
Chapter 6
Association Models

Abstract The association models, appropriate for the analysis of ordinal contin-
gency tables, are presented for two-way and multi-way contingency tables. Their
features, properties, and the associated graphs are discussed. The models of uniform
association (U), row effect (R), column effect (C), multiplicative row–column effect
(RC), and the more general RC(M) model are illustrated with examples in terms of
fit, presentation, and interpretation. They are all worked out in R, through functions
provided for their fit and the construction of their scores’ plots.

Keywords Association models: U, R, C, RC(M) • Graphs for the RC(2) model •
Association models for multi-way tables

6.1 Basic Association Models for Two-way Tables

We realized so far that in the context of classical log-linear models there are just two
options for modeling two-way contingency tables: the parsimonious but restrictive
model of independence (4.1) and the saturated. Association models fill the gap
between these two extreme cases by imposing a special structure on the association
and reducing the number of interaction parameters, providing thus intermediate
models of dependence. For ease in understanding but also for interpretation
purposes, it is convenient to think in terms of local associations in the table and
first define the models on local odds ratios rather than cell frequencies. Recall that
for models applied on an I × J contingency table there always exists an equivalent
expression defining them on the (I − 1)× (J− 1) table of the corresponding set of
local odds ratios.

In most of the cases association models apply to ordinal classification variables
and are thus usually introduced as models for ordinal data. However, some of them
do not require ordinality, as we shall see later on in this chapter.
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154 6 Association Models

6.1.1 Linear-by-Linear Association Model

We have seen in Sect. 2.2.5 that for an I × J contingency table and under the
model of independence, all the local odds ratios are equal to 1, i.e., θ L

i j = 1,
i = 1 . . . , I − 1; j = 1 . . . ,J − 1. Whenever the model of independence is of poor fit,
the only alternative in the framework of classical log-linear models is the saturated
model (4.5), which assumes all θ L

i j’s to be free parameters and is noneffective in
summarizing the underlying significant association. A natural way to proceed is to
assume a pattern for this underlying association. This way, the number of parameters
to be estimated is reduced and, most important, we can provide a meaningful
interpretation. The easiest pattern to think of, which is meanwhile of clear and strong
interpretational power, is that of constant θ L

i j’s, as under independence, but different
than 1. That is, to introduce the model

θ L
i j = c, i = 1, . . . , I− 1 , j = 1, . . . ,J− 1, (6.1)

for some c > 0, to be estimated. This model allows for interaction while remains
parsimonious, since it has just one parameter more than the independence model,
the parameter c. Under the independence model, all possible odds ratios θ k�

i j of the
table are equal to 1. Under (6.1), local association is uniform, since all the local odds
ratios are equal to c. This property characterizes model (6.1), which is therefore
called uniform association model, denoted as U. When it comes to the odds ratio
θ k�

i j of any 2× 2 subtable of our initial table, through (2.46), (6.1) takes the form

θ k�
i j = c(k−i)(�− j), i = 1, . . . , I − 1 , j = 1, . . . ,J− 1 , i < k ≤ I , j < �≤ J ,

and in log-scale

logθ k�
i j = (k− i)(�− j) logc, i = 1, . . . , I− 1 , j = 1, . . . ,J− 1 , (6.2)

for i < k ≤ I , j < �≤ J. Under the U model, the general θ k�
i j odds ratio is influenced

by the categories of each classification variable but only through their distances.
Hence, odds ratios formed by cells further apart will exhibit stronger association.
Measuring thus how far apart are two categories of a classification variable is
crucial. Distances between categories are meaningful only when the corresponding
classification variable is ordinal. Hence the U model makes sense to be considered
only for tables with both classification variables ordinal or with one ordinal and the
other binary.

The U model assumes that all successive categories of a classification variable are
equidistant. However, there can arise ordinal variables of non-equidistant successive
categories. A typical example of this type is a categorized income variable, which is
actually interval scaled with categories corresponding to intervals of unequal length.
A flexible way to handle such situations is to assign scores to the categories of
the classification variables and express their distances by the corresponding scores’
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differences. Thus, let {μ1, μ2, . . . , μI} and {ν1, ν2, . . . , νJ} be the scores assigned
to the row and column categories, respectively. The simplest and most natural choice
for the scores is μi = i (i = 1, . . . , I) and ν j = j ( j = 1, . . . ,J), which corresponds to
model (6.2). Allowing the scores to take other values as well and setting ϕ = logc,
we are led to model

logθ k�
i j = ϕ(μk − μi)(ν�−ν j), i = 1, . . . , I − 1 , j = 1, . . . ,J− 1 , (6.3)

with i < k ≤ I , j < �≤ J, for which scores of successive row or column categories
are not necessarily equidistant. Their distance is meant in terms of their similarity
as they interact with the other classification variable. Thus different scores may
be assigned to the same levels of a classification variable X when interacting with
different variables Y or Z. This will be illustrated in a three-way contingency table
example in Sect. 6.7.1. Regarding the scores’ assignment, refer also to the related
discussion in Sect. 2.3.1.

For non-equidistant scores for successive categories, the local odds ratios under
(6.3) are no more all equal but proportional (in log-scale) to the distance between
the enrolled categories of each classification variable. Due to this linear dependence
on each of the classification variables, model (6.3) is called the linear-by-linear
association model (LL).

Though the interpretation of these models is clear and natural when formulated
in terms of the local odds ratios, the development of inferential aspects and model
fitting is more straightforward for their equivalent formulation in terms of expected
cell frequencies. Recalling that the saturated log-linear model in terms of θi j is
provided by (4.7) and equating (4.7) to (6.3) for k = i+1 and �= j+1, we conclude
that the (i, j)th interaction term under the LL model has the form λ XY

i j = ϕμiν j.
Hence, the equivalent expression of LL model (6.3) in terms of expected cell
frequencies is

logmi j = λ +λ X
i +λY

j +ϕμiν j, i = 1, . . . , I, j = 1, . . . ,J, (6.4)

where the overall mean and the main effects parameters are those of the classical
log-linear model.

Model (6.4) reduces to the U model and is thus equivalent to (6.2), not just
for μi = i, (i = 1, . . . , I) and ν j = j, ( j = 1, . . . ,J) but for any choice of row and
column scores {μ1, μ2, . . . , μI} and {ν1, ν2, . . . , νJ}, as long as they are both
equidistant for successive categories. This is due to model’s LL property of being
invariant in linear transformation of the scores, as we shall see in Sect. 6.4. Thus,
for identifiability purposes, usually the scores are set to satisfy the sum-to-zero and
the sum of squares-to-one constraints

I

∑
i=1

μi = 0 and
I

∑
i=1

μ2
i = 1, (6.5)

J

∑
j=1

ν j = 0 and
J

∑
j=1

ν2
j = 1. (6.6)
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For scores satisfying the (6.5) and (6.6) constraints, multiplying (6.4) by μiν j and
adding over i and j leads to

ϕ = ∑
i, j

μiν j logmi j , (6.7)

i.e., ϕ measures the correlation between row and column scores, fact that justifies
its characterization as intrinsic association parameter.

6.1.2 Example 6.1

We shall demonstrate the utility and interpretation power of this parsimonious
association model with just one degree of freedom less than complete independence
by an example. We shall first focus on explaining the nature and use of such a model
and we will provide inferential details and application in software at a later stage.
The data used are from a survey on the use of cannabis among students, conducted
at the University of Ioannina (Greece) in 1995 and published in Marselos et al.
(1997). The students’ frequency of alcohol consumption is measured on a four-level
scale ranging from at most once per month up to more frequent than twice per week
while their trial of cannabis through a three-level variable (never tried–tried once
or twice–more often). These two ordinal variables are cross-classified leading to a
4× 3 table provided in Table 6.1.

These data provide strong evidence against the independence model (4.1), since
the corresponding LR test statistic is G2(I) = 152.793, which is highly significant
with an asymptotic p-value< 0.00005 (d f = 6). In the context of classical log-linear
models the only alternative is to add the interaction term λ XY

i j in the model and end
up thus to the saturated model.

Taking advantage of the ordinal nature of the classification variables, we apply
the U model to the data of Table 6.1, by fitting model (6.4) with μi = i (i = 1, . . . ,4)
and ν j = j ( j = 1,2,3). Thus, we introduce just one additional parameter to the
independence model, the ϕ . The LR test statistic for model (6.4) equals G2(U) =
1.469, leading to a reduction of 151.324 from G2(I) by sacrificing just 1 d f . This
model is of impressive fit with p-value= 0.92. The cell estimates under U are
provided in parentheses in Table 6.1.

As already mentioned, under the U model, the local odds ratios θ L
i j are constant

all over the table. The corresponding sampling values for the local odds ratios are
provided in Table 6.2. In this case, the association parameter ϕ is estimated as
ϕ̂ = 0.803 and furthermore θ̂ L

i j = θ̂ = exp(ϕ̂) = exp(0.803)= 2.23, for all i = 1,2,3
and j = 1,2. This means that the odds of having tried cannabis once or twice vs.
never tried is 2.23 times higher for students who drink twice a month than those
who drink at most once a month. The same comparison holds for any odds ratio
comparing successive row and successive column categories.
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Table 6.1 Students’ survey about cannabis use at the University of Ioannina, Greece (1995)

I tried cannabis. . .

Alcohol consumption Never Once or twice More often Total

At most once/month 204 (204.4) 6 (5.7) 1 (0.9) 211
Twice/month 211 (211.4) 13 (13.1) 5 (4.5) 229
Twice/week 357 (352.8) 44 (48.8) 38 (37.4) 439
More often 92 (95.3) 34 (29.4) 49 (50.3) 175
Total 864 97 93 1054

In parentheses are given the maximum likelihood estimates under the model of
uniform association (U)

Table 6.2 Sample local odds ratios for the students’ survey about cannabis use at the University
of Ioannina, Greece (1995)

I tried cannabis. . .

Alcohol consumption Never Once or twice More often

At most once/month 2.10 2.31
Twice/month 2.00 2.25
Twice/week 3.00 1.67
More often

If we would like to compare any non-successive categories, the results can
be adjusted accordingly. For example, for the odds ratio formed by the corner
(“extreme”) cells of the table, it holds

π̂11π̂43

π̂13π̂41
= exp(ϕ̂(μ4 − μ1)(ν3 −ν1)) = exp(ϕ̂ ·3 ·2) = 123.387 ,

meaning that the odds of using often cannabis instead of never tried is 123 times
higher for student who drink more often than twice a week than for students who
drink at most once a month.

6.1.3 Row and Column Effect Models

The LL model presented above is a very parsimonious and useful model of strong
interpretation power when it is applicable. However, often it is proved insufficient.
It can be the case that the structure of model (6.4) is appropriate but there is no
obvious way of deciding about the scores of one of the classification variables. It is
then natural to broaden model (6.4) to a class of more flexible association models
by relaxing the assumptions about known scores. Model (6.4) with unknown row
scores {μ1, . . . ,μI} and thus parameters to be estimated is the row effect association
model, to be denoted as R. Under this model, the odds defined over the column
classification variable vary from row to row, i.e., the effect of the row classification
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variable on the column odds is significant but unknown. This effect is reflected in
the row scores and more precisely in the unknown (and unequal) distances between
successive row categories. Model R has I−2 additional parameters than model LL,
corresponding to the row scores. The number of parameters is reduced by two, due
to the identifiability constraints (6.5) that hold. Thus, the associated d f of model R
equal (I − 1)(J− 2). Analogously, the column effect association model C is defined
by expression (6.4) for known row scores and unknown column scores {ν1, . . . ,νJ}.
It models the effect of the column classification variable on the row odds. The
associated d f are d f (C) = (I− 2)(J− 1).

We have seen in the context of the U association model that its definition in terms
of odds ratios (6.1) is more natural with respect to interpretation. The R model is
equivalently defined in terms of local odds ratios as

θ L
i j = c1i , i = 1, . . . , I − 1 , j = 1, . . . ,J − 1, (6.8)

and the C model as

θ L
i j = c2 j , i = 1, . . . , I − 1 , j = 1, . . . ,J− 1. (6.9)

Expression (6.8) reveals the dependence of the column odds on the row category
while the analogue statement is true for the C model (6.9).

In terms of local odds ratios and categories’ scores, model R is expressed as

log
(
θ L

i j

)
= ϕ(μi+1 − μi)(ν j+1 −ν j), i = 1, . . . , I − 1 , j = 1, . . . ,J− 1, (6.10)

with parametric row scores {μi, i= 1, . . . , I} and known (equidistant) column scores
{ν j, j = 1, . . . ,J}. Analogously, model C is (6.10) with parametric column scores
and known (equidistant) row scores.

