
Chapter 7
Observation and Identification via HOSM
Observers

Control systems normally perform under uncertainties/disturbances and with mea-
surement signals corrupted by noise. For systems with reliable models and noisy
measurements, a filtration approach (Kalman filters, for example) is efficient.
However, as shown in Chap. 3, sliding mode observers based on first-order sliding
modes are effective in the presence of uncertainties/disturbances. Nevertheless, as
discussed in that chapter, they are only applicable when the relative degree of the
outputs with respect to the uncertainties/disturbances is one, and differentiation of
noisy outputs signals is not needed.

Unfortunately, even for observation of mechanical systems with measured posi-
tions, the estimation of velocities—i.e., the derivatives of position—is necessary.
The uncertainties/disturbances in mechanical systems are in the equations for
accelerations and have relative degree two with respect to the measured positions.
This means that differentiators which can provide the best possible accuracy in the
presence of sampling steps and noise are needed for the general case of observation
of control systems working under uncertainties/disturbances. HOSM differentiators
are one class of such differentiators. In this chapter we will show how to design
these HOSM observers for different types of systems.

In this chapter sliding mode based observers are presented as an alternative to the
problem of observation of perturbed systems. In particular, high-order sliding mode
(HOSM) based observers can be considered as a successful technique for the state
observation of perturbed systems, due to their high precision and robust behavior
with respect to parametric uncertainties. The existence of a direct relationship
between differentiation and the observability problem makes sliding mode based
differentiators a technique that can be applied directly for state reconstruction. Even
when the differentiators appear as a natural solution to the observation problem,
the use of the system knowledge for the design of an observation strategy results
in a reduction in the magnitude of the gains for the sliding mode compensation
terms. Moreover, complete or partial knowledge of the system model facilitates
the application of the techniques to parametric reconstruction or disturbance
reconstruction.
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252 7 Observation and Identification via HOSM Observers

7.1 Observation/Identification of Mechanical Systems

This section will begin by focusing on observation and identification of mechanical
systems, which have been the focus of many studies throughout the years. Recent
research on these systems has produced many important applications such as
telesurgery with the aid of robotic manipulators, missile guidance and defense,
and space shuttle control. The general model of second-order mechanical systems
is derived from the Euler–Lagrange equations which are obtained from an energy
analysis of such systems. They are commonly expressed in matrix form as

M.q/ Rq C C.q; Pq/ Pq C P. Pq/CG.q/C�.t;q; Pq/ D � (7.1)

where q 2 R
n is a vector of generalized coordinates, M.q/ is the inertia matrix,

C.q; Pq/ is the matrix of Coriolis and centrifugal forces, P. Pq/ is Coulomb friction,
which possibly contains relay terms depending on Pq, G.q/ is the term associated
with the gravitational forces, �.t;q; Pq/ is an uncertainty term; and � is the
generalized torque/force produced by the actuators. The control input � is assumed
to be given by some known feedback function. Note that M.q/ is invertible since
M.q/ D MT .q/ is strictly positive definite. All the other terms are supposed to be
uncertain, but the corresponding nominal functions Mn.q/, Cn.q; Pq/, and Pn. Pq/,
Gn.q/ are assumed known.

Introducing new variables x1 D q, x2 D Pq, u D � , the model (7.1) can be
rewritten in the state-space form

Px1 D x2;

Px2 D f .t; x1; x2; u/C �.t; x1; x2; u/; u D U.t; x1; x2/; (7.2)

y D x1;

where the nominal part of the system dynamics is represented by the function

f .t; x1; x2; u/ D �M�1
n .x1/ŒCn.x1; x2/x2 C Pn.x2/CGn.x1/� u�

containing the known nominal functions Mn, Cn, Gn, Pn; while the uncertainties
are lumped in the term �.t; x1; x2; u/. The solutions to system (7.3) are understood
in a Filippov sense. It is assumed that the function f .t; x1; x2; U.t; x1; x2// and
the uncertainty �.t; x1; x2; U.t; x1; x2// are Lebesgue measurable function of t and
uniformly bounded in any compact region of the state space x1, x2 .

In order to apply a state-feedback controller or to simply perform system
monitoring, knowledge of the coordinate x2 is required. Moreover, in the general
case, for the design of the controller, it is necessary to know the parameters of the
system. The tasks considered in this section are to design a finite-time convergent
observer of the velocity Pq for the original system (7.1), when only the position q
and the nominal model are available, as well as the development of an identification
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algorithm to obtain the system parameters through knowledge of only the state x1
(i.e., q) and the input u.t/. Only the scalar case x1; x2 2 R is considered for the sake
of simplicity.

7.1.1 Super-Twisting Observer

One of the popular second-order sliding mode algorithms which offer a finite
reaching time and which can be used for sliding mode based observation is
the super-twisting algorithm considered in Chap. 4. The proposed super-twisting
observer has the form

POx1 D Ox2 C z1POx2 D f .t; x1; Ox2; u/C z2
(7.3)

where Ox1 and Ox2 are the state estimates while the correction variables z1 and z2 are
output error injections of the form

z1 D �jx1 � Ox1j1=2 sign.x1 � Ox1/
z2 D ˛ sign.x1 � Ox1/ (7.4)

Taking Qx1 D x1 � Ox1 and Qx2 D x2 � Ox2 we obtain the error equations

PQx1 D Qx2 � �j Qx1j1=2 sign. Qx1/
PQx2 D F.t; x1; x2; Ox2/� ˛ sign. Qx1/ (7.5)

where

F.t; x1; x2; Ox2/ D f .t; x1; x2; u/� f .t; x1; Ox2; u/ (7.6)

C�.t; x1; x2; y/ (7.7)

Suppose that the system states are bounded, then the existence of a constant f C is
ensured, such that the inequality

jF.t; x1; x2; Ox2/j < f C (7.8)

holds for any possible t , x1, x2 and j Ox2j � 2 sup jx2j.
According to Sect. 4.3.2 the parameters of observer ˛ and � could be selected

as ˛ D a1f
C and � D a2.f

C/1=2, where a1 D 1:1, a2 D 1:5. Convergence of
the observer states . Ox1; Ox2/ from Eqs. (7.3) and (7.4) to the system state variables
.x1; x2/ in Eq. (7.3) occurs in finite time, from the theorem in Sect. 4.3.2. All other
theorems from Sect. 4.3.2 are also true for the observer Eqs. (7.3) and (7.4).

The standard 2-sliding-mode-based differentiator from Sect. 4.3.2 could be also
implemented here to estimate the velocity. In this case, if the accelerations in
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the mechanical system are bounded, the constant f C can be found as the double
maximal possible acceleration of the system. For the proposed observer, the design
of the gains ˛ and � is based on an estimate of F.t; x1; x2; Ox2; u/. This means that
the observer design in Eqs. (7.3) and (7.4) takes into account (partial) knowledge of
systems dynamics and is more accurate.

A pendulum, a classical example of a mechanical system, is now used to illustrate
the effectiveness of the proposed observer Eqs. (7.3) and (7.4).

Example 7.1. Consider a pendulum system with Coulomb friction and external
perturbation given by the equation

R� D 1

J
� � g

L
sin.�/ � Vs

J
P� � Ps

J
sign. P�/C v (7.9)

where the valuesm D 1:1, g D 9:815,L D 0:9, J D mL2 D 0:891,VS D 0:18 and
Ps D 0:45 are the system parameters for simulation purposes, and v is an uncertain
external perturbation satisfying jvj � 1. The function v D 0:5 sin.2t/C 0:5 cos.5t/
was used in simulation. Now let Eq. (7.9) be driven by the twisting controller

� D �30 sign.� � �d / � 15 sign. P� � P�d / (7.10)

where �d D sin.t/ and P�d D cos.t/ are the reference signals. The system can be
rewritten as

Px1 D x2;

Px2 D 1
J
� � g

L
sin.x1/ � Vs

J
x2 � Ps

J
sign.x2/C v

Thus, the proposed velocity observer has the form

POx1 D Ox2 C 1:5.f C/1=2j Qx1j1=2 sign.x1 � Ox1/
POx2 D 1

Jn
� � g

Ln
sin.x1/ � Vsn

Jn
Ox2 C 1:1f C sign.x1 � Ox1/

where mn D 1, Ln D 1, Jn D mnL
2
n D 1, Vsn D 0:2, and Psn D 0:5 are the

“known” nominal values of the parameters and f C is to be assigned. Assume also
that it is known that the real parameters differ from the assumed known values by
not more than 10 %. The initial values � D x1 D Ox1 D 0 and P� D x2 D 1 , Ox2 D 0

were taken at t D 0. Noting that 0 � � � 2� , � belongs to a compact set (a ring),
and obviously the dynamic system in (7.9) is BIBS stable.

