination of more than 3,000 fossils by P. Williamson showed 
how 13 species evolved. The record indicated that the animals stayed much the 
same for immensely long stretches of time. But twice, about two million years 
ago and then, 700,000 years ago, the pool of life seemed to explode - set off, 
apparently, by a drop in the lake's water level. Intermediate forms appeared very 
quickly, new species evolving in 5,000 to 50,000 years, after millions of years of 
constancy, leading paleontologists to challenge the accepted idea of continuous 
evolution. 

2 0ne can say that by now the main results of functional analysis have their 
counterpart in what can be called Set- Valued Analysis. Only the results needed 
in this book will be presented. An exposition of Set-Valued Analysis can be found 
in the companion monograph SET-VALUED ANALYSIS by Helene Frankowska and 
the author. 

3 These topics will be not developed here. The forthcoming monograph 
CONTROL OF NONLINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS by Helene 
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Artificial Intelligence (qualitative physics, learning processes, etc.) 
These techniques can be efficiently used as mathematical tools and 
have been related to other questions (such as Lyapunov's second 
method, variational differential equations, etc .. ) 

This is a book of motivated mathematics4 , which searches for new 
sources of mathematical metaphors. 

Unfortunately, the length of the theoretical part of viability the
ory did not allow us to include in this volume the discussion of 
the motivating problems. Some problems arising in Artificial In
telligence, economics, game theory, biology, cognitive sciences, etc., 
which have spawned many of the mathematical questions treated 
below, will be investigated in forthcoming additional volumes. 

By looking at common features of otherwise very different sys
tems and looking at shared consequences, it was necessary to set our 
mathematical metaphors at a fairly high level of abstraction, yielding 
an amount of information inversely proportional to the height of this 
level so to speak. 

For the time being at least, this theory is still far from providing 
an ideal description of the evolution of macrosystems. Some poten
tial users (economists, biologists, ... ) should not be disappointed or 
discouraged by the results obtained so far - for it is too early for 
such a theory to be "applied" in the engineering sense. 

However, the available results may explain a portion of "reality" 

Frankowska provides an exhaustive treatment of Control Theory using set-valued 
analysis and differential inclusions. 

4 We have already mentioned a mathematical metaphor as a means of asso
ciating a particular mathematical theory with a certain observed phenomenon. 
This association can arise in two different ways. The first possibility is to look for 
an existing mathematical theory which seems to provide a good explanation of 
the phenomenon under consideration. This is usually regarded as the domain of 
applied mathematics. However, it is also possible to approach the problem from 
the opposite direction. Other fields provide mathematicians with metaphors, and 
this is the domain of what can be called "motivated mathematics". 

The ancients divided analysis into two forms: zetetic, which corresponds to 
what we mean by motivated mathematics or modeling, and poristic, which cor
responds to applied mathematics, a procedure by which the validity of the model 
is confirmed. It is much later, in 1591, that F. Viete added a third form, rhetic 
or exegetic, which would correspond to our pure mathematics. 
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in the extent where the degree of reality for a social group at a given 
time is understood in terms of the consensus5 interpretations of the 
group member's perceptions of their physical, biological, social and 
cultural environments. 

I hope that this book may help readers from different scientific 
areas to find a common ground for comparing the behaviors of the 
systems they study and for asking new questions. Anyhow, whatever 
the ultimate outcome, the motivation provided by the viability prob
lems has already benefited mathematics by suggesting new concepts 
and lines of argument, by giving some inkling of possible solutions, or 
by developing new modes of intuition, leading many mathematicians 
to revive and enrich the theory of dynamical systems and set-valued 
analysis. The history of mathematics is full of instances in which 
mathematical techniques motivated by problems encountered in one 
scientific field have found applications in many others. It is this 
"universality" which renders mathematics so fascinating. 

Jean-Pierre Aubin 
Paris, May 12, 1990 

5Since our brains are built according to the same biological blueprint, and 
since the general acceptance of local cultural codes seems to be an innate and 
universal phenomenon, it is highly probable that the individuals comprising a so
cial group arrive at a consensus wide enough for a reasonably believable concept 
of reality to emerge. However, the prophets and scholars of each group contin
ually question the validity of the metaphors on which this consensus is based, 
while the high priests and other guardians of ideological purity ultimately try to 
transform it into dogma and impose it on the other members of the group. (It 
often happens that the prophets and scholars themselves eventually become high 
priests ; movement in the reverse direction is much less common.) It is through 
this permanent struggle that knowledge evolves. But there is an important dif
ference between the metaphors of science and those of, say, religion or ideology : 
a metaphor that claims scientific validity must be limited, even narrow, in scope. 
The more "applied" a scientific study, the narrower it must necessarily be. Sci
entific theories - scientific metaphors - must be capable of logical refutation 
(as in mathematics) or of experimental falsification (which of course requires that 
theories be falsifiable.) Ideologies escape these requirements : the "broader" they 
are, the more seductive they appear, the more dangerous they can be. 
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Introduction 

Consider the evolution of a control system with (multivalued) 
feedbacks: 

{ 
i) x'(t) = f(x(t), u(t)) 
ii) u(t) E U(x(t)) 

where the state x(·) ranges over a finite dimensional vector-space X 

and the control u( ·) ranges over another finite dimensional vector
space Z. Here, the first equation describes how the control - re
garded as an input to the system - yields the state of the system 1 

-regarded as an output- whereas the second inclusion shows how 
the state-output "feeds back" to the control-input. The set-valued 
map U : X ""'-'* Z may be called an "a priori feedback". It describes 
the state-dependent constraints on the controls. A solution to this 
system is a function t--> x(t) satisfying this system for some control 
t--> u(t). 

Viability constraints are described by a closed subset2 K of the 
state space: These are intended to describe the "viability" of the 
system because outside of K, the state of the system is no longer 
viable. 

A subset K is viable under the control system described by f and 
U if for every initial state xo E K, there exists at least one solution 
to the system starting at xo which is viable in the sense that 

\f t 2: 0, x(t) E K 

1once the initial state is fixed. 
2 We shall naturally investigate in the book the cases when K depends upon 

the time, the state, the history of the evolution of the space. We shall also cover 
the case of solutions which improve a reference preorder when time evolves. 
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The first task is to characterize the subsets having this property. 
To be of value, this task must be done without solving the system 
and then checking the existence of viable solutions for each initial 
state. 

An immediate intuitive idea jumps to the mind: at each point on 
the boundary of the viability set, where the viability of the system is 
at stake, there should exist a velocity which is in some sense tangent 
to the viability domain and serves to allow the solution to bounce 
back and remain inside it. This is, in essence, what the Viability 
Theorem states. But, first, the mathematical implementation of the 
concept of tangency must be made. 

We cannot be content with viability sets that are smooth mani
folds, because inequality constraints would thereby be ruled out. So, 
we need to "implement" the concept of a direction v tangent to K 
at x E K, which should mean that starting from x in the direction 
v, we do not go too far from K. 

To convert this intuition into mathematics, we shall choose from 
among the many ways there are to translate what it means to be "not 
too far" the one suggested by Bouligand fifty years ago: a direction v 
is contingent to K at x E K if it is a limit of a sequence of directions 
Vn such that x + hn Vn belongs to K for some sequence hn -+ 0+. 
The collection of such directions, which are in some sense "inward", 
constitutes a closed cone TK(x), called the contingent cone3 to Kat 
x. Naturally, except if K is a smooth manifold, we lose the fact that 
the set of contingent vectors is a vector-space. 

We then associate with the dynamical system (described by f 
and U) and with the viability constraints (described by K) the (set
valued} regulation map RK. It maps any state x to the subset RK(x) 
consisting of controls u E U ( x) which are viable in the sense that 

f(x, u) is contingent to K at x 

If, for every x E K, there exists at least one viable control u E 

RK ( x), we then say that K is a viability domain of the control system 
with dynamics described by both f and U. 

3 replacing the linear structure underlying the use of tangent spaces by the 
contingent cone is at the root of Set- Valued Analysis. 



Introduction 3 

The Viability Theorem we mentioned earlier holds true for a 
rather large class of systems, called Marchaud systems: Beyond im
posing some weak technical conditions, the only severe restriction is 
that, for each state x, the set of velocities f(x, u) when u ranges over 
U(x) is convex4 . From now on, we assume that the systems under 
investigation are Marchaud systems. 

The basic viability theorem states that for such systems, 

a closed subset K is viable under a Marchaud system 
if and only if K is a viability domain of this system. 

Many of the traditional interesting subsets such as equilibrium 
points, trajectories of periodic solutions, the w-limit sets of solutions, 
are examples of closed viability domains. Actually, equilibrium points 
x, which are solutions to 

f(x, u) = 0 for some u E U(x) 

are the smallest viability domains, the ones reduced to a single point. 
This is because being stationary states, the velocities f(x, u) are 
equal to zero. Furthermore, there exists a basic and curious link 
between viability theory and general equilibrium theory: 

every compact convex viability domain 
contains an equilibrium point. 

This statement is an equivalent version of the 1910 Brouwer Fixed 
Point Theorem, the cornerstone of nonlinear analysis, which finds 
here a particularly relevant formulation (viability implies stationar
ity.) 

What happens if a closed subset K is not a viability domain? 
First, we characterize the points of the boundary from which 

some, or all solutions enter or leave the subset (anatomy of a set). 

4 This happens for the class of control systems of the form 

x'(t) = f(x(t)) + G(x(t))u(t) 

where G(x) are linear operators from the control space to the state space and 
when the control set U (or the images U(x)) are convex. 
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Second, we also look for closed subsets of K which are viability 
domains. We shall prove that 

there exists a largest closed viability domain contained in K. 

This domain will be denoted Viab( K) and called the viability kernel5 

of K. It may be empty (in this case, the subset K is some kind of 
"repeller".) Furthermore, every closed subset of the viability kernel 
is contained in a minimal viability domain, called viability envelope. 

Third, one can also keep the set of constraints and change the 
dynamics, as it is done in mechanics of unilateral constraints (varia
tional differential equations). 

The Viability Theorem also provides a regulation law for regulat
ing the system in order to maintain the viability of a solution: The 
viable solutions x(t) are regulated by viable "open loop controls" 
u(t) through the regulation law: 

for almost all t, u(t) E RK(x(t)) 

The multivaluedness of the regulation map (this means that sev
eral controls u(t) may exist in RK(x(t))) is an indicator of the "ro
bustness" of the system: The larger the set RK(x(t)), the larger the 
set of disturbances which do not destroy the viability of the system ! 

Observe that solutions to a control system are solutions to the 
differential inclusion x'(t) E F(x(t)) where, for each state x, F(x) := 

f(x, U(x)) is the subset of feasible velocities, Conversely, a differen
tial inclusion is an example of a control system in which the controls 
are the velocities (f(x, u) = u & U(x) = F(x).) 

As far as servomechanisms are concerned, the question arises of 
how to build mechanisms for selecting a unique control u(x) in RK(x) 

for each state x. Such a map u( ·), associating with every x a single 
control u(x) is called a closed loop control (or single-valued feedback.) 
This is because it allows the system to automatically associate with 

5 This concept of viability kernel happens to be a quite efficient mathematical 
tool that we shall use often. 

It is also closely related to the concept of zero dynamics introduced recently 
by Byrnes and Isidori in control theory. 
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any state x(t) the control u(x(t)) which produces a viable solution 
through the differential equation 

x'(t) = f(x(t), u(x(t))) 

An interesting example of closed loop control is provided by 
slow solutions. These are the solutions regulated by the controls 
u0 (x) E RK(x) with minimal norm. Despite the fact that u0 (-) is 
not necessarily continuous, we shall prove that the above differential 
equation still has solutions. For instance, when the controls are the 
velocities of the system, viable solutions with velocities of minimal 
norm are implemented by such a selection procedure. This is why 
they are called slow solutions. 

Such selection procedures by closed loop controls answer many 
engineering control problems. But they may not be adequate for the 
type of systems arising in economic, social, biological and cognitive 
sciences, as well as in some areas of engineering where the controls 
must evolve continuously. Here, we are looking for selection proce
dures which obey the inertia principle: keep the control constant as 
long as the viability of the system is not at stake. 

We can reformulate the inertia principle by saying that if the 
derivative of a viable open loop control u( ·) is equal to 0, then this 
control is the one which is chosen and implemented. 

This raises several questions. 
The first one concerns controls which are smooth (at least, 

differentiable almost everywhere.) (This issue may be relevant for 
engineering problems, where the lack of continuity of controls u(t) := 

u(x(t)) can be damaging.) 
The second one deals with the problem of differentiating 

the regulation law. 
The third is to find selections (called dynamical closed 

loops) of the derivative of the regulation map, with which we obtain 
a system of differential equations which govern the smooth viable 
evolution of both the state and the control. 

The fourth is to find some feedback controls as solutions 
to systems of first-order partial differential inclusions. 

We see at once that this programme requires a concept of deriva-
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tive of a set-valued map and a chain rule formula in order to differ
entiate the regulation law. 

The idea behind the construction of a differential calculus of set
valued maps is simple and goes back to the very origins of differential 
calculus, when Pierre de Fermat introduced in the first half of the 
seventeenth century the concept of a tangent to the graph of a func
tion: 

the tangent space to the graph of a function f at a point (x, y) of its 
graph is the line of slope f'(x), i.e., the graph of the linear function 

u f--t f'(x)u 

Consider now a set-valued map F: X~ Y, which is character
ized by its graph (the subset of pairs (x, y) such that y belongs to 
F(x).) 

The contingent cone to the graph ofF at the point (x, y) of its 
graph is the graph of the contingent derivative of the set-valued map 

F at a point (x, y) 

The contingent derivative at (x, y) is a set-valued map from X toY 
denoted by DF(x, y). 

Contingent derivatives keep enough properties of the derivatives 
of smooth functions to be quite efficient. They enjoy a rich calcu
lus, and they enable such basic theorems of analysis as the inverse 
function theorem to be extended to the set-valued case. 

The chain rule is an example of a property which is still true 
in this framework: Assume that we start from a "smooth state", 
producing a viable solution x(t) and a viable control u(t) which are 
both differentiable (almost everywhere.) Then we can "differentiate" 
the regulation law to obtain a "first order regulation law" : 

for almost all t, u'(t) E DRK(x(t), u(t))(x'(t)) 

Heavy viable solutions are the ones regulated by the controls 
whose velocities have minimal norm in the set 

DRK(x(t), u(t))(f(x(t), u(t))) 

For instance, when the controls are the velocities of the system, 
we choose viable solutions with acceleration of minimal norm, i.e., 
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accelerations with maximum inertia. This is why these solutions are 
called heavy solutions. This point of view leads to the introduction of 
viability niches N ( u) associated with controls u. These are (possibly 
empty) subsets consisting of states x such that the zero velocity 
belongs to DRK(x, u)(f(x, u)). In such a viability niche N(u), the 
state can evolve while being regulated by the stationary control u. 

Finally, using the concept of contingent derivative, we can obtain 
feedbacks as solutions of partial differential inclusions. 

Let us conclude this introduction with some motivational com
ments. 

In economics, the viability constraints are the scarcity constraints. 
We can replace the fundamental Walrasian model6 of resource 
allocations by a decentralized dynamical model in which the 
role of the controls is played by the prices 7 (as well as coalitions 
of consumers, interest rates, and so forth). The regulation law 
can be interpreted as the behavior of Adam Smith's invisible 
hand choosing the prices as a function of the allocations. It is 
possible that among these viable prices, the market (or even 
a planning bureau) would have a tendency to choose heavy 
solutions. 

In cooperative games, coalitions of player may play the role of 
controls: each coalition acts on the environment by changing 
it through a dynamical system. Here, a coalition is described 
by the players's rate of participation, positive or negative, ac
cording to their cooperative or anti-cooperative behavior. The 
regulation law provides, in this case, an explanation of the evo
lution of coalitions and alliances. 

6 Most static models of mathematical economics are based in the last anal
ysis on general equilibrium theory. They can be reformulated in a dynamical 
framework, by slightly changing the underlying dynamical system. (Walrasian 
tatonnement, which does not produce viable solutions, except when they reach 
an equilibrium.) 

7 and other fiduciary goods for which the scarcity constraint can be trans
gressed. Unlike physical goods, they are limited only by measures dictated by 
the trust (or, rather, the tolerance) of the agents. Any disequilibrium that cannot 
exist in physical goods can then be transferred to the fiduciary goods. 
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In noncooperative games, viability constraints describe power re
lations among players. Each players associates with each state 
a subset in which the other players are confined to choosing 
their own states. Strategies take the role of controls, through 
which the players act on the state according to some differen
tial equations. We often observe that the inertia principle is 
operative. The choice of viable strategies (or of their velocities) 
can be made, at each instant and in a myopic way, by standard 
game theoretical mechanisms, in such a way as to comply with 
the inertia principle. 

In genetics and population genetics, the viability constraints are 
the ecological constraints, the state describes the phenotype 
and the controls are genotypes or fitness matrices. The reg
ulation law may explain the evolution of genotypes or fitness 
matrices derived from the dynamics and the ecological con
straints. 

In sociology, a society can be interpreted as a set of individuals 
subject to viability constraints. They correspond to what is 
necessary to the survival of the social organization. Laws and 
other cultural codes are then devised to provide each individ
ual with psychological and economical means of survival as well 
as guidelines for avoiding conflicts. These cultural codes play 
the role of controls. The regulation law may represent the evo
lution of cultural codes for maintaining society's viability, the 
evolution of which obeys the inertia principle. Such a metaphor 
may account for the small number of them and the robustness 
of religions, ideologies and scientific paradigms. It may also 
explain the phenomena of massive conversions to new cultural 
codes. 

In cognitive sciences, the state describes the sensory-motor cou
ple of the cognitive system, while the control translates into 
what could be called a conceptual control (which is the synap
tic matrix in neural networks.) The state and control are re
lated by a pattern recognition mechanism, which recognizes the 
(variations of) the perception of the action of the automaton on 
the environment. The regulation law provides a learning pro-
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cess, that goes beyond simple stimulus-response processes: it 
associates with each sensory-motor state a subset of (learned) 
conceptual controls. It seems that in this case, again, the iner
tia principle applies. 



Outline of the Book 

Instead of beginning with viability theorems for differential in
clusions, we prefer to sketch in Chapter 1 the role of the concept of 
viability domain in the much simpler case of differential equations. 
(The first viability theorem was proved in 1942 by Nagumo.) 

For a variety of reasons, an important example of a viability set is 
the probability simplex. Whenever the state of a system is difficult to 
model mathematically, one way to overcome this difficulty is to deal 
with probabilities, frequencies, concentrations, proportions, etc., and 
the probability simplex then naturally appears. Systems controlled 
by scalar controls (called flux) of the form 

x~(t) Xi(t)(fi(x(t))- x(t)u), i = 1, ... , n 

are called replicator systems. They are encountered in such di
verse fields as biochemistry (Eigen & Schuster's hypercycle), ethol
ogy (Maynard-Smith's game for behavioral strategies), population 
dynamics (Fisher's model of the evolution of genes in a population), 
ecology, etc. These examples are presented in the first chapter. 

We also included in this chapter viability and invariance theorems 
for stochastic differential equations, which provide another way to 
treat uncertainty. 

This chapter can be bypassed by readers mainly interested in 
differential inclusions and control systems. 

Chapter 2 deals with the minimal information about set-valued 
maps that is needed to prove the viability theorems for differential 
inclusions. Upper and lower semicontinuous set-valued maps are de
fined. Then our basic result, the Convergence Theorem, is proved. 
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Since this involves convex-valued maps, some results on support func
tions of convex subsets are recalled in this chapter. Closed convex 
processes, which are the set-valued analogues of continuous linear 
operators, enjoy most of the properties of linear operators, including 
Banach's closed graph theorem and the uniform boundedness theo
rem. These results are reviewed, because contingent derivatives of 
set-valued maps being closed processes, they will be used later. 

Chapter 3 is basic: it states and proves the main viability theo
rems (in locally compact, open and closed viability sets respectively) 
and shows that the solution map is upper semicontinuous. We also 
prove a stability result: (upper) limits of viability domains are still 
viability domains and we show that w-limit sets of solutions, limits 
of solutions when the time goes to infinity (equilibria), trajectories 
of periodic solutions are examples of closed viability domains. 

We adapt Saari's principle on the chaotic behavior of discrete 
systems to the case of differential inclusions. The viability domain is 
divided into a number of cells in such a way that each of them can be 
"visited" in any given way by at least one trajectory of a differential 
inclusion. 

We then proceed in Chapter 4 with further properties of the via
bility kernels of closed subsets: There exists a largest closed viability 
domain contained in a closed subset, called the viability kernel, which 
enjoys many properties which are investigated in this chapter. Im
portant concepts of biomathematics such as permanence and fluctu
ation can be defined in terms of viability kernels. On the other hand, 
each closed subset of the viability kernel is contained in a minimal 
viability domain, called viability envelope. 

The analysis is refined by introducing exit time functions asso
ciating with each initial state the first instant at which at least one 
solution starting from this state leaves the viability set. Viability 
kernels are the subsets of states with infinite exit time. We then 
introduce exit tubes, which are the subsets of states from which at 
least one solution satisfies the viability constraints for a prescribed 
length of time. 

We then study the anatomy of a set by distinguishing inward 
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and outward areas of the boundary of a set. It is also shown that 
the boundary of a viability kernel is also a viability domain. 

These facts among others are used to study several viability kernel 
algorithms, including the zero dynamics algorithm, which converge 
to viability domains and/ or kernels. 

We devote the fifth chapter to the study of invariant subsets, 
which are sets K with the property that all solutions to a differential 
inclusion starting from a state in K are viable in K. 

We need for that purpose more information on contingent cones, 
which are involved in a crucial way in the characterization of the 
viability and invariance properties. For this reason, we review some 
results about these cones before proceeding any further. We recall 
some useful formulas of the calculus of contingent cones (proved in 
the fourth chapter of Set- Valued Analysis.) 

Several characterizations of invariance are provided, one of which 
is based on the fundamental Filippov Theorem dealing with differ
ential inclusions with Lipschitz right-hand sides. It implies that the 
solution map is lower semicontinuous. This latter property is crucial 
to prove the existence of invariance kernels, which are the largest 
closed invariant domains contained in closed subsets. 

It also implies the semi-permeability property of the boundary of 
the viability kernel of a closed subset, which states that no solution 
can cross the boundary to enter the interior of the viability kernel. 

These invariance and viability kernels are needed to define defeat 
and victory domains of a target. 

We illustrate these results in the case of linear differential in
clusions, which are differential inclusions whose right-hand sides are 
closed convex processes. In this framework, we show that the con
cepts of invariance and viability domains are dual. 

We tackle in Chapter 6 the problem of regulating control sys
tems by closed loop controls (single-valued feedback controls.) The 
problem we have to solve is that of finding selections of the regula
tion map, possibly continuous. The latter are provided by Michael's 
Theorem, but in a non constructive way. Hence we have to design 
selection procedures which yield explicit selections, which may not 
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be continuous, but still provide viable solutions when fed back to the 
differential equation governing the evolution of the control system. 
These selection procedures provide in particular slow viable solutions 
regulated by controls with minimal norm. For that purpose we need 
to complete our study of lower semicontinuous maps and provide 
lower semicontinuity criteria for finite and infinite intersections of 
lower semicontinuous maps. 

Chapter 7 deals with the inertia principle, heavy viable solutions 
and ''punctuated equilibria", ramp controls, etc., which constitute the 
main motivations of viability theory. 

At this point, we need to differentiate the regulation map. Hence 
this chapter starts with the shortest introduction to derivatives of set
valued maps needed to proceed. It continues with the construction of 
regulation maps providing viable controls that are almost everywhere 
differentiable. 

Once we know the regulation maps yielding differentiable con
trols, we can differentiate the regulation law and discover the sys
tem of differential inclusions which governs the evolution of both the 
state and the control of the system. Then, by using the selection pro
cedures introduced in the preceding chapter, we are able to define 
dynamical closed loops and, among them, the ones which provide 
heavy viable solutions. Viability problems for second order differ
ential inclusions, which are first order systems in disguise, are also 
investigated in this chapter. 

The tracking problem, as well as observability, decentralization, 
hierarchical issues, are studied in Chapter 8 in the framework of 
viability theory. The common thread of these problems is the con
nection between two dynamical systems through an observation map: 
Are some or all solutions to these differential inclusions linked by this 
observation map, in the sense that its graph is a viable or invariant 
manifold ? The viability theorems applied to the graphs of the ob
servation maps imply that such observation maps are solutions to 
some systems of first-order partial differential inclusions, where the 
derivatives are taken in the contingent sense. 

Derivatives in the sense of distributions do not offer the unique 
way to describe weak or generalized solutions to partial differential 
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equations and inclusions. Contingent derivatives offer another way 
to weaken the required properties of a derivative, loosing the linear 
character of the differential operator, but allowing a pointwise defi
nition. They provide a convenient way to treat hyperbolic problems 
and also allow us to look for solutions among set-valued maps, since 
we know how to differentiate them. Set-valued solutions constitute 
a useful framework to describe shocks for instance. 

We study the existence of both single-valued and set-valued so
lutions to such partial differential inclusions, as well as a variational 
principle. 

Differential inequalities, Lyapunov functions and related matters 
can also be analyzed in terms of special viability problems where the 
viability sets are epigraphs of functions or, more generally, graphs of 
preorders. This allows us to include, among the candidates that en
joy Lyapunov-type inequalities, not only differentiable functions but 
also lower semicontinuous functions. Thus we derive from viability 
theorems several generalizations of classical results. Applying to this 
situation the concept of viability kernel, we infer the existence of the 
smallest Lyapunov function larger than a given one. 

Asymptotic stability is treated here in the framework of viability 
theory. These are explained in Chapter 9. 

Chapter 10 gathers miscellaneous issues, such as variational dif
ferential inequalities. The question is the following: If we take a dif
ferential inclusion and a closed subset which is not a viability domain, 
can we modify the set-valued map Fin such a way that K becomes 
a viability domain for the new map? The method is straightforward: 
we project the images F(x) onto the contingent cone TK(x) (and 
obtain, when K is convex, variational differential inequalities.) By 
doing so, we lose both the convexity of the images and the upper 
semicontinuity. However, it is still possible to prove the existence 
of the projected system and even, under stronger assumptions, the 
existence of slow solutions. 

The second section of chapter 10 deals with fuzzy differential 
inclusions. The right-hand sides of such differential inclusions are 
fuzzy subsets, whose membership functions are cost functions taking 
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their values in [0, oo] (instead of [0, 1] for membership functions of 
usual fuzzy sets). The concept of uncertainty involved in differential 
inclusions becomes more refined, by allowing the velocities not only 
to depend in a plain multivalued way upon the state of the system, 
but also in a fuzzy way. 

The viability theorems are adapted to fuzzy differential inclusions 
and to sets of state constraints which are either usual or fuzzy. The 
existence of a largest closed fuzzy viability domain contained in a 
given closed fuzzy subset is also provided. 

The third section presents a very short introduction to some nu
merical aspects of differential inclusions. The convergence of solu
tions to implicit and projected explicit finite-difference schemes to 
viable solutions of a differential inclusion is proved. 

The fourth section deals with the adaptation of continuous New
ton's methods for finding an equilibrium of a set-valued map: it 
happens that this is also a viability problem. 

Chapter 11 is devoted to time-dependent viability sets t -vt P(t), 
naturally called tubes. Tubes which contain at least one viable 
solution8 starting from any initial state xo E P(to) at any initial 
time are viability tubes. These are solutions to a set-valued differen
tial inclusion of the form F(x) n DP(t, x)(1) =I= 0. 

We will study the Cauchy problem, where we look for minimal 
viability tubes satisfying an initial condition. 

One can show that their "limits" 9 when t ~ oo are viability 
domains, and actually, attractors. If we use such viability tubes to 
guide a solution towards a target, we see that a necessary condition 
for a subset to be an asymptotic target is that it is a viability domain. 

Of much greater importance for systems arising in biology, eco
nomics and cognitive sciences is the case when both the velocity and 
viability sets depend upon the history of the evolution of the state. 
Delays 

V t ~ 0, x(t) E M(x(t- 01), ... , x(t- Op)) 

8 in the sense that x(t) E P(t) for all t. 
9 in the sense of upper limits. When the tube P(t) := {x(t)} is single-valued, 

this upper limit boils down to thew-limit set. 
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accumulated consequences of past evolution 

Vt~O, x(t) E M([
00

A(t-s)x(s)ds) 

all these features fall under the case called functional viability. Here, 
functional viability sets K are subsets consisting of time-dependent 
functions, and viable solutions are the solutions which evolve in such 
function subsets in the sense that for all t ~ 0, x( t + ·) E /C. It is the 
topic of Chapter 12. 

Can viability theorems be extended to partial differential equa
tions and inclusions? The answer is positive, at least for elliptic and 
parabolic type inclusions, as is shown in chapter 13. In this case, 
viability sets are comprised of spatial functions (functions depending 
upon the space variable.) The situation becomes more complex, be
cause we have to work with unbounded operators on Hilbert spaces, 
but still, the statements which are expected to be true can be proved. 

Chapter 14 treats differential games, where the controls are re
garded as stmtegies used by the players to govern the evolution of the 
states of the game. Here, intertemporal criteria involved classically in 
differential games are replaced by viability constraints representing 
power relations among players, describing the constraints imposed 
by one player on the other. We characterize winability, playability 
properties adequately defined by contingent Isaacs' equations. 

We shall prove the existence of continuous single-valued playable 
feedbacks, as well as more constructive, but discontinuous, playable 
feedbacks, such as the feedbacks associating in a myopic way optimal 
strategies in a cooperative framework or minimax strategies in a 
noncooperative environment. 

In other words, the players can implement playable feedbacks by 
playing for each state a static game on the stmtegies. 

We also provide closed loop decision rules, which opemte on the 
velocities of the stmtegies, (regarded as decisions). 



Chapter 1 

Viability Theorems for 
Ordinary and Stochastic 
Differential Equations 

Introduction 

This chapter is meant to be an independent introduction to the 
basic theorems of viability theory in the simple framework of ordinary 
differential equations x' = f(x) and stochastic differential equations 

d~ = f(~(t))dt + g(~(t))dW(t) 

It can be omitted by readers who are only interested in the theory 
for differential inclusions. 

So, we begin by tackling the viability issue by isolating it in the 
framework of ordinary differential equations in the first section. A 
function [0, T] 3 t ---t x(t) is said to be viable in a given subset K on 
[0, T] if, for any t E [0, T], the state x(t) remains inK. 

Actually, even in the simpler situation of differential equations, 
we have to be careful and make a distinction between two neighbor
ing concepts: viability property and invariance property. The first 
one requires that, starting from any initial point of K, at least one 

19 
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solution to the differential equation is viable in K whereas the second 
one demands that all solutions are viable in K. 

We shall characterize the first one by saying that K is a viability 
domain, i.e., that for any state x in the boundary of K, the velocity 
is tangent in some sense to Kat x. 

We may require for that purpose that K is a smooth manifold 
and therefore, that f is a vector field, the velocity f ( x) lying in the 
tangent space. 

But first, we do not need the fact that the space of "tangent" 
directions (adequately defined) is a vector space. The added luxury 
of linearity does not compensate for its fragility, in the sense that, 
for instance, the intersection of two smooth manifolds is no longer 
smooth. Since we shall regard in most of our applications the subset 
K as a subset defined by constraints (and above all, inequality con
straints), then it is very exceptional that such a subset is smooth. As 
in optimization, we are quickly led to assume that K is convex, since 
convex subsets are defined by linear inequality constraints. But, here 
again, it would be nice to dispense with this assumption if this is pos
sible (with no added mathematical cost), for it allows us to consider 
also union of convex subsets, for instance. 

As we know since 19421 , one can characterize such a viability 
property for any closed subset K, with an adequate mathematical 
implementation of the concept of tangency. The one chosen is actu
ally equivalent to the concept of "contingency" introduced ten years 
earlier by Bouligand. We can then define the contingent cone to K 
at x E K for any subset K, the price to pay being that the set of 
tangent directions (the contingent cone) is a closed cone instead of a 
vector space. 

We shall only give in this introductory chapter the definition 
of the contingent cone and provide further properties in Chapter 5 
after the presentation of the viability theorems for both ordinary dif
ferential equations, stochastic differential equations and differential 
inclusions. 

Nagumo's Theorem states that when f is continuous, a closed 

11n a seminal paper written in German by the Japanese mathematician M. 
Nagumo. As it could be expected, this theorem was forgotten and rediscovered 
(at least) fourteen times up to 1968, in different contexts, with various concepts 
of tangency. 



1.0. Introduction 21 

subset K enjoys the viability property if and only if it is a viability 
domain. We prove only this theorem, and shall derive the other 
properties as corollaries of statements we shall prove later in the 
case of differential inclusions. 

Many proofs of viability theorems are now available: we chose 
the most elementary (which is not the shortest) for several reasons: 
it is the prototype of the extensions of the viability theorems (to 
functional differential inclusions, partial differential inclusions, ... ) 
we shall present later in this book. It is just a modification of the 
Euler method of approximating a solution by piecewise linear func
tions (polygonal lines) in order to force the solution to remain in K. 
Despite its "constructionist" look, this method is not a finite differ
ence scheme (explicit or implicit.) We shall present a rudimentary 
numerical introduction in the third section, but are forced to post
pone the proofs to chapter 10, because they use more properties of 
the contingent cones which are presented later in Chapter 5. 

The fourth section is dedicated to the "replicator systems" . This 
is because the most popular viability domain is the probability sim
plex. Indeed, it is often too difficult to provide a mathematical de
scription of the state space of problems arising in biology, economics, 
etc. So, this difficulty is bypassed by studying instead of the evolu
tion of the state itself, the evolution of frequencies, concentrations, 
probabilities, ... ,of the states (without forgetting mixed strategies in 
game theory), which all range over the probability simplex sn c Rn. 

Replicator systems 

X~(t) = Xi(t)(gi(x(t))- u(x(t))) 

are the differential equations derived from evolutions 

x~(t) = xi(t)gi(x(t)), (i = 1, ... , n) 

governed by specific growth rates 9i ( ·), corrected by subtracting the 
closed-loop control 

n 

u(x) := LXj9j(x) 
j=l 

for obeying the viability constraints. The celebrated logistic equation 
belongs to this class (for constant growth rates.) Dynamical models 
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arising in population genetics, prebiotic evolution, sociobiology and 
population ecology devised independently are replicator systems for 
specific linear growth rates2 . 

Finally, we conclude this introductory chapter with a brief pre
sentation of viability and/or invariance properties of closed subsets 
for stochastic differential equations. 

Let us consider Lipschitz maps f and g and the stochastic differ
ential equation 

d1. = f(e(t))dt + g(e(t))dw(t) 

the solution of which is given by the formula 

We want to characterize the (stochastic) viability property of a 
closed convex subset K of X with respect to the pair (!,g): for any 
random variable X in K' there exists a solution e to the stochastic 
differential equation starting at x which is viable inK, in the sense 
that 

V t E [0, T], for almost all w E 0, ew(t) E K 

For that purpose, we adapt to the stochastic case the concept 
of contingent cone to a subset K at a random variable x E K as 
the set TK(t, x) of pairs ('y, v) of random variables satisfying the 
following property: There exist sequences of hn > 0 converging to 0 
and of measurable random variables an and bn satisfying for almost 
all wE 0, 

V n ~ 0, Xw + Vw(Ww(t + hn)- W(t)) + hnrw + hna~ + .}h;;b~ E K 

and converging to 0 in some sense. 
Then we shall prove in essence that the following conditions are 

equivalent: 
1. The subset K enjoys the viability property with respect 

to the pair (!,g) 

2 Replicator systems are the central theme of the monograph THE THEORY OF 
EVOLUTION AND DYNAMICAL SYSTEMS by J. Hofbauer and K. Sigmund. 
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2. for every Ft-random variable x viable inK, 

(J(x),g(x)) E TK(t,x) 

For instance, this condition means that for every Ft-random vari
able x viable in K 

f(x) E K & g(x) E K 

when K is a vector subspace, that 

1 2 
(x, g(x)) = 0 & (x, f(x)) + 2llg(x)ll 0 

when K is the unit sphere and that 

1 2 
(x, g(x)) = 0 & (x, f(x)) + 2llg(x)ll < 0 

when K is the unit ball. 

1.1 Viability & lnvariance Properties 

Definition 1.1.1 {Viable functions) Let K be a subset of a finite 
dimensional vector-space3 X. We shall say that a function x( ·) from 
[0, T] to X is viable inK on [0, T] if"' t E [0, T], x(t) E K. 

Let us describe the (deterministic) dynamics of the system by 
a (single-valued) map f from some open subset 0 of X to X. We 
consider the initial value problem (or Cauchy problem) associated 
with the differential equation 

V t E [0, T], x'(t) = f(x(t)) 

satisfying the initial condition x(O) = xo. 

{1.1) 

Definition 1.1.2 {Viability & Invariance Properties) Let K be 
a subset ofO. We shall say that K is locally viable under f (or enjoys 
the local viability property for the map f} if for any initial state xo 
of K, there exist T > 0 and a viable solution on [0, T] to differential 

3 or even, a normed space. 
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equation {1.1} starting at xo. It is said to be (globally) viable under 
f (or to enjoy the global viability property or, simply, the viability 
property) if we can always take T = oo. 

The subset K is said to be invariant under f (or enjoy the in
variance property) if for any initial state xo of K, all solutions to 
differential equation ( 1.1) (a priori defined on n) are viable in K. 

Remark - We should emphasize that the concept of invari
ance depends upon the behavior of f on the domain 0 outside K. 
But we observe that viability property depends only on the behavior 
off on K. D 

So, the viability property requires only the existence of at least 
one viable solution whereas the invariance property demands that all 
solutions are viable. 

We shall begin by characterizing the subsets K which are viable 
under f. The idea is simple, intuitive and makes good sense: A 
subset K is viable under f if at each state x of K, the velocity f ( x) 
is ''tangent" to K at x, so to speak, for bringing back a solution to 
the differential equation inside K. 

But we do not want to restrict ourselves to the case of smooth 
domains (i.e., differential manifolds) only for the pleasure of obtain
ing a vector space of tangent directions or to conform to tradition. 
There are many reasons for this, the first one being that simple oper
ations on subsets - such as the intersection of manifolds - destroy 
their smoothness. Since we shall perform operations on viability sub
sets, we have to dispense with this requirement and look for other 
ways of implementing the idea of tangency to any subset. In eco
nomics and ecology, for instance, viability subsets are defined by a 
family of equality or inequality constraints. They are not differential 
manifolds. The best we can hope for is that they are convex, which 
happens, for instance, when the constraints are linear. 

Naturally, by trying to define adequate concepts of tangency to 
nonsmooth subsets, we expect to lose some nice properties of the 
tangent space, and, among them, the fact that tangent spaces are 
vector spaces. The price to pay is then to deal with closed cones 
instead. Actually, under some regularity conditions, we shall do even 



1.1. Viability & Invariance 25 

better, and obtain, closed conve:tl cones. 
We shall postpone the study of tangent cones to Chapter 5, when 

we will need them, after having provided a strong justification of their 
usefulness. An exhaustive presentation can be found in Chapter 4 of 
SET-VALUED ANALYSIS. 

Meanwhile, we shall just provide the definition of the contingent 
cone, introduced by Bouligand in the early thirties, with which we 
shall characterize the viability property by following our intuitive 
idea. 

Definition 1.1.3 Let X be a norrned space, K be a nonempty subset 
of X and x belong to K. The contingent cone to K at x is the set 

T ( ) { X I l. . f dK(X + hv) o} 
K X = V E 1mm h = 

h->0+ 

where dK(Y) denotes the distance of y to K, defined by 

dK(Y) := inf IIY- zll 
zEK 

In other words, v belongs to TK ( x) if and only if there exist a sequence 
of hn > 0 converging to 0+ and a sequence of Vn E X converging to 
v such that 

v n ~ 0, X+ hnVn E K 

We see easily that 

V x E lnt(K), TK(x) =X (1.2) 

Therefore, when K is open, the contingent cone to K at any point 
x E K is always equal to the whole space. The converse is not true. 

We also observe that when K is a differential manifold, the con
tingent cone TK(x) coincides with the tangent space to Kat x, and 
we shall check later that when K is convex, it coincides with the tan
gent cone of convex analysis. The lemma below shows right away why 
these cones will play a crucial role: they appear naturally whenever 
we wish to differentiate viable functions. 

4 In this case, we will be able to use duality, by associating biunivocally polar 
cones to closed convex cones, and use the bipolar Theorem (Theorem 2.3.3.) 
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Lemma 1.1.4 Let x( ·) be a differentiable viable function from [0, T] 
to K. Then 

V t E [0, T[, x'(t) E TK(x(t)) 

Definition 1.1.5 (Viability Domain) Let K be a subset ofO. We 
shall say that K is a viability domain of the map f : n r-+ X if 

V x E K, f(x) E TK(x) (1.3) 

Example - We first give the simple example of finite dimen
sional vector-spaces which are viability domains of linear operators. 

Definition 1.1.6 Let A be a linear operator from a finite dimen
sional vector-space X to itself. We shall say that a finite dimensional 
vector-subspace K is invariant under A if 

A(K) c K 

The following statement is naturally obvious. 

Proposition 1.1. 7 Let us consider a linear operator A from a fi
nite dimensional vector-space X to itself, elements b, c E X and a 
subspace K of X. 
The affine space K + c is a viability domain of the affine operator 
x ---t Ax + b if and only if 

K is invariant under A 

Ac+b E K D 

1.2 Nagumo Theorem 

Nag•1mo was the first one to prove the viability theorem for ordi
nary differential equations in 1942. This theorem was apparently 
[c,cgotten, for it was rediscovered many times during the next twenty 
yc'1rs5. 

, 5This does not prove that the statement is true ... 
• 
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Theorem 1.2.1 (Nagumo) Let us assume that 

{ i) K is locally compact 
ii) f is continuous from K to X 

(1.4) 

Then K is locally viable under f if and only if K is a viability domain 
of f. 

Since the contingent cone to an open subset is equal to the whole 
space (see (1.2)), an open subset is a viability domain of any map. So, 
it enjoys the viability property because any open subset of a finite 
dimensional vector-space is locally compact. The Peano existence 
theorem is then a consequence of Theorem 1.2.1. 

Theorem 1.2.2 (Peano) Let n be an open subset of a finite di
mensional vector-space X and f : n f--+ X be a continuous map. 

Then, for every xo E n, there exists T > 0 such that differential 
equation ( 1.1) has a solution on the interval [0, T] starting at xo. 

The interesting case from the viability point of view is the one 
when the viability subset is closed. In this case, we derive from 
Theorem 1.2.1 a more precise statement. 

Theorem 1.2.3 (Viability) Let us consider a closed subset K of 
a finite dimensional vector-space X and a continuous map f from 
K to X. 

If K is a viability domain, then for every initial state xo E K, 
there exist a positive T and a viable solution on [0, T] to differential 
equation ( 1.1) starting at xo such that 

{ either T = oo 
or T < oo and lim supt--+T- llx(t) II = oo (l.S) 

Further adequate information - a priori estimates on the growth 
off- allows us to exclude the case when limsupt--+r-llx(t)ll = oo . 

This is the case for instance when f is bounded on K, and, in 
particular, when K is bounded. 

More generally, we can take T = oo when f enjoys linear growth: 
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Theorem 1.2.4 Let us consider a subset K of a finite dimensional 
vector-space X and a map f from K to X. We assume that the map 
f is continuous from K to X, that 

:3 c > 0 such that \f x E K, llf(x)ll < c(llxll + 1) 

and that 
K is a closed viability domain of f 

Then K is viable under f: for every initial state xo E K, there 
exists a viable solution on [0, oo] to differential equation (1.1} starting 
at x0 . 

We shall prove only Theorem 1.2.1. The proofs of the other 
theorems are classical and are the same as the ones for analogous 
statements for differential inclusions (see Chapter 3). 

Proof of Theorem 1.2.1 

a) Necessary Condition 
Let us consider a viable solution x( ·) to differential equation ( 1.1.) 

It is easy to check that f(xo) = x'(O) belongs to the contingent cone 
TK(xo) because x(h) belongs to K and consequently, the inequality 

dK(xo + hf(xo))/h :S llx(O) + hx'(O)- x(h)ll/h 

implies that 
lim dK(xo + hf(xo))/h 0 

h-->0+ 

Hence K is a viability domain. 

b) Sufficient Condition 
As quite often happens in analysis, the existence proof can be 

split into three steps. We begin by constructing approximate solu
tions by modifying Euler's method to take into account the viability 
constraints, we then deduce from available estimates that a subse
quence of these solutions converges uniformly to a limit, and finally 
check that this limit is a viable solution to differential equation ( 1.1.) 
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1. - Construction of Approximate Solutions 
Since K is locally compact, there exists r > 0 such that the ball 

BK(xo, r) := K n (xo + rB) is compact. When Cis a subset, we set 

IICII := sup llvll 
vEC 

and 

Ko := BK(xo, r), C := B(f(Ko), 1), T := r/IICII 

We observe that C is bounded since Ko is compact. We begin by 
proving 

Lemma 1.2.5 For any integer m, there exists Om E]O, 1/m[ such 
that for all x E Ko, there exist h E [Om, 1/m] and u E X satisfying 

{ 
i) 
. ") 
~~-) 
1/l/l 

uEC 
x+hu E K 
(x, u) E B(Graph(f), 1/m) 

Proof of Lemma 1.2.5 - Since K is a viability domain of f, 
we know that for all y E K, f (y) belongs to TK (y). By definition of 
the contingent cone, there exists hy E]O, 1/m[ such that 

We introduce the subsets 

N(y) := {x E K I dK(x + hyf(y)) < hy/2m} 

These subsets are obviously open. Since y belongs to N(y), there 
exists T}y E]O, 1/m[ such that B(y, TJy) c N(y). The compactness of 
K0 implies that it can be covered by q such balls B(yj,TJj), j = 
1, ... ,q. We set 

Om := min hy· > 0 
j=l, ... ,q J 

Let us choose any x E Ko. Since it belongs to one of the balls 
B(yj, TJj) c N(yj), there exists Zj E K such that 

llx + hyJ(yj)- Zjll/hyi 

:S dK(x + hyJ(yj))/hyi + 1/2m :S 1/m. 
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Let us set Uj := z~~x. We see that llx - Yj II ~ 'r/j ~ 1/m, that 

x + hyjUj = Zj E K and that lluj- f(yj)ll ~ 1/m. Therefore, 

(x, Uj) E B((yj, f(yj)), 1/m) C B(Graph(f), 1/m) 

and Uj E B(f(Ko), 1/m) C C. The Lemma ensues. D 

We can now construct by induction a sequence of positive num

bers hj E]Om, 1/m[ and a sequence of elements Xj E Ko and Uj E C 
such that 

(xj,uj) E B(Graph(f), 1/m) 

. 1 
so long as ~i:::o hi ~ T. 

Indeed, the elements Xj belong to Ko, since 

Since the hj 's are larger than or equal to ()m > 0, there exists J such 
that 

h1 + · · · + h1-1 ~ T ~ h1 + · · · + h1 

We introduce the nodes T/n := ho + · · · + hj_ 1 ,j = 1, ... , J + 1 and 
we interpolate the sequence of elements Xj at the nodes T/n by the 
piecewise linear functions Xm ( t) defined on each interval [T/n, T/n+1 [ 

by 
\:j t E [Th, Th+1 [, Xm(t) := Xj + (t- Th)uj 

We observe that this sequence satisfies the following estimates 

\:j t E [0, T], Xm(t) E co(Ko) 
(1.6) 

V t E [0, T], llx~(t)ll ~ IICII 

Let us fix t E h?P T/n+1 [. Since llxm(t)-xm(T/n)ll = hjllujll ~ IICII/m, 
and since (xj,Uj) belongs to B(Graph(f), 1/m) by Lemma 1.2.5, we 
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deduce that these functions are approximate solutions in the sense 
that 

{ 
i) 

ii) V t E [0, T], (xm(t), x~(t)) E B(Graph(f), em) 

V t E [0, T], xm(t) E B(Ko, em) 
(1.7) 

where em:= (IICII + 1)/m converges to 0. 

2. Convergence of the Approximate Solutions 
Estimates (1.6) imply that for all t E [0, T], the sequence Xm(t) 

remains in the compact subset co(Ko)6 and that the sequence xm(·) is 
equicontinuous, because the derivatives x~ ( ·) are bounded. We then 
deduce from Ascoli's Theorem 7 that it remains in a compact subset 
of the Banach space C(O, T; X), and thus, that a subsequence (again 
denoted) xm(·) converges uniformly to some function x(·). Further
more, the sequence x~(-) also converges to x'(·) because x~(t) 
f(xm(t)) and f is uniformly continuous on the compact co(Ko). 

3. The Limit is a Solution 
Condition (1. 7)i) implies that 

VtE[O,T], x(t)EKo 

6 The {closed) convex hull of a subset is the intersection of the (closed) convex 
subsets which contain it. The convex hull of a compact subset is also compact. 

7 Let us recall that a subset 'H of continuous functions of C(O, T; X) is equicon
tinuous if and only if 

V t E [0, T], V E > 0, 3 71 := 77('H, t, 71) IV s E [t-77, t+77], sup llx(t)-x(s)ll S E 
x(·)E?i 

Locally Lipschitz functions with the same Lipschitz constant form an equicontin
uous set of functions. In particular, a subset of differentiable functions satisfying 

is equicontinuous. 

sup llx'(t)ll S c < +oo 
tE[O,T] 

Ascoli's Theorem states that a subset 'H of functions is relatively compact in 
C(O, T; X) if and only if it is equicontinuous and satisfies 

V t E [0, T], 'H(t) := {x(t)}x(·)E?t is compact. 
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i.e., that x(·) is viable. 
Since f is uniformly continuous on Ko, then for all c > 0, there 

exists 'f/ E]O, c[ such that 

llf(x)- f(y)ll :::; c whenever llx- Yll :::; rJ 

Since the sequence Xm(-) converges uniformly to x(·) and since prop
erty (1. 7)ii) holds true, we deduce that for large m and for all t E 

[0, T], there exists u~ EX such that 

{ 
llx~(t)- f(x(t))ll 
:::; llx~(t)- f(u~)ll + llf(u~)- f(xm(t))ll + llf(xm(t))- f(x(t))ll 
:::; 3c 

so that 

\\xm(t)- xo- lot f(x(s))ds\\ :::; lot llx~(s)- f(x(s))llds < 3ct 

By letting m go to oo, these inequalities imply that 

V t E [0, T], x(t) = xo +lot f(x(s))ds 

Hence the limit x(·) is a solution to differential equation (1.1), and 

thus, K enjoys the viability property. D 

1.3 Numerical Schemes 

A natural approximation scheme for approximating viable solutions 
to differential equations is the projected explicit difference scheme 

where h > 0 is fixed and where 7rK denotes a selection of the projector 
of best approximation IlK defined by 

y E IIK(x) ¢=:=? y E K & IIY- xll = dK(x) 

Let us observe that 7rK satisfies the property 

V z E K, V x EX, ll1rK(x)- zll :::; 2llx- zll 
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because, whenever y E IIK(x), 

IIY- zll :S IIY- xll + llx- zll = dK(x) + llx- zll :S 2llx- zll 

When K is convex, IlK is a Lipschitz single-valued map (with 
Lipschitz constant equal to 1.) 

Projectors of best approximation are instances of quasi-projectors: 

Definition 1.3.1 We shall say that a map rK from X onto K sat
isfying 

V z E K, rK(z) = z 

:3 .X > 0 such that 

V x EX, V z E K, llrK(x)- zll < .XIIx- zll 
is a quasi-projector onto K. 

There are many other examples of quasi-projectors. They enjoy 
the following property: 

Lemma 1.3.2 Let rK be a quasi-projector from X onto K. Then 

llrK(x + hv)- x- hvll :::; (.X+ l)dK(x + hv) so that, for instance, 

w T ( ) 1. . f llrK(x + hv)- x- hvll 0 v V E K X, 1mm h = 
h--.0+ 

We can associate with any quasi-projector a projected explicit dif

ference scheme providing a sequence Xj starting from xo and defined 

by 
(1.8) 

and an approximate viable solution xh(·) which is the piecewise linear 
function interpolating this sequence on the nodes r/,_ := jh defined 

by xh(t) := Xj + (t- jh)(xj+l- Xj)/h on the intervals [jh, (j + l)h[. 

Theorem 1.3.3 Let us consider a continuous map f from a compact 

subset K C X to X such that, for every x E K, f(x) E TK(x), and a 

quasi-projector r K. Then, starting from Xo E K' the solutions to the 
projected explicit difference scheme ( 1. 8) converge to a viable solution 

to differential equation x' = f(x) when h ---> 0+, in the sense that 

a subsequence of the piecewise linear functions Xh which interpolates 

the Xj 'son the nodes jh converges uniformly to a viable solution x(·). 
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This is a corollary of the set-valued version Theorem 10.3.2 of our 
statement. 

Remark- Actually, when f is not continuous, the proof shows 
that the solutions to the projected explicit scheme converge to viable 
solutions so long as property 

V x E K, lim dK(Y + hf(y)) = 0 D (1.9) 
h-->O+,K3y-->x h 

(which is a consequence of the continuity of f) holds true. 

Remark- When the viability domain K off is convex and 
compact, we can derive from the Equilibrium Theorem 3.7.6 below 
that there exists a viable solution to the implicit finite difference 
scheme 

Xj+l = Xj + hf(xj+l) & Xj+l E K 

starting from xo. D 

1.4 Replicator Systems 

We begin by studying the viability property of the probability sim
plex 

sn := {x E R~ I txi = 1} 
t=l 

This is the most important instance of a viability set, because, in 
many problems, it is too difficult to describe the state of the system 
mathematically. We shall provide examples later in this section. 

But for recognizing whether the simplex is the viability domain of 
some differential equation, we need to compute its contingent cones. 

Lemma 1.4.1 The contingent cone Tsn(x) to sn at x E sn is the 
cone of elements v E Rn satisfying 

n 

2: Vi = 0 & Vi ~ 0 whenever Xi = 0 
i=l 

(1.10) 
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We provide a direct proof of this lemma, which is a consequence of the 
calculus of contingent cones. 

Proof - Let us take v E Tsn ( x). There exist sequences hp > 0 
converging to 0 and Vp converging to v such that Yp := x + hpvp belongs to 
sn for any p 2: 0. Then 

so that l::~=l vi = 0. On the other hand, if Xi = 0, then Vp; = Yp; / hp 2: 0, 
so that vi 2: 0. 

Conversely, let us take v satisfying (1.10) and deduce that y := x + hv 

belongs to the simplex for h small enough. First, the sum of the Yi is 
obviously equal to 1. Second, Yi 2: 0, either when Xi = 0 because in this 
case vi is nonnegative, or when Xi > 0, because it is sufficient to take 
h < xdlvil for having Yi 2: 0. Hence y does belong to the simplex. D 

We shall investigate now how to make viable the evolution of a 
system for which we know the growth rates gi(-) of the evolution 
without constraints (also called "specific growth rates"): 

V i = 1, ... , n, x~(t) = xi(t)gi(x(t)) 

There are no reasons8 for the solutions to this system of differen
tial equations to be viable in the probability simplex. 

But we can correct it by subtracting to each initial growth rate the 
common "feedback control u(·)" (also called "global flux" in many 
applications) defined as the weighted mean of the specific growth 
rates 

n 

v X E sn, u(x) := L Xj9j(x) 
j=l 

Indeed, the probability simplex sn is obviously a viability domain of 
the new dynamical system, called replicator system (or system under 

8 By Nagumo's Theorem and Lemma 1.4.1, the functions gi should be contin
uous and satisfy: 

n 

't/ X E Sn, L:x;g;(x) = 0 
i=l 
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constant organization): 

{ 
\f i = 1, ... , n, X~(t) = Xi(t)(gi(x(t))- u(x(t))) 

= Xi(t)(gi(x(t))- LJ=l Xj(t)gj(x(t))) 
{1.11) 

As we shall see at the end of the section, these equations come 
up in many biological models related to the concept of "replicator" 
in the sense of Dawkins, who coined the term. They lead to many 
mathematical problems. 

Remark- There are other methods for correcting a dynamical 
system to make a given closed subset a viability domain. A general 
method consists in projecting the dynamics onto the contingent cone 
(see chapter 10.) Here, we have taken advantage of the particular 
nature of the simplex. D 

An equilibrium a of the replicator system {1.11) is a solution to 
the system 

Vi= 1, ... , n, ai(9i(a)- u(a)) = 0 

(Such an equilibrium does exist, thanks to Equilibrium Theorem 3. 7.6 
below.) These equations imply that either ai = 0 or 9i(a) = u(a) or 
both, and that 9io (a) = u( a) holds true for at least one io. We shall 
say that an equilibrium a is nondegenerate if 

vi= 1, ... ,n, 9i(a) = u(a) {1.12) 

Equilibria a which are strongly positive (this means that ai > 0 for 
all i = 1, ... , n) are naturally non degenerate. 

We associate with any a E sn the function Va defined9 on the 
simplex sn by 

n 

Va(x) := II xfi := II xfi 
i=l iEla 

9 The reason why we introduce this function is that a is the unique maximizer 
of Va on the simplex sn. This follows from the concavity of the function cp := log: 
Setting 0 log 0 = 0 log oo = 0, we get 

t Oi log :: = L a; log :: :::; log ( L Xi) :::; log 1 = 0 
i=l a; >0 a; >0 
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where we set 0° := 1 and Ia := {i = 1, ... ,n I ai > 0}. 
Let us denote by 81 the subsimplex of elements x E sn such that 

Xi > 0 if and only if i E J. 

Theorem 1.4.2 Let us consider n continuous growth rates gi. For 
every initial state Xo E Sn, there exists a solution to replicator system 
( 1.11) starting from XQ and which is viable in the subsimplex S1xo . 

The viable solutions satisfy 

n 

V t ~ 0, Lgi(x(t))x~(t) ~ 0 (1.13) 
i=l 

and, whenever a E sn is a nondegenerate equilibrium, 

d n 
dt Va(x(t)) = -Va(x(t)) L(xi(t)- ai)(gi(x(t))- gi(a)) (1.14) 

i=l 

Proof- We first observe that 

v X E S1zo' L Xi(gi(x)- u(x)) = 0 
iEix0 

because, Xi = 0 whenever i fl. lx0 , i.e., whenever xoi = 0. Therefore, 
the subsimplex S1zo is a viability domain of the replicator system 
(1.11.) 

Inequality (1.13) follows from the Cauchy-Schwarz inequality be
cause 

n 

LXigi(x)2 

i=l 

We deduce formula (1.14) from 

{ =
eft Va(x(t)) = LiEI,. a~i Va(x(t))xHt) 

( ( )) x~(t) 
Va X t LiE I a ai x:{t) 

so that 
n n 

L O:i log Xi :::; L O:i log O:i 

i=l i=l 

and thus, V,.(x) :::; V,.(o:) with equality if and only if x = o:. 
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and from 

Then we take into account that o: being a non degenerate equilibrium, 
equation (1.12) implies that 

n 

L(o:i- Xi(t))gi(a) 0 D 
i=l 

Remark - When the specific growth rates are derived from a 
differentiable potential function U by 

'v'i=1, ... ,n, gi(x) 

condition (1.13) implies that 

dU 
\it 2: 0, dt(x(t)) > 0 

because 

dU n 8U n 
dt(x(t)) = ~ oxi (x(t))x~(t) = ~gi(x(t))x~(t) 2: 0 

Therefore the potential function U does not decrease along the viable 
solutions to the replicator system ( 1.11.) 

Furthermore, when this potential function U is homogeneous with 
degree p, Euler's formula implies that 

u(x) = pU(x) 

(because 'Li=l Xi&~; U(x) = pU(x)) so that in this case, the global 
flux u(x(t)) also does not decrease along the viable solutions to the 
replicator system ( 1.11.) 

On the other hand, if we assume that the growth rates - gi are 
"monotone " in the sense that 

n 

\i x, y E sn, L(Xi- Yi)(gi(x)- gi(Y)) < 0 
i=l 
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then inequality (1.14) implies that for any non degenerate equilib
rium a E sn, 

\f t 2: 0, d~a (x(t)) 2: 0 

When g(x) := U'(x) is derived from a concave differentiable potential 
U, it is decreasing so that, for a concave potential, both U(x(·)) and 
Va(x(·)) are not decreasing. D 

Example: Replicator systems for constant growth rates. 
The simplest example is the one where the specific growth rates 

gi(·) = ai are constant. Hence we correct constant growth systems 
x~ = aiXi whose solutions are exponential Xo;ea;t, by the 0-order 
replicator system 

Vi=1, ... ,n, x~(t) 
n 

Xi(t)(ai- L ajXj(t)) 
j=l 

whose solutions are given explicitly by: 

xo;ea;t 
Xi(t) = L:n a t whenever xo; > 0 

j=l xoje J 

(and Xi(t) = 0 whenever xo; = 0.) 
Furthermore, the functions L:i=l aiXi ( ·) are increasing and con

verge to a defined by 

where Ja := {i = 1, ... ,n, I ai := maxj=l, ... ,naj}· Indeed, set 
ao := maxj=l, ... ,n aj; the above claim follows obviously from formula 

Observe that the limit points of the viable solutions achieve the max
imum of the function X ----+ I:i=l aiXi on sn' since any a E sJa 
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achieves the maximum of this linear functional10 . Observe also that 

the elements a E SJa are equilibria of the 0-order replicator sys

tem. Actually, the equilibria of the 0-order replicator system are the 

elements of the each subsimplex sLk where Lk := {j I aj = ak}11 . 

When n = 2, after setting x(·) := x1(·) and r := a1 - a2, we 

obtain the celebrated Verhust-Pearl's logistic equation 

V t 2: 0, x'(t) = rx(t)(1- x(t)) 

the solutions of which are the logistic curves (the S-curves) 

1 
x(t) := -bt 

1 + ce 

The logistic equation played an important role in population dy

namics. In the simplest case, assume that the growth rate of an or

ganism is constant whenever there are no constraints on the resources 

needed for growth. This is no longer valid when the resources are 

limited for whatever reason. This fact is translated by saying that 

the growth rate becomes negative for large populations: the larger 

the population, the more severe the inhibition on further growth. 

The simplest growth rate fitting these requirements is the function 

r(1- x), so that the evolution of the population obeys the logistic 

equation. D 

10Since ao := maxj=l, ... ,n aj, we deduce that 

{ 
~~=l a;~a;- x;) = ~iEJa a;(a; -_x;)- L;vtJ~a;(a;- x;) 

- ao(l LiEJa x,) L;oa a,x,- L;EJa(ao a,)x,::;. 0 

for any i = 1, ... , n. 

n 

a;(a; -2:.:::: aiai) = 0 
j=l 
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Example: Replicator systems for linear growth rates. 
The next class of examples is provided by linear growth rates 

n 

\;/ i = 1, ... , n, gi(x) := L aijXj 
j=l 

Let A denote the matrix the entries of which are the above aij 's. 
Hence the global flux can be written 

n 

\;/X E sn, u(x) = L aklXkXl = < Ax,x > 
k,l=l 

Therefore, first order replica tor systems can be written12 . 

n n 

\;/ i = 1, ... , n, x~(t) = Xi(t)(L aijXj(t)- L aklXk(t)xl(t)) 
j=l k,l=l 

Such systems have been investigated independently in 
population genetics (allele frequencies in a gene pool) 
theory of prebiotic evolution of self replicating polymers 

(concentrations of polynucleotides in a dialysis reactor) 
sociobiological studies of evolutionary stable traits of an

imal behavior (distributions of behavioral phenotypes in a given 
species) 

population ecology (densities of interacting species) 
In population genetics, Fisher- Wright-Haldane's model regards 

the state X E Sn as the frequencies of alleles in a gene pool and 
the matrix A:= (aij)i,j=l, ... ,n as the fitness matrix, where aij repre
sents the fitness of the genotype (i,j). In this case, the matrix A is 
obviously symmetric and we denote by 

u(x) :=<Ax, X> the average fitness 

Since the growth rate can be derived from the potential U(x) .
u(x)/2, we conclude that whenever A is positive-definite, the average 
adaptability does not decrease13 along viable solutions. 

120bserve that if for each i, all the Uij are equal to bi, we find 0-order replicator 
systems 

13This property is known as the fundamental theorem of natural selection in 
population genetics. 
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In the theory of prebiotic evolution, the state represents the con
centrations of polynucleotides. It is assumed in Eigen-Schuster's 

"hypercycle" that the growth rate of the ith_polynucleotide is pro
portional to the concentration of the preceding one: 

Vi= 1, ... , n, 9i(x) = CiXi-1 where X-1 := Xn 

In other words, the growth of polynucleotide i is catalyzed by its 
predecessor by Michaelis-Menten type chemical reactions. 

The feedback u(x) = I:i=1 CiXiXi-1 can be regarded as a selective 
pressure to maintain the concentration. 

The equilibrium o: of such a system is equal to 

1 n 1 ( ) 

-1 

V i = 1, ... , n, O:i = -- L - where 
Ci+l j=1 Cj 

First order replicator systems also offer a quite interesting model 
of dynamic game theory proposed in 1974 by J. Maynard-Smith to 

explain the evolution of genetically programmed behaviors of indi
viduals of an animal species. 

We denote by i = 1, ... , n then possible "strategies" used in in

terindividual competition in the species and denote by aij the "gain" 
when strategy i is played against strategy j. The state of the sys

tem is described by the "mixed strategies" X E Sn, which are the 

probabilities with which the strategies are implemented. Hence the 

growth rate 9i(x) := I:j=1 aijXj is the gain obtained by playing strat
egy i against the mixed strategy x and u(x) := I:f,j=1 aijXiXj can be 
interpreted as the average gain . 

So the growth rate of the strategy i in the replicator system is 
equal to the difference between the gain of i and the average gain (a 
behavior which had been proposed in 1978 by Taylor and Jonker.) 

We shall say that an equilibrium o: is evolutionary stable if and 
only if the property 

n 

3 TJ > 0 such that xi= o:, L9i(x)(o:i- xi)> 0 
i=1 

holds true in a neighborhood of o:. 
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This implies that 

d n 
dt Va(x(t)) = -Va(x(t)) t;(xi(t)- ai)(gi(x(t))- gi(a)) > 0 

in a neighborhood of a. 
It is interesting to observe that first order replicator systems can 

be used at the two extremes of biological evolution, prebiotic evo
lution at the molecular level and behavioral evolution in ethology 
(animal behavior.) 

In ecology, the main models are elaborations of the Latka- Volterra 
equations 

\i i = 1, ... , n, x~(t) = Xi(t) (aiO + t aijXj(t)) 
J=l 

where the growth rate of each species depend in an affine way upon 
the number of organisms of the other species. A very simple trans
formation replaces this system by a first order replicator system. We 
compactify R+ by introducing homogeneous coordinates. We set 
xo := 1 and we introduce the map 

x· 
\i i = 0, ... 'n, Yi := r_:n t . 

j=l XJ 

from R+ onto sn+l' the inverse of which is defined by Xi:= yi/yo. 
We set aoj = 0 for all j, so that Lotka-Volterra's equation be

comes 

\i i = 1, ... , n, y: 

because 

This is, up to the multiplication by ..!.. , i.e., up to a modification of 
Yo 

the time scale, a ( n + 1 )-dimensional first order replica tor system. 
So, first-order replicator systems appear as a common denomina

tor underlying these four biological processes. 
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1.5 Stochastic Viability and Invariance 

The aim of this section is to extend to the stochastic case Nagumo's Theo
rem on viability and/or invariance properties of closed subsets with respect 
to a differential equation. 

1.5.1 Stochastic Tangent Sets 

Let us consider a a-complete probability space (0, F, P), an increasing 
family of a-sub-algebras Ft C F and a finite dimensional vector-space X := 
Rn. 

The constraints are defined by closed subsets Kw c X, where the set
valued map 

K:wEO~Kw eX 

is assumed to be Fo-measurable (which can be regarded as a random set
valued variable.) 

We denote by K the subset 

K := {u E L2(0,F,P) I for almost allw En, Uw E Kw} 

For simplicity, we restrict ourselves to scalar Ft-Wiener processes W(t). 

Definition 1.5.1 {Stochastic Contingent Set) Let us consider an Ft
random variable x E K {i.e., an Ft-measurable selection of K.) 

We define the stochastic contingent set TK(t, x) to K at x {with respect 
to Ft) as the set of pairs ('y, v) of Ft-random variables satisfying the fol
lowing property: There exist sequences of hn > 0 converging to 0 and of 
Ft+h.,. -random variables an and bn such that 

and satisfying 

{ 
i) 
. ") 
~~ ") nz 
iv) 

E(llanll2 ) ~ 0 
E(llbnll 2 ) ~ 0 
E(bn) = 0 
bn is independent of Ft 

1.5.2 Stochastic Viability 

We consider the stochastic differential equation 

df. = f(e(t))dt + g(e(t))dW(t) 

where f and g are Lipschitz. 

(1.15) 

(1.17) 
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We say that a stochastic process e(t) defined by 

e(t) = e(o) +lot f(e(s))ds +lot g(e(s))dW(s) (1.18) 

is a solution to the stochastic differential equation (1.17) if the functions f 
and g satisfy: 

for almost allw E 0, f(e(·)) E L 1(0,T;X) & g(e(·)) E L2 (0,T;X) 

Definition 1.5.2 We shall say that a stochastic process x(·) is viable in 
K if and only if 

Vt E [O,T], x(t) E K (1.19) 

i.e., if and only if 

V t E [0, T], for almost all wE 0, ew(t) E Kw 

The random set-valued variable K is said to be (stochastically) invariant 
by the pair (!,g) if every solution e to the stochastic differential equation 
starting at a random variable x E K is viable in K. 

When K is a subset of X (i.e., a constant set-valued random variable} 
and when the maps (!, g) are defined on K, we shall say that K enjoys the 
(stochastic) viability property with respect to the pair (!,g) if for any ran
dom variable X in K' there exists a solution e to the stochastic differential 
equation starting at a x which is viable in K. 

Since Kw and ew(O) are :Fa measurable, the projection IIK..,(ew(O)) is 
also a :Fa-measurable map (see Theorem 8.2.13, p. 317 of SET-VALUED 

ANALYSIS.) Then there exists a :Fa-measurable selection Yw E IIK..,(ew(O)), 
which we call a projection of the random variable e(o) onto the random 
set-valued variable K. 

Theorem 1.5.3 {Stochastic Viability) Let K be a closed convex subset 
of X. Then the following conditions are equivalent: 

1. The subset K enjoys the stochastic viability property with 
respect to the pair (!, g) 

2. for every :Ft -random variable x viable in K, 

(f(x),g(x)) E TK(t,x) (1.20) 

We shall deduce this theorem from more general Theorems 1.5.4 and 
Theorems 1.5.5 below dealing with set-valued random variables instead of 
closed convex subsets. 
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1.5.3 Necessary Conditions 

Let K be a set-valued random variable. 

Theorem 1.5.4 If the random set-valued variable K is invariant by the 
pair (!,g), then for every :Ft-random variable x viable inK, 

(f(x),g(x)) E TK(t,x) (1.21) 

Proof- We consider the viable stochastic process ~(t) 

~(h) = x + 1h f(~(s))ds + 1h g(~(s))dW(s) (1.22) 

which is a solution to the stochastic differential equation ( 1.17) starting at 
x. 

We can write it in the form 

~(t) = ~(0) + hf(~(O)) + g(~(O))W(h) + 1h a(s)ds + 1h b(s)dW(s) 

where 

{ a(s) = 
b(s) 

f(~(s))- f(~(O)) 
g(~(s)) - g(~(O)) 

converge to 0 with s. 
We set 

llt+h 
ah := h t a(s)ds 

and 
1 1t+h 

bh := Jh t b(s)dW(s) 

and we observe that 

{ 
E (iiahin = ~E (llftt+h a(s)dsll

2
) 

:::; t ftt+hE (11(a(s)ll 2)) ds 

converges to 0 because E (IIJ; rp(s)dsll 2
) :::; t J; E(llrp(s)ll 2)ds. 

In the same way, 

{ 
E (llbhln = kE (IIItt+h b(s)dW(s)ll 2

) 

= i ftt+h E (llb(s)ll 2 ) ds 
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also converges to 0 because E (III~ rp(s)dW(s)ll 2
) =I~ E(jjrp(s)ll 2 )ds. 

The expectation of bh is obviously equal to 0 and bh is independent of 
:Ft. Since ~(h)w belongs to Kw for almost all w, we deduce that the pair 
(f(x),g(x)) belongs to TK(t,x). 0 

1.5.4 Sufficient Conditions for Stochastic lnvariance 

Theorem 1.5.5 (Stochastic Invariance) Assume that the set-valued ran
dom variable K satisfies the following property: for every :Ft-random vari
able x, there exists an :Ft- measurable projection y E IIK(x) such that 

(f(x),g(x)) E TK(t,y) (1.23) 

Then the set-valued random variable K is invariant by (!,g) 

Remark - Observe that the sufficient condition of invariance re
quires the verification of the "stochastic tangential condition" (1.23) for 
every stochastic process y, including stochastic processes which are not 
viable in K. 0 

In order to prove Theorem 1.5.5, we need the following: 

Lemma 1.5.6 Let K be a random set-valued variable, ~(0) a :Fa-adapted 
stochastic process. 

We define 

~(t) = ~(0) + 1t f(~(s))ds + 1t g(~(s))dW(s) 

and we choose a :Fa- measurable projection y E IIK(~(O)). 
Then, for any pair of :Fa-random variable ("y, v) in the stochastic con

tingent set TK(O, y), the following estimate 

{ 
lim inftn _,a (E( dk(~( tn)) - E( dk(~(O))) /tn 

:S 2E ( (~(0)- y, f(~(O)) -1)) + E(jjg(~(O))- vll 2 ) 

holds true. 

Proof- Let us set x = ~(0), choose a projection y E IIK(x) and take 
("y, v) in the stochastic contingent set TK(O, y). This means that there exist 
sequences tn > 0 converging to 0 and :Ftn -measurable an and bn satisfying 
the assumptions (1.15) and 
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Therefore 

cf!K(e(tn))- dk(e(o)) < 

llx + J~n J(e(s))ds + J~n g(e(s))dW(s)- y- vW(tn)- "(tn- tnan- y'tnbnll 2 

-llx- Yll 2 

= ll(x- y) + J~n(f(e(s))- "f)ds + J~n(g(e(s))- v)dW(s)- tnan- y'tnbnll 2 

-llx- Yll 2 

=: I 

The latter term can be split in the following way: 

I = 2 < x- y, J~n (g(e(s))- v)dW(s) > h 

+ 2 < x- y, J~n(f(e(s))- "f)ds > h 

+II J~n(g(e(s))- v)dW(s))ll 2 I3 

+II J~n(f(e(s))- 'Y)dsll 2 I4 

+2 (J~n(g(e(s))- v)dW(s), J~n(f(e(s))- "f)ds) I5 

-2 ( x- y + J~n(f(e(s))- "f)ds + J~n(g(e(s))- v)dW(s), tnan) h 

-2 ( x- y + J~n(f(e(s))- "f)ds + J~n(g(e(s))- v)dW(s), y'tnbn) h 

Is 

We take the expectation in both sides of this inequality and estimate 
each term of the right hand-side. First, we observe that 

so that the expectation of the first term I 1 of the right-hand side of the 
above inequality vanishes. 

The second term I 2 is estimated by 2tnan where 

an := E ( \x- y, t~ 1tn (f(e(s))- "f)ds)) 
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converges to 
a := E ( (x- y, !(e(o)) - 'Y)) 

The third term !3 is estimated by tnf3n where 

converges to 

{ 
f3n := t~ E (11 I~"(g(e(s))- v)dW(s))ll2 ) 

= t~ I~" E (llg(e(s))- vll 2) ds 

f3 := E(llg(e(o)) - vll 2) 
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because E (III~ cp(s)dW(s)ll 2
) = I~ E(llcp(s)ll2)ds. The fourth term !4 is 

easily estimated by tn6n where 

{ 
6n := t~ E (11 I~"(J(e(s))- 'Y)dsll 2) 

~ I~" E (11/(e(s))- 'YII 2 ) ds ~ ctn 

because E (III~ cp(s)dsll 2
) ~ t I~ E(llcp(s)ll2)ds. 

By the Cauchy-Schwarz inequality, the term 15 is estimated by 2tn1Jn 
where 

1Jn := t~ E ( (I~" (g(e(s)) - v )dW(s ), I~" (J(e(s)) - 'Y)ds)) 

~ t~ E(ll I~"(g(e(s))- v)dW(s)II 2 ) 112E(II I~"(J(e(s))- 'Y)dsll2 ) 112 

.l 
~ ct~ 

We now estimate the three latter terms involving the errors an and bn. 
We begin with 16 • First, 

which converges to 0 by assumption (1.15)i). 
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Now, the Cauchy-Schwarz inequality implies that 

{ 

E((J~n(f(e(s))-'Y)ds,an)) 

:::; E (IIJ~n(f(e(s))- 'Y)dsll 2)! E (llanll 2)! 

Finally, the stochastic term is estimated in the following way: 

E ( (J~n(g(e(s))- v)dW(s),an)) 

1 

:::; E (IIJ~n(g(e(s))- v)dW(s)ll 2
) 

2 E (llanll 2)! 

which obviously converges to 0. 
We continue with h. We have 

since bn is independent of x- y and E(bn) = 0. 
The Cauchy-Schwarz inequality implies that 

E ( (J~n(f(e(s))- 'Y)ds, ~bn)) 

1 

:::; E (IIJ~n (f(e(s))- 'Y)dsll 2
) 

2 E (11 ~bnll 2)! 

Finally, the worst term of 17 is estimated in the following way: 

E ( (J~n(g(e(s))- v)dW(s), *bn)) 

< ~ E (IIJ~n(g(e(s))- v)dW(s)ll 2
) JE (llbnll 2 ) 
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which converges to 0 by assumption (1.15)ii). 
It remains to estimate the last term of ! 8 . There is no difficulty because 

converges to 0. 
Putting everything together, we deduce the inequality of the lemma. 

D 

Proof of Theorem 1.5.5 Since the solution to the stochastic differ
ential equation can be written for any h 2 0 

J
t+h Jt+h 

~(t +h) = ~(t) + t f(~(s))ds + t g(~(s))dW(s) 

we deduce from Lemma 1.5.6 that 

{ 
liminfh_,O+ (E(dk(~(t +h))- E(dk(~(t)))) /h 

:::; 2E ( (~(t)- y(t), g(~(t)) -')')) + E(jjg(~(t))- vll 2 ) 

for any Ft-measurable selection y(t) of IIK(~(t)) and any (v(t),')'(t)) E 
TK(t, y(t) ). 

Since there exists a selection y(t) of IIK(~(t)) such that we can take 
v(t) := g(~(t)) and 'Y(t) := f(~(t)) by assumption, we infer that setting 

'P(t) E (dk(~(t))) 

the contingent epiderivative 

Dr'P(t)(l) l . . f 'P( t + h) - 'P( t) 
Imm h h---->0+ 

is non positive. 
This implies that 'P(t) :::; 0 for all t E [0, T]. If not, there would exist 

T > 0 such that 'P(T) > 0. Since 'P is continuous, there exists TJ E]O, T[ 
such that 

\:/ t E ]T- TJ, T], 'P(t) > 0 

Let us introduce the subset 

A := {s E [O,T]I Vt E ]s,t], 'P(t) > 0} 

and t0 := inf A. 
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We observe that for any t E]to, T], cp(t) > 0 and that cp(to) = 0. Indeed, 
if cp(t0) > 0, there would exist t1 E ]t11 t0[ such that cp(t) > 0 for all 
t E ]tb to], i.e., t1 E A, so that to would no be an infimum. 

Therefore, Drcp(t)(l) ~ 0 for any t E]t0, T] and thus, we obtain the 
contradiction 

0 < cp(T) = cp(T)- cp(t0) < 0 

Consequently, for every t E [0, T], we have 

Since the integrand is nonnegative, we infer that dK.., (~w(t)) = 0 almost 
surely, i.e., that the stochastic process~ is viable inK. D 

Proof of Theorem 1.5.3 The necessary condition following obviously 
from Theorem 1.5.4, it remains to prove that it is sufficient. For that 
purpose, we extend the maps f and g defined on K by the maps J and g 
defined on the whole space by 

f(x) := f(7rK(x)) & g(x) := g(7rK(x)) 

Then the pair (J, g) satisfies obviously condition 

so that K is invariant by (J, g) thanks to Theorem 1.5.5. Since these maps 
do coincide on K, we infer that K is a viability domain of(!, g). D 



Chapter 2 

Set-Valued Maps 

Introduction 

We shall gather in this chapter some of the results dealing with 
set-valued maps that we shall need. Only the properties of upper 
semicontinuous set-valued maps and, among them, the Convergence 
Theorem 2.4.4, and some notions on the set-valued analogues of con
tinuous linear operators, the closed convex processes are required in 
the short term. Hence, further results, in particular those dealing 
with lower semicontinuous criteria and selections of lower semicon
tinuous maps, are postponed to Chapter 6. 

We refer to the monograph SET-VALUED ANALYSIS for an ex
haustive presentation of continuity properties of set-valued maps. 
We only provide here for the convenience of the reader the main 
definitions and statements, as well as the proofs of the main results 
such as the convergence theorem which plays a central role in viabil
ity theory, in order to make this book as self-contained as possible. 

After defining upper semicontinuous and lower semicontinuous 
set-valued maps, providing an example (parametrized set-valued map) 
and proving the classical Maximum Theorem, we shall devote our at
tention to convex-valued maps. For that purpose, we shall recall in 
Section 3 the statement of the Separation Theorem and the proper
ties of support functions of convex subsets we need for defining the 
handy concept of upper hemicontinuous set-valued maps. We shall 
also state the useful Bipolar Theorem and Closed Range Theorem. 

We next prove the fundamental Convergence Theorem, an adap-

53 
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tation of the Mazur Theorem to our purpose, which is needed to 
check that the limit of approximate solutions built according to Eu
ler's precepts is a viable solution in the proof of the Viability Theorem 
(a step which was easy in the case of differential equations.) 

We conclude this chapter with a section on the set-valued ana
logues of continuous linear operators and their transpose. 

Since the graph of a continuous linear operator A E C{X, Y) is 
a {closed) vector subspace of X x Y, it is quite natural to regard 
set-valued maps, with closed convex cones as their graphs, as these 
set-valued analogues. Such set-valued maps are called closed convex 
processes1. 

The main class of examples of closed convex processes is provided 
by derivatives of set-valued maps which are introduced in Chapter 7. 

We shall mention that closed convex processes enjoy (almost) all 
properties of continuous linear operators, including Banach's Open 
Mapping and Closed Graph Theorems, the Uniform Boundedness 
Theorem and a kind of Banach-Steinhauss Theorem which we shall 
use later in this book. 

Like continuous linear operators, closed convex processes can be 
tmnsposed and the Bipolar Theorem can be adapted to closed convex 
processes. They thus enjoy the benefits of a duality theory. For 
instance, a duality criterion of a viability domain of a closed convex 
process is given in Chapter 5. 

2.1 Semicontinuous Set-Valued Maps 

2.1.1 Definitions 

We begin to recall in this section the basic definitions dealing with 
set-valued maps, also called multifunctions, multivalued functions, 
point to set maps or correspondences. 

Definition 2.1.1 Let X andY be metric spaces. A set-valued map 
F from X toY is chamcterized by its graph Graph(F), the subset 

1The term "process" has been coined by R.T. Rockafellar for denoting maps 
the graph of which are cones in a study of economic "processes" (with constant 
return to scale.) 
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of the product space X x Y defined by 

Graph(F) := {(x,y) EX x Y I y E F(x)} 

We shall say that F(x) is the image or the value ofF at x. A set
valued map is said to be nontrivial if its graph is not empty, i.e., if 
there exists at least one element x EX such that F(x) is not empty. 

We say that F is strict if all images F(x) are not empty. The 
domain ofF is the subset of elements x E X such that F(x) is not 
empty: 

Dom(F) := {x EX I F(x)-/= 0} 

The image ofF is the union of the images (or values) F(x) when x 
ranges over X: 

Im(F) := U F(x) 
xEX 

The inverse F-1 ofF is the set-valued map from Y to X defined by 

x E F- 1 (y) {:::::? y E F(x) {:::::? (x, y) E Graph(F) 

The domain ofF is thus the image of F-1 and coincides with the 
projection of the graph onto the space X and, in a symmetric way, 
the image ofF is equal to the domain of F-1 and to the projection 
of the graph ofF onto the spaceY. 

If K is a subset of X, we denote by FIK the restriction ofF to 
K, defined by 

FIK(x) := { F~x) if x E K 
VJ if X rJ_ K 

We shall write 

F c G {:::::? Graph(F) c Graph(G) 

and say that G is an extension of F. 



56 2- Set-Valued Maps 

2.1.2 Continuity Concepts 

Let d denote the distance of the metric space X. When K is a subset 
of X, we denote by 

dK(x) := d(x, K) := inf d(x, y) 
yEK 

the distance from x to K, where we set d(x, 0) := +oo. The ball of 
radius r > 0 around K in X is denoted by 

Bx(K,r) := {x EX I d(x,K):::; r} 

When there is no ambiguity, we set 

B(K,r) := Bx(K,r) 

The balls B(K, r) are neighborhoods of K. When K is compact, 
each neighborhood of K contains such a ball around K. 

When X is a normed space whose unit ball is denoted by B (or 
Bx if the space must be mentioned), we observe that 

Bx(K,r) = K +rBx 

and we set 

IIKII := sup & Diam(K) = IlK- Kll 
xEK 

We first need to adapt to the set-valued case the concept of continu
ity. There are two equivalent definitions of a continuous map fat x, 
the "c: - 17" definition and the fact that f maps every sequence Xn 

converging to x to a sequence f(xn) converging to f(x). Unfortu
nately, the natural generalizations of these statements to set-valued 
maps are no longer equivalent. 

First, let us introduce these statements: 

Definition 2.1.2 A set-valued map F: X~ Y is called 
upper semicontinuous at x E X if and only if for any neigh

borhood U of F(x), 

31] > 0 such that V x' E Bx(x, rJ), F(x') cU. 
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Figure 2.1: Semicontinuous and Noncontinuous Maps 

t 
! 

! 
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~· 0 0 
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I 

lower s.c. & not upper s.c. upper s.c. & not lower s.c. 

It is said to be upper semicontinuous if and only if it is upper semi
continuous at any point of X. 

lower semicontinuous at x E Dom(F) if and only if for any 
y E F(x) and for any sequence of elements Xn E Dom(F) conve.rging 
to x, there exists a sequence of elements Yn E F(xn) converging toy. 
It is said to be lower semicontinuous if it is lower semicontinuous at 
every point x E Dom(F). 

continuous at x E Dom(F) if it is both upper semicontinuous 
and lower semicontinuous at x, and that it is continuous if and only 
if it is continuous at every point of Dom( F). 

Indeed, there exist set-valued maps which enjoy one property 
without satisfying the other. 

Examples- The set-valued map F 1 defined by 

[-1, +1] if 
{0} if 

x~O 
x=O 

is lower semicontinuous at zero but not upper semicontinuous at zero. 
The set-valued map F2 : R""" R defined by 

{0} if 
[-1, +1] if 

x~O 
x=O 

is upper semicontinuous at zero but not lower semicontinuous at zero. D 
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Remark - Let us point out that F : X ~ Y is upper semi
continuous if and only if Dom(F) is closed and if the restriction 
F: Dom(F) ~ Y is upper semicontinuous. 

Indeed, ifF is upper semicontinuous and F(xo) is empty, we take 
two disjoint neighborhoods of F(xo), so that the upper semicontinu
ity ofF at xo implies the existence of a neighborhood of xo which 
is mapped by F into this empty intersection of neighborhoods. This 
shows that the complement of the domain of F is open. The restric
tion of F to its domain is then obviously upper semicontinuous. 

The converse statement is easy. D 

We shall also need to adapt to the set-valued case the concept of 
Lipschitz applications. 

Definition 2.1.3 When X and Y are normed spaces, we shall say 
that F : X ~ Y is Lipschitz around x E X if there exist a positive 
constant>. and a neighborhood U c Dom(F) of x such that 

It is said to be locally Lipschitz on an open subset 0 c X if it 
is Lipschitz around every point X E n and Lipschitz on n if the 
constant >. is independent of x E 0. In this case, if the images ofF 
are closed, we denote by IIFIIA the smallest constant>.. 

If y is given in F(x), F is said to be pseudo-Lipschitz around 
(x, y) E Graph( F) if there exist a positive constant>. and neighbor
hoods U C Dom(F) of x and V of y such that 

Example: Parametrized Set-Valued Maps The main class of ex
amples that we shall use throughout this book is provided by parametrized 
set-valued maps. 

Let us consider three metric spaces X, Y and Z, a set-valued map 
U : X~ Z and a single-valued map f : Graph(U) f-+ Y. We associate with 
these data the set-valued map F : X ~ Y defined by 

V X EX, F(x) := (f(x, u))uEU(x) 
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Proposition 2.1.4 Assume that f is continuous from Graph(U) to Y. 
If U is lower semicontinuous, so is F. 
If U is upper semicontinuous with compact values, so is F. 

We leave the proof as an exercise2 . D 

The Maximum Theorem We also use the continuity properties of 
the marginal maps. 

Definition 2.1.5 (Marginal Functions) Consider a set-valued map F: 
X ~ Y and a function f: Graph(F) ~ R. We associate with them the 
marginal function g : X ~ R defined by 

g(x) := sup f(x, y) 
yEF(x) 

Theorem 2.1.6 (Maximum Theorem) Let metric spaces X, Y, a set
valued map F: X~ Y and a function f: Graph( F)~ R be given. 

Iff and F are lower semicontinuous, so is the marginal function. 
Iff and F are upper semicontinuous and if the values of F are 

compact, so is the marginal function. 

The proof is an exercise of topology which is found in many books3 . 

2 See Proposition 1.4.14 of SET-VALUED ANALYSIS for more details. 
3We still provide a proof of the second statement for the convenience of the 

reader: 
Pick x E X and fix E > 0. Since f is upper semicontinuous, we can associate 

with any y E F(x) open neighborhoods V(y) of y and Uy(x) of x such that 

VuE Uy(x)andvEV(y), f(u,v)::; f(x,y)+c (2.1) 

Since F(x) is compact, it can be covered by n neighborhoods V(y;), i = 1, · · · ,p, 
the union of which makes up a neighborhood of F(x). Then there exists a neigh
borhood Uo(x) such that 

p 

\;/ x' E Uo(x), F(x') C U V(yi) 
i=l 

because F is upper semicontinuous. By taking u in the neighborhood 

p 

U(x) := Uo(x) n nuy,(x) 
i=l 

we observe that 

VuEU(x), VvEF(u), f(u,v):S sup f(x,y;)+c < g(x)+c 
i=l,···,p 
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We will use the following corollary quite often: 

Corollary 2.1.7 If a set-valued map F is lower semicontinuous (resp. 
upper semicontinuous with compact values), then the function (x, y) ~---+ 
d(y, F(x)) is upper semicontinuous (resp. lower semicontinuous.) 

2.2 Closed Set-Valued Maps 

We know that the graph of a continuous (single-valued) map is closed 
and that the converse is true under further assumptions (when we 
assume that the image of f is relatively compact, for instance.) 

This result can be extended to upper semicontinuous set-valued 
maps. First, it is convenient to introduced closed set-valued maps. 

Definition 2.2.1 (Closed Map) Let us consider a set-valued map 
F : X ~ Y. We shall say that it is closed if and only if its graph is 
closed. 

2.2.1 Upper Semicontinuity of Closed Maps 

Closed set-valued maps almost characterize upper semicontinuous 
set-valued maps, as the following result shows. 

Proposition 2.2.2 The graph of an upper semicontinuous set-valued 
map F : X ~ Y with closed values is closed. 

The converse is true if we assume that the domain ofF is closed 
and that Y is compact. 

Remark- We shall state later (Theorem 2.5.5) that a closed 
convex process from a Banach space to another is also upper semi
continuous (and even, Lipschitz.) D 

Proof- Let us consider a sequence of elements (xn, Yn) of the graph 
ofF converging to (x, y). Since F is upper semicontinuous, for all positive 
e, there exists an integer N(e) such that, for all n > N(e), we have 

Yn E F(xn) C F(x) + eB 
----------------------
(thanks to (2.1)) and we deduce that 

VuE U(x), g(u) :S g(x) + c D 
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We thus deduce that y belongs to the closure of F(x), which coincides with 
F(x). Then the limit (x, y) does belong to the graph of F. 

Let us assume now that the graph ofF is closed and that Y is compact. 
Let x EX and V, an open neighborhood of F(x), be given. Let us denote 
by M the complement ofV, which is compact and disjoint from F(x). Since 
for ally E M, the pair {x, y) does not belong to the graph ofF, which is 
closed, there exist neighborhoods Wy(x) of x and U(y) of y such that 

Graph{F) n ({Wy{x)) X (U(y))) = 0 

The compact subset M being covered by n neighborhoods U(yi), we con
sider the neighborhood Wo(x) := n~=l Wy.(x). It is clear that 

V x' E Wo(x), F(x') n (Q U(yi)) = 0 

Therefore, since (Y\V) c U~=l U(yi), we infer that F(x') c V, i.e., that F 
is upper semicontinuous at x. D 

This will be particularly useful since it provides an easy way 
to construct upper semicontinuous set-valued maps, by intersecting 
closed set-valued maps with closed balls, the radii of which are upper 
semicontinuous (real-valued) functions: 

Corollary 2.2.3 Let F : X "Vt Y be a closed set-valued map and 
r : X ~--+ R be an upper semicontinuous function. If the dimension of 
Y is finite , then the cut set-valued map Fr : X "Vt Y defined by 

Fr(x) := F(x) n r(x)B (2.2) 

is upper semicontinuous. 

It follows from Proposition 2.2.2 and the remark that the upper 
semicontinuity of r : X ~--+ R implies the upper semicontinuity of 
x "Vt r(x)B. 

2.2.2 Marchaud Maps 

We denote by 
IIF(x)ll := sup IIYII 

yEF(x) 
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and we say that F has linear growth if there exists a positive constant 
c such that 

V x E Dom(F), IIF(x)ll :::; c(llxll + 1) 

Definition 2.2.4 {Marchaud Map) We shall say that F is a Mar
chaud map if it is nontrivial, upper semicontinuous, has compact 
convex images and linear growth. 

We deduce from Corollary 2.2.3 the following result: 

Corollary 2.2.5 If Y is a finite dimensional vector-space, to say 
that a nontrivial set-valued map F is a M archaud map amounts to 
saying that 

{ 
i) 
") 
~~i) 

the graph and the domain ofF are closed 
the values ofF are convex 
the growth of F is linear 

More generally, let U : X '""--+ Z be a nontrivial set-valued map and 
f : Graph(U) f--+ Y be a single-valued map. Assume that 

{ 
i) 
. ') 
~~-) 
Z'/,'l 

the graph and the domain of U are closed 
the values of U are convex 
the growth of U is linear 

and that f is continuous, is affine with respect to the second variable 
and has linear growth. Then the parametrized map x '""--+ f(x, U(x)) 
is a Marchaud map. 

2.3 Support Functions 

When the values of a set-valued map are closed and convex, we can 
use the Hahn-Banach Separation Theorem to characterize them by 
their support functions. This is quite convenient for a lot of reasons, 
one of them being the possibility of replacing the continuity proper
ties of set-valued maps by the more familiar continuity properties of 
real-valued functions. 
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Definition 2.3.1 Let K be a nonempty subset of a Banach space 
X. We associate with any continuous linear form p E X* 

O"K(P) := O"(K,p) := sup < (p, x) > E R U { +oo} 
xEK 

The function O"K : X* t--t R U { +oo} is called the support function of 
K. Its domain is a convex cone called the barrier cone denoted by 

b(K) := Dom(O"K) := {p EX* I O"K(P) < oo} (2.3) 

We say that the subsets of X* defined by 

r 
Ko ·- {p EX* I O"K(P) < 1} 

. ") K- ·- {p EX* I O"K(P) < 0} 
~~i) K+ ·- -K-

iv) Kl_ ·- {p E X* I \:1 X E K, < (p,x) > = 0} 

are the polar set, (negative) polar cone, positive polar cone and 
orthogonal of K respectively. 

When L c X*, we define the polar set U c X as the subset of 
elements x EX (and not X**) satisfying< (p, x) >:S 1 for all p E L. 
The polar cone L- c X and the orthogonal Ll_ c X of L are defined 
in the same way. The subsets 

are called respectively the bipolar set and bipolar cone of a subset 
K c X and the subspace Kl_l_ := (Kl_).l C X the biorthogonal of 
K. 

It is clear that K 0 is a closed convex subset containing 0, that 
K- is a closed convex cone, that K 1_ is a closed subspace of X* and 
that 

Examples 

• When K = {x}, then O"K(P) =< (p,x) > 



64 2- Set-Valued Maps 

• When K = Bx, then (}'Bx(P) = IIPII* where II· II* is the dual 
norm defined by 

IIPII* ·-
(p, x) 

sup--
xEX llxll 

• If K is a cone, then 

(JK(P) = { 
0 if p E K-
+oo if p tf_ K- 0 

When K = 0, we set (}'0(P) = -oo for every p EX*. 

The Separation Theorem can be stated in the following way: 

Theorem 2.3.2 (Separation theorem) Let K be a nonempty sub
set of a Banach space X. Its closed convex hull is characterized by 
linear constraint inequalities in the following way 

co(K) = {x EX I V p EX*, < (p, x) > :::; ox(p)} 

Furthermore, there is a bijective correspondence between nonempty 
closed convex subsets of X and nontrivial lower semicontinuous pos
itively homogeneous convex functions on X*. 

Remark - The Separation Theorem holds true not only in Banach 

spaces, but in any Hausdorff locally convex topological vector-space. In 

particular, we can use it when X is supplied with the weakened topology. 

The geometrical interpretation can be stated as follows: the closed con

vex hull of a nonempty subset is the intersection of all closed half-spaces 

containing it. D 

We observe that a subset K is bounded if and only if its support 
function is finite. 

We mention the following consequence, known as the Bipolar the
orem. 