6.1.4 Row by Column Effect Model

The LL, U, R, and C models considered so far are special types of log-linear
models. The LL model is applicable on two-way tables when both the classification
variables are ordinal. The R and C models are less restrictive about the nature
of the underlying classification variables and thus also less parsimonious. They
allow the row or column classification variable, respectively, to be ordinal but
with unknown distances between the scores assigned to its successive categories
or even nominal. This is achieved by considering the row or the column scores
as unknown parameters to be estimated. Furthermore, a more flexible model can
be defined by (6.4), considering the row and the column score vectors to be both
unknown parameters. Thus, we model a multiplicative row by column association.
This model, denoted by RC, is no more linear in its parameters and their estimation
is not straightforward. The estimation problem will be faced in Sect. 6.2.
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Table 6.3 Association models and related d f . The U model is a special LL model

Association model μμμ = (μ1, . . .,μI) ννν = (ν1, . . .,νJ)

Linear × linear (LL) Known Known
Row effect (R) Unknown Known
Column effect (C) Known Unknown
Multiplicative row–column (RC) Unknown Unknown

Model Parameters additional to independence d.f.

LL 1 (I −1)(J −1)−1
R 1+(I −2) (I −1)(J −2)
C 1+(J −2) (I −2)(J −1)
RC 1+(I −2)+(J −2) (I −2)(J −2)

In terms of local odds ratios, the RC model is defined by

θ L
i j = c1ic2 j , i = 1, . . . , I − 1 , j = 1, . . . ,J − 1 ,

allowing the effect of each classification variable on the odds defined by the other
one to vary from category to category. In log-scale, the RC model is given by (6.10)
with parametric (unknown) row and column scores. The RC model does not require
ordinality for any of the classification variables. Thus it can be applied in tables of
nominal variables as well. Of course, scores’ assignment is more natural for ordinal
variables.

The association models considered so far are all defined in terms of expected cell
frequencies by

logmi j = λ +λ X
i +λY

j +ϕμiν j, i = 1, . . . , I, j = 1, . . . ,J, (6.11)

i.e., by expression (6.4). Thus, all association models considered so far are defined
by the same expression (6.4) and differentiated by the assumptions made for the
nature of the scores, known or unknown parameters. They are summarized in
Table 6.3. The U model is a special LL model and is not listed in the table.

6.1.5 Example 6.1 (Revisited)

Revisiting the cannabis example, we fit in Table 6.1 the R, C, and RC models.
The test statistic values along with their corresponding significance are provided
in Table 6.4. The estimates of parametric scores as well as the values of the fixed
scores for these models are provided in Table 6.5. The estimated score parameters
for the rows and the columns are close to be equidistant for two successive score
parameters. Thus it seems not to be worth to adopt a more complex model than U.



160 6 Association Models

Table 6.4 LR goodness-of-fit tests for the independence and the association models applied in
Table 6.1

Model G2 d.f. p-value

I 152.7933 6 0.0000
U 1.4687 5 0.9167
C 1.1004 4 0.8942
R 1.2964 3 0.7230
RC 0.6044 2 0.7392

Table 6.5 ML estimates for parameters and fixed scores values for the U, R, C, and RC models
applied in Table 6.1. Values in italics correspond to fixed scores

U R C RC

ϕ̂ 2.5382 2.4776 2.4638 2.3191

μ1 −0.6708 −0.6640 −0.6708 −0.6494
μ2 −0.2236 −0.2238 −0.2236 −0.2365
μ3 0.2236 0.2043 0.2236 0.1880
μ4 0.6708 0.6836 0.6708 0.6979

ν1 −0.7071 −0.7071 −0.7331 −0.7447
ν2 0.0000 0.0000 0.0553 0.0825
ν3 0.7071 0.7071 0.6779 0.6622

This is verified also from the corresponding goodness-of-fit tests, where we see
that moving from the simple U model to less parsimonious association models, the
fit improvement is very minor. A more detailed discussion on association model
selection will be carried out in Sect. 6.3.

Focusing on the C and RC models, the estimated local odds ratios under these
models are provided in Table 6.6. Recall that under the U model, the common local
odds ratios estimate is 2.23. We can verify that the expected local odds ratios under
the C model are column dependent, i.e., the value is common in each column but
differs from column to column while under the more general RC model they are
row and column dependent, thus all different to each other. However, the estimated
local odds ratios are not that different to justify the use of more complicated models
than the simple U model, which was of impressive fit. Under the C model, the odds
of having tried cannabis once or twice vs. never tried is 2.38 times higher for those
who are one level higher in the alcohol consumption scale, no matter what this level
is. The odds in the second column of Table 6.6 can be interpreted similarly. In this
example we did not refer at all at model R since it is less parsimonious of C and of
worse fit.
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Table 6.6 Estimated local odds ratios under the RC model and under the C model (in parentheses)
for the students’ survey about cannabis use at the University of Ioannina, Greece (1995)

I tried cannabis. . .

Alcohol consumption Never Once or twice More often

At most once/month 2.21 (2,38) 1,74 (1,99)
Twice/month 2,26 (2,38) 1,77 (1,99)
Twice/week 2,66 (2,38) 1,98 (1,99)
More often

6.2 Maximum Likelihood Estimation for Association Models

For any association model, the maximum likelihood estimation approach is that
described in Sect. 4.2 for log-linear models. Thus, independent of the underlying
sampling scheme, ML estimates of an association model’s parameters and even-
tually of its expected cell frequencies mi j are achieved by maximizing the Poisson
log-likelihood kernel (4.13) with respect to the parameters of the model. Substituting
mi j by the association model expression and equating the partial derivative of (4.13)
with respect to a parameter of the model to zero, one is led to the likelihood equation
corresponding to this parameter.

The likelihood equations with respect to the main effect parameters of model
(6.4) are the same as the corresponding of the two-way standard log-linear model,
given in (4.14). For the more general RC model where both set of scores are
parameters, the likelihood equations for the row scores (μ1, . . . ,μI) are derived as

∑
j

ν j(m̂i j − ni j) = 0, i = 1, . . . , I (6.12)

while for the column scores (ν1, . . . ,νJ) as

∑
i

μi(m̂i j − ni j) = 0, j = 1, . . . ,J . (6.13)

Finally, the likelihood equation corresponding to the intrinsic association parameter
ϕ is

∑
i, j

μiν j(m̂i j − ni j) = 0 . (6.14)

For the rest of the association models defined by (6.11) by considering the row
or column scores or both of them as fixed, the likelihood equations are derived
from the above set by eliminating the equations corresponding to known scores.
Thus, the likelihood equations for the U model are (4.14) and (6.14) while for the R
model (4.14), (6.12), and (6.14). Analogously, the likelihood equations for model C
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are (4.14), (6.13), and (6.14). Note that the likelihood equation (6.14) is redundant
given (6.12) or (6.13). This means that parameter ϕ is redundant whenever at least
one set of scores is parametric and can thus be eliminated. At this point it is worth
mentioning that the RC model was introduced by Goodman (1979b, model (4.1b))
in terms of the non-redundant parameters, as

mi j = αiβ j exp(μiν j), i = 1, . . . , I; j = 1, . . . ,J , (6.15)

with unconstrained row and column scores. Introducing the intrinsic association
parameter ϕ with the cost of imposing constraints (6.5) and (6.6) on the scores,
Goodman (1979b, model (4.5b)) proposed the equivalent expression

mi j = αiβ j exp(ϕμiν j), i = 1, . . . , I; j = 1, . . . ,J . (6.16)

This way the RC model and its scores are comparable to other standard models
(Chap. 7). The multiplicative form (6.16) is also equivalent to the log-form (6.4).

The ML estimates of the parameters of any association model cannot be derived
in closed-form expression and the corresponding likelihood equations have to be
solved iteratively. The simplest iterative procedure for association models ML
estimation is based on the Newton’s unidimensional method. The updating equations
(at the tth iteration) for the RC model parameters’ estimation, based on expression
(6.16), are

α(t)
i = α(t−1)

i
ni+

m̃i+
, i = 1, . . . , I,

β (t)
j = β (t−1)

j
n+ j

m̃+ j
, j = 1, . . . ,J,

μ (t)
i = μ (t−1)

i +
∑ j ν(t−1)

j (ni j − m̃i j)

ϕ̃(t−1) ∑ j

(
ν(t−1)

j

)2
m̃i j

, i = 1, . . . , I,

ν(t)
j = ν(t−1)

j +
∑i μ (t−1)

i (ni j − m̃i j)

ϕ̃(t−1) ∑i

(
μ (t−1)

i

)2
m̃i j

, j = 1, . . . ,J,

ϕ(t) = ϕ(t−1) +
∑i μ (t−1)

i ν(t−1)
j (ni j − m̃i j)

ϕ̃(t−1) ∑i, j

(
μ (t−1)

i ν(t−1)
j

)2
m̃i j

,

where m̃i j stands for the ML estimate of mi j, recalculated at each step of the
iterations (Goodman 1979b).

As in every iterative procedure the assignment of initial values to the parameters’
estimates is crucial. In this setup, a reasonable choice for the main effects is

α(0)
i = exp( �i+

J − �̄
2 ) and β (0)

j = exp(
�+ j

I − �̄
2 ),
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where �i j = log(ni j) and �̄ = �++
IJ . A natural choice for the initial estimates of the

parametric scores is to consider them equidistant for successive categories, i.e., as if
the U model was applied. In this case, starting by considering the scores equal to the
corresponding category index and rescaling them linearly so that constraints (6.5)
and (6.6) are satisfied, we conclude to

μ (0)
i =

√
3

I(I2−1)
(2i− I− 1) and ν(0)

j =
√

3
J(J2−1)

(2 j− J− 1).

A compatible then choice for ϕ(0) would be ϕ(0) = ∑i, j μiν j logni j; see (6.7). The
algorithm convergence is checked through the change in the log-likelihood value
(4.13), calculated after each parameters’ estimates updating circle.

The standard algorithms normally applied are the Newton–Raphson’s or the
Fisher’s scoring algorithm (see Sect. 5.3.1). In this context, the parameters of the
under consideration association model has to be written in a vector form. For exam-
ple, for the U model the parameter vector is βββ = (λ ,λ X

1 , . . . ,λ X
I−1,λY

1 , . . . ,λY
J−1,ϕ).

The Newton’s unidimensional method is simpler, since it does not require matrix
inversion but for this with the drawback that it does not estimate the s.e. of the
parameters.

Information on available software and special programs for estimation of associ-
ation models based on each of these algorithms will be provided in Sect. 6.6.

6.3 Association Model Selection

We have already faced in the context of the cannabis example the problem of
selecting the appropriate association model when more than one of them is of
adequate fit. The problem of model selection in the framework of association models
is connected to the analysis of association (ANOAS) in a contingency table and is
based on the interconnection between the models. In particular, it holds

I ⊂ U (or (LL) ⊂ R (or C) ⊂ RC.

Indeed, the I model is the U (or LL) model with ϕ = 0, while the C model, for
example, is the RC model for a specific choice for the row scores. This means that

G2(I)> G2(U)> G2(C)> G2(RC) ,

for example, with the analogous results for the LL or the R model. The crucial
question at this point is whether the reduction in G2 value as we move to less
parsimonious models is worth, justifying the loss in d f and simplicity. The answer
is provided through the conditional testing procedure (see Sects. 4.6 and 5.3.4).
As soon as we detect the simplest association modelM1 of adequate fit, we abandon
it in favor of a more complicated M2 (M1 ⊂ M2) only if the reduction in G2 is
statistically significant. Hence, we proceed testing the fit of M1 conditional on the
fact that M2 holds by (4.34).
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Thus, for example, given that the U, R, or C models hold, one could propose
the conditional tests of independence G2(I|U), G2(I|R), or G2(I|C), being asymp-
totically distributed as X 2 with d f equal to 1, I − 1, or J − 1, respectively.
These conditional tests of independence, given that model U, R, or C holds, are
of greater asymptotic power, compared to the traditional unconditional test of
independence (Gross 1981; Agresti 1983a). The tests I|U and I|LL are special
mentioned since they are most powerful as 1 d f tests. In this context it is important
to note that the conditional test I|RC is not that straightforward since G2(I|RC) =
G2(I)−G2(RC) is not asymptotically X 2 distributed with d f = d f (I)− d f (RC)
as probably expected. The asymptotic null distribution of G2(I|RC) for testing
independence is that of the largest eigenvalue from a Wishart distributed matrix
(Haberman 1981). Gradually conditional testing from the RC to I, such as I|U,
U|R, and R|RC, is possible and provides an analysis of association (ANOAS) table,
throwing light on the underlying association structure of the table and analyzing
deviance from independence in terms of source (overall, row, interaction) in a
manner analogous to the ANOVA table (Goodman 1981a).

6.3.1 Model Selection for Example 6.1

We have already seen that for the cannabis data set all association models provide an
acceptable fit. It seems natural to favor the C model over the R, due to parsimony and
better fit. Thus, the choice lies between the U, C, and RC models. By the conditional
testing procedure one has G2(C|RC) = G2(C)−G2(RC) = 0.496, which is non-
significant based on the X 2

2 distribution (p-value=0.7804). Thus, there is no point
in adopting the RC model since it does not provide a significant improvement of the
fit over the C model. Further on, since G2(U|C) =G2(U)−G2(C) = 0.3683 is again
non-significant (p-value=0.5439, d f = 1), the model that seems to be appropriate
for this data set is the simple U model, with just 1 d f less than the independence
and a straightforward interpretation of constant local association all over the table.
This sequence of conditional testing is summarized in the ANOAS table, provided
for this example at the end of Sect. 6.6.1.