Easy calculations show that the given controller yields j� j � 45 and the
inequality j P� j � 70 is guaranteed when the nominal values of the parameters
and their maximal possible deviations are taken into account. Taking jx2j � 70,
j Ox2j � 140 it follows that jF j D j 1

J
� � g

L
sin.x1/ � Vs

J
x2 � Ps

J
sign.x2/ C v �

1
Jn
� C g

Ln
sin.x1/C Vsn

Jn
Ox2j < 60 D f C. Therefore, the observer parameters ˛ D 66

and � D 11:7 were chosen. Simulations show that f C D 6 and the respective
values ˛ D 6:6 and � D 4 are sufficient. Note that the terms mgL

J
sin.x1/ and 1

J
�

would have to be taken into account when selecting the differentiator parameters,
when using the techniques from Chap. 4, causing much larger coefficients to be
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Fig. 7.1 Estimation error for x2

used. The finite-time convergence of the velocity observation error to the origin is
demonstrated in Fig. 7.1. Figure 7.2 illustrates the same convergence by comparing
the estimated velocity to the real one. Finally, Fig. 7.3 shows the convergence of the
observer dynamics in the Qx1 versus Qx2 plane.

7.1.2 Equivalent Output Injection Analysis

It is a well-known fact (see Chaps. 1–3) that the equivalent injection term contains
information about the disturbances/uncertainties and unknown inputs in a system
and can therefore be used for their reconstruction. This important concept is used in
the analysis below to reconstruct unknown inputs in mechanical systems. Moreover,
the problem of parameter estimation is also addressed in the latter part of this
subsection.

Equivalent Output Injection

The finite-time convergence to the second-order sliding mode set ensures that there
exists a time t0 > 0 such that for all t � t0 the following identity holds:

0 � PQx2 � �F.t; x1; x2; Ox2; u/C �.t; x1; x2; u/� .˛1sign. Qx1//eq
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Fig. 7.3 Convergence to 0 of both Qx1 and Qx2
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Notice that�F.t; x1; x2; Ox2; u/ D f .t; x1; x2; u/�f .t; x1; Ox2; u/ D 0 because Ox2 D
x2. Then the equivalent output injection zeq is given by

zeq.t/ � .˛1sign. Qx1//eq � �.t; x1; x2; u/ (7.11)

Recall that the term �.t; x1; x2; u/ is composed of uncertainties and perturbations.
This term may be written as

�.t; x1; x2; u/ D 	.t/C�F.t; x1; x2; u/ (7.12)

where 	.t/ is an external perturbation term and �F.t; x1; x2; u/ embodies the
parameter uncertainties.

Theoretically, the equivalent output injection is the result of an infinite frequency
switching of the discontinuous term ˛1sign. Qx1/. Nevertheless, the realization of the
observer produces high (finite) switching frequency making the application of a
filter necessary. To eliminate the high-frequency component we will use the filter of
the form:

N� PNzeq.t/ D �Nzeq.t/C ˛1sign. Qx1/ (7.13)

where N� 2 R and h � � � 1 with h being the sampling step. It is possible to
rewrite zeq as the result of a filtering process in the following form

zeq.t/ D Nzeq.t/C ".t/ (7.14)

where ".t/ 2 R
n is the difference caused by the filtration process and Nzeq.t/ is

the filtered version of zeq.t/. It can be shown the limN�!0;h=N�!0 Nzeq.�; h/ D zeq.t/:
In other words, the equivalent injection can be obtained by appropriate low-pass
filtering of the discontinuous injection signals.

Perturbation Identification

Consider the case where the nominal model is totally known, i.e., for all t > t0 the
uncertain part �F.t; x1; x2; u/ D 0. The equivalent output injection takes the form

Nzeq.t/ D .˛1sign. Qx1//eq D 	.t/ (7.15)

The result of the filtering process satisfies limN�!0;h=N�!0 Nzeq.�/ D 	.t/. Then,
any bounded perturbation can be identified, even in the case of discontinuous
perturbations, by directly using the output of the filter. This is illustrated in the
next example where a smooth continuous signal and a discontinuous perturbation
are identified.

Example 7.2. Consider the mathematical model of the pendulum in Example 7.1
given by

R� D 1

J
u � MgL

2J
sin.�/ � Vs

J
P� C v.t/
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Fig. 7.4 Sinusoidal external perturbation identification

where m D 1:1 is the pendulum mass, g D 9:815 is the gravitational force, L D
0:9 is the pendulum length, J D mL2 D 0:891 is the arm inertia, VS D 0:18 is
the pendulum viscous friction coefficient, and v.t/ is a bounded disturbance term.
Assume that the angle � is available for measurement. Introducing the variables
x1 D � , x2 D P� and the measured output y D � , the pendulum equation can be
written in the state-space form as

Px1 D x2

Px2 D 1

J
u � mgL

2J
sin.x1/� Vs

J
x2 C v.t/

y D x1

Suppose that all the system parameters (m D 1:1, g D 9:815, L D 0:9, J D
mL2 D 0:891, VS D 0:18) are well known. The super-twisting observer for this
system has the form

POx1 D Ox2 C ˛2j Qx1j1=2 sign. Qx1/
POx2 D 1

J
u � mgL

2J
sin.x1/ � Vs

J
Ox2 C ˛1 sign. Qx1/

Qx1 D y � Ox1
and the equivalent output injection in this case is given by

zeq D .˛1sign. Qx1//eq D v.t/

using a low-pass filter with N� D 0:02Œs�. For a sinusoidal external perturbation,
the identification is shown in Fig. 7.4. Using a filter N� D 0:002Œs� the perturbation
identification for a discontinuous signal is shown in Fig. 7.5.
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Fig. 7.5 Discontinuous perturbation identification

7.1.3 Parameter Identification

A problem that often arises in many control tasks is the uncertainty associated
with the values of certain parameters, or even, in some cases, a complete lack
of knowledge. In this situation, schemes to provide estimates of the unknown
parameters at each instant are required. Although many algorithms have been
developed to generate these estimates, the first step is usually to obtain a parametric
model in which the desired parameters are concentrated in what is called the
unknown parameter vector (denoted in most literature by �). The interaction of these
parameters within the system can then be expressed in regressor form as a linear
combination of � and a regressor which is a vector of known linear or nonlinear
functions.

Regressor Form

Consider the nominal case when the system is not affected by disturbances and the
only perturbations present are in the form of parametric uncertainties, i.e., 	.t/ D
0 and �.t; x1; x2; u/ D �F.t; x1; x2; u/. The system acceleration (i.e., Px2) can be
represented as the sum of a well-known part and an uncertain part:

Px2 D f .t; x1; x2; u/C�F.t; x1; x2; u/

where f .t; x1; x2; u/ 2 R
n is the known part of the system and �F.t; x1; x2; u/ is

the uncertain part. Using the regressor notation1 we can write the uncertain part as

�F.t; x1; x2; u/ D �.t/'.t; x1; x2; u/

1For details see [173].
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where �.t/ 2 R
n�l is composed of the values of the uncertain parametersm, C , G,

P and '.t; x1; x2; u/ 2 R
l is the corresponding regressor. The system in Eq. (7.3)

takes the form

Px1 D 7x2

Px2 D f .t; x1; x2; u/C �.t/'.t; x1; x2; u/; u D U.t; x1; Ox2/ (7.16)

y D x1

and the observer can be rewritten as

POx1 D Ox2 C ˛2�j Qx1j1=2sign. Qx1/POx2 D f .t; x1; Ox2; u/C N�.t/'.t; x1; Ox2; u/C ˛1sign. Qx1/ (7.17)

where N� 2 R
n�l is a matrix of nominal values of the matrix �.t/. The error dynamics

becomes

PQx1 D Qx2 � ˛2�. Qx1/sign. Qx1/
PQx2 D �.t/ � '.t; x1; x2; u/� N�.t//'.t; x1; Ox2; u/� ˛1sign. Qx1/ (7.18)

The task is to design an algorithm which provides parameter identification for the
original system (7.1), when only the position x1 is measurable and the nominal
model N�.t/'.t; x1; x2; u/ is known.

