
Chapter 5
Generalized Linear Models and Extensions

Abstract The generalized linear model (GLM) is reviewed and the log-linear
models are integrated in this family. For GLMs, maximum likelihood estimation,
model fit, and model selection are discussed. In the GLM framework the analysis of
incomplete tables is more straightforward. The quasi-independence model is defined
and illustrated in R. Furthermore, the family of generalized log-linear models
(GLLMs) is briefly presented and a GLLM is illustrated with a representative
example in R.

Keywords Generalized linear models • Exponential family • Maximum likeli-
hood estimation • Model selection and fit • Log-linear models • Quasi indepen-
dence • Multinomial Poisson homogeneous model

5.1 The Generalized Linear Model (GLM) in Keywords

Log-linear models for contingency tables are members of the family of gener-
alized linear models (GLMs). The GLM is a broad class of statistical models,
introduced by Nelder and Wedderburn (1972), that allows for unified consideration
and treatment of many models of different types of response variables and error
structures. Characteristic special cases of the GLM are the models of regression,
logistic regression, Poisson regression, and the log-linear models. The GLM is an
extension of the classical regression model that relates a response variable Y to a set
of q explanatory variables Xj, j = 1, . . . ,q, by equating a function of the expected
response E(Y ) to a linear predictor based on X = (X1, . . . ,Xq).

Under the classical linear regression model, if y = (y1, . . . ,yny)
′ is a sample of

size ny of the response variable Y and x = (xi j)ny×q is the ny × q matrix with the
corresponding sample values on the explanatory variables Xj, j = 1, . . . ,q, then in
matrix notation we have

y = Xβββ + εεε ,

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__5,
© Springer Science+Business Media New York 2014

125



126 5 Generalized Linear Models and Extensions

where βββ = (β1, . . . ,βq)
′ is the parameter vector and εεε = (ε1, . . . ,εny)

′, the vector
of errors. The distributional assumptions are that (i) Yi are independent normal
distributed with E(Yi) = μi (i = 1, . . . ,ny) and common variance Var(Yi) = σ2

and (ii) the errors are also independent normal distributed with zero mean and
common variance σ2

ε . In summary, the regression model has a random component,
the response variable Y , and a systematic component, the linear combination of
the explanatory variables Xβββ , that links to the vector of the expected response
values, i.e.,

μμμ = E(Y) = Xβββ , (5.1)

with μμμ = (μ1, . . . ,μny)
′ and Y = (Y1, . . . ,Yny)

′.
The GLM extends the regression models by relaxing the assumption about

normal distributed response variable Y and by linking the systematic component
not directly to μμμ but to a function of it g(μμμ). Thus, the systematic component of the
GLM is

ηηη = g(μμμ) = Xβββ , (5.2)

with ηηη = (η1, . . . ,ηny)
′. Function g is called the link function. The linear model (5.1)

is a special case of (5.2) for the identity link, i.e. for ηηη = g(μμμ) = μμμ .
Under GLM, the distribution of the response Y may be any member of the

exponential family. For univariate responses, as considered in this book, the
corresponding density function is

f (yi; θi,ψ ,ωi) = exp

{
yiθi − b(θi)

ψ
ωi + c(yi,ψ ,ωi)

}
, (5.3)

where ωi is a weight with

ωi =

{
1, ungrouped data (i = 1, . . . ,ny)

nc
i , grouped data (i = 1, . . . ,g)

,

and c = 1 or −1, according to whether as group response is considered the average
or the sum of the individuals’ responses in a group, respectively. Parameter θ is
called natural parameter, because it determines the mean, since

μ = E(Y ) = b′(θ ) . (5.4)

Parameter ψ controls the variance

σ2 = Var(Y ) =
ψ
ωi

b′′(θ ) (5.5)

and is therefore called the dispersion parameter. b(·) and c(·) are specific functions
determined by the type of the exponential family.
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Many commonly used distributions are members of the exponential family,
like the normal, the gamma, the binomial, the multinomial, and the Poisson.
For one-parameter families the dispersion parameter ψ is fixed. For example,
the Poisson P(θ ) and the binomial B(n,θ ), for fixed n, have ψ = 1. These
distributions are in the simpler natural exponential family. Furthermore, for the
Poisson ω = 1 while for the binomial ω = n or n−1, according to whether as
response y is considered the success proportion or the number of successes.

The link function ηi = g(μi) can theoretically be any monotonic and differen-
tiable function. However, the link options are practically limited, since the link
is chosen so that the inverse μi = g−1(ηi) leads to admissible values for μi and
simple functions of θi. Characteristic example is the case of a binomial response
B(n,πi). Then μi = πi and it must be in (0,1). The three links that are more often
used for binomial data are the logit, the probit, the complementary log–log , and
the complementary log. In Chap.8, we will apply the logit link g(π) = log

( π
1−π

)
and refer briefly to the other options. The link function specifies the nature of the
distribution considered for the error εi. A convenient link with nice properties is
the canonical link that expresses μi in terms of the parameter θi, i.e., the canonical
link is g(μi) = B−1(θi), where B = b′. Under the canonical link, X′Y is a sufficient
statistic for βββ .

In summary, GLM is a framework that unifies a wide range of models, flexible
through the choices for the distribution of its random component, for the link
and eventually the error distribution. Beyond the powerful theoretical setup, it is
practically attractive because it allows to draw inference for all possible GLM
models by the same algorithm, simplifying thus their implementation in statistical
software.

5.2 Log-Linear Model: Member of the GLM Family

Classical log-linear models, presented in Chap. 4, can be viewed in the framework
of GLM for specific selection of the link function and the error distribution, as will
be stated next. Doing so has specific advantages. Beyond convenience in model
selection and inference by adopting the procedures developed for the GLM family,
it allows for easy handling of the structural zeros in log-linear modeling (see Sect.
5.5) and it provides a platform for extending the log-linear model to model the
marginals as well (see Sect.5.6).

In order to adjust to GLM’s notation, contingency tables are expanded to vectors.
Thus, the I× J table n = (ni j) is expanded (by rows) to the ny × 1 vector y as

y = (y1,y2, . . . ,yny)
′ = (n11,n12, . . . ,n1J,n21, . . . ,nIJ)

′ ,

with ny = IJ. Additionally, this vector approach ensures unified treatment for tables
of any dimension. Throughout this book whenever tables are expanded in vectors,
expansion is considered by rows, followed by columns, layers, etc.
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Under the GLM setup, the log-linear models for contingency tables are
easier derived considering the Poisson distribution for the random component,
i.e., Yi ∼P(θi) and for link the g(μi) = log μi, i = 1, . . . ,ny. The log link is the
canonical link for the Poisson distribution. They are referred as Poisson log-linear
models. Considering Poisson sampling is not restrictive due to the equivalence of
the three possible sampling schemes (see Sect.2.2.1). Recall that also in the classical
log-linear framework, estimation was based on the Poisson likelihood (2.33).

Thus, the log-linear models for I × J tables discussed in this section can be
expressed in matrix notation, as follows:

log(μμμ) = Xβββ , (5.6)

where μμμ is the IJ × 1 vector of expected cell frequencies under the model, βββ is the
q×1 vector of parameters, and X is the IJ×q associated design matrix. The table of
expected cell frequencies mI×J is expanded the same way as the table of observed
frequencies.

For example, the model of independence (4.1) subject to last category zero
constraints is equivalently expressed by (5.6), where the IJ × 1 vector of expected
frequencies is μ = (m11,m12, . . . ,m1J,m21, . . . ,mIJ)

′, the (I + J − 1)× 1 vector of
parameters is β = (λ ,λ X

1 , . . . ,λ X
I−1,λ

Y
1 , . . . ,λ

Y
J−1)

′, and

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1(1) I∗

1 1(2) I∗
...

