




Applied and Numerical Harmonic Analysis

Series Editor

John J. Benedetto
University of Maryland

Editorial Advisory Board

Akram Aldroubi Douglas Cochran
Vanderbilt University Arizona State University

Ingrid Daubechies Hans G. Feichtinger
Princeton University University of Vienna

Christopher Heil Murat Kunt
Georgia Institute of Technology Swiss Federal Institute of Technology, Lausanne

James McClellan Wim Sweldens
Georgia Institute of Technology Lucent Technologies, Bell Laboratories

Michael Unser Martin Vetterli
Swiss Federal Institute Swiss Federal Institute
of Technology, Lausanne of Technology, Lausanne

M. Victor Wickerhauser
Washington University



Birkhäuser
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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide the
engineering, mathematical, and scientific communities with significant developments in
harmonic analysis, ranging from abstract harmonic analysis to basic applications. The
title of the series reflects the importance of applications and numerical implementation,
but richness and relevance of applications and implementation depend fundamentally
on the structure and depth of theoretical underpinnings. Thus, from our point of view,
the interleaving of theory and applications and their creative symbiotic evolution is
axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished, de-
veloped, and deepened over time within many disciplines and by means of creative
cross-fertilization with diverse areas. The intricate and fundamental relationship be-
tween harmonic analysis and fields such as signal processing, partial differential equa-
tions (PDEs), and image processing is reflected in our state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as wavelet
theory, Banach algebras, classical Fourier analysis, time-frequency analysis, and fractal
geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with some
basic problems in digital signal processing, speech and image processing, geophysics,
pattern recognition, biomedical engineering, and turbulence. These areas implement
the latest technology from sampling methods on surfaces to fast algorithms and com-
puter vision methods. The underlying mathematics of wavelet theory depends not only
on classical Fourier analysis, but also on ideas from abstract harmonic analysis, includ-
ing von Neumann algebras and the affine group. This leads to a study of the Heisenberg
group and its relationship to Gabor systems, and of the metaplectic group for a mean-
ingful interaction of signal decomposition methods. The unifying influence of wavelet
theory in the aforementioned topics illustrates the justification for providing a means
for centralizing and disseminating information from the broader, but still focused, area
of harmonic analysis. This will be a key role of ANHA. We intend to publish with the
scope and interaction that such a host of issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays a
substantial role:
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Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the development
of mathematics, on the understanding of many engineering and scientific phenomena,
and on the solution of some of the most important problems in mathematics and the
sciences. Historically, Fourier series were developed in the analysis of some of the classical
PDEs of mathematical physics; these series were used to solve such equations. In order
to understand Fourier series and the kinds of solutions they could represent, some of
the most basic notions of analysis were defined, e.g., the concept of “function.” Since
the coefficients of Fourier series are integrals, it is no surprise that Riemann integrals
were conceived to deal with uniqueness properties of trigonometric series. Cantor’s set
theory was also developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena, such as
sound waves, can be described in terms of elementary harmonics. There are two aspects
of this problem: first, to find, or even define properly, the harmonics or spectrum of a
given phenomenon, e.g., the spectroscopy problem in optics; second, to determine which
phenomena can be constructed from given classes of harmonics, as done, for example,
by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineering,
mathematics, and the sciences. For example, Wiener’s Tauberian theorem in Fourier
analysis not only characterizes the behavior of the prime numbers, but also provides the
proper notion of spectrum for phenomena such as white light; this latter process leads
to the Fourier analysis associated with correlation functions in filtering and prediction
problems, and these problems, in turn, deal naturally with Hardy spaces in the theory
of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier integral
operators. Problems in antenna theory are studied in terms of unimodular trigonometric
polynomials. Applications of Fourier analysis abound in signal processing, whether with
the fast Fourier transform (FFT), or filter design, or the adaptive modeling inherent
in time-frequency-scale methods such as wavelet theory. The coherent states of mathe-
matical physics are translated and modulated Fourier transforms, and these are used,
in conjunction with the uncertainty principle, for dealing with signal reconstruction in
communications theory. We are back to the raison d’être of the ANHA series!

John J. Benedetto
Series Editor

University of Maryland
College Park



Preface

As an undergraduate student at a good engineering school, I had never heard of stochas-
tic processes or Lie groups (even though I double majored in Mathematics). As a faculty
member in engineering I encountered many problems where the recurring themes were
“noise” and “geometry.” When I went to read up on both topics I found fairly little at
this intersection. Now, to be certain, there are many wonderful texts on one of these
subjects or the other. And to be fair, there are several advanced treatments on their
intersection. However, for the engineer or scientist who has the modest goal of mod-
eling a stochastic (i.e., time-evolving and random) mechanical system with equations
with an eye towards numerically simulating the system’s behavior rather than proving
theorems, very few books are out there. This is because mechanical systems (such as
robots, biological macromolecules, spinning tops, satellites, automobiles, etc.) move in
multiple spatial dimensions, and the configuration space that describes allowable mo-
tions of objects made up of rigid components does not fit into the usual framework of
linear systems theory. Rather, the configuration space manifold is usually either a Lie
group or a homogeneous space1.

My mission then became clear: write a book on stochastic modeling of (possibly
complicated) mechanical systems that a well-motivated first-year graduate student or
undergraduate at the senior level in engineering or the physical sciences could pick
up and read cover-to-cover without having to carry around twenty other books. The
key point that I tried to keep in mind when writing this book was that the art of
mathematical modeling is very different than the art of proving theorems. The emphasis
here is on “how to calculate” quantities (mostly analytically by hand and occasionally
numerically by computer) rather than “how to prove.” Therefore, some topics that are
treated at great detail in mathematics books are covered at a superficial level here, and
some concrete analytical calculations that are glossed over in mathematics books are
explained in detail here. In other words the goal here is not to expand the frontiers of
mathematics, but rather to translate known results to a broader audience.

The following quotes from Felix Klein2 in regard to the modern mathematics of his
day came to mind often during the writing process:

The exposition, intended for a few specialized colleagues, refrains from indicating
any connection with more general questions. Hence it is barely accessible to
colleagues in neighboring fields and totally inaccessible to a larger circle. . .

1The reader is not expected to know what these concepts mean at this point.
2F. Klein, Development of Mathematics in the 19th Century, translated by M. Ackerman

as part of Lie Groups: History, Frontiers and Applications, Vol. IX, Math Sci Press, 1979.
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In fact, the physicist can use little, and the engineer none at all, of these theories
in his tasks.

The later of these was also referenced in Arnol’d’s classic book3 as an example of how
work that is initially viewed as esoteric can become central to applied fields.

In order to emphasize the point that this book is for practitioners, as I present
results they generally are not in “definition–proof–theorem” format. Rather, results
and derivations are presented in a flowing style. Section headings punctuate results so
that the presentation (hopefully) does not ramble on too much.

Another difference between this book and one on pure mathematics is that while
pathological examples can be viewed as the fundamental motivation for many math-
ematical concepts (e.g., the behavior of sin 1

x as x → 0), in most applications most
functions and the domains on which they are defined do not exhibit pathologies. And
so practitioners can afford to be less precise than pure mathematicians.

A final major difference between this presentation and those written by mathe-
maticians is that rather than the usual “top-down” approach in which examples follow
definitions and theorems, the approach here is “bottom-up” in the sense that examples
are used to motivate concepts throughout this book and the companion volume. Then
after the reader gains familiarity with the concepts, definitions are provided to capture
the essence of the examples.

To help with the issue of motivation and to illustrate the art of mathematical model-
ing, case studies from a variety of different engineering and scientific fields are presented.
In fact, so much material is covered that this book has been split into two volumes. Vol-
ume 1 (which is what you are reading now) focuses on basic stochastic theory and
geometric methods. The usefulness of some of these methods may not be clear until
the second volume. For example, some results pertaining to differential forms and dif-
ferential geometry that are presented in Volume 1 are not applied to stochastic models
until they find applications in Volume 2 in the form of integral geometry (also called
geometric probability) and in multivariate statistical analysis. Volume 2 serves as an
in-depth (but accessible) treatment of Lie groups, and the extension of statistical and
information-theoretic techniques to that domain.

I have organized Volume 1 into the following 9 chapters and an appendix: Chap-
ter 1 provides an introduction and overview of the kinds of the problems that can be
addressed using the mathematical modeling methods of this book. Chapter 2 reviews
every aspect of the Gaussian distribution, and uses this as the quintessential example of
a probability density function. Chapter 3 discusses probability and information theory
and introduces notation that will be used throughout these volumes. Chapter 4 is an
overview of white noise, stochastic differential equations (SDEs), and Fokker–Planck
equations on the real line and in Euclidean space. The relationship between Itô and
Stratonovich SDEs is explained and examples illustrate the conversions between these
forms on multi-dimensional examples in Cartesian and curvilinear coordinate systems.
Chapter 5 provides an introduction to geometry including elementary projective, alge-
braic, and differential geometry of curves and surfaces. That chapter begins with some
concrete examples that are described in detail. Chapter 6 introduces differential forms
and the generalized Stokes’ theorem. Chapter 7 generalizes the treatment of surfaces and
polyhedra to manifolds and polytopes. Geometry is first described using a coordinate-
dependent presentation that some differential geometers may find old fashioned, but it

3See Arnol’d, VI, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin,
1978.



Preface xi

is nonetheless fully rigorous and general, and far more accessible to the engineer and
scientist than the elegant and powerful (but cryptic) coordinate-free descriptions. Chap-
ter 8 discusses stochastic processes in manifolds and related probability flows. Chapter
9 summarizes the current volume and introduces Volume 2. The appendix provides a
comprehensive review of concepts from linear algebra, multivariate calculus, and sys-
tems of first-order ordinary differential equations. To the engineering or physical science
student at the senior level or higher, some of this material will be known already. But for
those who have not seen it before, it is presented in a self-contained manner. In addition,
exercises at the end of each chapter in Volume 1 reinforce the main points. There are
more than 150 exercises in Volume 1. Volume 2 also has many exercises. Over time I
plan to build up a full solution set that will be uploaded to the publisher’s webpage, and
will be accessible to instructors. This will provide many more worked examples than
space limits allow within the volumes.

Volume 1 can be used as a textbook in several ways. Chapters 2–4 together with the
appendix can serve as a one-semester course on continuous-time stochastic processes.
Chapters 5–8 can serve as a one-semester course on elementary differential geometry.
Or, if chapters are read sequentially, the whole book can be used for self-study. Each
chapter is meant to be relatively self-contained, with its own references to the literature.
Altogether there are approximately 250 references that can be used to facilitate further
study.

The stochastic models addressed here are equations of motion for physical systems
that are forced by noise. The time-evolving statistical properties of these models are
studied extensively. Information theory is concerned with communicating and extracting
content in the presence of noise. Lie groups either can be thought of as continuous sets of
symmetry operations, or as smooth high-dimensional surfaces which have an associated
operator. That is, the same mathematical object can be viewed from either a more
algebraic or more geometric perspective.

Whereas the emphasis of Volume 1 is on basic theory of continuous-time stochas-
tic processes and differential geometric methods, Volume 2 provides an in-depth in-
troduction to matrix Lie groups, stochastic processes that evolve on Lie groups, and
information-theoretic inequalities involving groups. Volume 1 only has a smattering of
information theory and Lie groups. Volume 2 emphasizes information theory and Lie
groups to a much larger degree.

Information theory consists of several branches. The branch originating from Shan-
non’s mathematical theory of communication is covered in numerous engineering text-
books with minor variants on the titles “Information Theory” or “Communications
Theory.” A second branch of information theory, due to Wiener, is concerned with fil-
tering of noisy data and extracting a signal (such as in radar detection of flying objects).
The third branch originated from the field of mathematical statistics in which people
like Fisher, de Bruijn, Cramér, and Rao developed concepts in statistical estimation. It
is primarily this third branch that is addressed in Volume 1, and so very little of the
classical engineering information theory is found here. However, Shannon’s theory is
reviewed in detail in Volume 2, where connections between many aspects of information
and group theory are explored. And Wiener’s filtering ideas (which have a strong con-
nection with Fourier analysis) find natural applications in the context of deconvolving
functions on Lie groups (an advanced topic that is also deferred to Volume 2).

Volume 2 is a more formal and more advanced presentation that builds on the ba-
sics covered in Volume 1. It is composed of three parts. Part 1 begins with a detailed
treatment of Lie groups including elementary algebraic, differential geometric, and func-
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tional analytic properties. Classical variational calculus techniques are reviewed, and
the coordinate-free extension of these concepts to Lie groups (in the form of the Euler–
Poincaré equation) are derived and used in examples. In addition, the basic concepts
of group representation theory are reviewed along with the concepts of convolution of
functions and Fourier expansions on Lie groups. Connections with multivariate statis-
tical analysis and integral geometry are also explored. Part 2 of Volume 2 is concerned
with the connections between information theory and group theory. An extension of the
de Bruijn inequality to the context of Lie groups is examined. Classical communication-
theory problems are reviewed, and information inequalities that have parallels in group
theory are explained. Geometric and algebraic problems in coding theory are also ex-
amined. A number of connections to problems in engineering and biology are provided.
For example, it is shown how a spherical optical encoder developed by the author and
coworkers4 can be viewed as a decoding problem on the rotation group, SO(3). Also,
the problem of noise in coherent optical communication systems is formulated and the
resulting Fokker–Planck equation is shown to be quite similar to that of the stochastic
Kinematic cart that is described in the introductory chapter of Volume 1. This leads to
Part 3 of Volume 2, which brings the discussion back to issues close to those in Volume
1. Namely, stochastic differential equations and Fokker–Planck equations are revisited.
In Volume 2 all of these equations evolve on Lie groups (particularly the rotation and
rigid-body-motion groups). The differential geometric techniques that are presented in
Volume 1 are applied heavily in this setting. Several closely related (though not iden-
tical) concepts of “mean” and “covariance” of probability densities on Lie groups are
reviewed, and their propagation under iterated convolutions is studied. As far as the
descriptions of probability densities on Lie groups are concerned, closed-form Gaussian-
like approximations are possible in some contexts, and Fourier-based solutions are more
convenient in others. The coordinate-based tools needed for realizing these expressions
as concrete quantities (which can in principle be implemented numerically) are provided
in Volume 2.

During a lecture I attended while writing this book, an executive from a famous
computer manufacturer said that traditionally technical people have been trained to be
“I-shaped,” meaning an education that is very deep in one area, but not broad. The
executive went on to say that he now hires people who are “T-shaped,” meaning that
they have a broad but generally shallow background that allows them to communicate
with others, but in addition have depth in one area. From this viewpoint, the present
book and its companion volume are “ΠΠ-shaped,” with a broad discussion of geometry
that is used to investigate three areas of knowledge relatively deeply: stochastic models,
information theory, and Lie groups.

It has been a joy to write these books. It has clarified many issues in my own mind.
And I hope that you find them both interesting and useful. And while I have worked hard
to eliminate errors, there will no doubt be some that escaped my attention. Therefore
I welcome any comments/corrections and plan to keep an updated online erratum page
which can be found by searching for my name on the Web.

There are so many people without whom this book would not have been completed.
First, I must thank John J. Benedetto for inviting me to contribute to this series that
he is editing, and Tom Grasso at Birkhäuser for making the process flow smoothly.

A debt of gratitude is owed to a number of people who have worked (and maybe
suffered) through early drafts of this book. These include my students Kevin Wolfe,

4Stein, D., Scheinerman, E.R., Chirikjian, G.S., “Mathematical models of binary spherical-
motion encoders,” IEEE-ASME Trans. Mechatron., 8, pp. 234–244, 2003.
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Michael Kutzer, and Matt Moses who received very rough drafts, and whose comments
and questions were very useful in improving the presentation and content. I would also
like to thank all of my current and former students and colleagues for providing a
stimulating environment in which to work.

Mathematicians Ernie Kalnins, Peter T. Kim, Willard Miller, Jr., and Julie Mitchell
provided comments that helped significantly in identifying mathematical errors, fine-
tuning definitions, and organizing topics. I am thankful to Tamás Kalmár-Nagy, Jennifer
Losaw, Tilak Ratnanather, and Jon Selig for finding several important typographical
errors. John Oprea went way above and beyond the call of duty to read and provide
detailed comments on two drafts that led to a significant reorganization of the material.
Andrew D. Lewis provided some very useful comments and the picture of a torus that
appears in Chapter 5. Andrew Douglas, Tak Igusa, and Frank C. Park each provided
some useful and/or encouraging comments. Wooram Park helped with some of the
figures.

I would like to thank William N. Sharpe, Jr. for hiring me many years ago straight
out of graduate school (even after knowing me as an undergraduate), and Nick Jones,
the Benjamin T. Rome Dean of the JHU Whiting School of Engineering, for allowing
me to have the sabbatical during the 2008 calendar year that was used to write this
book after my service as department chair finished.

I would also like to thank the faculty and staff of the Institute for Mathematics and
Its Applications (IMA) at the University of Minnesota for the three week-long workshops
that I attended there during part of the time while I was writing this book. Some of the
topics discussed here percolated through my mind during that time.

Last but not least, I would like to thank my family. Writing a single-author book can
be a solitary experience. And so it is important to have surroundings that are “fuuuun.”

Baltimore, Maryland Gregory Chirikjian
May 2009
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1

Introduction

This chapter is an overview of the sorts of problems that can be addressed using the
methods from this book. It also discusses the major differences between mathematical
modeling and mathematics, and reviews some basic terminology that is used throughout
the book. The appendix provides a much more in-depth review of engineering mathe-
matics. This book is meant to be self-contained in the sense that only prior knowledge
of college-level calculus, linear algebra, and differential equations is assumed. Therefore,
if it is read sequentially and something does not make sense, then the appendix most
likely contains the missing piece of knowledge. Standard references on classical mathe-
matics used in engineering and physics include [2, 5], which also can be consulted to fill
in any missing background.

Even after consulting the appendix and the cited references, some of the concepts
presented toward the end of each chapter may be difficult to grasp on the first reading.
That is okay. To a large extent, it should be possible to skip over some of the more
difficult concepts in any given chapter, and still understand the fundamental ideas in
subsequent chapters. In order to focus the reader on the most important ideas in each
chapter, the equations that are necessary to successfully navigate through later chapters
are circumscribed with a box. This also makes it easier to refer back to key equations.

The main things to take away from this chapter are:

• To become accustomed to the style and notation used in this book, including the
concepts of sets, mappings, commutative diagrams, etc.;

• To understand that there are several different meanings of “equality” and “inequal-
ity”;

• To review topics in advanced calculus and its applications in mechanics, including
the application of the divergence theorem and localization arguments;

• To be able to compose mappings and do calculations with Jacobian matrices;
• To understand the layout of the rest of the book and to get a feeling for the topics

that can be addressed with the tools developed here.

1.1 What this Book is About

Practitioners (such as the author) are motivated to make the investment to learn new
mathematics when the potential payoff of that investment is clear up front. Therefore,
before delving into the intricate details of stochastic calculus, information theory, Lie
groups, etc., consider the following simply stated problems:

1G.S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
and Geometric Methods, Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4803-9_1,
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Problem 1: A random walker on a sphere starts at the north pole. After some period of
time, what will the probability be that the walker is at a particular location? And how
long will it take before the walker’s location on the sphere is completely randomized
(i.e., how long will it be before the initial location of the walker becomes irrelevant)?

Problem 2: The cart-like robot shown in Figure 1.1 moves around in the plane by
turning each of its two wheels. Relative to a frame of reference fixed in the plane, the
frame of reference fixed in the robot moves as a function of the torque inputs imparted by
the motors to the wheels. This reference frame can be thought of as the time-dependent
rigid-body motion

g =

⎛⎝ cos θ − sin θ x
sin θ cos θ y

0 0 1

⎞⎠ (1.1)

where θ is the angle that the axle makes with the x-axis of the world frame, and x and y
are the components of the translation of the center of the cart-like robot relative to the
frame of reference fixed in the plane. If the robot’s motion has been observed, then g(t)
is known for all times from t = 0 up to the present time. However, the exact location of
the future location of the robot is uncertain until it actually happens since, for example,
the wheels might slip. Given models describing these uncertainties, what will the most
likely position and orientation of the robot be at a given future time?

Let the two wheels each have radii r, and let the distance between the wheels (called
the wheelbase) be denoted as L. Imagine that the angles through which the wheels turn
around their axes are governed by “stochastic differential equations” of the form1

dφ1 = ω(t)dt +
√
Ddw1 (1.2)

dφ2 = ω(t)dt +
√
Ddw2 (1.3)

where dwi each represent “uncorrelated unit white noise,” D scales the strength of
the noise, and rω(t) is what the speed of the robot would be if D were zero. Then a
“stochastic trajectory” for g(t) in (1.1) is defined by stochastic differential equations of
the form [13]⎛⎝dx

dy
dθ

⎞⎠ =

⎛⎝ rω cos θ
rω sin θ

0

⎞⎠ dt +
√
D

⎛⎝ r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
L − r

L

⎞⎠(dw1
dw2

)
. (1.4)

Stochastic trajectories, by definition, are not repeatable. However, if such an equation
is simulated many times, each time starting from the same initial conditions (say, x =
y = θ = 0), then a function, f(x, y, θ; t) that records the distribution of positions and
orientations of the cart at the same value of time, t, in each trajectory can be defined.
As will be seen in Chapter 4, a well-developed theory for linking stochastic differential
equations such as (1.4) to functions such as f(x, y, θ; t) exists. This theory produces
a partial differential equation (called a Fokker–Planck equation) for f(x, y, θ; t). In the
present context, this equation is of the form:

∂f

∂t
= − rω cos θ

∂f

∂x
− rω sin θ

∂f

∂y
(1.5)

+
D

2

(
r2

2
cos2 θ

∂2f

∂x2 +
r2

2
sin 2θ

∂2f

∂x∂y
+

r2

2
sin2 θ

∂2f

∂y2 +
2r2

L2

∂2f

∂θ2

)
.

1The terms in quotes will be defined in Chapter 4. It is not expected that the reader will
understand these concepts at this point, but rather only get a taste of things to come.
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By the end of this volume the reader will know how to derive such equations and generate
sample paths from the corresponding stochastic differential equation.

g(t)

g(0)

Fig. 1.1. A Kinematic Cart with an Uncertain Future Position and Orientation

Problem 3: A long and slender semi-flexible biological macromolecule, such as double-
helical DNA composed of 300 stacked base pairs, is subjected to random Brownian
motion bombardment by the surrounding solvent molecules. If reference frames are
attached to both ends of the DNA, what will the distributions of rigid-body motions
between these reference frames look like as a function of temperature and the stiffness
of the molecule?

Problem 4: An isolated E. coli bacterium swims in a medium and, based on sensory
information, randomly reorients. For a given starting position, nutrient environment,
and temperature, what will the probability be that it reaches a particular position at a
particular time?

Problem 5: (a) One rigid body is set at a fixed pose (or position and orientation) in a
box, and a second rigid body is allowed to move uniformly at random in the box under
the constraint that it cannot intersect the first body. How much free space is there for
the second body to move? (b) If the opposing faces of the box are identified with each
other (by “gluing them together”), then the boundaries are removed, but the volume in
this toroidal world will be the same as that of the original box. How much free space is
there for the second body to move in this scenario?

All of these problems (and many more) are discussed in detail in Volume 2. The
current volume establishes the methodological foundations that are required in order
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to approach the applications. In the process of laying these foundations, numerous “toy
examples” will be provided. The essence of the problems and methods addressed is that
there is some “geometric” feature that is intertwined with a “probabilistic” one.

Lie groups are a natural tool to study geometry, and a mature theory for random pro-
cesses on Lie groups has been developed by mathematicians over the past one hundred
years. This theory is closely connected with applications. For example, in Problems 1–5
mentioned above, the group of rotations and full rigid-body motions (rotations + trans-
lations) figure prominently. Stochastic processes that evolve on Lie groups can be treated
more concretely than those that evolve on abstract manifolds, because Lie groups have
structure that is “close to” that of the vector space Rn, with the group operation taking
the place of regular addition. Volume 2 focuses on Lie groups.

Many excellent and precise mathematics books exist on stochastic calculus, mani-
folds, and stochastic calculus on manifolds. However, for the practitioner, the barrier
to understanding the content of such books can be quite high. In part, this is because
when mathematical statements are made, the level of precision can be greater than the
practitioner needs. The approach taken in the current book to lower the bar to under-
standing these phenomena is to use a weak sense of the equality sign in equations. This
is explained in detail in the next section.

1.2 Different Meanings of Equality

This section reviews several different meanings associated with the equality sign, “=.”
At the outset, this seems like an absurd thing to discuss, since we all know from early
educational experiences that two things are either equal or they are not. But sometimes
it is convenient to claim that two quantities are equal when, strictly speaking, they are
not. This avoids having to append to every approximate equality words like “almost
surely” or “up to a set of measure zero” or “in the mean squared sense.” While such
statements add to precision, they also distract from the main points that a modeler
seeks to glean from the mathematics literature.

1.2.1 Defining Equalities

A first point of confusion concerning the equality sign is when an equality is derived
(i.e., when it is the statement of a result), versus when it is part of a definition. The
usual “=” will be used to denote any derived equality.

Let x be a real number, and let R denote the set of all real numbers2. For a function,
such as f(x) = x2, it is possible for f(x) = 0 (in this specific case, when x = 0). In that
context, making a statement like f(x) = 0 might be the starting point for a root-finding
problem. However, in other problems it may be desirable to say that f(x) = 0 for all
of the values of x. In this case, it is said that f(x) is identically equal to zero, which
is denoted as f(x) ≡ 0. This is a kind of “temporary definition” of f(x), but as the
symbol f(x) is used elsewhere in the text, the restriction that it is set to zero for the
time being is not carried forward. In contrast, “ .=” will be used to denote a defining
equality, and definitions made in this way will persist throughout the book. Sometimes
defining equalities are composed of several conditional equalities. For example, a family
of functions φα,n(x) can be defined as

2It is also convenient to denote Rn to be the space of all n-dimensional column vectors with
real entries.
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φα,n(x) .=
{

e−α/x2n

if x, α > 0
0 otherwise.

(1.6)

This means that φα,n(x) is defined to be equal to one thing when certain conditions are
met, and something else under different conditions.

In calculus, the derivative of a function f(x) on the open interval3 (a, b) ⊂ R is
defined as the new function

df

dx

.= lim
ε→0

f(x + ε) − f(x)
ε

(1.7)

on the same interval. Here ε can be thought of as 1/N where N → ∞. If f ′(x) .=
df/dx is a continuous function, then f(x) is called continuously differentiable. Likewise,
if d2f/dx2 .= df ′/dx is a continuous function, then f(x) is called twice continuously
differentiable. A function for which n derivatives can be taken, each resulting in a
continuous function, is called n-times continuously differentiable, and is denoted as
Cn(a, b).

The shorthand df/dx to describe the calculation in (1.7) thereby circumvents the
complexity that would arise in writing higher derivatives such as

d2f

dx2 = lim
ε2→0

lim
ε1→0

[f(x + ε1 + ε2) − f(x + ε1)] − [f(x + ε1) − f(x)]
ε1ε2

.

Indeed, such an expression would be quite confusing, which emphasizes the importance
of simplifying notation.

As a result of the Fundamental Theorem of Calculus, if f ′(x) is continuous then∫ b

a

f ′(x)dx = f(b) − f(a) and
d

dt

∫ t

0
f(x)dx = f(t) (1.8)

where ∫ b

a

f ′(x)dx .= lim
N→∞

1
N

N∑
n=0

f ′(a + (b − a)n/N). (1.9)

Rather than carrying around the explicit limits, in practice the now-standard notations
of differential and integral calculus are well known to engineers and scientists. After
the initial investment has been made to learn the notations of calculus, there is rarely
any need to go back to the defining limits. But for the student who has never seen
the notation, it would be impossible to understand the usefulness of calculus. Likewise,
the task of assisting the engineer or applied scientist in understanding basic results of
modern mathematics can be made much easier by keeping the presentation as explicit
as possible.

1.2.2 Equality in the Sense of Zero Mean-Squared Error

Another issue worth discussing is the meaning given to a derived equality. For example,
classical Fourier analysis is a useful tool for describing periodic functions. Such functions
can be viewed as functions on the unit circle, S1. The circle is a special case of a hyper-
sphere,

3The open interval (a, b) is defined to be the set of values of x such that the strict inequalities
a < x < b hold. In contrast, the closed interval [a, b] is defined by a ≤ x ≤ b. The half-open
intervals (a, b] and [a, b) are defined by a < x ≤ b and a ≤ x < b, respectively.
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Sn−1 = {x ∈ Rn | ‖x‖ = 1}, (1.10)

for the case when n = 2. (The above notation is read as “Sn−1 is the set of all x ∈ Rn

such that ‖x‖ = 1.”) In the case when a sphere of radius r in n-dimensional space is of
interest rather than a unit sphere, this is denoted as Sn−1

r .
The set of all real (or complex-valued) functions on S1 with an absolute value (or

modulus) which when raised to the pth power and integrated yields a finite number is
called Lp(S1): ∫ 2π

0
|f(θ)|pdθ < ∞ ⇐⇒ f ∈ Lp(S1). (1.11)

The class of continuous functions on the unit circle is denoted as C0(S1). Given a
function that is both continuous and square-integrable on the unit circle (i.e., f ∈
C0(S1)∩L2(S1)), classical Fourier analysis defines a band limited version of f with band
limit N as

fN (θ) =
1
2π

N∑
n=−N

f̂(n)einθ where f̂(n) =
∫ 2π

0
f(θ)e−inθdθ (1.12)

where i =
√

−1. The function fN (θ) should approach f(θ) as N → ∞. However, the
sense of equality used here is that

lim
N→∞

∫ 2π

0
|f(θ) − fN (θ)|2dθ = 0. (1.13)

When this condition holds, the Fourier series is said to converge, and the original func-
tion and its Fourier series are said to be equal in the mean squared sense.

Strictly speaking this is not the same thing as saying that f(θ) = limN→∞ fN (θ).
For example, using a Fourier series to expand a step function that is equal to zero over
the range 0 ≤ θ ≤ π and equal to unity otherwise will result in a Fourier expansion
that satisfies (1.13) but exhibits Gibbs peaks around θ = 0, π. At those points f(θ) =
limN→∞ fN (θ).

The reason why this is relevant to the topic of this book is that many statements
regarding stochastic systems (i.e., systems with some degree of noise) are statements
about average behavior that are not strictly true on a pointwise basis. To make these
statements absolutely precise requires a degree of mathematical rigor that places many
texts on stochastic processes well outside the reach of the practitioner who seeks to
model an engineering system or biological process. For this reason, the shortcuts taken
in notation throughout this book are justified, but it needs to be understood up front
that many of the stated equalities only hold in a limited sense.

1.2.3 Big-O Notation

Another way that the meaning of “equality” is distorted for the sake of convenience is
by the use of “Big-O” notation. There are two variations to this notation. First, if f(x)
and g(x) are real-valued functions on the real line, then [11]

f(x) = O(g(x)) as x → ∞ (1.14)

if there exist positive constants M and x0 such that |f(x)| ≤ M |g(x)| for all x > x0.
For example, the number of arithmetic operations used to multiply two n × n matrices
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A = [aij ] and B = [bjk] using the formula cik =
∑n

j=1 aijbjk is n2 · (2n − 1) since there
are n2 values of i and k and the evaluation of this formula for each fixed i and k uses
n multiplications and n − 1 additions. Therefore

n2 · (2n − 1) = O(n3).

It is implicit in writing this statement that n is a large number because for small values
of n the computation would be fast anyway, in which case there would be no need
to examine how it scales. Note that this “equality” is not equating two things that are
exactly the same. Rather the right side is being used to summarize the essential features
of the quantity on the left.

The second typical way that Big-O notation is used is [10]

f(x) = O(g(x)) as x → 0 ⇐⇒ lim
x→0

f(x)
g(x)

= C (1.15)

where 0 < |C| < ∞.
For example, for a function that has a convergent Taylor series expansion about

x = 0, it is common to write

f(x) = f(0) + xf ′(0) +
1
2
x2f ′′(0) + O(x3).

The use of Big-O makes approximations such as f(x) ≈ f(0) + xf ′(0) + 1
2x

2f ′′(0)
more precise, since the amount of error in the approximation is quantified. On the other
hand, if an equality sign is meant to convey the exactness of expressions on both sides,
then the Big-O actually is not the right tool, since it destroys some information in return
for the convenience of simpler expressions.

1.2.4 A Philosophical View of Equality and Inequality

In addition to the way that mathematical “equality” can mean several different things,
the inequality sign can also be used in nonstandard ways. For example, the elementary
school metaphor in which the alligator’s open mouth, <, goes for the bigger number is
not so easily applied when there are matrices on both sides of the inequality. In some
treatments of matrix analysis, control systems, and information theory, the notation
A < B is used when A and B are symmetric matrices of the same dimension. This is
used to mean that all of the eigenvalues of the matrix B − A are greater than zero, or
equivalently, xTAx < xTBx for any real vector x of dimension compatible with A and
B.

On a philosophical note, the concept of mathematical equality is not physically
realizable anyway. Two real objects are never exactly equal. For example, two coins may
have equal value (which is an artificial idealization that we impart on them, originally
based on the observed weight of precious metals contained in them) but they will never
have exactly the same weight, surface finish, etc. And so, mathematical equality is always
either an approximation that holds within our ability to measure, or it is shorthand for
an equivalence relation used as a proxy for true equality. For example, U.S. coins can be
divided into pennies, nickels, etc., and the concept that every penny is equal to every
other is really a statement that they are members of the same equivalence class, based
on their monetary value. But actually, no two pennies are exactly the same.

Now in everyday life, a sphere is the surface of a ball. In some areas of pure mathe-
matics, if one point is removed from a sphere, then it is considered to be a completely



8 1 Introduction

different object. This is because, as stereographic projection4 tells us, a so-called punc-
tured sphere can be mapped to the plane, and vice versa. However, a full sphere cannot
be mapped to the plane in this way. On the other hand, from the point of view of L2

equality of smooth functions, a function on the sphere and the same function restricted
to the punctured sphere are indistinguishable, and therefore are in some sense equal.

The bottom line is that the sense in which an equality is stated depends on the
context. In this book, when equalities such as Itô’s formula are presented, it is important
to note the sense of equality that is used. Likewise, in the study of stochastic differential
equations, it is important to note that individual solutions (sample paths) do not have
meaning. Only large ensembles of stochastic trajectories do. And the same ensemble
characteristics can be achieved with different-looking stochastic differential equations.
Therefore, exactly what it means for two such equations to be the “same” must be
asked, because the resulting ensemble behavior reduces the discussion of equality of
these equations to one of equivalence.

1.3 Other Useful Shortcuts

A number of shortcuts can be employed to make some of the basic mathematical ideas
presented in this book more accessible.

1.3.1 Simplifying Notation

It will often be the case that a family of functions is used to describe some phenomenon,
and it will be convenient to hold one parameter fixed and examine the properties of an
individual function in the family. In this context, f(x; a) means x is the variable and a
is viewed as a fixed parameter that defines the particular function. For example, given a
function of two variables f(x, y), if y is fixed at the value a, then f(x; a) .= f(x, y = a).
This is more convenient than writing fa(x) when the number of fixed variables becomes
large. It also is useful to avoid notational clashes when there is a family of functions
fi(x; a), such as when the subscript denotes the ith entry in a vector function.

Vectors, when viewed as a column array, will be denoted in bold. For example,
x ∈ Rn (the n-dimensional space of all vectors with real entries). Whereas some books
on mathematics denote Euclidean space as En, here no distinction is made between
the vector space Rn and n-dimensional Euclidean space. The use of vectors has been so
thoroughly engrained into engineering education that the difference between the vector
space Rn and the underlying geometric object, En, is hardly worth mentioning.

Other shorthand notation is used throughout mathematics (and this book) to avoid
needless complexity. However, whenever a shorthand is introduced, a new notation must
be learned, and the possibility for misunderstanding or misusing the new notation exists.
For this reason, the presentation throughout this book is very explicit. For example,
whereas a pure mathematician would write Stokes’ law for a manifold5 M with boundary
∂M in the “light” (coordinate-free) form as

4This is a projection that identifies every point on a punctured sphere (with the point
at the north pole removed), by having the south pole of the sphere sit on the plane, and
connecting each point on the punctured sphere with a corresponding point on the plane. This
is accomplished by constructing straight lines passing through the north pole, each of which
intersects the punctured sphere and plane each exactly once.

5For now, think of this as a surface. A precise definition will come in Chapter 7.
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M

dω =
∫

∂M

ω (1.16)

the functional version of this expression that we will use will be expressed in parameters
and take on a “heavy” (coordinate-dependent) appearance. (In fact, it is so heavy that
it will not be presented here, for fear of scaring the reader away!) An expression of
“intermediate weight” that is less general than (1.16), but can be used more easily with
little training is the divergence theorem in R3:∫

V

(
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3

)
dV =

∫
S

(f1n1 + f2n2 + f3n3) dS (1.17)

where dS is an element of surface area for the surface S that bounds the finite volume (or
body) V with volume element dV , ni are the components of the outward-pointing unit
normal for S, and fi(x) are the components of a vector field defined over the body and
the surface. All quantities are expressed in Cartesian coordinates x1, x2, x3. Equation
(1.17) is often abbreviated as ∫

V

∇x · f dV =
∫

S

f · n dS. (1.18)

For the purpose of proving theorems, and gaining deep understanding, the light form
may be preferred. For the purpose of performing computations with a minimal amount
of new terminology and notation, the heavy form has value. Equations such as (1.18)
are a convenient compromise.

1.3.2 Nice, Well-Behaved, Non-Pathological Functions

Many classes of functions exist. For example, the set of functions that are continuously
differentiable n times on the interval (a, b) was denoted earlier as Cn(a, b). And the
functions on the unit circle with pth power of absolute value that integrates to a finite
number form a set called Lp(S1).

More generally, for a continuous domain D contained in Rn, a huge variety of different
classes of functions can be defined that assign real values to each point in D. However,
in order to avoid delving into the very precise terminology that is required to distinguish
one class of functions from another, the scope here will be limited to “nice” functions.
These functions can also be called “well-behaved,” or “non-pathological.” This means
that the Taylor series of such functions will be convergent.6 As a consequence, these
nice functions are in C∞(D) (where the extension of the definition of Cn from the
interval to a domain follows by simply requiring that partial derivatives of all orders
result in continuous functions at every point in the domain). In addition, nice functions
are defined here to be in Lp(D) for p = 1 and p = 2 (where the concept of Lp generalizes
from the specific case of the circle to any continuous domain).

While this limits the scope of the presentation somewhat, functions that are encoun-
tered in many practical applications can be treated as being “nice” in the sense defined
above. Mathematically, the class of nice functions on a domain D can be expressed as
N (D) = A(D) ∩ L1(D) ∩ L2(D) or

N (D) = (A ∩ L1 ∩ L2)(D) (1.19)

6Such functions are called analytic.
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where A(D) denotes the class of analytic functions on D. The symbols ∩ denotes the in-
tersection of these classes of functions, resulting in a more restricted class. The following
section discusses mathematical terminology and symbols in greater detail.

1.4 Modern Mathematical Notation and Terminology

In undergraduate programs in engineering and the sciences, students are introduced to
basic courses in Calculus, Linear Algebra, Differential Equations, and perhaps Fourier
Analysis. These powerful areas of mathematics literally are now hundreds of years old.
Very little of modern mathematics has worked its way into the modern undergraduate
training of students in fields other than mathematics and physics. For this reason, some
review of concepts and terminology from modern mathematics is in order, since one of
the goals of this book is to introduce some of the useful concepts of modern mathematics
to the practitioner.

Throughout this text many mathematical statements such as “A is true if and only if
B is true,” “x ∼ y ∈ X/Y ⊂ S,” and “Z is topologically equivalent to W” will be made.
The meaning of these and other ubiquitous mathematical terms are defined here. More
specialized concepts are defined in the particular chapters where they are introduced
and used. But first, a brief review of the different areas of modern mathematics is in
order.

1.4.1 What is Modern Mathematics?

Roughly speaking, modern mathematics consists of a number of areas including (but not
limited to) algebra, geometry, analysis, topology, probability and statistics, and number
theory. The topics in this book draw from ideas in geometry, probability and statistics,
and analysis, though some very basic ideas from algebra and topology are also used.

Algebra is concerned with sets that have associated with them specialized operations
that recombine elements of the set in particular ways. Geometry is concerned with the
shape of objects. In high dimensions such objects cannot be visualized, but it is still
possible to define concepts of curvature to describe their shape at each point. Geometry
and algebra have ancient roots. Analysis is concerned with the properties of functions on
Euclidean space, such as continuity, differentiability and the approximation of functions
using series expansions, such as the Fourier series discussed in Section 1.2. Topology is
concerned with issues such as whether or not abstract spaces are connected (i.e., if it is
possible to define a path within the space connecting any two points in the space), and
if so how so. And given a closed path within the space, can it be shrunk to a point, or
is there an inherent barrier to doing so imposed by the space? For example, any closed
curve drawn on the surface of a sphere can be shrunk to a point. But in the case of
closed curves drawn on a torus (surface of a donut), some can be shrunk to a point,
and others cannot be (e.g., the circles resulting from the transverse intersection of a
plane and the torus cannot be shrunk to a point without shrinking the torus itself).
Topology is also concerned with the issue of whether or not spaces are compact (closed
and bounded). The sphere and torus are examples of compact spaces. That is, they
can be completely covered by a finite number of finite-area overlapping patches. The
same cannot be said for the real line or the plane. Two spaces can be considered to be
topologically equivalent if they have all topological features in common.
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Topology of abstract spaces is studied by establishing relationships between a space
under investigation and a known one. Topology and geometry also have some over-
laps, especially when attempting to relate local and global features. Often techniques
from analysis and algebra are used in geometry (resulting in differential geometry and
algebraic geometry) as well as in topology (resulting in differential topology and al-
gebraic topology). Some researchers have studied the interface between geometry and
probability and statistics (see, e.g., [1]).

1.4.2 Stating Mathematical Results

In (1.11) the arrow A ⇐⇒ B was used to denote that the statement on the left implies
the one on the right, and vice versa. This is the same as saying that A is true if and only
if B is true. Another shorthand for the same statement is to say “iff.” This statement
consists of two parts: (1) A =⇒ B, which is read “A implies B,” or “B is true if A is
true,” or “if A is true then B is true”; and (2) A ⇐= B, which is read “A is implied by
B,” or “B is true only if A is true,” or “if B is true then A is true.” The words “B only
if A” mean that B cannot be true if A is not true. Since B being true automatically
implies that A is, this makes sense.

Another way to articulate in words the same mathematical statements is by the use
of the words necessary and sufficient. The statement A =⇒ B means that A being true
is a sufficient condition for B to be true, since if A is true it implies that B is true also.
On the other hand, B might be true independent of whether or not A is true. But if A
is true, it is “enough” to guarantee that B is true. On the other hand, A ⇐= B (which
is exactly the same as B =⇒ A) means that B cannot be true without A also being
true. Therefore A being true is “required” for B to be true since the truth of A results
from the truth of B. That makes B a necessary condition.

Given any two statements, A and B, establishing that A ⇐⇒ B (or equivalently A iff
B) is to say that A is necessary and sufficient for B (and B is necessary and sufficient for
A). Such a statement establishes that A and B are, in some sense, merely two different
descriptions of the same underlying phenomenon. A nice summary of these concepts is
provided in the appendix of [4].

When it comes to presenting mathematical results, there are several sorts of sub-
headings. Axioms (also called postulates) are the minimal set of starting conditions that
are obvious to all without proof. Theorems are the main mathematical points that are
to be proven. Lemmas are lesser points that are proved on the way to proving theo-
rems. And corollaries are interesting results that follow easily from the statement of a
theorem. Also highlighted in mathematics books are definitions and remarks.

The style here will be to minimize the use of these. The section and subsection
headings in each chapter will be subdivided finely enough that there is little need for
further subdivision for the presentation of results. The emphasis will not be on proving
theorems, but the illustration of how to use the results. However, in special cases when a
particularly impressive theorem from the literature is reviewed it will be stated as such,
and sometimes a sketch of the proof will be reproduced. This is particularly important
when the proof is constructive, and therefore instructive regarding how to apply the
result.

1.4.3 Sets and Mappings

As an elementary introduction, consider the scenario of a graduate course at an elite
east-coast university in which there are five students. The collection (or set) of five
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students in the course can be denoted as

S = {s1, s2, s3, s4, s5}

where S is shorthand for “set” and “si” is shorthand for “student i.” Membership in a
set is denoted with the symbol ∈, as si ∈ S for i = 1, ..., 5. This is read as “si is in S for
each value i = 1, i = 2, up to i = 5.” In set theory the particular ordering of elements
within a set is not important. Viewed in the context of this example, this means that
the students can sit anywhere in the classroom, and it is still the same class.

Consider the following set: G = {m, f} where G is shorthand for “gender,” m is
shorthand for “male,” and f is shorthand for “female.” A mapping is an assignment of
each element of one set to one element from a second set. For example, in the current
context the mapping g : S → G (which is read as “g takes elements of S and assigns
one element of G to each”) is simply the evaluation g(si) that assesses the gender of
each student.7 In other words, if students 1 and 2 are female, and 3, 4, 5 are male, then
g(s1) = g(s2) = f and g(s3) = g(s4) = g(s5) = m.

The set of all students can be divided into two subsets, one consisting of female
students, and the other males:

Sf = {s1, s2} and Sm = {s3, s4, s5}.

Each of these subsets is contained in the original set. This is written as Sm ⊆ S and
Sf ⊆ S. Since Sm = S and Sf = S, these two subsets are strictly contained in S,
meaning that they are not equal to S. Such subsets are called proper. In this case the
notation Sm ⊂ S and Sf ⊂ S is used. In cases where the possibility exists that a subset
A might be equal to the whole set S, then the symbol A ⊆ S will be used. If A ⊆ S and
S ⊆ A, then S = A. In contrast, if A ⊆ S and A = S, then this is when the notation
A ⊂ S is used.8

In the particular example above, the original set can be reconstructed by pooling
all of the elements of these two subsets. This pooling of elements of two subsets is
called the union, and in this example Sm ∪ Sf = S. In contrast, the two subsets in
this example have no members in common. Therefore their intersection is Sm ∩Sf = Ø
where the empty set Ø = {} is the set containing no elements. Since ordering of elements
does not matter in the definition of a set, neither does the order in which the union
or intersection of two subsets is computed. For example, Sm ∩ Sf = Sf ∩ Sm = Ø and
Sm ∪ Sf = Sf ∪ Sm = S.

Equivalence Relations and Equivalence Classes

The mapping g : S → G can be viewed as having established two equivalence classes
Sm and Sf , where members of Sm all share a common feature, as do members of Sf .
This is denoted as s1 ∼ s2 since g(s1) = g(s2) and likewise s3 ∼ s4 ∼ s5 because
g(s3) = g(s4) = g(s5). This is not the same as saying s1 = s2, etc. The symbol ∼ is
read as similar to or equivalent to, and is called an equivalence relation. Let i, j, k ∈
{1, 2, 3, 4, 5}. Then in this example, ∼ has the following properties (which are true in
general for equivalence relations): (1) si ∼ si (the reflexive property); (2) si ∼ sk implies

7Note that the arrow, →, of a mapping (which means “goes to”) does not have the same
meaning as the logical =⇒ (which means “implies”).

8This is not standard in the literature. Sometimes � is used for what is being denoted as
⊂ here, and sometimes ⊂ is used to denote what is being denoted ⊆ here.
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sk ∼ si (the symmetric property); (3) si ∼ sj and sj ∼ sk implies si ∼ sk (the transitive
property). In a sense, the original set is “broken up” (or partitioned) into two subsets
by the equivalence relation induced by the mapping g. In the current context this can
be written as {Sm, Sf} = S/G or {Sm, Sf} = S/g or {Sm, Sf} = S/ ∼. In other words,
a set of subsets of the original set is produced, the union of which is the original set,
and the intersection of which is the empty set.

Now suppose that there is another set, the set of names of all students in the graduate
program (not only the students in this class):

N = {Abigail, Kathy, Matt, Kevin, Mary, Mike, Susan, ...}.

(The “...” here means that there are too many to write down explicitly.) Out of all
of these names, five correspond to the names of students in the class. The mapping
n : S → N can be defined explicitly as n(s1) = Abigail, n(s2) = Mary, n(s3) = Matt,
n(s4) = Kevin, and n(s5) = Mike.

Images, Pre-Images, and Compositions of Mappings

The image of S in N is the set n(S) = {n(s1), n(s2), ..., n(s5)} ⊆ N . More generally,
given a mapping from one abstract set into another, m : S1 → S2,

m(S1) = {m(σ) ∈ S2| ∀ σ ∈ S1} ⊆ S2. (1.20)

This is read as “the image of the set S1 in S2 is the subset of S2 obtained by applying
the mapping m to every element of S1.” Here σ is a “dummy variable.” Its name is
irrelevant. The use of the symbol m(S1) ⊆ S2 here means that every element in m(S1)
is also in S2, and the possibility exists that m(S1) = S2. The symbol ∀ means “for all.”

Now consider the mapping from names to the Roman alphabet, A, defined by
extracting the first letter of each name as l : N → A. When this mapping is ap-
plied only to the names of students in the class, l : n(S) → {M,K,A}. Explicitly,
l(Matt) = l(Mike) = l(Mary) = M , l(Kevin) = K, and l(Abigail) = A. The original
set of students can then be broken into equivalence classes in which students who have
the same first letter in their name are deemed equivalent. In this case the equivalence
relation is defined by the composed mapping l(n(si)). First n is applied to si, and then
l is applied to extract the first letter. This is denoted as (l ◦ n)(si).

It is also possible to look at any mapping of the form m : S1 → S2 from the opposite
perspective, and ask which subset of elements of S1 map to the same element τ ∈ S2.
Such elements are called the pre-image of τ under the map. For example, the pre-image
of the letter K under the mapping (l ◦ n)(si) is {s4} and the pre-image of M under the
same composite map is {s2, s3, s5}. This can be written as (l ◦ n)−1(M) = {s2, s3, s5}.
Note that (l ◦ n)−1 is not an inverse mapping because (l ◦ n) maps multiple elements
of S to the same element of {M,K,A}, and therefore is not invertible. However, since
applying (l ◦ n) to S does “hit” all of the elements of {M,K,A}, the set of pre-images
is sometimes denoted as

(l ◦ n)−1{M,K,A} .= {{s1}, {s4}, {s2, s3, s5}}.

That is, the set of pre-images can be associated with the set of equivalence classes
S/(l ◦ n).
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The Size of a Set and the Indicator Function

The number of elements in a finite set S is denoted as |S|. Given two finite sets, S1 and
S2, this has the properties that

|S1 ∩ S2| ≤ min(|S1|, |S2|) and |S1 ∪ S2| ≥ max(|S1|, |S2|)

with equality if and only if S1 ⊆ S2, or S2 ⊆ S1, or both (in which case S1 = S2). These
follow from the important equality

|S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|. (1.21)

From the definition of the empty set, it follows that |Ø| = 0. For continuous sets, such
as the interior of a cube or sphere, expressions analogous to (1.21) hold where | · | is
replaced by V ol(·), the volume of the continuous set. The function | · | takes sets as
its arguments and returns non-negative real numbers, R≥0. This is not the only such
function. For example, given a subset A ⊂ S, the indicator function, IA : S → R≥0, is
defined for any x ∈ S as9

IA(x) =
{

1 if x ∈ A
0 otherwise. (1.22)

The indicator function has the properties

IA∪B(x) = IA(x) + IB(x) − IA∩B(x) and IA∩B(x) = IA(x)IB(x). (1.23)

The concept of an indicator function is not limited to finite sets.

Surjective, Injective, and Bijective Mappings

The mappings n : S → N , g : S → G, and (l ◦ n) → {M,K,A} were from one set into
another set of different size (having either more or fewer elements). In the case of (l ◦n)
and g, every element of the set to which the arrow pointed was “used up.” In other
words, g(S) = G and (l ◦n)(S) = {M,K,A}. More generally, if the image of a mapping
m : S1 → S2 has the property that m(S1) = S2, then the mapping is called onto, or
surjective. Therefore (l ◦ n) and g are surjective. If a mapping m : S1 → S2 has the
property that each element of the image m(S1) corresponds to only one element in S1,
then m is called one-to-one, or injective. Stated another way, for an injective mapping
m(σ1) = m(σ2) =⇒ σ1 = σ2 for all σ1, σ2 ∈ S1. Of the mappings examined above,
n : S → N is injective. A mapping that is both injective and surjective is called bijective,
or invertible. None of the mappings n : S → N , g : S → G, and (l ◦ n) → {M,K,A}
can be bijective, because in each case the numbers of elements in the sets on both sides
of the arrows are different. Therefore these mappings could not be bijective, and could
not be inverted. As an example, if each student is assigned a number by the function
#(si) = i, then # : S → {1, 2, 3, 4, 5} is bijective. Also, if instead of the mapping
n : S → N (where N is the set of all names of people in the graduate program), a
restricted mapping n : S → n(S) is defined, then this will be bijective because n is
injective, and the set to which this injective function maps has been pruned down to be
the same size as the set from which it draws its arguments.

9Here R>0 denotes the positive real numbers, and R≥0 is therefore the non-negative real
numbers. In some other texts these are referred to as R+ and R+ ∪ {0}, respectively.
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When a mapping is of the form m : S1 → R (the real numbers) or m : S1 → C

(the complex numbers), then the mapping is called a function. Sometimes the words
mapping and function are used interchangeably, but when there is a difference, it is the
one just mentioned. The concept of a set is not restricted to the case where there are
a finite number of members. Indeed, most of the sets in this book are continuous sets.
Continuous sets are usually called spaces.

Products, Metrics, and Groups

It was already shown how a set can be “divided” into disjoint subsets by a mapping. It
is also possible to form the product of two sets. Given two sets S1 and S2, the Cartesian
product is the set defined as

S1 × S2 = {(σ, τ)|σ ∈ S1 , τ ∈ S2}. (1.24)

This is read as “S1 × S2 is the set consisting of all ordered pairs, the first entry of
which runs over all elements of S1 and the second runs over all entries of S2.” From this
definition, in general S1 × S2 = S2 × S1, but |S1 × S2| = |S2 × S1| = |S1| · |S2|.

The Cartesian product construction has several important simplifying effects when
stating definitions. For example, suppose that some sense of distance exists between
elements in a set S. Then a distance function is not defined on S, but rather on the
Cartesian product of S with itself as d : S × S → R≥0. Recall that R>0 denotes the
positive real numbers, and R≥0 denotes the non-negative real numbers. That is, d takes
pairs of elements, each of which is drawn from S and returns a non-negative number.
In addition, a valid distance function or metric must satisfy the following properties for
any s1, s2, s3 ∈ S:

d(s1, s2) ≥ 0 with d(s1, s2) = 0 ⇐⇒ s1 = s2 (1.25)

d(s1, s2) = d(s2, s1) (1.26)

and
d(s1, s2) + d(s2, s3) ≥ d(s1, s3). (1.27)

These properties are called positive definiteness, symmetry, and the triangle inequality.
As a concrete example of the concepts of Cartesian product and metric, consider

Rn .= R × R × · · · × R︸ ︷︷ ︸
n times

.

This is the usual space of n-dimensional vectors, and the usual metric, d : Rn × Rn →
R≥0, is defined as

d(x,y) .= ‖x − y‖ =

√√√√ n∑
i=1

(xi − yi)2. (1.28)

The Cartesian product construction also makes it possible to define binary operations
that take in two elements of a set and return another element of that set: b : S×S → S.
Such operations form the core of many definitions of mathematical objects. For example,
a group is a nonempty set G together with a binary operation b : G×G → G such that
there exists a special element e ∈ G with the property b(e, g) = b(g, e) = g; for each
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g ∈ G, there is an element g−1 ∈ G such that b(g, g−1) = b(g−1, g) = e; and for any
three elements g1, g2, g3 ∈ G the associative law holds: b(g1, b(g2, g3)) = b(b(g1, g2), g3).
As shorthand for this, the concept of a group operation, ◦, can be used to write b(g1, g2) =
g1 ◦ g2. Then, for example, the associative law can be written with fewer symbols as
(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3). A group will usually be denoted as (G, ◦). In cases where
the operation is obvious, the group can be referred to simply as G.

Families of Sets and Valuations

A family is a set of sets, F = {S1, S2, S3, ...}, that have common attributes. The family
may be finite or infinite, and may even be uncountably infinite.10 In the latter case, the
constituent sets cannot be enumerated as was done in the preceding sentence. Unions
and intersections can be taken over families as⋃

α∈I
Sα and

⋂
α∈I

Sα

where I is the indexing set. For example, if F is defined as in the first sentence of this
paragraph, then⋃

α∈I
Sα = S1 ∪ S2 ∪ · · · and

⋂
α∈I

Sα = S1 ∩ S2 ∩ · · ·

where the indexing set runs over all the subscripts, i.11

If L = {S1, S2, ...} is a special kind of family of subsets of a set S such that every
element of L can be constructed from finite unions or finite intersections of other ele-
ments of L, and ∀i, j Si ∩Sj ∈ L and Si ∪Sj ∈ L, then sometimes L is called a partially
ordered lattice. This means that subsets can be ordered according to which ones contain
others. For example, if

S = {s1, s2, s3} and L = {{s1}, {s2}, {s3}, {s1, s2}, {s2, s3}, {s1, s3}, {s1, s2, s3}},

then
{s1} ⊂ {s1, s2} ⊂ {s1, s2, s3}, {s2} ⊂ {s1, s2} ⊂ {s1, s2, s3}, etc.

This is only a partial ordering because it is not possible to lay out all of the elements
of L in one sequential expression in which every element is contained in another. Any
function μ : L → R≥0 that has the properties

μ(Si ∪ Sj) = μ(Si) + μ(Sj) − μ(Si ∩ Sj) and μ(Ø) = 0 (1.29)

is called a valuation or additive measure on L. Concrete examples of valuations include
the volume of a finite body and the area of the surface that bounds a finite body. These
can obviously be computed for the intersection of two bodies. For finite sets (1.21) is
also an example of a valuation. While the set-indicator function has the similar looking
property (1.23), its arguments are not sets in a partially ordered lattice, but rather are
elements of arbitrary set.

10Uncountably infinite sets include, but are not limited to, continuous sets.
11A family of sets can also be defined by a non-countable index.
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1.4.4 Transformation Groups

A special kind of bijective mapping from one set back into itself is a transformation
group. This concept is defined formally in Volume 2. For now, a simple example suffices.
Consider R2, the set of all two-dimensional real vectors. If x ∈ R2 and

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
denotes a 2 × 2 rotation matrix, then R(θ)x ∈ R2. If R2 is viewed as the union of an
infinite number of concentric circles centered at the origin, 0 = [0, 0]T , then a point on
the circle stays on the circle after the application of R(θ). Each of these circles is called
an orbit. If G = {R(θ)| ∀ θ ∈ [0, 2π)}, then the notation R2/G is used to denote the set
of all such orbits. Membership in an orbit is an equivalence relation, and R2/G is the
set of equivalence classes. The rotation matrices have the property

R(θ1)R(θ2) = R(θ1 + θ2), (1.30)

which means that they are closed under matrix multiplication, and furthermore,

R(θ1)[R(θ2)x] = [R(θ1)R(θ2)]x. (1.31)

The property (1.30) implies closure (and even more than that, commutativity,
R(θ1)R(θ2) = R(θ2)R(θ1)). The property (1.31) is an example of a group action. Gener-
ally speaking, a group acting on a set either will divide that set into equivalence classes,
or else it acts transitively (i.e., it can transform any element of the set into any other,
in which case the whole set is one equivalence class).

The set G is an example of a Lie group. It is a continuous set of transformations that
is closed under an associative operation (which in this case is matrix multiplication). It
has an identity element (θ = 0) and every element R(θ) has an inverse R−1(θ) = R(−θ).
This group happens to be one-dimensional, commutative, and compact.

1.4.5 Understanding Commutative Diagrams

Commutative diagrams are used in many parts of modern mathematics to illustrate the
relationship between different mappings. For example, consider the following example
from linear algebra.12 If x ∈ Rm, then pre-multiplication by a matrix B ∈ Rn×m

produces a vector y = Bx ∈ Rn. If this vector in turn is pre-multiplied by A ∈ Rp×n,
the result will be z = Ay ∈ Rp. The composite mapping has the properties

z = A(Bx) = (AB)x

that result from the associative property of matrix multiplication.
As a second example, consider two mappings f : U → V and g : V → W where

U, V,W ⊂ R. If y = f(x) and z = g(y), they can be composed as z = (g◦f)(x) = g(f(y)).
In general, the mapping (g ◦ f) will not be the same as (f ◦ g).

Both of the above examples can be illustrated with commutative diagrams:

12See the appendix for definitions.
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Rm B

AB

Rn

A

Rp

U
f

g◦f

V

g

W (1.32)

These diagrams have been given an equation number (as opposed to a figure caption)
because they convey exactly the same information as equations.

Now, in light of the concept of a commutative diagram, consider the chain rule,
which should be familiar to those who have gone through an undergraduate engineering
or science program. Given a differentiable mapping f : Rm → Rn, classical multivariable
calculus defines the differential

df = f(x + dx) − f(x)

(where dx is infinitesimally small in the sense that ‖dx‖ is almost zero), and provides
the means to evaluate df as

df = Dfdx where Df =
[
∂fi

∂xj

]
∈ Rn×m. (1.33)

The matrix Df is called the Jacobian, and is sometimes denoted as J = ∂f/∂x. For
reasons that are explained in the appendix, ∂f/∂x is not good notation. In contrast, it
is better to write

Df =
∂f
∂xT

,

where a raised T denotes the transpose of a vector. If m = n, the determinant of this
matrix is denoted as

|Df | = det
∂f
∂xT

=
∂(f1, ..., fn)
∂(x1, ..., xn)

= J(x). (1.34)

These are simply four different notations for the same thing. In different contexts each
will have its advantages.

If φ : Rn → R, then

∇xφ
.=

∂φ

∂x
∈ Rn. (1.35)

This is the gradient of φ(x), and is a column vector (which is why the x is not transposed
in the denominator).

Given a second mapping, g : Rn → Rp, the composite function (g ◦ f) : Rm → Rp is
evaluated by back substitution as (g◦ f)(x) = g(y) where y = f(x). This can be written
without introducing the variable y as

(g ◦ f)(x) = g(f(x)).

The classical chain rule then specifies the following product of Jacobian matrices13

d(g ◦ f) = DgDf dx where Dg =
∂g
∂yT

∣∣∣∣
y=f(x)

∈ Rp×n (1.36)

13The notation ∂g/∂yT is explained in the appendix.
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and Df is defined as before. This can be visualized using a commutative diagram such
as the one that follows.

x ∈ Rm f

d

f(x) ∈ Rn
g

d

(g ◦ f)(x) ∈ Rp

d

dx ∈ Rm

Df
df ∈ Rn

Dg
d(g ◦ f) ∈ Rp

(1.37)

The horizontal arrows at the top represent the application of the functions, and those
at the bottom represent matrix multiplication. Both of these operations concatenate on
the left side. The downward-pointing arrows denote the operation of taking a differential.
The directions of the arrows indicate valid orders of operations. In this diagram three
paths from start to finish are valid. These are “down-right-right,” “right-down-right,”
and “right-right-down.” Each of these corresponds to the different quantities that can
be equated where the tips of the arrows meet. In particular, these three paths give
DgDfdx = Dg df = d(g ◦ f).

Of course, the chain rule can be understood perfectly well by (1.33) alone, but
other more difficult concepts that will come later will be easier to understand with the
assistance of commutative diagrams.

Equipped with these basic concepts, the remaining chapters are designed to contain
sufficient descriptions to be understandable without prior knowledge (other than the
concepts reviewed in the appendix) if read sequentially. In some instances it is possible
to skip chapters, and then glean relevant definitions and results by occasionally skipping
backwards using the pointers that are provided. More in-depth treatments of the topics
reviewed in this introduction can be found in the classic books on modern algebra [3]
and topology [9].

1.5 Transport Phenomena and Probability Flow

It will often be the case in problems discussed in later chapters that a time-evolving
probability density function changes shape, and it is desirable to know how much prob-
ability is contained in a particular domain as a function of time.14 A domain in R3 with
finite non-zero volume is called a finite body and is denoted as B. Its boundary is ∂B,
and will be assumed here to be smooth (i.e., infinitely differentiable). The probability
associated with the body B is

p(t) .=
∫
x∈B⊂Rn

f(x, t)d(x)

where f(x, t) is a probability density function. It could be that the body itself changes
its size, shape, and/or location as a function of time in which case B = B(t). When it
is clear that it is static, then B = B0

.= B(0).

14The concept of a probability density function is defined and used in the next two chapters.
The current section can be skipped if this concept is unfamiliar.
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Here the notation d(x) is used to denote dx1dx2 · · · dxn, the n-dimensional volume
element. In R2 it will sometimes be useful to denote this as dA (a differential area
element) and in R3 to call it dV (the usual three-dimensional differential volume ele-
ment). The notation d(x) should not be confused with either the infinitesimal vector
dx = x(t + dt) − x(t), or the metric d(x,y) defined in (1.28). These are three very
different things.

Often in applications it will be the case that f(x, t) is the solution to a partial
differential equation (i.e., a diffusion equation). And it would be convenient to use this
fact to update p(t) → p(t + dt), without having to actually recompute the above n-
dimensional integral.

The flow of probability density can be thought of as the flow of a fluid, or of heat. In
this analogy, probability flows in and out of the body B by crossing its boundary. And
in some applications, the body B itself may change with time. This makes the problem
of rapidly updating the value of p(t) akin to problems in mechanics in which material
and/or heat enter and leave a “control volume.” Such problems in R3 involve the use of
the divergence theorem and Stokes’ theorem (see the appendix for definitions). It makes
sense, then, that the extension of these ideas to higher dimensions and in non-Euclidean
spaces should be of interest in studying probability flow problems. And for this reason,
the concept of differential forms and Stokes’ theorem as stated in (1.16) will be useful
tools. But for now, some review of the mechanics of transport phenomena and heat flow
will be instructive.

1.5.1 Continuum Mechanics

The field of mechanics is concerned with the interplay between forces, deformation, and
motion of objects that have a smooth15 distribution of mass over a finite volume. Such
objects can be solid or fluid. And applied forces can be decomposed into normal and
shear components. The essential difference between a solid and a fluid is that a solid
resists all forces that attempt to deform it, while a fluid only resists normal forces and
the rate with which shear forces are applied. A fluid will continue to deform (or flow) as
long as a shear stress is applied, whereas a solid will not. However, both solids and fluids
are continuous media that can be described using continuum mechanics. The review of
continuum mechanics provided here follows the more detailed presentations in [6, 7, 8].

The Volume of a Deformable Body

Let B ⊂ R3 denote a finite body. The points contained in B, denoted as x ∈ B, can
describe a solid object. Or, a fluid can flow in and out of B by crossing the boundary
surface ∂B. The body B can change with time, and so B = B(t). Denoting B0 = B(0)
as the initial body, and X ∈ B0 as an arbitrary initial point,16 then a deformation is a
mapping x : B0 → B that takes each point X ∈ B0 and returns its new location x ∈ B(t)
at time t. In other words, x = x(X, t). The inverse of this mapping is X = X(x, t), and
so

x = x(X(x, t), t) and X = X(x(X, t), t).

Computing the Jacobian matrices of these composed mappings gives
15Here all functions are C∞(R3).
16Usually in this book upper-case letters are reserved for matrices or sets, but after 200

years of refinement, X has become the standard notation for the initial/referential coordinates
in mechanics problems. Since X is bold, there should be no confusing X with a matrix.
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DxDX = DXDx = I

where I is the 3 × 3 identity matrix.
The element of volume in the initial (or referential) state is related to the element

of volume in the current state as

d(x) = |Dx|d(X) where |Dx| = det[∂xi/∂Xj ] > 0.

The strict inequality |Dx| > 0 holds for any physically feasible (or admissible) defor-
mation. A second condition that every admissible deformation must satisfy is that it is
injective. That is, two particles initially at two different locations in a body cannot be
mapped under a deformation to the same point:

X1 = X2 =⇒ x(X1, t) = x(X2, t) ∀ X1,X2 ∈ B0.

The volume of the body at the current time is

V (t) =
∫

B(t)
d(x) =

∫
B0

|Dx|d(X).

And more generally, given a function of the current position of particles, f : B(t) → R,
it can be represented in the referential coordinates as∫

x(B0,t)
f(x)d(x) =

∫
B0

f(x(X, t))|Dx|d(X). (1.38)

Or by defining φ(X) .= |Dx|(f ◦ x)(X) and observing that B(t) = x(B0, t), then the
same thing can be written as∫

B(t)
φ(X(x))|DX|d(x) =

∫
X(B(t),t)

φ(X)d(X), (1.39)

where X(B(t), t) = B0. These are both special cases of the inverse function theorem
reviewed in the appendix.

In modern geometric terminology, the composed function f ◦x (which for each fixed
value of t is a function of X ∈ B0), is called the pull-back of the function f (which
is a function of x ∈ B(t)) via the mapping x : B0 → B(t). The word “pull-back” is
used because it is describing the situation at the base end of the arrow in the mapping
x : B0 → B(t) starting with a function defined on the domain at the distal end of the
arrow. In contrast, if c : [0, 1] → B0 is a curve segment in referential coordinates, then
the curve segment that results after a deformation is x ◦ c : [0, 1] → B(t). This is called
the push-forward of the curve c(t) via the mapping x : B0 → B(t) because the new
curve segment that results is obtained by following the direction of the arrow in the
mapping.

Later it will be important to remember that the push-forward relates to curves
and pull-backs relate to functions. And because tangent vectors can be associated with
curves, and normal vectors can be associated with functions, push-forwards and pull-
backs of vectors (and vector fields) can be defined. But it will not be until Chapters 6
and 7 that these concepts play an important role.
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Lagrangian vs. Eulerian Descriptions

In solid mechanics problems it is often convenient to use a material (or Lagrangian)
description in which each material point is tracked from its initial position to its current
position. For example, the velocity and acceleration of a material particle are calculated
respectively as

v =
∂x
∂t

and a =
∂2x
∂t2

where x = x(X, t) (1.40)

for a fixed value of X corresponding to a particular material particle.
In contrast, in fluid mechanics problems it is often more convenient to examine the

flow of material through a fixed point in space, rather than keeping track of individual
material particles. This is known as the spatial (or Eulerian) description.

Associated with each body is a mass density function. This real-valued function
is written in referential coordinates as ρ(X, t). In the spatial description, this same
quantity would be written as

ρ∗(x, t) .= ρ(X(x, t), t). (1.41)

Other functions, which can be vector-valued or matrix/tensor-valued, can also be defined
on a body. For any such function, which can be expressed in terms of its components
as F (X, t) = [Fij···(X, t)], the full time derivative is

dFij···
dt

=
∂Fij···(X, t)

∂t
.

In contrast, the same quantity viewed from the perspective of spatial coordinates will
be

F ∗(x, t) .= F (X(x, t), t),

and the time derivative will be computed in this case according to the chain rule:

dF ∗(x, t)
dt

=
∂F ∗(x, t)

∂t
+

3∑
i=1

∂F ∗(x, t)
∂xi

∂xi

∂t
.

But from (1.40) this can be written as

dF ∗(x, t)
dt

=
∂F ∗(x, t)

∂t
+ v∗ · ∇xF

∗(x, t) (1.42)

where v∗(x, t) .= v(X, t) and the · is the scalar (dot) product.
If F ∗ is viewed as a k-dimensional array with three entries in each dimension, the ∇x

operation makes ∇xF
∗(x, t) a (k + 1)-dimensional array, and the v∗· operation reduces

this back down to k dimensions.
For example, if F ∗(x, t) is replaced with v∗(x, t), then the Eulerian description of

the acceleration of fluid flowing through the position x at time t becomes

a∗(x, t) =
dv∗(x, t)

dt
=

∂v∗(x, t)
∂t

+ v∗ · ∇xv∗(x, t).
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Mass Balance

If particles of mass in a continuum are tracked and B(t) evolves so as to include all of
the original particles in B0 and no others, then even if B changes in size and shape with
time, it must be the case that∫

B(t)
ρ∗(x, t) d(x) =

∫
B0

ρ(X, 0) d(X). (1.43)

This is a physical statement rather than a mathematical one. Since the quantity on the
right side is a constant, another way to write this same thing is

d

dt

∫
B(t)

ρ∗(x, t) d(x) = 0.

This is the conservation of mass integral.
The equality in (1.43) can be localized by observing (1.38) for f(x) = ρ∗(x, t) for

each fixed t to write∫
B(t)

ρ∗(x, t) d(x) =
∫

B0

ρ∗(x(X, t), t) |Dx| d(X). (1.44)

In other words, combining (1.43) and (1.44) yields∫
B0

{ρ∗(x(X, t), t) |Dx| − ρ(X, 0)} d(X) = 0.

Observing that this must be true for any initial volume B0 and using the definition in
(1.41) means that the integrand can be localized as

ρ(X, t) |Dx| = ρ(X, 0) . (1.45)

In the spatial-coordinate version of the conservation of mass, an integral over a fixed
body, B∗ = B0, is computed. The mass inside of this fixed body is

M =
∫

B∗
ρ∗(x, t)d(x).

Since the body is fixed, so too is its boundary. The time rate of change of mass inside
of the fixed volume is

d

dt

∫
B∗

ρ∗(x, t) d(x) =
∫

B∗

∂ρ∗(x, t)
∂t

d(x).

Since mass is neither created nor destroyed, and since the spatial volume B∗ is fixed, the
only way that dM/dt can be non-zero is if mass enters or leaves through the boundary
of B. In other words,

dM

dt
= −

∫
∂B∗

ρv · n dS

where n is the outward-pointing surface normal and v(x, t) is the velocity of the fluid.
Combining the above results, and converting the surface integral to a volume integral
using the divergence theorem in (1.18) gives
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B∗

{
∂ρ∗

∂t
+ ∇x · (ρ∗v∗)

}
d(x) = 0.

Since this must hold for any fixed volume B∗, it can be localized as

∂ρ∗

∂t
+ ∇x · (ρ∗v∗) = 0. (1.46)

This is the continuity (or conservation of mass) equation in spatial coordinates.

The Reynolds Transport Theorem

Given any scalar, vector, or tensor quantity that is not spontaneously created or de-
stroyed, the same argument that was used above for mass density can be used to write
a balance equation. Let F ∗(x, t) be the quantity of interest. Then [7, 8]

d

dt

∫
B∗

F ∗ d(x) =
∫

B∗

∂F ∗

∂t
d(x) +

∫
∂B∗

(v∗ · n)F ∗ dS. (1.47)

The right-hand side of the above equation can be written as a single volume integral by
using the divergence theorem. The result is

d

dt

∫
B∗

F ∗ d(x) =
∫

B∗

{
∂F ∗

∂t
+ v∗ · (∇xF

∗)
}

d(x). (1.48)

Now suppose that F ∗ = ρ∗Θ∗ where ρ∗ = ρ∗(x, t) and Θ∗ = Θ∗(x, t). Using the
continuity equation (1.46), it can be shown (see Exercise 1.10) that (1.48) simplifies to

d

dt

∫
B∗

ρ∗Θ∗ d(x) =
∫

B∗
ρ∗ dΘ

∗

dt
d(x) (1.49)

where both of the time derivatives in this expression are full derivatives. This is the
Reynolds transport theorem in its simplest form. It is used extensively in mechanics
to “bring d/dt inside the integral.” Some specific cases are illustrated in the following
subsections.

Momentum Balance

Newton’s second law states that for a single particle, f = d(mv)/dt where v = dx/dt
is the position of the particle as measured in an inertial reference frame.17 Based on
this, it has been postulated that for a continuum, the time rate of change of the total
momentum flowing into and out of a fixed control volume must be equal to the applied
forces. These forces are broken into two categories: (a) those that act on the surface of
the control volume (e.g., the forces imposed by restraints to keep the control volume fixed
in space) and (b) those that act directly on the interior (e.g., gravity or electromagnetic
forces). Given a fixed control volume, the momentum balance equation is written as∫

∂B∗
t∗ dS +

∫
B∗

ρ∗b∗ d(x) =
d

dt

∫
B∗

ρ∗v∗ d(x) (1.50)

17That is, a reference frame that is not accelerating, which means that it is either not moving,
or moving in pure translation with a constant velocity relative to a frame fixed in space.
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where t∗(x, t) for x ∈ ∂B∗ is the so-called surface traction (force per unit area) acting
on the boundary surface, and b∗(x, t) is the force per unit mass acting on each point in
the volume, x ∈ B∗.

The Reynolds transport theorem (1.49) can be used to transform the right side
of (1.50) with Θ∗ = v∗ by bringing the time derivative under the integral, and the
divergence theorem can be used to convert the surface integral to an integral over B∗.
From there, the equations can be localized.

Angular Momentum Balance

For a collection of particles, each obeying Newton’s second law, fi = d(mivi)/dt, the
angular momentum is defined as L =

∑
i xi × mivi. The time rate of change of this

angular momentum is equal to the moment due to the applied forces: dL/dt =
∑

i xi×fi.
Angular momentum (or moment of momentum) is postulated to balance in a similar

way for a continuum:∫
∂B∗

x × t∗ dS +
∫

B∗
x × ρ∗b∗ d(x) =

d

dt

∫
B∗

x × ρ∗v∗ d(x). (1.51)

Again, the divergence theorem and the Reynolds transport theorem (now with Θ∗ =
x × v∗) can be used to convert this to a localized form.