Time-Invariant Parameter Identification

Consider the case when the system parameters are time invariant, i.e., �.t/ D � .
During the sliding motion, the equivalent output injection can be represented in the
form

zeq.t/ D .˛1sign. Qx1//eq D .� � N�/'.t; x1; x2; u/ (7.19)

Notice that ˛1sign. Qx1/ is a known term and finite-time convergence of the observer
guarantees '.t; x1; Ox2; u/ D '.t; x1; x2; u/ for all t � t0. Equation (7.19) represents
a linear regression model where the vector parameters to be estimated are .�� N�/. To
obtain the real system parameters � a linear regression algorithm could be proposed
from Eq. (7.19).

The recursive least-squares algorithm applied for parameter identification of
dynamical systems is usually designed using discretization of the regressor and
derivative of the states in order to obtain the regressor form. Then the algorithm
is applied in discrete form.

In mechanical system observation and identification, we deal with a data set
of a continuous-time nature. That is why the implementation of any standard
discretization scheme is related to unavoidable losses of existing information. This
produces a systematic error—basically caused by the estimation of the derivatives
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of the process. As shown above, the proposed second-order sliding mode technique
provides an estimation of the derivatives, converging in finite time, that avoids any
additional errors arising from any standard discretization scheme implementation.
Below we present a continuous-time version of the least-squares algorithm based
on the proposed second-order sliding mode observation scheme. Notice that the
proposed algorithm can be implemented in analog devices directly. Defining
�� WD � � N� , post-multiplying Eq. (7.19) by 'T .t; x1; x2; u/ (written for notational
simplicity as 'T .t/). Now, using the auxiliary variable 
 for integration in time, the
average values of Eq. (7.19) take the form

1

t

Z t

0

Nzeq.
/'T .
/d
 D ��

1

t

Z t

0

'.
/'.
/T d
 (7.20)

where Nzeq is obtained from Eq. (7.13). Therefore, the system parameters can be
estimated from Eq. (7.20) by

O�� D
�Z t

0

Nzeq.
/'T .
/d

� �Z t

0

'.
/'T .
/d


��1
(7.21)

where O�� is the estimate of�� . For any square matrix the following equalities hold

��1.t/�.t/ D I;

��1.t/ P�.t/C P��1.t/�.t/ D 0
(7.22)

Let us define �.t/ D
hR t
0
'.
/'T .
/d


i�1
; then using Eq. (7.22) we can rewrite

Eq. (7.21) in the form

PO�� D
�Z t

0

Nzeq.
/'T .
/d

�

P�.t/C Nzeq.t/'T .t/�.t/

Now, using Eq. (7.20) we can write

PO�� D O���
�1.t/ P�.t/C Nzeq.t/'T .t/�.t/

The equalities in Eq. (7.22) allow us to write a dynamic expression for estimating
�� as

PO�� D
h
� O��'.t/C Nzeq.t/

i
'T .t/�.t/ (7.23)

In the same way, a dynamic form to find �.t/ is given by

P�.t/ D ��.t/'.t/'T .t/�.t/ (7.24)

The average values of the real zeq.t/, without filtering, satisfy the equality

Z t

0

zeq.
/'
T .
/d
 D ��

Z t

0

'.
/'T .
/d
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then

�� D
�Z t

0

zeq.
/'
T .
/d


�
�.t/

Substituting from Eq. (7.14), the real values of the parameter vector�� satisfies

�� D
�Z t

0

Nzeq.
/'T .
/d
 C
Z t

0

".
/'T .
/d


�
�.t/ (7.25)

Let us assume Nzeq.t/ D O��'.t/. In this case Eq. (7.25) becomes

�� D
�

O��

Z t

0

'.
/'T .
/d
 C
Z t

0

".
/'T .
/d


�
�.t/

which can be written as

�� D O�� C
�Z t

0

".
/'T .
/d


�
�.t/ (7.26)

From Eqs. (7.21) and (7.26) it is possible to define the convergence conditions:

sup jjt�.t/jj < 1; (7.27)

jj1
t

Z t

0

".
/'T .
/d
 jj ! 0 as t ! 1 (7.28)

Condition (7.27), known as the persistent excitation condition,2 requires the non-
singularity of the matrix ��1.t/ D R t

0
'.
/'T .
/d
 . To avoid this restriction,

introduce the term I where 0 <  � 1 and I is the unit matrix, and redefine
��1.t/ as

��1.t/ D
Z t

0

�
'.
/'T .
/d


� C I

In this case the value of ��1.t/ is always nonsingular.
Notice that the introduction of the term I is equivalent to setting the initial

conditions of Eq. (7.24), as

�.0/ D �1I; 0 < -small enough

The introduction of the term  ensures the condition supjjt�.t/jj < 1 but does
not guarantee the convergence of the estimated parameters to their real values. The
convergence of the estimated values to the real ones is ensured by the persistent
excitation condition

lim inf
t!1

1

t

Z t

0

�
'.
/'.
/T d


�
> 0

2See, for example, [173].
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The condition in Eq. (7.28) relates to the filtering process, and it gives the conver-
gence quality of the identification. How fast the term 1

t

R t
0
".
/'.
/T d
 converges

to zero dictates how fast the parameters will be estimated. The above can be
summarized in Theorem 7.1.

Theorem 7.1. The algorithm in Eqs. (7.23), (7.24) ensures the convergence of
O�� ! �� if conditions (7.27), (7.28) are satisfied

Remark 7.1. The effect of noise sensitivity in the suggested procedure can be
easily seen from (7.28):

1

t

Z t

0

" .
/ 'T .
/ d
 ! 0 when t ! 1

The term " .t/ in (7.14) includes all error effects caused by observation noise (if
there is any) and errors in the realization of the equivalent output injection. One can
see that if " .t/ and ' .t/ are uncorrelated and are “on average” equal to zero, i.e.,

1

t

Z t

0

" .
/ d
 ! 0;
1

t

Z t

0

' .
/ d
 ! 0

then the effect of noise vanishes.

The pendulum system is once again used to illustrate the previous algorithm.

Example 7.3. Consider the model of a pendulum from Example 7.1 with Coulomb
friction given by the equation

R� D 1

J
u � MgL

2J
sin.�/ � Vs

J
P� � Ps

J
sign. P�/

where m D 1:1 is the pendulum mass, g D 9:815 is the gravitational force, L D
0:9 is the arm length, J D mL2 D 0:891 is the arm inertia, VS D 0:18 is the
viscous friction coefficient, and Ps D 0:45models the Coulomb friction coefficient.
Suppose that the angle � is available for measurement. Introducing the variables
x1 D � , x2 D P� , the state-space representation for the system becomes

Px1 D x2;

Px2 D 1

J
u � mgL

2J
sin.x1/ � Vs

J
x2 � Ps

J
sign.x2/;

y D x1

where a1 D mgL

2J
D 5:4528; a2 D Vs

J
D 0:2020; and a3 D Ps

J
D 0:5051 are the

unknown parameters. Design the super-twisting-based observer as

POx1 D Ox2 C ˛2j Qx1j1=2 sign. Qx1/;
POx2 D 1

J
u � Na1 sin.x1/ � Na2 Ox2 � Na3 sign.x2/C ˛1 sign. Qx1/;
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Fig. 7.6 x1, x2 estimation error LTI case

Qx1 D y � Ox1
where Na1 D 2, Na2 D Na3 D 0:1 are the nominal values of the unknown parameters.
Let the control signal be generated by the twisting controller

u D �30 sign.� � �d / � 15 sign. P� � P�d /; (7.29)

where the reference signal is �d D 0:3 sin.3t C �=4/C 0:3 sin.1=2t C �/. For a
sampling time of � D 0:0001 the state estimation error is shown in Fig. 7.6. In this
case the identification variables are given by

zeq D .˛1sign. Qx1//eq
�� D Œ�a1 C Na1 � a2 C Na2 � a3 C Na3�
�� D Œ�3:4528 � 0:1020 � 0:4051�

' D
2
4 sin.x1/

x2
sign.x2/

3
5

It is now possible to use ', the nonlinear regressor, to generate the dynamic
adaptation gain �.t/ using Eq. (7.24). From Eq. (7.19), the value of Nzeq is given by

Nzeq D zeq D .˛1sign. Qx1//eq
The dynamic estimate of the parameter error vector �� , which contains all the
necessary information to retrieve the desired parameter vector � , can be generated
by implementing the algorithm in Eq. (7.23). Figure 7.7 shows the convergence of
the estimated parameters to the real parameter values.
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Fig. 7.7 Parameter identification for LTI case

7.2 Observation in Single-Output Linear Systems

The observer design problem for the general case of linear time-invariant systems
will now be addressed in this section. The non-perturbed case will be revisited and
then both unknown input and (exact) state estimation in the more complex perturbed
case will be studied.

