
Chapter 4
Log-Linear Models

Abstract The classical log-linear models are introduced for two-way and multi-
way contingency tables. Estimation theory, goodness-of-fit testing, and model
selection procedures are discussed. Characteristic examples are worked out in R and
interpreted. Log-linear models for three-dimensional tables are illustrated through
mosaic plots. Graphical models are shortly discussed. Finally the collapsibility in
multi-way tables, in connection to Simpson’s paradox, is addressed.

Keywords Hierarchical log-linear models • Model fit and selection • Dissimilar-
ity index • Graphical models • Simpson’s paradox

4.1 Log-Linear Models for Two-way Tables

4.1.1 Model of Independence

Independence (2.34) between the classification variables X and Y can equivalently
be expressed in terms of the expected under independence cell frequencies mi j in a
log-linear model form as

logmi j = λ +λ X
i +λY

j , i = 1, . . . , I, j = 1, . . . ,J , (4.1)

where λ corresponds to the overall mean while λ X
i , λY

j are the ith row and jth
column main (or marginal) effects, respectively.

Model (4.1) could equivalently be expressed in terms of the expected under
the assumed model probabilities πi j. The usual choice is in terms of mi j, because
expected cell frequencies are common for the different sampling schemes while
the underlying probability structure changes (see Sect. 2.2.1). For this, all log-
linear models considered in the sequel will be expressed in terms of expected cell
frequencies.
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86 4 Log-Linear Models

Interpretation is carried out in terms of the odds. For given column category j,
under model (4.1), the odds of being in row i1 instead of row i2 (i1 �= i2), i1, i2 = 1,
. . . , I, is

mi1 j

mi2 j
=

exp(λ +λ X
i1
+λY

j )

exp(λ +λ X
i2
+λY

j )
= exp(λ X

i1 −λ X
i2 ) , j = 1, . . . ,J , (4.2)

independent of j. Similarly, for columns j1 and j2 ( j1 �= j2, j1, j2 = 1, . . . ,J),

mi j1

mi j2
= exp(λY

j1 −λY
j2) , i = 1, . . . , I , (4.3)

i.e., the odds of being in column j1 instead of j2 is determined only by the distance
of the corresponding column main effect values and is independent of i. By (4.3),
the conditional j1 and j2 column probabilities (within row i)

P(Y = j1|X = i)
P(Y = j2|X = i)

= exp(λY
j1 −λY

j2) , i = 1, . . . , I ,

relate the same for all rows and this is true for any pair of columns j1 and j2.
Thus, the conditional column distribution is the same for all rows, as should be
for independent X and Y .

Using (4.3), the expected under independence local odds ratios are

θ L
i j =

mi j/mi. j+1

mi+1. j/mi+1. j+1
=

eλY
j −λY

j+1

eλY
j −λY

j+1
= 1 , i = 1, . . . , I − 1, j = 1, . . . ,J− 1,

i.e., all equal to 1, as expected by (2.52).
The parameters in model (4.1) are 1+ I + J while we know that under inde-

pendence the parameters are (I − 1) + (J − 1). Hence, parameters in (4.1) are
not uniquely determined unless constraints are imposed on the main effects. The
traditionally used identifiability constraints are the sum to zero constraints:

I

∑
i=1

λ X
i =

J

∑
j=1

λY
j = 0 . (4.4)

Due to computational convenience, software applications replace (4.4) by the
constraints that set a category effect to zero, usually the last (λ X

I = λY
J = 0) or the

first (λ X
1 = λY

1 = 0).
The different set of constraints are equivalent and they affect only the reference

point for physical interpretation. Thus, λ X
i compares the ith row category to

the overall mean or to the first category, depending on whether model (4.1) is
fitted under (4.4) or under λ X

1 = 0. The differences λ X
i1
− λ X

i2
and λY

j1
− λY

j2
are

constraints invariant; thus, comparisons between categories are not affected by the
identifiability constraints used.
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Model (4.1) will be illustrated in Sect. 4.2.1, after we discuss technical matters
on parameter estimation and model fit checking.

4.1.2 The Saturated Model

In case the classification variables X and Y are not independent, their interaction is
significant and the corresponding XY -interaction term has to be added in the log-
linear model expression, leading to the saturated model

logmi j = λ +λ X
i +λY

j +λ XY
i j , i = 1, . . . , I, j = 1, . . . ,J . (4.5)

Identifiability constraints are also required for model (4.5). Under the sum to zero
identifiability constraints, additional to (4.4) the following constraints hold for the
interaction parameters:

I

∑
i=1

λ XY
i j =

J

∑
j=1

λ XY
i j = 0 . (4.6)

Analogous to model (4.1), the (4.4) and (4.6) constraints can be equivalently
replaced by constraints equating the last (or first) row and column parameters to
zero. For the interaction parameters this would be

λ XY
I j = λ XY

iJ = 0, i = 1, . . . I − 1, j = 1, . . .J − 1

(or λ XY
1 j = λ XY

i1 = 0, for i = 2, . . . I, j = 2, . . .J).
The saturated model (4.5), under (4.4) and (4.6), has as many parameters as the

number of cells, i.e., IJ. Thus, it does not impose any structure on the underlying
association. It just reparametrizes the table’s cells in an interpretational meaningful
way. The local odds ratios are directly derived from the interaction parameters, since

logθ L
i j = λ XY

i j +λ XY
i+1, j+1 −λ XY

i+1, j −λ XY
i, j+1 , (4.7)

i = 1, . . . , I− 1, j = 1, . . . ,J − 1 .

For a simple 2× 2 table and for the first category set to zero constraints (λ XY
11 =

λ XY
12 = λ XY

21 = 0), it holds

logθ = λ XY
22 .

Evidently, the λ XY term indeed expresses the association between X and Y .
Furthermore, model (4.1) is derived by (4.7), setting

λ XY
i j = 0 , i = 1, . . . , I, j = 1, . . . ,J , (4.8)
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i.e., by eliminating the association between X and Y . This means that (4.1) is nested
in (4.7). We shall refer in detail to nested models in the context of log-linear models
for multi-way tables in Sect. 4.4.

An example of the saturated model’s implementation in practice is provided in
Sect. 4.2.2.

Overall, log-linear models describe the way the involved categorical variables
and their association (if significant) influence the count at each of the IJ cells of the
cross-classification of these variables. They are the discrete analogue of analysis of
variance, where for each cell of the cross-classification, there is modeled the mean
of a continuous variable, instead of a count. The analogy to classical analysis of
variance is obvious once the log-linear model’s parameters, subject to the sum to
zero constraints (4.4) and (4.6), are identified in terms of expected cell frequencies:

λ =
1
IJ ∑

i, j

logmi j (4.9)

λ X
i =

1
J ∑

j
logmi j −λ , i = 1, . . . , I , (4.10)

λY
j =

1
I ∑

i
logmi j −λ , j = 1, . . . ,J , (4.11)

λ XY
i j = logmi j −λ −λ X

i −λY
j , i = 1, . . . , I, j = 1, . . . ,J . (4.12)

4.2 On Inference and Fit of Log-Linear Models

We have seen in Sect. 2.2.1 that the three common sampling schemes for contin-
gency tables are inferential equivalent. For this, the ML estimates of the expected
cell frequencies mi j under a log-linear model can be equivalently derived under any
of these sampling assumption. For simplicity reasons, the Poisson log-likelihood
function is usually considered. Assuming thus an independent Poisson distribution
for each cell, Ni j ∼P(mi j), and upon observing a sample table (ni j)I×J , the Poisson
log-likelihood kernel � (ignoring the constants) is

�= ∑
i, j

(
ni j logmi j − elogmi j

)
. (4.13)

Under a particular log-linear model assumption, substituting logmi j in (4.13) by
the model’s formula, � will be a function of the log-linear models parameters.
Maximizing (4.13) with respect to these parameters, the sets of corresponding
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likelihood equations are derived. Their solution is the set of ML estimates of the
parameters and consequently the ML estimates m̂i j of the expected under this model
cell frequencies.

Thus, for the independence model, substituting in (4.13) the logmi j by (4.1) and
maximizing with respect to λ X

i and λY
j , the sets of likelihood equations are derived,

respectively, as follows:

m̂i+ = ni+ , i = 1, . . . , I, and m̂+ j = n+ j , j = 1, . . . ,J. (4.14)

Their solution is the ML estimates of the expected cell frequencies m̂i j, provided
in (2.35). The ML estimates of the λ parameters in (4.1), under the sum to zero
constraints (4.4), are

λ̂ =
1
I ∑

s
logns++

1
J ∑

s
logn+s− logn (4.15)

λ̂ X
i = logni+− 1

I ∑
s

logns+ , i = 1, . . . , I , (4.16)

λ̂Y
j = logn+ j − 1

J ∑
s

logn+s , j = 1, . . . ,J , (4.17)

and are obtained by (4.9)–(4.11), substituting the mi j’s by the corresponding m̂i j’s.
The goodness of fit of a log-linear model is assessed asymptotically by the clas-

sical X2 and G2 test statistics, which are under the assumed model asymptotically
X 2 distributed with degrees of freedom (d f ) equal to the dimension of the sample
space reduced by the number of the parameters estimated under the model. Note
that the dimension of the sample space of a contingency table depends on the
underlying sampling scheme. Thus, for an I × J table, for example, it is IJ − 1 if
the table is derived by a multinomial distribution (total n is fixed), while it is IJ
when independent Poisson distributions are considered for each cell (n is random).
For this, the λ of a log-linear model is a parameter only under Poisson sampling
(counting for n). Consequently, the d f of the model are the same under both
sampling schemes and the sampling schemes, given n are inferentially equivalent.

For the independence model (4.1), the X2 and G2 tests are (2.36) and (2.37),
respectively, with m̂i j given by (2.35) or by (4.1), with the parameters being
substituted by their ML estimates (4.15)–(4.17). The saturated model (4.5) fits the
data perfectly (X2 = G2 = 0, d f = 0).

The classical goodness-of-fit tests X2 and G2 are sensitive in sample size n, as
already mentioned in Sect. 2.2.2. It is evident that for large n, they tend to reject
even “good” models. For this, in the framework of log-linear models and in cases
of large sample size n, a dissimilarity index is used that assesses the practical
significance of the assumed model’s lack of fit. This index Δ̂ is common in social
sciences applications where also cross-tabulations of large sample sizes occur and
is defined as



90 4 Log-Linear Models

Δ̂ =
1

2n

I

∑
i=1

J

∑
j=1

|ni j − m̂i j|= 1
2

I

∑
i=1

J

∑
j=1

|pi j − π̂i j| (4.18)

The dissimilarity index Δ̂ ranges in the interval [0,1] and expresses the percentage of
observations that have to be moved to different cells in order to achieve a perfect fit.
Thus, small values of Δ̂ are indicative of good fit with Δ̂ < 0.02 or < 0.03 being the
limit for a satisfying representation of the data by the assumed model. The sample
index Δ̂ estimates the corresponding population index

Δ =
1
2

I

∑
i=1

J

∑
j=1

|πi j −π∗
i j| ,

which measures the dissimilarity between the population probability distribution
π = (πi j) and the probability distribution under the assumed model π∗ = (π∗

i j).