Theorem 2.3.3 (Bipolar Theorem) The bipolar cone K-- is the 

closed convex cone spanned by K. 
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If A E £(X, Y) is a continuous linear opemtor from X toY and 
K is a subset of X, then 

and thus the closed cone spanned by A(K) is equal to (A*- 1 (K-))-. 

where A* denotes the transpose of A. We state now a simple criterion 
which implies that the image of a closed subset is closed4• 

Theorem 2.3.4 (Closed Range Theorem) Let X be a Banach 
space, Y be a reflexive space, K C X be a weakly closed subset and 
A E £(X, Y) a continuous linear opemtor satisfying 

Im(A*) + b(K) = X* (2.4) 

Then the image A(K) is closed. In particular, if K is a closed convex 
cone and if 

Im(A*) + K- = X* 

then 

For the convenience of the reader, we list in Table 2.1 some useful 
formulas of the calculus of support functions and barrier cones5 . 

2.4 Convergence Theorem 

We begin with the following consequence of the Maximum Theo
rem 2.1.6: 

Corollary 2.4.1 If a set-valued map F from a metric space X to a 
normed space Y is upper semicontinuous with compact values (resp. 
lower semicontinuous), then the function 

(x, q) EX x Y* ~ u(F(x), q) 

is upper semicontinuous (resp. lower semicontinuous.) 

4 See Theorem 2.4.4 of SET-VALUED ANALYSIS for a proof. 
5 See Chapter 3 of APPLIED NONLINEAR ANALYSIS for instance. 
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Table 2.1: Properties of Support Functions. 

(1) [> 

(2) [> 

(3) [> 

(4)a) t> 

(4)b) [> 

(5) [> 

(5)a) t> 

(5)b) [> 

If K c L c X, then b(L) c b(K) and ax :SaL 
If Ki c X, i E I, then 

b(co(UiEI Ki)) C niEI b(Ki) 
a(co(UiEI Ki),p) = supiEI aKi (p) 

If Ki c Xi, ( i = 1, · · · , n), then 
b(I1~1 Ki) = Ili=I b(Ki) 
a(IJi=I Ki, (PI,··· ,pn)) = I:i=l aKi(Pi) 

If A E £(X, Y), then 
b(A(K)) = A*-1b(K) 
a A(K)(p) = aK(A*p) 

If K1 and K2 are contained in X, then 
b(K1 + K2) = b(KI) n b(K2) 
aK1+K2(p) = aK1 (p) + aK2(p) 

In particular, if K C X and P is a cone, then 
b(K + P) = b(K) n p- and 
aK+P(P) = aK(P) if pEp- and +oo if not 

If L C X and M C Yare closed convex subsets and 
A E £(X, Y) is a continuous linear operator such that 
the qualification constraint condition 
0 E Int(M- A(L)) holds true, then 

b(L n A-1(M)) = b(L) + A*b(M) and 
V p E b(L n A-1(M)), :3 q E Y* such that 

aLnA-l(M)(P) = aL(P- A*q) + aM(q) 
= infqEY*(aL(P- A*q) + aM(q)) 

If M c Y is a closed convex subset and if 
A E £(X, Y) is a continuous linear operator such that 
0 E lnt(Im(A)- M), then b(A-1(M)) = A*b(M) 
and, for every p E b(A-1(M)), there exists q E b(M) 
such that a A-l(M)(P) = aM(q) = infA*q=p(aM(q)) 
If K1 and K2 are closed convex subsets of X such that 

0 E lnt(K1 - K2), then b(K1 n K2) = b(KI) + b(K2) 
and V p E b(K1 n K2), :3 qi EX*, (i = 1, 2) such that 

aK1nK2(P) = aK1 (£]1) + aK2(ii2) 
= infp=p1+p2(aK1 (PI)+ aK2 (P2)) 



2.4. Convergence Theorem 67 

Remark - This property still holds true when Y is supplied with 
the weak topology. One can prove that the converse is true when the values 
ofF are convex and compact. D 

Therefore, it is quite convenient to introduce the following defi
nition. 

Definition 2.4.2 (Upper Hemicontinuous Map) We shall say 
that a set-valued map F : X "Vt Y is upper hemicontinuous at xo E X 
if and only if for every p E Y*, the function x EX~ u(F(x),p) E R 
is upper semicontinuous at xo. It is said to be upper hemicontinuous 
if and only if it is upper hemicontinuous at every point of X. 

Proposition 2.4.3 The graph of an upper hemicontinuous set-valued 
map with closed convex values is closed. 

Proof- Consider a sequence of elements (xn, Yn) of Graph( F) 
converging to a pair ( x, y). Then, for every p E Y*, 

< p,y >= lim < p,yn >~ limsupu(F(xn),p) ~ u(F(x),p) 
n---+oo n---+oo 

by the upper semicontinuity of x ~ u(F(x),p). This inequality im
plies that y E F(x) since these subsets are closed and convex, thanks 
to the Separation Theorem 2.3.2. 

We thus have shown that (x, y) belongs to Graph( F), which ends 
the proof. D 

When we shall adapt the Nagumo Theorem 1.2.1 to the set-valued 
case, the third step will naturally become much more difficult. This 
step, as well as many other properties of differential inclusions for 
Peano maps, will follow from the Convergence Theorem. 

Let a(·) be a measurable strictly positive real-valued function 
from an interval I c R to R+· We denote by L1(I, Y; a) the space 
of classes of measurable functions from I to Y integrable for the 
measure a(t)dt. 

Theorem 2.4.4 (Convergence Theorem) Let X be a topological 
vector space, Y a Hilbert space and F be a nontrivial set-valued map 
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from X to Y. We assume that F is upper hemicontinuous with closed 
convex images. 

Let I be an interval ofR and let us consider measurable functions 
xm(·) and Ym(·) from I to X andY respectively, satisfying: 

for almost all t E I and for all neighborhood U of 0 in the product 
space X x Y, there exists M := M(t,U) such that 

V m > M, (xm(t), Ym(t)) E Graph( F)+ U (2.5) 

If we assume that 

Xm(·) converges almost everywhere to a function x(·) 
{ 

i) 

ii) Ym(·) E L1(I, Y; a) converges weakly in L1(I, Y; a) 
to a function y(·) E L 1(I, Y; a) 

(2.6) 
then 

for almost all t E I, y(t) E F(x(t)) (2.7) 

Proof Let us recall that in a Banach space (L1(I, Y; a), 
for instance), the closure (for the normed topology) of a set coincides 
with its weak closure (for the weakened topology6 

We apply this result: for every m, the function y( ·) belongs to the 
weak closure of the convex hull co({yp(·)}p~m·) It coincides with the 
(strong) closure of co({yp(·)}p2':m)· Hence we can choose functions 

00 

vm(·) := L a~yp(·) E co({yp(·)}p~m) 
p=m 

6 By definition of the weakened topology, the continuous linear functionals and 
the weakly continuous linear functionals coincide. Therefore, the closed half
spaces and weakly closed half-spaces are the same. The Hahn-Banach Separation 
Theorem, which holds true in Hausdorff locally convex topological vector spaces, 
states that closed convex subsets are the intersection of the closed half-spaces 
containing them. Since the weakened topology is locally convex, we then deduce 
that closed convex subsets and weakly closed convex subsets do coincide. This 
result is known as Mazur's theorem. 
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(where the coefficients a~ are positive or equal to 0 but for a finite 
number of them, and where L~m a~ = 1) which converge strongly 
toy(·) in L1(I, Y; a). This implies that the sequence a(·)vm(·) con
verges strongly to the function a(·)y(·) in L1(I, Y), since the operator 
of multiplication by a(·) is continuous from L1(I, Y; a) to L1(I, Y). 

Thus, there exists another subsequence (again denoted by) Vm ( ·) 

such that7 

for almost all t E I, a(t)vm(t) converges to a(t)y(t) 

Since the function a(·) is strictly positive, we deduce that 

for almost all t E I, vm(t) converges to y(t) 

Let t E I such that Xm(t) converges to x(t) in X and vm(t) 
converges to y(t) in Y. Let p E Y* be such that O'(F(x(t)),p) < +oo 
and let us choose..\> O'(F(x(t)),p). Since F is upper hemicontinuous, 
there exists a neighborhood V of 0 in X such that 

\f u E x(t) + V, then O'(F(u),p) :::; ..\ 

Let N1 be an integer such that 

1 
Xq E x(t) + 2 V 

(2.8) 

7 Strong convergence of a sequence in Lebesgue spaces £P implies that some 
subsequence converges almost everywhere. Let us consider indeed a sequence of 
functions f n converging strongly to a function f in £P. We can associate with it 
a subsequence fnk satisfying 

fffnk - fffLP S Tk; · · · < nk < nk+l < · · · 

Therefore, the series of integrals 

f J fffnk(t)- f(t)fffdt < +oo 
k=l 

is convergent. The Monotone Convergence Theorem implies that the series 

L fffnk(t)- J(t)flf 
k=l 

converges almost everywhere. For every t where this series converges, we infer 
that the general term converges to 0. 
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Let TJ > 0 be given. Assumption (2.5) of the theorem implies the 
existence of N2 and of elements (uq, vq) of the graph ofF such that 

1 
v q ~ N2, Uq E Xq(t) + 2 v, IIYq(t)- Vqll ~ TJ 

Therefore Uq belongs to x(t) + V and we deduce from ( 2.8) that 

{ 
< p, Yq(t) > ~ < p, Vq > +TJIIPII* 

~ (}(F(uq),p) + TJIIPII* 
~ A+ TJIIPII* 

Let us fix N ~ max(N1, N2), multiply the above inequalities by 
the nonnegative a'fn and add them up from q = 1 to oo. We obtain : 

By letting m go to infinity, it follows that 

< p, y(t) >~ A+ TJIIPII* 
Letting now A converge to (}(F(x(t)),p) and TJ to 0, we obtain: 

< p, y(t) >~ (}(F(x(t)),p) 

Since this inequality is automatically satisfied for those p such that 

(}(F(x(t)),p) = +oo, it thus holds true for every p E Y*. Hence, 

the images F(x) being closed and convex, the Separation Theorem 
implies that y(t) belongs to F(x(t)). The Convergence Theorem 
ensues. D 

2.5 Closed Convex Processes 

Let us introduce the set-valued analogues of continuous linear operators, 
which are the closed convex processes. 

Definition 2.5.1 (Closed Convex Process) Let F : X ~ Y be a set

valued map from a normed space X to a normed space Y. We shall say 
that F is 

convex if its graph is convex 
closed if its graph is closed 
a process (or positively homogeneous) if its graph is a cone 

Hence a closed convex process is a set-valued map whose graph is a 

closed convex cone. 
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We shall see that most of the properties of continuous linear operators are 
enjoyed by closed convex processes. 

Let us begin by the following obvious statements. 

Lemma 2.5.2 A set-valued map F is convex if and only if 

{ V XI, x2 E Dom(F), V .X E [0, 1], 
.XF(x1) + (1- .X)F(x2) c F(.Xx1 + (1- .X)x2) 

It is a process if and only if 

V x EX, .X> 0, .XF(x) = F(.Xx) and 0 E F(O) 

and a convex process if and only if it is a process satisfying 

We observe that the domain and the image of a closed convex process 
are convex cones (not necessarily closed.) 

The main examples of closed processes will be provided by contingent 
derivatives of set-valued maps that we shall introduce in Chapter 7. D 

We associate with a closed convex process its norm defined in the fol
lowing way. 

Definition 2.5.3 (Norm of a Closed Convex Process) Let F: X "-4 

Y be a closed convex process. Its norm IIFJI is equal to 

~ IIFII 
:= supxEDom(F) d(O, F(x))/llxll 

= supxEDom(F) infvEF(x) llvJI/IIxll 

= supxEDOm(F)nB infvEF(x) llvll 

(2.9) 

The Banach Open Mapping Theorem has been extended to closed con
vex processes by Robinson and Ursescu8 : 

Theorem 2.5.4 (Open Mapping) Let X, Y be Banach spaces. Assume 
that a closed convex process F : X "-4 Y is surjective (in the sense that 
Im(F) = Y.) Then p-l is Lipschitz: There exists a constant l > 0 such 
that, for all x1 E p-l(Yl) and for any Y2 E Y, we can find a solution 
x2 E F-1 (y2) satisfying: 

8 See the original papers or Theorem 3.3.1 of APPLIED NONLINEAR ANALYSIS in 
the nonreflexive case and Theorem 2.2.1 of SET-VALUED ANALYSIS in the reflexive 
case where a much simpler proof is sufficient. 
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As in the case of continuous linear operators, the Open Mapping The
orem is equivalent to the Closed Graph Theorem, which can be stated as 
follows. 

Theorem 2.5.5 (Closed Graph Theorem) A closed convex process F 
from a Banach space X to another Y whose domain is the whole space is 
Lipschitz: there exists a {Lipschitz) constant l > 0 such that 

(2.10) 

Thus, the norm of F is finite whenever Dom( F) = X. 

Proof- It is sufficient to apply the Open Mapping Theorem 2.5.4 
to p-l. D 

One can now adapt the Uniform Boundedness Theorem to the case of 
closed convex processes9 . 

Theorem 2.5.6 (Uniform Boundedness) Let X andY be Banach spaces 
and Fh be a family of closed convex processes from X to Y, ''pointwise 
bounded" in the sense that 

'<:/ x EX, 3 Yh E Fh(x) such that sup IIYhll < +oo 
h 

Then this family is "uniformly bounded" in the sense that 

(2.11) 

Hence we can speak of bounded families of closed convex processes, 
without specifying whether it is pointwise or uniform. 

We shall need the following consequence of Uniform Boundedness The
orem 2.5.6 extends to closed convex processes the following useful conver
gence result. 

Theorem 2.5.7 (Crossed Convergence) Consider a metric space U, 
Banach spaces X and Y, and a set-valued map associating to each u E U 
a closed convex process F(u) : X"'-+ Y. Let us assume that the family of 
closed convex processes F(u) is pointwise bounded. 

Then the following conditions are equivalent: 

{ ") 
~i) 

the map u "'-+ Graph(F(u)) is lower semicontinuous 
the map (u,x) "'-+ F(u)(x) is lower semicontinuous 

9 See Theorem 2.3.1 of SET-VALUED ANALYSIS for instance. 
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Proof- For proving that i) implies ii), let us consider a sequence 
of elements (un,Xn) converging to (u,x) and an element y E F(u)(x). We 
have to approximate it by elements Yn E F(un)(xn)· 

Since u ~ Graph(F(u)) is lower semicontinuous, we can approximate 
(x,y) by elements (Xn,Yn) E Graph(F(un)). By the pointwise bound
edness assumption and Theorem 2.5.6, there exist l > 0 and solutions 
fn E F(un)(xn- Xn) satisfying 

The right hand side of the above inequality converges to zero when n goes 
to infinity. Because F(un) is a convex process, the element Yn := Yn + fn 
does belong to F(un)(xn)· Consequently, using that Yn converge toy, we 
deduce that the set-valued map (u,x) ~ F(u)(x) is lower semicontinuous 
at (u,x). 

The converse is obviously true (even when the family (F(u))uEU is 
unbounded.) D 

Like continuous linear operators, closed convex processes can be trans
posed 

Definition 2.5.8 ('I'ranspose of a Process) Let X, Y be Banach spaces, 
F: X~ Y be a process. Its left-transpose {in short, its transpose) F* is 
the closed convex process from Y* to X* defined by 

{ p E F*(q) if and only if 
'<I x EX, '</ y E F(x), < p, x > :$ < q, y > (2.12) 

In particular, the transpose F* of a linear process F is defined by 

pEF*(q) ifandonlyifVxEX, '<lyEF(x), <p,x>=<q,y> 

The graph of the transpose F* of F is related to the polar cone of the 
graph of F in the following way: 

Lemma 2.5.9 (Graph of the 'I'ranspose) Consider Banach spaces X, Y 
and let F : X ~ Y be a process. Then 

(q,p) E Graph(F*) ¢::=:} {p, -q) E (Graph(F))-

In the case of linear processes, we observe that p E F*(q) if and only if 
(p, -q) belongs to Graph(F).l and we see at once that the bitranspose of a 
closed linear process F coincides with F. 
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The definition of a bitranspose of a convex process is not symmetric: If 
G : Y* ~ X* is a convex process, we define its transpose G* : X ~ Y by 
the formula 

(x, -y) E (Graph(G))-

(instead of the formula ( -x, y) E (Graph( G))- obtained by exchanging the 
roles of X and Y*, Y and X* respectively.) 

With this definition, the bitranspose of a closed convex process F coin
cides with F. 

We provide now a formula for transposing the product of closed convex 
processes10. 

Theorem 2.5.10 (Transpose of a Product) Let W, X, Y, Z be Banach 
spaces, F be a closed convex process from X to Y, A E .C(W, X) and B E 

.C(Y, Z) be continuous linear operators. Assume that 

Im(A) - Dom(F) = X (2.13) 

Then the transpose of BFA is equal to: 

(BFA)* = A* F* B* 

One can adapt to the case of closed convex processes the Bipolar The
orem 2.3.3, which the source of most duality properties11 : 

Theorem 2.5.11 (Bipolar Theorem) Consider Banach spaces X, Y and 
let F : X ~ Y be a closed convex process, and K C X be a cone satisfying 
Dom(F)- K =X. Then 

The above condition is obviously satisfied when the domain of F is the 
whole space. In this case we obtain 

Corollary 2.5.12 Let F: X~ Y be a strict closed convex process. Then 
Dom(F*) = F(O)+ and F* is upper hemicontinuous (see Definition 2.4.2} 
with bounded closed convex images, mapping the unit ball to the ball of 
radius IIFII· In particular, F*(O) = {0}. 

In particular, we obtain the following example of transpose: 

10See Theorem 2.5.3 of SET-VALUED ANALYSIS for instance. 
11 See Theorem 2.5.7 of SET-VALUED ANALYSIS for instance. 
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Proposition 2.5.13 Let X, Y be Banach spaces, G : X """ Y be a closed 
convex process and P c X and Q C Y be closed convex cones. Let us 
consider the convex process F defined by 

F(x) := { G
0 

(x) + Q if x E P 
if X €f_ p 

It is closed when we suppose that Dom(G*) + Q- = Y*. If we assume that 
Dom(G)- P =X, then its transpose is defined by 

F*(q) := { c0 *(q) + p- if q E Q+ 
if q €f. Q+ 



Chapter 3 

Viability Theorems for 
Differential Inclusions 

Introduction 

This is the basic chapter of this book, where the main viability 
theorems for differential inclusions in finite dimensional vector spaces 
are gathered and proved. (Invariance Theorems are the topic of 
Chapter 5.) 

We must begin by defining the class of functions in which to seek 
solutions to differential inclusions. An adequate choice is a weighted 
Sobolev space, made of absolutely continuous functions. The first 
section is devoted to these spaces and the derivatives in the sense of 
distributions. 

Viability domains K of a set-valued map F are presented and 
studied in the second section: They are defined by 

V x E K, F(x) nTK(x) f= 0 

or, equivalently, when K is closed and F is upper semicontinuous 
with convex compact values, by 

V x E K, F(x) nco (TK(x)) f= 0 

or also, by a dual condition involving the polar cone of the contingent 
cone (called the subnormal cone). 

77 



78 3- Viability Theorems 

Viability Theorems are stated in the third section. They claim 
that a subset K is viable under F (in the sense that for any initial 
state xo, there exists one solution starting at x0 which is viable in 
K) if and only if K is a viability domain of F. 

We consider successively the cases when K is locally compact, 
open and closed. The proofs are gathered in the fourth section. 

We then show in the fifth section that the solution map S associ
ating with any initial state the (possibly empty) subset of solutions 
to the differential inclusion is upper semicontinuous. 

We also prove Kurzhanski's Representation Theorem stating that 
the restriction of a set-valued map to a closed convex subset is a 
countable intersection of unconstrained set-valued maps. In the same 
way that Lagrange multipliers allows us to replace a constrained 
optimization problem with unconstrained problems by "adding the 
constraints to the functional" , this representation theorem enables us 
to represent the set of viable solutions to a differential inclusion as a 
countable intersection of sets of solutions to unconstrained differen
tial inclusions obtained by "adding the constraints" to the right-hand 
of the original differential inclusion. 

We recall that the upper limit of a sequence of subsets Kn is 
the set of cluster points of sequences of elements Xn E Kn. We 
then answer in the sixth section a natural stability question: does 
the upper limit of a sequence of viability domains remain a viability 
domain? We also extend this result to the case when the subsets Kn 
are viability domains of maps Fn. We define the upper graphical limit 
pU of a sequence of set-valued maps Fn by saying that the graph of 
pU is the upper limit of the graphs of Fn 's. We then prove that the 
upper limit of viability domains of set-valued maps Fn is a viability 
domain of the map co(FU). 

We proceed by giving examples of closed viability domains. In 
the seventh section, we show that the limit sets of solutions to a 
differential inclusion are closed viability domains. In particular, tra
jectories of periodic solutions are closed viability domains and thus, 
limits of solutions when t ---t +oo, if they exist, are equilibria. These 
limit sets are among the most interesting features of a dynamical 
system. They are naturally subsets of the largest closed viability 
domain contained in a closed set K, the existence of which is proved 



3.1. Solution Class 79 

in Chapter 4. This set, which we call the viability kernel of K, plays 
such an important role that we devote the whole chapter 4 to some 
of its properties, which we shall use throughout this book. 

This motivates a further study of existence theorems of an equi
librium. We begin by pointing out that an equilibrium does exist if 
there exists a solution x( ·) viable in a compact subset such that a 
sequence of average velocities 

converges to 0. 
The question arises as to whether a closed viability domain K 

contains an equilibrium. This is the case when K is compact and 
the range F(K) is convex. 

This is also the case when K is compact and convex. This strik
ing statement, linking viability and nonlinear analysis, is actually 
equivalent to the Brouwer Fixed Point Theorem. In both cases, one 
can say that viability implies stationarity. 

In Section 8, we adapt to the set-valued case an efficient result 
of D. Saari on the chaotic behavior of discrete systems. Assume 
that the domain of a differential inclusion is covered by a family of 
compact subsets Ka satisfying an adequate controllability property: 
Any point can be reached from any subset Ka. Take any arbitrary 
sequence Ka0 , Ka 1 , Ka2 , ••• of such sets. Then there exist a solution 
x(·) to the differential inclusion x' E F(x) and a sequence of instants 
tj such that x( tj) E Kai for all j. 

Throughout this chapter, X denotes a finite dimensional vector
space so long as it is not explicitly mentioned that this is not the 
case. 

3.1 Solution Class 

We are going to extend Nagumo's Theorem 1.2.1 to the case of dif
ferential inclusions x'(t) E F(x(t)). But we have first to agree on 
what we shall call a solution to such differential inclusions. 

In the case of differential equations, there is no ambiguity since 
the derivative x' ( ·) of one solution x( ·) to a differential equation 
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x'(t) f(t,x(t)) inherits the properties of the map f and of the 
function x(·). It is continuous whenever f is continuous and mea
surable whenever f is continuous with respect to x and measurable 
with respect to t. 

This is no longer the case with differential inclusions. We have 
to choose a space of functions or distributions in which we shall look 
for a solution. 

We cannot hope to obtain without further restrictions a continu
ously differentiable, or even a plain differentiable solution. We shall 
be content to deal only with functions which are almost everywhere 
differentiable. Namely, we shall look for solutions among absolutely 
continuous functions, as it was proposed by T. Wazewski at the be
ginning of the sixties. 

We denote by L1 (0, oo; X, e-btdt) the weighted Lebesgue space of 
(classes of) measurable functions x(·) from [0, oo[ to X satisfying 

Definition 3.1.1 (Absolutely Continuous Functions} A contin
uous function x : [0, T] f---t X is said to be absolutely continuous if 
there exists a locally integrable function v such that 

for all t, s E [0, T], 18 v(T)dT = x(s)- x(t) 

In this case, 

for almost all t E [0, T], x'(t) := v(t) 

and we shall say that x' ( ·) is the weak derivative of the function x( ·). 
We shall denote by W 1•1 (0, oo; X; e-btdt) (for some b 2: 0} the space 

of absolutely continuous functions defined by 

and, when T < +oo, by W1•1 (0, T; X) the space 

{x(·) E L1(0, T; X) I x'(·) E L1(0, T; X)} 
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We shall supply them with the topology for which a sequence Xn ( ·) 
converges to x( ·) if and only if 

i) Xn(·) converges uniformly to x(·) 
(on compact intervals if T = oo) 

ii) x~(-) converges weakly to x'(·) in £ 1(0, T; X) 
(in £ 1 (0, oo; X, e-btdt) if T = +oo) 

Remark- The above spaces are weighted Sobolev spaces. To define 
them, it may be best to recall what distributions and derivatives in the 
sense of distributions are1. 

We denote by V(O, T; X) the space of indefinitely differentiable func
tions from )0, T[ to the finite dimensional vector space X with compact 
support in )0, T[. The choice of the simplest scalar product 

< x, y >:= 1T x(t)y(t)dt 

allows us to identify the space V{O, T; X) with a subspace of the dual 
D*(O, T; X) of continuous linear functionals on V{O, T; X), called distri
butions since their discovery by Laurent Schwartz. 

For that purpose, we identify a function x( ·) with the continuous linear 
functional 

y f--t 1T x(t)y(t)dt 

which belongs to the dual of V{O, T; X). 
In other words, the fundamental idea is to regard the usual functions 

in a novel way: Instead of viewing them as maps from )0, T[ to X, we shall 
also regard them as continuous linear functionals on the infinite dimensional 
space V(O, T; X). In particular, integrable functions (actually, classes of 
measurable and integrable functions) are instances of distributions. 

This very same scalar product defines the topology of quadratic con
vergence on V{O, T; X). Taking the completion of this space for this scalar 
product, we obtain the celebrated space £ 2{0, T; X). Since this scalar prod
uct was already used to identify V{O, T, X) with a subspace of its dual, it 
will also be used to identify £ 2{0, T, X) with its dual thanks to Riesz' The
orem. We thus obtain the inclusions: 

V(O, T; X) c £ 2{0, T; X) = £ 2{0, T; X)* c V*(O, T; X) 

1We refer to the text APPLIED FUNCTIONAL ANALYSIS by the author or any 
of the many books on distributions for more details. 
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The first (and most important) consequence of this concept is the pos
sibility of differentiating integrable functions, and more generally, distribu
tions. 

Definition 3.1.2 (Distributional Derivative) If x( ·) is a measurable 

locally integrable function from ]0, T[ to a finite dimensional vector space X, 

we shall say that the continuous linear functional x' E D*(O, T; X) defined 

on the space D(O, T; X) by 

y(·) ~ -1T x(t)y'(t)dt 

is the weak derivative (or the distributional derivative) of x( ·). 

A distributional derivative defined in such a way does not need to be a 
function, even measurable. In any case, it is a distribution. The weak 
derivative of a function of D(O, T, X) naturally coincides with the usual 
derivative. 

Sobolev spaces are then defined in the following way: 

Definition 3.1.3 Let a(·) be a strictly positive measurable function. We 

denote by 

W 1·P(O,T;X;a) ·- {x E LP(O,T;X;a) I x' E LP(O,T;X;a)} 

the weighted Sobolev space of measurable pth -integrable functions x( ·) (for 

the measure a(t)dt) whose derivative x'(·) in the sense of distributions be

longs to the space LP(O,T;X;a). 

If a = 1, we set W 1·P(O, T; X) := W 1·P(O, T; X; a) This is a Sobolev 
space. If p = 2, we often use the notation 

They are Banach spaces for the norm: 

For our study, we endowed W 1•1 (0, oo; X; e-btdt) with a weaker topol
ogy, for reasons which will soon become clear. D 

The generalization of the concept of derivative provided by the theory 
of distributions is not the only one we can conceive. This approach allows us 
to keep the linearity properties of the differential operator x f--+ x'. Actually, 
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one can show that the distribution x' is the limit in the space V*(O, T; X) 
of the differential quotients 

x(· +h)- x(·) 
h 

The topology of V*(O, T; X) is so much weaker than the pointwise con
vergence topology that not only do differential quotients of any function 
converge, but also differential quotients of distributions. In this distribu
tional sense, functions and distributions are indefinitely differentiable. 

The price one pays to obtain this paradisiac situation is that the space 
of distributions may be too large, and that distributions are no longer 
functions. 

We will propose in Chapter 9 another concept of derivative (contingent 
epiderivative) for studying Lyapunov functions: They are lower epilimits of 
these difference quotients, as we shall explain later, and are usual functions 
instead of distributions. But the contingent epiderivative of a function no 
longer depends linearly on this function. 

3.2 Viability Domains 

Let X be a finite dimensional vector-space. We describe the (nonde
terministic) dynamics of the system by a set-valued map F from the 
finite dimensional vector-space X to itself. 

The contingent cone was introduced by G. Bouligand2 in the early 
thirties: When K is a subset of X and x belongs to K, we recall that 
the contingent cone TK(x) to K at x is the closed cone of elements 

2who wrote: " ... Nous poserons les definitions suivantes: 

1. Une demi-droite OT, issue du point d'accumulation 0 de !'ensemble E, 
sera dite une demi-tangente au point 0, al'ensemble E, si tout cone droit 
a base circulaire, de sommet 0 et d'axe OT, contient (si faibles en soient la 
hauteur et l'angle au sommet) un point de !'ensemble E distinct du point 
0; 

2. L'ensemble de toutes les demi-=tangentes al'ensemble E en un meme point 
d'accumulation sera appele, moyennant une designation abregee conforme 
al'etymologie, le contingent de !'ensemble E au point 0. 

Le mot contingent a deja ete employe comme adjectif, en matiere philosophique, 
ou comme substentif, au point de vue militaire. L'emploi nouveau que nous en 
faisons ne peut evidemment creer aucune equivoque." 
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v such that 
l. . f d(x + hv, K) 0 Imm h = 
h-+0+ 

(see Definition 1.1.3 and Section 5.1 below3 .) 

3.2.1 Definition of Viability Domains 

There are two ways to extend the concept of viability domain K to 
set-valued maps. The first one is to require that for any state x, there 
exists at least one velocity v E F(x) which is contingent to Kat x. 
The second demands that all velocities v E F(x) are contingent to 
Kat x. 

Definition 3.2.1 (Viability Domain) Let F: X~ X be a non
trivial set-valued map. We shall say that a subset K c Dom(F) is a 
viability domain ofF if and only if 

V x E K, F(x) n TK(x)-/= 0 

Since the contingent cone to a singleton is obviously reduced to 
0, we observe that a singleton {x} is a viability domain if and only if 
xis an equilibrium ofF, i.e., a stationary solution to the differential 
inclusion, which is a solution to the inclusion 

0 E F(x) (3.1) 

In other words, the equilibria of a set-valued map provide the first ex
amples of viability domains, actually, the minimal viability domains. 

Remark- If K is a viability domain of a set-valued map F, the 
subset 

D := n (TK(x)- F(x)) 
xEK 

is the subset of disturbances of the system which do not destroy the fact 

that K is still a viability domain, because K remains a viability domain of 

any perturbed set-valued map x '"'-" F(x) + G(x) where x r--+ G(x) maps K 

into D. D 

3 By using the concept of upper limits of sets introduced in Definition 3.6.1 of 
Section 3.3.6 below, we observe that the contingent cone TK(x) is the upper limit 
of the differential quotients K ;;x when h --> 0+. 
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3.2.2 Subnormal Cones 

In order to provide a dual characterization of viability domains, we 
need to introduce the dual concept of a contingent cone: the subnor
mal cone. 

Definition 3.2.2 Let x belong to K c X. We shall say that the 
(negative) polar cone 

N~(x) := TK(x)- = {p EX* I V v E TK(x), < p, v >::; 0} 

is the subnormal cone to K at x. 

We see at once that 

The subnormal cone is equal to the whole space whenever the tangent 
cone TK(x) is reduced to 0. 

Let us point out the following property: 

Proposition 3.2.3 Let K be a subset of a finite dimensional vector
space and IIK denote its projector of best approximation. Then 

\;f y ¢_ K, \;f x E ITK(y), y- x E N~(x) 

Proof- Let v belong to the contingent cone TK(x): there 
exists a sequence hn > 0 converging to 0 and a sequence Vn con
verging to v such that x + hn Vn belongs to K for all n. Since 
IIY- xll ~ IIY- x- hnvnll, we deduce that < x- y,v >2: 0 for 
all v E TK(x). 0 

3.2.3 Dual Characterization of Viability Domains 

We now prove a very important characterization of viability domains: 

Theorem 3.2.4 Assume that the set-valued map F : K ~ X is 
upper semicontinuous with convex compact values. Then the three 
following properties are equivalent: 

i) \;f x E K, F(x) n TK(x) =/= 0 

ii) \;f x E K, F(x) nco (TK(x)) =/= 0 (3.2) 

iii) \;f x E K, \;f p E Nj}(x), a(F(x), -p) > 0 



86 3- Viability Theorems 

Proof~ Since property i) implies ii), assume that ii) holds true 
and fix x E K. Let u E F(x) and v E TK(x) achieve the distance 
between F(x) and TK(x): 

llu- vii = inf IIY- zll 
yEF(x), zETK(x) 

and set w := utv. We have to prove that u = v. Assume the 
contrary. 

Since v is contingent to K at x, there exist sequences hn > 0 
converging to 0 and Vn converging to v such that x + hnvn belongs 
to K for every n 2: 0. We also introduce a projection of best approx
imation 

Xn E ITK(x + hnw) of x + hnw onto K and we set Zn ·-

so that, by Proposition 3.2.3, we know that 

By assumption ii), there exists an element Yn E F(xn) nco (TK(xn)). 
Consequently, 

(3.3) 

Since Xn converges to x, the upper semicontinuity ofF at x im
plies that for any E > 0, there exists NE: such that for n 2: NE:, Yn be
longs to the neighborhood F(x) +sB, which is compact. Thus a sub
sequence (again denoted by) Yn converges to some element y E F(x). 

We shall now prove that Zn converges to v. Indeed, the inequality 

{ 
llw- Znll = hln llx + hnw- Xnll 

< hln llx + hnW- X- hnvnll - llw- Vnll 

implies that the sequence Zn has a cluster point and that every cluster 
point z of the sequence Zn belongs to TK(x), because x+hnZn = Xn E 

K for every n 2: 0. Furthermore, every such z satisfies llw - zll ::; 
llw-vll· 

We now observe that v is the unique best approximation of w by 
elements of TK(x). If not, there would exist p E TK(x) satisfying 
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either llw- PII < llw- vii or p i= v and llw- PII = llw- vii = llw- ull· 
In the latter case, we have (u- w, w- p) < llu- wllllw- PII, since the 
equality holds true only for p = v. Each of these conditions together 
with the estimates 

{ llu- Pll 2 = llu- wll 2 + llw- Pll 2 + 2(u- w,w- p) 
~ (llu- wll + llw- Pll)2 ~ llu- vll 2 

imply the strict inequality llu- Pll < llu- vii, which is impossible 
since vis the projection of u onto TK(x). Hence z = v. 

Consequently, all the cluster points being equal to v, and we 
conclude that Zn converges to v. 

Therefore, we can pass to the limit in inequality (3.3) and obtain, 
observing that w - v = ( u- v) /2, 

(u- v, y) = 2(w- v, y) ~ 0 where y E F(x) (3.4) 

Since F(x) is closed and convex and since u E F(x) is the projection 
of v onto F(x), we infer that 

(u- v, u- y) ~ 0 (3.5) 

Finally, TK(x) being a cone and v E TK(x) being the projection of u 
onto this cone, and in particular onto the half-line vR+, we deduce 
that 

(u-v,v) = 0 (3.6) 

Therefore, properties (3.4), (3.5) and (3.6) imply that 

llu- vll 2 = (u- v, -v) + (u- v, u- y) + (u- v, y) < 0 

and thus, that u = v. 

The equivalence between ii) and iii) follows from the Separation 
Theorem. Indeed, by ii), to saying that K is a viability domain 
amounts to say that for all x E K, 0 belongs to F(x)- co(TK(x)), 
which is closed and convex whenever F(x) is compact. Hence the 
Separation Theorem implies that this condition is equivalent to the 
one stated in the Theorem. D 

We can deduce right away from Theorem 3.2.4 the following very 
useful fact: 



88 3- Viability Theorems 

Proposition 3.2.5 Let us assume that two set-valued maps F1 and 
F2 are upper semicontinuous with compact convex images. If K is a 
viability domain of F1 and F2, it is still a viability domain of .A1F1 + 
.A2F2 (where ..\1, ..\2 > 0.} 

3.3 Statement of Viability Theorems 

We now consider initial value problems (or Cauchy problems) asso
ciated with the differential inclusion 

for almost all t E [0, T], x'(t) E F(x(t)) (3.7) 

satisfying the initial condition x(O) = xo. 

Definition 3.3.1 (Viability and Invariance Properties) Let K 
be a subset of the domain of F. A function x( ·) : I f--t X is said to 
be viable in K on the interval I if and only if 

V t E I, x(t) E K 

We shall say that K is locally viable under F (or enjoys the local 
viability property for the set-valued map F) if for any initial state 
xo in K, there exist T > 0 and a solution on [0, T] to differential 
inclusion (3. 7) starting at xo which is viable in K. It is said to be 
(globally) viable under F (or to enjoy the (global) viability property) 
if we can take T = oo. 

The subset K is said to be locally invariant (respectively invari
ant) under F if for any initial state xo of K, all solutions to differ
ential inclusion (3. 7) are viable inK on some interval (respectively 
for all t ~ 0). We also say that F enjoys the local invariance (re
spectively invariance) property. 

Remark - We should emphasize as we did for ordinary dif
ferential equations that the concept of invariance depends upon the 
behavior ofF on its domain outside of K. D 

We would naturally like to characterize closed subsets viable un
der F as closed viability domains. This is more or less the situation 
that we shall meet: The main viability theorems hold true for the 
class of Marchaud maps, i.e., the nontrivial upper hemicontinuous 
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set-valued maps with nonempty compact convex images and with lin

ear growth (or equivalently, in the case of finite dimensional state 
spaces, closed set-valued maps with closed domain, convex values and 
linear growth. (See Corollary 2.2.3).) 

We observe that the only truly restrictive condition is the con
vexity of the images of these set-valued maps, since the continuity 
requirements are kept minimal. But we cannot dispense with it, as 
the following counter example shows. 

Example- Let us consider X := R, K := [-1, +1] and the set
valued map F: K -vt R defined by 

{ 
-1 if X> 0 

F(x) := {-1,+1} if x=O 
+1 if X< 0 

Obviously, no solution to the differential inclusion x'(t) E F(x(t)) can start 
from 0, since 0 is not an equilibrium of this set-valued map! 

We note however that 

• The graph of F is closed 

• F is bounded 

• K is convex and compact 

• K is a viability domain of F. 

But the value F(O) ofF at 0 is not convex. Observe that if we had set 
F(O) := [-1, +1], then 0 would have been an equilibrium. 

This example shows that upper semicontinuity is not strong enough to 
compensate the lack of convexity. Stronger continuity or differentiability 
requirements allow us to relax this assumption. 

But we shall keep our continuity requirements minimal, and thus, be 

ready to pay the price of considering systems whose sets of velocities are 

convex. This is possible thanks to the extension of the Nagumo Theo

rem 1.2.1. D 

Theorem 3.3.2 Let us assume that 

{ 
i) F : X "-'t X is upper semicontinuous 
ii) the images ofF are convex and compact 
iii) K is locally compact 

Then K is locally viable under F if and only if K is a viability domain 
of F. 
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Figure 3.1: Example of a Map without Convex Values 

0 

There is no solution starting at 0 

Since open subsets of finite dimensional vector spaces are locally 
compact viability domains of any set-valued map, we obtain the ex
tension of Peano's Theorem 1.2.2 to differential inclusions due to 
Marchaud, Zaremba4 and Wazewski5 : 

Theorem 3.3.3 Let 0 be an open subset of a finite dimensional 
vector space X and F : 0 '"'-'+ X be a strict upper semicontinuous 
set-valued map with convex compact images. 

Then, for any Xo E n, there exists T > 0 such that differential 
inclusion {3. 7) has a solution on the interval [0, T] starting from xo. 

4 who proved independently in the thirties the existence of respectively contin
gent and paratingent solutions to differential inclusions (called champs de demi
cones at the time.) The generalization of the concept of derivative to the notion 
of contingent derivative is due to B. Bouligand, who wrote: " ... Nous ferons tout 
d'abord observer ... que la notion de contingent eclaire celle de differentielle" .) 

5 who wrote: "... I learned the results of Zaremba's dissertation before the 
second world war, since I was a referee of that paper. Then a few years ago 
I came across with some results on optimal control and I have noticed a close 
connection between the optimal control problem and the theory of Marchaud
Zaremba." The author learned that this "coming across" happened during a 
seminar talk of C. Olech on a paper by LaSalle at Wazewski's seminar. 

Wa:Zewski proved that one can replace the contingent or paratingent deriva
tives of functions by derivatives of absolutely continuous functions defined almost 
everywhere in the definition of a solution to a differential inclusion, that he called 
orienior field. 
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The interesting case from the viability point of view is the one 
when the viability subset K is closed. In this case, we derive from 
Theorem 3.3.2 a more precise statement. 

Theorem 3.3.4 (Local Viability Theorem) Consider a nontriv
ial upper semicontinuous set-valued map F with compact convex 
images from X to X and a closed subset K c Dom(F). 

If K is a viability domain, then for any initial state xo E K, 
there exist a positive T and a solution on [0, T] to differential inclu
sion (3. 7} starting from xo, viable inK and satisfying 

{ 
either 

or 
T=oo 
T < oo and limsupt--+T-IIx(t)ll = oo 

Further adequate information - a priori estimates on the growth 
ofF- allow us to exclude the case when limsupt--+T-IIx(t)ll = oo . 

This is the case for instance when F is bounded on K, and, in 
particular, when K is bounded. 

More generally, we can take T = oo when F enjoys linear growth: 

Theorem 3.3.5 (Viability Theorem) Consider a Marchaud map 
F : X~ X and a closed subset K c Dom(F) of a finite dimensional 
vector space X. 

If K is a viability domain, then for any initial state xo E K, there 
exists a viable solution on [0, oo[ to differential inclusion (3. 7.) More 
precisely, if we set 

C ·-.- sup IIF(x)ll 
xEDom(F) llxll + 1 

then every solution x ( ·) starting at xo satisfies the estimates 

{ 
V t 2:: 0, llx(t)ll :S (llxoll + 1)ect 
and 
for almost all t 2:: 0, llx'(t)ll < c(llxoll + 1)ect 

and thus belongs to the space W 1•1(0,oo;X;e-btdt) forb> c. 

Actually, we shall also use another more convenient formulation 
of this theorem. We agree for that purpose to set the distance d(x, 0) 
to the empty set equal to +oo. 
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Theorem 3.3.6 (Second Viability Theorem) Let us consider a 
Marchaud map F : X "'-'> X and a closed subset K c Dom(F) of 
a finite dimensional vector space X. We assume that there exists a 
constant c > 0 such that 

d(O, F(x) n TK(x)) 
sup II II ::; c < +oo 
xEK X + 1 

(3.8) 

Then for any initial state xo E K, there exists a viable solution on 
[0, oo[ to differential inclusion (3. 7} starting from xo, which belongs 
to the space W 1•1(0, oo; X; e-btdt) forb> c. 

One can look right away at the control version of the viability 
Theorems in Section 6.1 in the framework of control systems and a 
very simple economic example in Section 6.2, in which other con
cepts such as viability kernels and heavy solutions are illustrated. 
Viability (and in variance) theorems for linear differential inclusions 
are presented in section 5.6 and can be checked over now. 

3.4 Proofs of the Viability Theorems 

We gather in this section the proofs of the theorems stated in the 
preceding one. 

Since viable absolutely continuous functions x(·) : [0, T] f--7 K 
satisfy x'(t) E TK(x(t)) for almost all t E [0, T], we could be tempted 
to derive viability theorems from existence theorems of solutions 
to differential inclusion x'(t) E RK(x(t)) where we set RK(x) := 

F(x) nTK(x). Unfortunately, this is not possible because TK(-) may 
be neither upper semi continuous nor lower semicontinuous6. For 
instance, it is not upper semicontinuous as soon as inequality con
straints are involved: take for example K := [-1, +1]. The graph of 
TK(·), equal to 

{ -1} x R+u]- 1, +1[xR u { +1} x R_ 

is not closed, and not even locally compact: See figure 3.2. 

6See Section 4.1., p. 178 of DIFFERENTIAL INCLUSIONS for an example of subset 
K such that TK(-) is neither upper semicontinuous nor lower semicontinuous. 
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Figure 3.2: The Graph of T[a,b] ( ·) 

I b i 
a I 

i I 
'I 

So we have to devise a specific proof of Theorem 3.3.2, which 
consists in proving Propositions 3.4.1 and 3.4.2 below. 

Proposition 3.4.1 (Necessary Condition) Let us assume that 

F : X '"'-'> X is upper hemicontinuous 

the images ofF are convex and compact 

Let us consider a solution x(·) to differential inclusion (3. 7) starting 
at xo and satisfying 

\:f T > 0, :3 t E]O, T] such that x(t) E K (3.9) 

(Naturally, viable solutions do satisfy this property.) Then 

F(xo) n TK(xo) # 0 

Proof~ By assumption (3.9), there exists a sequence tn --t 0+ 
such that x(tn) E K. Since F is upper hemicontinuous at x 0 , we can 
associate with any p E X* and E: > 0 an 'f/p > 0 such that 

\:f T E [0, 'f/p], < p, x'(T) >:::;; u(F(x(T)),p) :S u(F(xo),p) + ciiPII* 



94 3- Viability Theorems 

By integrating this inequality from 0 to tn, setting Vn := x(t~~-xo 
and dividing by tn > 0, we obtain for n larger than some Np 

Therefore, Vn lies in a bounded subset of a finite dimensional vector 
space, so that a subsequence (again denoted) Vn converges to some 
v E X satisfying 

V p EX*, < p, v > ~ cr(F(xo),p) + ciiPII* 

By letting c converge to 0, we deduce that v belongs to the closed 
convex hull of F(xo). 

On the other hand, since for any n, x(tn) = xo + tnvn belongs to 
K, we infer that v belongs to the contingent cone TK(xo) since 

{ 
liminfn->oo dK(Xo + hv)/h 

~ limn->oo llxo + tnv- x(tn)ll/tn = limn->oo llvn- vii = 0 

The intersection F(xo) n TK(xo) is then nonempty, so that the nec
essary condition ensues. D 

Proposition 3.4.2 (Sufficient Condition) Let us assume that 

F : X ~ X is upper semicontinuous 

the images ofF are convex and compact 

Let K be a locally compact subset of the domain ofF and Ko C K 
be a compact neighborhood of xo such that 

V x E Ko, F(x) n TK(x) =/= 0 

Then there exist T > 0 and a solution to differential inclusion (3. 1} 
starting at xo and viable in K on [0, T]. 

Proof- We adapt the proof of Nagumo's Theorem 1.2.1 to the 
case of differential inclusion by following the same strategy: con
struct approximate solutions by modifying Euler's method to take 
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into account the viability constraints, then deduce from available es
timates that a subsequence of these solutions converges in some sense 
to a limit, and finally, check that this limit is a viable solution to dif
ferential inclusion ( 3. 7). The two first steps are slight variations of 
the analogous steps of the proof of Nagumo's Theorem. The third 
step, which is specific to the set-valued case, uses the Convergence 
Theorem 2.4.4. 

1. Construction of Approximate Solutions 

By assumption, there exists r > 0 such that the compact neigh
borhood K 0 c K contains the ball BK(xo, r) := K n (xo + rB). We 
set 

C := F(Ko) + B, T := r/IICII 
We observe that C is bounded. We begin by proving 

Lemma 3.4.3 We posit the assumptions of Proposition 3.4.2. For 
any integer m, there exists Om E]O, 1/m[ such that for any x E Ko, 
there exist h E [Om, 1/m] and u E X satisfying 

{ 
i) 
. ") 
~~-) zzz 

u E C 
x+hu E K 
(x, u) E B(Graph(F), 1/m) 

Proof of Lemma 3.4.3 - By assumption, we know that for 
ally E Ko, there exists an element f(y) E F(y)nTK(y). By definition 
of the contingent cone, there exists hy E]O, 1/m[ such that 

We introduce the subsets 

N(y) := {x E Ko I dK(x + hyf(y)) < hy/2m} 

These subsets are obviously open. Since y belongs to N(y), there 
exists 'r/y E]O, 1/m[ such that B(y, 'r/y) c N(y). The compactness of 
Ko implies that it can be covered by q such balls B(yj, 'r/j), j = 
1, ... , q. We set 

E'lin hyi 
J-l, ... ,q 
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Let us choose any x E K 0 . Since it belongs to one of the balls 
B(yj, r/j) c N(yj), there exists Zj E K such that 

{ 
\\x + hyJ(yj)- Zj\1/hyi 

:::; dK(x + hyJ(yj))/hyi + 1/2m:::; 1/m. 

Let us set 
z· -x 

U ·- J j .- -h-
Yi 

We see that 1\x- Yj\1 :::; TJj :::; 1/m, that x + hyiUj = Zj E K and that 
1\uj- J(yj)\1 :::; 1/m. Hence, 

(x, uj) E B((yj, f(yj)), 1/m) C B(Graph(F), 1/m) 

and Uj E B(F(Ko), 1/m) c C. Hence the Lemma ensues. 0 

We can now construct by induction a sequence of positive num
bers hj E]Om, 1/m[ and a sequence of elements Xj E Ko and Uj E C 
such that 

(xj, Uj) E B(Graph(F), 1/m) 

as long as E{:-5 hi :::; T. 
Indeed, the elements Xj belong to K 0 , since 

Since the hj 's are larger than or equal to Om > 0, there exists J such 
that 

We introduce the nodes r/n := ho + · · · + hj-1, j = 1, ... , J + 1 and 
we interpolate the sequence of elements x j at the nodes r/n by the 
piecewise linear functions Xm ( t) defined on each interval [ r/n, rJn+l [ 
by 
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We observe that this sequence satisfies the following estimates 

'it E [0, T], Xm(t) E co(Ko) 
(3.10) 

'it E [O,T], llx~(t)ll:::; IICII 

Letusfixt E [rk,rk+1 [. Since llxm(t)-xm(rk)ll:::; hilluill:::; IICII/m, 
and since (xj, Uj) E B(Graph(F), 1/m) by Lemma 3.4.3, we deduce 
that these functions are approximate solutions in the sense that 

V t E [0, T], xm(t) E B(Ko, em) 
(3.11) 

V t E [0, T], (xm(t), x~(t)) E B(Graph(F), em) 

where em := (IICII + 1)/m converges to 0. 

2. Convergence of the Approximate Solutions 

Estimates (3.10) imply that for all t E [0, T], the sequence Xm(t) 
remains in the compact subset co(Ko) and that the sequence Xm(·) is 
equicontinuous, because the derivatives x~(-) are bounded. We then 
deduce from Ascoli's Theorem that it remains in a compact subset 
of the Banach space C(O, T; X), and thus, that a subsequence (again 
denoted) xm(-) converges uniformly to some function x(·). 

Furthermore, the sequence x~ ( ·) being bounded in the dual of 
the Banach space £ 1(0, T; X) which is equal to £''0 (0, T; X), it is 
weakly relatively compact thanks to Alaoglu's Theorem7. But since 
Tis finite, the Banach space £ 00 (0, T; X) is contained in £ 1 (0, T; X) 
with a stronger topology8 . The identity map being continuous for the 

7 Alaoglu's Theorem states that any bounded subset of the dual of a Banach 
space is weakly compact. 

8 Since the Lebesgue measure on [0, T] is finite, we know that 

L""(O,T;X) c L 1 (0,T;X) 

with a stronger topology. The weak topology o-(L""(O, T; X), £ 1 (0, T; X)) 
(weak-star topology) is stronger than the weakened topology o-(£ 1 (0, T; X), 
L""(O, T; X)) since the canonical injection is continuous. Indeed, we observe 
that the seminorms of the weakened topology on L 1 (0, T; X), defined by finite 
sets of functions of L""(O, T; X), are seminorms for the weak-star topology on 
L""(O,T;X)), since they are defined by finite sets offunctions of L1 (0,T;X). 
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norm topologies, is still continuous for the weak topologies. Hence 
the sequence x~ ( ·) is weakly relatively compact in L1 (0, T; X) and a 
subsequence (again denoted) x~(-) converges weakly to some func
tion v(·) belonging to L1 (0, T; X). Equations 

imply that this limit v(·) is actually the weak derivative x'(·) of the 
limit x(·). 

In summary, we have proved that 

xm(·) converges uniformly to x(·) 

x~(t) converges weakly to x'(·) in L1 (0, T; X) 

3. The Limit is a Solution 

Condition (3.11)i) implies that 

V t E [0, T], x(t) E Ko 

i.e., that x(·) is viable. The Convergence Theorem 2.4.4 and proper
ties (3.11)ii) imply that 

for almost all t E [0, T], x'(t) E F(x(t)) 

i.e., that x( ·) is a solution to differential inclusion (3. 7). D 

Proof of Theorem 3.3.4- First, K is locally compact since 
it is closed and the dimension of X is finite. 

Second, we claim that starting from any xo, there exists a maxi
mal solution. Indeed, denote by S[o,T[(xo) the set of solutions to the 
differential inclusion defined on [0, T[. 

We introduce the set of pairs {(T, x(·))}T>O, x(-)ES[o,r[(xo) on which 
we consider the order relation -< defined by 

(T, x(·)) -< (S, y(·)) if and only if T ~ S & V t E [0, T[, x(t) = y(t) 
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Since every totally ordered subset has obviously a majorant, Zorn's 
Lemma implies that any solution y(·) E S[o,s[(xo) defined on some 
interval [0, S[ can be extended to a solution x(·) E S[o,r[(xo) defined 
on a maximal interval [0, T[. 

Third, we have to prove that if T is finite, we cannot have 

c := lim sup llx(t)ll < +oo 
t--->T-

Indeed, if c < +oo, there would exist a constant 'f/ E]O, T[ such that 

V t E [T- 'f/, T[, llx(t)ll ~ c + 1 

Since F is upper semicontinuous with compact images on the com
pact subset K n ( c + 1 )B, we infer that 

V t E [T-ry, T[, x'(t) E F(K n (c + 1)B), which is compact 

and thus bounded by a constant p. Therefore, for all T, u E [T-ry, T[, 
we obtain: 

llx(T)- x(u)ll ~ i 7 llx'(s)dsll ~ PIT- ul 

Hence the Cauchy criterion implies that x(t) has a limit when t --t 
T-. We denote by x(T) this limit, which belongs to K because it is 
closed. Equalities 

x(Tk) = XQ + foTk x1(T)dT 

and Lebesgue's Theorem imply that by letting k --too, we obtain: 

x(T) = XQ +loT x1(T)dT 

This means that we can extend the solution up to T and even beyond, 
since Theorem 3.3.2 allows us to find a viable solution starting at 
x(T) on some interval [T, S] where S > T. Hence c cannot be finite. 
D 

Proof of Theorem 3.3.5- Since the growth ofF is linear, 

:3 c 2:: 0, such that V x E Dom(F), IIF(x)ll ~ c(llxll + 1) 
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Therefore, any solution to differential inclusion ( 3. 7) satisfies the 
estimate: 

llx'(t)ll ~ c(llx(t)ll + 1) 

The function t ___. llx(t)ll being locally Lipschitz, it is almost every
where differentiable. Therefore, for any t where x(t) is different from 
0 and differentiable, we have 

:t llx(t) II = \II:~~~ II, x' (t) J < llx' (t) II 

These two inequalities imply the estimates: 

llx(t)ll ~ (llxoll + 1)ect & llx'(t)ll ~ c(llxoll + 1)ect (3.12) 

Hence, for any T > 0, we infer that 

limsup llx(t)ll < +oo 
t-->T~ 

Theorem 3.3.4 implies that we can extend the solution on the interval 
[O,oo[. 

Furthermore, estimates (3.12) imply that for b > c, the solu
tion x(·) belongs to the weighted Sobolev space W 1•1(0, oo; X; e~btdt) 
since the multiplication by e~(b~c)t is continuous from L00 (0, oo; X) 

to L1 (0, oo; X). o 

Proof of Theorem 3.3.6 ~ We introduce the set-valued map 
G defined on K by 

G(x) := F(x) n c(llxll + 1)B 

Corollary 2.2.3 implies that G is a Marchaud map. Assumption 
(3.8) implies that K is a viability domain of G. Therefore by Theo
rem 3.3.5, we know that for any xo E K, there exists a viable solution 
to differential inclusion 

x'(t) E G(x(t)) 

on [0, oo [, which is also a solution to differential inclusion ( 3. 7) viable 
inK. 0 



3.5. Solution Map 101 

3.5 Solution Map 

We denote by S(xo) or by Sp(xo) the (possibly empty) set of solu
tions to differential inclusion (3.7.) 

Definition 3.5.1 (Solution Map) We shall say that the set-valued 
mapS defined by Dom(F) 3 x ~---+ S(x) is the solution map ofF (or 
of differential inclusion {3. 7).) 

When a closed subset K is viable under F, we denote 

S}f (x) := Sp(x)(K) n K 

the set of solutions starting from x E K and viable in K. 

We shall devote this section to the study of the solution map. 

3.5.1 Upper Semicontinuity of Solution Maps 

We recall that the space W 1•1(0, oo; X; e-btdt) is supplied with the 
topology for which a sequence Xn(·) converges to x(·) if and only if 

Xn(-) converges uniformly to x(-) on compact sets 

x~(-) converges weakly to x'(-) in L1 (0, T; X, e-btdt) 

Theorem 3.5.2 (Continuity of the Solution Map) Let us con
sider a finite dimensional vector space X and a Marchaud map F : 
X~ X. We set 

C ·-.- sup IIF(x)ll 
xEDom(F) llxll + 1 

Then the solution map S is upper semicontinuous with compact 
images from its domain to the space C(O, oo; X) supplied with the 
compact convergence topology. 

Actually, for b > c, the solution map S is upper semicontinuous 
with compact images from its domain to the space Wl,l(O, oo; X; e-btdt). 

Furthermore, the graph of the restriction of SIL to any compact 
subset L ofDom(F) is compact in X x W1,1(0,oo;X;e-btdt). 
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Proof- We shall show that the graph of the restriction SIL 
of the solution mapS to a compact subset L c Dom(F) (assumed 
to be nontrivial) is compact. 

Let us choose a sequence of elements ( xon, Xn ( ·)) of the graph of 
the solution map S. They satisfy: 

x~(t) E F(xn(t)) & Xn(O) = xon E L 

A subsequence (again denoted) xon converges to some xo E L because 
Lis compact. 

Then inequalities 

for almost all t ~ 0, 

imply that 

Vn ~ 0, llxn(t)ll ~ (llxonll + l)ect & llx~(t)ll ~ c(llxonll + l)ect 

Therefore, by Ascoli's Theorem, the sequence xn(·) is relatively com
pact in the Frechet space C(O, oo; X) and by Alaoglu's Theorem, the 
sequence x~(·)e-ct is weakly relatively compact in L00 (0, oo; X). 

Let us take b > c. Since the multiplication by e-(b-c)t is contin
uous from L00 (0, oo; X) to £ 1 (0, oo; X), it remains continuous when 
these spaces are supplied with weak topologies9. 

We have proved that the sequence x~ ( ·) is weakly relatively com
pact in the weighted space £ 1 (0, oo; X; e-btdt). 

We thus deduce that a subsequence (again denoted) Xn converges 
to x in the sense that: 

xn(·) converges uniformly to x(·) on compact sets 

x~(-) converges weakly to x'(-) in L1(0, oo; X; e-btdt) 

9Ifun converges weakly to u in L 00 (0, oo; X), then e-(b-c)tun converges weakly 
to e-(b-c)tu in £ 1 (0, oo; X), because, for every <p E L 00 (0, oo; X)= £ 1 (0, oo; X)*, 
the values 

converge to 

< u,e-(b-c)t<p >:= 1oo e-(b-c)tu(t)<p(t)dt 

since e-(b-c)t<p(·) belongs to L 1 (0,oo;X). 
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Inclusions 
V n > 0, (xn(t), x~(t)) E Graph( F) 

imply that 

for almost all t > 0, x'(t) E F(x(t)) 

thanks to the Convergence Theorem 2.4.4. 

We thus have proved that a subsequence of elements (xon, xn(-)) 
of the graph of SIL converges to an element (xo,x(·)) of this graph. 
This shows that it is compact, and thus, that the solution map S is 
upper semicontinuous with compact images. D 

Remark - We shall prove in Chapter 4 that the domain of 
the solution map SF associated with a Marchaud map is a closed 
subset, called the viability kernel of Dom(F). Chapter 4 is devoted 
to the study of viability kernels. D 

Remark- The "contingent derivative" of the solution map is 
contained in the solution map of the "variational inclusion", which 
is a "set-valued linearization" of the differential inclusion. (See Sec
tion 5, Chapter 10 of SET-VALCED ANALYSIS.) D 

3.5.2 Closure of a Viability Domain 

The first application of the upper semicontinuity of the solution map 
is that the closure of any subset viable under F is a viability domain: 

Proposition 3.5.3 Let us consider a Marchaud map F : X '"'--+ X 
and a subset n c Dom(F) viable under F. Then its closure n is still 
viable under F. 

Proof- Indeed, let a sequence Xn E n converge to X given in 
n. It remains in a compact subset L of the finite dimensional vector 
space X. Let us choose a sequence of solutions xn(-) E SF(xn) viable 
in n, which exist by assumption. 

Since the graph of the restriction SF I L of SF to the compact 
subset Lis compact, Theorem 3.5.2 implies that (xn, Xn(·)) belongs 
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to the compact subset Graph(SFIL). Therefore a subsequence con
verges to some (x, x(·)) of the graph of SFIL, so that x(·) belongs to 
sF (X). Since Xn ( t) E n for all t ;::: 0, we infer the limit x(.) is viable 
in 0. D 

3.5.3 Reachable Map 

We associate with the solution map Sp : X '"V> C(O, oo; X) of the 
differential inclusion (3. 7) the reachable map, (or flow, or set-valued 
semi-group) defined in the following way: 

Definition 3.5.4 For anyt;::: 0, we denote by Rp(t)(x) := (Sp(x))(t) 
the set of states x(t) reached from x through differential inclusion 

(3. 7), by 

{ 
R~ (t) := (Sp(K))(t) 

Q~ (t) := (SJf (K))(t) 

the set of states x(t) reached from K by solutions x(-) E Sp(x) and 
by solutions x( ·) E SJf (x) viable in K respectively. They are called 
the reachable map and viable reachable map respectively. 

The reachable map Rp(t)(x) enjoys the semigroup property: 

V t, s ;::: 0, Rp(t + s)(x) = Rp(t) (Rp(s)(x)) 

The maps t '"V> R~ (t) and t '"V> Q~ (t) are examples of viability 
tubes which shall be studied in Chapter 11. For the time, let us prove 
that these maps are closed: 

Proposition 3.5.5 Assume that F : X '"V> X is a Marchaud map 
and that a closed subset K is contained in the domain of Sp. Then 
the graphs of the maps t '"V> R~ ( t) and t '"V> Q~ ( t) are closed. 

Proof~ Let us consider a sequence (tn, Xn) of the graph of 
R~ ( ·) converging to ( t, x). By definition, there exist solutions Xn ( ·) E 

Sp(Xon) such that Xon E K and Xn(tn) = Xn· Since the sequence Xn 
is bounded, so that a subsequence converges to some x E K, a slight 
modification of the proof of Theorem 3.5.2 obtained by writing that 

Xn(t) = Xn + 1t X~(T)dT 
fn 
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implies that a subsequence converges to some solution x*(·) such that 
Xn' = Xn'(tn') converges to x = x*(t). Since a subsequence of Xon 
converges to x*(O), hence x*(O) belongs to K and we deduce that 
x E RjF(t). 0 

The reachable maps play an important role in control theory. One 
can state that under adequate assumptions, co(F) is its infinitesimal 
generator: 

Theorem 3.5.6 (Frankowska) If F is continuous with compact 
values, then 

l . RF(h)(x)- x (F( )) 
1m h =CO X 

h--tO+ 

We shall see in Chapter 7 that the left-hand side of this formula 
is the derivative of the reachable map RF(·)(x) at (0, x), so that 
this theorem states that the when F is continuous, co(F(x)) is the 
derivative of the reachable map at (0, x). 

We refer to Helene Frankowska's monograph CoNTROL OF NoN
LINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS for a proof of this 
basic theorem which plays a very important role for studying local 
controllability and value functions in optimal control. 

3.5.4 Representation Property 

When the viability subset is convex, we can represent the set of 
viable solutions in K as a countable intersection of solution sets to 
unconstrained differential inclusions, a property which is analogous 
to the duality property in convex minimization. 

Theorem 3.5. 7 (Kurzhanski) Consider a set-valued map F : X"--* 
X with nonempty compact values. Assume that K := A-1(M) is the 
inverse image of a closed convex subset M C Y by a surjective linear 
operator A E C(X, Y). Denote by FIK the restriction ofF to K. 
Then, for any right-inverse B E C(Y, X) of A, 

v X EX, FIK(x) = n (F(x) + nBAx- nB(M)) 
nEZ 

Consequently, for any x E K, the set SIK(x) of solutions to the 
differential inclusion x'(t) E F(x(t)) viable inK is the intersection of 
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the sets of solutions Sn ( x) to the unconstrained differential inclusions 
x'(t) E F(x(t)) + nBAx(t)- nB(M) when n ranges over Z. 

Proof- Consider first the case when x E K. Since F(x) = 
F(x) + OB(Ax- M), the intersection of the subsets F(x) + nBAx
nB(M) is contained in F(x). On the other hand, 0 belonging to 
Ax- M, we infer that F(x) c F(x) + nB(Ax- M) for any n E Z, 
so that 

F(x) c n (F(x) + nBAx- nB(M)) 
nEZ 

Consider now the case when x ~ K and let us show that 

n (F(x) + nBAx- nB(M)) = 0 
nEZ 

Since any right inverse B of A is injective, 0 does not belong to the 
closed convex subset B(Ax- M), and thus can be separated from 0: 
There exist p E X* and E > 0 such that 

a(B(Ax- M),p) = -E < 0 

Now, we observe that F(x) being bounded, the support function 
a(F(x)- F(x)),p) is nonnegative and bounded. We claim that for 
any n > (a(F(x)- F(x)),p)/2E, 

(F(x)- nB(Ax- M)) n (F(x) + nB(Ax- M)) = 0 

Otherwise, there would exist u1 and u2 in F(x) such that u1 - u2 
would belong both to F ( x) - F ( x) and to 2nB (Ax - M), so that we 
would obtain the contradiction 

-a(F(x)- F(x),p) ::; < p, u1 - u2 > ::; -2nE D 

3.6 Stability of Viability Domains 

Let us recall the definition of Painleve-Kuratowski upper limit10 of 
sets: 

10The concepts of upper and lower limits of sets were introduced by Painleve in 
1902 and popularized by Kuratowski in his famous book TOPOLOGIE, to the point 
that they are often Christened K uratowski upper limits. See the first chapter of 
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Definition 3.6.1 Let Kn be a sequence of subsets of a metric space 
X. we say that 

KU := Limsupn_.00 Kn := {y E Y I liminf d(y, Kn) = 0} n-+oo 

is its upper limit. 

In other words, it is the closed subset of cluster points of sequences 
of elements Xn E Kn. 

We observe that the contingent cone 

K-x 
TK(x) = Limsuph-+O+_h_ 

is the upper limit of the differential quotients Khx when h---+ 0+. 

Let us consider now a sequence of closed subsets Kn viable under 
a set-valued map F. Is the upper limit of these closed subsets still 
viable under F? The answer is positive. 

Theorem 3.6.2 Let us consider a Marchaud map F : X ~ X. 
Then the upper limit of a sequence of closed subsets viable under F 
is still viable under F. 

In particular, the intersection of a decreasing family of closed 
viability domains is a closed viability domain. 

Proof- We shall prove that the upper limit KU of a sequence 
of subsets Kn viable under F is still viable under F. 

Let x belong to KU. It is the limit of a subsequence Xn' E Kn'. 
Since the subsets K n are viable under F, there exist solutions Yn' ( ·) to 
differential inclusion x' E F(x) starting at Xn' and viable in Kn'· The 
upper semicontinuity of the solution map implies that a subsequence 
(again denoted) Yn'(·) converges uniformly on compact intervals to a 

SET-VALUED ANALYSIS for an exhaustive study of these upper and lower limits 
of sequences of sets. Recall only that if the space X is compact , then the upper 
limit KU enjoys 

for all neighborhood U of KU, 3N such that Vn > N, Kn C U 
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solution y(·) to differential inclusion x' E F(x) starting at x. Since 
Yn•(t) belongs to Kn' for all n', we deduce that y(t) does belong to 
KU for all t > 0. 

When the sequence Kn is decreasing, we know that its upper 
limit is equal to the intersection of the Kn. D 

What happens if we deal with the upper limit K~ of a sequence 
of closed viability domains Kn of set-valued maps Fn? 

For that purpose, we introduce the concept of graphical upper 
limit of a sequence of set-valued maps Fn. 

Definition 3.6.3 We shall say that the set-valued maps LimUn-+ooFn 
from X to X defined by 

Graph(Lim~n-+ooFn) := Limsupn-+ooGraph(Fn) 

is the graphical upper limit of the set-valued maps Fn. 

For simplicity, we set F~ := Lim~n-+ooFn. One can find more 
details on graphical limits in Chapter 7 of SET-VALUED ANALYSIS. 

The question then arises whether the upper limit K~ of a sequence 
of closed subsets Kn viable under set-valued maps Fn is viable under 
the closed convex hull of the upper graphical limit coF~ of the set
valued maps Fn? 

Theorem 3.6.4 (Stability of Solution Maps) Let us consider a 
sequence of nontrivial set-valued maps Fn : X ~ X satisfying a 
uniform linear growth: there exists c > 0 such that 

V x EX, IIFn(x)JI :::; c(JJxJJ + 1) 

Then 
1. The upper limit of the solution maps SFn is contained 

in the solution map 8co(F") of the convex hull of the graphical upper 
limit of the set-valued maps Fn 

2. If the subsets Kn C Dom(Fn) are viable under the set-
valued maps Fn, then the upper limit KU is viable under co(F~). 

It follows from the adaptation of the Convergence Theorem to 
limits of set-valued maps: 
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Theorem 3.6.5 Let X be a topological vector space, Y be a finite di
mensional vector space and Fn be a sequence of nontrivial set-valued 
maps from X to Y satisfying a uniform linear growth. 

Let us consider measurable functions Xm and Ym from [0, oo[ to 
X and Y respectively, satisfying: 

for almost all t E [0, oo[ and for all neighborhood U of 0 in the 
product space X x Y, there exists M := M(t,U) such that 

V m > M, (xm(t),ym(t)) E Graph(Fm) +U (3.13) 

If we assume that 

Xm(·) converges almost everywhere to a function x(·) 

YmO E L1(0, oo, Y; a) and converges weakly in L1(0, oo, Y; a) 
to a function y(·) E L1 (0, oo, Y; a) 

then, 
for almost all t E [0, oo[, y(t) E co(F#(x(t)) 

We refer to Theorem 7.2.1 of SET-VALUED ANALYSIS for a proof. 

3. 7 w-Limit Sets and Equilibria 

3. 7.1 w-Limit Sets 

The w-limit sets of the solutions to differential inclusion 

for almost all t 2:: 0, x'(t) E F(x(t)) 

provide examples of closed viability domains: 

(3.14) 

Definition 3. 7.1 (w-Limit set) Let x(·) be a function from [0, oo[ 
to X. We say that the subset 

w(x(-)) := n cl(x([T, oo[)) = Limsupt--++oo{x(t)} 
T>O 

of its cluster points when t ---+ oo is the w-limit set of x( ·). 
IfF is a set-valued map, K a subset of Dom(Sp) and Rff: (-) the 

reachable map, we denote by 

wp(K) := Limsupt--++ooRff: (t) 
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the w-limit set of the subset K. If K is a closed subset viable under 
F, the viable w-limit set of K is defined by 

wjf (K) := Limsupt--++ooQ~ (t) 

Being upper limits, the w-limit sets of solutions and sets are 
closed subsets. They also are viable under F. We begin with the 
case of w-limit sets of solutions: 

Theorem 3.7.2 (w-Limit sets are viability domains) Let us con
sider a Marchaud map F : X '"Vt X. Then thew-limit set of a solution 

to the differential inclusion (3.14) is a closed viability domain11 . 

In particular, the limits of solutions to the differential inclusion 
(3.14), when they exist, are equilibria ofF and the trajectories of 
periodic solutions to the differential inclusion ( 3.14) are also closed 
viability domains. 

If K is a viability domain ofF, then the w-limit sets of viable 
solutions are contained in K. 

Proof- Let x belong to thew-limit set of a solution x(-). It 
is the limit of a sequence of elements x(tn) when tn __, oo. We then 
introduce the functions YnO defined by Yn(t) := x(t + tn)· They 
are solutions to the differential inclusion (3.14) starting at x(tn)· By 
Theorem 3.5.2 on the upper semicontinuity of the solution map, a 
subsequence (again denoted) Yn ( ·) converges uniformly on compact 
intervals to a solution y(·) to the differential inclusion (3.14) starting 
at x. On the other hand, for all t > 0, 

y(t) = lim Yn(t) = lim x(t + tn) E w(x(-)) 
n--+oo n--+oo 

i.e., y(·) is viable in thew-limit set w(x(·)). Hence thew-limit set 
is viable under F. The necessary condition of the Viability Theo
rem 3.3.2 implies that this w-limit set is a viability domain. 

11 which is connected when w(x(·)) is compact. If not, w(x(·)) would be covered 
by two nonempty disjoint closed subsets K1 and K2. So, they can be separated 
by two disjoint open neighborhoods U1 :J K1 and U2 :J K2. 

Since U1 U U2 is a neighborhood of the compact subset w(x(·)), there exists T 
such that the subset r := {x(t)}t>T is contained in ul uu2. This set is connected 
as the continuous image of [T, ool We observe that the subsets r; := r n U; are 
not empty, open, disjoint and cover r: this is a contradiction of the connectedness 
of r. 
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When a solution has a limit x when t ----. oo, the subset {x} is a 
viability domain, and thus, x is an equilibrium. D 

We consider now the case of w-limit sets of closed subsets: 

Proposition 3. 7.3 Let us consider a Marchaud map F : X ~ X 
and a closed subset K of the domain of SF. Then the w-limit set 
WF(K) is viable under F. 

If there exists T 2: 0 such that Ut>T Rjf (t) is bounded, then 
w F ( K) is an universal attractor in the s~nse that 

V x E K, V x(-) E SF(x), lim d(x(t), WF(K)) = 0 
t---'>00 

If K is viable under F, then the viable w-limit set wif (K) is a 
closed viability domain contained in K. 

If K is compact, it is an attractor in the sense that 

V x E K, :3 x(-) E S{f(x) such that lim d(x(t),wjf(K)) = 0 
t---'>00 

Proof~- The closed subset WF(K) is viable under F. Indeed, 
let ~ belong to wF(K). Then~ = lim~n where ~n E Rjf (tn)· We 
associate with the solutions Xn ( ·) to the differential inclusion 

x~(t) E F(xn(t)), Xn(tn) = ~n 

the functions Yn(·) defined by Yn(t) := Xn(t + tn) which are solutions 
to 

y~(t) E F(yn(t)), Yn(O) = ~n 

Theorem 3.5.2 implies that these solutions remain in a compact 
subset of C(O, oo; X). Therefore, a subsequence (again denoted by) 
Yn (-) converges to y(-), which is a solution to 

y'(t) E F(y(t)), y(O) = ~ 

Furthermore, this solution is viable in wF(K) since for all t 2: 0, y(t) 
is the limit of a subsequence of Yn ( t) = Xn ( t + tn) E Rjf ( t + tn), and 
thus belongs to w F ( K). 
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Let us prove now that WF(K) is an universal attractor. If not, 
there would exist xo E K, a solution x(·) E SF(xo), 8 > 0 and a 
sequence tn ---+ oo such that 

V n ~ 0, d (x(tn), WF(K)) ~ 8 > 0 

Since the closure of Ut>T R~ (t) is compact by assumption, a 
subsequence (again denoted-by) x(tn) converges to some x* which 
belongs to thew-limit set WF(K). We thus obtain a contradiction. 

The proofs of the statements about w~ ( K) are analogous. 0 

We shall see in Chapter 11 that upper limits of viability tubes 
t 1---t P(t) when t ---+ oo are closed subsets viable under F which are 
attractors when Ut>T P(t) is relatively compact. If we regard such 
w-limit sets as "asymptotic targets" (because they are made of cluster 
points of solutions viable in such tubes), we must look for asymptotic 
targets among the closed subsets viable under F. 0 

3. 7.2 Cesaro means of the velocities 

The property of the Cesaro means described in the assumptions of 
the next theorem implies the existence of an equilibrium: 

Theorem 3. 7.4 Let us assume that F is upper hemicontinuous with 
closed convex images and that K c Dom(F) is compact. If there 
exists a solution x( ·) viable in K such that 

lint inf- llx'(r)lldr = 0 
t>O t 0 

then there exists a viable equilibrium x, i.e., a state x E K solution 
to the inclusion 0 E F(x). 

Proof - Let us assume that there is no viable equilibrium, 
i.e., that for any x E K, 0 does not belong to F(x). Since the 
images of F are closed and convex, the Separation Theorem implies 
that there exists p E ~' the unit sphere, and cp > 0 such that 
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a(F(x), -p) < -cp· In other words, we can cover the compact subset 
K by the subsets 

Vp := { x E K I a(F(x), -p) < -cp} 

when p ranges over E. They are open thanks to the upper hemicon
tinuity of F, so that the compact subset K can be covered by q open 
subsets Vp;. Set c := mini=l, ... ,q cpi > 0. 

Consider now any viable solution to differential inclusion (3.14). 
Hence, for any t;:::: 0, x(t) belongs to some VP;• so that 

-llx'(t)ll ~ (-pi,x'(t)) ~ a(F(x(t)),-pj) < -c 

and thus, by integrating from 0 tot, we have proved that there exists 
c > 0 such that, for all t > 0, 

c < ! {t llx'(T)iidT 
t lo 

a contradiction of the assumption of the theorem. D 

3. 7.3 Viability implies Stationarity 

When K is a compact viability domain, then the convexity of either 
F(K) or of K implies the existence of a viable equilibrium. 

Theorem 3.7.5 Let F be a Marchaud map. If K C Dom(F) is a 
compact viability domain and if F(K) is convex, then there exists an 
equilibrium. 

Proof - Assume that there is no equilibrium. Hence, this 
means that 0 does not belong to the closed convex subset F(K), so 
that the Separation Theorem implies the existence of some p E X* 
and c > 0 such that 

sup < v, -p > = a(F(K), -p) < -c 
xEK,vEF(x) 

Hence, let us take any viable solution x( ·) to differential inclusion 
(3.14), which exists by the Viability Theorem. We deduce that 

\::It;:::: 0, < -p,x'(t) > ~ -c 
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so that, integrating from 0 tot, we infer that 

Et :S<p,x(t)-x(O)> 

But K being bounded, we thus derive a contradiction. D 

We shall state now that any convex compact viability domain 
contains an equilibrium. 

Theorem 3. 7.6 (Equilibrium Theorem) Let X be a Banach spa
ce12 and F : X ~ X be an upper hemicontinuous set-valued map with 
closed convex images. 

If K C X is a convex compact viability domain ofF, then it 
contains an equilibrium ofF. 

This theorem is equivalent to the Kakutani and Brouwer Fixed 
Point Theorems; we shall not prove this equivalence here13 . 

We show only that the Equilibrium Theorem 3.7.6 implies the 
Kakutani Fixed Point Theorem14 , which is the set-valued version of 
the Brouwer fixed Point Theorem. 

Theorem 3. 7. 7 (Kakutani Fixed Point Theorem) Let K be a 
convex compact subset of a Banach space X and G : K ~ K be a 
strict upper hemicontinuous set-valued map with closed convex val
ues. Then G has a fixed point15 x E K n G(x). 

Proof- We set F(x) := G(x)-x, which is also upper hemicon
tinuous with convex values. Since K is convex, then K -x C TK(x), 
and since G(K) c K, we deduce that K is a viability domain of 
F because F(x) c TK(x). Hence there exists a viable equilibrium 
x E K ofF, which is a fixed point of G. D 

12 Actually, this theorem remains true for any Hausdorff locally convex topo
logical vector space and in particular, for spaces endowed with weak topologies. 

13See Appendix C of MATHEMATICAL METHODS OF GAME AND ECONOMIC 
THEORY for a proof of the Brouwer Fixed Point Theorem based on Sperner's 
Lemma and the second chapter of APPLIED NONLINEAR ANALYSIS for a proof 
based on differential geometry. We refer to these books or SET-VALUED ANALYSIS 
for a proof of the equivalence between these statements and the Ky Fan Inequality. 

14called Ky Fan's Fixed Point Theorem in infinite dimensional spaces. 
15which can be regarded as an equilibrium for the discrete set-valued dynamical 

system Xn+l E G(xn). 
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Actually, Equilibrium Theorem 3.7.6 can be derived from the 
Brouwer Fixed-Point Theorem via the Ky Fan Inequality. We recall 
it below not only because we shall use it later, but because of its 
efficiency for proving many results of nonlinear analysis. 

Theorem 3.7.8 (Ky Fan Inequality) Let K be a compact convex 
subset of a Banach space and 'P : K x K 1----t R be a function satisfying 

{ 
i) 
. ") 
~~-) uz 

Vy E K, 
VxE K, 
Vy E K, 

x 1----t cp(x, y) is lower semicontinuous 
y 1----t cp(x,y) is concave 
cp(y,y) ::::; 0 

Then, there exists x E K, a solution to 

Vy E K, cp(x,y) < 0 

(3.15) 

(3.16) 

The Ky Fan inequality implies readily the von Neumann Minimax 
Theorem: 

Theorem 3.7.9 (Minimax) LetX andY beBanachspaces16 , L c 
X and M C Y be compact convex subsets and f : L x M 1----t R be a 
real valued function satisfying 

V y EM, x 1----t f(x, y) is lower semicontinuous and convex 

V x E L, y 1----t f(x, y) is upper semicontinuous and concave 

Then there exists a saddle point (x, y) E L x M off: 

V (x, y) E L x M, f(x, y) ::::; f(x, y) ::::; f(x, y) 

Proof- We apply the Ky Fan Inequality with K := L x M 
and 'P defined by 

cp((x, y), (x, y)) := f(x, y)- f(x, Y) D 

Actually, we often need a weaker version of the Minimax The
orem, called the Lop-Sided Minimax Theorem. We recall its state
ment: 

16actually, Hausdorff locally convex topological vector spaces. 
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Theorem 3. 7.10 (Lop-Sided Minimax Theorem) Let X andY 
be Banach spacei 7, L c X be a compact convex subset, M c Y be a 
convex subset and f : L x M ~ R be a real valued function satisfying 

'V y EM, x ~ f(x, y) is lower semicontinuous and convex 

'V x E L, y ~ f(x, y) is and concave 

Then there exists x E L satisfying 

'V y EM, f(x, y) ~ inf sup f(x, y) = sup inf f(x, y) 
xEL yEM yEM xEL 

Proof- We refer to Theorem 6.2.7. of APPLIED NONLINEAR 

ANALYSIS for an instance of proof using only the Separation Theo
rem. D 

Remark - A slight modification of the proof of the Equilib
rium Theorem yields a whole family of sufficient conditions for the 
existence of zeros of a set-valued map from K c X to another space 
Y. D 

Theorem 3.7.11 Let K be a convex compact subset of a Banach 
space X and F be a nontrivial upper hemicontinuous set-valued map 
with closed convex values from X to another Banach space Y. 

Let us consider also a continuous map B : K ----t .C(X, Y). If K, 
F and B are related by the condition 

'V x E K, F(x) n B(x)TK(x) # 0 

then 

:3 x E K such that 0 E F(x) 
{ 

i) 

ii) 'V y E K, :3 x E K such that B(x)y E B(x)x- F(x) 

As an example, we derive the existence of a solution to the equa
tion f(x) = 0 where the solution x must belong to a compact convex 
subset K: 

17 or, more generally, an Hausdorff locally convex topological vector spaces. 
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Theorem 3.7.12 Let X and Y be Banach spaces, K c X be a 
compact convex subset, 0 :J K be an open neighborhood of K and f : 
0 r--t Y be a continuously differentiable single-valued map. Assume 
that 

V x E K, - f(x) E f'(x)TK(x) 

Then there exists a solution x E K to the equation f(x) = 0. In 
particular, when xo E K is given, there exists a sequence of elements 

Xn E K satisfying 

i.e., the implicit version of the Newton algorithm, studied in more 
details in Chapter 10. 

Proof- We take F(x) ·- {f(x)} and B(x) 
Theorem 3.7.11. D 

- f'(x) m 

3.8 Chaotic Solutions to Differential Inclu-. 
SIOnS 

Let F : X '"'--+ X be a Marchaud map, describing the dynamics of the 
differential inclusion 

for almost all t ~ 0, x'(t) E F(x(t)) (3.17) 

Theorem 3.8.1 (Chaotic Behavior) Let us assume that a com
pact viability domain K of the Marchaud map F is covered by a 
family of closed subsets Ka (a E A) such that the following control
lability assumption holds true: There exists T < oo such that 

V a E A, V y E K, ::3 x E Ka, x(·) E S(x) & t E [0, T[ with x(t) = y 

Then, for any sequence ao, a1, ... , an, ... , there exists at least one 
solution x(-) E S(x) to differential inclusion (3.17) and a sequence 
of elements tj ~ 0 such that x(tj) E Kaj for all j ~ 0. 

Proof- Let M c K be any closed subset. We associate with 
any solution x(·) starting at x E K and intersecting Mat some time 
t E [0, T] the number TM := inf(t E [0, T]l x(t) EM). 



118 3~ Viability Theorems 

We associate with the sequence ao, a1, ... the subsets Ma0 a1 ···an 
defined by induction by Man := Kan, 

and, for j = n - 2, ... , 0, by: 

The controllability assumption implies that they are nonempty. They 
are closed thanks to Theorem 3.5.2. Since the family of subsets 
Ma0 a1 ···an form a nonincreasing family and since K is compact, the 
intersection Koo := n~o Ma0 a1 ···an is nonempty. 

Let us take an initial state x in Koo and fix n. Hence there exists 
xn(·) E S(x) and a sequence oft~ E [O,jT] such that 

Indeed, there exist Yl E S(x) and TMal an E [0, T] such that 
Yl(TMal···aJ belongs to Maj•••an· We set t~ := TMal an and Xn(t) := 
Yl(t) on [0, t~]. 

Assume that we have built Xn(·) on the interval [0, t~] such that 
Xn(t~) E Maj· .. an C Kaj for j = 1, ... , k. Since Xn(t~) belongs to 
Mak· .. an' there exist Yk+l E S(xn(t~)) and TMak+l an E [0, T] such 
that Yk+l(TMak+I ··aJ belongs to lvfak+ 1 ... an· We set 

tk+l := tk + TM a & Xn(t) := Yk+l (t + TMa ) n n ak+l. · n k+l ··an 

on [t~, t~+ 1 ]. 
Since for some b > 0, the sequence xn(·) E S(x) is compact in 

the space W 1,1(0, oo; X; e-btdt), a subsequence (again denoted Xn(·)) 
converges to some solution x(-) E S(x) to the differential inclusion. 
By extracting successive converging subsequences of t~ 1 , ••• , t~j, .. . , 
we infer the existence of tj's in [0, jT] such that Xnj ( t~) converges to 
x( tj) E Kaj, because the functions Xn (-) remain in an equicontinuous 
subset. D 



Chapter 4 

Viability Kernels and 
Exit Tubes 

Introduction 

If a closed subset K is not a viability domain, the question arises 
as to whether there are closed viability subsets of K viable under F 
and even, whether there exists a largest closed subset of K viable 
under F. The answer is positive for Marchaud maps, and we call 
viability kernel of a closed subset K the largest closed subset viable 
under F contained inK. Actually, we shall prove in the first section 
that it is equal to the set of initial states of K from which there exists 
at least one solution viable in K. 

It is not only an attractive concept in the framework of viability 
theory, but also an efficient mathematical tool which we shall use 
very often. We illustrate this fact by characterizing the permanence 
property introduced by J. Hofbauer and K. Sigmund and the fluctu
ation property introduced by V. Krivan in terms of viability kernels. 

If the initial state x 0 does not belong to the viability kernel of K, 
then every solution x(·) E S(xo) must eventually leave K in finite 
time (in the sense that for some T > 0, x(T) tf. K) and never meets 
Viab(K) as long as it remains in K. This justifies the fact that a 
closed subset with empty viability kernel is called a repeller. 

This property of the complement of the viability kernel (that we 
could call the shadow according to a poetic term coined by Henri 

119 
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Poincare) motivates the introduction in Section 2 of the exit tube of 
a closed subset, which associates with any T > 0 the subset of initial 
states x E K such that at least one solution x(·) to the differential 
inclusion starting at x remains inK for all t E [0, T]. When T = +oo, 
this is the viability kernel of K. 

We continue in the third section with a more precise study of the 
boundary of a closed subset K of the domain of a Marchaud map 
F. We partition the boundary of K into three areas (the anatomy of 
K): The first one, the inward area, where all solutions to differential 
inclusion x' E F(x) starting from it enter the interior of K, the second 
one, the outward area, from which all solutions to the differential 
inclusion leave K, and the third one, which is a viability domain of 
the boundary of K. 

This follows from the characterization of the contingent cone to 
the boundary of K as the intersection of the contingent cone to K 
and the contingent cone to its complement. 

Due to the importance of the viability kernel, the question of 
finding an algorithm converging to the viability kernel arises. There 
exists a natural algorithm which was introduced in the linear case by 
Basile & Marro and Silverman for linear control systems (under the 
name of structure algorithm) and by Byrnes & Isidori in the case of 
smooth systems and sets defined by equality constraints (under the 
name of zero dynamics algorithm). Unfortunately, a simple counter
example shows that it does not converge when the closed subsets 
are defined by inequality constraints instead of equality constraints. 
The reason is that in general, the graph of the contingent cone map 
TK(·) is not closed and that the contingent cone to an upper limit 
is not necessarily the upper limit of the contingent cones. In order 
to obtain these properties, we suggest introducing the subset T_K(x) 
of directions v E TK(x) such that x(t) := x +tv+ f~(t- r)x"(r)dr 
is viable in K and x" ( ·) is measurable and bounded by the constant 
c. These subsets, which can be interpreted as global contingent sets, 
enjoy properties that the contingent cones may lack, and which are 
useful in some questions such as the convergence of a modified version 
of the zero dynamics algorithm to a closed viability domain (instead 
of the viability kernel.) 

We then present the fast viability kernel algorithm due to Frankow-
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ska and Quincampoix which converges to the viability kernel: We 
define it in this chapter and prove its convergence in Chapter 5. 

The Viability Kernel Algorithm provides an upper estimate of 
the viability kernel ViabF(K) of a closed subset K C Dom(F). 

We can obtain lower estimates of the viability kernel by introduc
ing finite-difference approximations of F. They are discrete dynam
ical systems, for which we can define analogous concepts to viable 
subsets under a discrete map, viability kernels, etc. We show in the 
fifth section that the upper limit of the viability kernels of a compact 
subset K for finite-difference approximations ofF is contained in the 
viability kernel of K for F. 

4.1 Viability Kernels 

Let F : X --v> X be a Marchaud map, describing the dynamics of the 
differential inclusion 

for almost all t ~ 0, x'(t) E F(x(t)) (4.1) 

Consider a closed subset K of the domain of F. We shall prove 
the existence of the largest closed subset of K viable under F. 

Definition 4.1.1 (Viability Kernel) Let K be a subset of the do
main of a set-valued map F: X --v> X. We shall say that the largest 
closed subset of K viable under F (which may be empty) is the vi
ability kernel of K for F and denote it by ViabF(K) or, simply, 
Viab(K). 

If the viability kernel of K is empty, we say that K is a repeller. 

4.1.1 Existence of the Viability Kernel 

We begin by proving that such a viability kernel does exist and by 
characterizing it. 

Theorem 4.1.2 Let us consider a Marchaud map F : X --v> X. 
Let K C Dom(F) be closed. Then the viability kernel of K exists 
(possibly empty) and is equal to the subset of initial states such that 
at least one solution starting from them is viable in K. 
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Proof- Let K c C(O, oo; X) denote the closed subset of func
tions viable in K. Set 

Viabp(K) := {x E K I Sp(x) n K-!= 0} 

It is closed. Indeed, let a sequence Xn E Viabp(K) 
converge to x. It remains in a compact subset L of the finite di
mensional vector space X. Let us choose a sequence of solutions 
Xn(·) E Sp(xn) n K. 

Since the graph of the restriction SFIL of Sp to the compact 
subset Lis compact, Theorem 3.5.2 implies that (xn, xn(·)) belongs 
to the compact subset Graph(SpiL). Therefore a subsequence con
verges to some (x, x(·)) of the graph of SFIL, so that x(-) belongs to 
both Sp(x) and K, which is closed. Consequently, the limit x belongs 
to Viabp(K). 

The subset Viabp(K) is also viable under F. Indeed, for 
any element x0 E Viabp(K), there exists a viable solution x(-) to the 
differential inclusion starting from xo. For all t > 0, the function y(·) 
defined by y( T) := x( t + T) is also a viable solution to the differential 
inclusion, starting at x(t). Hence x(t) E Viabp(K). 

It is the largest one. Indeed, let us assume that L C K is 
a closed viability domain of F. Then for all xo E L, there exists a 
solution x( ·) to differential inclusion ( 4.1) starting from xo which is 
viable in L, and thus, inK. D 

In particular, the above proof implies the existence of a viability 
kernel of the domain of F. 

Corollary 4.1.3 Let us consider a Marchaud map F : X "" X. 
Then the domain of the solution map Sp is the largest closed viability 

domain contained in the domain ofF. 

The viability kernels may inherit properties of both F and K. 
For instance, if the graph of F and the subset K are convex, so is 
the viability kernel of K. IfF is a closed convex process and if K is 

a closed convex cone, the viability kernel is a closed convex cone. 

It may be useful to state the following consequence: 
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Proposition 4.1.4 Let F be a Marchaud map and K be a closed 
subset of the domain of F. If xo belongs to K\ Viabp(K), then every 
solution x(·) E Sp(xo) must eventually leave K in finite time (in the 
sense that for some T > 0, x(T) tj:. K) and never meets Viabp(K) 
as long as it remains in K. 

In particular, if K is a repeller, every solution starting from K 
leaves it in finite time. 

Following the terminology coined by Henri Poincare in the case of 
differential equations, we could call the complement of the viability 
kernel of K its shadow (ombre): it is the subset of K from which 
every solution leaves K in finite time. 

Proof- The first statement follows from Theorem 4.1.2. If 
the second statement is false, then there would exist a solution x(-) E 

Sp(xo) which would be viable in K, so that xo would belong to the 
viability kernel of K, which is impossible. 0 

We shall prove in Section 4.3 that when Viabp(K) is contained in 
the interior of K, then the boundary of the viability kernel is viable 
under F and even that, when the solution map is continuous, it is 
semipermeable in the sense that no solution starting from the bound
ary can enter the interior of the viability kernel (see Theorem 5.5.3.) 

Example We shall compute explicitly the viability kernel of a 
simple system of differential inclusions in Section 6-2 and illustrate by 
computer experiments the semipermeable property of the boundary 
of this viability kernel. 0 

We deduce from Theorem 3.6.4 the following consequence: 

Corollary 4.1.5 Let us consider a sequence of nontrivial set-valued 
maps Fn : X ~ X satisfying a uniform linear growth. 

Then the upper limit of the viability kernels of the set-valued maps 
Fn is contained in the viability kernel of co(F~): 
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The following property is quite useful: 

Proposition 4.1.6 Let F: X~ X be a Marchaud map and K c 
Dom( F) be a compact subset viable under F. Then 

w: (K) c Viab_p(K) 

Proof- Let x E K be given, x(·) E S}f (x) be a viable solution 
and x* := limn--+oo x(tn) belong to w: (K). We associate with it 
the functions Yn(·) defined by Yn(t) := x(tn- t). They belong to 
S_p(x(tn)), satisfy Yn(tn) = x and for every t ~ tn, Yn(t) E K. 

By Theorem 3.5.2, a subsequence (again denoted by) YnO con
verges to some solution y*(-) E S_p(x*) which is viable inK. Indeed, 
for any t :2: 0, 

y(t) = lim Yn(t) = lim x(tn- t) E K D n--+oo n--+oo 

Remark - Actually, we deduce that 

because x = Yn(tn) belongs to the upper limit of R_p(tn)(x(tn)) 
when n --t oo. D 

Remark: Lyapunov Stability - The viability kernel plays 
an important role in this book. It underlies many classical results, 
since several concepts can be reformulated in terms of viability ker
nels. This is the case for instance of Lyapunov stability of an equi
librium c E F-1(0). It means that for any c > 0, there exists a 
neighborhood U of c such that for every initial state x E U, there 
exists a solution x(·) E Sp(x) which remains in the ball B(c, c). 

Proposition 4.1. 7 Let K c X be a closed subset, F : K ~ X be a 
strict Marchaud map and c E K be an equilibrium of F. It is stable 
if and only if 

c E n lnt(Viabp(BK(c, c))) 
e>O 
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Remark: Zero Dynamics- The concept of zero dynamics 
introduced by Byrnes and Isidori in the framework of smooth control 
systems 

x'(t) = f(x) + g(x)u 

and smooth equality constraints h(x) = 0 is closely related to the 
notion of viability kernel: one can define the zero dynamics of this 
system as its restriction to the viability kernel of K := h-1(0). D 

4.1.2 Permanence and Fluctuation 

Let us begin by observing that a subset whose boundary is viable 
under F is itself viable. 

Proposition 4.1.8 Let F be a Marchaud map. If the boundary {)K 
of a closed subset K C Dom(F) with nonempty interior is viable 
under F, so is K. 

Proof- Indeed, take xo in the interior of K. Thanks to the 
Marchaud Theorem 3.3.3, there exists a local solution x(-) E Sp(xo) 
viable in the interior of K on some interval. By Theorem 3.3.5, it 
can be extended to a solution which is viable in the interior of K 
either for all positive tor fortE [0, T[ where x(T) E 8K. 

In the latter case, the boundary being assumed to be viable un
der F, there exists one solution y(·) E Sp(x(T)) starting at x(T) 
remaining in 8K. Then the function x(·) obtained by concatenating 
x(·) on [0, T] and y(t- T) on [t, oo[ is a viable solution starting at 
xo. This shows that K is viable under F. D 

If {)K = Viabp(K), then {)K = K, so that the interior of K is 
empty. 

Assume now that the interior of K is not empty and that the 
boundary {)K is the viability kernel of some closed subset K\D. where 
n c Int(K). We then obtain the following situation: 

Theorem 4.1. 9 Let F : X ~ X be a M archaud map and K be a 
closed subset of its domain with a nonempty interior. 