Continuum mechanics also takes into account the balance of energy that enters and
exits a control volume. But this important topic will not be addressed here, since it does
not relate to the remainder of the book.

1.5.2 Heat Flow and Entropy

In later chapters, concepts of probability flow and information-theoretic entropy are
defined and used heavily. These concepts can be related to analogies in the physical
world. While analogies are often useful in gaining understanding, limits exist where
they break down. For example, the statement “doing the exercises in Chapter 1 of
Chirikjian’s book is a piece of cake” is an analogy (or metaphor) indicating how easy
the problems are. However, the analogy breaks down at several levels, including the
fact that eating cake carries calories, but solving exercises burns them. For this reason,
physical quantities analogous to probability flow and information-theoretic entropy are
reviewed in this section, but limits of these analogies should be kept in mind.

Heat Conduction

In heat conduction problems, a function called the (absolute) temperature, which is
denoted as ϑ(x, t), is defined on a solid body B at each value of time. That is, ϑ :
B × (R≥0) → R≥0. If the body is surrounded by other solid material, then heat can
pass through the boundary ∂B by a physical phenomenon known as thermal conduction
[11, 12]. In other words, when a solid object that is cold is placed in contact with a solid
object that is hot, over a period of time the temperature of the two bodies will tend
to average out, where the exact value of the average will depend on the materials that
constitute the bodies, their relative sizes, and their initial temperatures. This averaging
process is due to the exchange of a physical quantity known as heat. The flow of heat is
governed by Fourier’s law of heat conduction:18

18The same equation governs molecular diffusion processes, but in that context it goes under
the name of Fick’s law.
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q = −K grad(ϑ) (1.52)

where K : R3 → R3×3 is a symmetric matrix-valued function with positive eigenval-
ues (see appendix for definition) called the thermal conductivity matrix. The gradient
grad(ϑ) = ∇xϑ = ∂ϑ/∂x points in the direction of maximal temperature. The negative
sign then dictates that in the special case when K = k(x)I (where I is the 3×3 identity
matrix and k : R3 → R>0), the heat current density q(x, t) points in the direction of
minimal temperature. But more generally, this direction can be altered by K(x) because
the body may not be homogeneous, and different materials transmit heat more readily
than others.

If there is no internal production of heat in the body, then there must be a balance
of heat entering and leaving the body. In conduction problems, the only way for heat
to enter or leave the body is by flow across its boundary. As heat enters the body, the
average temperature rises, and as heat leaves, the average temperature falls. This is
captured by the balance equation∫

B

c(x)ρ(x)ϑ(x, t) dV = −
∫ t

0

∫
∂B

q · n dS dt

where c(x) is the heat capacity per unit mass and ρ(x) is the mass density per unit
volume within the body.19 The quantity q · n is the heat flux crossing the boundary,
where n is the outward-pointing normal.

When the body itself does not change with time (i.e., it does not change in size,
shape, or location), differentiating both sides of the above equation with respect to time
gives ∫

B

cρ
∂ϑ

∂t
dV = −

∫
∂B

q · n dS.

The term on the right can be converted to an integral over volume using the divergence
theorem. Then, if everything is moved to the left side of the equation, this gives∫

B

{
cρ

∂ϑ

∂t
+ div(q)

}
dV = 0

where div(q) and ∇x · q are simply different ways of writing the same thing. Since this
equation holds for any body B, the integrand can be localized as

cρ
∂ϑ

∂t
= −div(q). (1.53)

This equation is the continuity equation for heat flow.
Combining (1.53) and (1.52) results in the heat equation

cρ
∂ϑ

∂t
= div(Kgrad(ϑ)). (1.54)

When K = kI and k, c, ρ are all constant, this reduces to

∂ϑ

∂t
= κ∇2ϑ

where κ = k/cρ and ∇2ϑ =
∑3

i=1 ∂2ϑ/∂x2
i . The solutions to this equation subject to

particular initial conditions will be examined in detail in the next chapter.
19In the elementary problem considered here, the body is assumed to not change shape, and

so x = X, B = B∗, and ρ(x, t) = ρ(x).



1.6 Organization of this Book 27

Thermodynamic Entropy

It was postulated in the mid-nineteenth century that a physical quantity called entropy
exists. Given a body (or control volume), B∗, the total entropy inside of B∗ is denoted
as

S =
∫

B∗
s∗(x, t)ρ∗(x, t)d(x)

where the integrand on the right side is expressed using the Eulerian description, and
s∗(x, t) is the entropy per unit mass at the point x and time t. The Clausius–Duhem
inequality states [8]:

dS

dt
≥
∫

B∗

r

ϑ
ρ∗ dV −

∫
∂B∗

1
ϑ

q · n dS (1.55)

where r is the internal heat supply per unit mass and time, and all other quantities are
the same as defined earlier.

If the system is closed, so that no heat is imported or exported across ∂B∗, and if
a positive heat is produced internally (for example, due to a chemical reaction such as
combustion), then the entropy of the system contained in B∗ will increase. This is a
version of the Second Law of Thermodynamics.

In future chapters, analogous expressions such as dS/dt ≥ 0 will be observed where
S is information-theoretic entropy defined for a given probability density function that
solves a diffusion equation analogous to the heat equation in (1.54).

1.6 Organization of this Book

Chapter 2 provides a detailed description of the Gaussian distribution on the real line,
and in Rn. The adaptation of Gaussian distributions to finite domains by folding or
clipping and renormalizing is discussed. The relationship between the Gaussian distri-
bution and the heat equation on the real line, on the circle, and on Rn is examined.
Symmetries of the heat equation are also discussed briefly.

With concrete examples of probability density functions in hand from Chapter 2,
the general definitions and theorems of probability and information theory in Euclidean
space are presented in Chapter 3. These include the concept of mean, variance, condi-
tional expectation, Fisher information, Cramér–Rao bound, entropy power law, central
limit theorem, etc.

Chapter 4 provides an introduction to stochastic differential equations (SDEs) from
the perspective of mathematical modeling. Given an ordinary differential equation that
is forced by noise, what will the ensemble behavior of the resulting sample paths be?
The Wiener process is examined, the increments of which are used to define white-
noise forcing. All other kinds of noise used throughout this book are built on this
noise concept. The relationship between the Itô and Stratonovich forms of an SDE are
explained,. The corresponding Fokker–Planck equations are derived. It is shown how
changes in coordinate systems affect these equations.

Ultimately, the main difference between this book and others on stochastic modeling
is that the problems addressed here involve random processes that evolve on geometric
objects. Therefore, Chapter 5 presents a self-contained review of geometry, starting
with analytic geometry from a parametric and algebraic perspective. Then the local
and global differential geometry of curves and surfaces in three-dimensional Euclidean
space are developed.
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A fundamental difference between high-dimensional spaces and R3 is that the con-
cept of the vector cross product needs to be modified. This is critical, for example, in
the derivation of formulas for the high-dimensional analogues of surface area and the
curl operator. Differential forms are a useful tool in this regard, and Chapter 6 serves
as an introduction to this topic.

When describing the motion of complicated objects such as robots and biological
organisms, keeping track of their constituent parts can be viewed as the motion of a
point in a high-dimensional space. This necessarily transforms the original problem into
one of geometry on manifolds. This is the subject of Chapter 7. Differential forms are
shown to be the natural tool to use to integrate on manifolds, as well as to define
intrinsic geometric features such as curvature.

Chapter 8 addresses stochastic differential equations on manifolds, and shows how
Fokker–Planck equations are derived in this setting. Brownian motion on the sphere is
used as an illustrative example.

The appendix reviews linear algebra, multivariate calculus, and systems theory.
Volume 2 in this collection will focus on the concept of Lie groups and will apply

the methods developed in the current volume to that setting. It will also address how to
solve problems in engineering and biology such as those described earlier in this chapter,
as well as many more.

1.7 Chapter Summary

This chapter introduced a number of concepts from mathematics and mechanics. Termi-
nology that will be used throughout the book has been established. Intuitive (mechan-
ical) ideas related to fluid and heat flow were presented to serve as physical analogies
that can be referred back to when examining more abstract problems. The exercises that
follow will reinforce the ideas discussed here. Additional reading in any of the topics
presented may be helpful. A substantial list of references is provided at the end of each
chapter.

The next chapter will discuss the Gaussian distribution. This is an important topic
in probability and statistics. The approach is concrete and explicit. Once familiarity
with every aspect of the Gaussian distribution is mastered, then more general (and
hence more abstract) presentations of probability, information theory, and stochastic
processes will follow.

1.8 Exercises

1.1. Let f(θ) = θ for θ ∈ [0, 2π). Calculate the Fourier coefficients by hand and plot the
Fourier series approximation fN (θ) in (1.12) for N = 2, 5, 100.

1.2. Indicate whether or not the following functions from R to R are injective, surjective,
or bijective: (a) f(x) = x; (b) f(x) = x2; (c) f(x) = x3; (d) f(x) = ex.

1.3. Determine which of the following are valid metric functions on the plane R2:
(a) φ1(x,y) = |x1 − y1| + |x2 − y2|; (b) φ2(x,y) = [(x1 − y1)2 + (x2 − y2)2]

1
2 ;

(c) φ3(x,y) = [(x1 − y1)3 + (x2 − y2)3]
1
3 ; (d)

φ4(x,y) =
{

1 if x = y
0 if x = y.
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1.4. Show that the matrices R(θ) in (1.30) form a group under the operation of matrix
multiplication.

1.5. Show that the set of matrices of the form g(x, y, θ) in (1.1) form a group under the
operation of matrix multiplication where (x, y, θ) ∈ R2 × [0, 2π).

1.6. By recursively applying (1.29) prove that for any L = {S1, S2, ...}, a valuation
satisfies the inclusion–exclusion relationship

μ(S1 ∪ S2 ∪ · · · ∪ Sn) =
n∑

k=1

αk

∑
i1<i2<···<ik

μ(Si1 ∩ Si2 ∩ · · · ∩ Sik
) (1.56)

where αk is a function of k that you will determine.

1.7. Let f : R3 → R2 be defined by f(x) = [x2
1 + 2x2, x1x3]T and g : R2 → R be defined

by g(y) = y1 sin y2 for y ∈ R2 and x ∈ R3. Calculate the Jacobians for these functions
and demonstrate that the commutative diagram in (1.37) holds.

1.8. Show that when α > 0 and n ∈ {1, 2, 3, ...}, each member of the family of functions
{φα,n(x)} defined in (1.6) is smooth (i.e., all of its derivatives exist). What is the Taylor
series of φα,n(x) about x = 0?

1.9. Prove that for x = x(X, t), the Jacobian determinant j = |Dx| satisfies the differ-
ential equation

∂j

∂t
= j ∇x · v∗.

1.10. Prove the Reynolds transport theorem as stated in (1.49).
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2

Gaussian Distributions and the Heat Equation

In this chapter the Gaussian distribution is defined and its properties are explored. The
chapter starts with the definition of a Gaussian distribution on the real line. In the
process of exploring the properties of the Gaussian on the line, the Fourier transform
and heat equation are introduced, and their relationship to the Gaussian is developed.
The Gaussian distribution in multiple dimensions is defined, as are clipped and folded
versions of this distribution. Some concepts from probability and statistics such as mean,
variance, marginalization, and conditioning of probability densities are introduced in a
concrete way using the Gaussian as the primary example. The properties of the Gaussian
distribution are fundamental to understanding the concept of white noise, which is the
driving process for all of the stochastic processes studied in this book.

The main things to take away from this chapter are:

• To become familiar with the Gaussian distribution and its properties, and to be
comfortable in performing integrals involving multi-dimensional Gaussians;

• To become acquainted with the concepts of mean, covariance, and information-
theoretic entropy;

• To understand how to marginalize and convolve probability densities, to compute
conditional densities, and to fold and clip Gaussians;

• To observe that there is a relationship between Gaussian distributions and the heat
equation;

• To know where to begin if presented with a diffusion equation, the symmetries of
which are desired.

2.1 The Gaussian Distribution on the Real Line

2.1.1 Defining Parameters

The Gaussian distribution on the real line is any function of the form ρ(x − x0) where

ρ(x) = ce−ax2
(2.1)

and c ∈ R>0 is related to a ∈ R>0 by the constraint that

I
.=
∫ ∞

−∞
ρ(x)dx = 1. (2.2)
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This constraint, together with the fact that ρ(x) ≥ 0 makes it a probability density
function (or pdf for short). That is, any non-negative function satisfying (2.2) (not only
those of the form in (2.1)) is a pdf.

The Gaussian distribution is the “bell curve” so often referred to when discussing
statistical quantities. It is an infinitely differentiable function. Taking the first derivative
gives

dρ

dx
= −2acxe−ax2

.

From this it is clear that ρ(x) has a critical point at x = 0, and this is its only critical
point. The second derivative of ρ(x) evaluated at x = 0 is

d2ρ

dx2 |x=0 = −2ac,

which is always negative, indicating that x = 0 is a maximum, and the maximal value
that ρ(x) can attain is c. Furthermore, due to the negative sign in the exponential, the
function ρ(x) decays to zero very rapidly as |x| increases. The Gaussian distribution is
called unimodal because it has only one local maximum, or mode.

To determine the functional relationship between c and a that ensures that I = 1,
the following trick can be used. First evaluate

I2 = c2
(∫ ∞

−∞
e−ax2

dx

)2

= c2
∫ ∞

−∞

∫ ∞

−∞
e−a(x2+y2)dxdy.

Then, changing to the polar coordinates x = r cos θ and y = r sin θ it becomes clear
that

I2 = c2
∫ 2π

0

∫ ∞

0
e−ar2

rdrdθ.

The integral over θ reduces to 2π and the integral over r can be performed in closed
form. The resulting relationship between c and a is then I2 = c2π/a = 1, or

c =
√

a

π
. (2.3)

The Gaussian distribution is an even function, and for any finite positive value of a
it is also a “nice” function. An even function is one for which fe(x) = fe(−x) and an
odd function is one for which fo(x) = −fo(−x). Any function can be decomposed into
a sum of even and odd functions as f(x) = fe(x) + fo(x) where

fe(x) =
1
2
[f(x) + f(−x)] and fo(x) =

1
2
[f(x) − f(−x)].

Furthermore, the product of two even functions is even, the product of two odd functions
is even, and the product of one even and one odd function is odd. The integral of any
well-behaved odd function over any finite interval that is symmetric around the origin
is always zero. This can be seen as follows:∫ b

−b

fo(x)dx =
∫ 0

−b

fo(x)dx +
∫ b

0
fo(x)dx,

but from the definition of an odd function,
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−b

fo(x)dx = −
∫ 0

−b

fo(−x)dx = −
∫ b

0
fo(y)dy,

and so ∫ b

−b

fo(x)dx = 0.

For an even function ∫ b

−b

fe(x)dx = 2
∫ b

0
fe(x).

For an even function, the product x · fe(x) must be an odd function, and since odd
functions integrate to zero over any interval [−b, b], it follows that∫ ∞

−∞
xfe(x)dx = lim

b→∞

∫ b

−b

xfe(x)dx = 0.

This limit would exist even if the upper and lower integrands go to ±∞ at different
rates because fe(x), like the other functions in this book, is restricted to be a “nice”
function in the sense defined in (1.19), and hence it must decay to zero faster than 1/x
as x → ±∞. More generally, the quantity μ defined by the integral

μ
.=
∫ ∞

−∞
xf(x)dx

for any probability density function, f(x), is called the mean.
From the shift-invariance property of integration of an arbitrary integrable function

on the real line,1 ∫ ∞

−∞
f(x − x0)dx =

∫ ∞

−∞
f(x)dx,

it follows that for the special case of a Gaussian distribution shifted by μ, ρ(x − μ),∫ ∞

−∞
xρ(x − μ)dx =

∫ ∞

−∞
(y + μ)ρ(y)dy = 0 + μ · I = μ.

The median of the Gaussian distribution is the point m for which∫ m

−∞
ρ(x)dx =

∫ ∞

m

ρ(x)dx.

Due to the fact that the Gaussian distribution is an even function, m = 0.
In statistics it is useful to have indicators that describe how concentrated or how

spread out a distribution is. One such indicator is the variance, defined as

σ2 .=
∫ ∞

−∞
x2f(x − μ)dx. (2.4)

1Another often-glossed-over property of integration of functions on the real line that will
be useful later is invariance under inversion of the argument:∫ ∞

−∞
f(−x)dx =

∫ ∞

−∞
f(x)dx.
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The square root of the variance is called the standard deviation. Note that this is different
from

s
.=
∫ ∞

−∞
|x|f(x − μ)dx, (2.5)

which is called the spread. Of course, the concepts of mean, mode, variance, and spread
are not limited to the study of Gaussian distributions. They can be calculated for any
pdf.

For the Gaussian distribution in (2.1) with normalization (2.3), the mean, median,
variance, and spread can be calculated in the following closed form:

μ = m = 0 , σ2 =
1
2a

, and s =
1√
πa

. (2.6)

In general, non-Gaussian pdfs can have multiple modes, the mean and median need not
be at the same point, and the relationship between spread and variance need not be so
simple.

Since for a Gaussian these quantities are directly related to a, the Gaussian distribu-
tion can be redefined with σ2 or s incorporated into the definition. The most common
choice is to use σ2, in which case the Gaussian distribution with mean at μ and standard
deviation σ is denoted2

ρ(x;μ, σ2) =
1√
2πσ

e−(x−μ)2/2σ2
. (2.7)

In some instances, such as in the following subsections, it will be more convenient to
write this as ρ(μ,σ2)(x). Note: another common name for the Gaussian distribution is
the normal distribution. Figure 2.1 shows a plot of the Gaussian distribution with
μ = 0 and σ = 1 plotted over the range [−3, 3]. Most (approximately 97 percent) of the
probability density falls on this finite interval. Changing the value of μ or σ would only
shift or uniformly stretch this plot.

The integral

F (x;μ, σ2) =
∫ x

−∞
ρ(ξ;μ, σ2)dξ

is called the cumulative distribution function. This function is known to have a “closed-
form” solution in terms of error integrals. In the limit as σ → 0, F (x;μ, σ2) exhibits a
sharp transition from a value of 0 for x < μ to a value of 1 for x > μ. When μ = 0 this
is idealized with the Heaviside step function

H(x) .=
{

1 for x > 0
0 for x ≤ 0. (2.8)

2.1.2 The Maximum Entropy Property

The entropy of a pdf f(x) is defined by the integral [23]

S(f) = −
∫ ∞

−∞
f(x) log f(x)dx (2.9)

2The symbols f(x) and ρ(x) often will be used to denote generic pdfs, but when appended
as ρ(x; μ, σ2), this will always denote a Gaussian.



2.1 The Gaussian Distribution on the Real Line 35

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

ρ(
x;
0,
1)

Fig. 2.1. The Gaussian Distribution ρ(x; 0, 1) Plotted over [−3, 3]

where here log = loge = ln. This entropy is written as S(f) rather than S(f(x)) because
it is not a function of x, but rather it is a “functional” of f , since all dependence on x
has been integrated out.

S is computed in closed form for the Gaussian distribution as

S(ρ(μ,σ2)) = log(
√

2πe σ). (2.10)

Interestingly, for any given value of variance, the Gaussian distribution is the pdf
with maximal entropy. This can be shown by performing the following optimization:

max
f

S(f) subject to f(x) ≥ 0

and ∫ ∞

−∞
f(x)dx = 1 ,

∫ ∞

−∞
xf(x)dx = μ ,

∫ ∞

−∞
(x − μ)2f(x)dx = σ2. (2.11)

To find the distribution that satisfies these conditions, Lagrange multipliers3 are intro-
duced to enforce constraints, and the following necessary conditions are calculated:

∂C

∂f
= 0 where C = −f log f + λ1f + λ2xf + λ3(x − μ)2f.

Performing the above calculation and solving for f and the λi that satisfy (2.11) gives
f(x) = ρ(μ,σ2)(x). Note that the constraint f(x) ≥ 0 was not actively enforced in the
above derivation, but the result satisfies this condition anyway.

What the above shows is that ρ(μ,σ2)(x) extremizes the entropy subject to the given
constraints. In other words, ρ(μ,σ2) is a critical point of the functional S(f) subject

3See Section A.11.1 for a definition.
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to the constraints (2.11). However, this could be a minimum, maximum, or point of
inflection. To show that it actually maximizes the entropy (at least in a local sense), it
is possible to define a perturbed version of this pdf as

f(x) = ρ(μ,σ2)(x) · [1 + ε(x)] (2.12)

where ε(x) is arbitrary except for the fact that4 |ε(x)| << 1 and it is defined such that
f(x) satisfies (2.11). In other words,∫ ∞

−∞
ρ(μ,σ2)(x)ε(x)dx =

∫ ∞

−∞
xρ(μ,σ2)(x)ε(x)dx =

∫ ∞

−∞
(x − μ)2ρ(μ,σ2)(x)ε(x)dx = 0.

Substituting (2.12) into (2.9) and using the Taylor series approximation log(1+ ε) ≈
ε − ε2/2,

S(f) = −
∫ ∞

−∞
ρ(μ,σ2)(x) · [1 + ε(x)] log(ρ(μ,σ2)(x) · [1 + ε(x)])dx

= −
∫ ∞

−∞
ρ(μ,σ2)(x) · [1 + ε(x)] · [log(ρ(μ,σ2)(x)) + log(1 + ε(x))]dx

= S(ρ(μ,σ2)) − F (ε2) + O(ε3)

where the functional F is always positive and the cross terms that are linear in ε all
vanish due to the integral constraints on ε. This means that at least locally a Gaussian
maximizes entropy. Determining the exact form of the functional F is left as an exercise.

2.1.3 The Convolution of Gaussians

The convolution of two pdfs on the real line is defined as

(f1 ∗ f2)(x) .=
∫ ∞

−∞
f1(ξ)f2(x − ξ)dξ. (2.13)

Sometimes this is written as f1(x)∗f2(x). Note that convolution on the real line is com-
mutative: (f1 ∗ f2)(x) = (f2 ∗ f1)(x). This is a direct consequence of the commutativity
of addition: x + y = y + x.

In order for the convolution integral to exist, f1(x) and f2(x) must both decay to
zero sufficiently fast as x → ±∞. In addition, the scope here is restricted to “nice”
functions in the sense of (1.19) with D = R. Therefore these functions are infinitely
differentiable and have integrals of their square and absolute values that are finite. It
can be shown that the convolution integral will always exist for such “nice” functions,
and furthermore

fi ∈ N (R) =⇒ f1 ∗ f2 ∈ N (R).

In (2.13) ξ is a dummy variable of integration, the name of which is unimportant. A
geometric interpretation of (2.13) is as follows. First, the function f2(x) is shifted along
the real line in the positive direction by an amount ξ, resulting in f2(x − ξ). Then, the
function f1 evaluated at the amount of shift, f1(ξ), is used to weight f2(x− ξ). Finally,
all copies of the product f1(ξ)f2(x− ξ) are “added up” by integrating over all values of
the shift. This has the effect of “smearing” f2 over f1.

4To be concrete, ε = 0.01 << 1. Then ε3 = 10−6 is certainly negligible in comparison to
quantities that are on the order of 1.
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In the case when f1(x) = δ(x), i.e., the Dirac delta function, which is the probability
density function with all of its mass concentrated at x = 0, (δ ∗ f)(x) = f(x). This
is because the only shift that the delta function allows is ξ = 0. All other shifts are
weighted by a value of zero, and therefore do not contribute. While δ(x) is not a “nice”
function, it is possible to approximate it with a Gaussian distribution with very small
variance, ε, which is a “nice” function. The approximation of the Dirac delta function as
δ(x) ≈ ρ(x; 0, ε) is deemed to be “good enough” if the integral of |ρ(x; 0, ε)∗f(x)−f(x)|
and the integral of the square of this are both “small enough” when f(x) is a nice
function.

The Gaussian distribution has the property that the convolution of two Gaussians
is a Gaussian:

ρ(x;μ1, σ
2
1) ∗ ρ(x;μ2, σ

2
2) = ρ(x;μ1 + μ2, σ

2
1 + σ2

2). (2.14)

The Dirac δ-function can be viewed as the limit

δ(x) = lim
σ→0

ρ(x; 0, σ2). (2.15)

It then follows from (2.14) that

ρ(x;μ1, σ
2
1) ∗ δ(x) = ρ(x;μ1, σ

2
1).

2.1.4 The Fourier Transform of the Gaussian Distribution

The Fourier transform of a “nice” function f ∈ N (R) is defined as

[F(f)](ω) .=
∫ ∞

−∞
f(x)e−iωxdx. (2.16)

The shorthand f̂(ω) .= [F(f)](ω) will be used frequently.
The conditions for existence and properties of the Fourier transform of functions

on the real line are described in detail in [6, 11, 15]. Tools for the computation of fast
sampled versions of the Fourier transform of periodic functions can be found in many
books such as [7, 10, 24]. From the definition of the Fourier transform, it can be shown
that

̂(f1 ∗ f2)(ω) = f̂1(ω)f̂2(ω) (2.17)

(i.e., the Fourier transform of the convolution is the product of Fourier transforms) and

f(x) = [F−1(f̂)](x) .=
1
2π

∫ ∞

−∞
f̂(ω)eiωxdω. (2.18)

This is called the inverse Fourier transform or Fourier reconstruction formula.
The proof of the property (2.17) is left as an exercise, whereas (2.18) is proven below.

For more details about classical Fourier analysis and its extensions, see [8] and references
therein.

The fact that a function is recovered from its Fourier transform is found by first
observing that it is true for the special case of g(x) = e−ax2

for a > 0. One way to
calculate

ĝ(ω) =
∫ ∞

−∞
e−ax2

e−iωxdx

is to differentiate both sides with respect to ω, which yields
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dĝ

dω
= −i

∫ ∞

−∞
xe−ax2

e−iωxdx =
i

2a

∫ ∞

−∞

dg

dx
e−iωxdx.

Integrating by parts, and observing that e−iωxg(x) vanishes at the limits of integration
yields

dĝ

dω
= − ω

2a
ĝ.

The solution of this first-order ordinary differential equation is of the form

ĝ(ω) = ĝ(0)e− ω2
4a

where

ĝ(0) =
∫ ∞

−∞
e−ax2

dx =
√

π

a
.

Having found the form of ĝ(ω), it is easy to see that g(x) is reconstructed from ĝ(ω)
using the inversion formula (2.18) (the calculation is essentially the same as for the
forward Fourier transform). Likewise, the Gaussian function

ρ(0,σ2)(x) =
1√
2πσ

e− x2

2σ2

has Fourier transform
ρ̂(0,σ2)(ω) = e− σ2

2 ω2

and the reconstruction formula holds. As σ becomes small, ρ(0,σ2)(x) becomes like δ(x).
From the property that (δ ∗f)(x) = f(x), the convolution theorem, and the above prop-
erties of Gaussian approximations to the Dirac δ-function, (2.18) immediately follows.

2.1.5 Diffusion Equations

A one-dimensional linear diffusion equation with constant coefficients has the form

∂u

∂t
= a

∂u

∂x
+ b

∂2u

∂x2 (2.19)

where a ∈ R is called the drift coefficient and b ∈ R>0 is called the diffusion coefficient.
When modeling diffusion phenomena in an infinite medium, the above diffusion equation
for u(x, t) has initial conditions of the form u(x, 0) = f(x). The boundary conditions

u(±∞, 0) =
∂u

∂x
(±∞, 0) = 0

are implicit in this problem, because otherwise the solutions will not be pdfs, or in the
class N (R).

Note that (2.19) is a special case of the Fokker–Planck equation5 which will be
examined in great detail in Chapter 4. When the drift coefficient is zero, the diffusion
equation is called the heat equation.

Taking the Fourier transform of u(x, t) for each value of t (i.e., treating time as a
constant for the moment and x as the independent variable) produces û(ω, t). Then
applying the Fourier transform to both sides of (2.19) and the initial conditions results

5Also known as Kolmogorov’s forward equation.
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in a linear first-order ordinary differential equation with t as the independent variable,
together with initial conditions, for each fixed frequency ω:

dû

dt
= (iaω − bω2)û with û(ω, 0) = f̂(ω).

The solution to this initial value problem is of the form

û(ω, t) = f̂(ω)e(iaω−bω2)t.

Application of the inverse Fourier transform yields a solution. The above expression
for û(ω, t) is a Gaussian with phase factor, and on inversion this becomes a shifted
Gaussian:

[F−1(eiatωe−bω2t)](x) =
1√
4πbt

exp
(

− (x + at)2

4bt

)
.

Using the convolution theorem in reverse then gives

u(x, t) =
1√
4πbt

∫ ∞

−∞
f(ξ) exp

(
− (x + at − ξ)2

4bt

)
dξ. (2.20)

2.1.6 Stirling’s Formula

In probability theory for discrete variables, the binomial distribution is defined as

f(k;n, p) .=
(

n
k

)
pk(1 − p)n−k where

(
n
k

)
.=

n!
k!(n − k)!

0 ≤ p ≤ 1 (2.21)

and k = 0, 1, 2, ..., n, and the values
(

n
k

)
are called binomial coefficients. From the

binomial theorem,

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k,

it follows that
n∑

k=0

f(k;n, p) = (1 − p + p)n = 1,

and from the definition in (2.21)
n∑

k=0

k · f(k;n, p) = np ·
n−1∑
k′=0

f(k′;n − 1, p) = np where k′ = k − 1.

The factorial n! can be approximated using the Stirling series:

n! =
√

2πn
(n
e

)n
(

1 +
1

12n
+

1
288n2 + · · ·

)
.

If the first term is kept, the result is Stirling’s formula:

n! ≈
√

2πn
(n
e

)n

. (2.22)

Stirling’s formula is used extensively in probability theory to establish limiting be-
haviors. In the current context, it can be used to show that the Gaussian distribution
is the limiting distribution of the binomial distribution in the sense that [22]

lim
n→∞

f(k;n, p)
ρ(k;np, np(1 − p))

= 1 for finite |k − np|/
√

np(1 − p). (2.23)
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2.2 The Multivariate Gaussian Distribution

The multivariate Gaussian distribution on Rn is defined as6

ρ(x;μ, Σ) .=
1

(2π)n/2|detΣ| 1
2

exp
{

−1
2
(x − μ)TΣ−1(x − μ)

}
. (2.24)

This is the maximum entropy distribution subject to the constraints7∫
Rn

ρ(x;μ, Σ) dx = 1;
∫

Rn

x ρ(x;μ, Σ) dx = μ;
∫

Rn

(x − μ)(x − μ)T ρ(x;μ, Σ) dx = Σ.

(2.25)
The integral is calculated with respect to the differential volume element for Rn, de-
noted above as dx = dx1dx2 · · · dxn. The above properties can be proved by changing
coordinates as y = Σ− 1

2 (x − μ), which reduces the problem to many one-dimensional
integrals. The meaning of a fractional power of a matrix is reviewed in the appendix.
Given a multi-dimensional coordinate transformation y = y(x) (which is written in
components as yi = yi(x1, ..., xn) for i = 1, ..., n), the following well-known integration
rule (which is a restatement of (1.38) in different notation) holds:∫

y(D)
F (y)dy =

∫
D

F (y(x))|det J |dx (2.26)

where dx = dx1dx2 · · · dxn, dy = dy1dy2 · · · dyn, and

J =
[
∂y
∂x1

, ...,
∂y
∂xn

]
is the Jacobian matrix of the transformation and |det J | gives a measure of local volume
change. D is the domain of integration in terms of the coordinates x, and y(D) is the
new domain to which each point in D is mapped under the transformation y(x). In
the current context, the range of integrals over x and y are both copies of Rn, i.e.,
D = y(D) = Rn.

2.2.1 Conditional and Marginal Densities

A vector x ∈ Rn can be partitioned as

x =
(

x1
x2

)
= [xT

1 ,xT
2 ]T ∈ Rn1+n2

where x1 ∈ Rn1 and x2 ∈ Rn2 . The notation [xT
1 ,xT

2 ]T , which takes advantage of the
fact that the “transpose of a transpose is the original,” has the benefit that it can be

6It is unfortunate that the notation for the one-dimensional case, ρ(x; μ, σ2), is inconsistent
with the multivariate case since σ2 becomes Σ (rather than Σ2), but this is the notation that
is standard in the field.

7In Chapter 1 the notation d(x) was used to denote the volume element dx1dx2 · · · dxn. In
the expressions in this chapter, the parentheses will be dropped to reduce the amount of clutter,
and dx will be used as shorthand for d(x). This will not cause trouble because x(t + dt) − x(t)
does not appear in any of these calculations.
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written on one line and included in a sentence, whereas it is difficult to do so for a
column vector.

If f(x) = f([xT
1 ,xT

2 ]T ) (which also will be referred to as f(x1,x2)) is any pdf on
Rn1+n2 , then the marginal density f1(x1) is defined by integrating over all values of x2:

f1(x1) =
∫

Rn2

f(x1,x2) dx2.

f2(x2) is obtained from f(x1,x2) in a similar way by integrating over all values of x1.
The mean and variance of f1(x1) are obtained from the mean and variance of f(x)

by observing that

μ1 =
∫

Rn1

x1f1(x1) dx1

=
∫

Rn1

x1

(∫
Rn2

f(x1,x2) dx2

)
dx1

=
∫

Rn1

∫
Rn2

x1f(x1,x2) dx2 dx1

and

Σ11 =
∫

Rn1

(x1 − μ1)(x1 − μ1)T f1(x1) dx1

=
∫

Rn1

(x1 − μ1)(x1 − μ1)T

(∫
Rn2

f(x1,x2) dx2

)
dx1

=
∫

Rn1

∫
Rn2

(x1 − μ1)(x1 − μ1)T f(x1,x2) dx2 dx1.

In other words, the mean vector and covariance matrix for the marginal density are
obtained directly from those of the full density. For example, μ = [μT

1 ,μT
2 ]T .

Given a (multivariate) Gaussian distribution ρ(x;μ, Σ), the associated covariance
matrix can be written in terms of blocks as

Σ =
(

Σ11 Σ12
Σ21 Σ22

)
where Σ11 = ΣT

11, Σ22 = ΣT
22, and Σ21 = ΣT

12. The block Σij has dimensions ni × nj .
In other words, Σij ∈ Rni×nj where i and j can either be 1 or 2.

The marginal density that results from integrating the Gaussian distribution ρ(x,μ, Σ)
over all values of x2 is∫

Rn2

ρ([xT
1 ,xT

2 ]T ;μ, Σ)dx2 = ρ(x1;μ1, Σ11). (2.27)

This should not come as a surprise, since a Gaussian is defined completely by the values
of its mean and covariance.

Another operation that is important in probability and statistics is that of condi-
tioning. Given f(x1,x2), the conditional density of x1 given x2 is

f(x1|x2)
.= f(x1,x2)/f2(x2). (2.28)
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Evaluating this expression using a Gaussian gives

ρ([xT
1 ,xT

2 ]T ;μ, Σ)/ρ(x2;μ2, Σ2) = ρ(x1;μ1 + Σ12Σ
−1
22 (x2 − μ2), Σ11 − Σ12Σ

−1
22 Σ21).

(2.29)

The above formulas follow from decomposing Σ into a product of block lower trian-
gular, block diagonal, and block upper triangular matrices as in Appendix A.4.3. Each
of these can then be inverted in closed form resulting in explicit expressions for Σ−1 in
terms of the blocks of Σ.

In summary, the set of Gaussian distributions has the remarkable property that it
is closed under marginalization and conditioning, and as was demonstrated previously
in the 1D case, it is also closed under convolution.

2.2.2 Multi-Dimensional Integrals Involving Gaussians

Several integral identities involving Gaussian distributions are used throughout this
book. These are stated here and proved in the following subsections.

First, it is well known that∫ ∞

−∞
e− 1

2 x2
dx =

√
2π =⇒

∫
Rn

exp
(

−1
2
xT x

)
dx = (2π)

n
2 . (2.30)

Here x ∈ Rn and dx = dx1dx2 · · · dxn. Note also that∫ ∞

−∞
x2e− 1

2 x2
dx =

√
2π. (2.31)

These identities are used below to prove∫
Rn

exp(−1
2
xTMx − mT x)dx = (2π)n/2|detM |− 1

2 exp
(

1
2
mTM−1m

)
(2.32)

and ∫
Rn

xTGx exp
(

−1
2
xTAx

)
dx = (2π)n/2 tr(GA−1)

|detA| 1
2

. (2.33)

These integrals have applications in the analysis of elastic network models of proteins
[9].

Proof of Equation (2.32)

Consider the integral

I =
∫

Rn

exp(−1
2
xTMx − mT x)dx.

Using the change of variables z = M
1
2 x − M− 1

2 m implies that dz = |detM | 1
2 dx and

x = M− 1
2 (z + M− 1

2 m). Therefore

I =
1

|detM | 1
2

∫
Rn

exp(−1
2
zT z +

1
2
mTM−1m)dz

=
exp
( 1

2m
TM−1m

)
|detM | 1

2

∫
Rn

exp(−1
2
zT z)dz.

And so, (2.32) follows from (2.30).
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Proof of Equation (2.33)

It is also convenient to have closed-form solutions for integrals of the form

J =
∫

Rn

xTGx exp
(

−1
2
xTAx

)
dx.

Let z = A
1
2 x. Then

J =
1

|detA| 1
2

∫
Rn

zTA− 1
2 GA− 1

2 z exp
(

−1
2
zT z
)

dz.

Now let G′ = A− 1
2 GA− 1

2 . Then it is clear that off-diagonal terms of G′ do not contribute
to this integral since odd moments of Gaussians are zero. Therefore,

J =
1

|detA| 1
2

∫
Rn

n∑
i=1

g
′

iiz
2
i exp

(
−1

2
zT z
)

dz

=
1

|detA| 1
2

n∑
i=1

g
′

ii

∫ ∞

−∞
z2
i e

− 1
2 z2

i dzi

∫
Rn−1

exp
(

−1
2
yT

i yi

)
dyi

where yi ∈ Rn−1 is the part of z ∈ Rn with the zi component removed. The value of
the integrals are independent of i, and

n∑
i=1

g
′

ii = tr(G′) = tr(A− 1
2 GA− 1

2 ) = tr(GA−1),

and so, (2.33) follows.

2.3 The Volume of Spheres and Balls in Rn

The volume of the (n − 1)-dimensional hyper-sphere with unit radius, Sn−1 ⊂ Rn, and
of the open ball Bn ⊂ Rn enclosed by Sn−1 appear in a number of geometric and
statistical applications. The argument used here for computing these volumes follows
that given in [12]. Before proceeding, a note is in order regarding the use of the word
“volume.” In the case of n = 3, the “volume” of the sphere S2 is its surface area, and
in the case of n = 2, the “volume” of the circle S1 is its perimeter. In contrast, the
“volume” of the ball B2 is the area on the interior of a circle, and the “volume” of B3

is the classical volume in R3 bounded by the sphere S2. In general, the volume of an
n-dimensional manifold will be an n-dimensional measurement.

Consider the isotropic Gaussian distribution on Rn with zero mean written as

ρ(x;μ = 0, Σ = σ2I) =
1

(2π)n/2σn
exp(−1

2
‖x‖2/σ2).

If x = ru where r and u = u(φ1, φ2, ..., φn−1) represent “hyper-spherical” coordinates,
then the Jacobian determinant relates the change from Cartesian coordinates as

dx =
∣∣∣∣det

[
∂x
∂r

,
∂x
∂φ1

, ... ,
∂x

∂φn−1

]∣∣∣∣ drdφ1 · · · dφn−1 = dV (φ)rn−1dr
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where dV (φ) is the volume element for the sphere Sn−1. The volume of Sn−1 is then

V ol(Sn−1) =
∫

Sn−1
dV (φ).

This can be computed directly by extending the usual spherical coordinates to higher
dimensions in the natural way as

u(2) =
(

cosφ1
sinφ1

)
; u(3) =

⎛⎝ cosφ1 sinφ2
sinφ1 sinφ2

cosφ2

⎞⎠ ; u(3) =

⎛⎜⎜⎝
cosφ1 sinφ2 sinφ3
sinφ1 sinφ2 sinφ3

cosφ2 sinφ3
cosφ3

⎞⎟⎟⎠ ; etc.,

computing Jacobian determinants for each case, and then integrating over the appro-
priate range of angles, 0 ≤ φ1 < 2π and 0 ≤ φi < π for 1 < i ≤ n − 1. Or, the volume
of the unit sphere can be calculated indirectly, as it is done below.

From the fact that ρ is a pdf,

1 =
∫

Rn

ρ(x;0, σ2I)dx

=
∫ ∞

0

∫
Sn−1

ρ(ru;0, σ2I)dV (u)rn−1dr

=
1

(2π)n/2σn

(∫ ∞

0
exp(−r2/(2σ2))rn−1dr

)
V ol(Sn−1).

Therefore, it must be that

1
(2π)n/2σn

∫ ∞

0
exp(−r2/(2σ2))rn−1dr = 1/V ol(Sn−1)

for any value of σ. Letting s = r/(
√

2σ), the integral on the left becomes∫ ∞

0
exp(−r2/(2σ2))rn−1dr = 2n/2σn

∫ ∞

0
exp(−s2)sn−1ds =

1
2
2n/2σnΓ (n/2).

This can be taken as the definition of the Gamma function, or it can be viewed as the
result of the change of coordinates t = s2 from the more standard definition

Γ (α) =
∫ ∞

0
e−ttα−1dt (2.34)

with α = n/2.
In any case, since the Gaussian pdf integrates to unity, the factors of 2n/2σn cancel,

and it must be that 1
2Γ (n/2)V ol(Sn−1) = (π)n/2, or

V ol(Sn−1) =
2(π)n/2

Γ
(

n
2

) . (2.35)

This is the volume of a unit hyper-sphere Sn−1 ⊂ Rn. The volume of a hyper-sphere
of radius r would be rn−1 times this quantity. The volume of the unit ball Bn ⊂ Rn is
then obtained by integrating over all of these spherical shells as

V ol(Bn) =
∫ 1

0
V ol(Sn−1)rn−1dr =

2(π)n/2

Γ
(

n
2

) ∫ 1

0
rn−1dr.
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In other words,

V ol(Bn) =
2(π)n/2

n · Γ
(

n
2

) =
(π)n/2

Γ
(

n
2 + 1

) . (2.36)

The first few values of Γ (n/2) are given in the following table:

Table 2.1. The First Few Half-Integer Values of the Γ -Function

n Γ (n/2)
1

√
π

2 1
3

√
π/2

4 1
5 3

√
π/4

6 2

Note that for integer arguments, Γ (m) = (m − 1)!.
The shorthand notation

V ol(Sn−1) = On and V ol(Bn) =
On

n
(2.37)

will be useful.

2.4 Clipped Gaussian Distributions

The Gaussian distribution has many interesting and useful properties. For example, it is
the maximum entropy distribution of given mean and covariance, it satisfies a diffusion
equation, as a family of parametric distributions it is closed under the operations of
convolution and conditioning. In addition, its higher moments can be computed as
closed-form integrals. It would be useful to take advantage of these properties when
fitting a density to measured data on other domains such as spheres. However, a problem
that immediately arises is that for compact domains, something must be done with the
infinite tails of the Gaussian distribution. Two options are to wrap the tails around
(resulting in a “folded” Gaussian), or to clip the tails. The folded Gaussian for the circle
is discussed in Section 2.5. While this is a viable option in some cases, a more general
procedure that can be used for other finite domains is clipping. In the subsections that
follow, the properties of the univariate clipped Gaussian are obtained, and extended to
the multi-dimensional case.

2.4.1 One-Dimensional Clipped Gaussian Distributions

Suppose that we want to clip the Gaussian distribution with mean at x = 0 defined by

ρ(x; 0, σ0) =
1√

2πσ0
e−x2/2σ2

0 .

This is defined on the real line. By restricting it to the unit circle, which we identify
with the interval [−π, π], the mass is reduced from unity to
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r(σ0)
.=
∫ π

−π

ρ(x; 0, σ0)dx < 1. (2.38)

An exact expression for r(σ0) can be found in terms of the error function

erf(x) .=
2√
π

∫ x

0
e−t2dt. (2.39)

However, if kσ0 < π for k ≥ 3, then r(σ0) ≈ 1 is a good approximation.
The variance of a clipped Gaussian is then

σ2 =
1√

2πσ0r(σ0)

∫ π

−π

x2e−x2/2σ2
0dx =

σ2
0√

2πr(σ0)

∫ π/σ0

−π/σ0

y2e−y2/2dy.

This can be written as

σ2 =
σ2

0√
2πr(σ0)

[√
2π − 2π

σ0
e−π2/(2σ2

0)
]

by using integration by parts. As σ0 → 0, then σ → σ0.

2.4.2 Multi-Dimensional Clipped Gaussian Distributions

The integral of a multi-dimensional Gaussian distribution over the interior of an ellipsoid
defined by

xTΣ−1
0 x = a2

can be computed in closed form (using error integrals). We can therefore clip a multi-
dimensional Gaussian distribution along the boundary of such an ellipsoid and renor-
malize the resulting distribution so as to be a pdf. In other words, a clipped Gaussian
is defined relative to a Gaussian as

ρc(x, Σ0, a) .=

⎧⎨⎩ρ(x, Σ0)/r(Σ0, a) for xTΣ−1
0 x < a2

0 otherwise
(2.40)

where
r(Σ0, a) .=

∫
xT Σ−1

0 x<a2
ρ(x, Σ0) dx.

The covariance of a clipped Gaussian is then

Σ =
∫
xT Σ−1

0 x<a2
xxT ρc(x, Σ0, a) dx. (2.41)

By making the change of variables y = Σ
− 1

2
0 x, it follows that

Σ = Σ
1
2
0

[∫
yT y<a2

yyT ρc(y, I, a) dy
]
Σ

1
2
0 . (2.42)

The above integral can be computed in closed form. This is done below for the three-
dimensional case. The two-dimensional case is left as an exercise.

It will be convenient to define
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f0(a) .=
∫ a

0
e−r2/2dr =

√
π

2
erf(a/

√
2)

f1(a) .=
∫ a

0
r2e−r2/2dr = −ae−a2/2 + f0(a)

and
f2(a) .=

∫ a

0
r4e−r2/2dr = 3f1(a) − a3e−a2/2.

Then

m(Σ0, a) .=
∫
xT Σ−1

0 x<a2
exp{−xTΣ−1

0 x}dx = 4πf1(a) · |Σ0|
1
2

and

r(Σ0, a) = m(Σ0, a)/(2π)
3
2 |Σ0|

1
2 =

√
2
π
f1(a).

Using spherical coordinates,

y =

⎛⎝ r sin θ cosφ
r sin θ sinφ

r cos θ

⎞⎠ ,

∫
yT y<a2

yyT ρc(y, I, a) dy =
∫ a

r=0

∫ 2π

φ0

∫ π

θ=0
yyT ρc(y, I, a) r2drdφdθ =

√
2
π

f2(a)
3

I

where
f2(a) =

∫ a

0
r4e−r2/2dr.

This can be computed in closed form using integration by parts. Therefore (2.42) reduces
to

Σ =
f2(a)

3 · f1(a)
Σ0. (2.43)

As a → ∞, Σ → Σ0.

2.5 Folded, or Wrapped, Gaussians

In some applications, data on the circle is given, and a corresponding concept of Gaussian
distribution is needed. One approach that was discussed in the previous section that
could be applied to this end is to “clip the tails” of a Gaussian outside of the range of
values θ ∈ [−π, π] and renormalize the result in order to make it a valid pdf. In contrast,
the tails can be “wrapped around” the circle as

ρW (θ;μ, σ) .=
∞∑

k=−∞
ρ(θ − 2πk;μ, σ), (2.44)

where if μ is outside of the range [−π, π], it can be “put back in the range” by subtracting
2πN from it for some N ∈ Z until it is in range.

If σ is very small and μ = 0, only the k = 0 term in the above sum needs to be
retained, and there is no distinction between the original Gaussian restricted to the
range θ ∈ [−π, π], the Gaussian clipped to this range, and the folded Gaussian. But as
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σ increases, so too do the values of |k| that need to be retained. As σ becomes very
large, it becomes impractical to compute (2.44).

However, there is an alternative representation of the folded Gaussian that uses the
fact that it is a periodic function. Recall that any 2π-periodic function, i.e., a “function
on the unit circle,” can be expanded in a Fourier series:

f(θ) =
1
2π

∞∑
n=−∞

f̂(n)einθ where f̂(n) =
∫ 2π

0
f(θ)e−inθdθ, (2.45)

where einθ = cosnθ+i sinnθ and i =
√

−1. Here f̂(n) are called the Fourier coefficients,
or circular Fourier transform. These coefficients can be computed in closed form for
(2.44). This leads to the Fourier series representation of the folded Gaussian distribution:

ρW (θ;μ, σ) =
1
2π

+
1
π

∞∑
n=1

e− σ2
2 n2

cos (n(θ − μ)) . (2.46)

As σ becomes large, very close approximations can be achieved with the first couple
of terms in the summation in (2.46). In contrast, as σ becomes very small, using very
few of the terms in the series (2.44) will produce a very good approximation when μ = 0.

The general theme that a Gaussian on a space other than the real line can be
approximated well as a Gaussian restricted to a smaller domain when σ is small, or as a
generalized Fourier series expansion when σ is large, will recur many times throughout
this book.

Note that the above “folding” process is not restricted to Gaussian distributions;
any well-behaved function, f(x), defined on the line can be wrapped around the circle.
The resulting folded function, which is 2π-periodic, is related to the Fourier transform
of the original non-periodic function on the real line through the Poisson summation
formula [1]:

∞∑
n=−∞

f(θ + 2πn) =
1
2π

∞∑
k=−∞

[F(f)](k)eikθ. (2.47)

In other words, the Fourier coefficients of the folded function are related to the Fourier
transform of the original function as

f̂(k) = [F(f)](k).

2.6 The Heat Equation

In this section, the relationship between the Gaussian distribution and the heat equation
(also called the diffusion equation) is developed.

Sometimes the exact solution of an equation is not as critical as knowing how its
mean and covariance behave as a function of time. This is illustrated both in the one-
dimensional and multi-dimensional settings in the following subsections.

2.6.1 The One-Dimensional Case

Consider the diffusion equation on the real line with time-varying diffusion and drift
coefficients, k(t) and a(t):
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∂f

∂t
=

1
2
k(t)

∂2f

∂x2 − a(t)
∂f

∂x
. (2.48)

The initial condition is f(x, 0) = δ(x). The solution f(x, t) can be obtained in closed
form, following essentially the same procedure as in Section 2.1.5, and then the mean
and variance can be computed from this solution as

μ(t) =
∫ ∞

−∞
xf(x, t)dx and σ2(t) =

∫ ∞

−∞
[x − μ(t)]2f(x, t)dx. (2.49)

Alternatively, the mean and variance of f(x, t) can be computed directly from (2.48)
without actually knowing the solution f(x, t). In fact, many properties of f(x, t) can
be determined from (2.48) and the corresponding initial conditions without knowing
f(x, t). For example, integrating both sides of (2.48) with respect to x yields

d

dt

∫ ∞

−∞
f(x, t)dx = 0.

This follows because∫ ∞

−∞

∂f

∂x
dx = f(x, t)|∞x=−∞ and

∫ ∞

−∞

∂2f

∂x2 dx =
∂f

∂x

∣∣∣∣∞
x=−∞

and under the boundary conditions that f(x, t) and ∂f/∂x decay rapidly to zero as
x → ±∞, these terms become zero. Since the initial conditions are a delta function in
x, it follows that ∫ ∞

−∞
f(x, t)dx = 1.

In other words, (2.48) preserves the initial mass of the distribution over all values of
time after t = 0.

To compute μ(t), multiply both sides of (2.48) by x and integrate. On the one hand,∫ ∞

−∞
x
∂f

∂t
dx =

d

dt

∫ ∞

−∞
xf(x, t)dx =

dμ

dt
.

On the other hand,∫ ∞

−∞
x
∂f

∂t
dx =

1
2
k(t)

∫ ∞

−∞
x
∂2f

∂x2 dx − a(t)
∫ ∞

−∞
x
∂f

∂x
dx.

Evaluating both integrals on the right side by integrating by parts and using the con-
ditions that both f(x, t) and ∂f/∂x decay rapidly to zero as x → ±∞, it becomes clear
that

dμ

dt
= a(t) or μ(t) =

∫ t

0
a(s)ds. (2.50)

A similar argument shows that

d

dt
(σ2) = k(t) or σ2(t) =

∫ t

0
k(s)ds. (2.51)
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2.6.2 The Multi-Dimensional Case

Consider the following time-varying diffusion equation without drift:

∂f

∂t
=

1
2

n∑
i,j=1

Dij(t)
∂2f

∂xi∂xj
, (2.52)

where Dij(t) = Dji(t) are the time-varying diffusion constants. If f(x, 0) = δ(x), then
integrating (2.52) both sides over Rn and using integration by parts in x shows that the
unit volume under the curve is preserved.

Multiplying both sides by xkxl and integrating over x ∈ Rn gives

d

dt
(σkl) =

1
2

n∑
i,j=1

Dij(t)
∫

Rn

xkxl
∂2f

∂xi∂xj
dx. (2.53)

Let the integral over Rn−1 resulting from the exclusion of the integral over xi be denoted
as ∫

x−xi

f(x)dx/dxi =∫ ∞

x1=−∞
· · ·
∫ ∞

xi−1=−∞

∫ ∞

xi+1=−∞
· · ·
∫ ∞

xn=−∞
f(x1, ..., xn)dx1 · · · dxi−1dxi+1 · · · dxn

so that∫
Rn

f(x)dx =
∫ ∞

−∞

(∫
x−xi

f(x)dx/dxi

)
dxi =

∫
x−xi

(∫ ∞

−∞
f(x)dxi

)
dx/dxi.

An integral over n−2 degrees of freedom denoted by the integral with subscript x−xi−xj

follows in a similar way.
From integration by parts∫

Rn

xkxl
∂2f

∂xi∂xj
dx =

∫
x−xi

[
xkxl

∂f

∂xj

∣∣∣∣∞
xi=−∞

−
∫ ∞

−∞

∂

∂xi
(xkxl)

∂f

∂xj
dxi

]
dx/dxi.

The assumption that f(x, t) decays rapidly as ‖x‖ → ∞ for all values of t makes the
first term in the brackets disappear. Using the fact that ∂xi/∂xj = δij , and integrating
by parts again (over xj) reduces the above integral to∫

Rn

xkxl
∂2f

∂xi∂xj
dx = δkjδil + δikδlj .

Substituting this into (2.53) results in

d

dt
(σkl) = Dkl(t) or σkl(t) =

∫ t

0
Dkl(s)ds. (2.54)

Therefore, even without knowing the form of the time-varying pdf that solves (2.52)
it is possible to obtain an exact expression for the covariance of the solution.
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2.6.3 The Heat Equation on the Unit Circle

The heat equation on the circle is exactly the same as the heat equation on the real line
(with θ replacing x as the spatial variable). However, the topological constraint that
θ = ±π represents the same point means that the long-time solution will be completely
different than in the unconstrained case on the real line. Whereas the Fourier transform
can be used to solve the heat equation on the line, the Fourier series expansion is used
on the circle.

The result is that the solution on the line can be folded around the circle. In other
words, the solution to the heat equation on the circle for constant diffusion coefficient
k,

∂f

∂t
=

1
2
k
∂2f

∂θ2 subject to f(θ, 0) = δ(θ),

is

f(θ, t) =
∞∑

k=−∞
ρ(θ − 2πk; 0, (kt)

1
2 ) =

1
2π

+
1
π

∞∑
n=1

e−ktn2/2 cosnθ. (2.55)

This is the folded Gaussian in (2.46) with σ2 = kt and μ = 0.

2.7 Gaussians and Multi-Dimensional Diffusions

In the previous section, the evolution of the mean and covariance of a diffusion equation
was obtained without knowing the time-varying pdf. Here, the pdf is sought.

2.7.1 The Constant Diffusion Case

Consider the diffusion equation

∂f

∂t
=

1
2

n∑
i,j=1

Dij
∂f2

∂xi∂xj
(2.56)

subject to the initial conditions f(x, t) = δ(x), where D = [Dij ] = DT is a constant
matrix of diffusion constants.

Since diffusion equations preserve mass (see Section 2.6.2), it follows that∫
Rn

f(x, t)dx = 1 (2.57)

for all values of time, t ∈ R>0.
Try a solution of the form

f(x, t) = c(t) exp(−1
2
xTA(t)x) (2.58)

where A(t) = φ(t)A0 and A0 = [αij ] = AT
0 . Then, from (2.57) and the formula (2.83)

derived in the exercises, it follows that

c(t) =
(
φ(t)
2π

)n/2

|detA0|
1
2 .
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With this constraint in mind, substituting f(x, t) into (2.56) produces the following
conditions on φ(t) and A0:

nφ′ = −φ2
n∑

i,j=1

Dijαij

φ′xTA0x = −φ2
n∑

i,j=1

Dij

(
n∑

k=1

αikxk

)(
n∑

l=1

αjlxl

)

where φ′ = dφ/dt.
Both of the conditions (2.59) are satisfied if A0 = α0D

−1 and φ(t) = (α0t)−1 for
some arbitrary constant α0 ∈ R>0. But since A(t) = φ(t)A0 = t−1D−1, this constant
does not matter.

Putting all of this together,

f(x, t) =
1

(2πt)n/2|detD| 1
2

exp(− 1
2t

xTD−1x). (2.59)

Stated in another way, the solution to (2.56) is a time-varying Gaussian distribution
with Σ(t) = tD when D is symmetric.

2.7.2 The Time-Varying Case

Consider again (2.56), but now let D = D(t). Try a solution of the form

f(x, t) = (2π)−n/2|detΣ(t)|− 1
2 exp(−1

2
xTΣ−1(t)x) (2.60)

where Σ(t) is a time-varying covariance matrix, the form of which is as yet undeter-
mined. This guess is simply f(x, t) = ρ(x;0, Σ(t)).

The derivatives with respect to xi are evaluated as before, using the chain rule. The
time derivative is evaluated as follows:

∂f

∂t
= (2π)−n/2 d(| detΣ|− 1

2 )
dt

exp(−1
2
xTΣ−1x)

+(2π)−n/2|detΣ|− 1
2
d

dt

[
exp(−1

2
xTΣ−1x)

]

= −1
2
(2π)−n/2|detΣ|− 3

2
d(detΣ)

dt
exp(−1

2
xTΣ−1x)

−1
2
(2π)−n/2|detΣ|− 1

2

(
xT d

dt
[Σ−1]x

)
exp
(

−1
2
xTΣ−1x

)
.

On the other hand,

1
2

n∑
i,j=1

Dij
∂2f

∂xi∂xj
=

1
2
{
−tr(DΣ−1) + xT (Σ−1DΣ−1)x

}
f(x, t).

Therefore, if

|detΣ|−1 d(detΣ)
dt

= tr(DΣ−1) and
d

dt
[Σ−1] = −Σ−1DΣ−1, (2.61)
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then (2.56) with variable diffusion coefficients will be satisfied. Since8

d

dt
(ΣΣ−1) = O =⇒ d

dt
[Σ−1] = −Σ−1Σ̇Σ−1,

the second equality in (2.61) will be satisfied if D = Σ̇. In this case the first equality in
(2.61) becomes

d

dt
log(detΣ) = tr(Σ̇Σ−1). (2.62)

Under what conditions will this be true?

Case 1:
From Systems Theory (as reviewed in the appendix), if Σ = exp(tS0) where S0 = ST

0
is constant, then

detΣ = etr(tS0) = et(trS0).

Therefore, in this special case

d

dt
log(detΣ) = tr(S0).

Likewise, if Σ = exp(tS0), then tr(Σ̇Σ−1) = tr(S0). Therefore, it can be concluded that
a sufficient condition for the Gaussian in (2.60) to be a solution to (2.56) is if a constant
symmetric matrix S0 can be found such that D(t) = S0 exp(tS0).

Case 2:
The condition in (2.62) will be satisfied if Σ = σ(t)Σ0 where σ(t) is a differentiable

scalar function of time and Σ0 = ΣT
0 . Substitution into (2.62) yields the condition

d

dt
log(σn detΣ0) = σ̇σ−1tr(I).

Since log(a · b) = log a + log b, and d
dt log a(t) = ȧ/a, the above condition becomes

1
σn

nσn−1σ̇ = nσ̇σ−1,

which is always true. Therefore any σ(t) will work.
A broader condition that encompasses both Case 1 and Case 2 is D(t) = Ṡ(t) expS(t)

where S = ST and [Ṡ, S] .= ṠS − SṠ = O.
Under this condition,

Σ(t) =
∫ t

0
D(s)ds. (2.63)

2.8 Symmetry Analysis of Evolution Equations

The concept of symmetry can have several meanings when applied to evolution equa-
tions.9 For example, the diffusion matrix in the multi-dimensional heat equation might
have symmetries in it other than the primary symmetry D = DT . That kind of sym-
metry is reflected in the solution of the equation. Another kind of symmetry is that
the equation itself can be solved when the independent variables undergo a non-linear
change of coordinates. Both of these concepts of symmetry are addressed in this section.

8Here O = d
dt

(I) is the zero matrix.
9These are equations with a single partial derivative in time, and multiple partial derivatives

in space. They include, but are not limited to, diffusion equations.
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2.8.1 Symmetries in Parameters

Consider a drift-free diffusion in Rn with constant diffusion matrix D = DT , and let
the solution be denoted as f(x, t;D). Since the dependence on D and t always appears
as their product, the solution has a continuous scale symmetry of the form

f(x, t;D) = f(x, t/α;αD)

for any α ∈ R>0.
In addition, since the solution is the Gaussian distribution in (2.59), it can be verified

that
f(x, t;D) = βn/2f(

√
βx, t;βD).

If D = σ2I, then any change of spatial coordinates of the form y = Qx where
QTQ = I will preserve the solution:

f(Qx, t;σ2I) = f(x, t;σ2I).

In contrast, if n = 3 and D = diag[σ2
1 , σ

2
1 , σ

2
3 ] is the diagonal matrix with the indicated

entries on the diagonal, then

R3(θ)TDR3(θ) = D where R3(θ) =

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ ,

and so
f(R3(θ)x, t;D) = f(x, t;D).

These symmetries all involve simple transformations of the coordinates. Less obvi-
ous symmetries result by examining operators which, when applied to the equation of
interest, leave it invariant in a sense that will be made precise.

2.8.2 Infinitesimal Symmetry Operators of the Heat Equation

Let Qf = 0 denote any partial differential equation, where Q is a differential operator
in temporal and spatial variables (t,x) ∈ R≥0 × Rn. For example, for the heat equation
on the real line where there is only one spatial variable (t,x) becomes (t, x) and

Q =
∂

∂t
− ∂2

∂x2

where the diffusion constant, k, is chosen to be k = 2 here for convenience.
A body of literature exists that addresses the question of how to obtain new solutions

of Qf = 0 from old ones. In particular, if it is possible to find a first-order operator of
the form

L = T (x, t)
∂

∂t
+

n∑
i=1

Xi(x, t)
∂

∂xi
+ Z(x, t) (2.64)

where T (x, t), Xi(x, t), and Z(x, t) are analytic functions such that

[L,Q]f(x, t) = R(x, t)Qf where [L,Q] = LQ − QL, (2.65)

then f ′ .= Lf will solve Qf ′ = 0.
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At first this might seem surprising, but since the condition in (2.64) reads LQf −
QLf = RQf , and since Qf = 0, it must be that 0 = QLf = Q(Lf) = Qf ′.

Following [2, 3, 4, 17, 19, 21], the infinitesimal operators that transform solutions
of the heat equation into new solutions are presented below. In this case there is one
spatial dimension and so

L = T (x, t)
∂

∂t
+ X(x, t)

∂

∂x
+ Z(x, t).

Some mundane calculus yields

QLf =
(

∂

∂t
− ∂2

∂x2

)(
T (x, t)

∂

∂t
+ X(x, t)

∂

∂x
+ Z(x, t)

)
=
(
∂T

∂t

)(
∂f

∂t

)
+ T

(
∂2f

∂t2

)
+
(
∂X

∂t

)(
∂f

∂x

)
+ X

(
∂2f

∂t∂x

)
+
(
∂Z

∂t

)
f

+Z

(
∂f

∂t

)
−
(
∂2T

∂x2

)(
∂f

∂t

)
− 2
(
∂T

∂x

)(
∂2f

∂t∂x

)
− T

(
∂3f

∂t∂x2

)
−
(
∂2X

∂x2

)(
∂f

∂x

)
− 2
(
∂X

∂x

)(
∂2f

∂x2

)
− X

(
∂3f

∂x3

)
−
(
∂2Z

∂x2

)
f − 2

(
∂Z

∂x

)(
∂f

∂x

)
− Z

(
∂2f

∂x2

)
and

LQf =
(
T (x, t)

∂

∂t
+ X(x, t)

∂

∂x
+ Z(x, t)

)(
∂

∂t
− ∂2

∂x2

)
f

= T
∂2f

∂t2
− T

∂3f

∂x2∂t
+ X

∂2f

∂x∂t
− X

∂3f

∂x3 + Z
∂f

∂t
− Z

∂2f

∂x2 .

Note that every term in LQf can also be found in QLf . Subtracting, and reorganizing
the terms that result, yields

[Q,L]f =
(
∂T

∂t
− ∂2T

∂x2

)
∂f

∂t
+
(
∂X

∂t
− ∂2X

∂x2 − 2
∂Z

∂x

)
∂f

∂x

+
(

−2
∂T

∂x

)
∂2f

∂x∂t
+
(

−2
∂X

∂x

)
∂2f

∂x2 +
(
∂Z

∂t
− ∂2Z

∂x2

)
f.

Since [Q,L] = −[L,Q], (2.64) is the same as computing [Q,L]f = −RQf where

RQf = R
∂f

∂t
− R

∂2f

∂x2 .

Then equating the coefficients in front of each term involving f , the following five
equations result:

∂T

∂t
− ∂2T

∂x2 = −R (2.66)

2
∂X

∂x
= −R (2.67)

∂X

∂t
− ∂2X

∂x2 − 2
∂Z

∂x
= 0 (2.68)
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∂T

∂x
= 0 (2.69)

∂Z

∂t
− ∂2Z

∂x2 = 0. (2.70)

These equations completely determine the structure of the operator L that transforms
solutions into solutions.

Starting with (2.69), the restriction T (x, t) = T (t) must be observed. Then, using
this result in (2.66) means −R(x, t) = T ′(t). This in turn can be substituted into (2.67)
to yield

X(x, t) =
1
2
T ′(t)x + c1(t)

where c1(t) is a yet-to-be-determined function resulting from integration over x. Sub-
stituting this into (2.68) forces the form of Z(x, t) to be

Z(x, t) =
1
8
T ′′(t)x2 +

1
2
c′
1(t)x + c2(t).

Substituting this into (2.70) forces

T ′′′(t) = 0; c′′
1(t) = 0; c′

2(t) =
1
4
T ′′(t).

It follows that

T (t) = a0t
2 + b0t + c0; c1(t) = α0t + β0; c2(t) =

1
2
a0t + γ0

where a0, b0, c0, α0, β0, γ0 are all free constants.
This means that any L with the following form will map solutions of the heat equa-

tion into solutions:

T (x, t) = a0t
2 + b0t + c0

X(x, t) = (a0t + b0/2)x + α0t + β0

Z(x, t) =
1
4
a0x

2 +
1
2
α0x +

1
2
a0t + γ0.

In fact, the space of all allowable L operators is a vector space with elements of the
form

L = a0L1 + b0L2 + c0L3 + α0L4 + β0L5 + γ0L6

where the following serves as a basis:

L1 = t2
∂

∂t
+ xt

∂

∂x
+

1
4
x2 +

1
2
t (2.71)

L2 = t
∂

∂t
+

1
2
x

∂

∂x
(2.72)

L3 =
∂

∂t
(2.73)

L4 = t
∂

∂x
+

1
2
x (2.74)

L5 =
∂

∂x
(2.75)

L6 = 1. (2.76)
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In addition to being a vector space, operators of the form of L given above are also
closed under the Lie bracket, [·, ·]. In other words, [Li, Lj ] for any i, j ∈ {1, ..., 6} will
result in a linear combination of these same basis elements. This makes the space of all
L operators that map solutions of the heat equation into solutions a Lie algebra [16].
This concept will be defined more rigorously in the appendix and in Volume 2.

2.8.3 Non-Linear Transformations of Coordinates

Consider the heat equation
∂f

∂t
=

∂f2

∂x2

and assume that an f(x, t) has been obtained that satisfies this equation. For the mo-
ment, the initial conditions will be left unspecified.

The following matrices can be defined [17]:

B = B(u, v, w) =

⎛⎝1 v 2w + uv/2
0 1 u
0 0 1

⎞⎠ where u, v, w ∈ R (2.77)

and

A = A(α, β, γ, δ) =
(

α β
γ δ

)
where α, β, γ, δ ∈ R and αδ − βγ = 1. (2.78)

It is clear that since detA = 1 by definition, then the product of two such matrices
also satisfies this condition: det(A1A2) = detA1 detA2 = 1. Likewise, the form of the
B matrices are preserved under matrix multiplication, and

B(u, v, w)B(u′, v′, w′) = B(u + u′, v + v′, w + w′ + (vu′ − uv′)/4).

These are examples of matrix Lie groups which, roughly speaking, are groups of con-
tinuous transformations, the elements of which are matrices. The group operation is
matrix multiplication.

It can be shown (see Exercise 2.18) that transformations of the following form convert
solutions into solutions [17]:

(T1(B)f)(x, t) = exp
1
2

[
b13 + b23x +

1
2
b223t

]
f(x + b12 + b23t, t) (2.79)

and

(T2(A)f)(x, t) = exp
(

−x2β/4
δ + tβ

)
(δ + tβ)− 1

2 f

(
x

δ + tβ
,
γ + tα

δ + tβ

)
. (2.80)

In other words, if f(x, t) is a solution to the heat equation, then so too are
f1(x, t) = (T1(B)f)(x, t) and f2(x, t) = (T2(A)f)(x, t). This means that applying these
transformations twice with different permissible matrices Ai and Bi will also take solu-
tions into solutions:

f1(x, t) = (T1(B2)T1(B1)f)(x, t) = (T1(B2)(T1(B1)f))(x, t)
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and
f2(x, t) = (T2(A2)T2(A1)f)(x, t) = (T2(A2)(T2(A1)f))(x, t).

This gets really interesting when these definitions are combined with the closure property
under multiplication of matrices of the same kind since

T1(B2)T1(B1) = T1(B2B1) and T2(A2)T2(A1) = T2(A2A1). (2.81)

What this means is that there are two independent sets of three-parameter transforma-
tions that can map solutions into solutions. And furthermore, these can be combined
since (T2(A)(T1(B)f))(x, t) and (T1(B)(T2(A)f))(x, t) must also be solutions.

In Volume 2 this example will be revisited as an example of a six-dimensional Lie
group, where the A matrices and B matrices each independently form three-dimensional
subgroups.

2.9 Chapter Summary

Many aspects of the Gaussian distribution were reviewed. These include the parametriza-
tion of multi-dimensional Gaussians by their mean and covariance, the form of marginals
and conditionals of Gaussians, the properties of Gaussians under convolution, the maxi-
mum entropy property, and the relationship between Gaussians and diffusion/heat equa-
tions.10 Finally, a brief review of the theory of symmetry analysis of partial differential
equations, as applied to diffusion equations, was presented. This forms the first of many
links between the topic of diffusion equations and Lie groups that will be forged through-
out these books.

The connection between Lie group methods and partial differential equations has a
long history dating back to the 1950s [25, 26, 27, 28]. In addition to those references
cited earlier in this chapter, significant progress on this topic was made through the
1970s and 1980s including [5, 13, 14, 18, 20]. These approaches have been used for very
complicated partial differential equations, such as in [21].

The next chapter will serve as a more formal introduction to probability and in-
formation theory. With the concrete example of the Gaussian distribution in mind, it
should be easier to tackle these problems. Furthermore, the maximum entropy property
of Gaussians, as well as their role in the central limit theorem will justify what might
appear to be a preoccupation with Gaussians in the current chapter.

2.10 Exercises

2.1. Verify (2.6) by performing the integrals in the definitions of σ2 and s.

2.2. Verify (2.10).

2.3. Verify (2.14) by: (a) directly computing the convolution integral in (2.13); (b) using
the convolution property of the Fourier transform (2.17).

10Note that although these equations were written in Cartesian coordinates in this chapter,
it is possible to convert to polar, spherical, or other coordinates. For covariance matrices with
symmetry, this can be more convenient. See [8] for a detailed discussion of different curvilinear
coordinate systems.
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2.4. Using the same reasoning as in Section 2.1.2, compute: (a) the maximum entropy
distribution on the real line subject to the constraint that it has a specified value of
the spread (rather than variance); (b) the maximum entropy distribution on the finite
interval [a, b] subject to no constraints.

2.5. What is the exact expression for the functional F (ε2) in Section 2.1.2?

2.6. Prove that for any suitable f1(x) and f2(x), the convolution theorem (2.17) holds.
Hint: a change of variables and a change in the order in which integrals are performed
will be required.

2.7. Verify (2.27). Hint: Use the block decomposition in (A.70) to obtain an explicit
expression for Σ−1.

2.8. Verify (2.29). Hint: Use the property of the exponential function ea+b = eaeb.

2.9. Calculate the exact form of r(σ0) in (2.38) in terms of the error function in (2.39).

2.10. Work out the covariance matrix for the 2D clipped Gaussian in analogy with the
3D case presented in (2.43).

2.11. Following the steps in Section 2.1.5, derive the closed-form solution f(x, t) that
satisfies (2.48) subject to the initial conditions f(x, 0) = δ(x).

2.12. Using (2.49), show that the mean and variance of f(x, t) computed from (2.48) in
(2.50) and (2.51) are the same as computed directly from the closed-form solution of
f(x, t) obtained in the previous exercise.

2.13. Verify (2.46) analytically by computing the Fourier coefficients ρ̂W (n;μ, σ) of
(2.44).

2.14. Using integration by parts, prove (2.50) and (2.51).

2.15. Show that the matrices in (2.77) and (2.78) are invertible.

2.16. Find the nine basis operators {Li} that take solutions of

∂f

∂t
=

∂2f

∂x2 +
∂2f

∂y2 (2.82)

into other solutions.

2.17. Find the thirteen basis operators {Li} that take solutions of

∂f

∂t
=

∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2

into other solutions.

2.18. Verify that transformations of the form in (2.79) and (2.80) will transform one
solution into another. Hint: Use the chain rule.

2.19. Verify that the two equations in (2.81) hold. That is, first compute two concate-
nated transformations, and then compute the single transformation resulting from the
matrix products, and compare.

2.20. Show that for A ∈ Rn×n with A = AT > 0,
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Rn

exp(−1
2
xTAx)dx = (2π)n/2|detA|− 1

2 . (2.83)

Hint: Decompose A = QΛQT where Q is orthogonal and Λ is the diagonal matrix
consisting of eigenvalues of A, which are all positive.

2.21. Verify (2.59) by substituting (2.58) into (2.56) and using the chain rule.

2.22. Can a 2 × 2 matrix S(t) be constructed such that Σ = expS which does not fall
into Case 1 or Case 2? If so, provide an example. If not, explain why not.

2.23. Determine conditions under which the time-dependent diffusion with drift

∂f

∂t
=

1
2

n∑
k,l=1

Dkl(t)
∂f2

∂xk∂xl
−

n∑
k=1

dk(t)
∂f

∂xk
(2.84)

will have a solution of the form

f(x, t) = c(t) exp
[
−1

2
[x − a(t)]TC(t)[x − a(t)]

]
. (2.85)

2.24. Show that the following transformations take solutions of (2.82) into solutions
[17]:

T1(w, z, ω)f(x, t) = exp
[
1
2
x · w +

1
4
t‖w‖2 + ω

]
f(x + tw + z, t) (2.86)

where w, z ∈ R2 and ω ∈ R;

T2(A)f(x, t) = exp
[
−1

4
(δ + tβ)−1β‖x‖2

]
(δ + tβ)−1f

(
(δ + tβ)−1x,

γ + tα

δ + tβ

)
(2.87)

where A ∈ R2×2 with detA = 1;

T3(θ)f(x, t) = f(RT (θ)x, t) where R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (2.88)
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3

This chapter serves as an introduction to concepts from elementary probability theory
and information theory in the concrete context of the real line and multi-dimensional
Euclidean space. The probabilistic concepts of mean, variance, expected value, marginal-
ization, conditioning, and conditional expectation are reviewed. In this part of the pre-
sentation there is some overlap with the previous chapter, which has some pedagogi-
cal benefit. There will be no mention of Borel measurability, σ-algebras, filtrations, or
martingales, as these are treated in numerous other books on probability theory and
stochastic processes such as [1, 14, 15, 32, 27, 48]. The presentation here, while drawing
from these excellent works, will be restricted only to those topics that are required either
in the mathematical and computational modeling of stochastic physical systems, or the
determination of properties of solutions to the equations in these models.

Basic concepts of information theory are addressed such as measures of distance, or
“divergence,” between probability density functions, and the properties of “information”
and entropy. All pdfs treated here will be differentiable functions on Rn. Therefore the
entropy and information measures addressed in this chapter are those that are referred
to in the literature as the “differential” or “continuous” version.

It is shown that the amount of information contained in pdfs decreases with convo-
lution, while the entropy contained in them increases. Information theory and Fourier
analysis are both used in this chapter to derive the central limit theorem, which states
that under suitable conditions iterated convolutions converge to Gaussian distributions.
All of the concepts presented here will be extended to the context of Lie groups in
Volume 2.