6.4 Features of Association Models

We have mentioned that the LL model (U as well) is invariant under linear
transformations of its scores. Actually, this property holds for all association models
considered so far. Let μ∗

i = a1μi + b1 and ν∗
j = a2ν j + b2 be any choice of linear

rescaling for the row and column scores, respectively. Then in terms of the local
odds ratios and the new scores, the association model would be defined as

logθ k�
i j = ϕ∗(μ∗

k − μ∗
i )(ν

∗
� −ν∗

j ) , i = 1, . . . , I − 1 , j = 1, . . . ,J − 1 ,
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for i < k ≤ I and j < �≤ J. This is further transformed to

logθ k�
i j = a1a2ϕ∗(μk − μi)(ν�−ν j) ,

which for ϕ∗ = ϕ
a1a2

is equivalent to (6.3). Thus, without affecting the expected cell
frequencies, their estimates, and consequently the fit of the model, we can replace
the normalizing constraints on the scores by the weighted normalizing constraints:

∑
i

w1iμi = ∑
j

w2 jν j = 0 and ∑
i

w1iμ2
i = ∑

j
w2 jν2

j = 1. (6.17)

Although the choice of weights does not affect the model fit, it has an impact on the
scores’ values and thus issues related to or depending on them. The most common
choices for weights are uniform (w1i =w2 j = 1, i= 1, . . . , I j = 1, . . . ,J) or marginal
(w1i = πi+, i = 1, . . . , I and w2 j = π+ j, j = 1, . . . ,J). Uniform weights are preferred
when the marginal distributions are not fixed and interest lies on comparing tables
with unequal marginal distributions. The marginal weights are the choice when
scores of association models have to be compared to correspondence analysis results
(see Sect. 7.2) or when merging rows and/or columns of a table is the issue (see
Sect. 7.5). For a more detailed discussion on the choice of the weighting system,
please see Goodman (1985, 1991) or Becker and Clogg (1989).

Replacing the standard constraints (6.5) and (6.6) by the more general (6.17)
and working analogously as for deriving (6.7), the intrinsic association parameter ϕ
satisfies

ϕ = ∑
i, j

w1iw2 jμiν j logπi j ,

i.e., it is a weighted measure of correlation between the row and columns of the
table. However, as already stated, parameter ϕ is redundant in models R, C, and RC.

Models LL, U, R, and C are log-linear while RC is log-multiplicative (not
linear in its parameters). As already mentioned, models LL and U require that both
classification variables of the contingency table are ordinal and thus are sensitive in
re-ordering of rows or columns. Similarly, model R (C) is invariant in re-ordering of
the rows (columns) of the table and the corresponding classification variable needs
not necessarily be ordinal. Ordinality is required only for columns (rows). Finally,
the RC model is invariant in re-ordering of columns or rows. Hence, it can also be
applied to tables with nominal classification variables. Overall, parametric scores
in an association model can correspond either to nominal underlying classification
variable or to ordinal with unknown distances between successive categories. Thus,
the parametric scores of models R, C, and RC need not necessarily be monotone.
Lack of monotonicity implies non-monotone association, in the sense that local
association will be positive in some areas of the table and negative in others.

Thus, monotonicity of the row and column scores is naturally connected to
positive dependence and stochastic ordering of the conditional distributions in rows
or columns of the table. In particular, Goodman (1981a) showed that under the RC
model, association is isotropic and tables possessing this property are TP2, i.e.,
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θi j � 1 for all i = 1, . . . , I − 1, j = 1, . . . ,J − 1 with at least one strict inequality
(see also Sect. 2.5.5). As indicated by (6.10), in case the row and column scores
are both ordered and of the same ordering (i.e., both increasing or both decreasing),
ϕ > 0 is equivalent to positive dependence and consequently the conditional row or
column probabilities are stochastically ordered. This means that if Xi and Xi′ are the
conditional row distributions of rows i and i′ with i< i′, then the positive dependence
implies Xi �st Xi′ , e.g., Xi is stochastically smaller than Xi′ . The distribution of
Xi is said to be stochastically smaller than that of Xi′ , if FXi(t) � FXi′ (t), for all
t = 1, . . . ,J, where FX is the cumulative distribution function of X.

In general, it is not ensured that the ML estimates of monotone parametric scores
will be monotone as well. If the ML estimates are non-monotonic, then one can
proceed in order-restricted estimation of the corresponding association model (see
Sect. 6.8.2).

Another nice property of association models is their connection to the bivariate
normal distribution. In fact, association models lead to very good approximations of
the discretized bivariate normal distribution (Goodman 1981b, 1985; Wang 1987;
Becker 1989a; Rom and Sarkar 1990). To see this, consider the bivariate normal
density

f (x,y; μx,μy,σx,σy,ρ) =
1

2πσxσy

√
1−ρ2

×

exp

(
− 1

2(1−ρ2)

[
(

x− μx

σx
)2 − 2ρ(

x− μx

σx
)(

y− μy

σy
)+ (

y− μy

σy
)2
])

and partition the ℜ2 surface in small rectangular regions (ai−1 × ai)× (b j−1 × b j),
where i = 1, . . . , I, j = 1, . . . ,J, a0 = b0 = −∞, and aI = bJ = +∞. Then, the U
model, or more precisely the symmetric U model (with I = J and μi = νi), applied in
the table formed by this partition approximated well the discretization of the above
density. For standardized scores, parameter ϕ is analogue to ρ

1−ρ2 of the normal
density.

Finally, we would like to emphasize that beyond the sophisticated insight in the
structure of the underlying association, if significant, one of the major strong points
of the association models is the ability for conditional testing of independence, as
already discussed in Sect. 6.3.

6.5 Association Models of Higher Order: The RC(M) Model

The RC model, though the less parsimonious association model considered so
far and in spite of its impressive abilities and often impressive fit, is not always
adequate. RC itself imposes a restrictive structure which can sometimes be insuffi-
cient to model the underlying association. It leaves (I−2)(J−2) d f , enough space
for more in-between models for building up the interaction until the saturated model
is reached.
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Indeed, one could consider to add more multiplicative terms of the RC-type. For
example, the next model to consider would be

logmi j = λ +λ X
i +λY

j +ϕ1μi1ν j1 +ϕ2μi2ν j2 , i = 1, . . . , I , j = 1, . . . ,J .

In fact, this idea can be extended further, as long as I and J are large enough,
since in the saturated model, there are (I − 1)(J − 1) association parameters. Thus,
considering M association terms for the general case, we are led to the model

logmi j = λ +λ X
i +λY

j +
M

∑
m=1

ϕmμimν jm , i = 1, . . . , I , j = 1, . . . ,J , (6.18)

denoted by RC(M).
How large can M be? To answer this question one must see what M represents.

The concept behind the RC(M) general association model is that of dimensionality
of the underlying association and its decomposition in axes. The idea is the same
as in other well-known methods of reduction of dimensionality, such as factor
analysis and principal component analysis. As in these methods, for identifiability
purposes as well as for convenience of interpretation, the axes to which the
association is decomposed are considered to be orthogonal. In our framework,
the key for this decomposition is the singular value decomposition (SVD) of the

interaction parameters matrix ΛΛΛ =
(

λ XY
i j

)

I×J
of the saturated log-linear expression.

Thus, M is the rank of matrix ΛΛΛ , the parameters ϕm (m= 1, . . . ,M) are the associated
eigenvalues while the row and column scores for a certain m are the components of
the mth corresponding eigenvector. In particular, the SVD of the interaction matrix
ΛΛΛ gives

ΛΛΛ = MϕϕϕN′

where ϕϕϕ = diag(ϕ1, . . . ,ϕM) with ϕ1 � . . . � ϕM > 0 are the eigenvalues while
the eigenvectors μm = (μ1m, . . . ,μIm) and νm = (ν1m, . . . ,νJm), associated to the
mth eigenvalue, form the matrices MI×M = (μim) and NJ×M = (ν jm), respectively.
M and N are orthonormal, e.g., they satisfy

M′M = N′N = IM

where IM is the Mth order identity matrix. The maximum possible value for the
dimension of the decomposition M is M∗ =min(I,J)−1. Thus, model (6.18) can be
considered for 0≤M ≤M∗. The associated degrees of freedom equal d f [RC(M)] =
(I −M− 1)(J−M− 1). Model RC(0) is the independence model, RC(1) is the RC
while RC(M∗) is the saturated model. The orthonormality of the eigenvectors is
equivalently expressed as
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∑
i

μim = ∑
j

ν jm = 0 ,

∑
i

μ2
im = ∑

j
ν2

jm = 1, m, �= 1, . . . ,M,

∑
i

μimμi� = ∑
j

ν jmν j� = 0, m �= � .

Note that the first two restrictions are the identifiability constraints we have already
imposed on the row and column scores of the RC model for uniform weights
while the last one corresponds to the orthogonality of the dimensions. In order
to generalize the above constraints and allow the use of weights, the generalized
singular value decomposition (GSVD) of the interaction matrix Λ has to be applied
instead of the SVD. By GSVD, M and N are orthonormalized with respect to the
weights

W1 = diag(w11, . . . ,w1I) and W2 = diag(w21, . . . ,w2J),

e.g., they satisfy

M′W1M = N′W2N = IM ,

or equivalently, the row and column scores satisfy the constraints:

∑
i

w1iμim = ∑
j

w2 jν jm = 0, m = 1, . . . ,M , (6.19)

∑
i

w1iμimμi� = ∑
j

w2 jν jmν j� = δm�, m, �= 1, . . . ,M,

where δm� is Kronecker’s delta.
Analogously to the RC, the RC(M) model can alternatively be expressed by the

multiplicative form, used by Goodman:

mi j = αiβ j exp

(
M

∑
m=1

ϕmμimν jm

)

, i = 1, . . . , I , j = 1, . . . ,J.

However, the most convenient expression for physical interpretation is in terms of
the local odds ratios

logθ L
i j =

M

∑
m=1

ϕm(μim − μi+1,m)(ν jm −ν j+1,m) , (6.20)

for i = 1, . . . , I − 1 , j = 1, . . . ,J− 1.
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6.5.1 Maximum Likelihood Estimation of the RC(M) Model

The estimation procedure for the RC(M) follows the lines of the procedure described
in Sect. 6.2 for the simple RC model. The extension for the RC(M) model
is straightforward. Thus it can be proved that the likelihood equations for the
RC(M) model are the (4.14) for the main effects while the likelihood equations
corresponding to the row and column scores and the association parameters ϕm’s are

∑
j

ν jm(m̂i j − ni j) = 0, i = 1, . . . , I, m = 1, . . . ,M , (6.21)

∑
i

μim(m̂i j − ni j) = 0, j = 1, . . . ,J, m = 1, . . . ,M , (6.22)

∑
i, j

μimν jm(m̂i j − ni j) = 0, m = 1, . . . ,M , (6.23)

i.e., straightforward extensions of (6.12), (6.13), and (6.14), respectively.
In practice, the updating equations of the simple Newton’s unidimensional

method for the interaction parameters of RC(M) are direct extensions of the
corresponding updating equations for the RC model, presented in Sect. 6.2, while
the updating equations for the main effects remain the same. The orthonormal
constraints that must be satisfied by the scores of RC(M) need not to be enrolled in
the iterative procedure. Since it is only a matter of parameters’ identifiability and
rescaling that does not affect the cell estimates, it is sufficient if they are fulfilled by
the initial values and if the final estimated interaction parameters are rescaled by
SVD at the final stage, after the convergence of the algorithm is achieved. The

initial values ϕ(0)
m , μ (0)

im , and ν(0)
jm (m = 1, . . . ,M) can easily be obtained as the

corresponding values of the first M terms of the SVD of the observed interaction
matrix, e.g., matrix Γ with entries γi j =

ni j

α(0)
i β (0)

j

. The extension of the Newton–

Raphson algorithm, presented in Sect. 6.2, is also straightforward.

6.5.2 Example 6.2

The data considered in Table 6.7 are from Wermuth and Cox (1998) and cross-
classify people in West Germany (Central archive, 1993) according to their type of
schooling completed and their age in a 5×5 table. As can be observed in Table 6.8,
there exists a highly significant association between age and type of schooling which
is not captured by the RC model. Hence, the consideration of an association model
RC(M) with M > 1 is necessary. The RC(2) model is of very good fit and is the
model we propose for this data set and base inference on.