Assume that there exists a nonempty open subset n such that 
n c Int(K) and that 

{)K Viabp(K\D.) 
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Figure 4.1: Fluctuation Property 

B(x(o), a) 

When 0 is a repeller, the solutions starting from the interior of K enter and leave alter

native! !1 in finite time. 
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Then 

1. the boundary {)K of K is semipermeable under F in the sense 
that for every xo E {)K, any solution x(·) E Sp(xo) viable in 
K\0. is also viable in {)K. 

2. The interior Int(K) of K is invariant under F. 

Actually, starting from xo E Int(K)\0., we can associate with any 
solution x ( ·) E SF ( xo) an increasing sequence of instants tn satisfying 

x(t2k+1) E 0. & x(t2k) E lnt(K)\0. 

such that t2k+1 > t2k is finite whenever t2k is finite. 
If this sequence is finite, it stops at an odd instant t2koo-1 for the 

first index k00 such that 

inf{s ~ t2k00 -1 1 x(s) ¢: n} = oo 

Proof- We observe first that the boundary {)K is a viability 
domain since it is a viability kernel. 

For proving that it is semipermeable, fix xo E {)K. We observe 
that any solution x(·) E SF(xo) viable in K\0. is actually viable in 
{) K: If not, there would exist h > 0 such that x( h) E Int ( K). 
Therefore, setting y(t) := x(t+ti), we observe that y(-) E SF(x(ti)) 
and is viable in K\0.. This means that x(t1) belongs to its viability 
kernel, which is the boundary {)K. This is impossible. 

We prove next that the interior of K is invariant. 
Assume first that xo E Int(K)\0. and consider any solution x(·) E 

SF(xo). We know that there exists some T < +oo such that x(T) ¢: 
K\0.. Let us introduce():= inf{s ~ 0 I x(s) En} and T := inf{s ~ 
0 I x(s) ¢: K}. 

We claim that () is finite and () ~ T. If not, we would have 
x(r) E {)K and we know that there exists a solution y(·) E SF(x(r)) 
viable inK. Consequently, the function z(·) defined by 

V t > 0 z(s) := { x(s) ~f s E [0, r] 
-' y(s-r) 1f sE[r,oo[ 
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is a solution starting at x0 and viable in K\0. This would imply 
that x0 belongs to 8K, which contradicts the assumption. 

Assume that xo E 0 and consider any solution x(-) E Sp(xo). We 
introduce 8 := inf{s 2: 0 I x(s) ~ 0} E [O,oo]. Either 8 is infinite, 
and the solution is viable in 0 and thus, in the interior of K, or 8 is 
finite. In this case, the function x(-) being continuous and 0 being 
contained in the interior of K, we know that there exist a and ry such 
that 

x(t) E B(x(8), a) c Int(K) 

for every t E [8, 8 + ry], and also that there exists to E]8, 8 + ry[ such 
that x(to) E Int(K)\0. Setting y(t) := x(t +to), we observe that 
y(·) E SF(x(to)), so that, thanks to what was proved above, there 
exists h E [to, oo[ such that y(h -to) = x(t1) E 0 and y(t) = x(to+t) 
belongs to Int(K)\0 fortE [to, t1 -to[. This means that 

:3 T < +oo such that V t E [0, T], x(t) E lnt(K) & x(T) E 0 

Putting these facts together, we have proved that starting from 
xo E Int(K), every solution remains in the interior of K. Further
more, there exists an increasing sequence of tn such that x(t2k) E 
lnt(K)\0 and x(t2k+l) E 0, such that t2k+l > t2k is finite whenE:)ver 
t2k is finite. D 

If 0 is invariant under F, we obtain the permanence property 
introduced by J. Hofbauer and K. Sigmund: 

Theorem 4.1.10 Let F : X ~ X be a Marchaud map and K be a 
closed subset of its domain with a nonempty interior. 

Assume that there exists a nonempty open subset 0 such that 
0 c Int(K) and that 

8K = ViabF(K\0) 

0 is invariant under F 

Then the boundary is semipermeable, the interior of K is invari

ant, 0 is absorbing in Int(K) in the sense that for any x 0 E Int(K), 
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Figure 4.2: Permanence Property 

The boundary of K is semipermeable and the interior of K is invariant under F . If a 

solution leaves n it must return to it . 
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all solutions x(·) E Sp(xo) enters 0 in finite time and remain in 0 
afterwards. 

Furthermore, if 0 is relatively compact, thew-limit set wp(O) c 
0 is an universal attractor of the interior of K. 

Proof - Proposition 3. 7.3 states that w F ( 0) is an universal 
attractor of 0, which is contained in 0 since it is invariant. To prove 
that wp(O) is an universal attractor of the interior of K, we then 
deduce from Theorem 4.1.9 that 0 is absorbing since 0 is reached 
from the interior of K in finite time and since 0 is assumed to be 
invariant. Hence from any point xo of the interior of K, all solutions 
x(-) E S(xo) reach 0 in finite time, remain in 0 and converge to 
wp(O). D 

If 0 is a repeller, we obtain the fluctuation property introduced 
by V. Krivan: 

Theorem 4.1.11 Let F: X rv+ X be a Marchaud map and K be a 
closed subset of its domain with a nonempty interior. 

Assume that there exists a nonempty open subset 0 such that 
0 c Int(K) and that 

8K = Viabp(K\0) 
{ 

i) 

ii) Viabp(O) -!= 0 

Then the boundary is semipermeable, the interior of K is invari
ant, and starting from x0 E Int(K)\0, we can associate with any 
solution x( ·) E SF ( xo) an increasing sequence of finite instants tn 
satisfying 

x(t2k+I) E 0 & x(t2k) E Int(K)\0 

4.1.3 Viability Envelopes 

Proposition 4.1.12 Let K c Dom(F) be a closed viability domain 
of a Marchaud map F. 

Then any closed subset L C K is contained into a minimal closed 
viability domain. These minimal viability domains containing L are 
called the viability envelopes of L. 
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Proof- We apply Zorn's lemma for the inclusion order on the 
family of nonempty closed viability domains ofF between Land K. 
For that purpose, consider any decreasing family of closed viability 
domains Mi and its intersection M* := n Mi. It is a closed viabil
ity domain thanks to the Stability Theorem 3.6.2. Therefore every 
subset L c K is contained in a minimal element for this preorder. 
0 

When L = 0, we have to assume that K is compact to guarantee 
that the intersection of any decreasing family of nonempty closed 
viability domains is not empty. In this case, we obtain the following 

Proposition 4.1.13 Let K be a nonempty compact viability domain 
of a Marchaud map M. Then nonempty minimal viability domains 
M do exist and are made of w-limit sets of viable solutions. Actually, 
they enjoy the following property: 

V x EM, :3 x(·) E SF(x) I x EM= w(x(·)) 

Proof - Let M C K be a minimal closed viability domain. 
Since it is a closed viability domain, we can associate with any x E M 
a viable solution x(·) E SF(x) starting at x. Hence its limit set 
w(x(-)) is contained in M. But limit sets being closed viability do
mains by Theorem 3.7.2 and M being minimal, it is equal to w(x(·)), 
so that x E w(x(·)). o 

4.2 Hitting and Exit Tubes 

Let us consider a strict Marchaud map F: X --v> X (i.e., a Marchaud 
map with nonempty values), the differential inclusion 

x'(t) E F(x(t)) (4.2) 

a closed subset K c X and its boundary 8K. 
We introduce and study the properties of the functions which 

associate with any initial state x E K the first instant when a solution 
to the differential inclusion to ( 4.2) reaches the boundary {)K (the 
hitting time) and the first instant when a solution leaves K (the exit 
time.) 
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4.2.1 Hitting and Exit Functionals 

We begin by defining the hitting and exit of a continuous function 
x(·) E C(O, oo; X). 

Definition 4.2.1 Let K c X be a closed subset and x(·) E C(O, oo; X) 
be a continuous function. We denote by 

()K: C(O,oo;X) ~ R+ U {+oo} 

the hitting functional associating with x(·) its hitting time OK(x(·)) 
defined by 

OK(x(·)) := inf {t E [0, +oo[ I x(t) ~ Int(K)} 

In the same way, the functional TK : C(O, oo; X) ~ R+ U { +oo} 
associating with x( ·) its exit time TK( x( ·)) defined by 

TK(x(·)) := inf {t E [0, oo[ I x(t) ~ K} 

is called the exit functional. 

We observe that 

that 

\;/ t E [0, ()K(x(·))[, x(t) E lnt(K) & \;/ t E [0, TK(x(·))[, x(t) E K 

and that, when OK(x(·)) (respectively TK(x(·))) is finite, 

x(OK(x(·))) E aK & x(rK(x(·))) E aK respectively 

Remark also that ()K(x(·)) = 0 when the interior of K is empty. 

Remark- Following the terminology coined by Henri Poincare 
in the case of differential equations, we could call the first point 
x(OK(x(·))) reaching the boundary the consequent of xo. Alwfl.ys in 
the framework of differential equations, the hitting time is called by 
Wa.Zewski exit time and our exit time called strict exit time. 0 

We continue to use the convention inf{0} := +oo, so that ()K(x(·)) 
is infinite means that x(t) E Int(K) for all t E [0, +oo[ and that 
TK(x(·)) = +oo means that x(t) E K for all t 2: 0. 
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Figure 4.3: Hitting and Exit Times 

The first point x(OK(x(-))) reaching the boundary is the consequent of xo. The solution 

leaves K at the exit time TK x · . 
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Lemma 4.2.2 Let K C X be a closed subset. The functional TK is 
upper semicontinuous when C(O, oo; X) is supplied with the pointwise 
convergence topology and the functional () K is lower semicontinuous 
when C(O, oo; X) is supplied with the compact convergence topology. 

Proof- By the Maximum Theorem 2.1.6, the upper semicon
tinuity of TK follows from the lower semicontinuity of the set-valued 
map x(·) '"'-+ S(x(·)) c R+ where 

S(x(·)) := {t E [O,oo[ I x(t) ~ K} 

since TK(x(·)) = inf{S(x(·))}. 
Indeed, for any t E S(x(·)) and any sequence xn(·) converging 

pointwise to x(·), we see that t E S(xn(·)) for n large enough because 
Xn(t) belongs to the open set X\K (since x(t) E X\K.) 

Let us check now that the function () K is lower semicontinuous 
for the compact convergence topology: take any T 2: 0 and any 
sequence Xn(·) satisfying OK(xn(·)) ~ T converging to x(·) uniformly 
over compact subsets and show that OK(x(·)) ~ T. Let us introduce 
the subsets 

8r'(x(·)) := { t E [0, T']l x(t) ~ Int(K)} 

By construction, for any T' > T, the subsets 8r,(xn(·)) are not 
empty. We also observe that the graph of the set-valued map x(·) '"'-+ 

8r,(x(·)) is closed in the Banach space C(O, T'; X) x [0, T']: In
deed, if (xn(·), tn) E Graph(8r') converges to (x(·), t), then Xn(tn) E 

X\Int(K) converges to x(t), which thus belongs to the closed sub
set X\Int(K), so that (x(-), t) E Graph(8r' ). Taking its values in 
the compact interval [0, T'], the set-valued map x(·) '"'-+ 8r,(x(·)) 
is actually upper semicontinuous. Therefore, for any given c: > 0, 
er,(xn(·)) c er,(x(·)) + [-c:, +c:]. 

We thus infer that OK(x(·)) ~ OK(xn(·)) + c: ~ T + c: for every 
c: > 0. D 

4.2.2 Hitting and Exit Functions 

Consider now a strict Marchaud map F : X '"'-+ X and denote by 
Sp(x) the set of solutions x(·) to differential inclusion (4.2) starting 
at the initial state x. 
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Definition 4.2.3 Let K c X be a closed subset. The function Ok : 
K f---t R+ U { +oo} defined by 

ek(x) := inf OK(x(·)) 
x(·)ESp(x) 

is called the hitting function and the function Tl : K f---t R+ U { +oo} 
defined by 

the exit function. 

Lemma 4.2.2 and Theorem 3.5.2 on the upper semicontinuity of 
the solution map x E K --vT Sp(x) c C(O, oo; X) (supplied with the 
compact convergence topology) imply 

Proposition 4.2.4 Let F: X --vT X be a strict Marchaud map and 
K c X be a closed subset. Then the hitting function Ok is lower 
semicontinuous and the exit function Tl is upper semicontinuous. 

We are thus led to single out the following subsets: 

Definition 4.2.5 We associate with any T;::: 0 the subsets 

Hitp(K,T) := {x E K I Ok(x) ::::; r} 

Exitp(K, T) := { x E K I Tl(x) ;::: T} 

(4.3) 

We shall say that the set-valued map T --vT Hitp(K, T) is the hitting 
tube and that the set-valued map T --vT Exitp(K, T) is the exit tube. 

Proposition 4.2.4 implies that the graphs of the hitting and exit 
tubes are closed. 

Proposition 4.2.6 Let F be a strict Marchaud map and K C X be 
a closed subset. 

Then Hitp(K, T) is the closed subset of initial states x E K such 
that the boundary oK is reached before T by one solution x(·) to 
differential inclusion (4.2) starting at x. 
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The closed subset Exitp(K, T) is the subset of initial states x E K 
such that one solution x ( ·) to differential inclusion ( 4. 2) starting at 
x remains in K for all t E [0, T]. Actually, such a solution satisfies 

\:f t E [0, T], x(t) E Exitp(K, T- t) 

In particular, forT= +oo, 

Viabp(K) = Exitp(K, +oo) n Exitp(K, T) 
T>O 

Proof- Since the subset of initial states x E K such that the 
boundary 8K is reached before T by a solution x(-) to differential 
inclusion (4.2) starting at x is obviously contained in Hitp(K, T), 
consider an element x E Hitp(K, T) and prove that it satisfies the 
above property. 

By definition of the hitting function, we can associate with any 
E > 0 a solution xc(·) E Sp(x) satisfying OK(xc(-)) :::; T + c/2, and, 
by definition of the hitting functional, a time tc :::; T + E such that 
xc(tc) E X\lnt(K). 

Since Sp(x) is compact in C(O, oo; X) supplied with the compact 
convergence topology, subsequences (again denoted by) xc(·) and tc 
converge to x(-) E Sp(x) and t E [0, T + E], so that the limit x(t) 
of xc(tc) E X\Int(K) belongs to the closed subset X\Int(K). This 
implies that OK(x(·)) :::; T + E for every E > 0. 

In the same way, let T 2: 0 be finite or infinite. We observe 
that the subset of initial states x E K such that a solution x( ·) to 
differential inclusion ( 4.2) starting at x remains inK for all t E [0, T[ 
is contained in Exitp(K, T), so that it is enough to prove that for 
any x E Exitp(K, T), there exists x(·) E Sp(x) satisfying the above 
property. 

By definition of the exit function, we can associate with any se
quence tn < T converging toT a solution xn(-) E Sp(x) satisfying 
tn :::; TK(xn(·)). By Theorem 3.5.2, a subsequence of solutions Xn(·) 
converges to a solution x(·) E Sp(x). Let t E [0, T[ be given and 
choose n such that t < tn < T. Observing that Xn(t) E K converges 
to x(t), we infer that x(t) E K for any t < T. D 
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Proposition 4.2. 7 Let F : X '"'-+ X be a strict Marchaud map and 
K C X be a closed subset. 

The complement K\ExitF(K, T) is equal to the set 

{x E K IV x(·) E SF(x), 3 t E [O,T] such that x(t) ¢: K} 

of initial states x from which all solutions x( ·) E SF ( ·) leave K at 
some t :::;; T. 

Consequently, if M C K\ ViabF(K) is compact, there exists T ~ 
0 such that, for every x E M and any solution x(·) E SF(x), there 
exists t E [0, T] such that x(t) ¢: K. 

In particular, if K is a compact repeller, there exists T < +oo 
such that for every x E K and any solution x(·) E SF(x), there exists 
t E [0, T] such that x(t) ¢: K. 

4.2.3 Exit Tubes 

We observe that if T1 :S: T2, 

and 

Proposition 4.2.8 Let F: X'"'-+ X be a strict Marchaud map and 
K C X be a closed subset. 

Let 0 < T1 < T2 and x E ExitF(K, Tl)\ExitF(K, T2). Then all 
solutions x(·) E SF(x) viable inK on [0, T1] remain in the comple
ment of the exit tube: 

V t E [0, T1], x(t) E ExitF(K, T1 - t)\ExitF(K, T2- t) 

In particular, for any x E ExitF(K, T)\ Viab(K), all solutions 
x(·) E SF(x) satisfy 

V t E [0, T], x(t) E ExitF(K, T- t)\ Viab(K) 

Proof- Assume that x E ExitF(K, Tl)\ExitF(K, T2) and 
that for some solution x(·) E SF(x) viable in K on [0, T1], there 
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exists T E [O,T1] such that x(r) E Exitp(K,T2- r). Then there 
exists a solution y(·) E Sp(x(r)) such that y(O) = x(r) and y(s) E 

Exitp(K, T2- r- s). Therefore, the concatenated function 

x(t) ·= { x(t) if t E [0, r] 
· y(t-r) if tE[r,T2] 

is a solution to differential inclusion ( 4.2) starting at x which is viable 
in K on [0, T2] because x(t) E Exitp(K, T2 - t) c K for every t E 

[0, T2]. This means that the initial state x belongs to Exitp(K, T2), 
a contradiction. 0 

Proposition 4.2.9 Let F :X""" X be a strict Marchaud map and 
K C X be a closed subset. IfExitp(K, T) is contained in the interior 
of K, then its complement is invariant under F. 

In particular, if the viability kernel of K is contained in the in
terior of K, then the complement X\ Viabp(K) is invariant under 
F. 

Proof- Assume that the conclusion is false: there exist x E 

X\Exitp(K, T), a solution x(·) E Sp(x) and T such that x(r) E 

Exitp(K, T). Since the solution is not entirely contained in the closed 
subset Exitp(K, T), then 

t* := sup{t E [O,r]l x(t) tf_ Exitp(K,T)} 

is finite. Since the subset Exitp(K, T) is contained in the interior of 
K and since the function x( ·) is continuous, we know that there exist 
a and rJ such that 

x(t) E B(x(t*), a) c Int(K) 

for every t E [t*- rJ, t*], and also that there exists to E ]t*- rJ, t* [ such 
that x(to) tf_ Exitp(K, T). Therefore, 

V t E [to, t*], x(t) E K 

Since x(t*) E Exitp(K, T), there exists z(-) E Sp(x(t*)) such that 
z(t) E Exitp(K, T- t). We introduce the solution x E Sp(x) defined 
by x(t) = x(t+to) when t E [0, t* -to] and x(t) = z(t+to -t*) when 
t E [t* -to, T + t*- to]. The function x( ·) is a solution to differential 
inclusion (4.2) starting at x(to) which is viable inK on the interval 
[0, T + t* - t0]. Hence x(t0 ) = y(O) E Exitp(K, T + t* - t0 ) c 
Exitp(K, T), a contradiction. 0 
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Figure 4.4: lnvariance of the Complement of a Viability Kernel 

I 

I 
II I 

X(l) =X(t1 t0) 

' 

B(x(t*), a) ----- ..... ... ... 

If xo rf; ExitF(K, T), every solution must leave K before hitting ExitF(K, T). When this 
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4.3 Anatomy of a Set 

4.3.1 Contingent Cone to the Boundary 

Let us consider now any subset K. We denote by 

K := X\Int(K) = X\K 

the complement of the interior of K and by 

aK := KnK 

the boundary of K. We observe that K is the closure of its interior 
if and only if X\K is the interior of K. 

We introduce the Dubovitsky-Miliutin cone defined by 

Definition 4.3.1 The Dubovitsky-Miliutin tangent cone DK(x) to 
K is defined by: 

{ 
v E DK(x) if and only if 
:3 E > 0, :3 a> 0 such that x+JO, a](v + EB) C K 

Lemma 4.3.2 For any x in the boundary of K, the Dubovitsky
Miliutin cone DK(x) to K at x is the complement of the contingent 
cone Tx\K(x) to the complement X\K of K at x E aK: 

V x E aK, DK(x) = X\ Tx\K(x) 

We need the following characterization of the contingent cone to 
the boundary: 

Theorem 4.3.3 (9_uincampoix) Let K be a closed subset of a 
normed space and K denote the closure of its complement. Then 

so that the whole space can be partitioned in the following way: 

v X E aK, Dlnt(K)(x) u Dx\K(x) u T&K(x) = X 

In particular, any nonempty connected subset disjoint from the con
tingent cone T&K(x) to the boundary must be contained in either 

Dlnt(K)(x) or Dx\K(x). 
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Proof- If the interior of K is empty, 8K = K, so that the 
formula holds true. Assume that the interior of K is not empty 
and take any x E 8K. Since inclusion TaK(x) c TK(x) n Tj{(x) 
is obviously true, we have to prove that any u in the intersection 
TK(x) n Tj{(x) is contingent to the boundary 8K at x. 

Indeed, there exist sequences kn > 0 and ln > 0 converging to 0+ 
and sequences Vn E X and Wn E X converging to u such that 

Vn 2:0, x+knVn E K & x+lnWn E K 
We shall prove that there exists An E [0, 1] such that, setting 

and 

we have 
'1/ n 2: 0, X+ hnUn E aK 

Indeed, we can take An either 0 or 1 when either x + kn Vn or 
x + lnWn belongs to the boundary. If not, x + knvn E Int(K) and 
x + lnwn E X\K. Since the interval [0, 1] is connected, it cannot be 
covered by the two nonempty disjoint open subsets 

!1+ := {A E [0, 1]1 X+ AknVn + (1- A)lnWn E lnt(K)} 

and 

!1_ := {A E [0, 1]1 X+ AknVn + (1- A)lnWn E X\K} 

Then there exists An E [0, 1]\(!1+ U !1_) so that 

Since hn > 0 converges to 0+ and Un converges to u, we infer that u 
belongs to the contingent cone to aK. 

This formula and Lemma 4.3.2 imply the decomposition formula. 
Hence any nonempty connected subset U disjoint from TaK(x) can
not be partitioned by two nonempty open subsets U n Dint(K)(x) 
and U n Dx\K(x). D 
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Remark - Actually, the same proof implies that for two sub
sets K1 and K2, we have 

4.3.2 Strict Invariance 

Let us consider a closed subset K of the domain of a set-valued map 
F and differential inclusion ( 4. 2): 

x'(t) E F(x(t)) 

The Viability Theorem implies the following useful result: 

Theorem 4.3.4 Let us consider a nontrivial upper semicontinuous 
set-valued map F : X rvt X with compact convex images. Let K c 
Dom(F) be closed with nonempty interior and xo E 8K. Then each 
of the following conditions implies the next one: 

i) F(xo) C Dlnt(K) (xo) 

ii) for any solution starting from xo, :3 T > 0 such that 
V t E [0, T], x(t) E lnt(K) 

iii) :3 a sequence Xn E 8K converging to xo such that 
F(xn) C Dlnt(K)(xn) 

Proof- We introduce the closure K of X\K, xo E 8K and 
we observe that each of the following condition implies the next one: 

i) :3 r > 0 such that for all x E 8K n (x0 + rB), we have 
F(x) n Tj((x) # 0 

ii) :3 T > 0 and a solution starting at xo viable in K on [0, T] 

iii) :3 a solution starting at xo such that V T > 0, :3 t E]O, T] 
such that x(t) E K 
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Inde~, the first implication follows from Proposition 3.4.2 ap
plied to K, the second implication is obvious and the third one ensues 
from Proposition 3.4.1 still applied to j(l_ 

Proposition 4.3.4 follows from the negation of i) ===>iii)===> iv). 
0 

Remark - Actually, one can prove a stronger property of 
inwardness: 

Proposition 4.3.5 Let us consider a nontrivial upper semicontinu
ous set-valued map F : X ~ X with compact convex images bounded 
on a neighborhood of K and assume that the interior of K is not 
empty. If 

F(x) C DK(x) 

then there exist Px > 0 and Tx > 0 such that 

V x(·) E Sp(x), V t E [0, Tx], d(x(t), 8K) ~ Pxt 

Proof- Since F(x) c DK(x), we know that we can associate 
with any v E F(x) the element 

d (x + hv,K) 
Pv := liminf > 0 

h--+0+ 4h 

This implies that there exists Tv > 0 such that 

V h E]O, Tv], d(x + hv, K) ~ 3pvh 

Hence, for any w E v + PvB, we infer that 

V h E]O, Tv], d(x + hw, K) > 2pvh 

1 If in addition 

X E f)K "-" R(x) := F(x) nTK(x) is lower semicontinuous at Xo E f)K 

then for any va E R(x0 ), there exists a neighborhood 8K n (xo + rB) of x 0 

such that (v0 +B) n R(x) "/= 0 on this neighborhood. Hence pointwise viability 
property iv) implies the local one, and thus, the existence of at least one local 
viable solution starting from 0. 
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The compact subset F(x) can be covered by q balls Vi+ PviB. Set 

Px := min Pvi > 0 & tx := min Tv· > 0 
l~i~q l~i~q ' 

We thus deduce that 

V h E]O, tx], d(x + h(F(x) + PxB), K) ~ Pxh 

Let us consider now any solution x(·) E Sp(x). Since F is upper 
semicontinuous, we know that F(z) c F(x)+pxB whenever llz-xJI :::; 
TJx for some 'T/x. Since F is bounded by a constant c > 0 on the ball 
B(x, TJx), we infer that 

llx(t)- xll :S lot JIF(x(s))llds :S ct :S TJx 

when t :S Tx := min{tx, TJx/c}. In this case, we observe that x(t)-x E 

t(F(x) + PxB), so that for any t E]O, Tx], 

d(x(t), K) = d(x+x(t)-x, K) ~ d(x+t(F(x)+pxB), K) > Pxt 0 

As a consequence, we obtain the 

Theorem 4.3.6 (Strict Invariance Theorem) Let us consider a 
nontrivial upper semicontinuous set-valued map F : X '"'--+ X with 
compact convex images and assume that the interior of K is not 
empty. If 

V x E 8K, F(x) C Dlnt(K)(x) 

then, for any initial state xo in the boundary 8K of K, for any 
solution x(·) to differential inclusion (4.2) starting from xo, there 
exists T > 0 such that x(·) remains in the interior of K on ]0, T]. 
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4.3.3 Inward and Outward Areas 

We then can split the boundary of 8K into three areas depending on 
F: 

K~ := { x E 8K I F(x) C Dlnt{K)(x)} 
the inward area 

K~ := { x E 8K I F(x) c Dx\K(x)} 
the outward area 

K¢} := { x E 8K I F(x) nTaK(x) -10} 

Proposition 4.3. 7 Let us consider a nontrivial upper semicontinu
ous set-valued map F : X ~ X with compact convex images and a 
closed subset K of its domain with a nonempty interior. 

1. Whenever x E K~, all solutions starting at x must 
enter the interior of K on some open time interval]O, T[, and when
ever x E K~, all solutions starting at x must leave the subset K on 
some ]O,T[. 

2. If 8K n (x + rB) c K¢} for some r > 0, then at 
least one solution starting at x remains in the boundary 8K on some 
[O,T]. 

We may also introduce the subsets 

{ 
K~ := { x E 8K I F(x) nTK(x) -10} = 8K\K~ :J K~ 

K~ := {X E 8K I F(x) nTj((x) -10} = 8K\K~ :J K~ 

and we observe that if 8K n (x + rB) c K~ for some r > 0, then 
at least one solution starting at x is viable in K on some [0, T] and 
the analogous statement holds true forK~. 

Since the images F(x) are convex, we deduce from the second 
statement of Theorem 4.3.3 that 

The boundary of K can be partitioned into the three areas K~, K~ 
and K¢}. From the inward area K~, all solutions must enter K, 
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from the outward area K'*, all solutions must leave K, from K~, 
a solution can remain locally in the boundary oK, (respectively in 
K or inK) if there exists c > _Q__such that oK n (x + rl!)_c K~ 
(respectively oK n (x + rB) c K<r= and oK n (x + rB) c K'*). D 

4.3.4 Boundary of Viability Kernels 

The boundary of the viability kernel is viable in certain cases: 

Theorem 4.3.8 (Saint-Pierre) Let F : X 'Vt X be a Marchaud 
map and K be a closed subset with nonempty interior. If the viability 
kernel Viabp(K) of K is contained in the interior of K, then its 
boundary is also a viability domain. 

Proof- Set K 00 := Viabp(K). We shall actually prove that 
for any X E 8Koo n Int(K), we have F(x) nTaKoo(x) i= 0. 

Assume the contrary: Then, for some xo E oK00 , 

F(xo) n TaKoo (xo) = 0 

Since F(xo) is convex and contained in the contingent cone to K 00 

at xo, we deduce from the second statement of Theorem 4.3.3 that 

We shall derive a contradiction by showing that 

F(xo) n DK;;, # 0 where Koo := X\Koo 

Indeed, xo can be approximated by elements Xn E Int(K)\K00 • 

Since F : X 'Vt X is a Marchaud map, there exist solutions Xn ( ·) E 

Sp(xn)· By Theorem 3.5.2, a subsequence (again denoted by) Xn(·) 
converges to some x*(·) E Sp(xo). 

Since xo belongs to the interior of K, we know that its hitting 
OK(x*(·)) is strictly positive. Being lower semicontinuous thanks to 
Lemma 4.2.2, we deduce that for n large enough, 
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Hence, for every t E]O, T] and every n large enough, we have Xn(t) E 
K. By Proposition 4.1.4, this implies that Xn(t) does not belong to 
the viability kernel K)Q· Consequently, 

V t E]O, T], x(t) ~ Koo 

Since F is a Marchaud map, we infer that F(x0 ) n DK;;; =/::. 0 by the 
necessary condition of the Viability Theorem, i.e., the contradiction 
we were looking for. D 

4.4 Viability Domain Algorithms 

4.4.1 Viability Kernel Algorithm 

This algorithm has been introduced by Basile & Marro and Silverman 
(under the name of structure algorithm) for linear control systems 
and by Byrnes & Isidori (under the name of zero dynamics algorithm) 
for smooth nonlinear control systems2 . 

It has been shown to converge to the viability kernel of closed 
subsets defined by equality constraints, i.e., subsets of the form K := 
h-1(0) where his a map from X to a finite dimensional vector-space 
Y. 

Let us describe this algorithm in the general case: Consider a 
closed subset K of the domain of a set-valued map F: X "-A X. 

This algorithm starts with Ko := K. We then construct 

Since the viability kernel Viabp(K) is contained in K and thus, 
since TviabF(K)(x) c TK(x), we infer that Viabp(K) c K1. 

Assume that a decreasing sequence of subsets Kn satisfying 

Viabp(K) c Kn c Kn-1 c K 

has been defined upton. We then set RKn(x) := F(x) n TKn(x), 
define Kn+1 := Dom(RKn) and we observe that Viabp(K) C Kn+l· 

2See the forthcoming book NONLINEAR FEEDBACK DESIGN by Byrnes and 
Isidori for an exhaustive exposition of this topic. 
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Therefore 
00 

Viabp(K) c n Kn 
n=O 

The problem is to show that equality holds true. Several require
ments have to be met to solve the problem. 

The first one is that the subsets Kn should be closed. 
The second one is that the upper limit of the contingent 

cones TKn ( x) is contained in the contingent cone to the upper limit 
of the subsets Kn (which, in this case, is the intersection of the 
decreasing sequence of the subsets Kn)· 

These conditions are missing for finding the viability kernel of 
K := [0, 1] x R for the system F(x, v) := {v} x cB. 

Indeed, K1 = {0} x R+U]O, 1[xR U {1} x R_, and we observe 
that K2 = K1. Therefore, the algorithm stops at K1. It is a viability 
domain which is not closed (and not even locally compact). There
fore, it is not the viability kernel. One can compute explicitly the 
viability kernel of K under this set-valued map F: We introduce the 
set-valued map Tc defined by 

V x E [0, 1], Tc(x) = [-~, J2c(1- x)] 

We observe that the viability kernel of K under F is the graph of 
Tc: See figure 4.5 

4.4.2 Global Contingent Sets 

However, one can still recover some result by introducing closed sub
sets of the contingent cone (called global contingent sets) which enjoy 
the missing properties of the contingent cones. 

Let K c X be a closed subset. We shall define subsets Tj((x) of 
the contingent cones TK(x) which have global properties instead of 
just local ones. 

Definition 4.4.1 Let K c X be closed and c > 0 be a positive con
stant. Denote by Tj((x) the subset of elements v E TK(x) such that 
there exists a measurable function 1( ·) bounded by c and satisfying 

Vt ~ 0, x+tv+ fo\t-r)T(r)dr E K 



4.4. Viability Domain Algorithms 149 

Figure 4.5: Viability Kernel of [0, 1] x R for F(x,v) := {v} x cB 

Naturally, the measurable function 10 is equal almost everywhere 
to the weak second derivative of x( ·). 

We observe that 0 E Tj{(x) for all x E K. 

Example - We can check easily that forK:= [0, 1], the contingent 
cone T K ( x) is defined by 

{ 
R+ ifx=O 

TK(x) = R if x E]O, 1[ 
R_ if X= 1 

and the global contingent set is equal to 

\fxE[0,1], TJ<(x) = [-J2CX,y'2c(1-x)J 

(See figure 4.5) D 

We deduce from the properties of the viability kernels the follow
ing statements. 

Proposition 4.4.2 The graph of the set-valued map x 'Vt Tj{(x) 
is closed. Let K# := lim supn---+oo Kn denote the upper limit of a 
sequence of closed subsets Kn. Then the upper limit of the graphs of 
Tj{n is contained in the graph ofT~~. 
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Proof- We introduce the Marchaud map F from X x X to 
itself defined by F(x,v) := {v} x cB. The map 

t 1-t x(t) := xo + tvo + fo\t- r)T(r)dr 

where Ill( T) II ::; c is a solution to the differential inclusion x" E cB 
and ( x( ·), x' ( ·)) is a solution to the differential inclusion 

(x'(t), v'(t)) E F(x(t), v(t)), x(O) = xo, v(O) = vo 

We remark at once that Graph(T_k ( ·)) is the viability kernel of the 
closure of the graph Graph(TK(·)) for the set-valued map (x,v) '"'-+ 

{v} x cB. 
Then the proof follows from the fact that the viability kernel of 

a closed subset is closed and that the upper limit of a sequence of 
closed viability domains is a viability domain. 

Let us consider any element (x, v) of the upper limit of the se
quence of viability kernels Viab(Graph(TKn)). Then (x,v) is the 
limit of a subsequence (xn, vn) of elements of Viab(Graph(TKn)), so 
that there exist solutions xn(·) to the differential inclusion llx"ll ::; c 
starting at (xn, vn) and converging to some function x(·) satisfy
ing x(O) = x and x'(O) = v. Since Xn(t) E K for all t ~ 0, then 
x(t) E KU for all t ~ 0. Therefore, x'(t) E TK"(x(t)). Hence, the pair 
(x(t),x'(t)) is a solution which is viable in Graph(TKu) and conse
quently, (x,v) E Viab(Graph(TKu)). D 

Obviously, if c1 ~ c2, then T'j( c T'ft. 
We also observe that 

V x E K, V v E TK(x), DTK(x, v)(v) ncB =I= 0 

Proposition 4.4.3 Let Y be a finite dimensional space, A E .C(X, Y) be a 
linear operator and K C X, M C Y be closed subsets. Then 

V x E K, A(TK(x)) c T~~~~1i(Ax) 

and thus for all x E A- 1 (M), TA.~l(M)(x) c A- 1 (rjAII(Ax)). Further

more, if A is surjective, then there exists p > 0 such that 
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Proof- Let v E TK(x). Then there exists a solution x(·) to x" E cB 
viable inK and satisfying (x(O),x'(O)) = (x,v). So y(t) := A(x(t)) is a 
solution to the differential inclusion y" E cA(Bx) C ellA II By, viable in 
A(K), such that (y(O), y'(O)) =(Ax, Av). 

The second statement follows by taking K := A- 1 (M). 
To prove the last one, consider w E T M (Ax) and a map 

y(t) := y + tw + 1t (t- T)y"(T)dT, lly"(T)II :::; c 

viable in M. Since A is surjective, there exist a constant p > 0 and solutions 
x and v to the equations Ax= y and Av = w satisfying inequalities llxll :::; 
PIIYII and llvll :::; Pllwll· Furthermore, by Theorem 8.2.9 of SET-VALUED 
ANALYSIS, there exists a measurable solution z(·) to the equation Az(T) = 
y" ( T) satisfying liz( T) II :::; PIIY" ( T) II :::; pc. Then 

x(t) := x+tv+ 1t(t-T)z(T)dT 

is a solution to the differential inclusion llx"ll :::; pc which is viable in 
A- 1 (M). o 

4.4.3 Viability Domain Algorithm 

Thanks to Proposition 4.4.2, by replacing the contingent cones TK(x) 
by the subsets Tj((x) in the viability kernel algorithm, we can prove 
that the modified version converges to a closed viability domain. 

Let us set K 0 := K. For defining Kf C K 0, we introduce the 
set-valued map R8 defined by R8(x) := F(x) nTj(c(x) and set Kf := 

0 

Dom(R8). 
If the subsets Kf have been defined up to n, we set R~(x) ·

F(x) n Tj(c (x) and we define K~+l := Dom(R~). 
n 

Proposition 4.4.4 Assume that K is compact and that F : K rv+ X 
is upper semicontinuous with nonempty closed values. Then either 
Kf is empty for some step i or K 00 := n~1 Kf is a nonempty closed 
viability domain ofF: Actually, 

V x E K00 , F(x) n Tj(= (x) -::/= 0 

Proof- First, since the graph of R'f is the intersection of the 
graph of F and the graph of Th which are both closed, it is also 

' 



152 4- Viability Theorems and Exit Tubes 

closed. Furthermore, the subset Kf is closed since F(K) is compact. 
Then the Kf's form a decreasing sequence of closed subsets of a 
compact subset. Either one of the Kf's is empty or the intersection 
K 00 is not empty. In this case, let x be chosen in K00 • For any n, 
there exists Vn E F(x) n T/(c (x). The vn's remaining in the compact 
subset F(K), a subsequenc; (again denoted) Vn converges to some v. 
Since ( x, Vn) belongs to the graph of T/(c , we know that ( x, v) belongs 
to the graph of TJ("", since K00 is the ~pper limit of the decreasing 
sequence of the subsets Kf. Hence v belongs to F(x) n TK""(x). D 

4.4.4 Fast Viability Kernel Algorithm 

Actually, the subsets Kn defined in the above algorithm are in general 
too large. Recalling the definition of the outward area K==--- of a closed 
subset, the subsets Kn are defined recursively by the formula 

so that ViabF(K) = ViabF(Kn) C Kn. 
We propose now to take away not only the points of the outward 

0 

area Kn ==---' but also all the balls B (xn, t:(xn)) centered at points 
Xn E Kn ==--- such that 

Hence, starting with Ko ·- K, we define the fast viability kernel 
algorithm by 

0 

where B (xn, t:(xn)) n ViabF(K) = 0. 
_ We observe that Kn C Kn and that ViabF(K) = ViabF(Kn) C 

Kn. This implies 

Lemma 4.4.5 Let K be a closed subset. Then 

ViabF(K) C n Kn 
n~O 
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We shall prove that equality holds true when F is both Marchaud 
and Lipschitz: 

Theorem 4.4.6 (Frankowska-Quincampoix) Assume that F : 
X ~ X is both M archaud and Lipschitz and that K c X is closed. 
Then there exists a sequence of c-(xn) > 0 (independent of the un
known viability kernel of K) such that the fast viability kernel algo
rithm converges to the viability kernel of K: 

Viabp(K) = n Kn 
n~O 

We postpone the proof of this theorem to Chapter 5 since it 
requires Filippov's Theorem. 

4.5 Finite-Difference Approximation of Vi
ability Kernels 

We begin by defining the discrete analogues of viability domains 
and viability kernels for discrete dynamical systems and prove that 
the discrete version of the Viability Kernel Algorithm provides the 
discrete viability kernel of a compact subset. 

4.5.1 Viable Subsets under a Discrete System 

Let X be a metric space and G: X~ X be a nontrivial set-valued 
map describing a discrete dynamical system 

V n ~ 0, Xn+l E G(xn) 

We denote x := (x0 , ... , Xn, .. . ) a solution to this system and by 
S(xo) the set of solutions to this system starting at xo. 

We shall say that a subset K c Dom( G) is discretely viable under 
G if for any initial state xo E K, there exists at least one solution 
x E S(xo) viable inK in the sense that 

Vn ~ 0, Xn E K 

A subset K c Dom( G) is a discrete viability domain of G if 

\;/ x E K, G(x) n K f= 0 
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It is obvious that a subset K c X is a discrete viability domain of 
G if and only if it is discretely viable under G. If K C Dom(G) 
is closed, we define its discrete viability kernel as the largest closed 
viability domain contained in K. The discrete version of the viability 
kernel algorithm converges to the viability kernel: 

Proposition 4.5.1 Assume that K c Dom(G) is compact and that 
G is upper semicontinuous with closed images. We define recursively 
the closed subsets Kj by 

{ 
i) Ko := K (4.4) 
ii) Kj := {x E Kj-1 I G(x) n Kj-1 =J 0} 

Then the discrete viability kernel of K exists and satisfies 

Viabc(K) 

Proof- Inclusion 
00 

Viabc(K) c n Kj 
j=1 

is obvious. Since K is compact, either some Kj is empty or n~1 Ki 
is not empty. In the latter case, take X E n~1 Kj and a sequence 
of elements Xj E G(x) n Kj-1 which are not empty. A subsequence 
of elements Xj' converges to some y. It belongs to both G(x) and 
the upper limit of the Kj, which is equal to the intersection n~1 Kj. 
Hence this intersection is a closed discrete viability domain, and thus 
contained in the discrete viability kernel of K. D 

4.5.2 Finite-Difference Approximations 

Let us consider a Marchaud map F : X "-'> X, with which we asso
ciate discretizations G h : X "-'> X satisfying 

( Gh -1) V c > 0, :3 he:> 0 IV h E]O, he:], Graph h c Graph(F)+cB 

This is naturally the case if we take the explicit discretization G~ := 

l+hF. 
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Proposition 4.5.2 Let us consider a sequence of discretizations Gh 
of a Marchaud map F: X~ X. Then the upper limit Limsupn---too(Kh) 
of a sequence of discrete viability domains Kh for Gh is a closed sub
set viable under F. 

In particular, if K c Dom(F) is a closed subset, 

Proof- Indeed, consider a solution Xh := (xho, ... , Xhn, ... ) 
to the discrete system G h viable in K h, defined by 

We associate with it the functions xh(-) E C(O, oo; X) interpolating 
this sequence at the nodes nh: 

They satisfy for almost all t ~ 0 

(xh(t), x~(t)) E Graph(F) + cB 

Also, by the Ascoli and Alaoglu Theorems, we derive as in the proof 
of the Viability Theorem, that a subsequence (again denoted by) 
x h ( ·) satisfies 

xh(·) converges uniformly to some x(·) 

x~(t) converges weakly to x'(·) in £ 1 (0, T; X) 

Convergence Theorem 2.4.4 implies that this limit x( ·) is a solution 
to the differential inclusion x' E F(x). On the other hand, each t ~ 0 
is the limit of nodes nth, so that x(t) is the limit of xh(nth) E Kh . 
This implies that x(t) belongs to the upper limit of the subsets Kh. 
0 



Chapter 5 

Invariance Theorems for 
Differential Inclusions 

Introduction 

We devote this chapter to subsets invariant under a set-valued 
map, to invariance domains, kernels and envelopes, and to some of 
their properties. 

Since the invariance property of a subset K involves the behavior 
of F outside of K, we need to extend the contingent cone to a subset 
K to the whole domain ofF: we define for that purpose the concept 
of external contingent cone to K at any element x E X. 

Also, to proceed further, we need some regularity property of the 
subset, a kind of "C1-regularity", which here takes the following form: 
the set-valued map K 3 x ~ TK(x) is lower semicontinuous. Since 
this property will be used quite often, we give it a name: sleekness. 
We shall check that the contingent cones to sleek subsets are convex. 
Convex subsets as well as smooth manifolds are sleek. 

Since we have seen the crucial role played by these contingent 
cones in viability theorems, we take this opportunity to study them 
further and to mention their calculus summarized in Table 5.2 for 
the convenience of the reader. Details are provided in chapter 4 of 
SET-VALUED ANALYSIS. 

The second section is devoted to criteria for a subset to be in
variant under a set-valued map. These criteria involve the concepts 
of external contingent cone introduced in the first section. 

157 
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In the third section, we shall derive from Filippov's Theorem1 

the characterization of closed subsets K locally invariant under a 
Lipschitz set-valued map F as closed invariance domains. 

We define in the fourth section the invariance kernel of a closed 
subset K, which is the largest closed subset of K invariant under 
F. We prove its existence when the solution map of the differential 
inclusion is lower semicontinuous. We also introduce the invariance 
envelopes, which are the smallest closed subsets containing K invari
ant under F, and relate them to the backward invariance kernel of 
the complement of K. 

We study the stability of sequences of closed subsets invariant by 
set-valued maps Fn and invariance kernels, by showing for instance 
that the lower limit of invariance kernels of closed subsets Kn is 
contained in the invariance kernel of the lower limit. 

We devote the fifth section to the study of semipermeability and 
viability properties of the boundaries of the viability and invariance 
kernels of a closed subset. We apply these results to define the defeat 
and victory domains of an open target and show that the boundary 
of the victory domain is a semipermeable barrier. 

We illustrate in the sixth section the notions and results obtained 
so far with the example of linear differential inclusions x' E F(x), 
where the right-hand side F is a closed convex process. We mention 
in particular that in the case of linear differential inclusions, a closed 
convex cone is an invariance domain if and only if its polar cone is 
a viability domain of the transpose. In this sense, one can say that 
the concepts of viability and invariance are dual. 

5.1 External Contingent Cones 

5.1.1 External Contingent Cones 

We begin by introducing the following notation: 

DtdK(x)(v) := liminf(dK(x + hv)- dK(x))/h 
h--->0+ 

1that we shall not prove here. We refer to Helene Frankowska's monograph 
CONTROL OF NONLINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS or to DIF

FERENTIAL INCLUSIONS for an exposition of the fundamental Filippov's Theorem 
and its numerous applications. 
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which will be justified later2 • We observe that when x E K, a direc
tion vis contingent to Kat x if and only if DrdK(x)(v) ~ 0. 

In order to study invariance properties of a subset K which in
volve the behavior of the set-valued map F outside of K, we need to 
extend our definition of the contingent cone to points outside of K: 

Definition 5.1.1 Let K be a subset of a finite dimensional vector
space X and x belong to X. We extend the notion of contingent cone 
to the one of external contingent cone to K at points outside of K 
in the following way: 

We point out an easy but important relation between the external 
contingent cone at a point and the contingent cone at its projection: 

Lemma 5.1.2 Let K be a closed subset of a finite dimensional vector
space and IIK (y) be the set of projections of y onto K, i.e., the subset 
of z E K such that IIY- zll = dK(y). Then the following inequalities: 

hold true. Therefore, 

Proof- Choose z E IIK(Y) and wE TK(z). Then 

l dK(Y + hv)- dK(Y) < IIY- zll + dK(z + hv)- dK(Y) 
h - h 

dK(z + hv) < dK(z + hw) II _ II 
h h + v w 

Since z belongs to K and w E TK(z), the above inequality implies 
that 

2 this is the contingent epiderivative of the distance functions dK. (See Defini
tion 9.1.2 of Chapter 9.) 
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5.1.2 Sleek Subsets 

We define now the tangent cone CK(x) introduced in 1975 by F. H. 
Clarke. 

Definition 5.1.3 Let K c X be a subset of a normed space X and 
x E K belong to the closure of K. We define the (Clarke) tangent 
cone (or circatangent cone) CK(x) by 

CK(x) :={vI lim dK(x' + hv)jh = 0} · 
h-+O+,K3x1-+x 

We see at once that CK(x) c TK(x) and that if x belongs to 
Int(K), then CK(x) =X. 

It is very convenient to observe that when x belongs to K, 

{ 
v E CK(x) if and only if V hn -t 0+, V K 3 Xn -t x, 
3 Vn -t v such that V n, Xn + hn Vn E K 

The charm of the tangent cone CK at x is that it is always 
conveafi. Unfortunately, the price to pay for enjoying this convex
ity property of the Clarke tangent cones is that they may often be 
reduced to the trivial cone { 0}. 

However, we shall show that the Clarke tangent cone and the 
contingent cone do coincide at those points x where the set-valued 
map x -v+ TK(x) is lower semicontinuous: 

Definition 5.1.4 {Sleek Subsets) We shall say that a subset K 
of X is sleek at x E K if the set-valued map 

K 3 x' "--+ TK(x') is lower semicontinuous at x 

and that it is sleek if and only if it is sleek at every point of K. 

3 Let Vi and v2 belong to CK(x). To prove that Vi+ v2 belongs to this cone, 
let us choose any sequence hn > 0 converging to 0 and any sequence of elements 
Xn E K converging to x. There exists a sequence of elements Vin converging to Vi 

such that the elements X in := Xn + hnVin do belong to K for all n. But since X in 

does also converge to x in K, there exists a sequence of elements v2n converging 
to v2 such that 

v n, Xin + hnV2n = Xn + hn(Vin + V2n) E K 

This implies that Vi + v2 belongs to CK(x) because the sequence of elements 
Vin + V2n converges to Vi+ v2. 
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Theorem 5.1.5 Let K be a closed subset of a finite dimensional 
vector-space X. Consider a set-valued map F : K '""'-'+ X satisfying 

{ i) F is lower semicontinuous at x 
ii) :3 8 > 0 such that V z E BK(x, 8), F(z) C TK(z) 

Then F(x) c CK(x). 
In particular, if K is sleek at x E K, then TK(x) = CK(x) is a 

closed convex cone. 

Proof- Let us take x E K and v E F(x), assumed to be 
different from 0. Since F is lower semicontinuous at x, Corollary 2.1.7 

implies that we can associate with any E > 0 a number 'TJ E]O, 8[ such 

that d(v,F(z)) ~ d(v,F(x)) + E = E for any z E BK(X,'TJ) (because 

d(v, F(x)) = 0). Therefore, for any y E B(x, TJ/4) and T ~ TJ/4IIvll, 
the inequality 

V Z E IIK(Y +Tv), liz- xll ~ 2IIY +TV- xll ~ 2llx- Yll + 2TIIvll ~ 'TJ 

implies that 

d(v, F(IIK(Y +Tv))) 

d(v, F(x)) + E = E 

We set g(T) := dK(Y +Tv). By Lemma 5.1.2, we obtain 

{ liminfh--.0+ (g(T +h)- g(T)) /h = DtdK(Y + Tv)(v) 
~ d(v, TK(IIK(Y +Tv))) ~ E 

The function g being Lipschitz, it is almost everywhere differentiable, 
so that g' ( t) ~ E for almost all t small enough. Integrating this 

inequality from 0 to h, we obtain 

dK(Y + hv) = g(h) = g(h)- g(O) ~ ch 

for any y E B(x, TJ/4) and T ~ TJ/41\vll· This shows that v belongs to 
CK(x). 

By taking F(x) = TK(x), we deduce that TK(x) C CK(x) when
ever K is sleek at x E K, and thus, that they coincide. D 
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5.1.3 Tangent Cones to Convex Sets 

For convex subsets K, the Clarke tangent cone and the contingent 
cone coincide with the closed cone spanned by K- x: 

Proposition 5.1.6 (Tangent Cones to Convex Sets) We denote 
by 

K-x 
SK(x) := U --

h>O h 

the cone spanned by K - x. If K zs convex, the contingent cone 
TK(x) to K at x is convex and 

The subnormal cone is equal to 

NK(x) := SK(x)- = { p EX* I max< p,y >=< p,x >} 
yEK 

Furthermore, the normal cones N K ( x) to a convex subset K are con
tained in the barrier cone of K: for every x E K, N K ( x) C b( K). 

Remark- We shall denote by TK(x) the common value of 
these cones, and call it the tangent cone to the convex subset K at 
x. The subnormal cone coincides with the normal cone of Kat x of 
convex analysis. D 

Actually, closed convex subsets are sleek: 

Theorem 5.1. 7 Any closed convex subset of a finite dimensional 
vector-space X is sleek. 

We refer to Theorem 4.2.2 of SET-VALUED ANALYSIS for the 
proof of this Theorem. D 

It may be useful to recall the characterization of the interior of 
the tangent cone to a convex subset. 

Proposition 5.1.8 (Interior of a Tangent Cone) Assume that 
the interior of K C X is not empty. Then 

\j X E K, Int(TK(x)) = u ( lnt(K)- x) 
h>O h 
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Furthermore, the graph of the set-valued map K 3 x "-" Int(TK(x)) 
is open. 

For the convenience of the reader, we list in the Table 5.1 some 
useful formulas of the calculus of tangent cones to convex subsets 
(see Section 4.1. of APPLIED NONLINEAR ANALYSIS, in which the 
subsets K, Ki, L, M, ... are assumed to be convex.) 

We shall need the following characterization of the normal cone 
to a convex cone: 

Lemma 5.1.9 Let K C X be a convex cone of a normed space X 
and x E K. Then 

p E NK(x) ~ x E K, p E K- & < p, x > = 0 ~ x E NK- (p) 

where NK-(P) := {x E K I \f q E K-, < q- p,x >:::; 0}. 

Proof- To say that p E NK(x) means that< p, x >= ax(p), 
which is equal to 0 if and only if p E K-, and the first statement of 
the lemma follows. D 

5.1.4 Calculus of Contingent Cones 

We summarize in Table 5.2 the calculus of contingent cones. For
mulas (1) to (4) are straightforward. The other properties are valid 
when K is sleek, and are a consequence of the Constrained Inverse 
Function Theorem, which we do not prove in this book4 . 

See also Quincampoix's Theorem 4.3.3 and the remark following 
it for another set of sufficient conditions. 

4 We refer to Chapter 4 of SET-VALUED ANALYSIS for the proofs of these for
mulas and more detailed results. 

We mention also that transversality condition of formula (5) implies the con
straint qualification assumption 0 E Int(f(L) - M) and that the stronger 
transversality condition 

:3 c > 0 I v X E K, By c j'(x)(TL(x) n cBx)- TM(Ax) 

implies that if L and M are sleek and f is continuously differentiable, then K is 
also sleek. 
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Table 5.1: Properties of Tangent Cones to Convex Sets. 

( 1) 1> If x E K C L C X, then 
TK(x) C TL(x) & NL(x) C NK(x) 

(3) I> If Xi E Ki c xi, (i = 1, ... ,n), then 

TI1~= 1 K/xi, ... ,xn) = Ilf=ITKi(xi) 

NI1~= 1 Ki(xi, ... ,xn) = Ilf=INKi(xi) 
(4)a) 1> If A E C(X, Y) and x E K C X, then 

TA(K)(Ax) = A(TK(x)) 

NA(K)(Ax) = A*- 1 NK(x) 
(4)b) 1> If KI, K2 C X, Xi E Ki, i = 1, 2, then 

TK1+K2(XI + x2) = TK1 (xi)+ TK2(x2) 
NK1+K2(XI + X2) = NKl (xi) n NK2(x2) 

In particular, if XI E K and x2 belongs to 
a closed subspace P of X, then 

TK+P(XI + x2) = TK1 (xi)+ P 
NK+P(xi + x2) = NK(xi) n pl_ 

(5) 1> If L C X and M C Yare closed convex subsets and 
A E C(X, Y) satisfies the 
constraint qualification assumption 
0 E Int(M- A(L)), then, for every x E L n A-I(M), 

TLnA-l(M) = TL(x) n A-IrM(Ax) 
NLnA-l(M) = NL(x) +A* NM(Ax) 

(5)a) 1> If M C Y is closed convex and if A E C(X, Y) 
satisfies 0 E Int(Im(A) - M), 
then, for any x E A-I(M), 

TA-l(M)(x) = A-IrM(Ax) 
NA-l(M)(x) = A* NM(Ax) 

(5)b) 1> If KI, K2 C X are closed convex and satisfy 
0 E Int(KI- K2), then, for any x E KIn K2 

TKlnK2(x) = TKl(x) nTK2(x) 
NK1nK2(x) = NK1 (x) + NK2(x) 

(5)c) 1> If Ki c X, (i = 1, ... , n), are closed and convex, 
X E ni=I Ki and if there exists 'Y > 0 satisfying 
\fxi such that llxill :-::; "(, ni=I (Ki- Xi) =/=- 0, then 
Tn~= 1 Ki(x) = ni=I TKi(x) 

Nn~=l Ki(x) = I:~I NKi(x) 
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Table 5.2: Properties of Contingent Cones. 

(1) [> 

(2) [> 

(3) [> 

( 4) [> 

(5) [> 

(5)a) t> 

(5)b) [> 

(5)c) t> 

If K c Land x E K, then TK(x) c TL(x) 
If Ki c X, (i = 1, ... 'n) and X E ui Ki, then 

Tut=lKi(x) = uiEl(x)TKi(x) 
where I(x) := {i I x E Ki} 
If Ki c xi, (i = 1, ... 'n) and Xi E Ki, then 

Tn:~Ki(xb···,xn) c Ili=ITKi(xi) 
If g E C1(X, Y), if K C X, x E K and M C Y, then 

g'(x)(TK(x)) C Tg(K/g(x)) 
Ty-l(M)(x) C g'(x)- TM(g(x)) 

If L c X and M c Y are closed sleek subsets, 
f E C1 (X, Y) is a continuously differentiable map 
and x E L n f-1(M) satisfies the transversality condition 

f'(x)TL(x)- TM(J(x)) = Y, then 
TLnJ-l(M)(x) = TL(x) n f'(x)- 1TM(J(x)) 

If M C Y is a closed sleek subset, 
f E C1(X, Y) is a continuously differentiable map 
and x E f- 1(M) satisfies Im(J'(x))- TM(J(x)) = Y, then 

TJ-l(M)(x) = f'(x)- 1TM(J(x)) 
If K 1 and K2 are closed sleek subsets contained in X 
and x E K1 n K2 satisfies TK1 (x)- TK2(x) =X, then 

TKlnK2(x) = TKl (x) n TK2(x) 
If Ki c X, (i = 1, ... , n), are closed sleek 
and X E ni Ki satisfies 
\fvi = 1, ... , n, nf=l (TKi (x) -Vi) f= 0 

then, Tn:1 K/x) = nf=l TKi(x) 



166 5- Invariance Theorems 

5.1.5 Inequality Constraints 

We also state the following example of the contingent cone to a set 
defined by equality and inequality constraints5: 

Theorem 5.1.10 Let us consider a closed subset L of a finite di
mensional vector-space X and two continuously differentiable maps 
g := (gt, ... , gp) : X t---t RP and h := (h1, ... , hq) : X t---t Rq defined 
on an open neighborhood of L. 

Let K be the subset of L defined by the constraints 

K := {x ELI gi(x) 2: 0, i = 1, ... ,p, & hj(x) = 0, j = 1, ... , q} 

We denote by I(x) := {i = 1, ... ,pI gi(x) = 0} the subset of active 
constraints. 

We posit the following transversality condition at a given x E K: 

ii) :3 vo E CL(x) such that h'(x)vo = 0 

and \f i E I ( x), < gH x), vo > > 0 

Then u belongs to the contingent cone to K at x if and only if u 
belongs to the contingent cone to L at x and satisfies the constraints 

ViEJ(x), <g~(x),u>2: 0 & \fj=l, ... ,q, hj(x)u=O 

Unfortunately, the graph of TK ( ·) is not necessarily closed. How
ever, there exists a closed set-valued map TK(-) contained in TKO 
introduced by N. Maderner. Set 

( ) . gi(X) l ] 
rK X := _mm II '( )II E 0, +oo 

~fi.I(x) gi X 
(5.1) 

We observe that rK is upper semicontinuous whenever the functions 
gi are continuously differentiable. Indeed, let Xn E K converge to 
xo and an ~ rK(xn) converge to ao. Since gi(xo) > 0 whenever i fj. 
I(xo), we infer that i fj. I(xn) for n large enough. Hence inequalities 

5See Proposition 4.3.6 of SET-VALUED ANALYSIS 
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anllgHxn)ll ~ gi(xn) hold true for any i ¢ I(xo) and imply at the 
limit that ao ~ 'YK(xo). 

The growth of the function 'YK is linear whenever we assume that 
there exists a constant c > 0 such that 

w . II '( )II gi(x) 
v ~ = 1, ... ,p, gi x 2: c llxll + 1 

Theorem 5.1.11 {Maderner) We posit the assumptions of Theo
rem 5.1.10. Then the set-valued map TKO : K "'-'+X defined by: 

u E T_K(x) if and only ifu E TL(x) and 

{ Vi=1, ... ,p, gi(x)+<g~(x),u>2: 0 
V j = 1, ... , q, hj(x)u = 0 

is contained in the contingent cone TK(x) and satisfy 

TK(x) n 'YK(x)B C ~(x) 

Its graph is closed whenever the graph of x "'-'+ TL(x) is closed. 

Proof - Let u belong to TK ( x). Then, when i E I ( x), we see 
that (gHx), u) = gi(x) + (gHx), u) 2: 0, so that u E TK(x). 

Conversely, let us choose u in TK(x) satisfying llull ~ 'YK(x). 
Then either i E I(x) and gi(x) + (g~(x), u) = (gHx), u) 2: 0 or gi(x) > 
0 so that 

i ¢ I(x) & gi(x) + (g~(x),u) 2: gi(x) - llg~(x)llllull 2: 0 

because llull ~ 'YK(x) ~ gi(x)/llg~(x)ll· Thus, in both cases, gi(x) + 
(g~(x), u) 2: 0, so that u belongs to T_K(x). D 

5.2 Invariance Domains 

Let us consider the differential inclusion 

for almost all t 2: 0, x'(t) E F(x(t)) (5.2) 

We recall the definition of invariant subsets K under a set-valued 
map F: A subset K is said to be (locally) invariant under F (or 
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enjoys the invariance property) if for any initial state xo of K, all 
solutions to the differential inclusion (5.2} starting at xo are viable 
(on some interval [0, T]). 

We emphasize again that the concept of invariance depends upon 
the behavior ofF on the domain ofF outside of K. But we can 
tackle this issue since we have extended the concept of contingent 
cone to K at points outside of K (Definition 5.1.1). This enables 
us to provide an Invariance Criterion (by contrast with the Strict 
Invariance Theorem 4.3.6). 

Theorem 5.2.1 Let K be a subset of the domain of a nontrivial 
set-valued map F. If F is locally bounded and if 

V x E Dom(F), F(x) C TK(x) 

then K is invariant under F. 

Proof- Let x(·) E S(xo) be any solution to the differential 
inclusion (5.2) defined on some interval [0, T]. Let us set g(t) := 

dK(x(t)), which is absolutely continuous. Let t be a point where 
both x'(t) and g'(t) exist. Then there exists c(h) converging to 0 
with h such that x(t +h)= x(t) + hx'(t) +he( h) and 

{ 
'(t) _ 1· dK(x(t)+hx'(t)+hc(h))-dK(x(t)) 

g - lmh--+0+ h 

= DrdK(x(t))(x'(t)) 

Since x'(t) E F(x(t)) c TK(x(t)) almost everywhere, we infer that 
g'(t) ~ 0 for almost all t. Therefore x(-) is viable whenever the initial 
state xo is in K. If not, there would exist t > 0 such that x(t) rt K. 
But we derive a contradiction since: 

0 < dK(x(t)) = dK(x(t))-dK(x(O)) = g(t)-g(O) =lot g1(T)dT ~ 0 0 

We are tempted to call an invariance domain of F a subset K c 
Dom(F) satisfying the condition F(x) c TK(x) for all x E Dom(F). 
But actually, we shall study the stronger property where the above 
condition holds true only for x E K. 
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Definition 5.2.2 (Invariance Domain) Let F : X ""-+ X be a 
nontrivial set-valued map. We shall say that a subset K c Dom(F) 
is an invariance domain ofF if 

Vx E K, F(x) C TK(x) 

Since the contingent cone to a singleton is reduced to 0, we ob
serve that a singleton { x} is an in variance domain if and only if x is 
a "stopping point" ofF, i.e., a solution to the inclusion 

F(x) = { o} 

(No velocity can take such a stopping point away.) 

Corollary 5.2.3 Let K be a subset of the domain of a nontrivial 
set-valued map F. Assume that F satisfies 

V x E Dom(F), F(x) C F(ITK(x)) 

If K is an in variance domain, then it is invariant under F. 

Proof- It follows from Theorem 5.2.1, since F(x) c F(IIK(x)) c 
TK(IIK(x)) c TK(x) thanks to Lemma 5.1.2. D 

For instance, when K is a closed convex set, w! can extend a 
set-valued map F : K ""-+ X to a set-valued map F : X ""-+ X by 
setting 

V x EX, F(x) := F('nx(x)) 

Corollary 5.2.4 Let K be a closed convex subset and F : K ""-+.X 
be a set-valued map satisfying 

V x E K, F(x) C TK(x) 

Then K is invariant under the extension F ofF. 

Corollary 5.2.5 Let K be a closed subset of the domain of a non
trivial set-valued map F. If 

V x E Dom(F), V v E F(x), V y E IIK(x), < x- y, v > < 0 

then K is invariant under F. 
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Proof~ It follows trivially from Corollary 5.2.3 and Proposi
tion 3.2.3. D 

We can regard the next result as a structural stability property: 

Proposition 5.2.6 Let us assume that K is convex with nonempty 
interior. Assume that the graph of F is compact and that 

V x E K, F(x) C Int(TK(x)) 

Then there exists a neighborhood U of the graph ofF such that the 
above condition is verified for all set-valued maps G whose graph is 
contained in U. 

Proof~ Since the graph of F is compact and contained in the 
graph of K 3 x'""' Int (TK(x)) which is open by Proposition 5.1.8, 
the latter is such a neighborhood U. D 

5.3 Invariance Theorem 

5.3.1 Filippov's Theorem 

In order to characterize the local invariance property of a closed 
subset K, i.e., to prove that K is an invariance domain ofF, we 
need to know that given any x E K and v E F(x), there exists a 
solution x(·) to differential inclusion (5.2) such that x(O) = x and 
x'(O) = v. 

This is the case when the right-hand side F is Lipschitz in a 
neighborhood of K, thanks to the Filippov Theorem6 . Actually, 
Filippov's Theorem is much more than a mere existence theorem. It 
also provides an estimate of the distance between a function y( ·) and 
the set Sp(xo) of solutions starting at some initial state xo. 

Theorem 5.3.1 (Filippov) Assume that F: X'""' X is >.-Lipschitz 
with closed values on the interior of its domain. Let y( ·) be a given 

6 We do not provide the proof of the Filippov Theorem, but refer the reader to 
Corollary 2.4.1, p.l21 of DIFFERENTIAL INCLUSIONS or to Helene Frankowska's 

CONTROL OF NONLINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS. 
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absolutely continuous function such that t -+ d(y'(t), F(y(t))) is in
tegrable(for the measure e->..sds}. We associate with a fixed x0 the 
function 'f/ defined by 

TJ(t) = e>..t (11xo- y(O)II + lot d(y'(s),F(y(s)))e->..8 ds) 

Let T > 0 be finite or infinite chosen such that the tube 

{y(t) + TJ(t)BhE[O,T[ 

is contained in the interior of the domain ofF. 
Then there exists a solution x(·) to differential inclusion {5.2} 

such that, for all t E [0, T[, 

llx(t)- y(t)ll ~ e>..t (11xo- y(O)II +lot d(y'(s), F(y(s)))e->..sds) 

(5.3) 
and for almost all t E [0, T[, 

{ 
llx'(t) - y'(t)ll ~ d(y'(t), F(y(t))) 

+.\e>..t (llxo- y(O)II + JJ d(y'(s), F(y(s)))e->..sds) 

Proof- Filippov's Theorem yields an estimate on any finite 
interval [0, T] such that the tube {y(t) + TJ(t)BhE[O,T] is contained in 
the interior of the domain of F. 

Actually, we can extend it to the interval [0, +oo[ if the tube 

{y(t) + TJ(t)BhE[O,+oo[ 

is contained in the interior of the domain of F. Indeed, there exists 
a solution x( ·) to differential inclusion (5.2) defined on [0, T] starting 
at xo satisfying estimate (5.3) and in particular 

llx(T)- y(T)II ~ e>..T (11xo- y(O)II + loT d(y'(s), F(y(s)))e->..sds) 

There also exists a solution z( ·) to differential inclusion (5.2) starting 
at x(T) estimating the function t 1--t y(t + T) and satisfying 

{ 
llz(t)- y(t + T)ll 
~ e>..t (llx(T)- y(T)II + JJ d(y'(s + T), F(y(s + T)))e->..8 ds) 
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Hence we can extend x(·) on the interval [0, 2T] by concatenating 
it with the function t f-+ x(t) := z(t - T) on the interval [T, 2T] 
and we observe that the above estimates yield (5.3) for t E [0, 2T]. 
We reiterate this process as long as the tube {y(t) + 1J(t)BhE[O,nT] is 
contained in the interior of the domain of F. 0 

It implies the existence of a solution: 

Corollary 5.3.2 Assume that F is Lipschitz on the interior of its 
domain. Then, for any xo E Int(Dom(F)) and vo E F(xo), there 
exist T > 0 and a solution x(·) to differential inclusion (5.2} defined 
on [0, T] and satisfying x(O) = xo and x'(O) = vo. 

Proof- We apply Filippov's Theorem with y(t) := x0 + tvo and 
xo := y(O). Then d(y'(t), F(y(t))) ::; -Xtllvoll and 

17(t) :S e>.t lot -Xrllvolle->.7 dT ::; 11~11 (e>-t -1- -Xt) 

Filippov's Theorem implies the existence of a solution x(·) to differ
ential inclusion (5.2) starting at x0 and satisfying 

llx(t)-xo-tvoll::; 11~11 (e>-t_1--Xt) 

Dividing by t > 0 and letting t converge to 0+, we infer x' ( 0) = vo. 
0 

It also implies the Lipschitz dependence of the solution map on 
the initial condition: 

Corollary 5.3.3 Let y(·) E SF(Yo) and assume that F, y(·) satisfy 
the assumptions of Filippov's Theorem 5.3.1. Then 

d (y(t), SF(xo)(t)) :S llxo- Yo II e>.t 

so that the solution map SF is lower semicontinuous. 

Remark- Observe that if we set 

8(t) := d (ExitF(K, t), 8K) 

Filippov's Theorem 5.3.1 implies that for all 0 <To < T, 

. ( 8 ( T - To) ) . 
V x E ExitF(K, T), B x, e>-To C ExitF(K, To) 0 
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5.3.2 Characterization of Local Invariance 

We are ready to prove the characterization of invariant domains un
der a Lipschitz map: 

Theorem 5.3.4 Let us assume that F is Lipschitz on the interior 
of its domain and has compact values. Then a closed subset K c 
Int(Dom(F)) is locally invariant under F if and only if K is an 
invariance domain. 

Proof- Let us assume that K is an invariance domain and let 
x(·) be any solution to differential inclusion (5.2) starting at xo and 
defined on some interval [0, T]. Let us set g(t) := dK(x(t)), which is 
absolutely continuous on [0, T]. 

Let t be a point such that both x' ( t) and g' ( t) exist and x' ( t) 
belongs to F(x(t)). Then there exists c(h) converging to 0 with h 
such that 

x(t +h) = x(t) + hx'(t) + hc(h) 

and 

{ 
g'(t) = limh-+O+(dK(x(t) + hx'(t) + hc(h))- dK(x(t)))/h 

= DrdK(x(t))(x'(t)) 

Lemma 5.1.2 implies that 

DjdK(x)(x'(t)) :S d(x'(t), TK(IIK(x(t)))) 

Let us denote by >. > 0 the Lipschitz constant of F and choose 
any yin IIK(x(t)). We deduce that: 

d(x'(t), TK(IIK(x(t)))) :S d(x'(t), TK(y)) :S d(x'(t), F(y)) 
(since K is an in variance domain) 

:S d(x'(t), F(x(t))) +.AllY- x(t)ll (since F is Lipschitz) 

= 0 + >.dK(x(t)) = >.g(t) 

Then g is a solution to 

for almost all t E [0, T], g'(t) < >.g(t) & g(O) = 0 
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We deduce that g(t) = 0 for all t E [0, T], and therefore, that x(t) is 
viable inK on [0, T]. 

Let us assume that K is locally invariant under F. Let 
xo E K. We have to prove that any uo E F(xo) is contingent to 
K at xo. Corollary 5.3.2 implies that for all x0 and uo E F(x0 ), 

there exists a solution x(·) to differential inclusion (5.2) satisfying 
x(O) = xo and x'(O) = uo. Since K is locally invariant under F, it 
is viable on some interval [0, T]. We thus infer that uo belongs to 
TK(xo). Hence F(xo) is contained in TK(xo). D 

5.3.3 Graphical Lower Limits of Solution Maps 

Let us recall the concepts of lower limits of subsets and of graphical 
lower limit of set-valued maps. 

Let Kn be a sequence of subsets of a metric space X. We say 
that 

Kb := Liminfn--.ooKn := {y E X I lim d(y, Kn) = 0} n-->oo 

is its lower limit. In other words, it is the closed subset of limits of 
sequences of elements Xn E K n. 

We shall say that the set-valued map Limb n--.ooFn from X to X 
defined by 

Graph(Limb n--.ooFn) := Liminfn--.00 Graph(Fn) 

is the graphical lower limit of the set-valued maps Fn. For simplicity, 
we set pb := Limb n-->ooFn. 

When L C X and M C X are two closed subsets of a metric 
space, we denote by 

b.(L,M) := sup inf d(y,z) = supd(y,M) 
yELzEM yEL 

their semi-Hausdorff distance7 , and recall that b.(L, M) = 0 if and 
only if L C M. If <P and W are two set-valued maps, we set 

b.(<P, w)oo = sup b.(<P(x), w(x)) 
xEX 

7The Hausdorff distance between L and M is equal to 
max (~(L, M), ~(M, L)). 
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Filippov's Theorem provides an example of a situation where the 
solution map SF is the graphical lower limit of a sequence of solution 
maps SFn· 

Theorem 5.3.5 Let Fn : X"'-" X and F : X"'-" X be >..-Lipschitz 
set-valued maps with closed images and uniform linear growth: there 
exists c > 0 such that 

V n 2: 0, V x EX, IIFn(x)ll < c(ilxll + 1) 

Then 

and 
e>.t - 1 

~(SF, SpJ= :'S >.. ~(F, Fn)oo 

Consequently, if limn--+oo ~(F, Fn)oo=O, then 

Proof- Let us consider any solution x(-) E Sp(xo) to differ
ential inclusion (5.2). Therefore, 

d(x'(t), Fn(x(t))) :'S ~(F(x(t)), Fn(x(t))) :'S ~(F, Fn)oo 

By Filippov Theorem 5.3.1 applied to the map Fn, there exists a 
solution Xn(-) E SFn (xon) such that 

lllxn(t)- x(t)il :'S e>.tllxo- Xonll +lot e>.(t-s)~(F,Fn)oods 

>.t e>.t - 1 
= e iixo- Xonll + ~(F, Fn)oo >.. 

Then for any t 2: 0, x ( t) is the limit of Xn (t), so that our claim is 
proved. 0 

8 This implies that F is contained in the graphical lower limit F' of the set
valued maps Fn. 
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Remark - We can obtain other estimates. Set 

~(<P w) = ~(<P(x), w(x)) 
' 1 =~~ llxll + 1 

Let Fn : X "-'t X and F : X "-'t X be A-Lipschitz set-valued maps 
with closed images and uniform linear growth. Then, for any A > c, 

e>.t - ect 
~ (Sp, SFnh :S A_ c ~(F, Fnh 

so that ~ (Sp, SpJ1 converges to 0 and thus 

Sp c Lim11 n->= (SFn) 

when limn->= ~(F, Fnh = 0. 

Indeed, consider any solution x(-) E Sp(xo) to differential inclu
sion (5.2). Since 

{ 
d(x'(t),Fn(x(t))) :S ~(F(x(t)),Fn(x(t))) :S ~(F,Fnh(llx(t)ll + 1) 

:S ~(F, Fnh(llxoll + 1)ect 

Filippov Theorem 5.3.1 applied to the map Fn implies that there 
exists a solution Xn ( ·) E S Fn ( xo) such that 

{ 
llxn(t) - x(tJII ~ e"' JJ :(~'Fnh(llxoll + l)e-(>-•)'ds 

= ~(F,Fnh(llxoll+1)e;..=~ D 

5.3.4 Accessibility Map 

We recall that the reachable map Rp is defined by 

(See Definition 3.5.4.) 

Definition 5.3.6 We shall denote by Rp :X "-'t X the map defined 
by 

T~O 

and call it the accessibility map. 
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Proposition 5.3. 7 Assume that F : X ~ X is Lipschitz with non
empty closed values. Then RF maps open subsets onto open subsets. 
If K is a closed subset satisfying K = Int(K), then 

lnt (RF(K)) = RF (Int(K)) 

Proof- Let n be an open subset and fix any y E RF(x) where 
x E 0: By definition, there exist T > 0 and a solution x( ·) on [0, T] to 
the differential inclusion (5.2) starting at x such that x(T) = y. Let 
y(·) be a solution to the backward inclusion y' E -F(y) starting at 
x and consider the solution y(-) E S_F(Y) to the reverse differential 
inclusion defined by 

-(s) ·= { x(T- s) if 0 ~ s ~ T 
y . y(s- T) if T ~ s < oo 

Since -F is Lipschitz, Filippov's Theorem 5.3.1 implies that there 
exists a neighborhood N(y) of y such that, for every z E N(y), one 
can find a solution z(·) E S_F(z) satisfying z(T) E n. This means 
that z can be reached from n in finite time. 

We thus deduce that RF(Int(K)) is contained in Int(RF(K)), so 
that the inclusion 

RF(Int(K)) C lnt (RF(K)) 

holds true. It remains to prove the converse inclusion when we as
sume that K = Int(K). We shall actually prove that any y E RF(K) 
belongs to RF(Int(K)). We know that there exist x E K, T > 0 and 
a solution x(·) to differential inclusion (5.2) defined on [0, T] starting 
at x such that x(T) = y. Take any € > 0. Since x E Int(K), Filip
pov's Theorem 5.3.1 implies that there exists 8 > 0 such that for any 
z E B(x, 8) n Int(K), one can obtain a solution z(·) to differential 
inclusion (5.2) starting at z and satisfying z(T) E B(y, €). Hence y 
can be approximated by elements z(T) E RF(Int(K)). D 
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5.3.5 Proof of Convergence of the Fast Viability Ker
nel Algorithm 

Proposition 5.3.8 Assume that F is both Marchaud and A-Lipschitz. 
Let x belong to the outward area K~ and set 

8K(x) := d(F(x), TK(x))/2 > 0 

We denote by (} K ( x) > 0 the largest positive number 0 such that 

\f h E]O, OJ, d (x + h (F(x) + 8K(x)B), K) > 0 

{which does exist). Let us fix r > 0 and set 

Cx := F(B(x,r)), T := min{r/IICxll, 1/A} 

Then cK(x), which depends only upon x and K and does not involve 
Viab F ( K), satisfies 

0 

B (x, cK(x)) n Viabp(K) = 0 

Proof - The compactness of F(x) + 8K(x)B and the very 
definition of the contingent cone imply that there exists a positive 
(} > 0 such that 

\f h E]O, OJ, d (x + h (F(x) + 8K(x)B), K) > 0 

(See the proof of Proposition 4.3.5.) Therefore OK(x) > 0 is positive 
and we observe that 

Let us consider any solution x(·) E S(x) starting at x. Since 
F(y) C Cx when y ranges over the ball B(x, r), we first infer that 
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Since F is .A-Lipschitz, we deduce that 

{ 
x(t)- x E JJ F(x(T)dT C JJ(F(x) + .AIIx(T)- xiiB)dT 

C t(F(x)+ 6KJx)B) 
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whenevert < tK(x) := min{8K(x)/2.AIICxii,OK(x),T}. Consequently, 
for every positive t < t K ( x), 

Furthermore, by the Filippov Theorem 5.3.1, we know that for any 
y(·) E S(y), there exists a solution x(·) E S(x) such that 

llx(t)- y(t)ll :S e>.tllx- Yll 

We set EK(x) := 8K(x)tK(x)f2e>.tK(x). This implies that for any 
0 

y EB (x, EK(x)), 

{ 
d(y(tK(x)), K) ~ d(x(tK(x)), K) -llx(tK(x))- y(tK(x))ll 

> DK(x)tK(x)/2-e>.tK(x)llx-yll > 0 

This means that such initial states y do not belong to the viability 
kernel of K, because all solutions leave K in finite time. D 

We shall need the following result. 

Lemma 5.3.9 Let P be a convex closed cone with compact sole9 and 
M be a compact subset of X. Then there exists y E M such that: 

(y + P) n M = {y} 

9 Let P be a closed convex cone. We recall that the following conditions are 
equivalent: 

{ 
i) P is spanned by a convex compact set disjoint from 0 
ii) the interior of the polar cone p+ is not empty 
iii) S := {x E PI< po,x >= 1} where PoE Int(P+) spans P; 

The compact convex subsetS is called the sole, and such closed convex cones are 
called cones with compact sole. 
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Proof- The proof follows from Zorn's lemma. Let us define 
the following preorder relation on M: 

a:::; b ~ bE a+P 

which is actually an order since P has a compact sole. We next prove 
that every subset L of M which is totally ordered has a majorant. 

Clearly, for any a E L, (a+ P) n M i= 0. Since these sets are 
nonempty and compact and since (b+P)nM c (a+P)nM whenever 
a :::; b, we deduce that: 

n((a+P)nM) i= 0 
aE L 

Let b belong to naE L (a + P) n M. Obviously, b is larger than any 
element of L for the order :::;. According to Zorn's lemma, there 
exists a maximal element y E M: Namely, if z E M is different from 
y, then, y tf_ z + P. Hence, (y + P) n M = {y}. D 

Proof of Theorem 4.4.6 - By Lemma 4.4.5, we already 
know that 

ViabF(K) = ViabF(Koo) C K 00 

Assume that K 00 is not a viability domain: there would exist x E 

Koo =>· Set 

and 
000 := ()Koo (x) > 0 

We shall derive a contradiction by constructing a sequence of ele
ments Xn E Kn => converging to x such that cKn (xn) is bounded 
below by some c00 > 0 that we shall define: In this case, we would 
have llxn- xll 2:: cKn (xn) 2:: coo because 

- - 0 

X E Kn+l C Kn \ B (xn, cKn (xn)) 

by the very definition of the algorithm and thus, the contradiction 
ensues. We thus have to define this positive lower bound c00 • 
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Since the convex compact set F(x) + 800B does not contain 0, 
the cone P spanned by this set has a compact sole. Set 

Mn := Kn n (x + [0, Ooo](F(x) + 8ooB)) 

We can assert, thanks to Lemma 5.3.9, that: 

3 Xn E Mn such that (xn + P) n Mn = {xn} 

On the other hand, by the very definition of K 00 and the choice of 
x, the sequence Xn converges to x. Hence for all n large enough, 

Thus, 

Kn n (xn + [o, ~] (F(x) + 800 B)) c 

Kn n (x + [0, Ooo] (F(x) + 800B)) n (xn + P) = (xn + P) n Mn = {xn} 

Since F is Lipschitz, we have for n large enough, F(xn) C F(x) + 
800 B /2, so that for any t < 000 /2, 

Thus d(F(xn), TKn (xn)) ;::: 800 /2, i.e., 8Kn (xn) ;::: 800 /4. By Proposi
tion 5.3.8, we deduce that OKn (xn) ;::: 000 /2 and thus, setting 

. { Ooo 8oo } 
too := mm 2' 2AIICxll 'T 

that tKn (xn);::: t 00 /2. Since t ~---+ tje>.t is increasing for 0 ~ t ~ 1/A, 
we infer that 

coo := 

We have thus constructed a lower bound c00 of the radii cKn (xn) for 
n large enough which implies the contradiction we claimed at the 
beginning of the proof. D 
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5.4 Invariance Kernels 

We now introduce the concepts of invariance kernel and envelope: 

Definition 5.4.1 {Invariance Kernels and Envelopes) Let K be 
a subset of the domain of a set-valued map F : X ~ X. The largest 
closed subset of K invariant under F, which we denote by InvF(K) 
or Inv(K), is called the invariance kernel of K. We shall say that 
the smallest closed subset invariant under F containing K is the in
variance envelope EnvF(K) of K. 

Since the intersection of closed subsets invariant under F is still 
a closed subset invariant under F, the in variance envelope of a closed 
subset does exist. 

5.4.1 Existence of the Invariance Kernel 

We now prove the existence of the invariance kernel of a closed subset 
(possibly empty). 

Recall that SF denotes the solution map associating with any xo 
the set of solutions to differential inclusion x' E F(x) starting at xo 
and that it is lower semicontinuous when F is Lipschitz with closed 
values (see Corollary 5.3.3.) We shall set 

0 := Dom (SF) 

Naturally, invariant subsets are necessarily contained in 0. We sup
ply the space C(O, oo; X) with the topology of pointwise convergence. 

Theorem 5.4.2 Let us assume that the solution map SF is lower 
semicontinuous from 0 to C(O, oo; X). Then, for any closed subset 
K c 0, there exists an invariance kernel (possibly empty) of K. It is 
the subset of initial points such that all solutions starting from them 
are viable in K. 

Proof- Let us denote by JC C C(O, +oo; X) the subset of 
continuous functions x( ·) which are viable in K and by Inv(K) the 
subset of initial state x E K such that SF(x) c JC, possibly empty. 

Since the solution map SF is lower semicontinuous from K to 
C(O, oo; X) supplied with the topology of pointwise convergence and 
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since K is closed, we deduce that lnv(K) is also a closed subset of K 
(See Proposition 1.4.4 of SET-VALUED ANALYSIS.) 

It obviously contains any closed subset of K invariant under F. 
It remains to be shown that it is also invariant under F. For 

that purpose, let us take x E Inv(F) and show that any solution 
x(·) E Sp(x) is viable in Inv(K) (by checking that for any T > 0, 
x(T) E Inv(K)). Let y(·) belongs to Sp(x(T)). Hence the function 
z ( ·) defined by 

{ 
x(t) 

z(t) := y(t- T) 
if t E [0, T] 
if t E [T, oo[ 

is a solution to the differential inclusion (5.2) starting at x at time 
0, and thus, is viable in K by the very definition of Inv(K). Hence 
for all t 2: 0, y(t) = z(t + T) belongs to K, so that we have proved 
that Sp(x(T)) c K, i.e., x(T) E lnv(K). D 

Remark- It is clear that 

and more generally, that the invariance kernel of any intersection of 
closed subsets Ki ( i E J) is the intersection of the invariance kernels 
of the Ki. D 

5.4.2 Complement of the lnvariance Kernel 

Proposition 5.4.3 Assume that K c n := Dom(SF) is compact 
with nonempty interior, that F(K) is bounded and that its invari
ance kernel lnvp(K) is contained in the interior of K. Then the 
complement !1\lnvp(K) of the invariance kernel is viable under F. 

Proof- Since we assume that the invariance kernel is compact, 
there exists TJ > 0 such that Inv F ( K) + 2'T]B C K. 

We observe that property 

V x(·) E Sp(x), :3 t s TK(x(·)) such that x(t) E Invp(K) 

implies that x belongs to the in variance kernel of K. 
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Therefore, if xo E K\Invp(K), there exists a solution x1(·) E 

Sp(xo) such that x1(t) ~ Invp(K) for every t E [0, TK(xl(·))]. 
If TK(xl(·)) = +oo, we deduce that x1(·) is viable in K\Invp(K). 

If not, we set t1 := TK(xl(·)) and Xl := X1(t1) E 8K. 
Let x2(·) E Sp(xl) and define p(x2(·)) := inf{t 2: 0 I x2(t) E 

Invp(K) + 'TlB}. Then either p(x2(·)) = +oo and the solution ob
tained in concatenating x1(-) and x2(·) is viable in 0\Invp(K), or 
t2 := p(x2(·)) is finite and x2 := x2(t2) E 8(Invp(K) + "7B). 

We also check that t2 - t1 2: "7/IIF(K)II because llx2 - x1ll :S 
(t2- tl)IIF(K)II and llx2- x1ll 2: "7· 

Now we iterate this procedure to construct a solution x(·) which 
is viable in X\Invp(K). D 

Let us point out this easy but useful remark: 

Proposition 5.4.4 If the boundary 8K of a closed subset K c 
Dom(SF) is invariant under F, so is K. 

Proof- Indeed, take xo in the interior of K and any solution 
x(·) E Sp(xo). If it is not viable inK, there would exist a finite exit 
timeT := inf{s 2: 0 I x(s) ~ K}, at which x(T) E 8K. Since the 
boundary is invariant, any solution starting at x(T) remains in 8K. 
This is the case of the solution y(·) defined by y(t) := x(t+T), so 
that x(t) E 8K for every t 2: T. This contradicts the assumption 
that x(·) is not viable inK. D 

5.4.3 Stability of Invariance Domains 

Let us consider now a sequence of closed subsets Kn invariant under 
a set-valued map F. Is their lower limit still invariant under F '? 

Proposition 5.4.5 Let us assume that the solution map Sp is lower 
semicontinuous from 0 to C(O, oo; X). Then the lower limit of closed 
subsets Kn c 0 invariant under F is also invariant under F. 

In particular, the lower limit of the invariance kernels of a se
quence of closed subsets Kn c 0 contains the invariance kernel of 
the lower limit of the sequence Kn: 

Liminfn-+oo (Inv(Kn)) ::J Inv (Liminfn-.ooKn) 
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Proof - Let the initial set xo := limn-+oo xon belong to the 
lower limit K~ of the sequence Kn and x( ·) E SF ( xo) be any solution 
to differential inclusion (5.2). Since the solution map is lower semi
continuous, there exist solutions Xn(·) E SF(Xon) converging point
wise to x(·). The subsets Kn being invariant under F, we conclude 
that for any t 2: 0, Xn(t) E Kn. This implies that x(t) E K~ for every 
t 2: 0. Hence K~ is invariant under F. D 

More generally, we can prove that the lower limit K~ of a sequence 
of closed subsets Kn invariant under set-valued maps Fn are invariant 
under some set-valued map F. 

Theorem 5.4.6 (Stability) Let us consider set-valued maps Fn : 
X -vt X and F : X -vt X such that the solution map SF is contained 
in the graphical lower limit of the solution maps SFn. Then if the 
closed subsets Kn C Dom(SFn) are invariant under the set-valued 
maps Fn, their lower limit K~ is invariant under F. 

In particular, the lower limit of the invariance kernels of closed 
subsets Kn for the set-valued maps Fn contains the invariance kernel 
of the lower limit K~ for F: 

5.4.4 Global Exit and Hitting Functions 

When the solution map SF is lower semicontinuous, we can deduce 
from Proposition 4.2.2 and the Maximum Theorem 2.1.6 that the 
function 0~ : K ~--+ R+ U { +oo} defined by 

O~(x) := sup OK(x(·)) 
x(·)ESp(x) 

is lower semicontinuous and that the function rk : K ~--+ R+ U { +oo} 
defined by 

rk(x) .-

is upper semicontinuous. 

inf TK(x(·)) 
x(·)ESp(x) 
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Therefore the graphs of the "tubes" associating with t E [0, +oo[ 
the subsets 

are closed. 

{ 
{ x E K 1 ot ( x) ~ r} 

{X E K I Tk (X) 2: T} 
(5.4) 

The first subset is the subset of initial states x E K such that 
the boundary 8K is reached before T by all solutions x( ·) to the 
differential inclusion (5.2) starting at x. 

The second subset is the subset of initial states x E K such 
that all solutions x(·) to the differential inclusion (5.2) starting at x 
remain in K for all t E [0, T]. 

We then observe that the invariance kernel is equal to 

Inv F ( K) = n {X E K I Tk (X) 2: T} 
T~O 

5.4.5 lnvariance Envelopes 

One can relate invariance envelopes with the accessibility map: 

Proposition 5.4. 7 Assume that F : X ~ X is Lipschitz with non
empty closed values. Then the invariance envelope and the accessi
bility map are related by 

Envp(K) = Rp(K) 

Proof- The subset Rp(K) is obviously contained in any 
closed invariant subset M containing K and in particular, in the 
in variance envelope of K. 

Conversely, it is enough to prove that Rp(K) is invariant. If not, 
there would exist xo E Rp(K), a solution x(·) E Sp(xo) and T > 0 
such that x(T) does not belong to Rp(K). Let c > 0 be such that 

B(x(T), c) n Rp(K) = 0 

By Filippov's Theorem 5.3.1, there exists 8 > 0 such that for 
every Yo E B(xo, 8), one can find a solution y(·) E Sp(yo) starting 
from Yo such that 

y(T) E B(x(T), c) c X\ Rp(K) 



5.4.- Invariance Kernels 187 

Since xo belongs to the closure of RF(K), one can choose such an 
initial state Yo in RF(K), so that there exists zo E K, a solution 
z(·) E SF(zo) and To > 0 satisfying z(To) =YO· We then introduce 
the concatenation y( ·) defined by 

y(s) := { z(s) if 0 :'S s :'S To 
y ( s - To) if To ::::; s < oo 

Therefore y(-) E SF(zo) is a solution starting from K such that 
y(T +To) = y(T), so that y(T) belongs to RF(K), a contradiction. 
D 

Proposition 5.4.8 Assume that F : X ~ X is Lipschitz with nonem
pty closed values and that K = Int(K). Then 

EnvF(K) = X\ Inv_F(K) where K := X\ K 

Proof~ Since these two sets contain K, it is enough to prove 
the equality for the elements outside of K. 

Let xo be outside of both K and Inv_F(K). We infer that there 
exists a solution x(·) E S_F(xo) and T > 0 such that x(T) E X\K = 
Int(K). Let us associate with a solution y(-) E SF(xo) the solution 
y(-) E SF(x(T)) defined by 

_( ) ·= { x(T - s) if 0 :'S s :'S T 
y 8 . y( s - T) if T :'S s < oo 

which thus satisfies y(T) = x 0 E RF(Int(K)). Proposition 5.4.7 
implies that the latter subset is contained in EnvF(K). 

Conversely, let y belong to Int(RF(K))\K. Since the interior 
of RF(K) is equal to RF(Int(K)) by Proposition 5.3.7, there exist 
xo E Int(K), a solution x(·) E SF(xo) and T > 0 such that y = 
x(T) E X\K. We then associate with a solution y(-) E SF(xo) the 
solution y(-) E SF(Y) defined by 

_( ) ·= { x(T- s) if 0 ::::; s ::::; T 
y s . y(s- T) if T < s < oo 
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which thus satisfies fj(T) = xo E Int(K). Hence such a solution is 
not viable in K = X\lnti_K) and thus, y = x(T) does not belong to 
the invariance kernel of K, so that we have proved that 

We conclude, thanks to Proposition 5.4.7. D 

5.5 Boundaries of Viability and Invariance 
Kernels 

5.5.1 Semipermeability of the Boundary of the Via
bility Kernel 

We shall prove in this section that if the solution map is lower semi
continuous, then every viable solution starting on the boundary of 
the exit tube (respectively the viability kernel) remains on it. 

Theorem 5.5.1 Let F : X ~ X be a strict Marchaud map and 
K c X be a closed subset. Assume that the solution map SF is 
lower semicontinuous from K to C(O, oo; X). 

Then, if 

x E a(ExitF(K, T)) n Limsupt-->T- (ExitF(K, t)\ExitF(K, T}) 

every solution x(·) E SF(x) viable in K on [0, T] remains on the 
boundary of the exit tube: 

VtE[O,T], x(t) E o(ExitF(K,T-t)) 

Proof- Let x(·) E SF(x) be a solution viable inK on [0, T], 
which exists by assumption, and which thus satisfies 

V t E [0, T], x(t) E ExitF(K, T- t) 

Also by assumption, there exists a sequence of Tn < T converging 
to T and a sequence of elements Xn E ExitF(K, Tn)\ExitF(K, T) 
converging to x. 

Since the solution map is assumed to be lower semicontinuous, 
there exist solutions xn(·) to the differential inclusion (5.2) starting 
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at Xn defined on [0, T] converging pointwise to x(·). On the other 
hand, by Proposition 4.2.8, we know that for any t E [0, Tn], 

Xn(t) E Exitp(K, Tn- t)\Exitp(K, T- t) 

Consequently, by passing to the limit, we obtain for all t E [0, T], 

x(t) E Exitp(K, T- t) n X\Exitp(K, T- t) = {) (Exitp(K, T- t)) 

i.e., the solution remains in the boundary of the exit tube. D 

By using Proposition 4.2.9 instead of Proposition 4.2.8 in the 
proof of Theorem 5.5.1, we obtain the following statement: 

Theorem 5.5.2 Let F : X ""Vt X be a strict Marchaud map and 
K C X be a closed subset. Assume that the solution map Sp is 
lower semicontinuous from K to C(O, oo; X) and that Exitp(K, T) is 
contained in the interior of K. Then, if x E 8(Exitp(K, T)), every 
solution x(·) E Sp(x) viable inK on [0, T] remains on the boundary 
of the exit tube: 

V t E [0, T], x(t) E {) (Exitp(K, T- t)) 

ForT= +oo, we obtain the following consequence: 

Theorem 5.5.3 (Quincampoix) Let F: X ""Vt X be a strict Mar
chaud map and K C X be a closed subset. Assume that the solution 
map Sp is lower semicontinuous from K to C(O, oo; X) and that the 
viability kernel of K is contained in the interior of K. Then the via
bility kernel is semipermeable in the sense that if x E 8(Viabp(K)), 
every solution x(·) E Sp(x) viable inK remains in the boundary of 
the viability kernel. 

In other words, this means that every solution starting from the 
boundary of the viability kernel can either remain in the boundary or 
leave the viability kernel, or equivalently, that no solution starting 
from outside of the viability kernel can cross its boundary: such 
solutions can only remain on the boundary of the viability kernel, or 
leave it. 
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5.5.2 Viability of the Boundary of the Invariance Ker
nel 

In a symmetric way, we can prove that the boundary of the invariance 
kernel is viable: 

Theorem 5.5.4 (Quincampoix) Let F: X""'-'+ X be a strict Mar
chaud map and K C X be a compact subset. Assume that the solution 
map Sp is lower semicontinuous from K to C(O, oo; X) and that the 
invariance kernel of K is contained in the interior of K. Then, the 
boundary a(Invp(K)) is viable under F. 