For the reader who is already familiar with probability and information theory, the
main point that should be taken away from this chapter is the non-standard notation
that is used. Rather than E[X] denoting the expected value of the random variable1

X, the notation 〈x〉 =
∫

xρ(x)dx is used here where ρ(x) is the probability density
function for X. More generally, 〈f(x)〉 =

∫
f(x)ρ(x)dx for any function, f(x) (which

need not be scalar valued). Instead of denoting the Shannon entropy as H(X), it is
denoted here as S(ρ). Fisher information is denoted as F (ρ). Defining these quantities

1A random variable is a mathematical object such as a scalar, vector, or matrix that does
not have a specific fixed value, but rather can take on any of a number of values. That is, each
time the random variable is queried (or interrogated), it can return a different value. But the
distribution of these values is fixed, meaning that as the number of queries goes to infinity,
the underlying distribution that defines the random variable is observed. The space over which
these values are defined can be discrete or continuous.
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in terms of probability densities rather than random variables will lead to conveniences
when concepts from Lie theory are added to the mix.

For the reader who is not familiar with probability and information theory the main
things to take away from this chapter are:

• To know that the definitions of convolution, mean, covariance, and marginal and
conditional densities, are fully general, and apply to a wide variety of probability
density functions (not only Gaussians);

• To understand the definitions and properties of (continuous/differential) information-
theoretic entropy, including how it scales and how it behaves under convolution;

• To become familiar with the concepts of conditional expectation and marginal en-
tropy;

• To understand the fundamental inequalities of information theory such as the
Cramér–Rao bound and the de Bruijn identity, and the entropy power inequality;

• To be able to follow the statement of the central limit theorem, the conditions
under which it holds, and to have an idea of the various ways that its proof can be
approached.

3.1 Probability Theory in Euclidean Space

This section reviews basic concepts from probability theory on the real line, R, and in
multi-dimensional Euclidean space, Rn.

3.1.1 Basic Definitions and Properties of Probability Density Functions

In classical probability theory a deterministic vector has a specific unambiguous value,
and is denoted in lower case as x ∈ Rn. In contrast, a random vector, which can take
on any of a variety of vector values, is denoted in upper case as X ∈ Rn. Some of these
values will be more likely encountered than others. The relative likelihood that a specific
deterministic value will be encountered is characterized by a probability density function
(or pdf for short). A pdf on Rn is a non-negative real-valued function that integrates to
unity:2

ρ(x) ≥ 0 ∀ x ∈ Rn and
∫

Rn

ρ(x)dx = 1 (3.1)

where dx = dx1dx2 · · · dxn is the usual integration measure on Rn.
The probability that X ∈ B ⊂ Rn is then computed as

P [X ∈ B] =
∫

B

ρ(x)dx.

Furthermore, the expected value (or expectation) of a function of X is computed as

E[α(X)] =
∫

Rn

α(x)ρ(x)dx (3.2)

where α(·) can be a scalar, vector, or matrix/tensor-valued function of vector-valued
argument. The mean and covariance are special cases of expected values:

μ = E[X] and Σ = E[(X − μ)(X − μ)T ].
2Pdfs will be denoted as ρ(·) and f(·).
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The expectation operator is linear due to the linearity of integration, i.e.,

E[b1α1(X) + b2α2(X)] = b1E[α1(X)] + b2E[α2(X)]. (3.3)

This standard notation, while perfectly fine for addressing problems in Rn, will lead
to some difficulties when considering stochastic modeling problems on Lie groups. This
is because lower case and upper case letters have specific meanings in that context
that are separate from anything having to do with probabilistic concepts. Therefore,
an alternative (but equivalent) formalism to that used in standard probability theory
will be used throughout this chapter. Namely, there will be no mention of random
variables. Instead, only probability density functions and the domains on which these
pdfs are evaluated will appear in equations. Since the very concept of “expected value”
is defined in the context of random variables, there will not be any notation of the form
E[α(X)] throughout the remainder of the book. Instead, (3.2) will be written in the
shorthand 〈α(x)〉. In words, this is the average of α(x) over the ensemble where the
relative frequency of occurrence of each value of x is specified by the probability density
ρ(x). In this notation, (3.3) is written as

〈b1α1(x) + b2α2(x)〉 = b1〈α1(x)〉 + b2〈α2(x)〉.

While this is not a particularly difficult change of notation, it is important to keep
in mind when translating between statements presented here and the corresponding
statements in other sources.

3.1.2 Change of Variables

Suppose that a probability density function ρX(x) is given corresponding to the random
vector X ∈ Rn, and it is known that another vector is related to X by the invertible
function Y = f(X) ∈ Rn. In order to obtain the probability density function ρY (y),
equal amounts of probability under the two parameterizations need to be equated. If D
is an arbitrary domain and f(D) denotes the image of this domain under the bijective
differentiable mapping f : Rn → Rn, then we know from the inverse function theorem
as stated in (2.26) that

ρX(x) = ρY (f(x))|J(x)| (3.4)

where J = ∂y/∂xT , y = f(x), and F (y) = ρY (y).
Writing (3.4) in another way,

ρY (y) = ρX(f−1(y))/|J(f−1(y))|. (3.5)

For example, for the affine transformation, y = f(x) = Ax + a,

ρX(x) = ρY (Ax + a)|A|,

or
ρY (y) = ρX(A−1(y − a))/|A|.

3.1.3 Marginalization, Conditioning, and Convolution

Another generic operation on pdfs is marginalization:

ρ(x1, x2, ..., xm) =
∫ ∞

xm+1=−∞
· · ·
∫ ∞

xn=−∞
ρ(x1, x2, ..., xn)dxm+1 · · · dxn.
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This is written here with the variables being integrated over as the last n − m vector
entries, resulting in a pdf on a lower dimensional Euclidean space consisting of the
remaining m components. But marginalization can be over any of the dimensions, not
necessarily the last ones. Finally, the operation of conditioning is defined as

ρ(x1, x2, ..., xm|xm+1, xm+2, ..., xn) = ρ(x1, x2, ..., xn)/ρ(xm+1, xm+2, ..., xn)

where the denominator in this expression is the result of marginalizing ρ(x1, x2, ..., xn)
over the first m dimensions (rather than the last n − m).

Since addition in Rn is well defined, random vectors X and Y can be added. If their
corresponding pdfs are ρX(x) and ρY (x), then the pdf of X+Y will be the convolution:

ρX+Y (x) = (ρX ∗ ρY )(x) =
∫

Rn

ρX(ξ)ρY (x − ξ)dξ.

3.1.4 Mean and Covariance

Whereas the above definitions generalize easily to domains other than Rn (including
continuous domains such as Lie groups or manifolds, and discrete sets such as permu-
tation groups or graphs), the structure of Rn makes it convenient to define additional
concepts that are useful in the analysis of data in this space. In particular, in Rn the
mean of a pdf is

μ = 〈x〉 =
∫

Rn

xρ(x)dx, or 〈x − μ〉 =
∫

Rn

(x − μ)ρ(x)dx = 0. (3.6)

Note that μ minimizes the cost function

c(x) =
∫

Rn

‖x − y‖2 f(y) dy (3.7)

where ‖v‖ =
√

v · v is the 2-norm in Rn.
The covariance about the mean is the n × n matrix defined as

Σ = 〈(x − μ)(x − μ)T 〉 =
∫

Rn

(x − μ)(x − μ)T ρ(x)dx. (3.8)

It follows from this definition that∫
Rn

xxT ρ(x) dx = Σ + μμT . (3.9)

If z ∈ Rm is defined relative to x ∈ Rn by the transformation z = Ax + a, where
A ∈ Rm×n is a matrix and a ∈ Rm is a vector, then it is easy to see from the linearity
of the operation of integration that3

μZ = 〈z〉 =
∫

Rn

(Ax + a)ρ(x)dx

= A

(∫
Rn

xρ(x)dx
)

+ a
(∫

Rn

ρ(x)dx
)

= AμX + a
3Here capital subscripts X and Z are used rather than lower case x and z so as not to

confuse quantities such as μZ with a parameterized family of vectors.
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and

ΣZ = 〈(z − μZ)(z − μZ)T 〉

=
∫

Rn

(Ax + a − μZ)(Ax + a − μZ)T ρ(x)dx

=
∫

Rn

(A[x − μX ])(A[x − μX ])T ρ(x)dx

=
∫

Rn

A[x − μX ][x − μX ]TAT ρ(x)dx

= A

(∫
Rn

[x − μX ][x − μX ]T ρ(x)dx
)

AT

= AΣXAT .

These calculations are true regardless of whether or not the transformation is in-
vertible (i.e., we did not even have to limit the discussion to the case when m = n and
|A| > 0).

Pdfs are often used to describe distributions of errors. If these errors are concate-
nated, they “add” by convolution:

(ρ1 ∗ ρ2)(x) =
∫

Rn

ρ1(ξ)ρ2(x − ξ) dξ. (3.10)

The mean and covariance of convolved distributions are found as

μ1∗2 = μ1 + μ2 and Σ1∗2 = Σ1 + Σ2. (3.11)

In other words, these quantities can be propagated without explicitly performing the
convolution computation, or even knowing the full pdfs. This is independent of the
parametric form of the pdf, i.e., it works for non-Gaussians just as well as Gaussians.

If the scalar random variables X1, X2, ..., Xn are all independent of each other, then
the corresponding probability density function is separable:

ρ(x1, x2, ..., xn) = ρ1(x1)ρ2(x2) · · · ρn(xn). (3.12)

When this happens, the covariance matrix will be diagonal.

3.1.5 Parametric Distributions

Every “well-behaved” pdf that either decays to zero rapidly as a function of distance
from the mean, or takes the value zero outside of a bounded domain has a well-defined
mean and covariance. The most important example is the multi-dimensional Gaussian
distribution on Rn with mean μ and covariance Σ:

ρG(x;μ, Σ) = (2π)−n/2|Σ|− 1
2 exp

[
−1

2
(x − μ)TΣ−1(x − μ)

]
. (3.13)

While the Gaussian distribution in (2.7) is by far the most important and commonly
used pdf, it is certainly not the only one. For example, the multi-dimensional Cauchy
distribution in Rn is defined as [20, 51]
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ρC(x; c, S) = Γ

(
n + 1

2

)
(π)−(n+1)/2|S|− 1

2
[
1 + (x − c)TS−1(x − c)

]−(n+1)/2
. (3.14)

However, this distribution has the drawback that the tails are so “heavy” that the
integral in the definition of covariance does not converge, and hence the covariance is
meaningless. Certainly in the one-dimensional case the integral

I(B) =
∫ B

−B

x2

1 + bx2 dx

diverges as B → ∞.
Since the Gaussian is so special, its properties from Chapter 2 are summarized

again here. In addition to being parameterized by the mean vector and covariance
matrix (which guarantees that these quantities exist), the Gaussian distribution has the
following nice properties [8]:

• Closure under convolution, i.e.,

ρG(x;μ1, Σ1) ∗ ρG(x;μ2, Σ2) = ρG(x;μ1 + μ2, Σ1 + Σ2).

• Closure under marginalization. In particular, it is not difficult to see that if xm

denotes the first m entries of the vector x ∈ Rn, then the m × m covariance matrix

Σm =
∫

Rn

xmxT
mρ(x)dx =

∫
Rm

xmxT
mρ̃(xm)dxm

where

ρ̃(xm) =
∫ ∞

xm+1=−∞

∫ ∞

xm+2=−∞
· · ·
∫ ∞

xn=−∞
ρ(x)dxm+1dxm+2 · · · dxn.

In other words, the covariance matrix of the marginal of a Gaussian distribution is
the part of the covariance matrix of the original Gaussian distribution corresponding
to the variables that remain after the marginalization.

• Closure under conditioning (i.e., the product of two Gaussians is a Gaussian (to
within a scale factor), and when the quotient can be normalized to be a pdf, this
pdf will be a Gaussian).

• The central limit theorem (i.e., the convolution of a large number of well-behaved
pdfs tends to the Gaussian distribution (see, e.g., [15])). This will be proved later in
this chapter.

• Gaussians are solutions to a heat/diffusion equation with δ-function as initial con-
ditions.

• The Fourier transform of a Gaussian is a Gaussian.
• The Gaussian is an even function of its argument.
• Gaussians are the maximum entropy distribution for given mean and covariance.

3.2 Conditional Expectation

Consider a bivariate probability density function f(x1, x2) where x = [x1, x2]T ∈ R2

and denote the marginal densities as
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f1(x1) =
∫ ∞

−∞
f(x1, x2)dx2 and f2(x2) =

∫ ∞

−∞
f(x1, x2)dx1.

The expected value of any function φ(x1, x2) is defined as

〈φ 〉 .=
∫ ∞

−∞

∫ ∞

−∞
φ(x1, x2)f(x1, x2)dx1dx2.

If φ(x1, x2) = φ1(x1) is independent of x2, then the integral over x2 passes through and

〈φ 〉 =
∫ ∞

−∞
φ1(x1)f1(x1)dx1.

Likewise, if φ(x1, x2) = φ1(x1)φ2(x2), then

〈φ 〉 = 〈φ1〉 · 〈φ2〉.

There is no harm in keeping the arguments of the function and writing 〈φ(x1, x2) 〉 as
long as it is understood that this is no longer a function of x1 or x2 since both of these
variables have been integrated out.

The conditional density f(x1|x2), which is read as “the probability density of x1
given that the value of x2 is known,” and f(x2|x1) satisfy Bayes’ rule:

f(x1|x2)f2(x2) = f(x1, x2) = f(x2|x1)f1(x1).

And integration over one variable gives

f1(x1) =
∫ ∞

−∞
f(x1|x2)f2(x2)dx2 and f2(x2) =

∫ ∞

−∞
f(x2|x1)f1(x1)dx1.

Note that f(x1|x2) is a pdf in x1 for any choice of x2, but it is not a pdf on the x1-x2
plane, nor is it a pdf in the variable x2 for fixed value of x1. This can be stated as∫ ∞

−∞
f(x1|x2)dx1 =

∫ ∞

−∞
f(x1, x2)/f2(x2)dx1 = f2(x2)/f2(x2) = 1

but ∫ ∞

−∞
f(x1|x2)dx2 = 1 and

∫ ∞

−∞

∫ ∞

−∞
f(x1|x2)dx2dx2 = 1.

The conditional expectation of any function φ(x1) given x2 is defined as [27, 32]

〈φ(x1)|x2〉
.=

1
f2(x2)

∫ ∞

−∞
φ(x1)f(x1, x2)dx1. (3.15)

For example, if φ(x1) = x1, then the conditional mean results.
Note that all dependence on x1 is integrated out in the definition of 〈φ(x1)|x2〉, and

so this is a function of x2 only. It is also easy to see that from the linearity of the
operation of integration,

〈aφ(x1) + bψ(x1)|x2〉 = a〈φ(x1)|x2〉 + b〈ψ(x1)|x2〉

for arbitrary constants a and b. Furthermore, it follows directly from the definition (3.15)
that
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〈φ1(x1)φ2(x2)|x2〉 = 〈φ1(x1)|x2〉φ2(x2) (3.16)
〈φ1(x1) + φ2(x2)|x2〉 = 〈φ1(x1)|x2〉 + φ2(x2) (3.17)

Now let ψ(x2) = 〈φ1(x1)|x2〉. Taking the (unconditional) expectation of ψ(x2) yields

〈〈φ1(x1)|x2〉〉 =
∫ ∞

−∞
〈φ1(x1)|x2〉f2(x2)dx2

=
∫ ∞

−∞

(
1

f2(x2)

∫ ∞

−∞
φ1(x1)f(x1, x2)dx1

)
f2(x2)dx2

=
∫ ∞

−∞
φ1(x1)

(∫ ∞

−∞
f(x1, x2)dx2

)
dx1

=
∫ ∞

−∞
φ1(x1)f1(x1)dx1

= 〈φ1(x1)〉. (3.18)

Note, however, that in general 〈〈φ(x1, x2)|x2〉〉 = 〈φ(x1, x2)〉.
In the case of a tri-variate distribution4 of the form f(x1, x2, x3) the following defi-

nitions can be made:

〈φ1(x1)|x2, x3〉 =
1

f23(x2, x3)

∫ ∞

−∞
φ1(x1)f(x1, x2, x3)dx1

and
〈φ12(x1, x2)|x3〉 =

1
f3(x3)

∫ ∞

−∞

∫ ∞

−∞
φ1(x1, x2)f(x1, x2, x3)dx1dx2.

Now let ψ(x2, x3) = 〈φ1(x1)|x2, x3〉. Taking the expectation of ψ(x2, x3) conditioned
on x2 and using the above formulas with the appropriate renaming of variables gives
I

.= 〈〈φ1(x1)|x2, x3〉|x2〉, which simplifies to

I =
1

f2(x2)

∫ ∞

−∞

∫ ∞

−∞
〈φ1(x1)|x2, x3〉f(x1, x2, x3)dx1dx3

=
1

f2(x2)

∫ ∞

−∞

∫ ∞

−∞

[
1

f23(x2, x3)

∫ ∞

−∞
φ1(x′

1)f(x′
1, x2, x3)dx′

1

]
f2(x1, x2, x3)dx1dx3

=
1

f2(x2)

∫ ∞

−∞

∫ ∞

−∞
φ1(x′

1)f(x′
1, x2, x3)dx′

1

(
1

f23(x2, x3)

∫ ∞

−∞
f(x1, x2, x3)dx1

)
dx3

= 〈φ1(x1)|x2〉. (3.19)

Extrapolating this to higher dimensions, the following can be written:

〈〈φ1(x1)|x2, x3, ..., xn〉|x2, x3, ..., xn−1〉 = 〈φ1(x1)|x2, x3, ..., xn−1〉. (3.20)

This is a pattern that can be recursively applied downward to obtain 〈φ1(x1)|x2〉 after
n − 2 conditional expectation operations.

4A distribution in one variable is called univariate. A distribution in two variables is called
bi-variate. A distribution in three variables is called tri-variate. And a distribution in any
number of variables more than one is called multi-variate.
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Everything stated above in the context of bivariate and tri-variate distributions can
be generalized to higher dimensions where x ∈ Rn can be partitioned as x = [xT

1 ,xT
2 ]T

or x = [xT
1 ,xT

2 ,xT
3 ]T with the vectors xi ∈ Rni with

∑
i ni = n. Then the vectors xi

can take the place of xi in the above formulas.
In fact, there was nothing special about the structure of Rn that was used. And

so the above concepts generalize nicely to other spaces. For example, x1 and x2 could
equally be the angles φ and θ that parameterize position on the unit sphere, as long as
the correct integration measure is used. Such issues will be discussed in future chapters
after sufficient geometric concepts are established.

3.2.1 Jensen’s Inequality and Conditional Expectation

If Φ(x) is a convex function [3, 39] on R, i.e.,

Φ(tx + (1 − t)y) ≤ tΦ(x) + (1 − t)Φ(y) ∀ t ∈ [0, 1] (3.21)

then Jensen’s inequality [26] states

Φ

(∫ ∞

−∞
φ(x)f(x)dx

)
≤
∫ ∞

−∞
Φ(φ(x))f(x)dx

for an arbitrary measurable function φ(x) and pdf f(x). Jensen’s inequality can be
stated for more general domains than the real line as

Φ(〈φ 〉) ≤ 〈Φ ◦ φ 〉 (3.22)

where (Φ ◦ φ)(x) = Φ(φ(x)). As a direct consequence, if φ(x) = f2(x)/f1(x), f(x) =
f1(x), and Φ(y) = − log y, the following property of the Kullback–Leibler divergence
(which is defined in the first equality below and denoted as DKL(f1‖f2)) is observed:

DKL(f1‖f2)
.=
∫ ∞

−∞
f1(x) log

f1(x)
f2(x)

dx

= −
∫ ∞

−∞
f1(x) log

f2(x)
f1(x)

dx

≥ − log
∫ ∞

−∞
f1(x)

f2(x)
f1(x)

dx

= − log 1 = 0,

and likewise for domains other than the real line.
Jensen’s inequality also holds for condition expectation. Given a multivariate pdf

f(x, y) with variables partitioned as x and y, this can be written as

Φ(〈φ(x)|y〉) ≤ 〈Φ(φ(x))|y〉. (3.23)

In particular, if Φ(x) = x2 and using the property of conditional expectation in (3.18)
gives

〈〈φ(x)|y〉2〉 ≤ 〈〈φ2(x))|y〉〉 = 〈φ2(x)〉. (3.24)
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3.2.2 Convolution and Conditional Expectation

Consider the very special joint probability density function

f(x1, x2) = ρ1(x1)ρ2(x2 − x1)

where ρi(·) are themselves univariate pdfs. The marginal densities of f(x1, x2) are then

f1(x1) = ρ1(x1) and f2(x2) = (ρ1 ∗ ρ2)(x2).

Note that f(x1, x2) is not separable into a product of marginals in x1 and x2, but if
u = x1 and v = x2 − u, then f̃(u, v) = ρ1(u)ρ2(v). And the area element in the x1-x2
plane is equal to that in the u-v plane: dx1dx2 = dudv. These properties of this change
of coordinates are used below.

Using the invariance of integration on the real line under shifts and inversions of the
argument, together with the commutative nature of addition, the convolution can be
written in the following equivalent forms:

(ρ1 ∗ ρ2)(x2) =
∫ ∞

−∞
ρ1(x1)ρ2(x2 − x1)dx1

=
∫ ∞

−∞
ρ1(x2 − v)ρ2(v)dv

=
∫ ∞

−∞
ρ2(v)ρ1(x2 − v)dv

= (ρ2 ∗ ρ1)(x2)

where the substitution v = x2 − x1 has been used.
Denoting the derivative of f2(x2) with respect to x2 as f ′

2(x2), it follows that [2, 27,
28]

f ′
2(x2)

f2(x2)
=
∫ ∞

−∞

ρ1(x1)ρ′
2(x2 − x1)

f2(x2)
dx1

=
∫ ∞

−∞

ρ1(x2 − v)ρ′
2(v)

f2(x2)
dv

=
1

f2(x2)

∫ ∞

−∞

ρ′
2(v)

ρ2(v)
ρ2(v)ρ1(x2 − v)dv

=
1

f2(x2)

∫ ∞

−∞

ρ′
2(x1)

ρ2(x1)
ρ2(x1)ρ1(x2 − x1)dx1

=
〈

ρ′
2(v)

ρ2(v)

∣∣∣∣x2

〉
.

The variable name v used here is currently irrelevant because it has been integrated
out.

Due to the commutativity of convolution on the real line, the roles of ρ1 and ρ2 can
be interchanged, and

f ′
2(x2)

f2(x2)
=
〈

ρ′
1(u)

ρ1(u)

∣∣∣∣x2

〉
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where u is another dummy variable of integration, the name of which is irrelevant.
Multiplying the first of these expressions by 1 − β and the second by β and adding

together:

f ′
2(x2)

f2(x2)
= β

〈
ρ′
1(u)

ρ1(u)

∣∣∣∣x2

〉
+ (1 − β)

〈
ρ′
2(v)

ρ2(v)

∣∣∣∣x2

〉

=
〈
β

ρ′
1(u)

ρ1(u)
+ (1 − β)

ρ′
2(v)

ρ2(v)

∣∣∣∣x2

〉
for arbitrary β ∈ [0, 1]. This, together with Jensen’s inequality in the form of (3.24),
can be used to show [2, 7, 27, 28]:〈(

f ′
2(x2)

f2(x2)

)2
〉

=

〈〈
β

ρ′
1(u)

ρ1(u)
+ (1 − β)

ρ′
2(v)

ρ2(v)

∣∣∣∣x2

〉2
〉

≤
〈(

β
ρ′
1(u)

ρ1(u)
+ (1 − β)

ρ′
2(v)

ρ2(v)

)2
〉

= β2
〈
ρ′
1(u)

ρ1(u)

〉2

+ (1 − β)2
〈
ρ′
2(v)

ρ2(v)

〉2

. (3.25)

The reason why the expectation of the cross term that results from completing the
square is zero in the final step leading to (3.25) is left as an exercise.

3.3 Information Theory

Given a probability density function (pdf) f(x) describing the distribution of states of
a random vector X ∈ Rn, the information-theoretic entropy is defined as5

S(f) .= −
∫
x
f(x) log f(x)dx. (3.26)

This is a measure of dispersion of a pdf. However, it is very different from the variance
and spread of a pdf as defined in Chapter 2. To demonstrate this difference, consider
two n-dimensional boxes of equal shape and size that are “cut out” of Rn. In general
the value of f(x), as well as the integrand in (3.26) will be different for the two boxes.
A new pdf can be defined by swapping the values of the original pdf between the boxes.
This new pdf will have the same entropy as the original, but in general it will have
different covariance. One way to think of this is that entropy is a measure of variation
in the “height” of a pdf viewed as a graph y = f(x) in Rn+1, while covariance is a
measure of spatial dispersion in the variables x ∈ Rn.

Note that the standard in the literature is to denote the entropy of the random
variable X as H(X). However, the notation S(f) (which stands for the entropy of the
pdf that fully describes the random variable X) generalizes more easily to the Lie group
setting addressed in Volume 2.

5In information theory, this would be called differential entropy. It is referred to here as
continuous entropy to denote the difference between this and the discrete case. In this chapter
log denotes loge, though many of the properties of entropy hold for any base.
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Many operations can be performed on probability density functions including
marginalization, conditioning, and convolution. Entropies for each can be evaluated.
The subsections that follow provide inequalities that can be used to illustrate the re-
lationships between the entropies in these cases. These relationships can be used to
compute bounds on entropy in cases where it is difficult to compute directly.

3.3.1 Entropy of Conditional and Marginal Density Functions

Generally speaking, the entropy of a pdf f = f(x1, ..., xn) is bounded from above by
the sum of entropies of corresponding marginal densities. For example,

−
∫

x1

· · ·
∫

xn

f(x1, ..., xn) log f(x1, ..., xn)dx1 · · · dxn ≤ −
n∑

i=1

∫
xi

fi(xi) log fi(xi)dxi

(3.27)
where

fi(xi) =
∫

x1

· · ·
∫

xi−1

∫
xi+1

· · ·
∫

xn

f(x1, ..., xn)dx1 · · · dxi−1dxi+1 · · · dxn.

Equality in (3.27) holds if and only if f(x1, ..., xn) = f1(x1) · f2(x2) · · · fn(xn).
The result in (3.27) can be written as

S(f) ≤
n∑

i=1

S(fi).

Likewise, given the pdf f(x,y) with marginals fX(x) and fY (y),

S(f) ≤ S(fX) + S(fY ). (3.28)

In fact, (3.27) can be obtained by recursively applying (3.28).
Recall from probability theory that the conditional probability fX|Y (x|y) (which is

a pdf in x for each fixed value of y) is related to the joint and marginal probabilities as

f(x,y) = fX|Y (x|y)fY (y).

A conditional entropy is defined as

S(fX|Y ; f) .= −
∫
x

∫
y
f(x,y) log fX|Y (x|y)dydx , (3.29)

and a marginal entropy is defined as

S(fY ; f) .= −
∫
x

∫
y
f(x,y) log fY (y)dydx

= −
∫
x

∫
y
fX|Y (x|y)fY (y) log fY (y)dydx

= −
∫
y

(∫
x
fX|Y (x|y)dx

)
fY (y) log fY (y)dy

= −
∫
y
fY (y) log fY (y)dy

= S(fY ). (3.30)
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Note, however, that in general

S(fX|Y ; f) = S(fX|Y ). (3.31)

Stated in words, this says that the conditional entropy is not the entropy of the condi-
tional pdf.

Calculating the entropy of f using the definition in (3.26) with z = [xT ,yT ]T ,

S(f) = −
∫
x

∫
y
f(x,y) log f(x,y)dydx

= −
∫
x

∫
y
f(x,y) log

[
fX|Y (x|y)fY (y)

]
dydx

= −
∫
x

∫
y
f(x,y)

{
log fX|Y (x|y) + log fY (y)

}
dydx

= −
∫
y
fY (y) log fY (y)dy −

∫
x

∫
y
f(x,y) log fX|Y (x|y)dydx

= S(fY ) + S(fX|Y ; f).

Of course, the conditional density of y given x could have been computed just as
easily as x given y, and so it is also true that

S(f) = S(fX) + S(fY |X ; f). (3.32)

If two independent random variables are added (and so their pdfs convolve), the
resulting entropy generally will be greater than that of either of the original functions:

S(f ∗ ρ) ≥ max{S(f), S(ρ)}.

Another lower bound on the entropy of convolved distributions is the “entropy power
inequality” for pdfs on Rn (see Shannon [43][Theorem 15 and Appendix 6], and [5, 13,
45, 46]]:

N(f1 ∗ f2) ≥ N(f1) + N(f2) where N(f) = exp
[

2
n
S(f)

]
. (3.33)

The above inequalities will be proved in subsequent sections in this chapter.
The general results from information theory presented in this section follow from the

properties of the natural logarithm function. The logarithm function has the property
that log(f1 · f2) = log(f1) + log(f2). In addition, it is strictly increasing so that for all
f, f1, f2 > 0: log f1 > log f2 if and only if f1 > f2; log f1 < log(f1 + f2); its negative is
convex so that a log f1 + (1 − a) log f2 ≤ log(af1 + (1 − a)f2) for all 0 ≤ a ≤ 1; and it
exhibits sublinear growth: log f ≤ f − 1.

3.3.2 Entropy and Gaussian Distributions

The information-theoretic entropy of one-dimensional and n-dimensional Gaussian dis-
tributions
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ρ(0,σ2)(x) =
1√
2πσ

e−x2/2σ2
and ρ(0,Σ)(x) =

1
(2π)n/2|Σ| 1

2
exp(−1

2
xTΣ−1x)

are respectively [43]
S(ρ(0,σ2)) = log(

√
2πeσ)

and
S(ρ(0,Σ)) = log{(2πe)n/2|Σ| 1

2 } (3.34)

where log = loge.
The entropy of a Gaussian distribution is greater than the entropy of any other

distribution over Rn with the same mean and variance (thus it is known as the maximum-
entropy distribution). This means that if the covariances of an arbitrary distribution
are computed, the entropy can be immediately bounded from above using (3.34).

3.3.3 Mutual Information

Given a pdf f(x) = f(x1,x2), which may or may not be Gaussian, where x1 ∈ Rn1 ,
x2 ∈ Rn2 , and x ∈ Rn where n = n1 + n2, the mutual information is defined as the
functional6

I(f1, f2; f) .=
∫

Rn1

∫
Rn2

f(x1,x2) log
(

f(x1,x2)
f1(x1)f2(x2)

)
dx1dx2 = I(f2, f1; f). (3.35)

This can be related to the joint and marginal entropies as

I(f1, f2; f) = S(f1) + S(f2) − S(f). (3.36)

When f(x1,x2) = f(x1) · f(x2), it follows that I(f1, f2; f1 · f2) = 0.

3.3.4 Information-Theoretic Measures of Divergence

Given two probability density functions f1 and f2 on Rn, the Kullback–Leibler divergence
between them is defined as

DKL(f1‖f2)
.=
∫

Rn

f1(x) log
(
f1(x)
f2(x)

)
dx. (3.37)

This has the properties that for non-pathological (i.e., smooth, absolutely integrable,
and square integrable) pdfs DKL(f1‖f2) ≥ 0 with equality indicating that f1 = f2 up
to a set of measure zero. And it is bounded from below by the 1-norm in the following
way [31]:

1
4

(∫
Rn

|f1(x) − f2(x)|dx
)2

≤ DKL(f1‖f2).

Note that while this is a useful measure of how much two pdfs diverge, it is not a metric
(i.e., a function for evaluating distances between pdfs) because it is not symmetric,
DKL(f2‖f1) = DKL(f1‖f2), and it does not satisfy the triangle inequality. The Fisher
information divergence between two pdfs is defined as

6In the literature this would be denoted as I(X1; X2).
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DFI(f1‖f2)
.=
∫

Rn

∥∥∥∥ 1
f1

∇f1 − 1
f2

∇f2

∥∥∥∥2

f1dx. (3.38)

This is also not a “distance” function in the sense that it is not symmetric in the
arguments and does not satisfy the triangle inequality. In the one-dimensional case, this
can be written as

DFI(f1‖f2) =
∫ ∞

−∞

(
1
f1

df1

dx
− 1

f2

df2

dx

)2

f1dx = 4
∫ ∞

−∞

(
d

dx

√
f1

f2

)2

f2dx.

Now consider how the divergence measures in (3.37) and (3.38) vary under changes of
coordinates. For example, if x = x(φ), then the pdf in the coordinates φ corresponding
to fi(x) is f̃i(φ) = fi(x(φ))|J(φ)| where J(φ) = dx/dφT is the n × n Jacobian of this
coordinate transformation. (For a detailed discussion of coordinate transformations see
Chapter 5.) In this way, ∫

Rn

f̃i(φ)dφ =
∫

Rn

fi(x)dx.

It is easy to see that

DKL(f̃1(φ)‖f̃2(φ)) = DKL(f1(x)‖f2(x)).

Likewise, writing the chain rule as

∇T
φf̃(φ) = (∇T

x f)
∣∣
x(φ) J(φ),

where ∇T
x = [∂/∂x1, ∂/∂x2, ..., ∂/∂xn] is a row vector, it follows that

DFI(f̃1‖f̃2) =
∫
φ∈Rn

∥∥∥∥ 1
f̃1

∇φf̃1 − 1
f̃2

∇φf̃2

∥∥∥∥2

f̃1dφ

=
∫
φ∈Rn

∥∥∥∥( 1
f1

∇T
x f1 − 1

f2
∇T

x f2

)
J(φ)
|J(φ)|

∥∥∥∥2

f1 · |J(φ)|dφ.

This will be equal to DFI(f1‖f2) if

J(φ)JT (φ) = |J(φ)|2I.

Such is always the case for one dimension, and it holds in multiple dimensions if J is
orthogonal.

3.3.5 Fisher Information

By definition, a parametric multivariate probability density function on Rn that depends
on parameters θ = [θ1, θ2, ..., θm]T ∈ Rm, satisfies∫

Rn

f(x;θ)dx = 1 and f(x;θ) ≥ 0.

For example, the multivariate Gaussian distribution depends on the parameters θ =
(μ, Σ), which represent m = n + n(n + 1)/2 independent numbers.
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The Fisher information matrix for the pdf f(x;θ) is defined as the matrix with
entries

Fij(θ; f) .=
∫

Rn

1
f

∂f

∂θi

∂f

∂θj
dx. (3.39)

When it is clear which pdf is used to define Fij(θ; f), this can be abbreviated as Fij(θ).
In the special case when

f(x;θ) =
n∏

k=1

fk(xk;θ),

the Fisher information is additive:

Fij(θ; f) =
n∑

k=1

Fij(θ, fk).

As a special case, when m = n and f(x;θ) = f(x−θ), the Fisher information matrix
evaluated at θ = 0 becomes

F (f) .= F (0, f) =
∫

Rn

1
f

(∇xf)(∇xf)T dx. (3.40)

In the one-dimensional case (3.40) reduces to

F (f) =
∫ ∞

−∞
[f ′(x)]2/fdx (3.41)

where f ′(x) = df/dx.

3.3.6 Information and Convolution

The “information” F (f) is a measure of the sharpness of the pdf f(x) in the sense that
rapid fluctuations in f(x) cause F (f) to increase, whereas a blurred version of f(x) will
have smaller derivatives and a lower value of F (f). It follows that F (f) is reduced under
convolution in the same way that entropy is increased.

Recall the following bound on the information of two convolved pdfs from (3.25):

F (f1 ∗ f2) ≤ β2F (f1) + (1 − β)2F (f2) where 0 ≤ β ≤ 1. (3.42)

If β = 0 the right side reduces to F (f2) and if β = 1 it reduces to F (f1). Therefore,

F (f1 ∗ f2) ≤ min{F (f1), F (f2)}. (3.43)

However, it can be the case that a value of β in (3.42) other than 0 or 1 yields the tightest
bound. Note that the right-hand side in (3.42) is quadratic in β, which is minimized at
a value of

β =
F (f2)

F (f1) + F (f2)
.

This can be verified by either completing the square or setting the derivative with respect
to β to zero. Substituting this optimal value of β into (3.42) gives

F (f1 ∗ f2) ≤ F (f1)F (f2)
F (f1) + F (f2)

or
1

F (f1 ∗ f2)
≥ 1

F (f1)
+

1
F (f2)

. (3.44)
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Alternative bounds on the information contained in the convolution of two pdfs on
the real line can be obtained by using the Cauchy–Schwarz inequality, as was done by
Brown [7]. The version of the Cauchy–Schwarz inequality that is applicable here is(∫ ∞

−∞
a(t)b(t)dt

)2

≤
(∫ ∞

−∞
a2(t)dt

)(∫ ∞

−∞
b2(t)dt

)
(3.45)

where a(t) and b(t) are arbitrary functions whose absolute values and squares are in-
tegrable. Equation (3.45) is also called the Cauchy–Bunyakovsky–Schwarz, or CBS, in-
equality. It can be applied directly to the evaluation of F (f1 ∗ f2). By definition,

F (f1 ∗ f2) =
∫ ∞

−∞

(∫∞
−∞ f ′

1(z − t)f2(t)dt
)2

(f1 ∗ f2)(z)
dz

=
∫ ∞

−∞

(∫∞
−∞ f ′

1(z − t)/[f1(z − t)]
1
2 · [f1(z − t)]

1
2 f2(t)dt

)2

(f1 ∗ f2)(z)
dz.

For each fixed z in the integral in the numerator, letting a(t) = f ′
1(z− t)/[f1(z− t)]

1
2

and b(t) = [f1(z − t)]
1
2 f2(t), and using the CBS inequality results in

F (f1 ∗ f2) ≤
∫ ∞

−∞

(∫∞
−∞[f ′

1(z − t)]2/f1(z − t)dt
)

·
(∫∞

−∞ f1(z − t)[f2(t)]2dt
)

(f1 ∗ f2)(z)
dz

=
∫ ∞

−∞

(∫∞
−∞[f ′

1(t
′)]2/f1(t′)dt′

)
·
(∫∞

−∞ f1(z − t)[f2(t)]2dt
)

(f1 ∗ f2)(z)
dz

= F (f1) ·
∫ ∞

−∞

(f1 ∗ f2
2 )(z)

(f1 ∗ f2)(z)
dz.

The key point in the above proof is that integration over the whole real line is invariant
under shifts and inversions of the argument of the function, which allows the change of
variables t′ = z − t and F (f1) to be taken outside of the integral over z. Unfortunately,
the above is not a tight bound.

Revisiting the CBS inequality (3.45), if a(t) ≥ 0 for all values of t, then it is possible
to define j(t) = [a(t)]

1
2 and k(t) = [a(t)]

1
2 b(t), and since j(t)k(t) = a(t)b(t) [22],(∫ ∞

−∞
a(t)b(t)dt

)2

≤
(∫ ∞

−∞
j2(t)dt

)(∫ ∞

−∞
k2(t)dt

)

=
(∫ ∞

−∞
a(t)dt

)(∫ ∞

−∞
a(t)[b(t)]2dt

)
. (3.46)

Using this version of the CBS inequality, and letting b(t) = f ′
1(z − t)/[f1(z − t)] and

a(t) = f1(z − t)f2(t), Brown [7] showed
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F (f1 ∗ f2) =
∫ ∞

−∞

(∫∞
−∞[f ′

1(z − t)/f1(z − t)] · [f1(z − t)f2(t)]dt
)2

(f1 ∗ f2)(z)
dz

≤
∫ ∞

−∞

(∫∞
−∞

[
f ′
1(z−t)

f1(z−t)

]2
[f1(z − t)f2(t)]dt

)(∫∞
−∞ f1(z − τ)f2(τ)dτ

)
(f1 ∗ f2)(z)

dz

=
∫ ∞

−∞

(∫ ∞

−∞

{
[f ′

1(z − t)]2

f1(z − t)

}
f2(t)dt

)
dz

=
∫ ∞

−∞

(∫ ∞

−∞
{[f ′

1(z − t)]2/f1(z − t)}dz
)

f2(t)dt

= F (f1)
∫ ∞

−∞
f2(t)dt

= F (f1).

Since convolution is commutative, this is equivalent to (3.43), which is not as tight
as (3.44).

3.3.7 Shift and Scaling Properties

In this subsection the behavior of Shannon entropy under changes of coordinates is
examined. Scaling properties of Fisher information can be computed in an analogous
way.

The One-Dimensional Case

Consider the entropy of a pdf f(x), and the entropy of the shifted version of this pdf:
fa(x) .= f(x− a). Due to the invariance of integration of any integrable function on the
line,

S(fa) = −
∫ ∞

−∞
f(x − a) log f(x − a)dx

= −
∫ ∞

−∞
f(x) log f(x)dx

= S(f).

Now consider the scaled version of the pdf f(x) defined as

fs(x) .=
1
s
f(x/s) where s > 0.

If s > 1, this is a more “spread out” version of f , and if s < 1, then this is a more
“concentrated” version of f . It can be verified easily that fs(x) is indeed a pdf by making
the change of coordinates y = x/s and replacing the integral over x with that over y.

Likewise, the entropy of fs(x) is calculated as
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S(fs) = −
∫ ∞

−∞

1
s
f(x/s) log

[
1
s
f(x/s)

]
dx

= −
∫ ∞

−∞
f(y) log

[
1
s
f(y)

]
dy

= S(f) + log s.

The Multi-Dimensional Case

The multi-dimensional case proceeds in a similar way as in the one-dimensional case.
Given a pdf f(x), a shifted version is fa(x) = f(x − a). And

S(fa) = −
∫

Rn

f(x − a) log f(x − a)dx = −
∫

Rn

f(x) log f(x)dx = S(f).

Now consider the scaled version of the pdf f(x) defined as

fA(x) =
1

detA
f(A−1x) where detA > 0.

If detA > 1, this is a more “spread out” version of f , and if detA < 1, then this is a
more “concentrated” version of f . It can be verified easily that fA(x) is indeed a pdf
by making the change of coordinates y = A−1x and replacing the integral over x with
that over y.

The entropy of fA(x) is calculated as

S(fA) = −
∫

Rn

1
detA

f(A−1x) log
[

1
detA

f(A−1x)
]
dx

= −
∫

Rn

f(y) log
[

1
detA

f(y)
]
dy

= S(f) + log detA.

3.4 Parameter Estimation

Let f(x;θ) be any member of a family of pdfs in the variable x ∈ Rn characterized by
a vector value θ ∈ Rm. That is, ∫

Rn

f(x;θ)dx = 1. (3.47)

The whole family of pdfs is parameterized by letting θ take a range of values in Rm.
For example, the family of multivariate Gaussian distributions ρ(x;μ, Σ) is param-

eterized by μ, Σ. If both μ and Σ are unknown, then θ would be n + n(n + 1)/2-
dimensional (since Σ = ΣT ); if the mean is known, then θ would be n(n + 1)/2-
dimensional; if the mean is the only unknown, then θ can take any value in Rn.



82 3 Probability and Information Theory

3.4.1 Unbiased Estimators

Let v : Rn → Rp be any well-behaved vector-valued function7 of x. Then

〈v(x)〉 =
∫

Rn

v(x)f(x;θ)dx .= ψ(θ), (3.48)

where the equality on the right simply means that the dependence on x has been
integrated out, and the result is defined as ψ(θ) ∈ Rp. It is sometimes convenient
to rewrite (3.48) as ∫

Rn

[v(x) − ψ(θ)]f(x;θ)dx = 0. (3.49)

Given a set of sampled data, {x1,x2, ...,xN}, a goal often encountered in practice
is to find the particular member of the family of parametric distributions that best fits
the data. For example, values of θ̂ could be obtained by solving the equation

ψ(θ̂) =
1
N

N∑
i=1

v(xi) (3.50)

for a large value of N . If m = p and ψ(θ) ≈ θ, then in this context v(x) is called an
estimator of θ, and θ̂ is called the estimate of θ. If ψ(θ) = θ, then v(x) is called an
unbiased estimator and θ̂ is called an unbiased estimate.

The samples {xi} in (3.50) are assumed to be drawn at random from the distribution
f(x;θ) for some unknown, but fixed, value of θ. The law of large numbers states that the
underlying pdf is observed as the number of samples goes to infinity, and so the estimate
θ̂ obtained in this way should become better as N becomes larger. If the estimator v(x)
is unbiased, then ψ(θ̂) = θ̂ and obtaining θ̂ from (3.50) becomes trivial. When using
other estimators the estimation problem becomes one of inverting the function ψ.

3.4.2 The Cramér–Rao Bound

The Fisher information matrix in (3.39) can be written in the following alternative
forms:

F =
∫

Rm

[
∂

∂θ
log f(x;θ)

] [
∂

∂θ
log f(x;θ)

]T

f(x;θ)dx (3.51)

= −
∫

Rm

f(x;θ)
∂

∂θ∂θT
log f(x;θ)dx, (3.52)

where ∂f/∂θ is interpreted as a column vector, and ∂f/∂θT = [∂f/∂θ]T . Here log(·) is
the scalar natural logarithm function.

Differentiation of both sides of (3.49) with respect to θT gives

∂

∂θT

∫
Rn

[v(x) − ψ(θ)]f(x;θ)dx =
∫

Rn

[v(x) − ψ(θ)]
∂f(x;θ)

∂θT
dx − ∂ψ

∂θT
= O,

where the derivative is taken under the integral and the product rule for differentiation
and the fact that f is a pdf in x is used. Here O is the m × m zero matrix resulting
from the computation of ∂0/∂θT .

7The class of “nice” functions extends to those that are vector valued by simply restricting
each component of the vector to be nice, i.e., vi ∈ N (Rn).
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The above equation can be written as

∂ψ

∂θT
=
∫

Rn

a(x,θ)bT (x,θ)dx ∈ Rp×m (3.53)

where

a(x,θ) = [f(x;θ)]
1
2 [v(x) − ψ(θ)] and b(x,θ) = [f(x;θ)]

1
2

∂

∂θ
log f(x;θ).

Referring back to the first equality in (3.52), it is clear that

F =
∫

Rn

b(x,θ)[b(x,θ)]T dx (3.54)

and the error covariance for v(x), denoted as

C =
〈
[v(x) − ψ(θ)][v(x) − ψ(θ)]T

〉
,

is computed explicitly as

C =
∫

Rn

a(x,θ)[a(x,θ)]T dx. (3.55)

Following [12], the multiplication of (3.53) on the left by the transpose of an arbitrary
constant vector α ∈ Rp and on the right by an arbitrary constant column vector β ∈ Rm

gives

αT ∂ψ

∂θT
β =

∫
Rn

αT a(x,θ)bT (x,θ)β dx. (3.56)

Then regrouping terms in the expression on the right and squaring, and using the
Cauchy–Schwarz inequality gives(∫

Rn

αT (abT )β dx
)2

=
(∫

Rn

(αT a)(bT β)dx
)2

≤
(∫

Rn

(αT a)2dx
)(∫

Rn

(βT b)2dx
)

=
(∫

Rn

αT aaT αdx
)(∫

Rn

βT bbT β dx
)

.

But from (3.54), (3.55), and (3.56), this can be written as

(αT ∂ψ

∂θT
β)2 ≤ (αTCα)(βTFβ).

Making the choice of β = F−1[∂ψT /∂θ]α yields(
αT ∂ψ

∂θT
F−1 ∂ψT

∂θ
α

)2

≤ (αTCα)
(

αT ∂ψ

∂θT
F−1 ∂ψT

∂θ
α

)
.

This simplifies to

αT

(
C − ∂ψ

∂θT
F−1 ∂ψT

∂θ

)
α ≥ 0 for arbitrary α ∈ Rn. (3.57)
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This means that the term in parentheses is a positive definite matrix. This statement is
often denoted as

C ≥ ∂ψ

∂θT
F−1 ∂ψT

∂θ
, (3.58)

which is not an inequality in the entries of the matrices, but rather simply short-
hand for (3.57), or equivalently, the statement that all of the eigenvalues of C −
(∂ψ/∂θT )F−1(∂ψT /∂θ) are greater than or equal to zero.

While the above holds true for any estimator, in the case of an unbiased estimator
it simplifies because then ∂ψ/∂θT = ∂ψT /∂θ = I.

3.4.3 Demonstration with Gaussian Distributions

Note that (3.58) is true for any estimator. In the special case when m = n and f(x;θ) =
f(x − θ), and θ̂ = μ, the Cramér–Rao bound becomes

Σ ≥ F−1. (3.59)

When f(x − μ) = ρ(x;μ,Σ) is a Gaussian distribution with known covariance Σ,

∂f

∂μi
= eT

i Σ−1(x − μ)ρ(x;μ,Σ)

and the identity in (2.33) can be used to show that the Fisher information matrix
becomes F = Σ−1, and therefore the inequality in (3.59) becomes an equality.

3.4.4 The de Bruijn Identity

When written in terms of probability densities, the de Bruijn identity states [10]

d

dt
S(α ∗ f0,t) =

1
2
F (α ∗ f0,t). (3.60)

Here f0,t(x) = ρ(x; 0, t) is the Gaussian distribution with zero mean and variance t > 0
that solves the heat equation in Section 2.7.1 (in the 1D case with unit diffusion con-
stant), α(x) is an arbitrary differentiable pdf, and F (·) denotes the Fisher information
as defined in (3.41). It follows from (3.60) that

lim
t→0

f0,t(x) = δ(x) =⇒ d

dt
S(α ∗ f0,t)

∣∣∣∣
t=0

=
1
2
F (α). (3.61)

The derivation of (3.60) itself is relatively straightforward. Following the presentation
in Cover and Thomas [10, pp. 672–673], but using different notation and a different order
of operations,

d

dt
S(α ∗ f0,t) = − d

dt

∫ ∞

−∞
(α ∗ f0,t)(x) log[(α ∗ f0,t)(x)]dx

= −
∫ ∞

−∞

{[
∂

∂t
(α ∗ f0,t)

]
· log(α ∗ f0,t) + (α ∗ f0,t) ·

[
∂

∂t
log(α ∗ f0,t)

]}
dx

= −
∫ ∞

−∞

{(
α ∗ ∂f0,t

∂t

)
· log(α ∗ f0,t) + α ∗ ∂f0,t

∂t

}
dx.
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The Gaussian distribution f0,t is precisely the one corresponding to one-dimensional
Brownian motion:

f0,t(x) =
1√
2πt

e−x2/2t =⇒ ∂f0,t

∂t
=

1
2
∂2f0,t

∂x2 . (3.62)

Now in general for a convolution product

∂

∂x
[(φ1 ∗ φ2)(x)] = (φ1 ∗ φ′

2) (x)

as long as φ′
2(x) = ∂φ2/∂x is well behaved. This is certainly true in the present case,

and means that

d

dt
S(α ∗ f0,t) = −1

2

∫ ∞

−∞

{(
α ∗ ∂2f0,t

∂x2

)
· log(α ∗ f0,t) + α ∗ ∂2f0,t

∂x2

}
dx

= −1
2

∫ ∞

−∞

{
∂2

∂x2 (α ∗ f0,t) · log(α ∗ f0,t) +
∂2

∂x2 (α ∗ f0,t)
}

dx.

The second term disappears because, from the fundamental theorem of calculus,∫ ∞

−∞

∂2

∂x2 (α ∗ f0,t)dx =
∂

∂x
(α ∗ f0,t)(x)

∣∣∣∣∞
x=−∞

= 0

since α(x) and its derivatives decay to zero as x → ±∞.
Using integration by parts on the term that remains,

d

dt
S(α ∗ f0,t) = − 1

2
∂

∂x
(α ∗ f0,t) · log(α ∗ f0,t)

∣∣∣∣∞
−∞

+
1
2

∫ ∞

−∞

1
(α ∗ f0,t)

[
∂

∂x
(α ∗ f0,t)

]2
dx.

Again, as long as α(x) decays rapidly enough as x → ±∞, the term on the left will
evaluate to zero. And the integral on the right is F (α ∗ f0,t), and so (3.60) results.

3.4.5 The Entropy Power Inequality

The statement of the entropy power inequality dates back to Shannon’s original paper,
though complete and rigorous proofs came later [45, 5]. Shannon defined the entropy
power of a pdf p(x) on Rn as N(p) = exp(2S(p)/n)/2πe where S(p) is the entropy of p.
The entropy power inequality then states

N(p ∗ q) ≥ N(p) + N(q) (3.63)

with equality if and only if p and q are both Gaussian distributions with covariance
matrices that are a scalar multiple of each other.

Variations on the theme as well as different methods of proof have appeared in the
literature since that time [9, 13, 34, 46]. Here the proofs of [45, 5] are reviewed for the 1D
case. In the literature usually the one-dimensional case is proven, and then mathematical
induction is used to extend to higher dimensions.
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Let fσ2(t)(x) denote a Gaussian distribution with zero mean with variance σ2(t),
and let σ2(0) = 0. Given differentiable pdfs p(x) and q(x), define pt

.= p ∗ fσ2
1(t) and

qt
.= q ∗ fσ2

2(t). Following Stam and Blachman [5, 45], let

V (t) =
exp[2 · S(pt)] + exp[2 · S(qt)]

exp[2 · S(pt ∗ qt)]
= (exp[2 · S(pt)] + exp[2 · S(qt)]) exp[−2·S(pt∗qt)].

(3.64)
As t → 0, V (0) → [N(p)+N(q)]/N(p ∗ q). Therefore, if it can be proven that V (0) ≤ 1,
then (3.63) will hold in the one-dimensional case.

Taking the time derivative of (3.64), and using the chain rule and product rule,

dV

dt
=
(

2 exp[2 · S(pt)]
d

dt
S(pt) + 2 exp[2 · S(qt)]

d

dt
S(qt)

)
exp[−2 · S(pt ∗ qt)]

−2 (exp[2 · S(pt)] + exp[2 · S(qt)]) exp[−2 · S(pt ∗ qt)]
d

dt
S(pt ∗ qt).

Using the de Bruijn identity (3.60) and the chain rule,

d

dt
S(qt) =

dS(qt)
d(σ2

2)
d(σ2

2)
dt

=
1
2
F (qt)

d(σ2
2)

dt

and likewise for pt. Furthermore, since convolution on the real line is commutative,

pt ∗ qt = p ∗ fσ2
1

∗ q ∗ fσ2
2

= p ∗ q ∗ fσ2
1

∗ fσ2
2

= p ∗ q ∗ fσ2
1+σ2

2
.

Therefore,

dV

dt
=
(

exp[2 · S(pt)]F (pt)
d(σ2

1)
dt

+ exp[2 · S(qt)]F (qt)
d(σ2

2)
dt

)
exp[−2 · S(pt ∗ qt)]

− (exp[2 · S(pt)] + exp[2 · S(qt)]) exp[−2 · S(pt ∗ qt)]F (pt ∗ qt)
d(σ2

1 + σ2
2)

dt
.

Multiplying both sides by exp[2 · S(pt ∗ qt)] and choosing σ2
1(t) and σ2

2(t) such that

d(σ2
1)

dt
= exp[2 · S(pt)] and

d(σ2
2)

dt
= exp[2 · S(qt)], (3.65)

exp[2 · S(pt ∗ qt)]
dV

dt
= (exp[2 · S(pt)])2F (pt) + (exp[2 · S(qt)])2F (qt)

(3.66)

− (exp[2 · S(pt)] + exp[2 · S(qt)])
2
F (pt ∗ qt).

But from the general inequality

(α1 + α2)2F (f1 ∗ f2) ≤ α2
1F (f1) + α2

2F (f2) (3.67)

(which is equivalent to (3.42)) it follows from (3.66) with α1 = exp[2 · S(pt)], α2 =
exp[2 · S(qt)], f1 = pt, and f2 = qt that

dV

dt
≥ 0.
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Equality holds in this expression if and only if p and q are Gaussians. In that case V is
a constant. Otherwise, V is a strictly increasing function. Therefore,

V (∞) ≥ V (0)

with equality holding only for Gaussians.
Since the entropy of the convolution of two functions is no less than the entropy of

either of the original functions, and since the exponential function is always positive,
the choice in (3.65) implies that σ2

i (∞) = ∞. Furthermore, the scaled pdf σ1pt(σ1x)
will have entropy S(pt) − log σ1, as discussed in Section 3.3.7. But since by definition

pt(z) = (p ∗ fσ2
1
)(z) =

1√
2π σ1

∫ ∞

−∞
p(y) exp

[
−1

2
(z − y)2/σ2

1

]
dy,

making the substitutions z = σ1x and y = σ1ξ yields

σ1pt(σ1x) =
1√
2π

∫ ∞

−∞
σ1p(σ1ξ) exp

[
−1

2
(x − ξ)2

]
dξ.

And since σ1p(σ1x) becomes more and more like a delta function as σ1 → ∞, it follows
that

lim
σ1→∞

σ1pt(σ1x) = f0,1(x)

where f0,t(x) is defined in (3.62). Therefore,

lim
t→∞

S(pt) =
1
2

log 2πeσ2
1 ,

and similarly,

lim
t→∞

S(qt) =
1
2

log 2πeσ2
2

and
lim

t→∞
S(pt ∗ qt) =

1
2

log 2πe(σ2
1 + σ2

2).

Substituting these into (3.64) gives

lim
t→∞

V (t) = 1,

and since V (0) ≤ V (∞), this proves (3.63) for the case of n = 1.

3.4.6 Entropy of a Weighted Sum of Disjoint PDFs

Let ρ(x) be a probability density of the form

ρ(x) =
n∑

i=1

wiρi(x)

where8

wi ≥ 0 and
n∑

i=1

wi = 1,

8The set of values {wi} satisfying these conditions is called a partition of unity.
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and each ρi(x) is a pdf that is disjoint from the others in the sense that∫
x

ρ
1
2
i (x)ρ

1
2
j (x)dx = δij .

In other words, each ρj(x) has an associated region where it is positive and a region
where it is zero, and no two of these functions are positive on the same region.

The entropy of ρ(x) can be computed using the fact that if x is in the region where
ρj(x) is not zero, then

wjρj(x) =
n∑

i=1

wiρi(x) =⇒ log(wjρj(x)) = log

(
n∑

i=1

wiρi(x)

)
.

Then

−S(x) =
∫

x

ρ(x) log ρ(x)dx =
∫

x

(
n∑

i=1

wiρi(x)

)
log

(
n∑

i=1

wiρi(x)

)
dx

=
n∑

j=1

wj

∫
x

ρj(x) logwjρj(x)dx

=
n∑

j=1

wj

∫
x

ρj(x)(logwj + log ρj(x))dx

=
n∑

j=1

wj logwj

∫
x

ρj(x)dx +
n∑

j=1

wj

∫
x

ρj(x) log ρj(x)dx

=
n∑

j=1

wj logwj −
n∑

j=1

wjSj .

Multiplying by −1, this result can be written as

S(ρ) = −
n∑

j=1

wj logwj +
n∑

j=1

wjS(ρj). (3.68)

The weights {wi} can be viewed as a probability distribution function on a finite set,
and so (3.68) can be viewed as a statement relating the entropy of this distribution,
the (weighted) average of the continuous entropies of the family of probability density
functions {ρi(x)}, and the entropy of ρ(x). However, it should be noted that this equality
does not hold if the pdfs overlap.

3.4.7 Change of Coordinates

Given a pdf, ρY (y), and a change of variables y = y(x) with Jacobian matrix J(x) =
∂y/∂xT , then from (3.4) we have ρX(x) = ρY (y(x))|J(x)|. However, when computing
the entropy in new coordinates it generally will not retain its value,

S(ρ) = S(ρ′),
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although a sufficient condition for equality is the case when |J(x)| = 1 for all values of
x.

In contrast, to compute the same value of entropy in the new coordinate system,
choosing f(y) = −ρ(y) log ρ(y) gives f ′(x) = −ρ(y(x)) log ρ(y(x))|J(x)|, the integral
of which produces the same value of entropy. However, this is a somewhat unnatural
thing to do since ρ(y(x)) is not a pdf without the Jacobian factor.

3.4.8 Computation of Entropy via Discretization

Often a probability density function is represented as a histogram, which is effectively
an average of the pdf over small intervals that are joined together. Similarly, discrete
probabilities that result by integrating probability densities over regularly spaced bins
can be stored at lattice points, from which approximations of entropy can be computed.
In this subsection the issue of how the computed value of entropy varies based on
discretization parameters is addressed.

Given a probability density function, ρ(x), a corresponding histogram with compact
support9 [xmin, xmax] and N bins of size ν = (xmax − xmin)/N is written as

ρH(x) =
N−1∑
i=0

ρi · W (x, xmin + iν, xmin + (i + 1)ν)

where W (x, a, b) is a window function equal to 1 on a ≤ x < b and zero otherwise. Here

ρi =
1
ν

∫ xmin+(i+1)ν

xmin+iν

ρ(x)dx

is the average value of ρ(x) over the ith bin. From the definition of a pdf,

ν
N−1∑
i=0

ρi = 1.

Note that the original pdf can be written as

ρ(x) =
N−1∑
i=0

(1 + εi(x))ρi · W (x, xmin + iν, xmin + (i + 1)ν) (3.69)

where εi(x) is a function describing the deviation of ρ(x) from ρH(x) at each value of x
in the ith bin. Since by definition ρi is an average over the bin, it must be the case that∫ xmin+(i+1)ν

xmin+iν

εi(x)dx = 0.

As the number of bins becomes large, the magnitude of |εi(x)| must become smaller if
ρ(x) is continuous.

Using the form (3.69) and properties of the window function and log function, the
continuous entropy of ρ can be written as

9A function is said to have compact support if it takes a value of zero outside of a compact
domain.
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S(ρ) = −
∫

x

ρ(x) log ρ(x)dx

= −
∫

x

N−1∑
i=0

(1 + εi(x))ρi log[(1 + εi(x))ρi] · W (x, xmin + iν, xmin + (i + 1)ν)dx

= −ν
N−1∑
i=0

ρi log ρi −
N−1∑
i=0

∫
bini

(1 + εi(x))ρi log(1 + εi(x))dx.

For |εi(x)| << 1, the approximation log(1 + εi(x)) ≈ εi(x) is good. This means that for
relatively small bins,

S(ρ) = −ν
N−1∑
i=0

ρi log ρi −
N−1∑
i=0

ρi

∫
bini

|εi(x)|2dx + O(max
x

‖ε(x)‖3).

The first term on the right is the entropy of the histogram, S(ρH). The second term is
a negative quantity that dominates the third-order terms for sufficiently small bin sizes.
Therefore, for sufficiently small bin sizes

S(ρ) ≤ S(ρH). (3.70)

Now the question of how discrete and continuous entropies relate can be addressed.
The probability contained in bin i can be written as pi = νρi. This means that for
rather small bins

S(ρ) ≈ S(ρH) ≈ log ν −
N−1∑
i=0

pi log pi.

The last term can be called discrete entropy, and can be denoted as

S({pi}) .= −
N−1∑
i=0

pi log pi. (3.71)

Hence, the absolute value of discrete entropy depends on the bin size. Whereas S(ρ) can
take negative values (and approaches a value of negative infinity as ρ becomes a Dirac
delta function), the discrete entropy is always bounded from below by zero:

S({pi}) ≥ 0. (3.72)

Given two pdfs, ρ(1)(x) and ρ(2)(x), on the same domain and applying the same
histogram rules to both results in discrete probabilities {p(1)

i } and {p(2)
i }. The entropy

difference between the two continuous and two discrete entropies approaches zero as the
number of discretizations becomes large:

S(ρ(2)) − S(ρ(1)) = S({p(2)
i }) − S({p(1)

i }) as N → ∞. (3.73)

This can be viewed as one of the justifications for using lattice models for com-
puting the (statistical mechanical) entropy differences for physical systems. However,
what should also be clear from this discussion is that only entropies of the same kind
(i.e., continuous or discrete) should be compared with each other. Otherwise, physically
meaningless numbers such as log ν will enter and render the result meaningless.
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3.5 The Classical Central Limit Theorem

The classical central limit theorem for the real line, when stated in terms of probability
densities, is as follows. Let ρj(x) = ρ(x) for j = 1, ..., n for some positive integer n. If∫ ∞

−∞
xρ(x)dx = 0 and

∫ ∞

−∞
x2ρ(x)dx = 1/n

and all moments
〈xk〉 =

∫ ∞

−∞
xkρ(x)dx

are bounded, then

lim
n→∞

(ρ1 ∗ ρ2 ∗ · · · ∗ ρn)(x) =
1√
2π

e−x2/2. (3.74)

In the subsections that follow, several very different ways to approach the proof of
the central limit theorem are provided.

3.5.1 The Central Limit Theorem (Fourier Version)

The proof of this statement follows by taking the Fourier transform of the n-fold con-
volution, which results in the nth power of ρ̂(ω), and recognizing that

ρ̂(ω) =
∫ ∞

−∞
ρ(x)e−iωxdx

=
∫ ∞

−∞
ρ(x)

(
lim

m→∞

m∑
k=0

(−iω)kxk/k!

)
dx

= lim
m→∞

m∑
k=0

(−iω)k/k!
∫ ∞

−∞
xkρ(x)dx

= lim
m→∞

m∑
k=0

〈xk〉ωk(−i)k/k!.

Then

F
(

lim
n→∞

(ρ1 ∗ ρ2 ∗ · · · ∗ ρn)(x)
)

= lim
n→∞

⎛⎝ n∏
j=1

ρ̂j(ω)

⎞⎠
= lim

n→∞
[ρ̂(ω)]n

= lim
n→∞

[
lim

m→∞

m∑
k=0

〈xk〉ωk(−i)k/k!

]n

= lim
m→∞

lim
n→∞

[
m∑

k=0

〈xk〉ωk(−i)k/k!

]n

.

This last step requires that the sequence defined by the terms in brackets converges,
which is guaranteed by the assumption that the moments are all bounded.
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Now, if the above is approximated at finite m and n, the multinomial expansion

(x1 + x2 + · · · + xm)n =
∑

k1,k2,...,km

n!
k1!k2! · · · km!

xk1
1 xk2

2 · · ·xkm
m where

m∑
l=1

kl = n

can be used. The sums in this expansion are over all sequences of non-negative integers
constrained as indicated by the equality on the right side above.

For any finite m, the limit as n → ∞ in the multinomial expansion is dominated by
the first two terms:

lim
n→∞

[
m∑

k=0

〈xk〉ωk(−i)k/k!

]n

= lim
n→∞

[
1 − 〈x〉ωi − 〈x2〉ω2/2 + · · ·

]n
= lim

n→∞

[
1 − ω2/2n + · · ·

]n
(3.75)

= e−ω2/2. (3.76)

The limit over m then becomes irrelevant. Taking the inverse Fourier transform then
gives (3.74). Clearly if the terms + · · · in (3.75) are small enough, then the limit will be
the same regardless of whether or not ρi(x) = ρ(x) for all i.

3.5.2 The Central Limit Theorem (RMSD Error Version)

Consider the class of probability density functions for which each member can be de-
scribed as a weighted sum of Gaussian distributions. In other words, each member of
this class will be of the form

f(x) =
N∑

i=1

aiρ(x;μi, σ
2
i ) (3.77)

where ρ(x;μi, σ
2
i ) is a Gaussian with mean μi and variance σ2

i . In order for f(x) to be
a pdf, ∫ ∞

−∞
f(x)dx =

N∑
i=1

ai = 1

since each ρ(x;μi, σ
2
i ) is a pdf. Sometimes pdfs of the form (3.77) are called multi-

Gaussian distributions (which should not be confused with the multivariate Gaussian
distributions in (2.24)).

The mean and variance of f(x) are calculated as

μ =
∫ ∞

−∞
xf(x)dx

=
N∑

i=1

ai

∫ ∞

−∞
xρ(x;μi, σ

2
i )dx

=
N∑

i=1

aiμi

and
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σ2 =
∫ ∞

−∞
(x − μ)2f(x)dx

=
N∑

i=1

ai

∫ ∞

−∞
(x − μ)2ρ(x;μi, σ

2
i )dx

=
N∑

i=1

ai

∫ ∞

−∞
(y + μi − μ)2ρ(y; 0, σ2

i )dy

=
N∑

i=1

ai

∫ ∞

−∞
[y2 + 2(μi − μ)y + (μi − μ)2]ρ(y; 0, σ2

i )dy

=
N∑

i=1

ai[σ2
i + (μi − μ)2].

In summary,

μ =
N∑

i=1

aiμi and σ2 =
N∑

i=1

ai[σ2
i + (μi − μ)2] where

N∑
i=1

ai = 1. (3.78)

Now consider the case when μ = 0 and σ2 = 1 and define the root-mean-square
“distance” (or deviation) (abbreviated as RMSD) between f(x) and ρ(x; 0, 1) as

d[f, ρ] .=
(∫ ∞

−∞
|ρ(x; 0, 1) − f(x)|2dx

) 1
2

. (3.79)

Unlike DKL(f ‖ ρ) and DFI(f ‖ ρ), the RMSD d[f, ρ] actually is a valid dis-
tance/metric function on the set of univariate pdfs in the sense that it satisfies all of
the properties (1.25)–(1.27). The closer this number is to zero, the closer f(x) will be
to a Gaussian distribution with zero mean and unit variance.

Note that for a scaled version of f(x), fs(x) .= f(x/s)/s, the mean will be μfs = sμf

and the variance will be σ2
fs

= s2σ2
f . (In the present case μf = 0 and σ2

f = 1, but
the above observation is true more generally.) If s > 1, this scaling has the effect of
widening and shortening the pdf, whereas if s < 1, it makes fs(x) more “concentrated”
or “tightly focused.” This is true for any pdf.

In light of this scaling operation, the central limit theorem can be viewed in the
following way. Choosing the scale s = 1/

√
2, and using the fact that variances add as a

result of convolution, the central limit theorem says

d[(f1/
√

2 ∗ f1/
√

2), ρ] ≤ d[f, ρ]. (3.80)

In other words, self-convolution causes a multi-Gaussian to look more like a Gaussian
than it did before the convolution.

Since f1/
√

2(x) is a weighted sum of Gaussians, the convolution (f1/
√

2 ∗ f1/
√

2)(x)
can be computed in closed form, as can the RMSD expressions on both sides in (3.80).
Comparison of the resulting expressions can be used to verify that (3.80) holds, thereby
proving the central limit theorem.

Explicitly,



94 3 Probability and Information Theory

(f1/
√

2 ∗ f1/
√

2)(x) =
1
2

N∑
i=1

N∑
j=1

aiajρ(x; (μi + μj)/
√

2, (σ2
i + σ2

j )/2).

Then, using the result (3.86) from the exercises, d2[(f1/
√

2 ∗ f1/
√

2), ρ] and d2[f, ρ] can
be calculated in closed form. In principle, inequalities provided in [22] can then be
manipulated to verify that (3.80) holds.

3.5.3 The Central Limit Theorem (Information-Theoretic Version)

The definitions and properties of information-theoretic entropy can be used to try to
prove the central limit theorem in ways that are independent of Fourier analysis without
assuming that the pdfs have a particular form. For example, if

f1,n(x) .= (f1 ∗ f2 ∗ · · · ∗ fn)(x)

where each fi(x) has mean μ/n and variance σ2/n, then one information-theoretic
argument would be to try to show that

lim
n→∞

DKL(f1,n‖ρμ,σ2) → 0. (3.81)

Another information-theoretic argument would be to try to show that

lim
n→∞

|S(f1,n) − S(ρμ,σ2)|2/|S(ρμ,σ2)|2 → 0 (3.82)

or more generally to show that S(f1,n) approaches S(ρμ,σ2). Stated in words, (3.82) says
that convolutions increase entropy until it asymptotes at its maximal possible value for
given mean and variance.

Another information-theoretic argument considers Fisher information. Whereas en-
tropy increases under convolutions, information is lost under convolutions. Convolution
“smooths” pdfs and destroys details. The Gaussian distribution contains the least Fisher
information of any distribution for given values of mean and variance. Therefore, an-
other information-theoretic strategy to prove the central limit theorem would be to show
that

lim
n→∞

F (f1,n) → F (ρμ,σ2). (3.83)

The use of entropy-theoretic approaches to the central limit theorem originated with
Linnik [33] and has been refined and described more fully in [1, 2, 7, 27, 28, 29, 30, 45, 47].

3.5.4 Limitations of the Central Limit Theorem

The condition that the moments 〈xk〉 must be bounded is a rather severe condition. It is
not so bad when ρ(x) has finite support and variance 1/n because then these moments
will all be decaying functions. For example, even in the extreme case when

ρ(x) =
1
2
δ(x + 1/n) +

1
2
δ(x − 1/n)

the higher moments are bounded.
However, there are cases in which the premise of the central limit theorem is violated,

but the result holds nonetheless. For example, the normal distribution N(0, 1/n) for any
fixed and finite value of n has moments of the form
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〈x2k〉 =
(2k)!
2kk!

(1/n)2k and 〈x2k+1〉 = 0 (3.84)

for all positive integers k. Therefore as k → ∞, it follows from Stirling’s formula (2.22)
that the even moments grow rapidly and are not bounded, and the conditions assumed
in the Fourier proof will not be satisfied. Nonetheless, Gaussian distributions are closed
under convolution and since variances add under convolution, the n-fold convolution
of Gaussian distributions with variance 1/n will result in a Gaussian distribution with
variance of unity for any positive value of n.

On the other hand, there are distributions that do not have bounded variance,
and repeated convolution of these distributions with themselves will not converge to
a Gaussian distribution. One example is the Cauchy distribution in (3.14). See [40, 51]
for other examples.

3.6 An Alternative Measure of Dispersion

Entropy is a measure of dispersion or disorder. However, this is not the only such
measure. For example, it is possible to define a measure of dispersion in Fourier space
as [21]

D(f) = −
∫ ∞

−∞
log |f̂(ω)|dω. (3.85)

Since f(x) ≥ 0,

|f̂(ω)| =
∣∣∣∣∫ ∞

−∞
f(x)eiωxdx

∣∣∣∣ ≤ ∫ ∞

−∞
f(x)

∣∣eiωx
∣∣ dx =

∫ ∞

−∞
f(x)dx = 1,

and so the integrand in (3.85) is always negative and hence D(f) is always positive.
It becomes immediately obvious that

D(f1 ∗ f2) = −
∫ ∞

−∞
log |f̂1(ω)f̂2(ω)|dω

= −
∫ ∞

−∞
log(|f̂1(ω)| · |f̂2(ω)|)dω

= −
∫ ∞

−∞
{log |f̂1(ω)| + log |f̂2(ω)|}dω

= D(f1) + D(f2).

As was discussed earlier, the Gaussian distribution is the pdf that maximizes en-
tropy subject to constraints on the value of the mean and variance. A natural question
then becomes, “What distribution maximizes D(f) in (3.85) subject to these same con-
straints?”

3.7 Chapter Summary

This chapter presented a broad summary of probability and information theory. Informa-
tion-theoretic measures of the “divergence” between two probability density functions
were reviewed together with classical inequalities such as the Cramér–Rao bound, en-
tropy power inequality, and de Bruijn identity. In the proof of the de Bruijn identity,
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properties of the heat equation reminiscent of Chapter 2 were employed. The promi-
nent role of the Gaussian distribution as the special pdf to which others converge under
iterated convolution was established in the central limit theorem. This, together with
its convenient parametrization and relationship to the heat equation make the Gaus-
sian ideal in the context of the problems that follow. In particular, random sampling
from a Gaussian distribution (which is an operation built into software packages such as
MATLABTM) is a convenient (and physically motivated) way to generate random noise.
It is this noise that is superimposed onto an ordinary differential equation to result in
a stochastic differential equation, which is one of the subjects of the next chapter.

This chapter serves as an elementary introduction to probability and information
theory. More in-depth references are provided at the end of this chapter. Classical ref-
erences in information theory include [11, 16, 17, 25, 38]. The study and application
of information-theoretic inequalities remains an area of investigation. See, for example,
the recent references [19, 24, 35, 44, 50]. The topics in geometry presented in later chap-
ters of this book make it possible to understand the connections between probability,
information theory, and geometry that have begun to emerge in recent years that are
described in [4, 6, 23, 36, 37, 41, 49].

3.8 Exercises

3.1. Show that for a > 0,∫ ∞

−∞
exp
{

−1
2
[ax2 − 2bx + c]

}
dx =

(
2π
a

) 1
2

e− 1
2 (c−b2/a).

3.2. Show that for Gaussian distributions ρ(x;μi, σ
2
i ) with μi ∈ R and σi ∈ R>0,∫ ∞

−∞
ρ(x;μ1, σ

2
1)ρ(x;μ2, σ

2
2)dx =

1
(2π)

1
2 (σ2

1 + σ2
2)

1
2

exp

(
−1

2

[
σ1σ2

σ2
1 + σ2

2
(μ1 − μ2)2

]2)
.

(3.86)

3.3. If the mean and covariance of ρ(x) are known, what will the mean and covariance
of

ρ(A,b)(x) = |detA|−1ρ(A−1(x − b))

be?

3.4. Suppose that the convolution product (ρ1∗ρ2)(x) has already been computed for two
pdfs, ρ1 and ρ2 on Rn. Now suppose that new pdfs ρ(Ai,bi)(x) = |detAi|−1ρi(A−1

i (x −
bi)) are defined for i = 1, 2. What are the most general conditions under which the
original convolution can be evaluated by a change of variables to produce (ρ(A1,b1) ∗
ρ(A2,b2))(x), thereby circumventing the direct calculation of the convolution from
scratch?

3.5. Prove both equalities in (3.16) and (3.17) for arbitrary integrable scalar-valued
function φi(xi). If instead of being scalar-valued functions, if φi(xi) are matrix valued,
will these equalities still hold?