In the context of the RC model, we have seen that the important information lies
not on the values of the row and column scores themselves but on their distances
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Table 6.7 Cross-classification of 3,673 subjects according to their age and type of school
attended, West Germany 1991/92

Age group

Type of schooling 18–29 30–44 45–59 60–74 >74

Basic, incomplete 12 13 12 20 7
(11.943) (13.068) (12.008) (20.994) (5.987)

Basic, complete 215 507 493 460 137
(215.823) (504.677 (495.243) (458.267) (137.990)

Medium 277 300 192 126 38
(273.739) (309.576) (182.462) (129.431) (37.792)

Upper medium 52 91 47 15 6
(51.859) (91.307) (46.776) (16.149) (4.909)

Intensive 233 225 102 74 19
(235.637) (217.372) (109.510) (70.158) (20.323)

In parentheses are given the ML estimates under the RC(2) model

Table 6.8 G2 statistics for the fit of independence and association models applied in Table 6.7

Model G2 d.f. p-value

I 357.146 16 0.000
RC 24.275 9 0.039
RC(2) 2.599 4 0.627

for successive categories. Distances are the quantities that are interpreted in terms
of closeness of the effect of the underlying categories on odds formed by categories
of the other classification variable. For the RC(M) model with M > 1, the logic of
interpretation is the same, as can easily be verified by definition (6.20). However,
distances between rows (or columns) are now defined by the Euclidean distance in
the M dimensional space. For M = 2, this is easily visualized on the two-dimensional
space, with the i-th row (i = 1, . . . , I) and the j-th column ( j = 1, . . . ,J) being
represented by the points (μ̂i1, μ̂i2) and (ν̂ j1, ν̂ j2), respectively. For our example,
Fig. 6.1 presents such graphs for scores satisfying constraints (6.19) subject to the
uniform (left) or marginal (right) weights. The MLEs of the scores (under uniform
weights) are provided in Table 6.9.

These two graphs, though they obviously refer to different scores’ values,
they correspond to equivalent expressions of the RC(2) estimates just differently
scaled through the choice of the weights. It is evident from the plots that the 2nd
dimension captures the differentiation of row 1 from 2 (incomplete from complete
basic education) and 4 from 3 and 5 (upper medium from medium and intensive
education). The closeness of columns 4 and 5 (ages 60–74 or > 74) is remarkable,
especially in the marginal weights plot, where they are almost indistinguishable.
This observation motivates Sect. 7.5 on merging categories, where this example
is revisited (Sect. 7.5.1). Though the marginal weighted scores are preferred for
comparisons in rows (or in columns), the uniform weighted are more appropriate for
investigating the row–column combinations of strong association. We can observe,
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Fig. 6.1 Plots of the estimated row (bullets) scores (μ̂i1, μ̂i2), i = 1, . . .,5, and column (triangles)
scores (ν̂ j1, ν̂ j2), j = 1, . . . ,5, under the RC(2) model applied to Table 6.7, with respect to uniform
(left) and marginal (right) weights

Table 6.9 Association parameters’ ML estimates for the RC(2) model applied in Table 6.7

ϕ1 = 1.7830 ϕ2 = 0.6904

μ-scores ν-scores

m = 1 m = 2 m = 1 m = 2

1 −0.575 0.431 0.529 0.684
2 −0.484 −0.605 0.428 −0.400
3 0.168 0.209 0.073 −0.573
4 0.517 −0.467 −0.520 0.181
5 0.374 0.432 −0.511 0.107

The estimates are subject to the orthonormal
constraints with uniform weights

for example, that upper medium education (row 4) is stronger associated with people
aged 30–44 (column 2). Also, as expected basic incomplete education (row 1) is
more often among elder people (columns 4 and 5). Alternatively, one could apply
Correspondence Analysis (CA) and conclude to very similar results. The CA of this
data set is provided in Sect. 7.2.2.

6.6 Software Applications for Association Models

Association models, though so powerful tools in modeling the association in
contingency tables, did not receive the attention one would expect. The major reason
for that is the fact that their fit is not provided as a standard option in statistical
software. They can be fitted in statistical packages, but some extra programming is
required. Additionally, a Fortran algorithm for ML estimation of the RC(M) model
by the Newton’s unidimensional method has been provided by Becker (1990a) while
the Newton–Raphson algorithm has been implemented in Fortran by Haberman
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(1995) and a Fisher’s scoring type algorithm using the weighted least squares as
initial estimates by Ait-Sidi-Allal et al. (2004). As already mentioned in Sect. 6.2,
the above algorithms are appropriate for the estimation and fit of models linear in
their parameters, i.e., models U, R, and C. In case of RC(M), M ≥ 1, we still apply
these methods by considering at each step of estimation for the row (columns) scores
that the column (row) scores are fixed at the estimated value of the previous step.
This procedure is continued until convergence is achieved.

Association models which are linear in their parameters, e.g., the models U (and
LL), R, and C, are log-linear and can be fitted as GLM by any available software,
adopting the procedure described next for R. In the web appendix (see Sect. A.4)
are also available syntax codes for automatized fitting of all the association models
in SPSS, including the RC(M).

6.6.1 Association Models in R: Example 6.1

The simple association models U (or LL), R, and C can be fitted in R straightfor-
ward, in the generalized linear models framework by the glm() function of R, as
described below.

First of all, the data have to be in the standard format for fitting classical
log-linear models. Thus, let freq, row, and col be the usual variables of a data
frame corresponding to the vectors of observed frequencies and row and column
classification variables, respectively. Then, we have to construct the variables of
row and column scores, mu = row and nu = col, respectively. This way, the row
and column scores are set equal to μi = i, i = 1, . . . , I and ν j = j, j = 1, . . . ,J. In the
sequel, row and col have to be defined as factors and then the U, R, and C models
are the log-linear models with terms in the model row + col + mu:nu, row + col

+ row:nu and row + col + mu:col, respectively. The LL model can be fitted as
the U model with the only difference that the score variables mu and nu will now
contain the values of the prefixed, not equidistant scores for the corresponding row
and column categories.

To illustrate, let us consider the cannabis example. The data are saved under the
data frame cannabis.fr. Models U, R, and C are fitted by glm() as follows:
> freq <- c(204,6,1,211,13,5,357,44,38,92,34,49)

> row <- rep(1:4, each=3); col <- rep(1:3,4)

> mu <- row; nu <- col

> row <- factor(row); col <- factor(col)

> cannabis.fr <- data.frame(freq, row, col, mu, nu)

> model.U <- glm(freq∼row+col+mu:nu, poisson, data=cannabis.fr)

> model.R <- glm(freq∼row+col+row:nu, poisson, data=cannabis.fr)

> model.C <- glm(freq∼row+col+mu:co„ poisson, data=cannabis.fr)
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Table 6.10 Output of the U model fit in R for the cannabis data (Table 6.1)

Call:

glm(formula = freq∼row + col + mu:nu, family = poisson, data = cannabis.fr)

Deviance Residuals:

1 2 3 4 5 6 7

-0.03133 0.13352 0.13252 -0.02757 -0.02850 0.23335 0.22138

8 9 10 11 12

-0.69889 0.10336 -0.34184 0.82418 -0.17906

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.51766 0.10017 45.098 < 2e-16 ***
row2 -0.76921 0.12181 -6.315 2.70e-10 ***
row3 -1.05962 0.17968 -5.897 3.70e-09 ***
row4 -3.17104 0.30478 -10.404 < 2e-16 ***
col2 -4.38621 0.25357 -17.298 < 2e-16 ***
col3 -7.06112 0.53471 -13.205 < 2e-16 ***
mu:nu 0.80265 0.07827 10.255 < 2e-16 ***
--

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1357.7001 on 11 degrees of freedom

Residual deviance: 1.4687 on 5 degrees of freedom

AIC: 79.655

Number of Fisher Scoring iterations: 4

for models U, R, and C, respectively. The output is then derived, for the U model,
for example, through the command
> summary(model.U)

and is provided in Table 6.10.
Note that by the above procedure, the scores involved in the interaction term are

not standardized, they are equal to the corresponding category index and thus they
do not satisfy constraints (6.5) and (6.6). For these scores, we have ϕ̂ = 0.80265, as
given in Sect. 6.1.2. This, however, does not affect the ML estimates of the common
value of all expected under U local odds ratios or of the expected cell frequencies,
which can be obtained by
> MLE.U <- xtabs(model.U$fitted.values∼row+col)
verifying the corresponding entries of Table 6.1.

The R and C models fitted above are defined by (6.15), the parameterization
without the intrinsic association parameter ϕ . If we want the models to be in the
form (6.4) and the scores to be standardized, then mu and nu have to be rescaled
appropriately before applying the model, while the estimates of the parametric
scores have to be rescaled at a final stage as well. To simplify this procedure,
we conducted for each association model the corresponding R function, namely
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the fit.U(), fit.R() and fit.C(), to be found in the web appendix (see Sect.
A.3.5). They fit the corresponding model subject to the general constraints (6.17),
controlling the weights used by the parameter iflag, with the option of uniform
(=0) or marginal (=1) weights. Hence, the U model on the cannabis example with
marginal weights could be fitted by this function as
> U <- fit.U(freq, NI=4, NJ=3, iflag=1)

where NI=I and NJ=J. Under U, additional to the standard glm output, the standard-
ized scores are saved under U$mu and U$nu, respectively, as well as ϕ̂ (U$phi), the
G2 value (U$G2), the degrees of freedom (U$df), the p-value (U$p.value), and the
ML estimates of the expected cell frequencies (U$fit.freq). Functions fit.R()
and fit.C() are called analogously and give output of the same format.

The RC and more generally the RC(M) models, M ≥ 1, cannot be fitted by glm,
since they are not linear in their parameters and thus not in the GLM family. Thus,
these models need special treatment. They can be fitted through functions available
in special packages developed for nonlinear models, such as gnm, developed by
Turner and Firth. An overview of version 1.0–6 is provided by Turner and Firth
(2012a). An alternative choice is the VGAM package, which deals with Vector
Generalized Additive Models (Yee and Wild 1996). For a short presentation of the
package, see Yee (2008).

We will illustrate association models by the gnm package, based on Turner and
Firth (2007). It is designed for models multiplicative in their parameters and defines
the product of parameters, corresponding to factors f1 and f2, respectively, through
Mult(f1,f2). Thus, the RC model is fitted on our cannabis example by
> library(gnm)

> RC.model<-gnm(freq∼row+col+Mult(row,col),family=poisson)
Recall that row and col have to be defined as factors before calling the model.
Output is printed on the screen by typing
> RC.model

The output is provided in Table 6.11.
The ML estimates of the expected cell frequencies under the RC model are

provided by
> predict(RC.model, type="response", se.fit=TRUE)

$fit
1 2 3 4 5 6

204.249905 5.393465 1.356630 211.279836 12.320820 5.399344
7 8 9 10 11 12

355.826805 46.847419 36.325776 92.643454 32.438296 49.918250

$se.fit
1 2 3 4 5 6

14.2819358 1.9407176 0.8911325 14.5093040 2.8007752 1.9625848
7 8 9 10 11 12

18.7968741 5.6652758 5.5879960 9.5879954 5.3135278 6.9616519

$residual.scale
[1] 1

The ML estimates of the parameters of the model are printed on screen by typing:
> coefficients(RC.model)
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Table 6.11 Output for the RC model applied on the cannabis example (data in Table 6.1) by gnm

Call:
gnm(formula=freq∼row+col+Mult(row,col),family=poisson)

(Intercept) row2 row3
4.97406 0.20900 0.91031

row4 col2 col3
-0.21912 -2.07242 -2.35822

Mult(.,col).row1 Mult(.,col).row2 Mult(.,col).row3
-0.67224 -0.33122 0.01931

Mult(.,col).row4 Mult(row,.).col1 Mult(row,.).col2
0.44034 -0.51364 1.80955

Mult(row,.).col3
3.43750

Deviance: 0.5888162
Pearson chi-squared: 0.5802588
Residual df: 2

Furthermore, the command coef() gives the ability to save the ML estimates of a
parameter in a separate vector in order to be handy for further use. For example, the
row main effects estimates can be saved under the vector a:
> a<-c(0,coef(model.RC) [2:4])

> a

row2 row3 row4
0.0000000 0.2090018 0.9103069 -0.2191229

Note that the model is fitted through (6.15) and the scores’ estimates are not
with respect to the constraints (6.17). They can be rescaled linearly though, in order
to satisfy them. The getContrasts() command of the gnm package provides this
facility. Thus, for uniform weights, the rescaling is achieved as
mu<-getContrasts(model.RC, pickCoef(model.RC,"[.]row"),

+ ref="mean", scaleWeights="unit")

and
> nu<-getContrasts(model.RC, pickCoef(model.RC,"[.]col"),

+ ref="mean", scaleWeights="unit")

for the row and column scores, respectively, leading to
> mu

Estimate Std. Error
Mult(., col).row1 -0.6494141 0.07259224
Mult(., col).row2 -0.2364548 0.10092333
Mult(., col).row3 0.1880143 0.05142579
Mult(., col).row4 0.6978546 0.04442136
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> nu

Estimate Std. Error
Mult(row, .).col1 -0.74474733 0.04043242
Mult(row, .).col2 0.08252274 0.09813196
Mult(row, .).col3 0.66222459 0.05769954

For marginal weights, the vectors of row and column marginal probabilities have to
be computed first:
> rowProbs<-with(cannabis.fr, tapply(freq,row,sum)/sum(freq))

> colProbs<-with(cannabis.fr, tapply(freq,col,sum)/sum(freq))

The rescaling follows then analogously:
> mu<-getContrasts(model.RC, pickCoef(model.RC,"[.]row"),

+ ref=rowProbs, scaleWeights=rowProbs)

> nu<-getContrasts(model.RC, pickCoef(model.RC,"[.]col"),

+ ref=colProbs, scaleWeights=colProbs)

For our example, this leads to
>mu

Estimate Std. Error
Mult(., col).row1 -1.5106642 0.17070781
Mult(., col).row2 -0.5686042 0.22575503
Mult(., col).row3 0.3997124 0.08382567
Mult(., col).row4 1.5627815 0.14715755

and
>nu

Estimate Std. Error
Mult(row, .).col1 -0.2849555 0.003252048
Mult(row, .).col2 0.8920811 0.141339476
Mult(row, .).col3 1.7168786 0.117206021

Alternatively, the RC model can be fitted by the function fit.RC(), provided in
the web appendix (see Sect. A.3.5), with the option of selecting marginal or uniform
weights for the constraints (6.17) on the scores. The function is called exactly as
fit.U() and provides the same type of output. However, this function does not
provide the standard errors of the parametric scores. For this, the getContrasts()
function described above is needed.