Proof- Let Xo belong to a(Inv F ( K)) and consider a sequence 
of elements Xn E K\lnvp(K) converging to xo. 

By Proposition 5.4.3, we know that X\lnvp(K) is viable under 
F: there exist solutions xn(·) to differential inclusion (5.2) starting 
at Xn which are viable in X\Invp(K). 

Since F is a Marchaud map, we infer from Theorem 3.5.2 that 
a subsequence (again denoted by) xn(·) converges to some x(·) E 

Sp(xo) which is viable in the closure of the complement of Invp(K). 
Theorem 5.4.2 implies that this solution is also viable in the invari
ance kernel of K, and thus, that it is viable in the boundary of 
a(Invp(K)). D 

5.6 Defeat and Victory domains of a Target 
and its Barrier 

We can apply the above theorems to the complement of an open 
target 0. Let us introduce the following notations: 

i) Defeatp(O) := Invp(X\0) 

ii) Stalp(O) := Viabp(X\0) \ Invp(X\0) 

iii) Victp(O) := X\ Viabp(X\0) 

Theorem 5.6.1 (Quincampoix) Let F : X""'-'+ X be a Marchaud 
and Lipschitz map. Consider an open target 0 c X. Then 
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Figure 5.1: Victory and Defeat Domains 

The target n, the defeat domain, the barrier and the victory domains are symbolically 

re resented. 
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1. Defeatp(O) is the defeat domain: \:1 xo E Defeatp(O), every 
solution starting from xo never reaches the target 0 

2. Victp(O) is the victory domain: \:1 xo E Victp(O), every solu
tion reaches the target 0 in finite time 

3. Stalp(O) is the stalemate domain: \:1 xo E Stalp(O) 

• there exists one solution which never reaches the target 0 

• there exists one solution hitting the target 0 

4. [) (Viabp(X\0)) is the barrier: \:1 xo E 8 (Viabp(X\0)), there 
exists a solution which is viable in the barrier as long as it does 
not reach the target 0, and no solution enters the interior of 
Stalp(O) 

5. [) (Defeat F ( 0)) is viable under F 

We can also introduce 

Victp(O, T) ·- X\Exitp(X\0, T) 

which is the open subset 

Victp(O, T) = { x such that Tl\0 (x) < T} 

of initial states from which all solutions reach the target 0 before T. 
We deduce that the victory domain is equal to: 

Victp(O) = U Victp(O, T) 
T>O 

The subset 

{ 
victp(O, T) := Hitp(X\0, T) 

= {X~ 0 I :J x(·) E Sp(x), :J t E [0, T] such that x(t) E 0} 

is the set of initial states such that at least one solution to the dif
ferential inclusion reaches the closure of 0 at some t ~ T. 

For compact targets C, we obtain the following characterization: 



5. 7. Viability Theorems Linear Differential Inclusions 193 

Proposition 5.6.2 Let F: X""-+ X be a strict Marchaud map and 
C c X be a nonempty compact subset. The set 

{x rt C I :3 x(·) E Sp(x), :3 t E [0, T] such that x(t) E C} 

of initial states such that at least one solution to the differential in
clusion reaches the target C at some t ~ T is equal to 

U n victp(B {C,c),T) 
71>00<e~7J 

Proof- Let us choose x rt C. Then we know that there exists 
rJ > 0 such that for any c ~ rJ, there exists at least one solution 
Xe{-) E Sp(x) to the differential inclusion reaching the ball B{C,c) 

0 

at some te ~ T, thanks to the above remark with n :=B (C, c). 
Since Sp(x) is compact in C{O, oo; X) supplied with the compact 
convergence topology, subsequences (again denoted by) xeO and te 
converge to x(·) E Sp(x) and t E [0, T] respectively, so that the limit 
x(t) of Xe(te) E B{C,c) belongs to the closed target C. D 

5. 7 Linear Differential Inclusions 

5. 7.1 Viability Cones 

Let us consider the case when the right-hand side of the differential 
inclusion is a closed convex process. Since closed convex processes are 
set-valued analogues of continuous linear operators, it is legitimate 
to call such differential inclusions linear differential inclusions. 

The domain of a closed convex process being a convex cone, it 
is quite natural to restrict the class of viability domains of closed 
convex processes to closed convex cones. 

Theorem 5.7.1 {Linear Differential Inclusions) Let X be a fi
nite dimensional vector-space, F : X ""-+ X be a closed convex process 
and K c X be a closed convex cone. We posit the following assump
tions: 

{ 
i) 'V x E K, R(x) := F(x) n {K + Rx) =/= 0 
ii) the norm (see Definition 2.5.3) of IIRII is finite 
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Then, for any initial state xo E K, there exists a solution x(·) to the 
linear differential inclusion 

for almost all t ~ 0, x'(t) E F(x(t)) (5.5) 

starting at xo and viable in the cone K. 

Proof - It is a direct consequence of the Second Viability 
Theorem 3.3.6 and formula 

TK(x) = K +Rx 

since, by the very definition of the norm of R, we have: 

v X E K, d(O, F(x) n TK(x)) :::; IIRIIIIxll D 

Hence it remains to prove the following 

Lemma 5.7.2 Let K c X be a convex cone of a normed space X 
and x E K. Then10 TK(x) = K + Rx. 

The proof is left as an exercise (see also Lemma 4.2.5 of SET
VALUED ANALYSIS.) D 

Example- Let A E C(X, X) be a linear operator and PC X and 
Q C X be closed convex cones. Then the set-valued map F defined by 

F(x) := Ax+Q if x E P & 0 if not (5.6) 

is a closed convex process. We then deduce a useful corollary for linear 
control systems with inequality constraints on both the state and the control 
variables: 

Corollary 5. 7.3 Let X be a finite dimensional vector-space, A E C(X, X) 
be a linear operator and P c X and Q c Y be closed convex cones. If 

{ 
i) V x E P, Ax E P + Rx - Q 
ii) 3 c > 0 such that inf (--) llull S cllxll 

uE P+Rx n(Q+Ax) 

then, for any initial state x0 E P, there exists a solution to the differential 
equation x'(t) = Ax(t) + u(t), where u(t) E Q, which is viable in the closed 
convex cone P. D 

10Ifwe assume that K- + {x}- =X* and that X is reflexive, then TK(x) = 
K - R+x thanks to Closed Range Theorem 2.3.4. 
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5. 7.2 Projection on the sphere 

We shall "project" the solutions x(·) onto the unit sphere E. We shall 
show that the evolutions of these projections are governed by a differen
tial inclusion the right-hand side of which is the "projection" of the linear 
differential inclusion onto the tangent space to this sphere defined in the 
following way: we associate with any y E E the orthogonal projector 1r(y) 
onto the tangent space T"E(Y) toE at y defined by 

1r(y)z := z- < y,z > y 

We observe the following property: 

Lemma 5. 7.4 If K is a convex cone of a finite dimensional vector-space 
X, then, for any y E K n E, 1r(y)TK(y) C TKn"E(y). 

Proof- Let z E TK(y). We already know that 1r(y)z belongs to 
T"E(y). It belongs to TK(Y) because 

1r(y)z = z- < y,z > y E K +Ry+Ry c K +Ry 

Then it belongs to the intersection ofT"E(y) = {YV and TK(y). It is equal 
to TKn"E(Y) (see Table 5.2), because the transversality condition T"E(y)
TK(Y) =X is satisfied since we can write 

't:/ z EX, z = 1r(y)z+ < y, z > y D 

We now associate with a closed convex process F : X """ X its "projec
tion" defined by 

H(y) := 1r(y)(F(y) n IIRIIB) 
It is obviously a set-valued map with closed convex images contained in the 
ball IIRIIB, which is compact. 

We deduce from the above lemma that if a closed convex cone K is a 
viability domain ofF, then K n E is a viability domain of its projection H. 
This implies the following consequence: 

Proposition 5. 7.5 We posit the assumptions of Theorem 5. 7.1. 
Then x( ·) is a never vanishing viable solution to linear differential in

clusion (5.5) if and only ify(·) := x(·)/llx(·)ll is a solution to the projected 
differential inclusion 

for almost all t ~ 0, y'(t) = 1r(y(t))z(t) where z(t) E F(y(t)) 

viable in K n E and we can write: 

x(t) = y(t)ilxolleJ; <y(T),z(T)>dT 
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Proof - The proof follows easily from the relation 

x(t) x'(t) 
y(t) = llx(t)ll & z(t) = llx(t)ll 

and the property 

d dtllx(t)ll = llx(t)ll < y(t),z(t) > D 

Remark - Let us introduce the constants 

>._ := inf < v,y > & >.+ := sup < v,y > 
yEEnK,vEF(y)niiRIIB yEEnK,vEF(y)niiRIIB 

We deduce that the solutions x( ·) obey the estimates 

We deduce that if .>.+ < 0, then the origin is an attmctor and that if 
>._ > 0, the origin is a source of the system. 

5. 7.3 Projection on a compact sole 

It may be advantageous to project a linear differential inclusion on the sole 
of a cone instead of the sphere, if one needs convexity, for instance. In 
particular, this allows us to prove that a closed convex process F does have 
an eigenvector in cones with compact soles. 

We associate with the closed convex cone K and an element Po E 
Int(K+) the "compact sole" 

S:={xEKI <po,x>= 1} 

We associate with any element y E S the projector ro(y) onto the 
orthogonal hyperplane to Po, defined by 

\::/ z EX, ro(y)z ·- z- < Po,z > y 

We then remark that: 

Lemma 5. 7.6 If K is a convex cone with compact sole of a finite dimen
sional vector-space X, then, for any yES, ro(y)TK(Y) c Ts(y). 

Proof- The tangent cone to the sole S of K is equal to 

Ts(x) = {v E TK(x) I < po, v >= 0} (5.7) 
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since S can be written in the form K n p01(1). Indeed, the constraint 
qualification assumption 0 E Int(p0 (K) - 1) is satisfied because p0 (K) is 
a cone of R containing 1. We then deduce from Table 5.1 that Ts(x) = 
TK(x) np() 1T{1}(1), i.e., formula (5.7). 

We now check that 

V yES, w(y)TK(Y) C Ts(Y) (5.8) 

Indeed, Lemma 5.7.2 implies that if u E TK(y), then 

w(y)u:=u-<po,u>y E (K+Ry)+Ryc(K+Ry)=TK(Y) 

(because K is a closed convex cone) and 

<Po, w(y)u >=<Po, u >-<Po, u ><Po, Y >= 0 

(because< p0 , y >= 1). We deduce that w(y)u belongs to Ts(y) thanks to 
(5.7). D 

Let us project the closed convex process F to the set-valued map G 
defined on the compact sole S by 

G(y) := w(y)(F(y) n IIRJJB) 
which is naturally a set-valued map with closed convex images contained in 
the ball JJRJJB, which is compact. Since its graph is closed, we deduce that 
G is upper semicontinuous from S to X. By (5.8), Sis a viability domain 
of the set-valued map G since the cone K is a viability domain of the closed 
convex process F, so that: 

Proposition 5. 7. 7 We posit the assumptions of Theorem 5. 7.1. Therefore 
x ( ·) is a never vanishing viable solution to linear differential inclusion ( 5. 5) 
if and only if 

y(·) := x(·)/ < Po,x(·) > 
is a solution to the projected differential inclusion 

for almost all t :2': 0, y'(t) = w(y(t))z(t) where z(t) E F(y(t)) 

viable in the sole S and we can write: 

x(t) = y(t) <Po, Xo > efo' <y(r),z(r)>dr 

Proof~ The solutions x(·) andy(·) are related by 

x(t) & z t = x'(t) 0 
y(t) = < p0 , x(t) > ( ) <Po, x(t) > 

Since the compact sole is a compact viability domain of the projection 
G, the Equilibrium Theorem 3.7.6 implies the existence of eigenvectors: 
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Theorem 5. 7.8 {Eigenvector of a Closed Convex Process) Let X be 
a finite dimensional vector-space and F : X ~ X be a closed convex process. 
Assume that a closed convex cone K C X enjoys the following properties. 

{ 
i) 
") 
~~ ') nz 

K has a compact sole 
K is a viability domain of F 
the norm IIRII is finite 

Then there exists a nonzero eigenvector x E K of the closed convex process 
F associated with an eigenvalue X, i.e., a solution to the problem 

x E K, x =f. 0, X E R & Xx E F(x) (5.9) 

The eigenvalue X is therefore nonnegative whenever F(K) c K. 

Proof- Indeed, there exists an equilibrium x E S of G, i.e., a 
solution to 0 E G(x), in other words, a solution to 

x E S, 0 = w(y)(x)y = y- < p0 , y > x where y E F(x) 

By setting X :=<Po, y >,we see that the pair (X, x) is a solution to inclusion 
(5.9). D 

5.7.4 Duality between Viability and lnvariance 

Let us consider the case when the right-hand side of the differential 
inclusion is a closed convex process F whose domain is the whole 
space. 

Then we know that F is Lipschitz and that its transpose F* is 
upper semicontinuous with compact images on its domain F(o)+. 

Theorem 5.7.9 (Polar of a Viability Domain) Let X be a fi
nite dimensional vector-space, F : X ~ X be a strict closed convex 
process and K be a closed convex cone. Then K is an invariance 
domain ofF if and only if K+ is a viability domain of its transpose: 

{ 
i) 

~) 
\:1 x E K, F(x) C TK(x) 

\:1 q E K+, F*(q) n TK+(q) =/= 0 

where K+ := -K- = {p EX* I \:1 x E K, < p, x > 2 0}. 

We refer to Section 4.2 (Theorem 4.2.6) of SET-VALUED ANAL
YSIS for the proof of this Theorem. D 



Chapter 6 

Regulation of Control 
Systems 

Introduction 

In this chapter, we interpret viability theorems in the framework 
of control systems with a priori feedbacks1 and state constraints. The 
dynamics (U, f) of the control system are described by 

{ (i) 
(ii) 

x'(t) = f(x(t), u(t)) 
u(t) E U(x(t)) 

Observe that solutions to a control system are solutions to the 
differential inclusion x'(t) E F(x(t)) where, for each state x, F(x) := 
f(x, U(x)) is the subset of feasible velocities. Conversely, a differen
tial inclusion is an example of a control system in which the controls 
are the velocities (f(x, u) = u & U(x) = F(x)). 

Observe also that whenever the controls obey state-dependent con
straints, the control system can no longer be regarded as a family of 

1i.e., with state-dependent constraints on the controls. If we regard differen
tial equation (i) as an "input-output map" associating with an input-control an 
output-state, inclusion (ii), which associates input-controls with output-states, 
"feeds back" the system. The a priori feedback relation is set-valued, otherwise, 
we no longer deal with a control problem. Regulating the system means looking 
for a subset of controls which provide solutions satisfying a given property, either 
optimality (optimal feedbacks) as in optimal control theory, or viability, which is 
the issue tackled here. 

199 
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differential equations parametrized by an open loop control u( ·), but 
as a differential inclusion. 

The "state constraints" are described by the viability2 subset K 
of states which satisfy them. 

We shall associate with each viability domain K the regulation 
map RK c U associating with every state x E K the set 

RK(x) ·- {u E U(x) I f(x,u) E TK(x)} 

of viable controls. 
Under adequate assumptions on U and f, Viability Theorem 3.3.5 

states in essence that K is a viability domain if and only if the images 
RK(x) of the regulation map are not empty for all x E K and that 
the "open-loop" controls u(·) which regulate viable solutions obey 
the regulation law 

for almost all t 2: 0, u(t) E RK(x(t)) 

Hence, a deep knowledge of the regulation map, its regularity 
properties and its calculus (derived from the calculus of contingent 
cones) is in order. 

Time-dependent controls are called "open-loop controls". What 
we are aiming at is the construction of "closed-loop" controls3 , i.e., 
single-valued maps r{-) which are selections of the regulation map in 
the sense that r{x) E RK(x) for all x E K. Then the solutions to 
the differential equation 

x'(t) = f(x(t), r(x(t))) 

(when they exist) are viable since the implemented controls u(t) := 

r(x(t)) obey the regulation law by construction. This will be the case 
when r(·) is continuous (thanks to Nagumo's Theorem), but may still 
be the case for discontinuous, but explicit, closed-loop feedbacks. 

2 For linear and smooth nonlinear control systems, the viability property has 
been introduced under the name of "controlled invariance" (and the invariance 
property under the name of "conditional invariance"). 

3 The terminology comes from systems theory. Controls given by the regulation 
law can be regarded as mixed open-loop and closed-loop, because they still depend 
upon the state, but in a set-valued way instead of a deterministic manner. 
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Hence, we have to carry out two tasks. First, find selection pro
cedures of the regulation map which provide either continuous se
lections (Michaels' Continuous Selection Theorem 6.5.7) or discon
tinuous selections for which the above differential equation still has 
solutions (section 4.) We shall see that these selection procedures 
require that the regulation map should be lower semicontinuous with 
convex values. Providing sufficient conditions for the regulation map 
to be lower semicontinuous is thus the second preliminary task. 

Observe that this is not at all desperate, since we know that the 
set-valued map x ~ TK(x) which is involved in the definition of the 
regulation map is lower semicontinuous with convex values whenever 
K is sleek, and thus, whenever K is convex or smooth. Then, if we 
add the assumption that U(·) is also lower semicontinuous, one can 
expect RK to be lower semicontinuous as well. This statement is 
true under further adequate assumptions (constraint qualification or 
transversality), as we show in the lower semicontinuity criteria that 
we prove in the second section and apply to regulation maps in the 
third one. 

Finally, we build closed-loop controls in the fifth section. Michael's 
Theorem naturally provides the existence of continuous closed-loop 
controls, but, being proved in a nonconstructive way, does not furnish 
algorithmic ways to construct them. 

On the other hand, we can think of explicitly selecting some con
trols of the regulation map, for instance, the control r 0 (x) E RK(x) 
with minimal norm. Viable solutions obtained with this closed-loop 
control are called slow viable solutions. Unfortunately, lower semi
continuity of the regulation map is not sufficient for implying the 
continuity of this minimal norm closed-loop control, so Nagumo's 
Theorem 1.2.3 cannot be used. Still, one can prove that slow viable 
solutions do exist, as well as the ones obtained by selection proce
dures involving optimization or game theoretical mechanisms. 

6.1 Regulation Map 

We translate the viability theorems in the language of Control Theory 
and continue our investigations in this framework. From now on, we 
introduce two finite dimensional vector-spaces: 
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1. the state space X 
2. the control space Z 
and a feedback set-valued map U : X ~ Z associating with any 

state x the (possibly empty) subset U(x) of feasible controls when 
the state of the system is x. In other words, we assume that the 
available controls of the system are required to obey constraints which 
may depend upon the state. We shall investigate later the cases when 
the controls depend also upon the time and/or the history of the 
solution to the system. 

The dynamics of the system are further described by a (single
valued) map f : Graph(U) 1---t X which assigns to each state-control 
pair (x, u) E Graph(U) the velocity f(x, u) of the state. 

Hence the set 

F(x) := {f(x, u)}uEU(x) 

is the set of available velocities to the system when its state is x. 

Definition 6.1.1 (Control System) A control system denoted by 
(U, f) is defined by 

a feedback set-valued map U : X ~ Z 
a map f: Graph(U) I-t X describing the dynamics of the 

system. 
The evolution of the system (U, f) is governed by the differential 

inclusion 

{ i) for almost all t, x'(t) = f(x(t), u(t)) (6.l) 
ii) where u(t) E U(x(t)) 

Let us remark that when we take for controls the velocities, i.e., 
when we take Z = X, U = F and f(x, u) = u, we find the usual 
differential inclusions again. 

The case when the feedback map U is constant, i.e., when \fx E 

Dom(U), U(x) = U, is the most often used in the literature. 

Definition 6.1.2 (Regulation Map) Consider a system (U, f) de
scribed by a feedback map U and dynamics f. We associate with any 
subset K C Dom(U) the regulation map RK : K ~ Z defined by 

\fx E K, RK(x) := {u E U(x) I f(x, u) E TK(x)} 

Controls u belonging to RK(x) are called viable. 
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We observe that K is a viability domain if and only if the regu
lation map RK is strict {has nonempty values). 

It is convenient to introduce the following definition: 

Definition 6.1.3 We shall say that the system (U, f) is a Marchaud 
control system if it satisfies the following conditions: 

{ 

i) 
. ") 
~~ ") 'tU, 

iv) 

Graph(U) is closed 
f is continuous 
the velocity subsets F(x) are convex 
f and U have linear growth 

and that it is an affine control system if 

i) V(x, u) E Graph(U), f(x, u) := c(x) + g(x)u 

(6.2) 

ii) Graph(U) is closed and the images of U are convex 
iii) c : Dom(U) 1--t X is continuous 
iv) g : Dom(U) 1--t .C( Z, X) is continuous and bounded 
v) c and U have linear growth 

(6.3) 

Naturally, affine control systems are Marchaud systems. In this 
case, the regulation map RK is defined by 

RK(x) := {u E U(x) I g(x)u E TK(x)- c(x)} (6.4) 

Hence Viability Theorem 3.3.5 can be restated in the following 
form: 

Theorem 6.1.4 (Viability Theorem) Let us consider a Marchaud 
control system (U, f). Then a closed subset K C Dom(U) is viable4 

under F (or is controlled invariant) if and only if it is a viability 
domain. 

Furthermore, any "open loop" control u( ·) regulating a viable so
lution x( ·) in the sense that 

for almost all t, x'(t) = f(x(t), u(t)) 

4This means that for any initial state xo E K, there exists a solution on [0, oo[ 
to the control system (6.1) viable inK. 
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obeys the regulation law 

for almost all t, u(t) E RK(x(t)) (6.5) 

Otherwise, if K is not a viability domain of the control system, 
there exists a viability kernel Viab(K) of K. 

Remark - The Filippov Measurable Selection Theorem5 ac
tually allows us to choose open loop controls obeying the regulation 
law (6.5) which are measurable. We shall also provide in Chapter 7 
conditions implying the existence of open loop controls belonging to 
the space W 1•1(0, oo; X; e-btdt). D 

Remark- Naturally, we can replace assumption (6.2)iv) by 
the weaker assumption (which depends upon the viability domain 
K) 

. f d(O, RK(x)) 
m 
xEK llxll + 1 

< +oo D (6.6) 

Therefore, using viability theorems amounts to proving that the 
regulation maps RK have nonempty values and then, to exploiting 
the regulation law. This will be possible when the regulation map 
is lower semicontinuous with convex values. This is the topic of the 
next section. 

But before, we shall illustrate some of the concepts introduced so 
far and new ones by a very simple dynamical economic model (one 
commodity, one consumer.) 

6.2 A Simple Economic Example. 

Let K := [0, b] the subset of a scarce commodity x. Assume that the 
consumption rate of a consumer is equal to a > 0, so that, without 
any further restriction, its exponential consumption will leave the 
viability subset [0, b]. Hence its consumption is slowed down by a 
price which is used as a control. In summary, the evolution of its 
consumption is governed by the control system 

for almost all t ~ 0, x'(t) = ax(t)- u(t), where u(t) ~ 0 

5See Theorem 8.2.10 of SET-VALUED ANALYSIS for instance. 



6.2. A Simple Economic Example 205 

subjected to the constraints 

V t ~ 0, x(t) E [0, b] 

(See figure 6.1) 
The a priori feedback map U is defined by U(x) := R+· Hence 

the regulation map is given by the formula 

RK(O) = {0}, RK(x) = R+ when x E]O, b[ & RK(b) = [ab, +oo[ 

Its graph is not closed, and its closure is the graph of U, equal to 
[O,b] X R+ 

We see at once that the viable equilibria of the system range over 
the equilibrium line u = ax. Viability is guaranteed each time that 
the price u(t) is chosen in R(x(t)), i.e., u = 0 when x = 0 (and thus, 
the system cannot leave the equilibrium because negative prices are 
not allowed "to start" the system) and u ~ ab when x = b, so that 
the price is large enough to stop or decrease consumption. 

Assume that the system obeys the inertia principle: it keeps the 
price constant as long as it works. Take for instance xo > 0 and 
uo E [0, axo[. Then the consumption increases6 and when it reaches 
the boundary b of the interval, the system has to switch very quickly, 
actually instantaneously, to a velocity large enough to slow down the 
consumption for the solution to remain in the interval [0, b]. This 
would require impulse controls. 

But there is a bound to the growth of prices (and inflation rates), 
so that we should set a bound on price velocities: iu'(t)i ::; c. We shall 
associate with such a bound a "last warning" threshold to modify the 
price: there is a level of consumption after which it will be impossible 
to slow down the consumption with a velocity smaller than or equal 
to c to forbid it to increase beyond the boundary b. 

We shall find this threshold by introducing heavy solutions (which 
will be studied in full generality later in Chapter 7) for building 
this regulation law. They are the one whose controls evolve with 
the "smallest velocity". It may be useful to be acquainted with 
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this concept on an example, and this one illustrates well how heavy 
solutions evolve. 

We thus consider the solutions to the system 

{ 
i) for almost all t 2' 0, x'(t) = ax(t)- u(t) (6.7) 
ii) and - c S u'(t) S c 

which are viable in Graph(U) (which is the closure of the graph of 

RK)· 
We may call them the c-bounded state-control solutions. 

We next introduce the functions p~ and p~ defined on [0, oo[ by 

·- S,..(e-aujc- 1 + !!u) ~ u2 
a• c 2c 

·- -cea(u-ab)/c ja2 + uja + cja2 

and the functions r~ and r~ defined on [0, b] by 

i) r~(x) = u if and only if x = p~(u) 

iii) r~(x) = u if and only if x = p~(u) when x E [p~(O), b] 

Proposition 6.2.1 The viability kernel of the graph of U under the 
system (6. 1) is the graph of the regulation map Rc defined by 

V x E [0, b], Rc(x) = [r~(x), r~(x)] (6.8) 

Proof- Indeed, set uU(t) := uo + ct and uP := uo- ct and 
denote by xU ( ·) and xP ( ·) the solutions starting at xo to differential 
equations x' =ax- uU(t) and x' =ax- uP(·) respectively. Then any 

solution (x(·),u(·)) to the system (6.7) satisfies uP(·) S u(·) S uU(·) 
and thus, xU(-) s x(-) S xP(-) because 

x(t) = eatxo- lot ea(t-s)u(s)ds 

We also observe that the equations of the curves t f-+ (xU(·), uU(-)) 
and t f-+ (xP(·), uP(·)) passing through (xo, uo) are solutions to the 

differential equations 

H 1 H p 1 p 
dp~ = -(ap~- u)du & dp = --(ap - u)du 

c c c c c c 
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Figure 6.2: Other Solutions and Invariance of the Boundary 

.. . · 

... · 

.··· 
.. ·· 

... ·· 

Examples of other solutions (6.7) where the velocities u.' of the controls are randomly 

generated. This computer simulation {due to Morin & Vandanjon) illustrate the barrier 

properties of the part of the boundary of the viability kernel contained in the interior of 

Gra h U Theorem 5.5.3. 
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the solutions of which are 

Let p~ be the solution passing through (0, 0), which is equal to 
p~(u) = ~(e-aujc_l+~u) and p~(u) = -cea(u-ab)/cja2 +u/a+cja2 

be the solution passing through the pair (ab, b). 
- We check that the viability kernel is contained in the graph 

of Rc by contradiction. 
If uo > r~(xo), then any solution (x(·), u(·)) starting from (xo, uo) 

satisfies 
x(t) :::; xP(t) = p~(uP(t)) :::; p~(u(t)) 

because p~(-) is nondecreasing. Hence, when x(t1) = 0, we deduce 
that u(tl) > 0, so that such solution is not viable, and thus, (xo, uo) 
does not belong to the viability kernel. 

If 0:::; uo < r~(xo), any solution (x(·), y(·)) satisfies inequalities 

Therefore, when x(t1) = b for some time t1, its velocity x'(t1) 
ab- u(t1) is positive, so that the solution is not viable. 

- It remains to prove that the viability kernel is equal to the 
graph of Rc by constructing particular viable solutions starting from 
any point (x0 , uo) of this graph. We choose the heavy solutions. 

The equilibrium line u = ax is contained in the viability kernel: 
if we start from an equilibrium, both the state and the controls can 
be kept constant. 

We shall now investigate the cases when the initial control uo is 
below or above the equilibrium line. 

Consider the case when xo > 0 and the price uo E [rhxo), axo[. 
Since we want to choose the price velocity with minimal norm, we 
take u'(t) = 07 as long as the solution x(·) to the differential equation 
x' = ax-uo yields a consumption x(t) < p~(uo). When for some time 
t1, the consumption x(t1) = p~(uo), it has to be slowed down. Indeed, 

7 and realize in this case the dream of economists, who, despite the teachings 
of history, are looking for constant prices and commodities ... 
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otherwise (x(t1 +c), uo) will be below the curve p~ and we saw that 
in this case, any solution starting from this situation will eventually 
cease to be viable. Therefore, prices should increase to slow down 
the consumption growth. The idea is to take the smallest velocity 
u' such that the vector (x'(t1), u') takes the state inside the graph of 
Rc: they are the velocities u' ~ x' (h)/ pf ( uo). By construction, it is 
achieved by the velocity of xU(·), which is the highest one allowed to 
increase prices. Therefore, by taking 

and u(t) := uo + c(t- tl) for t E [t1, t1 + (ab- uo)/c], we get a 
solution which ranges over the curve xU(t) = p~(uU(t)). This a heavy 
solution because, for the same reason as above, the smallest velocity 
of the price (which is unique along this curve) is chosen. According 
to the above differential equation, we see that x(t) increases to b 
where it arrives with velocity 0 and the price increases linearly until 
it arrives at the equilibrium price ab. Since (b, ab) is an equilibrium, 
the heavy solution stays there: we take x(t) =band u(t) = ab when 
t ~ t1 +uofc. So we have built a viable solution starting from (xo, uo). 
Therefore the region between the "curve p~" and the equilibrium line 
is contained in the viability kernel, i.e., the graph of Rc. 

Consider now the case when uo E [axo, r~(xo)], where we follow 
the same construction of the heavy viable solution. We start by 
taking u'(t) = 0, and thus, u(t) = uo, as long as the solution x(·) 
to the differential equation x' = ax- uo, which decreases, satisfies 
x(t) > p~(uo). Then, when x(t1) = p~(uo) for some t1, we take 

and u(t) := uo-c(t-tl) fortE [t1, t1 +uo/c] in order to avoid leaving 
the viability kernel. Finally, fort~ t1 + uo/c, we take x(t) = 0 and 
u(t) = 0. This particular solution being viable, the pairs (x0 , u0 ) 

where uo E [axo, r~(xo)] belong to the viability kernel. D 

Remark- We observe that for any x E]O, b[, 

lim r~(x) = lim r~(x) =ax, lim r~(x) = 0 & lim r~(x) = +oo 
C->0+ C->0+ C->00 C->00 



6.3. Lower Semicontinuity Criteria 211 

In other words, the graph of Rc starts from the equilibrium line 
when c = 0 and "converges" in some sense to the graph of U when 
c ~ +oo. D 

Remark - One can also compute easily the regulation map 
based on Theorem 5.1.11. In this case, it is easy to observe that 

R0 (x) = [max{O, (1 + a)x- b}, (1 + a)x] 

We observe that R° C Rc for any c satisfying 

6.3 Lower Semicontinuity Criteria 

To proceed further, we need the regulation map to be lower semicon
tinuous with convex compact values. 

We can always assume that U is lower semicontinuous and we 
know that the set-valued map TK(-) is lower semicontinuous when
ever the viability set is sleek (and, in particular, smooth or convex). 

We thus need lower semicontinuity criteria to derive that the 
regulation map RK(·) is lower semicontinuous. Therefore, we gather 
in this section the lower semicontinuity criteria which are useful for 
building closed-loop controls regulating viable solutions. We refer to 
SET-VALUED ANALYSIS for more details, although we provide most 
of the proofs for the convenience of the reader. 

Proposition 6.3.1 Consider a metric space X, two normed spaces 
Y and Z, two set-valued maps T and U from X to Y and Z respec
tively and a {single-valued} map f from X x Z to Y satisfying the 
following assumptions: 

{ 
i) T and U are lower semicontinuous with convex values 
ii) f is continuous 
iii) \1 x, u t---t f(x, u) is affine 

We posit the following condition: 
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'V x E X, 3 'Y > 0, 8 > 0, c > 0, r > 0 such that 'V x' E B(x, 8) 
we have 

"fBy c f(x', U(x') n rBz)- T(x') 

Then the set-valued map R : X ~ Z defined by 

R(x) := {u E U(x) I f(x,u) E T(x)} (6.9) 

is lower semicontinuous with nonempty convex values. 

Proof- Let us fix u E R(x) and a sequence Xn converging to x. Since U 
and T are lower semicontinuous and f is continuous, there exist sequences 
Un E U(xn) and Yn E T(xn) converging to u and f(x, u) respectively. Let 
us set en:= llf(xn,un) -Ynll and On:= ...::L+ E]O, 1[. Then en converges to 

"f en 
0. Since 

we deduce that 

{ O.(!(x., u.) ~ Yn) : OncnB 
(1- On)'yB 
(1- On)(/(xn, U(xn) n rBz))- T(xn)) 

Therefore, there exist Un E U(xn) n rBz and Yn E T(xn) such that 

J(xn, OnUn + (1- On)Un) = ()nYn + (1- On )fin 

This implies that 
Vn := OnUn + (1- On)Un 

belongs to U(xn) and that 

Un- Vn = (1- On)(un- Un) E (1- On)(r + llull + 1)B 

because llunll ::::; r, llunll is bounded, U(xn) and T(xn) are convex and f 
is affine with respect to u. Hence the elements Vn E R(xn) converge to u 
given in R(x). D 

We state now another condition which is less symmetric. 

Proposition 6.3.2 Consider a metric space X, two normed spaces 
Y and Z, two set-valued maps T and U from X to Y and Z respec
tively and a {single-valued) map f from X x Z toY such that 

i) U is lower semicontinuous with convex values 
ii) f is continuous 
iii) 'V x, u 1--t f(x, u) is affine 
iv) 'V x, T(x) is convex and its interior is nonempty 
v) the graph of the map x ~ Int(T(x)) is open 
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We posit the following condition: 

V x EX, 3 u E U(x) such that f(x, u) E Int(T(x)) (6.10) 

Then the set-valued map R defined by ( 6. 9) is lower semicontinuous 
with convex values. 

Proof 
1. - We introduce the set-valued map S : X ~ Z defined by 

S(x) := {u E U(x) I f(x,u) E Int(T(x))} C R(x) 

Assumption (6.10) implies that S(x) is not empty. We claim that S 
is lower semicontinuous. Indeed, if Xn --+ x and if u belongs to S(x) C 

U(x), there exists Un E U(xn) which converges to u because U is lower 
semicontinuous. Since 

(xn,J(xn, un)) converges to (x, f(x, u)) E Graph(Int(T(·))) 

by continuity off and since the graph of Int(T(·)) is open, the elements 
f(xn, un) belong to Int(T(xn)) for n large enough and thus, the elements 
Un belong to S(xn) and converge to u. 

2. Convexity of U(x) and T(x) implies that S(x) = R(x). 
Indeed, let us fix u E R(x) and u0 E S(x). Then v9 := Ouo + (1 - O)u 
belongs to S(x) when{} E]O, 1[, because T(x) is convex and f(x, uo) belongs 
to the interior of T(x), so that for every{} E]O, 1[, 

f(x, u) + O(f(x, uo)- f(x, u)) = f(x, u + Ouo- Ou) = f(x, v9) 

belongs to the interior of T(x). Then u is the limit of V9 when {} > 0 
converges to 0. 

3. The theorem ensues because the closure of any lower semi-
continuous set-valued map is still lower semicontinuous. D 

We now extend the lower semicontinuity criterion above to infi
nite intersection of set-valued maps. 

Theorem 6.3.3 Let us consider a metric space X, normed vector
spaces Y and Z and set-valued maps F : X x Y ~ Z and H : X ~ Y. 
We assume that 

{ i) F is lower semicontinuous with convex values 
ii) H is upper semicontinuous with compact values 
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and that there exist positive constants 'Y, 8, c such that for every 
single-valued map e : Y f---+ 'Y B we have 

V x' E B(x,8), cB n n (F(x',y)- e(y)) # 0 
yEH(x') 

Then the set-valued map G : X "--+ Z defined by 

V x EX, G(x) := n F(x,y) 
yEH(x) 

is lower semicontinuous (with nonempty convex images). 

(6.11) 

Remark- When the set-valued map F is locally bounded (in 
the sense that it maps some neighborhood of each point to a bounded 
subset), we do not need the constant c and we can replace (6.11) by 

V x' E B(x, 8), n (F(x',y)- e(y)) =fc 0 D 

yEH(x') 

Proof- Let us choose any sequence of elements Xn E Dom( G) converg
ing to x and z E G(x). We have to approximate z by elements Zn E G(xn)· 

We introduce the following numbers: 

en := sup d(z, F(xn, y))/2 
yEH(xn) 

(6.12) 

Now, let us choose for each y E H(xn) an element un(Y) E F(xn, y) 
satisfying 

liz- Un(Y)II :::; 2d(z, F(xn, y)) :::; en 

and set On .- 1/(! +en)· Consequently, 

so that there exists an(Y) E 1B such that 

Therefore, assumption (6.11) implies the existence for all n large enough 
of elements Wn E cB and elements vn(Y) E F(xn, y) such that an(Y) = 

Vn(Y)- Wn for ally E H(xn)· 
Hence we can write 
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So that the common value: 

does not depend on y, belongs to all F(xn, y) (by convexity) and converges 
to z because 

liz- Znll = (1- On) liz- Wnll ~ (1- On)(llzll +c) 

and because 1- en= en/h +en) converges to 0 because en converges to 0 
thanks to the following lemma. D 

Lemma 6.3.4 Let us assume that F is lower semicontinuous and that H 
is upper semicontinuous with compact images. Then the numbers en defined 
by (6.12) converge to 0. 

Proof - Since F is lower semi continuous, Corollary 2.1. 7 to the 
Maximum Theorem implies that the function 

(x, y, z) f---> d(z, F(x, y)) 

is upper semicontinuous. Therefore, for any c: > 0 and any y E H(x), there 
exist an integer Ny and a neighborhood Vy of y such that 

(6.13) 

because d(z,F(x,y)) = 0. Hence the compact set H(x) can be covered by 
p neighborhoods Vy,. Furthermore, H being upper semicontinuous, there 
exists an integer N0 such that, 

\;;/ n 2': No, H(xn) C U Vy, 
i=l, ... ,p 

Set N := maxi=O, ... ,p Ny,. Then, for all n 2': N andy E H(xn), y belongs 
to some Vy,, so that, by (6.13), d(z,F(xn,y)) ~ c:. Thus, 

\;;/ n 2': N, En .- sup d(z, F(xn, y))/2 < t:/2 
yEH(xn) 

i.e., our lemma is proved. D 

Remark- Theorem 6.3.1 can be extended to set-valued maps with 
nonconvex images: we state the following proved in Theorem 1.5.5 of SET
VALUED ANALYSIS: 
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Theorem 6.3.5 Let G : X ~ Z be a closed lower semicontinuous set
valued map from a metric space X to a Banach space Z and f : X x Y ~---+ Z 
a continuous {single-valued) map, where Y is another Banach space. Let 
us assume that f is differentiable with respect to y and that there exist 
constants c > 0 and 'TJ > 0 such that 

{ V x E B(xo, TJ), y E B(yo, TJ) and z E B{f(xo, Yo), TJ) n G{x) (6.14) 
Bz C cf~(x,y)(By) -Ta(x)(z) 

Then the set-valued map R defined by 

R(x) := {y E Y I f(x,y) E G(x)} 

is lower semicontinuous at x0 • 

6.4 Lower Semicontinuity of the Regulation 
Map 

6.4.1 General State Constraints 

From now on, we shall assume that the viability domain K is sleek, 
i.e., that 

the set-valued map x ~ TK(x) is lower semicontinuous 

We recall that convex and smooth manifolds are sleek and that in 
this case the contingent cones are convex. 

We shall derive from these properties that under adequate con
ditions, the regulation map has convex images and is lower semicon
tinuous. These further properties of the regulation map will allow 
us to provide sufficient conditions for checking that a closed subset 
K is a viability domain and to devise selection procedures of slow 
solutions as well as other kinds of selection procedures. 

Theorem 6.4.1 Assume that the control system is affine and that 
K is a closed sleek viability domain. Then the regulation map RK 
has compact convex values. 

Let us assume furthermore that the set-valued map U is lower 
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semicontinuous and that!' 

{ 
\:lx E K, :lr > 0, 8 > 0 such that \:lx' E BK(x, 8), 
rB c c(x') + g(x')(U(x') n cKB)- TK(x') 
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Then the regulation map is lower semicontinuous. In this case, the 
support function of the regulation map is equal to: 

(T(RK(x),p) = inf ((T(U(x),p- g(x)*q)- < q, c(x) >) 
qEN~(x) 

6.4.2 Output Dependent Constraints 

We consider the case when the viability domain K := h-1(M) is 
defined by more explicit constraints through a map h from X to 
an output space or observation space Y: we introduce three finite 
dimensional vector spaces: 

1. the state space X 
2. the output or observation spaceY 
3. the control space Z 
and we define the viability subset by the constraints 

where we assume that the observation map h satisfies 

h is a C1-map from X to Y 

\:lx E K, Y = lm(h'(x))- TM(h(x)) 

Let us recall that in this case9: 

8or that the interior of the contingent cones are not empty and 

Vx E K, 3u E U(x} n CKB I c{x) + g(x)u E IntTK(x) 

9If we assume furthermore that there exists a positive constant c such that 

V x E h- 1 (M}, By C h'(x)(cBx)- TM(h(x)) 

then h -l ( M) is also sleek. 
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The regulation map RK can be written: 

RK(x) := {u E U(x) I h'(x)g(x)u E TM(h(x))- h'(x)c(x)} 

By replacing K by M, g(x) by B(x) := h'(x)g(x) and c(x) by b(x) := 

h'(x)c(x), we obtain the following corollary: 

Corollary 6.4.2 Assume that the control system is affine and that 
the constraints satisfy 

i) M is .a closed sleek subset of Y 
ii) h is a C1-map from X to Y 
iii) \fx E K, Y = Im(h'(x))- TM(h(x)) 
iv) \fx E h-1(M), 3u E U(x) such that 

h'(x)g(x)u E TM(h(x))- h'(x)c(x) 

Then the regulation map RK has compact nonempty convex values. 
Let us assume furthermore that the set-valued map U is lower semi
continuous and that10 

{ 
\fx E K, :31 > 0, 8 > 0 such that Vx' E BK(x, 8), 
,B c h'(x')c(x') + h'(x')g(x')(U(x') n CKB)- TM(h(x')) 

Then the regulation map is lower semicontinuous and its support 
function is equal to: 

u(RK(x),p) = inf (u(U(x),p- g(x)*h'(x)*q)- < q, h'(x)c(x) >) 
qENJ.t(h(x)) 

We also remark that checking whether h-1 (M) is a viability do
main amounts to solving for all x E K the inclusions 

find u E U(x) satisfying 0 E h'(x)c(x) + h'(x)g(x)u- TM(h(x)) 

Hence we can use Theorem 3. 7.6 to derive sufficient conditions for 
h-1(M) to be a viability domain. 

10or that the interior of the contingent cones are not empty and 

'ix E K, 3u E U(x) n CKB such that h'(x)(c(x) + g(x)u) E IntTM(h(x)). 
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Proposition 6.4.3 Let us assume that the control system is affine, 
that the values of the feedback map U are compact and that 

{ 

i) M is a closed sleek subset of Y 
ii) h is a C1 -map from X to Y 
iii) Vx E K, Y = lm(h'(x))- TM(h(x)) 
iv) h-1(M) C Dom(U) 

Assume furthermore that 

{ 
there exists a continuous map B : Graph(U) t---t £(Z, Y) 
such that Vx E K, VuE U(x), 
h'(x)(c(x) + g(x)u) E TM(h(x)) + B(x, u)Tu(x)(u) 

Then K := h-1(M) is a viability domain. 

Let us emphasize the fact that in this statement, the map B : 
Graph(U) ----t £(Z, Y) is a parameter. It thus provides many possi
bilities for checking whether a given subset is a viability domain. 

6.4.3 Output Regulation Map 

Definition 6.4.4 We shall say that the set-valued map Q M : Y ~ Z 
defined by 

V y EM, QM(Y) := n RK(x) 
xEh- 1 (y) 

is the output regulation map of the controlled system. 

We observe that 

V X E K, QM(h(x)) C RK(x) 

Therefore, if the output regulation map is strict (i.e., has nonempty 
images), the evolution of solutions viable in h-1 (M), i.e., solutions 
satisfying 

V t ~ 0, y(t) := h(x(t)) E M 

can be regulated by output-dependent controls 

for almost all t ~ 0, u(t) E QM(h(x(t))) 
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and not only by merely state-dependent controls. 
Observe that Theorem 6.3.3 provides sufficient conditions for the 

output regulation map Q M to be lower semicontinuous. 
Observe also that the state regulation map RK can be regarded 

as an output regulation map in the sense that 

\:f x E K, RK(x) := QM(h(x)) 

whenever the following commutativity conditions hold true: 

{ 
i) 
") 
~~i) 

In this case 

U(x) := V(h(x)) where V: Y "-"' Z 
h'(x)g(x) := e(h(x)) where e: Y f-+ .C(Z, X) 
h'(x)c(x) := d(h(x)) d: Y f-+ X 

V y EM, QM(Y) := { u E V(y) I e(y)u E TM(Y)- d(y)} 

6.4.4 Duality Criterion 

We shall now characterize viability domains through a dual formula
tion. For that purpose, we associate with any subset K c Dom(U) 
the subnormal cone11 N'k(x) and the function f3K defined by: 

V (x,p) E Graph(N'k), f3K(x,p) := inf < p, g(x)u + c(x) > 
uEU(x) 

We deduce from Theorem 3.2.4 the following: 

Proposition 6.4.5 Let us assume that the control system is affine 
and that the values of the feedback map U are compact. Then a closed 
subset K is a viability domain if and only if 

\:f(x,p) E Graph(Nf( ), f3K(x,p) :S 0 

If we assume in particular that 

{ 
i) 
") 
~~') zzz 

M is a closed subset of Y 
h is a C1-map from X to Y 
\:fx E K, Y = Im(h'(x))- TM(h(x)) 

11The subnormal cone N'k(x) to a subset K at a point x E K is the negative 
polar cone to the contingent cone TK(x). 
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then K := h-1(M) is a viability domain if and only if 

{ \:f x E K, \:f q E N'M(h(x)), 
dM(x, q) := infuEU(x) < q, h'(x)g(x)u + h'(x)c(x) > :::; 0 

For instance, this condition holds true when the following abstract 
Walras law holds true: 

{ i) Z = Y, U(x) c N'M(h(x)) 
ii) \:fq E N'M(h(x)), < q, h'(x)c(x) + h'(x)g(x)q >:::; 0 

6.4.5 Decoupling the Regulation Map 

Finally, let us mention that the calculus of the contingent cones can be 
transferred to a calculus of regulation maps. For instance, a quite common 
type of viability constraints are of the form K := L n h-1 (M) where we 
assume that 

{ 
i) L C X and M C Y are sleek 
ii) h is a C1-map from X to Y 
iii) 1::/x E K := L n h-1 (M), Y = h'(x)TL(x)- TM(h(x)) 

Indeed, K is the inverse image of the product L x M by the map 1 x h 
from X to X x Y. 

This a particular case of a more general situation when both X, Y and 
Z are product spaces. It may then be convenient to provide once and for 
all the explicit formulas of the regulation map when this is the case. Let 
us assume namely that 

{ i) X TI~=l xi 
ii) y ·- Tit=l Yj, M .- TI{=l Mj 
iii) z Ilk=l zk, U(x) .- Tik=l Uk(x) 

(6.15) 

and that 

.. ) { 
i) 

~~i) 
1::/x EX, g(x)u := (g1(x)u, ... ,gm(x)u) & 9i(x)u := I:i=l gf(x)uk 
c(x) := (c1(x), ... ,c,.(x)) 
1::/x EX, h(x) := (h1(x), ... , hm(x)) where 
hj(x) := I:~=l h;(xi) 

(6.16) 
Therefore, K is the intersection of the subsets Kj defined by: 

n 

Kj := {x EX I I>;(xi) E Mj} (6.17) 
i=l 
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Let us introduce the matrix B(x) := h'(x)g(x) of operators 

n 

Bj(x) = Lh;' (x)gf(x) E £(Uk, lj) 
i=l 

and the vector b(x) := h'(x)c(x) of components 

n 

bj(x) = L h;' (x)Ci(x) 
i=l 

Corollary 6.4.6 We posit the assumptions (6.15), (6.16) and (6.17). We 
assume also that 

and that 

i) '1:/k, Graph(Uk) is closed and the images of Uk 
are convex 

ii) Vi, Ci : Dom(U) f-t xi is continuous 
iii) '1:/k, i, 9k : Dom(U) f-t £(Zk, Xi) is continuous 
iv) '1:/k, i, ci and 9k are bounded and Uk 

have linear growth 

ii) 
iii) 

{ 

i) the subsets Mj are closed and sleek 
the maps h} are C1 

'l:lvj E lj (j = 1, ... , n), :lui E Xi such that 
n i 1 ( n i ) Vj E Ei=l hj (xi)uj + TM Ei=l hj(xi) 

(6.18) 

(6.19) 

and has compact values. If it is strict, then K is a viability domain of the 
system, and thus, for any initial state xo E K, there exist viable solutions 
xi(·) on [0, oo[ starting at x0 to the system of differential equations 

l 

Vi=1, ... ,m, x~(t) = ci(x(t))+Lgf(x(t))uk(t) 
k=l 

and open loop controls regulating this viable solution x( ·) in the sense that 
the regulation laws 

'1:/j = 1, ... , m, for almost all t, u(t) E RKi (x(t)) 

are satisfied. 
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Proof- Assumptions (6.18) imply that the subsets 

and that 

m 

K 3 and K := n K 3 are sleek 
j=l 

This implies obviously formulas (6.19). D 
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Definition 6.4. 7 (Decou pled Regulation Map) We posit the assump
tions {6.15}, {6.16} and {6.17}. We shall say that the regulation map is 
decoupled if 

Z = Y and Vj =/: k, Bj(x) = 0 

Corollary 6.4.8 We posit the assumptions of Corollary 6.4.6. If the regu
lation map is decoupled, then each ''partial" viability domain K3 is regulated 
by the ith component of the control in the sense that 

n 

RKi(x) = {uj E U3(x) I Bj(x)uj E TM/L:h;(xi)- b3(x)} 
i=l 

6.5 Selection Theorems 

6.5.1 Minimal Selection 

A quite natural question arises: if a set-valued map F : X ~ Y is, 
say, upper semicontinuous, does there exist what is called a continu
ous selection f ofF, i.e., a continuous single-valued map satisfying 

Vx EX, f(x) E F(x) (6.20) 

Furthermore, we need more than a mere existence theorem: we would 
like to explicitly construct such selections. If the values of a set
valued map F are closed and convex and if Y is a Hilbert space, we 
can take, for instance, the minimal selection defined by 

F 0 (x) := m(F(x)) 
:= {u E F(x) lllull = minyEF(x) IIYII} (6.21) 
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The upper semicontinuity of F, even when it is closed convex 
valued, is not strong enough to imply the continuity of the minimal 
selection12• 

However, we can still prove the following 

Proposition 6.5.1 Let us assume that F : X ~ Y is closed and 
lower semicontinuous with convex values. Then the graph of the min
imal selection is closed13 . 

Proof - The projection of 0 onto the closed convex set F(x) 
is the element u := m(F(x)) E F(x) such that 

llull 2 + u( -F(x), u) = sup < u- 0, u- y >:::; 0 {6.22) 
yEF(x) 

{It is actually equal to 0). Let us introduce the set-valued map 
Sp: X~ Y defined by 

u E Sp(x) if and only if llull 2 + u( -F(x), u) :::; 0 {6.23) 

Therefore, the graph of the minimal selection is equal to: 

Graph{m{F)) = Graph{F) n Graph{SF) 

Since F is lower semicontinuous, the function (x, u) ~ u( -F(x), u) 
is lower semicontinuous, so that the graph of Sp, and thus, ofm(F(·)), 
is closed. D 

6.5.2 Selection Procedures 

This simple property of the minimal selection can be naturally ex
tended to different selection procedures of elements of F(x), by means 
of other minimization problems than the one of minimizing the norm 
or by problems such as game theoretical models. It may be useful to 
introduce the following definition: 

12Consider the set-valued map F : R""" R defined by 

·- { {2} if 
F(x) .- (1, 2] if 

x#O 
x=O 

It is upper semicontinuous with compact convex values and its minimal selection 
is obviously not continuous. 

131£ moreover F is upper hemicontinuous, then the minimal selection is contin
uous. See Theorem 9.3.4 of SET-VALUED ANALYSIS. 
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Definition 6.5.2 (Selection Procedure) Let Y be a normed space. 
A selection procedure of a set-valued map F: X~ Y is a set-valued 
map SF : X ~ Y satisfying 

{ i) Vx E Dom(F), S(F(x)) := Sp(x) n F(x) =/= 0 
ii) the graph of Sp is closed 

The set-valued map S(F): x ~ S(F(x)) is called the selection of F. 

Then, obviously, 

{ if the graph of F is closed, so is the graph of the selection 
x ~ S(F(x)) 

and the selection is a single-valued map denoted s(F(·)) whenever 

Vx E Dom(F), s(F(x)) := Sp(x) n F(x) is a singleton 

The set-valued map defined by (6.22) is naturally a selection proce
dure of a set-valued map with closed convex values which provides 
the minimal selection. In the case of finite dimensional vector-spaces, 
we could also have used the selection procedure SP, defined by 

SF(x) := {y E Y IIIYII ::; d(O, F(x))} 

We can easily provide other examples of selection procedures 
through optimization thanks to the Maximum Theorem. 

Proposition 6.5.3 Let us assume that a set-valued map F: X~ Y 
is lower semicontinuous with compact values. Let V: Graph( F) 1---t R 
be continuous. Then the set-valued map Sp defined by: 

Sp(x) := {y E Y I V(x,y)::; inf V(x,z)} 
zEF(x) 

is a selection procedure ofF which yields the selection S(F) equal 
to: 

S(F(x)) = {y E F(x) I V(x, y) ::; inf V(x, z))} 
zEF(x) 
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Proof - Since F is lower semicontinuous, the function 

(x,y) f--+ V(x,y) + sup (-V(x,z)) 
zEF(x) 

is lower semicontinuous thanks to the Maximum Theorem. Our 
proposition follows from : 

Graph(SF) = 
{(x,y) I V(x,y) +supzEF(x)(-V(x,z))::; o} D 

Most selection procedures through game theoretical models or 
equilibria are instances of this general selection procedure based on 
Ky Fan's Inequality (Theorem 3.7.8). 

Proposition 6.5.4 Let us assume that a set-valued map F : X --vt Y 
is lower semicontinuous with convex compact values. Let <p : X x Y x 
Y f--+ R satisfy 

{ 
i) 
. ") 
~~.) uz 

rp(x, y, z) is lower semicontinuous 
\f(x, y) EX x Y, z f--+ rp(x, y, z) is concave 
\f(x, y) EX x Y, rp(x, y, y) ::; 0 

Then the map SF associated with <p by the relation 

Sp(x) := {y E y I sup rp(x, y, z) ::; o} 
zEF(x) 

is a selection procedure ofF yielding the selection map x f--+ S(F(x)) 
defined by 

Sp(x) := {y E F(x) I sup rp(x, y, z) ::; o} 
zEF(x) 

Proof- Ky Fan's inequality states that the subsets Sp(x) are 
not empty since the subsets F(x) are convex and compact. The graph 
of Sp is closed thanks to the assumptions and the Maximum Theorem 
because it is equal to the lower section of a lower semicontinuous 
function: 

Graph(Sp) = {(x,y) I sup rp(x,y,z)::; o} D 
zEF(x) 
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Proposition 6.5.5 Assume that Y = Y1 x }'2, that a set-valued map 
F : X ~ Y is lower semicontinuous with convex compact values and 
that a : X x Y1 x Y2 ---t R satisfies 

{ 
i) 
.. ) 
~~i) 

a is continuous 
\;/ (x,y2) EX x Y2, Ylt---t a(x,yl,Y2) is convex 
\;/ (x, Yl) EX x Y1, Y2 t---t a(x, Yl, Y2) is concave 

Then the set-valued map Sp associating to any x EX the subset 

Sp(x) := {(y1, Y2) E Y1 x Y2 such that 
\f(z1,z2) E F(x), a(x,yt,z2):::; a(x,z1,y2)} 

is a selection procedure ofF (with convex values). The selection map 
S(F(·)) associates with any x EX the subset 

S(F)(x) := {(y1, Y2) E F(x) such that 
\f(z1,z2) E F(x), a(x,y1,z2):::; a(x,y1,y2):::; a(x,zt,y2)} 

of saddle-points of a(x, ·, ·) in F(x). 

Proof- We take 

cp(x, (y1, Y2), (y~, y~)) := a(x, Yl, y~) - a(x, y~, Y2) 

and we apply the above theorem. D 

We derive from the Equilibrium Theorem 3. 7.6 selection proce
dures yielding equilibria in F(x). 

Proposition 6.5.6 Let us assume that a set-valued map F: X~ Y 
has nonempty compact convex values. Let us consider an upper semi
continuous set-valued map E with nonempty compact convex values 
from Graph(F) toY satisfying: 

\f(x, y) E Graph(F), E(x, y) n TF(x)(Y) =/= 0 

Then the set-valued map SF defined by 

Sp(x) := {y E Y I 0 E E(x, y)} 

is selection procedure of F. The selection map S(F) associates with 
any x E Dom( F) the set 

S(F)(x) := {y E F(x) I 0 E E(x, y)} 

of equilibria of E(x, ·) in F(x). 
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6.5.3 Michael's Selection Theorem 

We shall now state the celebrated Michael's theorem stating that 
lower semicontinuous convex-valued maps do have continuous selec
tions. 

Theorem 6.5. 7 (Michael's Theorem) Let F be a lower semicon
tinuous set-valued map with closed convex values from a compact 
metric space X to a Banach space Y. It does have a continuous 
selection. 

In particular, for every y E F(x) there exists a continuous selec
tion f ofF such that f(x) = y. 

We refer to Section 9.1 of SET-VALUED ANALYSIS for the proof 
of this Theorem. D 

6.6 Closed-Loop Controls and Slow Solutions 

6.6.1 Continuous Closed Loop Controls 

Viable solutions to the control system (6.1) are regulated by the 
controls whose evolution is governed by the regulation law (6.1.4). 
Continuous single-valued selections rK of the regulation map RK are 
viable closed loop controls, since the Nagumo Theorem states that 
the differential equation 

x' (t) f(x(t), rK(x(t))) 

enjoys the viability property. 
Indeed, by construction, K is a viability domain of the single

valued map x E K 1--4 f(x, rK(x)). Hence, when the regulation map 
is lower semicontinuous with convex values, we deduce from Michael's 
Theorem 6.5. 7 the existence of viable continuous closed loop controls. 

Proposition 6.6.1 Consider a Marchaud control system (U, !). If 
its regulation map is lower semicontinuous with nonempty convex 
values, then the control system can regulate viable solutions in K by 
continuous closed loop controls. 
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Remark- If r is a closed-loop control, it is obvious that the 
viability kernel of K for f ( ·, r( ·)) is contained in the viability kernel 
Viab(K) for the set-valued map F. 

On the other hand, if r is a closed-loop control regulating a via
bility domain K ofF, i.e., if r(x) E RK(x) for all x E K, K is equal 
to its viability kernel for f(·,r(·)). D 

6.6.2 Slow Viable Solutions 

This result is not useful in practice, since Michael's Selection The
orem does not provide constructive ways to find those continuous 
closed loop controls. 

Therefore, we are tempted to use explicit selections of the regu
lation map RK, such as the minimal selection rk (see (6.21)). Un
fortunately, since there is no hope of having continuous regulation 
maps RK in general (as soon as we have inequalities constraints), 
this minimal selection is not continuous. But we can still prove that 
by taking the minimal selection rk, the differential equation 

x'(t) = f(x(t), rk(x(t))) (6.24) 

does enjoy the viability property. 

Definition 6.6.2 The solutions to differential equation (6.24) are 
called slow viable solutions to control system (6.1). 

We shall derive from Theorem 6.6.5 below the existence of slow 
viable solutions: 

Theorem 6.6.3 Consider a Marchaud control system (U, f). If the 
regulation map is lower semicontinuous with nonempty convex values, 
then the control system (6.1) has slow viable solutions. 

Furthermore, the solution map associating with any xo E K the 
set of slow viable solutions starting at xo is upper semicontinuous 
from K to C(O,oo;X). 

Example: Slow viable solutions on smooth subsets. 
When K := h-1(0) is smooth, one can obtain explicit differential equa

tions yielding slow viable solutions. 
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Corollary 6.6.4 Let us assume that h : X ~----+ Y is a continuously differ
entiable map and that the viability subset is K := h-1 (0), that U(x) = Z is 
constant, and that the system is affine, so that 

'V x E K, R(x) := {u E Z I h'(x)f(x,u) = h'(x)(c(x)) + h'(x)g(x)u = 0} 

Then there exist slow solutions viable in K, which are the solutions to the 
system 

{ x'(t) = -g(x(t))*h'(x(t))* 
( h' (x( t) )g(x( t) )g( x( t) )* h' (x( t) )*) - 1 h' ( x( t) )c( x( t)) 

Proof- The element u0 E R(x) of minimal norm is the solution of 
the quadratic minimization problem under equality constraints 

h'(x)g(x)u = -h'(x)c(x) 

and is given explicitly by the formula14 

uo = -g(x)*h'(x)*(h'(x)g(x)g(x)*h'(x)*)- 1h'(x)c(x) D 

Slow viable solutions in affine spaces. Consider the case when 
K := {x E X I Lx = y} where L E C(X, Y) is surjective. Then the 
differential equation yielding slow viable solutions is given by 

x'(t) = -g(x(t))* L*(Lg(x(t))g(x(t))* L*)- 1 Lc(x(t)) 

When Y := Rand K := { x E X I < p, x >= y} is a hyperplane, the above 
equation becomes 

'() < p,c(x(t)) > ( ( ))* 
X t =- ))g(x(t))*p)) 2 g X t p 

Slow viable solutions in the sphere. Let L E C(X, X) be a 
symmetric positive-definite linear operator, with which we associate the 
viability subset 

K := { x E X I < Lx, x >= 1} 

Then slow viable solutions are given by the differential equation 

1 < Lx(t), c(x(t)) > * 
x (t) = -llg(x(t))* L(x(t))112g(x(t)) Lx(t) 

14Recall that the unique element which minimizes x f--+ llxll under the con
straint Bx = y, where B E .C(X, Y) is surjective, is equal to B+y, where 
B+ = B*(BB*)- 1 denotes the orthogonal right-inverse of B. 



6.6. Closed-Loop Controls 231 

6.6.3 Other Selections of Viable Solutions 

The reason why Theorem 6.6.3 on the existence of slow viable solu
tions holds true is that the minimal selection is obtained through the 
selection procedure defined in (6.22). It is this fact which matters. 
So, Theorem 6.6.3 can be extended to any selection procedure of the 
regulation map RK yielding single-valued selections. 

Theorem 6.6.5 Consider a Marchaud control system (U, f) and 
suppose that K is a viability domain. Let SRK be a selection pro
cedure of the regulation map RK. Suppose that the values of S RK are 
convex and that the selection map 

Then the selection s( RK) ( ·) is a closed loop control regulating viable 
solutions of the control system (6.1}. 

Furthermore, the solution map associating with any xo E K the 
set of viable solutions to the differential equation 

x'(t) = f(x(t), s(RK )(x(t))) 

starting at xo is upper semicontinuous from K to C(O, oo; X). 

Even if the selection is not single-valued, we may be still inter
ested in regulating viable solutions by controls ranging over a set
valued selection S(RK) of the regulation map. In any case, Theo
rem 6.6.5 is a consequence of 

Theorem 6.6.6 Consider a Marchaud control system (U, f) and 
suppose that K is a viability domain. Let S RK be a selection of 
the regulation map RK. Suppose that the values of SRK are con
vex. Then, for any initial state xo E K, there exist a viable solution 
starting at xo and a viable control to control system ( 6.1) which are 
regulated by the selection S(RK) of the regulation map RK, in the 
sense that 

{ 
for almost all t > 0, 
u(t) E S(RK)(x(t)) := RK(x(t)) n SRK(x(t)) 
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Furthermore, the solution map associating with any xo E K the 
set of solutions to control system ( 6.1) starting at xo which are reg
ulated by the selection S(RK) is upper semicontinuous from K to 
C(O, oo; X). 

Proof- Since the convex selection procedure S RK has a closed 
graph and convex values, we can replace the affine control system 

(6.1) by the control system 

{ i) x'(t) = f(x(t), u(t)) 
ii) for almost all t, u(t) E U(x(t)) n SnK(x(t)) 

(6.25) 

which satisfies the assumptions of the Viability Theorem 6.1.4. It 
remains to check that K is still a viability domain for this smaller 
system. But by construction, we know that for all x E K, there exists 

u E S(RK )(x), which belongs to the intersection U(x) n SnK (x) and 
which is such that f(x, u) belongs to TK(x). 

Hence the new control system (6.25) enjoys the viability property, 
so that, for all initial states x0 E K, there exist a viable solution and 

a viable control to the control system (6.25) which, for almost all 
t 2: 0, are related by 

{ 
i) u(t) E U(x(t)) n SnK (x(t)) 
ii) f(x(t), u(t)) E TK(x(t)) 

Therefore, for almost all t 2: 0, u(t) belongs to the intersection of 

RK(x(t)) and SnK(x(t)), i.e., to the selection S(RK)(x(t)) of the 
regulation map RK. 

Since the solution map T of the system (6.25) is upper semicon
tinuous by Theorem 3.5.2 and since the set 

K := {x(·) E C(O, oo; X) IV t 2: 0, x(t) E K} 

is closed, the set-valued map x -vt T(x) n K is also upper semicon
tinuous. It associates with any x E K the set of solutions to con
trol system ( 6.1) starting at xo which are regulated by the selection 

S(RK). D 

We can now multiply the possible corollaries, since we have given 

several instances of selection procedures of set-valued maps. 
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6.6.4 Examples of Selection of Viable Solutions 

We shall just mention some of the examples. We begin by selecting 
viable solutions through minimization procedures: 

Proposition 6.6. 7 Consider a Marchaud control system (U, f) and 
suppose that the regulation map is lower semicontinuous with nonempty 
convex images. Let 

V: (x, u) E Graph(U) r-+ V(x, u) E R 

be continuous and convex with respect to u. Then, for any initial 
state xo E K, there exists a viable solution x( ·) to the control system 
{6.1} regulated by an open loop control u(·) satisfying for almost all 
t 2:: 0, 

u(t) E RK(x(t)) & V(x(t), u(t)) = inf V(x(t), v) 
vERK(t) 

Proof- This is a consequence of Theorem 6.6.6 and Proposi
tion 6.5.3. D 

When the control space z := zl X z2 is the product of two 
control spaces, viable controls can be required to be saddle-points of 
two-person games: 

Proposition 6.6.8 Consider a Marchaud control system (U, f), whe
re U(x) = U1(x) x U2(x) is the product of two control sets and 
f(x, u) := c(x) + 91(x)u1 + g2(x)u2. Assume that the regulation map 

RK(x) := {(u1,u2) E U1(x)xU2(x) I g1(x)u1+g2(x)u2 E TK(x)-c(x)} 

is lower semicontinuous with nonempty convex values. Let a : X x 
zl X z2 --t R satisfy 

{ 
i) 
. ') 
~~-) 
Wt 

a is continuous 
V(x, u2) EX x Y2, u1 r-+ a(x, u1, u2) is convex 
V(x, ui) EX x Y1, u2 r-+ a(x, u1, u2) is concave 

Then, for any initial state xo E K, there exist a viable solution x(·) 
and open loop controls u1(·) & u2(·) satisfying for almost all t 2:: 0, 

. ') { 
i) 

~~i) 
x'(t) = c(x(t)) + 91(x(t))u1(t) + g2(x(t))u2(t) 
u1(t) E U1(x(t)) & u2(t) E U2(x(t)) 
V(v1,v2) E RK(x), 
a(x(t), u1(t), v2) S a(x(t), u1(t), u2(t)) S a(x(t), v1, u2(t))} 
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Proof
tion 6.5.7. 

6- Control Systems 

The proof follows from Theorem 6.6.6 and Proposi
D 

We finally state a selection method of viable solutions regulated 
by viable controls satisfying a nonlinear equation. 

Proposition 6.6.9 Consider a Marchaud control system (U, f) and 
suppose that the regulation map is lower semicontinuous with nonempty 
convex images. Let us consider an upper semicontinuous set-valued 
map E with nonempty closed convex values from Graph(U) to Z 
satisfying: 

\i(x,u) E Graph(RK), E(x,u) nTRK(x)(u) i- 0 

Then, for any initial state xo E K, there exists a viable solution 
x(·) to the control system {6.1) regulated by an open loop control u(·) 
satisfying for almost all t 2: 0, 

u(t) E RK(x(t)) & 0 E E(x(t), u(t)) 

Proof- We apply Theorem 6.6.6 and Proposition 6.5.6. D 



Chapter 7 

Smooth and Heavy 
Viable Solutions 

Introduction 

Let us still consider the problem of regulating a control system 

(i) for almost all t;:::: 0, x'(t) = f(x(t), u(t)) where u(t) E U(x(t)) 

where U : K --v+ Z associates with each state x the set U(x) of 
feasible controls (in general state-dependent) and f: Graph(U) f---> X 
describes the dynamics of the system. 

For simplicity, we take for viability subset the domain K := 

Dom(U) of U1. We have seen in the preceding chapter that viable 
controls (which provide viable solutions x(t) E K := Dom(U)) are 
the ones obeying the regulation law 

V t 2': 0, u(t) E RK(t) (or (x(t), u(t)) E Graph(RK )) 

where 

V x E K, RK(x) = { u E U(x) I f(x,u) E TK(x)} 

In this chapter, we are looking for a system of differential equa
tions or of differential inclusions governing the evolution of both viable 
states and controls, so that we can look for 

1or we replace U by its restriction to K. It is closed whenever U : X"'-+ Z is 
upper semicontinuous. 
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heavy solutions, which are evolutions where the controls 
evolve with minimal velocity 

punctuated equilibria, i.e., evolutions in which the control 
u remains constant whereas the state may evolve in the associated 
viability cell, which is the viability domain of x 1-t f(x, u), 

regulation by ramp controls, i.e., evolutions in which the 
open-control is linear, and more generally, polynomial open-loop con
trols 

and other related ideas. 
The idea which allows us to achieve these aims is quite simple: 

we differentiate the regulation law. 
This is possible whenever we know how to differentiate set-valued 

maps. Hence the first section is devoted to the definition and the 
elementary properties of the contingent derivative2 D F ( x, y) of a set
valued map F: X~ Y at a point (x, y) of its graph: By definition, 
its graph is the contingent cone to the graph ofF at (x, y). We refer 
to Chapter 5 of SET-VALUED ANALYSIS for further information on 
the differential calculus of set-valued maps. 

In the second section, we differentiate the regulation law and 
deduce that 

(ii) for almost all t ~ 0, u'(t) E DRK(x(t), u(t))(f(x(t), u(t))) 

whenever the viable control u( ·) is absolutely continuous, 
This is the second half of the system of differential inclusions we 

are looking for. 
Observe that this new differential inclusion has a meaning when

ever the state-control pair (x(·), u(·)) remains viable in the graph of 
RK. 

Fortunately, by the very definition of the contingent derivative, 
the graph of RK is a viability domain of the new system (i), (ii). 

Unfortunately, as soon as viability constraints involve inequali
ties, there is no hope for the graph of the contingent cone, and thus, 
for the graph of the regulation map, to be closed, so that, the Via
bility Theorem cannot apply. 

2 We set D J(x) := D J(x, f(x)) whenever f is single-valued. When f is Frechet 
differentiable at x, then Df(x)(v) = J'(x)v is reduced to the usual directional 
derivative. 
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However, if the contingent derivative of U obeys a growth condi
tion: 

(Q) V (x, u) E Graph(U), inf llvll ~ c(llull + llxll + 1) 
vEDU(x,u)(f(x,u)) 

then there exists an absolutely continuous solution (x(·),u(·)) of (i) 
verifying 

(iii) for almost all t ~ 0, llu'(t)ll ~ c(llu(t)ll + llx(t)ll + 1) 

So, a strategy to overcome the above difficulty is to introduce3 the 
a priori growth condition {iii) and to look for graphs of closed set
valued maps R contained in Graph(U) which are viable under this 
system of differential inclusions. We already illustrated that in the 
simple economic example of Section 6.2. 

Such set-valued maps R are solutions to the partial differential 
inclusion 

V x E K, 0 E DR(x,u)(f(x,u))- c(llxll + llull + 1)B 

satisfying the constraint 

V (x, u) E Graph(R), R(x) C U(x) 

Since we shall show that such closed set-valued maps Rare all con
tained in the regulation map RK, we call them subregulation maps 
associated with the system i), iii). In particular, there exists a largest 
subregulation map denoted Rc. 

In particular, any single-valued r : K 1---t Z with closed graph 
which is a solution to the partial differential inclusion 

V x E K, 0 E Dr(x)(f(x, r(x)))- c(llxll + llr(x)ll + 1)B 

satisfying the constraint 

V x E K, r(x) E U(x) 

provides feedback controls regulating smooth solutions to the control 
system. 

3even if growth conditions on the contingent derivative of U are absent. 
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The set-valued and single-valued solutions to these partial differ
ential inclusions are studied in Section 6 of Chapter 8. 

Let us consider such a subregulation map R. Theorem 4.1.2 im
plies that whenever the initial state xo is chosen in Dom( R)) and 
the initial control uo in R( xo), there exists a solution to the system 

of differential inclusions i), iii) viable in Graph(R). The regulation 
law for the viable state-controls becomes 

(iv) u'(t) E DR(x(t), u(t))(J(x(t), u(t))) n c(llx(t)ll + llu(t)ll + l)B 

We call it the metaregulation law associated with the subregula
tion map R. 

This is how we can obtain smooth viable state-control solutions to 
our control problem by solving the system of differential inclusions 
i), v ). 

Actually, the graphs of all such regulation maps are contained in 
the viability kernel of Graph(U) for the system of differential inclu
sions i), iii). This viability kernel is then the graph of the largest 
subregulation map Rc cU. 

We shall construct explicitly in the third section such a regulation 
map in the case of the simplest economic model we can think of. 

To the extent where second order differential equations and in
clusions are first-order systems in disguise, we devote section 7.4 

to viability problems for second order differential inclusions. The 
situation is not as simple as in the first order case, because the 
viability constraint x(t) E K becomes x'(t) E TK(x(t)), or again, 
(x(t), x'(t)) E Graph(TK ). It no longer defines closed (or even, lo
cally compact) viability domains. So, here again, we shall overcome 
this type of difficulty by using the concept of viability kernel. 

We can naturally follow the same route to obtain smoother open
loop controls by setting bounds on the m-th derivatives: for almost 

all t ~ 0, 

(v) llu(m)(t)ll :S c(llu(m-l)(t)ll + · · · + llu(t)ll + llx(t)ll + 1) 

This is the topic of the fifth section. 
We devote the sixth section to the particular case when c = 0. 

We observe that equation (iii) then yields constant controls uo and 
thus solutions x(·) to the problem x'(t) = f(x(t), uo) which are viable 
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in the closed subset u-1(u0 ) (whenever this subset is not empty.) If 
this is the case, we shall say that uo is a punctuated equilibrium and 
that ( R 0 ) -l ( u0 ) is the associated viability cell, the closed subset of 
states regulated by the constant control uo. 

In the general case of smooth systems of order m, the 0-growth 
condition yields open-loop controls which are polynomial of degree m. 
In particular, form= 1, first-degree polynomials open-loop controls 
are known under the more descriptive label of ramp controls. 

The seventh section is devoted to selection procedures of dynam
ical closed loops, and, among them, of heavy viable solutions. 

Instead of looking for closed loop control selections of the regu
lation map RK as we did in Chapter 6, we now look for selections 
g(·, ·)of the metaregulation map 

(x, u) "-t DR(x, u)(f(x, u)) n c(llxll + llull + l)B 

called dynamical closed-loops. 
Naturally, under adequate assumptions, Michael's Theorem im

plies the existence of a continuous dynamical closed loop. But under 
the same assumptions, we can take as dynamical closed-loop the min
imal selection g0 (·, ·)defined by llg0 (X, u)ll = minvEDR(x,u)(f(x,u)) llvll, 
which, in general, is not continuous. 

However, we shall prove that this minimal dynamical feedback 
still yields smooth viable control-state solutions to the system of 
differential equations 

x'(t) = f(x(t), u(t)) & u'(t) = g0 (x(t), u(t)) 

called heavy viable solutions, (heavy in the sense of heavy trends.) 
They are the ones for which the control evolves with minimal veloc
ity. In the case of the usual differential inclusion x' E F(x), where 
the controls are the velocities, they are the solutions with minimal 
acceleration (or maximal inertia.) 

Heavy viable solutions obey the inertia principle: "keep the con
trols constant as long as they provide viable solutions". 

Indeed, if zero belongs to DR(x(t1), u(ti))(f(x(ti), u(t1))), then 
the control will remain equal to u(t1) as long as fort~ t1, a solution 
x(·) to the differential equation x'(t) = f(x(t), u(ti)) satisfies the 
condition 0 E DR(x(t1), u(ti))(f(x(ti), u(t1))). 
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If at some time t 1, u( t 1) is a punctuated equilibrium, then the 
solution enters the viability cell associated to this control and may 
remain in this viability cell forever4 and the control will remain equal 
to this punctuated equilibrium. 

The concept of a heavy viable solution will be extended to the m

th order, where we look for controls whose m-th derivative evolves as 
slowly as possible. They obey an m-th order inertia principle: keep 

an m-degree polynomial open-loop control as long as the solution it 

regulates is viable. 

7.1 Contingent Derivatives 

By coming back to the original point of view proposed by Fermat, 
we are able to geometrically define the derivatives of set-valued maps 
from the choice of tangent cones to the graphs, even though they yield 
very strange limits of differential quotients. 

Definition 7.1.1 Let F : X """' Y be a set-valued map from a 

normed space X to another normed spaceY andy E F(x). 

The contingent derivative DF(x, y) ofF at (x, y) E Graph( G) is 

the set-valued map from X to Y defined by 

Graph(DF(x,y)) := TGraph(F)(x,y) 

When F := f is single-valued, we set Df(x) := Df(x,J(x)) and 

Cf(x) := Cf(x,f(x)). 
We shall say that F is sleek at (x, y) E Graph( F) if and only if 

the map 
(x',y') E Graph(F)"""' Graph(DF(x',y')) 

is lower semicontinuous at (x, y) {i.e., if the graph ofF is sleek at 

(x, y).) The set-valued map F is sleek if it is sleek at every point of 

its graph. 

Naturally, when the map is sleek at (x, y), the contingent deriva
tive DF(x, y) is a closed convex process. 

4 as long as the viability domain does not change for external reasons which 
are not taken into account here. 
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We can easily compute the derivative of the inverse of a set-valued 
map F (or even of a noninjective single-valued map): The contingent 
derivative of the inverse of a set-valued map F is the inverse of the 
contingent derivative: 

D(F-1 )(y,x) = DF(x,y)-1 

If K is a subset of X and f is a single-valued map which is Frechet 
differentiable around a point x E K, then the contingent derivative 
of the restriction off to K is the restriction of the derivative to the 
contingent cone: 

D(JIK )(x) = D(JIK )(x, f(x)) = f'(x)lrK(x) 

These contingent derivatives can be characterized by adequate 
limits of differential quotients5 : 

Proposition 7.1.2 Let (x, y) E Graph( F) belong to the graph of a 
set-valued map F : X "'-" Y from a normed space X to a normed 
space Y. Then 

{ 
v E DF(x,y)(u) if and only if 
l. · f d ( F(x+hu')-y) O 1m1n h->O+,u'->u V, h = 

If x E Int(Dom(F)) and F is Lipschitz around x, then 

v E DF(x, y)(u) if and only if liminf d (v, F(x + ~u)- y) = 0 
h->0+ 

5 We can reformulate Proposition 7.1.2 by saying that the contingent derivative 
DF(x, y) is the graphical upper limit {See Definition 3.6.3} of the differential 
quotients 

u '"""' "\hF(x, y)(u) := F(x + hu)- y 
h 

Indeed, we know that the contingent cone 

. Graph( F)- (x, y) 
TGraph(F)(x,y) = Limsuph-o+ h 

is the upper limit of the differential quotients Graph<[)-(x,y) when h -> 0+. It 
is enough to observe that 

Graph(F)- (x,y) 
Graph(DF(x,y)) := TGraph(F)(x,y) & Graph(V'hF(x,y)) = h 

to conclude. 



242 7- Smooth and Heavy Viable Solutions 

If moreover the dimension of Y is finite, then 

Dom(DF(x, y)) = X and DF(x, y) is Lipschitz 

Proof- The first two statements being obvious, let us check 
the last one. Let u belong to X and l denote the Lipschitz constant 
ofF on a neighborhood of x. Then, for all h > 0 small enough and 
y E F(x), 

y E F(x) C F(x + hu) + lhlluiiB 
Hence there exists Yh E F(x+hu) such that vh := (Yh -y)jh belongs 
to llluiiB, which is compact. Therefore the sequence vh has a cluster 
point v, which belongs to DF(x, y)(u). D 

Remark - Lower Semicontinuously Differentiable Maps 
The lower semicontinuity of the set-valued map 

(x,y,u) E Graph(F) x X~ DF(x,y)(u) 

at some point (xo, yo, uo) is often needed. Observe that it implies 
that F is sleek at (xo, Yo). The converse needs further assumptions. 
We derive for instance from Theorem 2.5. 7 the following criterion: 

Proposition 7.1.3 Assume that X andY are Banach spaces and 

that F is sleek on some neighborhood U of (xo, Yo) E Graph( F). If 
the boundedness property 

\::1 u EX, sup inf llvll < +oo 
(x,y)EUnGraph(F) vEDF(x,y)(u) 

holds true, then the set-valued map 

(x,y,u) E Graph(F) x X~ DF(x,y)(u) 

is lower semicontinuous on (U n Graph( F)) x X 

7.2 Smooth Viable Solutions 

7.2.1 Regularity Theorem 

Let us consider a finite dimensional vector space Z and a control 
system (U, f) defined by a set-valued map U: X~ Z and a single
valued map f : Graph(U) f---t X, where X is regarded as the state 
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space, Z the control space, f as a description of the dynamics and 
U as the a priori feedback. The evolution of a state-control solution 
(x(·),u(·)) viable in Graph(U) is governed by 

x'(t) = f(x(t), u(t)), u(t) E U(x(t)) (7.1) 

We shall look for viable solutions inK:= Dom(U) which are smooth 
in the following sense: 

Definition 7.2.1 (Smooth State-Control) We say that the pair 
( x( ·), u( ·)) is smooth if both x( ·) and u( ·) are absolutely continuous 
and m-smooth if both x(·) and u<m-l)(·) are absolutely continuous. 

It is said to be cp-smooth (respectively r.p-smooth ofm-th order) if 
in addition for almost all t ~ 0, llu'(t)ll ~ r.p(x(t), u(t)) (respectively 
llu{m)(t)ll ~ r.p(x(t), u(t), u'(t), ... , u<m-l)(t))}, where <p : X X Z ~ 
R+ (respectively r.p : X x zm ~ R+ } is a given function. 

We obtain smooth viable solutions by setting a bound to the 
growth to the evolution of controls, as we did in the simple economic 
example of Section 6.2. 

For that purpose, we associate to this control system and to any 
nonnegative continuous function u ~ r.p(x, u) with linear growth6 the 
system of differential inclusions 

x'(t) = f(x(t), u(t)) 

u'(t) E r.p(x(t), u(t))B 
(7.2) 

Observe that any solution (x(·), u(·)) to (7.2) viable in Graph(U) 
is a r.p-smooth solution to the control system (7.1). 

We thus deduce from the Viability Theorem applied to the system 
(7.2) on the graph of U the following Regularity Theorem: 

Theorem 7.2.2 Assume that U is closed and f, r.p are continuous 
with linear growth. Then the following two statements are equivalent: 

a) For any initial state xo E Dom(U) and control uo E 

U ( xo), there exists a r.p-smooth state-control solution ( x( ·), u( ·)) to 
the control system (7.1} starting at (xo, uo). 

6 which can be a constant p, or the function (x,u) ---+ cllull, or the function 
(x, u) ---+ c(llull + llxll + 1). One could also take other dynamics u' E <I>(x, u) where 
<I> is a Marchaud map. 
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b) The set-valued map U satisfies 

V (x, u) E Graph(U), 0 E DU(x, u)(J(x, u))- cp(x, u)B (7.3) 

Proof- The conclusion of the theorem amounts to saying that 
the closed subset Graph(U) enjoys the viability property. By Viabil
ity Theorem 3.3.5, which we can apply because (x, u) -vt {!(x, u)} x 
cp(x, u)B is a Marchaud map, this is the case if and only if it is a 
viability domain, i.e., if and only if 

v (x,u) E Graph(U),TGraph(u)(x,u) n ({f(x,u)} X cp(x,u)B) =I= 0 

By the very definition of the contingent derivative of U, this is the 
necessary and sufficient condition of the theorem. D 

We know that whenever the right-hand side of an ordinary differ
ential equation is differentiable, its solutions are twice differentiable. 
The extension of this property to the case of differential inclusions is 
just a consequence of the above theorem when we take f(x, u) = u: 

Corollary 7.2.3 Let F : X -vt X be a closed set-valued map such 
that 

V x E Dom(F), V v E F(x), 0 E DF(x, v)(v)- cp(x, v)B 

where (x, u) ---t cp(x, u) is a nonnegative continuous function with 
linear growth. 

Then, for any xo E Dom(F) and vo E F(xo), there exists a solu
tion x( ·) to the differential inclusion 

x'(t) E F(x(t)), x(O) = xo & x'(O) = vo 

which belongs to the Sobolev space W2•1(0, oo; X; e-btdt) {both x(·) 
and x' (-) are absolutely continuous.) 

Remark- Naturally, we can consider other evolution laws of 
open-loop controls associated with the control system (U, f) which 
provide smooth open-loop controls yielding viable solutions. 
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First, we can introduce an observation space Y, replace the initial 
control space Z by another finite dimensional space Z1, an observa
tion map f3 : X 1--t Y and relate the new controls v E Z1 and the 
observation y to the former controls u E Z by a single-valued map 
of the form 

u = o:(f3(x), v) 

where 
o: : Y x z1 1--t z 

We then define a new control system (g, V) defined by 

g(x, v) := f(x, o:(f3(x), v)) 

V(x) := {v E zl I o:(f3(x), v) E U(x)} 

Therefore the new control system governed by 

x'(t) = g(x(t), v(t)) 

v(t) E V(x(t)) 
(7.4) 

provides the same dynamics of the state although through another 
parametrization. 

This being done, we can propose any evolution law of the open
loop controls as long as they are compatible with the constraints 
v(t) E V(x(t)) (or u(t) E U(x(t)).) 

For instance, if A E .C(Z1, Z1) and ~ : X x Z1 ~ Z1 and c.p : 
X x Z1 ~ Z1 is a Marchaud map, we can replace system (7.2) by 
the system of differential inclusions 

x'(t) g(x(t), v(t)) 
(7.5) 

v'(t) E Av(t) + ~(x(t), v(t)) 

(With an adequate choice of A, we are able to study the evolution 
of m time differentiable open-loop controls in next section.) 

Then the Regularity Theorem becomes: 
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Theorem 7.2.4 Assume that U is closed and sleek, that f, c.p are 
continuous with linear growth, that the maps a and (3 are continu
ously differentiable with linear growth and that 

V (x, v) E Graph(V), a~((3(x), v) is surjective 

Then the following two statements are equivalent: 
a) For any initial state xo E Dom(V) and control vo E 

V(xo), there exists a solution (x(·), v(·)) to the control system {1.5) 
starting at (xo, vo) {so that x(·) is still a solution to the control system 
{7.1)). 

b) The set-valued map V satisfies: for every (x, v) E 

Graph(V), 

Av E -.P(x, v)+ 

a~((3(x), v)-1 [DU(x, a((3(x), v))(g(x, v))- a~((3(x), v)(3'(x)g(x, v) J 

Proof- By the Viability Theorem 3.3.5, we have to check 
that the graph of V is a viability domain for the set-valued map 

(x, v) ~ {g(x, v)} x (Av + .P(x, v)) 

Since the graph of V is the inverse image of the graph of U under 
the differentiable map h :X X z1 I--+ X E z defined by 

h(x, v) = (x, a((3(x), v)) 

we can derive a formula to compute its contingent cone whenever U 
is sleek and the following transversality condition holds true: 

Im(h'(x, v))- TGraph(u)(h(x, v)) = X x Z 

But the surjectivity of a~ ((3( x), v) implies obviously the surjectivity 
of h' ( x, v), so that this condition is satisfied. Hence, the contingent 
derivative of V is given by the formula 

{ 
DV(x, v)(x') = a~((3(x), v)-1 [ 

DU(x, a((3(x), v))(x')- a~((3(x), v)(3'(x)x'] 

Therefore, we observe that the second statement of the theorem 
states that the graph of V is a viability domain. D 
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7.2.2 Subregulation and Metaregulation Maps 

The assumption of the above theorem is too strong, since it requires 
that property (7.3) is satisfied for all controls u of U(x) (so that we 
have a solution for every initial control chosen in U(xo).) This means 
that, setting 

RK(x) := { u E U(x) I f(x, u) E TK(x)} 

we are in the situation where RK = U. 
We may very well be content with the existence of a smooth 

solution for only some initial control in a subset R(xo) of U(xo). 
So, we can relax the problem by looking for closed set-valued 

feedback maps R contained in U in which we can find the initial 
state-controls yielding smooth viable solutions to the control system. 

The Viability Theorem implies the following 

Theorem 7.2.5 Let us assume that the control system (1.1) satisfies 

{ 
i) Graph(U) is closed 
ii) f is continuous and has linear growth (7·6) 

Let (x, u) ---t tp(x, u) be a nonnegative continuous function with linear 
growth and R : Z "'--+ X a closed set-valued map contained in U. Then 
the two following conditions are equivalent: 

a) R regulates tp-smooth viable solutions in the sense that 
for any initial state xo E Dom(R) and any initial control uo E R(xo), 
there exists a tp-smooth state-control solution (x( · ), u(-)) to the con
trol system (1.1) starting at (xo, uo) and viable in the graph of R. 

b) R is a solution to the partial differential inclusion 

V (x, u) E Graph(R), 0 E DR(x, u)(f(x, u))- tp(x, u)B (7.7) 

satisfying the constraint: V x E K, R(x) c U(x). 
In this case, such a map R is contained in the regulation map 

RK, and is thus called a tp-subregulation map of U or simply a sub
regulation map . The metaregulation law regulating the evolution of 
state-control solutions viable in the graph of R takes the form of the 
system of differential inclusions 

x'(t) = f(x(t), u(t)) 
(7.8) 

u' (t) E G R(x(t), u(t)) 



248 7- Smooth and Heavy Viable Solutions 

where the set-valued map G R defined by 

GR(x, u) := DR(x, u)(f(x, u)) n cp(x, u)B 

is called the metaregulation map associated with R. 
Furthermore, there exists a largest cp-subregulation map denoted 

R'~' contained in U. 

Proof - Indeed, to say that R is a regulation map regulating cp
smooth solutions amounts to saying that its graph is viable under 
the system (7.2). 

In this case, we deduce that for any (xo, uo) E Graph(R), there 
exists a solution ( x( ·), u( ·)) viable in the graph of U, so that x( ·) is 
in particular viable in K. Since x'(t) = f(x(t), u(t)) is absolutely 
continuous, we infer that f(xo, uo) is contingent to Kat xo, i.e., that 
uo belongs to RK(xo). 

The regulation map for the system (7.2) associates with any 
(x, u) E Graph(R) the set of pairs (x', u') E {f(x, u)} x cp(x, u)B 
such that ( x', u') belongs to the contingent cone to the graph of R 
at (x, u), i.e., such that 

u' E DR(x,u)(f(x,u))ncp(x,u)B =: CR(x,u) 

The graph of R"' is the viability kernel of Graph(U) for the system 
of differential inclusions (7.2). 0 

Proposition 7 .2.6 Let us assume that the control system (7.1) sat
isfies 

{ 
i) 
. ") 
~~-) 
'/,zt 

U maps a neighborhood of every point to a compact subset 
Graph(U) is upper semicontinuous with compact values 
f is continuous and has linear growth 

Then the domain of every subregulation map is closed. 

Proof- Let Xn E Dom(R) be a sequence converging to xo and 
let Un belong to R(xn) C U(xn)· By assumption, the sequence Un 
remains in a compact subset, so that a subsequence (again denoted 
by) Un converges to some u E U ( x). Since R is a subregulation map, 
there exist solutions (xn(·),un(·)) to the system (7.2) of differential 
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inclusions viable in the graph of R. Theorem 3.5.2 implies that a 
subsequence (again denoted by) ( Xn ( ·), Un ( ·)) converges to a solution 
(x(·), u(·)) starting at (x, u). Hence u E R(x) and thus, x E Dom(R). 
0 

We can be particularly interested in single-valued regulation maps 
r : K ~--+ Z, which are closed-loop (feedback) controls regulating <p

smooth viable solutions: 

Proposition 7.2. 7 A closed single-valued continuous map r is a 
feedback control regulating cp-smooth viable solutions to the control 
problem if and only if r is a single-valued solution to the inclusion 

V x E K, 0 E Dr(x)(J(x, r(x)))- cp(x, r(x))B 

satisfying the constraint 

V x E K, r(x) E U(x) 

Then for any xo E K, there exists a solution to the differential equa
tion x'(t) = f(x(t), r(x(t))) starting at xo such that 

V t 2: 0, u(t) := r(x(t)) E U(x(t)) 

and 
for almost all t 2:0, llu'(t)ll ~ cp(x(t),r(x(t))) 

Remark- The study of set-valued and single-valued solutions 
to partial differential inclusion (7.7) will be carried over in Chapter 8 
in the framework of the more general "tracking property". 0 

Remark - We observe that any cp-subregulation map remains 
a ,P-subregulation map for ,P 2: <p and in particular, that the largest 
subregulation maps R'~' are increasing with cp. 0 

Example: Equality Constraints 

Consider the case when h : X ~--+ Y is a twice continuously differen
tiable map and when the viability domain is K := h-1(0). 
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Since TK(x) = ker h'(x) when h'(x) is surjective, we deduce that 
the regulation map is equal to 

RK(x) = { u E U(x) I h'(x)f(x, u) = 0} 

Proposition 7.2.8 Assume that h'(x) E £(X, Y) is surjective when
ever h(x) = 0, that the graph of U is sleek and that for any y E Y 
and v E X, the subsets 

DU(x, u)( v )n (h' (x )f~(x, u) )-1 (y- h" (x)(f(x, u), v)- h' (x )f~(x, u)v) 

are not empty. Then the contingent derivative DRK(x, u)(v) of the 
regulation map is equal to 

DU(x, u)( v) n -(h' (x )f~(x, u) )-1 (h" (x )(f(x, u), v) - h' (x )f~(x, u)v) 

when h'(x)v = 0 and DRK(x, v) = 0 if not. In particular, if U(x) = 
Z, then it is sufficient to assume that h' ( x) f~ ( x, u) is surjective and 
we have in this case 

DRK(x, u)( v) = -(h' (x )f~(x, u) )-1 (h" (x )(f(x, u), v )-h' (x )f~(x, u)v) 

when h'(x)v = 0 and DRK(x, v) = 0 if not. 

Proof- The graph of RK can be written as the subset of pairs 
(x,u) E Graph(U) such that C(x,u) := (h(x),h'(x)f(x,u)) = 0. 
Since the graph of U is closed and sleek, we know that the transver
sality condition 

C'(x, u)TGraph(u)(x, u) = C'(x, u)Graph(DU(x, u)) = Y x Y 

implies that the contingent cone to the graph of U is the set of 
elements (v, w) E Graph(DU(x, u)) such that 

{ 
C'(x, u)(v, w) = 
(h'(x)v, h'(x)f~(x, u)w + h'(x)f~(x, u)v + h"(x)(f(x, u), v)) = 0 

But the surjectivity of h' ( x) and the nonemptiness of the inter
section imply this transversality condition. D 

Therefore, the right-hand side of the metaregulation rule is equal 
to 

{ 
-(h'(x)f~(x, u))-1 (h"(x)(f(x, u), f(x, u))- h'(x)f~(x, u)f(x, u)) 

nDU(x, u)(f(x, u)) n 'P(x, u)B 
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Example: Inequality Constraints 

Consider the case when 

K := {x EX : Vi= 1, ... ,p, 9i(x) 2 0} 

251 

is defined by inequality constraints (for simplicity, we do not include 
equality constraints.) 

We denote by I(x) := {i = 1, ... ,p I 9i(x) = 0} the subset of 
active constraints and we assume once and for all that for every 
xEK, 

:3 vo E CL(x) such that ViE I(x), < g~(x),vo >> 0 

so that, by Theorem 5.1.10, 

RK(x) := {u E U(x) I ViE I(x), (gHx),J(x,u)) 2 0} 

We set g(x) := (g1(x), ... , gp(x)). 
We have seen that the graph of the set-valued map x ~ RK(x) is 

not necessarily closed. However, we ·can find explicit subregulation 
maps by using Theorem 5.1.11. We thus introduce the set-valued 
map RK : X ~ Z defined by 

R'K(x) := {u E U(x) I g(x) + g'(x)f(x,u) 2 0} C RK(x) 

We can regulate solutions viable inK by smooth open-loop con
trols by looking for solutions to the system of differential inclusions 
(7.2) which are viable in the graph of RK· 

We thus need to compute the derivative of RK in order to char
acterize the associated metaregulation map: 

Proposition 7.2.9 Assume that the stronger viability condition7 

V x E K, R'K(x) =/= 0 

7 which holds true whenever K is a viability domain for the control system and 

V x E K, 3 u E U(x) such that llf(x, u)ll :S /K(x) 

where the function /K is defined by (5.1) in Section 5.1. See Theorem 5.1.11. 