...
...

1 1(I−1) I∗

1 0J×(I−1) I∗

⎞
⎟⎟⎟⎟⎟⎟⎠

is the IJ×(I+J−1) design matrix, with 1 the J×1 matrix of 1’s, 1(i) the J×(I−1)
matrix with 1’s at the ith column and 0’s in all other entries, 0s×t the s× t matrix of
0’s, and

I∗ =
(

IJ−1

01×(J−1)

)
,

where Is is the s× s identity matrix.
The application of the independence model through local odds ratios (2.52),

though simpler in expression, is more advanced and computationally involved,
because it is not in the GLM family. It does not apply to the expected cell frequencies
directly but to a function of them. For this, a generalization of the GLM is needed,
briefly discussed in Sect.5.6.
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5.3 Inference for GLMs

5.3.1 ML Estimation for GLMs

For the maximum likelihood estimation of βββ for model (5.2), the log-likelihood of a
given sample needs to be maximized with respect to βββ . Thus, for a random sample
y of size ny, from a population distributed by (5.3), the log-likelihood is

�=
ny

∑
i=1

log f (yi; θi,ψ ,ωi) =
ny

∑
i=1

yiθi − b(θi)

ψ
ωi +

ny

∑
i=1

c(yi,ψ ,ωi) (5.7)

and is a function of βββ due to (5.2) and (5.4).
The first derivative of the log-likelihood function is the Fisher’s score function

s(βββ ) =
∂�
∂βββ

=

(
∂�(βββ )
∂β1

, . . .
∂�(βββ)
∂βq

)′
.

Equating the score function’s components to zero, the corresponding likelihood
equations are obtained

s(β j) =
∂�

∂β j
=

∂
∂β j

(
ny

∑
i=1

log f (yi; θi,ψ ,ωi)

)
= 0 , j = 1, . . . ,q,

and are finally equal to

ny

∑
i=1

(
yi −E(Yi)

Var(Yi)
· ∂g−1(ηi)

∂ηi
· xi j

)
= 0 , j = 1, . . . ,q , (5.8)

where ηi =∑q
j=1 β jxi j. The likelihood equations (5.8) are derived applying the chain

rule, since θi = (b′)−1(μi), μi = g−1(ηi), and using (5.4) and (5.5).
For certain distributional assumption for Yi and particular link function g, the

likelihood equations (5.8) take their explicit form and specify the MLE β̂ββ . For

the canonical link, ηi = θi and g−1 = b′, leading to ∂g−1(ηi)
∂ηi

= b′′(θi). Thus,
by (5.5), (5.8) are simplified to

ny

∑
i=1

[yi −E(Yi)]xi j = 0 , j = 1, . . . ,q , (5.9)

stating that the likelihood equations for the canonical link equate the β j’s sufficient
statistic ∑ny

i=1 yixi j to its expected value, for j = 1, . . . ,q.

The asymptotic covariance matrix of β̂ββ is derived from the second derivative of
the log-likelihood, since it is equal to

Cov(β̂ββ ) =I −1
F ,
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where IF = Cov(s(βββ )) is the expected Fisher information matrix. In our case

IF = Cov(s(βββ )) = E

(
∂�
∂βββ

∂�
∂βββ ′

)
= E

(
− ∂ 2�

∂βββ ∂βββ ′

)
= X′WX ,

where W is a diagonal matrix with diagonal entries

wi = (∂ μi/∂ηi)
2[Var(Yi)]

−1 . (5.10)

For large ny,

β̂ββ ∼Nq(βββ , I −1
F ) .

The matrix of the negative second derivatives of the score function is the observed
information matrix

I obs
F =−H =− ∂ 2�

∂βββ ∂βββ ′ ,

where the matrix of second derivatives H is usually referred as the Hessian matrix.
It holds that

IF = E
(
I obs

F

)
= E(−H) . (5.11)

For GLMs with canonical link functions, ηi = θi implies ∂ μi
∂ηi

= ∂ μi
∂θi

and the Hessian
matrix becomes

H =−X′WX , (5.12)

with W a diagonal matrix with entries wi = ωi
[
g−1(θi)

]′
/ψ , i = 1, . . . ,ny, indepen-

dent of y. Hence

IF = E(−H) =−H =I obs
F ,

i.e., for canonical link functions, the expected and observed information matrices
are identical.

The likelihood equations (5.8) or (5.9) do not usually lead to closed form
expressions for the β̂ββ and have to be solved iteratively. The two algorithms usually
applied for solving the likelihood equations are the Newton–Raphson and the Fisher
scoring.

If βββ (t) is the value assigned to β̂ββ at stage t of the iterative procedure
(t = 0,1,2, . . .), then the updating equations of the Newton–Raphson algorithm
at stage t + 1 are

βββ t+1 = βββ t −
(

H(t)
)−1

s(βββ (t)) , (5.13)

where s(βββ (t)) and H(t) are the score function s(βββ ) and the Hessian matrix H
evaluated at βββ (t). For matrix inversion to be possible, H(t) has to be non-singular.
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The algorithm converges and stops when a termination criterion is met, say after
tc iterations, leading to β̂ββ = βββ (t). A termination criterion checks whether βββ (t) and
βββ (t+1) are sufficiently close, for example, whether

|�(βββ (tc+1))− �(βββ (tc))| ≤ ε or

∥∥∥βββ (t+1)−βββ (t)
∥∥∥∥∥∥βββ (t)

∥∥∥ ≤ ε ,

for a pre-chosen small positive ε .
The Fisher’s scoring algorithm is similar to the Newton–Raphson algorithm with

the only difference being that it is based on the expected information matrix, instead
of the observed information matrix. In particular, the updating equations for the
Fisher scoring algorithm are

βββ t+1 = βββ t +
(
I

(t)
F

)−1
s(βββ (t)) , (5.14)

where I (t)
F is IF evaluated at βββ (t).

The asymptotic covariance matrix of β̂ββ is estimated for the Fisher’s scoring
algorithm by Ĉov(β̂ββ ) = Î −1

F and for the Newton–Raphson algorithm by Ĉov(β̂ββ ) =
(−Ĥ)−1, where ÎF and Ĥ are IF and H, respectively, evaluated at β̂ββ .

Due to (5.11), the Newton–Raphson and the Fisher scoring algorithm coincide
for GLMs of canonical link function. For noncanonical link functions, the choice
between the algorithms relates to issues of ease of application, algorithm’s con-
vergence, and efficiency of implementation. It is a choice between observed and
expected information matrix. For a related discussion, we refer to the classical
discussion paper by Efron and Hinkley (1978) and Palmgren (1981). Alternatively,
other methods have been proposed like the Quasi-Newton (or Newton’s unidimen-
sional) method that is easier to apply since it does not require matrix inversion but
does not provide estimate of the asymptotic covariance matrix. We will illustrate the
Newton’s unidimensional method for association models in Sect.6.2.

The solutions of the likelihood equations correspond actually to local maxima
and not to the global maximum of the log-likelihood function �, as is expected for
the MLE β̂ββ . Whenever � is concave, the local and global maxima are identical. For
non-concave �, the choice of the initial estimate βββ (0) is important, to ensure that it
is in the region of the global maxima.