The conditional testing between nested association models, when allowed, can be
performed by function anova(). Thus, for our cannabis example, the ANOAS table
based on the conditional tests G2(I|U), G2(U|C), and G2(C|RC) (see Sect. 6.3.1) is
produced by
> I<-glm(freq∼row+col, family=poisson)

> m1<- fit.U(freq,4,3,1)

> m2<- fit.C(freq,4,3,1)

> m3<- fit.RC(freq,4,3,1)

> anova(I,m1$model,m2$model,m3$model,test="Chisq")
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Analysis of Deviance Table

Model 1: freq ∼ row + col
Model 2: freq ∼ X + Y + mu:nu
Model 3: freq ∼ X + Y + Y:mu
Model 4: freq ∼ X + Y + Mult(X, Y)

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
1 6 152.793
2 5 1.469 1 151.325 <2e-16 ***
3 4 1.100 1 0.368 0.5439
4 2 0.589 2 0.512 0.7743
--
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

6.6.2 The RC(M) Model in R: Example 6.2

Association models of order M, M > 1, can be fitted in the gnm package applying
the instances argument for the multiplicative term of the model. Thus, for our
Example 6.2 (Table 6.7), the RC(2) model can be fitted as
> RC2.model <- gnm(freq ∼ row+col+instances(Mult(row,col),2),

+ family=poisson)

where freq is the vector of cell frequencies while row and col are the factors
corresponding to the rows (type of schooling) and columns (age group) of the table,
respectively. The fit.RCm() function in the web appendix (see Sect. A.3.5) fits the
RC(M) model (M ≥ 1) on a contingency table, read in vector form, and rescales
the row and column score vectors through singular value decomposition of the
appropriate table, so that constraints (6.19) hold for uniform or marginal weights.

Thus, for Example 6.2, the 5×5 data table is provided in vector form (by rows) as
> WCox <- c(12,13,12,20,7,215, 507,493,460,137,

+ 277,300,192,126,38,52,91,47,15,6,233,225,102,74,19)

and the RC(2) model is fitted by
> m <- 2

> RC.m <- fit.RCm(freq=WCox, NI=5, NJ=5, m=2, iflag=1)

where the parameter m specifies the order of the association model. The derived
score vectors are subject to constraints (6.19) with marginal weights. Changing the
last argument of fit.RCm() from 1 to 0, the uniform weights are applied.

One can save the scores’ estimates in order to proceed with the presentation of
the results, for example, through appropriate graphs. For Example 6.2, the vectors
of row and column scores subject to marginal weights can be saved in vectors mu1
and nu1 as
> mu1 <- RC.m$mu ; nu1 <- RC.m$nu

while subject to uniform weights in mu0 and nu0 as
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> RC.m0 <- fit.RCm(freq=WCox, NI=5, NJ=5, m=2, iflag=1)

> mu0 <- RC.m0$mu ; nu0 <- RC.m0$nu

respectively.
The plot, for example, of the row and column scores’ coordinates under uniform

weights (Fig. 5.1 (left)) can easily be obtained through the standard plot()

command, applied on mu0 and nu0. This plot is produced by function plot_2dim(),
provided in the web appendix (see Sect. A.3.5). The plot in Fig. 5.1 (left) is obtained
by calling this function as
> plot_2dim(mu0, nu0, -0.6, 0.6, -0.8, 0.8, -0.7, 1.1, 1.2)

The parameters of this function following nu0 control the plot appearance. Thus,
(−0.6, 0.6) and (−0.8, 0.8) define the range of values of the first and second axis,
respectively. The value set −0.7 leaves a gap of 70% of the text width between
the category label and the corresponding plotted symbol. According to the case, it
can be adjusted each time for the better appearance of the graph. The size of text
characters in axes and labels is set to be 1.1 times the default text size while the
size of the symbols and their categories’ labels are 1.2 times the default text size.
Analogously, the plot in Fig. 5.1 (right) is obtained through
> plot_2dim(mu1, nu1, -2, 2, -5, 5, -0.7, 1.1, 1.2)

6.6.3 Example 2.4 (Revisited)

Recall the data set on varicella disease in Table 2.5, where 170 children are cross-
classified by complication occurrence and age (in a 2 × 4 table). Independence
was rejected (p-value=0.040) and the linear trend test suggested that the linear
association is non-significant (p-value=0.104). Fitting association models on this
example, we confirm the inappropriateness of linear association since the U model
is rejected with G2 = 7.093 (p-value=0.029, d f = 2). Note that because I = 2, the
R model is equivalent to the U while the C model is saturated (G2 = 0, d f = 0).
However, derivation of the column scores of the C model is very informative on
comparing the different age groups in terms of their association to the complication
response. The C model is fitted by function fit.C of the web appendix (see
Sect. A.3.5). From the corresponding output, the coefficients along with their
standard errors and significances are provided below.
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Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(> |z|)

(Intercept) 2.1503 0.2759 7.794 6.47e-15 ***
X2 -0.2063 0.1944 -1.062 0.2885
Y2 0.3980 0.3399 1.171 0.2416
Y3 0.2939 0.3395 0.866 0.3867
Y4 1.9272 0.2759 6.986 2.84e-12 ***
Y1:mu -0.1522 0.2759 -0.552 0.5811
Y2:mu 0.6024 0.2415 2.495 0.0126 *
Y3:mu 0.2470 0.2409 1.025 0.3053
Y4:mu NA NA NA NA
--
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In the estimation procedure above, the parametric score ν4 is redundant and is the
reference category (coefficient for Y4:mu, shown as not defined). The fixed row
scores used are μ1 = −1 and μ2 = 1. The estimated column scores are rescaled
to satisfy the marginal weighted constraints (6.17). The rescaled scores and the
interaction parameter are also part of the output. In particular, ϕ̂ = 0.231, ν̂1 =
−1.127 ν̂2 = 2.136, ν̂3 = 0.560, and ν̂4 =−0.468.

Observing that only the column score ν̂2 is significantly different from the
others, we conclude that only the category “1–2 years old” relates differently to
complications than all other age categories. Thus, we proceed by applying the LL
model with the constraint ν1 = ν3 = ν4. In R this is easily achieved, as shown
next. Before fitting the LL model, we rescale the simple raw scores 1,2, assigned
initially to the rows and column categories, through the function rescale of the
web appendix (see Sect. A.3.5), so that the ϕ̂ , derived by glm(), corresponds to the
marginally weighted scores:
> NI <- 2

> NJ <- 4

> freq <- c(10,7,9,59,6,19,12,48)

> row<-gl(NI,NJ,length=NI*NJ)

> col<-gl(NJ,1,length=NI*NJ)

> dtable <- data.frame(freq,row,col)

> mu0<-c(1,2)

> nu0<-c(1,2,1,1)

> mu<-rep(rescale(mu0, dtable, 1, 1)$score,each=NJ)

> nu<-rep(rescale(nu0, dtable, 1, 0)$score, NI)

> LL.model <- glm(freq∼row+col+mu:nu,poisson)
From the summary output, obtained by summary(LL.model), we see that the model
is acceptable, since G2 = 1.572 (p-value=0.456, d f = 2). Commands
MLEs <- xtabs(LL.model$fitted.values ∼ row + col)

stdres <- xtabs(rstandard(LL.model) ∼ row + col)
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express in table form the ML estimates of the expected frequencies and the
corresponding standardized residuals. None of the standardized residuals exceeds
1.96; thus all cells are fitted satisfactorily by the model.

> MLEs
col

row 1 2 3 4
1 8.666667 7.000000 11.375000 57.958333
2 7.333333 19.000000 9.625000 49.041667
> stdres

col
row 1 2 3 4
1 0.6924565 0.0000000 -1.1684753 0.3975276
2 -0.7328918 0.0000000 1.0833608 -0.4001372

The interaction parameter is estimated as ϕ̂ = 0.210 (coefficient for mu:nu in
the output) while the row and column scores are μ1 = −1, μ2 = 1, ν1 = ν3 = ν4 =
−0.4249 and μ2 = 2.3534 (saved in vectors mu and nu).

This model provides a clear and strong interpretation. The equality restrictions
among the column scores impose on the expected local odds ratios the restrictions
θ L

13 = 1 and θ L
11 = 1/θ L

12. The odds ratios θ 23
11 and θ 24

11 , opposing age categories
1 to 3 and 1 to 4, respectively, are also equal to 1 and θ 24

12 = θ L
12. Thus we

conclude that the odds of complication occurrence for children 1–2 years old is
θ̂ L

11 = eϕ̂(μ2−μ1)(ν2−ν1) = e1.1669 = 3.2 times higher than for children of any other
age. The θ̂ L

1 j, j = 1,2,3, could also have been computed by the local.odds.DM()
function (see Sect. A.3.2), implemented as follows:
> NI <- 2; NJ <- 4; C <- local.odds.DM(NI, NJ)

> LO <- as.vector(C%*%log(LL.model$fitted.values))

> exp(t(matrix(LO, NJ-1)))

[,1] [,2] [,3]
[1,] 3.207792 0.3117409 1

6.6.4 Association Models Fitted on the Local Odds Ratios

Association models can also be fitted directly on the local odds ratios through the
generalized log-linear model GLLM (5.28) and implemented in R by Lang’s mph

package. The GLLM turns to a model on local odds ratios by eliminating matrix
M and appropriately defining matrix C, so that C log(m) becomes the vector of
the expected local odds ratios under the assumed model, where m is the vector of
expected cell frequencies. For an I×J table, C and m are of size (I−1)(J−1)× IJ
and IJ × 1, respectively. This matrix C for an I × J table is produced by function
local.odds.DM() of the web appendix (see Sect. A.3.2). The design matrix X
specifies the restrictions imposed on the local odds ratios by the model under
consideration and is of size (I − 1)(J− 1)× s, where s is the number of parameters
in the model.
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We illustrate this option fitting the U model on our cannabis example. Under the
U model a common value is assumed for all local odds ratios; thus the parameter β
is scalar and the design matrix X is the (I − 1)(J − 1)× 1 vector of 1’s. Recall (see
Sect. 5.6) that mph needs to be actualized in R and that the data are read as a vector
saved in matrix form. The way we define the C matrix requires the data to be read
by rows. For the cannabis example,
> y <- c(204,6,1,211,13,5,357,44,38,92,34,49)

> y <- matrix(y); NI <- 4; NJ <- 3; dim1<-(NI-1)*(NJ-1)

> X<-matrix(rep(1,dim1))

In our context, matrix C is
> C <- local.odds.DM(NI,NJ)

and the link of the GLLM model is defined by the function
> L.fct <- function(m){C%*%log(m)}

Finally, the U model is fitted by
> mph.out <- mph.fit(y=y,L.fct=L.fct,X=X)

> mph.summary(mph.out,cell.stats=T,model.info=T)

The derived output provides goodness-of-fit statistics for the model; estimate of the
β (the log of the common local odds ratio under U), and estimates of the expected
cell frequencies and the associated residuals. Further informations, as for example
on the algorithm’s convergence, are also provided.

In case of one or more sampling zeros, when working with odds ratios and for
ensuring their existence, we set
> z <- y+0.000001

> mph.out <- mph.fit(y=z,L.fct=L.fct,X=X)

6.7 Association Models for Multi-way Tables

Association models can also be applied on contingency tables of higher dimension.
Consider a I × J ×K contingency table with classification variables X , Y , and Z,
respectively. Association models can be derived by replacing one or more of the
interaction terms of any hierarchical log-linear model by multiplicative terms based
on scores, leading thus to more parsimonious models of special structure, in analogy
to two-way association models.

For example, consider the model

logmi jk = λ +λ X
i +λY

j +λ Z
k +ϕXZμiτk +ϕYZν jτk , .(6.24)

i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K,

with (μ1, . . . ,μI), (ν1, . . . ,νJ), and (τ1, . . . ,τK) sets of known scores assigned to the
categories of the classification variables X , Y , and Z, respectively, all equidistant for
successive categories. This model is a special type of conditional XY independence
model, derived from the (XZ, YZ) log-linear model by replacing the λ XZ

ik and λYZ
jk

interaction terms by the uniform (U)-type terms ϕXZ μiτk and ϕY Zν jτk, respectively.
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For this, it will be denoted as (XZU , Y ZU). It is very parsimonious, having d f =
IJK − I− J−K, just 2 less than the complete independence model (X , Y, Z).

