
Chapter 3
Conventional Sliding Mode Observers

The purpose of an observer is to estimate the unmeasurable states of a system based
only on the measured outputs and inputs. It is essentially a mathematical replica of
the system, driven by the input of the system together with a signal representing
the difference between the measured system and observer outputs. In the earliest
observer, attributed to Luenberger, the difference between the output of the plant
and the observer is fed back linearly into the observer. However, in the presence of
unknown signals or uncertainty, a Luenberger observer is usually (a) unable to force
the output estimation error to zero and (b) the observer states do not converge to
the system states. A sliding mode observer, which feeds back the output estimation
error via a nonlinear switching term, provides an attractive solution to this issue.
Provided a bound on the magnitude of the disturbances is known, the sliding mode
observer can force the output estimation error to converge to zero in finite time,
while the observer states converge asymptotically to the system states. In addition,
disturbances within the system can also be reconstructed.

3.1 Introduction

Consider initially a nominal linear system

Px.t/ D Ax.t/ C Bu.t/ (3.1)

y.t/ D Cx.t/ (3.2)

where A 2 R
n�n, B 2 R

n�m, and C 2 R
p�n. Without loss of generality assume

that C has full row rank which means each of the measured outputs is independent.
The objective is to obtain an estimate of the state x.t/ based only on knowledge of
the quantities y.t/ and u.t/. An algebraic condition on the matrix pair .A; C /—the
notion of observability—was proposed as a necessary and sufficient condition for
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106 3 Conventional Sliding Mode Observers

state reconstruction (for details see Appendix C). For simplicity, the observability
condition will be assumed to hold, although technically some of the developments
only require the weaker restriction of detectability on the pair .A; C /.

One way of viewing the approach of Luenberger is to think of the observer
system as comprising a model of the plant together with a feedback term which
corrects the estimates by injecting back the discrepancy between its output and the
output of the system, through a designer-specified gain. In the simplest form of
sliding mode observer, instead of feeding back the output error between the observer
and the system in a linear fashion, the output error is fed back via a discontinuous
switched signal.

3.2 A Simple Sliding Mode Observer

Consider a coordinate transformation x 7! Tcx associated with the invertible matrix

Tc D
�

N T
c

C

�
(3.3)

where the submatrix Nc 2 R
n�.n�p/ spans the null-space of C . By construction

det.Tc/ ¤ 0. Applying the change of coordinates x 7! Tcx, the triple .A; B; C / has
the form

TcAT �1
c D

�
A11 A12

A21 A22

�
; TcB D

�
B1

B2

�
; C T �1

c D �
0 Ip

�
(3.4)

where A11 2 R
.n�p/�.n�p/ and B1 2 R

.n�p/�m. The structure imposed on the
output distribution matrix in (3.4) is crucial to what follows. Assume without loss
of generality the system (3.1) and (3.2) is already in the form of (3.4).

Utkin proposed an observer for (3.1) and (3.2) of the form

POx.t/ D A Ox.t/ C Bu.t/ C Gn� (3.5)

Oy.t/ D C Ox.t/ (3.6)

where . Ox; Oy/ are the estimates of .x; y/ and � is a discontinuous injection term.
Define e.t/ WD Ox.t/ � x.t/ and ey.t/ WD Oy.t/ � y.t/ as the state estimation and
output estimation errors, respectively. The term � is defined component-wise as

�i D �sign.ey;i /; i D 1; 2; :::; p (3.7)

where � is a positive scalar and ey;i represents the i th component of ey . The term � is
designed to be discontinuous with respect to the sliding surfaceS D fe W Ce D 0g to
force the trajectories of e.t/ onto S in finite time. Assume without loss of generality
that the system is already in the coordinate associated with (3.4), then the gain Gn

has the structure
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Gn D
�

L

�Ip

�
(3.8)

where L 2 R
.n�p/�p represents the design freedom. It follows from the definition

of e.t/ and Eqs. (3.1) and (3.5) that the error system is given by

Pe.t/ D Ae.t/ C Gn� (3.9)

From the structure of the output distribution matrix C in (3.4), the state estimation
error can be partitioned as e D col.e1; ey/ where e1 2 R

n�p. Consequently the error
system from (3.9) can be written in the form

Pe1.t/ D A11e1.t/ C A12ey.t/ C L� (3.10)

Pey.t/ D A21e1.t/ C A22ey.t/ � � (3.11)

Furthermore Eq. (3.11) can be written component-wise as

Pey;i .t/ D A21;i e1.t/ C A22;i ey.t/ � � sign.ey;i / (3.12)

where A21;i and A22;i represent the i th rows of A21 and A22, respectively. To develop
conditions under which sliding will take place, the reachability condition will be
tested. From (3.12)

ey;i Pey;i D ey;i .A21;i e1 C A22;i ey/ � �jey;i j
< �jey;i j.� � j.A21;i e1 C A22;i ey/j/

Provided the scalar � is chosen large enough such that

� > jA21;i e1 C A22;i ey j C � (3.13)

where the scalar � 2 RC, then

ey;i Pey;i < ��jey;i j (3.14)

This is the eta-reachability condition discussed in Chap. 2 and implies that ey;i will
converge to zero in finite time. When every component of ey.t/ has converged to
zero, a sliding motion takes place on the surface S.

Remark 3.1. Note that this is not a global result. For any given �, there will exist
initial conditions of the observer (typically representing very poor estimates of the
initial conditions of the plant) so that (3.13) is not satisfied.

During sliding, ey.t/ D Pey.t/ D 0, and the error system defined by (3.10) and
(3.11) can be written in collapsed form as

Pe1.t/ D A11e1.t/ C L�eq (3.15)

0 D A21e1.t/ � �eq (3.16)
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where �eq is the so-called equivalent output error injection that is required to
maintain the sliding motion. This is the natural analogue of the equivalent control
discussed in Chap. 2. Substituting for �eq from (3.15) and (3.16) yields the following
expression for the reduced-order sliding motion:

Pe1.t/ D .A11 C LA21/e1.t/ (3.17)

This represents the reduced-order motion (of order n � p) that governs the sliding
mode dynamics.

It can be shown if .A; C / is observable, then .A11; A21/ is also observable, and a
matrix L can always be chosen to ensure that the reduced-order motion in (3.17) is
stable.

Example 3.1. Consider a second-order state-space system described by (3.1) and
(3.2) where

A D
�

0 1

�2 0

�
; B D

�
0

1

�
; C D �

1 1
�

(3.18)

which represents a simple harmonic oscillator. For simplicity, assume u.t/ D 0.
A suitable choice for the nonsingular matrix Tc from (3.3) is

Tc D
�

1 �1

1 1

�
(3.19)

Following the change of coordinates x 7! Tcx, the system triple .A; B; C / becomes

TcAT �1
c D

�
0:5 1:5

�1:5 �0:5

�
; TcB D

� �1

1

�
; C T �1

c D �
0 1

�
(3.20)

and A11 D 0:5 and A21 D �1:5. Suppose the nonlinear gain from (3.8) is chosen as
L D 3. This results in the sliding motion being governed by A11CLA21D�4, which
is stable. In the original coordinates of (3.18), the nonlinear gain can be calculated as

Gn D T �1
c

�
L

�1

�
D

�
0:5 0:5

�0:5 0:5

� �
3

�1

�
D

�
1

�2

�
(3.21)

The following simulation was performed with the system having initial condi-
tions x.0/ D col.0:5; �0:8/ and the observer having zero initial conditions.