3.6. Verify that: (a) 〈1|x〉 = 1; (b) 〈φ(x)|x〉 = φ(x); and (c)
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〈〈φ1(x1)φ2(x2)|x2〉x1〉 = 〈φ1(x1)|x2〉 · 〈φ2(x2)|x1〉. (3.87)

3.7. Given the pdf f(x, y, z), prove that

〈Φ(〈〈φ(x)|y, z〉z〉)〉 ≤ 〈Φ(φ(x))〉. (3.88)

3.8. The explicit meaning of the penultimate step in the derivation of (3.25) is〈(
β

ρ′
1(u)

ρ1(u)
+ (1 − β)

ρ′
2(v)

ρ2(v)

)2
〉

=
∫ ∞

−∞

∫ ∞

−∞

(
β

ρ′
1(u)

ρ1(u)
+ (1 − β)

ρ′
2(v)

ρ2(v)

)2

ρ1(u)ρ2(v)dudv.

When completing the square, why does the cross term integrate to zero?

3.9. For the multivariate Gaussian distribution ρ(x;μ, Σ), if x = [xT
1 ,xT

2 ]T with xi ∈
Rni , calculate the following: (a) entropy of the full density S(ρ(x;μ, Σ)); (b) entropy of
the marginal density S(ρi(xi;μi, Σi)); (c) the marginal entropy S(ρi; ρ).

3.10. For two multivariate Gaussian distributions ρ(x;μ, Σ) and ρ′(x;μ′, Σ′) compute:
(a) the Kullback–Leibler divergence, DKL(ρ‖ρ′); and (b) the Fisher information diver-
gence, DFI(ρ‖ρ′).

3.11. Let ρ(x,θ) be a pdf in the variable x ∈ Rn for each different value of θ. Show that
the Fisher information matrix and Kullback–Leibler distance are related as follows:

Fij(θ0) =
∂2

∂θiθj
DKL(ρ(x,θ)‖ρ(x,θ0))

∣∣∣∣
θ=θ0

. (3.89)

3.12. Show that the Fisher information divergence is invariant under Euclidean (rigid-
body) transformations of the form (Efi)(x) = fi(RT (x − t)) where R is an arbitrary
rotation matrix satisfying RRT = I and t is an arbitrary translation vector. In other
words, show that

DFI(Ef1‖Ef2) = DFI(f1‖f2).

3.13. Prove that the equalities in (3.52) are the same as the definition in (3.39) in the
special case when the dimensions of x and θ are the same and f(x;θ) = f(x − θ).

3.14. Prove that if θ is the vector made up of the n entries in μ and the n(n + 1)/2
independent entries in Σ, then the Fisher information matrix for a Gaussian distribution
on Rn with unknown mean and variance is the [n+n(n+1)/2]× [n+n(n+1)/2] matrix
with entries [18, 42]

Fjk =
∂μT

∂θj
Σ−1 ∂μ

∂θk
+

1
2
tr
(
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk

)
. (3.90)
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4

Stochastic Differential Equations

The chapter begins with Section 4.1 in which motivational examples of random walks
and stochastic phenomena in nature are presented. In Section 4.2 the concept of random
processes is introduced in a more precise way. In Section 4.3 the concept of a Gaussian
and Markov random process is developed. In Section 4.4 the important special case of
white noise is defined. White noise is the driving force for all of the stochastic processes
studied in this book. Other sections in this chapter define Itô and Stratonovich stochastic
differential equations (SDEs), their properties and corresponding Fokker–Planck equa-
tions, which describe how probability densities associated with SDEs evolve over time.
In particular, Section 4.7 examines the Fokker–Planck equation for a particular kind of
SDE called an Ornstein–Uhlenbeck process. And Section 4.8 examines how SDEs and
Fokker–Planck equations change their appearance when different coordinate systems
are used.

The main points that the reader should take away from this chapter are:

• Whereas a deterministic system of ordinary differential equations that satisfies cer-
tain conditions (i.e., the Lipschitz conditions) are guaranteed to have a unique solu-
tion for any given initial conditions, when random noise is introduced the resulting
“stochastic differential equation” will not produce repeatable solutions.

• It is the ensemble behavior of the sample paths obtained from numerically solving
a stochastic differential equation many times that is important.

• This ensemble behavior can be described either as a stochastic integral (of which
there are two main types, called Itô and Stratonovich), or by using a partial differ-
ential equation akin to the diffusion equations studied in Chapter 2, which is called
the Fokker–Planck (or forward Kolmogorov) equation.

• Two different forms of the Fokker–Planck equation exist, corresponding to the in-
terpretation of the solution of a given SDE as being either an Itô or Stratonovich
integral, and an analytical apparatus exists for converting between these forms.

• Multi-dimensional SDEs in Rn can be written in Cartesian or curvilinear coordinates,
but care must be taken when converting between coordinate systems because the
usual rules of multivariable calculus do not apply in some situations.

4.1 Motivating Examples

Motivational examples are provided in this section to introduce the usefulness of stochas-
tic differential equations as a modeling tool. First the discrete-time discrete-space case
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of a random walker on the integers is discussed. Then, continuous-time continuous-space
Brownian motion is discussed as a limiting case of the discrete theory.

4.1.1 The Discrete Random Walker

A random (or stochastic) process is a random variable that varies with time. One of
the simplest examples of a random process is a random walk on the integers. Imagine
a random walker who moves from one integer value to either of the two adjacent ones
with equal probability. Motion occurs only at integer units of time,1 n ∈ Z. At n = 0,
the walker starts at the position k = 0. Then, at n = 1, the walker will be at either
k = +1 or k = −1. Starting at this new location, the walker will change to a new
location defined by Δk = ±1 at n = 2. The process repeats. The fundamental question
becomes, “What is the probability that the walker will be at any specific integer if this
process is repeated n times?”

This discrete-time discrete-space random process can be addressed without using
the methods developed later in this section (which are for continuous-time continuous-
space random processes).2 The continuous case can be viewed as a limiting process of
the discrete one, and so it is worth working out the solution to the integer random
walker up front.

Since the space on which the random walker is moving is discrete, it follows that a
discrete probability distribution will describe the state, rather than using a probability
density function. At each discrete value of time, n, if the walker starts at k ∈ Z, the
probability of movement to the adjacent integer location will be

Δp(Δk, n) .=
1
2
(δΔk,1 + δΔk,−1), (4.1)

where δij is the Kronecker delta function that takes a value of 1 when i = j and zero
otherwise and Δk denotes the change in value of k from time n to time n+1. Although
Δp(Δk, n) is written as depending on the discrete time variables n ∈ {0, 1, 2, ...}, it is
actually constant with respect to this variable in the current problem.

In the same way that convolution on the real line was used in the previous chapters
to determine the distribution corresponding to the sum of continuous random variables,
convolution on the integers is used to determine the distribution of integer positions
that the discrete random walker attains at time n + 1 relative to the distribution at
time n:

p(k, n + 1) = (p ∗ Δp)(k, n) .=
∑
j∈Z

p(j, n)Δp(k − j, n). (4.2)

Starting with the known initial location k = 0, it follows that p(k, 0) = δk,0. Using
(4.2) recursively,

p(k, 1) =
1
2
(δk,1 + δk,−1)

p(k, 2) =
1
4
(δk,2 + 2δk,0 + δk,−2)

1In some books a random discrete-time “process” is called a “sequence.” In this book the
word “process” refers to both the discrete and continuous time.

2It is also possible to define continuous-time discrete-space processes (e.g., random walks on
graphs), and discrete-time continuous-space processes, but neither of these will be addressed
in this book.
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p(k, 3) =
1
8
(δk,3 + 3δk,1 + 3δk,−1 + δk,−3)

and so on.
It should not take too much convincing to believe that the pattern that emerges for

the coefficients in front of each Kronecker delta is the same as Pascal’s triangle, which
describes the binomial coefficients. The only small twist is that the binomial coefficients
are spread out over a range of values of k from −n to n. In other words, the pattern
above generalizes to [31]

p(k, n) =
1
2n

n∑
j=−n

(
n

n−j
2

)
(−1)n + (−1)j

2
δk,j . (4.3)

The reason for the multiplicative term ((−1)n + (−1)j)/2 is that adjacent to every value

of k for which p(k, n) takes the value
(

n
n−k

2

)
are the zero values p(k ± 1, n) = 0. This

can be observed above for p(k, 1), p(k, 2), and p(k, 3). When ((−1)n + (−1)j)/2 = 1, n
and j are said to have the same parity.

The distribution p(k, n) can be thought of as a special case of the binomial distribu-
tion from Section 2.1.6 with p(k, n) = f(n − k/2;n, 1/2) when k and n have the same
parity, and p(k, n) = 0 when k and n have different parity. It follows from (2.23) that
as n → ∞, this is approximated well as a Gaussian distribution when k and n have the
same parity.

Equation (4.2) can be viewed as describing the evolution of the probability distri-
bution of the discrete random variable k(n) that evolves in discrete time n ∈ Z. As an
alternative to posing the problem in terms of probability distributions, it is possible to
write an equation describing the discrete random process k(n) directly. Such an equation
takes the form

k(n + 1) = k(n) + ν(n) where k(0) = 0 (4.4)

and ν(n) is the “random noise” that has the distribution Δp(Δk, n). Equation (4.4)
can be considered to be a stochastic difference equation. This random noise model
is, in a sense, equivalent to flipping a coin at each discrete value of time, with heads
corresponding to a +1 motion and tails corresponding to a −1 motion. If this is done
n times, a single random path defined by discrete values of k(τ) for τ ∈ {0, 1, ..., n}
will be generated. If the same experiment is performed many times, an ensemble of
random paths will be generated. According to the law of large numbers, the statistical
properties of k(n) in a very large ensemble of random paths should be captured well by
(4.3). Therefore, each random path in the ensemble can be thought of as “sampling” the
distribution p(k, n) according to the rules set forth by Δp(Δk, n) (or equivalently, ν(n)).
In other words, p(k, n) is not sampled completely at random, but rather according to
the adjacency constraint that Δk = ±1. Each random path k(τ) for τ ∈ {0, 1, ..., n}
can be called a sample path corresponding to {p(k, τ)|τ ∈ {0, 1, ..., n}}, since many such
k(τ) paths reproduce the statistics of this time-evolving set of probability distributions.

4.1.2 Continuous-Time Brownian Motion in Continuous Space

The discrete-time discrete-space model of random motion described in the previous
subsection can be used to motivate mathematical models of continuous-time random
motion in continuous space. If each integer value k is divided by a fixed number N , then
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a probability density function on the real line with zero mean and variance n/N can be
defined from p(k, n) when n is large. This is accomplished by dividing the real line into
bins, each of which is centered on k/N , and ranging from (k− 1)/N to (k+1)/N . Since
the discrete probability p(k, n) falls inside of this bin, and the size of each bin is 2/N ,
as n → ∞ the resulting histogram will converge to a Gaussian according to (2.23). This
histogram is stretched and squashed by a factor of two relative to the distributions in
(2.23) because the range of values is −n ≤ k ≤ n, and the n + 1 non-zero values are
distributed evenly over this range.

In the same way that a pdf on the real line is generated from this histogram process,
the discrete time parameter, n, can be replaced with t = n/N , which can be viewed as
a continuous parameter sampled at closely spaced discrete values.

Note that the same Gaussian distribution with variance t = n/N that was obtained
as the limiting case of a binomial distribution could have been obtained by the n-fold
convolution of Gaussian distributions, each with variance 1/N . In other words, a noise
model that will generate the same long-time statistical behavior as coin flipping is one in
which values are sampled from a continuous Gaussian distribution, provided the correct
value of variance is used. With this in mind, the continuous version of (4.4) is

x(t + Δt) − x(t) = n(t)Δt where x(0) = 0. (4.5)

Here x(t) can take on continuous values, and at each instant in time n(t) is defined by
randomly sampling values from a Gaussian distribution. Each of these samples is drawn
without knowledge of the sample values that were taken at previous times.

In the limit as Δt → 0, (4.5) becomes a stochastic differential equation (or SDE for
short). The noise n(t)Δt is denoted as dw, which is called white noise. The random
process x(t), which can be written as

x(t) =
∫ t

0
n(τ)dτ,

is continuous due to the smoothing effect of the integral, but is not differentiable because
n(τ) is producing values at each value of τ that are unrelated to those that come
before and after. For reasons that will be explained later, the distribution ρ(x, t) will
be Gaussian. This makes sense intuitively since noise that is driving the motion of x
is Gaussian. And in fact, (4.5) is not far from the models used by Einstein [6] and
Langevin [20] in establishing the physical theory of Brownian motion at the beginning
of the twentieth century.

A one-dimensional SDE will more generally be thought of as the limiting case of an
equation of the form

x(t + Δt) − x(t) = a(x, t)Δt + b(x, t)n(t)Δt where x(0) = x0 (4.6)

as Δt → 0. The methods in this chapter establish the tools for obtaining the correspond-
ing probability density function, ρ(x, t), for such an equation. Furthermore, SDEs can
evolve in multi-dimensional Euclidean space, or on surfaces such as spheres. In order to
handle the subtle issues that arise in these generalized settings, terminology and results
from the theory of stochastic processes are required. This is the subject of the following
sections.
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4.2 Stationary and Non-Stationary Random Processes

A random process is a time-varying random variable. A random process can be a scalar,
x(t) ∈ R, vector, x(t) ∈ Rd, or matrix, X(t) ∈ Rd1×d2 . Since a scalar can be thought
of as a one-dimensional vector, and a matrix (by the ∨ operation in Appendix A.7)
can be identified with a vector, the discussion will be limited to the vector case for
convenience. The value of the random process without history, x(t), can be thought of
as being drawn from a time-varying pdf: p(x, t).3 In other words, for each fixed value
t = t0, the random vector x(t0) is sampled from the distribution p(x, t0). On the other
hand, in more general situations the value of x(t) could be influenced by both its own
value at prior times, as well as the explicit values of those prior times. If the value of x(ti)
is recorded at a cascade of prior times, t = t1 > t2 > . . . > tn, then the pdf describing
x(t) actually would be one on the product space [x1, t1] × [x2, t2] × · · · × [xn, tn]. Let
p(x, t;x2, t2;x3, t3; . . . ;xn, tn) denote the joint pdf on this product space. This is the
pdf for a random process x(t).

There should be no confusion between this and p(x, t). Even though they are
both “p,” they are different functions and that difference is clear from their argu-
ments. To denote their difference by giving them subscripts is possible, but then
p(x, t;x2, t2;x3, t3; . . . ;xn, tn) would be written as p1,2,...,n(x, t;x2, t2;x3, t3; . . . ;xn, tn),
which contains exactly the same information as the arguments themselves, but makes
equations involving these pdfs substantially longer. For this reason, these subscripts will
not be used when the meaning is clear.

Another alternative way to write p(x1, t1;x2, t2;x3, t3; . . . ;xn, tn) would be as
p(x1,x2,x3, . . . ,xn; t1, t2, t3, . . . , tn). While perhaps this would be more consistent with
the notation used in Chapter 3 in the sense that the variables defining the domain of
the pdf appear before the semicolon and the parameters defining the shape of the pdf
appear after it, separating the time variables from the corresponding spatial variable
would lead to other problems. Therefore, the notation p(x1, t1;x2, t2;x3, t3; . . . ;xn, tn)
will be used, which is consistent with the literature.

Explicitly, if all of the x′
is have been measured for ti = t2, ..., tn, then the pdf

describing the statistical behavior of x(t) at t = t1 would be described by the conditional
density

p(x, t |x2, t2;x3, t3; . . . ;xn, tn) .=
p(x, t;x2, t2;x3, t3; . . . ;xn, tn)

p(x2, t2;x3, t3; . . . ;xn, tn)
. (4.7)

That is, the values of x(t) would be drawn from the density p(x, t |x2, t2;x3, t3; . . . ;xn, tn)
where all xi and ti for i ≥ 2 are fixed, because these times have already passed and the
values of xi and ti have been recorded. Usually for physical systems, the memory that
the system has is limited to the prior instant in time, leading to the Markov property
that will be discussed later.

4.2.1 Weak and Strong Stationarity

For fixed times t1 > t2 > . . . > tn, the function p(x1, t1;x2, t2;x3, t3; . . . ;xn, tn) denotes
the probability density function of the composite vector [xT

1 ,xT
2 , ...,xT

n ]T . If each xi ∈
Rd, then this composite vector is n ·d-dimensional. If this pdf is invariant under uniform
shifts in time, so that for any t0:

3The symbol p(·) is used here rather than ρ(·) or f(·) to avoid confusion with Gaussians or
solutions to heat equations.
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p(x1, t1;x2, t2;x3, t3; . . . ;xn, tn) = p(x1, t1 − t0;x2, t2 − t0;x3, t3 − t0; . . . ;xn, tn − t0)
(4.8)

then the process x(t) is called strongly stationary or strictly stationary [4]. On the other
hand, if (4.8) is not satisfied but the mean and covariance of the pdf p(x1, t1;x2, t2;x3, t3;
. . . ;xn, tn) are the same as the mean and covariance of p(x1, t1 − t0;x2, t2 − t0;x3, t3 −
t0; . . . ;xn, tn − t0), then x(t) is called weakly stationary, or wide-sense stationary. (In
some treatments the condition that the mean remains fixed is relaxed [4], but when
referring to a weakly stationary process in the current work, constancy of the mean will
be taken as part of the definition.)

For example, if x(t) is a memoryless process drawn at random from a probability
density function p(x, t) = p0(x) that is completely independent of time, then x(t) will
be a strongly stationary random process. On the other hand, if x(t) is drawn from a
time-varying density p(x, t), but the mean and covariance of p are constant, then x(t)
will be a weakly stationary process without memory. For example, if p1(x) and p2(x)
are constant pdfs, and p1(x) = p2(x) but μ1 = μ2 = μ and Σ1 = Σ2 = Σ, then for
0 ≤ α(t) ≤ 1,

p(x, t) = [1 − α(t)]p1(x) + α(t)p2(x) (4.9)

will also be a pdf with mean and variance μ, Σ. And a process defined by drawing values
from such a pdf will be a weakly stationary process without memory.

The property of strong stationarity4 of a process implies weak stationarity, but not
the other way around.

4.2.2 Non-Stationary Processes

If the pdf describing a random process without memory has mean and covariance that
change with time, then that process is not stationary. For example, the solutions to the
heat/diffusion equations discussed in Chapter 2, f(x, t), are not the pdfs of stationary
processes. This is because these pdfs “spread out” as a function of time.

Many of the stochastic differential equations and corresponding Fokker–Planck equa-
tions that will be derived later describe processes that are not stationary. However, the
input noise that is used to define these processes will not only be stationary, but strongly
so.

4.3 Gaussian and Markov Processes

In this section basic stochastic processes are reviewed. See [13, 18, 23] for in-depth
treatments. The treatment here follows [11, 40].

Let p(x, t)dx be the probability that the random process x(t) is contained in the
d-dimensional voxel with volume dx = dx1 · · · dxd centered at x ∈ Rd. The distinction
between the stochastic process, x(t), and the domain in which it moves (also denoted as
x) will be clear because in the former, the dependence on time will be denoted, whereas
the latter does not depend on time.

Let p(x1, t1;x2, t2; . . . ;xn, tn)dx1 · · · dxn be the probability that for each time ti,
each x(ti) is in the voxel centered at xi for each i = 1, ..., n. Hence, p(x, t) is a probability
density function on Rd for each fixed t, while p(x1, t1;x2, t2; ...;xn, tn) is a pdf on Rd·n =
Rd × Rd × . . . × Rd for each fixed choice of (t1, ..., tn)T ∈ Rn. Let the times be ordered
such that

4The word “stationary” is an adjective, whereas “stationarity” is the corresponding noun.
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t1 > t2 > . . . > tn.

It is important to be clear about how these times are ordered. In some books they are
ordered in the opposite way. In the treatment here the times will be ordered from most
recent (largest times) to those that are furthest in the past (smallest times).

By integrating the pdf p(x1, t1; ...;xn, tn) over the last n − k copies of Rd (which
erases all historical information), the following general relationship is obtained:

p(x1, t1;x2, t2; ... ;xk, tk) =
∫

Rd

. . .

∫
Rd

p(x1, t1;x2, t2; ... ;xn, tn)dxk+1 . . . dxn. (4.10)

For the case when d = 1, a closed-form example of (4.10) is easily verified for the
Gaussian process:

p(x1, t1;x2, t2; ... ;xn, tn) =
exp
[
− 1

2

∑n
i,j=1 Σ−1

ij (xi − μi)(xj − μj)
]

[(2π)ndetΣ]
1
2

(4.11)

where Σ is an n×n covariance matrix with elements Σij and μi = 〈xi(t)〉 are the com-
ponents of the mean of p. For a general Gaussian process with no additional restrictions,
Σ = Σ(t1, ..., tn) and μ = μ(t1, ..., tn).

More generally, the two pdfs p(x1, t1;x2, t2; ... ;xk, tk) and p(x1, t1;x2, t2; ...;xn, tn)
are related by the definition of the conditional probability density function p(·|·)

p(x1, t1;x2, t2; ...;xn, tn) =

p(x1, t1;x2, t2; ... ;xk, tk |xk+1, tk+1; ...;xn, tn)p(xk+1, tk+1;xk+2, tk+2; ... ;xn, tn).
(4.12)

Direct consequences of the definition in (4.12) and the observation in (4.10) are that∫
Rd

. . .

∫
Rd

p(x1, t1;x2, t2; ...;xk, tk |xk+1, tk+1; ... ;xn, tn)×

p(xk+1, tk+1;xk+2, tk+2; ... ;xn, tn)dx1 . . . dxn = 1

and ∫
Rd

. . .

∫
Rd

p(x1, t1;x2, t2; ...;xk, tk |xk+1, tk+1; ... ;xn, tn)×

p(xk+1, tk+1;xk+2, tk+2; ... ;xn, tn)dxk+1 . . . dxn = p(x1, t1;x2, t2; ...;xk, tk).

A Markov process is one with conditional probability density functions which satisfies
the condition

p(x1, t1 |x2, t2; ... ;xn, tn) = p(x1, t1 |x2, t2). (4.13)

That is, it is a process with memory limited to only the preceding step. For a Markov
process, the Chapman–Kolmogorov equation

p(x1, t1;x3, t3) =
∫

Rd

p(x1, t1 |x2, t2)p(x2, t2 |x3, t3)dx2 (4.14)

is satisfied. This results directly from making the substitution of (4.13) into (4.12) and
integrating.

A strongly stationary Markov process is one which is both strongly stationary and
Markov:
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p(xi−1, ti−1 |xi, ti) = p(xi−1, 0 |xi, ti − ti−1). (4.15)

For such a process, there is no reason to “carry around” the zero and the following
shorthand notation is sometimes used:

p(xi−1|xi, t)
.= p(xi−1, 0;xi, t).

Using this notation for a strongly stationary Markov process, the Chapman–
Kolmogorov equation is written as [11, 18]

p(x1|x3, t) =
∫

Rd

p(x1|x2, s)p(x2|x3, t − s)dx2 (4.16)

for any times s < t.
Just because a stochastic process is strongly stationary and Markovian does not

make it Gaussian, and vice versa. Consider the Gaussian random process defined by
the joint pdf in (4.11). It is clear that, since a Gaussian is defined by its mean and
covariance, a weakly stationary Gaussian process will also be strongly stationary. And
so it suffices to simply refer to them as stationary Gaussian processes (dropping the
adjectives “weak” or “strong”). Stationarity of a Gaussian process simply means that
Σ(t1, ..., tn) = Σ(t1 − t0, ..., tn − t0) and μ(t1, ..., tn) = μ(t1 − t0, ..., tn − t0) for any
t0 < tn.

Under what conditions will a Gaussian process be a Markov process? Recall that
marginal densities of Gaussian distributions were discussed in Section 2.2. In particular,
the mean and covariance of a conditional Gaussian distribution were given in (2.29).
The constraint that the Gaussian process in (4.11) be Markov is (4.13), which can be
calculated explicitly using (2.29). Stochastic processes that are simultaneously station-
ary, Markov, and Gaussian form the foundation for the most common kinds of stochastic
differential equations. i

4.4 Wiener Processes and Stochastic Differential Equations

4.4.1 An Informal Introduction

Let w1(t), ..., wm(t) denote m independent stochastic processes with the property that
for any non-negative real numbers si and ti with ti > si the increment wi(ti) − wi(si)
for each i = 1, ...,m has a zero-mean Gaussian probability density function

ρi(xi; si, ti) =
1√

2π(ti − si)
e−x2

i /2(ti−si). (4.17)

This pdf has variance σ2
i = |ti − si|, and wi(t) is called a Wiener process of strength

σ2
i . The semicolon in the definition (4.17) separates the variable xi (that describes the

domain on which the pdf is defined) from the variables si, ti (that describe properties
of the pdf). Independence means that [wi(ti) − wi(si)][wj(tj) − wj(sj)] has the joint
distribution

ρij(xi, xj ; si, ti, sj , tj) = ρi(xi; si, ti)ρi(xi; sj , tj), (4.18)

and likewise the joint distribution of three or more variables would be a product of three
or more univariate distributions.

Let A(x) be any smooth function of x ∈ Rd. For example, it can be a scalar function
such as A(x) = x · x or A(x) = a · x; it can be a column or row vector function such as
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A(x) = A0x or A(x) = xTA0; or it can be a tensor function such as A(x) = xxT , just
to name a few of the possibilities. Recall that the ensemble average of A(x(t)), where
x(t) ∈ Rd is a stochastic process with a corresponding probability density function
ρ(x, t) (which need not be Gaussian), is defined by the equality

〈A(x(t))〉 =
∫

Rd

A(x)ρ(x, t)dx. (4.19)

This statement is true at each value of time. That is, 〈A(x(t))〉 is an average over many
trials, each of which is evaluated at the same point in time in the trial. Clearly, because
each ensemble averaging procedure is at a fixed time,∫ T

0
〈A(x(t))〉dt =

∫ T

0

[∫
Rd

A(x)ρ(x, t)dx
]
dt

=
∫

Rd

[∫ T

0
A(x)ρ(x, t)dt

]
dx

=

〈∫ T

0
A(x(t))dt

〉
. (4.20)

Both (4.19) and (4.20) are different from the ergodic property (also called ergodicity),
which is a hypothesis stating that for some physical systems, averages over a spatial
ensemble of identical copies of a system and time averages of a single copy over a
sufficiently long period, [0, T ], will yield the same statistical behavior. In other words,
x(t) is ergodic if

〈A(x(t))〉 =
1
T

∫ T

0
A(x(t))dt. (4.21)

Equations (4.19) and (4.21) should not be confused: (4.19) is a definition that is always
valid, and (4.21) is an assumption that needs to be stated.

Now, with (4.17)–(4.19) in mind, it follows that

〈wi(ti) − wi(si)〉 =
∫ ∞

−∞
xiρi(xi; si, ti)dxi = 0.

In the special case when ti = si + dti, this can be written as

〈dwi(ti)〉 = 0 (4.22)

where dwi(ti)
.= wi(ti + dti) − wi(ti) and dti is an infinitesimal amount of time.

The Wiener stochastic integral is defined as [42]

∫ t

0
F (τ)dw(τ) .= lim

Δt→0

1/Δt∑
n=0

F (nΔt)[w((n + 1)Δt) − w(nΔt)].

An immediate consequence of this definition and (4.22) is that the mean value of the
integral of a deterministic function F (t) against dw(t) is zero:〈∫ t

0
F (τ)dw(τ)

〉
=
∫ t

0
〈F (τ)dw(τ)〉 =

∫ t

0
F (τ)〈dw(τ)〉 = 0. (4.23)
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Furthermore, if i = j,

〈[wi(ti) − wi(si)][wj(tj) − wj(sj)]〉 =
∫

R2
xixjρij(xi, xj ; si, ti, sj , tj)dxidxj

=
(∫ ∞

−∞
xiρi(xi; si, ti)dxi

)(∫ ∞

−∞
xjρj(xj ; sj , tj)dxj

)
= 0 · 0 = 0.

In contrast, if i = j,

〈(wi(ti) − wi(si))2〉 =
∫

R2
x2

i ρij(xi, xj ; si, ti, sj , tj)dxidxj

=
(∫ ∞

−∞
x2

i ρi(xi; si, ti)dxi

)(∫ ∞

−∞
ρj(xj ; sj , tj)dxj

)
= |ti − si| · 1 = |ti − si|.

These are summarized as

〈[wi(ti) − wi(si)][wj(tj) − wj(sj)]〉 = |ti − si|δij . (4.24)

If the definition dw(t) = w(t + dt) − w(t) is made, then from setting ti = si + dti and
tj = sj + dtj it follows that

〈dwi(ti)dwj(tj)〉 = dtiδij = δ(ti − tj)dtidtjδij (4.25)

where the Dirac delta function can be viewed as having a value of 1/dt over the inter-
val [0, dt]. The property (4.25) indicates that the increments of a Wiener process are
uncorrelated. The symbol dwi(t) is often referred to as (unit strength) white noise.5

Equation (4.25) can be quite useful. For example, given the deterministic function
F (t), it can be used to write〈∫ t

0
F (τ)[dw(τ)]2

〉
=
∫ t

0
F (τ)〈[dw(τ)]2〉 =

∫ t

0
F (τ)dτ. (4.26)

Equation (4.25) also can be used to simplify the following integral involving the deter-
ministic functions F1(t) and F2(t):〈∫ t

0
F1(τ1)dw(τ1)

∫ t

0
F2(τ2)dw(τ2)

〉
=
∫ t

0

∫ t

0
F1(τ1)F2(τ2)〈dw(τ1)dw(τ1)〉

=
∫ t

0

∫ t

0
F1(τ1)F2(τ2)δ(τ1 − τ2)dτ1dτ2

=
∫ t

0
F1(τ1)F2(τ1)dτ1. (4.27)

Sometimes ensemble averages of the form 〈dw(t)dt〉 are encountered. But this van-
ishes because 〈dw(t)dt〉 = 〈dw(t)〉dt = 0. It is also possible to compute higher-order

5In most books dw is written as dW (for Wiener) or dB (for Brownian). Lowercase dw is
used here so as not to confuse it with a matrix quantity.
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correlations such as 〈dwi(ti)dwj(tj)dwk(tk)〉. Odd powers in any index will integrate to
zero, and those that are even powers in all indices will result in higher powers of dt that
are also effectively equal to zero. Therefore, (4.24) and (4.25) will be most useful in the
study of stochastic differential equations, with ensemble averages of all higher-power
products in dw vanishing. In fact, these and other important properties were formalized
and abstracted by Norbert Wiener in the early twentieth century (see [42]). This is
summarized below.

4.4.2 Abstracted Definitions

The vector w(t) = [w1, ..., wm]T denotes an m-dimensional Wiener process (also called
a Brownian motion process) with the following properties. All of the components wj(t)
have zero ensemble (time) average, are taken to be zero at time zero, and are stationary
and independent processes. Denoting an ensemble average as 〈·〉, these properties are
written as

〈wj(t)〉 = 0 ∀ t ≥ 0
wj(0) = 0

〈[wj(t1 + t) − wj(t2 + t)]2〉 = 〈[wj(t1) − wj(t2)]2〉 ∀ t1, t2, t1 + t, t2 + t ≥ 0
〈[w(ti) − w(tj)][w(tk) − w(tl)]〉 = 0 ∀ ti > tj ≥ tk > tl ≥ 0.

From these defining properties, it is clear that for the Wiener process, wj(t),

〈[wj(t1 + t2)]2〉 = 〈[wj(t1 + t2) − wj(t1) + wj(t1) − wj(0)]2〉

= 〈[wj(t1 + t2) − wj(t1)]2 + [wj(t1) − wj(0)]2〉 = 〈[wj(t1)]2〉 + 〈[wj(t2)]2〉.
For the equality

〈[wj(t1 + t2)]2〉 = 〈[wj(t1)]2〉 + 〈[wj(t2)]2〉 (4.28)

to hold for all values of time t1, t2, it must be the case that [19]

〈[wj(t − s)]2〉 = σ2
j |t − s| (4.29)

for some positive real number σ2
j . This together with the absolute value signs ensures

that 〈[wj(t − s)]2〉 > 0.
The correlation of a scalar-valued Wiener process with itself at two different times t

and s with 0 ≤ s ≤ t is calculated as

〈wj(s)wj(t)〉 = 〈wj(s)(wj(s) + wj(t) − wj(s))〉 =

〈[wj(s)]2〉 + 〈(wj(s) − wj(0))(wj(t) − wj(s))〉 = σ2
j s.

As before, the notation dwj is defined by

dwj(t)
.= wj(t + dt) − wj(t). (4.30)

Hence, from the definitions and discussion above,

〈dwj(t)〉 = 〈wj(t + dt)〉 − 〈wj(t)〉 = 0

and
〈[dwj(t)]2〉 = 〈(wj(t + dt) − wj(t))(wj(t + dt) − wj(t))〉
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= 〈[wj(t + dt)]2〉 − 2〈wj(t)wj(t + dt)〉 + 〈[wj(t)]2〉
= σ2

j (t + dt − 2t + t) = σ2
jdt.

For the m-dimensional Wiener process w(t), each component is uncorrelated with
the others for all values of time. This is written together with what we already know
from above as

〈wi(s)wj(t)〉 = σ2
j δijmin(s, t) and 〈dwi(ti)dwj(tj)〉 = σ2

j δijdtj . (4.31)

The unit strength Wiener process has σ2
j = 1, corresponding to (4.24) and (4.25).

Throughout the presentations in this text, all Wiener processes are taken to have unit
strength. This does not cause any loss of generality, because if a non-unit strength is
required, it can be achieved simply by multiplying by a scalar strength factor.

4.5 The Itô Stochastic Calculus

This section reviews the Itô stochastic calculus, and closely follows the presentations in
[11] and [19], which should be consulted in the case that the brief introduction presented
here is insufficient.

In the usual calculus, the Riemann integral of a continuous function f : [a, b] → R is
obtained as a limit of the form∫ b

a

f(x)dx .= lim
n→∞

n∑
i=1

f(yi(xi, xi−1))(xi − xi−1) (4.32)

where
a = x0 < x1 < x2 < . . . < xn = b.

Here yi(xi, xi+1) is any function such that as n increases

max
i

|xi − xi−1| → 0 and xi−1 ≤ yi(xi, xi−1) ≤ xi. (4.33)

Then the limit in (4.32) will exist. Note that there is some flexibility in how to choose
yi(xi, xi−1), and as long as n is large enough, and the conditions (4.33) are observed,
the limit in (4.32) will converge to the one and only answer.6

Similarly, given two continuous functions, f and g, with g being monotonically in-
creasing, the Riemann–Stieltjes integral can be defined as∫ b

a

f(x)dg(x) .= lim
n→∞

n∑
i=1

f(yi(xi, xi−1))(g(xi) − g(xi−1)) (4.34)

under the same conditions as before. And this too will converge. Moreover, if g(x) is
continuously differentiable, this can be evaluated as∫ b

a

f(x)dg(x) =
∫ b

a

f(x)g′(x)dx.

6Of course this is a different issue than that of quadrature rules that attempt to rapidly
and accurately evaluate functions in a certain class by sampling as few points as possible.
References to the literature on numerical quadrature schemes are discussed in [3], and are not
the subject here.
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However, when it comes to time-dependent stochastic problems, it is desirable to
calculate integrals of the form

∫ b

a
f(t)dw(t) where the Wiener increments dw(t) are

the discontinuous functions defined in Section 4.4.2. Furthermore, f(t) also might be
a discontinuous function. Nevertheless, for the sorts of discontinuities encountered in
stochastic modeling problems, it is still possible to obtain a meaningful answer for∫ b

a
f(t)dw(t), provided particular rules are followed.
One such rule is that of the Itô stochastic calculus, which defines the following Itô

integral [11]:7 ∫ t

t0

f(τ)dw(τ) .= lim
n→∞

n∑
i=1

f(ti−1)[w(ti) − w(ti−1)] (4.35)

(where equality is interpreted in the mean-squared sense discussed in Section 1.2.2).
Note that this is akin to choosing yi(xi, xi−1) = xi−1 in (4.34). However, unlike the case
when f and g are continuous where any yi(xi, xi−1) satisfying xi−1 ≤ yi(xi, xi−1) ≤ xi

will result in the same value of the integral, a different choice for the rule yi(xi, xi−1)
will result in a different answer for the value of the integral. In particular, the seemingly
innocuous replacement of f(ti−1) with f((ti−1 + ti)/2) in (4.35) converts it from being
an Itô integral to being a Stratonovich integral, the value of which can be different. (The
Stratonovich integral and its properties will be discussed in detail in Section 4.6.)

In some stochastic modeling problems, the Itô integral is the most natural. For
example, in simulating financial markets, orders are placed based on the information
available at the current time, and so evaluating f(ti−1) at the beginning of each time
interval makes sense. And the structure of the Itô integral makes it easy to calculate
expectations. However, it does have some counterintuitive features. For example, in
usual calculus∫ b

a

xdx =
1
2
(b2 − a2) and

∫ b

a

f(x)df(x) =
1
2
(f(b)2 − f(a)2),

and more generally ∫ b

a

[f(x)]ndf(x) =
1

n + 1
([f(b)]n+1 − [f(a)]n+1). (4.36)

However, in the Itô stochastic calculus, evaluating (4.35) with f(t) = w(t), and using
the properties of the Wiener process stated in Section 4.4.2, it can be shown that (see
[11] for the detailed derivation)∫ t

t0

w(τ)dw(τ) =
1
2
[w(t)2 − w(t0)2 − (t − t0)].

And more generally [11]∫ t

t0

[w(τ)]ndw(τ) =
1

n + 1
([w(t)]n+1 − [w(t0)]n+1) − n

2

∫ t

t0

[w(t)]n−1dt. (4.37)

These and other counterintuitive aspects of the Itô stochastic calculus must be kept
in mind when using it as a tool in modeling problems.

7Note that unlike in the discussion in Section 4.3, the times are now ordered as t0 < t1 <
. . . < tn−1.
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4.5.1 Itô Stochastic Differential Equations in Rd

Consider the system of d SDEs:

dxi(t) = hi(x1(t), ..., xd(t), t)dt +
m∑

j=1

Hij(x1(t), ..., xd(t), t)dwj(t) for i = 1, ..., d.

(4.38)
If Hij(x, t) ≡ 0, and if the vector function with components hi(x) satisfies the Lipschitz
condition,8 then (4.38) simply becomes the system of (possibly non-linear) ordinary
differential equations ẋ = h(x, t). A unique solution can always be obtained for such
a system given any initial conditions. The reason for writing the dxi and dt terms
separately in (4.38) is because, strictly speaking, a Wiener process is not differentiable,
and so dwj/dt is not defined. But, as was discussed in Section 4.4.2, the increments
dwj(t) have some very well defined properties.

In the more general case when Hij(x, t) = 0 (for at least some values of (x, t)), then
(4.38) is called an Itô SDE if its solution,

xi(t) − xi(0) =
∫ t

0
hi(x1(τ), ..., xd(τ), τ)dτ +

m∑
j=1

∫ t

0
Hij(x1(τ), ..., xd(τ), τ)dwj(τ),

(4.39)
is interpreted as in (4.35). Or, equivalently, the second integral in the above expression
is defined to satisfy the condition

lim
n→∞

〈[∫ t

0
Hij(x(τ), τ)dwj(τ) −

n∑
k=1

Hij(x(tk−1), tk−1)[wj(tk) − wj(tk−1)]

]2〉
= 0

(4.40)
where t0 = 0 < t1 < t2 < . . . < tn = t.

The first integral automatically satisfies

lim
n→∞

〈[∫ t

0
hi(x(τ), τ)dτ − 1

n

n∑
k=1

hi(x(tk−1), tk−1)

]2〉
= 0 (4.41)

because as long as hi(x, t) is not pathological, the limit can pass through the expectation
and the term inside of the brackets becomes zero because∫ t

0
hi(x(τ), τ)dτ = lim

n→∞

1
n

n∑
k=1

hi(x(tk−1), tk−1)

is the classical Riemann integral that is known to hold for continuous integrands. In
contrast, this is not true for the term inside of the brackets in (4.40) because the Wiener
increments are discontinuous, and the integrand only has meaning when interpreted in
the sense of an ensemble average.

8A vector-valued function h(x) is said to be Lipschitz if there exists a finite constant c ∈ R>0

such that ‖h(x1) − h(x2)‖ ≤ c · ‖x1 − x2‖ for all x1,x2 ∈ Rn. Functions that are everywhere
differentiable are necessarily Lipschitz.
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4.5.2 Numerical Approximations

Whereas the above are exact mathematical statements, the goal of simulation is to
assign numerically computed values to these integrals. This necessarily involves some
level of approximation, because the exact limits as n → ∞ cannot be achieved when
simulating the behavior of SDEs on a computer.

In numerical practice sample paths are generated from t = 0 to a particular end time
t = T , and the values tk are taken to be tk = Tk/n for a finite value of n. The resulting
numerical approximation to (4.39) evaluated at discrete points in time is

x̂i(T ) − xi(0) =
1
n

n∑
k=1

hi(x̂1(tk−1), ..., x̂d(tk−1), tk−1) (4.42)

+
m∑

j=1

n∑
k=1

Hij(x̂1(tk−1), ..., x̂d(tk−1), tk−1)[wj(tk) − wj(tk−1)].

This is the baseline method for numerical stochastic integration. It is called Euler–
Maruyama integration [12, 22, 26]. The increment [wj(tk)−wj(tk−1)] for each value of k
and j is drawn randomly from a Gaussian distribution with variance of tk − tk−1 = 1/n.
Or, what is equivalent to this, is to draw samples from a Gaussian distribution with
unit variance and then scale the samples by 1

√
n.

As n becomes very large, (4.40) becomes more true in the sense that

lim
n→∞

E(n) = 0 where E(n) .=
1
n

n∑
k=1

〈
[x̂i(tk) − xi(tk)]2

〉
(4.43)

for each i ∈ [1, ..., d]. Other more sophisticated methods converge faster than Euler–
Maruyama integration in the sense that E(n) → 0 more rapidly as n becomes large.
Nevertheless, Euler–Maruyama integration will be the method used throughout this
text because of its simplicity. For more sophisticated treatments of numerical methods
for stochastic differential equations see [1, 16, 22, 25, 26, 30, 32]. A particularly easy-
to-follow presentation is that due to D. Higham [12], which has links to computer code
that can be freely downloaded.

An important point to keep in mind when performing stochastic simulations using
any integration scheme is that an individual sample path is meaningless. It is only the
behavior of an ensemble that has meaning. Therefore, when evaluating the accuracy
of a numerical approximation method for computing stochastic integrals, it is only the
convergence of the ensemble properties, such as (4.43), that are important.

In practice, not only the end value x̂i(T ) is of interest, but rather all values x̂i(tk)
are, and so (4.42) is calculated along a whole sample path using the Euler–Maruyama
approach by observing that the increments follow the rule

x̂i(tk) − x̂i(tk−1) =
1
n
hi(x̂1(tk−1), ..., x̂d(tk−1), tk−1) (4.44)

+
m∑

j=1

Hij(x̂1(tk−1), ..., x̂d(tk−1), tk−1)[wj(tk) − wj(tk−1)],

which is basically a localized version of Itô’s rule, and provides a numerical way to
evaluate (4.38) at discrete values of time.
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This amounts to dividing up the interval [0, t] into n subintervals [tk−1, tk] for k =
1, ..., n, and evaluating Hij(x(t), t) at the first point of each interval. This is an important
thing to observe.

Figure 4.1 shows six sample paths of a Wiener process over the period of time
0 ≤ t ≤ 1 generated using the MatlabTM code provided in [12]. Note that w(0) = 0, as
must be the case by definition. White noise forcing for SDEs is obtained as the difference
dw(t) = w(t+dt)−w(t) at each value of time. This difference, or increment, is simulated
numerically by sampling from a Gaussian distribution with unit variance, and then
multiplying by

√
dt. In the terminology of random variables, a normally distributed (i.e.,

Gaussian) random variable, X, with mean μ and variance σ2 is denoted as X ∼ N(μ, σ2),
which can be interpreted as “X is drawn from N(μ, σ2).” Within this terminology,
dw(t) ∼

√
dt · N(0, 1), which means that dw(t) is computed by first sampling and then

scaling by
√
dt. Numerical software such as MatlabTM have built-in pseudo-random-

number generators that perform the sampling step.
When numerically simulating sample paths of SDEs, it is this step of sampling

the white noise that is central. After that point, the SDE can be evaluated using the
rules of stochastic calculus (Itô or Stratonovich), with the integrals approximated as
a finite sum. As with usual numerical integration, various levels of accuracy can be
achieved at the expense of greater computational effort. The Euler–Maruyama method is
a baseline method that can be quickly implemented and is computationally inexpensive.
Other more sophisticated methods can be obtained in the references provided earlier
in this subsection. But as will be demonstrated in Section 4.5.6, it is possible to derive
deterministic equations for the evolution of probability density that do not require
simulation of the SDE.

4.5.3 Mathematical Properties of the Itô Integral

Returning now to the “exact” mathematical treatment of SDEs interpreted by Itô’s
rule, recall that all equalities are interpreted in the sense of (4.40) being true. In other
words, the statement∫ t

0
F (τ)dwj(τ) = lim

n→∞

n∑
k=1

F (tk−1)[wj(tk) − wj(tk−1)] (4.45)

is not strictly true. But if we understand this to be shorthand for

lim
n→∞

〈[∫ t

0
F (τ)dwj(τ) −

n∑
k=1

F (tk−1)[wj(tk) − wj(tk−1)]

]2〉
= 0, (4.46)

then a number of “equalities” will follow (in the same sense that (4.45) itself is an
“equality”).

For example, the following is often stated in books on the Itô calculus:∫ t

0
w(τ)dw(τ) =

1
2
{[w(τ)]2 − t}. (4.47)

Where does this come from? Working backwards, if (4.47) is true, it means nothing
more than the statement that〈[∫ t

0
w(τ)dw(τ) − 1

2
{[w(t)]2 − t}

]2〉
= 0,
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Fig. 4.1. Sample Paths of a Wiener Process

or equivalently,〈[
lim

n→∞

n∑
k=1

w(tk−1)[wj(tk) − wj(tk−1)] − 1
2
{[w(t)]2 − t}

]2〉
= 0.

Expanding the square, and changing the order of summation and expectations, which
is acceptable due to (4.20), the result is
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〈
lim

n→∞
lim

m→∞

n∑
k=1

m∑
l=1

w(tk−1)w(tl−1)[wj(tk) − wj(tk−1)][wj(tl) − wj(tl−1)]

−1
2
{[w(t)]2 − t} lim

n→∞

n∑
k=1

w(tk−1)[wj(tk) − wj(tk−1)] +
1
4
{[w(t)]2 − t}2

〉
= 0. (4.48)

For an alternative treatment of this calculation, see Gardiner [11, p. 84].

4.5.4 Evaluating Expectations is Convenient for Itô Equations

Using the same sorts of manipulations, it can be shown that for any non-anticipating
functions9 [11], integrals analogous to those in (4.23), (4.26), (4.27) (with a stochastic
function, F (T ), replacing a deterministic one) can be written as〈∫ t

0
F (τ)dw(τ)

〉
=
∫ t

0
〈F (τ)dw(τ)〉 =

∫ t

0
〈F (τ)〉〈dw(τ)〉 = 0 (4.49)

〈∫ t

0
F (τ)[dw(τ)]2

〉
=
∫ t

0
〈F (τ)[dw(τ)]2〉 =

∫ t

0
〈F (τ)〉〈[dw(τ)]2〉 =

∫ t

0
〈F (τ)〉dτ

(4.50)
and 〈∫ t

0
F1(τ1)dw(τ1)

∫ t

0
F2(τ2)dw(τ2)

〉
=
∫ t

0

∫ t

0
〈F1(τ1)F2(τ2)dw(τ1)dw(τ2)〉

=
∫ t

0

∫ t

0
〈F1(τ1)F2(τ2)〉〈dw(τ1)dw(τ2)〉

=
∫ t

0
〈F1(τ)F2(τ)〉dτ. (4.51)

Again, these “equalities” are only true in the sense of (4.46).
Now consider an Itô stochastic differential equation that generates a random variable

x(t). Since this is generated by an Itô integral, the value of x(t) depends only on x(t−dt)
and dx(t) since x(t) = x(t − dt) + [x(t) − x(t − dt)]. It follows that x(t) is a Markov
process and so the Chapman–Kolmogorov equation applies. Furthermore, since in the
infinitesimally short period of time, dt, the conditional probability density p(x|y, dt)
will be very much like a delta function when x = x(t) and y = x(t − dt). This means
that, for example,

〈h(x(t))〉 =
∫

Rd

h(y)p(x|y, dt)dy = h(x).

Also,

〈H(x(t))dw(t)〉 =
(∫

Rd

H(y)p(x|y, dt)dy
)

〈dw(t)〉 = 0

and

9A function F (t) is called non-anticipating if it is statistically independent of w(s) − w(t)
for all s > t. An immediate consequence is that 〈F (t)[w(s) − w(t)]〉 = 〈F (t)〉〈w(s) − w(t)〉.
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〈Hij(x(t))Hkl(x(t))dwj(t)dwl(t)〉 =
(∫

Rd

Hij(y)Hkl(y)p(x|y, dt)dy
)

〈dwj(t)dwl(t)〉

= Hij(x1, ..., xd, t)Hkj(x1, ..., xd, t)dt.

From these properties and (4.38) the following shorthand can be used:

〈dxi(t)〉 = 〈hi(x1(t), ..., xd(t), t)〉dt +
m∑

j=1

〈Hij(x1(t), ..., xd(t), t)〉〈dwj(t)〉

= hi(x1, ..., xd, t)dt (4.52)

and

〈dxi(t)dxk(t)〉 =

〈⎛⎝hi(x1(t), ..., xd(t), t)dt +
m∑

j=1

Hij(x1(t), ..., xd(t), t)dwj(t)

⎞⎠×

(
hk(x1(t), ..., xd(t), t)dt +

m∑
l=1

Hkl(x1(t), ..., xd(t), t)dwl(t)

)〉

=
m∑

j=1

m∑
l=1

Hij(x1, ..., xd, t)Hkl(x1, ..., xd, t)〈dwj(t)dwl(t))〉

=
m∑

j=1

Hij(x1, ..., xd, t)Hkj(x1, ..., xd, t)dt. (4.53)

Equations (4.52) and (4.53) are essential in the derivation of the Fokker–Planck
equation that will follow shortly.

4.5.5 Itô’s Rule

In the usual multivariate calculus, the differential of a vector-valued function of vector
argument, y = f(x) is given by dy = Dfdx where the entries of the Jacobian matrix Df
are Df = ∂fi/∂xj . This Jacobian matrix (which is often denoted as J for convenience)
is reviewed in Section 1.4.5. In contrast, when transforming between coordinate systems
using the Itô stochastic calculus, this no longer applies.

The sample paths, x(t), generated by an SDE are not differentiable, though they
are continuous. Given a smooth function f(x), and an increment dx, the behavior of
which is defined by an SDE, then the quantity dy = f(x + dx) − f(x) can be calculated
by expanding f(x + dx) in a Taylor series around x. Explicitly in component form this
gives

dyi =
∑

j

∂fi

∂xj
dxj +

1
2

∑
k,l

∂f2
i

∂xk∂xl
dxkdxl + h.o.t.’s. (4.54)

The higher order terms (h.o.t.’s) are third order and higher in the increments dxi.
Substituting an SDE of the form (4.38) into (4.54) gives Itô’s rule:

dyi =

⎛⎝∑
j

∂fi

∂xj
hj(x, t) +

1
2

∑
k,l

∂f2
i

∂xk∂xl
[H(x, t)HT (x, t)]kl

⎞⎠ dt +
∑
k,l

∂fi

∂xk
Hkl(x, t)dwl.

(4.55)
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The reason why the higher order terms disappear is that the sense of equality used
here is that of equality under expectation. In other words, a = b is shorthand for 〈ac〉 =
〈bc〉 for any deterministic c. And taking expectations using the results of the previous
subsection means that all terms that involve third-order and higher powers of dwi as
well as products such as dtdwi will vanish.

4.5.6 The Fokker–Planck Equation (Itô Version)

The goal of this section is to review the derivation of the Fokker–Planck equation, which
governs the evolution of the pdf f(x, t) for a system of the form in (4.38) which is forced
by a Wiener process. The derivation reviewed here has a similar flavor to the arguments
used in classical variational calculus (see, for example, [3] or Volume 2) in the sense
that functionals of f(x) and its derivatives, m(f(x), f ′(x), ...,x), are projected against
an “arbitrary” function ε(x), and hence integrals of the form∫

Rd

mi(f(x), f ′(x), ...,x)ε(x)dx = 0 (4.56)

are localized to
m(f(x), f ′(x), ...,x) = 0 (4.57)

using the “arbitrariness” of the function ε(x). The details of this procedure are now
examined.

To begin, let x = x(t) and y = x(t−dt) where dt is an infinitesimal time increment.
Using the properties of p(x|y, dt) in (4.52) and (4.53), it follows that∫

Rd

(xi − yi)p(x|y, dt)dy = 〈xi − yi〉 = hi(x, t)dt (4.58)

and∫
Rd

(xi−yi)(xj−yj)p(x|y, dt)dy = 〈(xi−yi)(xj−yj)〉 =
m∑

k=1

Hik(x, t)HT
kj(x, t)dt. (4.59)

Using the Chapman–Kolmogorov equation, (4.16), together with the definition of
partial derivative gives

∂p(x|y, t)
∂t

= lim
Δt→0

1
Δt

[p(x|y, t + Δt) − p(x|y, t)]

= lim
Δt→0

1
Δt

[∫
Rn

p(x|ξ, t)p(ξ|y, Δt)dξ − p(x|y, t)
]
.

Let ε(x) be an arbitrary compactly supported function for which ∂ε/∂xi and
∂2ε/∂xj∂xk are continuous for all i, j, k = 1, ..., n. Then the projection of ∂p/∂t against
ε(y) can be expanded as∫

Rd

∂p(x|y, t)
∂t

ε(y)dy = lim
Δt→0

1
Δt

[∫
Rd

ε(y)dy
∫

Rd

p(x|ξ, t)p(ξ|y, Δt)dξ

−
∫

Rn

p(x|ξ, t)ε(ξ)dξ
]
.

Inverting the order of integration on the left-hand side results in
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Rd

∂p(x|y, t)
∂t

ε(y)dy = lim
Δt→0

1
Δt

∫
Rd

p(x|ξ, t)
[∫

Rd

p(ξ|y, Δt)ε(y)dy − ε(ξ)
]
dξ.

Expanding the function ε(y) in its Taylor series about ξ:

ε(y) = ε(ξ) +
d∑

i=1

(yi − ξi)
∂ε

∂ξi
+

1
2

d∑
i,j=1

(yi − ξi)(yj − ξj)
∂2ε

∂ξj∂ξk
+ ...

and substituting this series into the previous equation results in

∫
Rd

∂p(x|y, t)
∂t

ε(y)dy =
∫

Rd

⎡⎣ n∑
i=1

∂ε

∂yi
hi(y, t) +

1
2

d∑
i,j=1

∂2ε

∂yi∂yj

m∑
k=1

HikH
T
kj

⎤⎦ p(x|y, t)dy

when (4.58) and (4.59) are observed.
The final step is to integrate the two terms on the right-hand side of the above

equation by parts to generate∫
Rd

{
∂p(x|y, t)

∂t
+

d∑
i=1

∂

∂yi
(hi(y, t)p(x|y, t))

−1
2

m∑
k=1

d∑
i,j=1

∂2

∂yi∂yj
(HikH

T
kjp(x|y, t))

}
ε(y)dy = 0. (4.60)

Using the standard localization argument (4.56)=⇒(4.57), and using f(x, t) as short-
hand for the transition probability p(x|y, t), the term in braces becomes

∂f(x, t)
∂t

+
d∑

i=1

∂

∂xi
(hi(x, t)f(x, t)) − 1

2

m∑
k=1

d∑
i,j=1

∂2

∂xi∂xj

(
Hik(x, t)HT

kj(x, t)f(x, t)
)

= 0.

(4.61)
This can also be written as

∂f(x, t)
∂t

= −
d∑

i=1

∂

∂xi
(hi(x, t)f(x, t)) +

1
2

d∑
i,j=1

∂2

∂xi∂xj

(
m∑

k=1

Hik(x, t)HT
kj(x, t)f(x, t)

)
,

(4.62)
or symbolically in vector form (with the dependence of functions on x and t suppressed)
as

∂f

∂t
= −∇x · (hf) +

1
2
tr
[
(∇x∇T

x )(HHT f)
]

(4.63)

where (∇x∇T
x )ij = ∂2/∂xi∂xj .

4.6 The Stratonovich Stochastic Calculus

The Stratonovich stochastic integral is defined as [11, 35]

∫ t

t0

f(τ) � dw(τ) .= lim
n→∞

n∑
i=1

f((ti−1 + ti)/2)[w(ti) − w(ti−1)]. (4.64)
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Here the function f(t) can be of the form f(t) = F (x(t), t) where x(t) is governed by
a stochastic differential equation which itself is defined by an integral like the one in
(4.64).

The inclusion of the symbol � inside the integral is to distinguish it from the Itô
integral, because in general∫ t

t0

f(τ) � dw(τ) =
∫ t

t0

f(τ) dw(τ).

Though these two integrals are generally not equal, it is always possible to convert one
into the other.

One of the benefits of the Stratonovich calculus is that [11]∫ t

t0

[w(τ)]n � dw(τ) =
1

n + 1
([w(t)]n+1 − [w(t0)]n+1),

which, unlike (4.37), is akin to the answer in usual calculus in (4.36). In fact the
Stratonovich calculus generally behaves like the usual calculus, which makes it easy
to use. Furthermore, due to the inherent continuity of random motions associated with
physical problems, the “midpoint” approach in the evaluation of f(t) in (4.64) is natural.

However, unlike the Itô integral, the Stratonovich approach has the drawback that it is
extremely difficult to evaluate expected values such as was done in the Itô case in (4.52)
and (4.53). In order to “get the benefit of both worlds” it is important to know how
to convert an Itô equation into a Stratonovich equation, and vice versa. When calculus
operations are required, conversion from Itô to the Stratonovich form can be performed,
and then regular calculus can be used. Or, if expectation operations are required, a
Stratonovich equation can be converted to Itô form, and then the expectation can be
taken. Being able to weave back and forth between these two forms makes it much easier
to address stochastic modeling problems.

Consider the system of d SDEs:

dxi(t) = hs
i (x1(t), ..., xd(t), t)dt +

m∑
j=1

Hs
ij(x1(t), ..., xd(t), t) � dwj(t) for i = 1, ..., d.

(4.65)
This is called a Stratonovich SDE if its solution is interpreted as the integral

xi(t) − xi(0) =
∫ t

0
hs

i (x1(τ), ..., xd(τ), τ)dτ +
m∑

j=1

∫ t

0
Hs

ij(x1(τ), ..., xd(τ), τ) � dwj(τ).

(4.66)
In vector form this is written as

x(t) − x(0) =
∫ t

0
hs(x(τ), τ)dτ +

∫ t

0
Hs(x(τ), τ) � dw(τ).

Note that the coefficient functions hs
i (x, t) and Hs

ij(x, t) have a superscript “s” in order
to distinguish them from the coefficient functions hi(x, t) and Hij(x, t) in an Itô SDE.

Now the interconversion between the two forms will be summarized following the ar-
guments in Gardiner [11]. Suppose that corresponding to the Stratonovich SDE (4.65)
there is an Itô SDE for x(t) defined by drift and diffusion coefficients hi(x, t) and
Hij(x, t). With this, x(t) can be viewed as the solution to an Itô SDE, and so Itô’s rule
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can be used to expand out Hs
ij(x((ti−1+ti)/2), (ti−1+ti)/2) in (4.66) to evaluate the in-

tegral according to the rule (4.64). This is because x((ti−1+ti)/2) ≈ x(ti−1)+ 1
2dx(ti−1)

and the Hs
ij is defined to be differentiable in all arguments. Expanding everything out

in a multi-dimensional Taylor series and using Itô’s rule then establishes the following
equivalence between Itô and Stratonovich integrals:∫ t

0
Hs(x(τ), τ) � dw(τ) =

∫ t

0
Hs(x(τ), τ) dw(τ) +

1
2

d∑
i=1

ei

m∑
j=1

d∑
k=1

∫ t

0

∂Hs
ij

∂xk
Hkjdτ

(4.67)
where {ei} is the natural basis for Rd. This means that if we choose to set Hij = Hs

ij ,
then x(t) as defined in the Itô and Stratonovich forms will be equal if the drift terms
are chosen appropriately.

In general if {x1, ..., xd} is a set of Cartesian coordinates, given the Stratonovich
equation (4.65), the corresponding Itô equation will be (4.38) where

hi(x, t) = hs
i (x, t) +

1
2

m∑
j=1

d∑
k=1

∂Hs
ij

∂xk
Hs

kj and Hij = Hs
ij . (4.68)

This important relationship allows for the conversion between Itô and Stratonovich
forms of an SDE. Using it in the reverse direction is trivial once (4.68) is known:

hs
i (x, t) = hi(x, t) − 1

2

m∑
j=1

d∑
k=1

∂Hij

∂xk
Hkj and Hs

ij = Hij . (4.69)

Starting with the Stratonovich SDE (4.65), and using (4.68) to obtain the equivalent
Itô SDE, the Fokker–Planck equation resulting from the derivation of the Itô version can
be used as an indirect way of obtaining the Stratonovich version of the Fokker–Planck
equation:

∂f

∂t
= −

d∑
i=1

∂

∂xi
(hs

if) +
1
2

d∑
i,j=1

∂

∂xi

[
m∑

k=1

Hs
ik

∂

∂xj
(Hs

jkf)

]
. (4.70)

In the next section, a special kind of SDE is reviewed, which happens to be the same
in both the Itô and Stratonovich forms.

4.7 Multi-Dimensional Ornstein–Uhlenbeck Processes

Consider a forced mechanical system consisting of a spring, mass, and damper that is
governed by the second-order linear differential equation

mẍ + cẋ + kx = f(t). (4.71)

Here m is the mass, c is the damping constant, k is the stiffness of the linear spring, and
f(t) is an external forcing function applied to the system. This is a model that is widely
used to describe systems such as an automobile with shock absorbers as it passes over
a bump in the road (which supplies the forcing), or a civil structure such as bridge or
building subjected to forcing supplied by wind or an earthquake.



124 4 Stochastic Differential Equations

When f(t) is a random forcing, this model is also used to describe Brownian motion
at the molecular level. In that context, f(t)dt = σdw is a white noise forcing with
strength σ and c is the damping, both of which are supplied by the surrounding liquid.
For extremely small particles, the inertial term become negligible, and (4.71) reduces
to

dx = −k

c
x +

σ

c
dw. (4.72)

In the case when the mass is not negligible, the second-order scalar equation in (4.71)
can be converted to two first-order state space equations by defining x1

.= x and x2
.= ẋ.

Then (4.71) becomes(
dx1
dx2

)
= −

(
0 −1

k/m c/m

)(
x1
x2

)
dt +

(
0

1/m

)
dw. (4.73)

Both (4.72) and (4.73), as well as more complicated models involving multiple
springs, masses, and dampers, generalize to the following stochastic differential equation
[37, 40]:

dx = −Γxdt + Cdw. (4.74)

Here x ∈ Rd, Γ = [γij ] ∈ Rd×d, C = [cij ] ∈ Rd×m, and dw ∈ Rm is a vector of
uncorrelated unit-strength white noises. That is,

〈dwi(t)dwj(t)〉 = δijdt and 〈dwi(tj)dwi(tk)〉 = δjkdt.

The SDE in (4.74) is called an Ornstein–Uhlenbeck process, or O-U process. Note that
the coefficient matrix function H(x, t) = C in this case is constant. Whenever H(x, t)
is constant, it turns out that the Itô and Stratonovich SDEs are equivalent. Therefore,
for the O-U process, there is no need to call it an “Itô O-U process” or a “Stratonovich
O-U process.” Furthermore, there is only one Fokker–Planck equation.

The Fokker–Planck equation corresponding to (4.74) that describes the evolution
of the probability density f(x, t) for this process is obtained by substituting (4.74) in
(4.61). The result is

∂f

∂t
=
∑
i,j

∂

∂xi
(γijxjf) +

1
2

∑
i,j,k

∂2

∂xi∂xj

(
cikc

T
kjf
)
. (4.75)

This equation was originally derived in a special case by Fokker [7] and Planck [29], and
was generalized by Kolmogorov [18].

4.7.1 Steady-State Conditions

By defining the matrix B = [bij ] = CCT , we can write the Fokker–Planck equation
(4.75) in the case when ∂f/∂t → 0 as

0 =
∑
i,j

γij
∂

∂xi
(xjf) +

1
2

∑
i,j

bij
∂2f

∂xi∂xj
. (4.76)

The first term on the right-hand side of the above equation that multiplies γij can
be expanded as

∂

∂xi
(xjf) =

∂xj

∂xi
f + xj

∂f

∂xi
= δijf + xj

∂f

∂xi
.
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Here δij is the Kronecker delta defined to be equal to one when i = j and zero otherwise.
This means that (4.76) can be rewritten as

0 =
∑
ij

[
γij(δijf + xj

∂f

∂xi
) +

1
2
bij

∂2f

∂xi∂xj

]
.

Observing that
∑

ij γijδij =
∑

i γii allows this to be written as

0 = tr(Γ )f +
∑
ij

(
γijxj

∂f

∂xi
+

1
2
bij

∂2f

∂xi∂xj

)
. (4.77)

Following Risken [33], let us assume a steady-state solution of the form of a Gaussian:

f(x) = c0 exp(−1
2
xTAx) = c0 exp(−1

2

∑
kl

aklxkxl) (4.78)

where A = AT > 0 is the inverse of the covariance matrix and c0 is the normalizing
constant such that f(x) is a probability density function.

In order to check if such a solution is valid, simply substitute it into (4.77) and
determine if equality can be made to hold.

First, observe that for this assumed solution,

∂f

∂xi
= −1

2
f(x)

∑
kl

akl

(
∂xk

∂xi
xl + xk

∂xl

∂xi

)
= −1

2
f(x)

∑
kl

akl (δkixl + xkδli)

= −f(x)
∑

l

ailxl.

Next observe that

∂2f

∂xi∂xj
=

∂

∂xj

[
∂f

∂xi

]
= − ∂

∂xj

[
f(x)

∑
l

ailxl

]

= f(x)
∑
kl

(ajkxk)(ailxl) − f(x)
∑

l

(
ail

∂xl

∂xj

)
.

The last term in the above expression is simplified by observing that∑
l

ail
∂xl

∂xj
=
∑

l

ailδ lj = aij .

This means that
∂2f

∂xi∂xj
= f(x)

∑
kl

(ajkailxlxk − aij) .

Using these facts, (4.77) can be used to write the condition
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0 =
∑

i

γii −
∑
ijl

γijailxjxl +
1
2

∑
ijkl

bij(ajkailxlxk − aij). (4.79)

Equating the coefficients at each power of x to zero results in a sufficient condition for
the assumed solution to work. For the zeroth power of x:∑

i

γii −
∑
ij

1
2
bijaij = 0. (4.80)

Matching the quadratic powers in x gives

0 = −
∑
ijl

γijailxjxl +
1
2

∑
ijkl

bij(ajkailxlxk).

Note that
∑

jk bijajkail can be written as
∑

jk ailbijajk or as
∑

jk alibijajk since ail =
ali. This is the lkth element of the product ABA. Recall that A = AT and B = BT ,
which means that (ABA)T = ABA. In contrast,

∑
i γijail are not the elements of a

symmetric matrix. However, by observing that∑
ijl

γijailxjxl =
1
2

∑
ijl

(
γijail + (γijail)T

)
xjxl,

the original quantity can be replaced with a symmetric one. Then equating all the
coefficients in front of the xjxl terms results in∑

i

[γijail + (γijail)T ] =
∑
ik

ajibikakl.

Written in matrix form this is

ΓTA + (ΓTA)T = ABA.

Recognizing that (ΓTA)T = ATΓ = AΓ , and multiplying on the left and right of both
sides of the equation by A−1 gives

ΓA−1 + A−1ΓT = B. (4.81)

Hence, the condition that the assumed steady-state solution is valid boils down to
solving a linear-algebraic matrix equation. The explicit solution method is discussed in
the following subsection.

4.7.2 Steady-State Solution

The solution method presented here follows [33]. The way to solve (4.81) when Γ has
distinct eigenvalues is to expand this known matrix in the spectral decomposition

Γ = UΛV T =
n∑

i=1

λiuivT
i .

Here U = [u1, ...,un] and V = [v1, ...,vn] are matrices such that the columns satisfy
the following equations:
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Γui = λiui ΓT vi = λivi.

In other words, we can write Γ = UΛU−1 and ΓT = V ΛV −1. Since this kind of
decomposition is unique up to ordering of the eigenvalues and the normalization of the
eigenvectors, the equality

(UΛU−1)T = V ΛV −1

can be made to hold when U−T = V . This means that

V UT = UTV = I = UV T = V TU. (4.82)

Λ is a diagonal matrix with entries λi, which are the eigenvalues of Γ (which are the
same as the eigenvalues of ΓT ). If Γ = ΓT then U = V , and they are orthogonal,
whereas in the general case U and V are not orthogonal matrices.

Substituting the spectral decomposition of Γ into (4.81) gives

UΛV TA−1 + A−1V ΛUT = B.

Multiplying on the left by V T and on the right by V gives

V TUΛV TA−1V + V TA−1V ΛUTV = V TBV.

Using (4.82), this reduces to

ΛV TA−1V + V TA−1V Λ = V TBV.

If C ′ .= V TA−1V and B′ .= V TBV , then the original problem is transformed to one
of finding C ′ such that

ΛC ′ + C ′Λ = B′

where C ′ and B′ are symmetric matrices. This problem can be written in component
form as

n∑
j=1

(λiδijc
′

jk + c
′

ijλjδjk) = b
′

ik.

Using the properties of the Kronecker delta, this reduces to

λic
′

ik + c
′

ikλk = b
′

ik.

Hence,

c
′

ik =
b

′

ik

λi + λk
.

A−1 is then recovered from C ′ by observing from (4.82) that

UC ′UT = U(V TA−1V )UT = A−1.

Therefore, as was done in [33], we can write A−1 as

A−1 =
∑
i,j

1
λi + λj

(vT
i Bvj)uiuT

j . (4.83)

This is the covariance for the assumed Gaussian. Note that this steady-state solution
washes out any initial conditions. Regardless of whether f(x, 0) was initially either more
tightly focused or more spread out than this steady-state solution, the O-U process will
drive it to become the Gaussian with this covariance. Therefore, the O-U process is not
a diffusion process, but rather a return-to-equilibrium process.
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4.7.3 Detailed Balance and the Onsager Relations

The concept of detailed balance is a physical argument that reflects in the transition
probability for a Fokker–Planck (or Chapman–Kolmogorov) equation a condition that
systems of pairwise colliding particles must satisfy. Namely, if elastic particles collide
and bounce off of each other in such a way that preserves linear and angular momentum,
and if their velocities are tracked before and after the collision, it should be the case
that if time is reversed, the collision viewed as time goes backwards must also obey the
laws of Newtonian mechanics. This imposes the following condition on the transition
probability [2, 8, 9, 11, 28, 39]:

p(r′,v′, dt | r,v, 0)ps(r,v) = p(r,−v, dt | r′,−v′, 0)ps(r′,−v′). (4.84)

Here v = ṙ is velocity and r is position. ps(r,v) is a stationary solution to a Fokker–
Planck equation (assuming that one exists as t → ∞) in which the spatial variable is
x = (rT ,vT )T , and p(r,v, t + dt | r0,v0, t) = p(r,v, dt | r0,v0, 0) is the solution to the
same Fokker–Planck equation at time dt with initial conditions p(r,v, 0 | r0,v0, 0) =
δ(r − r0)δ(v − v0).

It is possible to write (4.84) in the equivalent form

p(x′, dt |x, 0)ps(x) = p(εx, dt | εx′, 0)ps(εx′) (4.85)

where the matrix ε = diag[ε1, ..., εn], n = dim(x), and εi ∈ {−1,+1}. A value of +1
corresponds to positional (or “even”) variables, and a value of −1 corresponds to velocity
(or “odd”) variables. Note: the terms even/odd need not have anything to do with the
evenness/oddness of the subscripts with which the scalar components of the variables
are labeled.

If p(x, dt |x0, 0) satisfies the Fokker–Planck equation (4.61) with drift and diffusion
coefficients that do not depend explicitly on time, and if p(x, 0 |x0, 0) = δ(x − x0),
then it can be shown that the conditions of detailed balance in (4.85) are equivalent to
[11, 33]

ps(x) = ps(εx) (4.86)

[εihi(εx) + hi(x)] ps(x) =
∑

j

∂

∂xj
[Hij(x)ps(x)] (4.87)

εiεjHij(εx) = Hij(x). (4.88)

These are somewhat more convenient than (4.85) because in many situations
p(x, dt |x0, 0) is not known in closed form but ps(x), hi(x), and Hij(x) are.

Condition (4.86) follows from (4.85) because for dt = 0,

p(x′, 0 |x, 0) = δ(x′ − x) = δ(εx′ − εx).

Conditions (4.87) and (4.88) can be obtained by expanding p(x, dt |x0, 0) in a Taylor
series in dt and using the Chapman–Kolmogorov equation, in analogy with what was
done in the derivation of the Fokker–Planck equation. See [2, 11, 28, 39] for details.

The condition of detailed balance in (4.85) has been generalized to other, more ab-
stract, Markov processes, but the discussion here is restricted to physical arguments.
As a concrete example, consider the Fokker–Planck equation corresponding to the
Ornstein–Uhlenbeck process in (4.74) is (4.75). It is clear that if it originates from
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a mechanical system such as (4.73), there will be an equal number of even and odd
variables. Furthermore, the steady-state Gaussian solution (4.78) with A calculated in
(4.83) should satisfy (4.86)–(4.88). For the Ornstein–Uhlenbeck process, these conditions
respectively correspond to

εAε = A; εΓε + Γ = BA−1; εBε = B.

Combining these with (4.81) and rearranging terms gives the Onsager relations [2, 28,
39]:

ε(ΓA−1) = (ΓA−1)T ε. (4.89)

As an example that demonstrates the usefulness of (4.89), consider the multi-
dimensional version of (4.71),

M ẍ + Cẋ + Kx = f(t), (4.90)

where M , C, and K are all symmetric positive definite n × n matrices and fdt = Sdw
is a stochastic forcing vector where S ∈ Rn×n is arbitrary and dw is a vector, each
element of which is a unit-strength white noise that is uncorrelated with the others.

It is possible to write (4.90) in the form (4.74) by introducing a new variable y =
[xT , ẋT ]T . Alternatively, in physical applications it is more common to use coordinates
z = [xT ,pT ]T where p = M ẋ. Whereas y is called a state-space variable, z is called a
phase-space variable. It is also possible to use other variables such as p′ = M

1
2 ẋ. Here

the phase-space formulation will be used, and the result will be of the form in (4.74)
with z taking the place of x. In this case, the matrices Γ and B are

Γ =
[

O −M−1

K CM−1

]
and B =

[
O O

O SST

]
.

Writing the candidate matrix A and its inverse, which can be taken as being sym-
metric without loss of generality, in terms of blocks as

A =
[
A11 A12
AT

12 A22

]
and A−1 =

[
A′

11 A′
12

A′T
12 A′

22

]
,

the conditions (4.81) are expressed block-by-block as

M−1A′T
12 = −A′

12M
−1

A′
11K + A′

12M
−1C = M−1A′

22

KA′
12 + A′T

12K + A′
22M

−1C + CM−1A′
22 = SST .

The condition εAε = A (or equivalently εA−1ε = A−1) gives A12 = A′
12 = 0. This

simplifies the last two of the above equations to

A′
11K = M−1A′

22 and A′
22M

−1C + CM−1A′
22 = SST .

The Onsager relations (4.89) written out in block-matrix form also give A′
11K =

M−1A′
22, but in addition give

CM−1A′
22 = A′

22M
−1C.

Combining these equations gives
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A′
11CK−1 + K−1CA′

11 = K−1SSTK−1 and A′
22M

−1C + CM−1A′
22 = SST .

(4.91)
And so in this particular problem the Onsager relations provide a tool for converting a
system of matrix equations (4.81) of dimension 2n × 2n into two matrix equations of
the same kind, each of dimension n×n. Since full-rank linear systems of equations have
unique solutions, any solution to these equations will be “the” solution. By inspection,
it is clear that given some scalar constant β,

2C = βSST ⇐⇒ A = A11 ⊕ A22 = β K ⊕ M−1. (4.92)

The condition on the left indicates that viscous/dissipative forces and stochastic fluc-
tuations forcing the system are balanced in a particular way. This is a statement of
the fluctuation–dissipation theorem which will be revisited in the context of statistical
mechanics in Volume 2.

4.8 SDEs and Fokker–Planck Equations Under Coordinate
Changes

The purpose of this section is to address problems associated with changing coordi-
nate systems in stochastic modeling problems. This sort of geometric problem will be
unavoidable when considering SDEs that describe processes that evolve on (possibly
high-dimensional) surfaces rather than unconstrained translational motion in Rn. But
even when modeling problems in Rn, geometric issues will arise. The general problems
associated with coordinate changes will be formalized later in this section, but they are
first illustrated here with the concrete example of Brownian motion in the plane.

4.8.1 Brownian Motion in the Plane

From the presentation earlier in this chapter, it should be clear that the following two-
dimensional SDE and Fokker–Planck equation describe the same process:

dx = dw ⇐⇒ ∂f

∂t
=

1
2

(
∂2f

∂x2
1

+
∂2f

∂x2
2

)
.