The approximate variance of the statistic Δ̂ and the associated confidence interval
has been given by Kuha and Firth (2011). They also provide an updated review of
literature on Δ̂ , which has a long history.

In practice, log-linear models for two-way (and multi-way) contingency tables
are fitted very easily in any software. In R, there are several options for getting
log-linear models analysis. They can be fitted by loglin (of stats) or loglm (of
the MASS package). Log-linear models will be fitted for Examples 2.4 and 2.3 by
loglm in Sects. 4.2.1 and 4.2.2, respectively. However, the predominant approach
is to analyze log-linear models in the generalized linear model (GLM) framework.
Thus, Example 2.4 will be revisited in Sect. 5.4.1, after discussing the GLM and its
connection to log-linear models.

4.2.1 Example 2.4 (Continued)

The log-linear model of independence (4.1) will be fitted on Table 2.3 in R, by the
loglm function of the package MASS. The parameter estimates derived by loglm are
under the sum to zero constraints. The data can be either in matrix form or in a data
frame.

The data of Table 2.3 are to be found in matrix natfare, constructed in Sect.
2.4.1.

After loading the MASS package, model (4.1) is then fitted by

> I.fit <- loglm( ∼ WELFARE + DEGREE, data=natfare)

The model formula of the fitted model and the corresponding G2 and X2 goodness-
of-fit tests is the standard output, obtained by
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> I.fit

Call:
loglm(formula = ∼ WELFARE + DEGREE, data = natfare)

Statistics::
Xˆ2 df P(> Xˆ2)

Likelihood Ratio 10.36287 8 0.2404748
Pearson 10.52048 8 0.2303766

The goodness-of-fit tests above suggest not to reject the independence model. Thus
we conclude that the respondents’ belief about national funds for welfare does
not depend significantly on their educational level. Recall that independence was
visualized in the conditional barplot in Fig. 2.3, where the conditional distributions
of educational levels within each category of opinion about welfare spending were
similar.

Naturally, we derived the same Pearson’s X2 as in Sect. 2.2.6 by the clas-
sical chisq(). However, in the log-linear models framework, a more detailed
interpretation can be extracted by the parameter estimates λ̂ X

i and λ̂Y
j in means

of (4.2) and (4.3), respectively. All items saved in object I.fit can be viewed by
names(I.fit) and we verify that the parameters’ ML estimates, satisfying the sum
to zero constraints (4.4), are saved in I.fit under $param. They can be printed by
> I.fit$param

‘(Intercept)’
[1] 3.923732

$WELFARE
too little about right too much
-0.2254279 0.1041910 0.1212369

$DEGREE
LT HS HS JColg BA Grad

-0.1517607 1.1139057 -0.5802153 0.1528232 -0.5347529

Alternatively, they can be saved in new vectors, convenient for further use, like
> L <- I.fit$param[1] # λ̂
> L.X <- I.fit$param[2:4] # (λ̂ X

1 , λ̂ X
2 , λ̂ X

3 )

> L.Y <- I.fit$param[5:9] # (λ̂ y
1 , . . ., λ̂

y
5)

Thus, it is estimated that in year 2008, it was 1.4 times more probable a responder
to believe that the national welfare spending was too much than that it was too little,
independent of his educational level, since

m̂3 j

m̂1 j
= exp(λ̂ X

3 − λ̂ X
1 ) = e0.1212−(−0.2254) = e0.347 = 1.41 , j = 1, . . . ,5 ,

which is computed by
> exp(L.X [3]-L.X[1])

The ML estimates of the expected under independence cell frequencies are
derived by
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> fitted(I.fit)

DEGREE

WELFARE LT HS HS JColg BA Grad

too little 34.69319 123.0031 22.60314 47.04607 23.65445

about right 48.23874 171.0283 31.42827 65.41466 32.89005

too much 49.06806 173.9686 31.96859 66.53927 33.45550

The dissimilarity index Δ̂ can now be easily calculated as
> D <- sum(abs(natfare-fitted(I.fit)))/(2*sum(natfare))

and we find that Δ̂ = 0.038, stating that 3.8% of the observations have to be moved
to achieve a perfect fit.

The Pearsonian residuals are given by
> residuals(I.fit)

DEGREE

WELFARE LT HS HS JColg BA Grad

too little 1.6724517 -0.6375826 -0.7794780 0.1386103 -0.1351891

about right -1.2226377 -0.3092454 0.2780712 0.3175824 1.3612691

too much -0.2973437 0.8277514 0.3555753 -0.4378190 -1.3419302

but there is no option in the loglm framework for getting the standardized residuals.
The log-linear models can also be fitted in the GLM framework by glm, where the
derived output is more informative (for example, the standard errors and significance
of the parameters’ ML estimates are also provided) and more options are available
(standardized residuals calculation is one of them). This example is treated by glm

in Sect. 5.4.1.
Function loglm applies also on a data frame. To construct the data frame for

this example, the row and column factors, WELFARE and DEGREE, respectively, are
defined and tied to the vector of observed frequencies freq in a data frame, named
nf.frame, as shown below. The factors are defined for a frequency vector of length
IJ = 15 that expands the cells of the table by rows.
> NI <- 3

> NJ <- 5

> row.lb <- c("too little","about right","too much")

> col.lb <- c("LT HS","HS", "JColg","BA", "Grad")

> WELFARE <- gl(NI,NJ,length=NI*NJ, labels=row.lb)

> DEGREE <- gl(NJ,1,length=NI*NJ, labels=col.lb)

> nt.frame <- data.frame(freq,WELFARE,DEGREE)

Then, the model is fitted as
> I.fit <- loglm( freq ∼ WELFARE + DEGREE, data=nt.frame)

leading to the same output and options as described above.
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4.2.2 Example 2.3 (Continued)

We have already seen in Sect. 2.2.3 that the independence hypothesis is rejected
for the cross-classification in Table 2.2 of responders (in GSS2008) subject to their
gender and confidence in banks and financial institutions. In the log-linear models
framework, model (4.1) is fitted by
> I.fit <- loglm( ∼ Gender + Conf, data=confinan)

giving the fit statistics that we already know from Sect. 2.2.3
> I.fit

Call:
loglm(formula = ∼ Gender + Conf, data = confinan)

Statistics::
Xˆ2 df P(> Xˆ2)

Likelihood Ratio 16.39847 2 .0002748643
Pearson 16.34136 2 .0002828258

Hence, the interaction between gender and confidence in banks is significant. The
interaction between two variables X and Y is denoted in R by X:Y. Entering the term
Gender:Conf in the model above, the saturated model is achieved
> sat.fit <- loglm( ∼ Gender + Conf + Gender:Conf, data=confinan)

with G2 = X2 = 0 and d f = 0 (perfect fit). Though no structure is imposed on
the underlying probability table gaining in parsimony, the parameters are still
informative for interpretational purposes. We get
> sat.fit$param

‘(Intercept)’
[1] 5.260226

$Gender
males females

-0.09028955 0.09028955

$Conf
great deal only some hardly any

-0.4147691 0.7337607 -0.3189915

$Gender.Conf
$Conf

Gender great deal only some hardly any
males -0.1701995 -0.009293922 0.1794934

females 0.1701995 0.009293922 -0.1794934

In log-linear models, only the highest factor interaction parameters are interpreted.
Thus, in presence of λ XY , the main effects are not interpreted. Odds ratios can be
calculated by (4.7) and corresponding conclusions can be expressed. Thus, based on
the λ XY values of the output above, the odds of having hardly any instead of great
confidence to banks is 2.01 times higher for men than for women, computed by
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> L.XY <- sat.fit$param$Gender.Confinan

> 1/exp(L.XY[1,1]+L.XY[2,3]-L.XY[1,3]-L.XY[2,1])

[1] 2.012516

4.3 Log-Linear Models for Three-way Contingency Tables

Consider a three-way contingency table, cross-classifying the variables X , Y , and
Z. In Sect. 3.2 we discussed on conditional and marginal distributions of such
tables and their relations, preparing the field to introduce the various notions of
independence in Sect. 3.4.

The hypothesis of complete independence of X , Y , and Z (or mutual indepen-
dence), defined by (3.16), is equivalently expressed in log-scale as

logπi jk = logπi+++ logπ+ j++ logπ++k, i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K,

which indicates that the logarithmic model of complete independence is

logmi jk = λ +λ X
i +λY

j +λ Z
k , i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K, (4.19)

with the main effect parameters λ X
i , λY

j , and λ Z
k satisfying identifiability constrains

as the main effects of the log-linear models for two-way tables, i.e.,

I

∑
i=1

λ X
i =

J

∑
j=1

λY
j =

K

∑
k=1

λ Z
k = 0 or λ X

1 = λY
1 = λ Z

1 = 0 (4.20)

Analogously, hypothesis (3.17) of joint independence of Y from X and Z is in log-
scale equivalent to model

logmi jk = λ +λ X
i +λY

j +λ Z
k +λ XZ

ik , ∀ i, j,k. (4.21)

Additionally to constraints (4.20), the parameters of model (4.21) satisfy the
identifiability constraints

I

∑
i=1

λ XZ
ik =

K

∑
k=1

λ XZ
ik = 0 or λ XZ

1k = λ XZ
i1 = 0, (4.22)

for all possible values of the non-summing subscript (k or i).
The model of joint independence (4.21) involves only one two-factor interaction

term, the λ XZ , since Y is joint independent from X and Z, but X and Z can be
dependent to each other. Obviously, on a three-way table two more models of joint
independence can be defined, those having as single two-factor interaction the λ XY

or the λY Z term.
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If X and Y are independent conditionally on Z, then the underlying probabilities
structure is captured in (3.18) as

πi jk = πi j|kπ++k = πi+|kπ+ j|kπ++k =
πi+kπ+ jk

π++k
,

which is equivalent to the log-linear model:

logmi jk = λ +λ X
i +λY

j +λ Z
k +λ XZ

ik +λYZ
jk , ∀ i, j,k. (4.23)

The identifiability constraints of this model are (4.20), (4.22), and

J

∑
j=1

λYZ
jk =

K

∑
k=1

λY Z
jk = 0 or λY Z

1k = λYZ
j1 = 0, (4.24)

for all possible values of the non-summing subscript (k or j).
In model (4.23) are present two two-factor interaction terms (from the three

possible for a three-way table). The missing interaction term, the λ XY , is the
one responsible for the physical interpretation of the model, signaling missing
interaction, in the presence of the other variable. Thus, X and Y are conditionally
independent, given Z. The model of conditional independence of X and Z, given Y
(or of Y and Z, given X) is defined analogously.