Figure 3.1 shows the system states x.t/ and the estimates Ox.t/. After approx-
imately 1:5 s, excellent tracking of the states occurs. Figure 3.2 shows the output
estimation error ey.t/ and the state estimation errors e.t/. After approximately
0:66 s, ey.t/ becomes zero and remains zero. This is indicative of a sliding motion
taking place on S. Subsequently, the errors (Fig. 3.1) evolve governed the dynamics
of the reduced-order motion. Figure 3.3 shows that during the sliding motion, the
term � exhibits high-frequency switching. Figure 3.4 shows an approximation of
the equivalent output error injection signal �eq obtained from low-pass filtering �
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Fig. 3.1 System states x.t/ (solid) and the observer estimates Ox.t/ (dashed)
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Fig. 3.2 The output estimation error ey.t/ (dashed) and the components of the state estimation
error e.t/ (solid)
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Fig. 3.3 The nonlinear injection switching term �
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Fig. 3.4 The equivalent output error injection �eq (solid) and A21e1.t/ (dashed)
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Fig. 3.5 The output estimation error ey.t/ (dashed) and the components of the state estimation
error e.t/ (solid)

from Fig. 3.3 through a first-order filter with time constant � D 0:02 s. Notice that
the term �eq shows good agreement with the formal expression for �eq in Eq. (3.16)
once a sliding motion is taking place.

In the next set of simulations the same observer is employed but the initial
conditions of the plant states have been changed to 0:5 and �1:5, respectively. Once
again the initial conditions of the observer are set as zero. The direct consequence of
this is that the initial conditions e1.0/ and ey.0/ are larger than previously simulated,
and the response of the error system is qualitatively different.

Figure 3.5 shows that the output estimation error ey.t/ now pierces the sliding
surface S at approximately 0:87 s but does not remain there, and sliding does not
take place. The reason is that the state estimation error e1.t/ at that time instant
ey.t/ D 0 does not satisfy the reachability condition in (3.14). However, when
ey.t/ becomes zero again at approximately 1:55 s, a sliding motion begins. At this



3.3 Robustness Properties of Sliding Mode Observers 111

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

seconds

Fig. 3.6 The discontinuous term � with larger error initial conditions

point in time, the error e1.t/ is much smaller, and the reachability condition (3.14) is
satisfied. Figure 3.6 shows the injection term � in the case when the initial errors are
large. It is clear that the onset of sliding occurs much later since the high-frequency
sliding motion does not appear until 1.5 s.

3.3 Robustness Properties of Sliding Mode Observers

Now suppose the nominal linear system in Eq. (3.1) is replaced by the uncertain
system

Px.t/ D Ax.t/ C Bu.t/ C M �.t; x; u/ (3.22)

where �.t; x; u/ 2 R
h is a disturbance and M 2 R

n�h is the associated distribution
matrix. To exploit the robustness properties associated with sliding modes described
in Chap. 2, suppose the gain Gn is designed such that it is matched to the disturbance
distribution matrix, i.e., M D GnX for some X 2 R

p�h. As a consequence in the
coordinates of (3.4) and (3.8)

M D
�

LX

�X

�
D

�
L

�I

�
X (3.23)

and the error system in (3.10) and (3.11) becomes

Pe1.t/ D A11e1.t/ C A12ey.t/ C L� � LX�.t; x; u/ (3.24)

Pey.t/ D A21e1.t/ C A22ey.t/ � � C X�.t; x; u/ (3.25)



112 3 Conventional Sliding Mode Observers

Again it is necessary to develop conditions under which a sliding motion can be
enforced. To this end, from (3.25)

ey;i Pey;i D ey;i .A21;i e1 C A22;i ey C Xi�/ � �jey;i j
< �jey;i j.� � jA21;i e1 C A22;i ey C Xi �j/

and it is clear that if the gain of the switching term is large enough so that � >

jA21;i e1 C A22;i ey C Xi�j C � for a scalar � > 0 then the reachability condition in
(3.14) is satisfied. An ideal sliding motion is then guaranteed to take place in finite
time. During the sliding motion Eqs. (3.24) and (3.25) take the form

Pe1.t/ D A11e1.t/ C L�eq � LX�.t; x; u/ (3.26)

0 D A21e1.t/ � �eq C X�.t; x; u/ (3.27)

Substituting for �eq from (3.27) and (3.26) yields

Pe1.t/ D .A11 C LA21/e1.t/ (3.28)

which is independent of the disturbance �.t; x; u/.

Remark 3.2. Notice that for the existence of an ideal sliding motion, the matching
condition (3.23) is not required; a large enough � is sufficient to induce a sliding
motion. The matching condition is only required for the reduced-order motion (3.28)
to be independent of �.t; x; u/.

Example 3.2. Consider system (3.18), subject to uncertainty entering via the
distribution matrix

M D
�

1

�2

�

In the simulations which follow �.t; x; u/ D 0:2 sin.x1.t// but this information is
not available to the observer. Notice from (3.21) that the gain matrix Gn D M and
the so-called matching conditions in Eq. (3.23) are satisfied with X D 1.

Figures 3.7 and 3.8 show a sliding motion occurring after 0.66 s. Also notice
that the state estimation errors evolve according to a first-order decay. Crucially
the evolution is unaffected by the disturbance. This disturbance rejection property
is a major advantage of sliding mode observers compared to traditional linear
Luenberger observers. It can be seen from Fig. 3.9 that although the effect of the
disturbance �.t; x; u/ is not present in the state estimation errors, it appears directly
in the signal �eq . In fact once the reduced-order motion e1.t/ has become sufficiently
small (at about 1.5 s), the signal �eq exactly “reproduces” the disturbance �.t; x; u/

(with a small delay due to the low-pass filter used to obtain �eq). This is a powerful
result because the term � was not designed with any a priori knowledge about
�.t; x; u/, except that it is bounded.

Figure 3.3 shows the term � consists of high-frequency switching once sliding
is established. In the observer this does not present the sort of problem it does for
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Fig. 3.7 The output estimation error ey.t/ (dashed) and the components of the state estimation
error e.t/ (solid)
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Fig. 3.8 The error vector associated with the sliding motion e1.t/
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Fig. 3.9 The equivalent output error injection �eq (solid) and the disturbance �.t; x; u/ (dashed)
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Fig. 3.10 The output error injection term � after being smoothed

control problems because the signal � does not need to be realized by an actuator.
However, that said, it does to a certain extent pose a problem for the numerical
scheme used to solve the observer equations; consequently it is still often useful
to “smooth” the discontinuity. Recall that � is defined component-wise as �i D
� sign.ey;i /, which can also be expressed as

�i D �
ey;i

jey;i j if ey;i .t/ ¤ 0 (3.29)

The expression in (3.29) can be approximated by a smooth sigmoid function

�i D �
ey;i

jey;i j C ı
(3.30)

where ı is a small positive scalar. As in the control problem this results in a trade-off
between maintaining close to ideal performance and achieving a smooth output error
injection signal. Repeating the simulation, now using � as in (3.30) with ı D 0:0001,
yields the responses shown in Fig. 3.10. Clearly the signal is smooth and there is no
visible chattering. Furthermore, from Fig. 3.11, it can be seen that the performance
of the system is relatively unaffected by this approximation.

As explained earlier, the observer does not provide any guarantee of global state
estimation convergence. In the observer in (3.5)–(3.7), the size of � dictates the
size of the domain in which sliding is guaranteed to take place. This results in
a trade-off. For practical reasons, a very large value of � is not desirable (since
chattering is amplified), but a large � increases the set of initial conditions for which
the estimation error converges. This is explored in the next example.