More options are available by considering some of the scores to be parametric.
Assuming thus an R-type interaction only for the term λ XZ

ik , the (μ1, . . . ,μI)
scores would be considered as parameters in (6.24) and the model would then
be (XZX , Y ZU). In terms of notation, an interaction term without an index is of
log-linear model type, with U of uniform association type, while when it is of
row or column effect type, the variable of parametric scores is set as an index.
A multiplicative RC-type has also a multiplicative index. Thus (XZXZ , YZU ) is the
model defined by (6.24) with parametric μ- and τ-scores of the XZ interaction and
fixed equidistant scores for the ν- and τ-scores of the Y Z interaction term. Were
the layer scores parametric in both interaction terms, they could be homogeneous or
not. The model for parametric nonhomogeneous τ-scores, (XZZ , YZZ), is

logmi jk = λ +λ X
i +λY

j +λ Z
k +ϕXZμiτXZ

k +ϕYZν jτY Z
k ,

while with the additional restrictions τXZ
k = τY Z

k , k = 1, . . . ,K, the homogeneous
(XZZ, Y ZZ) is derived.

A flexible form of association model, including three-factor interaction, is

logmi jk = λ +λ X
i +λY

j +λ Z
k +ϕXY μXY

i νXY
j +ϕXZμXZ

i τXZ
k + (6.25)

ϕY ZνY Z
j τY Z

k +ϕXY ZμXY Z
i νXY Z

j τXY Z
k ,

which offers a variety of model options, depending on the combinations of
assumptions about the scores.

The most general expressions for imposing association structures on the two-
factor interaction terms of a three-way log-linear model are

λ XY
i j =

M1

∑
m=1

ϕXY
m μXY

im νXY
jm , λY Z

jk =
M2

∑
m=1

ϕY Z
m νY Z

jm τY Z
km , (6.26)

λ XZ
ik =

M3

∑
m=1

ϕXZ
m μXZ

im τXZ
km ,

with 1 ≤ M1 ≤ min(I,J)−1, 1 ≤ M2 ≤ min(J,K)−1, and 1 ≤ M3 ≤ min(I,K)−1.
The three-factor interaction can be decomposed in an analogue manner

λ XY Z
i jm =

M4

∑
m=1

ϕmμimν jmτkm . (6.27)

The consideration of (6.27) for M4 > 1 as well as other options for decomposing
three-way arrays, known as trilinear decomposition, is beyond the scopes of this
book (see Sect. 6.8.1).
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The scores are subject to constraints analogue to (6.19) of the two-way case.
When Mi = 1 (i = 1, . . . ,4), we conclude to model (6.25). Furthermore, the scores
can be considered known and lead to terms of U-, R-, C-, or L- (for the layer scores)
type.

The idea extends analogously to contingency tables of higher dimension. How-
ever, the number of possible association models augments with the dimension of the
table. It is difficult to control all possible combinations of assumptions regarding
the interaction terms of a multi-way table, so an automated stepwise association
model selection procedure is not feasible. In practice we start by selecting the
appropriate hierarchical log-linear model by a stepwise procedure and then try to
conclude to a more parsimonious model by imposing special structures to some of
the interaction terms. In this procedure, conditional tests between nested models are
helpful. Finally, we can test whether parametric scores of the same classification
variable but on different interaction terms are homogeneous.

Multi-way association models and their physical interpretations will be illus-
trated with two examples that follow.

6.7.1 Example 6.3

In a study, 16,236 teenagers in Holland are cross-classified in a 6× 7 × 2 table
by their educational level after 4 years of second-level education, their test for
intellectual capacity (TIC) score, and their gender (Siciliano and Mooijaart 1997).
The data are provided in Table 6.12.

In the framework of hierarchical log-linear model, we do not have another
option for this data set than the saturated model, since the three-factor interaction is
significant. We can verify that the model of homogeneous association (EI,EG, IG)
is rejected with G2(GE,GI,EI) = 61.517 (p-value=0.001, d f =30). It is notable
however that the highly significant G2 value is also affected by the large sample size
of the table. The corresponding dissimilarity index is Δ̂ = 0.02, at the limit for a
satisfying data representation by this model (see Sects. 4.2 and 4.2.1 for calculation
in R). The significance of each term in the log-linear model is summarized in the
analysis of deviance table of the saturated model, derived as shown below.

Provided that the data are given in vector freq, expanded by rows, followed by
columns and layers, we program in R
> G<-factor(rep(1:2,each=42)); I<-factor(rep(1:7,12))

> E<-factor(rep(1:6,2,each=7)); educ.fr<-data.frame(freq,E,I,G)

> sat.glm <- glm(freq ∼ E*I*G, family=poisson, data=educ.fr)

> anova(sat.glm, test="Chisq")

and get the output of Table 6.13.
Since all interaction terms are significant, the basis for selecting the appropriate

association model will be the saturated. The simplest model expression of this type
is the

log(mi jk) = λ +λ E
i +λ I

j +λ G
k +ϕEIμiν j +ϕ IGν jτk +ϕEGμiτk +ϕEIGμiν jτk,

(6.28)
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Table 6.12 Cross-classification of 16,236 teenagers in Holland by their educational level after 4
years of second-level education, their test for intellectual capacity (TIC) score, and their gender
(Siciliano and Mooijaart 1997)

Gender TIC Total

1 2 3 4 5 6 7

Boys Education

DO 75 77 105 125 89 38 17 526
(57.24) (79.28) (127.13) (128.12) (87.64) (37.99) (8.60)

LBO 216 305 495 522 389 168 34 2129
(212.43) (304.47) (505.33) (527.06) (373.10) (167.38) (39.23)

MAVO 67 144 267 368 339 194 54 1433
(71.70) (131.16) (277.81) (369.79) (334.07) (191.27) (57.20)

MBO 51 84 239 345 301 208 65 1293
(49.32) (98.25) (226.62) (328.50) (323.18) (201.50) (65.63)

HAVO 26 65 200 332 383 258 98 1362
(31.04) (71.86) (192.65) (324.57) (371.13) (268.95) (101.81)

VWO 12 27 104 216 325 321 178 1183
(8.81) (27.28) (97.81) (220.36) (336.94) (326.51) (165.28)

Total 447 702 1410 1908 1826 1187 446 7926

Girls Education

DO 51 60 115 123 78 56 9 492
(44.21) (65.96) (113.96) (123.73) (91.18) (42.58) (10.39)

LBO 144 223 382 370 290 107 26 1542
(154.72) (221.27) (366.45) (381.38) (269.39) (120.59) (28.20)

MAVO 60 134 288 424 442 266 72 1686
(64.61) (128.52) (296.03) (428.51) (420.98) (262.10) (85.24)

MBO 75 167 320 458 428 258 72 1778
(80.81) (152.43) (332.96) (457.05) (425.81) (251.41) (77.54)

HAVO 23 68 211 373 450 402 169 1696
(25.43) (65.95) (198.08) (373.88) (478.94) (388.83) (164.89)

VWO 5 9 77 183 307 326 209 1116
(4.67) (16.59) (68.17) (176.07) (308.64) (342.88) (198.98)

Total 358 661 1393 1931 1995 1415 557 8310

In parentheses are given the fitted values under the association model (6.29). Educational-level
scale: (1) DO, dropped out; (2) LBO, junior level of education for professions; (3) MAVO, medium
level of general education; (4) MBO, senior level of education for professions; (5) HAVO, high
level of general education; and (6) VWO, general education preparing for university

with all the involved set of scores known. Considering the scores in each set
equidistant for successive categories, model (6.28), denoted by (EIGU), is the
most parsimonious three-way association model in the class of models with up to
three-factor interaction, having just 4 parameters more than the model of complete
independence (E, I, G).
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Table 6.13 Decomposition of the deviance for Table 6.12

Analysis of Deviance Table
Model: poisson, link: log
Response: freq
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 83 9063.2
E 5 1910.5 78 7152.7 < 2.2e-16 ***
I 6 4508.9 72 2643.8 < 2.2e-16 ***
G 1 9.1 71 2634.7 0.002580 **
E:I 30 2330.2 41 304.5 < 2.2e-16 ***
E:G 5 222.3 36 82.2 < 2.2e-16 ***
I:G 6 20.6 30 61.6 0.002154 **
E:I:G 30 61.6 0 0.0 0.000584 ***
--
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In order to fit association models in R, we create the known score vectors for the
classification variables. For simplicity, we set each score equal to the index of the
category it corresponds to. We compute
> mu<-rep(1:6,2,each=7); nu<-rep(1:7,12); tau<-rep(1:2,each=42)

and extend the data frame
> educ.fr<-data.frame(freq,E,I,G,mu,nu,tau)

Model (EIGU) is then fitted as
> EIG.U <- glm(freq∼E+I+G+mu:nu+mu:tau+nu:tau+mu:nu:tau,
+ poisson, data=educ.fr)

It is of very bad fit, with G2 (EIGU) = 450.179 (p-value< 0.0005, d f =67),
but reduces the G2 statistic drastically, compared to complete independence
(G2(E, I, G) = 2634,719, d f =71).

This means that some of the row and/or column scores in (6.28) have to be
considered parametric. Since G is binary, the corresponding scores (τ1,τ2) cannot
be parametric and their choice does not affect the model fit.

Considering that only the TIC effect is parametric on all the interaction terms,
model (6.28) extends to

log(mi jk) = λ +λ G
i +λ E

j +λ I
k + μiνEI

j +ν IG
j τk +ϕEGμiτk + μiνEIG

j τk ,

denoted by (EII , EGU , IGI, EIGI). This last model expression employs non-
standardized parametric scores and therefore the redundant intrinsic association
ϕ-parameters are absorbed. It is fitted in R by
> EIG.I <- glm(freq∼E+I+G+mu:I+mu:tau+I:tau+mu:I:tau,
+ poisson, data=educ.fr)
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Table 6.14 ML estimates of the parametric scores of model (6.29) fitted on the data in Table 6.12
for equidistant scores ν j = j ( j = 1, . . . ,7) and τk = k (k = 1,2)

i = 1 2 3 4 5 6
μ̂EI

i −0.742 −0.631 −0.473 −0.250 −0.268 0.000
μ̂EG

i 0.438 0.456 0.583 1.319 0.458 0.000
μ̂EIG

i 0.000 −0.077 0.009 −0.129 0.039 0.062

Its bad fit (G2(EII , EGU , IGI , EIGI) = 426.6, p-value< 0.0005, d f =52) provides
evidence that the education scores in some or all interaction terms should be
considered as unknown parameters.

Thus, we try next the model

log(mi jk) = λ +λ G
i +λ E

j +λ I
k + μEI

i ν j +ϕ IGν jτk + μEG
i τk + μEIG

i ν jτk , (6.29)

where only the education level (E) effect is parametric for all interaction terms.
This is denoted as (EIE , EGE , IGU , EIGE) and fitted in R by
> EIG.E <- glm(freq∼E+I+G+E:nu+E:tau+nu:tau+E:nu:tau,
+ poisson, data=educ.fr)

exhibiting an adequate fit with G2(EIE , EGE , IGU , EIGE) = 61.074
(p-value=0.267, d f =55).

The fitted cell frequencies under (EIE , EGE , IGU , EIGE) are provided in
Table 6.12 in parentheses. For equidistant scores ν j = j ( j = 1, . . . ,7) and τk = k
(k = 1,2), the ML estimate of the intrinsic association parameter ϕ IG is ϕ̂ IG =
0.0745 while the ML estimates of the parametric scores are given in Table 6.14.

The interpretation of parameters needs caution and has to be done locally due
to the non-monotonicity of the parametric scores. For interpretation, the fitted
odds ratios under the model have to be considered. Model (6.29) in terms of the
conditional EI log local odds ratios and for the choice of known scores given above
is expressed as

log
(

θ EI
i j(k)

)
= log

(
mi jk ·mi+1, j+1,k

mi+1, j,k ·mi, j+1,k

)
= (μEG

i+1 − μEG
i )+ (μEIG

i+1 − μEIG
i )k

= log
(

θ EI
i(k)

)
, i = 1, . . . , I− 1, j = 1, . . . ,J − 1, k = 1,2,

i.e., independent of j, as expected since successive ν j scores are equidistant. This
means that under (6.29) the fitted local odds ratios are constant within rows. In our
case, the θ̂ EI

i(k) row values are given in Table 6.15. Thus, we see that for boys, the
strongest association between educational level and the TIC score is between HAVO
and VWO. The odds of a boy achieving a category of TIC score vs. the immediate
previous one is 1.34 times higher for a boy having general education preparing for
university (VWO) than high level of general education (HAVO). The corresponding
odds ratio for girls is 1.37. The conditional (within gender) association between TIC
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Table 6.15 ML estimates of the θ EI
i(k), i = 1, . . . ,5, k = 1,2, under model (6.29) for the example in

Table 6.12

Education Boys Girls

DO 1.035 0.958
LBO 1.276 1.391
MAVO 1.089 0.948
MBO 1.162 1.375
HAVO 1.337 1.368
VWO

score and educational level is positive for boys although not equally strong for all
educational levels while for girls it is negative (though weak) when comparing DO
to LBO and MAVO to MBO.