7.2.1 Non-perturbed Case

Consider a linear time-invariant system

Px D Ax C Bu

y D Cx (7.30)

where x 2 R
n, y 2 R are the system state and the output, u 2 R

m is the known
control, and the known matrices A;B;C have suitable dimensions. It is assumed
that the pair .A; C / is observable. A standard Luenberger observer for this system
is given by

POx D A Ox C Bu C L.y � Oy/
Oy D C Ox (7.31)

where L 2 R
n�1 is a gain matrix chosen such that .A � LC/ is a Hurwitz

matrix. Such a gain matrix L always exists because of the assumed observability
of the system, and it ensures asymptotic convergence to zero of the estimation error
e D x � Ox.
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It is important to remark that without any disturbance, the standard Luenberger
observer is sufficient to reconstruct asymptotically the states.

7.2.2 Perturbed Case

Now assume that the linear time-invariant system in Eq. (7.30) is perturbed by an
external disturbance 	.t/. The perturbed linear time-invariant system is given by

Px D Ax C Bu CD	.t/; D ¤ 0

y D Cx (7.32)

where x 2 R
n, y 2 R, u 2 R

m, and 	 2 R is an unknown input (disturbance).
The corresponding matrices A;B;C;D have suitable dimensions. The unknown
input 	.t/ is assumed to be a bounded Lebesgue-measurable function, j	.t/j � 	C,
	C > 0.

The equations are understood in the Filippov sense in order to provide for
possibility to use discontinuous signals in observers. It is assumed also that all the
inputs which are considered allow the existence and extension of the solution to the
whole semi-axis t � 0.

Suppose that the Luenberger observer Eq. (7.31) is used to estimate the states.
The dynamics of the estimation error e D x � Ox are given by

Pe D .A� LC/e CD	

ye D Ce

In order to analyze the convergence properties of this observer, consider the
Lyapunov-like function V D eT Pee, where Pe D PT

e > 0 has suitable dimensions.
Computing the first derivative of V we obtain

PV D eT Pe ..A �LC/e CD	�C Œ.A �LC/e CD	/T Pee

Suppose the matrix Pe is the solution of the Lyapunov equation

Pe.A� LC/C .A �LC/T Pe D �H (7.33)

for some H D HT > 0, then the first derivative of V becomes

PV D �eTHe C 2.D	/T Pee

The condition PV � 0 is satisfied for all the estimation error satisfying the inequality

jjejj > 2	CjjDTPejj
jjH jj



7.2 Observation in Single-Output Linear Systems 267

This last inequality implies that the proposed Luenberger observer only can ensure
the convergence of the estimation error to a bounded region around the origin.
As a consequence, standard Luenberger observer cannot be applied for state
reconstruction on perturbed systems.

The task in this section is to build an observer guaranteeing asymptotic (and
preferably exact finite-time convergent) estimation of the states and the unknown
input. Obviously, it can be assumed without loss of generality that the known input
u is equal to zero (i.e., u.t/ D 0).

It is very important to establish conditions when the unknown input can be
reconstructed along with estate estimation. For this reason, several definitions will
be introduced to study the state observation problem for perturbed linear systems. It
is assumed in the following definitions that u D 0.

Definition 7.1 ([107]). System (7.32) is called strongly observable if for any initial
state x.0/ and any input 	.t/, y.t/ � 0 with 8t � 0 implies that also x � 0.

Definition 7.2 ([107]). The system is strongly detectable , if for any 	.t/ and x.0/
it follows that y.t/ � 0 with 8t � 0 implies x ! 0 with t ! 1 .

It is important to remark that these two definitions are not directly related to the
structure of the system. However, important consequences on the system structure
can be established.

Theorem 7.2. The system (7.32) is strongly observable if and only if the output y
has relative degree n with respect to the unknown input 	.t/, i.e., it has no invariant
zeros.

Proof. Let matrix P be defined by

P D

2
6664

C

CA
:::

CAn�1

3
7775

Strong observability of the system requires observability, and therefore rankP D
n. The observability implies the existence of a relative degree r associated with
the output y with respect to the unknown input 	. Indeed, otherwise PD D 0 and
thereforeD D 0. Then the coordinate transformation xO D Px turns system (7.32)
into

PxO D AOxO C BOu.t/CDO	.t/

y.t/ D COxO (7.34)
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where

AO D

2
666664

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � 1

�a1 �a2 �a3 � � � �an

3
777775

(7.35)

DO D ŒCD; : : : ; CAn�2D;CAn�1D�T (7.36)

CO D Œ1; 0; : : : ; 0� (7.37)

and the aj , j D 1; : : : ; n are some constants. The vector BO does not have any
specific form. Recall that u is assumed to be zero. When r D n only the last
component of DO is not zero. It is obvious that in that case the identity y � 0

implies xO � 0.
Assume now that r < n. That means that some nontrivial zero dynamics exists,

which corresponds to nontrivial solutions satisfying y � 0 and contradicts the
conditions for strong observability. This ends the proof of the theorem. �

7.2.3 Design of the Observer for Strongly Observable Systems

The importance of the property of strong observability for the type of linear systems
described by Eq. (7.32) lies in the fact that it ensures the existence of the sliding
mode state observer. This part of the chapter will explore the design of such an
observer.

Assumption 7.1. System (7.32) has the relative degree n with respect to the
unknown input 	.t/ (i.e., the system is strongly observable).

The observer is built in the form

Pz D Az C Bu C L.y � C z/ (7.38)

Ox D z CKv (7.39)

Pv D W.y � C z; v/ (7.40)

where z; Ox 2 R
n, Ox is the estimation of x and the matrix L D Œl1; l2; : : : ; ln�

T 2 R
n

is a correction factor chosen so that the eigenvalues of the matrix A � LC have
negative real parts. (Such an L exists due to Assumption 7.1 and Theorem 7.2.)

The proposed observer is actually composed of two parts. Equation (7.38) is a
traditional Luenberger observer providing the boundedness of the difference z�x in
the presence of the unknown bounded input 	. System (7.40) is based on high-order
sliding modes and ensures the finite-time convergence of the resulting estimation
error to zero.
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Suppose that only the states are to be estimated and that Assumption 7.1 holds.
Note that in the simplest case when n D 1 the only observable coordinate coincides
with the measured output and, therefore, only the input estimation problem makes
sense, requiring Assumption 7.1. Thus assume that n > 1.

Since the pair .C;A/ is observable, arbitrary stable values can be assigned to
the eigenvalues of the matrix (A � LC ), choosing an appropriate gain matrix L.
Obviously the pair .C;A � LC/ is also observable and therefore its observability
matrix

QP D

2
666664

C

C.A� LC/

C.A �LC/2
:::

C.A� LC/n�1

3
777775

(7.41)

is nonsingular. Set the gain matrix K D QP�1 and assign

Ox D z C QP�1v (7.42)

The nonlinear part of the observer Eq. (7.40) is chosen as

Pv1 D w1 D �˛nM1=njv1 � y C C zj.n�1/=n sign.v1 � y C C z/C v2

Pv2 D w2 D �˛n�1M 1=.n�1/jv2 � w1j.n�2/=.n�1/ sign.v2 � w1/C v3

:::

Pvn�1 D wn�1 D �˛2M1=2jvn�1 � wn�2j1=2 sign.vn�1 � wn�2/C vn

Pvn D �˛1M sign.vn � wn�1/ (7.43)

where vi , zi , and wi are the components of the vectors v, z 2 R
n, and w 2 R

n�1,
respectively. The parameter M must be chosen sufficiently large, and in particular
M > jd j	C must be satisfied, where d D CAn�1D. The constants ˛i are
chosen recursively and must be sufficiently large (see Chap. 6 for a more detailed
discussion). In particular, one of the possible choices is ˛1 D 1:1; ˛2 D 1:5; ˛3 D 2;

˛4 D 3; ˛5 D 5; ˛6 D 8; in a situation when n � 6. Note that Eq. (7.43) has a
recursive form, useful for the parameter adjustment.

Recall that xO D Px is the vector of canonical observation coordinates and
eO D P. Ox � x/ is the canonical observation error. With this in mind, the following
theorem summarizes the exact finite-time convergence properties of the designed
observer.