In this case, it does not matter if the SDE is interpreted as an Itô or Stratonovich
equation. The above equations describe isotropic translational diffusion in the plane.

As a physical problem, the behavior should be independent of the coordinate system
used. Therefore, if instead of Cartesian coordinates, a change of variables x1 = r cosφ
and x2 = r sinφ is made, it should be possible to describe the same process in terms
of SDEs and Fokker–Planck equations in the polar coordinates (r, φ). Since there is no
ambiguity in how to do this change of coordinates for the Fokker–Planck equation (since
the usual Newton–Leibniz calculus is well understood by all), this is a good place to
begin.

Coordinate Changes and the Fokker–Planck Equation

Let f̃(r, φ; t) = f(r cosφ, r sinφ; t). Then it is clear from the classical chain rule that

∂f̃

∂r
=

∂f

∂x1

∂x1

∂r
+

∂f

∂x2

∂x2

∂r
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and
∂f̃

∂φ
=

∂f

∂x1

∂x1

∂φ
+

∂f

∂x2

∂x2

∂φ
.

If the Jacobian of the coordinate change is calculated as

J(r, φ) =

⎛⎝ ∂x1
∂r

∂x1
∂φ

∂x2
∂r

∂x2
∂φ

⎞⎠ =
(

cosφ −r sinφ
sinφ r cosφ

)
,

then the Jacobian determinant is |J | = r.
It is clear from the above equations that⎛⎜⎝ ∂f̃

∂r

∂f̃
∂φ

⎞⎟⎠ = JT (r, φ)

⎛⎝ ∂f
∂x1

∂f
∂x2

⎞⎠ or

⎛⎝ ∂f
∂x1

∂f
∂x2

⎞⎠ = J−T (r, φ)

⎛⎜⎝ ∂f̃
∂r

∂f̃
∂φ

⎞⎟⎠
where J−T =

(
J−1
)T =

(
JT
)−1.

In component form this means that

∂f

∂x1
= cosφ

∂f̃

∂r
− sinφ

r

∂f̃

∂φ

and
∂f

∂x2
= sinφ

∂f̃

∂r
+

cosφ
r

∂f̃

∂φ
.

Applying this rule twice,

∂2f

∂x2
1

= cosφ
∂

∂r

(
cosφ

∂f̃

∂r
− sinφ

r

∂f̃

∂φ

)
− sinφ

r

∂

∂φ

(
cosφ

∂f̃

∂r
− sinφ

r

∂f̃

∂φ

)

= cos2 φ
∂2f̃

∂r2 − sinφ cosφ
∂

∂r

(
1
r

∂f̃

∂φ

)
+

sin2 φ

r

∂f̃

∂r
−

sinφ cosφ
r

∂2f̃

∂φ∂r
+

sinφ cosφ
r2

∂f̃

∂φ
+

sin2 φ

r2

∂2f̃

∂φ2

and

∂2f

∂x2
2

= sinφ
∂

∂r

(
sinφ

∂f̃

∂r
+

cosφ
r

∂f̃

∂φ

)
+

cosφ
r

∂

∂φ

(
sinφ

∂f̃

∂r
+

cosφ
r

∂f̃

∂φ

)

= sin2 φ
∂2f̃

∂r2 + sinφ cosφ
∂

∂r

(
1
r

∂f̃

∂φ

)
+

cos2 φ

r

∂f̃

∂r
+

sinφ cosφ
r

∂2f̃

∂φ∂r
− sinφ cosφ

r2

∂f̃

∂φ
+

cos2 φ

r2

∂2f̃

∂φ2 .

Therefore,
∂2f

∂x2
1

+
∂2f

∂x2
2

=
∂2f̃

∂r2 +
1
r

∂f̃

∂r
+

1
r2

∂2f̃

∂φ2 ,
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and so

∂f

∂t
=

1
2

(
∂2f

∂x2
1

+
∂2f

∂x2
2

)
⇐⇒ ∂f̃

∂t
=

1
2

(
∂2f̃

∂r2 +
1
r

∂f̃

∂r
+

1
r2

∂2f̃

∂φ2

)
. (4.93)

The next question is, if dx = dw is interpreted as a Stratonovich or Itô SDE, what
will the corresponding SDEs in polar coordinates look like?

Coordinate Conversion and the Stratonovich SDE

The Stratonovich case is straightforward, since it obeys the usual Newton–Leibniz calcu-
lus, and so dx = J(r, φ)[dr, dφ]T . This then means that [dr, dφ]T = J−1(r, φ)dw, which
is written in component form as

dr = cosφ� dw1 + sinφ� dw2

(4.94)

dφ = − sinφ

r
� dw1 +

1
r

cosφ� dw2.

Coordinate Conversion and the Itô SDE (Approach 1)

How can the corresponding Itô equation in polar coordinates be found? First, from Itô’s
rule in (4.55) and the functional relationship between Cartesian and polar coordinates,
it follows that

dx1 = cosφdr − r sinφdφ − 1
2
r cosφ(dφ)2 = dw1

(4.95)

dx2 = sinφdr + r cosφdφ − 1
2
r sinφ(dφ)2 = dw2

where the rightmost equalities in each of the above come from the original SDE dx = dw.
Second, the form of the Itô SDE that is sought is, by definition, of the form

dr = h1(r, φ)dt + H11(r, φ)dw1 + H12(r, φ)dw2

dφ = h2(r, φ)dt + H21(r, φ)dw1 + H22(r, φ)dw2.

Substituting this into (4.95), and remembering that under ensemble averaging, dwidwj =
δijdt and all higher order terms such as dtdwi and (dt)2 vanish, leads to(

dw1
dw2

)
=
(

1 0
0 r

)(
h1
h2

)
dt +

(
1 0
0 r

)(
H11 H12
H21 H22

)(
dw1
dw2

)
− 1

2

(
(H2

21 + H2
22)r

0

)
dt.

This will be satisfied if H12 = H21 = h2 = 0 and H11 = 1, H22 = 1/r, and h1 =
1/(2r). In other words, an Itô equation in polar coordinates that produces sample paths
equivalent under ensemble averaging to those generated by the Cartesian Itô SDE dx =
dw is (

dr
dφ

)
=

1
2

(
1/r
0

)
dt +

(
1 0
0 1/r

)(
dw1
dw2

)
. (4.96)
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Coordinate Conversion and the Itô SDE (Approach 2)

This same problem can be approached in a different way. Inverting the transformation
of coordinates so that polar coordinates are written in terms of Cartesian coordinates,

r = [x2
1 + x2

2]
1
2 and φ = tan−1

(
x2

x1

)
.

It follows that
dr = [(x1 + dx1)2 + (x2 + dx2)2]

1
2 − [x2

1 + x2
2]

1
2

and

dφ = tan−1
(
x2 + dx2

x1 + dx1

)
− tan−1

(
x2

x1

)
.

Expanding the above in a Taylor series to second order in dxi (knowing that higher
order terms will vanish) gives

dr =
1
2

[2x1dx1 + (dx1)2 + 2x2dx2 + (dx2)2]
[x2

1 + x2
2]

1
2

− 1
8

[4x2
1(dx1)2 + 4x2

2(dx2)2]
[x2

1 + x2
2]

3
2

and

dφ =
x1dx2 − x2dx1 + x2

x1
(dx1)2

x2
1 + x2

2
− x2x

3
1(x

−1
1 (dx2)2 + x2

2x
−4
1 (dx1)2)

(x2
1 + x2

2)2
.

Now making the substitutions x1 = r cosφ, x2 = r sinφ, dx1 = dw1, dx2 = dw2, and
using the usual properties of the Wiener process, this reduces (after some trigonometric
simplifications) to

dr =
1
2
r−1dt + cosφdw1 + sinφdw2

(4.97)
dφ = −r−1 sinφdw1 + r−1 cosφdw2.

While (4.96) and (4.97) are not exactly equal, they are equivalent in the sense that the
ensemble of paths generated by both will have the same statistics.

It Doesn’t Matter that These Equations are Different

At first glance, it may be a source of concern that (4.97) and (4.96) are not the same.
After all, it is reasonable to assume that they should be! But referring back to the
Fokker–Planck equation in Cartesian coordinates (both in this case, and in the general
case in (4.61)), it becomes clear that any two Itô SDEs are equivalent if dw → Rdw
where R is an orthogonal matrix10 that can be time dependent, and even dependent on
the stochastic process defined by the SDE itself. This is exactly the case here, since the
substitution dw → Rdw in (4.97) with

R =
(

cosφ − sinφ
sinφ cosφ

)
10Recall that R ∈ Rn×n is called orthogonal if RRT = I, and an orthogonal matrix with the

additional condition detR = +1 is called a rotation, or special orthogonal, matrix. The set of
all n × n rotation matrices is denoted as SO(n).
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will convert (4.97) to (4.96). Clearly RRT = I, and so these two Itô SDEs are equivalent.
Now things can get a little confusing, because the Itô equation (4.97), which is

the same as (4.96), and the Itô equation (4.95) are equivalent in the sense that they
produce the same Fokker–Planck equation. Moreover, the Stratonovich equation (4.94)
is equivalent to these because it too produces the same Fokker–Planck equation.

4.8.2 General Conversion Rules

Formulas were given in Section 4.6 for converting between Itô and Stratonovich versions
of the same underlying process described in Cartesian coordinates. The same rules hold
for this conversion in curvilinear coordinates.

In general if {q1, ..., qd} is a set of generalized coordinates, given the Stratonovich
equation

dqi = hs
i (q, t)dt +

m∑
j=1

Hs
ij(q, t) � dwj

for i = 1, ..., d the corresponding Itô equation will be

dqi = hi(q, t)dt +
m∑

j=1

Hij(q, t)dwj

where

hi(q, t) = hs
i (q, t) +

1
2

m∑
j=1

d∑
k=1

∂Hs
ij

∂qk
Hs

kj . (4.98)

In the above example of Brownian motion in the plane, the Stratonovich equation
(4.94) has no drift, and the corresponding Itô equation (4.97) does have a drift, which
is consistent with hi(q, t) = hs

i (q, t).
Now consider the Stratonovich equivalent of the Itô equation (4.96). Using (4.98), it

becomes clear that (
dr
dφ

)
=

1
2

(
1/r
0

)
dt +

(
1 0
0 1/r

)
�
(

dw1
dw2

)
. (4.99)

An important observation can be made from this example: If for any Itô equation
the transformation H(q, t) → H(q, t)R(q, t) is made for any R ∈ SO(m) while leaving
the drift term the same, the resulting Fokker–Planck equation computed with H(q, t)
and H ′(q, t) = H(q, t)R(q, t) will be the same. However, this is generally not true for
Stratonovich equations. This is observed in the context of the current example because
the coloring matrices, H, in (4.99) and (4.94) are related by an orthogonal transfor-
mation, and in order for them to be produce the same Fokker–Planck equation, they
necessarily have different drift terms. The three-dimensional diagram in (4.100) illus-
trates which equations in this example are equal, and which are equivalent under the
conversion rules established in Section 4.6.

4.8.3 Coordinate Changes and Fokker–Planck Equations

The coordinate changes addressed above are for SDEs. When performing coordinate
changes for Fokker–Planck equations, the usual calculus is used. Using Cartesian co-
ordinates as the baseline, small changes in x are related to small changes in q by the
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Strat. FP
Eq., Cart.

Strat. SDE
Cart.

Itô FP
Eq., Cart.

Itô SDE
Cart.

Strat. FP
Eq., Polar

Strat. SDE
Polar

Itô FP
Eq., Polar

Itô SDE
Polar (4.100)

Jacobian matrix: dx = J(q)dq. Differential volume elements described in the two coor-
dinate systems are related by the expression d(x) = |J(q)|d(q), as discussed in Chapter
1. In Chapter 5, it will be shown that the matrix G(q) .= JT (q)J(q) (called the metric
tensor) contains all of the information needed to measure distances, areas, volumes, etc.
Since |J(q)| = |G(q)| 1

2 , the volume element in curvilinear coordinates can be expressed
as d(x) = |G(q)| 1

2 d(q). This has an impact on the form of the Fokker–Planck equation
in curvilinear coordinates because every “dx” in the derivation in Section 4.5.6 (which
in that context is shorthand for d(x)) becomes a |G(q)| 1

2 d(q). And when performing
integration by parts and localizing, the factor |G(q)| 1

2 is introduced into the curvilinear
version of the Fokker–Planck equation. The result is presented without proof below. A
proof for the more general case of Fokker–Planck equations on manifolds will be pro-
vided in Chapter 8. That proof covers the case of curvilinear coordinates in Euclidean
space as well. For the reader who wishes to prove these formulas, another route would
be to simply start with the Cartesian forms of the general Fokker–Planck equations and
work through the change of coordinates as was done early in this section for the specific
example of Brownian motion in the plane.

Itô Version

The Itô version of the Fokker–Planck equation in generalized coordinates is

∂f

∂t
= −|G|− 1

2

∑
i

∂

∂qi

(
ai|G| 1

2 f
)

+
1
2
|G|− 1

2

∑
i,j

∂2

∂qi∂qj

[
(BBT )ij |G| 1

2 f
]
. (4.101)

Given f(q, 0) this generates f(q, t) for the Itô SDE

dq = a(q, t) + B(q, t)dw.

As illustrated in Exercise 4.10, when B(q, t) = [J(q)]−1, (4.101) will be the heat
equation under special conditions on a(q, t).
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Stratonovich Version

∂f

∂t
= −|G|− 1

2

∑
i

∂

∂qi

(
as

i |G| 1
2 f
)

+
1
2
|G|− 1

2

∑
i,j,k

∂

∂qi

[
Bs

ik

∂

∂qj
(Bs

jk|G| 1
2 f)
]
. (4.102)

Given f(q, 0) this generates f(q, t) for the Stratonovich SDE

dq = as(q, t) + Bs(q, t) � dw.

As illustrated in Exercise 4.11, when Bs(q, t) = [J(q)]−1, (4.102) will be the heat
equation under special conditions on as(q, t) (which are in general different than the
conditions in the Itô case).

4.9 Chapter Summary

This chapter introduced concepts from the theory of random (stochastic) processes. Two
interpretations of the stochastic integral were reviewed: Itô and Stratonovich. Each has
advantages and disadvantages. The Itô calculus is convenient for taking expectations,
but does not follow the rules of classical calculus. The Stratonovich calculus follows the
rules of classical calculus, but is very difficult to work with when taking expectations.

It is the stochastic integral that can be viewed as the solution of a stochastic dif-
ferential equation. These two different interpretations mean that, in general, it must be
stated up front which kind of SDE is being considered. Rules for converting between Itô
and Stratonovich forms were reviewed, as well as the conversion of an SDE of one type
into an SDE of the same type, but in curvilinear rather than Cartesian coordinates. In
addition, each kind of SDE has a corresponding Fokker–Planck equation. The relation-
ship between all of these concepts is summarized in the cubic diagram (4.100) presented
in this chapter for the special case of Cartesian and polar coordinates in the plane.

Many books on stochastic processes exist. These either focus on modeling of physical
systems, such as [15, 24, 38], or rigorous mathematical analysis [5, 14, 17, 21, 34, 36, 41].
Several works address the middle ground between applications and theory, including
[10, 11, 12, 27].

In later chapters, SDEs that evolve on more exotic spaces than Rd will be explored.
These include manifolds. In order to understand these concepts, it is important to have
sufficient geometric background. This is provided in the next two chapters.

4.10 Exercises

4.1. Following up on the last paragraph in Section 4.3, determine the explicit conditions
on the covariance and mean of a Gaussian process of the form (4.11) to be a Markov
process.

4.2. Prove for all values of t that ρ(x, t) in (4.9) is: (a) a pdf; (b) it has mean μ; (c) it
has variance σ2.

4.3. Given the one-dimensional Ornstein–Uhlenbeck SDE dx = −γxdt+ cdw, write and
solve the corresponding Fokker–Planck equation analytically.

4.4. Using the programs provided in [12], simulate 1000 sample paths of the one-
dimensional Ornstein–Uhlenbeck SDE in Exercise 4.3. Let each path consist of 100
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steps with dt = 0.01, and let γ = c = 1. Record each x(t) for t = 0.2, 0.5, 1.0. Create a
histogram for each of these times, and compare it with the analytical solution from the
previous problem.

4.5. Prove that a substitution of the form dw → R(x, t)dw into an Itô SDE dx =
h(x, t)dt + H(x, t)dw will yield the same Fokker–Planck equation as without this sub-
stitution when RRT = I.

4.6. Let R and R0 denote rotation matrices. Prove that a substitution of the form
Hs(x, t) → Hs(x, t)R0(t) into a Stratonovich SDE dx = hs(x, t)dt+Hs(x, t) � dw will
yield the same Fokker–Planck equation as without this substitution. Will this statement
still be true if Hs(x, t) → Hs(x, t)R(x, t)? Explain.

4.7. Let R denote a rotation matrix. If a substitution of the form Hs(x, t) →
Hs(x, t)R(x, t) is made in a Stratonovich SDE dx = hs(x, t)dt + Hs(x, t) � dw, how
must hs(x, t) be modified in order to yield the same Fokker–Planck equation as without
this substitution?

4.8. Using (4.98) show that the Itô equation (4.97) is equivalent to the Stratonovich
equation (4.99), and so in this case it does not matter in which way the SDE is inter-
preted.

4.9. Starting with the SDE in (4.99) in polar coordinates, and using the rules of
Stratonovich stochastic calculus, convert this to an SDE in Cartesian coordinates. Is
it equivalent to the Cartesian SDE that yielded (4.94)?

4.10. Show that (4.101) will become the heat equation if B(q, t) = [J(q)]−1 and

ai(q, t) =
1
2
|G|− 1

2

∑
j

∂

∂qj

(
|G| 1

2 (BBT )ij

)
.

4.11. Show that (4.102) will become the heat equation if Bs(q, t) = [J(q)]−1 and

as
i (q, t) =

1
2
|G|− 1

2

∑
jk

Bs
ik

∂

∂qj

(
|G| 1

2 Bs
jk

)
.

4.12. Show that if ∑
jk

Bik
∂

∂qj
(|G| 1

2 Bjk) =
∑

j

∂

∂qj
(|G| 1

2 BBT )ij . (4.103)

then the Itô and Stratonovich forms of the Fokker–Planck equation will be the same
(and hence the corresponding SDE can be taken as Itô or Stratonovich in this special
case without having to specify).

4.13. List three specific examples of when (4.103) will hold. Hint: What if B is indepen-
dent of q? Or if q is partitioned as q = [qT

1 ,qT
2 ]T , and B(q) = B(q2) ⊕ B(q1) (where

⊕ denotes the direct sum reviewed in the appendix), what happens?

4.14. Can the general solution of the Fokker–Planck equation for the Ornstein–Uhlenbeck
process in (4.74) be solved in the form of a Gaussian: f(x, t) = ρ(x;μ(t), Σ(t))? If so,
what are the forms of μ(t) and Σ(t)?
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31. Rényi, A., Probability Theory, North-Holland, Amsterdam, 1970.
32. Ripley, B.D., Stochastic Simulation, John Wiley & Sons, New York, 1987.
33. Risken, H., The Fokker–Planck Equation, Methods of Solution and Applications, 2nd ed.,

Springer-Verlag, Berlin, 1989.
34. Rogers, L.C.G., Williams, D., Diffusion, Markov Processes, and Martingales, Vols. 1 and

2, John Wiley & Sons, New York, 1987.
35. Stratonovich, R.L., Topics in the Theory of Random Noise, Vols. I and II, (translated by

R.A. Silverman), Gordon and Breach, New York, 1963.
36. Stroock, D., Varadhan, S.R.S., Multidimensional Diffusion Processes, Grundlehren Series

#233, Springer-Verlag, Berlin, 1979 (and 1998).
37. Uhlenbeck, G.E., Ornstein, L.S., “On the theory of Brownian motion,” Phys. Rev., 36,

pp. 823–841, 1930.
38. van Kampen, N.G., Stochastic Processes in Physics and Chemistry, North-Holland, Ams-

terdam, 1981.
39. van Kampen, N.G., “Derivation of the phenomenological equations from the master equa-

tion: I. Even variables only; II. Even and odd variables,” Physica, 23, pp. 707–719, pp. 816-
824, 1957.

40. Wang, M.C., Uhlenbeck, G.E., “On the theory of Brownian motion II,” Rev. Mod. Phys.,
7, pp. 323–342, 1945.

41. Watanabe, S., Stochastic Differential Equations and Malliavin Calculus, Tata Institute,
1984.

42. Wiener, N., “Differential space,” J. Math. Phys., 2, pp. 131–174, 1923.



5

Geometry of Curves and Surfaces

This chapter consists of a variety of topics in geometry. The approach to geometry that
is taken in this chapter and throughout this book is one in which the objects of interest
are described as being embedded1 in Euclidean space. There are two natural ways to
describe such embedded objects: (1) parametrically and (2) implicitly.

The vector-valued functions x = x(t) and x = x(u, v) are respectively parametric
descriptions of curves and surfaces when x ∈ R3. For example, x(ψ) = [cosψ, sinψ, 0]T

for ψ ∈ [0, 2π) is a parametric description of a unit circle in R3, and x(φ, θ) =
[cosφ sin θ, sinφ sin θ, cos θ]T for φ ∈ [0, 2π) and θ ∈ [0, π] is a parametric descrip-
tion of a unit sphere in R3. Parametric descriptions are not unique. For example,
x(t) = [2t/(1 + t2), (1 − t2)/(1 + t2), 0]T for t ∈ R describes the same unit circle as
the one mentioned above.2

Implicit descriptions of curves and surfaces involve constraint equations in their
Cartesian coordinates. For example, the circle in R3 can be described as simultaneously
satisfying the equation x2

1 + x2
2 = 1 (which describes a right-circular cylinder) and

x3 = 0 (which describes the x1-x2 plane). An implicit equation for the unit sphere in
R3 is x · x = 1. Implicit descriptions are generally not unique. For example, the unit
circle in the x1-x2 plane in R3 could have been described as the intersection of the unit
sphere with the x3 = 0 plane rather than the intersection of a cylinder and that plane.
Or it could have been described as the intersection of the cylinder and the sphere.

Most of the calculations performed in later chapters involve parametric descriptions.
However, it is important to realize that this is not the only approach, and sometimes
the implicit approach can result in simpler calculations than when using parametric
descriptions. An example of such a situation is described later in this chapter.

1A geometrical object that is contained inside of another is said to be immersed in the
larger object. If in addition certain properties hold, it is said to be embedded. In this case the
mapping that defines the contained object is called an embedding. In general, there are many
ways to embed one geometrical object inside another. If X is embedded in Y then there is an
injective mapping m : X → Y that describes the embedded object.

2In a strict sense, a curve or surface that differs from another by the removal of a single
point is a different mathematical object. For example, the point x = [0, −1, 0]T is on the unit
circle, but the parametric description x(t) breaks down at that point. From the perspective of
computing lengths, areas, volumes, etc., two geometrical objects can be considered equivalent
if one coincides with the other except at a locus of points that is lower than the dimension of
the object. Therefore, the curve that x(t) traces out will be satisfactory proxy for the circle in
the context of many applications, and the distinction between the circle and the circle missing
one point will be deemphasized.
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This chapter is organized as follows. Section 5.1 begins this chapter with an in-
troduction to some basic geometric concepts originating from an application involving
robotic arms. Section 5.2 presents a case study in geometry originating from a medical
imaging problem. In the context of this one problem, several basic ideas of parametric
and implicitly defined curves and surfaces are illustrated in a concrete way. Also some
very basic ideas of projective and algebraic geometry are introduced. Section 5.3 reviews
the local and global geometry of curves in three-dimensional space. Section 5.4 reviews
the differential geometry of two-dimensional surfaces in three-dimensional space This
includes discussions of local and global surface geometry, the divergence theorem, and
includes explicit calculations of geometric quantities for the sphere, ellipsoid of revolu-
tion, and torus. Section 5.5 introduces Weyl’s tube theorem, which is a classical topic not
often covered in introductory differential geometry texts. Section 5.6 reviews the concept
of the Euler characteristic for surfaces and bodies in two- and three-dimensional Eu-
clidean space. Section 5.7 describes curves and surfaces implicitly, and expresses Stokes’
theorem and the divergence theorem in this notation.

The main points to take away from this chapter are:

• Analytical tools exist to compute arc length, area, and volume.
• Curves and surfaces in two- and three-dimensional space can be described paramet-

rically or implicitly, and the local geometry is determined by intrinsic quantities that
are independent of the particular description.

• The global topological features of these geometric objects can be related to integrals
of curvature. In particular, the Euler characteristic describes how many “holes” there
are in an object, and the integrals of certain kinds of curvature over a tubular surface
can help to determine whether it is knotted or not.

• The concepts of gradient, divergence, and Laplacian that were defined in Chapter 1
for Cartesian coordinates in Euclidean space apply equally well to curved surfaces.

5.1 An Introduction to Geometry Through Robotic
Manipulator Kinematics

A robotic manipulator (or robot arm) is a mechanical device used to move objects around
in space. A simple robot arm is shown in Figure 5.1. A few fundamental geometric ideas
are introduced in the following subsections in the context of the concrete problem of
forward and reverse kinematics of this robot arm.

5.1.1 Forward (or Direct) Kinematics

A robot arm consisting of two rigid links, of length L1 and L2, and two rotational joints,
that turn through angles q1 and q2, is shown in Figure 5.1. The position of the hand
of this robot arm is given by the following equations, which can be derived using basic
trigonometry and geometrical constructions:

x1 = L1 cos q1 + L2 cos(q1 + q2)
x2 = L1 sin q1 + L2 sin(q1 + q2). (5.1)

This can be written in the compact form

x = f(q).
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Fig. 5.1. A Robot Arm with Two Rotational Joints

If this arm is treated as a “phantom” that is allowed to pass through itself, then the
joints can take the values −π ≤ q1, q2 < π, with the understanding that qi = +π gives
the same conformation (or shape) of the arm as qi = −π. In fact, the joints can spin
around and take any real values, but the shape of the arm will be the same for any qi

and qi + 2nπ, and so it is sufficient to describe all conformations attainable by the arm
by limiting things in this way.

For almost all conformations of the arm, the values (q1, q2) can be perturbed to
result in an arbitrary infinitesimal change in position of the hand, dx. When q2 = 0 the
arm is fully outstretched, and when q2 = −π it is folded back on itself. In both of these
cases, the hand becomes limited in the directions that it can move, since in both of
these cases the hand cannot move instantaneously in the direction tangent to the links.
Such a condition is called a singularity. Since dx = Dfdq where the Jacobian is

Df =

⎛⎜⎝
∂f1
∂q1

∂f1
∂q2

∂f2
∂q1

∂f2
∂q2

⎞⎟⎠ ,

singularities can be identified by setting detDf = 0. It is common to denote the Jacobian
matrix simply as J , and the absolute value of detDf as |J |.

The loci of points defined by x(q1, 0) and x(q1,−π) are circles of radius |L1 + L2|
and |L1 − L2|, respectively. When the hand reaches a specific point on either of these
circles, a unique value of q1 is specified. In the open annular region bounded by these
circles, there are two conformations of the arm that reach each end position. This region
of the plane is where the robot hand (also called an end-effector or gripper) can operate
by moving parts around, and it is called the workspace. The two conformations of the
arm can be called “elbow up” and “elbow down.” The space of all joint values that the
arm can take can be identified with the two-torus. The opposing edges of the square
region in the q1-q2 plane ranging from −π to π can be “pasted together” by the rule
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that each point on these opposing edges corresponds to the same conformation. This
is shown in Figure 5.2.
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Fig. 5.2. Making a Torus from a Square: (a) A “topological torus” in which the directly
opposing As and Bs are respectively identified with each other, and C becomes a single point;
(b) the “geometric torus,” which is embedded in R3

The resulting torus can be visualized as the “donut” surface in three spatial dimen-
sions, x1, x2, x3. The size of the torus is unimportant, and it can be scaled so that its
radii are L1 and L2. From the perspective of the two-dimensional robot arm, x3 is not
a real spatial direction. Rather, x3 is introduced here only for the convenience of visu-
alization. When the donut is sliced through the x1-x2 plane, the result is the boundary
of the annular workspace of the arm.

The forward kinematic function in (5.1) can be thought of as a mapping from the
torus into this annular workspace, f : T 2 → W . The workspace can be broken into
two parts: the interior I(W ) and the boundary ∂W . The torus can also be broken into
two sets of points: those that map to I(W ) and those that map to ∂W . Call these sets
Q(I(W )) and Q(∂W ). From the discussion above, it follows that f : Q(I(W )) → I(W ) is
a two-to-one function and f : Q(∂W ) → ∂W is one-to-one (or injective). Both functions
are onto (or surjective). In general a function that is both injective and surjective is called
bijective. A bijective function establishes a unique correspondence between elements of
two sets.

This can be viewed geometrically as points on the upper and lower halves of the
torus being mapped by a projection onto the workspace. The projection is not simply
along the vertical (which would correspond to a fixed value of q1 and two different values
of q2) because the value of q1 is different in up- and down-elbow conformations.

5.1.2 Reverse (or Inverse) Kinematics

In practical robotics applications a desired trajectory of the hand, x(t), is given and
the goal is to find a trajectory in the joint space of the form q(t) such that x(t) =
f(q(t)). This is the reverse, or inverse, problem from that described in the previous
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subsection. The three most common ways that this problem is solved are: (1) incremental
linearization; (2) analytical solution for the inverse function f−1; and (3) polynomial
elimination methods. All three relate to concepts in geometry, and are described below.

Incremental Linearization

In incremental linearization (which is also called resolved rate motion control), the
relationship between an initial set of joint angles and the hand position is assumed to
be known. For example, a random value of q(0) can be chosen at time t = 0, and the
resulting hand position at that time will be x(0), which can be calculated by x(0) =
f(q(0)). The instantaneous kinematics is described by the equation dx = Dfdq, which
means that if the hand is to move from x(0) to x(0) + dx(0), then it had better be the
case that dx(0) = Df(q(0))dq(0). If the Jacobian Df(q(0)) is invertible, then

dq(0) = [Df(q(0))]−1dx(0)

will provide the desired increment. Then the value of q can be updated as q(Δt) =
q(0)+Δtdq(0). Now a set of joint angles q(Δt) is known that satisfies x(Δt) = f(q(Δt)).
The procedure can then be performed again with q(Δt) taking the place of q(0) and
x(Δt) taking the place of x(0). From the starting value x(0) that is on a trajectory
of the hand, the whole trajectory can be followed by breaking it up into little steps
dx(t) = x(t + Δt) − x(t) for any specific end-effector trajectory, x(t).

Analytical Solution

In the case of the simple two-link arm described by the forward kinematic equations in
(5.1), it is possible to obtain closed-form solutions for q1 and q2 as a function of any
given x1 and x2, provided the position x that is specified lies in the workspace (set of
reachable positions of the hand).

To start, square and add the equations for x1 and x2:

x2
1 + x2

2 = [L1 cos q1 + L2 cos(q1 + q2)]2 + [L1 sin q1 + L2 sin(q1 + q2)]2

= L2
1 + L2

2 + 2L1L2 cos q2. (5.2)

From this, a solution for q2 is obtained as

q2(x1, x2) = cos−1
(
x2

1 + x2
2 − L2

1 − L2
2

2L1L2

)
. (5.3)

Since cos(−φ) = cosφ, the above expression represents two solutions: one with the elbow
up and the other with the elbow down. Choosing either solution, substituting back into
the forward-kinematic expression (5.1), and expanding out gives

x1 = L1 cos q1 + L2[cos q1 cos q2(x1, x2) − sin q1 sin q2(x1, x2)]
x2 = L1 sin q1 + L2[cos q1 sin q2(x1, x2) + sin q1 cos q2(x1, x2)].

Writing the above as a matrix-vector expression and isolating the unknowns c = cos q1
and s = sin q1 on one side of the equation,(

c(x1, x2)
s(x1, x2)

)
=

1
L1

(
L1 + L2 cos q2(x1, x2) −L2 sin q2(x1, x2)

L2 sin q2(x1, x2) L1 + L2 cos q2(x1, x2)

)−1(
x1
x2

)
. (5.4)
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Then
q2(x1, x2) = Atan2[c(x1, x2), s(x1, x2)] (5.5)

where the two-argument tangent function Atan2[·, ·] takes values in the full range of
angular values rather than values restricted to the open interval (−π/2, π/2) where
tan−1(s/c) and Atan2[c, s] coincide.

Polynomial Elimination

While a closed-form analytical solution exists for the simple arm depicted in Figure
5.1, this is not always the case for more complicated manipulators with six joints used
to position and orient a hand in three-dimensional space. However, it was shown by
Raghavan and Roth [58] that it is always possible to reduce these more complicated
cases to algebraic problems, where powerful tools of elimination theory [65] can be
applied. This method is illustrated in the context of the robot arm in Figure 5.1 to
illustrate how a geometric problem can be reduced to an algebraic one.

Making the substitution ti = tan(qi/2), and using trigonometric identities, cos qi

and sin qi can be written as

cos qi =
1 − t2i
1 + t2i

and sin qi =
2ti

1 + t2i
. (5.6)

It follows from this that

sin qi − ti cos qi = ti and ti sin qi + cos qi = 1. (5.7)

Expanding out (5.1) into products of sines and cosines of individual joint angles
converts the transcendental forward kinematic expression into one involving rational
polynomials in two variables:

x1 = L1
1 − t21
1 + t21

+ L2
(1 − t21)(1 − t22) − 4t1t2

(1 + t21)(1 + t22)

x2 = L1
2t1

1 + t21
+ L2

(1 − t21)t2 + (1 − t22)t1
(1 + t21)(1 + t22)

.

In the inverse kinematics problem, x1 and x2 are given and can be treated as inputs,
and the goal is to find the inverse kinematic function that returns q1 and q2. This is
equivalent to finding t1 and t2 as a function of x1 and x2 since (5.6) can then be used
to obtain q1 and q2.

Multiplying both sides of the above equation by (1 + t21)(1 + t22) yields

(1 + t21)(1 + t22)x1 = L1(1 − t21)(1 + t22) + L2[(1 − t21)(1 − t22) − 4t1t2]
(1 + t21)(1 + t22)x2 = L1(2t1)(1 + t22) + L2[(1 − t21)t2 + (1 − t22)t1].

These are two polynomial equations in two unknowns. Therefore, the problem has been
converted to one of elementary algebraic geometry [38]. For example, in either one
of the above equations, t1 can be solved for in terms of t2 and substituted into the
other equation. The roots of the resulting single equation in t2 will provide the inverse
kinematics solutions.

In the particular problem at hand, since (5.2) is already known, the algebraic solution
for t2 is obtained by substituting (5.6) into (5.2). The result is a quadratic equation in
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t2. The roots correspond to up- and down-elbow conformations of the arm. Substituting
these into (5.8) reduces them to two quadratic equations in t1. The quadratic terms can
then be eliminated, resulting in a linear equation giving t1. Since tan−1(·) is well-defined
over the range (−π/2, π/2), the values qi = 2 tan−1 ti are obtained in all cases except
when q1 = ±π.

The approach described here has been generalized to spatial manipulators and other
mechanisms [58, 65]. As an alternative to root-finding approaches, Kohli and Osvatic
[44], Chazvini [13], and Manocha and Canny [48] converted the more complicated spatial
version of this problem to an eigenvalue–eigenvector problem.

5.2 A Case Study in Medical Imaging

Recently, a surgical resident (Dr. Tarun Bhargava) working under the supervision of
Drs. Marc Hungerford and Lynn Jones in the Department of Orthopaedics at the Johns
Hopkins School of Medicine approached the author with the following problem. An
artificial hip implant with a circular metallic rim of radius r needs to be inserted in the
patient at the correct position and orientation. One source of information about this
position and orientation is the aspect ratio of the elliptical shape that the metallic circle
makes when it is observed in planar x-ray images. These images are obtained by the
projection of the circle from a point source of x-rays. Since the circle is located at an
arbitrary position in space at some unknown orientation relative to the patient, there
is a skewed cone (with vertex at the x-ray source) that contains the metallic circle.
The projection of the circle observed in the x-ray image can then be thought of as the
intersection of this skewed cone with the imaging plane, which is taken as the x1-x2
plane. The problem to be solved is: “How does the aspect ratio of the ellipse observed in
the planar projection relate to the spatial position and orientation of the circular rim?”
This is depicted in Figure 5.3.

h
r

Fig. 5.3. Projection of a Circle at Specified Orientation onto a Plane Using a Point Source

This problem can be addressed either parametrically or implicitly. Both approaches
are described in the following subsections. First, some preliminary notation that is



148 5 Geometry of Curves and Surfaces

relevant to both is reviewed. Let

R1(θ)
.=

⎛⎜⎜⎜⎝
1 0 0

0 cθ −sθ

0 sθ cθ

⎞⎟⎟⎟⎠ ; R2(θ)
.=

⎛⎜⎜⎜⎝
cθ 0 sθ

0 1 0

−sθ 0 cθ

⎞⎟⎟⎟⎠ ; R3(θ)
.=

⎛⎜⎜⎜⎝
cθ −sθ 0

sθ cθ 0

0 0 1

⎞⎟⎟⎟⎠ (5.8)

where cθ
.= cos θ and sθ

.= sin θ.
Let e3 = [0, 0, 1]T be the vector that points along the x3-axis. Then the unit vector

u(α, β) = R3(α)R2(β)e3 =

⎛⎝ cosα sinβ
sinα sinβ

cosβ

⎞⎠ (5.9)

is in the standard form of spherical coordinates. This will be used to describe the
orientation of the circle in space. The two degrees of freedom α and β are sufficient for
this purpose because of the axial symmetry of the circle.

5.2.1 A Parametric Approach

Suppose that we start with a circle of radius r in the x1-x2 plane. This can be parame-
terized as

c(θ) =

⎛⎝ r cos θ
r sin θ

0

⎞⎠ for θ ∈ [0, 2π). (5.10)

Now suppose that this circle is translated and rotated by a fixed amount in space. The
result will be

x(θ) = m + R3(α)R2(β)c(θ) where m =

⎛⎝m1
m2
m3

⎞⎠ . (5.11)

The vector u(α, β) is normal to the plane containing this circle.
Now suppose that there is a point light source located at p = he3. We can define a

line that connects the point source to each point on the circle. For each fixed value of
θ, this will be the line parameterized as

L(t; θ) = p + [x(θ) − p] t

where t can take any value from −∞ to ∞. The above expression for L(t; θ) holds
because a line can be defined by the position of a point on it, together with a pointing
direction.

Now, suppose that the image plane is the x1-x2 plane. A model for the shape of
the projected image is the locus of points where each line intersects this plane. This
condition is stated as

L(t; θ) · e3 = 0 =⇒ h + [x(θ) · e3 − h] t∗ = 0,

where t∗ denotes the specific value of t marking the point on the line of projection that
connects x(θ) and p and intersects the image plane.

But from (5.11), after working out the matrix multiplications, we have that
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x(θ) =

⎛⎝m1 + r cos θ cosα cosβ − r sin θ sinα
m2 + r cos θ sinα cosβ + r sin θ cosα

m3 − r sinβ cos θ

⎞⎠ .

Therefore
x(θ) · e3 = m3 − r sinβ cos θ,

and so
t∗ =

h

h − m3 + r sinβ cos θ
.

The projected curve observed in the image plane then becomes

π(θ) =
(

π1(θ)
π2(θ)

)
=
(

L1(t∗; θ)
L2(t∗; θ)

)
=

⎛⎜⎝
h·m1+(h·r)(cos θ cos α cos β−sin θ sin α)

h−m3+r sin β cos θ

h·m2+(h·r)(cos θ sin α cos β+sin θ cos α)
h−m3+r sin β cos θ

⎞⎟⎠ (5.12)

where xi = πi are the coordinates of the points on the curve of intersection in the image
plane.

The most fundamental question is: is this an ellipse? It is not obvious from this
parametric description whether it is or not. If it is not, the surgeons will still want to
know the maximal distance between antipodal points in the curve, and the minimal
distance corresponding to the perpendicular bisector. If the curve is not an ellipse, this
becomes a messier problem. The trouble is, just by looking at the parametric form in
(5.12), it is difficult to determine if it is an ellipse or not. As it turns out, the projected
curve is an ellipse. Proof of this will come later.

Any ellipse must satisfy the implicit equation

(π − b)TA(π − b) = 1 (5.13)

for some A = AT with positive eigenvalues, and some position vector b. If (5.12) satisfies
this equation, then the planar projection will be an ellipse, and moreover, by finding the
eigenvalues of A the aspect ratio of the ellipse can be calculated. But how can (A,b)
be found from (5.12)?

Since π = χ/y where y = h − m3 + r sinβ cos θ, (5.13) can be rewritten after sub-
stitution of (5.12) as

(χ − yb)TA(χ − yb) = y2.

Expanding this out gives

a11 [hm1 + hr(cθcαcβ − sθsα) − b1(h − m3 + rsβcθ)]2

+a22 [hm2 + hr(cθsαcβ + sθcα) − b2(h − m3 + rsβcθ)]2

+2a12 [hm1 + hr(cθcαcβ − sθsα)

−b1(h − m3 + rsβcθ)] · [hm2 + hr(cθsαcβ + sθcα)

−b2(h − m3 + rsβcθ)]

= [h − m3 + r sinβ cos θ]2.

The above terms can be grouped together by their dependence on θ as
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a11 [x0 + x1cθ + x2sθ]
2 + a22 [y0 + y1cθ + y2sθ]

2

+2a12 [x0 + x1cθ + x2sθ] · [y0 + y1cθ + y2sθ]

= [z0 + z1cθ]
2
.

Expanding out, using the fact that s2θ = 1 − c2θ, and collecting the coefficients in
front of each independent function, the following coefficients must be zero for the above
equalities to hold:

a11(x2
1 − x2

2) + a22(y2
1 − y2

2) + 2a12(x1y1 − x2y2) = z2
1

(for the c2θ term);

2a11x0x1 + 2a22y0y1 + 2a12(x0y1 + x1y0) = 2z0z1

(for the cθ term);

2a11x0x2 + 2a22y0y2 + 2a12(y0x2 + x0y2) = 0

(for the sθ term);

2a11x1x2 + 2a22y1y2 + 2a12(x2y1 + x1y2) = 0

(for the cθsθ term);

a11(x2
0 + x2

2) + a22(y2
0 + y2

2) + 2a12(x0y0 + x2y2) = z2
0

(for the constant term).
Altogether, this represents five equations in the five unknowns a11, a12, a22, b1, and

b2 (the latter two of which are hidden in xi and yi), and in the five given quantities:
α, β,m1,m2,m3. If the unknowns are labeled as q and the known quantities as k, then
the above equations can be written as

F(q,k) = 0. (5.14)

These equations are not linear in the unknowns because bi’s multiply aik’s. In principle,
this set of algebraic (i.e., polynomial) equations can be reduced to a single higher order
polynomial equation, and root finding methods can be employed. Or, if a solution is
known when the circle is at a particular position and orientation, then an artificial
trajectory in the five parameters k = [α, β,m1,m2,m3]T can be generated from that
known starting state to the desired one. Viewing k and q as functions of an artificial
time parameter, (5.14) can be differentiated with respect to this time parameter to give
the following “rate-linearized” equations:

Jqq̇ + Jkk̇ = 0

where
Jq =

∂F
∂qT

and Jk =
∂F
∂kT

,

and in general these will both be functions of q and k: Jq = Jq(q,k) and Jk = Jk(q,k). If
k(t) is any trajectory from the initial state (where q(0) = q0 and k(0) = k0 are known
and satisfy (5.14)) to the desired state where k(1) = kgoal, then a simple iterative
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procedure can be used to update the values of q(t) from t = 0 to t = 1. For example,
a simple rule such as k(t) = t(kgoal − k0) can be used, or equivalently k̇(t) = kgoal −
k0. Then, much like the robot arm inverse kinematics problem, iterations using the
equations

q̇(t) = −J−1
q Jkk̇(t) and q(t + Δt) = q(t) + Δtq̇(t) (5.15)

can be used to steer q(t) toward the value that satisfies (5.14) with k = kgoal.
However, if the accumulation of numerical errors after many iterations of the above

procedure causes (5.14) not to hold, then a correction is in order. In particular, if
‖kgoal − k(t)‖ is small, then

F(q,kgoal) − F(q,k) ≈ ∂F
∂kT

(kgoal − k)

and so a variation in the strategy in (5.15) is the update rule

Δq = −αΔtJ−1
q (q,k) [F(q,kgoal) − F(q,k)] (5.16)

where α is a positive weighting scalar, or gain, that regulates the speed of convergence
to the goal.

In the special case when (5.14) is of the form

f(q) − k = 0,

Jk is the negative of the identity, Jq = Jq(q), and a rule of the form k̇ = α(kgoal − k)
can be used to make the velocity vector point from the current state to the desired one.
In this case, (5.16) reduces to

Δq = αΔtJ−1
q (q)[kgoal − f(q)]. (5.17)

As discussed in Section 5.1, this sort of update rule is very popular in Robotics for guid-
ing the motion of robot arms. In that context, q would represent the internal joint angles
of the arm, and k would denote the variables describing the position and orientation of
the hand in space.

If in (5.17) or (5.16) it is the case that the Jacobian matrix is well behaved, i.e., all
of the singular values of detJq are close to unity, then these methods tend to work very
well. If detJq ≈ 0, this is a singularity, and the above algorithms will fail. However, in
this case it is possible to modify the algorithms by replacing the inverse of the Jacobian
with a generalized (or pseudo-) inverse, such as those described in [4].

5.2.2 An Implicit Approach

As an alternative to parameterizing the cone as was done in the previous subsection, it is
possible to describe the same geometrical problem using an implicit approach from the
start. In other words, instead of describing the cone in the parametric form x = L(t, θ),
it is possible to describe it implicitly as

φ(x) = 0. (5.18)

Of course, the trick is deriving the form of φ(x). In principle this can be done by starting
with the parametric equation x = L(t, θ) and eliminating the variables t and θ by using
appropriate trigonometric and algebraic operations. As an alternative, the approach
taken here will be to construct φ(x) geometrically.
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To begin, consider the equation for a right-circular cone with vertex of height d
above the x1-x2 plane, and with base circle of radius r. This has the implicit equation

φ0(x) =
d2

r2 (x2
1 + x2

2) − (x3 − d)2 = 0.

It is easy to check that φ0(de3) = 0 and φ0([r cos θ, r sin θ, 0]T ) = 0, indicating that
both the vertex and the base circle satisfy the implicit expression.

Now consider applying particular affine transformations (i.e., deformations of the
form y = a(x) = Ax + b) that preserve the circle shape. These will have the effect
of rigidly moving the plane containing the circle, but need not be rigid-body motions
acting on other planes in R3. These transformations are invertible, and x = a−1(y) =
A−1(y−b). This means that if (5.18) holds, then in the new coordinates the condition

φ(a−1(y)) = 0 (5.19)

must hold.
For example, consider the transformation of the form

y = s(x) =

⎛⎝x1 − s1x3/d
x2 − s2x3/d

x3

⎞⎠ ⇐⇒ x = s−1(y) =

⎛⎝ y1 + s1y3/d
y2 + s2y3/d

y3

⎞⎠ . (5.20)

This can be interpreted geometrically as a linear shear of all the planes parallel to the
x1-x2 plane. This transformation leaves the x1-x2 plane fixed, and moves the point x =
de3 to y = s(de3) = [−s1,−s2, d]T . If this transformation is applied to every point in
the right circular cone described by φ0(x), then it will uniformly shear the cone, making
it into a slanted cone with base at the same location and vertex at s(de3). Following
the rule in (5.19), the equation for this slanted cone would be φ1(y) = φ0(s−1(y)) = 0,
where y is the vector of Cartesian coordinates for the space after the transformation
has been applied.

Now suppose that we want to rigidly translate this slanted cone so that its vertex is
moved from s(de3) = [−s1,−s2, d]T to the point he3. This can be done by applying an
affine transformation of the following form to every point in the slanted cone:

z = t(y) =

⎛⎝ y1 + s1
y1 + s2

y3 + h − d

⎞⎠ ⇐⇒ y = t−1(z) =

⎛⎝ z1 − s1
z1 − s2

z3 − (h − d)

⎞⎠ . (5.21)

This gives a translated and sheared cone defined by

φ2(z) = φ1(t−1(z)) = φ0(s−1(t−1(z))) = 0 (5.22)

in the new set of Cartesian coordinates z.
Now if φ2(z) = 0 defines the cone that is expected, it should be the case that

φ2(he3) = 0, which is in fact easy to verify. Note that s(t(·)) = t(s(·)). That is, the
order in which these transformations are applied is important. And so φ0(s−1(t−1(·))) =
φ0(t−1(s−1(·))). These are two different surfaces.

Now suppose that it is desired to rotate the skewed cone defined by φ2(z) = 0
around the point z = he3. Such a rotation around a point that is not the origin is
actually a rigid-body transformation of the form w = r(z) = Rz + r0. For a general
rigid-body transformation the conditions RRT = I and detR = 1 will hold, and r0 will
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be an arbitrary translation vector. However, for a particular rigid-body displacement
that leaves the point z = he3 fixed,3

r(he3) = R(he3) + r0 = he3,

which gives
r0 = he3 − hRe3.

Therefore, the rotational transformation of interest is

w = r(z) = R(z − he3) + he3 ⇐⇒ z = RT (w − he3) + he3. (5.23)

Using (5.22), the surface defined by φ3(w) = φ2(r−1(w)) is then one of the form

φ0(s−1(t−1(r−1(w)))) = 0. (5.24)

The problem becomes one of finding the free parameters in the transformations s(·),
t(·), and r(·) such that r(t(s(c(θ)))) is a copy of the circle c(θ) defined in (5.10) with par-
ticular properties. Namely, its center position should be specified as m = [m1,m2,m3]T

and the normal to the plane of the circle should be given by u(α, β) in (5.9). Since the
transformations s(·) and t(·) do not change the orientation of the plane containing the
circle (which is the x1-x2 plane, with normal e3) it follows that whatever orientation the
matrix R imparts to e3 will be the orientation of the normal to the circle r(t(s(c(θ)))).
Therefore, we can set R = R3(α)R2(β) and the result will be that Re3 = u(α, β).

While the height of the point source of x-rays from the image plane is the constant
value h, the parameters s1, s2, and d can be adjusted so that

m = r(t(s(0))),

which is the condition that the center of the circle is in the specified location. Explicitly
composing the transformations gives

w = R(x + (s1 − s1x3/d)e1 + (s2 − s2x3/d)e2 − de3) + he3 = Bx + b. (5.25)

Evaluating at x = 0 gives

m = R[s1, s2,−d]T + he3.

Therefore,
[s1, s2,−d]T = RT (m − he3)

and so B and b in (5.25) can be written in terms of m as

B = [Re1, Re2, (he3 − m)/eT
3 RT (he3 − m)] and b = m − he3.

Now the elliptical projection of the circle of radius r with center at m and normal
given by u = Re3 is the intersection of the w1-w2 plane and the skewed cone (5.24) that
has its vertex at w = he3.

3Every finite displacement of a rigid body in the plane leaves one point fixed, called a pole,
and every spatial rigid-body displacement leaves a whole line fixed, called the screw axis [9].
By fixing the location of a point in space, the resulting motion is a pure rotation around that
point.
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In other words, the equation for the elliptical projection is

φ0(s−1(t−1(r−1(w′)))) = 0

where w′ = [w1, w2, 0]T .
Since φ0(x) is the quadratic form

(x − a)TA (x − a) = 0 where a =

⎛⎝ 0
0
d

⎞⎠ and A =

⎛⎝d2/r2 0 0
0 d2/r2 0
0 0 −1

⎞⎠
with d = eT

3 RT (he3 − m), and since from (5.25), s−1(t−1(r−1(w))) = B−1(w − b), it
follows that the equation for the projected ellipse is

(B−1(w′ − b) − a)TA (B−1(w′ − b) − a) = 0.

After some manipulations, this can be written as(
w1 − c1
w2 − c2

)T (
c11 c12
c12 c22

)(
w1 − c1
w2 − c2

)
= 1

where
C = [e1, e2]TB−TAB−1[e1, e2].

This is simply the upper 2 × 2 block of B−TAB−1.
The eigenvalues of C are obtained by solving the quadratic equation

det(λI − C) = λ2 − tr(C)λ + det(C) = 0. (5.26)

The aspect ratio of the elliptical projection of the circle is then the square root of

λmin/λmax =
c11 + c22 −

√
(c11 + c22)2 − 4c212

c11 + c22 +
√

(c11 + c22)2 − 4c212
.

Note that unlike in the parametric approach, it is immediately clear when using
this implicit formulation that this projection is an ellipse because affine transformations
and sections of quadratic forms both result in quadratic forms [38]. And as long as the
eigenvalues in the matrix C are positive, the resulting quadratic form must be an ellipse.

The problem in this section was one of analytic geometry with some ideas from
elementary projective geometry. There are many other topics in geometry, including
algebraic geometry, stochastic geometry, etc. The remainder of this chapter is devoted
to the differential geometry of curves and surfaces in R3.

5.3 Differential Geometry of Curves

Differential geometry is concerned with characterizing the local shape of curves and
surfaces using the tools of differential calculus, and relating these local shape properties
at each point on the object of interest to its global characteristics. The following sub-
sections respectively address the basic local and global differential geometry of curves
in the plane and in three-dimensional space.
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5.3.1 Local Theory of Curves

The arc length of a differentiable space curve, x(t), between points x(t1) and x(t2) is
computed as

s(t2) − s(t1) =
∫ t2

t1

(x′(t),x′(t))
1
2 dt (5.27)

where x′ = dx/dt. If the point from which arc length is measured is identified with t = 0,
then s(0) = 0. Furthermore, if t and s are defined to increase in the same direction along
the curve, then function s(t) will be non-decreasing. In most practical situations, this
is a strictly increasing function, and so the inverse function t = t(s) can be defined.
This means that given x(t), we can re-parameterize the curve in terms of arc length as
x̃(s) = x(t(s)). When it is clear from the context that the curve is parameterized by arc
length, the tilde can be dropped. A unit tangent vector can be assigned to each point
on a parametric curve x(t) by calculating

u(t) .=
1∥∥dx
dt

∥∥ dx
dt

.

When t = s, this reduces to

u(s) =
dx
ds

.

Since u(s) is a unit vector u(s) · u(s) = 1, and so

d

ds
(u · u) = 0 =⇒ u · du

ds
= 0. (5.28)

The (unsigned) curvature of an arc-length-parameterized curve (planar or spatial) is
defined as

κ(s) .=
(
du
ds

· du
ds

) 1
2

=
(
d2x
ds2 · d

2x
ds2

) 1
2

, (5.29)

which is a measure of the amount of change in tangent direction at each value of arc
length.

In the case of curves that are confined to the plane, it is also possible to give a
sign to this curvature depending on whether the tangent to the curve bends clockwise
or counterclockwise relative to its location at a prior value of arc length. The signed
curvature of a planar curve is denoted as k(s). By defining the (principal) normal
vector as

n1(s)
.=

1
κ(s)

du
ds

(5.30)

when κ(s) = ‖du/ds‖ = 0, it follows from (5.28) that

u(s) · n1(s) = 0.

Thus the tangent and normal vectors define two orthonormal vectors that move along
with a point on the curve as s increases.

The geometry of a planar curve is completely specified by signed curvature (up to the
way that the curve is embedded in space by arbitrary rigid-body motions). Or, stated a
different way, the intrinsic geometry of a planar curve is completely specified by signed
curvature, without regard to the way it is situated in space.
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For a curve in three-dimensional space, at each s for which κ(s) = 0, three orthonor-
mal vectors can be defined. This requires the definition of a second normal vector (called
the binormal):

n2(s)
.= u(s) × n1(s). (5.31)

The frames of reference given by the positions x(s) and orientations4 QFS
.= [u(s),n1(s),

n2(s)] for all values of s parameterizing the curve are called the Frenet frames attached
to the curve.

The torsion of the curve is defined as

τ(s) .= −dn2(s)
ds

· n1(s)

and is a measure of how much the curve bends out of the (u,n1)-plane at each s.
The information contained in the collection of Frenet frames, the curvature, and

the torsion, is termed the Frenet–Serret apparatus. It was published independently by
Frenet (1852) and Serret (1851). It can be shown that [49, 53]

d

ds

⎛⎝ u(s)
n1(s)
n2(s)

⎞⎠ =

⎛⎝ 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

⎞⎠⎛⎝ u(s)
n1(s)
n2(s)

⎞⎠ . (5.32)

The vectors u, n1, and n2 are treated like scalars when performing the matrix–vector
multiplication on the right-hand side of (5.32). This can be written in the different form

d

ds
[u(s),n1(s),n2(s)] = [κ(s)n1(s),−κ(s)u(s) + τ(s)n2(s),−τ(s)n1(s)]

= −[u(s),n1(s),n2(s)]Λ,

or
dQFS

ds
= −QFS Λ

where Λ is the skew-symmetric matrix in (5.32). The Frenet frame at each value of arc
length is then given by a pair consisting of the rotation QFS(s) and position x(s). This
pair is denoted as (QFS(s),x(s)).

Given a space curve x(t) ∈ R3 where t is not necessarily arc length, the (unsigned)
curvature is computed as

κ(t) =
‖x′(t) × x

′′
(t)‖

‖x′(t)‖3 (5.33)

and the torsion is

τ(t) =
det[x′(t),x

′′
(t),x

′′′
(t)]

‖x′(t) × x′′(t)‖2 . (5.34)

4QFS = [u(s),n1(s),n2(s)] is a rotation matrix (i.e., a 3 × 3 orthogonal matrix with unit
determinant).
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5.3.2 Global Theory of Curves

While curvature and torsion are defined locally at each point on a space curve, some
features of the global geometry of closed curves are dictated by curvature and torsion. In
particular, the following two theorems should be noted, where

∮
symbolizes an integral

around a closed curve, which is invariant under the parametrization used.

Theorem 5.1. (Fenchel [27]): For smooth closed curves,∮
κ(s)ds ≥ 2π (5.35)

with equality holding only for some kinds of planar (τ(s) = 0) curves.

Theorem 5.2. (Fary–Milnor [25, 50]): For closed space curves forming a knot∮
κ(s)ds ≥ 4π. (5.36)

Many different kinds of knots exist, and their complexity can be assessed by counting
the number of over-crossings that occur in planar projections. This is called the bridging
number. This number can change for knots of the same type depending on the particular
shape of the knot and the projection direction. However, if the minimum number of over-
crossings is counted over all possible shapes and projection directions, then the result is
called the bridging index, B. For any given knot, B is the smallest possible number of
unknotted arcs that cross over others in any planar projection [2, 59]. This knot invariant
was introduced by Schubert [62]. For the “unknot” B

.= 1, and for all non-trivial knots
B ≥ 2.

The inequalities in (5.35) and (5.36) can be combined and tightened by replacing 4π
with 2πB where B is the bridging index of the knot [28, 45].

In contrast to the above theorems, for any closed smooth planar curve that does not
cross itself5 and is parameterized such that its interior is to the left side of the tangent,∮

k(s)ds = 2π , (5.37)

where k(s) is the signed curvature of the curve. The sign is given such that |k(s)| = κ(s)
with k(s) > 0 for counterclockwise bending and k(s) < 0 for clockwise bending.

The famous Jordan curve theorem states that such a curve divides the plane into two
parts: one that is enclosed by the curve (called the interior), and one that is exterior to
it. The part of the plane enclosed by a simple closed curve is sometimes called a simple
planar body or simply connected planar region. For any closed curve that is contained
inside of a simple planar body, transformations can be constructed that shrink the curve
to a single point while the series of shrinking curves are confined to remain within the
planar body. In contrast, if a (non-simple) planar body has an interior hole, and a closed
curve in the body circumscribes the hole, then such a curve cannot be shrunk to a point
and still remain in the body.

A non-simply connected planar region can be constructed by starting with a sim-
ple planar body and introducing internal boundaries by “cutting out holes” that are
bounded by curves. The genus, γ(B), of a planar body B can be defined by counting

5A closed curve that does not cross itself is called a simple curve.
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the number of “holes” that it has. The Euler characteristic of B, denoted as χ(B), is
obtained by subdividing, or tessellating, the body into disjoint polygonal regions, the
union of which is the body, counting the number of polygonal faces, f , edges, e, and
vertices, v, and using the formula

χ(B) = v(B) − e(B) + f(B). (5.38)

Interestingly, for a planar body

χ(B) = 1 − γ(B). (5.39)

Whereas γ(B) is the number of holes in the body, χ(B) is the number of closed curves
on the exterior boundary (of which there is only one) minus the number of interior
boundary curves (of which there are γ(B)).

If a planar body that initially has one simple boundary curve is deformed so as to
enclose some area, and points on the boundary are “glued” to each other, then the
result is two bounding curves with opposing orientation (i.e., one turns clockwise and
the other counterclockwise). It follows from (5.37) that in this case∫

∂B

k(s)ds = 2πχ(B) (5.40)

where ∂B denotes the union of all boundary curves of B. This is shown in Figure 5.4.
Even though κ(s) (and hence k(s)) was defined for curves that are at least twice

continuously differentiable, (5.40) can be easily modified to be valid for jagged bodies
with boundaries that are only piecewise differentiable. This is because, as Euler observed,
the signed curvature of a planar curve can be viewed as the rate of change with respect
to arc length of the counterclockwise angle made by the tangent and any fixed line (such
as the x-axis). Written in a different way, this is

θ(s2) − θ(s1) =
∫ s2

s1

k(s)ds.

Therefore when ∂B is piecewise differentiable, the total angle traversed still can be
made to equal 2πχ(B) if at each point where there is a jump in direction the curvature
is viewed as a Dirac delta function scaled by the amount of angular change between the
tangents to the curve just before and just after each jump.

To illustrate this concept, consider the rectangular array consisting of L × W unit
squares. For this body v = (L + 1)(W + 1), e = L(W + 1) + W (L + 1), and f =
L ·W . Therefore by (5.38), χ(B) = 1. The boundary curve consists of four straight line
segments (each having zero curvature) joined by four corners representing four discrete
jumps of π/2 radians. If s = 0 denotes the lower right corner of the rectangle, and
setting k(s) = π/2[δ(s−L)+ δ(s−L−W )+ δ(s−2L−W )+ δ(s−2L−2W )], it follows
that (5.40) still holds.

Now suppose that certain “sculpting” operations are performed on this rectangle.
If one square is removed from the periphery of the rectangle, and the boundary is
restored, then the change in Euler characteristic is zero. There are two cases: removal
of a square from a straight section of the boundary, and removal of one of the corner
squares. Removal of a corner square means Δf = −1, Δe = −2, and Δv = −1, and
so Δχ(B) = Δv − Δe + Δf = 0. Removal of a square from the straight section gives
Δf = −1, Δe = −1, and Δv = 0, again resulting in Δχ(B) = 0, indicating that
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χ(B) = 1. In this way the exterior of the rectangle can be “chipped away” without
changing its Euler characteristic. For example, it is easy to verify that Figures 5.5(a)
and 5.5(b) have the same Euler characteristic.

In contrast, introducing a void into the body changes its Euler characteristic. If one
square is removed from deep without the body Δf = −1, Δe = 0, and Δv = 0, and so
Δχ(B) = −1, or χ(B) = 0. If an L-shaped void is introduced as shown in Figure 5.5(c),
then Δf = −4, Δe = −3, and Δv = 0 and again Δχ(B) = −1, or χ(B) = 0.

Finally, if a whole vertical line of squares are removed, splitting the original rectan-
gular body into two disjoint pieces, then Δf = −L, Δe = −(L + 1) and Δv = 0 and
Δχ(B) = +1, or χ(B) = +2, as illustrated in Figure 5.5(d). The same effect on the
Euler characteristic would result from splitting the body by removal of a horizontal line
of squares. In each of the above examples, it can be verified that (5.40) holds.

Fig. 5.4. Global Topological Features of a Planar Body are Dictated by Signed Curvature

For a planar object, it is also possible to define the Euler characteristic of the bound-
ary as

χ(∂B) = v(∂B) − e(∂B). (5.41)

It is important to note that v and e in (5.41) are not the same as in (5.38). Returning
to the L × W array of squares, the number of boundary vertices can be counted as
v = 2(L+1)+2(w−1) and edges are e = 2(L+W ). Therefore χ(∂B) = 0. And this will
remain true if the initial array of squares is sculpted, voids are introduced, and even if it
is split into pieces. If the boundary consists of the union of several simple closed curves
{∂iB} that are disjoint, i.e., ∂iB ∩ ∂jB over all i and j, then χ(∂B) = 0 regardless of
the topological features of the body.

5.4 Differential Geometry of Surfaces in R3

This section addresses the differential geometry of surface. Closed surfaces and the solid
bodies that they enclose are of particular interest. For a spatial body B (i.e., a region in
R3 with finite non-zero volume), the surface area over the boundary of B,

F =
∫

∂B

dS,
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Fig. 5.5. Topological Operations on Body Divided into Squares: (a) An Initial Rectangular
Grid; (b) Removal of One Square from the Perimeter; (c) Creation of an L-Shaped Void;
(d) Cutting the Body into Two Disjoint Pieces

and volume,

V =
∫

B

dV,

are concepts with which engineers and physical scientists are very familiar. Gauss’ di-
vergence theorem, ∫

B

div(f) dV =
∫

∂B

f · n dS, (5.42)

says that the divergence of a differentiable vector field f(x), defined as div(f) =∑3
i=1 ∂f/∂xi, integrated over the volume of B results in the same answer as integrating

f ·n over the closed surface containing the body. Here n is the outward-pointing normal
to the surface.

An immediate consequence of the divergence theorem is that the volume of a body
can be computed as a surface integral, by simply constructing a vector field on R3 such
that div(f) = 1. In particular, letting f = Ax for A ∈ R3×3, then div(f) = tr(A).
Therefore, if A is any matrix with tr(A) = 0, then the volume of the body B can be
computed using a surface area integral:

V =
1

tr(A)

∫
∂B

nTAx dS, (5.43)

which can be a useful computational tool, since the numerical approximation of a volume
involves performing computations over a three-dimensional domain, whereas performing
computations of a surface integral is over a two-dimensional domain. The vector field
f(x) can be chosen so as to make computations as convenient as possible.
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5.4.1 The First and Second Fundamental Forms

Consider a two-dimensional surface parameterized as x(q) where x ∈ R3 and q ∈ R2.
The most fundamental quantity from which geometrical properties of the surface can
be derived is the metric tensor, which can be viewed in terms of the parameters (q1, q2)
as the 2 × 2 real symmetric matrix G = [gij ], where

gij =
∂x
∂qi

· ∂x
∂qj

(5.44)

for i, j ∈ {1, 2}. G = [gij ] contains all of the information about how the lengths of curves
and the area of patches within the surface are calculated.

The first fundamental form of the surface is defined as

F (1)(dq, dq) .= dqTG(q) dq. (5.45)

If we make a change of coordinates to parameterize the surface described as q = q(s),
then by the chain rule, dq = J(s)ds, where

J(v) =
[

∂q
∂s1

, ∂q
∂s2

]
.

Therefore, due to the invariance of the fundamental forms under coordinate changes,
F (1)

q = F (1)
s , or

dsTGs(s)ds = dsTJT (s)Gq(q(s))J(s)ds.

In other words, the metric tensor transforms under coordinate change as

Gs(s) = JT (s)Gq(q(s))J(s). (5.46)

For the closed surfaces that will be examined later, there will be no need to change
between parameterizations, and therefore the subscripts q and s on G need not be
stated.

If G is known, then many important quantities can be computed from G. For exam-
ple, the arc length of a curve defined by x̃(t) = x(q(t)) (which by definition is contained
within the surface) for t ∈ [t1, t2] is

L(t1, t2) =
∫ t2

t1

(
dx̃
dt

· dx̃
dt

) 1
2

dt =
∫ t2

t1

([
dq
dt

]T

G(q)
dq
dt

) 1
2

dt.

An element of surface area is calculated as

dS = |G(q)| 1
2 dq1dq2, (5.47)

where |G(q)| 1
2

.=
√

detG(q).
In addition to the direct value of the metric tensor in calculating quantities of inter-

est, the inverse of the metric tensor also arises in applications. In physics, the notation
gij is used as shorthand for the entries of the inverse of G. That is, G−1 = [gij ]. This
will be useful notation here.

For example, a gradient vector field of a real-valued function on the surface can be
defined as

grad(f)i
.=
∑

j

gij ∂f

∂qj
. (5.48)
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And the divergence of a vector field on the surface can be defined as

div(f) .= |G|− 1
2

∑
i

∂

∂qi
(|G| 1

2 fi). (5.49)

Sometimes the parentheses are dropped to lighten the notation a little bit, and these
are respectively denoted as grad f and div f .

The Laplacian (or Laplace–Beltrami operator) of a smooth real-valued function is
defined as the divergence of the gradient:

div(gradf) .= |G|− 1
2

∑
i

∂

∂qi

⎛⎝|G| 1
2

∑
j

gij ∂f

∂qj

⎞⎠ . (5.50)

For 2D surfaces in R3, the above sums are for i and j ranging over the set {1, 2}.
However, the exact same formulas apply to higher-dimensional surfaces, in which case
the sums are taken over {1, 2, ..., n}.

For two-dimensional surfaces in three-dimensional space,

|G(q1, q2)| =
∥∥∥∥ ∂x
∂q1

× ∂x
∂q2

∥∥∥∥2

(5.51)

where × denotes the vector cross product.
Furthermore, the unit normal of a two-dimensional surface in R3 is computed at

each point defined by (q1, q2) as

n = |G|− 1
2

(
∂x
∂q1

× ∂x
∂q2

)
.

Since n ·n = 1, it follows that differentiation of both sides with respect to q1 or q2 yields

n · ∂n
∂q1

= n · ∂n
∂q2

= 0.

In other words, ∂n/∂q1 and ∂n/∂q2 are both in the tangent plane of the surface, which
is spanned by the vectors ∂x/∂q1 and ∂x/∂q2. The second fundamental form of a surface
is defined as

F (2)(dq, dq) = −dx · dn,
where the vectors x and n are the position and normal at any point on the surface, and
dx and dn are contained in the tangent plane to the surface at that point.

Let the matrix L be defined by its entries:

Lij =
∂2x

∂qi∂qj
· n. (5.52)

The matrix L = [Lij ] contains information about how curved the surface is. For example,
for a plane Lij = 0.

It can be shown that
F (2)(dq, dq) = dqTL(q) dq, (5.53)

and that the matrix L transforms in the same way as G in (5.46).
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5.4.2 Curvature

The first and second fundamental forms (5.45) and (5.53) defined in the previous sub-
section can be used together to compute the curvature of a 2D surface in R3. But before
simply providing the equations, some geometrical explanation is in order. Consider a
2D surface parameterized as x(q1, q2) ∈ R3. Let qi = qi(s) so that c(s) = x(q1(s), q2(s))
is an arc-length-parameterized curve in R3. The tangent of this curve is computed as
the derivative of position with respect to arc length from the chain rule as

c′(s) =
2∑

i=1

∂x
∂qi

q′
i(s)

where ′ = d/ds. The second derivative of c(s) with respect to arc length gives

c′′(s) =
2∑

i=1

∂x
∂qi

q′′
i (s) +

2∑
i=1

2∑
j=1

∂2x
∂qi∂qj

q′
i(s)q

′
j(s) = κ(s)n1(s).

The normal to the surface at the point where the curve c(s) passes through is generally
not the same as the normal n1(s) or binormal n2(s) of the curve. That is,

n1(s) = n(q1(s), q2(s)) = n2(s).

However, all of these normals are perpendicular to the tangent to the curve, c′(s).
Furthermore, a new normal to the curve c(s) can be defined that is perpendicular to
both the tangent to the curve and the normal to the surface as

m(s) = n(q1(s), q2(s)) × c′(s).

Since by definition it is perpendicular to n(s), this vector must be contained in the
tangent plane to the surface that is spanned by ∂x/∂q1|q1(s),q2(s) and ∂x/∂q2|q1(s),q2(s).

m(s) and n(s) together form an orthonormal basis for describing any vector that
is normal to c′(s). This “surface-centric” coordinate system consisting of unit vectors
u(s), m(s), and n(s), which is called the Darboux frame, is an alternative basis from the
“curve-centric” one defined by u(s), n1(s), and n2(s). Therefore, since c′′(s) = κ(s)n1(s)
is a vector that is normal to c′(s), it is possible to expand it in the new basis as

κ(s)n1(s) = κn(s)n(q1(s), q2(s)) + κg(s)m(s)

where

κn(s) = κ(s)n1(s) · n(q1(s), q2(s)) and κg(s) = κ(s)n1(s) · m(s).

The quantities κg(s) and κn(s) are called the geodesic and normal curvature, respec-
tively. Since m(s) · n(s) = 0 and ‖m(s)‖ = ‖n(s)‖ = 1, it follows that

κ2(s) = κ2
g(s) + κ2

n(s). (5.54)

Imagine the set of all possible smooth arc-length-parameterized curves contained within
the surface and constrained to pass through the point x(q1, q2) with a particular tangent
direction. Within this set of curves, some will be “wiggling around” a lot inside the
surface, and others will be very taut. The most taut ones will have κg(s) = 0. These
can be used to define how curved the surface is. In particular, it is possible to search
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for the minimum and maximum values of κn over all taut curves passing through a
point on the surface. From these, two tangent directions in a two-dimensional surface
can be found at each point (one that maximizes κn, and one that minimizes it). These
two values of normal curvature provide important information about the local shape of
the surface. Of course, the quantities of interest can be obtained without performing
an explicit search over all possible taut curves with all possible tangent directions. But
this requires some additional notation and observations about the problem at hand.

The first observation that will help is that the normal curvature of every curve
c(s) = x(q1(s), q2(s)) that passes through the point c(s0) = c0 and has unit tangent
vector u(s0) = dc/ds|s=s0 will have the same normal curvature at that point, κn(s0).
(See Exercise 5.11.) Therefore, it is not necessary to construct the most taut curves
passing through a point on a surface to measure how curved the surface is.

The second observation is that the normal curvature from the above definitions is
equal to

κn = c′′ · n , (5.55)

and this in turn can be written in the form

κn = F (2)(dq, dq)/F (1)(dq, dq), (5.56)

which is independent of the magnitude of dq. Therefore, using the following substitution,

dq = G− 1
2 v where v · v = 1,

and
κn = F (2)(G− 1

2 v, G− 1
2 v) = vTG− 1

2 LG− 1
2 v. (5.57)

The maximal and minimal values of κn are attained when v points along eigenvec-
tors of G− 1

2 LG− 1
2 corresponding to the maximal and minimal eigenvalues. And so the

quantities that would have been obtained by searching over all taut curves with tan-
gent vectors passing through all planar angles can be obtained by performing a simple
eigenvalue–eigenvector decomposition of the 2 × 2 matrix G−1/2LG−1/2.

For a two-dimensional surface in R3, the vector of partial derivatives ∂2x/∂qi∂qj can
be decomposed into a part that points in the direction of the normal, and a part that
lies in the tangent plane. The part that lies in the tangent plane can then be expressed
as a projection onto the vectors ∂x/∂qk for k = 1, 2. This is written as

∂2x
∂qi∂qj

= Lijn +
∑

k

Γ k
ij

∂x
∂qk

where Γ k
ij =

∑
l

(
∂2x

∂qi∂qj
· ∂x
∂ql

)
gkl. (5.58)

The Christoffel symbol (of the second kind), Γ k
ij , can also be expressed completely in

terms of the elements of the metric tensor as

Γ k
ij =

1
2

∑
l

[
∂gil

∂qj
− ∂gij

∂ql
+

∂glj

∂qi

]
glk. (5.59)

It can be shown that [49]

κn(s) =
∑
i,j

Lij(q1(s), q2(s)) q′
1(s) q

′
2(s)

and
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κg(s) =
∑

k

⎡⎣q′′
k +

∑
i,j

Γ k
ijq

′
iq

′
j

⎤⎦ ∂x
∂qk

.

The condition κg(s) = 0 is automatically satisfied when

q′′
k +

∑
i,j

Γ k
ijq

′
iq

′
j = 0. (5.60)

Such curves are called geodesics.
The Riemannian curvature is the four-index tensor given in component form as [49]

Rl
ijk

.=
∂Γ l

ik

∂qj
−

∂Γ l
ij

∂qk
+
∑
m

(Γm
ik Γ l

mj − Γm
ij Γ l

mk). (5.61)

This can be expressed in terms of the coefficients of the second fundamental form and
inverse of the metric tensor as [49]

Rl
ijk = Lik

∑
m

glmLmj − Lij

∑
m

glmLmk. (5.62)

The principal curvatures of a 2D surface that minimize and maximize (5.57) can be
defined as the roots κ1 and κ2 of the characteristic equation6

p1(κ) = det(L − κG) = 0. (5.63)

Of course, these roots will be the same as those that solve

p2(κ) = det(G−1L − κI) = κ2 − tr(G−1L)κ + det(G−1L) = 0.

Since G is a symmetric positive definite matrix in any parametrization, it is pos-
sible to write G = G

1
2 G

1
2 and G−1 = G− 1

2 G− 1
2 , which means that det(G−1L) =

det(G− 1
2 LG− 1

2 ), and likewise for the trace. This is convenient because G− 1
2 LG− 1

2 is
symmetric. If det(L) = 0, it is also possible to do trace and determinant computations
with the symmetric matrix L

1
2 G−1L

1
2 . But det(L) = 0 will not always hold (for exam-

ple, det(L) ≡ 0 for a cylinder or plane), whereas det(G) = 0, except at a set of measure
zero where the parametric description breaks down.