5.3.2 Evaluating Model Fit for GLMs

Given a sample y of ny observations, let μ̂μμ denote the corresponding ML estimate
of μμμ = E(Y) under a model M of q parameters. The quality of the model fit is
assessed by comparing the maximum log-likelihood for the model �(μ̂μμ;y) to the
maximum log-likelihood for the model that describes the data perfectly, i.e., the
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saturated model. A saturated model has as many parameters as the observations in
the sample. We have seen so far saturated models in the context of log-linear models.
For the saturated GLM, the number of parameters is ny, μ̂μμ = y and the corresponding
log-likelihood is �(y;y). It is obvious that always �(μ̂μμ ;y) < �(y;y) with model M
fitting as better as its log-likelihood approaches the saturated log-likelihood. Hence,
the goodness of fit of a model is expressed in terms of their difference by the test
statistic

−2 [�(μ̂μμ ;y)− �(y;y)] ,

which for the exponential family (5.3) becomes

D(y; μ̂μμ)
ψ

=
2
ψ

ny

∑
i=1

ωi
(
yi(θ̃i − θ̂i)− [b(θ̃i)− b(θ̂i)]

)
, (5.15)

where θ̂i is the ML estimate of parameter θi under the model M and θ̃i is the
estimate under the saturated model. The statistic D(y; μ̂μμ) is known as deviance.
Analogously, the Pearson’s X2 statistic can be used for testing the adequacy of
model M . In this context

X2(M ) =
ny

∑
i=1

(yi − μ̂i)
2

μ̂i
. (5.16)

For Poisson and binomial GLMs, the deviance (5.15) turns out to equal the LR
statistic for testing the null hypothesis that model M holds against the saturated
model

G2(M ) = 2
ny

∑
i=1

yi log(
yi

μ̂i
) . (5.17)

The statistics above can be used for testing goodness of fit of M , if their asymptotic
distribution can be specified. For this to be possible, the data have to be grouped
(each yi occurs ni times) with the number of observations in each group ni being
sufficiently large. In this case, the distribution for the statistics (5.15)–(5.17) is
approximately X 2

d f , with d f = ny − q, the difference between the number of
parameters for the saturated model (ny) and the model under testing (q). For more
on the test statistics refer to McCullagh and Nelder (1989).

These goodness-of-fit tests do not account for model complexity while they are
increasing in sample size ny, giving thus significant values even for good models
if the sample size is large. Alternatively, the fit of a model M can be evaluated by
Akaike’s information criterion (Akaike 1974)

AIC =−2�(μ̂μμ;y)+ 2q . (5.18)
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It is based on the maximum likelihood under M but penalizes its value for model
complexity. Furthermore, the Bayesian information criterion (Schwarz 1978)

BIC =−2�(μ̂μμ;y)+ (logn)q (5.19)

is another maximum likelihood-based measure, incorporating Bayesian thinking,
that beyond complexity takes into account also the sample size n. The AIC and BIC
are used for comparing models, with smaller values indicating better models. They
can be used to compare also non-nested models. They will be illustrated in the log-
linear model context in Sect.5.4.1.

5.3.3 Residuals

Residuals are critical for diagnosing lack of model fit and identifying possible
underlying patterns. The types of residuals used in GLM analysis are the same
as those discussed in the context of independence testing for two-way tables (see
Sect.2.2.4). In the GLM setup, the raw residuals ei = yi − μi (i = 1, . . . ,ny) are
transformed to the Pearsonian residuals

eP
i =

yi − μ̂i√
V̂ar(yi)

, i = 1, . . . ,ny . (5.20)

For the Poisson GLM, V̂ar(yi) = μ̂i in (5.20) above, while for testing independence
in two-way tables, (5.20) is (2.40), expressed in vector form. Pearson’s residuals
are asymptotic normal distributed but not standard normal, as explained in Sect.
2.2.4. Thus, dividing the raw residuals by their asymptotic standard errors, the
standardized residuals are derived

es
i =

eP
i√

1− ĥi

=
ei√

V̂ar(yi)(1− ĥi)
, i = 1, . . . , I, j = 1, . . . ,J , (5.21)

where ĥi is the estimate of the diagonal element hi, i = 1, . . . ,ny of the ny×ny matrix

Hat = W1/2X(X′WX)−1W1/2 ,

known as hat matrix, with W the diagonal matrix with entries (5.10).
The deviance residuals decompose the deviance to the individual contributions

of each observation i. Hence, for the exponential family (5.3), they are equal to

ed
i = sign(yi − μ̂i) ·

[
2ωi

(
yi(θ̃i − θ̂i)− [b(θ̃i)− b(θ̂i)]

)]1/2
, i = 1, . . . ,ny , (5.22)

satisfying D(y; μ̂μμ) = ∑ny
i

(
ed

i

)2
. For testing independence in two-way tables, (5.22)

simplify to (2.43).



134 5 Generalized Linear Models and Extensions

5.3.4 Model Selection in GLMs

Deviance plays a predominant role in comparing GLMs, via the likelihood ratio
criterion, for responses yi, i = 1, . . . ,ny, in the exponential family with ψ = 1.
In this case, by (5.15), the deviance of a model is equal to the corresponding LR
statistic (4.33) for testing its fit.

Let M1 be a GLM of q1 parameters. Let also M0 be a simpler GLM, produced
from M1 by eliminating r of its q1 parameters. Then, M0 is said to be nested in
M1 and denoted by M0 ⊂M1. Model M0 has q0 = q1 − r parameters and is more
parsimonious than M1.

If μ̂μμ0 and μ̂μμ1 are the ML estimates of μμμ under M0 and M1, respectively, then,
for ψ = 1, the deviances of models M0 and M1 are

D(y; μ̂μμ0) = −2
[
�(μ̂μμ0;y)− �(y;y)

]
D(y; μ̂μμ1) = −2

[
�(μ̂μμ1;y)− �(y;y)

]
.

Since reducing the number of model’s parameters implies increase of model’s
distance from the perfect fit of the saturated model, it will always be D(y; μ̂μμ0) >
D(y; μ̂μμ1).

Models M0 and M1 apply both on the same y, thus their difference is

D(y; μ̂μμ0)−D(y; μ̂μμ1) =−2
[
�(μ̂μμ0;y)− �(μ̂μμ1;y)

]
= LRS(M0,M1) ,

where LRS(M0,M1) is the LR statistic for testing the null hypothesis that M0

holds against the alternative that M1 holds. In particular, by (5.15), the difference
in deviances equals

D(μ̂μμ0; μ̂μμ1) = D(y; μ̂μμ0)−D(y; μ̂μμ1) = 2
ny

∑
i=1

ωi
(
yi(θ̂i1 − θ̂i0)− [b(θ̂i1)− b(θ̂i0)]

)
.

(5.23)

Under M0, (5.23) is approximately X 2
r distributed, where r = q1 − q0 is the

difference between the number of parameters of the two compared models. This
asymptotic result is the key for models’ comparison.

For Poisson log-linear models, (5.23) simplifies to (4.34), i.e.,

G2(M0|M1) = 2
ny

∑
i=1

μ̂i1 log

(
μ̂i1

μ̂i0

)
= G2(M0)−G2(M1) ,

where G2(M0) and G2(M1) are as in (5.17).
Upon considering a sequence of nested models from a very simple M0 up to the

saturated Msat,

M0 ⊂M1 ⊂M2 ⊂ . . .⊂Msat ,
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the importance of the parameters added gradually can be evaluated by successive
comparisons of neighbor models. Thus, the appropriate model can be built by
selecting this model Ms for which D(μ̂μμ s; μ̂μμ s+1) is nonsignificant and D(μ̂μμ s−1; μ̂μμs)
is significant. This means that adding more parameters would complicate the model
without improving its fit significantly, while removing any parameters further would
lead to a model of significantly poorer fit. Hence, comparisons of nested models
serve for developing procedures of “best model” selection. Furthermore, once the
“best model” is selected, model comparison can serve as a tool for evaluating the
individual importance of each parameter or group of parameters. Model selection
can also be based on AIC and BIC. For a comparative study of AIC and BIC
and a corrected for finite samples version of AIC with emphasis on their role
in model selection, we refer to Burnham and Anderson (2004). These criteria
will be illustrated in the context of log-linear models for multi-way tables next
(see Sect.5.4.1).