Example 3.3. For pedagogical purposes consider an unstable state-space system

A D
� �2 �3

1 3

�
; B D

�
0

1

�
; C D �

0 1
�

(3.31)
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Fig. 3.11 The output estimation error ey.t/ (dashed) and the components of the state estimation
error e.t/ (solid)

Notice that in this example no change of coordinates is needed because the output
distribution matrix C is already in the required structure of (3.4). Specifying
L D 0 gives linear (reduced-order) first-order dynamics with a pole at �2. In the
simulations which follow � D 1. Also a full-order state feedback u.t/ D F x.t/

controller is used where F D �
1 �1

�
so that eig.A C BF / D f˙1:4142ig.

The reason for this choice of closed-loop eigenvalues is that the states will be
oscillatory, and the tracking of the states can be more readily observed. In Fig. 3.12,
the “shaded” area is the region in which the initial conditions .e1.0/; ey.0// must
lie for a sliding motion to occur. Outside this set of points the observer fails to
converge. The shaded region is sometimes referred to as the sliding patch. The size
of the shaded area can of course be enlarged by increasing the value of �, but this is
undesirable since increasing � tends to lead to more severe chattering.

A more elegant way to enlarge the sliding patch is to add a linear output error
feedback term to the observer. Specifically Eq. (3.5) can be modified to take the
form POx.t/ D A Ox.t/ � Gley.t/ C Bu.t/ C Gn� (3.32)

where Gl 2 R
n�p . An appropriate choice of the gain Gl will enlarge the sliding

patch. From Eqs. (3.1), (3.2), and (3.6), the state estimation error associated with
the observer in (3.32) is

Pe.t/ D .A � GlC /e.t/ C Gn� (3.33)

The error system in (3.33) is nonlinear and so a good approach to try to establish
global asymptotic stability is to consider Lyapunov-based methods. Consider the
quadratic form

V D eT P e (3.34)
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Fig. 3.12 The sliding region

where P 2 R
n�n is a symmetric positive definite matrix, as a candidate Lyapunov

function. Differentiating (3.34) with respect to time yields

PV D PeT P e C eT P Pe
D eT .P.A � Gl C / C .A � GlC /T P /e C 2eT P Gn� (3.35)

If P , Gl , and Gn can be chosen such that the expression in (3.35) is negative, then
the error system in (3.33) is (globally) quadratically stable.

Example 3.4. For the system in (3.31), choosing

Gl D
� �3

6

�
and Gn D

�
0

1

�
(3.36)

results in a closed-loop error system

Pe1.t/ D �2e1.t/ (3.37)

Pey.t/ D e1.t/ � 3ey.t/ � sign.ey/ (3.38)
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Consider a positive definite quadratic function as in (3.34) where e D .e1; ey/ and

P D
�

1
4

0

0 1

�
(3.39)

Differentiating with respect to time yields

PV D 1

2
e1 Pe1 C 2ey Pey

D 1

2
e1.�2e1/ C 2ey.e1 � 3ey � sign.ey//

D �e2
1 � 6e2

y C 2e1ey � 2jeyj
D �.e1 � ey/2 � 5e2

y � 2jeyj

If .e1; ey/ ¤ 0, then PV < 0 and global stability of the error system is proven.
Furthermore it can be shown that a sliding motion takes place in finite time. Once the
error e.t/ becomes sufficiently small, the reachability condition in (3.14) is satisfied
and a sliding motion takes place. From the arguments above, since e ! 0, e1 ! 0

as t ! 1. In particular at some finite time t0, je1.t/j < 1
2

for all t � t0. Now form
a typical reachability test

ey Pey D ey.e1 � 3ey � sign.ey//

� je1jjeyj � 3e2
y � jeyj

� je1jjeyj � jeyj (3.40)

and therefore for all t > t0,

ey Pey � �1

2
jeyj (3.41)

which implies ey ! 0 in finite time and a sliding mode takes place.
This example shows that the introduction of a linear output error injection term

can be beneficial.

The problem of robust state estimation for systems with bounded matched
uncertainty will now be explored. Consider the following uncertain system

Px.t/ D Ax.t/ C Bu.t/ C Bf .t; y; u/ (3.42)

y.t/ D Cx.t/ (3.43)

where f W RC � R
p � R

m 7! R
m represents lumped uncertainty or nonlinearities.

The function is assumed to be unknown but bounded so that

kf .t; y; u/k � �.t; y; u/ (3.44)
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where �.�/ is known. Consider an observer of the form

Pz.t/ D Az.t/ C Bu.t/ � GCe.t/ � P �1C T F T � (3.45)

where e D z � x. The symmetric positive definite matrix P 2 R
n�n and the gain

matrix G are assumed to satisfy

PA0 C AT
0 P < 0 (3.46)

where A0 WD A � GC , and the structural constraint

PB D .F C /T (3.47)

for some F 2 R
m�p . The discontinuous scaled unit-vector term

� D �.t; y; u/
F Ce.t/

kF Ce.t/k (3.48)

and e.t/ D z.t/ � x.t/.
Under these circumstances the quadratic form given by V.e/ D eT P e can be

shown to guarantee quadratic stability. Furthermore an ideal sliding motion takes
place on

SF D fe 2 R
n W F Ce D 0g

in finite time.

Remark 3.3. It should be noted that if p > m then sliding on SF is not the same
as sliding on Ce.t/ D 0.

Example 3.5. Consider the equations of motion for a pendulum system written as

R�.t/ D �g

l
sin.�.t//

where g is the gravitational constant and l is the length of the pendulum. These can
be rewritten in state-space form as

Px.t/ D
�

0 1

0 0

�
x.t/ C

�
0

1

�
�.t; x/ (3.49)

where x1 D �, x2 D P�, and �.t; x1; x2/ D � g

l
sin.�/. Somewhat artificially choose

as an output measurement y.t/ D Cx.t/ where

C D �
1 1

�
(3.50)

i.e., the sum of position and velocity. Also assume the term �.t; x1; x2/ is
unknown—possibly because the length of the pendulum is imprecisely known.
The aim is both to estimate x.t/ and reconstruct �.t; x/ from y.t/.
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Fig. 3.13 Plant output y.t/ and the observer estimate Oy.t/

Choosing

Gl D
�

1

1

�

means the eigenvalues of A � Gl C are f�1; �1g and furthermore

P.A � Gl C / C .A � GlC /T P < 0

if

P D
�

2 1

1 1

�

Notice also for this choice of P , the structural equation PB D C T is satisfied. The
sliding mode observer is

Pz.t/ D
�

0 1

0 0

�
z.t/ �

�
1

1

�
ey.t/ �

�
0

1

�
2sign.ey/ (3.51)

where

ey.t/ D C z.t/ � y.t/

is the output estimation error.
When the initial conditions of the true states and observer states are deliberately

set to different values the output of the observer tracks the output of the plant in
finite time as shown in Fig. 3.13.

Figure 3.14 shows the same information as a plot of ey . A sliding motion takes
place after 0:2 s. The finite time response is a characteristic of sliding modes.

Figure 3.15 shows the states and the state estimation errors. Although the
output estimation error converges to zero in finite time, the state estimation error
is asymptotic. However, asymptotic convergence has been achieved despite the
plant/model mismatch resulting from the term �.t; x1; x2/ which is not used in the
sliding mode observer.
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Fig. 3.14 The output estimation error ey
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Fig. 3.15 System states x.t/ (solid) and the observer estimates Ox.t/ (dashed)

Figure 3.16 shows a low-pass-filtered version of the injection signal � D
�2sign.ey/ from the observer. It clearly replicates the “unknown signal” �.t; x1; x2/

and compensates for it to allow perfect (asymptotic) convergence of the state
estimates.
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Fig. 3.16 The injection signal and the unknown input

3.4 A Generic Conventional Sliding Mode Observer

Consider the following uncertain dynamical system:

Px.t/ D Ax.t/ C Bu.t/ C Mf .t; y; u/ (3.52)

y.t/ D Cx.t/ (3.53)

where x 2 R
n are the states, y 2 R

p are the measurable outputs, and u 2 R
m are

the measurable inputs. The signal f 2 R
q is the lumped uncertainty acting upon the

system where q < p. It is unknown but assumed to be bounded so that

kf .t; t; u/k � ˛.t; y; u/ (3.54)

where ˛.�/ is known. Assume without loss of generality that the matrices C and M

are full rank. The objective is to reconstruct both the states and the unknown input
f .t/ based only on the measured signals u.t/; y.t/.