Based on model (6.29), one could further try if more parsimonious models
are preferable. More parsimonious models are obtained by imposing homogeneity
constraints among the vectors of the unknown education scores or considering one
of them as being equidistant. It could also be tested whether less parsimonious non-
log-linear models involving interaction terms multiplicative in their parameters (i.e.,
of RC-type) lead to a significant improvement of the fit.

6.7.2 Homogeneous Uniform Association

Consider a I×J×K contingency table, consisting of K independent strata. Then the
simplest association structure is to consider that for each XY partial table, all local
odds ratios are equal, i.e., assume that the U model holds for each stratum. This
model is defined by

θ XY
i j(k) = θ XY

k , i = 1, . . . , I − 1, j = 1, . . . ,J− 1, k = 1, . . . ,K. (6.30)

Local odds ratios however from different strata may vary and (6.30) is the
nonhomogeneous U model. An even simpler model is the homogeneous U model,
assuming that all strata have a common local odds ratio

θ XY
i j(k) = θ XY , i = 1, . . . , I − 1, j = 1, . . . ,J− 1, k = 1, . . . ,K. (6.31)

To illustrate these models, consider the data in Table 6.16. The first stratum of this
4× 3× 2 data table is the cannabis example of Table 6.1 while the second stratum
corresponds to an analogue survey among students of another university (artificial
data).

The U model, fitted on the 4 × 3 partial table of the second stratum (data in
Table 6.16, stratum (2)), with one of the procedures described in Sect. 6.6.1 for
Example 6.1, is of good fit with G2

2 = 8.284 (p-value= 0.141, d f = 5). Under this
model, the MLE of the common local odds ratio in log-scale is log θ̂ L

2 = 0.749, close
to the corresponding estimate for the data in the first stratum (log θ̂ L

1 = 0.803), for
which we had G2

1 = 1.469 (p-value= 0.917, d f = 5).



188 6 Association Models

Table 6.16 Students’ survey about cannabis use at two universities

I tried cannabis . . .

Alcohol consumption Never Once or twice More often

Stratum (1)
≤ Once/month 204 6 1
Twice/month 211 13 5
Twice/week 357 44 38
More often 92 34 49

Stratum (2)
≤ Once/month 311 5 4
Twice/month 339 19 12
Twice/week 429 66 57
More often 134 51 74

Stratum (1) is the data of Table 6.1; stratum (2) is artificial

The nonhomogeneous U model (6.30) for data in Table 6.16 can be derived in
mph by

> source("c://Program Files//R//mph.Rcode.txt")

> freq <-c(204,6,1,211,13,5,357,44,38,92,34,49)

> freq2<-c(311,5,4,339,19,12,429,66,57,134,51,74)

> y<- matrix(append(freq,freq2))

> NI<-4; NJ<-3; dim1<-(NI-1)*(NJ-1); dim2<-2*dim1

> zer<-matrix(rep(0,NI*NJ*(NI-1)*(NJ-1)),(NI-1)*(NJ-1))

> C0<-local.odds.DM(NI,NJ); C1<-cbind(C0,zer)

> C2<-cbind(zer,C0); C<-rbind(C1,C2)

> L.fct <- function(m){C%*%log(m)}

> X<-matrix(rep(1,dim1)); Z<-matrix(rep(0,dim1))

> X2<-rbind(cbind(X,Z),cbind(Z,X))

> mph.out <- mph.fit(y=y,L.fct=L.fct,X=X2)

> mph.summary(mph.out,cell.stats=T,model.info=T)

leading to G2 = 9.752 (p-value=0.462) with corresponding residual d f =10. In this
case, since the two strata are independent, model (6.30) is equivalent to fitting the
U model independently to each of the partial two-way tables. Indeed, we can verify
that G2

1+G2
2 = 9.752=G2 and that the ML estimates of logθ XY

k , k = 1,2 (log θ̂ XY
1 =

β̂1 = 0.803, log θ̂ XY
2 = β̂2 = 0.749) coincide with the corresponding log θ̂ L

k , k = 1,2.
The homogeneous U model (6.31) can be fitted as follows. The L.fct function

is defined as above but the design matrix X2 is replaced by X1, defining thus a
univariate parameter β instead of the bivariate (β1,β2) above:

> X1<-rbind(X,X) # homogeneous U model for both layers

> mph.out <- mph.fit(y=y,strata=2,L.fct=L.fct,X=X1)

> mph.summary(mph.out,cell.stats=T,model.info=T)

Selected parts of the output are provided in Tables 6.17 and 6.18.
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Table 6.17 Output of the mph function for the homogeneous U model, applied on the 4× 3× 2
data of Table 6.16: the observed local log odds ratios (OBS LINK) are listed by rows, along with
the ML estimate of the common under the assumed model local log odds ratio value, its s.e. and
the standardized link residuals

MODEL GOODNESS OF FIT: Test of Ho: h(p)=0 vs. Ha: not Ho. . .

Likelihood Ratio Stat (df=11): Gsq = 10.05081 (pval = 0.5258 )

Pearson’s Score Stat (df=11): Xsq = 10.28396 (pval = 0.505 )

Generalized Wald Stat (df=11): Wsq = 9.83676 (pval = 0.5451)

Adj Resids: -1.708 -1.452 . . . 1.546 1.705,

Number |Adj Resid| > 2: 0

SAMPLING PLAN INFORMATION. . .

Number of strata: 1

Strata identifiers: 2

Strata with fixed sample sizes: all

Observed strata sample sizes: 2555

LINEAR PREDICTOR MODEL RESULTS. . .

BETA StdErr(BETA) Z-ratio p-value

beta1 0.7691 0.0472 16.2809 0

OBS LINK ML LINK StdErr(L) LINK RESID

link1 0.7395 0.7691 0.0472 -0.0596

link2 0.8362 0.7691 0.0472 0.0563

link3 0.6934 0.7691 0.0472 -0.2391

link4 0.8089 0.7691 0.0472 0.0701

link5 1.0981 0.7691 0.0472 1.2801

link6 0.5121 0.7691 0.0472 -0.8144

link7 1.2488 0.7691 0.0472 1.2460

link8 -0.2364 0.7691 0.0472 -1.1251

link9 1.0098 0.7691 0.0472 0.9707

link10 0.3129 0.7691 0.0472 -1.0692

link11 0.9058 0.7691 0.0472 0.6372

link12 0.5188 0.7691 0.0472 -0.9681

The equivalent expression of model (6.30) in terms of expected cell frequencies is

logmi jk = λ +λ X
i +λY

j +λ Z
k +ϕXY μiν j +λ XZ

ik +λYZ
jk +ϕXYZ μiν jτk, (6.32)

i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K,

where the set of scores (μ1, . . . ,μI), (ν1, . . . ,νJ), and (τ1, . . . ,τK) are all known
and equidistant for successive categories. They can be considered subject to
standardization constraints or set equal to the corresponding category index.

The conditional local odds ratios under this model are fixed within partial tables
equal to

θ XY
(k) = exp

(
(ϕXY +ϕXY Zτk)Δ1Δ2

)
, (6.33)

i = 1, . . . , I − 1, j = 1, . . . ,J − 1, k = 1, . . . ,K,
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Table 6.18 Output of the mph function: observed and ML fitted cell frequencies under the
homogeneous U model applied on the 4× 3 × 2 data of Table 6.16, along with ML estimates
of the cell probabilities, standard errors, and standardized residuals

CELL-SPECIFIC STATISTICS. . .

strata OBS FV StdErr.FV PROB StdErr.PROB ADJ.RESIDS

y1 2 204 203.9403 13.4845 0.0798 0.0053 0.0247

y2 2 6 6.0413 0.9179 0.0024 0.0004 -0.0181

y3 2 1 1.0183 0.2575 0.0004 0.0001 -0.0188

y4 2 211 210.6392 13.4128 0.0824 0.0052 0.0987

y5 2 13 13.4638 1.6978 0.0053 0.0007 -0.1431

y6 2 5 4.8970 0.8612 0.0019 0.0003 0.0506

y7 2 357 352.2819 16.4381 0.1379 0.0064 0.8152

y8 2 44 48.5868 5.1333 0.0190 0.0020 -0.9936

y9 2 38 38.1313 4.4575 0.0149 0.0017 -0.0312

y10 2 92 97.1386 8.4659 0.0380 0.0033 -1.1012

y11 2 34 28.9081 3.4680 0.0113 0.0014 1.2515

y12 2 49 48.9533 5.7150 0.0192 0.0022 0.0119

y13 2 311 308.3105 16.1909 0.1207 0.0063 0.8984

y14 2 5 9.8678 1.3053 0.0039 0.0005 -1.7076

y15 2 4 1.8218 0.4348 0.0007 0.0002 1.7054

y16 2 339 337.4154 16.4817 0.1321 0.0065 0.3441

y17 2 19 23.3021 2.4133 0.0091 0.0009 -1.0353

y18 2 12 9.2825 1.4482 0.0036 0.0006 1.0162

y19 2 429 432.2293 17.6141 0.1692 0.0069 -0.4620

y20 2 66 64.4085 5.6842 0.0252 0.0022 0.2883

y21 2 57 55.3622 5.2807 0.0217 0.0021 0.3195

y22 2 134 135.0448 10.0966 0.0529 0.0040 -0.2050

y23 2 51 43.4217 4.3209 0.0170 0.0017 1.5465

y24 2 74 80.5335 7.5990 0.0315 0.0030 -1.4519

where Δ1 = μi+1 − μi and Δ2 = ν j+1 −ν j. Distances Δ1 and Δ2 are constant over i
and j, respectively, since the corresponding scores are equidistant. In case the scores
equal their categories’ indexes, (6.33) is simplified to

θ XY
(k) = exp

(
ϕXY + kϕXY Z) , i = 1, . . . , I− 1, j = 1, . . . ,J − 1, k = 1, . . . ,K.

Eliminating the three-factor interaction term in (6.32), the model of homoge-
neous uniform association (6.31) is derived in its equivalent expression

logmi jk = λ +λ X
i +λY

j +λ Z
k +ϕXY μiν j +λ XZ

ik +λYZ
jk , (6.34)

and θ XY = exp
(
ϕXY Δ1Δ2

)
.

Replacing λ XZ
ik and/or λYZ

jk in (6.32) or (6.34) by ϕXZ μiτk and/or ϕY Zν jτk,
respectively, more parsimonious models of uniform or homogeneous uniform
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association are derived that consider U-type structure also for one at least of the
other two-factor interactions. The options for models of this type do not restrict to
XZ and/or Y Z interactions of U-type. They could be of any other type (R, C, RC,
or RC(M)). Such special models of uniform and homogeneous uniform association
cannot be captured via the odds ratio formulation (6.30) or (6.31).

Finally, the simplest homogeneous uniform XY association model is obtained
when X is jointly independent from X and Y , i.e., the model

logmi jk = λ +λ X
i +λY

j +λ Z
k +ϕXY μiν j, i = 1, . . . , I− 1, j = 1, . . . ,J − 1 ,

with k = 1, . . . ,K. For the example above, this model is the best option, with G2 =
18.165 (p-value=0.314, d f = 16), giving log θ̂ XY = 0.7688.

6.8 Overview and Further Reading

Association models, in their dominant form, have been mainly developed by the
fundamental and inspiring work of Goodman (1979b, 1981a, 1985, 1986, 1991,
1996) and thus it is common to refer to them also as Goodman’s models. For an
overview, we refer to the 1986 and 1991 discussion papers and the review Goodman
(1982). Significant in the development of association models was continuation work
of Haberman (1979, 1995), Clogg (1982a), Becker and Clogg (1988, 1989), and
Becker (1989a, 1990a, 1992) as well as the contribution of Anderson and Philips
(1981) and Anderson (1984). Association models are presented in the book by
Clogg and Shihadeh (1994). An overview of association models with formulation
and interpretation based on odds ratios is provided by Breen (2008) along with social
sciences-orientated illustrations and references. For their connection to latent class
models, see Sect. 10.3.1.

To be fair, we must say that the basis for the development of the association
models lies back to Tukey’s 1 d.f. test (Tukey 1949) and in a different form they have
been considered earlier. In particular, Nelder and Wedderburn (1972) consider the U
model applied on the popular Boys’ Dream Disturbance data set of Maxwell as an
illustration of their GLM model on contingency tables. Simon (1974) introduced the
R model (his formulation A) as well as the R model for cumulative odds (his formu-
lation B), being the forerunner of the association models for global odds ratios (see
Sect. 7.1 below). A similar model for the cumulative odds was earlier considered
by Williams and Williams and Grizzle (1972). Also his analysis of information is
remarkable, throwing insight into the nature of departure from independence in the
direction of the ANOAS, developed later by Goodman. Other multiplicative models
modeling triangular or diagonal departures from independence for square tables
have been proposed by Goodman (1972). We should mention that methods that
analyze contingency tables with ordinal classification variables by applying scores
to their categories have been proposed much earlier, even from Yates (1948) and
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Armitage (1955), not to forget the linear trend test of Mantel (1963), described in
Sect. 2.3. However, these early references, after assigning scores to the categories,
treated the corresponding categorical variables applying methods appropriate for
continuous variable analysis.