Naturally, the next model to be considered is the one having all three possible
two-factor interactions. Thus, consider the model

logmi jk = λ +λ X
i +λY

j +λ Z
k +λ XY

i j +λYZ
jk +λ XZ

ik , ∀ i, j,k. (4.25)

Additional to (4.20), (4.22), and (4.24), constraints

I

∑
i=1

λ XY
i j =

J

∑
j=1

λ XY
i j = 0 or λ XY

1 j = λ XY
i1 = 0, (4.26)

for all possible values of the non-summing subscript ( j or i), are imposed on the
parameters of this model.

It can be easily verified that under model (4.25), all conditional odds ratios of
the kth XY partial table for all pairs (i, i′), ( j, j′) with i < i′ and j < j′

πi j|kπi′ j′|k
πi′ j|kπi j′|k

, i = 1, . . . , I − 1, i′ = 2, . . . , I, j = 1, . . . ,J− 1, j′ = 2, . . . ,J ,

are independent of k, k = 1, . . . ,K. Indeed, we have

log

(πi j|kπi′ j′|k
πi′ j|kπi j′|k

)
= log

(
mi jkmi′ j′k
mi′ jkmi j′k

)
= λ XY

i j +λ XY
i′ j′ −λ XY

i′ j −λ XY
i j′ . (4.27)
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Hence, the XY conditional association does not depend on k, i.e., is homogeneous
across the levels of Z. Analogously it can be proved that also the YZ and XZ
conditional associations are homogeneous across the levels of X and Y , respectively.
For this, model (4.25) is called the models of homogeneous association.

If we set i′ = i+ 1 and j′ = j + 1 (without loss of generality), the conditional
odds ratios above become the θ XY

i j(k) local conditional odds ratios, defined in (3.4),
and (4.27) leads to

logθ XY
i j(k) = λ XY

i j +λ XY
i+1. j+1−λ XY

i+1. j −λ XY
i. j+1 , i = 1, . . . , I− 1, j = 1, . . . ,J − 1,

(4.28)

independent of k. For the conditional odds ratios θ XZ
i( j)k and θY Z

(i) jk hold analogous
results.

Finally, the saturated model has an additional term, the three-factor interaction
term λ XY Z that accounts for the more complex connection of all three variables:

logmi jk = λ +λ X
i +λY

j +λ Z
k +λ XY

i j +λ XZ
ik +λYZ

jk +λ XYZ
i jk , ∀ i, j,k. (4.29)

All terms of saturated model satisfy identifiability constraints, of the type given
above. Thus also for the three-factor interaction term it holds

I

∑
i=1

λ XY Z
i jk =

J

∑
j=1

λ XY Z
i jk =

K

∑
k=1

λ XY Z
i jk = 0 or λ XY Z

1 jk = λ XY Z
i1k = λ XY Z

i j1 = 0. (4.30)

The parameters of the saturated model are in 1-1 correspondence with the mi jk.
Taking into consideration the appropriate constraints and solving simple equa-
tions we can express all λ parameters as functions of the mi jk’s, analogously to
(4.9)–(4.12) for two-way tables.

All possible main effect and interaction terms that can appear in a three-way log-
linear model are listed in Table 4.1, along with their number of them being “free,”
after the identifiability constraints consideration. All these “free” parameters sum
to IJK − 1, which is the dimension of the parameter space when the contingency
table

(
mi jk

)
I×J×K is multinomial distributed. The fixed term λ is considered as a

parameter only under the Poisson sampling scheme; in which case the number of
possible “free” parameters is IJK (in analogy to two-way contingency tables).

All the log-linear models considered so far are of a special type. In all of
them, whenever a higher-order effect is in the model, then all possible lower-order
effects involving the variables of this higher-order effect term are also in the model.
Such models are called hierarchical log-linear models and are parsimoniously
symbolized by the set of the highest-order terms (with respect to all variables) that
define them uniquely. For instance, model logmi j = λ + λ X

i + λ XY
i j for two-way

tables is nonhierarchical, since it includes the term λ XY
i j , without having the term λY

j .
Analogously, the absence of the term λ Z

k makes logmi jk = λ +λ X
i +λY

j +λ XY
i j +λYZ

jk
nonhierarchical. The hierarchical log-linear models for three-way tables are given
in Table 4.2, along with their notation.
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Table 4.1 Number of “free” parameters for each log-linear model term (main effect or interaction)
applied on an I × J×K contingency table, due to the identifiability constraints

Number of Number of Identifiability
Term parameters “free” parameters constraints

Main effects
λ X

i I (I −1) (4.20) for λ X
i

λY
j J (J −1) (4.20) for λY

i

λ Z
k K (K −1) (4.20) for λ Z

i

Two-factor interactions
λ XZ

ik IK (I −1)(K −1) (4.22)
λYZ

jk JK (J −1)(K −1) (4.24)

λ XY
i j IJ (I −1)(J −1) (4.26)

Three-factor interaction
λ XYZ

i jk IJK (I −1)(J −1)(K −1) (4.30)

Table 4.2 Hierarchical three-way log-linear models

Model Description logmi jk =

(X ,Y,Z) Independence of X , Y , Z λ +λ X
i +λY

j +λ Z
k

Jointly independence of
(Y,XZ) Y from X and Z λ +λ X

i +λY
j +λ Z

k +λ XZ
ik

(X ,Y Z) X from Y and Z λ +λ X
i +λY

j +λ Z
k +λYZ

jk

(Z,XY ) Z from X and Y λ +λ X
i +λY

j +λ Z
k +λ XY

i j

Conditional independence of
(XZ,Y Z) X and Y , given Z λ +λ X

i +λY
j +λ Z

k +λ XZ
ik +λYZ

jk

(XY,XZ) Y and Z, given X λ +λ X
i +λY

j +λ Z
k +λ XY

i j +λ XZ
ik

(XY,Y Z) X and Z, given Y λ +λ X
i +λY

j +λ Z
k +λ XY

i j +λY Z
jk

(XY,XZ,Y Z) Homogeneous association λ +λ X
i +λY

j +λ Z
k +λ XY

i j +λ XZ
ik +λYZ

jk

(XY Z) Saturated λ +λ X
i +λY

j +λ Z
k +λ XY

i j +λ XZ
ik +λYZ

jk +λ XYZ
i jk

4.4 Hierarchical Log-Linear Models for Multi-way Tables

Log-linear models can be defined for contingency tables of dimension higher than
three, in a similar manner as for three-way tables. Log-linear models for multi-
way tables include higher-order interactions, up to interactions of order equal to
the dimension of the table. The number of possible models increases with the
dimension of the table, involving the procedure of deciding for the one appropriate
to describe the underlying structure of association. In order to impose a structure on
model building, especially helpful in model selection, log-linear modeling is usually
restricted to the family of hierarchical log-linear models.

Furthermore, the presence of nonhierarchical interaction terms in a model causes
interpretational inconveniences. For example, in a 4-way table, cross-classifying
variables X , Y , Z, and W , how can we understand and explain that variable X
does not interact with Y (absence of the λ XY

i j term from the model) but it interacts
simultaneously with Y , Z, and W (model includes the λ XY ZW

i jk� term)? Even among the
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hierarchical log-linear models, the physical interpretation of the models becomes
more involved as the dimension of the table increases. It is easier to understand
and interpret a high-dimensional model by focusing on its missing terms. Missing
interaction terms refer to variables that are conditional independent and conditional
independence statements are easier to understand and express.

To clarify this, consider the hierarchical log-linear model (XYZ,YW ) applied on
the 4-way table described above. The formula of this model would be

logmi jk� = λ +λ X
i +λY

j +λ Z
k +λW

� +λ XY
i j +λ XZ

ik +λYZ
jk +λYW

j� +λ XYZ
i jk .

Note that the missing two-factor interaction terms are XW and ZW , while W is
associated to Y and X , Z are associated to each other and both to Y (also in a three-
factor interaction). This signals that X and W are conditionally independent, given
Y and Z. Indeed, the conditional XW log local odds ratios

logθ XW
i( jk)� = logmi( jk)�+ logmi+1( jk)�+1 − logmi+1( jk)�− logmi( jk)�+1

under the above model turn out to be

logθ XW
i( jk)� = 0, ∀i = 1, . . . , I − 1, �= 1, . . . ,L− 1,

for all j ( j = 1, . . . ,J) and k (k = 1, . . . ,K), fact that verifies the conditionally
independence of X and W , given Y , Z. In a symmetric manner, also Z and W are
conditionally independent, given the other two.

For a higher-order example, let the variables X1, . . . ,X7 be cross-classified to form
a I1 × I2 × . . .× I7 contingency table. Then, model (X1X2, X1X5, X3X4X5, X5X6X7)
equates logmi1i2...i7 to the sum of the fixed term, λ , plus the sum of the seven main
effects λ Xk

ik
, k = 1, . . . ,7, plus the sum of the eight two-factor interactions λ XkX�

iki�
from

the 21 possible (the terms corresponding to the pairs (k, �) = (1,2), (1,5), (3,4), (3,5),
(4,5), (5,6), (5,7), (6,7) are in the model), plus the three-factor interactions terms
λ X3X4X5

i3i4i5
and λ X5X6X7

i5i6i7
. Observing the terms not included in the model, we can see that

variables X1, X2 are jointly independent from X3, X4, conditional on X5, X6, X7.

4.5 Maximum Likelihood Estimation for Log-Linear Models

For multi-way tables, the ML estimation procedure for a log-linear model M is
analogous to the procedure followed in Sect. 4.2 for the two-way independence
model (4.1). The log-likelihood function is of the (4.13) form, with the subscripts
and the indices in the sum appropriately adjusted. Thus, for an I1× I2× . . .× Is table,
cross-classifying variables X1,X2 . . . ,Xs, the kernel of the log-likelihood is

�(λλλ) = ∑
i1,...,is

(
ni1,...,is log(mi1,...,is)− elog(mi1,...,is )

)
, (4.31)
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where mi1,...,is are the expected frequencies under the assumed model M and λλλ the
vector of all its parameters. It is then maximized with respect to every parameter in
λλλ and the set of the associate likelihood equations is derived.