252 7- Smooth and Heavy Viable Solutions 

is satisfied. We set 

I (X' u) : = { i = 1' ... 'p I 9i (X) + (g~ (X) ,J (X' u)) = 0} 

Assume that U is sleek and closed and that for every ( x, u) E Graph( RK), 
there exists u~ E DU(x, u)(x~) satisfying 

ViE I(x, u), (g~(x), x~+ f~(x, u)x~+ f~(x, u)u~)+g~'(x)(f(x, u), x~) ~ 0 

Then the contingent derivative D RK ( x, u) ( v) of the subregulation 
map RK is defined by: u' E DJtK(x, u)(x') if and only if u' E 

DU(x, u)(x') and 

ViE I(x,u), (g~(x),x'+f~(x,u)x'+f~(x,u)u')+g~'(x)(f(x,u),x') ~ 0 

If U(x) = Z, then it is sufficient to assume that g'(x)f~(x, u) is 
surjective. We then have in this particular case 

{ 
DJtK(x, u)(x') := { u' E Z IV i E I(x, u), 
(g~(x), f~(x, u)u') ~ -(g~(x), x' + f~(x, u)x')- g?(x)(f(x, u), x')} 

Proof- By Theorem 5.1.10 applied to L := Graph(U) and to the 
constraints defined by 9i(x,u) := gi(x) + (gHx),f(x,u)), we deduce 
that u' E DJtK(x, u)(x') if and only if u' E DU(x, u)(x') and 

ViE I(x,u), (g~(x),x'+f~(x,u)x'+f~(x,u)u')+g?(x)(f(x,u),x') ~ 0 D 

We then deduce from the above Proposition and the Regularity 
Theorem the following consequence: 

Proposition 7.2.10 We posit the assumptions of Proposition 7.2.9. 
If for any (x,u) E Graph(RK), there exists u' such that llu'll ~ 
cp(x,u), then for any initial state xo and any uo E JtK(xo), there 
exists a solution (x(·), u(·)) to the control system {7.2) such that x(·) 
is viable in the set K defined by inequality constraints. The metareg
ulation law can then be written 

{ 
i) x'(t) 

ii) u'(t) 

= f(x(t), u(t)) 

E G(x(t), u(t)) 
(7.9) 
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where the metaregulation map G associated to RK 

G(x, u) := DflK(x, u)(f(x, u)) n cp(x, u)B 

defined by: 
wE G(x, u) if and only if wE DU(x, u)(f(x, u)) n cp(x, u)B and 

{ Vi E I(x, u), (gHx), f~(x, u)u') 
~ -(gHx), f(x, u) + f~(x, u)f(x, u))- g~'(x)(f(x, u), f(x, u)) 

Naturally, the graph of the metaregulation map G is not neces
sarily closed. However, we can still use Theorem 5.1.11 to obtain 
a "submetaregulation map" of this system of differential inclusions. 
We introduce the set-valued map G0 defined by: u' E G0 (x, u) if and 
only if llu'll ~ cp(x, u) and 

{ Vi= 1, ... ,p, (gHx), f~(x, u)u') 
~ -gi(x)- (gHx), 2f(x, u) + f~(x, u)f(x, u)) - g~'(x)(f(x, u), f(x, u)) 

Hence the system of differential inclusions 

x'(t) = f(x(t), u(t)) 
(7.10) 

u'(t) E G0 (x(t), u(t)) n cp(x(t), u(t))B 

regulates cp-smooth solutions which are viable in K. 

7.3 Second Order Differential Inclusions 

Viability problems for second order differential inclusions also require 
the use of viability kernels. 

Let us consider a set-valued map F: X x X"-+ X and the second 
order differential inclusion 

for almost all t ~ 0, x"(t) E F(x(t),x'(t)) (7.11) 

If we are looking for differentiable solutions x( ·) which are viable 
in K, we know that V t ~ 0, x'(t) E TK(x(t)), i.e., (x(t), x'(t)) E 

Graph(TK)· So the viability condition x(t) E K involves the un
derlying viability condition x'(t) E TK(x(t)). Hence, a necessary 
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condition for having viable solutions is that the closure of the graph 
of TK is contained in the domain of F. 

As usual, we regard the second order differential inclusion as the 
system of first order differential inclusions 

{ 
i) for almost all t 2: 0, x'(t) = u(t) 
ii) and u'(t) E F(x(t),u(t)) 

and the viability condition x(t) E K as the first order viability con
straint 

Vt 2:0, (x(t),x'(t)) E Graph(TK) 

So, by the very definition of contingent derivatives, the necessary 
condition of viability can be expressed in the form 

V (x, u) E Graph(TK ), F(x, u) n DTK(x, u)(u) -=f: 0 (7.12) 

Viability Theorem 3.3.5 implies the following result: 

Proposition 7.3.1 Assume that the graph of the contingent cone 
TK(·) is closed and contained in the domain of a Marchaud map F. 

Then the necessary and sufficient condition for the second order 
differential inclusion {7.11) to have viable solutions starting from 
any initial state xo E K and any initial velocity uo E TK(xo) is that 
condition (7.12) is satisfied. 

This condition is satisfied whenever K is a smooth subset of the 
form h-1(0): 

Corollary 7.3.2 Let h : X ~ Y be a twice continuously differen
tiable map such that h'(x) E £(X, Y) is surjective whenever h(x) = 0 
and K := h-1(0). Then differential inclusion (7.11) has a viable so
lution starting from any initial state xo E K and any initial velocity 
uo satisfying h' ( xo )uo = 0 if and only if 

V x E K, VuE ker h'(x), -h'(x)F(x, u) n h"(x)(u, u) -=f: 0 

Proof- We already know that TK(x) = kerh'(x) because 
h' ( x) is surjective, so that the transversality condition is satisfied. 
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Since the graph of TK can be described by the equation B(x, u) = 
0 where 

B(x, u) := (h(x), h'(x)v) 

Its derivative B'(x, u) E .C(X n X, X n X) is equal to 

B'(x, u)(v, w) = (h'(x)v, h"(x)(u, v) + h'(x)w) 

and is surjective thanks to the surjectivity of h'(x). Therefore, the 
contingent cone to the graph of the set-valued map TK(·) is the subset 
of elements (v, w) such that B'(x, u)(v, w) = 0, i.e., the subset of 
elements v E TK(x) and wE -h'(x)-1h"(x)(u, v). In other words, 

DT ( )( ) = { -h'(x)-1h"(x)(u, v) if v E TK(x) 
K x, u v 0 if v ~ TK(x) 

Hence tangential condition (7.12) is equivalent to the condition of 
the corollary. D 

Unfortunately, the graph of the contingent cone is not closed, 
nor even locally compact, as soon as the viability constraints involve 
inequality constraints. In this case, this condition is no longer suffi
cient, as the following example shows. 

Example Take X := R and K := R+ and the differential 
inclusion x" ( t) = x( t) + 1. We see easily that the tangential condition 
(7.12) is satisfied. However, there is no solution to this second order 
differential equation starting from (0, 0). D 

If the graph of TK( ·) is not closed, we can look for explicit closed 
set-valued maps contained in TK(·), such as the maps TJ<(-) (see 
Definition 4.4.1), or the maps Tk(-) introduced by N. Maderner in 
the case of inequality constraints (see Theorem 5.1.11). 

In the general case, we can regard the viability kernel of its clo
sure as the graph of a closed set-valued map (possibly empty) R. 
Theorem 4.1.2 implies the following consequence: 

Theorem 7.3.3 Assume that F : X x X~ X is a Marchaud map. 
Let K be a subset such that Graph(TK) C Dom( F). 
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Then there exists a largest closed set-valued map R : X ~ X such 
that second order differential inclusion (7.11) has a viable solution 
for any initial state xo E Dom(R) and initial velocity uo E R(xo). 

If we are not interested by global properties, but are satisfied with 
local properties, we can look for locally compact viability domains 
of u x F(x, u) comprised between the graph of R (the largest closed 
viability domain) and the graph of TK (a viability domain which may 
not be locally compact), because Viability Theorem 3.3.2 requires 
only local compactness for having local viable solutions. 

This happens whenever the graph of the interior of the contin
gent cone Int(TK) is open (this is the case when the interior of a 
closed convex subset K is not empty, for instance.) Then, by taking 
initial velocities uo E lnt(TK(xo)), we deduce from Theorem 3.3.2 
the existence of a viable solution x(·) on some [0, T]. 

In the nonconvex case, one can take initial velocities uo in the 
Dubovitsky-Miliutin cone DK(xo) (see Definition 4.3.1.) 

7.4 Metaregulation Map of High Order 

The above results can naturally be extended to the regulation of 
control systems by smooth controls of order m > 1. 

We introduce a set-valued map Um: X x zm-2 ~ Z satisfying 

if :3 uo, ... , Um-1 I Um-1 E Um(x, uo, ... , Um-2), then uo E U(x) 

We can take for instance Graph(Um) := Graph(U) X zm-2' but we 
shall propose later other choices of closed maps Um. 

Let us consider a nonnegative continuous function 

(x, uo, ... , Um-d E Graph(Um) --+ c.p(x, uo, ... , Um-1) E R+ 

with linear growth. 
We obtain smooth viable solutions of order m by setting a bound 

to the m-th derivative of the control. For that purpose, we associate 
with this control system and <p the system of differential inclusions 

x'(t) = f(x(t), u(t)) 
(7.13) 

u(m)(t) E <p(x(t), u(t), u'(t), ... , u(m-l)(t))B 
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Let us consider a closed set-valued map Rm :X x zm-1 ~ Z. 
We also regard the graph of Rm as the graph of the set-valued map 
Nm : zm ~ X defined by 

x E Nm(uo, ... , Um-1) if and only if Um-1 E Rm(x, uo, ... , Um-2) 

and Km := Im(Nm) its image. 

Theorem 7.4.1 Let us assume that the control system {7.1} satisfies 

{ i) Graph(Um) is closed 
ii) f is continuous and has linear growth 

Let us consider a closed set-valued map Rm : X x zm-2 ~ Z 
contained in Um. Then the two following conditions are equivalent: 

a) Rm regulates r.p-smooth viable solutions of order m in 
the sense that for any initial (xo, uo, UI, ... , Um-1) E Graph(Rm), 
there exists a solution x(·) E W1•1(0, oo; X, ebt) and a control u(·) E 

wm•1(0, oo; Z, ebt) to the control system {7.1} satisfying the initial 
conditions 

x(O) = xo, u(O) = uo, u'(O) = u1 ... , u<m-1)(0) = Um-1 

the growth condition 

and the constraintaB 

'tit~ 0, x(t) E Nm(u(t),u'(t), ... ,u<m-2)(t)) 

b) Rm is a solution to the partial differential inclusion9 

{ 
'V (x, uo, ... , Um-1) E Graph(Rm), 
0 E DRm(x, UQ, ••• , Um-1){f(x, UO), UI, ... , Um-I) 
-r.p(x, uo, ... , Um-1)B 

8which can also be written in the form 

\:It~ 0, u<m-l)(t) E Rm(x(t),u(t),u'(t), ... ,u<m-2 )(t)) 

9or Nm is a solution to the partial differential inclusion 

0 E DNm(uo, ... 'Um-l)(ul, ... 'Um-1, cp(x, ... 'Um-d)- f(x, uo) 
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satisfying the constraint: Rm(x, uo, ... , Um-2) C Um(x, uo, ... , Um-2)· 
In this case, such a map Rm is called a cp-growth subregulation 

map of order m of U or simply a subregulation map of order m . 
The metaregulation law of order m regulating the evolution of 

state-control solutions viable in the graph of R takes the form of the 
system of differential inclusions 

x'(t) = f(x(t), u(t)) 
(7.14) 

u(m)(t) E GRm (x(t), u(t), u'(t), ... , u(m-1)(t)) 

where the metaregulation map G Rm of order m is defined by 

{ 
GRm(x,uo, ... ,um-1) := 

DRm(x, uo, ... 'Um-1)(J(x, uo), ... 'Um-1) n cp(x, uo, ... 'Um-1)B 

There exists a largest cp-growth subregulation map denoted R':f:.,_ 
contained in Urn. 

Proof- We introduce the differential inclusion 

x'(t) = f(x(t), uo(t)) 

U~(t) = U1(t) 

(7.15) 

u~_ 1 (t) E cp(x(t),uo(t), ... ,um-1(t))B 

where the state space is Xxzm and the set of constraints is Graph(Um) c 
Xxzm. 

To say that Rm is a subregulation map regulating smooth solu
tions of order m amounts to saying that its closed graph is viable 
under the above system (7.15). 

The metaregulation map of order m, which is the regulation map 
of the system (7.15) yielding viable solutions in the graph of Rm, is 
the set of velocities 

(J(x, uo), u1, ... , Um-1, u') 
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where u' E cp(x, uo, ... , Um-l)B which are contingent to the graph of 
Rm at (x, uo, ... , urn), i.e., which satisfy 

u' E DRm(x, uo, u1, ... , Um-l)(f(x, uo), u1, ... , Um-1) 

The graph of the largest subregulation map R'fn of order m is the 
viability kernel of Graph(Um) for this system of differential inclu
sions. D 

7.5 Punctuated Equilibria, Ramp Controls 
and Polynomial Open-Loop Controls 

The case when the growth cp is equal to 0 is particularly interesting, 
because the inverse N° of the 0-growth regulation map R0 determines 
the areas N° ( u) regulated by constant control u. 

One could call N°(u) the viability cell or niche of u. A control u 
is called a punctuated equilibrium if and only if its viability cell is not 
empty. Naturally, when the viability cell of a punctuated equilibrium 
is reduced to a point, this point is an equilibrium. 

So, punctuated equilibria are constant controls which regulate 
the control systems (in its viability cell): 

Proposition 7 .5.1 The viability cell of a control u is the viabil
ity kernel of u- 1(u) for the differential equation x'(t) = f(x(t), u) 
parametrized by the constant control u. 

Proof- Indeed, viability cells describe the regions of Dom(U) 
which are controlled by the constant control u because for any initial 
state xo given in N°(u), there exists a viable solution x(·) to the 
differential inclusion 

{ 
i) x'(t) = f(x(t), u(t)) 
ii) u'(t) = 0 

starting at (xo, u), i.e., of the differential equation x'(t) = f(x(t), u) 
which is viable in the viability cell N°(u) because u E R 0 (x(t)) for 
every t ~ 0. D 
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One can ask more generally whether linear open-loop controls 
u(t) := uo + tu1 can regulate viable solutions to the control systems, 
and what are the largest areas of the viability domain which can be 
regulated by linear controls. Such controls are called ramp controls . 

The advantage is that in such areas, finding the ramp controls 
amounts to looking only for two elements uo and u1 in the finite di
mensional space Z 2 rather than a general function u( ·) in an infinite
dimensional space W1•1(0, oo; z, ebt). 

Pursuing this point of view, the problem arises of regulating vi
able solutions to a control system by polynomial open-loop controls of 
degree m. For m = 0, we find the punctuated equilibria, for m = 1 
the ramp controls, and so on. 

We consider the graph Graph(R~) of the largest m-smooth 0-
growth regulation map of the system (7.15) and we denote by K~ := 

Im(N~). 

Proposition 7.5.2 We posit the assumptions of Theorem 1.4.1. Then 
K~ C K is the largest subset of initial states from which there exist 
viable solutions regulated by m-degree polynomial open-loop controls. 

Controlling the system from xo E K~ amounts to choosing initial 
controls (uo, U!, ... 'Um) E (N~) - 1 (xo) c zm+l. In this case, there 
exists a viable solution x( ·) to the control system 

( 
tm-1 ) 

x'(t) = f x(t), uo + u1t + ... + Um-1 (m _ 1)! 

satisfying 

x(O) = xo, u(O) = uo, u'(O) = u1, ... , u(m-1)(0) = Um-1 

and the regulation law written in the form 

0 (m-1 ti m-k-1 ti ) 
V t ~ 0, x(t) E Nm L Uj"7j, ... , L Uj+k"7j' ... , Um-1 

j=O J. j=O J. 

We naturally obtain 

K 0 := K? c K? c . . . c K~ c . . . K := Dom(U) 
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and, for k ~ m, 

N2(uo, ... , Uk-d = N~(uo, ... , Uk-b 0, ... , 0) 

Remark - In the case of the general evolution of open-loop 
controls, the regulation maps are solutions to the partial differential 
inclusion 

V (x, v) E Graph(V), Av E DR(x, v)(g(x, v))- ~(x, v) 

subject to the constraint 

V x EX, R(x) C V(x) 

In particular, for ~ = 0, we obtain the subset of initial states x0 

from which there exist viable solutions to the control system 

x'(t) = f(x(t), eAtvo) 

regulated by open-loop controls 

v(t) = eAtvo 

which are solutions to the system of differential equations 

v'(t) = Av(t), v(O) = vo 

7.6 Heavy Viable Solutions 

7.6.1 Dynamical Closed Loops 

Let us consider a control system ( U, f), a regulation map R c U 
which is a solution to the partial differential inclusion (7.7) and the 
metaregulation map 

(x, u) ~ GR(x, u) := DR(x, u)(f(x, u)) n cp(x, u)B 

regulating smooth state-control solutions viable in the graph of R 
through the system (7.8) of differential inclusions. 

The question arises as to whether we can construct selection pro
cedures of the control component of this system of differential in
clusions. It is convenient for this purpose to introduce the following 
definition. 
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Definition 7.6.1 (Dynamical Closed Loops) Let R be a cp-growth 
subregulation map of U. We shall say that a selection g of the con
tingent derivative of the meta regulation map G R associated with R 
mapping every (x, u) E Graph(R) to 

g(x, u) E GR(x, u) := DR(x, u)(f(x, u)) n cp(x, u)B (7.16) 

is a dynamical closed loop of R. 
The system of differential equations 

x'(t) f(x(t), u(t)) 
(7.17) 

u'(t) g(x(t), u(t)) 

is called the associated closed loop differential system. 

Clearly every solution to (7.17) is also a solution to (7.8). There
fore, a dynamical closed loop being given, solutions to the system 
of ordinary differential equations (7.17) (if any) are smooth state
control solutions of the initial control problem (7.1). 

Such solutions do exist when g is continuous (and if such is the 
case, they will be continuously differentiable.) But they also may 
exist when g is no longer continuous, as we saw when we built closed 
loop controls in Chapter 6. This is the case for instance when g(x, u) 
is the element of minimal norm in G R ( x, u). 

In both cases, we need to assume that the metaregulation map 
G R associated with R is lower semicontinuous with closed convex 
images. By Proposition 7.1.3, it will be sufficient to assume that: 

{ i) R is sleek 

ii) sup(x,u)EGraph(R) IIDR(x,u)ll < +oo 
(7.18) 

Indeed, assumptions (7.18)i) and ii) imply that the set-valued 
map ( x, u, v) ~ DR( x, u, v) is lower semicontinuous. Since cp is con
tinuous, we infer from Proposition 6.3.2 that the metaregulation map 
G R is also lower semicontinuous. 

We thus begin by deducing from Michael's Theorem 6.5.7 the 
existence of continuously differentiable viable state-control solutions. 



7. 6. Heavy Viable Solutions 263 

Theorem 7.6.2 Assume that U is closed and that f, <p are con
tinuous and have linear growth. Let R(·) C U(·) be a <p-growth 
subregulation map satisfying assumption (7.18). Then there exists 
a continuous dynamical closed loop g associated with R. The as
sociated closed loop differential system (7.17) regulates continuously 
differentiable state-control solutions to (7.1) defined on [0, oo[. 

7.6.2 Heavy Viable Solutions 

Since we do not know constructive ways to build continuous dynami
cal closed loops, we shall investigate whether some explicit dynamical 
closed loop provides closed loop differential systems which do possess 
solutions. 

The simplest example of dynamical closed loop control is the 
minimal selection of the metaregulation map GR, which in this case 
is equal to the map gR_ associating with each state-control pair ( x, u) 
the element gR_ ( x, u) of minimal norm of DR( x, u) (f ( x, u)) because 
for all (x,u), llgR_(x,u)ll ~ <p(x,u) whenever GR(x,u) =/= 0. 

Definition 7.6.3 (Heavy Viable Solutions) Denote by gR_(x, u) 
the element of minimal norm of DR(x, u)(f(x, u)). We shall say 
that the solutions to the associated closed loop differential system 

x'(t) f(x(t), u(t)) 

u'(t) gR_(x(t), u(t)) 

are heavy viable solutions to the control system (U, f) associated with 
R. 

Theorem 7 .6.4 (Heavy Viable Solutions) Let us assume that U 
is closed and that f, <p are continuous and have linear growth. Let 
R( ·) c U ( ·) be a <p-growth subregulation map satisfying assumption 
(7.18}. Then for any initial state-control pair (xo, uo) in Graph(R), 
there exists a heavy viable solution to the control system (7.1). 

Remark- Any heavy viable solution (x(·), u(·)) to the control 
system (7.1) satisfies the inertia principle: Indeed, we observe that 
if for some h, the solution enters the subset CR(u(h)) where we set 

CR(u) := {x E K I 0 E DR(x, u)(f(x, u))} 



264 7- Smooth and Heavy Viable Solutions 

the control u(t) remains equal to u(t1) as long as x(t) remains in 
CR(u(ti)). Since such a subset is not necessarily a viability domain, 
the solution may leave it. 

Iffor some t1 > 0, u(tt) is a punctuated equilibrium, then u(t) = 
Utf for all t;::: t1 and thus, x(t) remains in the viability cell NP(u(tt)) 
for all t ;::: t 1. D 

The reason why this theorem holds true is that the minimal se
lection is obtained through the selection procedure defined by 

S'GR(x, u) := llg_R(x, u)ll B (7.19) 

It is this fact which matters. So, Theorem 7.6.4 can be extended 
to any selection procedure of the metaregulation map G R(x, u) de
fined in Chapter 6 (See Definition 6.5.2). 

Theorem 7.6.5 Let us assume that the control system (7.1} satisfies 

{ 
i) Graph(U) is closed 
ii) f is continuous and has linear growth 

(7.20) 

Let (x, u) --t <p(x, u) be a nonnegative continuous function with linear 
growth and R : Z ""' X a closed set-valued map contained in U. 

Let ScR : Graph(R) ""' X be a selection procedure with convex 
values of the metaregulation map GR. Then, for any initial state 
(xo, uo) E Graph(R), there exists a state-control solution to the as
sociated closed loop system 

x' = f(x, u), u' E GR(x, u) n ScR(x, u) (7.21) 

defined on [0, oo[ and starting at (xo, uo). In particular, if for any 
(x, u) E Graph(R), the intersection 

is a singleton, then there exists a state-control solution defined on 
[0, oo[ and starting at (xo, uo) to the associated closed loop system 

x'(t) = f(x(t), u(t)), u'(t) = s (GR(x(t), u(t))) 
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Proof- Consider the system of differential inclusions 

x' = f(x, u), u' E Scn(x, u) n cp(x, u)B 

subject to the constraints 

V t;:::: 0, (x(t), u(t)) E Graph(R) 
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(7.22) 

Since the selection procedure Sen has a closed graph and convex val
ues, the right-hand side is an upper semicontinuous set-valued map 
with nonempty compact convex images and with linear growth. On 
the other hand Graph( R) is a viability domain of the map {! ( x, u)} x 
(Scn(x, u) x cp(x, u)B). Therefore, the Viability Theorem can be 
applied. For any initial state-control (xo, uo) E Graph(R), there 
exists a solution (x(·), u(·)) to (7.22) which is viable in Graph(R). 
Consequently, for almost all t ;:::: 0, the pair ( x' ( t), u' ( t)) belongs to 
the contingent cone to the graph of Rat (x(t),u(t)), which is the 
graph of the contingent derivative DR(x(t), u(t)). In other words, 
for almost all t ;:::: 0, u'(t) E DR(x(t), u(t))(f(x(t), u(t))). Since 
llu'(t)ll ~ cp(x(t),u(t)), we deduce that u'(t) E GR(x(t),u(t)) for al
most all t ;:::: 0. Hence, the state-control pair ( x( ·), u( ·)) is a solution 
to (7.21). D 

Proof of Theorem 7.6.4- By the Maximum Theorem 2.1.6 
the map (x, u) ~----+ IIYR(x, u)ll is upper semicontinuous. It has a linear 
growth on Graph(R). Thus the set-valued map (x, u) ~ IIYR(x, u) II B 
is a selection procedure satisfying the assumptions of Theorem 7.6.5. 
D 

Since we know many examples of selection procedures, it is pos
sible to multiply examples of dynamical closed-loops as we did for 
usual closed loops. We shall see some examples in the framework of 
differential games in Chapter 14. 

7.6.3 Heavy Viable Solutions under Equality Con
straints 

Consider the case when h : X ~ Y is a twice continuously differentiable 
map, when the viability domain is K := h-1 (0) and when there are no 
constraints on the controls (U(x) = Z for all x E K). We derive from 
Proposition 7.2.8 the following explicit formulas for the dynamical closed 
loop yielding heavy solutions. 
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Proposition 7.6.6 We posit assumptions of Theorem 7.2.8. Assume fur
ther that U ( x) = Z, that the regulation map 

R(x) := {u E Z I h'(x)f(x, u) = 0} 

has nonempty values, that h( x) is surjective whenever x E K and that 

h'(x)f~(x,u) E C(Z, Y) is surjective whenever u E R(x). 
Then there exist heavy solutions viable in K, which are the solutions to 

the system of differential equations 

x' = f(x, u) 

u' =-f~(x, u)*h'(x)*p(x, u) where 

p(x, u) := (h'(x)f~(x, u)f~(x, u)*h'(x)*)- 1 h'(x)f~(x, u)f(x, u) 

Proof- The element g(x, u) E G(x, u) of minimal norm, being a 
solution to the quadratic minimization problem with equality constraints 

h'(x)f~(x, u)w = -h' (x)f~(x, u)f(x, u) - h" (x)(f(x, u), f(x, u)) 

is equal to 

g(x, u) = - f~(x, u)*h'(x)*(h'(x)f~(x, u)f~(x, u)* h'(x)*)-1 

(h'(x)f~(x, u)f(x, u) + h"(x)(f(x, u), f(x, u))) 

because the linear operator B := h'(x)f~(x, u) E C(Z, Y) is surjective. 

Example: Heavy solutions viable in affine spaces. Consider 
the case when K := {x EX I Lx = y} where L E C(X, Y) is surjective. 

Let us assume that 

{ i) V x E K, R(x) := {u E Z such that Lf(x, u) = 0} -=J 0 
ii) V x E K, VuE R(x), Lf~(x,u) is surjective 

Then, for any initial state xo E K and initial velocity u0 satisfying Lf(xo, u0 ) = 
0, there exists a heavy viable solution given by the system of differential 
equations 

{ i) x' = f(x, u) 
ii) u' =-f~(x, u)* L*(Lf~(x, u)f~(x, u)* L*)- 1 Lf~(x, u)f(x, u) 

When Y :=Rand K := {x EX I < p,x >= y} is an hyperplane, the 
above assumption becomes 

{ i) V x E K, R(x) := {u E Z such that < p, f(x, u) >= 0} -=J 0 
ii) V x E K, VuE R(x), f~(x, u)*p # 0 
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and heavy viable solutions are solutions to the system of differential equa
tions 

x' = f(x,u) 

u' - - <p,f~(x,u),J(x,u)> f' (x u)*p 
- IIJ;.(x,u)*pll2 u ' 

Example: Heavy solutions viable in the sphere. 
Let L E C(X, X) be a symmetric positive-definite linear operator, with 

which we associate the viability subset 

K := {xEXI <Lx,x>=l} 

We assume that 

{ i) VxEK, R(x):={uEZ suchthat <Lx,J(x,u)>=0}#0 
ii) V x E K, VuE R(x), f~(x, u)* Lx # 0 

Then there exist heavy viable solutions in the sphere, which are solutions 
to the system of differential equations 

x' = f(x,u) 

1 f~(x,u)* Lx ( ) h 
u = -IIJ;.(x,u)*Lx112P x, u w ere 

p(x, u) :=< Lf(x, u), f(x, u) > + < Lx, f~(x, u)f(x, u) > 

7.6.4 Heavy Viable Solutions of High Order 

We shall extend the concept of heavy viable solutions to higher order. 
For simplicity, we explain what happens for the first order, in the 

case when we want to satisfy both the inertia principle and a first
order inertia principle: keep a ramp control as long as it regulates a 
viable smooth solution. 

We begin with the control system (U, f), we set U1 := U and 
c.p1 := c.p, we choose a <p1-growth subregulation map R1(·) := R(·) c 
U ( ·) and we denote by 

G 1(x,u) := DR1(x,u)(f(x,u))nc.pl(x,u)B 

the metaregulation rule associated with R1. 
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Since we know that the evolution of heavy viable solutions is 
governed by the differential equation 

u~(t) = u1(t) = g~(x(t),uo(t)) 

where gJ. is the minimal selection of G1, the instinctive idea which 
comes to mind is to take for set-valued map U1 the (single-valued) 
map gJ.. Unfortunately, its graph is not closed. 

Since the minimal selection gl. is obtained through the selection 
procedure defined by (7.19), another idea is to use any selection 
procedure Sa1 of the set-valued map G1 and in particular the one 
defined by (7.19): 

S(;1 (x,u) ·- llg~(x,u)IIB 

We then define U2 by 

Graph(U2) := (Graph(RI) X Z) n Graph(Scl) 

and we introduce a continuous function 'P2 : Graph(U2) ~----+ R+ with 
linear growth. 

The graph of U2 is closed. This choice being made, we associate 
a cp2-growth subregulation map R2 c U2 (for instance, the viability 
kernel of the graph of U2.) We know that the evolution of the second 
derivative of the control is governed by the metaregulation law 

u"(t) E G2(x(t), u(t), u'(t)) 

where we denote by 

the metaregulation map associated with R2. We propose to govern 
the evolution of the second derivative of the control by selections of 
the map G2, and in particular, by its selection of minimal norm g2, 
which then yields a second-order heavy viable solution. 

Theorem 7.6.7 (Second-Order Heavy Viable Solutions) Let us 
assume that U1 is closed and that j, 'PI, 'P2 are continuous and have 
linear growth, that conditions (1.18) and 

{ 
i) the subregulation map R2 is sleek 

ii) sup(x,u0 ,ul)EGraph(R2 ) IIDR2(x, uo, UI)II < +oo (7.23) 
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hold true. Then for any initial data u1 E R2(xo, uo), there exists a 
second-order heavy viable solution to the control system (7.1}, i.e., a 
solution to the system 

x'(t) f(x(t), u(t)) 

u'(t) g]'(x(t), u(t)) 

u" ( t) = g2 (x( t), u( t), u' ( t)) 

Remark- Any second-order heavy viable solution satisfies the 
first-order inertia principle. 

For explaining why , let us introduce the subsets 

{ 
Ck(uo, ... , uk-1) 
:= { x E KIO E DRk(x, uo, ... , Uk-1)(f(x, uo), ... , Uk-1)} 

fork= 1, 2. 
If for some to, the solution enters the subset C1(u(to), then the 

open-loop control u(t) becomes constant as long as x(t) remains in 
C1(u(to)). 

If for some t1, the solution enters the subset C2(u(t1), u'(ti)), 
then the open-loop control u(t) becomes a ramp control as long as 
x(t) remains in C2(u(t),u'(t)). In this case, it is regulated by 

Since such a subset is not necessarily a viability domain, the solution 
may leave it. 

If for some tr > 0, the solution x( t) enters the subset K~, then 
it will be regulated by a ramp control, until some time10 t1 E [tr, oo[ 
where x(tJ) E KP. Then Ut1 E R1(x(tJ)) is a punctuated equilib
rium, and u(t) = Ut1 for all t 2 tf, so that x(t) remains in the 
viability cell NP(u(tJ)) for all t 2 tf. D 

Naturally, as for heavy viable solutions, this theorem follows 
from: 

10which may never be reached 
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Theorem 7 .6.8 Let us assume that the control system {1.1) and the 
functions 'Pl, 'P2 satisfy 

{ i) Graph(U) is closed 
ii) f & 'Pi are continuous and have linear growth ( i = 1, 2) 

Let Sc1 : Graph( R1) "-+ X be a selection procedure of the metareg
ulation map G1, U2 be defined by 

Graph(U2) := (Graph(Rl) X Z) n Graph(Scl) 

R2 C U2 be a subregulation map and Sc2 : Graph(R2) "-+ Z be a 
selection procedure of the metaregulation map G2 with convex values. 
Set 

{ S (G1) (x, u) := G1(x, u) n Sc1 (x, u) 
S ( G2) (x, u, u') := G2(x, u, u') n Sc2 (x, u, u') 

Then, for any initial state (xo,uo,ul) E Graph(R2), there exists a 
solution to the system 

x'(t) = f(x(t), u(t)) 

u'(t) E S(Gl)(x(t),u(t)) (7.24) 

u"(t) E S(G2)(x(t), u(t), u'(t)) 

defined on [0, oo[ and starting at (xo, uo, u!). 
In particular, if for any (x, u, u') E Graph(R2), the intersections 

S(GI) (x,u) & S(G2) (x,u,u') 

are singleta { s ( GI) (x, u)} and { s ( G2) (x, u, u')}, then there exists a 
state-control solution defined on [0, oo[ and starting at (xo, uo) to the 
associated closed loop system 

x'(t) f(x(t), u(t)) 

u' ( t) s ( G 1) ( x ( t), u ( t)) 

u"(t) = s(G2)(x(t),u(t),u'(t)) 
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Proof- We consider the system 

i) x'(t) = f(x(t), uo(t)) 

ii) Uo(t) = U1(t) 

iii) u~ (t) E Sc2 (x(t), uo(t), u1(t)) n cp2(x(t), uo(t), u1(t))B 
(7.25) 

Since the selection procedure Sc2 has a closed graph and convex 
values, the right-hand side of this system of differential inclusions is 
a Marchaud map. 

The closed subset Graph(R2) is a viability domain. Indeed, we 
know that there exists an element win the selection S(G2)(x, u0 , ui). 
Since w E G2(x,uo,ui)) C DR2(x,uo,ui)(!(x,uo),ui)), we infer 
that 

Hence (! ( x, uo), u 1, w) is a velocity which is contingent to the graph 
of R2. 

Therefore the Viability Theorem implies the existence of a solu
tion (x(·),uo(·),u1(·)) to the system of differential inclusions (7.25) 
viable in the graph of R2. This implies that for almost all t ~ 0, 
setting u(·) := uo(·), 

u" ( t) = u~ ( t) E DR2(x( t), u( t), u' ( t) )(!(x( t), u( t) ), u' ( t)) 

This, together with (7.25)iii), implies that for almost all t ~ 0, 

u"(t) E G2(x(t), u(t), u'(t)) n Sc2 (x(t), u(t), u'(t)) 

Furthermore, since Graph(R2) is contained in Graph(RI) x Z, we 
deduce that 

V t ~ 0, u(t) := uo(t) E R1(x(t)) 

so that 

Vt ~ 0, u'(t) E DR1(x(t),u(t))(!(x(t)),u(t)) C G1(x(t),u(t)) 
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On the other hand, by the very choice of U2, we know that 

V t ~ 0, u'(t) := u1(t) E R2(x(t), u(t)) C Sa1 (x(t), u(t)) 

Hence we have proved the existence of a solution to the second-order 
system of partial differential inclusions (7.24) with a right-hand side 
which is not a Marchaud map. 0 

Naturally, we can extend this theorem up to the order m, by 
recursively choosing the map U m by formula 

Graph(Um) := (Graph(Rm-I) x Z) n Graph(Scm_ 1 ) 

and by taking a subregulation map Rm CUm (for instance, the map 
whose graph is a viability kernel for the system (7.15).) 

In the case of the minimal selection, we take as selection proce
dure 

S(;m(x,uo, ... ,Um-1) := llg~(x,uo, ... ,Um-diiB 

where actually, g~(x, uo, ... , Um-1) is the element of minimal norm 
of 

DRm(x, uo, ... , Um-1)(f(x, uo), ... , Um-d 

Theorem 7.6.9 (m-th Order Heavy Viable Solutions) Assume 
that U is closed and that f, t.pk are continuous and have linear growth 
for 0 ~ k ~ m. We assume further that for 0 ~ k ~ m, 

{ i) the subregulation map Rk c Uk is sleek 

ii) sup(x,uo, ... ,uk-l)EGraph(Rk) IIDRk(x, uo, ... 'uk-1)11 < +oo 

Then for any initial data Um-1 E Rm(xo, uo, ... , Um-2), there 
exists an m-th order heavy viable solution to the control system 

x'(t) f(x(t), u(t)) 

u'(t) g0(x(t), u(t)) 

u(m)(t) g~(x(t), u(t), u'(t), ... , u(m-1)(t)) 
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It obeys an m-th order inertia principle: keep an m-degree poly
nomial open-loop control as long as the solution it regulates is viable. 

This theorem follows from the more general 

Theorem 7.6.10 Let us assume that the control system (7.1) and 
the functions 'Pk satisfy for 0 ::; k ::; m 

{ i) Graph(U) is closed 
ii) f & 'Pk are continuous and have linear growth 

Let Sak : Graph(Rk) "-+ X be selection procedures with convex 
values of the set-valued maps Gk. Set 

S ( Gk) (x, uo, ... , Uk-1) := Sak (x, uo, ... , uk-l)nGk(x, uo, ... , uk-d 

Then, for any initial state (xo, uo, u~, ... , Um-d E Graph(Rm), there 
exists a solution to the system 

x'(t) = f(x(t), u(t)) 

u'(t) E S(GI)(x(t), u(t)) 

u(m)(t) E S(Gm)(x(t), u(t), u'(t), ... , u(m-l)(t)) 

defined on [0, oo[ and starting at (xo, uo, u~, ... Um-d· 



Chapter 8 

Partial Differential 
Inclusions of Tracking 
Problems 

Introduction 

Consider two finite dimensional vector-spaces X and Y, two set
valued maps F : X x Y '"'-+ X, G : X x Y '"'-+ Y and the system of 
differential inclusions 

{ 
x'(t) E F(x(t), y(t)) 

y'(t) E G(x(t), y(t)) 

We further introduce a set-valued map H: X'"'-+ Y, r0garded as 

an observation map. 
We devote this chapter to several issues related to the following 

tracking property: for every xo E Dom( H) and every Yo E H ( xo), 
there exist solutions ( x( ·), y( ·)) to the system of differential inclusions 
such that 

V t ~ 0, y(t) E H(x(t)) 

This is a viability problem, since we actually look for a solution 
(x(·), y(·)) which remains viable in the graph of the observation map 
H. So, if the set-valued maps F and G are Marchaud maps and if the 
graph of H is closed, the Viability Theorem states that the tracking 

275 
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property is equivalent to the fact that the graph of H is a viability 
domain of (x, y) ~ F(x, y) x G(x, y). 

Recalling that the graph of the contingent derivative D H ( x, y) of 
H at a point (x, y) of its graph is the contingent cone to the graph 
of H at (x, y), the tracking property is then equivalent to saying 
that His a (set-valued contingent) solution to the system of partial 
differential inclusions 

V (x,y) E Graph(H), 0 E DH(x,y)(F(x,y))- G(x,y) 

We observe that when F and G are single-valued maps f and g 
and His a differentiable single-valued map h, the partial differential 
inclusion boils down to the more familiar system of first-order partial 
differential equations 

Vj=l, ... ,m, t~h~fi(x,h(x))-gj(x,h(x)) = 0 
i=l vx% 

For special types of systems of differential equations, the graph 
of such a map h (satisfying additional properties) is called a center 
manifold. Theorems providing the existence of local center manifolds 
have been widely used for the study of stability near an equilibrium 
and in control theory. 

Since the partial differential inclusion links the three data F, G 
and H, we can use it in three different ways: 

1. - Knowing F and H, find G or selections g of G such that 
the tracking property holds (observation problem) 

2. - Knowing G (regarded as an exosystem, following Byrnes 
& Isidori's terminology) and H, find For selections f ofF such that 
the tracking property holds (tracking problem) 

3. - Knowing F and G, find observation maps H satisfying 
the tracking property, i.e., solve the above partial differential inclu
sion. 

Furthermore, we can address other specific questions such as: 
a) - Find the largest set-valued contingent solution to 

the partial differential inclusion contained in a given set-valued map 
(which then, contains all the other ones if any) 

b)- Find single-valued contingent solutions h to the partial 
differential inclusion which then becomes 

V x E K, 0 E Dh(x)(F(x, h(x)))- G(x, h(x)) 
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In this case, the tracking property states that there exists a solution 
to the "reduced" differential inclusion 

x'(t) E F(x(t), h(x(t))) 

so that ( x( ·), y( ·) := h( x( ·))) is a solution to the initial system of 
differential inclusions starting at (xo, h(x0 )). Knowing hallows us to 
divide the system by half, so to speak. 

It may seem strange to accept set-valued maps as solutions to a 
system of first-order partial differential inclusions. But this may offer 
a way to describe shocks by the set-valued character of the solution 
(which may happen even for maps with smooth graphs, but whose 
projection leads to set-valued maps.) 

Set-valued solutions provide a convenient way to treat hyperbolic 
problems. 

Indeed, looking for "weak" solutions to this partial differential 
inclusion in Sobolev spaces or other spaces of distributions does not 
help here since we require solutions h to be defined through their 
graph, and thus, solutions which are defined everywhere. 

However, derivatives in the sense of distributions do not offer the 
unique way to describe weak or generalized solutions. 

The contingent derivative v t---t Du(x)(v) of single-valued map 
u at x is obtained by taking upper graphical limits when h --t 0 of 
the difference-quotients v t---t u(x+h~)-u(x) whereas the distributional 

derivatives are limits of the difference-quotients x t---t u(x+h~)-u(x) in 
the space of distributions. In both cases, we use convergences weaker 
than the pointwise convergence for increasing the possibility for the 
difference-quotients to converge, and, in doing so, we may lose some 
properties by passing to these weaker limits. In the first case, the 
contingent derivative is no longer necessarily a single-valued map, but 
may be set-valued, whereas in the second case, the derivative may be 
a distribution. Further, each one of these weaker convergence allows 
us to differentiate set-valued maps U at (x, y) since one can check 
that the contingent derivative is the graphical upper limits of the 
difference quotients v "'-+ U(x+~v)-y and to differentiate a distribution 

T by taking distributional limits of the difference quotients r,~~-T. 

We devote the first section to general properties of set-valued 
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contingent solutions to these partial differential inclusions. 
We begin by deriving the existence of the largest closed solution 

contained in a given observation map and by providing a very useful 
stability theorem stating that graphical upper limits of solutions is 
still a solution. 

The observation and tracking problems are two sides of the same 
coin because the set-valued map H and its inverse play symmetric 
roles. This is one of the reasons why we regard a single-valued map 
as a set-valued map characterized by its graph. 

Consider then the observation problem: the idea is to observe 
solutions of a system x' E F(x, y) by a system y' E G(y) where 
G : Y "-'t Y provides simpler dynamics: equilibria, uniform move
ment, exponential growth, periodic solutions, etc. This allows us to 
observe complex systems1 x' E F(x) in high dimensional spaces X 
by simpler systems y' E G(y)- or even better, y' = g(y)- in lower 
dimensional spaces. We can think of H as an observation map, made 
of a small number of sensors taking into account uncertainty or lack 
of precision. 

For instance, when G = 0, we obtain constant observations. 
Observation maps H such that F(x) n DH(x, y)- 1(0) #- 0 for all 
y E H(x) provide solutions satisfying 

V t 2': 0, x(t) E H- 1 (yo) where Yo E H(xo) 

In other words, inverse images H-1 (yo) are closed viability domains 
of F. Viewed through such an observation map, the system appears 
to be in equilibrium. 

More generally, if there exists a linear operator A E .C(Y, Y) such 
that 

V y E Im(H), V x E H- 1(y), F(x) n DH(x, y)-1(Ay) #- 0 

1 We can use this tracking property as a mathematical metaphor to model the 
concept of .... metaphors in epistemology. The simpler system (the model) y' E 
G(y) is designed to provide explanations of the evolution of the unknown system 
x' E F(x) and the tracking property means that the metaphor His valid (non 
falsifiable.) Evolution of knowledge amounts to "increasing" the observation space 
Y and to modifying the system G (replacing the model) and/or the observation 
map H (obtain more experimental data), checking that the tracking property 
(the validity or the consistency of the metaphor) is maintained. 
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then we obtain solutions x( ·) satisfying the time-dependent viability 
condition 

so that we can use the exhaustive knowledge of linear differential 
equations to derive behavioral properties of the solutions to the orig
inal system. 

But instead of checking whether such given dynamics G satisfy 
the tracking property, we can look for systematic ways of finding 
them. For that purpose, it is natural to appeal to the selection 
procedures studied in section 4 of Chapter 6. 

For instance, the most attractive idea is to choose the minimal 
selection (x, y) t-t g0 (x, y) of the set-valued map 

(x,y) ~ DH(x,y)(F(x,y)) 

which, by construction, satisfies the partial differential inclusion. We 
shall prove that under adequate assumptions, the system 

{ i) x'(t) E F(x(t), y(t)) 
ii) y'(t) = g0 (x(t), y(t)) 

has solutions (satisfying automatically the tracking property) even 
though the minimal selection go is not necessarily continuous. 

The drawback of the minimal selection and the other ones of the 
same family is that g0 depends upon x. We would like to obtain 
single-valued dynamics g independent of x. They are selections of 
the set-valued map GH defined by 

n DH(x, y)(F(x, y)) 
xEH- 1 (y) 

We must appeal to Michael's Continuous Selection Theorem to find 
continuous selections g of this map, so that the system 

{ 
i) x'(t) E F(x(t),y(t)) 
ii) y'(t) = g(y(t)) 

has solutions satisfying the tracking property. 
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When F: X~ X does not depend upon y, the size of the set
valued map G H measures in some sense a degree of inadequacy of the 
observation of the system x' E F(x) through H, because the larger 
the images of G H, the more dynamics g tracking an evolution of the 
differential inclusion. 

Tracking problems, which are the topic of the second section, 
are intimately related to the observation problem: Here, the system 
y' E G(y), called the exosystem, is given. The problem is to regulate 
the system x'(t) E F(x(t),y(t)) for finding solutions x(·) that match 
the solutions to the exosystem y'(t) E G(y(t)) in the sense that y(t) E 
H(x(t)), or, more to the point, x(t) E H-1(y(t)). 

Decentralization of control systems and decoupling properties are 
instances of this problem. 

An instance of decentralization can be described as follows: We 
take X:= yn, F(x) := I1f=1 Fi(xi), and the viability subset is given 
in the form 

n 

K := {(x~, ... ,xn) I LXi EM} 
i=l 

so that we observe the individual evolutions x~(t) E Fi(xi(t)) through 
their sum y(t) := Ef=1 xi(t). Decentralizing the system means solv
ing 

first a differential inclusion y'(t) E G(y(t)) providing a 
solution y( ·) viable in the viability subset M c Y, and 

second, find solutions to the differential inclusions x~(t) E 
Fi(xi(t)) satisfying the {time-dependent) viability condition 

n 

LXi(t) = y(t) 
i=l 

a condition which does not depend any more on M. 
Hierarchical decomposition happens whenever the observation map 

is a composition product of several maps determining the successive 
levels of the hierarchy. The evolution at each level is linked to the 
state of the lower level and is regulated by controls depending upon 
the evolution of state-control of the lower level. 
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The third section is devoted to existence and comparison theo
rems of invariant manifolds. 

We extend Hadamard's formula of solutions to linear hyperbolic 
differential equations to the set-valued case. We shall prove the exis
tence of one set-valued contingent solutions H* to the decomposable 
system 

V (x, y) E Graph(H*), AyE DH*(x, y)(~(x))- w(x) 

where~: X --vt X and W :X --vt Yare two Marchaud maps. If we 
denote by Sq, ( x, ·) the set of solutions x( ·) to the differential inclusion 
x'(t) E ~(x(t)) starting at x, then the set-valued map H* : X --vt Y 
defined by 

V x EX, H*(x) := - fooo e-Atw(Sq,(x, t))dt 

is the largest contingent solution with linear growth to this partial 
differential inclusion when A := infllxll=l (Ax, x) > 0 is large enough. 
We also show that it is Lipschitz whenever ~ and W are Lipschitz 
and compare the solutions associated with maps ~i and Wi (i = 1, 2). 

We then turn our attention to partial differential inclusions of the 
form 

V x EX, Ah(x) E Dh(x)(f(x, h(x)))- G(x, h(x)) 

when A > 0 is large enough, f : X x Y f---+ X is Lipschitz, G : X --vt Y 
is Lipschitz with nonempty convex compact values and satisfies the 
growth condition 

V x, y, IIG(x, Y)ll :S c(1 + IIYII) 
When G is single-valued, we obtain a global Center Manifold 

Theorem, stating the existence and uniqueness of an invariant man
ifold for systems of differential equations with Lipschitz right-hand 
sides. 

We end this section with comparison theorems between single
valued and set-valued solutions to such partial differential inclusions. 

We characterize in the fourth section the single-valued contin
gent solutions to partial differential inclusions as minimizers of a 
functional. i.e., we provide a variational principle. 
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We apply in the sixth section some of the results obtained so 
far to the existence of closed-loop controls regulating smooth viable 
solutions to a control system. In chapter Chapter 7, we saw that 
closed-loop controls r : K f--t Z regulating smooth solutions to a 
control system (U, !): 

for almost all t, x'(t) = f(x(t),u(t)) 

where u(t) E U(x(t)) 

in the sense that for any xo E K, there exists a solution to the 
differential equation x'(t) = f(x(t),r(x(t))) starting at xo such that 
u(t) := r(x(t)) E U(x(t)) is absolutely continuous and satisfies the 
growth condition 

llu'(t)ll ::; <p(x(t), u(t)) 

for almost all t. 
They are solutions to the following partial differential inclusion 

V x E K, 0 E Dr(x)(f(x, r(x)))- <p(x, r(x))B 

satisfying the constraints 

V x E K, r(x) E U(x) 

This is a tracking problem, where the closed loop control is re
garded as an observation map of a system where F(x, u) := f(x, u) 
andG(x,u) :=<p(x,u)B. 

8.1 The Tracking Property 

Consider two finite dimensional vector-spaces X and Y, two set
valued maps F : x_ x Y "--+ X, G : X x Y "--+ Y and a set-valued map 
H: X"--+ Y, reg~ :ded as (and often called) the observation map. 

Definition 8.1.1 We shall say that F, G and H satisfy the tracking 
property if for any initial state (xo, yo) E Graph( H), there exists at 
least one solution (x(·), y(-)) to the system of differential inclusions 

{ 
x'(t) 

y'(t) 

E F(x(t), y(t)) 

E G(x(t), y(t)) 
(8.1) 
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starting at (xo, Yo), defined on [0, oo[ and satisfying 

V t 2:: 0, y(t) E H(x(t)) 

8.1.1 Characterization of the Tracking Property 

We now consider the first-order system of the partial differential in
clusion 

V (x, y) E Graph( H), 0 E DH(x, y)(F(x, y))- G(x, y) (8.2) 

Definition 8.1.2 We shall say that a set-valued map H : X '""' Y 
satisfying (8.2) is a solution to the partial differential inclusion if its 
graph is a closed subset ofDom(F) n Dom(G). 

When H = h : Dom(h) f-+ Y is a single-valued map with closed 
graph contained in Dom(F) n Dom(G), the partial differential inclu
sion (8.2) becomes 

V x E Dom(h), 0 E Dh(x)(F(x, h(x)))- G(x, h(x)) (8.3) 

We deduce at once from the Viability Theorem 3.3.5 and Theo
rem 4.1.2 the following: 

Theorem 8.1.3 Let us assume that F : X x Y'""' X, G : X x Y'""' Y 
are Marchaud maps and that the graph of the set-valued map H is a 
closed subset of Dom( F) n Dom( G). 

1. The triple ( F, G, H) enjoys the tracking property if and 
only if H is a solution to the partial differential inclusion (8.2). 

2. - There exists a largest solution H* to the partial differen
tial inclusion (8.2) contained in H. It enjoys the following property: 
whenever an initial state Yo E H(xo) does not belong to H*(xo), then 
all solutions (x(·), y(-)) to the system of differential inclusions (8.1) 
satisfy 

v t 2:: 0, y(t) ~ H*(x(t)) as long as y(t) E H(x(t)) 

::JT>O such that y(T) ~ H(x(T)) 
(8.4) 

3. Any closed set-valued map L c H* is contained in a 
minimal set-valued map satisfying the tracking property. 
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Naturally, the graph of H* is the viability kernel of the graph of 
H. 

We now translate in this framework the useful Stability Theo
rem 3.6.5. We recall that the graph of the graphical upper limit H~ 
of a sequence of set-valued maps Hn : X "'""' Y is by definition the 
graph of the upper limit of the graphs of the maps Hn. (See Chap
ter 7 of SET-VALUED ANALYSIS.) 

Theorem 8.1.4 (Stability) Let us consider a sequence of Mar
chaud maps Fn : X X Y"'""' X, Gn : X X Y"'""' Y with uniform 
linear growth2 and their graphical upper limit F~ and G~. 

Consider also a sequence of set-valued maps Hn : X "'""' Y, solu
tions to the partial differential inclusions 

V (x, y) E Graph(Hn), 0 E DHn(x, y)(Fn(x, y))- Gn(x, y) (8.5) 

Then the graphical upper limit H~ of the solutions Hn is a solution 

to 

V (x, y) E Graph(H~), 0 E DH~(x, y)(coF~(x, y))- co(G~(x, y)) 
(8.6) 

In particular, if the set-valued maps Fn and Gn converge graphically 
to maps F and G respectively, then the graphical upper limit H~ of 
the solutions Hn is a solution of (8.2). 

It is an obvious consequence of Theorem 3.6.5. 

We recall that graphical convergence of single-valued maps is 
weaker than pointwise convergence. This is why graphical limits 
of single-valued maps which are converging pointwise may well be 
set-valued. 

Therefore, for single-valued solutions, the stability property im
plies the following statement: Let hn be single-valued solutions to the 

2 In the sense that there exists a constant c > 0 such that 

supmax(JIFn(x,y)ll, IIGn(x,y)ll) :S: c(llxll + IIYII + 1) 
n:;>O 
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contingent partial differential inclusion (8.5). Then their graphical 
upper limit htt is a (possibly set-valued) solution to (8.6}. 

Although set-valued solutions to first-order systems of partial dif
ferential inclusions make sense to describe shock and other phenom
ena, we may still need sufficient conditions for an upper graphical 
limit of single-valued maps to remain single-valued. This is the case 
for instance when a sequence of continuous solutions hn to the partial 
differential inclusion (8.5} is equicontinuous and converges pointwise 
to a function h. Then3 h is a single-valued solution to (8.6}. 

Remark- We could also introduce two other kinds of partial 
differential inclusions: 

V (x, y) E Graph( H), DH(x, y)(F(x, y)) c G(x, y) 

and 

V (x, y) E Graph( H), G(x, y) C n DH(x,y)(u) 
uEF(x,y) 

The first inclusion implies obviously that any solution ( x( ·), y( ·)) 
to the viability problem 

x'(t) E F(x(t), y(t)) & x(t) E H-1(y(t)) 

parametrized by the absolutely continuous function y( ·) is a solution 
to the differential inclusion 

y'(t) E G(x(t), y(t)) 

The !'!econd inclusion states that the graph of H is an invariance 
domain of the set-valued map F x G. Assume that F and G are 
Lipschitz with compact values on a neighborhood of the graph of F. 
By the Invariance Theorem 5.3.4, the second inclusion is equivalent 
to the following strong tracking property: 

For any initial state (xo, Yo) E Graph( H), every solution (x(·), y(·)) 
to the system of differential inclusions (8.1) starting at (xo, Yo) sat
isfies y(t) E H(x(t)) for all t 2: 0. 0 

3 Indeed, a pointwise limit h of single-valued maps hn is a selection of the 
graphical upper limit of the hn. The latter is equal to h when hn remain in an 
equicontinuous subset. 
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8.1.2 Construction of trackers 

Any selection of the map <I> defined by 

V (x, y) E Graph( H), <P(x, y) := DH(x, y)(F(x, y)) 

provides dynamics that satisfy the tracking property, provided that 
the system has solutions. 

Naturally, we can obtain such selections by using selection pro
cedures G := SIP of <I> (see Definition 6.5.2) that have convex values 
and linear growth, since the solutions to the system 

{ 
i) x'(t) E F(x(t), y(t)) 
ii) y'(t) E S~P(x(t), y(t)) 

satisfying the tracking property (which exist by Theorem 8.1.3) are 
solutions to the system 

{ 
i) x'(t) E F(x(t),y(t)) 
ii) y'(t) E S(<i>)(x(t), y(t)) := <P(x(t), y(t)) n S~P(x(t), y(t)) 

Let us mention only the case of the minimal selection go of <I> 
defined by 

{ i) g0 (x, y) E DH(x, y)(F(x, y)) 
ii) llg0 (x, Y)ll = infvEDH(x,y)(F(x,y)) llvll 

Theorem 8.1.5 Assume that the Marchaud map F is continuous 
and that H is a sleek closed set-valued map satisfying, for some con
stant c > 0, 

V (x,y) E Graph(H), IIDH(x,y)ll :S c 

where IIDH(x, y)ll := supllull9 infvEDH(x,y)(u) llvll denotes the norm 
of the closed convex process DH(x, y). Then the system observed by 
the minimal selection g0 of DH(·, ·)(F(·, ·)) 

{ i) x'(t) E F(x(t), y(t)) 
ii) y'(t) = g0 (x(t), y(t)) 

has solutions enjoying the tracking property. 
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Proof- By Theorem 7.1.3, the set-valued map (x, y, u) ~ 
DH(x, y)(u) is lower semicontinuous. We deduce then from the lower 
semicontinuity of F that the set-valued map <I> is also lower semi
continuous. Since DH(x, y) is a convex process, it maps the convex 
subset F(x, y) to the convex subset <I>(x, y). Therefore, <I> being lower 
semicontinuous with closed convex images, its minimal selection S~ 
defined by 

S~(x, y) := { v E Y Ill vii :S d(O, <I>(x, y))} 

is closed with convex values. Furthermore, 

ll9°(x,y)ll :S ciiF(x,y)ll :S c'(llxll + IIYII + 1) 

since IIDH(x, y)ll :S c and the growth ofF is linear. Then the system 

x'(t) E F(x(t), y(t)) 

y'(t) E S~(x(t), y(t)) n c'(llx(t)ll + lly(t)ll + l)B 

has solutions enjoying the tracking property by Theorem 8.1.3. There
fore for almost all t 2': 0, 

y'(t) E <I>(x(t), y(t)) n S~(x(t), y(t)) = g0 (x(t), y(t)) D 

8.1.3 The Observation Problem 

We consider the important case when G : Y ~ Y does not depend 
upon x. Hence the partial differential inclusion becomes 

\f x E Dom(H), \f y E H(x), G(y) n DH(x, y)(F(x, y))-{:: 0 

The behavior of observations of some solutions to the differential 
inclusion x' E F(x, y) may be given as the prescribed behavior of 
solutions to differential equations y' = g(y), where g is a selection of 

g(y) E n DH(x, y)(DF(x, y)) 
xEH- 1 (y) 

In the case when the differential equation y' = g(y) has a unique so
lution r(t)yo starting from yo, the solution x(·) satisfies the condition 

\f t 2': 0, x(t) E H-1 (r(t)y(O)), x(O) E H-1 (y(O)) 



288 8- Partial differential inclusions of Tracking Problems 

When g is a linear operator G E .C(Y, Y), it can be written 

V t ~ 0, x(t) E H- 1(e0 ty(O)), x(O) E H-1(y(O)) 

When H =his a single-valued differentiable map, then the map 
GH can be written 

GH(Y) := n h'(x)F(x, y) 
h(x)=y 

and a single-valued map g is a selection of G H if and only if 

V x E Dom(H), g(h(x)) E h'(x)F(x, h(x)) 

The problem arises as to how to construct such maps g. But 
before studying it in the next subsection, we consider the particular 
case when G = 0. Therefore, if F is a Marchaud map, H enjoys the 
tracking property if and only if it is a solution to 

V (x, y) E Graph(H), 0 E DH(x, y)(F(x, y)) (8.7) 

Since the tracking property of H amounts to saying that each subset 
H-1(y) enjoys the viability property for F(·,y), we observe that this 
condition is also equivalent to condition 

V y E lm(H), V x E H- 1(y), F(x, y) n TH-l(y)(x) =/: 0 

We may say that such a set-valued map H is an energy map of F. 
D 

In the general case, the evolution with respect to a parameter 
y of the viability kernels of the closed subsets H-1(y) under the 
set-valued map F(·, y) is described in terms of H*: 

Proposition 8.1.6 Let F : X x Y ""-h X be a Marchaud map and 
H : X ""-h Y be a closed set-valued map. Then there exists a largest 
solution H*: X ""-h Y contained in H to {8.1}. 

The inverse images H; 1(y) are the viability kernels of the subsets 
H-1(y) under the maps F(·, y): 

ViabF(·,y)(H-1 (y)) = H;:1(y) 

The graphical upper limit of energy maps is still an energy map. 
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Therefore the gmph of the map y ~ ViabF(·,y)(H-I(y)) is closed, and 
thus upper semicontinuous whenever the domain of H is bounded. 

When the observation map H is a single-valued map h, the partial 
differential inclusion becomes4: 

'i/ x, 3 u E F(x, h(x)) such that 0 E Dh(x)(u) 

The largest closed energy map h* contained in h is necessarily the 
restriction of h to a closed subset K* of the domain of h. Therefore, 
for ally E Im(h), K* n h-I(y) is the viability kernel of h-I(y). The 
restriction of the differential inclusion x'(t) E F(x(t), y) to the via
bility kernel of h-I(y) is what Byrnes and lsidori call zero dynamics 
ofF (in the framework of smooth nonlinear control systems.) 

Remark - The Equilibrium Map. We associate with each 
parameter y the set 

E(y) := {x E H-I(y) I 0 E F(x, y)} 

of the equilibria ofF(·, y) viable in H-I(y). We say that E: Y ~X 
is the equilibrium map. 

We can derive some information on this equilibrium map from its 
derivative, which we can compute easily: 

Theorem 8.1.7 Assume that both H: X~ Y and F: X x Y ~X 
are closed and sleek and that 

{ 'i/ (x,y) E Graph(H), 'i/ (u,v,w) EX x Y x X, 
3 VI E DH(x, y)(ul) such that wE DF(x, y, O)(u + u~, v +VI) 

4When h : X f-+ R is a continuous real function, we shall see in Chapter 9, 
Proposition 9.1.4 below, that the values 

Df(x)(u) = [Drf(x)(u),Dd(x)(u)] 

of the contingent derivative are intervals bounded by the epi and hypo contingent 
derivatives, so that the previous equation becomes a system of two contingent 
inequalities: 

V x, 3 u E F(x, h(x)) such that Dr f(x)(u) :::; 0 :::; D!f(x)(u) 

See He!Eme Frankowska's CONTROL OF NONLINEAR SYSTEMS AND DIFFERENTIAL 
INCLUSIONS for an exhaustive study of contingent inequalities in the framework 
of Hamilton-Jacobi equations. 
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Then the contingent derivative of the equilibrium map is the equilib
rium map of the contingent derivative ofF: 

u E DE(y, x)(v) {==::> u E DH(x, y)~ 1 (v) & 0 E DF(x, y, O)(u, v) 

Proof- We observe that by setting 1r(x, y) := (x, y, 0), the 
graph of E~1 can be written: 

Graph(E~ 1 ) := Graph( H) n 1r~ 1 (Graph( F)) 

and we apply formula ( 5) of Table 5.2, which states that if the 
transversality condition: for all (x, y) E Graph(E~ 1 ), 

7r (rcraph(H)(x,y))- Tcraph(F)(1r(x,y)) = X x Y x X 

holds true, then 

Recalling that the contingent cone to the graph of a set-valued map 
is the graph of its contingent derivative, the assumption of our propo
sition implies the transversality condition. We then observe that the 
latter equality yields the conclusion of the proposition. D 

Using the inverse function and the localization theorems pre
sented in section 5.4 of SET-VALUED ANALYSIS, we can derive the 
following information. For instance, set 

Q(y, x) := { u E DH(x, y)~ 1 (0) I 0 E DF(x, y, O)(u, 0)} 

Then, for any equilibrium x E E(y) and any closed cone P satis
fying P n Q(y, x) = {0}, there exists c > 0 such that 

E(y)n(x+c(PnB)) = {x} 

where B denotes the unit ball. In particular, an equilibrium x E 
E(y) is locally unique whenever 0 E DH(x, y)~ 1 (0) is the unique 
equilibrium of DF(x, y, 0)(·, 0). 

Furthermore, if the set E(y) of equilibria is convex, then 

E(y) c x+Q(y,x) D 
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8.1.4 Construction of Observers 

These maps g are selections of the map G H : Y ""* Y defined by 

GH(Y) := n (DH(x, y)(F(x, y))) 
xEH- 1 (y) 

The set-valued map G H measures so to speak a degree of disorder of 
the system x' E F ( x, y), because the larger the images of G H, the 
more observed dynamics g tracking an evolution of the differential 
inclusion. 

By using Michael's Continuous Selection Theorem, we obtain the 
following 

Theorem 8.1.8 Assume that the set-valued map F is continuous 
with convex compact images and linear growth, that H is a sleek 
closed set-valued map the domain of which is bounded and that there 
exists a constant c > 0 such that 

\:f (x, y) E Graph(H), IIDH(x, y)ll ~ c 

Assume also that there exist constants 8 > 0 and "( > 0 such that, 
for any map x ~---+ e(x) E "(B, 

8B n n (DH(x, y)(F(x, y))- e(x)) -/= 0 
xEH- 1 (y) 

Then there exists a continuous map g such that the solutions of 

{ i) x'(t) E F(x(t),y(t)) 
ii) y'(t) = g(y(t)) 

enjoy the tracking property for any initial state (xo, Yo) E Graph(H). 

Proof~ The proof of Theorem 8.1.5 showed that the set-valued 
map <I> is lower semicontinuous with compact convex images. Fur
thermore, the set-valued map H-1 is upper semicontinuous with 
compact images since we assumed the domain of H bounded. Then 
the lower semicontinuity criterion Theorem 6.3.3 implies that the set
valued map G H is also lower semicontinuous with compact convex 
images. Therefore there exists a continuous selection g of G H, so 
that the above system does have solutions viable in the graph of H. 
0 
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8.2 The Tracking Problem 

8.2.1 Tracking Control Systems 

Let H : X ""--+ Y be an observation map. We consider two control 
systems 

{ 
i) for almost all t 2:: 0, x'(t) = f(x(t), u(t)) (8.8) 
ii) where u(t) E U(x(t)) 

and 

{ i) for almost all t 2:: 0, y'(t) = g(y(t), v(t)) (8.9) 
ii) where v(t) E V(y(t)) 

on the state and observation spaces respectively, where U: X""--+ Zx 
and V : Y ""--+ Z x map X and Y to the control spaces Z x and Zy 
and where f: Graph(U) t-t X and g: Graph(V) t-tY. 

We introduce the set-valued maps RH(x, y) : Zy ""--+ Zx defined 
by 

RH(x,y;v) := {u E U(x) I f(x,u) E DH(x,y)-1(g(y,v))} 

if v E V(y) and RH(x, y; v) := 0 if v r:J_ V(y). 

Corollary 8.2.1 Assume that the set-valued maps U and V are 
Marchaud maps and that the maps f and g are continuous, affine 
with respect to the controls and with linear growth. The set-valued 
map H enjoys the tracking property if and only if 

V (x, y) E Graph( H), Graph(RH(x, y)) =/= 0 

Then the system is regulated by the regulation law 

for almost all t 2:: 0, u(t) E RH(x(t), y(t); v(t)) 

When H =his single-valued and differentiable and when we set 
f(x, u) := c(x) + g(x)u and g(y, v) := d(y) + e(y)v where g(x)· and 
e(y)· are linear operators, we obtain the formula 

Rh(x; v) := U(x) n (h'(x)g(x))- 1(d(h(x))- h'(x)c(x) + e(h(x)v)) 
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8.2.2 Decentralization of a control system 

We assume that the viability set of the control system (8.8) is defined 
by constraints of the form K := L n h-1(M) where 

L C X and M C Y are closed and sleek 
h is a C1-map from X to Y { 

i) 
. ') 
~~.) 
n~ Vx E K := L n h-1(M), Y = h'(x)TL(x)- TM(h(x)) 

(8.10) 
We associate with the two systems (8.8), (8.9) the decoupled via

bility constroints 

i) \:It 2: 0, x(t) E L 

ii) \:It 2: 0, h(x(t)) = y(t) (8.11) 

iii) \:It 2: 0, y(t) E M 

It is obvious that the first component x( ·) of any pair of solutions 
(x(·), y(·)) to the system ((8.8),(8.9)) satisfying viability constraints 
(8.11) is a solution to the initial control system (8.8) viable in the 
set K defined by (8.10)iii). 

On the other hand, solutions to the system (8.8) viable inK can 
be obtained in two steps: 

- First, find a solution y(·) to the control system (8.9) viable 
inM 

and then, 
- second, find a solution x(·) the control system (8.8) satis

fying the viability constraints 

{ i) Vt 2: 0, x(t) E L 
ii) Vt 2: 0, h(x(t)) = y(t) 

(8.12) 

which does no longer involve the subset M C Y of constroints. 

This decentralization problem is a particular case of the observa
tion problem for the set-valued map H defined by 

H( ) ·= { h(x) if x E L & h(x) EM 
x · 0 ifnot 
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whose contingent derivative is equal under assumptions (8.10) to 

DH(x)(u) := { h'~)u ~~ :o: TL(x) & h'(x)u E TM(h(x)) 

We know that the regulation map of the initial system (8.8), (8.9) 
on the subset K defined by (8.10) is equal to 

RK(x) = {u E U(x) n TL(x) I h'(x)f(x, u) E TM(h(x))} 

The regulation map of the projected control system (8.9) on the 
subset M is defined by 

RM(Y) = {v E V(y) I g(y,v) E TM(y)} 

We introduce now the set-valued map RH which is equal to 

RH(x,y;v) := {u E U(x) nTL(x) I h'(x)f(x,u) = g(y,v)} 

We observe that 

Vx E K, RH(x, h(x); RM(h(x))) C RK(x) 

The regulation map regulating solutions to the system ((8.8),(8.9)) 
satisfying viability conditions (8.11) is equal to 

x 'Vt RH(x, h(x); RM(h(x))) 

Therefore, the regulation law feeding back the controls from the so
lutions are given by: for almost all t ~ 0 

{ 
i) v(t) E RM(y(t)) 
ii) u(t) E RH(x(t); v(t)) 

The first law regulates the solutions to the control system {8.g} 
viable in M and the second regulates the solutions to the control 
system {8.8} satisfying the viability constraints {8.12}. 

Remark- The reason why this property is called decentraliza
tion lies in the particular case when X:= yn, when h(x) := Ei=1 Xi 
and when the control system (8.8) is 

Vi= 1, ... , n, x~(t) = fi(xi(t), u(t)) where u(t) E Ui(Xi(t)) 
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constrained by 

n 

\f i = 1, ... , n, Xi(t) E Li & L Xi(t) E M 
i=l 

We introduce the regulation map RH defined by 

RH(XI, ... , Xn, y; v) 

295 

This system can be decentralized first by solving the viability 
problem for system (8.9) in the viability set M through the regulation 
law v(t) E RM(y(t)). 

This being done, the state-control (y(·), v(·)) being known, it re
mains in a second step to study the evolution of the n control systems 

Vi=l, ... ,n, x~(t) = fi(Xi,u(t)) 

through the regulation law 

n 

u(t) E RH(xi(t), ... ,xn(t),Lxi(t);v(t)) D 
i=l 

Economic Interpretation - We can illustrate this problem with 
an economic interpretation: the state x := (x1 , ... ,xn) describes an alloca
tion of a commodity y E M among n consumers. The subsets Li represent 
the consumptions sets of each consumer and the subset M the set of avail
able commodities. The control u plays the role of the price system of the 
consumptions goods and v the price of the production goods. Differential 
equations x~ = fi(xi, u) represent the behavior of each consumer in terms 
of the consumption price andy' = g(y, v) the evolution of the production 
process. 

The decentralization process allows us to decouple the production prob
lem and the consumption problem. 0 

8.2.3 Hierarchical Decomposition Property 

For simplicity, we restrict ourself here to the case when the obser
vation map H = h := h2 o h1 is the product of two differentiable 
single-valued maps h1 : X f---+ Y1 and h2 : Y1 f---+ Y2. 
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We address the following issue: Can we observe the evolution of 
a solution to a control problem (8.8) through h2 o hi by observing it 

first through hi by a control system 

for almost all t 2:0, y~(t) = 9I(YI(t),vi(t)) 
(8.13) 

and then, 
second, observing this system through h2. 

We introduce the maps Rh, Rh1 and Rh2 defined respectively by 

:= {u E U(x) I h'(x)f(x,u) = g(h(x),v) 
if v E V(h(x))} 

Rh1 (x;vi) = {u E U(x) I hi(x)f(x,u) = 9I(hi(x),vi) 
if VI E V (hI (X))} 

Rh2 (xi;v) ={viE VI(xi) I h~(xi)9I(xi,vi) = g(h2(xi),v) 
if v E V(h2(XI))} 

and we see at once that 

Rh1 (x; Rh2 (hi(x); v)) C Rh(x; v) 

Therefore, if the graph of v ""'-+ Rh1 ( x; Rh2 (hi ( x); v)) is not empty, we 
can recover from the evolution of a solution y( ·) to the control system 
(8.9) a solution YI(·) to the control system (8.13) by the tracking law 

for almost all t, VI(t) E Rh2 (YI(t),v(t)) 

and then, a solution x(·) to the control system (8.8) by the tracking 
law 

for almost all t, u(t) E Rh1 (x(t), vi(t)) 

This can illustrate hierarchical organization which is found in the 
evolution of so many macrosystems. The decomposition of the obser
vation map as a product of several maps determines the successive 
levels of the hierarchy. The evolution at each level obeys the con
straint binding its state to the state of the lower level. It is regulated 

by controls determined {in a set-valued way) by the evolution of the 

state-control of the lower level. 
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8.3 Partial Differential Inclusions 

We shall begin by the decomposable case (or the set-valued linear 
systems) for which we have explicit formulas, that we next use to 
solve the general problem of finding a contingent solution to the 
system of partial differential inclusions 

V x EX, Ah(x) E Dh(x)(J(x, h(x)))- G(x, h(x)) 

(where A E .C(Y, Y)) whose graph is a viable manifold. 
If h: X t---tY, we set 

llhlloo := sup llh(x)ll & llhiiA := sup lih(x)- h(y)li 
xEX #y llx - Yll 

When G is Lipschitz with nonempty closed images, we denote by 
IIGIIA its Lipschitz constant, the smallest of the constants l satisfying 

where B is the unit ball. 

8.3.1 Decomposable Case 

Let K c X, CI> : K ~ X and 'l1 : K ~ Y be set-valued maps and 
A E .C(Y, Y). We set 

and we recall that5 

A .- inf (Ax, x) 
llxll=l 

5 Indeed, y(t) := e-Aty being a solution to the differential equation y' (t) = 
-Ay(t) starting at y, we infer that 

! lly(t)ll 2 = 2(y(t), -Ay(t)) ::::; -2.XIIy(t)ll 2 

so that lly(t)ll ::S e->.tiiYII· 
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Consider the decomposable system of differential inclusions 

{ 
x'(t) E <P(x(t)) 

y'(t) E Ay(t) + \ll(x(t)) 
(8.14) 

which extends to the set-valued case the characteristic system of 
linear hyperbolic systems 

'V (x, y) E Graph(H*), AyE DH*(x, y)(<P(x))- \ll(x) (8.15) 

the solutions of which are the maps satisfying the tracking property. 
We denote by Scp(x, ·)the set of solutions x(·) to the differential 

inclusion x'(t) E <P(x(t)) starting at x and viable inK. 
We define the set-valued map H*: K "--+ Y by6 

(8.16) 

Theorem 8.3.1 Assume that 4>: K "--+X and \II: K "--+ Y are Mar
chaud maps and that K is a closed viability domain7 of 4>. If A is 
large enough, then H*: K "--+ Y defined by (8.16} is the largest solu
tion with linear growth to inclusion {8.15} and is bounded whenever 
\II is bounded. 

More precisely, if there exist positive constants a, {3 and 1 such 
that 

'V x E K, II<P(x)ll ::; a(llxll + 1) & ll\ll(x)ll ::; f3 + 'YIIxll 

and if A> a, then 

'V x E K, IIH*(x)ll ::; ~+A 2 a (llxll + 1) (8.17) 

6 By definition of the integral of a set-valued map (see Chapter 8 of SET
VALUED ANALYSIS for instance), this means that for every y E H*(x), there exists 
a solution x(·) E S~(x, ·)to the differential inclusion x'(t) E <l>(x(t)) starting at 
x and z(t) E llf(x(t)) such that 

y := -100 

e-Atz(t)dt E H*(x) 

7If K is closed, then H* is defined on the viability kernel Viab~(K). 
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Moreover, if K :=X and <I>, \ll are Lipschitz, then H* : X""'-+ Y is 
also Lipschitz (with nonempty values) whenever A is large enough: 

Formula (8.16) shows also that the graph of H* is convex (re
spectively H* is a closed convex process) whenever the graphs of the 
set-valued maps <I> and \ll are convex (respectively <I> and \ll are closed 
convex processes). 

Proof 
1. We prove first that the graph of H* satisfies contingent 

inclusion (8.15). 
Indeed, choose an element y in H*(x). By definition of the in

tegral of a set-valued map, this means that there exist a solution 
x(·) E Sq,(x, ·)to the differential inclusion x'(t) E <I>(x(t)) starting at 
x and viable inK and z(t) E \ll(x(t)) such that 

y := - fooo e-Atz(t)dt E H*(x) 

We check that for every T > 0 

By observing that 

{ 
~ f000 e-At (z(t)- z(t + r)) dt 

= _eA~-1 fooo e-Atz(t)dt + e;T J; e-Atz(t)dt 

we deduce that 

{ 
y+r(-eA~- 1 J0

00 e-Atz(t)dt+e;T J;e-Atz(t)dt) 

E H*(x+rUJ;x'(t)dt)) 

Since <I> is upper semicontinuous, we know that for any E: > 0 and t 
small enough, <I>(x(t)) c <I>(x) + ~::B, so that x'(t) E <I>(x) + E:B for 
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almost all small t. Therefore, <I>(x) being closed and convex, we infer 

that forT> 0 small enough, * J; x'(t)dt E <I>(x) + EB thanks to the 
Mean-Value Theorem. This latter set being compact, there exists a 
sequence of Tn > 0 converging to 0 such that _l_ ft0Tn x'(t)dt converges Tn 
to some u E <I>(x). 

In the same way, w being upper semicontinuous, w(x(t)) c w(x)+ 
cB for any E > 0 and t small enough, so that z(t) E w(x) + cB for 
almost all small t. The Mean-Value Theorem implies that 

1 lTn V n > 0, Zn := - z(t)dt E W(x) + cB 
'Tn 0 

since this set is compact and convex. Furthermore, there exists a 
subsequence of Zn converging to some z0 E w(x). Hence, since 

we infer that 

~ rn (e-At- 1) z(t)dt --+ 0 
Tn Jo 

Ay + zo E DH*(x, y)(u) 

so that Ay E DH*(x, y)(<I>(x))- w(x). 

2. Let us prove now that the graph of H* is closed when 
.X is large enough. Consider for that purpose a sequence of elements 
(xn, Yn) of the graph of H* converging to (x, y). There exist solutions 
XnO E s~(xn, ·) to the differential inclusion x' E <I>(x) starting at 
Xn and viable inK and measurable selections Zn(t) E w(xn(t)) such 
that 

Yn := -100 e-Atzn(t)dt E H*(xn) 

The growth of <I> being linear, there exists o: > 0 such that the 
solutions Xn ( ·) obey the estimate 

By Theorem 3.5.1, we know that there exists a subsequence (again 
denoted by) Xn ( ·) converging uniformly on compact intervals to a 

solution x(·) E S~(x, ·). 
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The growth of \II also being linear, we deduce that, setting un(t) := 
e-Atzn(t), 

llzn(t)ll :::; !3+1(llxnll+1)eo:t & llun(t)ll :::; {3e-.Xt+l(llxnll+1)e-{.X-o:)t 

When A > o:, Dunford-Pettis' Theorem implies that a subse
quence (again denoted by) Un (-) converges weakly to some function 
u(·) in £ 1 (0, oo; Y). This implies that Zn(·) converges weakly to some 
function z(·) in £ 1(0, oo; Y; e-.Xtdt). The Convergence Theorem 2.4.4 
states that z(t) E w(x(t)) for almost every t. Since the integrals Yn 
converge to- f000 e-Atz(t)dt, we have proved that 

y = - fooo e-Atz(t)dt E H*(x) 

3. Estimate (8.17) is obvious since any solution x(·) E 

8<1> (X, ·) satisfies 

V t ~ 0, llx(t)ll < (llxll + 1)eo:t 

so that, if A > o:, 

Assume now that M : K ~ Y is any set-valued contingent solu
tion to inclusion (8.15) with linear growth: there exists 6 > 0 such 
that for all x EX, IIM(x)ll :::; 6(llxll + 1). Since M enjoys the track
ing property, we know that for any (x, y) E Graph(M), there exists 
a solution ( x( ·), y( ·)) to the system of differential inclusions 

x'(t) E ~(x(t)) 
(8.18) 

y'(t)- Ay(t) E w(x(t)) 

starting at (x, y) such that y(t) E M(x(t)) for all t ~ 0. We also 
know that llx(t)ll:::; (llxll+1)eo:t so that lly(t)ll:::; 6(1+(11xll+1)eo:t). 
The second differential inclusion of the above system implies that 
z(t) := y'(t) - Ay(t) is a measurable selection of w(x(t)) satisfying 
the growth condition 

llz(t)ll :::; {3 + 'Y(IIxll + 1)eo:t 
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Therefore, if >. > a, the function e-Atz(t) is integrable. On the 
other hand, integrating by parts e-Atz(t) := e-Aty'(t)- e-At Ay(t), 
we obtain 

e-AT y(T)- y = loT e-Atz(t)dt 

which implies that 

by letting T r--t oo. Hence we have proved that8 M(x) c H*(x). 

4. - Assume now that <p and \l1 are Lipschitz, take any pair 
of elements x1 and x2 and choose Yl =- j000 e-Atz1(t)dt E H*(x1), 
where 

By the Filippov Theorem 5.3.1, there exists a solution x2(·) E Sq,(x2, ·) 
such that 

We denote by z2(t) the projection of z1(t) onto the closed convex 
set "W(x2(t)), which is measurable thanks to Corollary 8.2.13 of SET
VALUED ANALYSIS and which satisfies 

Therefore, if>. > ll<piiA, Y2 = - j0
00 e-Atz2(t)dt belongs to H*(x2) 

and satisfies 

8This proof actually implies that any set-valued contingent solution M with 
polynomial growth in the sense that for some p 2': 0, 

V x EX, IIM(x)ll <:: 8(llxiiP + 1) 

is contained in H* if >. > ap, i.e., that there is no contingent solution with 
polynomial growth other than with linear growth (and bounded when 'Y = 0). 
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We prove now a comparison result between solutions to two de
composable partial differential inclusions. 

When L c X and M c X are two closed subsets of a metric 
space, we denote by 

b.(L,M) := sup inf d(y,z) = supd(y,M) 
yELzEM yEL 

their semi-Hausdorff distance9 , and recall that b.(L, M) = 0 if and 
only if L C M. If <I> and \ll are two set-valued maps, we set 

b.( <I>, W) 00 = sup b.(<I>(x), \ll(x)) := sup sup d(y, \ll(x)) 
xEX xEX yE.P(x) 

Theorem 8.3.2 Consider now two pairs (<T>1, \ll1) and (<I>2, \ll2) of 
M archaud maps defined on X and their associated solutions 

V x EX, H*i(x) := - fooo e-Atwi(Sc~~i(x, t))dt (i = 1, 2) 

If the set-valued maps <I>2 and \ll2 are Lipschitz, and if,\ > II<T>2IIA, 
then 

Proof- Consider the two pairs (<I>1, \ll1) and (<T>2, \ll2) of set
valued maps and choose Yl =- f000 e-Atz1(t)dt E H*1(x) where 

In order to compare x1(·) with the solution-set Sc~~2 (x, ·) via the Fil
ippov Theorem, we use the estimate 

d(x~(t), <T>2(x1(t))) :::; sup d(z, <T>2(x1(t)))) :::; b.(<T>1, <T>2)oo 
zE.P1 (x1 (t)) 

Therefore, there exists a solution x2(·) E Sc~~2 (x, ·) such that 

etlf.P21iA _ 1 
V t ~ 0, llx1(t)- x2(t)ll :::; b.(<T>1, <I>2)oo II<T>2IIA 

9 The Hausdorff distance between Land M is max (~(L, M), ~(M, L)), which 
may be equal to oo. 
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by Filippov's Theorem. As before, we denote by z2(t) the projection 
of z1(t) onto the closed convex set 'lll2(x2(t)), which is measurable 
and satisfies 

{ 
'V t ~ 0, llz1(t)- z2(t)ll ~ ~('lll1, 'lll2)oo + ll'lli2IIAIIX1(t)- x2(t)ll 

~ ~(WI, 'lll2)oo + ll'lli2IIA~( <!>1' <I>2)oo eti~~~~~~A-l 

Therefore Y2 = - f000 e-Atz2(t)dt belongs to H*2(x) and satisfies 

< fo00 e->.t ~('Ill~, 'll12)oodt + ll'lli2IIA~( <I>1, <I>2)oo j 000 etl~~~~~t-l e->.tdt 

< .!l(wl,w2)oo + II'~~2IIA ~(<I> <I> ) o 
>. >.(>.-114>2 II A) 1' 2 00 

When <I>, 'Ill are single-valued, we obtain: 

Proposition 8.3.3 Assume that <p and '1/J are Lipschitz and that '1/J 
is bounded. Then if A> 0, the map h := r(cp,'I/J) defined by 

h(x) =- fooo e-At'ljJ(SV'(x, t))dt 

is the unique bounded single-valued solution to the contingent inclu-
sion 

Ah(x) E Dh(x)(cp(x))- '1/J(x) (8.19) 

and satisfies 

The map (cp,'I/J) ~----+ r(cp,'I/J) is continuous from C(X,X) x C(X, Y) to 
C(X, Y): 

The proof follows Theorems 8.3.1 and 8.3.2. 
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8.3.2 Existence of a Lipschitz Contingent Solution 

We shall now prove the existence of a contingent single-valued solu
tion to inclusion 

\;/ x EX, Ah(x) E Dh(x)(f(x, h(x)))- G(x, h(x)) (8.21) 

Theorem 8.3.4 Assume that the map f : X x Y t--t X is Lipschitz, 
that G : X x Y ~ Y is Lipschitz with nonempty convex compact 
values and that 

V x, y, IIG(x, y)JI :S c(1 + IIYII) 

Let A E .C(Y, Y) such that A> max(c, 4vJJJIIAIJGIJA) {where v is the 
dimension of X). Then there exists a bounded Lipschitz contingent 
solution to the partial differential inclusion {8.21). 

Proof - Since for every Lipschitz single-valued map s(·), 
x ~ G(x, s(x)) is Lipschitz (with constant JIGIIA (1 + JlsJJ)A) and 
has convex compact values, Theorem 9.4.3 of SET-VALUED ANAL
YSIS implies that the subset G8 of Lipschitz selections 1/J of the 
set-valued map x ~ G(x, s(x)) with Lipschitz constant less than 
vJJGIIA (1+JisiJA) is not empty (where v denotes the dimension of X.) 
We denote by 'Ps the Lipschitz map defined by <p8 (x) := f(x, s(x)), 

with Lipschitz constant equal to IIJIIA(1 + llsJJA)· 
The solutions h to inclusion (8.21) are the fixed points to the 

set-valued map R: C(X, Y) ~ C(X, Y) defined by 

R(s) := {r(<ps, 1/J)}l/!EG. (8.22) 

Indeed, if h E R( h), there exists a selection 1/J E G h such that 

Ah(x) E Dh(x)(f(x, h(x)))-'1/J(x) C Dh(x)(f(x, h(x)))-G(x, h(x)) 

Since JJG(x, y) II ::; c(1 + JJyJI), we deduce that any selection 1/J E Gs 
satisfies 

Therefore, Proposition 8.3.3 implies that 

\;/hE R(s), Jlhlloo ::; ~(1+JisJJ ) & JJhJJ < vJJGJJA(1 + JJsJJA) 
A 00 A - A- IIJIIA(1 + llsiJA) 
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We first observe that when >. > c, 

c c 
V s E C(X, Y) such that llslloo ~ -- V hE R(s) llhll < -->.-c' ' 00 - >.-c 

When>.> 4vllfiiA IIGIIA, we denote by 

>.-II filA- viiGIIA -J>-2 - 2>-(IIJIIA + viiGIIA) +(II filA- viiGIIA)2 

P>. := 2IIJIIA 
the smallest root of the equation 

which is positive. We observe that 

lim AP>. 
>.-++oo 

and infer that 

V s E C(X, Y) such that llsiiA ~ P>., V hE R(s), llhiiA ~ P>. 

because h being of the form f(<p 8 , '!j!8 ), satisfies by Proposition 8.3.3: 

llhll < ll7jJsiiA < v IIGIIA (1 + llsi!A) < V IIGIIA (1 + P>.) = 
A- A -IIIPsiiA - A- IIJIIA(1 + llsi!A) - A- IIJIIA(1 + P>.) P>. 

Let us denote by B~(>.) the subset defined by 

B~(>.) := {hE C(X, Y) I llhlloo ~ ). ~ C & llhiiA ~ P>.} 

which is compact (for the compact convergence topology) thanks to 
Ascoli's Theorem. 

We have therefore proved that when >. > max(c, 4vllfiiAIIGIIA), 
the set-valued map R sends the compact subset B~(>.) to itself. 

It is obvious that the values of Rare convex. Kakutani's Fixed
Point Theorem implies the existence of a fixed point h E R( h) if we 
prove that the graph of R is closed. 

Actually, the graph of R is compact. Indeed, let us consider any 
sequence (sn, hn) E Graph(R). Since B~(>.) is compact, a subse
quence (again denoted by) (sn, hn) converges to some function 

(s, h) E B~(>.) x B~(>.) 
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But there exist bounded Lipschitz selections '1/Jn E Gsn with Lipschitz 
constant viiGIIA(l + P>..) such that 

v n ~ 0, hn = r(<psn' '1/Jn) 

Therefore a subsequence (again denoted by) '1/Jn converges to some 
function 'ljJ E G8 • Since <p8 n converges obviously to <p8 , we infer that 
hn converges to f(<p8 ,'1/J) where 'ljJ E G8 , i.e., that hE R(s), since r 
is continuous by Proposition 8.3.3. D 

8.3.3 Comparison Results 

The point of this section is to compare two solutions to inclusion 
(8.21), or even, a single-valued solution and a contingent set-valued 
solution M : X --vt Y. 

We first deduce from Theorem 8.3.2 the following "localization 
property": 

Theorem 8.3.5 We posit the assumptions of Theorem 8.3.4, with 
A E .C(Y, Y) such that ), > max(c, 4vllfiiAIIGIIA) (where v is the 
dimension of X). Let q, : X --vt X and W : X --vt Y be two Lipschitz 
and Marchaud maps with which we associate the set-valued map H* 
defined by 

Then any bounded single-valued contingent solution h( ·) to inclusion 
(8.21) satisfies the following estimate 

{ 
V x EX, d(h(x), HAx)) ::; * supxEX ~(G(x, h(x)), 'll(x)) 

+ >..(1~~~~11A) SUPxEX d(f(x, h(x)), q,(x)) 

In particular, if we assume that 

V y E Y, f(x, y) E q,(x) & G(x, y) C 'll(x) 

then all bounded single-valued contingent solutions h( ·) to inclusion 
(8.21) are selections of H*. 
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Proof- Let h be any bounded single-valued contingent solu
tion to inclusion (8.21). One can show that h can be written in the 
form 

h(x) = - fooo e-Atz(t)dt where z(t) E G(x(t), h(x(t))) 

by using the same arguments as in the first part of the proof of 
Theorem 8.3.1. 

We also adapt the proof of Theorem 8.3.2 with cl>1 := f(x, h(x)), 
ZI(t) := z(t), cl>2 := cp and W2 := W, to show that the estimates 
stated in the theorem hold true. D 

8.4 The Variational Principle 

We characterize in this section solutions to the partial differential 
inclusion (8.3) through a variational principle. For that purpose, we 
recall that 

u(M,p) := sup < p, z > & u~(M,p) := inf < p, z > 
~M ~M 

denote the support functions of M c X and B* the unit ball of Y*. 
We also need the following 

Definition 8.4.1 Let H : X ~ Y be a set-valued map and (x, y) 
belong to its graph. We shall say that the transpose DH(x, y)* : 
Y* ~X* of the contingent derivative DH(x, y) is the codifferential 
of Hat (x,y). When H := h is single-valued, we set Dh(x)* := 

Dh(x,h(x))*. 

8.4.1 Definition of the Functional 

Consider a closed subset K c X. We introduce the nonnegative 
functional ci> defined on the space C(K, Y) of continuous maps by 

cl>(h) := sup sup sup (u~(F(x, h(x)),p)- u(G(x, h(x)), q)) 
qEB* xEK pEDh(x)*(q) 

Theorem 8.4.2 (Variational Principle) Let the set-valued maps 
F and G be upper semicontinuous with convex and compact values. 
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Let c > 0. Then a single-valued map h : K f--t Y is a solution to the 

partial differential inclusion 

V x E K, 0 E Dh(x)(F(x, h(x)))- G(x, h(x)) + cB 

if and only if <P(h) ::; c. 
Consequently, h is a solution to the partial differential inclusion 

(8.3} if and only if <P(h) = 0. 

Proof~ The first inclusion is easy: let u E F(x, h(x)), v E 

G(x, h(x)) and e E cB be such that v-eE Dh(x)(u). Then, for any 
q E B* and p E Dh(x)*(q), we know that 

so that 

< p, u > - < q, v- e >::; 0 

{ 
u11 (F(x, h(x)),p)- u(G(x, h(x)), q) 

::; < p,u >- < q,v >:S< q,e >::; c 

By taking the supremum with respect to x E K, q E B* and p E 

Dh(x)*(q), we infer that <P(h) ::; c. 
Conversely, we can write inequality <P(h) ::; c in the form of the 

minimax inequality: for any x E K, q E Y*, 

sup inf inf ( < p, u > - < q, v >) :S cllqll 
pEDh(x)*(q) uEF(x,h(x)) vEG(x,h(x)) 

Noticing that cllqll = u(cB, q) and setting 

f3(p,q;u,v,e) := < p,u >- < q,v- e > 

this inequality can be written in the form: for every x E K, 

sup inf f3(p, q; u, v, e) ::; 0 
(p,-q)EGraph(Dh(x) )- ( u,v,e)EF(x,h(x )) x G(x,h(x)) xcB 

Since the set F(x, h(x)) x G(x, h(x)) x cB is convex compact and 
since the negative polar cone to the graph of Dh(x) is convex, the 
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Lop-Sided Minimax Theorem 3.7.10 implies the existence of uo E 

F(x, h(x)), v0 E G(x, h(x)) and eo E cB such that 

SUP(p,-q)EGraph(Dh(x))- ( < p, uo > - < q, vo - eo >) = 

SUP(p,-q)EGraph(Dh(x))- inf(u,v,e)EF(x,h(x))xG(x,h(x))xcB f3(p, q; u, v, e) 

:::; 0 

This means that (uo, vo- eo) belongs to the bipolar of the graph 
of Dh(x), i.e., its closed convex hull co(Graph(Dh(x))). In other 
words, we have proved that 

(F(x, h(x)) x (G(x, h(x)) + cB)) nco ( TGraph(h)(x, h(x))) =/= 0 

But by Theorem 3.2.4, this is equivalent to the condition 

(F(x, h(x)) x (G(x, h(x)) + cB)) n TGraph(h)(x, h(x)) =/= 0 

i.e., h is a solution to the partial differential inclusion. 0 

Theorem 8.4.3 Assume that the set-valued maps F and G are up
per semicontinuous with nonempty convex compact images. Let 1t c 
C(K, Y) be a compact subset for the compact convergence topology. 

Assume that c := infhE7-l <I>( h) < +oo. Then there exists a solu
tion h E 1t to the partial differential inclusion 

0 E Dh(x)(F(x, h(x)))- G(x, h(x)) + cB 

Since 1t is a compact subset for the compact convergence topol
ogy, it is sufficient to prove that the functional <I> is lower semicon
tinuous on the space C(K, Y) for this topology: If it is proper (i.e., 
different from the constant +oo), it achieves its minimum at some 
h E 1-l, which is a solution to the above partial differential inclusion 
thanks to Theorem 8.4.2. So Theorem 8.4.3 follows from Proposi
tion 8.4.4 below: 

Proposition 8.4.4 Assume that the set-valued maps F and G are 
upper semicontinuous with nonempty convex compact images. Then 
the functional <I> is lower semicontinuous on equicontinuous subsets 
of the space C(K, Y) for the compact convergence topology. 

To prove this result, we need more information about the convergence 
properties of the codifferentials. 
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8.4.2 Convergence Properties of the Codifferentials 

Proposition 8.4.5 Let X, Y be finite dimensional vector-spaces 
and K c X be a closed subset. Assume that h is the pointwise 
limit of an equicontinuous family of maps hn : K t---t Y. Let x E K 
and p E Dh(x)*(q) be fixed. Then there exist subsequences of el
ements Xnk E K converging to x, qnk converging to q and Pnk E 

Dhnk(xnk)*(qnk) converging top. 
If the functions hn are differentiable, we deduce that there exist 

subsequences of elements Xnk E K converging to x and qnk converging 
to q such that h~k(xnk)*(qnk) converges top. 

Proof - We can reformulate the statement in the following 
way: we observe that p E Dh(x)*(q) if and only if 

(p,-q) E (TGraph(h)(x,h(x)))-

so that we have to prove that there exist subsequences Xnk E K and 

converging to x and (p, -q) respectively. Therefore the proposition 
follows from 

Theorem 8.4.6 (Frankowska) Let us consider a sequence of closed 
subsets Kn and an element x E Liminfn_.00Kn (assumed to be nonempty.) 
Set K# := Limsupn_.00Kn. 