Two lemmas will now be presented which underpin the rest of this chapter.
They will describe a canonical form which will help facilitate understanding of the
problem and provide a framework for solving the problem.

Lemma 3.1. Let the triple .A; M; C / represent a linear system with p > q and
suppose rank.CM / D rank.M / D q, then there exists a change of coordinates
x 7! Tox for the system (3.52) and (3.53) such that in the new coordinates the triple
.A; M; C / of the transformed system has the following structure:

A D
2
4 A11 A12

A211

A212

A22

3
5 ; M D

�
0

M2

�
; C D �

0 T
�

(3.55)
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where A11 2 R
.n�p/�.n�p/; A211 2 R

.p�q/�.n�p/, T 2 R
p�p is orthogonal, and

M2 2 R
p�q has the structure

M2 D
�

0

Mo

�
(3.56)

where Mo 2 R
q�q is nonsingular.

Proof. First introduce a coordinate transformation to make the last p states of the
system the outputs. To achieve this, define

Tc D
�

N T
c

C

�
(3.57)

where Nc 2 R
n�.n�p/ is such that its columns span the null space of C . The

coordinate transformation x 7! Tcx is nonsingular by construction and in the new
coordinate system

C D �
0 Ip

�
Suppose in the new coordinate system

M D
�

M1

M2

�
ln�p

lp

in which M1 and M2 have no particular structure other than the fact that
rank.M2/Dq. This follows because CM D M2 and so by assumption rank.M2/Dq.
Hence the left pseudo-inverse M

�
2 is well defined. Also there exists an orthogonal

matrix T 2 R
p�p such that

T T M2 D
�

0

Mo

�
(3.58)

where Mo 2 R
q�q is nonsingular. Such a matrix can be found in QR factorization.

Consequently, the coordinate transformation x 7! Tbx where

Tb D
"

In�p �M1M
�
2

0 T T

#
(3.59)

is nonsingular, and in the new coordinates the triple .A; M; C / is in the form

A D
�

A11 A12

A21 A22

�
; M D

�
0

Mo

�
; C D �

0 T
�

(3.60)

where A11 2 R
.n�q/�.n�q/ and the remaining subblocks in the system matrix are

partitioned accordingly. The triple in (3.60) has exactly the structure claimed in the
lemma statement. �



3.4 A Generic Conventional Sliding Mode Observer 123

Lemma 3.2. The pair .A11; A211/ is detectable if and only if the invariant zeros of
.A; M; C / are stable.

Proof. From the PBH rank test,1 the unobservable modes of .A11; A211/ are given
by the values of s that make the following matrix pencil lose rank:

Pobs.s/ D
�

sI � A11

A211

�

The zeros of .A; M; C / are given by the values of s that make the Rosenbrock matrix
Robs.s/ lose rank, where

Robs.s/ D
�

sI � A �M

C 0

�
D

2
664

sI � A11 �A12 0

�A211 ? 0

�A212 ? �Mo

0 T 0

3
775

and the ? represents elements that do not play a role in the subsequent analysis.
Since Mo and T are both square and invertible, Robs.s/ loses rank if and only if
Pobs.s/ loses rank. Clearly the unobservable modes of .A11; A211/ are the invariant
zeros of .A; M; C /, and hence the proof is complete. �

Assume that for the system in (3.52) and (3.53):

A1. rank.CM / D rank.M /.
A2. The invariant zeros (if any) of .A; M; C / are stable.

The canonical form associated with Lemma 3.1 will be used as a basis for the
solution to the problem of estimating both the states and unknown inputs.

The following observer will be considered:

POx.t/ D A Ox.t/ C Bu.t/ � Gl ey.t/ C Gn� (3.61)

Oy.t/ D C Ox.t/ (3.62)

where ey.t/ WD Oy.t/ � y.t/ is the output estimation error. The design freedom is
associated with the two gains Gl 2 R

n�p and Gn 2 R
n�p which are design matrices

to be determined. The vector � is defined by

�.t/ D ��.t; y; u/
ey

keyk if ey.t/ ¤ 0 (3.63)

where �.�/ is a positive scalar function dependent on the magnitude of the unknown
input signal f .t/. Condition A1 means that the canonical form in (3.55) can be

1For details see appendix C.
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attained, and hence without loss of generality assume that the triple .A; M; C / has
the form given in (3.55). In the coordinates of (3.55), let

Gn D
� �L

Ip

�
T T P �1

o (3.64)

where L D �
Lo 0

�
and Lo 2 R

.n�p/�.p�q/. The symmetric positive definite
matrix Po 2 R

p�p and the gain Lo are design matrices. Defining Ao D A � Gl C

and the state estimation error as e.t/ WD Ox.t/ � x.t/. From (3.52) and (3.61) and
(3.53) and (3.62), the following error system can be obtained:

Pe.t/ D Aoe.t/ C Gn� � Mf .t; Ox � e; y/ (3.65)

Proposition 3.1. If there exists a matrix Gl and a Lyapunov matrix P of the form

P D
�

P1 P1L

LT P1 T T PoT C LT P1L

�
> 0 (3.66)

where P1 2 R
.n�p/�.n�p/, which satisfies

PAo C AT
o P < 0 (3.67)

and �.t; y; u/ � kPoCM k˛.t; y; u/ C �o where �o > 0, then the state estimation
error e.t/ is asymptotically stable.

Proof. Consider as a candidate Lyapunov function

V D eT P e (3.68)

where P is given in (3.66). Differentiating (3.68) with respect to time yields

PV D PeT P e C eT P Pe
D eT .PAo C AT

o P /e C 2eT P Gn� � 2eT PMf

From the definitions of P , Gn, and M in (3.66), (3.64), and (3.55), respectively, it
can be verified that

P Gn D C T (3.69)

and

PM D C T PoCM (3.70)

Using (3.67) and (3.69)–(3.70), PV becomes

PV � 2eT C T � � 2eT C T PoCMf

From the definition of � in (3.63) and using the bound of f in (3.54)
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PV < �2�keyk � 2eT
y PoCMf

� �2keyk.� � kPoCM k˛/

� �2�okeyk
< 0 for e ¤ 0

which proves the state estimation error is quadratically stable. �

Using this result, it can be further shown that a sliding motion can be achieved in
finite time.

Corollary 3.1. A stable sliding motion takes place on the surface

S D fe W Ce D 0g (3.71)

in finite time and the sliding motion is governed by A11 C LoA211.