Theorem 7.3. Let Assumption 7.1 be satisfied and the output be measured subject
to noise, which is a Lebesgue-measurable function of time with maximal magnitude
". Then with properly chosen ˛j ’s, and a sufficiently large M , the state x of
the system is estimated in finite time by the observer Eqs. (7.38), (7.41), (7.42)
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and (7.43). With sufficiently small " the observation errors eOi D OxOi � OxOi D
CAi�1. Oxi � xi / are of the order of ".n�iC1/=n, i.e., they satisfy the inequalities
jeOi j � �i"

.n�iC1/=n for some constants �i > 0 depending only on the observer,
the system parameters, and the input upper bound. A level of accuracy of the order
of "1=n is obtained in noncanonical coordinates due to the mix of coordinates. In
particular, the state x is estimated exactly and in finite time in the absence of noises.

Remark 7.2. It is worth noting that using a Kalman filter instead of a Luenberger
observers in this algorithm may be beneficial in the presence of measurement noise.

The finite-time convergence of the observation error, which is guaranteed using
a Luenberger observer, allows us to address the problem of reconstructing 	, the
unknown input to the system.

Identification of the Unknown Input

Now let v 2 R
NnC1, where Nn D n C k, satisfy the nonlinear differential

equation (7.40) in the form

Pv1 D w1 D �˛ NnC1M 1=. NnC1/jv1 � y C C zj. Nn/=. NnC1/ sign.v1 � y C C z/C v2

Pv2 D w2 D �˛ NnM1=. Nn/jv2 � w1j. Nn�1/=. Nn/ sign.v2 � w1/C v3

:::

Pvn D �˛kC2M 1=.kC2/jvn � wn�1j.kC1/=.kC2/ sign.vn � wn�1/C vnC1 (7.44)

:::

Pv Nn D w Nn D �˛2M1=2jv Nn�1 � w Nn�2j1=2 sign.v NnC1 � w Nn�2/C v Nn
Pv NnC1 D �˛1M sign.v NnC1 � w Nn/ (7.45)

where M is a sufficiently large constant. As described previously, the nonlinear
differentiator has a recursive form, and the parameters ˛i are chosen in the same
way. In particular, one of the possible choices is ˛1 D 1:1; ˛2 D 1:5; ˛3 D 2; ˛4 D
3; ˛5 D 5; ˛6 D 8, in the situation when nCk � 5. In any computer realization one
has to calculate the internal auxiliary variables wj ; j D 1; : : : ; n C k, using only
the simultaneously sampled current values of y; z1, and vj . The equality Ne D ! is
established in finite time, where ! is the truncated vector

! D .v1; : : : ; vn/
T

Thus, in the case of unknown input reconstruction, the corresponding observer
Eq. (7.39) is now modified and takes the form

Ox D z C QP�1! (7.46)
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where QP is the observability matrix previously defined. The estimation of the input
	 is given as

O	 D 1

d
.vnC1 � .a1v1 C a2v2 C � � � C anvn// (7.47)

where sn � ansn�1 � � � � � a1 D .�1/ndet.A�LC � sI / defines the characteristic
polynomial of the matrix A � LC .

An example is now presented to illustrate the effectiveness of the proposed
observer Eq. (7.46) for both state and unknown input reconstruction in linear
systems.

Example 7.4. Consider system (7.32) with matrices

A D

2
664
0 1 0 0

0 0 1 0

0 0 0 1

6 5 �5 �5

3
775

B D D D �
0 0 0 1

�T
; C D �

1 0 0 0
�

and initial conditions x.0/ D �
1 0 1 1

�
. Note that A is not stable since its

eigenvalues are �3;�2;�1; 1. The relative degree r with respect to the unknown
input equals 4. As a consequence, the system is strongly observable. The unknown
input

	 D cos.0:5t/C 0:5 sin.t/C 0:5

is used for pedagogical purposes. It is obviously a bounded smooth function with
bounded derivatives. It is also assumed that u D 0. Furthermore, let the output of
the system be affected by a deterministic noise of the form

Nw D 0:1 sin.1037j cos.687t/j/

of amplitude � D 0:1. The correction factor L D �
5 5 5 5

�T
places the

eigenvalues of A �LC at f�1;�2;�3;�4g. The gain matrix QP�1 is thus given by

QP�1 D

2
664
1 0 0 0

5 1 0 0

5 5 1 0

5 5 5 1

3
775 (7.48)

The parameters ˛1 D 1:1; ˛2 D 1:5; ˛3; ˛4 D 3;M D 2 are chosen, and the
nonlinear part of the observer takes the form

Pv1 D w1 D �3 � 21=4jv1 � y C C zj.3/=4 sign.v1 � y C C z/C v2

Pv2 D w2 D �2 � 21=3jv2 � w1j2=3 sign.v2 � w1/C v3
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Fig. 7.8 State estimation errors in the presence of a deterministic noise of amplitude 10�1

Fig. 7.9 Detail of observer error graphs. Estimation error of x2 (above). Estimation error of x4
(below)

Pv3 D wn�1 D �1:5 � 21=2jv3 � w2j1=2 sign.v3 � w2/C v4

Pv4 D �1:1 � 2 sign.v4 � w3/

The observer performance and finite-time convergence for the sampling time
interval � D 0:001 are depicted in Fig. 7.8. Figure 7.9 shows the details of the
state convergence. Note that the estimation error associated with x2 converges to a
bounded region of order 5 � 10�3, while the estimation error in x4 converges to a
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Fig. 7.10 Convergence of Ox1; Ox4 to x1 and x4

Fig. 7.11 System coordinates

bounded region of order 2 � 10�1. The transient process is shown in Fig. 7.10 for
the states x1 and x4. It is seen from Fig. 7.11 that the system trajectories and their
derivatives of any order tend to infinity. Thus, the differentiator could not perform
the observation alone. Figure 7.12 shows the effect of discretization in observation.
The sampling time intervals � D 0:0001 and � D 0:01 were taken in the absence of
noises.
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Fig. 7.12 Observer errors (detail) with sampling intervals � D 0:0001 (above) and � D 0:01

(below)

Consider now the input 	 as a bounded function with a Lipschitz derivative,
kD 1. Both the state x and the disturbance 	 are now estimated.

The linear part of the observer Eq. (7.40) is designed in the same way as before

with L D �
5 5 5 5

�T
and QP given by Eq. (7.48). Finally, the parameters for

Eq. (7.45) are chosen as ˛1 D 1:1; ˛2 D 1:5; ˛3 D 2; ˛4 D 3; ˛5 D 5, and ˛6 D 8

along with M D 1. Finite-time convergence of estimated states to the real states
is shown in Fig. 7.13 with the sampling interval � D 0:001. The unknown input
estimation is obtained using the relation (7.47) and it is demonstrated in Fig. 7.14.
The effects of discretization are shown in Fig. 7.15 based on the sampling intervals
� D 0:0001 and � D 0:01.

7.3 Observers for Single-Output Nonlinear Systems

The sliding mode algorithms given in the last section can be extended to the
unknown input reconstruction problem for a more general single-output nonlinear
case. A differentiator-based scheme is used. This requires a system transformation
into a canonical basis. The unknown inputs are expressed as a function of the
transformed states and thus a diffeomorphism must be established to recover the
unknown input in the original states.
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Fig. 7.13 Observer errors for the unknown input estimation case

Fig. 7.14 Unknown input estimation

7.3.1 Differentiator-Based Observer

Consider a nonlinear system

Px D f .x/C g.x/'.t/

y D h.x/
(7.49)

where f .x/ W � ! R
n, g.x/ 2 R

n, h.x/ W Rn ! R are smooth scalar and vector
functions defined on an open set � � R

n. The states, outputs, and unknown inputs
are given by x 2 R

n, y 2 R, and '.t/ 2 R.
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Fig. 7.15 Unknown input estimation error with � D 0:0001 (above) and 0.01 (below)

Assumption 7.2. For any point x 2 � it is satisfied that the output y has relative
degree n with respect to the disturbance '.t/, i.e.,

LgL
k
f h.x/ D 0; k < n � 1

LgL
n�1
f h.x/ ¤ 0

(7.50)

This assumption means that system (7.49) does not have internal dynamics.
The problem then is to design a finite-time convergent observer that generates
the estimates Ox; O'.t/ for the state x and the disturbance '.t/ given only the
measurements y D h.x/. In order to accomplish this, system (7.49) must first
undergo a transformation into a canonical form which we shall now proceed to
describe.