For the three-way hierarchical log-linear model (XZ,Y Z), for example, the
parameter vector λλλ (4.31) by (4.23) becomes

�(λλλ)= ∑
i1,...,is

(
ni1,...,is(λ +λ X

i +λY
j +λ Z

k +λ XZ
ik +λYZ

jk )− eλ+λ X
i +λY

j +λ Z
k +λ XZ

ik +λYZ
jk

)
.

Then, solving ∂�(λλλ )
∂λ X

i
= 0 leads to

m̂i++ = ni++, i = 1, . . . , I ,

which are the likelihood equations corresponding to the X main effect parameters.
Analogously, with respect to the XZ interaction parameters, ∂�(λλλ )

∂λ XZ
ik

= 0 leads to

m̂i+k = ni+k, i = 1, . . . , I, k = 1, . . . ,K .

The remaining sets of likelihood equations are m̂+ j+ = n+ j+ ( j = 1, . . . ,J) and
m̂++k = n++k (k = 1, . . . ,K), for the Y and Z main effects, respectively, and m̂+ jk =
n+ jk (for all j, k), corresponding to the Y Z interaction.

In general, log-linear models oppose some nice properties regarding their
likelihood-based inference. It has been proved that the minimal sufficient statistics
of a model M is the set of sample marginals, corresponding to the highest-
order terms in the model, with respect to each variable. Thus, for (XZ,Y Z), the
sufficient statistics are (ni+k, n+ jk), for all i, j, k, while for (X ,Y Z), they would
be (ni++, n+ jk), for all i, j, k. The likelihood equations of the model are then
equating the sufficient statistics to their corresponding expecting values under M
(Birch 1963).

The ML estimates under the independence model (4.1) are derived in closed-form
expression but this is not the case in general. For most log-linear models for higher-
dimensional tables, the likelihood equations do not lead to closed-form expressions
for the ML estimates and have to be solved iteratively. The first algorithm applied
for this was the iterative proportional fitting (IPF) algorithm. Predominant is now
the Newton–Raphson (NR) algorithm, which will be presented in the context of the
GLMs (Sect.5.3.1).

Log-linear models for which closed-form MLEs exist are the decomposable
models. The joint probability of a decomposable model can be factorized in a
closed form in terms of marginal probabilities. This factorization is due to Goodman
(1970, 1971c) while the term decomposable was introduced by Andersen (1974).
Decomposable log-linear models received special attention in the 1970s and are
treated in detail in Bishop et al. (1975, Sect.3.4). They exhibit nice properties,
connected also to graphical log-linear models (see Sect. 4.7.2).
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4.6 Model Fit and Selection

The classical goodness-of-fit statistics to evaluate the fit of a multi-way log-linear
model M are Pearson’s X2 and the LR statistic G2, defined for an I1 × I2 × . . .× Is

table as

X2 = ∑
i1,...,is

(ni1,...,is − m̂i1,...,is)
2

m̂i1,...,is
, (4.32)

G2 = 2 ∑
i1,...,is

ni1,...,is log(
ni1,...,is

m̂i1,...,is
). (4.33)

The asymptotic distribution for X2 and G2 under model M is X 2
d−d0

, where
d = ∏s

k=1 Ik − 1 is the total number of “free” cells of the table under consideration
under the multinomial sampling scheme, d0 the number of “free” parameters of the
assumed model M (overall λ is not considered as a parameter), and m̂i1,...,is the ML
estimate of the expected under M frequency for cell (i1, . . . , is).

The residual degrees of freedom d f = d−d0 of the hierarchical log-linear models
for three-way tables are given in Table 4.3. In this case d = IJK − 1 and d0 is
calculated by adding the number of “free” parameters for the terms in model from
Table 4.1.

Evaluation of the model fit to the data includes also inspection of the residuals.
The types of residuals discussed in Sect. 2.2.4 for two-way tables apply also to
tables of higher dimension. The dissimilarity index Δ̂ in (4.18) is also defined for
multi-way tables. It does not share the nice properties of G2 but its relative reduction
between models M1 and M2 can be used to compare practically the models, even
if they are not nested.

The number of possible log-linear models increases with the dimension of the
table, corresponding to different types of dependencies among the classification

Table 4.3 Hierarchical three-way log-linear models and
their residual d f

Model Formula d f

(X ,Y,Z) (4.19) IJK − I − J−K+2
(Y,XZ) (4.21) (J −1)(IK −1)
(X ,Y Z) (I −1)(JK −1)
(Z,XY ) (K −1)(IJ −1)
(XZ,Y Z) (4.23) K(I −1)(J −1)
(XY,XZ) I(J −1)(K −1)
(XY,Y Z) J(I −1)(K −1)
(XY,XZ,Y Z) (4.25) (I −1)(J −1)(K −1)
(XY Z) (4.29) 0
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mutual independence

jointly independence

conditional independence

homogeneous association
(non-decomposable model )

saturated

(X,Y,Z)

(X,YZ) (Y,XZ) (Z,XY)

(XZ,YZ) (XY,YZ) (XY,XZ)

(XY,XZ,YZ)

(XYZ)

Fig. 4.1 Sequences of nested models for three-way tables, from the saturated (XY Z) to the model
of mutual independence (X ,Y,Z)

variables. Thus, model selection becomes a basic issue as the dimension of the table
rises. The model selection procedure is based on the concept of “nested” models. In
general, a model M1 is nested in model M2, denoted as M1 ⊂M2, if M1 is derived
from M2 by eliminating some of M2’s parameters. Thus M2 contains all the terms
of M1 plus at least one more not present in M1.

Nested models are compared by conditional testing. Model M1 is more parsimo-
nious than M2, but for this G2(M1) ≥ G2(M2). Given that model M2 holds, the
adequacy of M1 is tested by

G2(M1|M2) = G2(M1)−G2(M2) , (4.34)

which under M1 is asymptotically X 2
d f (M1)−d f (M2)

distributed.
The possible sequences of nested models for three-way tables are illustrated

in Fig.4.1. Conditional tests of the type (4.34) can be performed between models
connected with arrows, not necessarily directly (see also Tutz 2012, Sect.12.4).

The log-linear model selection procedure consists of a sequential search between
hierarchical nested model, starting from the saturated model and removing terms
(one at a time) by conditional testing the significance of the term removed. The
process stops and decides for the model for which the next term to be removed leads
to a significant increase of the test statistic (4.34). For each level of interaction,
say k-factor interactions, the order the interaction terms are removed from the
model is the order of their significance, less significant being removed first. The
procedure described is a step algorithm of backward elimination. Alternatively,
forward elimination algorithms start from the model of complete independence and
continue to add terms, as long as they improve significantly the fit, according to the
conditional test (4.34).
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However, we should not let an algorithm decide blindly for the model. Some-
times, the nature of the problem or experimental conditions dictate the presence of
nonsignificant terms in the model. For example, suppose in a survey responders are
cross-classified according to their educational level (X1), marital status (X2), gender
(X3), and age in categories (X4). From the experimental design it is controlled over
gender and age, in the sense that the number of males and females participating
in the survey is prespecified for each of the K age categories. This means that the
table marginals n++i3i4 for i3 = 1,2 and i4 = 1, . . . ,K are set fixed by the design. If
the X3X4 interaction term is not found to be significant by the selection algorithm
and is thus not included in the model, then the corresponding likelihood equations,
m++i3i4 = n++i3i4 (i3 = 1,2, i4 = 1, . . . ,K), are missing. Consequently, the number
of males and females assigned by the adopted model to each age group will not
agree with the known prespecified numbers. Thus, the X3X4 interaction term should
be included in the model, even if it is nonsignificant. In this case, the λ X3X4

i3i4
terms

signal the underlying product multinomial sampling design and not the physical
significance of this interaction.

We have already mentioned the crucial role the concept of conditional indepen-
dence plays in understanding and recording structures of associations in multi-way
contingency tables. An important application of the above described model selection
procedure is for testing for conditional independence structures, which is exposed
next for three-way tables.

4.6.1 Conditional Test of Conditional Independence

In the context of a I×J×K contingency table with classification variables X , Y , and
Z, if the model of homogeneous association (XY,XZ,YZ) fits the data well, we can
test for conditional independence between any two of them, given the third. This
test will be conditional on homogeneous association. For example, the test of

H0 : X , Y are independent, conditional on Z vs. H1 : not H0

can be expressed as

H0 : model (XZ,Y Z) vs. H1 : model (XY,XZ,Y Z) ,

since we already know that the underlying association is homogeneous. The H0 and
H1 models are nested; thus, the associated test can be based on the difference

G2(XZ,Y Z)−G2(XY,XZ,Y Z) (4.35)

which, under H0 and given that model (XY,XZ,YZ) holds, is asymptotically
distributed as χ2

(I−1)(J−1), since d f(XZ,Y Z)− d f(XY,XZ,Y Z) = (I − 1)(J− 1).
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For stratified 2× 2 contingency tables, the conditional test (4.35) applied on the
2 × 2 × K table has d f = 1 and is analogue to the Mantel–Haenszel test (3.9).
This provides an intuitive justification to the fact that the Mantel–Haenszel test
works best when the partial associations across the stratification levels are similar
(remarked in Sect. 3.3.1).

4.6.1.1 Log-Linear Model Selection for Example 3.3

Reconsidering Example 3.3 of Sect. 3.3.4, if T, F, and C stand for the treatment
outcome, the prognostic factor, and the clinic variables, then the homogeneous
association log-linear model (TF,TC,FC)) and the model of treatment-factor
conditional independence within clinic (TC,FC)) are of 5 and 6 d f , respectively,
and fitted in MASS as follows
: > hom.assoc<-loglm(∼Treatment*Prognostic_Factor+
+ Prognostic_Factor*Clinic+Treatment*Clinic, data=dat)

> cond.ind.TF<-loglm(∼Prognostic_Factor*Clinic+Treatment*Clinic)
The homogeneous association model is adequate, since G2(T F,TC,FC) = 7.950
(p-value= 0.159) and X2(T F,TC,FC) = 7.894 (p-value= 0.162), very close to the
Breslow–Day–Tarone test statistic (3.15), which is equal to BDT = 7.91 (d f = 5,
p-value=0.161).

The conditional test (4.35) in this case is G2(TC,FC)− G2(T F,TC,FC) =
34.845, with associated p-value=3.570184e-09 (d f = 1), computed as
> DG2 <- cond.ind.TF$deviance - hom.assoc$deviance

> p.value <- 1 - pchisq(DG2, 1)

while the corresponding difference in the X2 statistics
> DX2 <- cond.ind.TF$pearson - hom.assoc$pearson

is X2(TC,FC)−X2(TF,TC,FC) = 33.177, also indicative of the inappropriateness
of the conditional independence model considered (though not asymptotically X 2

1
distributed). Thus the “treatment–prognostic factor” association is homogeneous
across the clinics but conditional independence is rejected, based on the above
G2 conditional test. Recall that the Mantel–Haenszel test gave for this example
MH = 32.703 (d f = 1, p-value=1.074e-08), very close to the difference in X2

statistics value above.