Then, for any p E (T K~ ( x))-, there exist subsequences of ele-

ments Xnk E Knk and Pnk E ( TKnk ( Xnk))- converging to p and x 
respectively: 

Proof- First, it is sufficient to consider the case when x 
belongs to the intersection n~=l Kn of the subsets Kn. If not, we set 
Kn := Kn + x - Un where Un E Kn converges to x. We observe that 
X E n~=l Kn and that TKn (xn) = TKn (xn- X+ Un)· 
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Let p E (TK~(x))- be given with norm 1. We associate with any 
positive >.the projection x~ of x + >.p onto Kn: 

llx + >.p- x~~~ = min llx + >.p- Xnii 
XnEKn 

(8.23) 

and set 

because x+>.p-x~ = >.(p-v~) belongs to the polar cone ( TKn (x~))
to the contingent cone TKn (x~) by Proposition 3.2.3. 

Let us fix for the time >. > 0. By taking Xn = x E Kn in 
(8.23), we infer that llv~ll ~ 2. Therefore, the sequences x~ and v~ 
being bounded, some subsequences x~, and v~, converge to elements 
x>.. E K" and v>.. = x~-x respectively. 

Furthermore, there exists a sequence >.k ---t 0+ such that v>..k 

converge to some v E TK~(x) because llv>..ll < 2 and because for 
every >., 

Therefore (p,v) ~ 0 since p E (TK~(x))-. 
On the other hand, we deduce from (8.23) the inequalities 

which imply, by passing to the limit, that llvll 2 ~ 2(p, v) ~ 0. 
We have proved that a subsequence v>-.k converges to 0, and thus, 

that a subsequence v~z = p - P~Z converges also to 0. The lemma 
ensues. D 

Proof of Proposition 8.4.4 - Assume that <I> is proper. 
Let hn be a sequence of <I> satisfying for any n, <I>(hn) ~ c and 
converging to some map h. We have to check that <P(h) ~c. Indeed, 
fix x E K, q E B* and p E Dh(x)*(q). By Proposition 8.4.5, there 
exist subsequences (again denoted by) Xn E K converging to x, qn 
converging to q and Pn E Dhn(xn)*(qn) converging to p such that 
hn(xn) converges to h(x). 
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We can always assume that llqnll :S 1. If not, we replace Qn by 

Qn := ~~~~~~~ Qn and Pn by 

P~ ·- llqll p E Dh (x )*(q~ ) 
n .- llqnll n n n n 

Since F and G are upper semicontinuous with compact values, 
we know that for any (p, q) and c > 0, we have 

{ 
0" 11 (F(x, h(x)),p)- CT(G(x, h(x)), q) 
:S 0" 11 (F(xn, hn(Xn)),Pn)- O"(G(xn, hn(Xn)), q) + c :S <P(hn) + c 

for n large enough. Hence, by letting n go to oo, we infer that for 
any c > 0, 

0" 11 (F(x, h(x)),p)- O"(G(x, h(x)), q) ::; c + c 

Letting c converge to 0 and taking the supremum on q E B*, x E K 
and p E Dh(x)*(q), we infer that <P(h) ::; c. D 

8.5 Feedback Controls Regulating Smooth 
Evolutions 

Consider a control system (U, !): 

{ i) for almost all t, x'(t) = f(x(t), u(t)) (8.24) 
ii) where u(t) E U(x(t)) 

Let (x, u) ---t cp(x, u) be a nonnegative continuous function with 
linear growth. 

We have proved in Chapter 7 that there exists a closed regulation 
map R<p C U larger than any closed regulation map R : K ~ Z 
contained in U and enjoying the following viability property: For 
any initial state xo E Dom(R) and any initial control uo E R(xo), 
there exists a solution (x(·), u(·)) to the control system (8.24) starting 
at (xo, uo) such that 

V t ~ 0, u(t) E R(x(t)) 
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and 
for almost all t ~ 0, llu'(t)ll ::::; <p(x(t), u(t)) 

Let K c Dom(U) be a closed subset. We also recall that a closed 

set-valued map R : K rvt Z is a feedback control regulating viable 
solutions to the control problem satisfying the above growth condition 
if and only if R is a solution to the partial differential inclusion 

\:1 x E K, 0 E DR(x, u)(f(x, u))- <p(x, u)B 

satisfying the constraint 

\:1 x E K, R(x) c U(x) 

In particular, a closed graph single-valued regulation map r: K ~--+ 

Z is a solution to the partial differential inclusion 

\:1 x E K, 0 E Dr(x)(f(x, r(x)))- <p(x, r(x))B (8.25) 

satisfying the constraint 

\:1 x E K, r(x) E U(x) 

Such a solution can be obtained by a variational principle: 
We introduce the functional 4> defined by 

.P(r) := sup sup sup ( < p, f(x, r(x)) > -<p(x, r(x))llqll) 
qEB* xEK pEDr(x)*(q) 

Theorem 8.5.1 Let R c C(K, Y) be a nonempty compact subset 
of selections of the set-valued map U (for the compact convergence 
topology.) 

Suppose that the functions f and <p are continuous and that 

c := inf .P(r) < +oo 
rER 

Then there exists a solution r( ·) to the partial differential inclusion 

\:1 x E K, 0 E Dr(x)(f(x, r(x)))- (<p(x, r(x)) + c)B 



Chapter 9 

Lyapunov Functions 

Introduction 

Consider a differential inclusion x' E F(x), a function V : X ~---+ 

R+ U {+oo} and a real-valued function w(·). 
The function V is said to enjoy the Lyapunov property if and only 

if for any initial state xo, there exists a solution to the differential 
inclusion satisfying 

V t;:::: 0, V(x(t)) :::; w(t) 

Such inequalities allow us to deduce many properties on the 
asymptotic behavior of V along the solutions to the differential in
clusion (in numerous instances, w(t) goes to 0 when t ~ +oo, so 
that V(x(t)) converges also to 0). 

Recall that the epigraph of V is defined by 

ep(V) := {(x, A) EX X R I V(x) :::; A} 

We see right away that when w(·) is a solution to a differential 
equation w' = -cp(w), we have actually a viability problem in the 
epigraph of V because the Lyapunov property can be written: For 
any initial state xo, there exists a solution to the differential inclusion 
satisfying 

V t;:::: 0, (x(t), w(t)) E ep(V) 

So that we can apply viability theorems whenever the epigraph 
of Vis closed, i.e., whenever Vis lower semicontinuous: V enjoys the 

315 



316 9- Lyapunov Functions 

Lyapunov property if and only if its epigraph is a viability domain 
of the map (x, w) ~ F(x) x { -rp(w)}. 

Therefore, our first task is to study the contingent cone to the 

epigraph of an extended function V at some point (x, V(x)): it is 
the epigraph of a function denoted Dt V ( x) and called the contingent 
epiderivative of V at x. It is an extension of the concept of directional 

derivative: If V is Frechet differentiable at x, then 

VuE X, Dt V(x)(u) = (V'(x), u) 

It is also an extension of the lower Dini derivative when V is lo
cally Lipschitz around x and an extension of the derivative from the 
right of a convex function. We devote the first section to a minimal 

presentation of these contingent epiderivatives, which are studied 
thoroughly in Chapter 6 of SET-VALUED ANALYSIS. 

Hence it is no surprise that lower semicontinuous extended func
tions V which satisfy the Lyapunov property are solutions to the 
contingent Hamilton-Jacobi inequality 

V x E Dom(V), inf DtV(x)(v) + rp(V(x)):::; 0 
vEF(x) 

We call them Lyapunov functions (with respect to rp) because, when 
Vis differentiable and F = f is single-valued, we recognize the clas
sical definition of a Lyapunov function, solution to 

< V'(x), f(x) > +rp(V(x)) :::; 0 

Therefore, the use of contingent epiderivatives allows lower semi
continuous extended functions to rank among candidates to be solu
tions to such a contingent Hamilton-Jacobi inequality. 

This is of particular importance whenever state constraints are 

involved, because the restriction of a smooth function to a closed 
subset is no longer smooth1. 

We prove and exploit these facts in the second section. 
The main question we face is how to construct Lyapunov func

tions. Ever since Lyapunov proposed a century ago his second method 

1By the way, we observe that the indicator function '1f;K of a closed subset K 

is a Lyapunov function (for t.p = 0) if and only if K is a viability domain. 
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for studying the behavior of a solution around an equilibrium, find
ing Lyapunov functions for such and such differential equation (or 
partial differential equation) has been a source of numerous problems 
requiring most often many clever tricks. The same difficulty is found 
here. 

However, using the concept of viability kernel, we are able to 
assert in section 9.3 the existence of a smallest lower semicontinuous 
Lyapunov function U'f larger than or equal to a given function U. 
Hence, starting with any lower semicontinuous function U, we know 
that there exists a lower semicontinuous Lyapunov function U'f (may 
be identically equal to +oo) such that 

V t ~ 0, U(x(t)) ~ U'f(x(t)) ~ w(t) 

whenever the initial state is in the domain of U'f. 
This may be quite useful when U is the distance function dM(-) 

to a subset. For instance, in the case when cp(w) = aw, the do
main of this Lyapunov function d~* provides the set of states (the 
basin) from which a solution to the differential inclusion converges 
exponentially to M because 

The results about Lyapunov functions are generalized in the sec
tion 9.4 to obtain inequalities of the type 

V t ~ s ~ 0, V(x(t))- V(x(s)) + 1t W(x(r), x'(r)dr) ~ 0 

which are very useful for studying the asymptotic behavior of solu
tions to differential inclusions and for sufficient conditions for op
timality in optimal control. These important issues are not treated 
here: we refer to the monograph CONTROL OF NONLINEAR SYS

TEMS AND DIFFERENTIAL INCLUSIONS by H@me Frankowska for 
an exhaustive study of generalized solutions (both contingent and 
viscosity) to Hamilton-Jacobi equations. 

We also show as an example that gradient inclusions x' E -8V ( x) 
(where 8V(x) denotes the generalized gradient) have slow solutions 
along which V does not increase when V is locally Lipschitz. We 



318 9- Lyapunov Functions 

refer to Section 3.4 of DIFFERENTIAL INCLUSIONS for the case of 
lower semicontinuous convex extended functions. 

A real-valued function defines the preorder ~ by 

x ~ y if and only if V(x)::; V(y) 

Since different functions can yield the same preorder, since some 
(total) preorders cannot be derived from a cost function and since it 
is needed to consider also any preorder, total or not, in such fields 
as economics, we address the problem of characterizing preorders 
satisfying the Lyapunov property: for any initial state xo, there exists 
a solution to the differential inclusion satisfying 

V t ;:::: s ;:::: 0, x(t) ~ x(s) 

This problem and the comparison of solutions to two differential 
inclusions are the topics of section 9.5. 

As an application, we touch upon the asymptotic observability 
problem for differential inclusions in the section 9.6. Here is the 
problem (for differential equations). We do not know the solution x(·) 
to a differential equation x' = f(x), i.e., its initial value which would 
allow us to reconstruct it, but only its observation y(t) = h(x(t)) 
where h : X t---t Y is an observation map. 

How can we reconstruct the solution x(·) knowing only y(-)? We 
investigated this tracking problem in Chapter 8. 

Here, we address a less demanding problem: we only wish to 
approximate the solution x(t) for large t's. In other words, we would 
like to build a differential equation z'(t) = g(z(t),y(t)) which yields 
a solution z( ·) such that 

U(x(t)- z(t)) ::; w(t) 

where U measures some kind of distance and w(t) goes to 0. This 

problem is known under the name of asymptotic observability. 
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9.1 Contingent Epiderivatives 

9.1.1 Extended Functions and their Epigraphs 

A function V : X f-+ R U { ±oo} is called an extended (real-valued) 
function. Its domain is the set of points at which V is finite: 

Dom(V) := {xEX I V(x)#±oo} 

A function is said to be nontrivial2 if its domain is not empty. Any 
function V defined on a subset K C X can be regarded as the ex
tended function VK equal to Von K and to +oo outside of K, whose 
domain is K. 

Since the order relation on the real numbers is involved in the 
definition of the Lyapunov property (as well as in minimization prob
lems), we no longer characterize a real-valued function by its graph, 
but rather by its epigraph 

£p(V) := {(x,A) EX x R I V(x) :SA} 

or by its hypograph defined in a symmetric way by 

'Hp(V) := {(x,A) EX x R I V(x) ~A} = -£p(-V) 

The graph of a function is then the intersection of its epigraph 
and its hypograph. 

We also remark that some properties of a function are actually 
properties of their epigraphs. For instance, an extended function V 
is convex (resp. positively homogeneous) if and only if its epigraph 
is convex (resp. a cone). The epigraph of V is closed if and only if 

V x E X, V ( x) = lim inf V (y) 
y-.x 

For extended functions V which never take the value -oo, this is 
equivalent to the lower semicontinuity of V. We also observe that any 
positively homogeneous extended function is non trivial whenever 
V(O) # -oo. In this case, V(O) = 0. 

2 Such a function is said to be proper in convex and non smooth analysis. We 
chose this terminology for avoiding confusion with proper maps. 
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Indicators '1/JK of subsets K defined by 

'1/JK(x) := 0 if x E K and + oo if not 

which characterize subsets (as chamcteristic functions do for other 
purposes), provide important examples of extended functions. 

The indicator '1/J K is lower semicontinuous if and only if K is 
closed and '1/J K is convex if and only if K is convex. One can regard 
the sum V + '1/J K as the restriction of V to K. 

We recall the convention inf(0) := +oo. 

9.1.2 Contingent Epiderivatives 

Before defining the contingent epiderivatives of a function by taking 
the contingent cones to its epigraph, we need to prove the following 
statement: 

Proposition 9.1.1 Let V : X ~---+ RU{ ±oo} be a nontrivial extended 
function and x belong to its domain. 

Then the contingent cone to the epigmph of V at ( x, V ( x)) is the 
epigmph of an extended function denoted Dr V ( x): 

ep(Dr V(x)) = Tep(V)(x, V(x)) 

equal to3 : 

VuE X, Dr V(x)(u) = liminf (V(x + hu')- V(x))/h 
h-+O+,u1-+u 

3We can reformulate this formula below by saying that the contingent epi
derivative Dr V(x) is the lower epilimit (See Definition 9.2.4) of the differential 
quotients 

u "'-' "\h V(x)(u) := V(x + h~- V(x) 

Indeed, we know that the contingent cone 

. &p(V)- (x, V(x)) 
Tep(V)(x, V(x)) = Limsuph-o+ h 

is the upper limit of the differential quotients Ep(V)-ko:,V(o:)) when h --+ 0+. It is 
enough to observe that 

&p(DrV(x)) := Tep(V)(x,y) & &p(VhF(x,y)) = &p(V)-~x, V(x)) 

to conclude. 
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Proof - Indeed, to say that 

(u,v) E TEp(V)(x, V(x)) 

amounts to saying that there exist sequences hn > 0 converging to 
0+ and ( un, vn) converging to ( u, v) satisfying 

w O V(x + hnun)- V(x) < 
v n ~ , hn Vn 

This is equivalent to saying that 

VuE X, liminf (V(x + hu')- V(x))/h ~ v D 
h-+O+,u'-+u 

Definition 9 .1. 2 Let V : X 1--+ R U { ±oo} be an extended function 
and x E Dom(V). We shall say that the function Dr V(x) is the 
contingent epiderivative of V at x and that the function V is con
tingently epidifferentiable at x if for any u E X, Dr V ( x )( u) > -oo 
(or, equivalently, if DrV(x)(O) = 0). 

A function V is episleek (at x) if its epigraph is episleek (at 
(x, V(x))). 

Consequently, the epigraph of the contingent epiderivative at x is 
a closed cone. It is then lower semicontinuous and positively homo
geneous whenever V is contingently epidifferentiable at x. 

We shall need also the contingent cone to the epigraph of V at 
points (x, w) where w > V(x): 

Proposition 9.1.3 Let V: X 1--+ RU{±oo} be a nontrivial extended 
function and x belong to its domain. For all w ~ V ( x), 

Tt:p(V)(x, w) C TDom(v)(x) x R 

and for all w > V(x), 

Dom(Dr V(x)) x R c Tt:p(V)(x, w) 

If the restriction of V to its domain is upper semicontinuous, then, 
for all w > V(x), 
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Proof 
1. Fix w 2:: V(x). Let us assume that (u, v) belongs to 

T£p(V)(x, w). We infer that there exist sequences Un, Vn and hn > 0 
converging to u, v and 0 such that 

We thus deduce that u belongs to the contingent cone to the 
domain of Vat x, and thus, that T£p(V)(x, w) C TDom(v)(x) x R. 

2. If u belongs to the domain of the contingent epideriva-
tive of V at x, if w > V(x) and if v is any real number, we check 
that (u, v) belongs to T£p(V)(x, w). 

Indeed, there exist sequences of elements hn > 0, Un and Vn 
converging to 0, u and Dt V(x)(u) respectively such that 

But we can write 

Since w- V(x) + hn(v- vn) is strictly positive when hn is small 
enough, we infer that ( x + hn Un, w + hn v) belongs to the epigraph of 
V, i.e., that (u, v) belongs to the cone T£p(V)(x, w). 

3. Let w be strictly larger than V(x) and u belong to 
TDom(V)(x). Then there exist sequences Un and hn > 0 converging 
to u and 0 such that V(x + hnun) < +oo for all n. 

When V is upper semicontinuous on its domain, for all E E 

]0, w-~(x) [, there exists rJ > 0 such that, for all hnllunll < 'r}, we 
obtain 

V(x+hnun) :S: V(x)+c <w-E 

Let v be given arbitrarily in R. Then, for any hn > 0 when v 2:: 0 or 
for any hn E]O, ~v [ when v < 0, inequality w-E :S: w + hnv implies 
that V(x + hnun) :S: w + hnv, i.e., that the pair (u, v) belongs to 
T£p(V)(x, w). D 

We then have to compare contingent derivatives with the contin
gent epiderivatives and hypoderivatives, defined in a analogous way: 
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the hypograph of the contingent hypoderivative D~ V(x) of V at x is 
the contingent cone to the hypograph of V at (x, V(x)): 

£p(D~ V(x)) = Trtp(V)(x, V(x)) 

It is equal to 

\:f u EX, D~ V(x)(u) = lim sup (V(x + hu')- V(x))/h 
h->O+,u'->u 

Proposition 9.1.4 Let V : X ~ R U { ±oo} be an extended func
tion and x belong to its domain. Take any u E Dom( Dr V ( x)) n 
Dom(D~ V(x)). Then 

{Dr V(x)(u), D~ V(x)( u)} c DV(x)(u) c [Dr V(x)(u), D~ V(x)(u)] 

Equality 
DV(x)(u) = [Dr V(x)(u), D~ V(x)(u)] 

hods true either when V is continuous on a neighborhood of x or 
when V is episleek at x. 

Proof - Since the contingent epiderivative of V at x in the 
direction u is equal to 

D V( )( ) l . . f V(x + hu')- V(x) r X U := 1m1n 
h->O+,u'->u h 

we see that Dr V(x)(u) is the limit of a subsequence of V(x+h~)-V(x), 
and thus, that DrV(x)(u) E DV(x)(u). The same is true with the 
contingent hypoderivative. 

Since Graph(V) = £p(V) nrtp(V), we deduce that the inclusions 

TGraph(v)(x, V(x)) C Tt:p(V)(x, V(x)) n Trtp(V)(x, V(x)) 

can be translated into 

Graph(DV(x)) c Ep(Dr V(x)) n Jtp(Dt V(x)) 

from which the inclusion DV(x)(u) c [Dr V(x)(u), Dt V(x)(u)] fol
lows. 
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The image DV(x)(u) being convex (and thus, an interval) when V 
is episleek at x, we infer that [Dr V(x)(u), D! V(x)(u)] c DV(x)(u). 

Assume now that Vis continuous on a neighborhood of x. Then, 
on a neighborhood of (x, V(x)), the graph of V is the boundary of 
both the epigraph and the hypograph of V, so that Theorem 4.3.3 
implies that 

TGraph(v)(x, V(x)) C TEp(V)(x, V(x)) n Trtp(V)(x, V(x)) 

and thus, that DV(x)(u) = [Dr V(x)(u), D! V(x)(u)]. D 

The contingent epiderivative coincides with the directional deriva
tive < V' ( x), u > when V is Frechet differentiable. 

If V is Frechet differentiable around a point x E K, then the 
contingent epiderivative of the restriction is the restriction of the 
derivative to the contingent cone: 

The formulas become much more simple when Vis Lipschitz: the 
contingent epiderivative coincides with the lower Dini derivative : 

Proposition 9.1.5 Let us assume that V : X f---t R U { ±oo} is Lip
schitz around a point x of its domain. Then 

DrV(x)(u) = liminf(V(x+hu)-V(x))/h (the lower Dini derivative) 
h--->0+ 

and satisfies for some l > 0: 

VuE X, IDr V(x)(u)l :S lllull 

Remark - There are other intimate connections between contingent 
cones and contingent epiderivatives. 

Let 1/JK be the indicator of a subset K. Then it is easy to check that 

Therefore we can either derive properties of the epiderivatives from 
properties of the tangent cones through epigraphs or take the opposite 
approach by using the above formula. 
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Recall that there is also an obvious link between the contingent cone 
and the contingent epiderivative of the distance function to K since we can 
write for every x E K: 

TK(x) = {vEX I DrdK(x)(v) = 0} 

and that we used this formula to extend contingent cones to the whole space 
in Section 5.1. D 

9.1.3 Epidifferential Calculus 

We begin by computing epiderivatives of the sum and the composi
tion product of functions: 

Theorem 9.1.6 Let us consider two finite dimensional vector-spaces 
X and Y, a continuous single-valued map f : X ~--+ Y, and two ex
tended functions V and W from X and Y to R U { +oo} respectively. 
Let xo belong to the domain of the functions U := V + W of. We 
assume that f is continuously differentiable around xo, that V and 
W are contingently epidifferentiable at xo and f(xo) respectively. In
equality 

DrU(xo)(u) ~ Dr V(xo)(u) + DrW(J(xo))(J'(xo)u) 

is always true. If V is episleek at xo or W is episleek at f(xo) and 
the following transversality condition: 

Dom(DrW(J(xo)))- !'(xo)Dom(DrV(xo)) = Y 

holds true, then 

DrU(xo)(u) = Dr V(xo)(u) +Dr W(J(xo))(!'(xo)u) 

In particular, if K is a closed subset and V is a lower semicontinuous 
function, if xo E K n Dom(V), if K is sleek at xo and V is episleek 
at xo and if the transversality condition 

Dom(Dr V)(xo)- TK(xo) = X 

holds true, then the contingent epiderivative of the restriction is the 
restriction of the contingent epiderivative to the contingent cone: 

\:fu E TK(xo), DrVIK(xo)(u) = DrV(xo)(u) 
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Let us consider now a finite family of functions Vi : X r--+ R U 
{ ±oo}, ( i E I) with which we associate the function U defined by 

U(x) := rrtlVi(x) 

We set I(x) := {i E I I Vi(x) = U(x)}. The following estimates are 
always true: 

VuE X, max Dr Vi(xo)(u) ::; DrU(xo)(u) 
iEI(xo) 

Equality holds true under transversality conditions: 

Proposition 9.1. 7 Let us consider n extended lower semicontinu
ous functions Vi : X r--+ R U { +oo}. If the dimension of X is finite, if 

the functions Ui are episleek at xo and if we posit the transversality 
assumption at xo E Dom(U) 

then 

n 

V Ui EX, n (Dom(Dr Vi(xo))- ui) -=J 0 
i=l 

{ 
VuE ni=l Dom(DrVi(xo)), 
DU(xo)(u) = m~EI(xo) DrVi(xo)(u) 

Consider finally two normed vector spaces X and Y and an ex
tended function U: X x Y r--+ R U {±oo}, with which we associate 
the marginal function V : X r--+ R U { +oo} defined by 

V(x) := inf U(x, y) 
yEY 

Proposition 9.1.8 Let us consider two normed vector spaces X and 
Y, an extended function U : X x Y r--+ R U { ±oo}, and its marginal 
function V. Suppose that there exists Yo E Y which achieves the 
minimum ofU(xo,·) on Y: 

V(xo) = U(xo, Yo) 

Then 

VuE X, Dr V(xo)(u) = liminf ( inf DrU(xo, Yo)(u', v)) 
u 1--+u vEY 

Equality holds true if U is convex. 
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9.2 Lyapunov Functions 

9.2.1 The Characterization Theorem 

We consider a differential inclusion 

for almost all t ~ 0, x'(t) E F(x(t)) (9.1) 

and a time-dependent function w(·) defined as a solution to the dif
ferential equation 

w'(t) = -<p(w(t)) (9.2) 

where <p : R+ -+ R is a given continuous function with linear growth. 
This function <p is used as a parameter in what follows. (The main 
instance of such a function <p is the affine function <p( w) := aw - b, 
the solutions of which are w(t) = (w(O)- ~)e-at+~). 

Our problem is to characterize either functions enjoying the <p 
-Lyapunov property, i.e., nonnegative extended functions V : X -+ 

R+ U { +oo} (such that Dom(V) c Dom( F)) satisfying 

V t ~ 0, V(x(t)) :S w(t), w(O) = V(x(O)) (9.3) 

along at least one solution x(·) to differential inclusion (9.1) and a 
solution w(·) to differential equation (9.2). 

Definition 9.2.1 (Lyapunov Functions) We shall say that a non
negative contingently epidifferentiable4 extended function V is a Lya
punov function ofF associated with a function c.p( ·) : R+ f--+ R if and 
only if V is a solution to the contingent Hamilton-Jacobi inequalities 

V x E Dom(V), inf Dr V(x)(v) + <p(V(x)) :S 0 (9.4) 
vEF(x) 

Theorem 9.2.2 Let V be a nonnegative contingently epidifferen
tiable lower semicontinuous extended function and F : X ~ X be 
a Marchaud map. Then V is a Lyapunov function ofF associated 
with <p(-) if and only if for any initial state xo E Dom(V), there exist 
solutions x(·) to (9.1} and w(·) to (9.2} satisfying property (9.3}. 

4 We recall that this means that for all x E Dom(V), V vEX, DrV(x)(v) > 
-oo and that Dr V(x)(v) < oo for at least avE X. 
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Proof- We set G(x, w) := F(x) x { -cp(w)}. Obviously, the 
system (9.1), (9.2) has a solution satisfying (9.3) if and only if the 
system of differential inclusions 

(x'(t), w'(t)) E G(x(t), w(t)) (9.5) 

has a solution starting at (xo, V(xo)) viable in K := t:p(V). We 
first observe that JC is a viability domain for G if and only if V is a 
Lyapunov function for F with respect to cp: If JC is a viability domain 
of G, by taking z = (x, V(x)), we infer that 

(v, -cp(V(x))) E T,dx, V(x)) = t:p(Dr V(x)) 

for some v E F(x), hence (9.4). 
Conversely, since F( x) is compact and v t---t Dr V ( x) ( v) is lower 

semicontinuous, (9.4) implies that there exists v E F(x) such that 
the pair (v, -cp(V(x))) belongs to Tep(V)(x, V(x)). Hence 

(x + hnVn, V(x) + hnsn) E IC 

with hn -+ 0+, Vn -+ v and Sn -+ -cp(V(x)). If w > V(x), this 
implies that for large n 

{ (x + hnVn, W- hncp(w)) = (x + hnVn, V(x) + hnsn) 
+(0, w- V(x)- hn(sn + cp(w))) E JC + {0} X R+ = /C 

so that (v, -cp(w)) E T,dx, w). 

Remark - We can reformulate the viability theorem in the follow
ing way: 

Corollary 9.2.3 Let F: X~ X be a Marchaud map. A closed subset K 
enjoys the viability property if and only if its indicator 1/J K is a solution to 
the contingent equation 

inf Dr'I/JK(x)(v) = 0 
vEF(x) 

Remark - With an extended nonnegative function V, we can asso
ciate affine functions w ---+ aw- b for which V is a solution to the contingent 
Hamilton-Jacobi inequalities (9.4). 
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For that purpose, we consider the convex function b defined by 

b(a) := sup ( inf Dr V(x)(v) + aV(x)) 
xEDom(F) vEF(x) 

Then it is clear that V is a solution to the contingent Hamilton-Jacobi 
inequalities 

V x E Dom(F), inf Dr V(x)(v) + aV(x)- b(a) ~ 0 
vEF(x) 

Therefore, we deduce that there exists a solution to the differential inclusion 
satisfying 

V t 2: 0, V(x(t)) ~ (V(x0 )- b(a) )e-at+ b(a) 
a a 

A reasonable choice of a is the largest of the minimizers of a E]O, oo[-+ 
max(O, b(a)ja), for which V(x(t)) decreases as fast as possible to the small
est level set v- 1 (]0, ¥D of V. o 

9.2.2 Stability Theorems 

We address now a stability question: Is the limit of a sequence of 
Lyapunov functions still a Lyapunov function? 

It depends on what we understand as "limit": the appropriate 
concept is the one of lower epilimit defined in the following way: 

Definition 9.2.4 The epigraph of the lower epilimit 

lim~ n-->oo Vn 

of a sequence of extended functions Vn :X f-+ RU { +oo} is the upper 
limit of the epigraphs: 

t'p(lim~n-->oo Vn) ·- LimSUPn--.00 t'p(Vn) 

One can check that 

We refer to Chapter 7 of SET-VALUED ANALYSIS for further details 
on epigraphical convergence. 

Meanwhile, we deduce from Theorem 3.6.2 that 
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Theorem 9.2.5 Let F be a Marchaud map. Then the lower epilimit 

of a sequence of Lyapunov functions Vn associated with a function <p 

is still a Lyapunov function ofF associated with <p. 

We now consider the case when the functions Vn are Lyapunov 
functions of maps Fn: 

Theorem 9.2.6 (Stability) Let us consider a sequence of Mar

chaud maps Fn : X x Y ~ X with uniform linear growth and their 

graphical upper limit pn. Then the lower epilimit of a sequence of 

Lyapunov functions Vn of Fn associated with a function <p is a Lya

punov function of coFn associated with <p. 

It is an obvious consequence of Theorem 3.6.5. 

9.2.3 W -Monotone Set-Valued Maps 

Let W : X -t R+ U { +oo} be a nonnegative extended function. We 
say that a set-valued map F is W-monotone (with respect to <p) if 

V x, y, VuE F(x), v E F(y), Dr W(x- y)(v- u) + <p(W(x- y)) :S 0 
(9.6) 

We obtain for instance the following consequence: 

Corollary 9.2. 7 Let W be a nonnegative contingently epidifferen

tiable extended lower semicontinuous function and F : X ~ X be 
a nontrivial M archaud map such that - F is W -monotone with re
spect to some <p. Let x be an equilibrium ofF (i.e., a solution to 

0 E F(x)). Then, for any initial state xo, there exist solutions x(·) 

and w( ·) satisfying 

V t?: 0, W(x(t) - x) ::::; w(t) 

In particular, for W(z) := ~llzll 2 , we find the usual concept of 
monotonicity (with respect to <p): 

V x, y, VuE F(x), v E F(y), < u-v, x-y > ?: <p (~llx- Yll 2) 0 
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9.2.4 Attractors 

Using distance functions as Lyapunov functions, we can study at
tractors: 

Definition 9.2.8 We shall say that a closed subset K is an attractor 
of order a ~ 0 if and only if for any xo E Dom(F), there exists at 
least one solution x(·) to differential inclusion (9.1} such that 

V t ~ 0, dK(x(t)) ~ dK(xo)e-at 

We can recognize attractors by checking whether the distance 
function to K is a Lyapunov function: 

Corollary 9.2.9 Assume that F is a nontrivial Marchaud map. Then 
a closed subset K C Dom( F) is an attractor if and only if the func
tion dK ( ·) is a solution to the contingent inequalities: 

V x E Dom(F), inf DrdK(x)(v) + adK(x) ~ 0 
vEF(x) 

Example Let us consider a function V defined through a non
negative function U : X x Y --+ R+ U { +oo} in the following way: 

V(x) := inf U(x, y) 
yEY 

When we assume that the infimum is achieved at a point Yx, we recall 
that 

Dr V(x)(u) ~ inf DrU(x, Yx)(u, v) 
vEY 

Hence, under the assumptions of Theorem 9.2.2, we deduce that 
assumption 

V x E Dom(V), inf DrU(x, Yx)(u, v) + cp(U(x, Yx)) < 0 
uEF(x),vEY 

implies that there exists a solution x( ·) satisfying 

V t ~ 0, inf U(x(t), y) ~ w(t) 
yEY 

We can derive from this inequality and the calculus of contingent 
epiderivatives many consequences. 
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9.2.5 Universal Lyapunov Functions 

We shall characterize the cp- universal Lyapunov property, for which prop
erty {9.3) is satisfied along all solutions to {9.1) and all solutions w(·) to 
{9.2). 

We say that V is a universal Lyapunov function of F associated with a 
function cp if and only if V is a solution to the upper contingent Hamilton
Jacobi inequalities 

V x E Dom{V), sup DrV(x)(v) + cp{V(x)) < 0 {9.7) 
vEF(x) 

In the same way as in Theorem 9.2.2, one can check that the closed 
subset epV is an invariance domain of the set-valued map G if and only 
if Vis a universal Lyapunov function. Then the Invariance Theorem 5.3.4 
implies: 

Theorem 9.2.10 Let V be a nonnegative contingently epidijjerentiable lower 
semicontinuous extended function. IfF is Lipschitz on the interior of its 
domain with compact values and 

Dom{V) C Int{Dom{F)) 

then V is a universal Lyapunov function associated with cp if and only if 
for any initial state xo E Dom{V), all solutions x(·) to {9.1} and w(·) to 
{9.2} do satisfy this property {9.3}. 

If F is Lipschitz on the interior of its domain with compact values and 
cp is Lipschitz, then a subset K C Dom{F) is invariant under F if and only 
if its indicator 1/JK is a solution to the contingent equation 

sup Dr'¢K(x)(v) = 0 
vEF(x) 

We say that a subset M c Dom{F) is a universal attractor of order 
a;::: 0 if and only if for any x0 E Dom(F), all solutions x{·) to differential 
inclusion {9.1) satisfy property. 

We deduce that ifF is Lipschitz with compact images, then K is a 
universal attractor if and only if 

V x E Dom{F), sup DrdK(x)(v) + adK(x) < 0 
vEF(x) 
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9.3 Optimal Lyapunov Functions 

9.3.1 Smallest Lyapunov Functions 

The functions <p and U : X ~ R+ U { +oo} being given, we shall con
struct the smallest lower semicontinuous Lyapunov function larger 
than or equal to U, i.e., the smallest nonnegative lower semicontinu
ous solution U'f to the contingent Hamilton-Jacobi inequalities (9.4) 
larger than or equal to U. 

Theorem 9.3.1 Let us consider a Marchaud map F : X """' X, a 
continuous function <p : R+ ~ R with linear growth and a proper 
nonnegative extended function U such that Dom(U) c Dom(F). 

Then there exists a smallest nonnegative lower semicontinuous 
solution U'f : Dom(F) t---t R U { +oo} to the contingent Hamilton
Jacobi inequalities (9.4) larger than or equal to U (which can be the 
constant +oo), which thus enjoys the property: 

V xo E Dom(U'!), there exist solutions to (9.1) and (9.2) 
satisfying V t 2 0, U(x(t)) :::; U'f(x(t)) :::; w(t) 

Consequently, if U ( xo) < U'f ( xo), all solutions x( ·) to differential 
inclusion {9.1} and all solutions w(·) to differential equation (9.2} 
starting at (xo, U(xo)) satisfy 

V t 2 0, U'f(x(t)) > w(t) as long as U(x(t)) :::; w(t) 

:3 T > 0 such that U(x(T)) > w(T) 

This happens for any solution w(·) whenever the initial state xo does 
not belong to the domain of U'f. 

Proof - By Theorem 4.1.2, we know that there exists a 
largest closed viability domain K C &p(U) (the viability kernel of 
the epigraph of U) of the set-valued map (x,w) """' G(x,w) := 
F(x) x { -<p(w)}. If it is empty, it is the epigraph of the constant 
function equal to +oo. 

If not, we have to prove that it is the epigraph of the nonnegative 
lower semicontinuous function U'f defined by 

U'f(x) := inf ,\ 
(x,>.)EK 
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we are looking for. Indeed, the epigraph of any solution V 2: U to 
the contingent inequalities (9.4) being a closed viability domain of 
the set-valued map G, is contained in the epigraph of U'f, so that 
U'f is smaller than the lower semicontinuous solutions to (9.4) larger 
than U. Since 

&p(U'f) = Graph(U'f) + {0} x R+ C K + {0} x R+ 

it is therefore enough to show that K + {0} x R+ C K. In fact, we 
prove if M C Dom(F) x R+ is a closed viability domain of G, then 

so is the subset 
Mo := M + {0} x R+ 

Obviously, Mo is closed. To see that G(x,w) n TM 0 (x,w) i= 0, 
let 

UM(x) := inf .:\, d := -<p(UM(x)) 
(x,.\)EM 

By assumption, there exists v E F(x) such that (v, d) belongs to the 
contingent cone toM at the point (x, UM(x)) E M. Hence, there 
exist sequences hn > 0 converging to 0, Vn converging to v and dn 

converging to d such that 

This proves the claim when w = UM(x) and the case w > UM(x) 
follows as in the proof of Theorem 9.2.2. D 

Corollary 9.3.2 We posit the assumptions of Theorem 9.3.1. 

The indicator '!j;Viab(K) of the viability kernel Viab(K) of 
a closed subset K is the smallest nonnegative lower semicontinuous 

solution to 

V x E Dom(V), inf Dr V(x)(v) < 0 (9.8) 
vEF(x) 

larger than or equal to 'lj! K. 

For all a 2: 0, there exists a smallest lower semicontinuous 
function d1vf* : X --+ R U { +oo} larger than or equal to dM such that 

V x 0 E Dom(d1vf*), there exists a solution x(-) to (9.1) such that 
dM(x(t)) :::; d1vf*(x0 )e-at 
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We can regard the subsets Dom(d~*) as the basins of exponential 
attraction of M. 

Proof - Let us check that the smallest lower semicontinuous 
solution Uo larger than or equal to U = 0 is equal to the indicator of 
Viab(K). Since it is clear that it is a solution to the above contingent 
inequalities (9.8), then 

\1 x E Viab(K), Uo(x) ~ 'lj!Viab(K)(x) 

Let xo belong to the domain of Uo. Then there exists a solution x( ·) 
to the system of differential inclusions (9.5) starting at (xo, Uo(xo)) 
satisfying Uo(x(t)) ~ Uo(xo) since w(t) = Uo(xo). Therefore xo be
longs to the largest closed viability domain Viab(K). Hence Uo(xo) ~ 
1{!K0 (xo) = 0. 

The proof of the second statement is easy. D 

Proposition 9.3.3 We posit the assumptions of Theorem 9.3.1. As
sume furthermore that cp vanishes at 0. Then if U vanishes at an 
equilibrium x ofF, so does the function U't associated with cp. 

Let L be the set-valued map associating to any solution x( ·) to the 
differential inclusion {9.1} its limit set and S be the solution map. If 
cp is asymptotically stable, then for any xo E Dom(U't), there exists 
a solution x(·) E S(xo) such that L(x(·)) c u-1(0). 

Proof 
If x is an equilibrium of F such that U(x) = 0, then 

(x, 0) is an equilibrium of G restricted to the epigraph of U (because 
cp(O) = 0), so that the singleton (x, 0), being a viability domain, is 
contained in viability kernel of t:p(U), which is the epigraph of U't. 
Hence 0 ~ U(x) ~ U't(x) ~ 0. 

If cp is asymptotically stable, then the solutions w ( ·) to 
the differential equation w'(t) = -cp(w(t)) do converge to 0 when 
t ~ +oo. Let x 0 belong to the domain of U't and x(-) be a solution 
satisfying 

U(x(t)) ~ U'f(x(t)) ~ w(t) 

Hence any cluster point ~ of L(x(·)), which is the limit of a sub
sequence x(tn), belongs to u't-1 (0), because the limit (~, 0) of the 
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sequence of elements ( x( tn), w ( tn)) of the epigraph of U'! belongs to 
it, for it is closed. Hence 0 ~ U(~) ~ U'!(~) ~ 0. D 

9.3.2 Smallest Universal Lyapunov Functions 

Using the concept of invariance kernels, we can adapt the above results to 
optimal universal Lyapunov functions: 

Theorem 9.3.4 If F is Lipschitz on the interior of its domain with com
pact values and cp is Lipschitz, then there exists a smallest nonnegative lower 
semicontinuous solution Ut : Dom(F) ~--+ R U { +oo} to the upper contin
gent Hamilton-Jacobi inequalities (9. 7} larger than or equal to U (which 
can be the constant +oo}, which enjoys the property: 

'V x0 E Dom(Ut), all solutions to (9.1) and (9.2) satisfy 
'V t ~ 0, U(x(t)) ::; Ut(x(t)) ::; w(t) 

Proof- The proof is analogous to the one of Theorem 9.3.1: When 
F and cp are Lipschitz, Theorem 5.4.2 implies that there exists a largest 
closed invariance domain fC contained in the epigraph of U. We prove that 
it is the epigraph of the smallest lower semicontinuous solution 

Ucp -<I - inf A 
(x,A)EK 

to (9.7) we are looking for. This can be checked by showing that if M C 

Dom(F) x R+ is a closed invariance domain of the set-valued map G, then 
so is the subset M + {0} x R+· D 

We quote the following consequence: 

Corollary 9.3.5 Assume that F is Lipschitz on the interior of its domain 
with compact values. 

The indicator 1Pinv(K) of the invariant kernel Inv(K) of a closed 
subset K (i.e., the largest closed in variance domain of F contained in K) 
is the smallest nonnegative lower semicontinuous solution to 

'V x E Dom(V), sup Dr V(x)(v) < 0 
vEF(x) 

larger than or equal to 1/1 K . 

(9.9) 

For all a ~ 0, there exists a smallest lower semicontinuous 
function dt-<1: X--+ R U { +oo} larger than or equal to dM such that 

'V xo E Dom(d'M<I), any solution x(·) to (9.1) satisfies 
dM(x(t)) ::; d'M<I(x0 )e-at 

We can regard the subsets Dom(d'M<I) as the basins of universal expo
nential attraction of M. 
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9.4 Other Monotonicity Properties 

9.4.1 Monotone Solutions 

We extend the Lyapunov property to more sophisticated inequalities: 

Theorem 9.4.1 Let F: X"'--* X be a Marchaud map, 

W: (x, v) E Graph( F) f-t W(x, v) E R 

a lower semicontinuous function convex with respect to v and V : 
X f-t R+U{ +oo} a nonnegative extended lower semicontinuous func
tion whose domain is contained in the domain of F. 

We assume that there exists a positive constant c such that 

{ 
V x E Dom(V), infvEF(x) Dr V(x)(v) 2:: -c(ilxll + 1) 

(9.10) 
V (x, v) E Graph(F), W(x, v) 2:: -c(l!xll + 1) 

and that V is a W-Lyapunov function in the sense that it is a solution 
to the contingent Hamilton-Jacobi inequality 

V x E Dom(V), inf Dr V(x)(v) + W(x, v) ~ 0 
vEF(x) 

(9.11) 

Then, for any initial state xo E Dom(V), there exists a solution 
to differential inclusion { 9.1) satisfying 

V t 2:: 0, V(x(t))- V(xo) +lot W(x(T), x 1(T))dT ~ 0 (9.12) 

Proof- We introduce the set-valued map G : X x R "'--* X x R 
defined by 

G(x, w) := {(v, -\)I v E F(x) & ,\ E [-c(l!xll + 1), -W(x, v)]} 

It is clear that the graph of G is closed and its values are con
vex and nonempty by definition (9.10) of c. Its growth is linear by 
construction. Furthermore, the epigraph of V is a closed viability 
domain of G: take v E F(x) achieving the minimum of the lower 
semicontinuous function Dr V ( x) ( ·) + W ( x, ·) on the compact subset 
F(x). It satisfies DrV(x)(v) + W(x,v) ~ 0 by assumption (9.11), 
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so that the pair ( v, - W ( x, v)) belongs to the contingent cone to the 
epigraph of V at (x, w). This follows from the very definition of 
the epiderivative when w := V(x) and from Proposition 9.1.3 when 
w > V(x). 

Hence t' p(V) being a closed viability domain of G ( ·, ·), there ex
ists a solution (x(·), w(·)) to differential inclusion 

for almost all t ~ 0, (x'(t),w'(t)) E G(x(t),w(t)) 

starting from (xo, V(xo)) and viable in the epigraph of V. Inequali
ties 

w1(T)::; -W(x(T),x'(T)) & V(x(t))::; w(t) 

for almost all T ~ 0 and all t ~ 0 imply by integration from 0 to t 
inequality (9.12). D 

As a consequence, we deduce the following monotonicity theorem: 

Theorem 9.4.2 Let F: X rvt X be a Marchaud map, 

W: (x, v) E Graph( F) f---+ W(x, v) E R+ 

a nonnegative continuous function convex with respect to v and V : 
X f---+ R+U{ +oo} a nonnegative extended lower semicontinuous func
tion, continuous on its domain (assumed to be contained in the do
main of F). We posit assumptions {9.10} and {9.11). 

Then, for any initial sate xo E Dom(V), there exists a solution 
to differential inclusion ( 9.1) satisfying 

V t ~ s ~ 0, V(x(t))- V(x(s)) + 1t W(x(T), x 1(T))dT ::; 0 (9.13) 

Proof- We associate with h-+ 0+ the grid jh, (j = 1, ... ) 
and we build a solution xh(·) E S(xo) to differential inclusion (9.4.1) 
by using Theorem 9.4.1 iteratively: for j = 0, we take xh(·) on the 
interval [0, h] satisfying (9.12), then we take xh(·) on [h, 2h] to be 
a solution starting at xh(h) and satisfying V(xh(t)) - V(xh(h)) + 
J~ W(x(T), x'(T))dT::; 0, etc. 

Since the image S(xo) is compact, a subsequence (again denoted) 
xh(·) converges to some solution x(·) E S(xo) in the Sobolev space 
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W 1•1(0, oo; X; e-btdt). Continuity ofW and Proposition 6.3.4 of DIF
FERENTIAL INCLUSIONS implies that the functional 

x(·) ~loco W(x(r),x'(r))dr 

is lower semicontinuous on W 1•1(0,oo;X;e-btdt). Hence 

roo W(x(r),x'(r))dr ~ liminf roo W(xh(r),x~(r))dr 
lo h->O+ lo 

Lett> s be approximated by jhh ~ khh so that 

1jhh 
V(xh(ihh))- V(xh(khh)) + W(xh(r), x~(r))dr ~ 0 

khh 

The function V being continuous on its domain, inequality {9.13) 
ensues. 0 

Remark- We refer to Chapter 6 of DIFFERENTIAL INCLU
SIONS and above all, to CONTROL OF NONLINEAR SYSTEMS AND 
DIFFERENTIAL INCLUSIONS by Helene Frankowska for an exposition 
of the consequences of such an inequality and of generalized solu
tions {both contingent and viscosity) to Hamilton-Jacobi-Bellman 
equations. 

Let us just mention that F and W being given and satisfying the 
assumptions of Theorem 9.4.2, the (extended) function VF defined 
by 

VF(x) := inf roo W(x(r), x'(r))dr 
x(·)ES(x) Jo 

is the smallest of the nonnegative solutions to the contingent inequal
ity {9.11). Furthermore, a solution x(·) E S(xo) satisfies inequality 
(9.13) for VF if and only if it is a minimal solution to the optimal 
control problem 

roo W(x(r), x'(r))dr = inf roo W(x(r), x'(r))dr 
Jo x(·)ES(x) Jo 

In this case, it obeys the "optimality principle" 

V t ~ 0, VF(x(t)) = 100 W(x(r), x'(r))dr 0 

For W = 0, we obtain the following consequence: 
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Corollary 9.4.3 Let F: X"--+ X be a Marchaud map and V be a 
nonnegative lower semicontinuous function satisfying 

V x E Dom(V), inf Di V(x)(v) 2: -c(llxll + 1) 
vEF(x) 

Then V is a Lyapunov function of F if and only if 

inf Di V(x)(v) ~ 0 
vEF(x) 

Furthermore, if V is continuous on its domain, then, for any initial 
state xo E Dom(V), V does not increase along at least one solution 
x(·) to differential inclusion {9.1}. 

9.4.2 LaSalle's Theorem 

One can find attractors using Lyapunov functions by adapting to the 
set-valued case a classical result due to Lassale: 

Theorem 9.4.4 Assume that F: X"--+ X is a Marchaud map and 
that V is a nonnegative lower semicontinuous Lyapunov function 
continuous on its domain and satisfying 

V x E Dom(V), inf Dj V(x)(v) > -c(llxll + 1) 
vEF(x) 

We denote by 

K := {x E Dom(F) I sup Di V(x)(u) 2: o} 
uEF(x) 

If K is closelP, then for any xo E Dom(V), there exists a solution 
x(·) E S(xo) such that its w-limit se-& is contained in Viab(K): 

w(x(·)) C Viab(K) 

5 This happens whenever F is upper semicontinuous with compact values and 
(x,v) ~--+ DrV(x)(u) is upper semicontinuous. 

6 See Definition 3. 7.1: 

w(x(·)) := n cl(x((T, oo[)) 
T>O 

It is not empty if we assume that Vis inf-compact (or lower semicompact) (this 
means that the lower sections {x EX I V(x) :::; >.}are relatively compact). 
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Proof- By Corollary 9.4.3, we know that for any xo E 

Dom(V), there exists a solution x(·) E S(x0 ) such that t t-t V(x(t)) 
is nonincreasing and converges to some a ~ 0. Let x* E w(x(·)) be 
a cluster point of the solution x( ·) when t -+ oo. There exists a se
quence tn-+ oo such that x(tn) converges to some x* E v-1 (a). The 
functions Yn(·) defined by Yn(t) := x(t + tn) belong to S(x(tn)), so 
that Theorem 3.5.2 implies that a subsequence (again denoted by) 
Yn(·) converges to a solution y(·) E S(x*). 

The function V being continuous on its domain, inequalities 

a ~ V(yn(t)) = V(x(t + tn)) ~ V(x(tn)) 

imply by going to the limit that 

"i/ t ~ 0, V(y(t)) = a or, equivalently, (y(t), a) E Graph(V) 

Hence y(·) is viable in v-1(a). The necessary condition of the Via
bility Theorem implies that 

"i/ t ~ 0, 0 E DV(y(t))(F(y(t))) 

By Proposition 9.1.4, we infer that 

"i/ t ~ 0, sup D! V(y(t))(u) ~ 0 
uEF(y(t)) 

i.e., that y(·) is viable inK. Hence x* = y(O) belongs to the viability 
kernel of K. D 

9.4.3 Example: Gradient Inclusions 

Consider a locally Lipschitz sleek real-valued function V : X t-t R. 
Since the contingent epiderivative Dr V(x) is positively homogeneous, 
convex and lower semicontinuous, it is the support function of the 
bounded closed convex subset 

8V(x) := {p EX* I "i/ vEX, < p,v >~ DrV(x)(v)} 

called the generalized gradient av (X). A gradient inclusion is the 
differential inclusion 

for almost all t ~ 0, -x'(t) E 8V(x(t)) 
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We shall show that a gradient inclusion does have a slow solution, 
i.e., a solution to the differential equation 

for almost all t ~ 0, -x'(t) = (oVt(x(t)) c oV(x(t)) (9.14) 

(where II(8V) 0 (x)ll = minvE8V(x) llvll) along which the function V 
decreases. 

Theorem 9.4.5 Let us assume that V : X ~---t R is a locally Lipschitz 
episleek real-valued function. Then there exists a slow solution x( ·) 
to the gradient inclusion (9.14} satisfying 

for almost all t ~ 0, DrV(x(t))(x'(t)) + llx'(t)ll 2 = 0 (9.15) 

Proof- We apply Theorem 9.4.2 above with F(x) := -oV(x) 
and W(x,v) := llvll 2 • Since Vis locally Lipschitz, its generalized 
gradient oV(x) is convex and compact. Being episleek, one can prove 
that the function 

( x, u) ~---t Dr V ( x) ( u) is upper semicontinuous 

Since Dr v (X) is the support function of av (X)' we infer that av (-) 
is upper hemicontinuous. The solution v E -8V(x) to the equation 
DrV(x)(v) + llvll 2 :::;; 0 exists and is unique: it is the projection of 0 
onto the closed convex -8V(x). Therefore, there exists a solution to 
the gradient inclusion satisfying (9.15), i.e., such that for almost all 
t ~ 0, -x'(t) is the projection of 0 onto -oV(x(t)). This is a slow 
solution. We also know that for all t ~ s ~ 0, 

and thus, that V(x(t)) decreases whenever x(·) is not an equilibrium. 
D 

9.4.4 Feedbacks Regulating Monotone Solutions 

The regulation map Rlf which provides solutions satisfying property 
(9.13) is defined by 

Rtf(x) := {v E F(x) I DrV(x)(v) + W(x,v):::;; 0} 



9.4. Other Monotonicity Properties 343 

Finding closed loop controls, slow solutions, etc., requires that the 
regulation map is lower semicontinuous with convex values. The 
following supplies a sufficient condition for this purpose. 

Corollary 9.4.6 We posit the assumptions of Theorem 9.4.2. IfF 
is lower semicontinuous, if (x, v) f---t Dr V(x, v) is upper semicontin
uous and if 

'V x E Dom(V), :J v E F(x) I Dr V(x)(v) + W(x, v) < 0 (9.16) 

then the regulation map is lower semicontinuous and there exists a 
continuous selection f of Rtf such that the solutions of differential 
equation x'(t) = f(x(t)) are solutions to differential inclusion {9.1} 
satisfying property {9.13}. 

Proof- It is analogous to the proof of Theorem 6.3.2. We first 
observe that the graph of the set-valued mapS defined by S(x) := 

{ v I Dr V(x)(v)+W(x, v)} is open, then that x "'-+ F(x)nS(x) is lower 
semicontinuous thanks to the lower semicontinuity of F and thus, 
that Rtf is also lower semicontinuous because Rtf (x) = F(x) n S(x) 
and because F(x) n S(x) is convex. 

Hence the assumptions of Michael's Theorem 6.5.7 are satisfied 
and there exits a continuous selection of Rtf. D 

Remark- Assumption (9.16) is satisfied for instance when 
V is both episleek and locally Lipschitz. When it is not satisfied, 
we can still derive the lower semicontinuity of the regulation map by 
using Theorem 6.3.1 and the lower semicontinuity of the set-valued 
map x "'-+ T{Y ( x) defined by: 

T{Y(x) := {vEX I DrV(x)(v) + W(x,v)-:::; 0} 

Proposition 9.4. 7 Let us assume that V is episleek, that the re
striction of V to its domain is continuous, that W ( ·, ·) is continuous 
and convex with respect to the second argument and that F is lower 
semicontinuous with closed convex values. If for any x, there exists 
v E F(x) such that 

Dr V(x)(v) + W(x, v) < 0 

then x "'-+ T{Y (x) is lower semicontinuous at x. 
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Proof- Let v belong to T{Y ( x) be chosen and a sequence Xn E 

Dom(Dr(V)) converge to x. Since the set-valued map t'p(DrV(·)) is 
lower semicontinuous, and since ( v, - W ( x, v)) belongs to t' p( Dr V ( x)), 
there exist a subsequence (again denoted Xn), a sequence Vn converg
ing to v and a sequence en ~ 0 converging to 0 such that 

Let us set a0 := -W(x, v) -Dr V(x)(v) > 0. Since by assumption 
the pair (v,-W(x,v)- a0 ) belongs also to t'p(DrV(x)), we deduce 
that there exist sequences Vn converging to v and an > 0 converging 
to ao such that 

We introduce now On := 2(e:+.an) E [0, 1] converging to 0, Un := 

{1 - Bn)Vn + Bnvn converging to v and an := (1 - Bn)Wn, Vn) + 
BnW(xn, Vn)- W(xn, Un) ~ 0 (thanks to the convexity of W(xn, ·)). 
The lower semicontinuity of the contingent cone to the epigraph of V, 
which is the epigraph of Dr V(·), implies that these cones are convex. 
Hence 

belongs to t'p(DrV(xn)). This can be written 

DrV(xn)(un) ~ -W(xn,un)- en- an/2 < -W(xn,un) 

Hence Un belongs to T{Y (xn) and converges to v. 0 

9.5 Lyapunov Preorders 

A given function V : X ~ R U { +oo} defines the preorder 

x t y ~ V(x) ~ V(y) 

i.e., a reflexive ( x t x for every x) and transitive ( x t y and y t z 
imply x t z) binary relation. 
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Let us consider more generally a preorder !:::: and look for solutions 
x(·) of differential inclusion (9.1) which do not decrease in the sense 
that 

V t;::: s;::: 0, x(t)!:::: x(s) 

For that purpose, it is useful to characterize a preorder by the 
set-valued map P defined7 by 

Vx, P(x):= {ylytx} 

the graph of which is the graph of the preorder. 
Conversely, any set-valued map P reflexive (in the sense that 

x E P(x) for every x) and tmnsitive (in the sense that P(y) c P(x) 
for every y E P(x)) defines the preorder !:::: defined by x !:::: y if and 
only if x E P(y). 

Hence, from now on, we shall represent a preorder by a reflexive 
and transitive set-valued map. 

9.5.1 Monotone solutions with respect to a preorder 

Corollary 9.4.3 can be extended to general closed preorders. 

Proposition 9.5.1 Let F be a Marchaud map and P be a preorder 
with closed gmph whose domain is contained in the domain ofF. 

The following statements are equivalent: 

i) V x E Dom(P), F(x) n TP(x)(x) =/= 0 

ii) V (x, y) E Graph(P), F(y) n DP(x, y)(O) =/= 0 

iii) V xo E Dom(P), :3 x(·) E S(xo) such that 
V t;::: s;::: 0, x(t)!:::: x(s) 

Proof 

(9.17) 

Condition (9.17)i) implies (9.17)ii) because, for any y E 

P(x), there exists v E F(y) n TP(y)(y), i.e., such that y + hnvn E 

P(y) C P(x) for some sequences hn -t 0+ and Vn -t v. Hence, 

7 When the (total) preorder is defined by a function V, the set-valued map P 
associates with any x the subset P(x) := {y I V(y) :::; V(x)}. Its graph is closed 
if and only if V is continuous on its domain. 
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the pair (x + hnO, y + hnvn) belongs to the graph of P, i.e., v E 

DP(x, y)(O). 
- Condition (9.17)ii) implies (9.17)iii). First, observing that 

condition (9.17)ii) means that the graph of P is a closed viability 
domain of the set-valued map (x, y) ~ {0} x F(y), we infer that for 
any (x0 ,x0 ) E Graph(P), there exists a solution (x(·),y(·)) to the 
system of differential inclusions x' = 0 and y' E F(y) which is viable 
in Graph(P), i.e., a solution y(·) E S(xo) such that 

V t ~ 0, y(t) E P(xo) (9.18) 

We associate now with h --t 0+ the grid j h, (j = 1, ... ) and we 
build a solution xh(·) E S(xo) to differential inclusion (9.1) itera
tively: for j = 0, we take xh(·) = y(·) on the interval [0, h] satisfying 
(9.18), then we take xh(·) on [h, 2h] to be a solution starting at xh(h) 
and satisfying xh(t) E P(xh(h)), etc. 

Since the image S(xo) is compact, a subsequence (again denoted 
by) Xh converges to some solution x(·) E S(xo) in the Sobolev space 
W1•1 (0, oo; X; e-btdt). Lett > s be approximated by jhh ~ khh so 
that 

xh(jh) E P(xh(kh)) or (xh(kh), xh(jh) E Graph(P)) 

The graph of P being closed, we infer that (x(s), x(t)) E Graph(P), 
i.e., that x(t) E P(x(s)). 

- Condition (9.17)iii) implies (9.17)i) exactly as in the proof 
of the necessary condition of Haddad's Viability Theorem. D 

9.5.2 Comparison of solutions 

The same type of proofs yields results dealing with the comparison 
of solutions to two differential inclusions: 

Proposition 9.5.2 Let F: X~ X and G: X~ X be two Mar
chaud maps and a preorder P with closed graph whose graph is con
tained in Dom(F) x Dom(G). 
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Then the following statements are equivalent: 

V (x, y) E Graph(P), G(y) n DP(x, y)(F(x)) f= 0 
{ 

i) 

ii) V xo E Dom(P), :3 x(·) E Sp(xo) & y(·) E Sa(xo) such that 
Vt ~ 0, y(t) t x(t) 

(9.19) 

Proof- Condition (9.19)i) states that the graph of the pre
order Pis a closed viability domain of the set-valued map 

(x, y) E Graph(P) ~ F(x) x G(y) 

and condition (9.19)ii) that it enjoys the viability property. We then 
apply Viability Theorem 3.3.5. 0 

Corollary 9.5.3 Let F: X~ X and G: X~ X be two Marchaud 
maps, K c Dom( F) n Dom( G) be a closed sleek subset and Q c X be 
a closed convex cone8 defining an order relation on X. We assume 
the transversality condition 

V (x, y) E KxK such that y-x E Q, TK(y)-TK(x)-Tq(y-x) = X 

Then the following statements are equivalent: 

i) V (x, y) E K x K such that y- x E Q, 
0 E G(y)- F(x)- Tq(y- x) 

ii) V (xo, Yo) E K x K such that Yo- xo E Q, 
:3 x(-) E Sp(xo) & y(·) E Sa(Yo) such that 
Vt ~ 0, y(t) -x(t) E Q 

Proof- We define the set-valued map P by 

Graph(P) := {(x,y) E K x K I y- x E Q} 

Since K is sleek, as well as Q which is convex, we infer from the 
transversality condition that the contingent derivative of P at (x, y) 
in the direction u is equal to 

DP(x, y)(u) := { v E TK(x) I v-uE Tq(y- x)} if u E TK(x) 

We then apply Proposition 9.5.2 above. 0 

8 We recall that the contingent cone TQ(z) to Q at z is equal to Q + Rz. 
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9.6 Asymptotic Observability of Differential 
Inclusions 

Let us consider a set-valued map F from a finite dimensional vector
space X := Rn to X and an observation map h from X to another 
finite dimensional vector-spaceY := RP. We "observe" the evolution 

\f t ~ 0, y(t) := h(x(t)) 

of an unknown solution x(·) to the differential equation (9.1). 
The problem is to "simulate asymptotically" at least an unknown 

state x(·) by a solution z(·) to a control system where the control is 
the observation of the state 

z'(t) = g(z(t), y(t)) (9.20) 

We shall measure the asymptotic behavior of the error x(-) - z( ·) 
through a nonnegative lower semicontinuous extended function U : 
X 1-t RU{+oo} and through a function w(·) from [O,+oo] toR+ by 
inequalities 

\f t ~ 0, U(x(t)- z(t)) ::::; w(t) (9.21) 

Typically, we would like that w(t) converges to 0 when t goes to +oo 
(for instance, w(t) = ce-at) and that u-1(0) = {0} (for instance, 
U(x) := llxW~) so that we deduce that the error z(t)- x(t) between 
the observed state z(t) and the unknown state x(t) converges to 0. 
The bound w(t) which sets an estimate of the measure of the error 
will be provided by a differential equation 

w'(t) = -r.p(w(t)), w(O) = U(x(O)- z(O)) (9.22) 

where r.p: [0, +oo] 1-t R (such as r.p(w) = aw to obtain exponential 
decay). 

Definition 9.6.1 Let F, h, r.p and U be given. We say that the dy
namical system F observed through h is stabilizable by g with respect 
to U and r.p if 

\f x,z, inf DrU(x- z)(v- g(z,h(x))) ::::; -r.p(U(x- z)) 
vEF(x) 
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Proposition 9.6.2 We assume that F is a Marchaud map, that 
g, h and r.p are continuous with linear growth and that U : X ~ 
R+ U { +oo} is contingently epidifferentiable, lower semicontinuous 
and episleek. If the dynamical system F observed through h is stabi
lizable by g, then for any initial state xo and zo, there exist solutions 
x(·) to (g.1), z(·) to (g.20) and w(·) to (g.22) starting at xo, zo and 
U(xo- zo) respectively and satisfying inequalities (g.21). 

Proof - The conclusion of the theorem amounts to saying 
that the function (x, z) ~ V(x, z) := U(x- z) enjoys the Lyapunov 
property with respect to r.p for the system of differential inclusions 

{ i) x'(t) E F(x(t)) 
ii) z'(t) = g(z(t), h(x(t))) 

because, U being episleek, we infer that Dr V ( x, z) ( x', z') = Dr U ( x
z)(x'- z'). We then apply Theorem 9.2.2. D 

We now have to construct stabilizing maps g in various situations. 
We begin by providing a first class of examples using (U, r.p)

monotone maps. We derive from the definition of U -monotone maps 
with respect to r.p the following obvious statement. 

Proposition 9.6.3 Let us assume that U, r.p, f and h being given, 
we can find a continuous map c : Y ~ X such that 

the map x ~ c(h(x))- F(x) is (U, r.p)-monotone 

Then for any continuous selection f ofF, the single-valued map 

g(z, y) := /(z)- c(h(z)) + c(y) 

stabilizes F through h with respect to U and r.p. 

The problem now is to recognize whether there exist functions U 
and r.p and a map c which make the set-valued map co h- F to be 
(U, r.p )-monotone. 

More generally, let us introduce the set-valued map H defined by 

H(z,x) :={vI inf DrU(x- z)(u- v) + r.p(U(x- z)):::; 0} 
uEF(x) 
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The general problem of stabilizing F through h amounts to find
ing selections g of the set-valued map G defined by 

V (z, y), G(z, y) = n H(z, x) 
h(x)=y 

since by construction, such selections are stabilizing f through h. 
When G is lower semicontinuous with closed convex values, Michael's 
Theorem guarantees the existence of a continuous selection. Hence, 
in this case, we can stabilize F, at least in theory, since Michael's 
Theorem is not constructive. 



Chapter 10 

Miscellaneous Viability 
Issues 

Introduction 

This chapter gathers several topics which can be studied from the 
viability point of view: 

1. How to correct a differential inclusion to make a given 
closed subset a viability domain (variational differential inequalities) 

2. How to describe situations where some evolutions are 
more likely to be implemented than others (fuzzy viability) 

3. How to approximate viable solutions to differential 
inclusions (finite-difference schemes) and their equilibria (Newton's 
method). 

1. Differential Variational Inequalities. 
In Chapter 4, we have studied the "anatomy" of a closed subset K 

which is not a viability domain of a set-valued map F and introduced 
its "viability kernel", which is the largest closed viability domain 
contained in it. 

Instead of changing the viability constraints by replacing the orig
inal viability set K by its viability kernel, we can keep the same via
bility set and change the dynamics to make K a viability domain of 
the new system. 

There is an obvious strategy which comes immediately to the 

351 
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mind: project the images F(x) onto the contingent cone TK(x): un
fortunately, we lose by doing so two nice features which are basic 
in the proof of the viability theorems: convexity of the images and 
upper semicontinuity of the new map. 

But it happens that solutions to the "projected subset" are the 
solutions to another differential inclusion, called variational differen
tial inequalities when K is convex. They have been around for a long 
time in mechanics (problems with unilateral constraints) and in op
timization under constraints. It amounts to replacing the set-valued 
map F by the set-valued map x ~ F(x)- NK(x), where NK(x) 
denotes the normal cone to K at x. 

Since K is a viability domain for this new problem (when K is 
convex or smooth, and more generally, when K is sleek), we have 
two equivalent ways to correct a dynamical system on the boundary 
of a viability set to make it a viability domain. Furthermore, under 
additional assumptions, we shall prove that the slow solutions of the 
two corrected problems coincide and exist. 

2. Fuzzy Viability. 
Using differential inclusions for representing uncertainty(or con

tingent chance) can be criticized on the ground that it gives velocities 
of the system at state x the same "likelihood" to be chosen. Is there 
a possibility to discriminate among velocities and to choose among 
the viable ones those which are somewhat better? 

To answer this problem, we suggest replacing the usual subset 
of velocities in the right hand side of the differential inclusion by a 
"fuzzy set" of velocities. 

Fuzzy sets are usually represented by "membership functions" x 
taking their values in the interval [0, 1 J, the membership functions of 
usual subsets being their characteristic functions, taking their values 
in {0, 1}. Here, we rather characterize subsets by their indicators 'lj;K 
taking their values in {0, +oo }, so that we shall replace the classical 
membership functions of "fuzzy subsets" by extended functions V : 
X t-+ RU{ +oo }, which measure in some sense the membership cost to 
the fuzzy subset. Hence, a fuzzy differential inclusion is a differential 
inclusion in which the subsets of velocities are fuzzy subsets U(x, ·) 
depending upon the state x, i.e., 

for almost all t ~ 0, U(x(t),x'(t)) < oo 
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We are not only interested in characterizing viability domains of 
fuzzy differential inclusions (and even, fuzzy viability domains), but 
also in selecting the viable velocities which minimize the cost of be
longing to the fuzzy subset of velocities. 

3. - Finite-Difference Schemes 
We address in the last section elementary numerical aspects of 

differential inclusions, by studying the convergence of implicit and 
projected explicit finite-difference schemes. 

How can we find an equilibrium of a set-valued map? We shall 
adapt for that purpose the Continuous Newton's Method to the case 
of set-valued maps. 

10.1 Variational Differential Inequalities 

We shall assume here that K C X is a closed sleek1 subset of X := 

Rn. 
We know that K enjoys the viability property for the differential 

inclusion 

for almost all t ~ 0, x'(t) E F(x(t)) (10.1) 

if and only if K is a viability domain. 
When K is not a viability domain, can we "correct" F on the 

boundary 8K in or~er that K becomes a viability domain for the 
modified dynamics F. 

An obvious choice2 of a modified dynamics is the "projection of 
F(x) onto the contingent cone TK(x)" defined by 

\f x E K, F(x) := 7rTK(x)F(x) 

1This means that the set-valued map x "'-> TK(x) is lower semicontinuous. 
This implies that the contingent cone is convex. Let NK(x) := (TK(x))-, the 
polar cone to the contingent cone, denote the subnormal cone to K at x, also 
called the normal cone in the case of sleek subsets. When K is sleek, the graph of 
the set-valued map x "'-> NK(x) is closed. These are the two properties we shall 
use. 

In particular, closed convex subsets are sleek. 
2We saw in section 4 of Chapter 1 another example of correction procedure 

which "corrects" a given system by a replicator system which is viable in the 
simplex. 
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where 1fT denotes the projector of best approximation onto T. (We 
observe that F is not modified in the interior of K). Hence we replace 
differential inclusion (10.1) by the projected differential inclusion 

for almost all t 2: 0, x'(t) E 7rTK(x(t))F(x(t)) (10.2) 

But, by doing so, we may destroy both the convexity of the im
ages and the upper semicontinuity, so that we cannot apply directly 
the viability theorem to deduce the existence of a solution to the 
projected differential inclusion. 

10.1.1 The Equivalence Theorem 

But we shall overcome this difficulty by observing that the viable 
solutions to the projected differential inclusion (10.2) are the viable 
solutions to 

for almost all t 2: 0, x'(t) E F(x(t))- NK(x(t)) (10.3) 

Theorem 10.1.1 The sets of viable solutions to differential inclu
sions {10.2} and {10.3) starting inK do coincide. 

Furthermore, ifF is a Marchaud map, for any xo E K, there 
exists a viable solution starting from xo to either projected differential 
inclusion (10.2) or differential inclusion {10.3). 

Proof 
- Let x( ·) be a solution to the projected differential inclusion 

(10.2). Since 1-TrTK(x) is the orthogonal projector to its polar cone, 
the normal cone N K ( x), we infer that 

so that x(·) is a solution to (10.3). 
The converse statement follows from the fact that for almost all 

t 2: 0, the derivative x'(t) of a viable solution x(·) to (10.3) belongs 
to TK(x(t)) n -TK(x(t)) = (NK(x(t)))j_. Hence, if we write x'(t) = 
f- p where f E F(x(t)) and p E NK(x(t)), we deduce that for 
almost all t 2: 0, < x'(t) - f, x'(t) >= - < p, x'(t) >= 0. The 
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Projection Theorem3 implies actually that x'(t) is the projection of 
f onto TK(x(t)). 

- Let us prove now the existence of a solution to differential 
inclusion (10.3). We introduce the set-valued map G defined by 

G(x) := F(x)- NK(x) n c(llxll + 1)B 

Since the graph of NK(·) is closed, then x '"'-+ NK(x) n c(llxll + 1)B 
is a Marchaud map, so is also G. 

The closed subset K is a viability domain of G: indeed, for any 
x E K and f E F(x), g := f -1T'NK(x)f belongs both to F(x) -NK(x) 
and to TK(x) (because 1-7rNK(x) = 7rTK(x))· It also belongs to G(x) 
because 117rNK(x)fll ~ 11!11 ~ c(llxll + 1), so that 7rNK(x) belongs to 
NK(x) n c(llxll + 1)B. 

Hence the Viability Theorem implies the existence of a viable 
solution x(·) to the differential inclusion 

for almost all t ~ 0, x'(t) E G(x(t)) 

which is obviously a viable solution to (10.3). 0 

Remark - Let us consider the special case when K is a closed 
convex subset. We observe first that the characterization4 of the 
normal cone to a convex subset implies 

3When T is a closed convex cone, the projector 1fT of best approximation by 
elements of T is characterized by 

< 7rT(x)- x,7rT(x) > = 0 & '<:/vET, < 7rT(x)- x,v > :S 0 

and satisfies 

{ 
i) '<:/ >. > 0, 7rT(>.x) = A7rT(x) 
ii) llxll 2 = 117rT(x)ll2 + ll(l-7rT)(x)ll 2 

iii) 117rT(x)ll :S llxll & l(l-7rT)(x)ll :S llxll 

Furthermore, if N := r- denotes the polar cone, 1-1fT =: 7rN is the projector 
on N and we have 

T = { v I 7r N ( v) = 0 } & N = { v I 7fT ( v) = 0 } 

Maps 1fT and 7rN are called orthogonal projectors onto T and N respectively. 
4If K is closed and convex, its normal cone is equal to 

NK(x) = {pEX* suchthat 'iyEK, <p,y-x>:SO} 
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Proposition 10.1.2 Let us assume that K is closed and convex. 
Then the solutions to ( 10.3) are the solutions to the "variational 
differential inequalities" 

{ 
i) V t ~ 0, x(t) E K 
ii) for almost all t ~ 0, :3 v(t) E F(x(t)) such that 

V y E K, < x'(t) - v(t), x(t) - y >:S 0 

When K is convex and compact, we obtain the existence of a solution 
to the associated variational inequalities5: 

Proposition 10.1.3 Let F be upper semicontinuous with compact 
convex images and K c Dom( F) be a compact convex subset. Then 
there exists a solution x to the variational inequalities 

{ i) x E K 
ii) :3 v E F(x) such that V y E K, < v, y- x >:S 0 D 

Proof- We apply Ky Fan Inequality (Theorem 3.7.8) to the 
function <p defined on K x K by 

<p(x,y) := inf < v,y- x > 
vEF(x) 

which is obviously concave with respect to y, lower semicontinuous 
with respect to x thanks to the Maximum Theorem 2.1.6 and satisfy 
<p(y, y) = 0. Ky Fan's Theorem implies the existence of x E K such 
that 

V y E K, sup inf < v, x - y > ::::; 0 
yEKVEF(x) 

We conclude the proof by applying the lop-sided minimax theorem. 
D 

5 Convex minimization problems with constraints lead to such variational in
equalities thanks to the "Fermat Rule" which states that, x E K minimizes a lower 
semicontinuous convex extended function V on K if and only if 0 E 8V ( x) + N K ( x) 
provided that the weak constraint qualification assumption 0 E Int(K- Dom(V)) 
holds true. Therefore, differential inclusion 

for almost all t ~ 0, x'(t) E -8V(x(t))- NK(x(t)) 

is the continuous version of the gradient method for constrained minimization 
problems and one can show that viable solutions x(t) converge to minimizers of 
V over K when t -+ oo. See Section 3.5. of DIFFERENTIAL INCLUSIONS. 
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Remark- V. Krivan suggested generalizing this procedure by 
replacing the normal cone N K ( x) by any closed convex cone M ( x) 
such that the condition 

V x E K, (F(x)- M(x)) n TK(x) -::/= 0 

whenever the graph of the set-valued map M : K "'-'+ X is closed. 
For any f E X, the element u E (!- M(x)) n TK(x) of minimal 
norm is called the M-projection. Most of the results concerning 
variational differential inequalities are still valid when we replace the 
normal cone by such a closed set-valued map M the values of which 
are closed convex cones satisfying the above condition. In many 
concrete problems, it may be possible to find a "natural" map M 
which is simpler to handle than the normal cone map N K. D 

10.1.2 Slow Solutions 

Actually, we shall prove that slow viable solutions to the projected 
differential inclusion (10.2) and to differential inclusion (10.3) do co
incide and, when the set-valued map F is continuous, do exist. 

Proposition 10.1.4 Slow viable solutions to the projected differen
tial inclusion ( 10.2) and to differential inclusion ( 10.3) do coincide 
and are solutions to the differential equation 

{ for almost all t ~ 0, x'(t) = m(F(x(t))- NK(x(t))) (10.4) 
= m('rrrK(x(t))F(x(t))) 

The velocities satisfy the equation 

for almost all t ~ 0, llx'(t)ll2 +u(-F(x(t)),x'(t)) 0 

The proof of this proposition follows from the following 

Lemma 10.1.5 Let F C X be a convex compact subset, T C X be 
a closed convex cone and N := T- be its polar cone. Then 

m('rrr(F)) = m(F- N) 

and this element is a solution to 

{ 
i) u E (F- N) n T 
ii) llull2 + u( -F, u) = 0 

Furthermore, if m(F) belongs toT, then m(F) = m(rrr(F)). 
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Proof- By writing m(F- N) =: xo- Yo where xo E F and 
Yo EN, we obtain 

{ llxo- Yo II = infxEF,yEN llx- Yll = infxEF llx- 7TN(x)ll 
= infxEF II?Tr(x)ll = infyEN llxo- Yll = II?Tr(xo)ll 

Hence ?Tr(xo) = m(?Tr(F)) = m(F- N). 
The element u E F- N is the projection of 0 if and only if 

{ 0 = SUPyEF,zEN < u,u- (y- z) > 
= llull 2 +a( -F, u) + a(N, u) = llull 2 +a( -F, u) 

because, N being a cone, a(N, u) is either equal to 0 or to +oo, and 
thus, being finite, is equal to 0 whenever u EN- = T. 

Finally, when m(F) = 7TF(O) belongs toT, it satisfies 

V y E F, llm(F)II 2 ::=:; < m(F), y > 
=< m(F), ?Tr(Y) > + < m(F), 7TN(Y) > = < m(F), 7TT(Y) > 

because< m(F), 7TN(Y) >= 0. Hence we deduce inequalities 

V y E F, llm(F)II 2 :S < m(F), ?Tr(Y) > :S llm(F)IIII?Tr(Y)II 

which imply that the norm of m(F) E ?Tr(F) is minimal. D 

Theorem 10.1.6 Let F be continuous with closed convex images 
and linear growth. Then, for any xo E K, there exists a viable (slow) 
solution to differential equation ( 10.4) starting from xo. 

Proof- We introduce the set-valued map H defined by 

H(x) := { u EX lllull 2 +a( -F(x), u) ::=:; 0} 

Since F is lower semicontinuous, then (x, u) ---t a( -F(x), u) is lower 
semicontinuous, so that the graph of H is closed. Hence the graph 
of the set-valued map G1 defined by 

V x E K, G1(x) := (F(x)- (NK(x) n c(llxll + l)B n H(x) 

is closed and its growth is linear. So G1 is a Marchaud map. We 
observe that K is a viability domain of G1: indeed, v := m(F(x)-
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NK(x)) belongs to both G1(x) and TK(x). Hence, for any xo E K, 
there exists a viable solution to 

for almost all t ~ 0, x'(t) E G1(x(t)) 

Being viable, then, for almost all t ~ 0, the velocity x'(t) belongs to 
(F(x(t)) - NK(x(t))) n TK(x(t)). Since it also belongs to H(x(t)), 
we deduce from Lemma 10.1.5 that x'(t) = m(F(x(t))- NK(x(t))). 
0 

10.1.3 Projected differential inclusions onto smooth 
subsets 

Let us consider the case when K is a smooth manifold described by 

K := { x EX such that h(x) = 0} 

where g: X ---t Y is a C1-map such that 

\;/ x E K, h'(x) is surjective 

The orthogonal projection of f(x) onto TK(x) := Kerh'(x) is 
equal to 

h(x) := f(x)- h'(x)*(h'(x)h'(x)*)-1h'(x)f(x) = f(x)- h'(x)*u(x) 

where u(x) := (h'(x)h'(x)*)-1h'(x)f(x) can be regarded as a feed
back rule6. 

Hence the slow viable solutions to the projected equation of x' = 
f ( x) are solutions to the differential equation 

x'(t) = f(x(t))- h'(x(t))*(h'(x(t))h'(x(t))*)-1h'(x(t))f(x(t)) 

In the case of a differential inclusion x' E F(x), the slow viable 
solutions to its projected inclusion are solutions to the differential 
equation 

x'(t) = J(x(t))- h'(x(t))*(h'(x(t))h'(x(t))*)-1h'(x(t))J(x(t)) 

6 0bserve that h'(x)+ := h'(x)*(h'(x)h'(x)*)-1 is the orthogonal right-inverse 
of h'(x), so that we can also write h(x) = (1- h'(x)+h'(x))f(x). 
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where J(x) E F(x) minimizes over F(x) the function 

f---+ llf- (h'(x)h'(x)*)- 1h'(x)fll 

Case of affine subspaces 
This is the case when h(x) := Ax- b, where A E .C(X, Y) is 

surjective and b E Y. Then the slow solutions to the projected 

differential equation are the solutions to the equation 

x'(t) = f(x(t))- A*(AA*)- 1 Af(x(t)) 

and, in the case of a differential inclusion x' E F(x), the slow viable 
solutions are solutions to the differential equation 

x'(t) = /(x(t))- A*(AA*)-1 AJ(x(t)) 

where J(x) E F(x) minimizes over F(x) the function f ---+ llf -
(AA*)- 1 Afll· 

When Y = Rand Ax :=< p, x >, the differential equation be-
comes: 

x'(t) = f(x(t))- < p, ~~~~t)) > p 

Case of balls 
This is the case when h(x) := llxll 2 -b :=< Jx, x > -b where J E 

.C(X, X) is symmetric and positive-definite. Then the slow solutions 

to the projected differential equation are the solutions to the equation 

x' (t) = f(x(t)) - < Jx(t), f(x(t)) > Jx(t) 
11Jx(t)ll2 

and, in the case of a differential inclusion x' E F(x), the slow viable 
solutions are solutions to the differential equation 

x'(t) = /(x(t))- < Jx(t), J(x(t)) > Jx(t) 
11Jx(t)ll2 

where J(x) E F(x) minimizes over F(x) the function 

II <Jx,f> II 
f---+ f- 11Jxll2 Jx 
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10.2 Fuzzy Viability 

10.2.1 Fuzzy Sets 

We recall that any subset K C X can be characterized by its "indi
cator" 1/JK, which is the nonnegative extended function defined by: 

{ 0 ifxEK 
1/JK(x) := +oo if x ¢. K 

It can be regarded as a "cost function" or a "penalty function", 
assigning to any element x EX an infinite cost when xis outside K, 
and no cost at all when x belongs to K. 

We also recall that K is closed (respectively convex) if and only 
if its indicator is lower semicontinuous (respectively convex). 

We are led to regard any non negative extended function U from 
X to R+ U { +oo} as another implementation of the idea underly
ing "fuzzy sets", in which indicators replace characteristic functions. 
Instead of using membership functions taking values in the inter
val [0, 1], we shall deal with membership cost functions taking their 
values anywhere between 0 and +oo. 

Definition 10.2.1 We shall regard an extended nonnegative func
tion U : X ~ R+ U { +oo} as a fuzzy set. Its domain is the domain 
of U, i.e., the set of elements x such that U ( x) is finite, and the core 
ofU is the set of elements x such that U(x) = 0. The complement of 
the fuzzy set U is the complement of its domain and the complement 
of its core is called the fuzzy boundary. 

We shall say that the fuzzy set U is closed (respectively convex) 
if the extended function U is lower semicontinuous (respectively con
vex). 

Hence the membership function of the empty set is the constant 
function equal to +oo. 

Definition 10.2.2 We shall say that a set-valued map U : X ~ Y 
associating with any x E X a fuzzy subset U ( x) of Y is a fuzzy set
valued map. Its graph is the fuzzy subset of X x Y associated with 
the extended nonnegative function (x, y) ~ U(x, y) := U(x)(y) and 
its domain is 

Dom(U) := {x EX I U(x, y) < +oo for some y} 
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A fuzzy set-valued map U is said to be closed if and only if its 
graph is closed, i.e., if its membership function is lower semicontinu
ous. Its values are closed {respectively convex) if and only if the fuzzy 
subset U(x) are closed (respectively convex). It has linear growth if 
and only if, for some positive constant c, 

U(x, v) < +oo ::::=} llvll ~ c(llxll + 1) 

A nontrivial closed fuzzy set-valued map U with convex images and 
linear growth is called a Marchaud fuzzy set-valued map. 

10.2.2 Fuzzy Differential Inclusions 

By using indicators, we can reformulate the differential inclusion 

for almost all t, x'(t) E F(x(t)) 

as 
for almost all t, 'l/JF(x(t))(x'(t)) < +oo 

Then we are led to define "fuzzy dynamics" of a system by a fuzzy set
valued map U associating to any x E X a fuzzy set U ( x) of velocities 
{ v I U(x, v) < +oo }. In this case, we can write the associated fuzzy 
differential inclusion in the form 

for almost all t ~ 0, U(x(t), x'(t)) < +oo {10.5) 

or, equivalently, in the form 

for almost all t ~ 0, (x(t), x'(t)) E Graph(U) 

which is a fuzzy subset instead of a usual subset. 
We begin by characterizing usual subsets K enjoying the viability 

property for fuzzy differential inclusion: for any initial state xo E K, 
there exists a solution x(·) to the fuzzy differential inclusion (10.5) 
which is viable in K. 

Definition 10.2.3 We shall say that a subset K c Dom(U) is a 
viability domain of the fuzzy set-valued map U if and only if 

V x E K, U(x) n TK(x) =/= 0 

i.e., if and only if 

V x E K, 3 v E TK(x) such that U(x, v) < +oo 
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We begin by proving an extension of the Viability Theorem 3.3.5 
to fuzzy differential inclusions. 

Theorem 10.2.4 (Fuzzy Viability) Let us consider a Marchaud 
fuzzy set-valued map U from a finite dimensional vector-space X to 
itself. Any closed subset K C Dom(U) enjoying the viability property 
with respect to U is a viability domain and the converse holds true if 

V x E Dom(U), .X(x) := inf U(x, v) ::; J.L(x) < +oo 
vETK(x) 

where J.L is upper semicontinuous. 

Proof- Let us introduce the set-valued map F : K ~ X 
defined by 

F(x) := {vEX I U(x, v) ::; J.L(x)} (10.6) 

The subset K enjoys the viability property (is a viability domain) 
for the fuzzy differential inclusion (10.5) if and only if it does so for 
this set-valued map F. The set-valued map satisfies the assumptions 
of the Viability Theorem 3.3.5, because the graph of F is closed, its 
images are convex and its growth is linear. Then we infer that K 
enjoys the viability property if and only if it is a viability domain of 
F, and thus, of U. D 

When the fuzzy set-valued map U is continuous, we can select 
a viable solution to the fuzzy differential inclusion (10.5) which is 
sharpest, in the sense that the cost of its velocity's membership is 
minimal: 

for almost all t, U(x(t),x'(t)) = inf U(x(t),v) 
vETK(x(t)) 

(10.7) 

Theorem 10.2.5 We posit the assumptions of Theorem 10.2.4. We 
assume moreover that the restriction of the membership function U 
to its domain {the graph of U) is continuous and that the viability 
domain K is sleek. 

Then there exists a sharpest viable solution to the differential in
clusion {10.5} {i.e., which satisfies condition {10. 7)). 
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Proof- We introduce the function A defined by 

A(x) := inf U(x, v) 
vETK(x) 

Since saying that K is sleek amounts to saying that the set-valued 
map x ~ TK(x) is lower semicontinuous, the Maximum Theorem 2.1.6 
implies that the function A is upper semicontinuous, because we have 
assumed that U is upper semicontinuous. 

We then introduce the set-valued map G defined by 

G(x) := {vEX I U(x,v) :S A(x)} 

Then G has a closed graph, and the other assumptions of the Vi
ability Theorem 3.3.5 are satisfied. There exists a viable solution 
to differential inclusion x'(t) E G(x(t)), which is a sharpest viable 
solution to fuzzy differential inclusion ( 10.5.) D 

10.2.3 Fuzzy Viability Domains 

Is it possible to speak of fuzzy subsets having the viability property? 
A way to capture this idea is to introduce a continuous function 7 

cp : R+ ~ R with linear growth (which is used as a parameter in 
what follows) and the associated differential equation 

w'(t) = -cp(w(t)), w(O) = V(xo) (10.8) 

whose solutions w(·) set an upper bound to the membership of a 
fuzzy subset when time elapses. 

We shall say that a fuzzy set V c Dom(U) enjoys the "fuzzy vi
ability property" (with respect to cp) if and only if for all initial state 
xo E Dom(V), there exist solutions to the fuzzy differential inclu
sion (10.5) and to the differential equation (10.8) which are "fuzzily" 
viable in the sense that 

\1 t ~ 0, V(x(t)) :S w(t), w(O) = V(xo) 

i.e., if and only if the function V satisfies the Lyapunov property 
(with respect to cp). 

7The main instance of such a function <p is the affine function <p( w) := aw- b, 
the solutions of which are w(t) = (w(O)- ~)e-at+~· 
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We introduce now the "contingent set" T~ ( x) (also denoted Tv ( x)), 
the closed subset defined by: 

T~(x) := {vEX I Dr V(x)(v) + cp(V(x))::; 0} 

Definition 10.2.6 (Fuzzy Viability Domain) Let the continuous 
function cp with linear growth be given. We shall say that a fuzzy sub
set V is a fuzzy viability domain of a fuzzy set-valued map U (with 
respect to cp) if and only if 

\1 x E Dom(V), U(x) n T~(x) # 0 

i. e., if and only if 

V x E Dom(V), 3 v E T~(x) such that U(x, v) < +oo 

Theorem 10.2.4 can be extended to fuzzy viability domains: 

Theorem 10.2. 7 The fuzzy set-valued map U satisfies the assump
tions of Theorem 10.2.4. We assume that V C Dom(U) is a closed 
fuzzy subset which is contingently epidifferentiableB. If a closed fuzzy 
subset V enjoys the viability property, then it is a closed fuzzy via
bility domain of U and the converse holds true if 

V x E Dom(U), A(x) := inf U(x, v) ::; J.t(x) < +oo 
vET~(x) 

where J.t is upper semicontinuous. 

Proof- We apply the characterization theorem of Lyapunov 
functions (see Theorem 9.2.2) to the set-valued map F defined by 
(10.6). D 

We proceed by extending Theorem 10.2.5 on selection of fuzzy 
viable solutions to fuzzy differential inclusions which are sharpest, in 
the sense that 

for almost all t, U(x(t),x'(t)) = inf U(x(t),v) 
. vET~(x(t)) 

(10.9) 

8This means that for all x E Dom(V), \:1 vEX, Dr V(x)(v) > -oo and that 
Dr V(x)(v) < oo for at least avE X. 
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Theorem 10.2.8 We posit the assumptions of Theorem 10.2.4. We 
assume moreover that the restriction of the membership function U to 
its domain {the graph of U) is continuous and that the fuzzy viability 
domain V satisfies9 

x ""-+ T~ ( x) is lower semicontinuous 

Then there exists a sharpest viable solution to the differential inclu
sion {10.5} {which satisfies condition {1o.g)). 

Proof- The proof is the same as the one of Theorem 10.2.5, 
where the function >. is now defined by 

>.(x) := inf U(x, v) D 
vETt'(x) 

Let us consider now any closed fuzzy subset of the domain of 
U, which is not necessarily a fuzzy viability domain. The functions 
<p being given, we shall construct the largest closed fuzzy viability 
domain v<p contained in v. 

Theorem 10.2.9 The fuzzy set-valued map satisfies the assump
tions of Theorem 10.2.4. We assume that V c Dom(U) is a closed 
fuzzy subset which is contingently epidifferentiable. 

Then for any >. > 0, there exists a largest closed fuzzy viability 
domain v<p contained in v (for the fuzzy differential inclusion}, which 
enjoys furthermore the property: 

for almost all t 2:: 0, U(x(t), x'(t)) ~ >. 

Proof- We apply the theorem on the existence of a smallest 
lower semicontinuous Lyapunov function V'P larger than or equal to 
V (see Theorem 9.3.1) to the set-valued map F defined by (10.6). 
D 

9See section 9.4.3. (with W(x, v) cp(V(x))) for criteria of lower 
semicontinuity. 
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10.3 Finite-Difference Schemes 

We address now the problem of approximating a viable solution to 
differential inclusion 

for almost all t 2: 0, x'(t) E F(x(t)), x(O) = xo (10.10) 

by solutions to finite difference schemes, either implicit 

\;/ j 2: 0, Xj+I E (xj + hF(Xj+I)) n K, x(O) = Xo (10.11) 

or explicit: 

(10.12) 

where rK is a quasi-projector10 from X onto K. We say that such 
solutions converge when h --+ 0+ if a subsequence of the piecewise 
linear functions Xh which interpolates the xj's on the nodes jh con
verges to a solution x( ·) uniformly over compact intervals. 

10.3.1 Implicit Finite-Difference Scheme 

Implicit finite difference schemes require the knowledge at each step 
of a solution to an inclusion, whereas explicit schemes demand only 
the possibility of projecting a point to the viability domain (which 
is still a difficult problem). 

\ 

Theorem 10.3.1 Assume that K is a convex compact viability do
main of a Marchaud map F. Then there exist solutions to the im
plicit finite-difference scheme (10.11} which converges to a solution 
to differential inclusion (10.10} when h--+ 0+. 

Proof - We observe that K remains a viability domain of 
the set-valued map x ~ Xj - x + hF(x) since, K being convex, 
Xj-X E TK(x). Hence the assumptions of Equilibrium Theorem 3.7.6 

10satisfying 

3 .A > 0 such that \::1 x E K, \::1 y E X, llrK(Y) - xll ::::; .AIIx- Yll 

(See Definition 1.3.1). 



368 lD- Viable Equilibria 

are satisfied, so that it has a viable equilibrium Xj+l E K, which is 
a solution to the implicit scheme. 

The approximate solutions xh(·) defined on each interval by 

'v' t E [jh, (j + l)hj, Xh(t) := Xj + (t- jh)vj 

obviously satisfy the estimates (3.10) of the proof of Viability Theo
rem 3.3.2, so that a subsequence (again denoted by) xh(·) converges 
to some x( ·) uniformly on compact intervals and a subsequence (again 
denoted by) x~(-) converges weakly to x'(-) in L\ which is a solution 
to the problem thanks to Convergence Theorem 2.4.4. D 

10.3.2 Explicit Finite-Difference Scheme 

We extend now Theorem 1.3.3 to the case of differential inclusions. 

Theorem 10.3.2 Let us consider a continuous set-valued map with 
compact values and a compact subset K c Dom(F) such that 

'v' x E K, F(x) c TK(x) 

Let rK be a quasi-projector from X onto K. Let f be any selection of 
F and q, 1 the smallest convex valued upper semicontinuous set-valued 
map containing f, defined by 

q,J(x) := n cof(B(x, rJ)) 
77>0 

Then, starting from xo E K, the solutions to the projected explicit 
finite-difference scheme (10.12} converge to a solution to the differ
ential inclusion 

Proof 
implies that 

for almost all t ~ 0, x'(t) E q,/(x(t)) 

Since F(x) C TK(x) for all x E K, Lemma 5.1.2 

{ 'v' (x,v) E Graph(F), 'v' c > 0, 3 rJ(x,v) such that 
dK(Y + hu) ~ c whenever max(llx- yli, llv- uii, h)~ rJ(x, v) 
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The graph ofF being compact, it can be covered by p balls B((xi, vi), 17(xi, vi)). 
By setting 17 := minj=l, ... ,p 17(xi, Vi), we deduce that V c > 0, 

:3 17 > 0 such that V h E]O, 17], V (x, v) E Graph(F), dK(x+hv) :::; ch 

Starting from (xo, f(xo)) E Graph(F), we associate by induction 
the sequences 

( f( )) & . Xj+l - Xj 
Xj+l := fK Xj + h Xj Vj+l .= h 

and the approximate solutions xh(·) defined on each interval by 

V t E [jh, (j + 1)h], Xh(t) := Xj + (t- jh)vj 

They obviously satisfy estimates (3.10) of the proof of Viabil
ity Theorem 3.3.2 so that a subsequence (again denoted by) xh(·) 
converges to some x( ·) uniformly over compact intervals and a sub
sequence (again denoted by) x~ ( ·) converges weakly to x' ( ·) in L1. 

Furthermore, for all t 2:: 0, we have 

{ 
(xh(t), xh(t)) = 

(xj, f(xj)) + ((t- jh)vj+l, (xi+l- Xj- hf(xj))/h) 
E Graph(!)+ (hiiCII x (dK(Xj + hf(xj))/h)B 
c Graph(!) + c(B x B) 

for h small enough. Since the set-valued map <l>J is upper semicon
tinuous with closed convex images, we infer from the convergence 
theorem that the limit x( ·) is a solution to the differential inclusion 

x'(t) E <I>J(x(t)) D 

Remark - When f is not continuous, Cellina's Approximate 
Selection Theorem11 allows us to approximate <l>J by continuous func
tions fh in the sense that, for any c > 0, there exists 17 > 0 such that 

V h E]O, 77], Graph(fh) C Graph( <PI)+ c(B x B) 

Then Theorem 10.3.2 still holds true when we use the approxi
mate projected explicit finite-difference method 

11 8ee Theorem 9.2.1 of SET-VALUED ANALYSIS for instance. 
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Remark - When f is not continuous, the problem is then to 
associate explicitly with any Xj an element Yi close to Xj such that 

instead of implicitly as in the proof of the Viability Theorem. D 

10.3.3 Approximation of an Equilibrium 

We can show that under suitable assumptions, the limit when j ---+ oo 
of a discrete solution (xj k::o of the projected explicit scheme (if it 
exists) is an equilibrium ofF: 

Theorem 10.3.3 Assume that K is a sleek invariance12 domain of 
F and that F(K) is bounded. 

If for h small enough, a sequence Xj of the projected finite differ
ence scheme 

converges to some x, then x is a (viable) equilibrium of F. 