From this, the Gaussian curvature, k(q1, q2), is computed as

k = κ1κ2 = det(G−1L) = |G|− 1
2 n ·

(
∂n
∂q1

× ∂n
∂q2

)
. (5.64)

This quantity, which is computed above in an extrinsic way (i.e., using the normal to
the surface in the ambient space R3), can be computed alternatively as the intrinsic
quantity (i.e., only depending on the metric tensor) as

k
.= |G|− 1

2 R1212, (5.65)

where, by definition, R1212 =
∑

m Rm
121gm2. Equation (5.65) can be viewed as a state-

ment of Gauss’ Theorema Egregium (or, remarkable theorem).

6This is because G−1L, LG−1, and G− 1
2 LG− 1

2 all have the same eigenvalues.
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The mean sectional curvature (or simply mean curvature) is defined as

m
.=

1
2
(κ1 + κ2) =

1
2
trace(G−1L). (5.66)

This is the average value of κn over curves on the surface pointing in all tangent direc-
tions and passing through the point x(q1, q2). These tangent directions can be generated,
for example, by calculating the unit eigenvectors, v1 and v2, of G− 1

2 LG− 1
2 . Then letting

v(θ) = v1 cos θ + v2 sin θ and using (5.57), the normal curvature corresponding to each
θ is

κn(q1, q2; θ) = F (2)(G− 1
2 v(θ), G− 1

2 v(θ)) = κ1 cos2 θ + κ2 sin2 θ.

Therefore, averaging over θ gives

1
2π

∫ 2π

0
κn(q1, q2; θ)dθ = m(q1, q2).

This is the same as that resulting from slicing the surface with all planes containing
the point x(q) and the surface normal, computing the curvature of all curves in these
planar sections, and averaging.

The integrals of the Gaussian and mean curvatures over the entirety of a closed sur-
face figure prominently in computations of the probability of intersections of randomly
moving bodies, as articulated in the subfield of mathematics known as integral geometry,
which will be discussed in Volume 2. These integrals of total curvature are defined as

K
.=
∫

S

k dS (5.67)

M
.=
∫

S

mdS. (5.68)

These are respectively called the total Gaussian curvature and total mean curvature.
These concepts generalize to Rn, and even to more abstract submanifolds of intrinsi-

cally defined manifolds. One immediate difficulty is that the normal vector can no longer
be defined using the vector cross product, which is only defined in R3. However, the
concept of the tangent plane still holds, and alternative methods for describing principal
curvatures are well known in the differential geometry literature.

The following subsections demonstrate these definitions on concrete examples in
three dimensions.

5.4.3 The Sphere

A sphere of radius R can be parameterized as

x(φ, θ) =

⎛⎝R cosφ sin θ
R sinφ sin θ

R cos θ

⎞⎠ (5.69)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.
The corresponding metric tensor is

G(φ, θ) =
(

gφ,φ gφ,θ

gθ,φ gθ,θ

)
=
(

R2 sin2 θ 0
0 R2

)
.
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Clearly,
√

detG(φ, θ) = R2 sin θ (there is no need for absolute value signs since sin θ ≥ 0
for θ ∈ [0, π]). The element of surface area is therefore

dS = R2 sin θ dφ dθ.

Surface area of the sphere is computed as

F =
∫ π

0

∫ 2π

0
sin θ dφ dθ = 4πR2.

The volume of the ball of radius R can be computed in spherical coordinates in R3 (i.e.,
treating R3 as the surface of interest) and restricting the range of parameters defined by
the interior of the ball. Alternatively, the divergence theorem can be used in the form
of (5.43). If we let the matrix A = I/3, then nTAx = R/3 and

V =
R

3

∫
∂B

dS =
R

3
· 4πR2 =

4
3
πR3.

The volume of the ball enclosed by the sphere of radius R, and surface area of the
sphere are summarized, respectively, as

V =
4
3
πR3; F = 4πR2. (5.70)

The inward-pointing normal for the sphere is simply n = −x/R, and

L(φ, θ) =
(

R sin2 θ 0
0 R

)
.

Therefore,

G−1L =
(

1/R 0
0 1/R

)
.

It follows that
m =

1
2
tr(G−1L) = 1/R

and
k = det(G−1L) = 1/R2.

Since these are both constant, it follows that integrating each of them over the sphere
of radius R is the same as their product with the surface area:

M = 4πR; K = 4π.

5.4.4 The Ellipsoid of Revolution

Consider an ellipsoid of revolution parameterized as

x(φ, θ) =

⎛⎝a cosφ sin θ
a sinφ sin θ

b cos θ

⎞⎠ (5.71)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, and a, b are positive constants.
The corresponding metric tensor is
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G(φ, θ) =
(

a2 sin2 θ 0
0 a2 cos2 θ + b2 sin2 θ

)
.

The inward-pointing unit normal is

n(φ, θ) = −|G(φ, θ)|− 1
2

⎛⎝ab cosφ sin2 θ
ab sinφ sin2 θ
a2 sin θ cos θ

⎞⎠ .

Therefore,

L(φ, θ) = |G(φ, θ)|− 1
2

(
a2b sin3 θ 0

0 a2b sin θ

)
.= |G(φ, θ)|− 1

2 L̃(φ, θ).

Since
det(G−1L) = det(G−1)det(L) = det(L)/det(G),

and since for A ∈ Rn×n and det(cA) = cndet(A), it follows that

det(G−1L) = det(L̃)/|det(G)|2.

Therefore,

K =
∫

S

k dS =
∫ π

0

∫ 2π

0

det(L̃)
|det(G)|2 |det(G)| 1

2 dφdθ =
∫ π

0

∫ 2π

0

det(L̃)
|det(G)| 3

2
dφdθ,

or

K =
∫ π

0

∫ 2π

0

ab2 sin θ

(a2 cos2 θ + b2 sin2 θ)
3
2
dφdθ = 2πab2

∫ π

0

sin θ

(a2 cos2 θ + b2 sin2 θ)
3
2
dθ.

Evaluating the remaining integral from tables of closed-form integrals yields K = 4π.
The volume can be computed either using the divergence theorem, or by directly

parameterizing the interior of the ellipsoid and integrating to yield

V =
4
3
πa2b.

The values of F and M for prolate and oblate ellipsoids have been reported in [37],
along with a variety of other solids of revolution. In particular, if a = R and b = λR
with 0 < λ < 1, then

F = 2πR2

[
1 +

λ2
√

1 − λ2
log

(
1 +

√
1 − λ2

λ

)]
; M = 2πR

[
λ +

arccosλ√
1 − λ2

]
.

In contrast, when λ > 1,

F = 2πR2
[
1 +

λ2arccos(1/λ)√
λ2 − 1

]
; M = 2πR

[
λ +

log(λ +
√
λ2 − 1)√

λ2 − 1

]
.
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5.4.5 The Torus

The 2-torus can be parameterized as

x(θ, φ) =

⎛⎝ (R + r cos θ) cosφ
(R + r cos θ) sinφ

r sin θ

⎞⎠ (5.72)

where R > 2r and 0 ≤ θ, φ ≤ 2π.
The metric tensor for the torus is written in this parametrization as

G(φ, θ) =
(

(R + r cos θ)2 0
0 r2

)
.

The surface area is computed directly as

F =
∫ 2π

0

∫ 2π

0
r(R + r cos θ)dφdθ = 2π

∫ 2π

0
r(R + r cos θ)dθ = 4π2rR.

This is the product of the circumference of the medial (or “backbone”) circle of radius
R, which has a value of 2πR, and the circumference of the circle resulting from the cross
section of the torus in the plane normal to the tangent of the medial circle, which has
a value of 2πr.

Direct calculation yields the inward-pointing normal

n(θ, φ) = −

⎛⎝ cos θ cosφ
cos θ sinφ

sin θ

⎞⎠ .

By defining a vector field
f(x) = Ax = x3e3

where

A =

⎡⎣ 0 0 0
0 0 0
0 0 1

⎤⎦ ,

it is clear that div(f) = 1, and therefore the volume of the torus can be computed via
the divergence theorem (in the form of (5.43)) as

V =
∫ 2π

0

∫ 2π

0
(r sin2 θ)r(R + r cos θ)dφdθ = 2π2r2R.

This can be written as V = (πr2)(2πR), which is the product of the circumference of
the medial axis and the cross-sectional area of the interior of the circle of cross section.

The matrix L is

L(φ, θ) =
(

(R + r cos θ) cos θ 0
0 r

)
,

and

G−1L =
(

(R + r cos θ)−1 cos θ 0
0 1/r

)
.

The total Gaussian curvature is then computed as
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K =
∫ 2π

0

∫ 2π

0
[(R + r cos θ)−1 cos θ/r][r(R + r cos θ)]dφdθ =

∫ 2π

0

∫ 2π

0
cos θ dφdθ = 0.

The mean curvature is m = (R + r cos θ)−1 cos θ + 1/r. The total mean curvature
results from integrating this over the surface. From the above computation of total
Gaussian curvature, it is clear that the first term in the expression for m will integrate
to zero, and so

M =
F

2r
= 2π2R.

5.4.6 The Gauss–Bonnet Theorem and Related Inequalities

It is no coincidence that the total Gaussian curvature, K, is equal to 4π for the sphere
and ellipsoid, and equal to zero for a torus. The following fundamental theorem relates
geometric and topological properties of surfaces.

Theorem 5.3. (Gauss–Bonnet) Let k be the Gaussian curvature of a closed surface S.
Then ∫

S

k dS = 2πχ(S), (5.73)

where χ(S) is the Euler characteristic of the closed surface S.

The Euler characteristic of a two-dimensional surface is equal to

χ(S) = 2(1 − γ(S)) (5.74)

where γ(S) is the genus (or “number of donut holes”) of the surface. A sphere and
ellipsoid have a genus of zero. The torus has a genus of one. If a polygonal mesh is
established on the surface (such as the triangulated meshes used in computer graphics),
the Euler characteristic can be computed by the same formula as for a planar body:

χ(S) = v − e + f

where v is the number of vertices, e is the number of edges, and f is the number of faces
of the polygons.

While the Gauss–Bonnet theorem is by far the most famous theorem involving to-
tal curvature, there are a number of other theorems on total curvature. For example,
the following result due to K. Voss applies to closed surfaces that are at least twice
continuously differentiable [68]: ∫

S

max(k, 0)dS ≥ 4π. (5.75)

This inequality holds for all surface topologies. In addition, since |k| ≥ max(k, 0), it
follows trivially that ∫

S

|k|dS ≥
∫

S

max(k, 0)dS ≥ 4π. (5.76)

Moreover, B.-Y. Chen [14] states the Chern–Lashof inequality∫
S

|k|dS ≥ 4π(4 − χ(S)) = 8π(1 + γ(S)). (5.77)
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Integrals of the square of mean curvature have resulted in several inequalities. For
example, Willmore (see, e.g., [70, 71] and references therein) proved that∫

S

m2dS ≥ 4π (5.78)

with equality holding only for the usual sphere in R3, i.e., the undeformed sphere in
Section 5.4.3. Shiohama and Takagi [64] proved that no matter how they are smoothly
distorted, all 2-tori satisfy ∫

T 2
m2dS ≥ 2π2, (5.79)

with equality holding only for the case of the 2-torus with the undistorted shape given
in Section 5.4.5 with the specific relationship between the radii of R =

√
2r > 0.

As a final example of a theorem involving an integral of a function of curvature,
consider Ros’ theorem as reported in [53, 56, 60]: Let D be a bounded domain in R3

with finite volume and compact boundary ∂D. If m > 0 everywhere on this boundary,
then ∫

∂D

1
m

dS ≥ 3 · V ol(D). (5.80)

5.5 Tubes

5.5.1 Offset Curves in R2

The concept of parallel lines is as old as geometry itself. The concept of parallel curves,
while somewhat newer, is also fundamental. Given a parametric curve in the plane, x(s),
a parallel curve can be constructed as

o(s; r) = x(s) + rn(s) (5.81)

where n(s) is the planar unit normal to the curve at each point, and r is a constant
with value less than the maximal radius of curvature of x(s): −1/κmax < r < 1/κmax.

For each fixed value of r, the curve o(s; r) is called an offset curve. A non-parametric
description of the offset curve defined in (5.81) is

ô(x; r) = x + rn =⇒ ô(x(s); r) = o(s; r). (5.82)

The collection of all offset curves for −r0 ≤ r ≤ r0 defines a strip in the plane.
For convenience, the curve parameter s is usually chosen to be arc length. Then from

the Frenet–Serret apparatus, the tangent and normal to the curve are related by the
equations

du
ds

= κ(s)n and
dn
ds

= −κ(s)u

where κ(s) is the unsigned curvature. Since r is treated as a constant, this means that

do(s; r)
ds

= [1 − rκ(s)]u(s).

Even though s is not the arc length of the offset curve o(s; r), the unit tangent to o(s; r)
is u(s). And the unit normal to o(s; r) is n(s). Therefore, since x(s) and o(s; r) have
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the same normal and tangent, it follows that taking the offset curve of an offset curve
results in an offset curve of the original curve:

ô(ô(x(s); r1); r2) = ô(x(s); r1 + r2) (5.83)

where the notation in (5.82) is used here.
For fixed r, the arc length of each o(s; r) in (5.81) is computed using the above

expressions and the fact that u · n = 0 and u · u = n · n = 1 as∫ L

0
‖do/ds‖ds =

∫ L

0
[1 − κ(s)r]ds = L − rΔθ.

When the curve has no inflection points, and so the unsigned curvature equals the
signed curvature, then Δθ is the angle between the tangents to the curve at s = 0 and
s = L, measured positive when u(0) turns counterclockwise to coincide with u(L). For
a smooth closed convex curve, x(s), the total angle swept will be Δθ = 2π. Note that
for closed curves parameterized such that s increases with counterclockwise traversal,
n points to the interior, and so the total length of the offset curve o(t; r) will be less
than x(s) when r > 0, and greater than x(s) when r < 0. This leads to the following
observation explained in [32]:

∫ r0

−r0

∫ L

0
‖do/ds‖dsdr =

∫ r0

−r0

∫ L

0
[1 − κ(s)r]dsdr

= 2r0L −
∫ L

0
κ(s)

(∫ r0

−r0

rdr

)
ds

= 2r0L. (5.84)

The reason for this is that the integral in parentheses vanishes due to the fact that
f(r) = r is an odd function of r and the range of integration is symmetric around r = 0.

The analytical and algebraic properties of offset curves have been studied exten-
sively (see, e.g., [23, 24]). Their many applications include path planning in numerically
controlled machines [6, 57] and closed-form locally volume preserving deformations of
solid models [17].

5.5.2 Parallel Fibers, Ribbons, and Tubes of Curves in R3

For an arc-length-parameterized curve in three-dimensional space, x(s), an offset curve
can be defined as in (5.81), but there is more freedom in the way n(s) can be chosen.
That is, in the three-dimensional case n(s) in (5.81) need not be the normal from the
Frenet–Serret apparatus. It could be some linear combination of the normal, n1(s), and
bi-normal, n2(s):

n(s) = n1(s) cosφ(s) + n2(s) sinφ(s). (5.85)

In this spatial case, using the Frenet formulas dn1/ds = −κu+τn2, dn2/ds = −τn1,
u · ni = 0, and ni · nj = δij , it is easy to verify that∥∥∥∥∂o∂s

∥∥∥∥2

= [1 − rκ(s) cosφ(s)]2 + [dφ/ds + τ(s)]2r2.

In the special case when dφ/ds = −τ(s), or equivalently,
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φ(s) = θ0 −
∫ s

0
τ(σ)dσ (5.86)

for a constant value of θ0, the curves that result will be the offset curves that evolve
with minimal length from a specified starting position. These can be considered to be
the spatial curves that are parallel to the curve x(s), and are called fibers. The length
of a fiber for s ∈ [0, L] is

L̂(θ0, L) =
∫ L

0

∥∥∥∥∂o∂s
∥∥∥∥ ds = L − r

∫ L

0
κ(s) cos

(
θ0 −

∫ s

0
τ(σ)dσ

)
ds. (5.87)

Note that for any values of θ0 and L,

L̂(θ0, L) + L̂(θ0 + π, L) = 2L.

Returning to the more general setting of a spatial offset curve (5.81) with the defini-
tion of n(s) in (5.85), a ribbon can be defined as the locus of points with s ∈ [0, L] and
r ∈ [−r0, r0]. This can be thought of as a strip of width 2r0 that twists in space with a
backbone x(s). The area of such a strip is computed as

A(r0, L) =
∫ r0

−r0

∫ L

0

∥∥∥∥∂o∂s × ∂o
∂r

∥∥∥∥ ds dr

where ∥∥∥∥∂o∂s × ∂o
∂r

∥∥∥∥2

= [1 − rκ(s) cosφ(s)]2 + r2[dφ/ds + τ(s)]2r2. (5.88)

When the ribbon has minimal twist (i.e., dφ/ds = −τ(s)), the second term in the above
expression disappears and

A(r0, L) =
∫ r0

−r0

∫ L

0
[1 − rκ(s) cosφ(s)] ds dr = 2r0L

for exactly the same reasons as in (5.84).
A constant-radius tubular body can be defined around a space curve using (5.81) and

(5.85) as the following locus of points parameterized with s ∈ [0, L], r ∈ [0, r0], and
θ ∈ [0, 2π]:

T(s, α; r) = x(s)+ rR[u(s), α]n(s) = x(s)+ r[n1(s) cos(φ(s)+α)+n2(s) sin(φ(s)+α)].
(5.89)

Here R[u, α] denotes the rotation matrix describing counterclockwise rotation by angle
α around the vector u. A tubular surface (or simply, a tube) is described by (5.89) for
fixed value of r. This is a deformed version of a cylinder with x(s) tracing its backbone.

The area of the surface T(s, α; r = r0) enclosing this tube is

S(r0, L) =
∫ 2π

0

∫ L

0

∥∥∥∥∂T∂s × ∂T
∂α

∥∥∥∥ dsdα (5.90)

=
∫ 2π

0

∫ L

0
r0[1 − r0κ(s) cos(φ(s) + α)] ds dα

= 2πr0L − r2
0

∫ L

0
κ(s)

(∫ 2π

0
cos(φ(s) + α)dα

)
ds

= 2πrL. (5.91)
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The reason for the simplification in the last line above is that the integral over α of
cos(φ(s) + α) = cosφ(s) cosα − sinφ(s) sinα is zero.

The volume of a tube defined in (5.89) is computed as the integral of the following
triple product:

V (r0, L) =
∫ 2π

0

∫ r0

0

∫ L

0

[
∂T

∂s
,
∂T

∂r
,
∂T

∂α

]
ds dr dθ

=
∫ 2π

0

∫ r0

0

∫ L

0
r ds dr dθ

= πr2
0L. (5.92)

Note that the results (5.91) and (5.92) do not depend on φ(s) being defined as in (5.86).
A tubular surface around a smooth closed space curve will be a kind of torus. This

torus can be embedded in R3 in the standard way, or it can be knotted. If φ(s) = 0, the
element of surface area of a tube and curvature respectively are given as [36]

dS = r0(1 − r0κ(s) cosα)dsdα and k(s, α) =
−κ(s) cosα

r0(1 − r0κ(s) cosα)

where κ(s) is the curvature of the backbone curve, x(s). Then∫
T

max(k, 0) dS = −
∫ 2π

s=0

∫ 3π
2

α= π
2

κ(s) cosαdα ds = 2
∫ 2π

s=0
κ(s) ds.

From (5.75), it follows that this must be greater than or equal to 4π, which is consistent
with Fenchel’s result that

∫ 2π

0 κ(s) ds ≥ 2π. In contrast,∫
T

|k| dS =
∫ 2π

0

∫ 2π

0
κ(s)| cosα| dα ds = 4

∫ 2π

0
κ(s) ds ≥ 8π

when x(s) is any smooth closed space curve.
In analogy with the Fary–Milnor theorem that considers necessary conditions on the

total curvature of a closed space curve for it to be knotted, Langevin and Rosenburg
established the following necessary conditions for a tube to be knotted [46]:∫

T

|k|dS ≥ 16π (5.93)

where |k| is the absolute value of the Gaussian curvature, T is the surface of the knotted
tube, and dS is the same differential element of surface area used in (5.90). This result
was extended by Kuiper and Meeks [45] by replacing 16π with 8πB where B is the
bridging index of the backbone curve of the tube.

B.-Y. Chen [14] reviews total mean curvature formulas for smooth knotted closed
tubes such as ∫

T

m2dS ≥ 8π (5.94)

that were initially derived in the early 1970s [15, 16]. This too can be stated in terms
of bridging numbers of the backbone curve.



5.5 Tubes 175

5.5.3 Tubes of Surfaces in R3

Given a smooth parameterized surface, x(t1, t2), a unit normal can be defined to the
surface at each point as

u(t1, t2) =
∂x
∂t1

× ∂x
∂t2

/

∥∥∥∥ ∂x
∂t1

× ∂x
∂t2

∥∥∥∥ .
Then, an offset surface can be defined for a fixed value of r less than 1/max{|κ1|, |κ2|}
(where κ1 and κ2 are the principal curvatures obtained by solving (5.63)) as

o(t1, t2; r) = x(t1, t2) + ru(t1, t2). (5.95)

The element of surface area for this offset surface can be shown to be of the form

dS =
∥∥∥∥ ∂o
∂t1

× ∂o
∂t2

∥∥∥∥ dt1dt2
where [32] ∥∥∥∥ ∂o

∂t1
× ∂o

∂t2

∥∥∥∥ = [1 − 2rm(t1, t2) + r2k(t1, t2)]
∥∥∥∥ ∂x
∂t1

× ∂x
∂t2

∥∥∥∥ . (5.96)

Here m(t1, t2) is the mean curvature and k(t1, t2) is the Gaussian curvature at the point
x(t1, t2). Therefore, the area of the offset surface will be

A = F − 2rM + r2K (5.97)

where F , M , and K are respectively the area, total mean curvature, and total Gaussian
curvature of the original surface, S.

For a finite body B with volume V (B) enclosed by a compact surface ∂B, an equation
similar to (5.97) is Steiner’s formula for the volume enclosed by the surface offset by an
amount r from ∂B [67]:

V (Br) = V (B) + rF (∂B) +
r2

2
M(∂B) +

r3

3
K(∂B). (5.98)

It generalizes to higher dimensions and to cases where the surfaces are not smooth.
The volume contained within the two offset surfaces defined by r ∈ [−r0, r0] can be

computed by allowing r in (5.95) to vary. Then

Vo =
∫ r0

−r0

∫
S

[
∂o
∂r

,
∂o
∂t1

,
∂o
∂t2

]
dt1dt2dr = 2rF +

2r3

3

∫
S

kdS = 2rF +
4
3
πr3χ(S). (5.99)

This formulas generalize to hyper-surfaces in high-dimensional Euclidean spaces. The
generalized formulas were proven by Weyl [69]. Although the word “tube” was used in
this section for the cylindrical surface around a curve, and an “offset” curve/surface
was used more broadly, the word “tube” is used in the mathematics literature to denote
both concepts, and “Weyl’s tube theorem” addresses this generalized concept in higher
dimensions.
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5.6 The Euler Characteristic: From One Dimension to N
Dimensions

In preceding sections in this chapter the Euler characteristics of finite planar regions
and closed surfaces in three-dimensional space played prominent roles in characterizing
the topological properties of these two-dimensional objects. In this section, the concept
of the Euler characteristic of geometrical objects with dimensions one and three are
defined, and rules for defining the Euler characteristic of geometrical objects in higher
dimensions are provided. These rules will provide background for understanding the
generalized results presented in the next two chapters.

5.6.1 The Euler Characteristic of Zero-, One-, and Three-Dimensional
Bodies

In (5.40) and (5.73) total curvatures were related to the Euler characteristic of a planar
body and a closed surface in space. In both instances, the same formula was used. Here
this formula is generalized to other dimensions.

First consider the trivial example of a connected “one-dimensional body.” This is
nothing more than a closed interval B1 = [a, b] ⊂ R. The boundary of the body is
the vertices given by the points a, b ∈ R. In this case there are no “faces” to this
object. There are only vertices and a single edge (which is the body itself). The Euler
characteristic of this can be defined as χ(B1) = v − e = 2 − 1 = 1. Now if there is
another interval B2 = [c, d] ⊂ R, then again χ(B2) = 1. If B1 ∩ B2 = Ø, then the body
B3 = B1 ∪ B2 is not connected. A simple count gives χ(B3) = v − e = 4 − 2 = 2. In
fact, for this case as well as the 2D cases described earlier, the following rule holds:

χ(B1 ∪ B2) = χ(B1) + χ(B2) when B1 ∩ B2 = Ø. (5.100)

The Euler characteristic of a simple closed curve in the plane (which is topologically
equivalent to the unit circle, S1) can also be calculated using the formula

χ(S1) = v − e = 0.

From this it is clear that the Euler characteristic, which was initially defined for two-
dimensional geometrical objects, can be applied equally well for one-dimensional objects.

A zero-dimensional object can be defined as a set of disconnected points. This can
either be viewed as the boundary of a one-dimensional body on the line, or as a zero-
dimensional body in any space. The Euler characteristic of a zero-dimensional object is
simply the number of points (or vertices) that define the body: χ(B) = v.

What about for three-dimensional objects? Given a simple body in three dimen-
sions, it can be tessellated (subdivided) into simple polyhedral cells such as cubes or
tetrahedra. For such a body, the definition of the Euler characteristic must be modified
as

χ(B) = v − e + f − c (5.101)

where again v, e, and f are the total number of vertices, edges, and faces in the tessel-
lation, but now the total number of spatial cells, c, must also be counted.

For example, consider a body consisting of a single tetrahedral cell. A simple count
gives χ(tetcell) = 4 − 6 + 4 − 1 = 1. Now consider a body consisting of a single block
defined by a cube and all points on the interior of the cube. This is analogous to what
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was done in the planar case in Section 5.3.2. Again, a simple count gives χ(block) =
8 − 12 + 6 − 1 = 1. Suppose that this block is subdivided into an L × W × H array of
L · W · H small blocks, or cells. A careful counting then gives

c(array) = L · W · H

f(array) = H · W · (L + 1) + L · W · (H + 1) + L · H · (W + 1)

e(array) = H · (W + 1)(L + 1) + L · (W + 1)(H + 1) + W · (H + 1)(W + 1)

v(array) = (H + 1)(W + 1)(L + 1).

Therefore,
χ(array) = 1.

If this initial array consisting of L·W ·H blocks is then “sculpted” by removing individual
blocks on its exterior, the effect on the Euler characteristic can be examined. Here
L,W,H are all taken to be greater than one. There are three different kinds of blocks
that can be removed from the surface of the array: corners, edges, and others. Let Δχ
denote the change in the Euler characteristic of the body that results from this sculpting
operation. This means that

Δχ(B) = χ(Bafter) − χ(Bbefore) = Δv − Δe + Δf − Δc

where, for example, Δv is the difference between the number of vertices after the sculpt-
ing operation and before. If a corner block is removed from the array, one vertex is
removed, three edges are removed, three faces are removed, and one cell is removed.
Therefore, in this case Δχ(B) = (−1) − (−3) + (−3) − (−1) = 0. If an edge block is
removed, Δχ(B) = 0 − (−1) + (−2) − (−1) = 0. Similarly, if a surface block that is
neither an edge nor a corner is removed, Δχ(B) = 0 − 0 + (−1) − (−1) = 0. Therefore,
it can be concluded that “chipping away” blocks from the surface does not affect the
Euler characteristic. A body sculpted in this way will have χ = 1.

In contrast, consider the operation of removing a block from deep inside the array.
In analogy with a medical treatment that remotely destroys a tumor, call the removal
of an interior block an ablation. By ablating a block, no vertices, edges, or faces are
removed. Only the volumetric cell is removed. This gives Δχ = −(−1) = 1. If two
adjacent blocks are ablated, then two cells and the adjoining face are removed, and
again Δχ = 1. In fact, if this ablation procedure is used to create any simply connected
void on the interior of the array, then Δχ = 1. If rather than forming a simply connected
void on the interior, a toroidal void is formed, Δχ = 0 because in that case the number
of cells removed is the same as the number of faces, while leaving the number of vertices
and edges unchanged. Evidently, the Euler characteristic of a body with a toroidal void
is the same as the Euler characteristic for a simply connected body. And this is true
regardless of whether the toroidal void is knotted or not.

Consider the following operation. Given the initial array of blocks, if a hole is
“drilled” through its center, the result will be to remove L cells and L+ 1 faces, and so
Δχ = 0−0+(−L−1)−(−L) = −1. (If instead the drilling was through one of the other
directions, L would be replaced with W or H but the end result is the same.) In this case
the surface that encloses the resulting array will be the same (topologically) as a torus.
The Euler characteristic of this toroidal array of blocks will be χ(B) = 1 + Δχ = 0.
Recall that the Euler characteristic of the surface of a torus is also zero.

If two such holes are drilled parallel to each other in such a way that they do not share
any edges, faces or vertices, then the Δχ’s for each will add together, and the resulting
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body will have Euler characteristic of χ(B) = 1 + Δχ(B) = 1 − 2 = −1. In contrast,
since γ = 2, the surface will have Euler characteristic χ(∂B) = 2(1−γ) = 2(1−2) = −2.
If two holes are drilled at two orthogonal directions and share one cell in common, the
result will be Δχ = −3, and the resulting surface will have a genus of 3. Therefore,
χ(B) = 1 + Δχ(B) = 1 − 3 = −2, and χ(∂B) = 2(1 − γ) = 2(1 − 3) = −4.

It is also easy to show that if a whole two-dimensional planar array of cells is removed,
which cleaves the initial body into two disjoint pieces, then Δχ = +1.

5.6.2 Relationship Between the Euler Characteristic of a Body and Its
Boundary

From the examples at the end of the previous section, it appears that in three-
dimensional Euclidean space, the Euler characteristic of a body and that of its bounding
surface are related as

χ(∂B) = 2 · χ(B) = 2[1 − γ(B)]. (5.102)

Does this formula hold if voids are introduced into the body?
Returning to the L × W × H array of blocks discussed in the previous section, the

Euler characteristic of the surface will be

χ(∂ array) = v(∂ array) − e(∂ array) + f(∂ array) = 2

where
v(∂ array) = 2(H · W + L · W + L · H + 1)

e(∂ array) = 4(H · W + L · W + L · H)

f(∂ array) = 2(H · W + L · W + L · H).

It is easy to verify that the sculpting operations described earlier will not affect the value.
Introducing a simple void in an otherwise simple body increases the Euler characteristic
of the body from 1 to 2. At the same time, the sum of Euler characteristics of the
internal and external bounding surfaces becomes 2 + 2 = 4. And so, (5.102) appears to
be correct in three dimensions if the definition of the overall Euler characteristic of the
bounding surface is defined as

χ(∪k∂kB) =
n∑

k=1

χ(∂kB) where ∂iB ∩ ∂jB = Ø ∀ i, j ∈ {1, ..., n}, (5.103)

and ∂iB is the ith bounding surface of a complicated boundary consisting of n disjoint
components.

Does (5.102) hold in other dimensions? Consider a one-dimensional simple body on
the real line. The Euler characteristics of its boundary and the body itself are respec-
tively χ(∂B) = v = 2 and χ(B) = v− e = 2− 1 = 1. For a one-dimensional body on the
line consisting of two disjoint components, χ(∂B) = v = 4 and χ(B) = v−e = 4−2 = 2.
Clearly if there are n disjoint parts to the body, χ(∂B) = 2n, χ(B) = n, and there are
γ = n−1 holes on the “interior” of the body. And so, on the line χ(B) = γ+1 = χ(∂B)/2,
which means that in the 1D case the first equality in (5.102) holds, but the second does
not.

Now consider a 2D body with simple bounding curves. Since for a closed curve in
the plane χ(∂B) = v − e = 0, it appears that the first equality in (5.102) cannot hold.
However, working out a few examples, it becomes clear that χ(B) = 1 − γ(B), which
is the second equality in (5.102). Therefore, it seems like a mixed bag, but generally
speaking both equalities in (5.102) only hold for the 3D case.
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5.6.3 The Euler Characteristic of Cartesian Products of Objects

Recall from Chapter 1 that the Cartesian product of two sets S1 and S2 is the set
consisting of all pairs (x, y) with x ∈ S1 and y ∈ S2. This product set is denoted as
S1×S2. For example, the 2-torus can be viewed as a product of two circles: T2 = S1×S1.
A cylinder with closed boundary can be viewed as the product of a closed interval and
a circle: [0, 1] × S1. And a unit cube can be thought of as a two-fold product of closed
intervals: [0, 1] × [0, 1] × [0, 1].

It turns out that if a geometric object can be described as a Cartesian product,
then the Euler characteristic of the object can be computed as the product of the Euler
characteristics of the lower-dimensional objects forming the product:

χ(B1 × B2) = χ(B1) · χ(B2). (5.104)

For example, the two-dimensional toroidal surface has an Euler characteristic of zero,
which is the same as the product of the Euler characteristics for two circles, each of
which is zero. The Euler characteristic of a toroidal body is zero, which is the same as
the product of the Euler characteristics for the circle and a closed circular disk. The
Euler characteristic of a cubic body is equal to unity, which is the same as the product
of Euler characteristics of each closed interval.

5.7 Implicit Surfaces, Level Set Methods, and Curvature Flows

The parametric approach to differential geometry has been augmented in recent years
by the use of implicit surface descriptions of the form φ(x) = 0. This single scalar
constraint on a vector x ∈ R3 defines a two-dimensional surface. The implicit and
parametric approaches are complementary, each having its benefits. With a parametric
surface description of the form x = x(u1, u2) it is easy to generate points on the surface
by directly evaluating x(u1, u2) with allowable values of u1 and u2. However, given a
point y ∈ R3 it is difficult to determine directly from the parametric description whether
or not this point lies on the surface. In contrast, by evaluating φ(y) and comparing this
value with zero, it is easy to determine if y is on the surface or not. These two approaches
are related by the fact that φ(x(u1, u2)) = 0.

All of the formulas in the classical parametric differential geometry of surfaces can
be recast in terms of implicit surface descriptions. An implicit surface, which is also
referred to in the literature as a level set, can be more natural than the parametric
approach in some settings. So-called “level set methods” have become popular in recent
years in image processing and mechanics. A particular problem that is handled with
these methods is the evolution in shape of an initial surface into a new surface. In such
“curvature flow” problems, shape changes are defined locally at each point on the surface
based on mean or Gaussian curvature. Unlike the Fokker–Planck equations discussed in
Chapter 4, which are linear partial differential equations, curvature flow equations are
non-linear PDEs. In some applications these PDEs have stochastic coefficients.

5.7.1 Implicit Surfaces

An implicit two-dimensional surface is defined by a scalar constraint φ(x) = 0 for
x ∈ R3. When this describes a closed surface, φ(x) can be defined such that φ(x) < 0
corresponds to the finite body bounded by the surface, and φ(x) > 0 corresponds to the
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outside world. For example, an ellipsoid with principal axes aligned with the Cartesian
coordinate system and centered at the origin has the implicit description

φ(x) =
x2

1

a2 +
x2

2

b2
+

x2
3

c2
− 1 = 0. (5.105)

If the corresponding parametric description of the implicit surface φ(x) = 0 is x =
x(u1, u2), then it must be that φ(x(u1, u2)) = 0. This equation provides the key to
calculating intrinsic quantities of the surface such as Gaussian and mean curvature
directly from the implicit description. This is because the chain rule gives

∂

∂ui
[φ(x(u1, u2))] =

∂φ

∂x1

∂x1

∂ui
+

∂φ

∂x2

∂x2

∂ui
+

∂φ

∂x3

∂x3

∂ui
= 0

for i = 1, 2. A more compact way to write this is

(∇φ) · ∂x
∂ui

= 0 (5.106)

where ∇φ = [∂φ/∂x1, ∂φ/∂x2, ∂φ/∂x3]T is the gradient of φ and ∂x/∂ui is tangent to
the surface. This implies immediately that a unit surface normal at x(u1, u2) is

n(u1, u2) =
∇φ|x=x(u1,u2)∥∥∥∇φ|x=x(u1,u2)

∥∥∥ =
∇φ|φ(x)=0∥∥∥∇φ|φ(x)=0

∥∥∥ . (5.107)

Note that while the rightmost quantity in the second equality is not intrinsic (since it is
defined relative to the ambient space), it is independent of any parametrization of the
surface.

By observing the constraint equations that result from calculating the partial deriva-
tives ∂φ/∂ui and ∂2φ/∂ui∂uj for i, j ∈ {1, 2}, all of the quantities that appear in the
first and second fundamental forms of the surface can be restated in terms of deriva-
tives of φ(x) with respect to Cartesian coordinates in R3, followed by the constraint
that φ(x) = 0.

Convolution and Implicit Tubes

A tube is defined by its backbone curve and a radius. If the backbone curve is defined
in terms of an arc-length parametrization as x = x̂(s), then “sweeping” a Gaussian
distribution along x̂(s) will produce an implicit description of a tube. This is written as
a convolution [7, 8]:

φ(x) .= c+
∫

Rn

δC(ξ) ρ(x−ξ,0, σ2I) dξ = c+
1

(2π)n/2σn

∫ L

0
exp
(

−1
2
‖x − x̂(s)‖2/σ2

)
ds

(5.108)
where c is a constant that, together with σ, determines the tube radius, and δC(x) is
defined by the second equality above. That is, δC(x) localizes an integral over the plane
or in three dimensions to the backbone curve, C.

Given a tree-like structure rather than a backbone curve, the same approach can be
used to generate branched structures [7, 8]. If the backbone curve is replaced with a
surface, an implicit description of an offset surface can be formulated in a similar way.



5.7 Implicit Surfaces, Level Set Methods, and Curvature Flows 181

Curvature of Implicit Surfaces

By manipulating the relationships discussed previously, the Gaussian and mean curva-
ture of a surface are written in terms of the implicit description as [30]7

k =
1

‖∇φ‖4 det
[

∇∇Tφ ∇φ
∇Tφ 0

]
(5.109)

and

m =
‖∇φ‖2 tr(∇∇Tφ) − (∇Tφ)(∇∇Tφ)(∇φ)

2‖∇φ‖3 = ∇ ·
(

∇φ

‖∇φ‖

)
(5.110)

where it is understood that these only hold subject to the constraint that φ(x) = 0.
These formulas have a number of applications in level set methods.

5.7.2 Integration on Implicitly Defined Surfaces and Curves in R3

Integrating Functions on Implicit Surfaces

The integral of a function f ∈ N (R3) over the whole surface S ⊂ R3 is expressed in
parametric form as∫

S

f(x)dS =
∫

u1

∫
u2

f(x(u1, u2))|G(u1, u2)|du2du1.

This alternatively can be thought of as an integral over R3 that is localized to the surface
implicitly by using the Dirac delta function as∫

S

f(x)dS =
∫

R3
f(x)δ(φ(x))c(x)dx. (5.111)

The reason why the weighting function c(x) is needed is analogous to why |G(u1, u2)|
is needed in the parametric expression. The exact form of c(x) is now derived.

Imagine that R3 is broken up into an infinite number of concentric parametric sur-
faces x(u1, u2;u3), where each fixed value of u3 defines a surface. Take the coordinate u3
to be orthogonal to u1 and u2. Then the metric tensor for the three-dimensional region
parameterized by u1, u2, u3 will be of the form

G(u1, u2, u3) =

⎛⎝ g11 g12 0
g12 g22 0
0 0 g33

⎞⎠ ,

and so

|G| 1
2 = g33 · (g11g22 − g2

12) =
∥∥∥∥ ∂x
∂u3

∥∥∥∥ ·
∥∥∥∥ ∂x
∂u1

× ∂x
∂u2

∥∥∥∥ .
Let φ(x) = 0 denote the particular surface that results for the constant value u3 = u0

3.
Then

φ(x(u1, u2;u3)) = u3 − u0
3. (5.112)

The evaluation of (5.111) in the coordinates u1, u2, u3 then becomes

7The sign convention used here is changed so as to be consistent with the rest of the text.
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u1

∫
u2

∫
u3

f(x(u1, u2;u3))δ(u3 − u0
3)c(x(u1, u2;u3))

∥∥∥∥ ∂x
∂u3

∥∥∥∥ ·
∥∥∥∥ ∂x
∂u1

× ∂x
∂u2

∥∥∥∥ du3du2du1.

Due to the definition of the Dirac delta function, this reduces to∫
u1

∫
u2

f(x(u1, u2;u0
3))c(x(u1, u2;u0

3))
∥∥∥∥ ∂x
∂u3

∥∥∥∥
u3=u0

3

·
∥∥∥∥ ∂x
∂u1

× ∂x
∂u2

∥∥∥∥
u3=u0

3

du2du1.

(5.113)
This integral becomes the usual surface integral when

c(x(u1, u2;u0
3))
∥∥∥∥ ∂x
∂u3

∥∥∥∥
u3=u0

3

= 1. (5.114)

Therefore, determining the form of c(x) such that this will be true is required.
To address this, observe from the chain rule that partial differentiation of (5.112)

with respect to each ui yields

∂x
∂u1

· gradφ = 0;
∂x
∂u2

· gradφ = 0;
∂x
∂u3

· gradφ = 1. (5.115)

The first two of these indicate that gradφ must be parallel to ∂x/∂u3, which must be
parallel to ∂x/∂u1 × ∂x/∂u2. Furthermore, the magnitude of gradφ is set by the third
equality in (5.115). Altogether, these equalities dictate that

gradφ =
1

‖∂x/∂u3‖2

∂x
∂u3

and
∂x
∂u3

=
gradφ

‖gradφ‖2 , (5.116)

neither of which are unit vectors.
From (5.116) it is therefore clear that (5.114) holds when

c(x) = ‖gradφ(x)‖.

Therefore (5.111) becomes∫
S

f(x)dS =
∫

R3
f(x)δ(φ(x))‖gradφ(x)‖dx. (5.117)

Integrating Functions on Implicit Curves in R3

The implicit description of a curve in R3 is defined by the intersection of two implicitly
defined surfaces. This is expressed as the simultaneous constraints

φ1(x) = φ2(x) = 0. (5.118)

Two kinds of integrals over curves are common: (a) integrals of scalar functions over
the curve, akin to total curvature; (b) work-like integrals in which the dot product of
a vector field with the tangent is integrated over the curve. These are expressed in
parametric form as

I
(1)
C

.=
∫

C

f(x(t))
∥∥∥∥dxdt

∥∥∥∥ dt and I
(2)
C

.=
∫

C

f(x(t)) · dx
dt

dt. (5.119)
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Below, an expression for I
(2)
C in implicit form is derived. The case of I

(1)
C is left as an

exercise.
If x(t) is a parametric description of the curve C, then substitution into (5.118) and

taking the derivative with respect to t gives

dx
dt

· gradφ1 =
dx
dt

· gradφ2 = 0. (5.120)

This means that dx/dt and gradφ1 × gradφ2 must be parallel. Therefore, there must be
some scalar function α(x) (that is yet to be determined) such that

I
(2)
C =

∫
R3

f(x) · [gradφ1 × gradφ2]α(x)δ(φ1(x))δ(φ2(x))dx. (5.121)

In order to derive the form of α(x), a parametrization of the tubular region that envelops
the curve can be established. Any point in this region can be expressed as x(t;u1, u2),
where u1 and u2 are Cartesian coordinates in the plane normal to the curve at t, and the
curve itself can be defined by u1 = u2 ≡ 0. And the constraint (5.118) can be expressed
in these coordinates as

φ1(x(t;u1, u2)) = u1 and φ2(x(t;u1, u2)) = u2. (5.122)

Taking the partial derivatives of the above two equations with respect to u1 and u2
gives

∂x
∂u1

· gradφ1 =
∂x
∂u2

· gradφ2 = 1 (5.123)

and
∂x
∂u2

· gradφ1 =
∂x
∂u1

· gradφ2 = 0. (5.124)

These imply that

gradφi =
1

‖∂x/∂ui‖2

∂x
∂ui

for i = 1, 2. (5.125)

Since (t, u1, u2) is an orthogonal curvilinear coordinate system, each of the vectors
∂x/∂t, ∂x/∂u1, and ∂x/∂u2 is orthogonal to each other, and so |G(t, u1, u2)|

1
2 is ex-

pressed as the product of the magnitudes of these partials. This means that (5.121) can
be expressed in parametric form as

I
(2)
C =

∫
t

∫
u1

∫
u2

f(x(t;u1, u2)) · ∂x/∂u1 × ∂x/∂u2

‖∂x/∂u1‖2 · ‖∂x/∂u2‖2α(x(t;u1, u2))

× δ(u1)δ(u2)‖∂x/∂t‖‖∂x/∂u1‖‖∂x/∂u2‖du2du1dt.

This simplifies to

I
(2)
C =

∫
t

f(x(t; 0, 0)) · ∂x/∂u1 × ∂x/∂u2

‖∂x/∂u1‖ · ‖∂x/∂u2‖
α(x(t; 0, 0))‖∂x/∂t‖dt. (5.126)

But due to the orthogonality of the tubular coordinate system,

∂x/∂u1 × ∂x/∂u1

‖∂x/∂u1‖ · ‖∂x/∂u2‖
=

∂x/∂t
‖∂x/∂t‖ .

And so (5.126) becomes the expression in (5.119) when α(x) = 1.
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The line integral I
(2)
C can be expressed in two forms that are both independent of

parameters:∫
C

f(x) · dx =
∫

R3
f(x) · [gradφ1 × gradφ2]δ(φ1(x))δ(φ2(x))d(x). (5.127)

This is one of the rare instances in which dx = x(t + dt) − x(t) and d(x) = dx1dx2dx3
appear in the same expression. And therefore the shorthand dx cannot be used for d(x).

5.7.3 Integral Theorems for Implicit Surfaces

The classical theorems of multivariate integral calculus can all be recast in implicit func-
tion notation. For a smooth vector field f(x), the divergence theorem (A.120) becomes∫

R3
(∇ · f)[1 − H(φ(x))] dx =

∫
R3

(f · ∇φ) δ(φ(x)) dx (5.128)

where δ(·) is the Dirac delta function on the real line, which is used to enforce the con-
straint φ(x) = 0, and H(·) is the Heaviside step function in (2.8) that makes H(φ(x)) = 0
on the solid body bound by the surface since by definition φ(x) < 0 on the interior.
Note that δ(y) = dH/dy.

Stokes’ theorem (5.42) becomes∫
R3

(∇ × f) δ(φ1(x)) dx =
∫

R3

[f ,∇φ1,∇φ2]
‖∇φ1 × ∇φ2‖

δ(φ1(x)) δ(φ2(x)) dx (5.129)

(where [·, ·, ·] is the triple product and the boundary curve is described as the intersec-
tion of two implicit surfaces φ1(x) = 0 and φ2(x) = 0, the tangent to which is found
by crossing the normals of the two surfaces), and the Gauss–Bonnet theorem (5.73)
becomes ∫

R3

1
‖∇φ‖3 det

[
∇∇Tφ ∇φ
∇Tφ 0

]
δ(φ(x)) dx = 2πχ(S) (5.130)

where S is the closed surface defined by the constraint φ(x) = 0.

5.7.4 Level Sets and Curvature Flows

Level Set and Fast Marching Methods

Given an implicit surface defined by the equation φ(x) = 0, a fundamental question
that arises is, “How can points on the surface be traced out rapidly?” This is one of the
subjects discussed in the area of research known as level set methods [54, 55, 63]. The
basic idea is that once one point on the surface is known, other neighboring points can
be approximated well since the local shape of the surface can be computed.

If an initial set of surface points are known, and then the initial function is perturbed
and becomes φ(x)+ε(x) = 0 where ε(x) is a function that takes small values, how should
the initially determined points update their positions so as to sit on the new surface?
Another related problem is, given an implicitly defined surface, how can the tube/offset
of that surface be computed rapidly [43]? These dynamic problems that involve change
of a surface, and in which a corresponding change in the positions of points is sought,
are addressed well using fast marching methods.

Level set and fast marching methods have found applications in many areas including
computer vision, image processing [41], mechanics, and control. A particular application,
which involves the evolution of a surface so as to minimize the mean curvature of the
resulting surface, is discussed in the following subsection.
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Evolving Surfaces and Curvature Flows

Two different kinds of stochastic models involving surfaces are common in the literature.
The first kind involves surfaces that change shape in a stochastic way. This can be
written in parametric form as x(u1, u2; t), or in implicit form as φ(x; t) = 0. A simple
example of this would be a sphere with radius that varies with time: r = r(t), where
r(t) might consist of a deterministic and a noise part. The second sort of stochastic
model involving surfaces is the evolution of stochastic paths on a fixed surface. This
can be written in parametric form as x(u1(t), u2(t)) or in implicit form as φ(x(t)) = 0.
This second kind of problem, where the “surface” can actually be a more-than-two-
dimensional extension of the concept of a surface (called a manifold), is the subject of
Chapter 8, and the intervening chapters lay the foundations required to fully address this
sort of problem. However, as a side note, stochastic surface models of the first kind are
briefly reviewed here. In recent years, such models have found applications in mechanics
[42, 72], computer vision [26, 51, 61], and image processing [40, 66]. In these applications
a surface is evolved by a simple rule (which can be either deterministic or stochastic) so
as to capture some physical or visual feature. The deterministic version of the problem
has been applied widely in image processing [12, 73], and to the approximation of
molecular surfaces [3].

A popular problem is to evolve a surface by its own local features. In particular, the
implicit function φ(x; t) = 0 that defines the surface at any particular time is forced to
obey the following non-linear evolution equation:

∂φ

∂t
= f(m)‖∇φ‖ with φ(x; 0) = φ0(x) (5.131)

where m is the mean curvature given in (5.110). Both m and ‖∇φ‖ are non-linear
operators that act on φ, and f : R → R can also be a non-linear function that is
either deterministic or stochastic. A surface that evolves deterministically according
to mean curvature flow is one for which f(m) = m. This sort of formulation is used
to evolve surfaces into ones that are smoother (i.e., have reduced curvature). When
boundary conditions are imposed, this can be used to evolve an initial surface into one
with minimal total mean curvature [10, 18, 39]. Interestingly, in the case when a closed
convex planar curve is used as the initial shape, then the shape transformation process
can be viewed as one in which the “curvature entropy”

S(κ) .= −
∮

κ(s, t) log κ(s, t) ds

increases as a function of time until the maximum entropy curvature function results
(which occurs when the curvature flow converges to a circle). This sort of argument has
been used in [29, 33] (though their definition of entropy has an opposite sign).

Both the deterministic [21, 22, 34] and stochastic [40, 66] versions of curvature
flow problem have been studied extensively. For more pointers to the literature, see
[11, 55, 63].

While the focus of this section has been on surfaces in R3, many of the formulas
extend naturally to include (n − 1)-dimensional hyper-surfaces in Rn [20, 30, 35]. In
contrast, the next chapter discusses the intrinsic coordinate-free geometry of “manifolds”
(which includes hyper-surfaces as a special case).
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5.8 Chapter Summary

This chapter focused on the geometry of curves and surfaces in two- and three-
dimensional space. It began with elementary (and practical) examples involving a robot
arm and a medical imaging problem. These examples illustrate how problems in an-
alytic and projective geometry can be posed either parametrically or implicitly. Then
the mathematical machinery required to compute arc length, area, volume, curvature,
etc., was introduced. The relationships between locally defined geometric quantities
and global topological features were examined. Geometric quantities that are usually
described parametrically were recast implicitly. The divergence theorem and Stokes’
theorem were written in implicit form (which is something that the author has not seen
elsewhere).

In addition to those works cited throughout this chapter, accessible introductions to
differential geometry of curves and surfaces with many examples include [19, 31, 47].
Alternative ways to attach reference frames to curves is an area that has received atten-
tion in both the kinematics [9] and mathematics literature [5]. This will be discussed in
the context of variational problems in Volume 2. It is important to note that differential
geometry is not the only kind of geometry. Accessible introductions to algebraic aspects
of geometry include [1, 52].

The next two chapters extend the differential geometric concepts presented here
to higher dimensions. The concept of differential forms is very useful when it comes
to describing integrals on high-dimensional manifolds. After a detailed introduction to
differential forms in Chapter 6, the concepts of volume, curvature, Euler characteristic,
etc., are defined for high-dimensional geometric objects in Chapter 7. The material
presented in these chapters will be important for understanding how to define SDEs
and Fokker–Planck equations on manifolds and Lie groups.

5.9 Exercises

5.1. Compute the Jacobian determinant for (5.1) and verify that the singularities occur
when q2 = 0 or π.

5.2. For the robot arm described in Section 5.1, write computer programs to implement
all three of the inverse kinematics routines described in Section 5.1.2. Let L1 = L2 =
1, and take as the starting conformation q(0) = [π/2,−π/2]T , which corresponds to
x(0) = [1, 1]T . Simulate the arm following a circle of the form x(t) = [1−r+r cos 2πt, 1+
r sin 2πt]T for 0 ≤ t ≤ 1. Try values of r = 0.2, 0.5, 1.1. What happens? Why does this
happen?

5.3. Pick several values for h, r, α, β,m1,m2,m3 and plot the parametric curve π(θ) in
(5.12) for θ ∈ [0, 2π).

5.4. Write two computer programs, one to implement the iterative Jacobian-inversion
scheme in (5.15), the other to use (5.16) for updating using the rule q(t + Δt) =
q(t) + Δq(t). Using the same parameters as those chosen in Exercise 3 above, evaluate
the convergence of these iterative methods.

5.5. Compare the performance of the iterative numerical methods in Exercise 4 above,
with the implicit algebraic approach in Section 5.2.2.
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5.6. Show that a planar arc-length, parameterized curve x(s) with x(0) = 0 and tangent
vector x′(0) = e1 can be completely characterized in terms of signed curvature k(s) as

x(s) =

⎛⎝∫ s

0 cos θ(σ) dσ∫ s

0 sin θ(σ) dσ

⎞⎠ where θ(s) =
∫ s

0
k(σ) dσ.

5.7. Using the chain rule, show that (5.29) and (5.33) are equivalent.

5.8. Calculate the curvature and torsion of the right-handed circular helix

x(s) = (r cos as, r sin as, has)T (5.132)

where a = (r2 + h2)−1/2, and r and h are constants. (Before doing so, verify that s is
in fact the arc length.)

5.9. Prove that a curve confined to the surface of a sphere of radius R in R3 can have
curvature no less than 1/R.

5.10. Prove that the volume of the region in R3 defined by all vectors of the form
x(u, v, w) = ua + vb + wc for (u, v, w) ∈ [0, 1] × [0, 1] × [0, 1] is given by a · (b × c).

5.11. Consider the torus in Section 5.4.5 with R = 1 and r = 0.2. Use the Langevin–
Rosenburg theorem to verify that the torus is not knotted by numerically calculating
the integral of absolute Gaussian curvature.

5.12. Apply a shear transformation of the form s(x) with s1 = 0.1 and s2 = 0.5 in
(5.20) to the torus in the previous problem. Either show analytically, or write computer
programs to numerically verify that: (a) the volume enclosed by the deformed torus
is not changed by this transformation; (b) the integral of Gaussian curvature over the
whole surface is not changed by this deformation. Hint: When computing volume, use
the divergence theorem to calculate it as a surface integral.

5.13. Prove that every curve c(s) = x(q1(s), q2(s)) that passes through the point c(s0) =
c0 and has tangent vector u(s0) = dc/ds|s=s0 has the same normal curvature at that
point.

5.14. Prove that (5.55) and (5.56) are equivalent.

5.15. Prove that the Gaussian and mean curvature can be written in terms of the
coefficient matrices of the first and fundamental forms as

m =
g11L22 + g22L11 − 2g12L12

2(g11g21 − g2
12)

and k =
L11L22 − L2

12

g11g22 − g2
12

. (5.133)

5.16. Using facts about eigenvectors of symmetric matrices, what can be concluded about
the tangent vectors to a surface that point along the directions of principal curvature?

5.17. Using the definition in (5.58) and the fact that GG−1 = G−1G = I, prove (5.59).

5.18. Prove the Codazzi–Mainardi equations:

∂Lij

∂uk
− ∂Lik

∂uj
=
∑

l

(Γ l
ikLlj − Γ l

ijLik).
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5.19. The simple closed space curve (which can be found in the MATLABTM Demos,
and is due to Professor Rouben Rastamian)

x(t) = [x(t), x′(t), x′′(t)]T where x(t) = sin(t) + 2 sin(2t) − 3
2

cos(2t)/2 +
3
2

sin(3t)

for t ∈ [0, 2π) forms a knot. Calculate the curvature of this knot as a closed form
expression, and write a computer program to numerically calculate the total curvature,
and verify that the conditions in the Fary–Milnor theorem are satisfied.

5.20. Construct a tube of radius 0.5 around the curve in the previous exercise. Write
a computer program that numerically calculates the Gaussian curvature on a fine grid
of points on that tubular surface (e.g., increments in t of Δt = 2π/100 and in the
circumferential variable θ of Δθ = δt). Use these values to (approximately) verify the
Gauss–Bonnet and Langevin–Rosenburg theorems.

5.21. Prove (5.96).

5.22. Prove (5.99).

5.23. The concept of a tube (or offset) is not limited to curves and surfaces in Euclidean
space. Let u(t) be a smooth closed simple curve contained in the unit sphere, S2.
Within the unit sphere, the distance between two points is calculated as d(u1,u2) =
cos−1(u1 ·u2). A tube around u(t) can then be defined as the set of points on the surface
of the sphere: Tu = {x ∈ S2 | d(u,x) < r}, where r is smaller than the minimal radius
of curvature of u(t). What will the tube formulas for the length of offset curves and the
area of the strip on the sphere be in this case?

5.24. A surface of revolution in R3 can be parameterized as

x(φ, θ) = [r(z) cosφ, r(z) sinφ, z]T

where r(z) is a specified function. (a) Under what conditions on r(z) will the surface
of revolution be a simple, closed, and differentiable surface? (b) Transform the original
surface to x′(φ, θ) = R3(θ(z))x(φ, θ) where θ(z) is a smooth function. What will the new
surface look like? Compute the Gaussian curvature of x′(φ, θ) and x(φ, θ) and compare.

5.25. Write a computer program to numerically verify for the ellipsoid in Section 5.4.4
that K = 4π and F is given by the provided formulas.

5.26. For the ellipsoid in (5.105) calculate the Gaussian and mean curvature using (5.109)
and (5.110), and compare with the values obtained for the parameterized ellipsoid of
revolution in Section 5.4.4.

5.27. A ruled surface is one that can be parameterized as

x(u1, u2) = c(u1) + u2v(u1) (5.134)

where c(u1) and v(u1) are arbitrary differentiable vector-valued functions. A ribbon is
a special case of a ruled surface. Do the following: (a) Calculate the mean and Gaussian
curvatures for the ruled surface x(u1, u2) in (5.134) (b) What conclusions can be drawn
about the general properties of curvature of ruled surfaces? (c) Show that a hyperboloid
of one sheet given by the implicit equation
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x2
1

a2 +
x2

2

a2 − x2
3

c2
= 1

is a ruled surface by finding a parametrization for it of the form in (5.134).

5.28. Obtain a closed-form implicit formula of the form φ(x) = 0 for the torus parame-
terized in (5.72).

5.29. Prove (5.109) and (5.110) by using the parametric formulas for Gaussian and
mean curvature, and substituting in the corresponding quantities defined in terms of
the implicit surface constraint φ(x) = 0. Verify that (5.110) is written explicitly in
component form as

m =
1

2‖∇φ‖3 [φx1,x1(φ
2
x2

+ φ2
x3

) + φx2,x2(φ
2
x1

+ φ2
x3

) + φx3,x3(φ
2
x1

+ φ2
x2

)

−2φx1,x2φx1φx2 − 2φx1,x3φx1φx3 − 2φx2,x3φx2φx3 ]

where φxi

.= ∂φ/∂xi and φxi,xj

.= ∂2φ/∂xi∂xj . What is (5.109) explicitly in component
form?

5.30 Show that the signed curvature of an implicitly defined planar curve ψ(x1, x2) = 0
can be written as

k = (ψx1,x1ψ
2
x2

− 2ψx1,x2ψx1ψx2 + ψx2,x2ψ
2
x1

)/(ψ2
x1

+ ψ2
x2

)3/2 (5.135)

where ψxi

.= ∂ψ/∂xi and ψxi,xj

.= ∂2ψ/∂xi∂xj . Use this fact to derive (5.110) by
performing the following steps: (1) slice the surface φ(x) = 0 with all planes passing
through the point x = x(u1, u2) and containing the normal; (2) compute the curvature
of the resulting plane curve; and (3) average this curvature over all of the slicing planes.

5.31. Verify that (5.135) can be computed as

k = − 1
‖∇ψ‖3 det

⎡⎣∇∇Tψ ∇ψ

∇Tψ 0

⎤⎦
=

‖∇ψ‖2tr(∇∇Tψ) − (∇Tψ)(∇∇Tψ)(∇ψ)
‖∇ψ‖3 (5.136)

= ∇ ·
(

∇ψ

‖∇ψ‖

)
(5.137)

where ∇ψ = [ψx1 , ψx2 ]
T . That is, in this planar case the formulas for mean and Gaussian

curvature collapse into the same expression. Note the slight differences in (5.136)–(5.137)
relative to (5.109) and (5.110). In general, for an implicit n-dimensional “hyper-surface”
φ(x) = 0 for x ∈ Rn+1, it can be shown that [20, 30, 35]

k = (−1)n 1
‖∇φ‖n+2 det

[
∇∇Tφ ∇φ
∇Tφ 0

]
(5.138)

and

m =
‖∇φ‖2 tr(∇∇Tφ) − (∇Tφ)(∇∇Tφ)(∇φ)

n‖∇φ‖3 = ∇ ·
(

∇φ

‖∇φ‖

)
(5.139)

where ∇ = ∂/∂x = [∂/∂x1, ..., ∂/∂xn+1]T .
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Evaluate these formulas for the sphere of radius r in Rn+1 defined by x2
1 +x2

2 + . . .+
x2

n+1 = r2.

5.32. Derive the implicit version of the integral I(1)
C in (5.119).

5.33. By extending the pattern observed in the plane and in three-dimensional space,
the Euler characteristic can be extended to bodies in four dimensions as

χ(B) = f0(B) − f1(B) + f2(B) − f3(B) + f4(B) (5.140)

where f0 denotes zero-dimensional vertices, f1 denotes one-dimensional edges, etc. Given
an array consisting of L×W×H×D of four-dimensional cubes, what would the formulas
for fi(B) analogous to those given in Section 5.6.1 be? Hint: The formulas should be
symmetric in L,W,H,D, in the same way that the formulas in lower dimensions were.
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ometry, A.I. Bobenko, P. Schröder, J.M. Sullivan, and G.M. Ziegler, eds., Oberwolfach
Seminars, Vol. 38, pp. 175–188, Birkhäuser, Basel, 2008.
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6

Differential Forms

This chapter introduces differential forms, exterior differentiation, and multi-vectors
in a concrete and explicit way by restricting the discussion to Rn. This is extended to
more general settings later. Roughly speaking, differential forms generalize and unify the
concepts of the contour integral, curl, element of surface area, divergence, and volume
element that are used in statements of Stokes’ theorem and the divergence theorem. At
first it may seem unnecessary to learn yet another new mathematical construction. The
trouble is that without an appropriate extension of the concept of the cross product, it is
difficult and messy to try to extend the theorems of vector calculus to higher dimensions,
and to non-Euclidean spaces. As was illustrated in Chapter 1 in the context of heat and
fluid flow problems, these theorems play a central role. Likewise, in probability flow
problems involving stochastic differential equations and their associated Fokker–Planck
equations, these theorems play a role in assessing how much probability density flows
past a given surface. Since the problems of interest (such as the stochastic cart in
Figure 1.1) will involve stochastic flows on Lie groups, understanding how to extend
Stokes’ theorem and the divergence theorem to these generalized settings will be useful.
The first step in achieving this goal is to understand differential forms in Rn.

Differential forms were developed by E. Cartan. Much of what is presented in this
chapter is stated (in more abstract terminology) in [2, 4, 5]. The presentation here most
closely follows that in [3], with the exception that the subscript–superscript notation,
which is explained in the paragraph below, is not used here.

In many books on differential forms and manifolds, notation such as

v =
∑

i

viei and df =
∑

i

∂f

∂xi
dxi (6.1)

is used. This is consistent with the physicists’ shorthand that repetition over raised and
lowered indices automatically implies summation, and so in summation notation v =
viei and df = ∂f

∂xi dx
i. It is also consistent with the idea that if the Hermitian conjugate

of a vector w is computed, then the result can be written as w∗ =
∑

i w
∗
i e

i where
ei = e∗

i is the dual (transpose) of ei, w∗
i = wi, and the operation of conjugation flips

superscripts and subscripts. Tu [14] points out that this raising and lowering convention
has the benefit that expressions are balanced, and this provides a check for accuracy.
However, in the current presentation, all summation signs will be explicitly written, and
all indices will be subscripts (except in special cases where the usual subscript location
is too cluttered, or if particular superscripts have already been widely accepted, e.g.,
the Christoffel symbol Γ k

ij). The use of subscript-only notation, while not universal, is
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consistent with a number of other works including [2, 8, 9, 12, 15]. It also keeps things
simple, and consistent with the vector and matrix notation used in engineering and
computer science. Therefore, instead of (6.1), the following notation will be used:

v =
∑

i

viei and df =
∑

i

∂f

∂xi
dxi . (6.2)

The main points to take away from this chapter are:

• To understand the concept and properties of differential forms and multi-vectors on
Rn;

• To be able to perform computations with them, including computing exterior deriva-
tives;

• To understand how differential forms on Rn behave under coordinate changes;
• To be able to perform computations with differential forms in the context of the

generalized Stokes’ theorem in Rn (at least on box-like domains).

6.1 An Informal Introduction to Differential Forms on Rn

In classical vector calculus, the differential of a smooth1 scalar function φ : Rn → R is
defined as

dφ
.=

n∑
i=1

∂φ

∂xi
dxi

where x ∈ Rn. The real-valued function φ(x) is sometimes called a 0-form. The formula
for the differential given above can be generalized as

ω1
.=

n∑
i=1

ai(x) dxi, (6.3)

where ai(x) = ∂φ
∂xi

can be viewed as a special case. The generalized quantity ω1 is called
a differential 1-form (or 1-form for short). It can be viewed as a functional ω1(x, dx)
that is linear in dx and has no restrictions on its dependence on x other than that it is a
smooth function in this argument. It is immediate from these definitions that a special
kind of 1-form results from differentiating a 0-form.

When n = 1, the zero-form ω0(x) = φ(x) and the one-form ω1(x, dx) = dφ
dxdx are

related by the Fundamental Theorem of Calculus as∫
[a,b]

ω1 = ω0|ba .

6.1.1 Definitions and Properties of n-Forms and Exterior Derivatives

So far in this discussion, nothing of value has been added by the concept of a form.
However, things get more interesting when a differential 2-form (or 2-form, for short) is

1Infinite differentiability is not required in this definition, but it is often more convenient
to restrict the discussion to C∞(Rn) from the start rather than to C1(Rn), followed by a
restriction to C2(Rn) at the point in the discussion when two derivatives are taken, etc.
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defined, and the differential of a 1-form is written as a 2-form. For each fixed x ∈ Rn,
a 2-form is like a quadratic form2 in the variable dx, and is denoted as

ω2
.=

n∑
i=1

n∑
j=1

bij(x) dxi ∧ dxj . (6.4)

The function ω2(x, dx) is quadratic in dx in the sense that two entries in this vector
“multiply” each other with the wedge product, ∧. However, unlike usual quadratic forms
which are symmetric in the variables due to the commutativity of scalar multiplication
(v1v2 = v2v1), a two-form is defined to be skew-symmetric, or anti-commuting, due to
the following postulated property of the wedge product:

dxj ∧ dxi
.= −dxi ∧ dxj . (6.5)

With the exception of this anti-commutative property, the multiplication of differentials
when using the wedge product can be viewed as scalar multiplication, which means that
it is distributive and associative. In other words, it is postulated that for any real-valued
functions f(x) and gj(x),

dxi ∧ (f dxj)
.= (f dxi) ∧ dxj

.= f · (dxi ∧ dxj) (6.6)

and

dxi ∧

⎛⎝∑
j

gj dxj

⎞⎠ .=
∑

j

dxi ∧ (gj dxj) (6.7)

where · just means scalar multiplication.
It follows immediately from (6.5) that

dxi ∧ dxi = 0.

And furthermore, any 2-form on Rn can be written as

n∑
i=1

n∑
j=1

fij dxi ∧ dxj =
n∑

i=1

n∑
j=i+1

f̃ij dxi ∧ dxj

where f̃ij = fij − fji.
Therefore, if n = 1, then ω2 = 0 because there is no way to avoid differentials with

repeated indices multiplying each other under the wedge product in this case. And if
n = 2, then working through the double sum in (6.4) gives

ω2 = b12 dx1 ∧ dx2 + b21 dx2 ∧ dx1 = (b12 − b21) dx1 ∧ dx2.

Note that more generally if bij = bji for all values of i, j ∈ {1, 2, . . . , n}, then ω2 ≡ 0.
Since b

.= b12 − b21 is an arbitrary function when bij are arbitrary, a 2-form when n = 2
can always be written as

ω2 = b(x) dx1 ∧ dx2.

2The term “quadratic form” refers to a function a : Rn → R that has the structure a(v) =
vT Av for some A ∈ Rn×n.
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Whereas the usual calculus was used to go from a 0-form to a 1-form, a newer kind
of calculus, called exterior calculus, is required to take a 1-form into a 2-form. The
associated exterior derivative is defined by the following rule:3

d

(
n∑

i=1

ai(x)dxi

)
.=

n∑
i=1

⎛⎝ n∑
j=1

∂ai

∂xj
dxj

⎞⎠ ∧ dxi

=
n∑

i=1

n∑
j=1

∂ai

∂xj
dxj ∧ dxi

= −
n∑

i=1

n∑
j=1

∂ai

∂xj
dxi ∧ dxj . (6.8)

The first equality above is a definition, and the others derive from the fact that the
wedge product is distributive, associative, and anti-commuting from (6.5)–(6.7).

In analogy with the way that the usual differential takes an arbitrary differentiable
scalar function (or 0-form) into a special kind of 1-form, the exterior derivative defined
above takes an arbitrary 1-form into a special kind of 2-form.

A 3-form is defined as

ω3
.=

n∑
i=1

n∑
j=1

n∑
k=1

cijk(x)dxi ∧ dxj ∧ dxk (6.9)

where each cijk(x) is a smooth real-valued function. The anti-commuting nature of the
wedge product, together with distributivity and associativity, gives

−dxi ∧ dxj ∧ dxk = dxj ∧ dxi ∧ dxk = dxi ∧ dxk ∧ dxj .

In other words, any pairwise transposition of adjacent differentials produces the negative
of the original product. But performing two such pairwise transpositions produces two
negative signs that cancel:

dxi ∧ dxj ∧ dxk = dxk ∧ dxi ∧ dxj = dxj ∧ dxk ∧ dxi.

It also means that whenever there is a repeated index, the result will be zero:

dxi ∧ dxj ∧ dxi = dxi ∧ dxi ∧ dxj = dxj ∧ dxi ∧ dxi = 0 ∀ i, j ∈ {1, 2, ..., n}.

If n < 3, then this means that ω3 = 0 because in this case there is no way to avoid
wedge products of differentials with repeated indices. If n = 3, working through the
33 = 27 terms in the triple sum in (6.9) gives

ω3
.= c(x) dx1 ∧ dx2 ∧ dx3

where c(x) is written in terms of cijk(x) in a way that is left as an exercise.
In analogy with the way that a special kind of 2-form was generated by exterior

differentiation of a 1-form, a special kind of 3-form can be generated by exterior differ-
entiation of a 2-form by using the following rule:

3The notation d(·) should not be confused with the usual differential.
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d

⎛⎝ n∑
i=1

n∑
j=1

bij dxi ∧ dxj

⎞⎠ .=
n∑

i=1

n∑
j=1

(
n∑

k=1

∂bij

∂xk
dxk

)
∧ dxi ∧ dxj (6.10)

=
n∑

i=1

n∑
j=1

n∑
k=1

∂bij

∂xk
dxk ∧ dxi ∧ dxj

=
n∑

i=1

n∑
j=1

n∑
k=1

∂bij

∂xk
dxi ∧ dxj ∧ dxk.

The reason why there is no negative sign in the final equality, whereas there was one in
(6.4), is that in (6.4) only a single change in order of adjacent differentials took place.
In contrast, in the second and third equality in (6.10) two adjacent swaps are required:
dxk ∧ dxi ∧ dxj → (−1)dxi ∧ dxk ∧ dxj , and dxi ∧ dxk ∧ dxj → (−1)dxi ∧ dxj ∧ dxk.
Therefore the negative signs cancel.

Some notation to be aware of when reading more theoretical treatments is the follow-
ing. The set of differential k-forms on Rn is denoted as Ωk(Rn). Based on the informal
discussion above, the exterior derivative can then be viewed as the mapping

d : Ωk(Rn) → Ωk+1(Rn). (6.11)

6.1.2 Exterior Derivatives of (n − 1)-Forms on Rn for n = 2, 3

Consider the 1-form in R2:

ω1 = a1(x1, x2)dx1 + a2(x1, x2)dx2.

According to the rule given in (6.8), the exterior derivative of this will be

dω1 =
∂a1

∂x2
dx2 ∧ dx1 +

∂a2

∂x1
dx1 ∧ dx2 =

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2. (6.12)

Taking the exterior derivative of this will produce a 3-form. But in general an (n + 1)-
form will be zero on Rn because in this case there is no way to avoid wedge products
involving the same differentials. Or stated in a different way, since the exterior derivative
of an n-form produces an (n + 1)-form, and since every (n + 1)-form on Rn is zero, the
exterior derivative of an n-form on Rn must always be zero. Therefore, in R2 it must
be that d(dω1) = 0, and more generally d(dωn−1) = 0 when ωn−1 is an (n − 1)-form on
Rn.

But this is not the only time that the exterior derivative of an exterior derivative
will be zero. For example, starting with the 0-form (scalar function) ω0 = φ(x1, x2), the
following 1-form results:

ω1 =
∂φ

∂x1
dx1 +

∂φ

∂x2
dx2.

Now taking a second exterior derivative of this 1-form, and evaluating the result using
(6.12), gives d(dω1) = 0 because

∂

∂x1

(
∂φ

∂x2

)
=

∂

∂x2

(
∂φ

∂x1

)
.
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Now consider the following 2-form in R3:

ω2 = b̃12(x1, x2, x3) dx1∧dx2+b̃23(x1, x2, x3) dx2∧dx3+b̃13(x1, x2, x3) dx1∧dx3. (6.13)

At first this may look less general than the definition in (6.4) evaluated at n = 3. But
actually choosing b̃ij

.= bij − bji in (6.13) makes it exactly the same. For this reason,
(6.4) can be re-written as

∑
1≤i<j≤3 b̃ij dxi ∧ dxj , and more generally any differential

k-form in Rn can be written with the summations nested as

ωk
.=

∑
1≤i1<i2<...<ik≤n

ãi1,i2,...,ik
(x) dxi1 ∧ dxi2 ∧ . . . ∧ dxik

(6.14)

where 1 ≤ k ≤ n. Here the functions ãi1,i2,...,ik
(x) generalize the skew-symmetric part

of the bij and cijk discussed previously.
The exterior derivative of the above k-form4 is defined as

dωk
.=

∑
1≤i1<i2<...<ik≤n

⎛⎝ ∑
1<ik+1≤n

∂ãi1,i2,...,ik

∂xik+1

dxik+1

⎞⎠ ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxik
.

(6.15)
It follows from using this definition twice that

d(dωk) =
∑

1≤i1<···<ik≤n

⎛⎝ ∑
1≤ik+1,ik+2≤n

∂2ãi1,i2,··· ,ik

∂xik+1∂xik+2

dxik+2 ∧ dxik+1

⎞⎠∧dxi1 ∧ · · · ∧ dxik
.

But since each ãi1,i2,...,ik
(x) is a smooth function, the order of taking partial derivatives

does not matter. This introduces a symmetry. And any symmetry in the coefficients of
a differential form means that (6.5) will force the resulting sum to be equal to zero.
Therefore, the following general equality for any k-form on Rn is observed:

d(dωk) = 0. (6.16)

This can be thought of as the natural generalization of the classical rules ∇× (∇φ) = 0
and ∇ · (∇ × φ) = 0.

Returning to the 2-form ω2 in R3 defined in (6.13), the exterior derivative becomes

dω2 =

(
∂b̃23
∂x1

+
∂b̃13
∂x2

+
∂b̃12
∂x3

)
dx1 ∧ dx2 ∧ dx3. (6.17)

Since this is a 3-form, it follows that d(dω2) = 0, since that would be a 4-form in R3,
and would necessarily have wedge products involving differentials with repeated indices.

Now consider what happens to 1-forms in R3 when exterior derivatives are applied.
Let

ω1 = a1(x1, x2, x3)dx1 + a2(x1, x2, x3)dx2 + a3(x1, x2, x3)dx3.

Taking one exterior derivative using the rule (6.8), and simplifying using the properties
of the wedge product,

4Here k < n because the case k = n results in dωn = 0.
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dω1 =
(

∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 +

(
∂a3

∂x2
− ∂a2

∂x3

)
dx2 ∧ dx3 +

(
∂a3

∂x1
− ∂a1

∂x3

)
dx1 ∧ dx3.

(6.18)
It can also be verified that d(dω1) = 0, which is left as an exercise.

For those familiar with vector calculus (see the appendix for a review), (6.17) should
look familiar because it resembles the divergence of a vector field and (6.18) looks
curiously like the curl operation. Indeed, this will be discussed in Section 6.8.