Proof. To prove a sliding motion is attained, firstly apply a change of coordinates
x 7! TLx where

TL D
�

In�p L

0 T

�
(3.72)

such that the triple .A; M; C / in (3.55) is transformed to be

NA D
� NA11

NA12

NA21
NA22

�
; NM D

�
0
NM2

�
; NC D �

0 Ip

�
(3.73)

where NA11 D A11 C LoA211. This follows from the structure of L in (3.64). Using
(3.73), the error system (3.65) can be partitioned as

Pe1.t/ D NA11e1.t/ C . NA12 � NGl;1/ey.t/ (3.74)

Pey.t/ D NA21e1.t/ C . NA22 � NGl;2/ey.t/ C P �1
o � � NM2f .t/ (3.75)

where � NGl;1

NGl;2

�
D TLGl (3.76)

Introduce a candidate Lyapunov function for the subsystem (3.75) as

Vs D eT
y Poey

Differentiating Vs with respect to time and using (3.75) yield

PVs D eT
y .Po. NA22 � NGl;2/C. NA22 � NGl;2/T Po/ey C2eT

y Po
NA21e1 C2eT

y ��2eT
y Po

NM2f
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It can be shown that

.T T
L /�1P T �1

L D
�

P1 0

0 Po

�
(3.77)

and

TLAoT �1
L D

� NA11
NA12 � NGl;1

NA21
NA22 � NGl;2

�
(3.78)

By direct calculation it follows that .T T
L /�1.PAo C AT

o P /T �1
L can be expanded as

�
P1

NA11 C NAT
11P ?

? Po. NA22 � NGl;2/ C . NA22 � NGl;2/T Po

�
< 0 (3.79)

where the ? represents elements that do not play any significant role in the analysis.
Since (3.79) is symmetric, Po. NA22 � NGl;2/ C . NA22 � NGl;2/T Po < 0 and hence

PVs < 2eT
y Po

NA21e1 C 2eT
y � � 2eT

y Po
NM2f

� 2keykkPo
NA21e1k � 2�okeyk

D 2keyk.kPo
NA21e1k � �o/ (3.80)

Notice that

keyk2D.
p

Poey/T P �1
o .

p
Poey/�	min.P �1

o /k
p

Poeyk2D	min.P �1
o /Vs (3.81)

Define � as a scalar satisfying 0 < � < �o. Since from Proposition 3.1 the state
estimation error is quadratically stable, in finite time e1.t/ enters the domain


� D fe1 W kPo
NA21e1k < �o � �g

and remains there. Inside the domain 
� inequality (3.80) becomes

dVs

dt
< �2�keyk < �2�

q
	min.P �1

o /
p

Vs

This proves that a sliding motion takes place on S in finite time.
When a sliding motion has been achieved, ey.t/ D Pey.t/ D 0 and from (3.74)

the remaining dynamics e1.t/ are governed by NA11 D A11 C LoA211. Since from
inequality (3.79) P1

NA11 C NAT
11P1 < 0 and P1 > 0, the matrix NA11 is stable. This

completes the proof. �
Remark 3.4. The following observations can be made:

• One possible choice of linear gain in (3.61) is

Gl D
�

A12 � A11L C LAs
22

A22 � LA21 � As
22

�
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where As
22 2 R

p�p is any Hurwitz stable matrix. For a given L which makes
A11 C LA21 stable, this guarantees the existence of a matrix P of the form in
(3.66) such that P.A � Gl C / C .A � GlC /T P < 0. This choice is far from
unique and optimization methods can be applied to synthesize Gl according to
some criteria.

• During the sliding motion when Pey D ey D 0, from (3.75)

0 D NA21e1.t/ C P �1
o �eq � NM2f .t; Ox � e; y/ (3.82)

Furthermore since the autonomous dynamical system in (3.74) is asymptotically
stable, e1.t/ ! 0 as t ! 1. Therefore

P �1
o �eq � NM2f .t; Ox � e; y/ ! 0 (3.83)

and the equivalent injection compensates for the unknown uncertain term
f .t; Ox � e; y/. Consequently not only does the state Ox asymptotically tend to
x.t/ but also the scaling of the equivalent injection

NM
�
2 P �1

o �eq.t/ ! f .t; Ox � e; y/

where NM
�
2 is any left pseudo-inverse of NM2.

Example 3.6. Consider the fourth-order system

A D

2
664

�3:9354 0 0 �14:7110

0 0 0 1:0000

1:0000 14:9206 0 1:6695

0:7287 0 0 �2:1963

3
775 B D

2
664

0

0

0

0:8116

3
775 (3.84)

C D
�

0 0 1 0

0 0 0 1

�
(3.85)

This represents a linearization of the rigid body dynamics of a passenger vehicle
(Fig. 2.10). The first state is an average of the lateral velocity v and yaw rate r ; the
second state represents � , the vehicle orientation; the third state, Y , is the lateral
deviation from the intended lane position, and the fourth state, r , is the yaw rate.

It is easy to identify the following subcomponents:

A11 D
� �3:9354 0

0 0

�
A211 D �

1:0000 14:9206
�

(3.86)

It can be verified that .A11; A211/ is observable and so a matrix Lo can be found
such that A11 C LoA211 is stable. Choosing

Lo D
� �0:0318

�0:1362

�
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ensures the eigenvalues of A11 C LoA211 are at f�2; �4g. A particular choice of the
Luenberger gain in the sliding mode observer is

Gl D

2
664

�0:0297 �14:7111

0:4087 1:0000

5:0646 1:6695

0:0232 0:8037

3
775

which is obtained by choosing As
22 D �3I2.

3.5 A Sliding Mode Observer for Nonlinear Systems

In this section, a class of nonlinear uncertain systems is considered which might be
termed semi-linear. Consider a system described by

Px D Ax C �.x; u/ C Df .y; u; t/ (3.87)

y D Cx (3.88)

where x 2 R
n, u 2 R

m, and y 2 R
p are the state variables, inputs, and outputs,

respectively. The matrices A 2 R
n�n, D 2 R

n�q , and C 2 R
p�n (q � p < n)

are constant, with D and C both full rank. The known nonlinear term �.x; u/ is
assumed to be Lipschitz with respect to x for all u 2 U (here U is an admissible
control set): i.e., there exists a positive scalar L� such that

k�.x; u/ � �. Ox; u/k � L�kx � Oxk (3.89)

The gain L� can be thought of as the steepest possible gradient that �.�/ achieves
with variations in x. The unknown function f .y; u; t/ 2 R

q is assumed to satisfy

kf .y; u; t/k � �.y; u; t/ (3.90)

where the function �.y; u; t/ is known.
The system in (3.87) and (3.88) might represent a nonlinear system subject to

faults captured by the unknown input signal f .y; u; t/. In particular if D D B ,
then the faults are associated with the actuators of the system—hence the direct
dependence of the signal f .�/ on the control signal u.t/.

The following assumptions will be imposed on system (3.87) and (3.88):
Assumption 1. rank.CD/ D rank.D/:

Assumption 2. All the invariant zeros of the matrix triple .A; D; C / lie in the left
half plane.
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From Lemma 3.1, it can be assumed without loss of generality that system (3.87)
and (3.88) already has the form

Px1 D A1x1 C A12x2 C �1.x; u/ (3.91)

Px2 D A21x1 C A22x2 C �2.x; u/ C D2f .y; u; t/ (3.92)

y D C2x2 (3.93)

where x D col.x1; x2/ with x1 2 R
n�p, and �1.x; u/ and �2.x; u/ are the first n�p

and the last p components of �.x; u/.
Now a robust sliding mode observer will be proposed using the system structure

characteristics shown in Sect. 3.4. First introduce a coordinate transformation z D
T x where

T WD
�

In�p L

0 Ip

�
(3.94)

where L has the structure

L D �
Lo 0

�
(3.95)

and Lo 2 R
.n�p/�.p�q/. Then, it follows that in the new z coordinates, system

(3.91)–(3.93) has the following form:

Pz1 D .A11 C LA21/z1 C .A12 C LA22 � .A11 C LA21/L/ z2

C �
In�p L

�
�.T �1z; u/ (3.96)