5.4 Software for GLMs

All general-purpose statistical packages (like SAS, SPSS, Stata, and SYSTAT)
have procedures for GLM analysis. For example, GLMs are fitted in SAS by the
procedure GENMOD. The corresponding R function is glm, which is based on the
S-function “glm” (Hastie and Pregibon 1992). The basic form for calling the glm

function is
> Mfit <- glm(formula, family=..., data=...)

where formula defines the model to be fitted, family determines the error
distribution and link function of the model, and data specifies the data frame on
which the model will be applied. Mfit is the object where output of glm is saved.
formula is provided in a form of the type Y∼X1+X2+X3+X1:X2, where Y is the
dependent variable, X1, X2, X3 the independent, and X1:X2 denotes the interaction
between X1 and X2. The expression above is equivalent to Y∼X3+X1*X2, where
X1*X2 stands for the generating term of a hierarchical model, i.e., it is equivalent to
Y∼X1+X2+X1:X2. For log-linear models the choice for family is family=poisson
(link = "log"). The specification of data frame is optional. If it is omitted, the
variables are taken from the environment from which glm is called.

The minimum output is printed on screen by simply typing Mfit while more
detailed output is provided by summary(Mfit). The content of object Mfit can be
viewed by names(Mfit). An item, say A, of Mfit is located in Mfit$A and can
be saved in a variable for further use (e.g., V1 <- Mfit$A). Due to the predominant
role deviance plays in GLM’s analysis, the residuals saved in Mfit, the output object
of glm, are the deviance residuals. For results not provided in Mfit, a variety of
special functions is available that apply on the glm output. Function step() for
model selection between nested models and anova() for analysis of variance can
be activated also in glm framework, as will be illustrated in the examples that follow.
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Table 5.1 Summary output of the independence model applied on Table 2.3, fitted by glm

Call:
glm(formula = freq ∼ WELFARE + DEGREE, family = poisson,data = nt.frame)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.3419 -0.5377 -0.1352 0.3366 1.6724

Coefficients:
Estimate Std. Error z value Pr(> |z|)

(Intercept) 3.54654 0.10253 34.590 < 2e-16 ***
WELFARE2 0.32962 0.08276 3.983 6.81e-05 ***
WELFARE3 0.34666 0.08247 4.204 2.63e-05 ***
DEGREE2 1.26567 0.09855 12.843 < 2e-16 ***
DEGREE3 -0.42845 0.13858 -3.092 0.00199 **
DEGREE4 0.30458 0.11473 2.655 0.00793 **
DEGREE5 -0.38299 0.13670 -2.802 0.00508 **
--
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

( Dispersion parameter for poisson family taken to be 1 )

Null deviance: 478.046 on 14 degrees of freedom

Residual deviance: 10.363 on 8 degrees of freedom

AIC: 110.74

Number of Fisher Scoring iterations: 4

For historical reasons, let us note that GLIM (generalized linear interactive
modeling) was the first package with the ability of fitting a variety of GLMs in a
unified manner. It was developed by the GLIM working party of the Royal Statistical
Society in 1974. GLIM4, the latest release (1993), had many links as standard
options and was convenient for GLM fit and model selection. A rich macro library
was available while users could write their own macros in GLIM language. The
associated journal GLIM Newsletter, issued from 1979 to 1998, was publishing
GLIM macros.

5.4.1 Example 2.4 by glm

The log-linear model of independence (4.1) will be fitted on Table 2.3, by glm of
R. The variables are required in vector form; thus we apply glm on the data frame
nt.frame, constructed in Sect.4.2.1. Model (4.1) is then fitted by
> I.glm <- glm(freq ∼ WELFARE+DEGREE,family=poisson,data=nt.frame)

and the extended output (provided in Table 5.1) is obtained by
> summary(I.glm)
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The value of the G2 statistic is reported under “Residual Deviance” and is saved
in I.glm$deviance, as can be verified by typing names(I.glm). Its asymptotic
p-value is not provided but can easily be calculated by
> p.value <- 1-pchisq(I.glm$deviance, I.glm$df.residual)

We find p-value = 0.240; thus the independence model describes adequately this
data set. Furthermore the value of the AIC is given (AIC = 110.74) while the BIC,
defined by (5.19), can be computed as
> n <- sum(ntfare$freq); q <- I.glm$df.null-I.glm$df.residual

> BIC <- I.glm$aic-(2-log(n))*q

giving BIC = 139.91. The level of the AIC and BIC values can be judged in
comparison to alternative models. In this case, for the saturated model
> sat <- glm(freq ∼ WELFARE*DEGREE,family=poisson,data=nt.frame)

AIC = 116.4, while for the models of only one main effect
> welfr <- glm(freq ∼ WELFARE,family=poisson,data=nt.frame)

and
> degr <- glm(freq ∼ DEGREE,family=poisson,data=nt.frame)

we get AIC = 548.1 and AIC = 129, respectively. Hence, the choice of the
independence model is justified.

Function glm produces parameter estimates subject to the first category zero
constraints. Recall that only the effect differences between different categories are
of interest and these remain invariant under different types of constraints. Observe
that λ̂ X

3 − λ̂ X
1 = 0.347− 0, equal to the corresponding value derived in Sect.4.2.1

subject to the sum to zero constraints.
The residuals saved in object I.glm are the working residuals. The Pearsonian

residuals are calculated by residuals(I.glm, type = c("pearson")) and the
deviance by changing the type option to "deviance". Standardized residuals are
obtained by rstandard(I.glm).

The items of the output object are all in vector form but can easily be transformed
to the more friendly table form by xtabs(). For example, the ML estimates of the
expected cell frequencies under independence and the standardized residuals are
derived in table form by
> MLEs <- xtabs(I.glm$fitted.values ∼ WELFARE+DEGREE,data=natfare)

> stdres <- xtabs(rstandard(I.glm) ∼ WELFARE+DEGREE,data=natfare)

Thus, the standardized residuals are
> stdres

DEGREE
WELFARE LT HS HS JColg BA Grad
too little 2.0983151 -1.039894 -0.9517240 0.1790943 -0.1654438
about right -1.6533505 -0.543633 0.3659428 0.4422752 1.7955727
too much -0.4040979 1.462390 0.4702723 -0.6127615 -1.7788921

The only standardized residual that exceeds in absolute value 1.96 corresponds to
cell (1,1). That is, responders with educational level lower than high school tend
to believe that welfare spending is too little with higher probability than expected
under the independence model.
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The sequence of commands followed above is unified in function fit.I() of the
web appendix (see Sect. A.3.4), which additionally provides the values for Pearson’s
X2 along with its p-value, the dissimilarity index (4.18) and the BIC. The function
requires the vector of frequencies (by rows) and the number of rows and columns of
the table. For this example, it is called as fit.I(freq,3,5).

The standardized residuals can be displayed on the mosaic plot as shown below.
We apply
> mosaic(natfare, gp=shading_Friendly, residuals=stdres,

+ residuals_type="Std\nresiduals",labeling = labeling_residuals)

where stdres is the table of standardized residuals derived above. The mosaic plot
derived is given in Fig.5.1 (right). The figure on the left is the mosaic plot for
standardized residuals for Example 2.2 and is derived analogously.