The properties of differential forms were defined above in terms of the anti-symmetric
nature of pairwise transpositions of adjacent differentials. In practice it can be rather
tedious to look for the path of pairwise adjacent transpositions that convert a differential
form defined in one ordering of the differentials into another. Therefore, the powerful
and general language of permutations is useful in re-defining differential forms, and
relating them to their “dual object,” which is called a multi-vector. This will be defined
shortly. But first some additional properties and notation will be useful.

6.1.3 Products of Differential Forms

Exterior differentiation is one way to change a k-form into a (k + 1)-form. However, it
is not the only way. It is also possible to take the product of two forms. This product
follows the simple rule: Given forms ωp and αq that are respectively p- and q-forms
defined in a similar way as in (6.14), their product is the (p + q)-form

ωp ∧ αq
.=

⎛⎝ ∑
1≤i1<i2<...<ip≤n

ãi1,i2,...,ip(x) dxi1 ∧ dxi2 ∧ . . . ∧ dxip

⎞⎠ ∧

⎛⎝ ∑
1≤j1<j2<...<jq≤n

b̃j1,j2,...,jq (x) dxj1 ∧ dxj2 ∧ . . . ∧ dxjq

⎞⎠ . (6.19)

Therefore, if p + q > n, then ω ∧ α = 0, since in that case there is no way to avoid
repeated differentials.

The definition in (6.19) together with the properties of differential forms and the
properties of the wedge product in (6.5)–(6.7) are sufficient to explicitly compute the
product of any two differential forms. For example, consider the product of the following
two differential 1-forms on R3:

ω1 = a1 dx1 + a2 dx2 + a3 dx3 and α1 = b1 dx1 + b2 dx2 + b3 dx3.

Then
ω1 ∧ α1 = (a1 dx1 + a2 dx2 + a3 dx3) ∧ (b1 dx1 + b2 dx2 + b3 dx3).

Using the distributive law and anti-symmetry of the wedge product, this reduces to

ω1 ∧ α1 =a1b2 dx1 ∧ dx2 + a1b3 dx1 ∧ dx3 + a2b1 dx2 ∧ dx1

+ a2b3 dx2 ∧ dx3 + a3b1 dx3 ∧ dx1 + a3b2 dx3 ∧ dx2 (6.20)
=(a1b2 − a2b1) dx1 ∧ dx2 + (a1b3 − a3b1) dx1 ∧ dx3 + (a2b3 − a3b2) dx2 ∧ dx3.

Other wedge products are left as exercises.
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6.1.4 Concise Notation for Differential Forms and Exterior Derivatives

Long expressions involving differential forms such as (6.14) and (6.15) can be reduced
in size by defining an index set, In

k , that takes into account all non-redundant orderings
of indices in the expressions for k-forms on Rn. Then a k-form on Rn can be written
succinctly as

ωk =
∑
s∈In

k

asdxs

where each dxs is a k-fold wedge product consisting of differentials with indices drawn
from In

k . For example, the index set for a 2-form in R3 would be

I3
2 = {{1, 2}, {1, 3}, {2, 3}},

and if s = {1, 2} then dxs
.= dx1 ∧ dx2. As another example, the index sets for 2-forms

and 3-forms in R4 respectively would be

I4
2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

and
I4
3 = {{1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3, 4}}.

When the value of n is clear, the superscript will often be dropped, and the index set
will be written as Ik. Furthermore, many books make the notation even more condensed
by not even introducing the parameter “s” mentioned above. Then

ωk =
∑
Ik

aIk
dxIk

.

The ultimate in terse notation suppresses s, n, and k, in which case ω =
∑

I aIdxI .
Notation that is this light can make it very difficult for the uninitiated reader to pick
up the concepts, and so the presentation here will not go that far.

The exterior derivative of a k-form such as (6.15) can be written more succinctly
as [2, 3, 14]

dωk =
∑
Ik

daIk
∧ dxIk

=
∑
Ik

⎛⎝∑
j

∂aIk

∂xj
dxj

⎞⎠ ∧ dxIk
. (6.21)

It is a (k + 1)-form as discussed previously.
The product of a p-form and q-form is written concisely as

ωp ∧ αq =

⎛⎝∑
Ip

aIpdxIp

⎞⎠ ∧

⎛⎝∑
Iq

bIqdxIq

⎞⎠ =
∑
Ip

∑
Iq

(aIpdxIp) ∧ (bIqdxIq ). (6.22)

However, the one drawback of the concise notation is that the expression cannot be
simplified further without expanding everything out.

The introduction to differential forms presented in this section should be sufficient
for understanding the theorems in Section 6.8 and the use of differential forms in sub-
sequent chapters. The other sections in this chapter illustrate the relationship between
differential forms and mathematical objects called multi-vectors, which is provided for
completeness. In order to understand these concepts fully, a review of permutations is
helpful.
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6.2 Permutations

The set of all permutation operations on n elements together with the operation of
composition is called the symmetric group, or permutation group, and is denoted here as
Πn. It is a finite group containing n! elements. The elements of Πn can be arranged in
any order, and any fixed arrangement of the elements of Πn can be numbered as πi for
i = 0, ..., n!−1. It is convenient to retain the label π0 for the “do nothing” permutation.

An arbitrary element π ∈ Πn is denoted as

π =
(

1 2 . . . n
π(1) π(2) . . . π(n)

)
.

Changing the order of the columns in the above element does not change the element.
So in addition to the above expression,

π =
(

2 1 . . . n
π(2) π(1) . . . π(n)

)
=
(

n 2 . . . 1
π(n) π(2) . . . π(1)

)
where the rows of dots denote those columns not explicitly listed. The above expression
should be read as “the number i goes to π(i) for i = 1, ..., n.”

Two permutations can be composed by the rule

πi ◦ πj =
(

1 2 . . . n
πi(1) πi(2) . . . πi(n)

)(
1 2 . . . n

πj(1) πj(2) . . . πj(n)

)
.=
(

πj(1) πj(2) . . . πj(n)
πi(πj(1)) πi(πj(2)) . . . πi(πj(n))

)(
1 2 . . . n

πj(1) πj(2) . . . πj(n)

)
=
(

1 2 . . . n
πi(πj(1)) πi(πj(2)) . . . πi(πj(n))

)
∈ Πn.

This rule is not the only way to define compositions of permutations, but this is the
rule that will be used below.

6.2.1 Examples of Permutations and Their Products

For example, the product of the permutations

π1 =
(

1 2 3 4 5
2 1 5 4 3

)
and π2 =

(
1 2 3 4 5
2 5 1 3 4

)
is

π2 ◦ π1 =
(

1 2 3 4 5
5 2 4 3 1

)
and π1 ◦ π2 =

(
1 2 3 4 5
1 3 2 5 4

)
.

Since these are not the same, it can be concluded that the product of permutations is
not commutative.

An alternative way of denoting permutations is by decomposing them into cycles.
For instance in π1 above, 1 → 2 → 1, and 3 → 5 → 3 and 4 → 4. This means that we
can decompose π1 as a product of cycles:

π1 =
(

1 2 3 4 5
2 1 3 4 5

)(
1 2 3 4 5
1 2 5 4 3

)(
1 2 3 4 5
1 2 3 4 5

)
.
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In fact, there is no need to explicitly include the permutation corresponding to the cycle
of length 1 corresponding to 4 → 4, since it is the identity. While in general permutations
do not commute under the operation ◦, permutations corresponding to disjoint cycles
do commute. The shorthand notation for the above that reflects this commutativity of
cycles is π1 = (12)(35)(4) = (4)(12)(35) = (35)(4)(12) = . . .. Not every permutation
can be broken down into smaller cycles. For example, π2 = (12543).

6.2.2 The Sign of a Permutation

The final feature of permutations that will be important in the geometric and linear
algebraic computations that follow is the sign (or signature) of a permutation. A per-
mutation that swaps two entries while leaving the rest fixed is called a transposition.
Any permutation can be broken down into a product of transpositions. If that prod-
uct consists of an even number of transpositions, the sign of the original permutation
is designated as +1. If the product consists of an odd number of transpositions, the
sign of the original permutation is −1. In other words, sign(π) = (−1)|trans(π)| where
|trans(π)| denotes the number of transpositions in a decomposition of π. For example, in
π1 given above, there are two transpositions corresponding to the two cycles each with
two elements. So |trans(π1)| = 2 and sign(π1) = +1. For π2, it is possible to transform
the sequence 2, 5, 1, 3, 4 back to 1, 2, 3, 4, 5 by performing the following transpositions:

(2, 5, 1, 3, 4) → (1, 5, 2, 3, 4) → (1, 2, 5, 3, 4) → (1, 2, 3, 5, 4) → (1, 2, 3, 4, 5).

Alternatively, the following transpositions could be performed:

(2, 5, 1, 3, 4) → (2, 4, 1, 3, 5) → (2, 3, 1, 4, 5) → (1, 3, 2, 4, 5) → (1, 2, 3, 4, 5).

While the number of transpositions used to define a path from one permutation to
another is not unique since there are many paths, the minimal number of transpositions
required to restore the original ordering is unique. But regardless of whether or not that
minimal number is realized, the signature of any sequence of transpositions connecting
a permutation with the identity will be the same. Counting the number of arrows above,
it is clear that |trans(π2)| = 4 and so sign(π2) = +1.

Since the number of transpositions in the product of two transpositions will be

|trans(π1 ◦ π2)| = |trans(π1)| + |trans(π2)|,

it follows that
sign(π1 ◦ π2) = sign(π1) · sign(π2).

More generally the product of even permutations is even, the product of odd permuta-
tions is even, and the product of even with odd is odd.

6.2.3 Multi-Dimensional Version of the Levi–Civita Symbol

The Kronecker delta is defined as the function δ : Z × Z → {0, 1} such that

δi,j
.=
{

1 for i = j
0 for i = j.

One way to extend this to a multi-index version is
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δi1,i2,...,in

.=
{

1 for i1 = i2 = . . . = in
0 otherwise.

This is the same as the (n − 1)-fold product

δi1,i2,...,in = δi1,i2δi2,i3 . . . δin−1,in .

If each index is limited to have the N possible values 1,...,N , then only N out of the
Nn possible combinations of indices will result in the value of unity.

Another extension is [11]

δj1,j2,...,jn

i1,i2,...,in

.= det

⎡⎢⎢⎢⎢⎣
δi1,j1 δi1,j2 . . . δi1,jn

δi2,j1 δi2,j2 . . .
...

...
...

. . .
...

δin,j1 δin,j2 . . . δin,jn

⎤⎥⎥⎥⎥⎦ . (6.23)

The Levi–Civita symbol (sometimes called the alternating tensor) is defined as

εijk =

⎧⎨⎩
+1 if (i, j, k) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1)}
−1 if (i, j, k) ∈ {(2, 1, 3), (1, 3, 2), (3, 2, 1)}
0 otherwise.

Here the “otherwise” refers to any case where indices are repeated, i.e., ε112 = ε121 =
ε211 = 0 and likewise if 1 or 2 is replaced with 3, etc. Altogether there are 33 = 27
possibilities, and only six are non-zero.

Note that the first two conditional equalities in the above definition of the Levi–
Civita symbol can be written as

επ(1),π(2),π(3) = sgn(π) for π ∈ Π3.

These symbols are related by the equalities

3∑
i=1

εijkεimn = δjmδkn − δjnδkm and
1
2

3∑
i,j=1

εijkεijn = δkn. (6.24)

Letting n = k in the second equality above makes the right side equal unity. Summing
over k and multiplying by 2 then gives

∑3
i,j,k=1 εijkεijk = 6.

The Kronecker delta and Levi–Civita symbols are used both in classical mechanics
and throughout mathematics and physics. For example, the identity matrix is the one
defined in terms of its entries as I = [δij ], and the cross product of three-dimensional
vectors can be defined in component form as

(a × b)i =
3∑

j,k=1

εijkajbk. (6.25)

Given the above equation, it should come as no surprise that the extension of the concept
of a cross product to higher dimensions will be defined using a multi-dimensional version
of the Levi–Civita symbol, which is defined below.

Let In
.= (1, ..., n) denote the numbers 1 through n arranged in this order, and let

m : In → In, where the result of the mapping is stored in the same order as the inputs.
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That is, m : (1, ..., n) → (m(1), ...,m(n)). If the mapping is not one-to-one, the repeated
values will be stored. In the latter case, the result of applying this mapping to I will
be viewed as a multi-set5 with n entries. For example, if n = 3, m might be a function
m(1, 2, 3) = (2, 3, 1) or m(1, 2, 3) = (1, 2, 1). That is, m will either be a permutation, or
it will produce a multi-set in which some entries are repeated and others are omitted.
In this context, the multi-dimensional Levi–Civita symbol is defined as

εm(1),m(2),...,m(n)
.=
{

sgn(m) for m ∈ Πn

0 otherwise .

In other words, it again will take the values +1, −1, or 0 depending on whether m is
an even or odd permutation, or not a permutation at all. Letting ik denote m(k), the
multi-dimensional versions of (6.24) can be written as [11]

εi1,i2,...,in
εj1,j2,...,jn

= δj1,j2,...,jn

i1,i2,...,in
and

n∑
i1,i2,...,in=1

εi1,i2,...,in
εi1,i2,...,in = n! (6.26)

because out of the nn possible combinations of indices, only the subset corresponding
to permutations produces a non-zero contribution to the sum. In a similar way, for an
nth order tensor, A = [ai1,i2,...,in

],

n∑
i1,i2,...,in=1

εi1,i2,...,inai1,i2,...,in
=
∑

π∈Πn

sgn(π)aπ(1),π(2),...,π(n).

Knowing this can be useful in relating some of what follows in subsequent sections to
definitions given in some older books. Note that sometimes it will be useful to use the
shorthand

ε(π) = επ(1),π(2),...,π(n).

6.3 The Hodge Star Operator

Given a differential k-form on Rn,

ω =
∑

1≤i1<i2<...<ik≤n

ai1,...,ik
dxi1 ∧ dxi2 ∧ . . . ∧ dxik

,

the Hodge star operator produces from this k-form the (n − k)-form on Rn, denoted as
∗ω, that results from the substitution

dxi1 ∧ dxi2 ∧ . . . ∧ dxik
−→ sgnπ dxj1 ∧ dxj2 ∧ . . . ∧ dxjn−k

together with an additional summation over {j1, ..., jn−k} where

π =
(

1 . . . k k + 1 . . . n
i1 . . . ik j1 . . . jn−k

)
and {i1, ..., ik} ∩ {j1, ..., jn−k} = Ø.

The latter condition ensures that π is in fact a permutation.
5Unlike a usual set, in which each element appears once, in a multi-set, elements can appear

several times.
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Explicitly,

∗ω .=
∑

i1 < i2 < . . . < ik
j1 < j2 < . . . < jn−k

sgn
(

1 . . . k k + 1 . . . n
i1 . . . ik j1 . . . jn−k

)
ai1,...,ik

dxj1 ∧ . . . ∧ dxjn−k
.

(6.27)
Due to the anti-symmetric nature of the wedge product, the condition {i1, ..., ik} ∩
{j1, ..., jn−k} = Ø need not be enforced explicitly when k > 1. If this condition is
violated, the wedge products involving terms that are common between the two sets of
indices will be equal to zero. Therefore, it does not matter whether or not π (or the sign
of π) is defined when π is not actually a permutation since the result will multiply zero.
When k = 1 the condition either needs to be enforced, or sgnπ should be defined to be
zero when π is not a permutation.

From the properties of permutations, it can be shown that the Hodge star operator
applied twice, ∗(∗ω) = ∗ ∗ ω, results in

∗ ∗ ω = (−1)k(n−k)ω. (6.28)

Now consider some examples. If φ(x) is a 0-form on Rn (i.e., a function Rn → R),
then

∗φ .= φdx1 ∧ . . . ∧ dxn.

If ω = a1 dx1 + a2 dx2 is a 1-form on R2, then

∗ω =
∑

j

{
sgn
(

1 2
1 j

)
a1dxj + sgn

(
1 2
2 j

)
a2dxj

}
= a1 dx2 − a2 dx1.

If ω = a1 dx1 + a2 dx2 + a3 dx3 is a 1-form on R3, then

∗ω = a1 dx2 ∧ dx3 − a2 dx1 ∧ dx3 + a3 dx1 ∧ dx2.

If ω = a12 dx1 ∧ dx2 + a13 dx1 ∧ dx3 + a23 dx2 ∧ dx3 is a 2-form on R3, then

∗ω = a12 dx3 − a13 dx2 + a23 dx1.

If ω = a dx1 ∧ dx2 ∧ dx3 is a 3-form on R3, then ∗ω = a.
The beauty of the Hodge star operator will become apparent at the end of this

chapter when it is used to restate the integral theorems of vector calculus in a concise
form that generalizes nicely to non-Euclidean settings. One reason for this is that if
ω =

∑
i aidxi is a 1-form on Rn, and a = [a1, ..., an]T , then it can be shown that the

exterior derivative of ∗ω is the n-form

d(∗ω) = (div a) dx1 ∧ . . . ∧ dxn. (6.29)

And furthermore, if φ : Rn → R, then the Hodge star operator of the 1-form dφ is

d(∗dφ) = div(gradφ) dx1 ∧ . . . ∧ dxn. (6.30)
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6.4 Tensor Products and Dual Vectors

A tensor product of two vectors a,b ∈ Rn can be defined as

a ⊗ b .= abT ∈ Rn×n. (6.31)

This can be thought of as an operation that produces a two-dimensional matrix from
two column vectors. Sometimes this is referred to as an outer product, and is related to
the inner product by the equality tr(a ⊗ b) = a · b.

The elements of the resulting matrix are (a ⊗ b)ij = aibj . The tensor product of
three vectors can be defined to be the n × n × n array indexed by i, j, k with entries

((a ⊗ b) ⊗ c)ijk = (a ⊗ (b ⊗ c))ijk = (a ⊗ b ⊗ c)ijk = aibjck.

This extends in an obvious way to higher dimensions. Furthermore, the vectors can be
allowed to have different dimensions, resulting in a rectangular box of numbers, rather
than square or cubic array.

The dual space of Rn consists of all linear functions that take in vectors from Rn

and return real numbers. This dual space can be thought of as being equivalent to all
real n-dimensional row vectors, which, after multiplication with a vector in Rn, results
in a real scalar. In other words, if V = Rn and v ∈ Rn, then any ϕ ∈ (Rn)∗ (the dual
of Rn) can be defined as ϕ(v) = wT v for some w ∈ Rn. A function ϕ(v) is sometimes
called a dual vector. It contains the same information as wT . Whereas the concept of
the transpose makes sense for vectors in Rn, the concept of a dual generalizes to more
abstract vector spaces.

Tensor products can be defined in more general contexts than (6.31) by using ele-
ments of the dual space. These more general tensor products are constructed as follows
[7]: Let V and W be vector spaces with elements v and w, respectively. Let ϕ1 ∈ V ∗

and ϕ2 ∈ W ∗. Then for any (v,w) ∈ V × W , define

(ϕ1 ⊗ ϕ2)(v,w) .= ϕ1(v)ϕ2(w). (6.32)

Since ϕ1 and ϕ2 are both linear functions, the tensor product is a bilinear function:

(ϕ1 ⊗ ϕ2)(a1v1 + a2v2,w) = a1(ϕ1 ⊗ ϕ2)(v1,w) + a2(ϕ1 ⊗ ϕ2)(v2,w)
(ϕ1 ⊗ ϕ2)(v, a1w1 + a2w2) = a1(ϕ1 ⊗ ϕ2)(v,w1) + a2(ϕ1 ⊗ ϕ2)(v,w2).

For example, if V = Rn, then for v,w ∈ Rn and ϕ1(v) .= aT v and ϕ2
.= bT w,

(ϕ1 ⊗ ϕ2)(v,w) = (aT v)(bT w) = vT (abT )w.

At the core of this is the outer product in (6.31), and so when V = Rn it can be
convenient to blur the distinction between ϕ1 ⊗ϕ2 and abT while keeping in mind that
the ϕ1 ⊗ ϕ2 construction is more general.

Returning to the more general case, the tensor product of dual vectors can be iterated
as ϕ1 ⊗ ϕ2 ⊗ . . . ⊗ ϕn due to the associative property

(ϕ1 ⊗ ϕ2) ⊗ ϕ3 = ϕ1 ⊗ (ϕ2 ⊗ ϕ3).

A k-fold tensor product of dual vectors can take as its domain the k-fold Cartesian
product of a vector space. The dimension of this k-fold Cartesian product is the same
as the dimension of a k-fold tensor product of vectors. And so, a k-fold tensor product
of dual vectors can be thought of as a function that takes in a k-fold tensor product of
vectors and returns a scalar.
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6.5 Exterior Products

This subsection begins by presenting the concept of the exterior product of two vectors
in a concrete way as an alternating sum of tensor products. From this concrete starting
point, the abstract definitions are put into context.

6.5.1 A Concrete Introduction to Exterior Products

The cross product in three-dimensional space can be defined using the tensor product
of vectors. First let

a ∧ b .=
1
2

[a ⊗ b − b ⊗ a] .

This is called an exterior product (or wedge product) of the vectors. Explicitly, this
matrix has the form

a ∧ b .=
1
2

⎛⎝ 0 a1b2 − a2b1 a1b3 − a3b1
a2b1 − a1b2 0 a2b3 − a3b2
a3b1 − a1b3 a3b2 − b3a2 0

⎞⎠ .

Note that since scalar multiplication is commutative, this is a skew-symmetric matrix
with entries that are functions of the vectors a and b:

a ∧ b = −(b ∧ a).

This is reminiscent of that which was postulated for differential forms in (6.5).
This 3 × 3 skew-symmetric matrix has three independent pieces of information that

can be arranged in a three-dimensional vector. The � operation can be defined to convert
a ∧ b into a vector by extracting the three non-zero independent entries and arranging
them as

(a ∧ b)� =
1
2

⎛⎝a2b3 − b2a3
a3b1 − b3a1
a1b2 − a2b1

⎞⎠ . (6.33)

When arranged in this way, (a ∧ b)� = 1
2a × b. While the above definition of the �

operation is natural in some sense for R3 since it relates to the familiar cross-product
operation, it does not generalize well. In higher dimensions a more natural way to define
the ∨ of a ∧ b would be to arrange the entries lexicographically6 as [a1b2 − a2b1, a1b3 −
a3b1, a2b3 − b2a3]T . This is illustrated in Exercises 6.12–6.15. Note that there is also a
sign change in this new definition of ∨ relative to � in (6.33), which will no longer be
used.

If a,b ∈ Rn, then a∧b will have n(n−1)/2 independent entries. These too could be
arranged in a long column vector, but there is no need to do so at this point. Rather,
a ∧ b will itself be referred to as a 2-vector.

The exterior product of multiple vectors from the same vector space, v1, ...,vk ∈ V ,
can be defined as

6In general a lexicographical ordering of a string of characters, each of which has a natural
ordering, arranges the first character of each string according to the ordering for that character,
followed by ordering of the second character, etc. This is the way a dictionary is organized with
the usual alphabetical ordering of characters. The same applies to natural numbers ordered in
the usual way.



208 6 Differential Forms

v1 ∧ . . . ∧ vk =
1
k!

∑
π∈Πk

sgn(π)vπ(1) ⊗ . . . ⊗ vπ(k). (6.34)

The result is called a multi-vector. Here k can be less than or equal to the dimension of
V , and in this particular case v1 ∧ . . . ∧ vk is called a k-vector. The vector space of all
k-vectors is denoted as Λk(V ) or Λk V . A k-vector can be viewed as a block of numbers
in a k-dimensional array (in which each index can take n values) that has particular
symmetries. Or, by defining a “∨” operator, in analogy with (6.33), the non-redundant
entries in the k-dimensional array can be extracted and arranged in a single column

vector. As will be shown below, this k-vector would have
(

n
k

)
entries.

Since the concept of tensor products can be defined both for vectors in V and for
dual vectors in V ∗, it follows that Λk(V ∗) can be constructed as

ϕ1 ∧ . . . ∧ ϕk
.=

1
k!

∑
π∈Πk

sgn(π)ϕπ(1) ⊗ . . . ⊗ ϕπ(k). (6.35)

Rather than calling this a dual-k-vector or k-dual-vector, it is called a k-form. Substi-
tution of a differential one-form for each ϕi in (6.35) results in the differential k-forms
discussed earlier in this chapter. This establishes an equivalence:

Λk(V ∗) ∼= Ωk(V ).

With the concrete definition in (6.35) in mind, the modern abstract definition of exterior
products can be more easily grasped.

6.5.2 Abstract Definition of the Exterior Product of Two Vectors

An alternative (more abstract) definition of the exterior product of vectors to the one
given in the previous section is used in many books on differential forms. This is reviewed
here in order to make it easier to reconcile the presentations provided in different books.

To begin, let V = Rn and {e1, ..., en} be the natural basis, and let p = 0, 1, 2, ..., n.
For any vectors u,v,w ∈ Rn and real numbers a, b ∈ R, an abstract wedge product is
defined to take pairs of vectors in V , and return a vector in a new vector space W , i.e.,
∧ : V × V → W , while obeying the following rules:

(au + bv) ∧ w = a(u ∧ w) + b(v ∧ w) (6.36)
w ∧ (au + bv) = a(w ∧ u) + b(w ∧ v) (6.37)

v ∧ v = 0 (6.38)
{ei ∧ ej | i, j ∈ {1, ..., n}} spans W. (6.39)

As a consequence of (6.36)–(6.39),

w ∧ v = −v ∧ w. (6.40)

W is called Λ2V , and products of the form v∧v are called 2-vectors. The definitions
Λ0V = R and Λ1V = V can also be made.7

7In some books Λ is denoted as
∧

.
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6.5.3 The Exterior Product of Several Vectors

The pth exterior power of V , denoted ΛpV , is a vector space with elements that are
p-vectors of the form

v1 ∧ v2 ∧ . . . ∧ vp ∈ ΛpV ∀ vi ∈ V,

where for i = 1, ..., p and j > i the p-fold wedge product must satisfy8

w1 ∧ . . . ∧ wi−1 ∧ (au + bv) ∧ wi+1 ∧ . . . ∧ wp = (6.41)

a(w1 ∧ . . . ∧ wi−1 ∧ u ∧ wi ∧ . . . ∧ wp) + b(w1 ∧ . . . ∧ wi−1 ∧ v ∧ wi ∧ . . . ∧ wp)

w1 ∧ . . . ∧ wi−1 ∧ u ∧ wi+1 ∧ . . . ∧ wj−1 ∧ u ∧ wj+1 . . . ∧ wp = 0 (6.42)

and
{ei1 ∧ ei2 ∧ . . . ∧ eip | 1 ≤ i1 < i2 < . . . < ip ≤ n} spans ΛpV (6.43)

for all a, b ∈ R and u,v,w1, ...,wp ∈ V .
From (6.43) it follows that the dimension of the vector space ΛpV is

dim(ΛpV ) =
(

n
p

)
=

n!
(n − p)!p!

(6.44)

for p ∈ {0, 1, 2, ..., n}. Note that Λ0V and ΛnV are both one-dimensional vector spaces
(hence equivalent to R), and Λ1V and Λn−1V are equivalent to V = Rn. To be more
precise, the word “equivalent” here means isomorphic as vector spaces, as defined in the
appendix.

Furthermore, from the combination of the above rules, it can be shown that [5, 3]

vπ(1) ∧ vπ(2) ∧ . . . ∧ vπ(p) = sgn(π)v1 ∧ v2 ∧ . . . ∧ vp (6.45)

where π is a permutation on n letters and sgn(π) ∈ {−1,+1} with +1 corresponding to
an even number of pairwise transpositions and −1 corresponding to the odd case. See
Section 6.2 and the appendix for examples.

As an example that demonstrates the calculation of exterior products of vectors, let
v,w ∈ R2. Then

v ∧ w = (v1e1 + v2e2) ∧ (w1e1 + w2e2) = (v1w2 − v2w1) e1 ∧ e2.

Similarly, if A ∈ R2×2, it is easy to see that (Av) ∧ (Aw) can be expanded out as

[(a11v1 + a12v2)e1 + (a21v1 + a22v2)e2] ∧ [(a11w1 + a12w2)e1 + (a21w1 + a22w2)e2]
= (a11a22 − a12a21)(v1w2 − v2w1) e1 ∧ e2

= (detA)v ∧ w.

Generalizations of this observation are explained in the following section.

8Of course, when i = 1, 2, p−1, p these expressions need to be modified so as to make sense,
since w0 and wp+1 are not defined.
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6.5.4 Computing with Exterior Products

Recall from the appendix that permutations enter in the definition of the determinant
of a matrix. And there is a connection here as well. Namely, if A ∈ Rn×n, then [5, 3]

(Av1) ∧ (Av2) ∧ . . . ∧ (Avn) = (detA)(v1 ∧ v2 ∧ . . . ∧ vn) ∈ ΛnV. (6.46)

In fact, using this formula twice (once with A and once with B) gives

(ABv1) ∧ (ABv2) ∧ . . . ∧ (ABvn) = (detA)((Bv1) ∧ (Bv2) ∧ . . . ∧ (Bvn))
= (detAdetB)(v1 ∧ v2 ∧ . . . ∧ vn).

But direct evaluation gives

((AB)v1) ∧ ((AB)v2) ∧ . . . ∧ ((AB)vn) = det(AB)(v1 ∧ v2 ∧ . . . ∧ vn).

Picking off the coefficients reproduces the well-known fact that

det(AB) = detA detB. (6.47)

As another immediate consequence of (6.46), it is clear that if vi = ei, and if A is an
orthogonal matrix, a change of orthogonal basis of ΛnV can be implemented by making
an orthogonal change of basis in V .

The determinant can be viewed as a special case of a more general set of functions
of a matrix generated from exterior products. More specifically, the quantity ΛpA can
be defined so as to satisfy

(Av1) ∧ (Av2) ∧ . . . ∧ (Avp) = (ΛpA)(v1 ∧ v2 ∧ . . . ∧ vp) ∈ ΛpV. (6.48)

Here p ∈ {1, 2, ..., n} whereas (6.46) holds for the special case when p = n. In the
exercises the explicit form of ΛpA is computed for several concrete cases.

Following the same arguments that led to (6.47), but now using (6.48) in place of
(6.46),

Λp(AB) = Λp(A)Λp(B). (6.49)

6.5.5 The Exterior Product of Two Exterior Products

If v = v1 ∧ v2 ∧ . . . ∧ vp ∈ ΛpV and u = u1 ∧ u2 ∧ . . . ∧ uq ∈ ΛqV , then there exists a
unique way to construct v ∧ u ∈ Λp+qV . Namely,

v ∧ u = (v1 ∧ v2 ∧ . . . ∧ vp) ∧ (u1 ∧ u2 ∧ . . . ∧ uq).

Given three such exterior products, v ∈ ΛpV , u ∈ ΛqV , and w ∈ ΛrV , the following
properties follow from this definition [3]:

(av + bu) ∧ w = a (v ∧ w) + b (u ∧ w) (6.50)
w ∧ (av + bu) = a (w ∧ v) + b (w ∧ u) (6.51)

(v ∧ u) ∧ w = v ∧ (u ∧ w) (6.52)
v ∧ u = (−1)pq(v ∧ u) (6.53)

where in (6.50) p = q, and in (6.51) q = r. If v ∈ ΛpV and u ∈ ΛqV , then [5, 3]

(Λp+qA)(v ∧ u) = [(ΛpA)(v)] ∧ [(ΛqA)(u)]. (6.54)
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6.5.6 The Inner Product of Two Exterior Products

If V is an inner product space (e.g., Rn with inner product (v,w) = vT w), then an
inner product on ΛpV can be defined relative to the inner product on V as follows:

(u,v)p
.= det

⎡⎢⎢⎢⎢⎣
(u1,v1) (u1,v2) . . . (u1,vp)

(u2,v1) (u2,v2) . . .
...

...
...

. . .
...

(up,v1) (up,v2) . . . (up,vp)

⎤⎥⎥⎥⎥⎦ (6.55)

where v = v1 ∧ v2 ∧ . . . ∧ vp and u = u1 ∧ u2 ∧ . . . ∧ up.

6.5.7 The Dual of an Exterior Product

If vi ∈ V and ϕj ∈ V ∗, then ϕj(vi) ∈ R. However, since {ϕj} forms a vector space
(which in the case when V = Rn is isomorphic to the vector space consisting of trans-
posed vectors, or the Hermitian conjugate in the complex case) their exterior products
can be computed also. The space of all dual p-vectors is denoted Λp(V ∗). That is,

ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕp ∈ Λp(V ∗)

and
Λp(V ∗) = (ΛpV )∗.

The dual exterior product evaluated on the exterior product of the same dimension
is computed as

(ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕp) · [v1 ∧ v2 ∧ . . . ∧ vp] =
∑

π∈Πp

sgn(π)ϕ1(vπ(1))ϕ2(vπ(2)) . . . ϕp(vπ(p))

= det

⎡⎢⎢⎢⎢⎣
ϕ1(v1) ϕ1(v2) . . . ϕ1(vp)

ϕ2(v1) ϕ2(v2) . . .
...

...
...

. . .
...

ϕp(v1) ϕp(v2) . . . ϕp(vp)

⎤⎥⎥⎥⎥⎦ ∈ R. (6.56)

It should not come as a surprise that (6.56) and (6.55) are essentially the same, since
associated with each linear function ϕ ∈ V ∗ is a vector u ∈ V such that ϕ(v) = (u,v)
for all v ∈ V .

6.6 Invariant Description of Vector Fields

Given a differentiable function f : Rn → R, the directional derivative (in the direction
a, and evaluated at x ∈ Rn) is

(Daf)(x) .=
d

dt
f(x + ta)

∣∣∣∣
t=0

. (6.57)

If in addition to being differentiable, f(x) is analytic, then for fixed x and a the function
f(x,a)(t) = f(x+ ta) can be expanded in a one-dimensional Taylor series in t. Following
this by taking the derivative d/dt and setting t = 0 yields
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(Daf)(v) = a1
∂f

∂x1

∣∣∣∣
x=v

+ . . . + an
∂f

∂xn

∣∣∣∣
x=v

= a · (∇xf)|x=v . (6.58)

Here |x=v means evaluation of the function by substituting x with v. This will be written
in shorthand as |v. Equation (6.58) can also be viewed as a direct application of the
chain rule.

As a is allowed to visit all possible values in Rn, the set

V = {(Daf)(v) | a ∈ Rn} (6.59)

forms a vector space with the operations of addition, +, and scalar multiplication, ·,
following from the linearity property of derivatives:

(Dα·a+β·bf)(v) = α · (Daf)(v) + β · (Dbf)(v).

The above properties hold for any differentiable function f ∈ C1(Rn), and so it is
convenient to think of

B =
{

∂

∂x1

∣∣∣∣
v
, ...,

∂

∂xn

∣∣∣∣
v

}
as a basis for the vector space (V,+, ·). If a = a(v) =

∑n
i=1 ai(v)ei is a vector field on

Rn, then so too is

A(v) =
n∑

i=1

ai(v)
∂

∂xi

∣∣∣∣
v
, or A =

n∑
i=1

ai
∂

∂xi
. (6.60)

The second expression is shorthand for the first. In this notation, the application of a
vector field to a function results in a directional derivative:

Af = Daf. (6.61)

The Lie bracket of two such vector fields is defined as

[A,B](f) = A(Bf) − B(Af) (6.62)

where each vector field is evaluated at the same value of v.
Why go through all of this trouble when {ei} is a perfectly good basis for Rn? Two

answers to this question are: (a) the form of (6.60) is independent of the basis used; and
(b) it generalizes better to the intrinsic study of manifolds.

As a demonstration of point (a), consider the smooth and invertible deformation of
space g : Rn → Rn, and let x = g(x′) and v = g(v′). The Jacobian of this transforma-
tion is

J =
∂x

∂(x′)T
∈ Rn×n.

In component form this is Jij = ∂xi/∂x
′
j , and the elements of the inverse Jacobian are

J ij = ∂x′
i/∂xj .

Let f ′(x′) = f(g(x′)). Then f ′(g−1(x)) = f(x). From the chain rule,

∂f

∂xi
=

n∑
j=1

∂f ′

∂x′
j

∂x′
j

∂xi
=

n∑
j=1

Jji ∂f ′

∂x′
j

.

Then
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A(v)f =
n∑

i=1

ai(v)
∂f

∂xi

∣∣∣∣
v

=
n∑

j=1

(
n∑

i=1

Jji(x′)ai(g(x′))

)
∂f ′

∂x′
j

∣∣∣∣∣
v′

.

Therefore, if
a′(x′) = [J(x′)]−1a(g(x′)),

or equivalently,
a(x) = J(g−1(x))a′(g−1(x)),

then
A(v)f = A′(v′)f ′. (6.63)

In the special case when a(x) = A0x and g(y) = G0y where A0 and G0 are invertible
constant matrices, (6.63) holds with a′(x′) = (G−1

0 A0G0)x′ = A′
0x

′.
In the modern view, a(x) /∈ Rn. Rather, the tangent vector A(x) as defined in

(6.60) belongs to a new space called the tangent space to Rn at the point x. This is
denoted as A ∈ TxRn. In a similar way, when considering a manifold, M (i.e., higher-
dimensional generalization of a simple curve or surface), a point in the manifold (which
is not necessarily described as a vector) is denoted as x ∈ M , and a vector in the tangent
space to M at x is denoted as TxM .

Why go through all of this trouble when a perfectly valid definition of vector fields
already existed? Detailed answers can be found in [1, 3, 14]. The short answer is that
there is a bijective mapping between the set of all a(x)’s and the set of all A(x)’s, and
so for any a(x) there is a unique A(x), and vice versa. And it is A(x) (rather than a(x))
that has some nice properties that are used in the following section, which in turn are
useful in describing vector fields on manifolds in a way that is independent of how they
are embedded in a higher-dimensional Euclidean space.

6.7 Push-Forwards and Pull-Backs in Rn

6.7.1 General Theory

Let U and V be two open subsets of Rn that are related to each other through a
transformation ψ : U → V that is invertible, and both ψ and ψ−1 are smooth (i.e.,
infinitely differentiable). Then ψ is called a diffeomorphism.

Now suppose that there is a smooth function f : V → R. The differential of the
diffeomorphism ψ is denoted as dψ(x), and is defined by the equality

(dψ(x)A)f .= Af(ψ(x)) (6.64)

for any smooth f , where A is a vector field as interpreted in the modern sense in (6.61).
The definition of the differential in (6.64) is related to the Jacobian Dψ = [∂ψi/∂xj ],
where Dψ is shorthand for (Dψ)(x), by the fact that [3]

B = dψ(x)A ⇐⇒ b = [Dψ]a.

However, (6.64) would not work if a were substituted for A. Henceforth in this section
boldface will be dropped and vectors interpreted in the form of v will be used in order
to be consistent with the literature.

Now suppose that a vector field is defined on U , such that for every x ∈ U , we have
a vector X(x) ∈ TxRn ∼= Rn. (Note that X(x) need not be confined to U .) Using the
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function ψ, the vector field X can be used to define a vector field Y on V by assigning
to each y ∈ V a vector Y (y) = ψ∗X(y) where ψ∗X is called a push-forward (vector
field), and is defined by the expression

ψ∗X(y) .= dψ(x)(X(ψ−1(y))). (6.65)

As pointed out in [3], the above equation can be expressed in the commutative diagram:

x ∈ U
ψ

X

y ∈ V

ψ∗X

TxRn

dψ
TyRn

The pull-back ψ∗ω is defined for any 1-form ω by the equality [3, 4, 14]

(ψ∗ω) · X(x) .= ω · (ψ∗X)(y) (6.66)

where X is a vector field on U and ψ∗X is the push-forward vector field on V . The
syntax is “ψ∗ω is the pull-back of ω.” The definition in (6.66) reflects the fact that X
and ψ∗X are 1-vectors and ω and ψ∗ω are 1-forms, and the result of dotting a 1-form
and a 1-vector is a scalar.

The pull-back of a p-form ω is defined by the expression

(ψ∗ω) · [X1(x) ∧ . . . ∧ Xp(x)] .= ω · [(ψ∗X1)(y) ∧ . . . ∧ (ψ∗Xp)(y)] (6.67)

where the dot is interpreted as in (6.56).
The pull-back of a form can be defined more generally, i.e., it is not restricted to the

case of diffeomorphisms. But this is the case that will be most common in the applica-
tions considered later. In the following subsection, examples illustrate calculations with
forms in detail.

6.7.2 Example Calculations

This subsection demonstrates the definitions in great detail.

Example 1: Forms and the Chain Rule

Let (x1, x2, x3), (r, φ, z), and (R,Φ,Θ) respectively denote Cartesian, cylindrical,
and spherical coordinates in R3, and the ranges of all parameters are chosen so as to
avoid the singularities at r = R = 0 and Θ = 0, π. Let⎛⎝x1

x2
x3

⎞⎠ = ζ(r, φ, z) =

⎛⎝ ζ1(r, φ, z)
ζ2(r, φ, z)
ζ3(r, φ, z)

⎞⎠ .=

⎛⎝ r cosφ
r sinφ

z

⎞⎠ (6.68)

and ⎛⎝ r
φ
z

⎞⎠ = ξ(R,Φ,Θ) =

⎛⎝ ξ1(R,Φ,Θ)
ξ2(R,Φ,Θ)
ξ3(R,Φ,Θ)

⎞⎠ .=

⎛⎝R sinΘ
Φ

R cosΘ

⎞⎠ . (6.69)
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Then ⎛⎝x1
x2
x3

⎞⎠ = ψ(R,Φ,Θ) =

⎛⎝ψ1(R,Φ,Θ)
ψ2(R,Φ,Θ)
ψ3(R,Φ,Θ)

⎞⎠ .=

⎛⎝R cosΦ sinΘ
R sinΦ sinΘ

R cosΘ

⎞⎠ (6.70)

where

ψ = ζ ◦ ξ (6.71)

(that is, the function ζ composed with the function ξ).
The differentials in Cartesian coordinates can be related to those in polar and spher-

ical coordinates as

dx1 = cosφdr − r sinφdφ; dx2 = sinφdr + r cosφdφ; dx3 = dz (6.72)

and

dx1 = cosΦ sinΘdR − R sinΦ sinΘdΦ + R cosΦ cosΘdΘ (6.73)
dx2 = sinΦ sinΘdR + R cosΦ sinΘdΦ + R sinΦ cosΘdΘ (6.74)
dx3 = cosΘdR − R sinΘdΘ. (6.75)

It follows that

dx1 ∧ dx2 = (cosφdr − r sinφdφ) ∧ (sinφdr + r cosφdφ)
= r(cos2 φ + sin2 φ) dr ∧ dφ

= r dr ∧ dφ

dx1 ∧ dx3 = cosφdr ∧ dz − r sinφdφ ∧ dz

dx2 ∧ dx3 = sinφdr ∧ dz + r cosφdφ ∧ dz

and

dx1 ∧ dx2 = R sin2 Θ dR ∧ dΦ − R2 sinΘ cosΘ dΦ ∧ dΘ

dx1 ∧ dx3 = −R cosΦdR ∧ dΘ − R sinΦ sinΘ cosΘ dΦ ∧ dR + R2 sinΦ sin2 Θ dΦ ∧ dΘ

dx2 ∧ dx3 = −R sinΦdR ∧ dΘ + R cosΦ sinΘ cosΘ dΦ ∧ dR − R2 cosΦ sin2 Θ dΦ ∧ dΘ.

Furthermore,

dx1 ∧ dx2 ∧ dx3 = r dr ∧ dφ ∧ dz (6.76)
dx1 ∧ dx2 ∧ dx3 = −R2 sinΘ dR ∧ dΦ ∧ dΘ. (6.77)

Example 2: Inverse Mappings and Push-Forward Vector Fields

Each of the mappings in the previous example can be inverted if the domain is
restricted to exclude the singularities. Then

⎛⎝ r
φ
z

⎞⎠ = ζ−1(x1, x2, x3) =

⎛⎜⎜⎜⎜⎝
ζ−1
1 (x1, x2, x3)

ζ−1
2 (x1, x2, x3)

ζ−1
3 (x1, x2, x3)

⎞⎟⎟⎟⎟⎠ .=

⎛⎜⎜⎜⎜⎝
(x2

1 + x2
2)

1
2

tan−1(x2/x1)

x3

⎞⎟⎟⎟⎟⎠ (6.78)

and
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⎛⎝R
Φ
Θ

⎞⎠ = ξ−1(r, φ, z) =

⎛⎜⎜⎜⎜⎝
ξ−1
1 (r, φ, z)

ξ−1
2 (r, φ, z)

ξ−1
3 (r, φ, z)

⎞⎟⎟⎟⎟⎠ .=

⎛⎜⎜⎜⎜⎝
(r2 + z2)

1
2

φ

tan−1(r/z)

⎞⎟⎟⎟⎟⎠ (6.79)

and
ψ−1 = (ζ ◦ ξ)−1 = ξ−1 ◦ ζ−1.

Given a vector field

V = v1(q)
∂

∂q1
+ . . . + vn(q)

∂

∂qn
=

n∑
i=1

vi(q)
∂

∂qi

(with v .= [v1, ..., vn]T ) in coordinates, q, the push-forward vector field is what this
vector field should appear as in the coordinates x = ψ(q). (Here ψ is referring to a
general transformation, i.e., not necessarily spherical coordinates.) The push-forward
can then be computed in terms of the inverse mapping and Jacobian matrix as

ψ∗V =
n∑

i=1

eT
i v∗

∂

∂xi
where v∗(x) .=

[
∂ψ

∂qT
v(q)

]∣∣∣∣
q=ψ−1(x)

(6.80)

and, as always, (ei)j = δij .
For example, given a vector field in cylindrical coordinates of the form

V = v1(r, φ, z)
∂

∂r
+ v2(r, φ, z)

∂

∂φ
+ v3(r, φ, z)

∂

∂z
,

then with q = [r, φ, z]T the Jacobian in this case is

∂ζ

∂qT
=

⎛⎝ cosφ −r sinφ 0
sinφ r cosφ 0

0 0 1

⎞⎠
and

∂ζ

∂qT

∣∣∣∣
q=ζ−1(x)

=

⎛⎝x1/(x2
1 + x2

2)
1
2 −x2 0

x2/(x2
1 + x2

2)
1
2 x1 0

0 0 1

⎞⎠
and the corresponding push-forward vector field in Cartesian coordinates is therefore

ζ∗V = v′
1(ζ

−1(x))
∂

∂x1
+ v′

2(ζ
−1(x))

∂

∂x2
+ v′

3(ζ
−1(x))

∂

∂x3
,

where

v′
i(ζ

−1(x)) = v′
i((x

2
1 + x2

2)
1
2 , tan−1(x2/x1), x3) and v′ =

∂ζ

∂qT
v.

Note that while the mappings ζ, ξ, and ψ are vector-valued and are therefore denoted
in bold above, in order to be consistent with the literature henceforth they are denoted
in the “lighter” (non-bold) notation, as was the case in the discussion earlier in this
section.
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Example 3: Forms and Composition of Transformations

Differential one-forms in different curvilinear coordinate systems are obtained from
those in Cartesian coordinates via the classical chain rule and composition of transfor-
mations and functions as

ω1 = a1(x)dx1 + a2(x)dx2 + a3(x)dx3

= a1(ζ(r, φ, z))(dr cosφ − dφ sinφ) (6.81)
+ a2(ζ(r, φ, z))(dr sinφ + dφ cosφ) + a3(ζ(r, φ, z))dz

.= ζ∗ω1

and

ω1 = a1(x)dx1 + a2(x)dx2 + a3(x)dx3

= a1(ξ(R,Φ,Θ))(cosΦ sinΘdR − R sinΦ sinΘdΦ + R cosΦ cosΘdΘ)
+a2(ξ(R,Φ,Θ))(sinΦ sinΘdR + R cosΦ sinΘdΦ + R sinΦ cosΘdΘ)
+a3(ξ(R,Φ,Θ))(cosΘdR − R sinΘdΘ)

.= ψ∗ω1.

In other words, ζ∗ω1 and ψ∗ω1 are simply ω1 as it appears in polar and spherical
coordinates, respectively.

Furthermore, given a form such as ζ∗ω1 that can be written as

β1 = b1(r, φ, z)dr + b2(r, φ, z)dφ + b3(r, φ, z)dz (6.82)

in polar coordinates, it is possible to compute

ξ∗β1 = b1(ξ(R,Φ,Θ))(sinΘdR + R cosΘdΘ) + b1(ξ(R,Φ,Θ))dΦ
+b1(ξ(R,Φ,Θ))(cosΘdR − R sinΘdΘ).

Amid this exercise in the chain rule, things become interesting with the observation
that

ξ∗(ζ∗ω1) = (ζ ◦ ξ)∗ω1. (6.83)

In other words, pull-backs can either be concatenated, or the transformations can be
composed and the corresponding pull-back can be calculated, and the result will be the
same!

Now suppose that we are given two generic one-forms, α1 and ω1 in Cartesian coor-
dinates. Then after some straightforward calculations, it is can be verified that9

ζ∗(α1 ∧ ω1) = ζ∗(α1) ∧ ζ∗(ω1) and ξ∗(β1 ∧ η1) = ξ∗(β1) ∧ ξ∗(η1)

where β1 and η1 are the same kind of form as that defined in (6.82). Also, when per-
formed directly, some tedious (though conceptually not difficult) calculations lead to

ψ∗(α1 ∧ ω1) = ψ∗(α1) ∧ ψ∗(ω1).

However, this tedium can be avoided by breaking the problem up into two simpler
problems and using (6.83) as follows:

9The notation ζ∗(ω1) and ζ∗ω1 mean exactly the same thing, but it is sometimes clearer to
use the former in writing expressions such as ζ∗(dω1) or ζ∗(ω1) ∧ ζ∗(α1) rather than ζ∗dω1 or
ζ∗ω1 ∧ ζ∗α1.
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ξ∗(ζ∗(α1 ∧ ω1)) = (ζ ◦ ξ)∗(α1 ∧ ω1) = ψ∗(α1 ∧ ω1).

On the other hand, choosing β1 = ζ∗α1 and η1 = ζ∗ω1 gives

ξ∗(β1) ∧ ξ∗(η1) = ξ∗(ζ∗α1) ∧ ξ∗(ζ∗ω1) = ψ∗(α1) ∧ ψ∗(ω1).

Indeed, in this regard there is nothing special about cylindrical and spherical coor-
dinates, and the above hold in general for pull-backs of differential one-forms.

And things become even more interesting when this exercise is attempted for two-
forms and three-forms, and it is concluded that for general differentiable transformations
ξ and ζ, and general forms ω and α the following hold:

ξ∗(ζ∗ω) = (ζ ◦ ξ)∗ω (6.84)

and
ξ∗(α ∧ ω) = ξ∗(α) ∧ ξ∗(ω). (6.85)

Another important property of the pull-back is that it is linear. This is left as an exercise
to prove.

Example 4: Pull-Backs and Exterior Derivatives of Forms

The exterior derivative of the 1-form ω1 in (6.81) was given in (6.18). If this is then
converted to cylindrical coordinates, then

ζ∗(dω1) =
(

∂a2

∂x1
− ∂a1

∂x2

)∣∣∣∣
x=ζ(r,φ,z)

r dr ∧ dφ

+
(

∂a3

∂x2
− ∂a2

∂x3

)∣∣∣∣
x=ζ(r,φ,z)

(sin θ dr ∧ dz + r cos θ dθ ∧ dz)

+
(

∂a3

∂x1
− ∂a1

∂x3

)∣∣∣∣
x=ζ(r,φ,z)

(cos θ dr ∧ dz − r sin θ dθ ∧ dz).

On the other hand,

d(ζ∗ω1) = d[a1(ζ(r, φ, z))(dr cosφ − dφ sinφ) + a2(ζ(r, φ, z))(dr sinφ + dφ cosφ)
+ a3(ζ(r, φ, z))dz]

= d[a1(ζ(r, φ, z)) cosφ + a2(ζ(r, φ, z)) sinφ)dr]
+ d[a2(ζ(r, φ, z) cosφ − a1(ζ(r, φ, z)) sinφ)dφ]
+ d[a3(ζ(r, φ, z))dz].

The first term can be expanded out as

∂

∂φ
[a1(ζ(r, φ, z)) cosφ + a2(ζ(r, φ, z)) sinφ] dφ ∧ dr +

∂

∂z
[a1(ζ(r, φ, z)) cosφ + a2(ζ(r, φ, z)) sinφ] dz ∧ dr =[

∂a1

∂ζT

∂ζ

∂φ
cosφ +

∂a2

∂ζT

∂ζ

∂φ
sinφ

]
dφ ∧ dr +

[−a1(ζ(r, φ, z)) sinφ + a2(ζ(r, φ, z)) cosφ] dφ ∧ dr +



6.7 Push-Forwards and Pull-Backs in Rn 219[
∂a1

∂ζT

∂ζ

∂z
cosφ +

∂a2

∂ζT

∂ζ

∂z
sinφ

]
dz ∧ dr

where the chain rule was used to obtain the right-hand side, and partial derivatives of ζ
are computed easily by referring back to (6.68). Similar expansions of the other terms,
together with re-collecting terms, lead to the equality

d(ζ∗ω1) = ζ∗(dω1).

This observation generalizes as

d(ψ∗ω) = ψ∗(dω) (6.86)

where ω is any k-form, and ψ∗ is the pull-back of any smooth mapping ψ : U → V
where U, V ∈ Rn. Equipped with the intuition gained by the above example, and the
general definition of pull-back and exterior derivative given earlier in this chapter, it is
not difficult to prove (6.86) using properties of Jacobians and multilinear algebra. Proofs
of this, as well as for (6.84) and (6.85), that circumvent the direct use of Jacobians can
be found in [3, 4, 5].

Example 5: Some Very Concrete Calculations

Consider the one-form

γ1 = x2
1 sinx2 dx1 + x3e

−x1 dx2 + cosx2 dx3 (6.87)

and the two-form

γ2 = x2
1 sinx2 dx1 ∧ dx2 + x3e

−x1 dx2 ∧ dx3 + cosx2 dx1 ∧ dx3. (6.88)

Both are forms on R3, where x = [x1, x2, x3]T ∈ R3 denotes Cartesian coordinates.
These are given the names γk to distinguish them from the generic forms denoted as
ω, α, β. The subscript k denotes that it is a k-form.

The exterior derivative of γ1 is computed as

dγ1 =
[

∂

∂x1
(x2

1 sinx2) dx1 +
∂

∂x2
(x2

1 sinx2) dx2 +
∂

∂x3
(x2

1 sinx2) dx3

]
∧ dx1

+
[

∂

∂x1
(x3e

−x1) dx1 +
∂

∂x2
(x3e

−x1) dx2 +
∂

∂x3
(x3e

−x1) dx3

]
∧ dx2

+
[

∂

∂x1
(cosx2) dx1 +

∂

∂x2
(cosx2) dx2 +

∂

∂x3
(cosx2) dx3

]
∧ dx3

= (x2
1 cosx2 dx2) ∧ dx1 + (e−x1 dx3 − x3e

−x1 dx1) ∧ dx2 + (− sinx2 dx2) ∧ dx3

= −(x2
1 cosx2 + x3e

−x1) dx1 ∧ dx2 − (e−x1 + sinx2) dx2 ∧ dx3. (6.89)

Some of the simplifications result from partial derivatives being zero, and others are due
to the fact that dx1 ∧ dx1 = dx2 ∧ dx2 = dx3 ∧ dx3 = 0 and dx1 ∧ dx2 = −dx2 ∧ dx1,
etc.

Similarly, the exterior derivative of γ2 is computed as
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dγ2 =
[

∂

∂x1
(x2

1 sinx2) dx1 +
∂

∂x2
(x2

1 sinx2) dx2

]
∧ dx1 ∧ dx2

+
[

∂

∂x1
(x3e

−x1) dx1 +
∂

∂x3
(x3e

−x1) dx3

]
∧ dx2 ∧ dx3

+
[

∂

∂x2
(cosx2) dx2

]
∧ dx1 ∧ dx3

= −x3e
−x1 dx1 ∧ dx2 ∧ dx3 − sinx2 dx2 ∧ dx1 ∧ dx3

= (sinx2 − x3e
−x1) dx1 ∧ dx2 ∧ dx3.

Taking the exterior derivative of dγ2 will clearly introduce repeated wedge products
of the form dx1 ∧ dx1 ∧ dx2 ∧ dx3, dx2 ∧ dx1 ∧ dx2 ∧ dx3, and dx3 ∧ dx1 ∧ dx2 ∧ dx3 that
are all equal to zero. From this it follows that d(dγ2) = 0.

In the case of the exterior derivative of dγ1,

d(dγ1) = − ∂

∂x3
(x2

1 cosx2 + x3e
−x1) dx3 ∧ dx1 ∧ dx2

− ∂

∂x1
(e−x1 + sinx2) dx1 ∧ dx2 ∧ dx3

= −e−x1(dx3 ∧ dx1 ∧ dx2 − dx1 ∧ dx2 ∧ dx3)
= 0,

which is just a special case of (6.16).
It is easy to verify by inspection that

γ1 ∧ γ1 = γ2 ∧ γ2 = 0.

It is not difficult to compute

γ1 ∧ γ2 = [x2
1x3e

−x1 sinx2 − x3e
−x1 cosx2 + x2

1 sinx2 cosx2] dx1 ∧ dx2 ∧ dx3

and
γ1 ∧ dγ1 = −[x2

1 + e−x1(x3 cosx2 + x2
1 sinx2)] dx1 ∧ dx2 ∧ dx3.

The Hodge star operator gives

∗γ1 = x2
1 sinx2 dx2 ∧ dx3 − x3e

−x1 dx1 ∧ dx3 + cosx2 dx1 ∧ dx2

and
∗γ2 = x2

1 sinx2 dx3 + x3e
−x1 dx1 − cosx2 dx2.

The forms γ1 and γ2 can be described in a curvilinear coordinate system rather than
Cartesian coordinates. Substituting (6.68) and (6.72) into (6.87) gives

ζ∗γ1 = [(r cosφ)2 sin(r sinφ)](cosφdr − r sinφdφ)
+ze−r cos φ(sinφdr + r cosφdφ) + cos(r sinφ) dz

= [r2 cos3 φ sin(r sinφ) + ze−r cos φ sinφ] dr
+[zre−r cos φ cosφ − r3 cos2 φ sinφ sin(r sinφ)] dφ
+ cos(r sinφ) dz. (6.90)

Computation of dγ1 in Cartesian coordinates as in (6.89) followed by substitution
of all xi and dxi represented in cylindrical coordinates as in (6.68) and (6.72) gives
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ζ∗(dγ1) = − [(r cosφ)2 cos(r sinφ) + ze−r cos φ] r dr ∧ dφ

− [e−r cos φ + sin(r sinφ)] (sinφdr ∧ dz + r cosφdφ ∧ dz). (6.91)

On the other hand, computing the exterior derivative of γ1 expressed in cylindrical
coordinates as in (6.90) gives

d(ζ∗γ1) =
[

∂

∂φ
(r2 cos3 φ sin(r sinφ) + ze−r cos φ sinφ)

]
dφ ∧ dr

+
[

∂

∂z
(r2 cos3 φ sin(r sinφ) + ze−r cos φ sinφ)

]
dz ∧ dr

+
[

∂

∂z
(zre−r cos φ cosφ − r3 cos2 φ sinφ sin(r sinφ))

]
dz ∧ dφ

+
[

∂

∂r
(zre−r cos φ cosφ − r3 cos2 φ sinφ sin(r sinφ))

]
dr ∧ dφ

+
∂

∂φ
[cos(r sinφ)] dφ ∧ dr

+
∂

∂r
[cos(r sinφ)] dr ∧ dz.

After expanding out these partial derivatives and rearranging terms it can be observed
that this is the same as (6.91), as must be the case for the definition of the exterior
derivative to be self-consistent.

6.8 Generalizing Integral Theorems from Vector Calculus

In this section, the integration of forms, and generalizations of Stokes’ theorem are
reviewed.

6.8.1 Integration of Differential Forms

Consider the linear function ϕ : Rn → R defined by

ϕ(x) = aT x =
n∑

i=1

aixi (6.92)

where each ai ∈ R is a constant. The differential of this linear map is

dϕ =
n∑

i=1

∂ϕ

∂xi
dxi =

n∑
i=1

aidxi.

Or, stated in another way, if the function xi : Rn → R is defined to extract the ith
coordinate of a vector as xi(v) = eT

i v = vi, then the collection of all

dxi(v)|v=x = dxi

for i = 1, ..., n forms a basis for the vector space of all such maps, V ∗.
The quantity dϕ is a differential 1-form. As discussed earlier, a differential k-form

can be constructed from the wedge product of k differential 1-forms. A differential k-
form, ω, on Rn can be defined with respect to Cartesian coordinates x = [x1, ..., xn]T ,
and a set of smooth functions {ai1,i2,...,ik

(x)} as
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ω =
∑

i1,i2,...,ik

ai1,i2,...,ik
(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxik

where 1 ≤ i1 < i2 < . . . < ik ≤ n.

The above equation can be written more concisely as

ω =
∑
Ik

aIk
dxIk

(6.93)

where Ik = {i1, i2, ..., ik} is any subset of {1, ..., n} consisting of k distinct numbers
written in strictly increasing order, aIk

= ai1,i2,...,ik
and dxIk

= dxi1 ∧dxi2 ∧ . . . ∧dxik
.

When k = n, and there is a change of coordinates x′(x),

dx′
1 ∧ dx′

2 ∧ . . . ∧ dx′
n = det

[
∂x′

i

∂xj

]
dx1 ∧ dx2 ∧ . . . ∧ dxn. (6.94)

This is almost the same as the usual change of coordinates for a differential volume
element in Rn:

dx′
1dx

′
2 . . . dx′

n =
∣∣∣∣det

[
∂x′

i

∂xj

]∣∣∣∣ dx1dx2 . . . dxn.

The important differences come from the facts that: (1) the order of multiplication
of differentials is unimportant in the latter expression, whereas the wedge product is
anti-commuting; (2) there is no absolute value sign on determinant in (6.94). These dif-
ferences become quite important, for example, when studying non-orientable manifolds,
or generalizing Stokes’ theorem in high-dimensional spaces. However, for most of the
mundane sorts of integration problems that arise in the probabilistic problems that will
be discussed in this work it suffices to write∫

Rn

f(x)dx1 ∧ dx2 ∧ . . . ∧ dxn =
∫

Rn

f(x)dx1dx2 . . . dxn (6.95)

with the understanding that the order of terms and bounds of integration will not be
changed.

6.8.2 The Inner Product of Forms

Multi-vectors form a vector space, and the inner product of multi-vectors with the
same dimension was defined in a natural way. It is natural to assume that differential
forms, which are derived from the dual of multi-vectors, should also lend themselves to
a natural definition of inner product. Such a product should take two differential forms
of the same dimensionality and return a scalar. In order to do so, it is expected that an
integral should be involved to cancel the “differential” aspect of a differential form.

Based on the discussion in the previous section, it really only makes sense to integrate
n-forms over Rn (or a body B ⊂ Rn). Given two n-forms, αn = a(x) dx1 ∧ . . . dxn and
βn = b(x) dx1 ∧ . . . dxn, their inner product can be defined as

〈αn, βn〉 .=
∫

B⊂Rn

a(x)b(x) dx1 . . . dxn.

This can be written in terms of the Hodge star operator as

〈αn, βn〉 =
∫

B

αn ∧ ∗βn =
∫

B

∗αn ∧ βn = 〈βn, αn〉
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where the wedge product of a 0-form and an n-form is interpreted as scalar multiplication
of the function defining the 0-form with the n-form.

The beauty of this approach is that it generalizes. If αk and βk are two k-forms on
B ⊂ Rn, then

〈αk, βk〉 .=
∫

B

αk ∧ ∗βk (6.96)

returns a scalar value and is consistent with all of the properties of an inner product.
For example, 〈αk, βk〉 = 〈βk, αk〉, it is bi-linear, etc.

6.8.3 Green’s Theorem for a Square Region in R2

Consider the bi-unit square B = [−1, 1]×[−1, 1] ⊂ R2 that has corners (−1,−1), (−1, 1),
(1,−1), and (1, 1). Let x ∈ B and ω = a1(x)dx1 + a2(x)dx2. Then∫

∂B

ω =
∫

∂B

a1(x)dx1 + a2(x)dx2 (6.97)

=
∫

B

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1dx2 (6.98)

=
∫

B

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 (6.99)

=
∫

B

dω. (6.100)

The equality in (6.98) is from the classical Green’s theorem. The rest are from the
definitions of forms and exterior derivatives.

In contrast, if ∗ω = a1dx2 − a2dx1, then from the divergence theorem in the plane,∫
∂B

∗ω =
∫

∂B

a · n ds

=
∫

B

div(a) dx1dx2

=
∫

B

d(∗ω)

where ds denotes the differential element of arc length along the boundary and (6.29)
was used to establish the final equality.

While the above statements are in fact true for any connected region B ⊂ R2 and
associated boundary ∂B, the computation in the general case involves knowing how
∗ω behaves with changes of coordinates. In contrast, restricting the discussion to the
bi-unit square allows all calculations to be performed in Cartesian coordinates.

6.8.4 Stokes’ Theorem for a Cube in R3

Now consider the cubic volume [−1, 1] × [−1, 1] × [−1, 1] ⊂ R3. All of the six faces of
the bounding cube are copies of the square region [−1, 1] × [−1, 1]. Let B denote the
union of some number of these faces, and let ∂B denote the boundary of B. In classical
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terms, B would be denoted as S and the boundary would be described by a piecewise
smooth parameterized curve, C. Note that in the present context B is now a surface in
R3 rather than a volume.

If ω = a1dx1 + a2dx2 + a3dx3, then from (6.18) and the classical version of Stokes’
theorem, ∫

∂B

ω =
∫

C

a · dx

=
∫

S

∇ × a dS

=
∫

B

d(ω).

6.8.5 The Divergence Theorem for a Cube in R3

Unlike in Stokes’ theorem in the previous subsection, now let B = [−1, 1] × [−1, 1] ×
[−1, 1] be a volume in R3. If ω = a1dx1 + a2dx2 + a3dx3, then ∗ω = a3dx1 ∧ dx2 −
a2dx1 ∧ dx3 + a1dx2 ∧ dx3 and d(∗ω) = div(a) dx1 ∧ dx2 ∧ dx3. Therefore, from the
classical divergence theorem in R3,∫

∂B

∗ω =
∫

∂B

a · n dS

=
∫

B

div(a) dV

=
∫

B

d(∗ω).

The pattern that emerges from the previous three subsections is that given an (n−1)-
form, α, on the (n − 1)-dimensional boundary, ∂B, of an n-dimensional domain, B,∫

∂B

α =
∫

B

dα. (6.101)

In some contexts α is defined directly, and in others α = ∗ω, when ω is a one-form.
The equality in (6.101) was not proved here, only observed repeatedly for n =

2, 3. The next chapter will sketch the proof for the more general case, and point to
the literature for more complete treatments. In that discussion it will be important to
understand how general k-forms transform under coordinate changes as a generalization
of (6.94), which will be addressed at the end of this chapter. But first a connection
between forms and diffusion equations is illustrated.

6.8.6 Detailed Examples

Example 1: Stokes’ theorem and the Bi-Unit Cube

As an example of Stokes’ theorem, consider the closed bi-unit block B = [−1, 1] ×
[−1, 1] × [−1, 1] ⊂ R3. The boundary of this body is the bi-unit cube, ∂B. While ∂B is
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not a smooth surface, it can be viewed as the limit of a series of smooth superquadric
surfaces of the form

x2n
1 + x2n

2 + x2n
3 = 1 where Z � n → ∞.

The integral over B of the form dγ2 (where γ2 is defined in (6.88)) can be computed as∫
B

dγ2 =
∫ 1

−1

∫ 1

−1

∫ 1

−1
(sinx2 − x3e

−x1) dx1dx2dx3 = 0.

The value of zero results because the functions f1(x2) = sinx2 and f2(x3) = x3 are odd
over the symmetric domains of integration −1 ≤ x2 ≤ 1 and −1 ≤ x3 ≤ 1.

The surface ∂B consists of six planar faces that appear in pairs. The integral of γ2
over ∂B then can be written as three parts:∫

∂B

γ2 = c1 + c2 + c3

where

c1 =
∫ 1

−1

∫ 1

−1
x3e

+1(−dx2dx3) +
∫ 1

−1

∫ 1

−1
x3e

−1dx2dx3 = 0

c2 =
∫ 1

−1

∫ 1

−1
cos(−1)(−dx1dx3) +

∫ 1

−1

∫ 1

−1
cos(+1)dx1dx3 = 0

c3 =
∫ 1

−1

∫ 1

−1
x2

1 sinx2(−dx1dx2) +
∫ 1

−1

∫ 1

−1
x2

1 sinx2dx1dx2 = 0.

The negative signs on the differential area elements appear when evaluating dxj ∧ dxi

as −dxi ∧ dxj = −dxidxj under the integral. This happens for faces with outward
normals pointing in negative coordinate directions. Each of the integrals in c1 and c3
happens to be zero due to the fact that the integrands are odd functions. However, c2
vanishes because the two integrands cancel as a result of the signed area elements and
the evenness of the cosine function.

This example has demonstrated that
∫

∂B
γ2 =

∫
B
dγ2, where B is a three-dimensional

domain and ∂B is its two-dimensional boundary. The next example illustrates another
case.

Example 2: Stokes’ Theorem in Curvilinear Coordinates

Consider a cylinder in R3 defined by x2
1 + x2

2 = r2
0 and 0 ≤ z ≤ h0 that has an

open top and closed base (e.g., a coffee can). Call this surface C and let ∂C denote the
counterclockwise-oriented circular rim at the top of this surface. The form ζ∗γ1 is given
in cylindrical coordinates in (6.90). If this is written as

ζ∗γ1 = ar(r, φ, z) dr + aφ(r, φ, z) dφ + az(r, φ, z) dz,

then ∫
∂C

ζ∗γ1 =
∫ 2π

0
aφ(r0, φ, h) dφ

because r = r0 and z = h are constants, and so dr = dz = 0.
The evaluation of the other side of the equation in Stokes’ theorem is evaluated as
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C

d(ζ∗γ1) =
∫ h

0

∫ 2π

0

(
∂az

∂φ
− ∂aφ

∂z

)∣∣∣∣
r=r0

dφdz +
∫ 2π

0

∫ r0

0

(
∂aφ

∂r
− ∂ar

∂φ

)∣∣∣∣
z=0

drdφ.

This can be simplified by observing that∫ 2π

0

∂az

∂φ
dφ = az(r, 2π, z) − az(r, 0, z) = 0

due to the continuity of the function az(·) and the topology of the circle. In addition,∫ h

0

∂aφ

∂z
dz = aφ(r, φ, h) − aφ(r, φ, 0)

and ∫ r0

0

∂aφ

∂r
dr = aφ(r, φ, z) − aφ(0, φ, z).

Note that in the specific case of (6.90), the function aφ(0, φ, z) = 0 because of the factor
of r that resulted from changing from Cartesian to polar coordinates.

Putting all of these facts together leads to the simplification∫
C

d(ζ∗γ1) =
∫ 2π

0
{[aφ(r0, φ, h) − aφ(r0, φ, 0)] + [aφ(r0, φ, 0) − aφ(0, φ, 0)]} dφ

=
∫ 2π

0
aφ(r0, φ, h)dφ.

Therefore, Stokes’ theorem has been demonstrated in the form∫
C

d(ζ∗γ1) =
∫

∂C

ζ∗γ1.

6.8.7 Closed Forms and Diffusion Equations

Consider the diffusion equation
∂f

∂t
= Δ(K,v)f (6.102)

where

Δ(K,v)f =
1
2

n∑
i,j=1

kij
∂2f

∂xi∂xj
−

n∑
k=1

vk
∂f

∂xk

where K = KT ∈ Rn×n and v ∈ Rn are both constant quantities. Recall that (6.102)
was examined extensively in Chapter 2.

Equipped with knowledge of differential forms in Euclidean space, it is possible to
construct a form on the (n + 1)-dimensional space-time domain D ⊂ Rn × R>0. In
particular, let

ω = ∗

⎛⎝1
2

n∑
i,j=1

kij
∂f

∂xj
dxj −

n∑
k=1

vkf

⎞⎠ ∧ dt − (−1)nfdx1 ∧ dx2 ∧ . . . ∧ dxn, (6.103)

where ∗ is the Hodge star operator for the spatial part of the domain.
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Then, as was shown in [5] for the one-dimensional heat equation,

dω =
(
Δ(K,v)f − ∂f

∂t

)
dx1 ∧ dx2 ∧ . . . ∧ dxn ∧ dt = 0.

The last equality is due to (6.102). Whenever a form ω has the property that dω = 0
identically, then ω is called a closed form. In contrast, if a form α = dβ where β is
another form, then α is called an exact form. An exact form is always closed because
dα = d(dβ) = 0. However, not every closed form is exact.

For the particular form defined in (6.103), it follows from Stokes’ theorem that for
any (n + 1)-dimensional space-time domain D,∫

∂D

ω =
∫

D

dω = 0.

Other differential forms can be constructed to elucidate properties of solutions of (6.102)
through the use of Stokes’ theorem as explained in [5] for the case when K = I and
v = 0.

6.9 Differential Forms and Coordinate Changes

Let x and y denote positions in Rn. They can be related by a smooth mapping y :
Rn → Rn such that y = y(x). If the values of x are restricted so as to sweep out a finite
n-dimensional volume, N ⊂ Rn, then as x ∈ N is evaluated under the function, the
result will be the finite volume y(N) ⊂ Rn. Since x and y have the same dimensions, the
Jacobian matrix ∂y/∂xT is square, and the classical inverse function theorem applies.

Given a differential k-form in one set of coordinates, it is possible to express the same
form in the other set of coordinates. To start, let AT = [a1,a2, ...,an] ∈ Rn×n (i.e., the
ith row of A is aT

i ). Then each ai · dx = aT
i dx is a one-form. It can be shown that the

form resulting from the substitution dxi → aT
i dx (which is equivalent to x → Ax) is

(aT
1 dx) ∧ . . . ∧ (aT

k dx) =
∑

1≤i1<...<ik≤n

∣∣∣∣∣∣∣∣∣∣
α1,i1 α1,i2 . . . α1,ik

α2,i1 α2,i2 . . .
...

...
...

. . . αk−1,ik

αk,i1 . . . αk,ik−1 αk,ik

∣∣∣∣∣∣∣∣∣∣
dxi1 ∧ . . . ∧ dxik

(6.104)
where here αk,i

.= ak · ei = aik. This relationship for the linear transformation x →
Ax .= y can be used to build up the way that a k-form transforms under coordinate
change. In particular, if y = ψ(x) is now a non-linear change of coordinates, then the
expression analogous to (6.104) is

dyj1 ∧ . . . ∧ dyjk
=

∑
1≤i1<...<ik≤n

∣∣∣∣∣∣∣∣∣∣∣∣

∂ψj1
∂xi1

∂ψj1
∂xi2

. . .
∂ψj1
∂xik

∂ψj2
∂xi1

∂ψj2
∂xi2

. . .
...

...
...

. . . ∂ψjk−1
∂xik

∂ψjk

∂xi1
. . .

∂ψjk

∂xk−1

∂ψjk

∂xik

∣∣∣∣∣∣∣∣∣∣∣∣
dxi1 ∧ . . . ∧ dxik

(6.105)

where of course dyjk
= eT

jk
dy.
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Therefore, if

ωk =
∑

1≤j1<...<jk≤n

aj1,...,jk
(y) dyj1 ∧ dyj2 ∧ . . . ∧ dyjk

,

then in the new set of coordinates,

ψ∗ωk =
∑

1≤j1<...<jk≤n

aj1,...,jk
(ψ(x))

∑
1≤i1<...<ik≤n

∣∣∣∣∣∣∣∣∣∣∣∣

∂ψj1
∂xi1

∂ψj1
∂xi2

. . .
∂ψj1
∂xik

∂ψj2
∂xi1

∂ψj2
∂xi2

. . .
...

...
...

. . . ∂ψjk−1
∂xik

∂ψjk

∂xi1
. . .

∂ψjk

∂xk−1

∂ψjk

∂xik

∣∣∣∣∣∣∣∣∣∣∣∣
dxi1 ∧ . . . ∧ dxik

. (6.106)

In the special case when k = n,

ωn = a(y)dy1 ∧ dy2 ∧ . . . ∧ dyn

and (6.106) simplifies to

ψ∗ωn = a(ψ(x))|Dψ|dx1 ∧ dx2 ∧ . . . ∧ dxn, (6.107)

which is the result from Section 6.8.1.
The expression in (6.106) will be particularly useful when it comes to writing the

integral theorems discussed in the previous section in different curvilinear coordinate
systems. It will also be useful when discussing parameterized m-dimensional embedded
manifolds10 in Rn.

6.10 Chapter Summary

This chapter has served as an introduction to differential forms and multi-vectors. Multi-
vectors are vectors in a vector space Λp(V ), which is generated by performing the p-fold
wedge product of vectors drawn from a vector space V . The dual space of V , denoted as
V ∗, is the space of forms (i.e., functions ϕ : V → R). The wedge product of the space of
forms can be defined in such a way that Λp(V ∗) = (ΛpV )∗. The exterior derivative of a
form gives a differential form. Simple rules define how to directly compute the exterior
derivatives of these differential forms. And these rules make differential forms an ideal
tool for extending classical theorems of multivariable calculus, such as Stokes’ theorem.