Pz2 D A21z1 C .A22 � A21L/ z2 C �2.T
�1z; u/ C D2f .y; u; t/ (3.97)

y D C2z2 (3.98)

where z WD col.z1; z2/ with z1 2 R
n�p. Notice that (3.96) is independent of the

unknown function f .�/. This very specific structure (3.96) occurs because LD2 D 0.
For system (3.96)–(3.98), consider a dynamical system (the observer) given by

POz1 D .A11 C LA21/Oz1 C .A12 C LA22 � .A11 C LA21/L/ C �1
2 y

C �
In�p L

�
�.T �1Oz; u/ (3.99)

POz2 D A21Oz1 C .A22 � A21L/ Oz2 � K.y � C2Oz2/ C �2.T
�1Oz; u/ C � (3.100)

Oy D C2Oz2 (3.101)

where Oz WD col.Oz1; C �1
2 y/ and Oy is the output of the dynamical system. Note that

Oz does not represent the state estimate col.Oz1; Oz2/. It is merely used as a convenient
notation in the developments which follow. Also note that the unknown input f .�/
does not appear in (3.99) and (3.100) but the known nonlinearity �.�/ does—except
its arguments depend on Oz and not z. The gain matrix K is chosen so that the matrix
C2.A22 �A21L/C �1

2 CC2K is symmetric negative definite. This is always possible
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since C2 is nonsingular and an explicit formula is given later. Define the output
estimation error as ey D y � Oy, and the injection signal � as

� WD k.�/C �1
2

ey

keyk (3.102)

where k.�/ is a positive scalar function to be determined.
Let e1 D z1 � Oz1 and ey D y � Oy D C2.z2 � Oz2/. Then from (3.96) to (3.98) and
(3.99) to (3.101), the state estimation error dynamical system is described by

Pe1 D .A11 C LA21/e1 C �
In�p L

� �
�.T �1z; u/ � �.T �1Oz; u/

�
(3.103)

Pey D C2A21e1 C �
C2.A22 � A21L/C �1

2 C C2K
�

ey C C2D2f .t/ � C2�

CC2

�
�2.T

�1z; u/ � �2.T �1Oz; u/
�

(3.104)

where Oz D col.Oz1; C �1
2 y/ and � is defined by (3.102). From Lemma 3.1 and

Assumptions 1–2, a matrix L of the form in (3.95) can be found to make A11CLA21

stable. As argued earlier, a gain matrix K 2 R
p�p can be chosen as

K D �.A22 � A21L/C �1
2 � C �1

2 As (3.105)

where As is symmetric positive definite to ensure C2.A22 � A21L/C �1
2 C C2K is

negative definite, and hence the nominal linear system matrix of the state estimation
error dynamical system (3.103) and (3.104) given by

�
A11 C LA21 0

C2A21 C2.A22 � A21L/C �1
2 C C2K

�
(3.106)

is stable.
From (3.94) and (3.98), it follows that

T �1z � T �1Oz D
�

In�p �L

0 Ip

� �
z1 � Oz1

z2 � C �1
2 y

�
D

�
e1

0

�

) ��T �1z � T �1Oz�� D ke1k (3.107)

For system (3.103) and (3.104), consider a sliding surface

S D ˚
.e1; ey/ j ey D 0

	
(3.108)

Then, the following can be proved:

Proposition 3.2. Under Assumptions 1–2, the sliding motion of system (3.103) and
(3.104), associated with the surface (3.108), is asymptotically stable if the matrix
inequality

NAT NP T C NP NA C 1

"
NP NP T C "

�L�

�2
In�p C ˛P < 0 (3.109)
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where " and ˛ are positive constants, L� is the Lipschitz constant for �.x; u/ with
respect to x, and L has the structure in (3.95), is solvable for NP where

NP WD P
�

In�p L
�

and NA WD
�

A11

A21

�
(3.110)

with P > 0.

Proof. The analysis above has shown that (3.103) represents the sliding dynamics
when restricted to the sliding surface (3.108). Therefore, it is only required to prove
that (3.103) is asymptotically stable. Consider a candidate Lyapunov function V D
eT

1 P e1. The time derivative of V along the trajectories of system (3.103) is given by

PV j.3:103/ D eT
1

�
.A11 C LA21/T P C P.A11 C LA21/

�
e1

C2eT
1 P

�
In�p L

� �
�.T �1z; u/ � �.T �1Oz; u/

�
D eT

1

� NAT NP T C NP NA�
e1 C 2

� NP T e1

�T �
�.T �1z; u/ � �.T �1Oz; u/

�

From the well-known inequality2 that 2XT Y � "XT X C 1
"
Y T Y for any scalar

" > 0, it follows that

PV j.3:103/ � eT
1

� NP NA C NAT NP T
�
e1 C "eT

1
NP NP T e1

C1

"

�
�.T �1z; u/ � �.T �1Oz; u/

�T �
�.T �1z; u/ � �.T �1Oz; u/

�

From (3.107),

k�.T �1z; u/ � �.T �1Oz; u/k � L�ke1k (3.111)

Consequently

PV j.3:103/ � eT
1

� NP NA C NAT NP T
�
e1 C "eT

1
NP NP T e1 C 1

"

�L�

�2 ke1k2

D eT
1

� NP NA C NAT NP T C " NP NP T C 1

"

�L�

�2
I

�
e1

� �˛eT
1 P e1 D �˛V (3.112)

where (3.109) has been used to obtain the last inequality, and the proof is
complete. �
Remark 3.5. Note that inequality (3.109) can be transformed into the following
Linear Matrix Inequality (LMI) problem: for a given scalar ˛ > 0, find matrices P

and Y and a scalar " such that

2This is sometimes known as Young’s Inequality.
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2
64

‚.P; Y / C ˛P C "
�L�

�2
P Y

P �"In�p 0

Y T 0 �"Ip

3
75 < 0 (3.113)

where ‚.P; Y / WD PA1 CAT
1 P CYA21 CAT Y

21

T
and the decision variable Y WD PL

with P > 0. This problem can be solved by LMI techniques. If L� is known, then
for a given ˛, the problem of finding P , Y , and " to satisfy (3.113) is a standard LMI
feasibility problem. Alternatively, an optimization problem can be posed which is
to find P , Y , and " which maximizes L� in (3.113). This is a convex eigenvalue
optimization problem and can be solved using standard LMI algorithms.

Since PV .t/ � �˛V.t/ in (3.112), it follows that there exists a positive scalar M

such that

ke1.t/k � M ke1.0/k expf�˛t=2g (3.114)

where a choice is M WD
q

	max.P /

	min.P /
. Based on inequality (3.114), introduce a dynamic

system given by

POw.t/ D � 1
2
˛ Ow.t/ (3.115)

For any value e1.0/, choose Ow.0/ such that M ke1.0/k � Ow.0/. Then, it is easy to see
that the available solution Ow.t/ to Eq. (3.115) is an upper bound on the size of the
corresponding state estimation error e1.t/; specifically ke1.t/k � Ow.t/ for all t � 0.

Proposition 3.3 has shown that the sliding mode associated with the sliding
surface S given in (3.108) is stable if the matrix inequality (3.109) is solvable.
The objective is now to determine the scalar gain function k.�/ in (3.102) such that
the system can be driven to the surface S in finite time and a sliding motion can be
maintained.

Proposition 3.3. Under Assumptions 1–2, system (3.103) and (3.104) is driven to
the sliding surface (3.108) in finite time and remains there if the gain k.�/ in (3.102)
is chosen to satisfy

k.t; u; y; Oz/ � .kC2A21k C kC2kL�/ Ow.t/ C kC2D2k�.y; u; t/ C � (3.116)

where � is a positive constant and Ow is the solution to the differential Eq. (3.115).