System Transformation

The system in Eq. (7.49) with relative degree n can be represented in a new basis
that is introduced as follows:

� D

0
BBB@

�1
�2
:::

�n

1
CCCA D

0
BBB@

�1.x/

�2.x/
:::

�n.x/

1
CCCA D

0
BBB@

h.x/

Lf h.x/
:::

Ln�1
f h.x/

1
CCCA 2 R

n (7.51)
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It is well known3 that if Assumption 7.2 is satisfied, then the mapping

ˆ.x/ D

0
BBB@

�1.x/

�2.x/
:::

�n.x/

1
CCCA (7.52)

defines a local diffeomorphism in a neighborhood of any point x 2 N� � �, which
means

x D ˆ�1.�/

This is an important property since the signals obtained for the transformed
system cannot be interpreted for the original system otherwise. Taking into account
Eqs. (7.51) and (7.52), the system (7.49) with relative degree n can be written in the
form

P� D ƒ� C  .�/C �.�; '.t// (7.53)

where

ƒ D

2
6664

0 1 0 � � � 0
0 0 1 � � � 0
:::
:::
::: � � � :::

0 0 0 � � � 0

3
7775 2 R

n�n (7.54)

and

 .�/ D

0
BBB@

0

0
:::

Lnf h.x/

1
CCCA D

0
BBB@

0

0
:::

Lnf h.ˆ
�1.�//

1
CCCA (7.55)

and

�.�; '.t// D

0
BBB@

0

0
:::

LgL
n�1
f h.x/'.t/

1
CCCA D

0
BBB@

0

0
:::

LgL
n�1
f h.ˆ�1.�//'.t/

1
CCCA (7.56)

In order to obtain the necessary derivatives of the output, the following higher-order
sliding mode observation/differentiation algorithm (from Chaps. 4 and 6) is used.

3See, for example, [112].
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Higher-Order Sliding Mode Observer/Differentiator

The derivatives �i , i D 1; : : : ; n of the measured outputs y D h.x/ can be
estimated in finite time by the higher-order sliding mode differentiator. This can
be written in the form

Pz0 D v0 D z1 � �0jz0 � yj n
nC1 sign.z0 � y/

Pz1 D v1 D z2 � �1jz1 � v0j n�1
n sign.z1 � v0/

: : :

Pzi D vi D zi � �i jzi � vi�1j n�i
n�iC1 sign.zi � vi�1/

: : :

Pzn D ��n sign.zn � vn�1/

(7.57)

The choice of �i , i D 0; : : : ; n is discussed in Chap. 6 (see, for instance, Eq. (6.29)).
Therefore, the following estimates are available in finite time:

O� D

0
BBBB@

O�1O�2
:::
O�n

1
CCCCA D

0
BBB@

O�1.x/O�2.x/
:::

O�n.x/

1
CCCA D

0
BBB@

z0
z1
:::

zn�1

1
CCCA D ˆ.x/ (7.58)

The finite-time estimation Ox of the state x can be easily obtained from Eqs. (7.52)
and (7.58) as

Ox D ˆ�1.O�/ (7.59)

With a proper estimation of the system states achieved we can now concentrate on
the other observation objective and proceed to identify the disturbance.

7.3.2 Disturbance Identification

Combining Eq. (7.59) and the last coordinate of the transformed system in
Eq. (7.53), we obtain

P�n D Lnf h.ˆ
�1.�//CLgL

n�1
f h.ˆ�1.�//'.t/ (7.60)

Since the exact finite-time estimate OP�n of P�n is available via the high-order sliding
mode differentiator Eq. (7.57), and using the estimate O� of � in Eq. (7.60), the finite-
time estimate O'.t/ of the disturbance can be obtained from

O'.t/ D .LgL
n�1
f h.ˆ�1.O�///�1

hOP�n �Lnf h.ˆ�1.O�//
i

(7.61)
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Example 7.5. Consider a satellite system which is modeled as

P D v

Pv D !2 � kgM

2
C d

P! D �2v!


� �!

m

In the equations above  is the distance between the satellite and the Earth’s center, v
is the radial speed of the satellite with respect to the Earth,� is the angular velocity
of the satellite around the Earth,m andM are the mass of the satellite and the Earth,
respectively, kg represents the universal gravity coefficient, and � is the damping
coefficient. The quantity d which affects the radial velocity equation is assumed to
be a disturbance which is to be reconstructed/estimated. Let x WD col.x1; x2; x3/ WD
.; v; !/. The satellite system can then be rewritten as follows:

Px D

0
B@

x2
x1x

2
3 � k1

x21

� 2x2x3
x1

� k2x3

1
CA C

0
@01
0

1
A d.t/ (7.62)

y D x1 (7.63)

where y is the system output, k1 D kgM and k2 D �=m. By direct computation, it
follows that

Lgh.x/ D 0; LgLf h.x/ D 1

and thus the system in Eqs. (7.62) and (7.63) has global relative degree 2. Choose
the coordinate transformation as T W �1 D x1; �2 D x2; � D x21x3. Note that for
x1 ¤ 0, this transformation is invertible and an analytic expression for the inverse
can be obtained as x1 D �1; x2 D �2; x3 D �

�21
. Since x1 D  is the distance of the

satellite from the center of the Earth x1 ¤ 0. It follows that in the new coordinates
col.�1; �2; �/ the system from Eqs. (7.62) and (7.63) can be described by

P�1 D �2

P�2 D �2

�31
� k1

�21
C d

P� D �k2�

In this system the internal dynamics (given by the last equation) are linear and
asymptotically stable, since k2 > 0; and therefore the system itself is locally
detectable. The higher-order sliding mode differentiator is described by
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Pz10 D v10

v10 D ��10jz10 � yj2=3sign.z10 � y/C z11

Pz11 D v11

v11 D ��11jz11 � v10j1=2sign.z11 � v10/C z12

Pz12 D ��12sign.z12 � v11/

where col.z10; z
2
1/ or col.z10; v

1
0/ give an estimate of � and the estimate for � can be

obtained from the equation PO� D �k2 O�. Therefore, the estimate of the disturbance
d.t/ is available online, and can be obtained from the expression

Od D PO�2 � O�2
O�31

C k1

O�21
In the simulations, the parameters have been chosen as follows: m D 10;M D
5:98 	 1024; kg D 6:67 	 10�11, and � D 2:5 	 10�5. For simulation purposes, the
disturbance d.t/ D exp�0:002t sin.0:02t/ has been introduced. The differentiator
gains �ji j have been chosen as �10 D 2 and �11 D �12 D 1. In the following
simulation, the initial values x0 D .107; 0; 6:3156 	 10�4/ are used for the plant
states (in the original coordinates) while for the observer z0 D .1:001	107; 0; 1/ and
O�0 D 6:3156 	 10�4 (in the transformed coordinate system). Figures 7.16 and 7.17
show that the states and the disturbance signal d.t/ can be reconstructed faithfully.

7.4 Regulation and Tracking Controllers Driven
by SM Observers

7.4.1 Motivation

The higher-order sliding mode observers presented in this chapter provide both
theoretically exact observation and unknown input identification. This means that
using such observers we cannot only observe the system states but also compensate
matched uncertainties/disturbances (theoretically) exactly. Therefore, higher-order
sliding mode observers create a situation in which two quite distinct control strate-
gies can be used for the compensation of the matched uncertainties/disturbances:

• Sliding mode control based on observed system states
• The direct/continuous compensation of the uncertainties/disturbances based on

its reconstructed/identified values
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Fig. 7.16 The response of system states and their estimates

Both types of compensation are theoretically exact. In this section the control
algorithms based on two proposed strategies are derived and compared. Finally,
recommendations for the proper use of proposed algorithms are made which depend
on the agility of the actuators, the parameters of discrete time implementation, and
the measurement noise.

7.4.2 Problem Statement

Consider the linear time-invariant system with unknown inputs (LTISUI) of the
form:

Px .t/ D Ax .t/C B .u .t/C w .t//
y .t/ D Cx .t/

(7.64)

where x .t/ 2 R
n, u .t/ 2 R

m, y .t/ 2 R
p (1 � p < n) are the state vector,

the control, and the output of the system, respectively. The unknown inputs are
represented by the function vector w .t/ 2 R

q . Furthermore, rank.C / D p and
rank.B/ D m. The following conditions are assumed to be fulfilled henceforth:

A1. The pair .A;B/ is controllable.
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Fig. 7.17 The disturbance d.t/ and its reconstruction signal Od.t/

A2. For u D 0, the system is strongly observable (or the triple .A; C;B/ has no
invariant zeros).