The residuals illustrated in the mosaic plots so far were all for the independence
model (default). To refer to residuals of a different model, the output object of the
assumed model has to take the position of the data matrix as input in mosaic().
Thus,
> mosaic(natfare, gp=shading_hcl, residuals_type="deviance")

is equivalent to
> mosaic(I.glm, gp=shading_hcl, residuals_type="deviance")

To incorporate the residuals of the model with only the row (opinion) main effect
> X.glm <- glm(freq ∼ WELFARE+DEGREE,family=poisson,data=nf.frame)

the mosaic plot function should be
> mosaic(X.glm, gp=shading_hcl, residuals_type="deviance")

From the ML estimates it can be verified that the estimated under independence
θ̂i j (i = 1,2, j = 1, . . . ,4I) are, as expected, all equal to 1. The same holds also for
the global and cumulative odds ratios. The ML estimates of any set of generalized
odds ratios expected under the assumed model can be calculated in R, using the
corresponding functions of the web appendix (see Sect. A.3.2). The procedure is
that described for the sample generalized odds ratios at the end of Sect.2.2.5 and
illustrated in the example of Sect.2.2.6. Only the vector of observed frequencies
has to be replaced with the vector of ML estimates of the expected cell frequencies
under the assumed model. The equivalent independence model (2.52) in terms of
the local odds ratios will be illustrated for this example in Sect.5.6.

5.4.2 Example 3.1 (Revisited)

For the example of Table 3.1, we have seen in Sect.3.3, applying the Breslow–Day
test (or the Woolf test), that the association between smoking and depression is
homogeneous for males and females. At this point, we shall select the appropriate
log-linear model for describing the underlying association structure of Table 3.1.
The data are available in R in matrix depsmok3. In order to fit the models in the
GLM setup applying glm, the data have to be expanded from a matrix to a vector
and the factors corresponding to the classification variables have to be defined. This
is carried out easily as follows:
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> obs <- as.vector(depsmok3)

> row <- rep(1:2, 4); col <- rep(1:2, each=2,2)

> lay <- rep(1:2, each=4); row.lb <- c("yes","no")

> col.lb <- c("yes","no"); lay.lb <- c("male", "female")

> S <- factor(row,labels=row.lb); D <- factor(col,labels=col.lb)

> G <- factor(lay, labels=lay.lb)

> depres.fr <- data.frame(obs,S,D,G)

The appropriate log-linear model is selected via the backward stepwise procedure
based on AIC. Thus, we first save the saturated model under object saturated
and then proceed with the backward model selection procedure as follows:
> saturated <- glm(freq S*D*G, poisson, data = depres.fr)

> step(saturated, direction="backward")

The stepwise procedure concludes to the model of no three-factor interaction
(SD, DG, SG), giving the following output:

Start: AIC=71.38
freq S * D * G:

Df Deviance AIC
- S:D:G 1 0.77135 70.155
<none> 0.00000 71.384
Step: AIC=70.16
freq ∼ S + D + G + S:D + S:G + D:G

Df Deviance AIC
<none> 0.771 70.155
- S:D 1 33.024 100.408
- D:G 1 34.386 101.769
- S:G 1 112.298 179.682
Call: glm(formula = freq∼S+D+G+S:D+S:G+D:G, family=poisson,
data=depres.fr)

Coefficients:

Intercept Sno Dno Gfemale
3.7393 -1.6684 3.0485 0.8850
Sno:Dno Sno:Gfemale Dno:Gfemale
0.9187 0.7834 -0.9369

Degrees of Freedom: 7 Total (i.e. Null); 1 Residual
Null Deviance: 3315
Residual Deviance: 0.7713 AIC: 70.16

The (SD, DG, SG) is also the model of homogeneous association since under this
model the association in all two-way partial tables is homogeneous across the levels
of the remaining third classification variable, as explained in Sect.4.3. This model
is fitted in R, as shown below, giving the output provided in Table 5.2.

> hom.assoc <- glm(freq∼S*D+S*G+D*G, poisson,data=depres.fr);

summary(hom.assoc)

The p-value of testing the model fit based on G2 statistic is 0.380, which is close to
the corresponding p-values of the Woolf’s or the Breslow–Day test (Sect.3.3.3).
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Table 5.2 Output for model (SD, DG, SG), fitted on data in Table 3.1

Call:
glm(formula = freq∼S*D+S*G+D*G, family=poisson, data=depres.fr)

Deviance Residuals:
1 2 3 4 5 6 7

-0.32157 0.70555 0.06943 -0.10112 0.20418 -0.32157 -0.07131
8

0.07006
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.73930 0.14417 25.936 < 2e-16 ***
SNo -1.66844 0.17668 -9.443 < 2e-16 ***
DNo 3.04847 0.14705 20.731 < 2e-16 ***
Gfemale 0.88501 0.16620 5.325 1.01e-07 ***
SNo:DNo 0.91871 0.17059 5.385 7.23e-08 ***
SNo:Gfemale 0.78344 0.07529 10.405 < 2e-16 ***
DNo:Gfemale -0.93691 0.17055 -5.493 3.94e-08 ***
--
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3315.40325 on 7 degrees of freedom

Residual deviance: 0.77135 on 1 degrees of freedom

AIC: 70.155

Number of Fisher Scoring iterations: 4

Relation (4.27), adjusted in our setup, becomes

logθ SD
(k) = log

(π11|kπ12|k
π21|kπ22|k

)
= λ SD

22 = logθ SD , k = 1,2 ,

due to the identifiability constraints λ SD
11 =λ SD

12 = λ SD
21 = 0. Thus, the ML estimate of

the common odds ratio θ SD under the log-linear model of homogeneous association
is

θ̂ SD = exp
(

λ̂ SD
22

)
= exp(0.91871) = 2.506 ,

close in value to θ̂MH and θ̂W , calculated in Sect.3.3.3.
Furthermore, the asymptotic Wald (1−α)100% CI for θ SD is

exp
[
log θ̂ SD ± zα/2s.e.

(
log θ̂ SD)] ,

where s.e.(log θ̂ SD) is the standard error of log θ̂ SD and is equal to s.e.(logθ SD) =
s.e.(λ SD

22 ) = 0.17059 .
This CI can easily be computed via the function

> CI <- function(t, SE, conf.level=0.95)

. {exp(t+c(-1,1)*qnorm(0.5*(1+conf.level))*SE)}
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with t and SE standing for log θ̂ SD and its standard error, respectively. Hence, the
95% CI for θ SD in this case is computed as
> logSD <- 0.91871 ; SE.SD <- 0.17059

> CI(logSD, SE.SD)

[1] 1.793842 3.501041

The xtabs() function, used in the previous example (Sect.5.4.1), is especially
useful in multi-way tables, since it provides a straightforward way to extract
marginal and partial tables of observed or expected cell frequencies. In this example
for instance, the smoking-depression marginal table of the ML estimates of the
expected cell frequencies under (SD, DG, SG) is
> MLE.SD <- xtabs(hom.assoc$fitted.values ∼ S + D)

and, as expected, coincides with the corresponding marginal table of observed
frequencies, which for arrays is obtained by
> margin.table(depsmok3, c(1,2))

or
> apply(depsmok3, c(1,2), sum)

However, were the data available only in the data frame format (depres.fr), with
obs the vector of observed frequencies, then the smoking-depression observed
marginal table would be
> MLE.SD <- xtabs(obs ∼ S + D)

5.5 Independence for Incomplete Tables

In case of structural zeros existence (see also Sect.4.9.1), the corresponding cells
are of zero probability and must be excluded from the analysis . Thus, any model
assumed will not apply on all cells of the contingency table under consideration but
only on the subset of its nonstructural zero cells. Hence, structural zeros affect the
assumed model in substance. A table with structural zeros is known as an incomplete
or truncated table.