4.6.2 Log-Linear Model for Example 3.2

Reconsider the 5× 7× 2 contingency table of the example introduced in Sect. 3.2,
which is already given in the R array party.tab. The three-way log-linear model
that describes this data table best will be achieved by the backward stepwise algo-
rithm. The stepwise model selection algorithms, forward or backward, presented
in Sect. 4.6, are implemented in R by the step function. In step the contribution
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Table 4.4 Backward stepwise procedure of log-linear model selection for Example 3.2

Start: AIC=140
∼D*P*G

Df AIC LRT Pr(Chi)
- D:P:G 24 120.82 28.818 0.2271
<none> 140.00

Step: AIC=120.82
∼ D + P + G + D:P + D:G + P:G

Df AIC LRT Pr(Chi)
- D:G 4 113.32 0.505 0.9730008
<none> 120.82
- P:G 6 132.77 23.951 0.0005333 ***
- D:P 24 174.34 101.523 1.650e-11 ***

—
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Step: AIC=113.32
∼ D + P + G + D:P + P:G

Df AIC LRT Pr(Chi)
<none> 113.32
- P:G 6 125.84 24.519 0.000419 ***
- D:P 24 167.41 102.091 1.319e-11 ***
—
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Call:
loglm(formula = ∼ D + P + G + D:P + P:G,
data = party.tab, evaluate = FALSE)

Statistics:
Xˆ2 df P(> Xˆ2)

Likelihood Ratio 29.32320 28 0.3962751
Pearson 29.17456 28 0.4037142

of a term is evaluated by the change its removal causes on Akaike’s information
criterion (AIC) value of the model. The saturated model is applied on party.tab

and saved under sat. Then, with model sat as starting point, nonsignificant terms
of this model are eliminated by the procedure step, as shown below. Recall that we
work in library MASS.
> sat <- loglm(∼ D*P*G, data=party.tab)

step(sat, direction="backward", test="Chisq")

The derived output is provided in Table 4.4.
Thus, according to the backward stepwise algorithm and based on conditional

testings (4.34) between nested hierarchical log-linear models, the three-factor
interaction is nonsignificant (p-value= 0.227). Further on, the two-factor interaction
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Table 4.5 Conditional testing between nested hierarchical log-linear models for Example 3.2

LR tests for hierarchical log-linear models

Model 1:
∼ D + P + G
Model 2:
∼ D + P + G + D:P
Model 3:
∼ D + P + G + D:P + P:G
Model 4:
∼ D + P + G + D:P + P:G + D:G
Model 5:
∼ D * P * G

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 155.93392 58
Model 2 53.84259 34 102.0913317 24 0.00000
Model 3 29.32320 28 24.5193932 6 0.00042
Model 4 28.81808 24 0.5051182 4 0.97300
Model 5 0.00000 0 28.8180773 24 0.22705
Saturated 0.00000 0 0.0000000 0 1.00000

DG is also nonsignificant with G2
(PG,DP) − G2

(DG,PG,DP) = 0.505 and associated

(p-value= 0.973), based on the X 2
4 approximation for the test statistic. The

interaction terms DP and PG are both highly significant with G2
(D,PG)−G2

(PG,DP) =

102.091 and G2
(G,DP) − G2

(DG,PG,DP) = 24.519, respectively. Thus, the backward
elimination procedure concludes to the (DP,PG) model, i.e., the responder’s
educational level (D) is conditional independent from his/her gender (G), given
his/her party affiliation (P).

The procedure above provides at each stage the value of the AIC for the
corresponding model as well. This criterion will be discussed in Sect. 5.3.2.

The successive conditional testings between nested hierarchical log-linear
models, from the model of complete independence up to the saturated, adding
terms according to their significance order, is summarized in the corresponding
analysis of variance table, which is possible in R by function anova.
> I <- loglm(∼D+P+G); as_1 <- loglm(∼D+P+G+D:P)
> as_2 <- loglm(∼D+P+G+D:P+P:G); as_3 <- loglm(∼D+P+G+D:P+P:G+D:G)
> anova(I, as_1, as_2, as_3, sat)

In the derived output (in Table 4.5), deviance coincides for log-linear models with
the G2 test statistic for the corresponding model (see Sect.5.3.2). The conditional
G2 values between successive nested models are in column Delta(Dev), followed
in next columns by the difference between their d f and the asymptotic p-value of
the associated conditional test.



106 4 Log-Linear Models

The mosaic plot of the observed frequencies for this example is provided in
Fig. 3.2 (right). This mosaic plot can be enriched by displaying on it the residuals
of each cell as well. Thus, the mosaic plot derived by
> mosaic(party.tab, gp = shading_Friendly,

. labeling= labeling_residuals)

is to be seen in Fig.4.2 (left). It differs from Fig.3.2 (right) in that the tiles are
colored according to the value of the corresponding residuals for the model of
complete independence. Negative significant residuals are red shaded while the
positive significant are blue shaded, with the depth of the color strengthening
for larger (in absolute value) residuals. We asked additional to label the tiles
with the significant residual value, so red-shaded tiles are those with the negative
residual values and blue with the positive ones. Cells with nonsignificant residuals
are non-shaded (white) with red (dashed) frame for negative residuals and blue
(solid) frame for positive ones. Thus, we observe that the highest positive residual
corresponds to females with educational level less than high school, who are
more political “independent” (“4”) than expected under independence. The highest
negative residual is for females with a bachelor degree, who are less political
“independent” than expected under independence.

The residuals illustrated in the mosaic plot above were for the independence
model (default). To refer to residuals of a different model, the output object of the
assumed model has to take the position of the data matrix as input in mosaic().
Thus, the mosaic plot in Fig.4.2 (left) can equivalently be obtained as
> mosaic(I, gp=shading_Friendly, labeling=labeling_residuals)

The residuals of the (PG,DP) model are incorporated in the mosaic plot by
> mosaic(as_2, gp=shading_Friendly, labeling=labeling_residuals)

The derived plot is provided in Fig.4.2 (right) and we can easily verify that the
Pearsonian residuals for (PG,DP) vary between −1.58 and 1.81, without anyone
being significant.

The residuals pictured so far are the Pearsonian residuals (default in mosaic()).
Alternative option is the deviance residuals, controlled by the option residuals=.
Thus, the deviance residuals for model (D,P,G) are considered in the mosaic plot as
> mosaic(party.tab, gp = shading_Friendly, residuals="deviance",

. labeling= labeling_residuals)

For other type of residuals, they have to be calculated ahead and be read in
mosaic(). This option will be illustrated in the context of GLMs for Example 2.4
in Sect.5.4.1.

The ML estimates of the expected under the adopted model (PG,DP) cell
frequencies are saved in array MLE by
> MLE <- fitted(as_2)

In order to visualize the structure of association dictated by each model, the
mosaic plots based on the ML estimates of the expected cell frequencies under
characteristic models are provided in Fig.4.3. In particular, the mosaic plot of the
ML estimates under the complete independence model (P,D,G) is in (a), while
under (DP,G) and (DP,PG) in (b) and (c), respectively. For comparison reasons,
in (d) is located the mosaic plot of the sample values, also given in Fig.3.2
(right). Observe in (a) that under the complete independence all rectangular tiles
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Fig. 4.3 Mosaic plots of the ML estimates of the expected cell frequencies for Example 3.2
(Table 3.2) under models (a) (P,D,G), (b) (DP,G), (c) (DP,PG) and of the observed cell
frequencies in (d)
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are perfectly aligned. Adding the DP interaction in (b), the alignment of the DP
rectangles is disturbed while the within P by G division of the rectangles remains
aligned, since the PG term is missing. This alignment is also lost in (c), which
resembles closely to the mosaic plot of the observed frequencies in (d).

Mosaic plot in Fig.4.3c is obtained by
> mosaic(MLE)

while replacing MLE with the array of estimates under (P,D,G) or (DP,G), plots (a)
or (b) are derived, respectively.

4.7 Graphical Models

Log-linear models can also be defined as graphical models. Not all log-linear
models are graphical, as we shall see next. Graphical models are useful whenever
the detection of conditional independencies among the involved variables is of
interest. They are a wide class of models whose conditional independence structure
can be deduced by a graph. In the context of multi-way contingency tables,
such graphs for log-linear models were introduced by Darroch et al. (1980),
who called them first order interaction graphs. They are undirected graphs and
in the context of graphical models they are known as independence graphs or
conditional independence graphs. For reasons explained below, we shall use the
term conditional independence graphs.

In case of high-dimensional contingency tables, graphical log-linear models
provide guidance for possible collapsing over one or more classification variables
without losing the relevant information. This dimension reduction problem is faced
through the factorization criterion and model’s decomposability.

To describe graphical models, one needs the basic notion of graph theory, the link
between graph theory and probability models, and the group of models which are
graphical, that is, whose conditionally independencies can be depicted by a graph.

Graphical models are not in the scope of this book but we shall introduce
briefly the basic terminology on undirected graphs (Sect. 4.7.1) and the class
of graphical log-linear models in order to connect them with classical log-linear
models (Sect. 4.7.2) and use them in the discussion on dimension reduction of
multi-way contingency tables by collapsing over one or more of the classification
variables (Sect. 4.8).

4.7.1 Undirected Graphs

An undirected graph consists of a finite set of nodes (or vertices) V and a set of
edges E , connecting some (or all) of the nodes in pairs. Consider, for example, a set
of five notes V = {v1,v2,v3,v4,v5}. Then, an undirected graph G = (V,E) consists
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Fig. 4.4 Undirected graphs G = (V,E) for V = {v1,v2,v3,v4,v5} and
(a) E = {{v1,v2},{v1,v3},{v1,v4},{v1,v5},{v2,v3},{v2,v4},{v2,v5},{v3,v4},{v3,v5},{v4,v5}},
(b) E = {{v1,v2},{v2,v3},{v2,v4},{v3,v4},{v3,v5},{v4,v5}},
(c) E = {{v1,v2},{v2,v3},{v2,v4},{v3,v5},{v4,v5}},
(d) E = {{v1,v2},{v2,v3},{v2,v4},{v3,v4}}

of the five nodes in V and up to ten edges (the elements of E) connecting pairwise
the nodes. Possible graphs for this setup are provided in Fig.4.4.