A3. w.t/ is absolutely continuous, and there exists a constant wC such that
kw .t/k � wC:

In this section we will firstly derive an observer-based robust output control for
system (7.64) of the form

u.t/ D u0.t/C u1.t/ (7.65)

where u0.t/ is a nominal control designed for the nominal system (i.e., w .t/ D 0)
and u1.t/ is a compensator of the unknown input vector w.t/.

7.4.3 Theoretically Exact Output-Feedback Stabilization
(EOFS)

Here, a compensation control law is designed based on the estimated states and the
unknown input identification. Consider the nominal system

Px0 .t/ D Ax0 .t/C Bu0 .t/ (7.66)
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The control signal u0.t/ is a stabilizing state-feedback control for the nominal
system,

u0.t/ D �Kx.t/
where the gainK can be designed using any control strategy.

Let us design the second part of the control input Eq. (7.65) as

u1.t/ D � Ow.t/

where Ow.t/ is the identified unknown input.
Theoretically, assuming exact observation and identification, the equalities

Ox .t/ � x .t/ and Ow .t/ � w .t/ hold after a finite time T . When the EOFS
control law is given by

u.t/ D �Kx.t/ � Ow.t/ (7.67)

applied to system (7.64) it yields the following closed-loop dynamic equation:
Px .t/ D .A � BK/x.t/. Theoretically the continuous control u1.t/ exactly com-
pensates the matched perturbations and the solutions for systems (7.64) and (7.66)
coincide.

7.4.4 Output Integral Sliding Mode Control

In this subsection, we propose applying the ISM method using the estimated states
obtained by the HOSM observer. We will call it output integral sliding mode control
(OISMC). Consider a control input of the form (7.65), where u0.t/ is the nominal
control for the system without uncertainties Eq. (7.66). Let the nominal control
be u0.t/ D �Kx.t/. The compensator u1.t/ should be designed to reject the
disturbance w .t/ in the sliding mode on the manifold fxW s.x; t/ D 0g ; so that
the equivalent control u1eq D �w.t/: The switching function s.x; t/ is defined
as s.x; t/ D s0.x; t/ C 	.x; t/; where s; s0; 	 2 R

m and s0.x; t/ D BCx.t/
(BC D .BTB/�1BT ) and the integral part 	 is selected such that x.t/ D x0.t/ for
all t 2 ŒT;1/. In other words, from t0 D T the system state belongs to the sliding
surface, where the equivalent sliding mode control ueq.t/ should compensate for the
unknown input, that is, ueq.t/ D �w.t/. To achieve this purpose, 	 is determined
from the equation P	.t/ D �BC .Ax.t/C Bu0.t// ; with 	.t0/ D �BCs.x.t0//:
The switching surface takes the form

s.x .t/ ; t/ D BC
�
x.t/ � x.t0/�

Z t

t0

ŒAx.�/C Bu0.x; �/� d�

�

where t0 � T . The compensator u1.t/ is designed as a discontinuous unit-vector
control u1.t/ D � s.x.t/;t /

ks.x.t/;t /k . Thus, the sliding mode manifold s.x; t/ is attractive

from t0 if  > wC � kw .t/ k. Finally, the control law Eq. (7.65) is designed as
follows:
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u.x; t/ D �Kx.t/ �  s.x; t/

ks.x; t/k (7.68)

Again, in the ideal case, system (7.64) with u.x; t/ given by Eq. (7.68) takes the
form of Eq. (7.66).

7.4.5 Precision of the Observation and Identification Processes

Suppose that we would like to realize the observation with a sampling step � while
considering that a deterministic noise signal n.t/ (a Lebesgue-measurable function
of time with a maximal magnitude �) is present in the system output. Let

f .t/ D f0 .t/C n .t/ ;
���f .iC1/

0 .t/
��� < L; kn.t/k � " (7.69)

From Theorem 6.2, the error caused by the sampling time � in the absence of
noise for an i th-order HOSM differentiator given by Equation (6.28) is

���f .j /

0 .t/ � zj .t/
��� � O.�i�jC1/ for j D 0; : : : ; i (7.70)

and the differentiator error caused by a deterministic upper bounded noise will be

���f .j /

0 .t/ � zj .t/
��� � O."

i�jC1
iC1 / for j D 0; : : : ; i (7.71)

Here, we are dealing with an .˛ C k � 1/th-order HOSM differentiator: To recover
the estimated state, .k � 1/ differentiations are needed. From expressions (7.70)
and (7.71) it follows that the observation error caused by the sampling time � is
O.�˛C1/, while the observation error caused by a deterministic upper bounded noise

is O."
˛C1
˛Ck /.

It is clear that k differentiations are needed in order to recover the estimated
unknown input. Therefore, from (7.70) the sampling step identification error will be

O.�˛/; and the deterministic noise identification error Eq. (7.71) will beO
	
"

˛
˛Ck



:

The next proposition analyzes the total effect of both sampling step and
deterministic noise errors:

Proposition 7.1. Let us assume ı � k��; and � � k���
iC1 with k�; k�; � some

positive constants. Then after a finite-time, the HOSM observation and identification
error will be O

�
�˛C1� andO .�˛/, respectively.

Remark 7.3. Table 7.1 summarizes the observation and identification errors when
the unknown input w.t/ satisfies (7.69). Then, an .˛C k � 1/th-order differentiator
is used to improve precision.
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Table 7.1 Precision due to sampling step and bounded noise

Error Sampling step ı Bounded noise � Total effect ı

Observation O
	
ı˛C1



O

	
�
˛C1
˛Ck



O

�
�˛C1

�
Identification O .ı˛/ O

	
�

˛
˛Ck



O .�˛/

HOSM differentiator O .ı/ O
	
�

1
˛Ck



O .�/

EOFS Realization Error. Theoretically, the perturbations are exactly compensated
in finite time. Nevertheless, in the previous section we discussed how the discretiza-
tion and deterministic output noise present in the observation and identification
processes affect the compensation accuracy. Furthermore, an additional error, due
to the actuator time constant �; will cause an error of order O.�/. Now, the EOFS
controller stabilization error may be estimated by

� D O .�/CO
�
�˛C1� CO .�˛/ (7.72)

OISMC Realization Error. As we have seen, when the observation, identification,
and control processes are free from nonidealities, both controllers, EOFS and
OISMC, give identical results. However, in the practical case, the errors appearing
in the complete control process should be taken into account. In the case of the
OISMC the stabilization error is the sum of the observation error plus the control
error, i.e.,

� D O.�/CO.�aC1/ (7.73)

Now, we analyze the accuracy of the HOSM observer and the identification
procedure, combined with both control methodologies. Recall that we are using
a .˛ C k � 1/th-order HOSM differentiator and that we need the .k � 1/th and kth
derivatives for the state observation and unknown input identification, respectively.
Consider the following cases:

(a) O .�˛/ � O .�/, i.e., the controller execution error is greater than the
identification process error. In such a case, it would be suitable to use the EOFS
strategy to avoid chattering.

(b) O
�
�˛C1� � O .�/ � O .�˛/, i.e., the error related to the actuator time

constant is less than the identification process error. Thus, the error in the EOFS
control strategy is mainly determined by the identification error. In this case,
OISMC strategy could be a better solution for systems tolerant to chattering with
oscillation frequencies of orderO. 1

�
/.

(c) O .�/ � O
�
�˛C1�, i.e., the error caused by the actuator time constant

is less than the observation error. Once again, the precision of the EOFS
controller is determined by the precision of the identification process O.�˛/,
and the precision of the OISMC controller is determined by the accuracy of the
observation process O.�˛C1/. However, it should be noted that in this case the
use of the OISMC controller could amplify the observer noise.



286 7 Observation and Identification via HOSM Observers

7.5 Notes and References

The super-twisting-based observer for mechanical systems was first presented in
[25, 52].

The design of HOSM observers for strongly observable and detectable linear
systems with unknown inputs is suggested in [96] and in [24]. For a proof of
Theorem 7.4, see [94]. A step-by-step differentiator approach for linear systems
with stable invariant zero is presented in [84].

The design of observers for nonlinear systems with unknown inputs for the case
when the relative degree of unknown inputs with respect to measured outputs is
well defined is given in [95]. The method in [95] does not require the system to be
strongly observable, but the internal dynamics must be asymptotically stable. The
first approach to state observation presented in Sect. 7.2 (but for a class of nonlinear
systems) was given in [42]. The first paper in which the approach in Sect. 7.3.1
was presented for state observation is [41]. In [41] step-by-step differentiation was
used. The work in [83] also uses step-by-step differentiation. Subsequently in [53,
54] HOSM differentiators were applied for the design of HOSM observers, which
requires only the transformation of the observability Jacobian, but does not require
the inversion of observability map. Parameter identification methods are also studied
in [48].