Proof- Indeed, let Uj E F(xj) satisfy Xj+l E ITK(Xj + huj)· 
Since F(K) is bounded, the sequence Uj is bounded. Let u E p-1(x) 
be any cluster point. Since (xi + huj, xi+!) belongs to the graph 
of IlK, which is closed, we infer that x E ITK(x + hu), and, by 
Proposition 3.2.3, that hu = x + hu- x belongs to the polar cone 
TK(x)- of TK(x). 

It also belongs to TK(x) because F(x) c TK(x). Since this cone 
is convex because K is sleek, we deduce that u = 0. Hence, all cluster 
points of Uj being equal to 0, we infer that the sequence Uj converges 
to 0, and therefore, that x is an equilibrium. D 

12Recall that this means that 

V x E Dom(F), F(x) C TK(x) 
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10.4 Newton's Method 

The classical Newton's Method for solving equation f(x) = 0 is de
fined by the algorithm f'(xn)(xn+l - Xn) = -hf(xn) and is known 
to converge to a solution x of this equation when f is invertible and 
when the initial point xo is close to this solution. 

The continuous version of Newton's Method is given by the dif
ferential equation 

f'(x(t))x'(t) = - f(x(t)), x(O) = xo 

which makes sense when f'(-) is invertible. We observe that y(t) := 

f(x(t)) is a solution to the differential equation y'(t) = -y(t) and 
thus, that it is equal to yoe-t, so that the cluster points of x(t) when 
t --+ oo are equilibria of f. Using this remark, we can write the 
above differential equation in the form of the system of differential 
inclusions 

{ 
i) x'(t) E (f'(x(t)))-1 ( -y(t)) 
ii) y'(t) = -y(t) 

for which the graph of f is a viability domain. 
We see at once how we can generalize this idea to any closed 

set-valued map F: Whenever we build pairs (x(·),y(·)) of functions 
such that 

1. - the function (x(·), y(·)) is viable in the graph ofF 
2. - the limit when t--+ oo of y(t) is equal to 0 
we obtain a continuous version of Newton's algorithm, in the 

sense that the w-limit set of x(·), if it is not empty, is contained in 
the set F-1 (0) of equilibria of F. 

A way to guarantee that limt--+oo y(t) is equal to 0 is to obtain 
this function as a solution to a differential equation 

y'(t) + '1/J(y(t)) = 0 (10.13) 

for which 0 is an asymptotically stable equilibrium: the simplest 
candidate is '1/J(y) := ay for some positive a, but it costs nothing to 
leave the choice of 'ljJ open. 

Therefore, a necessary condition for the function (x(·), y(·)) to be 
viable in the graph of F is that 

for almost all t 2 0, (x'(t), y'(t)) E TGraph(F)(x(t), y(t)) 
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or, equivalently, taking into account differential equation (10.13) and 
the definition of contingent derivatives13 , that it is a solution to the 
system of differential inclusions 

{ i) x'(t) E DF(x(t), y(t))- 1('1/J(y(t))) 
ii) y'(t) = -'1/J(y(t) 

(which are automatically viable in the graph of F). 
Therefore, building a continuous Newton's method amounts to 
1. - choose a "nice" single-valued Lipschitz map '1/J: Y t-tY 

for which 0 is asymptotically stable 
2. - choose a selection cp of the set-valued map 

(x, y) "-t <I>(x, y) := DF(x, y)-1( -'1/J(y)) 

such that the system of differential equations 

x'(t) = cp(x(t), y(t)) 

y'(t) = '1/J(y(t)) 

has solutions for initial states (xo, Yo) E Graph( F). 
We know how to answer these questions by using either Michael's 

Selection Theorem or any selection procedure introduced in section 4 
of Chapter 6. 

From now on, a "nice" single-valued Lipschitz map '1/J : Y t-t Y 
for which 0 is asymptotically stable is chosen once and for all. We 
set <I>(x, y) := DF(x, y)-1( -'1/J(y)) 

Theorem 10.4.1 Let F : X "-t Y be a closed set-valued map. Let 
Sit? be a selection procedure of the set-valued map ci> with convex values 
and linear growth. Then, for any initial state (xo, Yo) E Graph(F), 
there exists a solution ( x( ·), y( ·)) to the system of differential inclu
sions 

x'(t) E S(<I>)(x(t), y(t)) := <I>(x(t), y(t)) n S<P(x(t), y(t)) 

y'(t) = -'1/J(y(t)) 

13which states that 

TGraph(F) (x(t), y(t)) =: Graph{DF(x(t), y(t))) 
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starting at (xo, yo), satisfying y(t) E F(x(t)) for all t 2: 0 and such 
that thew-limit set w(x(·)) is contained in the set p-1(0) of equilib
ria. 

Proof- We apply the Viability Theorem 3.3.5 to the system 
of differential inclusions 

{ i) x'(t) E S~(x(t), y(t)) 
ii) y'(t) = -1/J(y(t)) 

The set-valued map (x, y) ~ s~(x, y) X { -1/J(y)} being a Marchaud 
map, it remains to observe that by construction, (u, -1/J(y)) belongs 
to the contingent cone TGraph(F)(x, y) whenever u E S(<P)(x, y). D 

Naturally, this suggests checking that the minimal selection r.p0 

defined by 

r.p0 (x, y) E <P(x, y) & JJr.p0 (X, y)JJ = inf JJvll 
vE~(x,y) 

can be obtained as an example of the above general method. 

Theorem 10.4.2 Assume that the graph of the set-valued map F : 
X ~ Y is closed and that there exists a positive constant c such that 

V (x, y) E Graph( F), inf JJuJJ ~ cJJvll 
uEDF(x,y)-l(v) 

IfF is sleek, then for any initial state (xo, Yo) E Graph( F), there 
exists a solution ( x( ·), y( ·)) to the system of differential inclusions 

x'(t) 

y'(t) 

r.p0 (x(t), y(t)) 

-1/J(y(t)) 

starting at (xo,yo), satisfying y(t) E F(x(t)) for all t 2: 0 and such 
that thew-limit set w(x(·)) is contained in the set F-1 (0) of equilib
ria. 

Proof - Since the set-valued map F is sleek, the contingent 
derivatives are closed convex processes. Proposition 7.1.3 applied to 
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F-1 and the assumption of our theorem imply that the set-valued 
map ( x, y, u) -vt D F ( x, y) - 1 ( u) is lower semicontinuous with convex 
values. Therefore <I> is also lower semicontinuous with convex values. 
Furthermore, 

so that the growth of the minimal selection is linear. Let S~ be the 
minimal selection procedure defined by 

S~(x, y) := { u EX [[[u[[ :S: inf [[v[[} 
vE<I>(x,y) 

We apply the Viability Theorem to the system of differential inclu-
sions 

since the map 

x'(t) E S~(x(t), y(t)) n c[['!j;(y(t))[[B 

y'(t) = -'1/J(y(t)) 

(x, y) -vt (S~(x, y) n c[['!j;(y)[[B) x { -'1/J(y)} 

is a Marchaud map for which the graph of F is a viability domain. 
0 

Corollary 10.4.3 Let K be a closed sleek subset of a finite dimen
sional vector-space X and f a C1-function from a neighborhood of K 
to a finite dimensional vector-space Y. Assume that 

V x E K, j'(x)TK(x) = Y 

and that there exists a constant c > 0 such that, for all x E K and 
v E Y, we can find a solution Ux E TK(x) to the equation f'(x)u = v 
such that supxEK [[ux[[ < +oo. 

Hence, there exists a solution x ( ·) to the differential equation 

x'(t) = m (rK(x(t)) n f'(x(t))- 1(- f(x(t)))) (10.14) 

whose w-limit set is contained in the set f-1 (0) n K of viable equi
libria. 
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Remark - Recall that when K is compact and convex, The
orem 3.7.12 states that assumption (10.14) implies the existence of 
both a viable equilibrium of f and of a viable solution to the implicit 
discrete scheme 

- f(xn), xo being given inK D 



Chapter 11 

Viability Tubes 

Introduction 

Let X be a finite dimensional vector space and F: [0, oo[xX '"'--+ 

X a set-valued map which associates with any state x E X and any 
time t the subset F( t, x) of velocities of the system. The evolution 
of the system is governed by differential inclusion 

x'(t) E F(t,x(t)) 

We conside:- now tubes, i.e., set-valued maps t '"'--+ P(t) from [0, oo[ 
to X. We say that a solution t f---+ x(t) EX is viable (in the tube P) 
if 

V t 2:: 0, x(t) E P(t) 

A tube P is viable under F (or enjoys the viability property) if and 
only if, for all to 2:: 0 and xo E P(to), there exists at least one solution 
x(-) to the differential inclusion starting at xo which is viable in the 
tube P. 

A single-valued tube t '"'--+ {x(t)} enjoys the viability property if 
and only if x( ·) is a solution to the differential inclusion. Actually, 
this was the approach used in the first studies of differential inclusions 
by Marchaud and Zaremba in the 1930's. 

The knowledge of a tube enjoying the viability property allows 
us to infer some information about the asymptotic behavior of some 
solutions to the differential inclusion. Therefore, they share with 
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Lyapunov functions their usefulness as tools to address asymptotic 
stability problems. 

We shall begin by characterizing tubes enjoying the viability 
property as viability tubes, which are those satisfying 

V t 2: 0, V x E P(t), F(t, x) n DP(t, x)(l) # 0 

where DP(t, x)(l) is the contingent derivative1 of Pat (t, x) in the 
"forward" direction 1. 

We can also characterize viability tubes P(t) by the indicator 
functions 'lj;p of their graphs: P is a viability tube if and only if 'lj;p 
is a solution to the contingent Hamilton-Jacobi equation2 

inf Dr'I/J(t, x)(l, v) = 0 
vEF(t,x) 

We prove in the second section that the reachable tube3 R~ (t) 
from a closed subset K is a closed viability tube satisfying R~ (0) = 
K. We prove that it contains minimal closed viability tubes P( ·) 
satisfying P(O) = K. We interpret these minimal viability tubes as 
solutions to the Cauchy problem for viability tubes. 

We show in the third section that the upper limit when t---+ oo of 
a viability tube P(t) is a viability domain and, under compactness 
assumptions, an attractor of the tube. If we regard such upper limits 
of viability tubes of a differential inclusion as asymptotic targets, we 

1 See chapter 7 above and Chapter 5 of SET-VALUED ANALYSIS. The contingent 
derivative is defined by 

2 See chapter 9 above, Chapter 6 of SET-VALUED ANALYSIS and CONTROL 
THEORY OF NONLINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS by Helene 
Frankowska. The contingent epiderivative is defined by 

D olo( )(1 ) ·= l" . f 1/J(t+h,x+hv')-'lj;(t,x) 
i '1-' t, X , V • lffi Ill h 

h~O+,v' --+v 

is the "contingent epiderivative" of 1/J at (t, x) in the direction (1, v ). 
3 Reachable tubes or funnels are also solutions to funnel equations which are 

extensively studied in the Soviet literature. 
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then derive that such targets are necessarily viability domains of a 
differential inclusion. 

We then address the following controllability problem: Given a 
subset K and a target C, can we reach some or every element y E C 
from an initial point x E K following a solution to the differential 
inclusion? One way to achieve this purpose is to build viability tubes 
"going from K to C" . Examples are provided in Section 4, where 
we study tubes of the form P(t) := cp(t, K, C) where cp(O, K, C) = K 
and cp(T, K, C) = C, which carry a subset K to a subset C. We also 
provide in Section 5 a surjectivity criterion which may be useful for 
solving such problems. 

We then investigate in Section 6 tubes enjoying the invariance 
property: for all to ~ 0 and xo E P(to), all solutions to the differential 
inclusion are viable: we shall characterize them as invariance tubes, 
solutions to 

\:f t ~ 0, \:f x E P(t), F(t, x) C DP(t, x)(l) 

We can also look for Marchaud tubes satisfying the opposite in
clusion: 

\:f t ~ 0, \:f x E P(t), DP(t, x)(l) C F(t, x) 

We see at once that any absolutely continuous selection x(t) E P(t) 
of a Marchaud tube is a solution to the differential inclusion. 

Hence we have three ways to regard a tube as a "multivalued 
solution" to the differential inclusion, according whether for any 
(t, x) E Graph(P), we have 

• DP(t, x) c F(t, x) (Marchaud tubes), 

• DP(t, x) n F(t, x) =/= 0 (viability tubes), 

• F(t,x) C DP(t,x) (invariance tubes). 

In many time-dependent problems, the set-valued maps t ~ 
F(t,x) are only measurable, and no longer upper semicontinuous. 
This is in particular the case of variational inclusions obtained by 
linearization of a differential inclusion 

x'(t) E F(x(t)) 
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along a solution x(·): 

w'(t) E DF(x(t), x' (t))( w(t)) 

(See Chapter 10 of SET-VALUED ANALYSIS for the connections be
tween the solution map of the variational inclusion and the contingent 
derivative of the solution map of the original differential inclusion, 
and SET-VALUED ANALYSIS AND CONTROL THEORY for its appli
cations to local controllability and observability.) 

We shall adapt the viability theorem to the case of set-valued 
map measurable with respect to the time in section 7. 

11.1 Viability Tubes 

Let X be a finite dimensional vector space. We consider a set-valued 
map F: [0, oo[ xX '"'-+X which associates with every (t, x) the subset 
F(t,x) of velocities of the system at timet when its state is x EX. 
We shall study the differential inclusion 

for almost all t E [O,T], x'(t) E F(t,x(t)) (11.1) 

From now on, we regard a set-valued map P from [0, oo[ to X as a 
"tube". 

Definition 11.1.1 We say that a tube P is viable under F (or en
joys the viability property) if for any initial time to E [0, oo[ and any 
initial state xo E P(to), there exists a solution x(·) to {11.1) starting 
from xo at time to which is "viable" in the sense that 

V t E [to, oo[, x(t) E P(t) 

In the finite horizon case where F : [0, T] x X '"'-+ X and P : [0, T] '"'-+ 

X, we say that the tube P is viable under F on [0, T] if for any 
initial time to E [0, oo[ and any initial state xo E P(to), there exists 
a solution x(·) to {11.1) starting from xo at time to which is "viable" 
in the sense that 

V t E [to, T[, x(t) E P(t) 

and fort E [T, oo[, a solution x(·) to differential inclusion x'(t) E 

F(T,x(t)) starting from x(T) at timeT which is "viable" in P(T): 

Vt ~ T, x(t) E P(T) 
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Remark that a subset K is viable under a time independent set
valued map F : X ~ X if and only if the "constant tube" t ~ 
P(t) := K is viable under F. 

Our first task is to characterize tubes enjoying the viability prop
erty thanks to its "contingent derivative" . 

We observe that it is enough to know this contingent derivative 
only in the directions 1, 0 and -1 because T ~ D P( t, x) ( T) is posi
tively homogeneous. In particular, we note that 

{ 
DP(t,x)(1) = {vEXIliminfh-->O+d(v,P(t+::)-x) =0} 

TP(t)(x) c DP(t, x)(O) 
(11.2) 

Definition 11.1.2 A tube P : [0, oo[~ X is called a viability tube 
of a set-valued map F : [0, oo[ xX ~ X if its graph is contained in 
the domain of F and if 

V t E [0, T[, V x E P(t), F(t, x) n DP(t, x)(1)-/= 0 

In the finite horizon case where F : [0, T] x X ~ X and P : [0, T] ~ 
X, we say that P is a viability tube of F if 

V t E [0, T[, V x E P(t), F(t, x) n DP(t, x)(1) -/= 0 

if t = T, V x E P(T), F(T, x) n DP(T, x)(O) -/= 0 
(11.3) 

A tube is said to be closed if and only if its graph is closed. 

Viability Theorem 3.3.5 for autonomous (i.e., time independent) 
systems and other results of Chapter 3 can be easily translated in 
the time dependent case and yield the following summary: 

Theorem 11.1.3 Assume that the F : [0, oo[ xX ~ X is a Mar
chaud map. Then 

1. A necessary and sufficient condition for a closed tube 
to be viable under F is that it is a viability tube. 

2. There exists a largest closed viability tube P* contained 
in any given closed tube P, called the viability kernel of the tube P. 
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3. If Pn is a sequence of closed viability tubes, then the 

graphical upper limit P, which is the tube defined by the 

Graph(P) := lim sup Graph(Pn) 
n--+oo 

is also a (closed} viability tube. 
4. Any closed tube Q C P* is actually contained in a 

minimal viability tube, called a viability envelope of Q. 

Proof - We introduce the set-valued map G from Graph(P) 
to R+ X R n defined by 

G(s,x) := {1} x F(s,x) 

in the infinite horizon case and by 

{ 
{1} x F(s,x) 

G(s, x) := [0, 1] x F(T, x) 
{0} x F(T, x) 

if s E [0, T[ 
if s T 
if s > T 

in the finite horizon case. We observe that (s(·),x(·)) is a solution 
to the differential inclusion 

for almost all t, (s'(t), y(t)) E G(s(t), y(t)) 

starting at (s(O), x(O)) = (to, xo) if and only if the function x(·) 
defined by x(t) := y(t - to) is a solution to differential inclusion 
(11.1) starting at xo at time to. We also note that the tube P is 
viable under F if and only if its graph is viable under G and that P 
is a viability tube if and only if its graph is a viability domain of G. 
It thus remains to translate the time independent results. D 

We shall denote by SF(to,xo) the set of solutions x(·) to the 
differential inclusion (11.1) and by Graph(PF) its closed domain, 
which is the graph of the largest viability tube of F. 

We deduce from Theorem 3.5.2 that 

Theorem 11.1.4 Let us consider a finite dimensional vector space 
X and a Marchaud map F : [0, oo [ x X "'-'t X. Then the solution map 
SF is upper semicontinuous with compact images from Graph(PF) to 
the space C(O, oo; X) supplied with the compact convergence topology. 
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Remark - We deduce from the properties of the viability 
kernel that if an initial state X 8 E P(s) at times does not belong to 
P*(s), then any solution x(·) to the differential inclusion starting at 
x 8 satisfies 

V t ~ s, x(t) fj. P*(t) as long as x(t) E P(x(t)) 

3 T ~ s such that x(T) fj. P(T) D 

We may regard condition (11.3)i) involved in the definition of 
viability tubes as a "set-valued differential inclusion", the solutions 
to which are "viability tubes" and condition (11.3)ii) as a "final" 
condition. 

Remark - Actually, conditions (11.3) defining ''viability tubes" 
is a multivalued version of the Hamilton-Jacobi equation in the following 
sense. 

We characterize a tube P by the indicator function 'lj;p of its graph 
defined by 

·- { 0 if x E P(t) 
'1/Jp(t, x) .- +oo if x rJ. P(t) 

Hence, conditions (11.3) can be translated in the following way: 

Proposition 11.1.5 A tube P is a viability tube if and only if the indicator 
function 'lj;p of its graph is a solution to the contingent Hamilton-Jacobi 
equation: 

inf Dr'¢(t,x)(1,v) = 0 
vEF(t,x) 

satisfying the final condition (when T < oo): 

inf Dr'¢(T, x )(0, v) = 0 
vEF(T,x) 

(11.4) 

(11.5) 

When the function '¢ is differentiable, equation (11.4) can be written 
in the form 

8'¢ . n 8'¢ 
~ + mf L -8 (t,x)vi = 0 
UL vEF(t,x) i=l Xi 

We recognize the classical Hamilton-Jacobi equation (see Chapter 9.) 
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11.2 Cauchy Problem for Viability Tubes 

We consider now a Marchaud map F : [0, oo[ xX ~ X and its largest 
closed viability tube PF : [0, oo[~ X (which is the viability kernel of 
the domain of F). 

Let K c Pp(O) be a closed subset. We are looking for viability 
tubes which satisfy the initial condition P(O) = K, which is the 
Cauchy problem for tubes. 

The main example of a closed viability tube satisfying this initial 
condition is the reachable tube defined by Rp(t)(K) defined by 

R~(t) := {x(t)}x(·)ESp(O,K) 

Proposition 3.5.6 can be adapted to the time-dependent case: 

Proposition 11.2.1 Assume that F: [O,oo[xX ~X is a Mar
chaud map and that a closed subset K is contained Pp(O). Then the 

reachable tubeR~ (t) is a closed viability tube satisfying R~ (0) = K 
and 

R~ (t) = {x E Pp(t) I R-F(t)(x) n K =!= 0} 

Furthermore, any closed viability tubes P( ·) C R~ ( ·) satisfying P(O) = 
K contains a minimal closed viability tube satisfying P(O) = K. 

Proof - The last statement is a consequence of Zorn's Lemma: 
Indeed, consider the family of closed viability tubes P( ·) C R~ ( ·) 
and a decreasing family {Pi}iEI of such tubes. It is clear that the 
intersection P(.) := niEI pi (.) is a closed viability tube satisfying 
P(O) = K. Hence each closed viability tube contains a minimal 
viability tube. D 

Definition 11.2.2 We shall say that the minimal closed viability 

tubes P( ·) C R~ (-) of F satisfying the initial condition P(O) = K 
are the solutions to the Cauchy problem for the differential inclusion 

{11.1}. 
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Theorem 11.2.3 Consider a Marchaud map F : [0, oo[ xX ""-+ X 
satisfying the uniqueness property4 : 'V x E Pp ( 0), there exists a 
unique solution to the differential inclusion ( 11.1) starting at x at 
time 0. 

Let K c Pp(O) be a nonempty closed subset. Then the reachable 
tube R~ is the unique solution to the Cauchy problem for viability 
tubes. 

Proof of Theorem 11.2.3- Let us consider a closed viability 
tube PC R~ satisfying P(O) = K. Then P = Rf Otherwise, there 
would exist X 8 E RK(s) such that x8 ¢. P(s). By assumption, there 
exists a solution x(·) to the differential inclusion {11.1) starting from 
x(O) E K such that x(s) = x8 • But starting from x(O), the solution 
is unique, and is viable in the tube P since it is a viability tube 
satisfyingP(O) = K. Thereforex(s) belongstoP(s), acontradiction. 
D 

11.3 Asymptotic Target 

We shall now study the behavior of viability tubes of time indepen
dent maps F: X""-+ X when t-----+ oo. 

Theorem 11.3.1 Consider a Marchaud map F from X to X and a 
closed viability tube P : [0, oo[""-+ X. Then the upper limit 

is a viability domain of F. 
If there exists T 2: 0 such that Ut~T P(t) is bounded, then it is 

an attractor in the sense that 

\Ito 2:0, xo E P(to), :3 x(·) E SF(to,xo) I lim d(x(t),C) = 0 
t-+oo 

4This happens whenever F enjoys a monotonicity property of the form: there 
exists a real constant c such that for every t ~ 0, for every pair Xi, Ui E F(t, Xi) 

(i = 1, 2), we have 
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Proof - We shall prove that C enjoys the viability property. 
Let e belong to C. Then e =limen where en E P(tn)· We consider 
the solutions Xn ( ·) to the differential inclusion 

x~(t) E F(xn(t)), Xn(tn) = en 

which are viable in the sense that V t ~ tn, Xn(t) E P(t). The 
function Yn(·) defined by Yn(t) := Xn(t + tn) are solutions to 

y~(t) E F(yn(t)), Yn(O) = en 

Theorem 3.5.2 implies that these solutions remain in a compact 
subset of C(O, oo; X). Therefore, a subsequence (again denoted by) 
YnO converges toy(·), which is a solution to 

y'(t) E F(y(t)), y(O) = e 

Furthermore, this solution is viable in C since for all t ~ 0, y(t) is 
the limit of a subsequence of Yn(t) = Xn(t+tn) E P(t+tn), and thus 
belongs to C. 

Let us prove now that Cis an attractor. If not, there would exist 
xo E P(to) such that for all solutions x(·) E SF( to, xo), there exist 
8 > 0 and a sequence tn ~ oo such that 

V n ~ 0, d (x(tn), C) ~ 8 > 0 

There is at least one such solution x*( ·) which is viable in the tube 
P(·). Since the closure of Ut>T P(t) is compact by assumption, a 
subsequence (again denoted by) x*(tn) converges to some x* which 
belongs to the C. We thus obtain a contradiction. D 

11.4 Examples of Viability Tubes 

Let us consider two closed subsets K and C of X and a differentiable 
map ci> from a neighborhood of [0, T] x K x C to X. 

We consider tubes of the form 

P(t) := ci>(t, K, C) (11.6) 
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Proposition 11.4.1 Let us assume that for all t S T, for all x E 

P(t), there exists (y, z) E K x C satisfying ~(t, y, z) = x and there 
exists (u, v) E TKxc(y, z) such that 

if t < T, ~~(t, y, z)u + ~~(t, y, z)v E F(t, x)- ~i(t, y, z) 

ift=T, ~~(T,y,z)+~~(T,y,z)v E F(T,x) 
(11.7) 

Then the set-valued map P defined by ( 11.6) is a viability tube ofF 
on [O,T]. 

Proof We observe that Graph(P) is the image of [0, T] x 
K x C under the map W defined by 

w(t, y, z) = (t, ~(t, y, z)) 

By formula ( 4) of Table 5.2, 

w'(t, y, z)T[o,T]xKxc(t, y, z) c TGraph(P) (w(t, y, z)) 

Hence assumptions (11.7) imply that Pis a viability tube. D 

We can also characterize viability tubes of the form (11.6) through 
dual conditions (involving the subnormal cones) thanks to Theo
rem 3.2.4. 

Proposition 11.4.2 Let us assume that F is upper semicontinuous 
with compact convex values and that the subsets K and C are closed. 
If for any t E [0, T], V x E P(t), there exists (y, z) E K x C satisfying 
~(t, y, z) = x such that for all 

p satisfying (~~(t, y, z)*p, ~~(t, y, z)*p) E N'kxc(y, z) 

we have 

V t < T, < p, ~i(t, y, z) > +a(F(t, ~(t, y, z)), -p) > 0 

for t = T, a(F(T, ~(T, y, z)), -p) 2: 0 
(11.8) 

then the set-valued map P defined by {11.6) is a viability tube ofF 
on [O,T]. 
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Let us consider now a tube of the form 

P(t) .- K + cp(t)C 

where K and C are closed. 

Corollary 11.4.3 Let us assume that K and C are closed subsets 
and that F is upper semicontinuous with compact convex values. Let 
cp : R+ ---+ R+ be a differentiable function satisfying either one of the 
following equivalent conditions: For any t ~ 0, V x E P(t), there 
exist y E K, z E C such that x = y + cp(t)z and either 

{ 
i) (F(t, y + cp(t)z)- cp'(t)z) n (TK(Y) + Tc(z)) f= 0 if t < T 

ii) (F(T, y + cp(T)z) n (TK(Y) + Tc(z)) f= 0 if t = T 

or, V p satisfying (p, cp'(t)p) E Nf<xc(y, z), 

O"c(P) + O"(F(t, y + cp(t)z, -p) ~ 0 if t < T 
(11.9) 

O"(F(T, y + cp(T)z, -p) ~ 0 if t = T 

Then the set-valued map P defined by 

P(t) := K + cp(t)C 

is a viability tube ofF on [0, T]. 

Let us consider the instance when K = { c} and when 0 belongs 
to the interior of the closed convex subset C. 

We introduce the function ao defined by 

{ 
ao(t, w) := 

~PzEC SU~pENc(x), ac(p)=l infvEF(t,c+wz) < p, V > 
- SUPzEC mfvEF(t,c+wz) SUPpENc(x), ac(p)=l < p, v > 

(11.10) 

(The latter equation follows from the Lopsided Minimax Theorem). 
Let us assume that there exists a continuous functi0n a : R+ x 

R+ ~ R satisfying a(t, 0) = 0 for all t ~ 0 and 
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'if (t, w) E R+ x R+, a(t, w) ~ ao(t, w) 

Let r.p be a solution to the differential equation 

r.p'(t) = a(t, r.p(t)) & r.p(O) = <po given (11.11) 

satisfying 

a(T, r.p(T)) = 0 

Since oc(p) > 0 for all p i= 0, we deduce that for all z E C and 
all p E Nc(z), 

r.p'(t)uc(P) ~ a(t, r.p(t))uc(p) ~ ao(t, r.p(t))uc(P) 

> uc(p) SUPvEF(t,c+rp(t)z) < - uclP)' V > 

-u(F(t, c + r.p(t)z), -p) 

Hence, condition (11.9)i) is satisfied. We also check that 

-1 
0 = a(T,r.p(T)) ~ ao(T,r.p(T)) ~ -(-)u(F(T,c+r.p(T)z),-p) 

uc p 

Then the tube defined by P(t) := c + r.p(t)C is a viability tube 
of F. D 

For instance, if C := B is the unit ball, then us(P) = IIPII and 
Ns(z) = ).z for all z E S := {xlllxll = 1}. Hence, in this case we 
have 

ao(t, w) := sup inf < v, z > 
llzll=l vEF(t,c+wz) 

In other words, the function a0 defined by (11.10) conceals all the 
information needed to check whether a given subset C can generate 
a tube P. D 

Remark- When a is nonpositive and satisfies a(t, 0) = 0 for all 
t ;:::: 0, then there exists a non-negative non-increasing solution cp( ·) to the 
differential equation ( 11.11). 
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When T = oo, we infer that J0
00 a( T, cp( T) )dr is finite. Let us assume 

that for all w* E R+, 

lim a(t, w) = a*(w*) 
t-+oo,w---+w* 

Then the limit <p* of cp(t) when t---+ oo satisfies the equation 

a*(cp*) = 0 

Otherwise, there would exist e: > 0 and T such that a* ( <p*) + e: < 0 and 
for all t > T, a(t, cp(t)) S a*(cp*) + c: by definition of a*. 

We deduce the contradiction 

cp(t)- cp(T) = [ a(r, cp(r))dr < (t- T)(a*(cp*) + e:) 

when tis large enough. 

Example - Let us consider the case when F does not depend upon 
t. We set 

Po := sup inf (Aw- ao(w)) 
>.ER w>O 

Assume also that Ao E R achieves the supremum. We can take '¢( w) := 

Aow- Po· 
If Po > 0, the function 

{ 
~ (1 _ e>-o(t-T) 

<pr(t) := 

-po(t- T) 

if Ao~O 

if Ao 0 

is such that P(t) := c + <pr(t)C is a tube ofF such that P(T) = {c}. 
If Po S 0 and Ao < 0, then the functions 

1 
cp(t) := Ao (po - e>.ot) 

are such that P(t) := c+ cp(t)C defines a tube ofF on [0, oo[ such that P(t) 
decreases to the set P00 := c+ ~C. D 

11.5 An Abstract K- C Problem 

We propose now a criterion which allows us to decide whether a 
compact convex subset C lies in the image R(K) of a subset K of a 
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Hilbert space X by a set-valued map R (the reachable map in our 
framework) from X to another Hilbert space Y. 

We want to solve the following problem (the K-C problem): 

For every yin C, find x inK such that y belongs to R(x) 

(i.e. we can reach any element of the target C from K). Assume 
that we know how to solve this problem for a "nicer" set-valued map 

Q from K toY (say, a map with compact convex graph). 

For every yin C, find x inK such that y belongs to Q(x) 

The next theorem states how a relation linking R and Q ( R is outward 
with respect to Q) allows us to deduce the surjectivity of R from the 
surjectivity of Q. 

Theorem 11.5.1 We assume that the graph of Q is convex and 
compact and that R is upper semicontinuous with convex values. We 

set 
K := Dom(Q), C := Im(Q) 

If 

V x E K, V y E Q(x), y E R(x) + Tc(y), 

(outwardness condition}, then C C R(K). 

Proof ~ It is a simple consequence of Theorem 3.7.11. We 
replace X by X x Y, K by Graph(Q) (which is convex compact), A 
by the projection 1ry from X x Y toY and R by the set-valued map 
G from X x Y to Y defined by: 

G(x, y) := R(x)- Yo where Yo is given inC 

The outwardness condition implies that the tangential condition : 

0 E -y + R(x) + Tc(Y) 

if satisfied. Since Yo- y belongs to Tc(y) (because Yo E C), then 

0 E -yo+ R(x) + Tc(Y) = G(x, y) + Tc(Y) 
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We observe that 

{ Tc(Y) = T lm(Q)(y) T7ry(Graph(Q))('ny(x, y)) 
1ry(TGraph(Q)(x, y)) 

so that 

0 E G(x, y) + 11y(TGraph(Q)(x, y)) 

Theorem 3.7.11 implies the existence of a solution (x, y) in the graph 
of Q to the inclusion 0 E G(x, y), i.e., to the inclusion Yo E R(x). 

Remark- The dual version of the outwardness condition is 
the following: 

V q E Nc(y), V x E A-1(y), < q, y > :S O"(R(x), q) 

where Nc(y) denotes the normal cone to the convex set Cat y and 

O"(R(x), q) := sup < q, y > 
yER(x) 

is the support function of R(x). 

11.6 Invariant Tubes 

We distinguish between viability tubes and invariant tubes in the same way 
as viability domains and invariant domains. 

Definition 11.6.1 We say that a tube Pis invariant under F (or enjoys 
the invariance property) if and only if for all t0 and x0 E P(to), all the 
solutions to differential inclusion ( 11. 3.1) are viable in the tube P. 

We say that P is an invariant tube if 

{ i) VtE [O,T[, 'ixEP(t), F(t,x) c 
ii) if T < +oo, If x E P(T), F(t,x) C 

We obtain the following theorem. 

DP(t,x)(I) 
DP(t,x)(O) 

Theorem 11.6.2 Assume that F : [0, T[ xn---. X is Lipschitz with respect 
to x in the sense that 

3k(·) E L1(0,T)IF(t,x)cF(t,y)+k(t)llx-yiiB 

(B is a unit ball}. Lett'""' P(t) C n be a closed tube: If P is an invariant 
tube, then it is invariant under F. 
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The theorem follows from the following extension of Lemma 5.1.2: 

Lemma 11.6.3 Let P be a closed tube and 1r'P(t)(Y) denote the set of best 
approximations of y by elements of P( t). 

{ 
I. · f d(y+hv,P(t+h))-d(y,P(t)) 
Imm h-->0+ h 

:S infxE'lrP(t)(Y) d(v, DP(t, x)(l)) 

Proof of the theorem - Let us associate with any solution to the 
differential inclusion x'(t) E F(t, x(t)) the function g(t) := d(x(t), P(t)). 
Let us choose y(t) E 1r'P(t)(x(t)). Inequalities 

liminfh__,O+(g(t +h)- g(t))/h 

= liminfh-->O+ (d(x(t) + hx'(t) + ho(h), P(t +h))- d(x(t), P(t)))/h 

:S llo(h)l/ + liminfh-->O+(d(x(t) + hx'(t), P(t +h))- d(x(t), P(t)))/h 

:S d(x'(t),DP(t,y(t)(l))) 

:S d(x'(t), F(t, y(t))) :S SUPvEF(t,x(t)) d(v, F(t, y(t))) 

:S k(t)lly(t)- x(t)ll = k(t)d(x(t),P(t)) = k(t)g(t) 

imply that g(t) is a solution to the differential inequality 

Drg(t)(l) :S k(t)g(t) & g(to) = d(x0,P(t0)) = 0 

Hence d(x(t), P(t)) = g(t) = 0 for all t E [t0 , T[. 0 

Remark - If we assume that the condition 

'V (t, y) E Dom(F), 3 x E 1rP(t)(Y) such that F(t, y) C DP(t, x)(l) 

holds true, then the tube Pis invariant by F: this knowledge of the behavior 
of F outside the graph of the tube P allows us to dispose of the Lipschitz 
assumption. 0 

We can characterize the indicator functions of the graphs of invariant 
tubes in the following way: 

Proposition 11.6.4 A tube P is invariant by F if and only if the indicator 
function '1/Jp of its graph is a solution to the equation 

sup Dr'l/J(t,x)(l,v) = 0 
vEF(t,x) 
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satisfying the final condition 

If T < +oo, sup Dr'lfi(T,x)(O,v) 0 
vEF(t,x) 

11.7 Measurable Time Dependence 

In this section, we consider the case of a differential inclusion 

for almost all t ~ 0, x'(t) E F(t, x(t)) (11.12) 

where, for all x E X, the set-valued map t "-t F( t, x) is measurable 
with respect to t E [0, oo[. 

This means that the inverse images of any open subset of X by the 
set-valued map t "-t F( t, x) is (Lebesgue) measurable. (See Chap
ter 8 of SET-VALUED ANALYSIS for a presentation of measurable 
set-valued maps for instance). 

We are looking for solutions to this differential inclusion which 
are viable in a closed subset K. 

Theorem 11.7 .1 (Tallos) Let X be a finite dimensional vector
space X and F : R+ x K "-t X be a nontrivial set-valued map 
satisfying 

i) V x E K, t "-t F(t, x) is measurable 

ii) Vt ~ 0, X"-t F(t,x) 
is upper semicontinuous with compact convex values 

iii) :3 c(·) E L1 (0,oo;R+) such that IIF(t,x)ll :S c(t)(llxll + 1) 

If K is a viability domain in the sense that 

for almost all t ~ 0, F(t,x) nTK(x) =I 0 

it is viable under F: for any initial state x 0 E K, there exists a 
solution to the differential inclusion ( 11.12) starting at xo which is 
viable inK. 
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Proof- The idea is 
first, to approximate the set-valued map F by Marchaud 

maps Fh defined by 

11t+h 
VxEK, Vt2:0, Fh(t,x) := h t F(s,x)ds 

and then, to show that the solutions xh to approximate 
differential inclusions 

for almost all t 2: 0, x~(t) E Fh(t,xh(t)) 

viable inK converge to a solution to the differential inclusion (11.12) 
viable inK. 

• For that purpose, we need first to recall the definition of 
the integral of a set-valued map <I> : R+ ~X. We denote by~ the 
set of all integrable selections of <I>: 

~ = { f E £ 1(0, oo; X) I f(t) E <I>(t) almost everywhere in R+} 

The integral of <I> on R+ is the set of integrals of integrable selections 
of <I>: 

fooo <I>(t)dt := { fooo f(t)dt I f E ~} 

The integral is convex whenever <I> has convex images (and even when 
the images are not convex, as Aumann's theorem states.) 

We recall (see for instance Theorem 8.6.2 of SET-VALUED ANAL
YSIS) that the integral of a support function is the support function 
of the integral: 

1 1t+h ( 1 1t+h ) h t a( <I>(s ), p)ds = a h t <I>(s )ds, p 

and that 

for almost all t 2: 0, lim a (-h1 1t+h <I>(s)ds,p) = a(<I>(t),p) 
h--->0+ t 

• The set-valued maps Fh are upper semicontinuous. Let 
( t, x) E R+ x K and c > 0 be given. We associate with any 'Y > 0 

TJ(s, x, r) := sup sup d(v, F(s, x)) 
yEB(x,r) vEF(s,y) 
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The function TJ is measurable with respect to s (see section 8.2. of 
SET-VALUED ANALYSIS), is bounded by 2c(s)(llxll + 1) and 

lim rJ(s, x, 1) = 0 
")'-->0+ 

since y 'Vt F(s, y) is upper semicontinuous at x. 
Therefore, the Lebesgue Dominated Convergence Theorem im

plies that 

lim (-h1 1t+h TJ(s, x, 1)ds) 
")'-->0+ t 

Choose now 8 E]O, c-h/4[ such that 

holds true. 

11t+h c h t TJ(s,x,,)ds < 2 

= 0 

Take (r, y) E R+ x K such that lr- sl < 8 and llx- Yll < 8 and 
w E Fh(r, y). By definition of the integral of a set-valued map, there 
exists an integrable selection g(s) E Fh(s, y) satisfying 

11r+h 
w = h r g(s)ds 

We introduce the set-valued map <I> defined by 

<I>(s) := F(s, x) n { u EX lllu- g(s)ll :S rJ(s, x, 8)} 

Then <I> is obviously measurable with nonempty closed values and 
thus, measurable. Choose a selection cp( ·) of <I> and set 

11t+h 
v := h t cp(s)ds 

which belongs to Fh(t, x) and which satisfies 

1 II rt+h 1r+h II llv- wll = h it cp(s)ds- r g(s)ds 

< ~If llg(s)lldsl + ~ th ll10(s)- g(s)llds + ~ 11::• llg(s)lldsl 

c 11t+h c < 4 + h t TJ(s,x,8)ds + 4 ::; c 
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by the choice of 8. We have proved that Fh is upper semicontinuous. 
We recall also that the values of Fh are closed and convex. If we set 

1 rt+h 
ch(t) := h lt c(s)ds 

we see that 

c := fooo c(s)ds = fooo ch(t)dt 

In summary, we have proved that Fh are Marchaud maps. 
• We prove now that K is a viability domain of the set-

valued maps Fh: 

By Theorem 3.2.4, this is equivalent to prove that 

Since the set-valued map t -vt F(t, x) n TK(x) is measurable, the 
Measurable Selection Theorem (see Theorem 8.1.3 of SET-VALUED 
ANALYSIS for instance) implies the existence of a measurable selec
tion f ( ·) satisfying 

for almost all t ~ 0, f(t) E F(t, x) n TK(x) 

Therefore 

1 rt+h 
Vh :=hit f(s)ds E Fh(t, x) nco (TK(x)) 

• Since for every h > 0, Fh is a Marchaud map, we 
deduce from Theorem 11.1.3 the existence of a solution xh(·) to the 
approximate differential inclusion viable in K starting at any initial 
state xo E K. 

Estimates 

for almost all t ~ 0, llx~(t)ll ::; ch(t)(llxll + 1) 

imply that a subsequence denoted by Xn ( ·) := Xhn (-) converges to 
some function x(·) uniformly over compact intervals and that x~(-) 



11. 7. Measurable Time Dependence 399 

converges weakly in L1 (0, oo; X) to the distributional derivative x'(-) 
of x(·). 

• It remains to check that x( ·) is a viable solution to 
differential inclusion {11.12). 

Set Fn := Fhn· Since Xn(t) converges pointwise to x(t), we deduce 
first that x(t) E K for any t ~ 0 and second, that llxn(t)- x(t)ll ::; 6 
for n large enough. Hence the inclusion 

F(s, Xn(t)) C F(s, x(t)) + TJ(s, x(t), 6)B 

implies that for any p E X*, 

u(F(s, Xn(t)),p) ::; u(F(s, x(t)),p) + TJ(s, x(t), 6)IIPII 

We then deduce by integrating the above inequality that 

1 {t+hn 
u(Fn(t, Xn(t)),p) ::; u(Fn(t, x(t)),p) + hn lt TJ(s, x(t), 6)11PIIds 

In summary, we proved that for any c > 0, there exists N large 
enough for 

V n ~ N, < p,x~(t) >::; u(Fn(t,xn(t)),p) ::; u(F(t,x(t)),p) + c 

We borrow now from Olech the following adaptation of the proof of 
the Convergence Theorem 2.4.4. By the Mazur Theorem, there exists 
a sequence of convex combinations Vm ( ·) of elements x~ ( ·) ( n ~ m) 
converging strongly to x'(·) in L1(0,oo;X). It satisfies 

Vn~O, <p,vn(t)>::; u(F(t,x(t)),p)+c 

Since a subsequence of elements (again denoted by) Vn ( ·) con
verges almost everywhere to x'(·), then< p,x'(t) >::; u(F(t,x(t)),p) 
for almost all t ~ 0. The values F(t, x(t)) being convex and compact, 
we have proved that x'(t) E F(t, x(t)) for almost all t ~ 0. D 



Chapter 12 

Functional Viability 

lntrod uction 

Differential equations and inclusions describe the evolution of sys
tems where, at each instant, the velocity of the state depends upon 
the value of the state at this very instant (in a single or multivalued 
way). 

Differential inclusions with memory, also called functional dif
ferential inclusions, express that at each instant, the velocity of the 
state depends upon the history of its evolution up to this instant. 

By functional viability, we mean viability constraints which also 
depend upon the history of the evolution of the state of the system, 
or even, when the constraints act not only on the state of the system, 
but on its past evolution. 

This allows us to take into account delays, anticipations, cumu
lated consequences of the past, etc., in both the dynamics of the 
system and the viability constraints. 

We shall adapt the techniques devised for the usual viability prob
lems for differential inclusions to functional viability problems for 
differential inclusions with memory. 

This will leas to a characterization of the functional viability 
property by a "functional tangential condition" stating that for any 
past evolution, there exists at least a velocity "tangent" to the set of 
past evolutions satisfying the functional viability constraints. 

This characterization does not solve completely the problem, since, 
for concrete examples, we have to prove that it is satisfied. It is well 

401 
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known that invariance problems for differential equations with delays 
are difficult to solve. 

But as in the case of differential equations and inclusions, the 
characterization of functional viability by functional tangential con
ditions offers easier routes to solve the problem since these conditions 
do not require the resolution of the functional differential inclusion. 

The first section is devoted to the definitions and the presentation 
of the main classes of examples (differential inclusion with delays, 
Volterra type differential inclusions, etc.) and Haddad's functional 
viability theorem is proved in the third section. 

We treat in the third section the particular cases of functional 
viability constraints of the form 

V t ~ 0, x(t) E M ([oo A(t- s)x(s)dJL(s)) 

and sufficient conditions involving the derivative of the set-valued 
map M are presented. 

We end this chapter by adapting to the functional viability case 
the concepts of viability kernels and viability tubes. 

12.1 Definitions and Examples 

Our first task is to translate the concept of history of the evolution 
of the state up to the instant t > 0. We achieve this purpose by 
using the operator T(t) from the Frechet space C( -oo, +oo; X) to 
C := C( -oo, 0; X) which associates with any continuous function 
x(·) its history T(t)x up to timet defined by: 

V T E]- oo, 0], T(t)x(T) := x(t + T) 

A differential inclusion with memory describes in the following 
way the link between the velocity x'(t) and the history T(t)x up to 
time t through a set-valued map F from C to X in the following 
manner: 

for almost all t E [0, oo[, x'(t) E F(T(t)x) (12.1) 
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Figure 12.1: Translation T(t) 

Initial conditions express that the history of the evolution of the 
state up to the initial state 0 is known: it is a function cp E C. Hence 
the initial condition is written in the form: 

T(O)x = cp (12.2) 

The viability constraints bear not only on the state of the system, 
but on its evolution, by requiring that at each instant, 

\f t E [0, oo[, T(t)x E K (12.3) 

where JC C C is a given closed subset of state evolutions. 

Definition 12.1.1 We shall say that a subset K c Cis viable under 
:F (or enjoys the viability property for :F : C "'-'+ X) if and only if 
for any initial evolution cp E K, there exists a solution x(·) to {12.1} 
starting at cp (in the sense of {12.2}} and viable inK (in the sense 
of {12.3}} 
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We first observe that by taking 

F(<p) := F(<p(O)) 

K := { <p E c I <p(O) E K } 

where K C X and F : X 'V> X, usual viability problems are partic
ular cases of functional viability problems because 

x'(t) E F(T(t)x) = F((T(t)x)(O)) = F(x(t)) 

x(t) = (T(t)x)(O) E K ~ T(t)x E K 

We can also extend this time-independent functional viability 
problem to the time-dependent case. We introduce for that purpose 

{ 
i) a set-valued map P : R 'V> C 
ii) a set-valued map F : Graph(P) 'V> X 

We thus say that P enjoys the functional viability property if and 
only if for any to and <p E Pt0 , there exists a solution x(·) to 

for almost all t 2: to, x'(t) E F(t, T(t)x) (12.4) 

satisfying the initial condition T(to)x = <p, and which is viable in the 
sense that: 

V t 2: to, T(t)x E P(t) 

Before characterizing closed subsets K enjoying the viability prop
erty, we show that this class of viability problems covers many ex
amples. 

Example 1. Viability problems with delays. We consider 
p delay functions ri from [0, oo[ to [0, oo[. A differential inclusion 
with delays is described by a set-valued map F : XP 'V> X in the 
following way: 

x'(t) E F(x(t- r1(t)), ... , x(t- rp(t))) 

In the same way, viability constraints with delays are described 
by q delay functions Si from [0, oo[ to [0, oo[ and a set-valued map 
D: Xq 'V> X: 

VtE [O,oo[, x(t) E D(x(t-s1(t)), ... ,x(t-sq(t))) 
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This viability problem fits the general framework of functional via
bility by taking 

F(cp) := F(cp( -r1(t)), ... , cp( -rp(t))) 

JC := { cp E C I cp(O) E D(cp(-s1(t)), ... ,cp(-sq(t)))} 0 

Example 2. Volterra viability problems. We consider a 
function k : R x R x X ---t Y (called a kerneQ which expresses the 
cumulated consequences f~oo k( t, s, x( s) )ds in Y of the evolution of 
the solution up to t. 

A Volterra differential inclusion is described by a set-valued map 
F : Y ~ X in the following way: 

for almost all t E [O,oo[, x'(t) E F (f_oo k(t,s,x(s))ds) 

In the same way, Volterra viability constraints are described by a 
kernell: R x R x X ---t Z and a set-valued map D: Z ~X through 

Vt E [O,oo[, x(t) ED (f_oo l(t,s,x(s))ds) 

Volterra viability problems are particular cases of functional viability 
problems when we take 

{ 
i) F(cp) := F(J~00 k(t, t + s, cp(s))ds) 

ii) K := { cp E C I cp(O) E f~oo l(t, t + s, cp(s))ds} 0 

12.2 Functional Viability Theorem 

To proceed, we have to adapt to functional viability problems the 
concept of viability domains; 

Definition 12.2.1 {Functional Viability Domains) Let cp be gi
ven in a subset JC c C. We denote by 1JK.(cp) C X the subset of 
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elements v E X such that, for any E > 0, there exist h E]O, c] and 
'Ph E C( -oo, h; X) satisfying 

T(O)cph = cp, T(h)cph E JC 
(12.5) 

(cph(h)- 'Ph(O))jh E v + EB 

Let F : C """ X be a set-valued map. We shall say that JC c 
Dom(F) is a functional viability domain ofF if and only if 

V cp E JC, F(cp) n 1JJC(cp) =/= 0 (12.6) 

We denote by C>.. the closed convex subset of .A-Lipschitz functions 
from ]-oo, 0] to X. Ascoli's Theorem states that a closed subset JC C 

C>.. is compact if and only if JC(O) := { cp(O) }<pEK: is bounded, because it 
is closed and equicontinuous (by assumption) and pointwise bounded 
because, for all '1/J E JC and T ::::; 0, 

11'1/J(r)ll ::::; 11'1/J(r)- '1/J(O)II + 11'1/J(O)II ::::; .XIrl + IIJC(O)II 

Theorem 12.2.2 [Haddad] Let F : C>.. """ X be a Marchaud map 
and JC C Dom(F) a closed subset of CJ... 

Then JC enjoys the functional viability property if and only if it 
is a functional viability domain. 

Remark- We observe that when JC ·- { cp E C I c.p(O) E K }, 
then 

VJC(cp) = TK(cp(O)) 

and that when F(cp) := F(c.p(O)), JC is a functional viability domain of 
F if and only if K is a viability domain of F. Hence the Viability The
orem for differential inclusions is a consequence of Theorem 12.2.2. 
D 

Proof of the necessary condition - Assume that a solu
tion x(·) to the functional differential inclusion (12.1) satisfies: there 
exists a sequence tn converging to 0 such that T(tn)x E JC. 

Since F is upper hemicontinuous at c.p, we can associate with any 
p EX* and E > 0 a neighborhood V of 0 inC such that 

V'lj; E cp + V, a(F('lj;),p)::::; a(F(cp),p) + E 
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Since T(O)x = <p, there exists ry > 0 such that T(T)x- <p E V for 
ITI :S ry. Hence, integrating inequalities 

< x1(T),p >:S u(F(T(T)x),p) :S u(F(c.p),p) + c 

from 0 to tn, we obtain 

x(tn) - xo 
V p EX*, < p, tn > :S u(F(c.p),p) + c: 

This implies that the sequence Vn := x(t~~-xo is relatively com
pact in X. Therefore, a subsequence (again denoted by) Vn converges 
to some v E X. Since for all p E X*, for n large enough, 

< p, Vn >:S u(F(c.p),p) + f 

we deduce that the limit v satisfies 

V p EX*, < p, v >:S u(F(c.p),p) + c 

Letting c converge to 0, we obtain 

V p EX*, < p, v >:S u(F(c.p),p) 

so that v belongs to the closed convex hull of F(c.p), which is equal 
to F( <p) because it is closed and convex. 

It remains to show that v belongs to DJC(c.p). Indeed, T(tn)x E K 
by assumption, T(O)x = <p, so that condition (12.5) is satisfied with 
'Ph:= x(·). 

Proof of the sufficient condition - Let us consider an 
initial evolution <p and choose T := 1. We shall construct a viable 
solution to (12.1) on [0, 1], so that it will be possible to extend it on 
[0, oo[. Let us set 

Ko := { 1/J E K I ll?f(O) - c.p(O) II :S 2>. } 

Since K c C.>. and Ko(O) is bounded, we deduce that this subset Ko 
is compact thanks to Ascoli's Theorem. Since F is upper semicon
tinuous with compact images, we know that F(Ko) is bounded. We 
set C := F(Ko) + B which is bounded. 
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For any integer m, we denote by V~ the neighborhood of C defined 

by 

V! := { 'ljJ E C I sup ll'ljl(T)II ~a} 
rE[-m,O] 

We shall construct a sequence of approximate solutions in a first step, 
show that this sequence converges to some limit in a second step and 
prove that this limit is a viable solution in the third one. 

Construction of approximate solutions. 
We begin by proving 

Lemma 12.2.3 There exists Om E]O, ~[ such that, for any X E !Co, 
we can find h E [Om, ~], 'ljJ E C( -oo, +oo; X) and v E F(!Co) satisfy

ing 

i) T(O)'lj! E IC, T(h)'lj! E IC, ('lj!(h)- 'lj!(O))/h E v + ~B 

ii) T(O)'lj! EX+ V::/m 

iii) (T(O)'lj!, v) E Graph(F) 
(12.7) 

Proof- Condition (12.6) allows us to associate with any 'ljJ E !Co 
elements v E :F('lj!), h'I/J E]O, ~[and 'lj!h E C such that 

We point out that the Lipschitz constant of 1/Jh on the interval 
] - oo, h'I/J] is less than or equal to .X because T(h'I/J)'lj!h belongs to 

ICc C.x. 
Since !Co is compact, it can be covered by q neighborhoods 1/Jj + 

h1/Jj/m ·- • 1 
Vm . We set Om.- mm1::;i::;q h'I/J; E]O, :;n]· 

Let us take any x E !Co. It belongs to one of these neighborhoods: 

then there exist elements 1/Ji, hi := h'I/J; > 0, 1/Jh; and Vi E F('l/JhJ 
satisfying properties (12.7). Hence the lemma ensues with h := hi, 
'ljJ := 1/Jh; and v := Vi. D 

We take m ~ 1/ .X. We thus deduce 
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Lemma 12.2.4 There exist a finite sequence of h; E [Om, ~], of 
functions '1/J; E C( -oo, +oo; X) and elements v; E :F(/Co) such that 
'1/Jo = cp, ho = 0 and 

i) 

ii) 

T(O)'I/J; E /Co, T(h;)'I/J; E /Co, 
('lj;(h;)- '1/J;(O))/h; E v; + ~B 

h-/m 
T(O)'I/J; E T(h;-I)'I/J;-1 + Vni 

(i.e., SUP-m::;7 ::;o 11'1/J;(T)- '1/Jj-1(7 + h;-dll ~ h;/m) 

iii) (T(O)'I/J;, v;) E Graph(:F) 
(12.8) 

Proof- We proceed by induction. By Lemma 12.2.3, starting 
with '1/Jo := cp, there exist h1 E [Om,~], 'I/J1 and VI E C such that the 
above properties (12.7) hold true. It remains to check that T(hi)'I/J1 
belongs to Ko to deduce that properties (12.8) are also satisfied, i.e., 
that IIT(hi)'I/JI(O)- cp(O)II ~ 2A. This follows from the fact that 

{ 
IIT(hi)'I/JI(O)- cp(O)II ~ 11'1/JI(hl)- '1/JI(O)II + 11'1/JI(O)- cp(O)II 

~ Ah1 + !h1 ~ 2Ahl 

We apply Lemma 12.2.3 to the function x := T(hi)'I/J1 and infer 
the existence of h2 E [Om,~], 'I/J2 and v2 satisfying properties (12.7) 
and we verify that 

1 1 1 
IIT(h2)'1/J2(0)- cp(O) II ~ Ah2 + -h2 +(A+-)hi ~ (A+- )(hl + h2) 

m m m 

We proceed until the index J such that 

1 1 
(A+-)(h1+h2+···+hJ-l) ~2A < (A+-)(h1+h2+···+hJ) D 

m m 

We set T~ := 0, T~ = h1, ... , T~ := L,f=1 h; so that T~ 2: 1. We 
define the functions Ym ( ·) on ] - oo, Tf:t [ by 

Ym(t) := cp(t) if t ~ 0 

Ym(t) := '1/J;+I(t- T/rJ + L.i=o('I/Ji(hi)- '1/Ji+I(O)) 
if t E [r.i r.i+l [ m' m 
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and their values 

j 

Xj := Ym(r/,J = 7/Jj+I(O) + 2:)7/Ji(hi) -7/Ji+l(O)) 
i=O 

We interpolate this sequence by piecewise linear functions defined on 
each interval [r;h, r,h+l [ by 

Xm(t) := Xj + (t- r,h)(xj+l- Xj)/hj+l 

and we set xm(r) := Ym(r) := <p(r) when T :S 0. 
Properties of the functions Xm ( ·) are summarized in the following 

Lemma 12.2.5 The functions Xm(·) :]- oo, 1] are >.-Lipschitz, sat
isfy 

V t E [0, 1], x~(t) E C 
(12.9) 

V t E [0, 1], llxm(t)- <p(O)II :S )..t 

and 

i) T(O)xm = <p 

ii) V t E]- oo, 1], (T(t)xm, x~(t)) E Graph( F)+ (v~m x TkB) 

iii) V t E]- oo, 1], T(t)xm E K + V~m 
(12.10) 

where Em converges to 0. 

Proof- The functions 1/Jj being >.-Lipschitz, as translations 
of functions of K, so are the functions Ym(·) and Xm(-). 

The velocities of the approximate solutions belong to C because 

On the other hand, since T(O)xm = <p, we deduce that 

llxm(t)- <p(O)II = llxm(t)- Xm(O)II :S )..t 
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It remains to prove properties (12.10). 
For that purpose, we shall prove by induction that for any j = 

0, ... , J - 1, we have 

(12.11) 

For j = 0 and T E [-h1, 0], we obtain 

IIT(hl)ym(T)- T(hl)'l/JI(T)Ii = IIYm(T + h1)- '1/JI(T + h1)ll 

= ll'l/J1(r + h1 + 0) + '1/Jo(O)- 'l/J1(0)- '1/JI(T + h1)ll = ll'l/J1(0)- '1/Jo(O)II 

= ll'l/J1 (O) - cp(O) II ::::; ~ 

When T E [-m, -h1], then 

Ym(T +hi)- '1/JI(T + h1) = cp(T +hi)- 'l/J1(T + h1) 

By (12.8)ii) with j = 1, we know that T(h1)'l/Jl E cp + V~l/m. Then 
property (12.11) is satisfied for j = 0. Assume that it is satisfied for 
j - 1 and prove that it holds true for j. 

First, when T E [-hj+l, 0], we get 

IIT(rk+l)Ym(r)- T(hj+l)'l/Jj+l(r)ll 

. . . "+1 

:S ~i=o ll'l/Ji(hi)- '1/Ji+I(O)II ::::; ~i=o ~ = T/: :S r'~ 
When T E [-m, -hj+l], we obtain 

IIT(rk+l)Ym(T)- T(hj+l)'l/Jj+I(T)II 

:S IIT(rk)Ym(T + hj+l)- T(hj)'l/Jj(T + hj+I)II 

+IIT(hj)'l/Jj(T + hj+l)- '1/Jj+I(T + hj+I)II D 

Induction hypothesis (12.11) and condition (12.8)iii) imply that 
for all T E [-m, -hj+l], 

. "+1 

IIT(r~+l)Ym(r)- T(hj+l)'l/Jj+l(r)ll :S T/n + hj+l = T/n 
m m m 
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Hence property (12.11) is established, from which we have to 
deduce properties (12.10). 

We observe that 

2-X 
sup llxm(t)- Ym(t)i :S -
t<rJ m 
~ m 

(12.12) 

This is obvious when t :S 0 because these functions are equal in this 
case. Otherwise, when t E [Th, Th+l[, we obtain 

and 

2-X 
llxm(t)- Ym(t)i :S llxm(t)- Xjll + llxj- Ym(t)ll :S-

m 

Therefore, inequalities (12.12) and (12.11) imply that 

and thus, that for all t E [Th,Th+1], 

:S Ahj+l + (2-X + Th+l )/m :S 3(-X + 1)/m =:Em 

Consequently, when t E [Th, Th+1], 

{ 
(T(t)xm, x~(t)) E (T(hj+I)7/Jj+l, Vj+I) + V~m x -fnB 

C Graph(.F) + V~m X -JnB D 

Convergence of approximate solutions 
Conditions (12.9) of Lemma 12.2.5 allow us to apply Ascoli's 

Theorem. Hence a subsequence (again denoted by) Xm converges 
uniformly on every compact interval to a continuous function x(·) : 
] - oo, 1] ---+ X, so that for all t 2:: 0, T(t)xm converges to T(t)x 
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in C. Condition (12.9)i) and Alaoglu's Theorem imply also that a 
subsequence (again denoted by) x~ ( ·) converges weakly to x' ( ·) in 
L1 (0, 1; X) for some positive constant b. 

- The limit is a solution 
Conditions (12.10) of Lemma 12.2.5 allow us to apply the Con

vergence Theorem 2.4.4, where C plays the role of X, X the role of Y, 
T(t)xm the role of Xm(t) and x~(-) the role of Ym(·). Hence the limit 
x(·) is a solution to the functional differential inclusion (12.1), which 
is viable since K is closed. The proof of the Functional Viability 
Theorem is completed. D 

12.3 History-dependent Viability Constraints 

We consider the case when 

K := {cp E C such that cp(O) E M(U(cp))} (12.13) 

where U E .C(C, Y) is a continuous linear operator and where M : 
Y ~X is a closed set-valued map. 

We introduce the affine subspace r(x) c C(O, 1; X) of functions 
'1/J E C..x(O, 1; X) satisfying '!f;(O) = x. With any cp E C..x and '1/J E 

r( cp(O)) we associate the concatenated function cp V '1/J E C( -oo, 1; X) 
equal to cp on]- oo, 0] and to '1/J on [0, 1]. 

We denote by A : C ~ C the set-valued map1 associating with 
any cp E C the subset Acp of functions v E C such that there exist 
sequences of hn > 0 converging to 0+, of Vn converging to v in C and 
of functions 'Pn E r(cp(O)) such that 

V n 2: 0, T(hn)(cp V 'Pn) = cp + hnVn 

Observe that if cp is the restriction to]- oo, OJ of a differentiable 
function rp defined on ] - oo, 1], then Acp := $' and that Acp =!= 0 
whenever cp is the restriction to ] - oo, 0] of a Lipschitz function rp 
defined on ] - oo, 1]. In this case, every selection v E Acp is almost 
everywhere equal to cp': 

for almost all t 2: 0, v(t) = cp'(t) 

1 We can regard A as a contingent infinitesimal generator of the semi-group 
T(t). 
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We introduce now the adjacent derivative D'p M (y, x) of M at 
(y, x) defined2 in the following way: u E D'p M (y, x) ( v) if and only 
if for all sequences hn > 0 converging to 0, there exist sequences Un 

converging to u and Vn converging to v such that 

If M is sleek at (y, x), then both contingent and adjacent derivatives 
at (y, x) coincide. This is then the case when the graph of M is 
either convex or a smooth manifold. See Chapter 5 of SET-VALUED 

ANALYSIS for further details on adjacent derivatives of set-valued 
maps. 

We provide more and more general sufficient conditions for sub
sets K defined by (12.13) to be viability domains. 

Theorem 12.3.1 We posit the following "surjectivity condition" on 
U: there exists a constant c > 0 such that for all h > 0, 

V (v, u) E Y x X, :J 'l/Jh E C(O, 1; X) such that 

't/Jh(O) = 0, 1/Jh(h) = u, UT(h)(cp V 'l/Jh) = v 

and satisfying 

ll'l/Jhllcco,I;X) ~ c(llull + llvll) 

Therefore 
D'p M(Ucp, cp(O))(U(Acp)) c DJC(cp) 

The next statement trades surjectivity condition on U with re
strictions on the size of the norm of U and the norm IID'pM(y,x)ll 

2 Recall that the adjacent tangent cone Ti((z) to a subset Katz E K is defined 
by 

TK• (z) ·- L" . f (K- z) _ { I 1. dK(z + hv) = ·O} .- lffilll h~O+ -h- - V lffi h 

Then 
Graph(n"M(y,x)) := Tbraph(M)(y,x) 
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defined by 

llnb M(y, x) II := uED" :(~,x)(v) \\::: 

Theorem 12.3.2 Assume that for any (y, x) E Graph(M), the do
main Dom(Db M(y, x)) = Y and that 

V (y,x) E Graph(M), llnbM(y,x)ll ::; {3 < +oo 

and that there exists 'Y > 0 such that 

IIUT(h)(O v ,P)II ::; 'Yhii,PII 

Therefore 

These results follow from the more general sufficient condition, 
which looks quite involved, but which is flexible enough to cover a 
wide variety of examples. 

Theorem 12.3.3 We posit that the following "stability condition" 
linking U and M: there exist constants c, l > 0 and a E]O, 1[ such 
that for all h > 0, 

V (y,x) E Graph(M), V (v,u) E Y x X, 
:3 ,Ph E C(O, 1; X), Ua E X, Va E Y such that ,Ph(O) = 0 & 

'ljlh(h) E Db M(U<p, cp(O))(UT(h)(O V ,Ph)- v- va) + u + ua 

and satisfying 

Therefore 
Db M(U <p, cp(O) )(U(Acp)) c VIC( 'P) 

Proof- Let us pick v E Acp and u E Db M(Ucp, cp(O))(Uv) and 
check that u belongs to VIC ( <p). 

We know that there exist sequences hn > 0 converging to 0+, Un 

converging to v and Vn converging to U v such that 
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But we also know by definition of A that there exist sequences lin 

converging to v and 'Pn E f(cp(O)) such that 

Denote by An the Frechet differentiable operator from C(O, 1; X) x 
Y x X to Y x X defined by 

An(¢, y, x) .- (UT(hn)(cp V ¢)- y, 'lj;(hn)- x) 

We observe that 

An(cpn, Ucp + hnVn, cp(O) + hnun) = hn (Uvn- Vn, lln(O)- Un) 

and that 

A~('lj;,y,x)(~,v,u) = (UT(hn)(OV~)-y,~(hn)-x) 

We the apply Theorem 3.4.5 of SET-VALUED ANALYSIS which we 
now recall: 

Theorem 12.3.4 Let X be a Banach space, L c X be a closed 
subset and Y a normed space. Consider a sequence of Frechet differ
entiable opemtors An from X to Y and elements xon E L such that 
Xon converges to xo E L and An(Xon) to YO· 

We assume that An verify the following stability assumption: 
there exist constants c > 0, a E [0, 1[ and TJ > 0 such that 

V x E L n B(xo, TJ), By c A~(x)(TL(x) n cBx) + aBy (12.14) 

Then there exist l > 0 and 1 > 0 such that 

We apply this theorem with 

{ 
X := C(O, 1; X) X y X X, y := y X X 
L := r(cp(O)) X Graph(M) 
Yn := 0 & Xon := (cpn, Ucp + hnVn, cp(O) + hnun) 

We have seen that An(xOn) converges to Yo:= 0. 
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By the stability assumption, there exist c > 0 and a E]O, 1[ such 
that for any ( '1/J, y, x) and any ( v, u), there exists a solution 

{ ('1/Jh,Yh,Xh) E 

r(O) x TGraph(M) (U cp, cp(O)) = Tr(cp(O))xGraph(M) ( cp, U cp, cp(O)) 

to the equation A~('I/J, y, x)(('l/Jh, Yh, xh)) = (v, u) satisfying the above 
estimates. 

Then we can apply Theorem 12.3.4: for each n, there exists a 
solution ('1/Jn,Yn,Xn) to the equation An(J.Ln,Yn,Xn) = 0 belonging to 

(J.Ln,Yn,xn) E r(cp(O)) x Graph(M) 

and satisfying the inequalities 

{ 
IIJ.Ln- 'Pnllc(O,l;X) +llYn- Ucp- hnvnll + llxn- cp(O)- hnunll 

< hn(IIUvn- Vnll + llvn(O)- Unll) 

This implies in particular that there exists a sequence en converging 
to 0 such that 

and such that 

= Un + en converges to u 

Since J.Ln belongs to r ( cp ( 0)), we infer that the function 'Pn : = cp v J.Ln 
satisfies the properties 

where Un + en converges to 0. We thus conclude that u belongs to 
1JJC( cp). D 

Proof of Theorem 12.3.2 - We have to prove that the 
stability condition of Theorem 12.3.3 holds true. We take '1/Jh E 
C(O, 1; X) defined by '1/Jh(t) := tujh if t E [0, h] and '1/Jh(t) := (1 -
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t)u/((1- h)) if t E [h, 1], so that 11'1/lhll ~ llull satisfies 1/Jh(O) = 0 and 
1/Jh(h) = u. Let us set p := ~· We then take 

Va := UT(h)(O V 1/Jh)- pv 

and 

Ua E (1- p)D~M(y,x)(-v) 

with minimal norm. We thus see that 

1/Jh(h) E D~ M(y, x)(UT(h)(O V 1/Jh)- V- Va) + u- Ua 

and that 

Therefore the stability assumption is satisfied with o: E]p, 1[ for h 
small enough. 

Proof of Theorem 12.3.1 - The stability assumption is 
obviously satisfied with Ua = 0 and Va = 0. D 

12.3.1 Viability constraints with delays 

Here, we take Y := XP and U(<p) := (<p( -lh), ... , <p( -Op)). Then 
the surjectivity assumption of Theorem 12.3.1 is satisfied, so that we 
obtain the following consequence: 

Corollary 12.3.5 Let us consider p positive delays 01, ... , Op. As
sume that 

lC := {<pEC suchthat <p(O) E M(<p(-lh), ... ,<p(-Op))} 

Then 

D~ M(cp( -81), ... , <p( -Op), cp(O))((Acp)( -OI), ... , (Acp)( -Op)) c VJC(cp) 
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12.3.2 Volterra Viability constraints 

Let us consider a finite dimensional space Y, a set-valued map M : 
Y "-t X and A E L1(0, oo; .C(X, Y)). We consider the case when U is 
defined by 

Ur.p := j_0
00 

A(-s)r.p(s)ds 

Corollary 12.3.6 Let us consider A E L1 (0, oo; .C(X, Y)) satisfying 

sup IIA(t)ll.c(Y,X) :::; 1 < +oo 
tE[0,1] 

Assume that for all (y,x) E Graph(M), Dom(DI>M(y,x)) = Y and 
that 

sup liD!> M(y, x)ll :::; {3 < +oo 
(y,:z:)EGraph(M) 

Let K be the subset defined by 

K := { r.p E C such that r.p(O) E M(j_0
00 

A( -s)r.p(s)ds)} 

Then 

Proof- It follows from Theorem 12.3.2. D 

12.4 Functional Viability Kernel 

The proof of Theorem 12.2.1 shows also that the solution map is 
upper semicontinuous and that there exist functional viability kernels 
of closed subsets K C C.x. 

We denote by S(r.p) or by SF(r.p) the (possibly empty) set of solu
tions to differential inclusion (12.1) starting from the initial evolution 
r.p. We shall say that the set-valued mapS defined by 

Dom(F) 3 r.p f---t S(r.p) 

is the solution map ofF (or offunctional differential inclusion (12.1 ).) 
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We shall say that F is a Marchaud map if it is a nontrivial up
per hemicontinuous map with nonempty compact convex images and 
with linear growth in the sense that there exists c > 0 such that 

V <p E C, IIF(<p)ll :::; c(ll<p(O)II + 1) 

Theorem 12.4.1 (Continuity of the Solution Map) Let us con
sider a Marchaud map F: C>."" X. 

The solution map S is upper semicontinuous with compact images 
from its domain to the space C( -oo, +oo; X). 

Actually, the graph of the restriction of S to any compact subset 
K of C>. is compact. 

Proof- We shall show that for all <p E Dom(F) and for 
all 'f/ > 0, the restriction to a compact subset K C Dom(F) of the 
set-valued map S is compact. 

Let us choose a sequence of elements ( <pn, Xn ( ·)) of the graph of 
the solution map S. They satisfy: 

{ ~~ x~(t) E F(T(t)xn) 
zz) T(O)xn = <pn 

The linear growth of F implies that 

llx~(t)ll :S c(llxn(t)ll + 1) 

and thus, that 

V n ~ 0, llxn(t)ll :S (llct~n(O)II+l)ect & llx~(t)ll :S c(llct~n(O)II+l)ect 

Therefore, since the sequence of <pn(O) is bounded, the sequence xnO 
is relatively compact in the Frechet space C(O, oo; X) by Ascoli's The
orem, and the sequence x~(·)e-ct is weakly relatively compact in 
L00 (0, oo; X) by Alaoglu's Theorem. Let us take b > c. 

Hence a subsequence (again denoted by) Xn converges to x in the 
sense that: 

Xn ( ·) converges to x( ·) uniformly on compact intervals 

x~(-) converges to x'(·) weakly in 1 1(0, oo; X; cb·) 



12.4. Functional Viability Tubes 421 

Inclusions 
'"in> 0, (T(t)xn,x~(t)) E Graph(F) 

imply that 

for almost all t > 0, x'(t) E F(T(t)x) 

thanks to the Convergence Theorem 2.4.4. 
We thus have proved that a subsequence of the elements ( 'Pn, Xn ( ·)) 

of the graph of S restricted to K converges to an element ( cp, x( ·)) of 
this graph. This shows that it is compact, and thus, that the solution 
map S is upper semicontinuous with compact images. 0 

Definition 12.4.2 (Functional Viability Kernels) Let IC C C>. 
be a subset of the domain of a set-valued map F : C ~ X. We shall 
say that the largest closed functional viability domain contained in IC 
(which may be empty) is the viability kernel of IC and denote it by 
Viab.r(IC) or, simply, Viab(/C). 

We can adapt to the functional case the existence theorem of a 
viability kernel. 

Theorem 12.4.3 Let us consider a Marchaud map F : C ~ X with 
compact convex images. Then the viability kernel of IC does exist 
and is the subset of initial evolutions cp E IC such that at least one 
solution starting from cp is viable in IC. 

12.5 Functional Viability Tubes 

We can now extend this time-independent functional viability theo
rem to the time-dependent case. We consider 

a set-valued map P: R~ C>. 

a set-valued map F : Graph(P) ~ X 

Definition 12.5.1 For any cp E P(t), we denote by VP(t, cp)(l) C 
X the subset of elements vEX such that, for any c > 0, there exist 
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h E]O, c] and 'Ph E C( -oo, t +h) satisfying 

i) T( t)r.ph = r.p 

ii) T(t + h)r.ph E P(t +h) (12.16) 

iii) (r.ph(t +h)- 'Ph(t))/h E v + cB 

We shall say that the set-valued map P is a functional viability tube 
if and only if 

V t, r.p E P(t), F(t, r.p) n DP(t, r.p)(1) # 0 

Theorem 12.5.2 Assume that the set-valued map P: R ~ C>. takes 
its values into >-.-Lipschitz functions and that its graph is closed. 

Assume also that F is a Marchaud map. Then P enjoys the 
functional viability property: for any to and r.p E Pt0 , there exists a 

solution x( ·) to 

for almost all t 2': to, x'(t) E F(t, T(t)x) (12.17) 

satisfying the initial condition T(to)x = r.p which is viable in the sense 
that: 

V t 2': to, T(t)x E P(t) 

if and only if is a functional viability tube. 

Proof - The proof of the necessary condition is fully analo
gous to the time-independent case. We deduce the sufficient condi
tion from the time-independent case by observing that the functional 
viability property for the new system 

{ i) (s'(t),x'(t)) E {1} x F((T(t)s)(O),T(t)x) 

ii) T(to)(s, x) = (to, r.p) 

and the closed subset C defined by 

C = { C( -oo, 0; R x Xh,>. I r.p E P(s(O))} 

is equivalent to the functional viability property of the time-dependent 
system (12.4). 
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The assumptions of the Functional Viability Theorem 12.2.2 are 
satisfied since the set-valued map g defined by Q(s, c.p) := F(s(O), c.p) 
is upper semicontinuous with compact convex images, taking its val
ues in the subset of max(1, >.)-Lipschitz functions. 

It remains to check that £ is a functional viability domain of g 
if and only if P is a functional viability tube of F. 

Indeed, take c > 0 and v E F(t, c.p) n VP(t, c.p)(1) and prove 
that 1 x v belongs to the intersection of 1 x Q(s, c.p) and Dc(s, c.p) 
for any function s(·) such that s(O) = t. Then (s, c.p) E £ since 
c.p E P(s(O)) = P(t). 

We know that there exist h E]O, c] and 'Ph E C( -oo, t +h) such 
that properties (12.16) are satisfied. Let us define the functions sh 
and 7/Jh on]- oo,h] by 

{ i) sh(r) = s(r) 
ii) 7/Jh(r)=c.ph(r+t) 

if T :S 0 and S h ( T) = t + T if T E [ 0, h] 

Then, properties 

T(O)(sh, 7/Jh) = (s, c.p) & T(h)(sh, 7/Jh) E £ 

(because T(h)'I/Jh = T(t + h)c.ph E P(t +h)= P((T(h)sh)(O))) and 

sh(h)- sh(O) _ 1 & 7/Jh(h)- 7/Jh(O) _ 'Ph(t +h)- 'Ph(t) B 
h - h - h Ev+E 

imply that 1 x v belongs to V.c(s, c.p) 0 



Chapter 13 

Viability Theorems for 
Partial Differential 
Inclusions 

Introduction 

We extend the viability theorems to the case of elliptic and para

bolic differential equations and inclusions and consider the regulation 

of viable solutions to distributed control problems governed by a 

parabolic partial differential equation of the type: 

i) gtx(t,w)- ~x(t,w) = f(x(t,w),u(t,w)) 
(the state equation) 

ii) for almost all t,w, u(t,w) E U(w,x(t,w)) 
(state-dependent feedback controls) 

iii) V t E [0, T], x(t, w)lan = 0 
(Dirichlet boundary conditions) 

iv) for almost all wE 0, x(O,w) = xo(w) 
(initial condition) 

425 
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where w ranges over an open subset 0 c Rn and where 

{ 
i) 
. ") 
~~.) nz 

f : R x U ---t R is a single-valued map 
u : 0 X R ~ u is a set-valued map 

Ll := I:i=l ~ is the Laplacian 
' 

In this case, the viability sets are closed subsets K of (space 
dependent) functions of £ 2 (0). The viability property states that 
for any initial state x0 E K, there exists a solution to the above 
distributed control problem such that 

Vt ~ 0, w ---t x(t,w) belongs to K 

As for ordinary differential inclusions, we associate with the via
bility subset K the regulation map RK defined by 

RK(x) := { u E U(x) such that Llx + f(x, u) E TK(x)} 

where the concept of contingent cone is adequately adapted to the 
infinite-dimensional case. We then shall prove that K is a viability 
domain if and only if RK(x) =I= 0 for all x E K. 

Here again, under adequate assumption, we shall prove that the 
distributed control system enjoys the viability property if and only if 
it is a viability domain. 

Naturally, the Laplacian being just an example of an unbounded 
operator on the Hilbert space H := £ 2(0), the viability theorems we 
want to prove shall hold true for any unbounded operator. We recall 
the properties we need in the first section and we prove the main 
viability theorem in the second section. The third section is devoted 
to the case when the unbounded operator is an elliptic operator, 
which is the case for most applications. The regulation of distributed 
control problems is tackled in the fourth section and we adapt to 
the case of partial differential inclusions the theorems on Lyapunov 
functions in the last section. 

We shall assume through this chapter that the Hilbert spaces are 
separable. 

We begin by recalling in the first section1 what we need about 
unbounded operators on Hilbert spaces to proceed. Next, the second 

1We refer to the text APPLIED FUNCTIONAL ANALYSIS by the author for further 
details on unbounded operators, their adjoint and the infinitesimal generators of 
semi-groups. 
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section is devoted to the viability theorem for operational differen
tial inclusions. These results are applied to elliptic and parabolic 
differential inclusions in the third section and to distributed control 
problems in the fourth section. The results on Lyapunov functions 
are extended to the case of parabolic inclusions in the fifth section. 

13.1 Unbounded operators 

Let us consider two Hilbert spaces Y and Z such that Y is embedded 
in Z in the sense that 

Y c Z; the canonical injection is continuous with dense image 

We are allowed to identify2 the dual Z* of Z to a dense subset of 
the dual Y* of Y. 

We introduce also a Hilbert space H in which Y is dense with a 
stronger topology and we choose to identify the dual H* with H (we 
say that His a pivot space) by identifying3 the scalar product<,·,> 
on H x H with the duality pairing on H* x H. 

We summarize this situation by writing: 

YcZcH=H*cZ*cY* 

the canonical injections from one space to a larger one being contin
uous and dense. 

An unbounded operator on a pivot space H is a pair (D(A), A) 
where D(A) c H is a subspace of H (called the domain of A) and 
A is a linear operator from D(A) to H. In order to make continuous 

2The canonical injection j : Y --+ Z being injective with dense image, its 
transpose j* : Z* --+ Y* has a dense image and is injective. We then may identify 
j* with the identity map, and thus, infer that the duality products 

Y x E Y, y E Z*, < x,y >zxz•:=< jx,y >zxz•=< x,j*y >YxY•=:< x,y >YxY* 

coincide on Y x Z*, which is dense in both Y x Y* and Z x Z*. 
3 This amounts to regarding an element x E H both as an element of H and 

as a continuous linear functional y --+< x, y > on H. This point of view is at 
the very basis of the theory of distributions, when H = £ 2 (!1), as we saw in 
Section 3.1.. 
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both the map A and the injection from D(A) to H, the domain D(A) 
is supplied with the "graph scalar product" 

((x, y))v(A) := < x, y >+<Ax, Ay > 

We observe that for all A E R, the domains D(A) and D(A +A) 
of A and A+ A:= A+ AI do coincide (as Hilbert spaces). 

The unbounded operator (D(A), A) is said to be closed if and 
only if D(A) is a Hilbert space (i.e., complete) for the scalar product 
and densely defined (or with dense domain) if the domain D(A) is 
dense in H. 

From now on, we shall assume that the unbounded operators we 
are using are closed and densely defined, because in this case, we can 
define the concept of an adjoint of an unbounded operator, which is 
also closed and densely defined. 

Here is how we proceed to define such an adjoint: since D(A) 
is dense in H and H is identified with H*, one can identify H to a 
dense subspace of the dual D(A)*. The transpose A* of A is then a 
continuous linear operator from H to D(A)*. We define the domain 
of the adjoint by 

D(A*) := { p E HI A*p E H} 

and we take the restriction of A* to this domain to obtain the un
bounded operator (D(A*), A*), which is called the adjoint of the 
unbounded operator (D(A), A). 

One can prove that whenever (D(A), A) is closed and densely 
defined, so is its adjoint. 

Hence, a first consequence of this property is the possibility to 
extend A to H in the following manner. 

Since the domain D(A*) of A* is dense in H, then we can iden
tify H = H* to a dense subspace of the dual D(A*)* of A*, and 
the transpose A** E C(H, D(A*)*) is the unique extension4 of A E 

C(D(A), H) to A E C(H, D(A*)*). 

4 Indeed, when x belongs to D(A) C H, we deduce that for ally belonging to 
D(A*) c H, 

< Ax,y >HxH=< x,A*y >D(A)xD(A*)=< x,A*y >HxH 

=< A**x,y >D(A*)*xD(A*)=< A**x,y >HxH 

so that A and A** coincide on the dense subspace D(A) of H. 
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In summary, when both the domains D(A) and D(A*) are dense 
in H, then 

{ 
i) A E .C(D(A), H) n .C(H, D(A*)*) 
ii) A* E .C(D(A*), H) n .C(H, D(A)*) 

Let Z ~ Y be another Hilbert space supplied with a weaker 
topology. We denote by 

WP(O, T; Y, Z) := { x(·) E LP(O, T; Y) I x'(·) E V(O, T; Z)} 

supplied with the norm 

{ 
llxllfvP := llxlli,P(Y) + llx'lli,P(Z) if P < +oo 

llxllwoo := max(llxiiL00 (Y)' llx'IILoo(z)) if P = +oo 

Lemma 13.1.1 (Compactness Lemma) Let us consider a Hilbert 
space Y such that 

D(A*) c Y c H 

satisfying 

Then 
W 00 (0, T; Y, D(A*)*) c C(O, T; H) 

and the canonical injection is compact whenever the injection from 
Y to H is compact (when T = +oo, the space C(O, oo; H) is supplied 
with the topology of compact convergence). 

Proof- Inequality llxllk :S llxiiY llxiiY* and inequality (13.1) 
imply 

1 8 

llxiiH :S PllxiiV8 llxllb(~*)* 

Therefore, if x(-) belongs to W 00 (0, T; Y, D(A*)*), 

1 8 

llx(t)- x(s)IIH :S Pllx(t)- x(s)IIV8 IIx(t)- x(s)llb(~*)* 
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Hence x(·) is continuous from [0, T] to H. 
Assume now that the injection from Y to H (and thus, to D(A*)*) 

is compact and take a bounded sequence Xn(·) in W00 (0, T; Y, D(A*)*). 
Hence Xm(t) being bounded in Y, is relatively compact in D(A*)*. 

The sequence Xm(·) is also equicontinuous in D(A*)*, because the 
derivatives x~(-) are bounded in D(A*)*. 

We then deduce from Ascoli's Theorem that it remains in a com
pact subset of the Banach space C(O, T; D(A*)*) (and in the Frechet 
space C(O, oo; H) when T = +oo), and thus, that a subsequence 
(again denoted by) Xm ( ·) converges uniformly (over compact inter
vals) in D(A*)* to some function x(·). 

Actually, it is converging uniformly in H (on compact intervals) 
because 

llxm(t)- Xp(t)IIH:::; pllxm(t)- Xp(t)ll{.+9 llxm(t)- Xp(t)llb(~*)* 
{ 

1 9 

1 9 

:::; 2IIKII{.+9 IIxm(t)- Xp(t)llb(~*)* D 

13.2 Operational Differential Inclusions 

We consider an unbounded operator (D(A), A) of a Hilbert space H 
(identified with its dual), a set-valued map F : H ~ D(A*)* and 
the Cauchy problem for the operational differential inclusion: find 
x(·) E W00 (0, T; H, D(A*)*) such that 

for almost all t E [0, T], x'(t) + Ax(t) E F(x(t)) (13.2) 

The initial conditions xo are given in D(A). 
Actually, we would like to take initial conditions in larger spaces 

Y C H, in order to cover less regular cases needed in further exam
ples. We thus shall assume that there exist Hilbert spaces Y and Z 
such that 

D(A) c Y c H & D(A*) c Z c H 

(the injections being continuous and dense) in such a way that A 
maps Y to Z*. The main example is Y := D(A) and Z := H, but 
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there are many other choices5 which make sense in applications, so 
that it costs nothing to use as parameters these Hilbert spaces Y and 

Z such that A E .C(Y, Z*). 
Let K be a subset of Y. We denote by 

D(A*)* d (x; K) := inf \\x- y\\D(A*)* 
yEK 

D(A*)* 
the distance in D(A*)* to a subset K and T K (x) the D(A*)*-
contingent cone to K at x E K in D(A*)*, which is the subset of 

elements v E D(A*)* satisfying 

liminfdD(A*)*(x+hv;K)jh = 0 
h-tO+ 

Definition 13.2.1 We shall say that a subset K c Y is viable under 
F - A (or enjoys the viability property for F - A} if for any xo E 

K, there exists one solution x(·) E W 00 (0, T; Y, D(A*)*) to (13.2} 
starting at xo and viable in K. 

We shall say that K is a viability domain of F - A if and only if 

D(A*)* 
VxEK, AxEF(x)-TK (x) (13.3) 

Theorem 13.2.2 (Operational Differential Inclusions) Let 

(D(A), A) be a closed densely defined unbounded operator on H. We 

introduce a pair of Hilbert spaces Y and Z satisfying the following 

assumptions: 

i) A E .C(Y, Z*) 

ii) the injection from Y to H is compact and 

::3 P > 0, 0 E [0, 1] 11\x\\Y* :S p1+0 \\x\\k-o \\x\\~(A*)* 

iii) the injection from D(A*) to Z is compact 

iv) F : H "" Z* is upper hemicontinuous 
with bounded closed convex images 

v) K c Y is bounded in Y and closed in H 
(13.4) 

5 The other extreme case is Y =Hand Z := D(A*)*, but this one will not 

work! The larger Y, the less K needs to be bounded. 
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Then K is viable under F - A if and only if it is a viability domain. 
In this case, viable solutions belong to W 00 (0, T; Y; Z*) and can be 
extended on [0, oo[. 

Proof of the necessary condition - Let us consider a so
lution x(·) to the operational differential inclusion (13.2) satisfying 

V T > 0, :3 t E]O, T] such that x(t) E K 

or, equivalently: there exists a sequence tn --+ 0+ such that x(tn) E 

K. 
Since F is upper hemicontinuous at xo, we can associate with any 

p E B z and E > 0 an rJ > 0 such that 

'iT E [O,ry], a(F(x(r)),p) S a(F(xo),p) +c 

Hence, integrating inequalities 

{ (x'(r),p) s a(F(x(r)),p)- (Ax(r),p) 
S a(F(xo),p) + IIAII.c(Y,Z•)IIKIIY + E =: 8(p) 

from 0 to tn, we obtain 

'ip E Bz, j x(tn) - xo) < t5( ) 
\p, tn - p 

The uniform boundedness theorem implies that the sequence 

is relatively weakly compact in Z*, and compact6 in D(A*)*. There
fore, a subsequence (again denoted by) Vn converges weakly in Z* to 
some v E Z*. On the other hand, x(·) belonging to W 00 (0, T; Y, D(A*)*), 
it is a continuous function from [0, T] to H by the Compactness 
Lemma 13.1.1. Therefore 

_..!__ rtn x( T )dr converges to Xo in H 
tn Jo 

6Indeed, the injection from D(A*) to Z being compact by assumption, so is, 
by transposition, the injection from Z* to D(A*)*. 
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Consequently, for all p E D(A*) c Z, inequalities 

(p, Vn) :S u(F(xo),p) + c- \ t~ fotn x(r)dr, A*p) 

imply that the limit v satisfies 

V p E D(A*), (p, v) :::; u(F(xo),p) + c- (p, Axo) 

Letting c converge to 0, we obtain 

V p E D(A*), (p, v + Axo) :::; u(F(xo,p)) 
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so that v+Axo belongs to the closed convex hull of F(xo) in D(A*)*. 
Since F(xo) is closed, convex and bounded in Z*, hence weakly com
pact, it remains weakly compact in D(A*)*, so that Axo E F(xo) -v. 
On the other hand, since 

V n, x(tn) = xo + tnVn E K 

D(A*)* we infer that v belongs to the D(A*)*-contingent cone T K (xo). 

Proof of the sufficient condition - We shall construct 
approximate solutions by modifying Euler's method to take into ac
count the viability constraints, then deduce from available estimates 
that a subsequence of these solutions converges in some sense to a 
limit, and finally, check that this limit is a viable solution to the 
operational differential inclusion (13.2). 

1 Construction of Approximate Solutions 
We observe first that K is compact in the Hilbert space H, since 

the injection from Y to His compact. Since F(K) is bounded be
cause F is upper hemicontinuous, we deduce that C := F(K) -
A(K) + BD(A*)* is bounded in D(A*)*. Next, we claim that the 
following is true: 

Lemma 13.2.3 For any integer m, there exist Om E]O, 1/m[ such 
that for all x E K, there exist h E [Om, 1/m] and u E D(A*)* satis
fying 

{ 
i) 
. ") 
~~.) zn 

uEC 
x+hu E K 
(x, u) E Graph(F- A)+ fn(BH X BD(A*)*) 
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Proof of Lemma - Since K is a viability domain, we know 
that for all y E K, there exists an element f(y) E F(y) such that 
f(y) - Ay E rf<A*)* (y). By the very definition of the contingent 

D(A*)* cone TK (y), there exists hy E]O, 1/m[ such that 

dD(A*)* (y + hy{f(y)- Ay); K) < hy/2m 

We introduce the subsets 

N(y) := { x E K I dD(A*)* (x + hy{!(y)- Ay); K) < hy/2m} 

These subsets are obviously not empty (they contain y), open in 
D(A*)*, and thus, in H. Since y belongs to N(y), there exists 'T/y E 

]0, 1/m[ such that BH(y, 'T/y) c N(y). The compactness of K in 
H implies that it can be covered by q such balls BH(Yj, 'T/j), j = 
1, ... ,q. 

We set 
Om := min hy· > 0 

j=l, ... ,q J 

Let us choose any x E K. Since it belongs to one of the balls 
BH(Yj, 'T/j) C N(yj), there exists Zj E K such that 

llx + hyi(J(yj)- Ayj)- zillv(A*}*/hyi 

~ dD(A*)*(x + hyi{f(yj)- Ayj);K)/hyi + 1/2m ~ 1/m 

Let us set Uj := z~~x. We see that llx - Yi IIH ~ 'T/j ~ 1/m, that 

x + hyiui = Zj E K and that llui + Ayj - f(Yj)llvcA*)* :::; 1/m. 
Hence, 

(x, Uj) E (yj, f(yj)- Ayj) + fn(BH X Bv(A*)*) 

c Graph(F- A)+ fn(BH x Bv(A*)*) 

and Uj E Bv(A*)*(F(K)- A(K), 1/m) c C. So the proof of the 
Lemma is completed. D 

We can now construct by induction a sequence of positive num
bers hj E]Om, 1/m[ and a sequence of elements Xj E K and Uj E C 
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such that 

Xj+l := Xj + hjUj E K, Uj E c 

We introduce the nodes r/n := ho + · · · + hj-1 and we interpolate 
the sequence of elements x j at the nodes r/n by the piecewise linear 
functions xm(t) defined on each interval [r/n,r/n+l[ by 

\ft E [r~, T~+l[, Xm(t) := Xj + (t- T~)Uj 

We observe that this sequence satisfies the following estimates 

\ft E [0, Tj, Xm(t) E co(K) 
which is bounded in Y and compact in H 

(13.5) 

\ft E [0, T], llx~(t)lln(A*)* ~ IICIID(A*)* 

Let us fix t E [r/n, r/n+l[. We deduce from assumption {13.4)ii) 
that 

1 9 

llxm(t)- Xm(r/n)IIH ~ pllxm(t)- Xm(r/n)II:V9 llxm(t)- Xm(r/n)xllb(~*)* 

1 9 9 

~ ~llco(K)II:V9 hj+BIICII1(~*)* =: Em 

Since (xj,Uj) E Graph(F-A)+1/m(BH xBn(A*)*), we deduce 
that the functions are approximate solutions in the sense that \ft E 

[O,T], 

Xm(t) E Bn(A*)*(K, Em) 

(xm(t), x~(t)) E Graph(F- A)+ (em+ ,k)(BH x Bn(A*)*) 
{13.6) 

where Em converges to 0. 
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Convergence of the Approximate Solutions 
Estimates (13.5) imply that for all t E [0, T], the sequence xm(t) 

remains in the subset coK which is bounded in Y and that the deriva
tives remain bounded in D(A*)*. Hence the sequence Xm(t) is a 
bounded subset of W 00 (0, T; Y, D(A*)*), which is relatively compact 
in C(O, T; H) by Compactness Lemma 13.1.1, so that a subsequence 
(again denoted by) Xm ( ·) converges uniformly in H. 

Furthermore, the sequences Xm ( ·) and x~ ( ·) being bounded in 
L00 (0, T; Y) and L00 (0, T; D(A*)) respectively (which are the dual of 
L1(0, T; Y*) and L1(0, T; D(A))), they are weakly relatively compact 
thanks to Alaoglu's Theorem. The identity map being continuous 
for the norm topologies, is still continuous for the weak topologies. 
Hence the sequences Xm ( ·) and x~ ( ·) are weakly relatively compact 
in L1 (0, T; Y) and L1 (0, T; D(A*)*), so that subsequences (again de
noted by) xm(·) and x~(-) converge weakly x(·) E L1 (0, T; Y) and 
x'(·) E L1(0, T; D(A*)*). 

In summary, we have proved that 

Xm(·) converges to x(·) weakly in L 1(0, T; Y) 
and uniformly in H 

x~(t) converges weakly to x'(·) in L1 (0, T; D(A*)*) 

The Limit is a Solution 
We regard now (F-A) as a set-valued map from H to D(A*)*. 

Hence the Convergence Theorem 2.4.4 and properties (13.6)ii) imply 
that 

for almost all t E [0, T], x'(t) E F(x(t))- Ax(t) 

i.e., that x(-) is a solution to the operational differential inclusion 
(13.2). 

Since K is compact in H, and thus, in D(A*)*, condition (13.6)i) 
implies that 

Vt E [O,T], x(t) E clD(A*)*(K) = K 

i.e., that x(·) is viable. 
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Finally, since T was chosen arbitrarily, we can extend the solution 
to the whole half-line [0, oo[. The proof of the theorem is completed. 
0 

Remark - The proof of this theorem does not work for the 
other limit case when Y :=Hand Z := D(A*), because of the lack 
of compactness necessary to pass to the limit. 0 

When K is convex, we obtain under the assumptions of Theo
rem 13.2.2 the existence of a viable equilibrium x E K, which is a 
solution to the inclusion 

Ax E F(x) (13.7) 

Actually, 

Theorem 13.2.4 Let (D(A), A) be a closed densely defined unbounded 
operator on H. We posit the assumptions 

F: H "-+ D(A*)* is upper hemicontinuous 
with closed convex images 

K C H is a compact convex viability domain of F - A 

Then there exists a viable equilibrium, a solution x E K to {13. 7). 