Next, we shall briefly refer to some terminology for undirected graphs. Two
nodes v1, v2 ∈ V are said to be adjacent in G if the edge {v1,v2} belongs to E ,
so that they are connected by a line in the corresponding graph. A subset A ⊂ V is
complete if all pairs of nodes in A are adjacent. A graph G = (V, E) is complete if
its set of nodes V is complete. A complete subset of nodes C induces a complete
subgraph of the graph of G . If this subgraph becomes incomplete by the addition of
a further node, then C is maximally complete and is said to be a clique. A path is
a sequence of distinct nodes v1,v2, . . . ,vk for which each successive pair of nodes
are adjacent. Two nodes vi and v j are connected if there exists a path joining them.
A cycle is a path with v1 = vk and is said to be chordless if only the successive pairs
of nodes in the cycle are adjacent. An edge of a cycle that connects to non-successive
nodes in the cycle is characterized as a chord. A graph is chordal (or triangulated) if
each of its cycles of four or more nodes has a chord. A subset of nodes B separates
two nodes vi and v j if every path joining them contains at least one node from B.
A subset B separates two subsets of N, A, and C, if it separates every pair of nodes
vi ∈ A and v j ∈C.

4.7.2 Graphical Log-Linear Models

Graphical models are a family of probability models, simplified through conditional
independencies represented in graphs. Focusing on contingency tables, the family
of graphical log-linear models is a subset of the hierarchical log-linear models that
utilizes undirected graphs to represent conditional independencies.

The connection between graphical log-linear models for a K-way contingency
table (with cross-classifying variables X1, . . . , XK) and undirected graphs is achieved
by assuming that (i) the set V of a graph consists of K nodes (v1, . . . , vK), one for
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each classification variable of the table, and (ii) the set of edges E connects some (or
all) of the nodes in pairs, indicating a lack of independence between the variables.
There is a one-to-one correspondence between models and graphs. In particular,
given an undirected graph, the corresponding graphical log-linear model is defined
as the hierarchical log-linear model with generators the cliques of the graph. For
this reason, graphical log-linear models are not always parsimonious models.

Thus, for a five-way table (K = 5), the graph provided in Fig.4.4a is a complete
graph and corresponds to the saturated model (X1X2X3X4X5), while the graphs of
Fig.4.4b–d correspond to the graphical log-linear models (X1X2,X2X3X4,X3X4X5),
(X1X2,X2X3,X2X4,X3X5,X4X5), and (X2X3X4,X1X2,X5), respectively. For instance,
verify for model (X1X2,X2X3X4,X3X4X5) that its three maximal interaction terms
correspond to the cliques of the graph in Fig.4.4b. Only log-linear models
with this correspondence are graphical. Thus, the hierarchical log-linear model
(X1X2,X2X3,X2X4,X3X4,X3X5,X4X5) is not graphical. Such exclusions from the
class of graphical log-linear models ensure the one-to-one correspondence between
models and graphs mentioned above.

Conditional independence is the key concept for defining graphical log-linear
models. Thus, a representative example of a non-graphical log-linear model is the
model of homogeneous association for three-way tables, since it has no conditional
independence interpretation. The set of conditional independencies involved in a
graphical log-linear model are ruled by three Markov properties, whose description
is out of the scope of this section. See Lauritzen (1996) or Højsgaard et al. (2012)
for details.

Graphs of graphical log-linear models are interpreted in terms of their missing
edges, which are indicative of the underlying conditional independence structure,
justifying thus that they are referred to as conditional independence graphs (see
also Agresti 2013). In particular, the variables corresponding to two nonadjacent
nodes in a graph are conditionally independent, given the nodes (variables) in the
paths connecting them.

Conditional independence is connected to separation of nodes’ subsets. If
subsets of nodes A and C are separated by subset B in the graph, then, under the
corresponding model, variables in A are conditionally independent to variables in B,
given C.

We have seen that an important subset of the hierarchical log-linear models are
the decomposable models, which lead to MLEs of closed-form expression (see
Sect.4.5). Graphical decomposable log-linear models are graphical models with
chordal graphs. The graphical models pictured in Fig.4.4 are all decomposable
except case (c).

Inference for graphical models is beyond the scope of this book. We shall only
illustrate them briefly in the following section’s examples, mostly to highlight their
role in collapsing over one or more classification variables of a high-dimensional
contingency table.

For constructing conditional independence graphs and fitting graphical models
in R one can consult Højsgaard et al. (2012, Chaps.1 and 2). For example, graphs
(a) and (d) of Fig.4.4 are derived in gRbase as shown below.
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> library(gRbase)

> ag.a <- ug(˜v1:v2:v3:v4:v5); plot(ag.a)

> ag.d <- ug(˜v1:v2+v2:v3:v4+v5; plot(ag.d)

Often the association structure of a high-dimensional hierarchical log-linear
model (not necessarily graphical) is visualized in terms of a graph, known as
association graphs. Note however that there is not a one-to-one correspondence
between log-linear models and association graphs. More than one log-linear models
may have the same graph. For example, considering the graphs in Fig.4.4 as
association graphs of hierarchical log-linear models, (b) is also the graph for the
model (X1X2,X2X3,X2X4,X3X4,X3X5,X4X5), while (a) is also (among others) the
conditional independence graph of the hierarchical log-linear model including all
possible two-factor interactions and none of higher order. In general, a triangle
subgraph

v1

v2

v3

of a conditional independence graph expresses the association structure between
X1, X2 and X3 of a hierarchical log-linear model containing the corresponding three-
factor interaction as well as of a model without this three-factor but all associated
pairwise interactions.

The graphs presented so far are undirected graphs and are applicable when the
classification variables are treated in a symmetric manner in terms of the underlying
associations. In the case of one or more response variables, the association structures
are visualized through the directed acyclic graphs and the chain graphs.

4.8 Collapsibility in Multi-way Tables

An intuitive way to treat multi-way tables is to reduce their dimension by collapsing
over classification variables that are not of direct interest. This way, the collapsing
variables are ignored, though they may correspond to covariates that influence
the relationship among the variables of interest. Such variables are characterized
as confounding variables and should be controlled (through conditioning on their
levels) instead of ignored. Thus, the association structure among the variables of
interest studied on the marginal table produced by collapsing over a confounding
variable does not necessarily express their interrelationships but reflects possibly a
confounded effect (that of the collapsing variable on the variables of interest).

Furthermore, collapsing over a confounding variable can falsify the structure of
the underlying associations, since partial associations can differ substantially (even
in direction) from the corresponding marginal ones, as already stated in the context
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Fig. 4.5 Conditional independence graphs for models (XZ,YZ) (left) and (XY,XZ) (right)

of 2×2×K tables in Sect. 3.2.2. This phenomenon is known as Simpson’s paradox
(Yule 1912; Simpson 1951), which states that the association in a marginal table can
be of different direction than conditional association at each corresponding partial
table.

Hence, the dimension of a table should not be reduced without ensuring that
confounding does not occur. Conditions under which collapsing is possible in three-
way tables are exposed next, while a discussion on conditions for multi-way tables
follows.

Consider a I × J × K table, cross-classifying the variables X , Y , and Z and
suppose that we are interested in the XZ association. The XZ marginal and the XZ
conditional (given Y ) local odds ratios coincide (and thus we could collapse over Y
without affecting the XZ association), if either X , Y are conditional independent,
given Z, or Y , Z are conditional independent, given X , i.e., if the underlying
model is the (XZ,Y Z) or (XY,XZ), respectively. These patterns of conditional
independencies can easily be visualized in the conditional independence graphs of
these models in terms of separated variables (see Fig.4.5). Thus, under both models
we can collapse over Y , since it is separated from X (Z) by Z (X) for model (XZ,Y Z)
(XY,XZ). With similar arguments we can verify in Fig.4.5 (left) that for (XZ,Y Z)
we could also collapse over X but not over Z.

In general for multi-way contingency tables, conditions under which they can be
collapsed are provided by Bishop et al. (1975, Chap.2), who defined the classical
parametric collapsibility. It is based on the condition that if a model for a multi-way
tables partitions the classification variables into three mutually exclusive subsets A,
B, and C, such that B separates A and C, then parameters relating variables in A
and variables in A to variables in B remain unchanged when collapsing over the
variables in set C. This means that the association structure of a contingency table
is not affected by collapsing over a variable (or a set of variables), only if it is
conditionally independent to another variable (or set of variables) of the contingency
table, conditioning on the rest of the variables. Since the concept of conditional
independence is the fundamental kernel of graphical log-linear models (Sect. 4.7.2)
and due to the “separation–conditional independence” connection, graphical models
and the associated graphs are extremely useful in detecting patterns of conditional
independencies and take decisions for collapsing, especially in high-dimensional
contingency tables. For a discussion on the alternative approaches on collapsibility,
see Sect. 4.9.4.
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Table 4.6 DP ML estimates of the expected under (PG,DP) conditional and marginal local odds
ratios for the data in Table 3.2

(G): males Political party affiliation (P)
Degree (D) 1 2 3 4 5 6 7
1: LT high school 1.385 0.955 0.462 2.289 1.790 0.533
2: High school 0.948 0.878 0.980 1.818 0.876 0.591
3: Junior college 0.838 2.045 0.470 1.242 1.316 1.436
4: Bachelor 0.684 0.532 2.390 0.341 1.243 1.440
5: Graduate

4.8.1 Collapsing for Example 3.2

Recall that for Example 3.2, model (PG,DP) was selected. As expected due
to (3.19) and the discussion above, since under (PG,DP) variables D and G are
conditionally independent given P, it holds

θ̂ DP
i j(1) = θ̂ DP

i j(2) = θ̂ DP
i j , i = 1, . . . ,4, j = 1, . . . ,6,

and their common estimated expected values are provided in Table 4.6.
The estimates of the expected under (PG,DP) conditional DP local odds ratios

can be calculated in R following the procedure described in Sect. 3.2 for the
corresponding observed local odds ratios just by replacing the party.tab by the
MLE array. The DP partial fitted tables for male and female are respectively
> eDP1 <- MLE[„1]; eDP2 <- MLE[„2]

and the DP fitted marginal (over gender) table is
> eDPm <- margin.table(MLE, c(1,2))

The 4× 6 table of fitted under (PG,DP) conditional (for males) local odds ratios(
θ̂ DP

i j(1)

)
is then derived by

> eOR<-exp(t(matrix(as.vector(C%*%log(as.vector(t(eDP1)))),NJ-1)))

Replacing table eDP1 by eDP2 and eDPm in the command above, the conditional(
θ̂ DP

i j(2)

)
and the marginal

(
θ̂ DP

i j

)
fitted tables are produced, respectively, which

under (PG,DP) coincide.
Alternatively, (PG,DP) can be fitted as a graphical model in gRim. In Sect. 3.2.4

the data were stored in the array part.tab. In gRim, if the data are in a contingency
table format, they need to be defined as table. Thus, the graphical model is fitted as
follows.
> library(gRim)

> party <- as.table(party.tab)

> graph.PG.DP <- dmod(˜P*G+D*P, data=party)

The conditional independence graph of the model, given in Fig.4.6 (right), is
derived by
> plot(graph.PG.DP)

Based on the graph, we observe that we could collapse over gender (G).
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Fig. 4.6 Conditional independence graphs for Example 3.2 (Table 3.2) for the saturated model
(DPG) (left) and for the graphical log-linear model (DP,PG) (right)

Table 4.7 Cross-classification of a sample of 2,228 responders according to their age, presence
of depression, their gender (G), and whether they are living alone

Living alone (L): no

Gender (G) Gender (G)
Males Depression (D) Females Depression (D)

Age (A) No Yes Age (A) No Yes

≤ 45 283 16 ≤ 45 310 44
> 45 270 13 > 45 262 63

Living alone (L): yes

Gender (G) Gender (G)
Males Depression (D) Females Depression (D)

Age (A) No Yes Age (A) No Yes

≤ 45 212 34 ≤ 45 291 46
> 45 113 63 > 45 138 70

Analogously, collapsing over the educational level (D) is also possible but not
over the party affiliation (P).