Proof. Let QV .ey/ D eT
y ey . From the expression for the output estimation error in

(3.104), it follows that

PQV DeT
y

�
C2.A22 � A21L

�
C �1

2 C C2K C �
C2.A22 � A21L/C �1

2 C C2K
�T �

ey C
C2eT

y

�
C2A21e1 C C2

�
�2.T

�1z/ � �2.T
�1Ozy/

� C C2D2f .t/ � C2�
�

(3.117)
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Since, by design C2.A22 � A21L/C �1
2 C C2K is symmetric negative definite, it

follows that
�
C2.A22 � A21L/C �1

2 C C2K
�T C C2.A22 � A21L/C �1

2 C C2K < 0 (3.118)

By applying (3.90) and (3.118) to (3.117), it follows from (3.107) that

PQV � 2keyk �kC2A21k C kC2kL�

� ke1k C kC2D2k�.y; u; t/
� � 2eT

y C2� (3.119)

From the arguments above, ke1.t/k � Ow.t/, and substituting the � given in (3.102)
into (3.119) yields

PQV D 2keyk�
.kC2A21k C kC2kL�/ Ow � 2k.�/�keyk (3.120)

From (3.116) and (3.120) it follows that PQV � �2�keyk � �2� QV 1
2 : This shows

that the reachability condition is satisfied. It follows that QV D 0 in finite time and
consequently a sliding motion is achieved and maintained after some finite time
ts > 0. Hence the proof is complete. �

3.6 Fault Detection: A Simulation Example

Consider a single-link flexible joint robot system, where the system nonlinearities
come from the joint flexibility modeled as a stiffened torsional spring, and the
gravitational force. The dynamical model for the robot can be described by

P�1 D !1 (3.121)

P!1 D 1
J1

.
1.�2 � �1/ C 
2.�2 � �1/
3/ � Bv

J1
!1 C K�

J1
u (3.122)

P�2 D !2 (3.123)

P!2 D � 1
J2

.
1.�2 � �1/ C 
2.�2 � �1/
3/ � ml gh

J2
sin.�2/ (3.124)

where �1 and !1 are the motor position and velocity, respectively; �2 and !2 are the
link position and velocity, respectively; J1 is the inertia of the DC motor; J2 is the
inertia of the link; 2h is the length of the link, while ml represents its mass; Bv is
the viscous friction; 
1 and 
2 both are positive constants; and K� is the amplifier
gain. The domain considered here is f.�1; !1; �2; !2/ j j�2 ��1j < 2:8; j!1j � 50g:
It is assumed that the motor position, motor velocity and the sum of link velocity,
and link position are measured. Suppose that a fault occurs in the input channel in
the robot system. Therefore the fault distribution matrix D will be equal to the input
distribution matrix. Suitable values for the parameters are: J1 D 3:7 � 10�3kgm2,
J2 D 9:3 � 10�3kgm2, h D 1:5 � 10�1m, m D 0:21kg, Bv D 4:6 � 10�2m, 
1 D

2 D 1:8 � 10�1Nm/rad, and K� D 8 � 10�2Nm/V. Let x D col.x1; x2; x3; x4/ WD
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.�1; !1; �2; !2/. Then, the robot system can be described in the form (3.87) and
(3.88) where

�.x; u/ D

2
664

0

0:0194.x3 � x1/3 C 21:6216u
0

0:0486.x3 � x1/3 � 83:4324 sin.x3/

3
775

A suitable transformation is given by z D T x with T defined as

T D

2
664

�1:4142 0 0 0

0 0 1 0

�1 �1 0 0

0 0 0 �0:01

3
775

It follows that

"
A11 A12

A21 A22

#
D

2
664

�1 0 1:4142 0

0 0 0 �1

8:0496 �0:0486 �11:4324 0

0:0137 0:0194 0 0

3
775 (3.125)

D2 D
"

0

D22

#
D

2
4 0

�21:6216

0

3
5 (3.126)

C2 D
2
4 0 �1 0

1 0 0

0 0 �1

3
5 (3.127)

and

�.T �1z; u/ D

2
664

0

0

�21:6216u � 0:0486.z2 C 0:7071z1/
3

0:0002.z2 C 0:7071z1/
3 C 0:3319 sin.z2/

3
775

Let ˛ D 0:5. From the LMI synthesis, the optimal value of the Lipschitz gain
L� D 0:75 when L D �

0 0 0
�
, " D 2, and P D 1:5 and the conditions

of Proposition 3.2 are satisfied. Finally, by choosing

K D
2
4 0 1:1 1

10:2324 �0:0486 0

0 0:0194 �1

3
5
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Fig. 3.17 Fault estimation
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Fig. 3.18 Fault estimation

it follows that

C2.A22 � A21L/C �1
2 C C2K D

2
4 �1:2 0 0

0 �1:1 0

0 0 �1

3
5

and thus (3.118) is true.
For simulation purposes, a linear state feedback controller has been introduced

to stabilize the system. In the first case, the fault signal is f .y; u; t/ D 0:5 sin.u/

which does not affect the stability of the system. The associated simulation is
shown in Fig. 3.17. In the second case, the fault signal is f .y; u; t/ D sin.u/

which destroys the system stability. The corresponding simulation is shown in
Fig. 3.18. The simulations show that the signal Qf can reconstruct the fault perfectly,
even if the fault destroys closed-loop stability. However, in the second simulation,
the reconstruction properties will eventually be lost over time as the states of
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the plant become unbounded. It also shows that in the presence of sensor noise
the reconstruction scheme is still effective. From (3.104) during the sliding motion
ey D Pey D 0 and

�eq D D2f .y; u; t/ C �.T �1z; u/ � �.T �1Oz; u/ (3.128)

Furthermore since Oz ! z as t ! 1 from (3.128) it follows that

�eq ! D2f .y; u; t/

and so the fault estimate signal

Of WD .DT
2 D2/�1D2�eq ! f (3.129)

as t ! 1. Consequently .DT
2 D2/�1D2�eq is an asymptotic estimate of the fault.

3.7 Notes and References

The earliest observer is attributed to Luenberger [134, 135] in which the difference
between the output of the plant and the observer is fed back linearly into the
observer. There is a vast literature devoted to this topic. The earliest work in terms
of sliding mode methods applied to observer problems is attributed to Utkin [182],
although these ideas had appeared in the Russian literature many years earlier [37].

The term sliding patch to describe the region in which sliding takes place was
first coined in [172]. This sought to enlarge the region in which sliding takes place. It
represents one of the earliest sliding mode observers with both linear and nonlinear
injection terms. The example in Sect. 3.2, to demonstrate the effects of the linear
and nonlinear terms on the observer performance, is taken from [7].

The problem of robust state estimation for systems with bounded matched
uncertainty was first explored by Walcott and Żak [188]. In terms of the design
of Walcott and Żak, a system theoretic interpretation of the constraints in (3.46) and
(3.47) by Steinberg and Corless [175] is that the transfer function matrix G.s/ D
F C.sI � A0/

�1B is strictly positive real. The problem of synthesizing P; G, and
F (and incorporating some sort of design element) is nontrivial. The structural
requirements (3.46) and (3.47) of Walcott and Żak were shown in [70] to be solvable
if and only if:

• Rank.CB/ D m.
• All the invariant zeros of .A; B; C / have negative real parts.

Under these circumstances a (semi-)analytic expression for the solution to the
observer design problem is given in terms of a gain matrix L 2 R

.n�p/�.p�m/ and
a stable matrix As

22 2 R
p�p that defines Gl (see [70]). The approach in this chapter

builds on the work of Edwards and Spurgeon [65] which builds on the ideas of
Walcott and Żak [188]. An interesting comparison between sliding mode observers
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and other nonlinear techniques appears in [189]. A well-cited tutorial on sliding
mode observers is presented in [62]. A recent tutorial on this material appears
in [174]. The observer from Sect. 3.5 to deal with Lipschitz nonlinear systems is
given in Yan and Edwards [193]. The single-link flexible joint robot system is taken
from [78]. A comparison of these observers with so-called unknown input observers
appears in [69].