Haberman (1974b) adopted a different approach by generating a class of models
through the decomposition of the vector with elements of the expected cell
frequencies log(mi j) on an orthonormal basis, formed by orthogonal polynomials.
Special members of this class of models are the linear-by-linear association model
and the row effect model. Further, he proved standard asymptotic inference results
for these models and expressed them in terms of the log odds ratio, noting the
importance of the difference between scores. Finally, he was the first to mention that
his approach could be extended straightforward to define such models for multi-way
tables. Association models for two-way and three-way tables are presented in Wong
(2010).

Diagnostics for the RC association model have been discussed in Andersen
(1992). De Rooij and Heiser (2005) criticized the classical graphical representation
of the RC(M) model and proposed the distance-association model representation,
for which the distances between row and column points can be interpreted directly.
Marginal association models have been considered by Lapp et al. (1998), Bartolucci
et al. (2001), and Bartolucci and Forcina (2002). For ordinal tables with a response
variable, Agresti (1986) proposed a regression R2-type measure of association,
based on scores assigned to the classification variables’ categories, and used the
R association model to estimate these scores. Baccini and Khoudraji (1992) and
Baccini et al. (2000) considered least squares estimation of association models. Beh
and Farver (2009) discuss on closed-form estimation of the association parameter ϕ
of the U model.

The RC(M) are not the only models with additive multiplicative interaction
terms. Goodman (1985) introduced other possible models with interaction of rank
M but simpler than the RC(M). For example, for M = 2, the R+C model is defined
by the same formula as RC(2) but assumes that the column scores of the first term
and the row scores of the second are known; thus it has less parameters than RC(2).
Similarly, model U+R+C has just one parameter more than the R+C model, since
the third term that is added is of uniform type, having assigned fixed row and column
scores. More options of parsimonious models of higher rank for the interaction are
obtained through the use of orthogonal polynomials for assigning scores (Kateri
et al. 1998). For example, the model U(1)+U(2) is of M = 2, but all the involved
scores are fixed, assigned through orthogonal polynomials of first and second order
for the (1) and (2) term, respectively, and has thus just 2 parameters more than the
independence model.

In the special case of a square table with commensurable classification variables,
it makes sense to assume that the row and column scores are homogeneous. Thus,
the RC model with the homogeneity restriction on its scores μi = νi, ∀ i =
1, . . . , I, can be applied, which is more parsimonious than the standard RC and
simultaneously of special interpretational value for such tables. On this we shall
return and comment more on Chap. 9, specialized on square tables.
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We have already mentioned in Chap. 2 that the log-linear models are the discrete
analogue of the analysis of variance. It is interesting to note briefly at this point
the analogues to association model in the two-way ANOVA framework. Special
analysis of variance models that impose a structure on the interaction as that of
the association models have been considered as well. Indicatively we mention the
early work of Williams (1952), who used the multiplicative term for the interaction,
and that by Gollob (1968), who introduced the more general term of the RC(M)
type. Goodman and Haberman (1990) proved asymptotic normality for the scores
of the RC(M) ANOVA model and provided asymptotic confidence intervals for the
estimated scores. Furthermore, they developed the asymptotic conditional tests of
the appropriateness of a simpler association model of the type U, R, or C given
that the RC holds. Finally, they extended their results for the more general RC(M)
ANOVA model. Viele and Srinivasan (2000) proceeded to the Bayesian analysis of
the RC(M) ANOVA model. Speaking about analogies to the continuous case, Jones
(1998) noted that the constant local dependence for continuous bivariate random
variables is the continuous analogue of the U model.

We have seen in Sect. 6.3 that for ordinal contingency tables, conditional tests
of independence given that the U, R, or C model holds, i.e., testing indepen-
dence against a directed alternative, are more asymptotically powerful. Alternative
approaches for strengthening the power of the classical Pearson’s X2 test of indepen-
dence are based on the decomposition of Pearson’s X2 into orthogonal components
in terms of assigned scores to the categories of the ordinal classification variables.
For example, Best and Rayner (1996) and Rayner and Best (2000) considered
scores based on orthogonal polynomials while Nair (1986, 1987), proportional to
the midrank scores. Beh (1998) studied the use of different types of scores in the
correspondence analysis framework. Nair’s procedure partitions the X2 statistic
value for testing independence into location, dispersion, and residual effects. It is
related to the location-dispersion model of McCullagh (1980), as is also pointed out
by McCullagh’s and Agresti’s comments in the discussion of Nair (1986). Agresti’s
comment related Nair’s statistics also to the statistics of Koch et al. (1982) with
fixed or rank-based scores, to the measure of Agresti (1986), and to association
models and the models in Semenya et al. (1983). Koshimizu and Tsujitani (1998)
consider association models with location and dispersion scores for singly ordered
contingency tables. Their model is actually analogue to the R(1)+R(2) model of
Kateri et al. (1998) with the column scores of the first dimension being the Nair’s
scores instead of equidistant for successive categories.

6.8.1 Multi-way Association Models

Conditional and partial associations in multi-way tables are discussed in Clogg
(1982b). Becker (1989b) introduced the no three-factor interaction model with
all two-way interaction terms replaced by the general terms (6.26). Becker and
Clogg (1989) considered three-way association models for the analysis of stratified
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two-way tables, with and without homogeneity constraints on the scores across
the strata. Association models for stratified tables focusing on detecting layer
differences were developed by Goodman and Hout (1998).

On the decomposition of the three-factor interaction term (6.27) focused Good-
man (1983, 1986), Agresti and Kezouh (1983), Choulakian (1988), Anderson
(1996), and Siciliano and Mooijaart (1997). A review is provided by Wong (2001).
Methods of decomposing three-way arrays are reviewed in Ten Berge (2011).

6.8.2 Order-Restricted Inference

In case of association models with parametric scores, the monotonicity of the scores
is not ensured by the standard estimation procedures. Since their monotonicity is
related to stochastic ordering of the corresponding classification variable (Goodman
1981a), it is usually natural to expect the scores for ordinal classification variables to
be monotonic. Estimation procedures subject to order constraints for the parametric
scores have been developed for the R (or C) model by Agresti et al. (1987), based on
isotonic regression. The RC model with order-restricted row and column scores has
been considered by Ritov and Gilula (1991). A test of independence, conditional on
the order-restricted RC model, is discussed in Kuriki (2005). Alternative algorithms
for fitting the order-restricted RC model have been proposed and compared by
Galindo-Garre and Vermunt (2004). Order restrictions yield also for an extended
RC model, introduced by Bartolucci and Forcina (2002).

Ordinary or order-restricted inferences for these models rely on large-sample
asymptotic methods. As it is stated in Galindo-Garre and Vermunt (2004), these
methods do not work well for sparse tables or small sample sizes, common in
social and biomedical applications, where the usual asymptotic chi-squared p-values
are known to be inaccurate. A promising alternative is the Bayesian approach (see
Sect. 10.5).

6.8.3 Comparison of Two Ordinal Responses

The problem of comparing two ordinal responses is very old and of special interest
in many fields, especially in biomedical applications. The need to compare the
response to a treatment of two independent groups of patients, defined, for example,
by the presence of a prognostic factor, is obvious. Another common situation is
to compare two different treatments applied on two independent samples with
the corresponding responses measured on a common scale. The ordinality of
the response scale has to be taken into consideration in handling the problem
and answering to the question “Which group of patients benefits more from the
treatment?” or “Which treatment is superior?.” The underlying sampling scheme
can be multinomial or product multinomial. The first is the case whenever a
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sample of n subjects is cross-classified with respect to an ordinal response Y
and a binary variable X indicating the two groups, while the second when two
independent multinomial samples of the same ordinal response and of sizes n1 and
n2 are available. If the ordinal response has J categories, then the above described
data form a 2 × J contingency table. For the multinomial sampling scheme the
corresponding joint distribution is π = (πi j) = P(X = i, Y = j), i = 1,2, j =
1, . . . ,J. In case of two independent multinomials, the row marginals are also fixed,
ni+ = ∑J

j=1 ni j = ni (i = 1,2).
The problem of comparing two response profiles is equivalent to the stochastic

comparison of the two row distributions of the abovementioned 2× J contingency
table and as such has been faced by a variety of methods. The related bibliography
is very rich and an extended critical review of the available methods can be found
in Agresti and Coull (2002).

The hypothesis that two multinomial distributions are identical against an ordered
alternative is mainly tested through LR, Wald, and score tests or through linear
rank tests. It is well known that restricting the alternative hypothesis leads to more
powerful tests than the standard chi-squared test of independence. These approaches
are all asymptotic, while the linear rank tests depend on the choice of the scores
assigned to the ordered categories. Characteristic references of LR tests are Grove
(1980, 1984) and Robertson and Wright (1981), while the approaches of Emerson
and Moses (1985), Graubard and Korn (1987), and Gautam (1997) are based on
linear rank tests. To deal with the sensitivity of the linear rank tests on the scores,
Kimeldorf et al. (1992) proposed the min–max scoring and Gautam et al. (2001)
the iso-chi-square approach. Nonlinear rank tests have also been proposed. For
example, Hilton et al. (1994) and Nikiforov (1994) applied the Smirnov test while
Berger (1998) proposed the convex hull methodology that leads to admissible tests.
Properties and power of the convex hull test applied on 2× J tables are further
studied in Berger et al. (1998) (see also Cohen and Sackrowitz 1998; Cohen et al.
2000). An interesting approach is provided by Permutt and Berger (2000), who
reviewed various rank tests, classified them as Smirnov-like or Wilcoxon-like, and
compared them. However, the nonlinear tests are not easy to compute for J > 3.
It is important to note that “with few exceptions there is no optimal test for this
problem,” as stated by Berger and Ivanova (2002). Tests based on log-linear models
were developed by Agresti and Coull (1998).

The connection of association models to the stochastic ordering of the conditional
row (or column) distributions of the contingency table has been discussed in
Sect. 6.4. In case of the 2× J tables, the RC model coincides with the C model,
which is saturated. For 2× J contingency tables with μ1 < μ2 and ϕ > 0, positive
dependence is equivalent to ν j � ν j+1 ( j = 1, . . . ,J − 1) with ν1 < νJ . Thus,
monotonicity of the column scores {ν j : j = 1, . . . ,J} implies stochastic ordering
of the probabilities

π i =

{
πi j

πi+
, j = 1, . . . ,J

}
, i = 1,2.

Thus the distribution of the response Y for the second group (row) is stochastically
larger than the one of the first group (row).
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The comparison of the two row distributions can be further enriched with the
option of umbrella ordering as an alternative when stochastic ordering is rejected
(Kateri 2011). Umbrella ordering means that the distribution in the first row is
stochastically smaller than the one in the second up to a level of the ordinal scale that
defines the column categories and stochastically larger after this level (or the
opposite). In terms of physical interpretation, when comparing two alternative
treatments, umbrella ordering of their response distributions corresponds to cases
where one treatment is better over the other up to a certain level of the response
scale while the situation changes after this point. In a retrospective study context
cross-classifying the “cured”– “not-cured” groups with the J levels of a prognostic
factor, this could mean higher risk for the very low and very high levels of the
prognostic factor. Umbrella ordering essentially reveals a dispersion effect for the
group comparison. Dispersion effects for ordinal responses have been handled by
the generalized cumulative link model, introduced by McCullagh (1980). Umbrella
ordering can be captured by the C model, with adequately constrained column
scores.

6.8.4 Cell Frequencies vs. Local Odds Ratios Modeling

We have seen so far that models applied on contingency tables can be expressed in
terms of expected cell frequencies or equivalently in terms of local odds ratios. The
choice depends on issues of interpretation and on convenience of model formulation.
For example, the association models are easier interpreted through the local odds
ratios. On the other hand, the quasi-independence model can be expressed in terms
of local odds ratios but is too complicated to compete with (5.24).

A clarifying and inspiring insight into the possible different views of log-linear
models is provided by Goodman (1981d), who considers three alternative views,
depending on the purpose of the analysis. The model imposed on the cell frequencies
is preferred whenever the purpose is the examination of the joint distribution of the
contingency table. Local odds ratio formulation of the model is employed when
interest lies on the association between the two variables that are cross-classified.
In both cases, the classification variables of the table are treated symmetrically.
If there exists a response variable, then modeling the possible dependence of the
response variable on the explanatory one is more adequate than the symmetric
approaches and leads to more direct interpretations. This constitutes the third view
and corresponds to modeling the odds for the response variable, given that the
explanatory variable is at a fixed, prespecified level. Such models are presented
in Chap. 8. Goodman (1981d) discussed the connections between these different
approaches of log-linear modeling and illustrated them on characteristic examples.
These comments apply also to the special models for square tables in Chap. 9.
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