As an illustration, we will consider the independence model for an I × J table.
Independence is considered not for all IJ cells but only for the subset of the
nonstructural zero cells S = {(i, j) : πi j > 0}. The model of independence applied
on an incomplete table is known as the quasi-independence (QI) model, term
introduced by Goodman (1968).

QI is defined naturally in the log-linear models framework, as the classical model
of independence (4.1), applied on a subset S of the table

logmi j = λ +λ X
i +λY

j , (i, j) ∈ S . (5.24)

The main effect parameters satisfy the identifiability constraints (4.4), and the
associated d f are d f = (I − 1)(J − 1)− s, where s = IJ − |S| is the number of
structural zeros, i.e., the cardinality of the set of structural zeros Sc .
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The restriction (i, j) ∈ S can be incorporated in the model by introducing s
additional parameters in (4.1), one for each structural zero. Hence, (5.24) is
equivalent to

logmi j = λ +λ X
i +λY

j + qi jI
Sc

i j , i = 1, . . . , I, j = 1, . . . ,J , (5.25)

where ISc

i j is the indicator function for structural zeros

ISc

i j =

{
1 , (i, j) /∈ S
0 , (i, j) ∈ S

.

This way, the structural zero cells equal the observed counts (ni j = mi j = 0 for
(i, j) /∈ S), sacrificing thus s d f . Structural zeros have no contribution to the value
of the X2 or G2 test statistic.

QI is expressed directly on the cell probabilities, as

πi j = αiβ j , (i, j) ∈ S ,

where the marginal parameters are no more the marginal probabilities.
Additionally, structural zeros serve as a powerful tool in contingency table

analysis, since they can be activated by the needs of the analysis to exclude a
specific cell or region of the table that is nonzero but exhibits “special behavior”
and exacerbates the fit of the assumed model. This is often the case for mobility
tables or panel studies, where the tables are square with augmented diagonal entries,
corresponding to non-change. It is natural thus to exclude the diagonal from the
analysis by considering S = {(i, j) : i �= j}. Other incomplete square tables that
received special attention are triangular tables. We will return to special QI models
for square tables in Sect.9.3. References on conditions for existence of ML estimates
for truncated tables are provided in Sect.5.7.1.

Structural zeros are incorporated easily in log-linear models analysis in the GLM
framework. A cell (i, j) is excluded from the model, by the inclusion in the log-
linear model (5.25) of the additional parameters qi j that is responsible for fixing
it to its observed frequency (ei j = 0). In practice, this is achieved in standard
software by adding in the log-linear model the index variable of (5.25) as an
explanatory variable. In the presence of more structural zeros, additional index
variables are added in the model, one for each structural zero. Alternatively, in the
GLM context, all structural zeros can be indicated in one single variable that will
be used to determine the subset of cells on which model (5.24) will be applied.
SPSS handles structural zeros in the “general log-linear analysis” straightforward.
An index variable has to be added in the data file, taking values 0 for structural zero
cells and 1 otherwise. This index variable has to be declared in the “Cell Structure”
field of the window:
. Analyze > Loglinear > General. . .
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QI will be illustrated in R, using Example 5.1 below.
When interaction is significant, model (4.5) is expressed for two-way incomplete

tables as

logmi j = λ +λ X
i +λY

j +λ XY
i j , (i, j) ∈ S . (5.26)

The main effect parameters satisfy constraints (4.4) while the sum to zero constraints
in (4.6) for the interaction parameters are corrected to

I

∑
i=1

ISc

i j λ XY
i j =

J

∑
j=1

ISc

i j λ XY
i j = 0 .

Log-linear models for multi-way incomplete contingency tables can be defined and
fitted in an analogous manner.

5.5.1 Example 5.1

A typical example of contingency table with structural zeros is a survey on
teenagers’ health concerns. Teenagers are cross-classified according to their health
concerns (in four categories), gender, and age (in two categories: 12–15, 16–17)
in a 4× 2× 2 table. The table has two structural zeros, since the health concerns
category “menstrual problems” cannot refer to boys. This example is analyzed by
Grizzle and Williams (1972) and Fienberg (2007, pp.148–150). Ignoring age, i.e.,
merging over the age, the data are provided in Table 5.3, and there exists 1 structural
zero; thus, the test of QI will be based on 2 d f . QI is rejected, since G2(QI) = 12.60
(p-value = 0.0018) and X2(QI) = 12.39 (p-value = 0.0020). The ML estimates of
the expected under QI cell frequencies along with the standardized residuals are
provided in Table 5.3 in parentheses. Observing them, we conclude that the greatest
difference between genders lies on the category “how healthy I am,” for which girls
are significantly less concerned and boys more than under independence, followed
by “sex, reproduction” for which boys are significantly less interested while girls
more, though not as significant. Finally, boys are more health concerns-free than
expected under independence and girls less, but these differences are at the limit of
5% significance.

This model was fitted in R by the function fit.QI(), provided in web appendix
(see Sect. A.3.4). This function fits the QI model by (5.24), excluding the structural
zero cells from the analysis. It needs to read the numbers of rows I and columns
J of the table, the cell frequencies in a vector (by rows) of length IJ, where 0 are
put in places of structural zeros, and an index vector of length IJ with entries the
ISc

i j indices, given by rows. Thus for our example, the analysis is carried out by the
commands
> freq<-c(6,16,0,12,49,29,77,102)

> zer<- c(0,0,1,0,0,0,0,0)

> fit.QI(freq,zer,4,2)
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Table 5.3 Teenagers’ cross-classification by gender and their health concerns (Brunswick 1971)

Gender

Health concerns Male Female

Sex, reproduction 6 (10.41, −2.13) 16 (11.59, 1.85)
Menstrual problems – 12 (12.00, 0.00)
How healthy I am 49 (36.90, 3.08) 29 (41.10, −3.41)
Nothing 77 (84.69, −1.95) 102 (94.31, 1.90)

In parenthesis are provided the ML estimates under the QI model and the
standardized residuals

The output of fit.QI(), beyond the results presented above, includes the overview
of the fit provided by summary() and the estimates of the log-linear model
parameters in vector forms for possible further use.

Alternatively, without restricting the cells on which the model applies, the QI
model can be fitted by (5.25), including s extra parameters in the model, one for
each structural zero. For this example, s = 1 and would have
> NI <- 4

> NJ <- 2

> row<-gl(NI,NJ,length=NI*NJ)

> col<-gl(NJ,1,length=NI*NJ)

> example <- data.frame(row, col, freq, zer)

> QI.model <- glm(freq ∼ row+col+zer, poisson)

Under this approach, in the presence of s > 1 structural zeros, the index vector zer
used in glm() above, needs to be replaced by a factor of s+ 1 levels. Level 0 is
assigned to the non-structural zero cells and a different level (from 1 to s) is assigned
to every structural zero cell.

In case of existence of sampling zeros as well, they will not differ from the
structural zeros in the frequency vector but in their index vector entry.

5.6 Models for Joint and Marginal Distributions

Model (5.6) applies directly on the cell entries of the table. In certain frameworks,
it is of interest to model or test hypotheses about linear functions of the cell entries.
For this, (5.6) is extended to

log(Mm) = Xβββ , (5.27)

with M a matrix suitably defined in order to form the desired functions of the
expected cell entries when applied on m.

The most famous models of this type are those modeling the marginals of a table,
since some structures can easier be expressed in terms of marginal distributions,
leading to the marginal models. Marginal models for contingency tables impose
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structural restrictions on certain marginals of the classification variables and are
usually of log-linear type. A characteristic example is the marginal homogeneity
model for a square I×I table, presented in Sect.9.2.2. For higher dimensional tables,
modeling the marginal distributions is important for clustered and longitudinal
categorical data (see Sects.5.7.2 and 9.7.4).