The optimization problem in Sect. 3.5 is a convex eigenvalue optimization
problem and can be solved using standard LMI algorithms [99] (largely based on
interior point methods). A now classical account of the different applications of
convex optimization to control problems is given by Boyd et al. [38].

One of the earliest paper to apply sliding mode observers to fault detection and
isolation problems is Edwards et al. [70]. These ideas have been expanded upon to
incorporate directly robust reconstruction [178]. Subsequently the relative degree
one restrictions in this chapter has been removed using a cascade of conventional
sliding mode observers [179]. An overview of applications of these ideas to fault
detection and fault tolerant control problems appears in [7].

3.8 Exercises

Exercise 3.1. Show that for the system

Px.t/ D Ax.t/ (3.130)

y.t/ D Cx.t/ (3.131)

where

A D
�

0 1

0 0

�
C D �

1 0
�

(3.132)

choosing the gain

Gn D
� �1

1

�
(3.133)

in the observer from (3.5) and (3.6) yields a stable sliding motion.

Exercise 3.2. Consider the system

Px.t/ D Ax.t/ (3.134)

y.t/ D Cx.t/ (3.135)

where

A D
�

0 1

0 0

�
C D �

1 1
�

(3.136)
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Find the range of values of the scalar gain � for which the gain vector

Gn D
�

�

1

�
(3.137)

in the observer from (3.5) and (3.6) yields a stable sliding motion.

Exercise 3.3. For the triple integrator

«y.t/ D u.t/ (3.138)

written in state-space form, with the states chosen as col.y; Py; Ry/, design an observer
of the form (3.5) and (3.6).

Exercise 3.4. Consider the system

Px.t/ D Ax.t/ C Bu.t/ C D�.t; x/ (3.139)

y.t/ D Cx.t/ (3.140)

where �.t; x/ is an unknown but bounded disturbance and

A D
�

0 1

0 0

�
B D D D

�
0

1

�
C D �

1 ˛
�

(3.141)

where ˛ is a scalar. Find the range of value of ˛ for which it is possible to design an
observer of the form (3.61) and (3.62).

Exercise 3.5. Consider a simple quarter-car vehicle model written in state space
form choosing as states v (forward velocity) and ! (wheel angular velocity)

Px.t/ D Ax.t/ C Bu.t/ C Df .t; x/ (3.142)

where x D col.v; !/ and

A D
� ��vg 0

0 � �!

J

�
B D

�
0

� Kb

J

�
D D

�
4
m

� r
J

�
(3.143)

In the above, f .t; x/ represents the unmeasured breaking force applied to the wheel.
The positive scalars � v, �w, J , Kb , r , m, g, and r are physical parameters associated
with the vehicle. It is assumed that only angular wheel speed ! is measured, and in
this case the output distribution matrix is given as

C D �
0 1

�
(3.144)

The following model-based nonlinear observer is proposed

POx.t/ D A Ox.t/ C Bu.t/ C Gl ey C D� (3.145)



3.8 Exercises 139

where Ox D col.Ov; O!/, the design gain Gl 2 R
2, ey D ! � O!, and � D �ksign.Fey/

where k is a scalar gain, F is a scalar which will be defined later, and Ov and O! are
estimates of v and !, respectively. The design problem is to compute Gl , F , and k

so that the estimated angular velocity O! is such that ey D ! � O! � 0 in finite time:
i.e., a sliding motion is achieved in finite time.

Here the gain Gl is proposed as

Gl WD
� 4J � vg

rm
� 4J

rm
˛

� �!

J
C ˛

�
(3.146)

where ˛ is a positive scalar.

1. Show that the eigenvalues of .A�Gl C / D f��vg; �˛g which implies .A�Gl C /

is stable by design.
2. Consider as a Lyapunov function V D eT P e where

P WD
"

P1
4J
rm

P1

4J
rm

P1 P2 C 16J 2

r2m2 P1

#
(3.147)

and P1 and P2 are positive scalars. Define

Q WD � �
P.A � GlC / C .A � GlC /T P

�
(3.148)

Show that Q is symmetric positive definite.
3. Show that PD D F C T for the scalar F WD �2 ˛r

J
P2.

Use this information to demonstrate that (3.145) induces a sliding motion on the
hyperplane S D fe W Ce D 0g in finite time.

Exercise 3.6. A more complex model of the same system, but now including a
LuGre friction model, is

Pxp.t/ D Apx.t/ C Bpu.t/ C Dp�x1.t/f .x3/ (3.149)

where the control signal u.t/ D Pb.t/ and

Ap WD
2
4 0 0 1

g�0 �g� v g.�1 C �2/

q�0 g� v q.�1 C �2/

3
5 Bp WD

2
4 0

0

� rkb

J

3
5 (3.150)

The distribution matrix through which the nonlinear terms operate is

Dp WD
2
4 �1

�g�1

�q�1

3
5 (3.151)
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In these matrices, the aggregate parameter q WD �.g C Fnr2

J
/. Since it is assumed

that only angular wheel speed ! is measured, the output distribution matrix

Cp D �
0 1

r
1
r

�
(3.152)

Consider an observer of the form

POxp.t/ D Ap Oxp.t/ C Bpu.t/ C Gpey C Dp� (3.153)

where Gp 2 R
3 and � D �kpsign.ey/ where kp is a scalar gain. The main objective

is to synthesize an observer to generate an estimated angular velocity O! D C Ox such
that ey D ! � O! � 0 in finite time despite the nonlinear friction terms which have
been ignored in (3.153). It is shown in [148] that if

Ng1 D r C .g C ˇ

�1
/ J

Fnr
(3.154)

Ng2 D g.ˇ C g N� � �0

�1
/ J

Fnr
C gr.�1 C �2/ (3.155)

Ng3 D .�1 C �2/q � �w
J

C �0

�1
� ˇ (3.156)

where N� D �v C �1 C �2 and ˇ is a negative scalar, then

Gp D
2
4 Ng1

Ng2

r Ng3 � Ng2

3
5 (3.157)

is an appropriate choice of gain in (3.153). Define ep D xp � Oxp as the state
estimation error, where xp D col.x1; x2; x3/. The dynamics of the error system
can be obtained from (3.149) and (3.153) as

Pep D .Ap � GpCp/ep C Dp

�
�f .x3/x1 � kp sign.ey/

�
(3.158)

Show the reduced-order sliding motion is governed by the linear system

� Pe1

Pe2

�
D

"
� �0

�1

�2

�1

0 �� vg

# �
e1

e2

�
(3.159)

and so the sliding motion is stable

Exercise 3.7. Consider the following Lur’e-type representation for Chua’s circuit:

Pxi D Axi C D�i .yi / C Bui (3.160)

yi D Cxi (3.161)
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where

AD
2
4 �al1 a 0

1 �1 1

0 �b 0

3
5 ; DD

2
4 �a.l0 � l1/

0

0

3
5 (3.162)

C D
�

1 0 0

0 1 0

�
(3.163)

The nonlinearity is �i .yi / D 1
2
.jxi1 Ccj�jxi1 �cj/, which has a sector bound Œ0; 1�.

The chosen values of the parameters are a D 9; b D 14:286; c D 1; l0 D �1=7, and
l1 D 2=7 in order to obtain double-scroll attractor behavior.

Design a sliding mode observer for this system.
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