The satellite system example is taken from [95], although the original model is
from Marino and Tomei [180].

For details of the recursive least-squares algorithm see, for example, [173]. The
proof of Theorem 7.1 is given in [173].

The comparison of effectiveness of HOSM-based uncertainty identification and
compensation versus sliding mode based uncertainty compensation, is presented in
[79]. HOSM observer based control for the compensation of unmatched uncertain-
ties was developed in [80].

State estimation and input reconstruction in nonminimum phase causal nonlinear
systems using higher-order sliding mode observers is studied in [166].

Automotive applications of sliding mode disturbance observer- based control can
be found in the book [111].

7.6 Exercises

Exercise 7.1. The pendulum-cart system (see Fig. 7.18), when restricted to a two-
dimensional motion, can be described by the following set of equations:

.M Cm/ Px Cml R� D u.I Cml2/ R� Cml Rx D mgl (7.74)

where M and m are the mass of the cart and the pendulum, respectively, l is the
pendulum length, �.t/ is its deviation from the vertical, and x.t/ represents the
horizontal displacement of the cart. The system parameters are given asM D 2Œkg�;
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Fig. 7.18 The pendulum-cart system

Fig. 7.19 Mass-spring-damper system

m D 0:1Œkg�, and l D 0:5Œm�. Given the measured outputs � and x, design a super-
twisting observer for P� and Px for the uncontrolled case, u D 0. Assume the system’s
initial conditions are �.0/ D 0:3Œrad�; P�.0/ D 0:03Œrad=s�; x.0/ D 0Œm�, and
Px.0/ D 0:1 Œm/s�. Confirm the efficacy of the estimation algorithm via simulation if
O�.0/ D 0 Œrad�; PO�.0/ D 0Œrad=s�; Ox.0/ D 0Œm�, and POx D 0Œm/s�.

Exercise 7.2. Given the following mass-spring-damper system with friction (see
Fig. 7.19)

m Rx C b0 Px C b1sign . Px/C kx D u (7.75)

where m D 1 Œkg� ; b0 D 0:1 Œkg/s� ; b1 D 0:05
�
kg/s2

�
; and k D 0:5 Œkg/s�, design a

feedback twisting control which achieves the tracking objective

x ! xd D 0:7 sin .2:3t/C 1:8 sin.6:4t/ (7.76)
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Fig. 7.20 Mass–spring–damper fourth-order system

Consider the only output of the system to be y D x and design a super-twisting
observer with Ox D 0 and POx D 0 to estimate Px for the system starting at rest. Verify
the convergence of the state estimates via simulation.

Exercise 7.3. Consider system (7.75) with unknown coefficients m; b0, and k that
is controlled by the tracking twisting controller to follow the command profile
Eq. (7.76). Use the super-twisting observer with Ox D 0 and POx D 0 to estimate
the mass velocity Px as well as the unknown parameters for the system starting at
rest. Compare the simulation results with those obtained in Exercise 7.2.

Exercise 7.4. Assuming that x1 is measured, design the twisting tracking controller
as in Exercise 7.2 that drives x1 to follow the desired trajectory in Eq. (7.76), for the
system shown in Fig. 7.20 and described by

Px1 D x2

Px2 D �500x1 C 150x3 C 1:2u

Px3 D x4

Px4 D 200x1 � 600x3 � 20x4
y D x1

Estimate x2 via the super-twisting state observer and reconstruct the position of
the second mass, x3, treated as a disturbance in the first two equations. Use x0 D
Œ0:4;�3:0; 0:28; 0�T as initial conditions for the system and Ox0 D Œ0; 0; 0; 0�T for
the observer in your simulations.

Exercise 7.5. Consider a flux-controlled DC motor whose dynamics are given by
the following equations:

Px1 D x2

Px2 D �0:1x2 C 0:1x3u C 	

Px3 D �2x3 � 0:2x2u C 200

(7.77)
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where x1 is the rotor position, x2 is the angular velocity, x3 is the current in the
motor armature, and � is a disturbance. Assume that the system is affected by a
perturbation signal 	 ¤ 0 and that both the position x1 and the internal dynamics
x3 are measured. A zero-average random noise of amplitude " D 0:001 is assumed
to affect the measurement of x1. Apply the concept of equivalent control to identify
	 D cos.0:5t/ C 0:5 sin.t/ C 0:5 and the discontinuous signal shown in Fig. 7.5,
given the initial conditions x0 D Œ1000; 4�; 100�T and Ox0 D Œ0; 0; 0�T . Perform
simulations to confirm the proper reconstruction of 	.

Exercise 7.6. If a rotary spring is attached to the axis of the DC motor described in
Exercise 7.5 then its dynamics may be represented by

Px1 D x2

Px2 D �a1x1 � a2x2 C 0:1x3u

Px3 D �2x3 � 0:2x2u C 200

(7.78)

Design an appropriate controller u such that it satisfies the persistent excitation
condition and estimate the unknown parameters a1 and a2 using the second-order
sliding mode parameter estimator. Use x0 D Œ10; 4�; 100�T and Ox0 D Œ0; 0; 0�T for
simulation purposes.

Exercise 7.7. Consider the following LTI system:

Px D

2
666664

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

12 �4 �15 5 3

3
777775
x C

2
666664

0

0

0

0

1

3
777775

u C

2
666664

0

0

0

0

1

3
777775
	.t/;

y D �
1 0 0 0 0

�
x C �

with initial conditions x.0/ D �
1 0 1 0 1

�T
. Assume that the output is

affected by a deterministic noise

� D 0:02 cos .1024 � j sin .606t/ j/

Identify the constant unknown input 	 D 12� using the sliding mode observer for
strongly observable systems assuming the control input is u D 0. Furthermore,
apply feedback control to place the system poles at �2;�4;�6;�1;�3:5, and
identify the sawtooth wave 	.t/ D 2

�
t
0:5

� floor
�
t
0:5

C 1
2

��
. In both cases, use

a Luenberger observer as the linear part of the observer and compare the results
through simulations using a Kalman filter. The initial conditions for the observer
should be Ox0 D Œ0; 0; 0; 0; 0�T in all cases.
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Exercise 7.8. Consider the DC motor in Exercise 7.78 described by Eq. (7.77).
Assume that a zero-average random noise of amplitude " D 0:001 affects the
measurement of x1. Verify the strong observability of the system and apply the
sliding mode observer to identify 	 D cos.0:5t/ C 0:5 sin.t/ C 0:5 and the dis-
continuous signal shown in Fig. 7.5 given the initial conditions x0 D Œ0; 4�; 100�T

and Ox0 D Œ0; 0; 0�T . Compare the results with those obtained using the observer in
Exercise 7.5 by means of simulation.

Exercise 7.9. Consider the following third-order nonlinear system:

Px1 D �2x1 � x2 C x3

Px2 D x1

Px3 D �x32 � 2x3
�
2x1 C sin.x2/

2C cos.x3/

�
C d.t/ (7.79)

y D x2

where d.t/ D sin .3:18t/C 2 sin .7:32t/ C 0:5 cos .0:79t/ represents an unknown
input. Design a differentiator-based observer that generates estimates of the state x
and the unknown input d.t/, given the output y. Show the efficacy of the observer
by means of simulations, considering the initial conditions x.0/ D Œ1; 2; �1�T and
Ox.0/ D Œ0; 0; 0�T .

Exercise 7.10. The chaotic Chua’s circuit can be described by the following state
equations:

Px1 D �acx1 C ax2 � ax13 C d.t/

Px2 D x1 � x2 C x3

Px3 D �bx2 (7.80)

y D x3

The parameters of the system are chosen as a D 10, b D 16, c D �0:143. Consider
the unknown input term as d.t/ D 0:5 sin.t/. Generate an estimate for the unknown
input using the differentiator-based observer. Realize the corresponding simulations
given the initial conditions x.0/ D Œ0:1 0:1 0:1�T and Ox.0/ D Œ0; 0; 0�T .

Exercise 7.11. Develop a differentiator-based observer when Assumption 7.2 is not
satisfied, i.e., in the case when the output y has relative degree r < n with respect
to the unknown input '.t/.

Exercise 7.12. Necessary and sufficient conditions for the strong observability of
linear and nonlinear systems single-output systems were given in this chapter.
Formulate the equivalent conditions for strong observability in multiple-input,
multiple-output systems.
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