4.8.2 Example 4.1

Consider the 2×2×2×2 contingency table produced by cross-classifying a sample
of 2,236 responders according to presence of depression (D), their gender (G), and
whether they are living alone (L) and are aged above 45 (A), given in Table 4.7
(artificial data).

If we are interested in the association between depression and age, the marginal
AD sample odds ratio is

θ̂ AD =
1,096 ·209
140 ·783

= 2.09 ,
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indicating that the odds of depression is 2.1 times higher for people over 45. But,
looking at the conditional AD sample odds ratio, for all possible combinations of G
and L, we get

(
θ̂ AD(LG)

)
=

(
0.852 1.694
3.476 3.209

)
,

realizing that Simpson’s paradox occurs. Indeed, we observe that for men the AD
association changes direction with respect to the living conditions (first column). In
particular, for men not living alone, the odds of depression is 1.2 (= 1/0.852) times
higher for people up to 45 than older while for men living alone it is 3.5 times higher
for people older than 45.

Studying the underlying association structure, we proceed to log-linear model
selection via the backward stepwise procedure, implemented in R as follows.
> freq<-c(283,270,16,13,310,262,44,63,212,113,34,63,291,138,46,70)

> names<-list(A=c("<45",">=45"), D=c("no","yes"), G=c("M","F"),

+ L=c("no","yes"))

> dat <- array(freq, c(2,2,2,2), dimnames=names)

> sat <- loglm(∼A*D*G*L, data=dat)

> step(sat, direction="backward" , test="Chisq")

The proposed model is the (ADL,DGL) with G2 = 3.886 and p-value=0.4216
(based on the X 2

4 approximation), which is graphical.
In the graphical models framework, the saturated model is fitted in GRim as

> depression <- as.table(dat)

> graph.sat <- dmod(˜A*D*G*L, data=depression)

while
> plot(graph.sat)

produces its conditional independence graph, pictured in Fig.4.7 (left). Based on the
saturated model, the backward model selection procedure
mod.sel <- backward(graph.sat)

. BACKWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0.00

. Initial model: is graphical=TRUE is decomposable=TRUE
change.AIC -4.1140 Edge deleted: G A

suggests to delete the GA edge (based on the AIC, see Sect. 5.3.2). This leads, as
expected, to (ADL,DGL). As a graphical model, it is fitted by
> graph.model <- dmod(˜A*D*L+D*G*L, data=depression)

The derived output
> graph.model

Model: A dModel with 4 variables

graphical : TRUE decomposable : TRUE
-2logL : 10940.92 mdim : 11 aic : 10962.92
ideviance : 171.80 idf : 7 bic : 11025.72
deviance : 3.89 df : 4
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Fig. 4.7 Conditional independence graphs for Example 4.1 (Table 4.7) for the saturated model
(ADGL) (left) and for the graphical log-linear model (GLD,DLA) (right)

provides information on whether the fitted model is graphical and decomposable as
well as on its goodness of fit. -2logL is minus twice the maximized log-likelihood
and mdim the number of parameters in the model. deviance and df give the
likelihood ratio statistic value and the associated degrees of freedom of the fitted
model while ideviance is G2((A,D,G,L)|(ADL,DGL)), that is, the likelihood ratio
statistic for testing independence conditional on the fitted model. The degrees of
freedom corresponding to this conditional test are idf. The term “deviance” and the
other two criteria (AIC and BIC) will be introduced in Sect. 5.3.2.

The fact that (GLD,DLA) is a graphical decomposable log-linear model can
easily be verified also by its association graph, derived by
> plot(graph.model)

and provided in Fig.4.7 (right). By this graph, we verify that Simpson’s paradox
may occur when collapsing over L. On the other hand, when marginalizing over G,
the AD and AL association structures are still well estimated, i.e., Simpson’s paradox
does not occur. Also collapsing over A is possible (the DG and GL association
structures are not affected). Thus, the Simpson paradox we noticed for the AD
marginal table is due to the marginalization over L.

4.9 Overview and Further Reading

4.9.1 On Log-Linear Models Analysis

The contribution of Birch (1963) in the analysis of multi-way tables was essential.
He was the first who pointed out the equivalence of multinomial and Poisson log-
linear models. Furthermore, his result that the ML estimates are the sole estimates
that equate a log-linear model’s sufficient statistics to their fitted values was a mile-
stone for the log-linear models analysis. He generalized earlier work by Roy, Mitra,
and Kastenbaum. It is fair to mention that the first who worked on the interaction
structure for multi-way tables was Bartlett (1935), who considered the 2× 2× 2
case. A review of these early results is provided by Goodman (1963b, 1964).
Fundamental in the multi-way log-linear models establishment was the contribution
of Cox, Darroch, Good, Goodman, Bishop, and Fienberg. Seminal to the theoretical
development of the topic is the contribution of Haberman, who generalized Birch’s
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results and provided a formal investigation of MLEs for log-linear models and their
properties (see Haberman 1974a). He also developed Newton–Raphson iterative
algorithms for their fit (Haberman 1973a), which gave estimates of the standard
error of the MLEs as well, and made thus their asymptotic significance testing
feasible. The algorithm applied by then was the IPF algorithm of Deming and
Stephan (1940), adjusted for log-linear models by Bishop (1969), Fienberg (1970a),
and Darroch and Ratcliff (1972). Ku and Kullback (1974) approached log-linear
models by indicating the analogies to linear models for continuous variables. Lang
(1996b) provided a detailed discussion on the comparison of multinomial and
Poisson log-linear models. For an extended historical review on the development
of the inferential methods for log-linear models we refer to Fienberg and Rinaldo
(2007).

Zero frequencies of a contingency table need special consideration and are
distinguished between two types, the sampling and the structural zeros. Sampling
zeros refer to cells of low but positive probability that may lead to zero observed
frequencies in a certain realization. They are thus random zeros, and the corre-
sponding cells are included in the analysis leading to nonzero expected frequencies
estimates. Sampling zeros need no special consideration, in general. Traditionally,
it has been suggested either to add a small positive constant ε only to the zero cells
(see Grizzle et al. 1969) or to add it always (see Cox 1970b; Goodman 1970). Bishop
(1969), Fienberg (1970b), and Goodman (1971b) dealt further with the problem of
log-linear models’ ML estimation in the presence of sampling zeros. Glonek et al.
(1988) proved that for hierarchical log-linear models for multi-way contingency
tables, the positivity of the sufficient statistics (i.e., corresponding marginal totals of
the table) ensure the existence of the MLEs if and only if the model is decomposable.
For non-decomposable models, they discuss the additional conditions required.

Tables with many sampling zeros (sparse tables) require special consideration,
since the standard asymptotic theory does not apply and technical problems may
arise in the estimation procedure. A contingency table with large number of cells and
relative small total sample size will contain many zero cells and is called sparse. The
basic asymptotic theory for testing nonparametric null hypotheses for multinomial
data under sparseness assumption has been developed by Holst (1972) and Morris
(1975). In case of sparse two-way tables, Mehta and Patel (1983) show that Fisher’s
exact test and Pearson’s X2 can lead to contradictory conclusions. Zelterman (1987)
indicated that X2 can show significant bias in testing independence for sparse tables
and proposed a new statistic, D2, which is also supported by Haberman (1988) in
the context of null hypotheses defining unequal cell probabilities. Goodness-of-fit
tests for sparse multinomials are reviewed and compared in Kim et al. (2009).

A class of test statistics for sparse tables with ordered categories are proposed by
Burman (2004), which under certain conditions are asymptotically more powerful
tests than Pearson’s chi-square. Classes of goodness-of-fit tests under sparseness
for multidimensional multinomial contingency tables are considered by Maydeu-
Olivares and Joe (2005, 2006), based on low-order marginal proportions. Koehler
(1986) and Dale (1986) studied the fit of log-linear models on sparse tables.
Fienberg and Rinaldo (2012) studied ML estimation in log-linear models, conditions
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of their existence, and the role of the sampling zeros. An alternative approach to treat
sparse tables is the Bayesian (Sect.10.5). Sparseness is also met in high-dimensional
data (see Sect.10.6). On the other hand, structural zeros are cells of zero probability
that must be excluded from the analysis and thus not estimated. Structural zeros will
be faced in Sect. 5.5.

Statistical inference for categorical data is mostly asymptotic, based on large
sample approximations. For log-linear models, Haberman (1977) provided condi-
tions for the asymptotic normality of linear functions of the MLEs and for the
asymptotic chi-squared distribution of Pearson’s X2 and the G2 goodness-of-fit
statistics. He further pointed out that they remain applicable even if individual cell
frequencies are small, provided the sample size and the number of cells of the table
are large. The analysis of small sample contingency tables is briefly reviewed in
Sect. 10.4.

Friendly (1994) connected mosaic plots to log-linear models, visualizing on
mosaic displays beyond the observed cell frequencies (by the area of the cell
rectangular) also the residuals (through shadings of the cell areas). For more on
visualizing log-linear models via mosaic plots, we refer to Theus and Lauer (1999).
Zeileis et al. (2007) visualized on mosaic plots departures of independence in two-
way tables and models of conditional independence for three-way tables through
residual shadings that code also significance of associations.