However, if we would like to model the local odds ratios of an I × J table,
model (5.27) is not appropriate; a further extension is needed. A brighter family
of models is the generalized log-linear model (GLLM)

C log(Mm) = Xβββ . (5.28)

Matrix C provides more flexibility and allows an even brighter variety of models to
be included in this class. GLLM is introduced by Lang and Agresti (1994) and
opened new origins in the analysis of multivariate categorical data, providing a
powerful and flexible framework to model structures of associations. Model (5.28) is
suitable for modeling, among others, the log of local or global odds ratios (see Sect.
2.2.5). Recall the matrix definition of the generalized odds ratios, given by (2.54)
and (2.55), which correspond to the left-hand side of (5.28).

GLLM is itself a member of the broader multinomial-Poisson homogeneous
(MPH) model, which is of the very general form

L(m) = Xβββ , (5.29)

where L is a link function. Details on inference for the MPH model are beyond
the scope of this book and can be found in Lang (2004, 2005). Setting L(m) =
C log(Mm), (5.29) reduces to (5.28).

Another special case of the MPH model (5.29) is the

h(m) = 0 , (5.30)

where h() is a smooth constraint function with the constraints in (5.30) being
nonredundant. With the adequate choice of the constraint function h(), model (5.30)
reduces to the independence model (2.52), expressed in terms of the local odds
ratios.

Though inference for the MPH model is not straightforward, it can be imple-
mented in R by the mph function of Lang or the package hmmm of Colombi et al.
(2013). We will illustrate mph, which is a powerful and flexible function that fits
a big variety of general models via maximum likelihood. We limit its use only to
GLLM models (5.28) and to model (5.30), both considered for the local odds ratios
and the global odds ratios of a contingency table.

Function mph is available on request. The file “mph.Rcode.txt” is then sent and
the routine mph is activated in R by
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> source("c://...//mph.Rcode.txt")

The data are read in vector form that has to be defined as matrix. Thus, the I × J
table of observed frequencies is expanded (by rows) in a IJ×1 vector freq and this
vector finally forms the IJ × 1 data matrix
> y <- matrix(freq)

The derived vector of expected cell frequencies m is also a matrix of size IJ× 1.
The typical expression of the mph function for fitting (5.29) is

> mph.out <- mph.fit(y=y,L.fct=L.fct,X=X, strata=1)

where L.fct is the link function and X the design matrix of the MPH model (5.29)
under consideration. The link for the GLLM model (5.28) is defined by
> L.fct <- function(m)C%*%log(M%*%m)

with C and M appropriate defined matrices. In the sequel, command
> mph.summary(mph.out,cell.stats=T,model.info=T)

produces summary output of the model, i.e., goodness-of-fit statistics, parameter
estimates, expected cell frequency estimates under the assumed model, and infor-
mation on the model applied and its convergence.

Model (5.30) is fitted by
mph.constr <- mph.fit(y, constraint=h.fct, strata=1)

where h.fct is the constraints function. For example, in order to fit the indepen-
dence model (2.52), it should be
> h.fct <- function(m) {C%*%log(m)}

with C an appropriate (I − 1)(J− 1)× IJ matrix.
Examples of fitting the GLLM model through the L.fct option will be discussed

in Sects.6.6.4 and 7.1, for the local and the global odds ratios, respectively.
The standard expression of mph.fit() assumes one single multinomial sample
(strata=1). The extra option for defining more strata of data will be discussed in
Sect.5.6.2. At this point we will use mph to fit model (2.52) for our familiar Example
2.3, illustrating the use of h.fct.

5.6.1 Example 2.4 by mph

The function local.odds.DM() in the web appendix (see Sect. A.3.2) produces
the matrix C needed to derive the logs of the local odds ratios when multiplied to
log(m), for tables of any size I× J.

Hence, after actualizing mph in R, model (2.52) is fitted for our example by
> NI <- 3; NJ <- 5

> freq <- c(45,116,19,48,23,40,167,33,68,41,47,185,34,63,26)

> C<-local.odds.DM(NI,NJ)

> h.fct <- function(m) {C%*%log(m)}

> ind.odds <- mph.fit(y, constraint=h.fct, strata=1)

The corresponding output is derived by
> mph.summary(ind.odds,cell.stats=T,model.info=T)

Part of this output is provided in Table 5.4.
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Table 5.4 Output of the mph function, fitting the independence model on the local odds ratios of
Example 2.4

MODEL GOODNESS OF FIT: Test of Ho: h(p)=0 vs. Ha: not Ho...

Likelihood Ratio Stat (df=8): Gsq=10.36287 (pval=0.2405)

Pearson’s Score Stat (df=8): Xsq=10.52048 (pval=0.2304)

Generalized Wald Stat (df=8): Wsq=10.40275 (pval=0.2379)

Adj Resids: -1.709 -1.604 ...1.865 2.195,

Number |Adj Resid| > 2: 1

SAMPLING PLAN INFORMATION...

Number of strata: 1

Strata identifiers: 1

Strata with fixed sample sizes: all

Observed strata sample sizes: 955

CELL-SPECIFIC STATISTICS...

strata OBS FV StdErr.FV PROB StdErr.PROB ADJ.RESIDS

y1 1 45 34.6932 3.3753 0.0363 0.0035 2.1954

y2 1 116 123.0031 7.8052 0.1288 0.0082 -1.0299

y3 1 19 22.6031 2.6280 0.0237 0.0028 -0.9253

y4 1 48 47.0461 4.0679 0.0493 0.0043 0.1797

y5 1 23 23.6545 2.6971 0.0248 0.0028 -0.1647

y6 1 40 48.2387 4.4071 0.0505 0.0046 -1.6041

y7 1 167 171.0283 9.2226 0.1791 0.0097 -0.5415

y8 1 33 31.4283 3.4996 0.0329 0.0037 0.3690

y9 1 68 65.4147 5.2158 0.0685 0.0055 0.4452

y10 1 41 32.8901 3.5852 0.0344 0.0038 1.8653

y11 1 47 49.0681 4.4699 0.0514 0.0047 -0.4012

y12 1 185 173.9686 9.3027 0.1822 0.0097 1.4776

y13 1 34 31.9686 3.5528 0.0335 0.0037 0.4752

y14 1 63 66.5393 5.2853 0.0697 0.0055 -0.6073

y15 1 26 33.4555 3.6394 0.0350 0.0038 -1.7087

CONVERGENCE INFORMATION...

Original counts used.

iterations = 5 , time elapsed = 0.18

norm.diff = 1.80924e-09 = dist between last and second

last iterates.

Norm diff convergence criterion [1e-06] was met.

norm.score = 1.61128e-09 = norm of score at last iteration.

Norm score convergence criterion [1e-06] was met.

If we wanted to express the independence model in terms of the global odds
ratios, then h(m) in (5.30) equals h(m) = C log(Mm), with matrices C and M
appropriately defined. Function global.odds.DM() of the web appendix (see
Sect. A.3.2) returns these two matrices for tables of size I× J. The procedure above
had to be adjusted as follows:
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> C <- global.odds.DM(NI,NJ)$C; M <- global.odds.DM(NI,NJ)$M

> h.fct <- function(m) {C%*%log(M%*%m)}

> ind.glob <- mph.fit(y, constraint=h.fct, strata=1)

5.6.2 Example 3.3 by mph

The hypothesis of homogeneous association (3.7) in 2 × 2 × K tables can be
treated also in the GLLM framework, expressed by (5.28) with m the expected
cell frequencies under the homogeneous association hypothesis expanded in a
4K × 1 matrix form, X = (1)K×1, and C the K × 4K block-diagonal matrix C =
diag(C1, . . . ,CK) matrix with Ck = C0 = (1, −1, −1, 1), for k = 1, . . . ,K. C0 is
the matrix for constructing the log odds ratios when applied on m. It has this form,
provided that the expected frequency table is expanded by columns. In this case the
parameter is scalar and is equal to the assumed log odds ratio for all partial 2× 2
tables under the homogeneous association hypothesis, i.e., β = logθ .