Proof - This is the direct consequence of Theorem 3. 7.11 
where X = H, Y = D(A*)*, F is replaced by x "-+ F(x)- Ax and 
B(x) is replaced by the canonical injection from H to D(A*)*. 0 

Remark - The proof of the necessary condition shows that 
the viability property for solutions x(·) E W 00 (0, T; Y, Z*) implies 
that the tangential condition (13.3) is satisfied in a weak sense with 
D(A*)* replaced by Z*. When K is convex, we can dispense with the 
assumption that the injection from D(A*) to Z, is compact, thanks 
to the following 

Lemma 13.2.5 If K c Y c Z is convex, then Tk(x) is the (weak 
or strong) closure in z of SK(x) := uh>O k(K- x) and v belongs 
to Tk(x) if and only if v is a weak limit of elements Vn such that 
x + hn Vn E K for all n 2: 0. The normal cone is equal to 

Nk(x) = NK(x) n Z* 
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Proof- Since the cone SK(x) is convex whenever K is convex, 
its weak or strong closures in Z do coincide. Therefore, if v is a weak 
limit of elements Vn such that x + hnvn E K for all n ~ 0, then v 
belongs to the closure in Z of S K ( x). Conversely, if v belongs to 
this closure in Z, then it is the limit {in Z) of elements Vn such that 
x + knvn belongs to K for some positive kn. Since K is convex, 
x + hnvn E K for the sequence hn := min{kn, ~)which converges to 
0. Hence v belongs to Tg(x). 

If j denotes the canonical injection from Y to Z, we can write 
the above statement as Tg(x) = jTK(x), so that, 

since j* is the canonical injection from Z* to Y*. D 

We conclude with the following example: 

Lemma 13.2.6 Let Y c Z be two Hilbert spaces, the injection being 
continuous and dense, and J the duality mapping from Y onto Y*. 
Then 

z _ { Z if //x//Y <a or if /lx/ly =a & Jx tJ_ Z* 
TaBy(x)-

{vI (Jx,v) :S 0} if /lx/ly =a & Jx E Z* 

Proof- Indeed, if /lx/ly < 1, then T!By(x) :::::> TaBy(x) = Y. 
Since Y is dense in Z, we deduce that T!By(x) = Z. Assume now 
that /lx/ly = a. We have seen in Lemma 13.2.5 that N!By(x) = 
NaBy(x) n Z*. 

Since NBy(x) = {>.Jxh~o, we infer that when Jx tJ_ Z*, then 
N~Y(x) = 0 and that when Jx E Z*, N~Y(x) = {>.Jxh~o· The 
claim follows by polarity. D 

13.3 Elliptic & Parabolic Inclusions 

We suppose from now on that the unbounded operator is derived 
from an "elliptic" operator A, in which case the operational differen
tial inclusion is called "parabolic" , and we shall derive existence and 
regularity theorems for parabolic differential inclusions. 
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First, we need to recall some facts about elliptic operators. 
Let us consider for that purpose a Hilbert space X c H dense in 

H with a stronger topology, so that we have the following identifica
tions: 

XcH=H*cX* 

We introduce a continuous linear operator A E .C(X, X*), and 
we observe that its transpose A* also belongs to .C(X, X*). We can 
associate with A and A* the unbounded operators (D(A), A) and 
(D(A*), A*) on H, the domains of which are defined by: 

D(A) := {x EX I AxE H}, D(A*) := {x EX I A*x E H} 

These domains are Hilbert spaces7 when they are supplied with 
the graph norms: 

llxllb(A) := llxll~ + IIAxllk, llxllb(A*) := llxll~ + IIA*xllk 

so that (D(A), A) and (D(A*), A*) are closed unbounded operators. 
If we suppose that the domain D(A*) of A* is dense in X, and 

thus, in H, then one can also check that (D(A*), A*) is the adjoint of 
(D(A), A) (in the sense of unbounded operators) and the transpose 
A** E .C(H, D(A*)*) as the unique extension of A E .C(X, X*) to H. 
Since we can also identify the dual X* of X to a dense subspace of 
the dual D(A*)* of A*, we obtain the "embeddings" 

D(A) c X c H = H* c X* c D(A*)* 

7 Let us consider a Cauchy sequence Xn E D(A). Then Xn is a Cauchy sequence 
in X and Axn is a Cauchy sequence in H. Hence they converge to x and p 
respectively. On the other hand, for all y E X, the relations 

< Axn,Y > = < Xn,AY > 

imply by going to the limit that 

< p,y > = < x,A*y > = < Ax,y > 

Hence p =Ax (in X*) and, since p E H, then x belongs to D(A) and Xn converges 
toxin D(A). 
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In summary, when both the domains D(A) and D(A*) are dense 
in X, then 

r A E .C(D(A), H) n .C(X,X*) n .C(H, D(A*)*) 

:i) A* E .C(D(A*), H) n .C(X,X*) n .C(H, D(A)*) 

This is the case when for some A E R the operator A+ A is an 
isomorphism8 from X to X*. If the canonical injection from X to H 
is compact, then so are the injections from D(A) to X, from H to 
X* and from X* to D(A*)*. 

We shall say that A is X -elliptic if and only if there exists a 
positive constant c such that 

V x EX, < Ax,x >;::: cllxlli-

and that A is X -coercive if and only if A + A is X -elliptic for some 
AER. 

The Lax-Milgram Theorem9 states that X -elliptic operators are 
isomorphisms. 

Assumption (13.4) with()= 1/2 holds true when A is X-elliptic 
because its inverse A-1 is X*-elliptic: 

so that 

Consequently: 

81£ x E X, then Ax+ AX E X* can be approximated by a sequence of elements 
Pn E H, so that x can be approximated by the elements Xn := (A+A)- 1Pn E D(A) 
in X. If the injection from X to His compact, so is the injection from D(A) to 
H, because, if Xn converges weakly toxin D(A), Axn + AXn converges weakly to 
Ax+ Ax in H and strongly if X* (since the transpose of a compact operator is 
still compact), so that Xn = (A + A) -l ( Axn + AXn) converges strongly to x in X. 

9 which is the infinite-dimensional extension of the theorem stating that definite 
positive matrices are invertible, since in finite dimension, definite positive and X
elliptic matrices coincide. 
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Lemma 13.3.1 If A E .C(X, X*) is X -coercive, then the domains 
D(A) and D(A*) are dense in X and H, the canonical injections 
being compact whenever the injection from X to H is compact. 

Furthermore, the functions x(·) E W00 (0, T; X, D(A*)*) are con
tinuous from [0, T] to H and the injection from W00 (0, T; X, D(A*)*) 
to C(O, T; H) is compact whenever the injection from X to His com
pact. 

We then obtain the following consequence of the Viability Theo
rem 13.2.2 for operational differential inclusions: 

Corollary 13.3.2 Let us assume that A E .C(X, X*) is X -coercive 
and that 

i) the injection from X to H is compact 

ii) F : H ~ X* is upper hemicontinuous 
with bounded closed convex images 

iii) K c X is bounded in X and closed in H 

Then K is viable under F - A if and only if it is a viability domain 
and the viable solutions belong to W00 (0, T; X, X*). 

If K is convex, there exists a viable equilibrium x E K, a solution 
to 

x E X & Ax E F(x) 

Proof- Lemma 13.3.1 implies that the assumptions of The
orem 13.2.2 with Y := Z := X hold true when A is X-coercive. 
D 

We shall now see that the ellipticity condition replaces in some 
cases the requirement that K is bounded in X. This is the case for 
instance when we take K = H, the whole space, so that we derive 
an existence theorem for parabolic equations: 
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Theorem 13.3.3 (Shi Shuzhong) Let us assume that 

Then 

i) the injection from X to H is compact 

ii) A is X -elliptic and symmetric 

iii) F : H ~ H is bounded and upper hemicontinuous 
with closed convex images 

1 There exists an equilibrium 

(13.8) 

2 For any initial state xo E X, there exists a solution x( ·) 
to the operational differential inclusion {13.2). 

Proof- It follows from Corollary 13.3.2 and the following 

Lemma 13.3.4 If A E C(X, X*) is X -elliptic and symmetric and 
F is bounded, then, there exists ao > 0 such that for a 2:: ao the ball 
of radius a in X is a viability domain ofF- A. Actually, we have 

Proof - Since A is X -elliptic and symmetric, we can renorm X 
by taking llxllx := ..J< Ax,x >, for which A becomes the duality 
mapping from X onto X*. The injection from D(A) to X being 
continuous, there exists p > 0 such that llxllx :::; PIIAxiiH for every 
x E D(A). Then we take 

a ~ ao := p IIFII= where IIFII= ·- sup IIF(x)ll 
xEX 

For any x such that llxllx = a, inequalities 

{ 
< Ax, f > :S IIAxiiH IIFII= :S aiiA;IIH 

= IIAxiiH llx~x :S II Ax ilk = < Ax, Ax > 

imply that 
V llxllx = a, < Ax, f-Ax > :::; 0 

By Lemma 13.2.6, this implies that f-Ax belongs to T~x(x). D 
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Remark - We can relax the boundedness condition on F and 
replace it by the growth condition 

. dH (0, F(x)) 
l := hmsup < 1 

llxllx--->+oo IIAxiiH 

Indeed, it implies that by taking c < 1 - l, there exists a 0 such that, for 
any llxllx ?': ao, there exists f E F(x) such that 

II!IIH = dH (0, F(x)) :S (l + c)IIAxiiH :S IIAxiiH 

We deduce from the above inequality that there exists f E F(x) such that 

V llxllx =a, < Ax, f-Ax > ::; 0 

because 

< Ax, f > :S IIAxiiH IIJIIH < IIAxllh = < Ax, Ax > 

Hence AxE F(x)- T!j8 x (x). D 

When we replace H by X in the above growth condition, we obtain the 
existence of a solution which takes its values in D(A). 

Theorem 13.3.5 We posit the assumptions of Theorem 13.3.3 where the 
boundedness condition is replaced by the growth condition 

. dx(o, F(x)) 
lx := hmsup < 1 

IIAxiiH--->+oo IIAxllx 

Then 
1 There exists an equilibrium x, a solution to 

x E D(A), AxE X & AxE F(x) 

2 For any initial state x 0 E X, there exists a solution x( ·) in 
W 00 (0, T; D(A), H) to the operational differential inclusion {13.2}. 

Proof- Since A is an isomorphism from D(A) to H, we can supply 
the domain with the norm llxiiD(A) := IIAxiiH, so that the duality mapping 
from D(A) onto its dual is A*A = A2 . 

We know that there exists ao such that, for any IIAxiiH ?': ao, there 
exists f E F(x) such that 

llfllx = dx (0, F(x)) :S (l + c)IIAxllx :S IIAxllx 
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We take this time K := o:Bv(A), the ball in D(A) of radius o: ?: o:o. 
Hence Lemma 13.2.6 states that whenever llxllv(A) = o: and A2x E D(A*), 
then 

T~Bv(A) (x) = { v I < A2x, v >:'S 0} 

(and the whole space if not). 
Inequalities 

{ 
< A2x, f >=<Ax, Af >:'S IIAxllx IIAfllx• 

= IIAxllx llfllx :'S IIAxll3c =< A2x, Ax > 

imply that for any o: ?: o:o and any llxllv(A) = o:, there exists f E F(x) 
such that AxE f- TaBv(A)(x)· D 

More generally, we can obtain a viability theorem on closed sub
sets of H which are not necessarily bounded in X, thanks to the 
X -ellipticity which compensates this lack of boundedness: 

Theorem 13.3.6 Let us assume that 

i) the injection from X to H is compact 

ii) A is X -elliptic and symmetric 

iii) F : H ~ H is bounded and upper 
hemicontinuous with closed convex images 

Let ao > 0 be the number provided by Lemma 13.3.4. We assume 
that for some o: ?: o:o, 

{ 

K c H is closed in H and satisfies 

\f llxllx = o:, Tf!(x) nT~x(x) - Tf!naBx(x) 

Then K c H is viable under F - A whenever it is an H -viability 
domain in the sense that: 

\f x E K n D(A), AxE F(x)- Tf! (x) 
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Proof - The proof amounts to showing that for o: > 0 large 
enough, the intersection K n o:B x is still a viability domain which is 
bounded in X and closed in H. 0 

So, we have to provide sufficient conditions for the intersection of 
contingent cones to a closed subset and to a ball of X to be contained 
in the contingent cone to the intersection. 

When K is convex, convex analysis provides the following: 

Proposition 13.3. 7 Let K be a closed convex subset of H satisfying 

0 E lntH(K + o:Bx) (13.9) 

Then property 

V x E D(A) llxllx = o:, Tfl (x) n T/!Bx (x) = TflnaBx (x) 

holds true. 

Indeed, assumption (13.9) implies that the intersection of the 
tangent cones is the tangent cone to the intersection. It follows in 
particular that TflnaBx(x) = H whenever Ax rj. H, i.e., whenever 
x rj. D(A). Then it is enough to verify that 

V x E D(A) n K, AxE F(x)- TK(x) 0 

This happens in particular whenever a point of o:Bx belongs to 
the interior (in H) of the closed convex subset K c H. In this case, 
we obtain the following consequence: 

Theorem 13.3.8 Let us assume that 

i) the injection from X to H is compact 

ii) A is X -elliptic and symmetric 

iii) F : H ~ H is bounded and upper 
hemicontinuous with closed convex images 

iv) K C H is closed, convex and 
:3 xo EX, llxollx = o:, such that xo E IntH(K) 

Then K C H is viable under F - A whenever it is an H -viability 
domain and there exists a viable equilibrium. 
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13.4 Distributed Control Systems 

Let 0 c Rn be a bounded open subset smooth enough for the Trace 
Theorem10 to hold true. In order to define a "distributed" control 
system with feedbacks, we introduce a Hilbert space U of controls 
and 

i) a single-valued map f : R x U --+ R 

ii) a set-valued map u : 0 X R ~ u 

iii) the Laplacian ~ := I:f=I -J; 
t 

(for simplicity; we could have taken any elliptic differential operator). 
The state of the distributed control system is governed by a non

linear parabolic partial differential equation: 

i) %tx(t,w)- ~x(t,w) = f(x(t,w),u(t,w)) 
(the state equation) 

ii) for almost all t,w, u(t,w) E U(w,x(t,w)) 
(state-dependent feedback controls) 

iii) V t E [0, T], x(t, w)lan = 0 
(Dirichlet boundary conditions) 

iv) for almost all wE 0, x(O, w) = xo(w) 
(initial condition) 

(13.10) 

We first make precise the spaces in which we are looking for 
solutions to this problem. 

We recall that the Sobolev space H 1 (0) is the space of functions 
x(·) E £ 2 (0) such that their partial derivatives (in the sense of dis
tributions) Dix := a~i x belong to £ 2 (0) fori= 1, ... , n. The (min
imal) Sobolev space HJ(O) is the space of functions x(·) E H 1(0) 

10The Trace Theorem states that the trace operator 1 : x(w) ---+ x(w)lan is a 
surjective continuous linear operator from the Sobolev space H 1 (0) to H 1/ 2 (80) 
and that its kernel HJ(O) is the closure of the space of infinitely differentiable 
functions with compact support in 0. See for instance Chapters 7 and 9 of the 
text APPLIED FUNCTIONAL ANALYSIS by the author. 
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whose traces on the boundary vanish. Its dual is denoted by H-1 (0) 
and we adopt the identifications 

From now on, we regard a function ( t, w) ~ x( t, w) as a function 
t ~ x(t, ·) from [0, T] to an adequate space of functions defined on 
0, as for instance Sobolev spaces. 

We shall look for solutions in the space 

w= := w=(o, T; HJ(o), H-1(0)) 

which is the Banach space offunctions x(·) E £ 00 (0, T; HJ(O)) whose 
derivatives belong to L 00 (T; H-1 (0)). 

We identify the set-valued map U with the set-valued map (again 
denoted U) from £ 2 (0) to L2 (0;U) defined by 

U(x(·)) := {u(·) E L2 (0;U) I for almost all w, u(w) E U(w, x(w))} 

Corollary 13.4.1 Let us assume that 

Then, 

i) 0 is bounded and enjoys the trace property 

ii) f is continuous and affine with respect to u 

and satisfies supx lf(x, u)l ~ c(ilull + 1) 

iii) U is bounded and upper semicontinuous 
with closed convex images 

a/ there exits a solution (x( w), u( w)) to the elliptic control 
problem 

i) -~x(w) = f(x(w), u(w)) 
(the elliptic state equation) 

ii) for almost all w, u(w) E U(w, x(w)) 
(state-dependent feedback controls) 

iii) x(w)lan = 0 (Dirichlet boundary conditions) 

b/ - for any initial state xo E HJ(O), there exists a solution 
x(-) E W00 to the distributed control system {13.10}. 
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Proof- We recall that -.6. is an HJ-elliptic operator from 
HJ(O) onto H-1(0) and that the injection from HJ(O) to £ 2 (0) is 
compact because 0 is bounded. 

The set-valued map F defined on £ 2(0) by 

F(x) := {!(·, x(·), u(·))}u(·)EU(x(·)) 

is a bounded upper hemicontinuous set-valued map with closed con
vex images. D 

Let us consider now the viability problem for this control prolr 
lem. For that purpose, we introduce the feedback RK defined by 

RK(x) := { u E U(x) such that .6.x + f(x, u) E TK(x)} 

Corollary 13.4.2 We posit the assumptions of Corollary 13.4.1. 
Let K c £ 2 (0) be a closed subset such that some llxoiiHJ(n) ~ a 
belongs to its interior in L2(0). Then K enjoys the viability prop
erty if and only if 

and viable solutions are obtained through the regulation law 

for almost all (t,w) E [0, T] X 0, u(t,w) E RK(x(t,w)) 

13.5 Lyapunov Functions of Parabolic Inclu
sions 

We now adapt to the case of parabolic differential inclusion the char
acterization of extended lower semicontinuous functions enjoying the 
Lyapunov property. 

Theorem 13.5.1 Let us assume that 

i) the injection from X to H is compact 

ii) A is X -elliptic and symmetric 

iii) F : H ~ H is bounded and upper 
hemicontinuous with closed convex images 

(13.11) 
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and that the extended function V : X --+ R+ U { +oo} is convex, 
lower semicontinuous and continuous at 0 on H. If V is a Lyapunov 
function in the sense that for some a > 0, 

V x E D(A) nDom(V), inf Dr V(x)(v- Ax) +aV(x) ~ 0 (13.12) 
vEF(x) 

then V enjoys the Lyapunov property: for all xo E Dom(V), there 
exists a solution to the parabolic operational differential inclusion 
( 13.2) satisfying 

V t ~ 0, V(x(t)) ~ V(xo)e-at 

Proof - We consider the system of operational differential 
inclusions 

{ 
i) x'(t) + Ax(t) E F(x(t)) 
ii) w'(t) + aw = 0 

(13.13) 

where the viability subset is the epigraph K := £p(V), which is a 
closed convex subset of 1{ := H x R. 

We observe that the operator A := A x a from X := X x R to 
X* = X* x R is elliptic, so that we can apply Theorem 13.3.8 with 
F(x) = F(x) x {0}, which is bounded whenever F is. 

Since Vis continuous at 0 on H, the element (0, V(O)+a) belongs 
to the intersection of the interior of the epigraph of V and the ball of 
radius V(O) +a in X. Indeed, by taking 8 < a, there exist '"'/ E]O, 8[ 
such that, for all z E '"'(BH, V(z) < V(O) +a- 8 ~ V(O) +a+ p, for 
any lttl ~ '"'f· This means that 

(0, V(O) +a) + '"'fBrt c £p(V) 

Hence the assumptions of Theorem 13.3.8 are satisfied and we 
know that the epigraph of V is a viability domain of the system 
(13.13) if and only if 

V (x, w) E t'p(V) n (D(A) x R), (F(x) x aw) n Tt:p(V)(x, w) =/= 0 

This is equivalent to inequality (13.12). D 

Remark - We can relax the assumption that F is bounded by the 
condition: 

limsup dH(O,F(x))/VIIAxll~+a2 lwl 2 < 1 
llxll~+lwl 2 -+oo 
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because we observe that 

Remark - We can also relax the assumption of continuity of V at 
0 on H, by introducing the function Va defined by 

Va(z) := inf V(z- x) ~ V(z) 
llxl!x:5a 

and by assuming that for any a> V(O), 

Va is upper semicontinuous at 0 

Indeed, this means that for c := a - V(O) > 0, there exists 15 E]O, c[ such 
that for all z E 15BH, Va(z) ~ Va(O) +c. Hence, for any (z, JL) E 15Brt, there 
exists x E aB x such that 

(z, JL) = (z- x, V(O) + c + JL) + (x, -V(O)- c) E t:p(V) + aBx 

because 

V(z- x) ~ Va(z) + 2c ~ Va(O) + c + JL ~ V(O) + c + JL 

and !V(O) + cl = a. D 



Chapter 14 

Differential Games 

Introduction 

We consider two players, Xavier and Yvette, and a differential 
game whose dynamics are described by 

a) { i) x'(t) = f(x(t), y(t), u(t)) 
ii) u(t) E U(x(t), y(t)) 

{ i) y'(t) = g(x(t), y(t), v(t)) 
b) ii) v(t) E V(x(t), y(t)) 

where u, v, the controls, are regarded as strategies used by the players 
to govern the evolution of the states x, y of the game. 

The rules of the game are set-valued maps P : Y ~ X and 
Q : X ~ Y, describing the constraints imposed by one player on the 
other. They replace the traditional intertemporal optimality and/ or 
end-point criteria used in differential games. 

The playability domain of the game K c X x Y is defined by: 

K := {(x,y)EXxY I xEP(y) and yEQ(x)} 

(We consider only the time-independent case for the sake of simplic
ity). We single out the following properties: 

The playability property: it states that for any initial 
state (xo, yo) E K, there exists a solution to the differential game 

451 
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which is playable in the sense that 

"i/ t 2: 0, x(t) E P(y(t)) & y(t) E Q(x(t)) 

Xavier's discriminating property: It states that for 
any initial state (xo, Yo) E K and for any continuous closed loop 
strategy ii(·, ·) played by Yvette, there exists a playable solution to 
the differential game. 

Xavier's leading property: It states that there exists 
a continuous closed loop strategy u(·, ·) played by Xavier such that 
for any initial state (xo, Yo) E K, there exists a playable solution to 
the differential game. 

Our first task is to characterize the rules satisfying such prop
erties as somewhat generalized solutions to Isaacs equations. Since 
the rules are set-valued maps and not functions, we may character
ize them by the indicators 'l1 p and 'l1 Q of their graphs, defined by 
'llp(x, y) := 0 when x E P(y) and Wp(x, y) := +oo when x ~ P(y). 
But these functions, which are only lower semicontinuous (when the 
graphs are closed) are not differentiable in the usual sense. Hence 
we must replace the concept of derivative by the one of contingent 
epiderivative in the Isaacs equations. 

This being done, we shall interpret the solutions to contingent 
Isaacs equations in game theoretical terms and characterize the above 
properties of the rules P and Q by checking whether the function 
max('l!p, WQ) is a solution to the corresponding contingent Isaacs 
equation. 

We focus our attention in the second section to the playability 
property. 

We shall characterize it by constructing retroaction rules 

(x,y,v) '"'-+ C(x,y;v) & (x,y,u) '"'-+ D(x,y;u) 

which involve the contingent derivatives of the set-valued maps P 
and Q, with which we build the regulation map R mapping each 
(x, y) E K to the regulation set 

R(x,y) = {(u,v)luEC(x,y;v) and vED(x,y;u)} 

The strategies belonging to R(x, y) are called playable. 



14.0. Introduction 453 

The Playability Theorem states that under technical assump
tions, the playability property holds true if and only if 

V (x,y) E K, R(x,y) f= 0 

and that playable solutions to the game are regulated by the regula
tion law: 

V t ~ 0, u(t) E C(x(t), y(t); v(t)) & v(t) E D(x(t), y(t); u(t)) 

We then deal in the third section with the construction of single
valued playable feedbacks ( u, ii), such that the differential system 

{ 
x'(t) = f(x(t), y(t), u(x(t), y(t)) 

y'(t) - g(x(t), y(t), ii(x(t), y(t)) 

has playable solutions for each initial state. By the Playability The
orem, they must be selections of the regulation map R in the sense 
that 

V (x, y) E K, (x, y) f-t (u(x, y), ii(x, y)) E R(x, y) 

We shall prove the existence of such continuous single-valued 
playable feedbacks, as well as more constructive, but discontinuous, 
playable feedbacks, such as the feedbacks associating the strategies 
of R(x, y) with minimal norm (the playable slow feedbacks, as in 
Chapter 6). More generally, we shall show the existence of feed
backs (possibly set-valued) associating with any (x, y) E K the set 
of strategies (u, v) E R(x, y) which are solutions to a (static) opti
mization problem of the form: 

(u,v) E R(x,y) I a(x,y;u,v) ~ inf a(x,y;u',v') 
u',v'ER(x,y) 

or solutions to a noncooperative game of the form: 

V(u',v') E R(x,y), a(x,y;u,v') ~ a(x,y;u,v) ~ a(x,y;u',v) 

In other words, 
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the players can implement playable solutions to the differential 

game by playing for each state (x, y) E K a static game on the 

strategies of the regulation subset R( x, y). 

We also consider in the fourth section the issue of finding dis

criminating feedbacks by providing for instance sufficient conditions 
implying that for all continuous feedback v(x, y) E V(x, y) played 
by Yvette, Xavier can find a feedback (continuous or of minimal 

norm) u(x, y) such that the differential equation above has playable 
solutions for each initial state. 

We address the question of whether Xavier has a leading role, 
i.e., the problem of constructing continuous pure feedbacks u(x, y) 

which have the property of yielding playable solutions to the above 

differential game whatever the strategy played by Yvette. 

The last section is devoted to closed loop decision rules, which op

erate on the velocities of the strategies (regarded as decisions) rather 
than on the controls. We need to provide first regulation maps which 
yield absolutely continuous strategies which are then almost every
where differentiable. We distinguish among them the ones which 
guarantee or which allow victory or defeat of players adequately de
fined. The indicator functions of their graphs are characterized as 

solutions of contingent partial differential inequalities. We apply 
analogous selection procedures which yield closed loop decision rules 
allowing, say, a game to remain stable. 

14.1 Contingent Isaacs Equations 

Let us consider two players, Xavier and Yvette. Xavier acts on a 
state space X and Yvette on a state spaceY. For doing so, they have 
access to some knowledge about the global state (x, y) of the system 
and are allowed to choose strategies u in a global state-dependent set 
U(x, y) and v in a global state-dependent set V(x, y) respectively. 

But Xavier does not know Yvette's choice of controls v nor is 
Yvette assumed to know Xavier's controls. 

Their actions on the state of the system are governed by the 



14.1. Contingent Isaacs Equations 455 

system of differential inclusions: 

a) { i) x'(t) f(x(t), y(t), u(t)) 
ii) u(t) E U(x(t), y(t)) 

(14.1) 

b) { i) y'(t) g(x(t), y(t), v(t)) 
ii) v(t) E V(x(t), y(t)) 

We now describe the influences (power relations) that Xavier ex
erts on Yvette and vice versa through rules of the game. They are 
set-valued maps P: Y ~X and Q: X~ Y which are interpreted 
in the following way. When the state of Yvette is y, Xavier's choice 
is constrained to belong to P(y). In a symmetric way, the set-valued 
map Q assigns to each state x the set Q(x) of states y that Yvette 
can implement1 . 

Hence, the playability subset of the game is the subset K C X x Y 
defined by: 

K := { (x, y) EX x Y I x E P(y) and y E Q(x) } (14.2) 

Naturally, we must begin by providing sufficient conditions im
plying that the playability subset is nonempty. Since the playabil
ity subset is the subset of fixed-points (x, y) of the set-valued map 
(x, y) ~ P(y) x Q(x), we can use one of the many fixed point theo
rems to answer these types of questions2 . 

From now on, we shall assume that the playability subset associ
ated with the rules P and Q is not empty. 

We can reformulate this differential game in a more compact 
form, by denoting 

• by z := (x, y) E Z :=X x Y the global state, 

• by h(z, u, v) := (f(x, y, u, v ), g(x, y, u, v)) the values of the map 
h: Rn x RP x Rq ---t Rn describing the dynamics of the game, 

1 We can extend the results below to the time-dependent case using the meth
ods of Chapter 11. 

2 For instance, Kakutani's Fixed Point Theorem 3. 7. 7 furnishes such conditions: 
Let L C X and M C Y be compact convex subsets and P : M "-' L and Q : L "-' 
M be closed maps with nonempty convex images. Then the playability subset is 
not empty. 
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• by L := Graph(P) Xavier's closed domain of definition, 

• by M := Graph(Q-1) Yvette's one and by K := L n M the 
playability subset. 

We shall also identify the set-valued maps U and V with their 
restrictions to L and M respectively by setting U(z) := 0 whenever 
z ~Land V(z) := 0 when z ~ M. 

Hence the differential game can be written in the compact form 

{ 
i) 
. ") 
~~i) 

z'(t) = h(z(t), u(t), v(t)) 
u(t) E U(z(t)) 
v(t) E V(z(t)) 

(14.3) 

We denote by S(zo) the subset of solutions z(·) to (14.3) starting at 
zo. 

Let us associate with this differential game the following four 
Hamilton-Jacobi-lsaacs partial differential equations: 

i) infuEU(z) infvEV(z) d~~z) · h(z, u, V) = 0 

ii) SUPuEU(z) SUPvEV(z) d~~z) · h(z, u, v) = 0 

,;,;,;) . f d<l>(z) h( ) ... SUPvEV(z) m uEU(z) dz . z, u, v 0 

· ) · f d<l>(z) h( ) 0 zv m uEU(z) SUPvEV(z) dz . z, u, v = 

We would like to study the properties of the solutions to these 
partial differential equations, and in particular, characterize the so
lutions which are indicators of closed subsets L. Hence we are led to 
weaken the concept of usual derivatives involved in these partial dif
ferential equations by replacing them by contingent epiderivatives3 . 

3since any extended function <I> : X -+ RU { +oo} has contingent epiderivative, 
and in particular, indicators, for which we have the relation 

Dr'h(z)(v) = WrL(z)(v) := { ~00 if v E TL(z) 
if v f{_ TL(z) 
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Theorem 14.1.1 Let us assume at least that h: Rn xRPxRq---+ Rn 
is continuous, has linear growth, and that the set-valued maps U and 
V are closed with linear growth. 

We assume that all extended functions <I> are nonnegative and 
contingently epidifferentiable4 and that their domains are contained 
in the intersection K of the domains of U and V. 

1 If the values of the set-valued maps U and V are convex 
and if h is affine with respect to the controls, <I> is a solution to the 
contingent inequality 

if and only if 

inf inf Dr<I>(z)(h(z, u, v)) < 0 
uEU(z) vEV(z) 

V z EDam( <I>), :3 z(·) E S(z) IV t 2: 0, <I>(z(t)) ~ <I>(z) 

(14.4) 

2 Assume that h is uniformly Lipschitz with respect to x. 
Then <I> is a solution to the contingent inequality 

if and only if 

sup sup Dr<I>(z)(h(z, u, v)) < 0 
uEU(z) vEV(z) 

V z EDam( <I>), V z(·) E S(z), V t 2: 0, <I>(z(t)) ~ <I>(z) 

(14.5) 

3 Assume that V is lower semicontinuous, that the values 
of U and V are convex and that h is affine with respect to u. Then 
<I> is a solution to the contingent inequality 

sup inf Dr<I>(z)(h(z, u, v)) ~ 0 
vEV(z) uEU(z) 

(14.6) 

if and only if for any continuous closed-loop strategy v(z) E V(z) 
played by Yvette and any initial state z E Dom( <I>), there exists a 
solution z(·) to Xavier's control problem 

{ i) z'(t) = h(z(t), u(t), v(z(t))) 
ii) u(t) E U(z(t)) 

4This means that for all z E Dom(<I>), V vEX, Dr<I>(z)(v) > -oo and that 
Dr<I>(z)(v) < oo for at least one vEX. 
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starting at z and satisfying V t;::: 0, <I>(z(t))::; <I>(z). 
4 Assume that V is lower semicontinuous with convex 

values. Then <I> is a solution to the contingent inequality 

inf sup Dr<I>(z)(h(z, u, v)) ::; 0 
uEU(z) vEV(z) 

(14.7) 

if and only if Xavier can play a closed-loop strategy u(z) E U(z) such 
that, for any continuous closed-loop strategy v(z) E V(z) played by 
Yvette and for any initial state z E Dom( <I>), there exists a solution 
z(·) to 

z'(t) = h(z(t), u(z(t)), v(z(t)) (14.8) 

starting at z and satisfying for all t ;::: 0, <I>(z(t)) < <I>(z). The 
converse is true if 

{ 
Bq,(z) := {u E U(z) such that 
supvEV(z) Dr<I>(z)(h(z, u, v)) 
= infuEU(z) supvEV(z) Dr<I>(z)(h(z, u, v))} 

is lower semicontinuous with closed convex values. 

Proof 
The two first statements are translations of the theo

rems characterizing Lyapunov and global Lyapunov functions (see 
Chapter 9) applied to the differential inclusion z'(t) E H(z(t)) where 

H(z) := f(z, U(z), V(z)). 

Let us prove the third one. Assume that <I> satisfies the 
stated property. Since V is lower semicontinuous with convex values, 
Michael's Theorem 6.5. 7 implies that for all zo E Dom(V) and vo E 

V(zo), there exists a continuous selection v(·) of V such that v(zo) = 
vo. Then <I> enjoys the Lyapunov property for the set-valued map 
Hv(z) := h(z, U(z), v(z)), and thus, there exists u0 E U(zo) such 
that 

Dr<I>(zo)(h(zo, uo, v(zo))) ::; 0 

Hence <I> is a solution to (14.6). 
Conversely, assume that <I> is a solution to (14.6). Then for any 

closed-loop strategy v, the set-valued map Hv satisfies the assump

tions of the theorem characterizing Lyapunov functions, so that there 
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exists a solution to the inclusion z' E H:v(z) for any initial state 
z E Dom(<I>) satisfying for all t ~ 0, <I>(z(t)) ~ <I>(z). 

- Consider finally the fourth statement. Assume that Xavier 
can find a continuous closed-loop strategy u such that for any closed
loop strategy v, <I> enjoys the stated property. Since Vis lower semi
continuous with convex values, Michael's Theorem implies that for 
all z0 E Dom(V) and v0 E V(zo), there exists a continuous selection 
v(·) of V such that v(zo) = vo. Since for any continuous closed-loop 
strategy v(·), <I> enjoys the Lyapunov property for the single-valued 
map z-+ h(z, u(z), v(z)), we deduce that for all zoE Dom(<I>), there 
exists u := u(z) such that for all v E V(z), Dr<I>(z)(h(x, u, v)) ~ 0, 
so that <I> is a solution to (14.6). 

Conversely, assume that the set-valued map Bif> is lower semicon
tinuous with closed convex values. Hence Michael's Theorem implies 
that there exists a continuous selection u of Bif>. Then for any contin
uous closed-loop strategy v(·) E V(·), we deduce from {14.7) that <I> is 
a Lyapunov function for the single-valued map z-+ h(z,u(z),v(z)), 
so that, for all z E Dom(<I>), there exists a solution z(·) to the system 
(14.8) satisfying for all t ~ 0, <I>(z(t)) ~ <I>(z). D 

Let L be a closed subset of the intersection K of the domains of 
U and V. The problem we investigate is of finding that one (or all) 
solution(s) z(·) of the game is (are) viable in L. There are several 
ways to achieve that purpose, according to the cooperative or nonco
operative behavior of the players. Here, we shall investigate several 
of them. 

Definition 14.1.2 We shall say the a subset L enjoys: 
1 the "playability property" if and only if 

V z E L, 3 z(·) E S(z) IV t ~ 0, z(t) E L 

2 the "winability property" if and only if 

V z E L, V z(-) E S(z), V t ~ 0, z(t) E L 

3 "Xavier's discriminating property" if and only if for 
any continuous closed-loop strategy v(z) E V(z) played by Yvette 
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and any initial state z E L, there exists a solution z ( ·) to X a vier's 

control problem 

{ 
i) z'(t) = h(z(t), u(t), v(z(t))) 
ii) u(t) E U(z(t)) 

starting at z and viable in L. 

4 "Xavier's leading property" if and only if Xavier can 

play a closed-loop strategy u(z) E U(z) such that, for any continuous 

closed-loop strategy v(z) E V(z) played by Yvette and for any initial 

state z E L, there exists a solution z ( ·) to {14. 8) starting at z and 

viable in L. 

We shall characterize these properties: for that purpose we asso

ciate with L the following set-valued maps: 
The regulation map RL defined by 

V z E L, RL(z) := { (u, v) E U(z) x V(z) I h(z, u, v) E TL(z) } 

Xavier's discriminating map AL defined by 

V z E L, AL(z,v) := { u E U(z) I (u,v) E RL(z)} 

Xavier's leading map BL defined by 

V z E L, BL(z) := n AL(z, v) 
vEV(z) 

Definition 14.1.3 We shall say that 

L is a playability domain if V z E L, RL(z) =/= 0 
Lis a winability domain if V z E L, RL(z) := U(z) x V(z) 

L is a Xavier's discriminating domain if 

V z E L, V v E V(z), AL(z, v) =/= 0 (14.9) 

L is a Xavier's leading domain if V z E L, BL(z) =/= 0 

We begin by translating these properties in terms of contingent 

Isaacs' equations: 
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Proposition 14.1.4 Let us assume that h : Rn x RP x Rq -+ Rn 
is continuous, has linear growth, and that the set-valued maps U, V 
are closed with linear growth. 

L is a playability domain if and only if W L is a solution 
to (14.4) 

L is a winability domain if and only if W L is a solution to 

L is a discriminating domain for Xavier if and only if w L 

is a solution to (14.6} 
L is a leading domain for Xavier if and only if W L is a 

solution to (14. 7) 

Therefore, Theorem 14.1.1 implies the following characterization 
of these domains: 

Corollary 14.1.5 Let us assume at least that h: Rn x RP x Rq-+ 
Rn is continuous, has linear growth, and that the set-valued maps 
are closed with linear growth. 

1 If the values of the set-valued maps U and V are convex 
and if h is affine with respect to the controls, then L enjoys the 
playability property if and only if it is a playability domain. 

2 Assume that h is uniformly Lipschitz with respect to x. 
Then L enjoys the winability property if and only if it is a winability 
domain. 

3 Assume that V is lower semicontinuous, that the val-
ues of U and V are convex and that h is affine with respect to u. 
Then L enjoys Xavier's discriminating property if and only if it is a 
discriminating domain for Xavier. 

4 Assume that V is lower semicontinuous with convex 
values. If L enjoys Xavier's leading property, then it is a leading 
domain for him. The converse is true if BL is lower semicontinuous 
with closed convex values. 

The existence theorems of the viability and invariance kernels 
imply the following consequence: 

Proposition 14.1.6 Let us assume that h: Rn x RP x Rq -+ Rn 
is continuous, has linear growth, and that the set-valued maps are 
closed with linear growth. 
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1 If the values of the set-valued maps U and V are convex 
and if h is affine with respect to the controls, then there exists a 
largest closed playability domain contained in L, whose indicator is 
the smallest lower semicontinuous solution to {14.4) larger than or 
equal to the indicator W L of L. 

2 Assume that h is uniformly Lipschitz with respect to 
x. Then there exists a largest closed winability domain contained in 
L, whose indicator is the smallest lower semicontinuous solution to 
(14.5) larger than or equal to the indicator WL of L. 

14.2 Playable Differential Games 

We now proceed with the case of the game described by (14.1), where 
the playability domain is defined from rules P and Q by 

K := { (x, y) EX x Y I x E P(y) and y E Q(x)} 

enjoys the playability property, which becomes in this case: for any 
initial state (xo, Yo) E K, there exists a solution to the differential 
game (14.1) which is playable in the sense that 

V t 2 0, x(t) E P(y(t)) & y(t) E Q(x(t)) 

We now need to define playable rules. For that purpose, we as
sociate with the rules P and Q acting on the states retroaction rules 
C and D acting on the strategies defined in the following way: 

Definition 14.2.1 Xavier's retroaction rule is the set-valued map 
C defined by 

{ 
C(x,y;v) 
= { u E U(x,y) I f(x,y,u) E DP(y,x)(g(x,y,v))} 

and Yvette's retroaction rule is the set-valued map D defined by 

{ D(x,y;u) 
= { v E V(x,y) I g(x,y,v) E DQ(x,y)(f(x,y,u))} 

We associate with them the regulation map R defined by 

R(x,y) = { (u,v) I u E C(x,y;v) & v E D(x,y;u)} (14.10) 
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The subset R(x, y) is called the regulation set and its elements are 
called playable controls. 

In other words, we have associated with each state ( x, y) of the playa
bility domain a static game on the strategies defined by the retroac
tion rules. This new game on strategies is playable if the subset 
R(x, y) is nonempty. This property deserves a definition. 

Definition 14.2.2 We shall say that P and Q are playable rules if 
their graphs are closed, the playability domain K defined by {14.2) 
is nonempty and if for all pairs (x, y) E K, the values R(x, y) of the 
regulation map are nonempty. 

We still need a definition of transversality of the rules before 
stating an adequate characterization of playability. 

Definition 14.2.3 We shall say that the rules P and Q are transver
sal if for all ( x, y) E K and for all perturbations ( e, f) E X x Y, there 
exists ( u, v) satisfying 

u E DP(y, x)(v) + e 

v E DQ(x,y)(u) + f 

We shall say that they are strongly transversal if 

V(x, y) E K, :3c > 0, b > 0 such that V(x', y') E BK((x, y), b), 
V ( e, f) E X x Y, there exist solutions ( u, v) to the system 

{ i) u E DP(y', x')(v) + e 
ii) v E DQ(x', y')(u) + f 

satisfying 
max(llull, llvll) ::; max(llell, llfll) 

We also assume that the rules are sleek (See Definition 5.1.4). 
We shall now derive from Corollary 14.1.5 a characterization of 

the playability property. 

Theorem 14.2.4 {Playability Theorem) Let us assume that the 
functions f and g are continuous, affine with respect to the strategies 
and have a linear growth, that the feedback maps U and V are upper 
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semicontinuous with compact convex images and have a linear growth 

and that the rules P and Q are sleek and transversal. 
Then the rules P and Q enjoy the playability property if and 

only if they are playable. Furthermore, the strategies u( ·) and v( ·) 
which provide playable solutions obey the following regulation law: 
for every t 2 0, 

u(t) E C(x(t), y(t); v(t)) & v(t) E D(x(t), y(t); u(t)) (14.11) 

Proof- We apply Corollary 14.1.5 and prove that the playa
bility subset of the differential game is a playability domain, i.e., that 
for any global state (x, y) E K of the system, there exist strate
gies u and v such that the pair (f(x,y,u),g(x,y,v)) belongs to the 
contingent cone TK(x, y). 

Since K is the intersection of the graphs of Q and p-1, we need 

to use a sufficient condition for the contingent cone to an intersection 
to be equal to the intersection of the contingent cones. 

The graphs of Q and p-1 are sleek because the rules of the game 
are supposed to be so. Furthermore, 

Tcraph(P- 1)(x,y)- Tcraph(Q)(x,y) = X x Y 

because the maps P and Q are transversal: For any ( e, f) E X x Y, 
there exists ( u, v) such that ( u, v - f) belongs to the graph of Q and 
(u+e, v) to the graph of p-I, i.e., that (e, f)= (u+e, v)- (u, v- !). 
We deduce that 

{ TK(X, y) = Tcraph(P-l)(x, y) n Tcraph(Q)(x, y) 
= Graph(DP(y, x))-1 n Graph(DQ(x, y)) 

Therefore, K is a viability domain if and only if the regulation 
map R has nonempty values, i.e., if and only if the rules of the game 
are playable. D 

The regulation law (14.11) describes how the players must behave 
to keep the state of the system playable. A first question arises: Do 
the domains of the set-valued maps 

C(x, y) : v ~ C(x, y; v) 

D(x, y) : u -vt D(x, y; u) 
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coincide with U(x, y) and V(x, y) respectively? 

Proposition 14.2.5 We posit the assumptions of Theorem 14.2.4. 
Let us assume that for all ( x, y) E K, 

Dom(C(x, y)) - V(x, y) 
(14.12) 

Dom(D(x, y)) = U(x, y) 

Then the rules are playable. 

Proof- We deduce it from Kakutani's Fixed Point Theorem, 
since the set R(x, y) is the set of fixed points of the set-valued map 

(u,v) ~ C(x,y;v) x D(x,y;u) 

defined on the convex compact subset U(x, y) x V(x, y) to itself. 
This set-valued map has non empty values by assumption, which are 
moreover convex since the rules P and Q being sleek, the graphs of 
the contingent derivatives DP(x, y) and DQ(x, y) are convex. They 
are also closed. This implies that the graph of ( u, v) ~ C ( x, y; v) x 
D(x, y; u) is closed. Hence we can apply Kakutani's Fixed Point 
Theorem5. D 

14.3 Feedback Solutions 

When we know the regulation law (14.11), playing the game amounts 
to choosing for each pair ( x, y) E K playable strategies ( u, v) in the 
regulation set R( x, y) through playable feedbacks. 

We begin by looking for single-valued playable feedbacks (u, v), 
which are selections of the regulation map R in the sense that 

V (x,y) E K, (x,y) ~---+ (u(x,y),v(x,y)) E R(x,y) 

5 We can also use Theorem 3.7.11 and replace condition (14.12) by a sufficient 
condition of the form: 

{ V (u, v) E U(x, y) x V(x, y), 
0 E (f(x, y; u), g(x, y; v))- TK(x, y)- A(Tu(:z:,y)(u) x Tv(z,y)(v)) 

where A is a linear operator from Zx x Zy to X x Y. This provides many 
sufficient conditions for playability. 
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or, equivalently, solutions to the system 

V (x,y) E K, { 
u(x,y) E 

and 
v(x, y) E 

C(x, y; v(x, y)) 

D(x, y; u(x, y)) 

For instance, continuous selections of the set-valued map R pro
vide continuous playable feedbacks ( u, v) such that the system of 
differential equations 

{ x'(t) = f(x(t), y(t), u(x(t), y(t))) 
y'(t) = g(x(t), y(t), v(x(t), y(t))) 

does have solutions which are playable. 

(14.13) 

Michael's Continuous Selection Theorem, as well as other selec
tion procedures we shall use, require the lower semicontinuity of the 
regulation map R. 

Our next objective is then to provide criteria under which the 
regulation map is lower semicontinuous. For that purpose, we need 
to strengthen the concept of playable rules. 

Definition 14.3.1 We associate with any perturbation (e, f) the retro
action rules C(e,J) and D(e,J) defined by: 

{ C(e,f)(x, y; v) 
= { u E U(x, y) I f(x, y; u) E DP(y, x)(g(x, y, v)- f)+ e} 

and 

{ D(e,f)(x, y; u) 
= { v E V(x,y) I g(x,y,v) E DQ(x,y)(f(x,y;u)- e)+ f} 

and regulation map R(e,J) defined by 

R(e,f)(x,y) = { (u,v) I u E C(e,f)(x,y;v) & v E D(e,f)(x,y;u)} 

We shall say that the rules P and Q are strongly playable if 

{ 
V(x, y) E K, :3)' > 0, 8 > 0 such that V(x', y') E BK((x, y), 8), 

V (e, f) E 1B, R(e,!)(x', y') =/= 0 
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Theorem 14.3.2 Let us assume that the functions f and g are con
tinuous, affine with respect to the strategies and have a linear growth, 
that the feedback maps U and V are upper semicontinuous with com
pact convex images and have a linear growth and that the rules P 
and Q are sleek, strongly transversal and strongly playable. 

Then the regulation map R is lower semicontinuous with closed 
convex images. 

Consequently, there exist continuous playable feedbacks ( u, v). 

Proof - We use the Lower Semicontinuity Criterion of the 
intersection and the inverse image of lower semicontinuous set-valued 
maps (see Theorem 6.3.1). 

First, we need to prove that the set-valued map 

(x, y) ~ TK(x, y) := Graph(DP(y, x)-1) n Graph(DQ(x, y)) 

is lower semicontinuous. But this follows from the strong transver
sality of the rules P and Q and the Lower Semicontinuity Criterion. 

We observe that U x V being upper semicontinuous with compact 
values, it maps a neighborhood of each point to a compact set. Since 
we can write 

R(x,y) = {(u,v) E (U x V)(x,y) I (f(x,y;u),g(x,y;v)) E TK(x,y)} 

and since both U x V and T are lower semicontinuous with convex 
images, strong playability of the retroaction rules implies that the 
regulation map R is lower semicontinuous. D 

Unfortunately, the proof of Michaels's Continuous Selection The
orem is not constructive. We would rather trade the continuity of the 
playable control with some explicit and computable property, such 
as u0 (x, y) being the element of minimal norm in R(x, y), or other 
properties. Hence we need to prove the existence of a solution to the 
differential equation (14.13) for such discontinuous feedbacks. 

Theorem 6.6.6 on the regulation of control systems becomes 

Theorem 14.3.3 We posit the assumptions of Theorem 14.2.4 and 
we suppose that K is a playability domain. 
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Let S R be a selection procedure with convex images of the regula
tion map R. Then, for any initial state (xo, yo) E K, there exists a 
playable solution starting at (xo, Yo) to the differential inclusion 

{ 
i) 
. ") 
~~.) nz 

x'(t) = f(x(t), y(t); u(t)) 
y'(t) = g(x(t), y(t); v(t)) 
for almost all t, (u(t), v(t)) E S(R(x(t), y(t))) 

In particular, if for every (x, y) the intersection 

SR(x, y) n R(x, y) := (u(x, y)), v(x, y)) 

is single-valued, then the strategies (x,y) ~---+ (u(x,y)),v(x,y)) are 
single-valued playable feedback controls. 

We can now multiply the possible corollaries, by supplying several 
instances of selection procedures of set-valued maps. 

We begin by cooperative procedures, where the players agree 
on criteria u(x, y; ·, ·) for selecting strategies in the regulation sets 
R(x, y). 

Example- COOPERATIVE BEHAVIOR 

Proposition 14.3.4 We posit the assumptions of Theorem 14.3.2. 
Let u be continuous on Graph(R) and convex with respect to the pair 
( u, v). Then, for any initial state ( xo, Yo) E K, there exist a playable 
solution starting at (xo, Yo) and playable strategies to the differential 
game (14.1} which are regulated by: 

{ 
for almost all t ~ 0, (u(t), v(t)) E R(x(t), y(t)) and 

u(x(t), y(t); u(t), v(t)) = infu',v'ER(x(t),y(t)) u(x(t), y(t); u', v') 

In particular, the game can be played by the slow feedbacks of 
minimal norm: 
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Proof- We introduce the set-valued map SR defined by: 

SR(x,y) := {(u,v) I a(x,y;u,v)::; inf a(x,y;u',v')} 
( u' ,v')ER(x,y) 

which is a convex-valued selection procedure of R since R is lower 
semicontinuous (see Theorem 6.5.3). We then apply Theorem 14.3.3. 
We observe that when we take 

a(x, y; u, v) := llull 2 + llvll 2 

the selection procedure yields the elements of minimal norm. 0 

Example- NONCOOPERATIVE BEHAVIOR We can also choose 
strategies in the regulation sets R( x, y) in a non cooperative way, as 
saddle points of a function a(x, y; ·, ·). 

Proposition 14.3.5 We posit the assumptions of Theorem 14.3.2 
and we suppose that K is a playability domain. Let us assume that 
a : X x Y x U x V ---t R satisfies 

a is continuous 
{ 

i) 
. ") 
~~i) 

V(x,y,v) EX x V, u t--t a(x,y;u,v) is convex 
V(x, y; u) EX xU, v t--t a(x, y; u, v) is concave 

Then, for any initial state (xo, yo) E K, there exist a playable solution 
starting at (xo, Yo) and playable strategies to the differential game 
(14.1) which are regulated by: for almost all t ~ 0, 

i) (u(t), v(t)) E R(x(t), y(t)) 

ii) V (u', v') E R(x(t), y(t)), 

a(x(t), y(t); u(t), v') ::; a(x(t), y(t); u(t), v(t)) 

::; a(x(t), y(t); u', v(t)) 

Proof- The set-valued map SR associating with any (x, y) E 
K the subset 

SR(x, y) := {(u, v) such that 
V(u',v') E R(x,y), a(x,u,v')::; a(x,u',v)} 



470 14- Differential Games 

is a convex-valued selection procedure of R. The associated selection 
map S(R(·)) associates with any (x, y) EX x Y the subset 

S(R(x, y)) := { (u, v) E R(x, y) such that 
\:f(u',v') E R(x,y), a(x,y;u,v'):::;: a(x,y;u',v)} 

of saddle-points of a(x, y; ·,·)in R(x, y). We then apply Theorem 14.3.3. 
D 

14.4 Discriminating and Leading Feedbacks 

We now address the question of finding criteria for the playability 
domain K to be Xavier's discriminating domain, and for finding 
Xavier's feedback strategies which are selections of the set-valued 
map (x, y, v) "'* A(x, y, v) C U(x, y) defined by 

A(x, y; v) := { u E U(x, y) I (u, v) E R(x, y) } 

Such feedbacks are called discriminating feedbacks. If we assume 
that Xavier has access to the strategies chosen by Yvette, he can 
keep the states of the system playable by "playing" a discriminat
ing control whatever the choice of Yvette through a discriminating 
feedback. Then, we shall investigate whether we can find (possibly, 
single-valued) selections of such a set-valued map A, and for that, 
provide sufficient conditions for A to be lower semicontinuous. 

We first observe that A can be written in the form 

A(x, y; v) := C(x, y; v) n (D(x, y))-1(v) 

The first assumption we must make for obtaining discriminat
ing feedbacks for Xavier is that the domain of the set-valued maps 
A(x, y; ·)) are not empty. i.e., that 

{ 
\:1 v E V(x, y), :3 u E U(x, y) such that 
f(x, y; u) E DP(y, x)(g(x, y; v)) n DQ(x, y)- 1(g(x, y; v)) 

We shall actually strengthen it a bit to get the lower semicontinuity 
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of A, by assuming that 

\:1 (x,y) E K, \:1 v E V(x,y), 3 8 > 0, 31 > 0 such that 

\;/ (x', y') E BK(x, y, 8), \;/ v' E B(v, 8) n V(x', y'), \;/ lleiil ~ 'Y 

(i = 1, 2), 3 u E U(x', y') such that f(x', y'; u) belongs to 
(DP(y', x')(g(x', y'; v'))- e1) n (DQ(x', y')-1(g(x', y'; v'))- e2) 

(14.14) 

Proposition 14.4.1 We posit the assumptions of Theorem 14.3.2, 
where we replace strong playability by assumption (14.14}, and we as
sume further that the norms of the closed convex processes DP(y, x) 
and DQ(x, y)-1 are bounded. Then the set-valued map A is lower 
semicontinuous. 

Proof - First, we have to prove that C is lower semicontin
uous, and, for that purpose, that (x,y,w) ~ DP(y,x)(w) is lower 
semicontinuous. 

By Theorem 2.5.7, we know that it is sufficient to prove that 

(x, y) ~ Graph(DP(y, x)) is lower semicontinuous 

and that 

IIDP(y,x)ll := sup inf llull < +oo 
llwll9 uEDP(y,x)(w) 

This is the case because P is assumed to be sleek and because we 
have assumed that the norms of the derivatives are bounded. 

Therefore, the set-valued map 

(x, y, v) ~ DP(y, x)(g(x, y; v)) 

is also lower semicontinuous. 
The Lower Semicontinuity Criterion and assumption (14.14) im

ply that (x, y, v) ~ C(x, y; v) is lower semicontinuous. 
The same proof shows that the map (x, y, v) ~ DQ(x, y)-1(v) is 

also lower semicontinuous. Since A is the intersection of these two 
set-valued maps, we apply again the Lower Semicontinuity Criterion 
to deduce that A is lower semicontinuous, which is possible thanks 
to assumption (14.14). D 
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Theorem 14.4.2 We posit the assumptions of Theorem 14.2.4. For 
any continuous feedback control (x, y) ~--+ ii(x, y) played by Yvette, 
there exits a continuous single-valued feedback u( x, y) played by X a vier 
such that the differential equation (14.13} has playable solutions for 
any initial state (xo, Yo) E K. 

More generally, let SA be a convex-valued selection procedure of 
the set-valued map A. Then, for any continuous feedback control 
(x, y) 1-+ ii(x, y) played by Yvette, for any initial state (xo, Yo) E K, 
there exists a playable solution starting at (xo, Yo) to the differential 
game 

where 

{ 
i) x'(t) = f(x(t), y(t); u(t)) 
ii) y'(t) = g(x(t), y(t); ii(x(t), y(t))) 
iii) u(t) E S(A(x(t), y(t); ii(x(t), y(t)))) 

S(A(x, y; ii(x, y))) := SA(x, y; ii(x, y)) n A(x, y; ii(x, y)) 

In particular, if the selection procedure yields single-valued selections, 
then the control u(x, y) defined by 

uv(x,y) := S(A(x,y;ii(x,y))) 

is a single-valued feedback control. 
This is the case, for instance, when we posit the assumptions 

of Proposition 14.4.1 and when Xavier plays the feedback control 
u~(x, y) of minimal norm in the set A(x, y; ii(x, y)). In this case, 
there exists also a continuous control u(x, y) E A(x, y; ii(x, y)) 

Proof- Whenever Yvette plays a continuous feedback ii(x, y), 
K remains a playability domain for the system 

{ 
i) 
. ") 
~~.) 
't'l't 

x'(t) = f(x(t), y(t); u(t)) 
y'(t) = g(x(t), y(t); ii(x(t), y(t))) 
u(t) E SA(x(t), y(t); ii(x(t), y(t))) 

So playable solutions to this system satisfy also the condition 

u(t) E A(x(t), y(t); ii(x(t), y(t))) 
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so that actually, 

u(t) E S(A(x(t), y(t); v(x(t), y(t)))) 

When the set-valued map (x,y) ,_,. A(x,y;v(x,y)) is lower semi
continuous, it contains continuous selections u(x, y) which therefore 
yield playable selections. 

We can also use more constructive selection procedures of the set
valued map (x,y) ,_,. A(x,y;v(x,y)) with convex values and deduce 
that Xavier can implement playable solutions by playing strategies 
u(t) in the selection S(A(x(t), y(t); v(x(t), y(t)))). D 

A much better situation for Xavier occurs when he can find feed
back strategies u which are selections of the set-valued map B defined 
by 

B(x,y) := n A(x,y;v) 
vEV(x,y) 

In other words, such a feedback allows him to implement playable 
solutions whatever the control v E V(x, y) chosen by Yvette, since 
in this case the pair ( u, v) belongs to the regulation set R( x, y) for 
any v. Such feedbacks are called pure feedbacks. 

In order to obtain continuous single-valued feedbacks, we need to 
prove the lower semicontinuity of the set-valued map B, which is an 
infinite intersection of lower semicontinuous set-valued maps. 

Theorem 14.4.3 We posit the assumptions of Proposition 14.4.1. 
We assume further that there exist positive constants 8 and 'Y such 
that for all (x',y') E BK((x,y),8), we have 

V v E V(x', y'), Vet E "(B, (i = 1, 2), :3 u E U(x', y') such that 

f(x', y'; u) E DP(y', x'; v) + e~ 
and 
g(x', y'; v) E DQ(x', y'; u) + e~ 

(14.15) 
Then the set-valued map B is lower semicontinuous and there exist 
continuous single-valued pure feedback strategies for Xavier. 
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Proof - We observe that V is upper semicontinuous with 
compact values, that A is lower semicontinuous and has its images 
in a fixed compact set, and that assumption (14.15) implies obviously 
that there exist positive constants 8 and 1 such that for all ( x', y') E 

BK((x, y), 8), we have 

cBn n (F(x', y)- z) =/= 0 
yEH(x'},zE-yB 

This theorem follows then from Theorem 6.3.3 on the lower semi
continuity of an infinite intersection of lower semicontinuous set
valued maps. D 

14.5 Closed Loop Decision Rules 

Actually, although differential games can be played through retroac
tion rules, there are many games where players act on the velocities 
of the strategies regarded as decisions of players. 

This leads us to introduce the following definition: We shall call 
decisions the derivatives of the strategies. 

Then, in order to deal with decisions defined in such a sense, we 
must now assume that players use open-loop strategies u(·) and v(·) 
which are absolutely continuous and obey a growth condition of the 
type6 

{ i) llu'(t)ll ::::; P(iiu(t)ll + 1) 
ii) llv'(t)ll ::::; u(llv(t)ll + 1) 

(14.16) 

We shall refer to them as "smooth open-loop controls", the non
negative parameters 7 p and l7 being fixed once and for all. We denote 
by K the subset 

{ 
(z,u,v) ERn x RP x Rq such that 
u E U(z) & v E V(z) 

Instead of finding largest playability or winability domains in the 
state space, we shall look for analogous concepts in the state-strategy 

6one can replace p(llull+l) by any continuous function cp(u) with linear growth. 
7or any other linear growth condition cp(·) or '1/J(·). 
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space. We shall determine set-valued maps which allow players to 
win in the sense that either property 

V t 2: 0, u(t) E U(z(t)) (14.17) 

or property 
V t 2: 0, v(t) E V(z(t)) (14.18) 

or both hold. Roughly speaking, Xavier may win as long as his 
opponent allows him to choose at each instant t 2: 0 strategies u(t) 
in the subset U(z(t)), and must lose if for any choice of open-loop 
controls, there exists a timeT> 0 such that u(T) (j. U(z(T)). 

Definition 14.5.1 Let ( uo, vo, zo) be an initial situation such that 
initial strategies uo E U(zo) and vo E V(zo) of the two players are 
consistent with the initial state zo. 

We shall say that 
Xavier must win if and only if for all smooth open-loop 

strategies u( ·) and v ( ·) starting at uo and vo, there exists a solution 
z(·) to {14.3) and {14.16} starting at zo such that {14.17) is satisfied. 

- Xavier may win if and only if there exist smooth open-loop 
strategies u(·) and v(·) starting at uo and vo and a solution z(·) to 
{14.3) and {14.16} starting at zo such that {14.17) is satisfied. 

Xavier must lose if and only if for any smooth open-loop 
strategy u(·) and v(·) starting at uo and vo and solution z(·) to {14.3) 
and {14.16} starting at zo, there exists a timeT> 0 such that 

u(T) (j. U(z(T)) 

The initial situation is stable if and only if there exist open
loop strategies u(·) and v(·) starting at uo and vo and a solution z(·) 
to {14.3) and {14.16) starting at zo satisfying both relations {14.17) 
and {14.18}. 

Naturally, if both Xavier and Yvette must win, then both rela
tions (14.17) and (14.18) are satisfied. This is not necessarily the 
case when both Xavier and Yvette may win, and this is the reason 
why we need to introduce the concept of stability. 
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Table 14.1: The 10 areas of the domain of the differential game 
I (zo,uo,vo) E II Graph(Su) I Graph(Ru) I K\Graph(Ru) 

Xavier must win Xavier may win Xavier must lose 
Graph(Sv) 

Yvette must win Yvette must win Yvette must win 
Xavier must win ? ? ? Xavier must lose 

Graph(Rv) ? I STABILITY I ? 
Yvette may win ? ? ? Yvette may win 
Xavier must win Xavier may win Xavier must lose 

K\Graph(Rv) 
Yvette must lose Yvette must lose Yvette must lose 

Theorem 14.5.2 Let us assume that h is continuous with linear 
growth and that the gmphs of U and V are closed. Let the growth 
mtes p and u be fixed. 

There exist five (possibly empty) closed set-valued feedback maps 
from Rn to RP x Rq having the following properties: 

Ru C U is such that whenever ( uo, vo) E Ru ( zo), X a vier 
may win and that whenever ( uo, vo) rf. Ru ( zo), X a vier must lose 

If h is Lipschitz, Su c Ru is the largest closed set-valued 
map such that whenever (uo, vo) E Su(zo), Xavier must win. 

Sv C Rv c V, which have analogous properties. 
Ruv c Ru n Rv is the largest closed set-valued map such 

that any initial situation satisfying ( uo, vo) E Ruv ( zo) is stable. 

Knowing these five set-valued feedback maps, we can split the 
domain K', of initial situations in ten areas which describe the behav
ior of the differential game according to the position of the initial 
situation. 

In particular, the complement of the graph of Ruv in the inter
section of the graphs of Ru and Rv is the instability region, where 
either Xavier or Yvette may win, but not both together. 

The problem is to characterize these five set-valued maps, the 
existence of which is now guaranteed, by solving the "contingent 
extension" of the partial differential equation8 

81£ ~ is a solution to this partial differential equation, one can check that 
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~~ . h(z, u, v)- p(llull + 1) 11 ~: 11-u(llvll + 1) 11 ~: 11 :So (14.19) 

which can be written in the following way: 

oil! ( ) . ail! I • oil! I -·hzuv+ mf -·u+ mf -·v<O 
oz ' ' llu'II~P(IIull+l) ou llv'll~u(llvll+l) ov -

We shall also introduce the partial differential equation9 

~~ . h(z, u, v) + p(llull + 1) 11 ~: 11 + u(llvll + 1) 11 ~: 11 :So (14.20) 

which can be written in the following way: 

oil! ( ail! I oil! I - · h z, u, v) + sup - · u + sup - · v :S 0 
oz llu'II~P(IIull+l) ou llv'll~u(llvll+l) ov 

The link between the feedback maps and the solutions to the so
lutions to these partial differential equations is provided by the indi
cators of the graphs: we associate with the set-valued maps Su, Ru 
and Ruv the functions if!u, Wu and Wuv from Rn x RP x Rq to 
R+ U {+co} defined by 

for any initial situation (zo,u0 ,vo) E Dom(4.>), there exists a smooth solutidn 
(z(·),u(·),v(·)) such that 

t-+ 4.>(z(t), u(t), v(t)) is nonincreasing 

This property remains true for the solutions to the contingent partial differential 
equation (14.22). 

9We can check that if h is Lipschitz and 4.> is a solution to this partial differen
tial equation, for any initial situation ( z0 , u0 , vo) E Dom( 4.>), any smooth solution 
(z(·),u(·),v(·)) satisfies 

t -+ 4.>(z(t), u(t), v(t)) is non increasing 

This property remains true for the solutions to the contingent partial differential 
equation (14.23). 
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i) ~u(z, u, v) 
0 if (u, v) E Su(z) ·-
+oo if (u, v) ~ Su(z) 

ii) 'llu(z, u, v) 
0 if (u, v) E Ru(z) 

(14.21) ·-
+oo if (u, v) ~ Ru(z) 

iii) Wuv(z,u,v) 
0 if (u, v) E Ruv(z) ·-
+oo if (u, v) ~ Ruv(z) 

and the functions 'llv and ~v associated to the set-valued map Rv 
and Sv in an analogous way. 

These functions being only lower semicontinuous, but not differ
entiable, cannot be solutions to either partial differential equations 
(14.19) and (14.20). But we can use the contingent epiderivatives of 
any function ~ : Rn x RP x Rq --+ R U { +oo} and replace the partial 
differential equations (14.19) and (14.20) by the contingent partial 
differential equations 

inf Dr~(z,u,v)(h(z,u,v),u',v') < 0 
llu'II:5P(IIull+l) 

(14.22) 

llv'll::;u(llvll+l) 

and 

sup Dr~(z,u,v)(h(z,u,v),u',v') < 0 {14.23) 
llu'II:5P(IIull+l) 

llv'll::;u(llvll+l) 

respectively. 
Let Ou and Ov be the indicators of the graphs of the set-valued 

maps U and V defined by 

l. i 0 if u E U(z) z) Ou(z, u, v) := +oo if u ~ U(z) 

. . 0 if v E V(z) 
zz) Ov(z, u, v) := +oo if v ~ V(z) 

Theorem 14.5.3 We posit the assumptions of Theorem 14.5.2. Then 
Wu is the smallest lower semicontinuous solution to the 

contingent partial differential equation (14.22} larger than or equal 
to Ou 
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'lTv is the smallest lower semicontinuous solution to the 
contingent partial differential equation {14.22) larger than or equal 
to nv 

'lT uv is the smallest lower semicontinuous solution to the 
contingent partial differential equation {14.22) larger than or equal 
to max(Ou, Ov) 

If h is Lipschitz, il>u is the smallest lower semicontinuous 
solution to the contingent partial differential equation {14.23) larger 
than or equal to nu 

If h is Lipschitz, il>v is the smallest lower semicontinuous 
solution to the contingent partial differential equation {14.23} larger 
than or equal to nv 

If any of the above solutions is the constant +oo, the correspond
ing feedback map is empty. 

Proof of Theorem 14.5.2- Let us denote by B the unit 
ball and introduce the set-valued map F defined by 

H(z, u, v) := {h(z, u, v)} x p(llull + 1)B x u(llvll + 1)B 

The evolution of the differential game described by equations (14.3) 
and (14.16) is governed by the differential inclusion 

(z'(t), u'(t), v'(t)) E H(z(t), u(t), v(t)) 

Since the graph of U is closed, we take the graph of Ru to 
be the viability kernel of Graph(U) xRq. Indeed, if (uo, vo) E Ru(zo), 
there exists a solution to the differential inclusion remaining in the 
graph of U, i.e., Xavier may win. If not, all solutions starting at 
(zo, uo, vo) must leave this domain in finite time. 

The set-valued feedback map Rv is defined in an analogous way. 
- For the same reasons, the graph of the set-valued feedback 

map Ruv is the viability kernel of the set IC of initial situations. 
When h is Lipschitz, so is H. We define the graph of Su 

as the invariance kernel of Graph(U) x Rq. 0 

Proof of Theorem 14.5.3- We recall that thanks to the 
viability Theorem, a subset L c Rn x RP x Rq is a viability domain 
of F if and only if 

V (z, u, v) E L, TL(z, u, v) n H(z, u, v) i= 0 
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Let \II L denote the indicator of L. We know that the Viability The
orem can be reformulated in the following way: 

The set L is a closed viability domain if and only if its indica
tor function \II L is a solution to the contingent partial differential 
equation (14.22). 

Hence to say that the graph of Ru is the largest closed 
viability domain contained in the graph of U amounts to saying that 
its indicator \II u is the smallest lower semicontinuous solution to the 
contingent partial differential equation (14.22) larger than or equal 
to the indicator Ou of Graph(U) x Rq. The same reasoning shows 
that indicator \llv of Rv is the smallest lower semicontinuous solution 
to the contingent partial differential equation (14.22) larger than or 
equal to Ov and that the indicator \II uv of the graph of Ruv is 
the smallest lower semicontinuous solution to the contingent partial 
differential equation (14.22) larger than or equal to the indicator of 
K, which is equal to max(Ou, Ov). 

We know that a closed subset L C Rn x RP x Rq is 
"invariant" by a Lipschitz set-valued map F if and only if 

V (z,u,v) E L, TL(z,u,v) C H(z,u,v) 

This condition can be reformulated in terms of contingent epideriva
tive of the indicator function \II L of L by saying that 

V (z,u,v) E L, sup DtWL(z,u,v)(w) = 0 
wEH(z,u,v) 

Hence to say that the graph of Su is the largest closed invariance do
main contained in the graph of U amounts to saying that its indicator 
~u is the smallest lower semicontinuous solution to the contingent 
partial differential equation (14.23) larger than or equal to the indi
cator Ou of Graph(U) x Rq. D 

Let us denote by R one of the feedback maps Ru, Rv, Ruv 
and assume that the initial situation belongs to the graph of the 
set-valued feedback map R (when it is not empty). The theorem 
states only that there exists at least a solution (z(·), u(·), v(·)) to the 
differential game such that 

V t 2:: 0, (u(t), v(t)) E R(z(t)) 
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To implement these strategies, players must make decisions, i.e., 
to choose velocities of controls in an adequate way: 

We observe that stable solutions 

Proposition 14.5.4 The solutions to the game satisfying 

'v' t ~ 0, (u(t), v(t)) E R(z(t)) 

are the solutions to the system of differential inclusions 

{ i) z'(t) = h(z(t), u(t), v(t)) 
ii) (u'(t), v'(t)) E GR(z(t), u(t), v(t)) 

(14.24) 

where we have denoted by G R the R-decision map defined by 

GR(z, u, v) := DR(z, u, v)(h(z, u, v)) n (p(llull + 1)B x u(llvll + 1)B) 

For simplicity, we shall set G := G R whenever there is no ambi
guity. 

Proof- Indeed, since the function (z(·),u(·),v(·)) takes its 
values into Graph(R) and is absolutely continuous, then its derivative 
( z' ( ·), u' ( ·), v' ( ·)) belongs almost everywhere to the contingent cone 

TGraph(R)(z(t), u(t), v(t)) := Graph(DR(z(t), u(t), v(t))) 

We then replace z'(t) by h(z(t), u(t), v(t)). 
The converse holds true because equation (14.24) makes sense 

only if (z(t), u(t), v(t)) belongs to the graph of R. D 

The question arises whether we can construct selection proce
dures of the decision components of this system of differential inclu
sions. It is convenient for this purpose to introduce the following 
definition. 

Definition 14.5.5 (Closed Loop Decision Rules) We say that 
a selection (c, d) of the contingent derivative of the smooth regulation 
map R in the direction h defined by: for all (z, u, v) E Graph(R). 

(c(z, u, v), d(z, u, v)) E DR(z, u, v)(h(z, u, v) (14.25) 

is a closed loop decision rule. 
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The system of differential equations 

{ 
i) 
.. ) 
~~.) 
'tZ't 

z'(t) 
u'(t) 
v'(t) 

h(z(t), u(t), v(t)) 
c(z(t), u(t), v(t)) 
d(z(t), u(t), v(t)) 

(14.26) 

is called the associated closed loop decision game. 

Therefore, closed loop decision rules being given for each player, 
the closed loop decision system is just a system of ordinary differen
tial equations. 

It has solutions whenever the maps c and d are continuous (and 
if such is the case, they will be continuously differentiable). 

But they also may exist when c or d or both are no longer contin
uous. This is the case when the decision map is lower semicontinuous 
thanks to Michael's Theorem: 

Theorem 14.5.6 Let us assume that the decision map G := G R is 
lower semicontinuous with non empty closed convex values on the 
graph of R. Then there exist continuous decision rules c and d, so 
that the decision system {14.26} has a solution whenever the initial 
situation (uo, vo) E R(zo) 

By using selection procedures (see Definition 6.5.2), we can obtain 
explicit decision rules which are not necessarily continuous, but for 
which the decision system (14.26) still has a solution. 

Hence, we also obtain the following existence theorem for closed 
loop decision rules obtained through convex-valued selection proce
dures, which is analogous to Theorem 7.6.4. 

Theorem 14.5. 7 Let Sc be a selection of the set-valued map G with 
convex values. Then, for any initial state (zo, uo, vo) E Graph(R), 
there exists a solution starting at (zo, uo, vo) to the associated system 
of differential inclusions 

{ 
z'(t) 

(u'(t), v'(t)) E 

h(z(t), u(t), v(t)) 

G(z(t), u(t), v(t)) n Sc(z(t), u(t), v(t)) 
(14.27) 
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In particular, if for every (z, u, v) the intersection 

S(G(z,u,v)) := (c(z,u,v),d(z,u,v)) 

is single-valued, then the strategies ( x, y) t-t ( c( z, u, v), d( z, u, v)) are 

single-valued closed-loop decision rules, for which decision system 

14.26 has a solution for any initial state (zo, uo, vo) E Graph(R). 

We can now multiply the possible corollaries, since we have given 

several instances of selection procedures of set-valued maps. 

Example-- COOPERATIVE BEHAVIOR 

Let 0' : Graph( G) t-t G be continuous. 

Corollary 14.5.8 Let us assume that the set-valued map G is lower 

semicontinuous with nonempty closed convex images on Graph(R). 

Let 0' be continuous on Graph( G) and convex with respect to the pair 

(u,v). Then, for all initial situations (uo,vo) E R(zo), there exists a 

solution starting at (zo, uo, vo) to the differential game (14.3}-(14.16} 
which are regulated by: 

{ 

for almost all 2:0, (u'(t),v'(t)) E G(z(t),u(t),v(t)) and 

O'(z(t), u(t), v(t), u'(t), v'(t)) 

= infu',v'EG(z(t),u(t),v(t)) O'(z(t), u(t), v(t), u', v') 

In particular, the game can be played by the heavy decision of 

minimal norm: 

{ 
(c0 (z,u,v),d0 (z,u,v)) E G(z,u,v) 

\\c0 (Z, u, v)\\ 2 + \\d0 (z, u, v)\\ 2) = min(u',v')EG(z,u,v)(jju'\\ 2 + \\v'\\ 2) 

Example-- NONCOOPERATIVE BEHAVIOR 

We can also choose strategies in the regulation sets G(z, u, v) in 

a noncooperative way, as saddle points of a function a(z, u, v, ·, ·). 

Corollary 14.5.9 Let us assume that the set-valued map G is lower 

semicontinuous with nonempty closed convex images on Graph(R) 
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and that a: Rn x RP x Rq x RP x Rq---+ R satisfies 

{ 
i) 
.. ) 
~~.) zn 

a is continuous 
\f(z, u, v, d), c ~----> a(z, u, v, c, d) is convex 
V(z, u, v, c), d ~----> a(z, u, v, c, d) is concave 

Then, for all initial situation ( uo, vo) E R( zo), there exist solutions 
to the differential game (14.3}-{14.16} starting at (zo,uo,vo) which 
are regulated by: for almost all t :2: 0, 

i) (u'(t), v'(t)) E G(z(t), u(t), v(t)) 

ii) V (u', v') E G(z(t), u(t), v(t)), a(z(t), u(t), v(t), u'(t), v') 

~ a(z(t), u(t), v(t), u'(t), v'(t)) ~ a(z(t), u(t), v(t), u', v'(t)) 
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Bibliographical Comments 
Chapter 1 

The Nagumo Theorem was proved in 1942 in [391] and has been 
rediscovered many times since (see [530, Yorke]). The distinction 
between viability and invariance properties appeared in [16]. 

The finite difference approximation is due to [461, Saint-Pierre]. 
The fourth section on replicator systems is taken from the won

derful book by [279, Hofbauer & Sigmund]. 
The fifth section on stochastic viability and invariance appeared 

in [20, Aubin & Da Prato], where one can find more details on the 
calculus of stochastic contingent sets. 

Chapter 2 

We refer to [28] for detailed historical notes on upper and lower 
limits (introduced by Painleve in 1902, and then, popularized by the 
publication of the book by [310, Kuratowski].) 

Upper and lower semicontinuous maps were introduced by Bouli
gand and Kuratowski in the early twenties. 

Pseudo-Lipschitz set-valued maps have been introduced in [46, 
47] in the framework of the Inverse Function Theorem in finite
dimensional spaces, and later, in [26] for Banach spaces, and have also 
been studied by Rockafellar in [452]. We refer to [255, Frankowska] 
and her forthcoming monograph [257] for an exhaustive exposition of 
inverse function theorems of first and/or higher order for set-valued 
maps. 

The Convergence Theorem (or Mazur's Theorem) has been used 
by several authors studying differential inclusions with upper semi
continuous convex-valued right-hand sides with closed convex values. 

Closed convex processes and their transposes have been intro
duced by Rockafellar [443] and further studied in [444,445]. Robinson
Ursescu's Theorem has been proved in [439,440,441,501] and the Uni-
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form Boundedness and the Crossed Convergence Theorem in [38]. 
The Closed Image Theorem is taken from [22]. Linear processes 
and their invariance properties were studied in the framework of 
singular or implicit systems (including descriptor systems) in [254, 
Frankowska]. 

Chapter 3 

One can find an extensive bibliography on differential inclusions 
and their applications to control and viability theory in the book [16] 
and the forthcoming monograph by [257, Frankowska] for instance. 
In a nutshell, the first independent investigations of differential in
clusions began with the papers by Zaremba [539,540] and Marchaud 
[372,371], where the derivatives of the nondifferentiable solutions 
where taken in the contingent and paratingent sense respectively, 
following the definitions introduced at the beginning of the thirties 
by Bouligand. They were resurrected in the fifties and sixties by the 
Polish school around Wazewski [517,519,520,521,522] when he made 
the link between the Marchaud-Zaremba theory and optimal control 
problems. Among many references of the "Krakow school" , mention 
only [336, Lasota-Olech], [337,338, Lasota-Opial], [393,394,396,397, 
Olech], [400, Opial]. In the same period, and independently, Filip
pov, in [229,227,228], and the Russian school around him, developed 
a series of fundamental theorems on differential inclusions. For more 
references, we refer to the recent English translation [231, Filippov] 
of [230, Filippov]. The importance of the Marchaud-Zaremba theory 
from another point of view has been pointed out in [66, Barbashin
Alimov]. The concepts of viability property and viability domains 
appeared in the framework of differential inclusions in [532, Yorke] 
and [83, Bebernes & Schuur] under the name of weak invariance and 
admissibility and also [261, Gautier]. The more general concepts of 
monotone solutions in [34,12, Aubin-Cellina-Nohel] (for convex via
bility domains and Marchaud maps) and in [17, Aubin-Clarke] (for 
any compact subset and continuous maps.) The in variance property 
by Lipschitz maps already appeared in [172, Clarke]. The proof of 
the Viability Theorem we use is due to Haddad [264,267,265] (which 
he actually devised in the case of functional differential inclusions.) 

The concept of viability property is involved in the definition of 
stable bridge introduced in [293, Krasovski-Subbotin] (see its recent 
English augmented version [294]) and their school in Sverdlovsk in 
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the framework of differential games. The concept of viability domain 
and the use of contingent derivatives of tubes appeared in [83, Be
bernes & Schuur]. It was used in the context of differential games in 
[262], as well as the equivalence between the two first statements of 
Theorem 3.2.4. The proof given here is due to Frankowska (s~e [32].) 

The viability property appeared independently in linear control 
theory under the name of controlled invariance or (A, B)-invariance 
and the invariance property under the name of conditional invariance 
in [77,78, Basile & Marro] (see also [528,389, Morse & Wonham], 
[466, Shumacher] and [524,525,526].) We refer to the book by [529, 
Wonham] for more details and bibliographical comments on these 
geometrical methods in linear control theory. 

One can find generalizations of these results to lower semicontin
uous maps by [127, Bressan]. See also [117, 121] for related results. 

Kurzhanski's Theorem 3.5.8 is taken from [328,311,312,313,314]. 
The detailed proof of the Convergence Theorem 3.6.5 can be 

found in [28, Chapter 7]. 
Derivatives of the solution map have been studied in [28, Chap

ter 10]. See this book for further bibliographical comments. 
One can find in [7, Artstein] an interesting study on collective 

limit sets. 
Theorem 3.7.4 seems to be new and Theorem 3.7.5 generalizes to 

differential inclusions results from [279, Hofbauer & Sigmund]. 
The proof of Equilibrium Theorem 3. 7.6 can be found in [28, 

Chapter 3]. Ky Fan inequality appeared in [226] and the proofs of 
the minimax inequalities in [41]. For Fixed Point Theorems using 
properties of differential inclusions, see among other contributions 
Deimling's book [206] and also [207,204,209]. However, the literature 
on nonlinear analysis is too broad to give any fair account in this 
short review. 

Theorem 3.8.1 on chaotic behavior generalizes a useful and pow
erful principle due to Saari. We refer to [458] for further details and 
many applications. 

Chapter 4 

The concept of viability kernel, although without being named 
this way, played a crucial role in [14,15, Aubin-Frankowska-Olech] in 
the framework of controllability and observability of closed convex 
processes. It appeared under this name for differential inclusions with 
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Marchaud right-hand side in [49], where its existence was proved and 
where it was used to tackle smoothness issues in differential inclu
sions. It played a crucial role ever since in the successive drafts of this 
book. Meanwhile, the concept of zero dynamics has been inspired 
by an interpretation of transmission zeros in terms of controlled 
invariant (viable) distributions published in [298, Krener-Isidori]. 
Its study has been taken up since in [132,133,135,136,137,138,139, 
Byrnes-Isidori], [380], [284], etc., and applied to problems such as 
stabilization, tracking and disturbance attenuation. The connections 
between the concepts of zero dynamics and viability kernels was es
tablished in [11]. See Isidori's monograph [285] and the forthcoming 
book [140, Byrnes-Isidori] for more details and further bibliographi
cal comments. 

The second part of Proposition 4.1.4 is due to Quincampoix, the 
concept of permanence has been introduced by Hofbauer and Sig
mund and is extensively studied in their book [279] (see also [37]) 
and the concept of fluctuation, motivated by biological considera
tions, by Krivan in [303]. 

Some of the concepts of section 4.2 go back to Poincare and [514, 
515,516, Wazewski]. The results of section 4.3 are due to [430,432, 
Quincampoix] and Theorem 4.3.8 to Saint-Pierre [463]. The fact that 
solutions starting on the boundary of the exit tube remains on it is 
related to the properties of the contingent cones to reachable sets 
proved in [245,242, Frankowska]. 

The zero dynamics algorithm, called here the viability kernel 
algorithm, has been extensively studied by Byrnes and Isidori in 
[132,134,135,136,138,284,285,281]. It is a generalization of the struc
ture algorithm introduced by Silverman in [478] and Basile & Marro 
in [77] for linear control systems. See also [382, Moore & Laub]. 
The "fast viability kernel algorithm" is due to [240,239, Frankowska
Quincampoix] where one can find further results (in the convex and 
polyhedral cases in particular) and examples. The concept of global 
contingent set and the modified viability domain algorithm appeared 
in [33]. Another viability domain algorithm has been proposed in 
[177, Colombo-Krivan]. The convergence of the viability kernels of 
finite-difference approximations to the viability kernel is taken from 
[35]. 
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Chapter 5 

It is impossible to give an exhaustive account of the many pa
pers in which the various concepts of tangent cones appeared in the 
literature. The need to introduce contingent directions was felt by 
Bouligand in the thirties in order to differentiate nondifferentiable 
functions (see [114,113].) This was taken up by Zaremba [540] and 
Marchaud [371] to define solutions to differential inclusions. See also 
the paper [166] by Choquet. 

The contingent cone was used under the names of tangent cone 
and sequential tangent cone in optimization and control theory in 
the fifties. N agumo and after him, many authors used the contin
gent cone under its "lim inf formulation", often called "subtangent 
condition". See the book [374, Martin] for instance. We refer to [28, 
Chapter 4] and its bibliographical comments for further details on 
tangent cones to nonsmooth sets. 

The fact that the contingent cone coincides with the Clarke tan
gent cone for sleek subsets was first proved in [17] in finite dimen
sional vector-spaces (among other characterizations). See [28] for 
further bibliographical details. 

The calculus of tangent cones to intersections and inverse images 
appeared in [46] (in the finite dimensional case, generalizing formulas 
due to Rockafellar in [446] and under stronger transversality condi
tions) in [26] (in the case of Banach spaces.) 

Theorem 5.1.11 is due to [368, Maderner]. 
The original proof of Filippov's Theorem appeared in [229]. It 

can be also found in [16] for set-valued maps continuous with respect 
to the time. A general proof (including the case when T = oo) 
can be found in Frankowska's monograph [257]. The extension to 
operational differential inclusions in infinite dimensional spaces has 
been proved in [246,253, Frankowska]. 

Theorem 5.3.4 on local invariance under Lipschitz maps was proved 
in [172, Clarke]. The proof we give is taken from [16]. 

The viability property of the complement of the invariance kernel 
is proved in [430,432, Quincampoix], as well as the semi-permeability 
property of the boundary of the viability kernel and the viability 
property of the boundary of the invariance kernel. We refer to the 
forthcoming paper by [434, Quincampoix] for the study of invariance 
envelopes of closed subsets. 

Section 5.6 on the victory and defeat domains of a target are due 
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to [430,432, Quincampoix]. 

Most of the results of section 5. 7, and in particular the character
ization of the polar of a viability domain of a closed convex process, 
appeared in [14,15, Aubin-Frankowska-Olech] to study the duality 
relations between controllability and observability of closed convex 
processes. 

This study has been pursued with analogous techniques in the 
framework of descriptor systems in [254, Frankowska]. 

The existence of eigenvectors of a closed convex process on cones 
with compact soles appeared in [14] for characterizing controllability 
of closed convex processes. Existence of positive eigenvectors and 
eigenvalues and an extension of the Perron-Frobenius Theorem can 
also be found in [22, Chapter 3]. 

Chapter 6 

We refer to the thesis of [541, Zhao] for a first application of vi
ability to the building of an actual robot arm called Lola 80 Super. 
built by the company Iva Lola Ribar. Other applications of viabil
ity theory to the learning procedures of regulation laws by neural 
networks can be found in [469,470, Seube] and [467, Seube-Macias]. 

The lower semicontinuity criterion of a finite intersection of convex
valued lower semicontinuous maps can be found in [22,28] for instance 
and the lower semicontinuity criterion for an infinite intersection of 
lower semicontinuous set-valued maps was proved in the context of 
differential games [57]. 

The Continuous Selection Theorem is due to Michael [376,377, 
378]. One can find in [28, Chapter 9] an exhaustive exposition of 
selection and parametrization theorems. See also other selection pro
cedures in [118,125,260,260]. 

The concept of selection procedure is due to Frankowska ( unpub
lished) and has been used in [24,25]. The existence of slow viable 
solutions is due to [225, Falcone & Saint-Pierre] and their approxi
mation can be found in [461, Saint-Pierre]. 

Chapter 7 

The concepts of graphical derivatives and their use in the exten
sion of the Inverse Function Theorem have been initiated in [44] for 
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the contingent derivative and in [46,47] for the circatangent deriva
tives. (There were however many definitions of pointwise derivatives 
of set-valued maps proposed in the literature such as [65, Banks
Jacobs] among many other papers on this topic. They are not well 
adapted to our purpose.) 

The theorem on the regularity of solutions to differential inclu
sions and control systems appeared in [49] and has been taken up in 
[33]. The application to the case of inequality constraints appeared 
in [368, Maderner]. 

The first theorem on the existence of local viable solutions to 
second-order differential inclusions was published in [186, Cornet
Haddad]. We refer to [82, Bebernes & Keley] for boundary-value 
problems for differential inclusions. 

The concept of heavy viable solutions and their studies have been 
investigated in [24,25,33] in collaboration with H. Frankowska. 

Regularity of higher order, heavy solutions of high order, ramp 
controls and polynomial open-loop controls is the topic of [23]. 

Chapter 8 

The tracking property and the general results related to it ap
peared in [29,32] in collaboration with H. Frankowska. The results 
dealing with the construction of trackers and observers, the decen
tralization property and hierarchical decomposition are taken from 
[59]. Theorems dealing with the existence of the largest set-valued 
contingent solution with linear growth to a decomposable system of 
partial differential inclusions are taken from the first part of [31,30, 
Aubin-Frankowska]. In the case of partial differential equations, the 
same result was obtained in [19,18, Aubin-Da Prato]. The tracking 
property has also been the topic of the papers [135,136,137,139] by 
Byrnes & Isidori. 

For quasi-linear systems of partial differential equations, the ex
istence and uniqueness, as well as the convergence of the viscosity 
method, has been proved in [19,18] in collaboration with Da Prato. 
More general results dealing with the fully nonlinear case has been 
announced by P.-1. Lions & Souganidis (private communication.) 
The existence of a solution in the case of partial differential inclu
sions appeared in [31,30], as well as further comparison results that 
were not included in this book. 

The variational principle is taken from [29,32, Aubin-Frankowska]. 
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It has been shown in [250,251,256] that "contingent solutions" are re
lated by duality to the "viscosity solutions" introduced in the context 
of Hamilton-Jacobi equations by Crandall & Lions in [193] (see also 
[359] and the literature following these papers.) 

The variational principle (Theorem 8.4.2) states that for systems 
of partial differential equations or inclusions, the contingent solutions 
are adaptations to the vector-valued case of viscosity solutions. 

The convergence properties of the codifferential as well as a thor
ough study of codifferentials are exposed in [29,32, Aubin-Frankowska]. 
A discussion of results on upper limits of normal cones, which we de
duce by polarity from the properties of upper and lower limits of 
tangent cones, can be found in [28, Chapter 5 & 7]. 

Other theorems on the lower limits of gradients of differentiable 
functions converging uniformly appeared in [28, Chapter 7]. They 
extend to the infinite-dimensional case a theorem of Crandall, Evans 
& P.-L. Lions [192] which allows the study of the stability of viscosity 
solutions to Hamilton-Jacobi equations. 

Chapter 9 

The use of contingent epiderivatives in some problems (related 
to the value function of optimal control problems, in particular) 
appeared in [44] and in [16, Chapter 6]. They were used later 
on for a further study of the dynamic programming approach, in 
[243,250,247,148,147]). It has been shown in [251] that "contingent 
solutions" are related by duality to the "viscosity solutions" intro
duced in the context of Hamilton-Jacobi equations by Crandall and 
Lions. 

We refer to [28, Chapter 6] for a thorough presentation of epi
derivatives of extended functions. The epidifferential calculus has 
been developed in [26]. It has been established by Clarke [17 4] in the 
case of locally Lipschitz functions and by Rockafellar [447,448,449, 
451] under stronger transversality conditions than the ones used in 
[26]. 

Stability Theorem 9.2.5 uses epilimits of extended functions in a 
natural way. We refer to [28, Chapter 7] for a short introduction to 
epiconvergence and/or r-convergence and to the book [10, Attouch] 
and the forthcoming monograph [442, Rockafellar-Wets] for further 
references and an exhaustive presentation of this topic. 

Section 9.3 on optimal Lyapunov functions is taken from [54]. 
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Subsection 9.4.3 is due to [497, Tchou] and subsection 9.5.2 on com
parison of solutions was inspired by [210, Deimling]. 

Chapter 10 

The motivations for studying variational differential inequalities 
came from two distinct sources: mechanics, in the framework of par
tial differential equations, for which we refer to [84, Bensoussan
Lions] among many other references, and planing procedures in eco
nomics, initiated by papers by Malinvaud and other mathematical 
economists, among which we single out [275, Henry]. We present here 
results of [187,189,190, Cornet] with simpler proofs. Other projec
tion methods motivated by biological problems have been proposed 
in [305, Krivan]. 

Section 10.2 on fuzzy differential inclusions is taken from [58]. 
Fuzzy sets have been introduced in 1965 by [538, Zadeh]. Soon after, 
Goguen proposed to generalize the idea of fuzzy sets by £-fuzzy sets, 
where the interval [0, 1] in which the membership functions take their 
values is replaced by some abstract set L. Until now, only [0, 1]
fuzzy sets are considered in practice, despite the theoretical interest 
of general L-fuzzy sets. We had to use the scale L = [0, oo] in order 
to define and use convex fuzzy sets. In the first version of [58], [0, oo]
fuzzy sets were called "hazy sets", and then, fuzzy sets, in order to 
avoid the increase of vocabulary. In their recent paper, [222, Dubois 
& Prade] proposed to call them "toll sets" and investigated how the 
basic concepts of [0, 1]-fuzzy sets are transferred to [0, oo]-fuzzy sets 
(toll measures, toll logic, etc.). Other "fuzzification" of differential 
equations has been proposed in [221,287,111] for instance. For an 
introduction to fuzzy sets, we refer to [220, Dubois-Prade] among 
many other books. 

The results of Section 10.3 dealing with numerical issues are taken 
from [461, Saint-Pierre]. See among other papers on numerical ap
proximation of differential inclusions [508,509,510,511, Veliov]. The 
results of Section 10.3 on the Newton method can be found in [462, 
Saint-Pierre]. The idea of using differential equations and inclusions 
has been used very often by many authors for Newton methods and 
other continuation methods. It seems to go back at least to [513, 
Wa.Zewski]. By the way, one can find in this paper an extension of 
the notion of contingent derivative for maps between metric spaces 
( allongements contingentiels et paratangentiels.) For a recent use of 
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such ideas, we also refer to [392] by Olech, Parthasrathy and Ravin
dran. 

Chapter 11 

The viability theorem for maps depending measurably on time 
are due to [496, Tallos]. See also [210, Deimling] on this topic. For 
Lipschitz maps depending measurably on time, we refer to the forth
coming paper by [288, Kannai-Tallos]. 

Actually, the concept of viability tubes goes back to Wazewski 
under the name of tuyau, in the framework of a fundamental method 
to determine the viability kernel of a viability tube by a topological 
approach. See [514,515,516, Wazewski] [104, Bielecki & Kluczny], 
[292, Kluczny], for instance. 

The concept of viability and invariance tubes are quite close to 
but distinct from the concepts of reachable maps or funnels, which 
extend to the set-valued case the concept of semi-groups of operators. 
The first study goes back to [69, 70, Barbashin] and [453, Roxin]. The 
formula stating that co(F(t,x)) is the infinitesimal generator of the 
semi-group of reachable maps (using contingent derivatives) is due 
to [244, Frankowska]. In the framework of differential games, the 
viability property of a tube is involved in the concept of stable bridge 
and the concept of reachable maps to stable integral manifolds of 
[294]. Contingent derivatives of tubes were used in this context in 
[262]. 

Analogous ideas using "pointwise derivatives" defined through 
Hausdorff distances, have been thoroughly investigated under the 
name of funnel equations in the soviet literature, by Krasovski and his 
collaborators ([296,293,295]), Kurzhanski ([326,329,330]), Tolstono
gov [499], Panasyuk [408,410,411]. 

Approximation of viability tubes by ellipsoids have been initiated 
in [325, Kurzhanski] and extensively studied by Kurzhanski, Valyi 
[504], and their collaborators, with many numerical approximations 
made at IIASA. We refer for this approach to the series of papers 
[322,323] and the forthcoming monograph [323] by Kurzhanski and 
Valyi. 
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Chapter 12 

The functional viability theorem is due to Haddad in the pa
pers [264,265,267]. The characterization of the functional viability 
domains for delay and Volterra constraints is due to [223, Duluc
Vigneron]. 

Chapter 13 
The results of this chapter are due to Shi Shuzhong. For more 

details on this topic, we refer to [472,473,475,476]. The extension of 
the Filippov Theorem to operational differential inclusions appeared 
in [253, Frankowska] for Lipschitz right-hand sides. One can find a 
study of elliptic and parabolic partial differential inclusions in [76, 
Bartuzel-Fryszkowski] for decomposable lower semicontinuous right
hand sides. Viability and uncertainty issues for parabolic equations 
are studied by Kurzhanski and Khapalov [315,316,317,318,319]. 

Chapter 14 

The literature on differential games is too large to do it justice. 
The contents of this chapter is taken from [57,51,55] and has been 
extended in [431, Quincampoix] for the time dependent case. Fur
ther results on the of victory and defeat domains in the framework of 
differential games appear in the forthcoming paper [433, Quincam
poix]. 

We refer to [91] for a result on barriers in the case of differential 
games and to [430] for any target of a control problem. 

For a short survey of differential games, we refer to [96,97,98,99, 
100, Bernhard] and his monograph [92]. See also [293,294, Krasovski
Subbotin] among many other references. 

Set-valued solutions to funnel equations for differential games and 
their approximation by ellipsoids of set-valued solutions to funnel 
equations can be found in [322,323, Kurzhanski-Valyi]. 

For applications of differential games to robotics, we refer to [232, 
479]. 
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