Beyond MLEs, the broad class of best asymptotic normal (BAN) estimators
has been developed for the multinomial distribution by Neyman (1949), which
share optimal large sample properties. In this class belong the weighted least
squares (WLS) estimators, which are simpler to compute than the MLEs. The basic
reference on WLS estimation for categorical data models is Grizzle et al. (1969).

Early contributions on treating misclassification of categorical data are by Bross
(1954), facing the problem in 2 × 2 tables, and by Mote and Anderson (1965),
considering its effect on X2 tests. Espeland and Odoroff (1985) proposed a log-linear
model for misclassified categorical data, fitted by the EM algorithm, generalizing
earlier results by Chen (1979). A review on methods of categorical data analysis
subject to misclassification is provided by van den Hout and van der Heijden (2002)
while Buonaccorsi (2010, Chap.2) treats two-way tables under misclassification
extensively.

4.9.2 Residual Analysis: Outlier Detection

Residuals for two-way tables were introduced by Anscombe and Tukey (1963),
who proposed graphical and analytical procedures to analyze the residuals. Later
on, Cox and Snell (1968) defined residuals in a more general setup and studied
their asymptotic properties. They did not deal with contingency tables but discussed
problems concerning Poisson and binomial distributed samples. Haberman (1973b)
developed methods of residual analysis for log-linear models in two-way tables,
complete and incomplete. In particular, he considered the models of independence
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and quasi-independence, supporting the use of the standardized residuals over
the Pearsonian. Pearsonian and standardized residuals were compared in terms
of the type I error rates of post hoc cellwise tests for two-way tables under
independence and homogeneity models by MacDonald and Gardner (2000) and
García-Pérez and Núñez-Antón (2003). The conclusions of MacDonald and Gardner
(2000) were in favor of the standardized residuals. García-Pérez and Núñez-Antón
(2003) considered the moment-corrected Pearsonian residuals and concluded that
they behave the same as the standardized when the marginal distributions of the
table are uniform while standardized residuals behave slightly better for peaked
marginal distributions. The residuals presented in Sect.2.2.4 are the most known
and widely used. However, a variety of alternative residuals have been suggested
in the literature. For example, Brown (1974) and Simonoff (1988) introduced the
deleted residuals, for which each expected cell frequency is estimated by the model
of quasi-independence, fitted on the data table with this particular cell replaced by a
structural zero.

Residuals are a crucial tool for detecting outliers in a contingency table (Simonoff
1988). On outlier detection for two-way tables see, among others, Fuchs and Kennet
(1980), Kotze and Hawkins (1984), and Lee and Yick (1999). For outlier detection
and measures of influence, see Hastie and Pregibon (1992) and Lee and Fung (1997).
For outlier identification in multi-way contingency tables, see Kuhnt (2004) and
references cited therein. Alternatively, outliers are treated via algebraic statistics
(see Sect. 10.4) by Rapallo (2012).

4.9.3 On Graphical Log-Linear Models

The connection of log-linear to graphical models is due to Darroch et al. (1980),
while important early contributions are by Edwards and Kreiner (1983) and
Wermuth and Lauritzen (1983). Classical reference sources on graphical models
are Whittaker (1990) and Lauritzen (1996). Graphical models with missing data are
dealt in Lauritzen (1995). Conditional independence graphs for multi-way log-linear
models along with more complex multigraphs and the construction of fundamental
conditional independencies for non-decomposable log-linear models are discussed
in Khamis (2011). For graphical models with causal motivation, distinguishing
between explanatory and response variables, see in Sect. 8.4.2.

4.9.4 On Collapsibility

Collapsibility, discussed in Sect. 4.8, is an important concept associated with
the dimension reduction of multi-way contingency tables without affecting the
underlying association structure information. Issues of collapsibility are tied related
to Simpson’s paradox. For more on Simpson’s paradox we refer to Simpson (1951),
Blyth (1972), and Samuels (1993).
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There exist various notions of collapsibility, starting with the classical parametric
collapsibility (Bishop et al. 1975, Chap.2). Further necessary and sufficient condi-
tions of parametric collapsibility, less restrictive than those by Bishop et al. (1975),
are provided by Whittemore (1978), who introduced also the term of strict collapsi-
bility. Additional to strict collapsibility, Ducharme and Lepage (1986) considered
the pseudo collapsibility and tested the various types of collapsibility based on
the table’s nominal odds ratios. A geometric approach for exploring collapsibility
is provided by Shapiro (1982). Vellaisamy and Vijay (2007) stated the results of
Whittemore in an alternative form using the technique of Möbious inversion and
further established new results on collapsibility and strict collapsibility.

Asmussen and Edwards (1983) approached collapsibility via graphical models
and defined the model-collapsibility. They linked collapsibility to model’s decom-
posability and to the idea of invariance of models when some variables are
unobserved. They also showed that model-collapsibility is often equivalent to
estimate-collapsibility. The different types of collapsibility conditions are reviewed
in Whittaker (1990, Sect.12.5). Model-collapsibility is also considered in Khamis
(2011). Vellaisamy and Vijay (2010) obtained necessary and sufficient conditions
for the strict collapsibility based on the interaction parameters of the condi-
tional log-linear model adopted for the layers of the conditioning variables. They
considered also the model-collapsibility for hierarchical log-linear models under
the conditioning framework and provided connections between the strict and the
model-collapsibility. Model- and estimate-collapsibility and their equivalence for
conditional graphical models for multi-way contingency tables are considered by
Liu and Guo (2012).

4.9.5 Information-Theoretic Approach in Contingency
Table Analysis

A pioneering approach in categorical data analysis is the minimum discrimination
information (MDI) approach, based on information theory. It is based on the
discrimination information function of Kullback (1959), which is defined on two
probability distributions and is a measure of closeness between them.

Based on the principle of MDI, the MDI estimates are BAN estimates obtained
by minimizing the discrimination information function between the observed
frequencies and the expected under the assumed model or hypothesis. For the cell
probabilities of two-way tables with fixed marginals, Ireland and Kullback (1968a)
proposed the MDI estimators, illustrating also how their procedure is extended to
multi-way tables. Further applications of the results derived in Ireland and Kullback
(1968a) and connections to previously ad hoc considered estimators by Fisher
(1934) for the 2× 2 case are given in Ireland and Kullback (1968b).

The MDI approach offers a complete treatment for categorical data inference.
The corresponding statistic is asymptotically X2 distributed under the assumed
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model and is used for testing model fit. Furthermore, the procedure can be applied
for testing hypotheses about parameters of the model or linear combinations of them
and provides indication of outlier cells and the analysis of information table, in
analogy to the analysis of variance table. It is a platform of unified treatment for
contingency tables of any order and dimension as well as for categorical data not in
a contingency table form. For applications of this approach on contingency tables
see Ku and Kullback (1974), references cited therein, and the book by Gokhale
and Kullback (1978a). A clarifying short review is given by Gokhale and Kullback
(1978b). The MDI approach is identical to the ML approach for internal constrained
problems (ICP) while for external constrained problems (ECP) the two approaches
are equivalent in probability under the null hypothesis or the assumed model. For
more on ICP and ECP, we refer to Gokhale and Kullback (1978b) and Read and
Cressie (1988, Sect.3.5).

The MDI approach is itself a special case of the minimum power divergence
approach. The power divergence family is introduced by Cressie and Read (1984)
and unifies all major approaches considered for discrete multivariate data analysis.
Its dynamism lies on the fact that the individual special cases are obtained through
a single parameter λ . The power divergence goodness-of-fit statistic for comparing
the frequency vector Y = (Y1, . . .Yny)

′ to the estimated of the expected under the
assumed null hypothesis (or model) μ̂ = (μ̂1, . . . μ̂ny)

′ is defined as

2Iλ (Y : μ̂) =
2

λ (λ + 1)

ny

∑
i=1

Yi

[(
Yi

μ̂i

)λ
− 1

]
, −∞ < λ < ∞ , λ �=−1, 0 . (4.36)

The cases λ = −1 and λ = 0 are defined by the continuous limits of (4.36) for
λ → −1 and λ → 0. It forms a parametric family of goodness-of-fit statistics,
controlled by the parameter λ . Pearson’s X2 is (4.36) with λ = 1, while (4.36)
converges to the LR statistic G2 for λ → 0. Further, for λ → −1, it converges to
the MDI statistic mentioned above. The Neyman-modified X2 statistic (Neyman
1949) is obtained for λ = −2 and the Freeman–Tukey statistic (Freeman and
Tukey 1950) for λ = −1/2. Under the null hypothesis tested and under certain
regularity conditions, (4.36) is asymptotically X2 distributed and all members of
this goodness-of-fit statistics family are asymptotically equivalent. In terms of test
power and of small sample approximation, Cressie and Read (1984) suggested the
value λ = 2/3. Statistical inference for multivariate discrete data based on the power
divergence is studied extensively in Read and Cressie (1988), also under sparseness
assumptions.

Associated with statistic (4.36) is the power divergence measure, which measures
the divergence of two probability distributions. If π = (π1, . . .πK)

′ and q =
(q1, . . .qK)

′ are two probability vectors, then the power divergence specifies their
divergence as

2Iλ (π : q̂) =
2

λ (λ + 1)

K

∑
i=1

πi

[(
πi

qi

)λ
− 1

]
, −∞ < λ < ∞ , λ �=−1, 0 , (4.37)

with the cases λ =−1 and λ = 0 being defined as above.



124 4 Log-Linear Models

The power divergence belongs to the even broader family of φ -divergences. For
π and q as above, the φ -divergence between π and q (or Csiszar’s measure of
information in q about π) is defined by

IC(π,q) =
K

∑
i=1

qiφ(πi/qi), (4.38)

where φ is a real-valued strictly convex function on [0,∞) with φ(1) = φ ′(1) =
0, 0φ(0/0) = 0, 0φ(y/0) = limx→∞ φ(x)/x (see Pardo 2006). Setting φ(x) =
x logx, (4.38) is reduced to the Kullback–Leibler divergence measure that corre-
sponds to the LR statistic G2. For φ(x) = (1− x)2, Pearson’s divergence is derived,

related to Pearson’s X2 statistic. If φ(x) = xλ+1−x
λ (λ+1) , (4.38) becomes the power

divergence measure (4.37).
For φ -divergence-based inference and for special applications to log-linear

models and categorical data analysis, we refer to Pardo (2006), references therein,
and to Martìn and Pardo (2008). Minimum power divergence and minimum
φ -divergence estimators generalize the MLEs, retaining their properties and mean-
while exhibiting robustness properties (see Basu et al. 1998 and Pardo 2006). In
Sect.7.4 we discuss generalized association models, connected to φ -divergence.
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