This approach is illustrated in mph for Example 3.3, as follows. Function
bdiag() of library Matrix is applied to produce the block-diagonal matrix C.

> source("c://Program Files//R//mph.Rcode.txt");

freq <- c(79,68,5,17,89,221,4,46,141,77,6,18,45,26,29,21,81,112,

+ 3,11,168,51,13,12);

y<- matrix(freq); K <- 6; X1 <- matrix(rep(1, K));

library(Matrix); C0<-c(1, -1, -1, 1);

C <- t(bdiag(C0,C0,C0,C0,C0,C0)); # 6×6 block-diagonal matrix

L.fct <- function(m){C%*%log(m)};

mph.out <- mph.fit(y=y,strata=K,L.fct=L.fct,X=X1);

mph.summary(mph.out,cell.stats=T,model.info=T)

From the observed output we have that G2 = 7.950 (p-value=0.159, d f =5) and
X2 = 7.896 (p-value=0.162, d f =5) while the ML estimate of the common under
homogeneous association log odds ratio is β̂ = 1.0759, i.e., θ̂ = 2.9326. This model
is equivalent to the homogeneous association log-linear model applied on the cell
frequencies (see Sect.4.6.1.1). Recall from Sect.3.3.4 that the Mantel–Haenszel
estimate was θ̂MH = 2.96.

5.7 Overview and Further Reading

The classical reference for GLMs is McCullagh and Nelder (1989). Additionally, a
comprehensive reference is Fahrmeir and Tutz (2001). For application of GLMs in
S-Plus and R, we refer to Venables and Ripley (2002, Chap.7). Dobson and Barnett
(2008) provide an easy to follow introduction to GLMs, with theoretical counterpart
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but focusing on the analysis of particular types of data and their implementation in
standard software, categorical data included. They consider also Bayesian analysis
and Markov chain Monte Carlo (MCMC) methods to fit GLMs. A formulation and
presentation of models for categorical data through the GLM family can be found
in Agresti (2007, 2013).

GLMs have been extended in various directions, like for incorporating noncon-
stant variance, modeling dispersion, or generalizing the link function (McCullagh
and Nelder 1989). In categorical data context, characteristic cases are, for example,
the consideration of a negative binomial instead of a Poisson response or the
introduction of dispersion effect in the cumulative link model (McCullagh 1980).

The Fisher information matrix plays an important role in statistics in many
different aspects, the two most characteristic being in determining the variance of
an estimator and the “noninformative” priors determination in the Bayesian setup.
Spall (2005) reviews basic principles associated with the information matrix and
presents a resampling-based method for computing the information matrix.

When the ni’s are small, the residuals are not approximately normal distributed.
For such cases the transformed Anscombe residuals have been proposed (see
McCullagh and Nelder 1989). For a survey on residuals for GLMs, we refer to
Pierce and Schafer (1986). For goodness-of-fit testing of GLMs for sparse data, see
Farrington (1996).

5.7.1 Incomplete Contingency Tables

Incomplete tables attracted researchers’ attention very early. Stigler (1992), in an
interesting and enlightening historical review, points out that in 1913, Karl Pearson
was the first to consider the independence model for two-way incomplete tables.
The historical fingerprint data set in Waite (1915) contains structural and sampling
zeros while Harris and Treloar (1927) and Harris and Tu (1929) face for incomplete
tables the problems occurring in the applicability of the contingency coefficient.

The existence of ML estimates for models considered on incomplete tables
became a central issue in the late 1960s and 1970s. The most well-known model for
incomplete tables is the QI model, presented in Sect. 5.5. Very popular, especially in
the context of rater agreement and mobility tables, is the QI model for square tables
having the main-diagonal entries missing or excluded. The key reference for the QI
model is Goodman (1968), though the QI model for diagonal truncated square tables
had been considered earlier by Savage and Deutsch (1960) and Goodman (1963a)
in transaction flows analysis and White (1963) and Goodman (1965) in mobility
table analysis. Fundamental papers in developing inference for QI in the log-linear
model setup were Bishop and Fienberg (1969), Fienberg (1970a), and Haberman
(1973a), with the last two providing conditions for existence of unique nonzero ML
estimates. The QI model is discussed in detail in Bishop et al. (1975).
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Interesting is the approach of Fienberg (1969) that locates the cells exhibiting
interaction, when the number of such cells is relatively small compared with the
total number of cells in the table, and applies then the QI model, excluding these
cells. Mantel (1970) focused on determining the appropriate degrees of freedom
and considered, beyond independence, also symmetry testing for incomplete square
tables. Goodman (1971a) proposed a test procedure for testing the hypothesis of
QI simultaneously for several different subsets of the cells of a table. Enke (1977)
considered incomplete two-way tables of special structures that are decomposed
to separable tables and lead to closed form MLEs. For the ML estimation of the
diagonal truncated independence model, Morgan and Titterington (1977) compared
the performance of the EM, Newton–Raphson, and iterative scaling algorithms,
concluding empirically that the last is the least efficient method.

Another special type of incomplete square tables are the triangular tables. Such
form of incomplete tables occurred already in Waite (1915), while is special referred
in Goodman (1968) and Bishop and Fienberg (1969). Special on triangular QI are
Goodman (1979a, 1994) and Altham (1975), who considered also the Bayesian
analysis with conjugate prior. For ordinal triangular tables, Sarkar (1989) interpreted
QI in terms of likelihood ratio dependence and Tsai and Sen (1995) provided
an alternative test of QI. We considered in Sect.5.5 the problem of incorporating
structural zeros in the simple independence model for two-way tables. The diagonal
and triangular truncated tables will be presented in Sect.9.3.

Colombo and Ihm (1988) applied the QI model in an unusual context to estimate
failure rates of components classified by two qualitative covariates. QI allows for
different operating times in the various cells, zero operating time included.

Incomplete tables may occur in tables of higher dimension and of more complex
association structures. Klimova et al. (2012) introduce a general family of models
for contingency tables, the rational models, which provide a unified framework
for analysis of complete and incomplete tables by log-linear models and others,
like association models (Chap. 6) and rater agreement models (Sect.9.5.2). They
provide sufficient conditions for the existence of the ML estimates under this general
model and prove the classical equivalence between the Poisson and multinomial
likelihoods.

A nice review of the literature on the sensitivity analysis of overparameterized
models for incomplete categorical data, Bayesian and frequentist, is provided by
Poleto et al. (2011).

5.7.2 Marginal Distributions Modeling

Marginal models have been mainly developed by Lang and Agresti (1994), Lang
(1996a), Lang et al. (1999), and Bergsma and Rudas (2002a,b). Their approach is
based on earlier work by Haber (1985) and Haber and Brown (1986). Bartolucci
et al. (2007) generalized the model of Bergsma and Rudas (2002a) to allow for
global and continuation type logits, which may be more adequate for ordinal
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data analysis. Rudas et al. (2010) formed conditional independence models in a
marginal log-linear parameterization. Becker et al. (1998) explored similarities and
differences between standard log-linear and marginal models with special emphasis
on square tables and reference to multi-way tables as well in the social sciences
framework. For a detailed presentation of marginal models and their features, we
refer to the book by Bergsma et al. (2009).

Marginal models are applied for modeling repeated (or clustered) categorical
data (see also Sect.9.7.4).
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