This chapter has covered the basics of differential forms. Other accessible treatments
include Darling [3] and Schreiber [13]. In fact, this chapter was modeled after the pre-
sentations in those works. Sometimes it is easier to understand a mathematical concept
by seeing it used in practice. For more on applications of differential forms in the “real
world” see [10].

The next chapter applies the concept of differential forms beyond how they were
used here. In particular, the curvature and torsion of an m-dimensional “manifold”
(i.e., higher-dimensional analog of a simple curve or surface) in Rn is defined in a very
natural way using differential forms. And Stokes’ theorem extends in a very elegant way
to manifolds when stated in terms of differential forms.

10Think of these as m-dimensional surfaces.
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6.11 Exercises

6.1. Using the defining properties in (6.5)–(6.7), show that

dxi ∧

⎛⎝∑
j

gjdxj

⎞⎠ =
∑

j

gj · (dxi ∧ dxj)

where · just means scalar multiplication.

6.2. Starting with the definition in (6.9), and using the properties of the wedge product,
∧, determine c(x) as a function of cijk(x) such that ω3 = c(x) dx1 ∧ dx2 ∧ dx3 in the
special case when n = 3.

6.3. Prove the following: (a) that (6.17) holds; (b) given an arbitrary 1-form in R3,
denoted as ω1, verify (6.18) and that d(dω1) = 0.

6.4. Using the defining properties in (6.5)–(6.7), show that(
n∑

i=1

fidxi

)
∧

⎛⎝ n∑
j=1

gjdxj

⎞⎠ =
∑

1≤i<j≤n

(figj − fjgi) dxi ∧ dxj .

6.5. Show that

v ∧ w =
n∑

i,j=1

viwj ei ∧ ej =
∑
i<j

(viwj − vjwi)ei ∧ ej ,

and from (A.14) the magnitude of v ∧ w (viewed as a column vector of dimension
n(n − 1)/2) satisfies

‖v ∧ w‖2 = ‖v‖2‖w‖2 − (v · w)2.

6.6. Prove both equalities in (6.24).

6.7. Verify (6.26) when n = 2, 3, 4.

6.8. Verify (6.49) when n = 2, 3, 4.

6.9. Let ωp and αq respectively be differential p- and q-forms in Rn. Work out ωp ∧ αq

for the following cases: (a) p = 1, q = 1, n = 2; (b) p = 1, q = 2, n = 3; (c) p = 1, q = 2,
n = 4; (d) p = 2, q = 2, n = 5.

6.10. Again let ωp and αq respectively be differential p- and q-forms in Rn. Prove that

ωp ∧ αq = (−1)pqαq ∧ ωp. (6.108)

6.11. Show that any permutation π ∈ Πn has an inverse, and that the associative law
holds for permutations, i.e., (π1 ◦ π2) ◦ π3 = π1 ◦ (π2 ◦ π3).

6.12. Let V = R3 and A ∈ R3×3. Verify that Λ2(AB) = Λ2(A)Λ2(B) and Λ3(AB) =
Λ3(A)Λ3(B). Hint: For the first part of the problem order the basis elements of Λ2(R3)
as e1 ∧ e2, e1 ∧ e3, e2 ∧ e3 and identify x ∧ y with the column vector via a ∨ operation
defined by
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(x ∧ y)∨ .= [x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2]T .

Then the unique matrix Λ2(A) that satisfies

Λ2(A)(x ∧ y)∨ = ((Ax) ∧ (Ay))∨

is

Λ2(A) =

⎛⎝ a11a22 − a21a12 a11a23 − a21a13 a12a23 − a22a13
a11a32 − a31a12 a11a33 − a31a13 a12a33 − a32a13
a21a32 − a31a22 a21a33 − a31a23 a22a33 − a32a23

⎞⎠ . (6.109)

6.13. Let V = R4 and A ∈ R4×4. Using the lexicographical ordering of basis elements of
Λ2(R4): e1 ∧ e2, e1 ∧ e3,, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4 and the ∨ operation defined
by

(x ∧ y)∨ .=

⎛⎜⎜⎜⎜⎜⎜⎝
x1y2 − x2y1
x1y3 − x3y1
x1y4 − x4y1
x2y3 − x3y2
x2y4 − x4y2
x3y4 − x4y3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

show that the resulting matrix Λ2(A) has entries:

Λ2(A)11 = a11a22 − a12a21 ; Λ2(A)12 = a11a23 − a13a21 ; Λ2(A)13 = a11a24 − a14a21;

Λ2(A)14 = a12a23 − a13a22 ; Λ2(A)15 = a12a24 − a14a22 ; Λ2(A)16 = a13a24 − a14a23;

Λ2(A)21 = a11a32 − a12a31 ; Λ2(A)22 = a11a33 − a13a31 ; Λ2(A)23 = a11a34 − a14a31;

Λ2(A)24 = a12a33 − a13a32 ; Λ2(A)25 = a12a34 − a14a32 ; Λ2(A)26 = a13a34 − a14a33;

Λ2(A)31 = a11a42 − a12a41 ; Λ2(A)32 = a11a43 − a13a41 ; Λ2(A)33 = a11a44 − a14a41;

Λ2(A)34 = a12a43 − a13a42 ; Λ2(A)35 = a12a44 − a14a42 ; Λ2(A)36 = a13a44 − a14a43;

Λ2(A)41 = a21a32 − a22a31 ; Λ2(A)42 = a21a33 − a23a31 ; Λ2(A)43 = a21a34 − a24a31;

Λ2(A)44 = a22a33 − a23a32 ; Λ2(A)45 = a22a34 − a24a32 ; Λ2(A)46 = a23a34 − a24a33;

Λ2(A)51 = a21a42 − a22a41 ; Λ2(A)52 = a21a43 − a23a41 ; Λ2(A)53 = a21a44 − a24a41;

Λ2(A)54 = a22a43 − a23a42 ; Λ2(A)55 = a22a44 − a24a42 ; Λ2(A)56 = a23a44 − a24a43;

Λ2(A)61 = a31a42 − a32a41 ; Λ2(A)62 = a31a43 − a33a41 ; Λ2(A)63 = a31a44 − a34a41;

Λ2(A)64 = a32a43 − a33a42 ; Λ2(A)65 = a32a44 − a34a42 ; Λ2(A)66 = a33a44 − a34a43.

6.14. Again let V = R4 and A ∈ R4×4. This time compute Λ3(A). Using the lexico-
graphical ordering of basis elements of Λ3(R4): e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4,
e2 ∧ e3 ∧ e4, and the ∨ operation defined by

(x ∧ y ∧ z)∨ .=

⎛⎜⎜⎝
(x2y3 − x3y2)z1 − (x1y3 − x3y1)z2 + (x1y2 − x2y1)z3
(x2y4 − x4y2)z1 − (x1y4 − x4y1)z2 + (x1y2 − x2y1)z4
(x3y4 − x4y3)z1 − (x1y4 − x4y1)z3 + (x1y3 − x3y1)z4
(x3y4 − x4y3)z2 − (x2y4 − x4y2)z3 + (x2y3 − x3y2)z4

⎞⎟⎟⎠ ,
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show that the unique matrix Λ2(A) that satisfies

Λ3(A)(x ∧ y ∧ z)∨ = ((Ax) ∧ (Ay) ∧ (Az))∨

has entries:

Λ3(A)11 = (a22a33 − a32a23)a11 − (a12a33 − a32a13)a21 + (a12a23 − a22a13)a31 ;

Λ3(A)12 = (a22a34 − a32a24)a11 − (a12a34 − a32a14)a21 + (a12a24 − a22a14)a31 ;

Λ3(A)13 = (a23a34 − a33a24)a11 − (a13a34 − a33a14)a21 + (a13a24 − a23a14)a31 ;

Λ3(A)14 = (a23a34 − a33a24)a12 − (a13a34 − a33a14)a22 + (a13a24 − a23a14)a32 ;

Λ3(A)21 = (a22a43 − a42a23)a11 − (a12a43 − a42a13)a21 + (a12a23 − a22a13)a41 ;

Λ3(A)22 = (a22a44 − a42a24)a11 − (a12a44 − a42a14)a21 + (a12a24 − a22a14)a41 ;

Λ3(A)23 = (a23a44 − a43a24)a11 − (a13a44 − a43a14)a21 + (a13a24 − a23a14)a41 ;

Λ3(A)24 = (a23a44 − a43a24)a12 − (a13a44 − a43a14)a22 + (a13a24 − a23a14)a42 ;

Λ3(A)31 = (a32a43 − a42a33)a11 − (a12a43 − a42a13)a31 + (a12a33 − a32a13)a41 ;

Λ3(A)32 = (a32a44 − a42a34)a11 − (a12a44 − a42a14)a31 + (a12a34 − a32a14)a41 ;

Λ3(A)33 = (a33a44 − a43a34)a11 − (a13a44 − a43a14)a31 + (a13a34 − a33a14)a41 ;

Λ3(A)34 = (a33a44 − a43a34)a12 − (a13a44 − a43a14)a32 + (a13a34 − a33a14)a42 ;

Λ3(A)41 = (a32a43 − a42a33)a21 − (a22a43 − a42a23)a31 + (a22a33 − a32a23)a41 ;

Λ3(A)42 = (a32a44 − a42a34)a21 − (a22a44 − a42a24)a31 + (a22a34 − a32a24)a41 ;

Λ3(A)43 = (a33a44 − a43a34)a21 − (a23a44 − a43a24)a31 + (a23a34 − a33a24)a41 ;

Λ3(A)44 = (a33a44 − a43a34)a22 − (a23a44 − a43a24)a32 + (a23a34 − a33a24)a42 .

6.15. Compare the determinants of A, Λ2(A), and Λ3(A) in the previous three problems.
Is there a general pattern for the determinant of Λp(A) for A ∈ Rn×n where n ≥ p?

6.16. Using only the defining properties of a wedge product, show that (6.40) holds.
How is W related to a Lie algebra?

6.17. Let vi,wi ∈ Rn for i = 1, ..., p ≤ n and π ∈ Πn. Using the definition in (6.56)
where ϕi(x) = wT

i x, together with the multi-linearity of the wedge product, prove the
Lagrange identity [6]

det

⎡⎢⎢⎢⎢⎣
v1 · w1 v2 · w1 · · · vp · w1

v1 · w2 v2 · w2 · · ·
...

...
...

. . .
...

v1 · wp v2 · wp · · · vp · wp

⎤⎥⎥⎥⎥⎦ =
∑

π∈Πn | π(1)<···<π(p)

det[wi · eπ(j)] det[vi · eπ(j)]

(6.110)
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where [aij ] denotes the p × p matrix with entries aij .

6.18. Rewrite the “light” expressions in (6.64) and (6.65) in the “heavy” (coordinate-
dependent) way that they would appear using classical multivariable calculus and Ja-
cobian matrices.

6.19. Let ψ(x) be the non-linear shear transformation

ψ(x) =

⎛⎝x1 + s1(x2, x3)
x2 + s2(x3)

x3

⎞⎠
where s1(x2, x3) and s2(x3) are both smooth functions. Let y = ψ(x) and define the
vector field

X(y) =

⎛⎝ y2
2 + y2

3
y2
1 + y2

3
y2
1 + y2

3

⎞⎠ .

Explicitly, what are ψ∗X and ψ∗ω where ω is the 1-form ω = dϕ and ϕ : R3 → R is
defined as ϕ(x) = x2

1 + 2x1x2 + x3?

6.20. Verify for n = 1, n = 2, and n = 3 that ω in (6.103) is a closed form when f(x, t)
solves the diffusion equation in (6.102).

6.21. Prove that the pull-back is linear. That is, given two generic k-forms on Rn,
denoted as ω and α in curvilinear coordinates, q, and if q = ψ(s), then the pull-back of
the linear combination is the linear combination of the pull-backs:

ψ∗(c1ω + c2α) = c1ψ
∗ω + c2ψ

∗α (6.111)

for any c1, c2 ∈ R.
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7

Polytopes and Manifolds

This chapter extends the review of geometrical ideas from the previous chapters to
include geometrical objects in higher dimensions. These include hyper-surfaces and
“hyper-polyhedra” (or polytopes) in Rn. A parametric description of an m-dimensional
embedded manifold1 in an n-dimensional Euclidean space is of the form x = x(q) where
x ∈ Rn and q ∈ Rm with m ≤ n. If m = n − 1, then this is called a hyper-surface. An
implicit description of an m-dimensional embedded manifold in Rn is a system of con-
straint equations of the form φi(x) = 0 for i = 1, ..., n−m. In the context of engineering
applications, the two most important differences between the study of two-dimensional
surfaces in R3 and m-dimensional embedded manifolds in Rn are: (1) there is no cross-
product operation for Rn; and (2) if m << n, it can be more convenient to leave behind
Rn and describe the manifold intrinsically. For these reasons, modern mathematical con-
cepts such as differential forms and coordinate-free differential geometry can be quite
powerful.

Section 7.1 discusses some properties of non-differentiable geometric objects such
as polyhedra in three-dimensional space, and extends these ideas to higher dimensions.
Section 7.2 discusses several examples of manifolds that arise in applications. Section 7.3
extends concepts from the parametric treatment of differential geometry in three dimen-
sions to n-dimensional Euclidean space. Section 7.5 illustrates how differential forms can
be used to simplify calculations associated with embedded manifolds. Section 7.6 applies
differential forms to the coordinate-free treatment of manifolds, including the general-
ized definition of curvature and extensions of the Gauss–Bonnet theorem. Section 7.7
provides a brief introduction to fiber bundles and connections. Section 7.8 discusses the
heat equation on a manifold. some exercises involving calculations on manifolds.

The main points to take away from this chapter are:

• Higher-dimensional versions of polygons and polyhedra are called polytopes. A prod-
uct of polytopes, called the Minkowski sum, produces new polytopes from old ones.

• The concepts of simple planar or spatial curves and simply connected surfaces in
R3 extend to higher dimensions and are examples of more general mathematical
structures called manifolds.

• Sometimes it is natural to treat these geometric objects as “living in” a higher
dimensional Euclidean space, and sometimes it is more natural to use purely intrinsic
approaches.
1For now, think of this as a smooth simple surface that does not self-intersect. The word

“embedded” means that the manifold is “seated in” Rn in a way that will be made more precise
later.
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• Tools for handling intrinsic geometry exist, including formulas for the curvature of
a manifold.

• Integral theorems, such as the extension of the Gauss–Bonnet theorem and Stokes’
theorem, hold for manifolds and polytopes, and explicit computations can be per-
formed using the methods of this chapter.

7.1 Properties and Operations on Convex Polytopes in Rn

In the context of this discussion, a polytope is a closed and bounded geometric hyper-
surface that encapsulates a finite volume, and the shape of which is defined by a finite
number of intersecting hyper-planes. In three-dimensional space, this amounts to a sur-
face with flat faces and straight edges (a polyhedron), and in the plane this becomes a
polygon.

For polyhedra in three-dimensional space the quantities F , V , and M can be com-
puted regardless of the fact that polyhedra do not satisfy the differentiability require-
ments assumed in Section 5.4. This extends to polytopes in higher dimensions.

The simplest polytopes are those that are convex. A convex region C ⊂ Rn is one in
which every pair of points contained in the region can be connected with a line segment,
every point of which is contained within the region. In other words, if x,y ∈ C ⊂ Rn,
then (1 − λ)x + λy ∈ C for all λ ∈ [0, 1].

The concept of a convex polytope is closely related to that of a multi-dimensional
convex function, that extends the definition in (3.21). Namely, a convex function Φ :
Rn → R is one for which

Φ(tx + (1 − t)y) ≤ tΦ(x) + (1 − t)Φ(y) ∀ t ∈ [0, 1] (7.1)

for any x,y ∈ Rn. This is a direct generalization of the one-dimensional case in (3.21).
The graph of such a function in Rn+1, z = Φ(x) is a convex (semi-infinite) body. The
intersection of a convex body with a hyper-plane results in a convex body. As a special
case, when z is fixed as a constant, c, the hyper-surface in Rn defined by Φ(x) = c is
a convex hyper-surface, and the implicitly defined body Φ(x) ≤ c is convex. However,
such a body need not be a polytope. For example, it could be the n-dimensional volume
bounded by a hyper-ellipsoid.

In contrast, a polytope C ⊂ Rn can be constructed by intersecting many half spaces,
which are rotated and translated copies of the space x · en ≥ 0. Doing this m times
generates an inequality of the form

Ax ≤ b,

which is interpreted as m scalar inequality constraints where A ∈ Rm×n and b ∈ Rm.
Computer algorithms are available that compute the vertices of these polytopes given
the equations of the half spaces that define them [24]. In some cases the result is not
a finite body, in which case it is sometimes called a “polyhedral cone” where the word
“polyhedron” is used in a generalized sense in place of the word “polytope.”

In what follows, it is assumed that the polytopes that are provided bound bodies of
finite volume.



7.1 Properties and Operations on Convex Polytopes in Rn 235

7.1.1 Computing the Volume and Surface Area of Polyhedra

Consider a polygon in the plane defined by vertices xi ∈ R2 for i = 1, ..., k. These vertices
are connected pairwise with line segments (or edges) from xj to xj+1 for j = 1, ..., k−1,
and xk to x1. Let us assume that the points are arranged such that edges only intersect
at vertices.

The perimeter of the polygon can then be calculated by simply summing up the
length of all of the edges:

L =
k∑

i=1

‖xi+1 − xi‖

with xk+1 = x1. The area of a polygon can be computed by subdividing it into triangles,
using the area formula for each triangle, and summing over all of the triangles.

The surface area of a polyhedron can be computed if the positions of all of the
vertices are know. This amounts to nothing more than adding up the areas of each of
the polygonal faces.

The volume of a polyhedron can be computed using a discrete version of the diver-
gence theorem.

7.1.2 Properties of Minkowski Sums

Given a convex body C ⊂ Rn, let V (C) denote its volume. Re-scaling C as

λ · C .= {λx |x ∈ C ⊂ Rn, λ ∈ R>0}

clearly does not change its convexity. However, the volume of the re-scaled body will be
V (λ · C) = λnV (C).

Let us denote a translated copy of the body C by vector t ∈ Rn as

t + C
.= {x + t |x ∈ C}.

Then V (t + C) = V (C). Likewise, if A ∈ Rn×n with detA > 0, define

A · C .= {Ax |x ∈ C}.

It follows that V (A · C) = |detA|nV (C).
As is the case always, rigid-body motions do not change the volume, surface area,

or total curvatures (Gaussian and mean) of a body.
Given two convex bodies, C1 and C2, the Minkowski sum of the bodies is defined as

C1 + C2
.= {x1 + x2 |x1 ∈ C1,x2 ∈ C2}. (7.2)

This results in a new convex body. Clearly, since vector addition is commutative and
associative,

C1 + C2 = C2 + C1 and (C1 + C2) + C3 = C1 + (C2 + C3),

and so we can write the Minkowski sum of k bodies simply as C1 + C2 + . . . + Ck.
An interesting and important result is the Brunn–Minkowski inequality [25, 26]

V (C1 + C2)
1
n ≥ V (C1)

1
n + V (C2)

1
n . (7.3)
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Equality only holds when C1 and C2 are scaled versions of each other, in which case
they are called homothetic.

A very important fact is that for λi ∈ R>0 [25, 26],

V (λ1 · C1 + . . . + λk · Ck) =
∑

1≤i1,··· ,in≤k

λi1 · · ·λinν(Ci1 , . . . , Cin) (7.4)

is a homogeneous polynomial in λ1,...,λk. The functions ν(Ci1 , . . . , Cin) are called mixed
volumes, and have the following properties [30, 70]:

ν(Ci1 , . . . , Cir , . . . , Cis , . . . , Cin
) = ν(Ci1 , . . . , Cis , . . . , Cir

, . . . , Cin) (7.5)
ν(λi1 · Ci1 , . . . , λin · Cin) = λi1 · · ·λinν(Ci1 , . . . , Cin) (7.6)

ν(xi1 + Ci1 , . . . ,xin + Cin) = ν(Ci1 , . . . , Cin). (7.7)

The Aleksandrov–Fenchel inequality states that [30, 70]

ν(Ci1 , Ci1 , Ci3 , ..., Cin
)ν(Ci2 , Ci2 , Ci3 , ..., Cin

) ≤ |ν(Ci1 , Ci2 , Ci3 , ..., Cin
)|2.

The convex bodies C1, ..., Ck in the above equations can be polytopes, but they need
not be. For example, they could be the volumes bounded by hyper-spheres or hyper-
ellipsoids. The volume of the Minkowski sum of a convex body C ⊂ Rn with a solid ball
of radius r ≥ 0, Bn

r
.= r · Bn ⊂ Rn, is computed as [25]

V (C + r · Bn) = W0(C) +
n∑

k=1

(
n
k

)
Wk(C)rk (7.8)

where the weighting coefficients Wk(C) are defined in terms of mixed volumes as

Wk(C) = ν(C, ..., C︸ ︷︷ ︸
n−k

, Bn, ..., Bn︸ ︷︷ ︸
k

).

Here C is repeated n − k times and Bn (the ball with unit radius) is repeated k times.
Equation (7.8) is Steiner’s multi-dimensional version of formula (5.98), extended to
nonsmooth surfaces.

The coefficients Wk(C) are called quermassintegrals. A version of these quantities
normalized and reordered as [25]

μn−k(C) =
k

Ok

(
n
k

)
Wk(C) (7.9)

are called intrinsic volumes. Recall that Ok was defined in (2.37). The intrinsic volumes
μi for i = 0, 1, 2, ..., n take the place of V , F , M , and K that appeared in the three-
dimensional version of Steiner’s formula.

The values of V , F , and M for the Platonic solids with vertices lying on a sphere of
unit radius have been reported in [30] as follows.

Tetrahedron:

V =
8
√

3
27

; F =
8
√

3
3

; M = 2
√

6 arccos(−1/3).
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Cube:

V =
8
√

3
9

; F = 8; M = 2
√

3π.

Octahedron:
V =

4
3
; F = 4

√
3; M = 6

√
2 arccos(1/3).

Dodecahedron:

V =
2
9

√
15(

√
5 + 1); F =

√
200 − 40

√
5; M = 5

√
3(

√
5 − 1) arctan(2).

Icosahedron:

V =
1
3

√
40 + 8

√
5; F =

√
3(10 − 2

√
5); M =

√
450 − 90

√
5 arcsin(2/3).

From the discretized version of the Gauss–Bonnet theorem, K = 4π for all of these
polyhedra, since they are all topologically equivalent to the sphere.

7.1.3 Convolution of Bodies

Any convex body, C, of finite volume in Rn can be viewed as the support of a function
fC : Rn → {0, 1} where the value of 0 occurs when x /∈ C, and the value of 1 occurs
when x ∈ C. The integral of such a function over Rn will then be the volume of C.

The function fC is the indicator function for the body C. In general, the support of
a function is the set of values of the argument for which the value of the function is not
zero. The support of the indicator function is the body itself. Or stated another way,
the support of an indicator function is the pre-image f−1

C (1).
Given two bodies, C1 and C2, two indicator functions, fC1(x) and fC2(x), can be

defined, one for each body. Then, the indicator function for the two bodies can be
convolved:

(fC1 ∗ fC2)(x) =
∫

Rn

fC1(ξ)fC2(x − ξ)dξ.

Convolution is an operation that was used extensively in Chapters 2 and 3, and will be
generalized to the group-theoretic setting in Volume 2.

In analogy with the way that C1 + C2 = C2 + C1, it is the case that fC1 ∗ fC2 =
fC2 ∗ fC1 . Furthermore, an interesting thing to observe is that (fC1 ∗ fC2)(x) > 0 on
the interior of C1 + C2. And since the boundary ∂(C1 + C2) is a set of measure zero in
Rn, the support of (fC1 ∗ fC2) and the body C1 + C2 are indistinguishable in terms of
the n-dimensional volumes that they occupy. In this sense they are equal. And if the
Heaviside step function H : R → {0, 1} defined in (2.8) is composed with (fC1 ∗fC2)(x),
then an object that is indistinguishable from the Minkowski sum will be produced:

fC1+C2(x) = H((fC1 ∗ fC2)(x)). (7.10)

The relationship between the Minkowski sum and convolution was observed in [28]. This
observation has been used in robotics applications together with using the fast Fourier
transform (FFT) to rapidly evaluate Minkowski sums [36].
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7.2 Examples of Manifolds

A manifold can be thought of as a higher dimensional generalization of the concept
of a surface that locally “looks like” Rn at every point. A necessary condition for this
intuitive property to hold is that self intersections such as those that occur in a figure-
eight pattern do not occur in manifolds.

The general discussion of manifolds in this chapter will be easier to follow with a few
concrete examples in mind. In applications, manifolds with more than two dimensions
mostly arise in the following five ways: (1) as the solution to a set of constraint equations
in a large number of variables; (2) as the product manifold of two or more lower dimen-
sional manifolds; (3) as the interior of a polytope or other region in Rn with opposing
faces (or antipodal points) “pasted” together according to some rule; (4) as the space
of all values of a matrix Lie group; (5) as the quotient of a Lie group relative to one
of its subgroups. These categories are not mutually exclusive, as will be demonstrated
shortly. And the last category will not be explicitly addressed in this volume, though it
will be in Volume 2.

Example 1: The Sphere S3 Embedded in R4

A simple example of a manifold resulting from a constraint equation is the unit
sphere in R4, which is denoted as S3, and is described in terms of Cartesian coordinates
as

x2
1 + x2

2 + x2
3 + x2

4 = 1.

Since R4 is a four-dimensional space, and this is a single constraint equation, we conclude
that S3 is a 4 − 1 = 3-dimensional manifold. Parametric equations that satisfy this
constraint and “reach” every point on S3 (as well as Sn) were given in Section 2.3.

Example 2: The Product of a Torus and Ellipsoid Embedded in R6

The torus and ellipsoid are both two-dimensional surfaces in R3. Let x,y ∈ R3. If

φ1(x) =
x2

1

a2 +
x2

2

b2
+

x2
3

c2
− 1 = 0

is the equation of an ellipsoid and φ2(y) = 0 is the extrinsic description of the torus
derived in Exercise 5.28, then these two two-dimensional manifolds can be combined to
define a manifold in R6. For example, let A1 and A2 be invertible 3 × 3 real matrices
and let A be an invertible 2 × 2 matrix. Also let b1,b2 ∈ R3 and b ∈ R2. Then for
appropriate choices of A,Ai, b, and bi the following system of two equations in the six
unknowns z = [xT ,yT ]T ∈ R6 will define a four-dimensional product manifold:

A

(
φ1(A−1

1 (x − b1))
φ2(A−1

2 (x − b2))

)
= b.

The way that A, A1, A2 and b, b1, b2 are chosen defines a particular embedding. If the
ellipsoid and torus are described using the parametric equations provided in Chapter
5, which can be denoted respectively as x1(φ1) and x2(φ2), then for any real invertible
6 × 6 matrix C and d ∈ R6, the equation

z = C

(
x1(φ1)
x2(φ2)

)
+ d
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would be one way to embed the parameterized four-dimensional product manifold in
R6. A not-so-difficult exercise would be to work out the relationship between C, A, Ai,
etc., in these two different approaches.

Example 3: The Group of Motions of the Euclidean Plane

The group of planar rigid-body motions has been encountered several times earlier
in this volume. Elements of this group are described using matrices of the form

g =

⎛⎝ cos θ − sin θ x
sin θ cos θ y

0 0 1

⎞⎠ with x, y ∈ R and θ ∈ [0, 2π). (7.11)

The set of all such matrices is called the special Euclidean group of the plane, and
is denoted as SE(2), where the “2” corresponds to the dimension of the plane. The
group operation is matrix multiplication. In fact, any Lie group with elements that are
matrices and which has a group operation of matrix multiplication is called a matrix
Lie group. Therefore, when referring to a matrix Lie group, there is no need to mention
the group operation, since it is understood in advance to be matrix multiplication.

The manifold of the group2 can be embedded in Rn in several ways. The standard
way to embed any matrix Lie group with elements that are m × m matrices is to stack
the columns into one long vector of dimension m2. This then defines an embedding of
the matrix Lie group in Rm2

. In the case of (7.11) this is somewhat “inefficient” in the
sense that SE(2) can be embedded in a much smaller space due to the fact that the
last row in the matrix g consists of constants. For example, SE(2) can be embedded in
R6 by parameterizing a vector of the form3

[cos θ,− sin θ, x, sin θ, cos θ, y]T ∈ R6.

This parametric description is equivalent to the implicit description

[w,−z, x, z′, w′, y]T ∈ R6 with w2 + z2 = 1, z = z′, w = w′.

Or, since there is repetition, it could be embedded parametrically as

[cos θ, x, sin θ, y]T ∈ R4

or implicitly as
[w, x, z, y]T ∈ R4 with w2 + z2 = 1.

Furthermore, in the same way that the topological circle can be thought of as the
interval [0, 2π) with the ends “glued” together, a useful way to visualize SE(2) is as the
space R2 × [0, 2π) with the θ values glued.

The point is, there is more than one way to embed a manifold in Rn for some value
of n sufficiently large. Each different way that it is embedded will induce an associated
curvature and twisting/torsion of the embedded manifold that is in addition to the
natural intrinsic nature of the manifold.

2The manifold of a Lie group is called a group manifold
3As should be clear from Example 2, embeddings are not unique.
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Example 4: The Group of Rotations of Three-Dimensional Euclidean Space

The group of rotations in three-dimensional space, or special orthogonal group,
SO(3), is the matrix Lie group with elements that are 3 × 3 real orthogonal matri-
ces with unit determinant. Since it is a matrix group, the group operation is matrix
multiplication. If each element of this group is written in terms of columns as

R = [a,b, c],

then the orthogonality constraint implies that

a · a = b · b = c · c = 1

and
a · b = b · c = a · c = 0.

Altogether this constitutes six constraints imposed on the nine degrees of freedom in-
herent in a 3 × 3 matrix. The additional constraint that detR = +1 can be obtained
without any further loss of degrees of freedom by observing that when

a · a = b · b = 1 and a · b = 0 (7.12)

then setting c = a × b will simultaneously satisfy detR = +1 and the remaining con-
straints on c. This means that for a,b ∈ R3 together with (7.12) describes rotation
matrices of the form

R = [a,b,a × b].

The mapping v : SO(3) → R6 defined by v(R) = [aT ,bT ]T constitutes an embedding
of SO(3) in R6 .

Is this efficient or can SO(3) be embedded in a lower dimensional Euclidean space?
Well, it turns out that any 3 × 3 rotation matrix can be parameterized using the Euler
parameters as

R(u1, u2, u3, u4) =

⎛⎝u2
1 − u2

2 − u2
3 + u2

4 2(u1u2 − u3u4) 2(u3u1 + u2u4)
2(u1u2 + u3u4) u2

2 − u2
3 − u2

1 + u2
4 2(u2u3 − u1u4)

2(u3u1 − u2u4) 2(u2u3 + u1u4) u2
3 − u2

1 − u2
2 + u2

4

⎞⎠ (7.13)

where
u2

1 + u2
2 + u2

3 + u2
4 = 1.

There is, however, some redundancy in this because making the substitution ui → −ui

gives exactly the same rotation matrix (since all of the ui’s appear as quadratic terms
in R(u1, u2, u3, u4)). This means that as a manifold, the group of rotations can be
visualized as the sphere S3 with antipodal points identified with each other. While this
does not mean that SO(3) can be realized as a non-self-intersecting hyper-surface in R4,
it does mean that any parametrization of the sphere S3 can be used to parameterize the
rotation group SO(3). Several such parameterizations are provided in [18], and several
more are provided in Volume 2.

Example 5: Real Projective Space

The real projective space, denoted as RPn, is a compact n-dimensional manifold,
the points of which can be identified with lines in Rn+1, that pass through the origin.
Since lines through the origin are defined by a unit direction that can point along the



7.2 Examples of Manifolds 241

line in either direction, another way to view RPn is as the sphere Sn with antipodal
points glued together. This means that RP 3 resembles SO(3), and in fact a differentiable
and invertible mapping (called a diffeomorphism) can be established between these two
spaces.

The real projective plane, RP 2, can be thought of as the usual sphere S2 with
antipodal points glued, or as the set of lines in R3 that pass through the origin. It
can also be visualized as the unit disk with antipodal points glued [4, 65]. The man-
ifold RP 2 itself cannot be realized as a non-self-intersecting surface in R3. However,
it can be realized as such a surface in R4 by the mapping m : S2 → R4 defined by
m(u) = [u1u2, u1u3, u2u3, u

2
2 −u2

3]
T . There are many possible such mappings [37]. Since

this mapping is a quadratic form in the entries ui, it means that +u and −u map to the
same point. And given a point m on this embedded manifold, it is possible to recover
(up to the sign that has been lost) the pair of unit vectors ±u. For example, if m3 = 0,
then since m1m2/m3 = u2

1 it is possible to recover u1 up to an unknown sign. Then
this can be used to find u2 = m1/u1 and u3 = m3/u1. If m3 = 0, then either u2 = 0
or u3 = 0, or both. Exactly which case it is will be evident from examining the other
entries of m.

Furthermore, many ways exist to map the manifold m(u) into a surface in R3 that
intersects itself. Two of these self-intersecting surfaces are called the Roman surface
(which was discovered by Steiner while he was visiting Rome) and Boy’s surface [4].
Whereas an embedding is a way to map a manifold into Rn in such a way that it does
not intersect itself, a mapping from a manifold into Rn that results in self-intersections is
called an immersion, and the resulting geometric object is called an immersed manifold
(even though it is not actually a manifold). For example, a figure-eight pattern can be
thought of as an immersed circle.

Example 6: Polytopes with a Twist and Crystallography

Crystals appear in nature in many forms: salt, diamonds, man-made silicon wafers,
etc. In protein crystallography, many copies of a protein molecule are coaxed into form-
ing a crystal in the laboratory. Then x-ray diffraction experiments can be performed
to gain information about the shape of these molecules. Atomic models are then fit
to these shapes. Readable introductions to the subject of protein crystallography, in-
cluding discussions of experimental methods and the mathematics of crystal structure,
include [32, 41, 46, 53]. In such crystals, the basic unit that is translated to replicate
the whole crystal is called the unit cell. This can be constructed from several translated
and rotated copies of the same protein molecule, and/or it can share the unit cell with
copies of other protein molecules (in which case it is called a co-crystal). If only one
copy of a protein inhabits a unit cell, then the whole crystal might look like Figure 7.1,
where the letter R is used to denote a shape without rotational or mirror symmetries.
(Most capital Roman letters, including A, B, C, D, E, H, I, M, N, and others, have some
kind of symmetry, but R is one of the few that does not.) The use of the letter R in
this presentation (rather than the other asymmetric letters F, P, L, etc.) follows [21].
The unit cell can be broken up into so-called asymmetric units containing exactly one
object. The union of these asymmetric units reconstitutes the unit cell, and translated
copies of the unit cell completely tile space. In the case of Figure 7.2, one object and its
mirror image inhabit one unit cell which is then repeated. In Figure 7.3, four variants
on the same object constitute one unit cell.

A relationship exists between crystallography, polytopes, and the theory of mani-
folds. The same sort of construction that was used in Figure 5.2 to form a torus from
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a rectangle can be used to construct more exotic manifolds. For example, consider the
two-dimensional lattices as shown in Figures 7.1–7.3. As mentioned above, the letter
R is used to illustrate the basic crystallographic asymmetric unit for each tiling of the
plane described in the lower left of each figure as a “gluing” of arrows on opposing
edges of the rectangle. This gluing of asymmetric units produces the unit cell shown
in the upper left of each figure.4 By copying and translating the contents of this unit
cell, an infinite lattice can be formed (truncated versions of which are illustrated on the
right-hand side of Figures 7.1 and 7.2). A lattice can also be formed by translating unit
cells like those on the right side of Figure 7.3.

The set of translations of unit cells to form a lattice in Rn is a discrete subset of
the group of rigid-body motions, SE(n). This subset is closed under composition. In
the planar case, such operations can be expressed as rigid-body motions of the form in
(7.11). But in the context of planar crystallographic motions, (x, y, θ) are restricted to
very specific values. For example, if the dimensions of the cells in Figures 7.1–7.3 are w×h
(i.e., width by height) with w = h, then the only allowable translations that will place
unit cells in the correct locations are of the form (x, y, θ) = (m ·w, n · h, 0) for m,n ∈ Z

for Figure 7.1, (x, y, θ) = (2m ·w, n ·h, 0) for Figure 7.2, and (x, y, θ) = (2m ·w, 2n ·h, 0)
for Figure 7.3.

Now even though the dimensions of the asymmetric units in the lattices generated by
the gluings in Figures 7.1–7.3 are exactly the same, the unit cells are clearly different, and
the lattices have different symmetry groups. In the case of Figure 7.1 all crystallographic
motions are of the form in (7.11) with (x, y, θ) = (m ·w, n ·h, 0). That is, they are purely
translated copies of each other. For the other two cases, combinations of rotations and
mirror reflections are required to generate unit cells from asymmetric units.5

The lattice in Figure 7.1 can be generated by repeated application of transformations
of the form

t1 =

⎛⎝ 1 0 w
0 1 0
0 0 1

⎞⎠ and t2 =

⎛⎝ 1 0 0
0 1 h
0 0 1

⎞⎠
(and their inverses) to the unit cell. The set of all such translations forms a group
G0 ∼= (Z2,+).

Now consider the transformations that can be applied to the contents of the asym-
metric unit at the lower left of Figure 7.2 to produce the lattice on the right side of
that figure. The basic motion when translating horizontally from one cell to an adjacent
one is to flip the orientation by π radians (or 180 degrees). Each such transformation
can be viewed as acting on a reference frame attached to the lower left corner of each
asymmetric unit. In other words, for the lattice in Figure 7.2 the basic motions between
asymmetric units are of the form

b1 =

⎛⎝ 1 0 w
0 −1 h
0 0 1

⎞⎠ and b2 =

⎛⎝ 1 0 0
0 1 h
0 0 1

⎞⎠ .

These act on the contents of asymmetric units by multiplication of the position (x, y)
represented as a vector [x, y, 1]T to produce [x′, y′, 1]T from which the new position

4A unit cell is the smallest unit of a crystal lattice from which the whole lattice can be con-
structed by the application of a set of rigid-body translations drawn from a discrete subgroup
of SE(n).

5If spatial rigid-body motions are allowed, then the mirror image of a planar figure could be
produced by a 180-degree spatial rotation around the line in the plane representing the mirror.
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(x′, y′) can be extracted. The transformation b1 produces the neighbor to the right of
a given asymmetric unit, and b2 produces the neighbor directly below. The set of crys-
tallographic operations for this lattice is obtained by all possible repeated applications
of the basic operations b1 and b2 and their inverses, which is implemented as a matrix
multiplication b1 ◦ b1, b1 ◦ b2, b2 ◦ b2, b1 ◦ b1 ◦ b2, etc. This generates a discrete (though
infinite) set of transformations that we can call G1.

The asymmetric unit at the lower left of Figure 7.2 can be thought of as an object
which, when multiplied by all elements of G1, covers the plane R2. Therefore, a good
notation for this asymmetric unit is G1\R2 since, in a sense, G1 × (G1\R2) = R2.

The set of basic transformations that produces the lattice generated by the asym-
metric unit and unit cells shown in Figure 7.3 are

b′
1 = b1 =

⎛⎝ 1 0 w
0 −1 h
0 0 1

⎞⎠ and b′
2 =

⎛⎝ 1 0 w
0 −1 −h
0 0 1

⎞⎠ .

The group generated by repeated application of these transformations and their inverses
can be called G2. Note that while the asymmetric units in these cases have the same
shape and dimensions, G0\R2 = G1\R2 = G2\R2 because the gluings are different.

22

1 1

2

Fig. 7.1. A Pattern on the Torus Transferred to the Euclidean Plane

There are 17 classes of planar tilings, or regular tessellations (also called “wallpaper
patterns”), and there are 230 such patterns in the spatial case. These are described by
groups of rigid-body motions and reflections that can be applied to each unit cell to
either transform the contents of the cell back into itself, or translate one unit cell to
an adjacent one. These are the crystallographic space groups. If such a group is denoted
as G, then we can think of Rn as being “divided up” by G. That is, each asymmetric
unit can be viewed as an element of G\Rn, and when elements of G are applied to
elements of G\Rn, the result is a tiling of Rn. These crystallographic space groups have
been studied extensively, and were completely classified by the late nineteenth and early
twentieth century [21, 39, 44]. More recently, the classification of 3-manifolds constructed
as quotients of R3 by space groups (called orbifolds) was initiated by Thurston [61].
Other treatments can be found in [14, 35, 47, 57, 65]. A precursor to the orbifold
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22

1 1

2

Fig. 7.2. A Pattern on the Klein Bottle Transferred to the Euclidean Plane

2

1 1

2

Fig. 7.3. A Pattern on the Real Projective Plane Transferred to the Euclidean Plane

concept is that of the V-manifold introduced by Satake [55]. The relationship between
these manifolds and mathematical objects called groupoids has also been studied [66].

The Klein bottle and real projective plane depicted as gluings in Figures 7.2, 7.3, and
7.4 are both non-orientable two-dimensional surfaces that cannot be embedded in R3.
They can be displayed as planar gluings, but this should not be confused with planar
embeddings.

Figures 7.1–7.5 represent only a few of the two-dimensional orbifolds that can be
constructed from crystallographic space groups. And in addition, these concepts apply
in higher dimensions. For example, if R3 is broken up into cubes by the group (Z3,+),
then the opposing faces of a cube are glued in a natural way, and the result is the 3-torus,
T 3. Other three-manifolds can be obtained by using other of the 230 crystallographic
space groups to define unit cells and associated gluings [14, 35, 47].

In addition, it is possible to define other manifolds by appropriate gluing of the edges
of polygons, faces of polygons, or more generally polytopes. Figure 7.4 shows how some
of the most studied two-dimensional manifolds can be thought of as gluings of squares.
And there is no reason to limit the discussion to squares or rectangles. Figure 7.5 shows
how tori (with one or two holes) can be described as gluings of hexagons and octagons.
Whereas the hexagon can be used to tile the plane without leaving any empty spaces,
the octagon cannot. In three dimensions, various gluings of the opposing faces of a cube
lead to different manifolds. The simplest of these is the three-torus, T 3. As more exotic
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Fig. 7.4. Various Squares with Glued Edges: (upper left) The Torus; (upper right) The Sphere;
(lower left) The Klein Bottle; (lower right) The Real Projective Plane
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Fig. 7.5. Two-Dimensional Manifolds Represented as Polygons with Glued Edges: (left) The
Torus as a Glued Hexagon; (right) The Two-Holed Torus as a Glued Octagon

examples, if the opposing pentagonal faces of a dodecahedron are twisted by 1/5 or 3/5
of a 360-degree turn and glued, the results will be two different 3-manifolds [61].

Counterexamples

When presented with such a wide variety of examples, it can be tempting to think
that everything is a manifold. But this certainly is not true, and counterexamples that
illustrate spaces that are not manifolds are in order. As a first class of examples, two
manifolds that are glued together at a single point result in an object that is not a
manifold. This includes two kissing spheres, a double-sided cone, and two cubes offset by
some distance and connected with an umbilical curve. These are not manifolds because
the neighborhoods containing the points of contact are unlike any open neighborhoods
in Rn. Another example that is not a manifold is the closed unit square [0, 1] × [0, 1]
because the neighborhoods containing points from the boundary are unlike any open
neighborhood in Rn since they are partially closed. (However, the open unit square
(0, 1) × (0, 1) is a manifold, and the closed unit square, while not a manifold, is an
example of a manifold with boundary.) And finally, it should be noted that not every
twisted and glued polytope results in a manifold. It can be that a gluing results in
too many points that accumulate at one edge or vertex and not enough at others.
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Again, the test in this case is to assess whether or not each neighborhood at each set of
glued vertices and edges has the same properties as a neighborhood in Rn. This can be
approached intuitively when n = 2 or 3, but becomes very difficult for n > 3.

7.3 Embedded Manifolds, Part I: Using Vector Calculus

In this section, the concepts of tangent, normal, surface area integral, curvature, integra-
tion by parts, and the divergence theorem are described in the context of m-dimensional
manifolds embedded in n-dimensional Euclidean space. The reason for doing this is to
show that it can be done (even though it is rather messy and notationally heavy). This is
then followed by the lighter modern approach involving differential forms in Section 7.5
and the coordinate-free approach in Section 7.6.

7.3.1 The Inner Product of Vector Fields on Manifolds Embedded in Rn

Let F ∈ Rn and H ∈ Rn be two real vector fields on the manifold M ⊂ Rn. That is,
for each point on the manifold a single vector is assigned to the tangent hyper-plane
at that point. Since that hyper-plane is a subspace of Rn, the vector that is assigned
can be viewed as being in Rn. More concretely, if M is parameterized as x = x(q) with
x ∈ Rn and q ∈ Rm, then

F =
m∑

i=1

fiTi, where Ti
.=

∂x
∂qi

. (7.14)

In this way, the vector F ∈ Rn has m independent components {fi}. These can be
stacked to form a column array of the form f = [f1, f2, ..., fm]T . Note that in the
context of this definition, F · ej = Fi = fj .

It then makes sense to talk about the inner products of vectors of the form of F in
Rn (which is just the usual dot product of vectors), and this induces an inner product
in the m-dimensional tangent hyper-plane since

F · H =

(
m∑

i=1

fi Ti

)
·

⎛⎝ m∑
j=1

hj Tj

⎞⎠ =
m∑

i,j=1

gij fi hj
.= (f ,h). (7.15)

Furthermore, by taking the dot product on both sides of (7.14) with Tj , it follows that

F · Tj =
m∑

i=1

gjifi =⇒ f = G−1 ∂xT

∂q
F. (7.16)

The conversion from f to F is trivial, since fi = f · ei for i = 1, ...,m, which can then
be substituted into (7.14).

The calculations in (7.15), which are at a single point on the manifold, can be
integrated over the whole manifold, leading to the definition6

6Here 〈f ,h〉 does not denote expected value as in Chapter 3. Rather, angle brackets are
used here in place of parentheses to distinguish the combination of dot product and integral
from the pointwise inner product of vector fields (f ,h) defined in (7.15).
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〈f ,h〉 .=
∫

M

F · H dV =
∫

M

(f ,h) dV (7.17)

=
∫

D

(f(q),h(q)) |G(q)| 1
2 dq1 . . . dqm (7.18)

=
m∑

i,j=1

∫
D

fi gij hj |G| 1
2 dq1dq2 . . . dqm. (7.19)

Here D ⊂ Rm is the range of coordinate values that define the manifold, and the
Riemannian metric tensor is computed as in Chapter 5:

G = [gij ] where gij =
∂x
∂qi

· ∂x
∂qj

, for i, j = 1, ...,m.

Clearly, 〈f ,h〉 = 〈h, f〉.
Furthermore, given a smooth function φ : Rn → R and the definition of the gradient

in (5.48),

〈f , gradφ〉 =
m∑

i,j,k=1

∫
D

gki ∂φ

∂qi
gkj fj |G(q)| 1

2 dq1 . . . dqm.

This quantity will appear on one side of the divergence theorem for embedded manifolds.
In order to write the other side of the equation, an appropriate concept of surface normal
is required.

7.3.2 An Example: A Hyper-Spherical Cap

Now a concrete example of a manifold, M , is examined in detail. The manifold is the
upper hemisphere of S3 embedded in R4 with open boundary where the hemisphere
meets the hyper-plane R3 ⊂ R4. Here two different parameterizations of M are used to
illustrate concrete geometric calculations, and conversions between coordinate systems.

Cartesian Coordinates

The part of the unit sphere S3 ⊂ R4 defined by the Cartesian coordinates q ∈ R3 as

x(q) =

⎛⎜⎜⎝
x1(q1, q2, q3)
x2(q1, q2, q3)
x3(q1, q2, q3)
x4(q1, q2, q3)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
q1
q2
q3√

1 − q2
1 − q2

2 − q2
3

⎞⎟⎟⎠ (7.20)

where x4 > 0, is a manifold.
The vectors Ti = ∂x/∂qi are computed from x = [x1, x2, x3, x4]T defined in (7.20)

as

T1 =

⎛⎜⎜⎜⎝
1
0
0

−q1

(1−‖q‖2)
1
2

⎞⎟⎟⎟⎠ ; T2 =

⎛⎜⎜⎜⎝
0
1
0

−q2

(1−‖q‖2)
1
2

⎞⎟⎟⎟⎠ ; T3 =

⎛⎜⎜⎜⎝
0
0
1

−q3

(1−‖q‖2)
1
2

⎞⎟⎟⎟⎠ . (7.21)

An arbitrary vector tangent to the manifold in R4 is then

V =
3∑

i=1

viTi. (7.22)
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The notation v = [v1, v2, v3]T will be convenient. However, it is important to not confuse
V and v, and the associated definitions of inner products. For a vector in the tangent
space of M to be a unit vector, V · V = vTGv .= (v,v) = 1. In general, when viewing
a vector in the tangent space of an embedded manifold as a vector in the Euclidean
space in which the manifold itself is embedded, capital bold Roman letters will be used.
The lower case bold versions of these same letters will denote the column arrays that
extract the relevant information from these large vectors. The lower case versions will
always be of lower dimension than the capital versions because the Euclidean space in
which the manifold is embedded is always larger than the dimension of the manifold.
The conversion between these two descriptions in the general case is given in (7.16).

Since this orientable manifold has dimension n = 3 and it is embedded in Rn+1

(i.e., it has co-dimension of one), it makes sense to define a single outward-pointing unit
normal at each point of M . In particular, in this example the normal to M is

NM (q) = x(q).

It is easy to verify that NM · NM = 1 and NM · Ti = 0 for i = 1, 2, 3.
The metric tensor for S3 in this coordinate patch is

G(q) =
1

1 − q2
1 − q2

2 − q2
3

⎛⎝ 1 − q2
2 − q2

3 q1q2 q1q3
q1q2 1 − q2

1 − q2
3 q2q3

q1q3 q2q3 1 − q2
1 − q2

2

⎞⎠ (7.23)

and it follows that

|G(q)| =
1

1 − q2
1 − q2

2 − q2
3

and G−1 =

⎛⎝ 1 − q2
1 −q1q2 −q1q3

−q1q2 1 − q2
2 −q2q3

−q1q3 −q2q3 1 − q2
3

⎞⎠ .

where |G(q)| = detG(q).

Hyper-Spherical Coordinates

Now consider the completely different way to parameterize the upper hemisphere of S3

embedded in R4:

x(φ) =

⎛⎜⎜⎝
x1(φ, θ, ψ)
x2(φ, θ, ψ)
x3(φ, θ, ψ)
x4(φ, θ, ψ)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
sinψ sin θ cosφ
sinψ sin θ sinφ

sinψ cos θ
cosψ

⎞⎟⎟⎠ where (φ, θ, ψ) ∈ [0, 2π)×[0, π]×[0, π/2).

(7.24)
As a vector-valued function, x(φ) is not simply the same as that given in (7.20) with
q replaced by φ; rather the shorthand x(φ) = x(q(φ)) is being used. It is easy to see
from matching the first three components in the vectors in (7.20) and (7.24) that q(φ)
can be expressed explicitly in terms of components as

q1 = sinψ sin θ cosφ
q2 = sinψ sin θ sinφ (7.25)
q3 = sinψ cos θ.

The inverse mapping can be computed from this as
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φ = tan−1 q2

q1

θ = tan−1

√
q2
1 + q2

2

q3
(7.26)

ψ = sin−1
√

q2
1 + q2

2 + q2
3 .

Vectors tangent to M can be obtained using these coordinates as

∂x
∂φ

=

⎛⎜⎜⎝
− sinφ sin θ sinψ
cosφ sin θ sinψ

0
0

⎞⎟⎟⎠ ;
∂x
∂θ

=

⎛⎜⎜⎝
cosφ cos θ sinψ
sinφ cos θ sinψ
− sin θ sinψ

0

⎞⎟⎟⎠ ;
∂x
∂ψ

=

⎛⎜⎜⎝
cosψ sin θ cosφ
cosψ sin θ sinφ

cosψ cos θ
− sinψ

⎞⎟⎟⎠ .

These vectors span the same hyper-plane in R4 as the vectors Ti given in (7.21). This
hyper-plane is an embedded version of the tangent space of M at the specified value of
φ.

Unlike the coordinate system {q1, q2, q3}, this one is orthogonal, meaning that the
metric tensor is diagonal:

G(φ) =

⎛⎝ sin2 θ sin2 ψ 0 0
0 sin2 ψ 0
0 0 1

⎞⎠ and |G(φ)| 1
2 = sin2 ψ sin θ. (7.27)

As with the vector function x(φ), the shorthand G(φ) used here is to denote “the
metric tensor obtained by undergoing calculations analogous to those used to obtain
G(q) with φ taking the place of q at every step of the calculation.” However, a major
difference between the relationships x(φ) ↔ x(q) and G(φ) ↔ G(q) is that partial
derivatives with respect to coordinates were required when computing G. This means
that in general G(φ) = G(q(φ)). Rather,

G(φ) =
∂qT

∂φ
G(q(φ))

∂q
∂φT

. (7.28)

This can be verified by computing the Jacobian corresponding to the equations in (7.25).
Explicitly,

∂q
∂φT

=

⎛⎝ − sinφ sin θ sinψ cosφ cos θ sinψ cosφ sin θ cosψ
cosφ sin θ sinψ sinφ cos θ sinψ sinφ sin θ cosψ

0 − sin θ sinψ cos θ cosψ

⎞⎠
and ∣∣∣∣ ∂q

∂φT

∣∣∣∣ = − sin2 ψ sin θ cosψ.

The transpose of this matrix is ∂qT /∂φ. The inverse of ∂q/∂φT can be computed
explicitly as

[
∂q
∂φT

]−1

=

⎛⎝ − sinφ/ sin θ sinψ cosφ cos θ/ sinψ cosφ sin θ/ cosψ
cosφ/ sin θ sinψ sinφ cos θ/ sinψ sinφ sin θ/ cosψ

0 − sin θ/ sinψ cos θ/ cosψ

⎞⎠T

.

This same result can be obtained by computing the Jacobian of the transformation
defined by the equations in (7.26), followed by substitution of q = q(φ). Explicitly,
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∂φ

∂qT
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−q2/(q2
1 + q2

2) q1/(q2
1 + q2

2) 0

q1q3(q2
1+q2

2)− 1
2

q2
1+q2

2+q2
3

q2q3(q2
1+q2

2)− 1
2

q2
1+q2

2+q2
3

− (q2
1+q2

2)
1
2

q2
1+q2

2+q2
3

(q2
1+q2

2+q2
3)− 1

2 q1

(1−‖q‖2)
1
2

(q2
1+q2

2+q2
3)− 1

2 q2

(1−‖q‖2)
1
2

(q2
1+q2

2+q2
3)− 1

2 q3

(1−‖q‖2)
1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

from which it is easy to verify that[
∂q
∂φT

]−1

=
∂φ

∂qT

∣∣∣∣
q=q(φ)

. (7.29)

An Example of a Manifold with Boundary

Consider the part of the upper hemisphere of S3 embedded in R4 for which x4 > h for
some constant h > 0. This means that ‖q‖ < (1−h2)

1
2 and the vector x(q) ∈ R4 points

to all locations in this space, which is denoted as M . Or, in the φ parametrization,
ψ < cos−1 h. The volume of this manifold can be computed in either coordinate system.
In particular,

VM =
∫ cos−1 h

0

∫ π

0

∫ 2π

0
sin2 ψ sin θdφdθdψ = 4π

∫ cos−1 h

0
sin2 ψdψ

= 2π [ψ − sinψ cosψ]|cos
−1 h

0 = 2π[cos−1 h − (1 − h2)
1
2 h].

The boundary, ∂M , is the intersection of S3 with a copy of R3 that has been trans-
lated h units along the x4 axis. This boundary manifold (the dimension of which is lower
by one than the dimension of M) can also be described as a parameterized embedding
of R4 as

x′(s) = x(q(s)) =

⎛⎜⎜⎝
rh cos s1 sin s2
rh sin s1 sin s2

rh cos s2
h

⎞⎟⎟⎠ where rh
.=
√

1 − h2. (7.30)

The metric tensor for this two-dimensional manifold is obtained by computing⎛⎜⎝ ∂x′

∂s1
· ∂x′

∂s1

∂x′

∂s1
· ∂x′

∂s2

∂x′

∂s1
· ∂x′

∂s2

∂x′

∂s2
· ∂x′

∂s2

⎞⎟⎠ =

⎛⎝ (rh)2 sin2 θ 0

0 (rh)2

⎞⎠ .

This is just the metric for the sphere S2
rh

⊂ R3, and its surface area can be computed
in the usual way as

V∂M =
∫ π

0

∫ 2π

0
(rh)2 sin θdφdθ = 4π(rh)2.

7.3.3 Computing Normals Extrinsically Without the Cross Product

In Rn for n = 3 the vector cross product is not defined. However, the concept of the
normal to an m-dimensional manifold in Rn is still valid. (Recall, for example, how
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normals were constructed in the n = 2 case.) In the general case, each point on an
m-dimensional embedded manifold in Rn will have an associated subspace of normals
in Rn defined by n − m directions. This subsection addresses how to construct this
“normal subspace” explicitly without having the convenience of a cross product.

Take as the standard orthonormal basis for Rn the set of unit vectors {e1, e2, ..., en}.
The subspace of Rn spanned by the tangent vectors to the embedded manifold at point
x(q) is defined by Ti = ∂x/∂qi for i = 1, ...,m.

A basis for the subspace of normals to a smooth embedded manifold can be con-
structed by projection. Namely, start with vector e1, and subtract away all components
of it that are in the tangent plane:

N′
1

.= e1 −
m∑

i=1

e1 · Ti

Ti · Ti
Ti.

Define this to be the first column of the matrix N . Do the same operation on e2, e3,
etc. The result will be a matrix with n columns N = [N′

1,N
′
2, ...,N

′
n], each of which is

normal to the embedded manifold. However, only n−m of these vectors will be linearly
independent. To find a basis for the space of normals, row reduce NT , and pick off the
n − m independent (non-zero) rows after row reduction is complete. The transpose of
these rows will be the normals N1,..., Nn−m.

In general, this basis for the space of normals to the embedded manifold at the
point x(q) will not be orthonormal, but it does not need to be to perform calculations.
And the Gram–Schmidt orthogonalization process (see Section A.1.4) can be used if an
orthogonal basis is desired.

Explicit calculations used to compute normals to submanifolds of embedded man-
ifolds are now demonstrated on the hyper-spherical cap, M , and its bounding sphere,
∂M . The tangent vectors to this boundary manifold ∂M , as seen in R4, are

T′
j =

∂x′

∂sj
=

∂x
∂sT

∣∣∣∣
q=q(s)

∂q
∂sj

.

For this example,

T′
1(s) =

⎛⎜⎜⎝
−rh sin s1 sin s2
rh cos s1 sin s2

0
0

⎞⎟⎟⎠ and T′
2(s) =

⎛⎜⎜⎝
rh cos s1 cos s2
rh sin s1 cos s2

−rh sin s2
0

⎞⎟⎟⎠ . (7.31)

An arbitrary tangent vector to ∂M is then of the form V′ =
∑2

j=1 v′
jT

′
j . Now if we

want to obtain a unit vector normal to ∂M that is in the tangent space of M , then we
seek a vector

N∂M (q) =
3∑

i=1

ni(q)Ti(q) such that N∂M · T′
j = 0 and N∂M · N∂M = 1.

This is a linear algebra problem for each fixed value of q. The procedure is to first find
vi such that the orthogonality condition above is satisfied (with vi taking the place of
ni), then normalize the result to obtain ni. Let aji = Ti ·T′

j . Then the null space of the
matrix A = [aji] (which is one-dimensional in this example) defines all possible values of
vi that satisfy the orthogonality constraints. A vector in this null space can be obtained
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by multiplying an arbitrary vector with the null-space projector matrix in (A.40). For
example, in the case of the upper half of the unit sphere in R4 parameterized using φ,

A =
(

T′
1 · T1 T′

1 · T2 T′
1 · T3

T′
2 · T1 T′

2 · T2 T′
2 · T3

)
= rh ·

(
− sin s1 sin s2 cos s1 sin s2 0
cos s1 cos s2 sin s1 cos s2 − sin s2

)
.

Choosing the arbitrary vector e3 gives

v = [I − AT (AAT )−1A]e3 = cos s2 · [cos s1 sin s2, sin s1 sin s2, cos s2]T .

Normalizing the result then gives n = v/(v,v)
1
2 , or equivalently N∂M = V/(V · V)

1
2 .

These are respectively

n(φ(s)) = z(s1, s2)

⎛⎝ cos s1 sin s2
sin s1 sin s2

cos s2

⎞⎠ and N∂M =

⎛⎜⎜⎝
cos s1 sin s2
sin s1 sin s2

cos s2
0

⎞⎟⎟⎠ (7.32)

where z(s1, s2) = [sin2 s2(cos2 s1 sin2 s2+sin2 s1)+cos2 s2]−
1
2 is the normalization factor

required for (n,n) = nTG(φ)n = 1. This laborious calculation was not really required
for this particular example, because ∂M is obtained in this case by slicing S3 with a
hyper-plane parallel to R3, and it could be guessed that the result will be a sphere
embedded in a copy of R3 with Cartesian coordinates {q1, q2, q3}, and therefore simply
writing the outward-pointing normal to the unit sphere in R3 up front would suffice. Or
put differently, it is clear by inspection of (7.31) that the normal space of ∂M consists
of linear combinations of the orthogonal unit vectors

N(1)
∂M =

⎛⎜⎜⎝
cos s1 sin s2
sin s1 sin s2

cos s2
0

⎞⎟⎟⎠ and N(2)
∂M =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ .

And since N(2)
∂M is not in the span of {T1,T2,T3}, it does not contribute to the normal

of ∂M that is contained in the tangent space of M . That leaves only N(1)
∂M , which is

exactly N∂M . While it is always nice when intuition can be used to obtain a solution, it
is important to have a general mathematical procedure that can be used when intuition
fails. And from the above example it can be useful to see how the general framework
reduces to the intuitive result that is expected.

If instead of starting with n and substituting ni for vi in (7.22) to obtain N∂M , in
a case such as this where the embedding provides information that can make it easy to
calculate N∂M directly, then (7.16) can be used to compute n from N∂M . Explicitly, in
the case when the coordinates {q1, q2, q3} are used,

n(q(s)) = [G(q(s))]−1 ∂xT

∂q
N∂M = h

⎛⎝ cos s1 sin s2
sin s1 sin s2

cos s2

⎞⎠ . (7.33)

Note that this is not the same as n(φ(s)) in (7.32). The reason is that G(q)|q=q(s) =
G(φ)|φ=φ(s). While n(φ(s)) = n(φ(s)), there is nevertheless a relationship between
them. This relationship can be established by relating both to the extrinsically de-
fined normal N∂M , which is independent of coordinates. Referring back to (7.28) and
restricting both sides to the submanifold ∂M defined by parameters {s1, s2} gives
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G(φ(s)) =
∂qT

∂φ

∣∣∣∣
φ=φ(s)

G(q(s))
∂q
∂φT

∣∣∣∣
φ=φ(s)

where G(q(s)) = G(q(φ(s))).

But from vector calculus, n(q(s)) in (7.33) can be rewritten as

n(q(s)) = [G(q(s))]−1 ∂φT

∂q
∂xT

∂φ
N∂M .

Using (7.29), and comparing the above expression to

n(φ(s)) = [G(φ(s))]−1 ∂xT

∂φ
N∂M

leads to the conclusion that

n(q(s)) =
∂q
∂φT

∣∣∣∣
φ=φ(s)

n(φ(s)). (7.34)

In other words, the conversion between n(q(s)) and n(φ(s)) can be performed with
knowledge of only the metric tensor and the Jacobian matrix ∂q/∂φT . And the conver-
sion can be implemented as a push-forward from one coordinate system to the other.
This operation is independent of the embedding, which only plays the indirect role of
defining the metric.

7.3.4 The Divergence Theorem in Coordinates

In the case of a manifold M that is defined by the smooth embedding x(q) ∈ Rn for
q ∈ D ⊂ Rm, and the smooth boundary ∂M parameterized by q(s) ∈ ∂D ⊂ Rm,
the divergence theorem for Rm can be used to define a coordinate-dependent version
of the divergence theorem. From the definition in (5.49) (where now i ∈ {1, ...,m}),
the integral of the divergence of a vector field F =

∑
i fi(q) ∂x

∂qi
∈ Rn (or equivalently,

f = [f1, ..., fm]T ) can be converted as follows:∫
M

div(f)dV =
∫

D

div(f)|G| 1
2 dq1 . . . dqm

=
∫

D

m∑
i=1

∂

∂qi
(|G| 1

2 fi)dq1 . . . dqm

=
∫

∂D

m∑
i=1

fi(q(s)) νi(q(s)) |JT (s)G(q(s))J(s)| 1
2 ds1 . . . dsm−1

=
∫

∂D

m∑
i,j=1

fi(q(s)) gij(q(s))gjk(q(s))nk(q(s))

|JT (s)G(q(s))J(s)| 1
2 ds1 . . . dsm−1

=
∫

∂M

(f ,n) dS.

Here Jij = ∂qi/∂sj , ν(q(s)) ∈ Rm is the normal to ∂D, and

dS = |JT (s)G(q(s))J(s)| 1
2 ds1 . . . dsm−1 (7.35)
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is the volume element for ∂M written in parametric form. The above step that converts
the integral over D to an integral over ∂D is the divergence theorem for Rm. The vector
n ∈ Rn is the unique unit vector on the boundary point x ∈ ∂M that points away from
M , and results from pushing ν(q(s)) forward.

The divergence theorem is now illustrated for the hyper-spherical cap, M , and the
associated bounding sphere, ∂M , discussed in Section 7.3.2. The bounding submanifold
∂M (which is a 2-sphere of radius rh) is described in terms of the coordinates q = q(s),
together with the normal expressed in these coordinates, as

q(s) = rh ·

⎛⎝ cos s1 sin s2
sin s1 sin s2

cos s2

⎞⎠ and n(q(s)) = h ·

⎛⎝ cos s1 sin s2
sin s1 sin s2

cos s2

⎞⎠ . (7.36)

The Jacobian transformation for q(s) is

J(s) =
∂q
∂sT

= rh ·

⎛⎝− sin s1 sin s2 cos s1 cos s2
cos s1 sin s2 sin s1 cos s2

0 − sin s2

⎞⎠ .

Furthermore, it can be shown that after substituting (7.36) into (7.23),

dS = |detJT (s)G(q(s))J(s)|2 ds1ds2 = (rh)2 sin s2 ds1ds2.

Note that in this particular example it was not necessary to go through the complicated
calculation detJT (s)G(q(s))J(s) because ∂M can be parameterized as an embedded 2-
manifold in R4 as x(q(s)) = [rh cos s1 sin s2, rh sin s1 sin s2, rh cos s2, h]T , and its metric
tensor can be computed directly. In other words, for this particular boundary manifold,
JT (s)G(q(s))J(s) = JT (s)J(s).

As an example of a vector field, let

F(q) = (1 − q2
1 − q2

2 − q2
3)

1
2 q1

∂x
∂q1

⇐⇒ f(q) = [(1 − q2
1 − q2

2 − q2
3)

1
2 q1, 0, 0]T .

Then ∫
M

div(f) dV =
∫

‖q‖<rh

∂

∂q1
(q1) dq =

4
3
π(rh)3,

since the integral of the number 1 over the interior of a sphere of radius rh is just the
volume of that sphere.

On the other hand,∫
∂M

(f ,n) dS =
∫ π

0

∫ 2π

0

[rh

h
cos s1 sin s2

]
· [h cos s1 sin s2] · (rh)2 sin s2 ds1ds2

=
4
3
π(rh)3.

The equality of these two quantities therefore demonstrates the divergence theorem for
embedded manifolds.

7.3.5 Integration by Parts on an Embedded Manifold

Let M be a smooth m-dimensional manifold embedded in Rn and let φ : M → R be
a smooth function. In the discussion below, φ(q) will be used as shorthand to denote
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φ(x(q)) where q ∈ D ⊂ Rm since there will be no ambiguity. Let v(q) denote a vector
field on M expressed in coordinates.

The extension of the integration-by-parts formulas (A.123) and (A.124) to the case of
a differentiable m-dimensional embedded manifold in Rn with B differentiable bounding
sub-manifolds,7 each of dimension m − 1, is∫

D

m∑
i,j=1

vig
ij ∂φ

∂qj
|G| 1

2 dq1 . . . dqm = b.s.t. −
∫

D

φ

m∑
i,j=1

∂

∂qj

(
vig

ij |G| 1
2

)
dq1 . . . dqm,

(7.37)
where the bounding sub-manifold terms (b.s.t.) are

b.s.t. =

B∑
k=1

∫
∂Dk

φ(q(s(k)))
m∑

i,j=1

vi(q(s(k))) gij(q(s(k)))νj(s(k))dS(k)

where, in analogy with (7.35),

dS(k) = |JT (q(s(k)))G(q(s(k)))J(q(s(k)))| 1
2 ds

(k)
1 . . . ds

(k)
m−1.

Here each s(k) = [s(k)
1 , ..., s

(k)
m−1]

T is a parametrization of the kth bounding sub-manifold,
and νi(s(k)) is the ith component of the image of the outward-pointing normal to the
sub-manifold in the coordinate domain D. The Jacobian is defined as in the previous
subsection.

This can be quite confusing, and requires some clarification. Recall that the normal
directions to the m-dimensional manifold in Rn are defined by n − m vectors, N1,...,
Nn−m ∈ Rn such that

Ni · ∂x
∂qj

= 0

for all i = 1, ..., n − m and j = 1, ...,m. In contrast, a bounding sub-manifold has
dimensions m − 1, with tangent vectors in Rn defined by

T′
k =

∂x(q(s))
∂sk

,

for k = 1, ...,m − 1. (Here the superscripts (j) on s(j) have been suppressed while the
focus is on a single bounding sub-manifold.) There are n−m+1 normal vectors to each
point of this sub-manifold in Rn.

The span of {T′
k} is contained in the span of {Ti}. The vectors in the normal space

satisfy Nl =
∑

i cliTi under the constraint that Nl · T′
k = 0.

Restricting the discussion to only those normals of the sub-manifold that are con-
tained in the tangent to the original m-dimensional manifold imposes n−m constraints,
yielding a single outward-pointing normal for each point on each bounding sub-manifold.

In the case of a manifold without boundary, the integration by parts formula (7.37)
reduces to

〈v, gradφ〉 = −〈φ,div v〉 (7.38)

7A sub-manifold of a manifold is itself a manifold of lower dimension.
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because the bounding sub-manifold terms are zero. If the bounding sub-manifold terms
are not zero, the divergence theorem with D viewed as a subset of Rm together with a
localization argument8 yields

div(φv) = φdiv v + v · gradφ. (7.39)

This is also what would be obtained by directly applying the definition of divergence in
(5.49) to the vector field φv.

The integration-by-parts formula in (7.37) is now demonstrated on the same domain
considered in the previous example. Let v(q) and φ(q) respectively be the vector and
scalar fields defined in terms of the coordinates q as

m∑
i=1

vig
ij .= (1 − q2

1 − q2
2 − q2

3)
1
2 δ1,j and φ(q) = q1. (7.40)

Then the left-hand side of (7.37) becomes∫
D

3∑
i,j=1

vig
ij ∂φ

∂qj
|G| 1

2 dq1dq2dq3 =
∫

‖q‖<rh

dq1dq2dq3 =
4
3
π(rh)3.

The second term on the right-hand side of (7.37) becomes∫
D

φ

3∑
i,j=1

∂

∂qj

(
vig

ij |G| 1
2

)
dq1dq2dq3 =

∫
‖q‖<rh

q1
∂

∂q1
(1) dq1dq2dq3 = 0.

In this case since the boundary consists of a single surface, b.s.t. reduces to

b.s.t. =
∫

∂D

φ(q(s))
3∑

i,j=1

vi(q(s)) gij(q(s))νj(s) dS,

which, when substituting (7.36) and (7.40), reduces to

b.s.t. =
∫ π

0

∫ 2π

0
[rh cos s1 sin s2][cos s1 sin s2](rh)2 sin s2 ds1ds2 =

4
3
π(rh)3.

This therefore demonstrates the integration-by-parts formula (7.37).9

8There are two main kinds of localization arguments. The first is that if
∫

D
fdV = 0 over a

wide enough range of domains, D, then f = 0. The second is that for fixed D if
∫

D
fφdV = 0

for a wide enough range of functions φ, then f = 0. The first can be viewed as a subset of the
second in which φ is a window function that is equal to unity on various domains and zero
otherwise.

9The reader should not be left with the impression that the volume of the sphere appears
in every such calculation! These examples were chosen in a way so as to minimize the number
of complicated integrals that need to be evaluated. While the formulas for the divergence
theorem, integration by parts, etc., are general, computing complicated integrals adds little to
the understanding of the underlying concepts.
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7.3.6 Curvature

Once the metric tensor G = [gij ] for an m-dimensional manifold in Rn has been ob-
tained as a matrix in a particular coordinate system, the Christoffel symbols Γ k

ij and
Riemannian curvature tensor Rl

ijk defined in (5.59) and (5.61) can be calculated. The
only difference between the calculation for an m-manifold and a surface is that now
indices range from 1 to m rather than from 1 to 2.

Given the Riemannian curvature tensor Rl
ijk,

Rijkl
.=
∑
l′

Rl′

ijkgl′l. (7.41)

It can be shown that this has the symmetries [20, 43, 48]

Rijkl = Rklij and Rijkl = −Rjikl = −Rijlk

and obeys the (first) Bianchi identity :

Rijkl + Rkijl + Rjkil = 0.

The Ricci curvature tensor, Ric(G) = [Rij ], is obtained by contracting the Riemannian
curvature tensor Rl

ijk as

Rij
.=
∑

k

Rk
ikj =

∑
k

Rk
kij = Rji. (7.42)

The notation Ric(G) indicates that it is completely determined by the metric tensor.
The scalar curvature is computed from the Ricci curvature tensor as

k
.=
∑
i,j

gijRij . (7.43)

Given four vector fields u,v,w, z defined on an embedded manifold in the same way
that f is defined in (7.14), it is convenient to define

R(u,v,w, z) .=
∑
ijkl

Rijkluivjwkzl. (7.44)

This, together with the pointwise inner product defined in (7.15) is used to define the
sectional curvature associated with two vector fields, v,w on M [51]:

κ(v,w) .=
R(v,w,v,w)

(v,v)(w,w) − (v,w)2
(7.45)

when v and w are orthogonal to each other this reduces to κ(v,w) = R(v,w,v,w).
Given an orthonormal basis {ui} for the tangent space at x(q), the matrix with entries
κij = κ(ui,uj) contains the same information about the local geometry of the manifold
as does the Riemannian and Ricci curvature tensors.
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7.4 Covariant vs. Contravariant

7.4.1 Tensors

The volume element for a manifold can be expressed in two different coordinate systems,
{q1, q2, ..., qn} and {q′

1, q
′
2, ..., q

′
n}, and equated where the coordinates are compatible as

|G′(q′)| 1
2 dq′

1dq
′
2 . . . dq′

n = |G(q)| 1
2 dq1dq2 . . . dqn.

Likewise, a differential length element, ds, for a curve can be computed in two different
coordinate systems as

ds2 = dqTG(q)dq = dq′TG(q′)dq′ = ds′2. (7.46)

In general a scalar function on a manifold can be defined relative to coordinates,
and related to new coordinates as

f(q) = f ′(q′) where q′ = q′(q) and q = q(q′). (7.47)

From the chain rule,

dq′ =
∂q′

∂qT
dq. (7.48)

This provides a rule for the conversion of the one-dimensional arrays of coordinate
changes, dq and dq′ (which can be thought of as column vectors). More generally, given
a column vector that is a function on the manifold, expressed as v(q), then if the
corresponding vector in the coordinates q′, which is denoted as v′(q′), transforms in
analogy with the chain rule, as

v′ =
∂q′

∂qT
v, (7.49)

then v (and v′) is called a contravariant vector with components vi = vi(q) (and likewise
v′

i = v′
i(q

′)).
In contrast, given a function (also called a scalar field) on a manifold of the form in

(7.47), then the chain rule gives

∂f ′

∂q′T =
∂f

∂qT

∂q
∂q′T . (7.50)

This is a rule for transforming gradients, which are viewed here as row vectors. The
generalization of (7.50) to row vectors other than gradients is

v′T = vT ∂q
∂q′T or v′ =

∂qT

∂q′ v. (7.51)

In general a quantity such as v (or v′) that follows the above transformation rule is
called a covariant vector expressed in coordinates q (or q′).

The concepts of co- and contra-variance are not limited to vector quantities. Refer-
ring back to (7.46), it is clear from (7.48) that

G′(q′) =
(

∂q
∂q′T

)T

G(q)
∂q
∂q′T or g′

ij =
n∑

k,l=1

gkl
∂qk

∂q′
i

∂ql

∂q′
j

. (7.52)
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Taking the square root of the determinant of the above expression gives

|G′(q′)| 1
2 =

∣∣∣∣ ∂q
∂q′T

∣∣∣∣ · |G(q)| 1
2 . (7.53)

But since differential n-forms transform as

dq′
1 ∧ dq′

2 ∧ . . . ∧ dq′
n =

∣∣∣∣ ∂q′

∂qT

∣∣∣∣ dq1 ∧ dq2 ∧ . . . ∧ dqn,

it follows that

|G′(q′)| 1
2 dq′

1 ∧ dq′
2 ∧ . . . ∧ dq′

n = |G(q)| 1
2 dq1 ∧ dq2 ∧ . . . ∧ dqn. (7.54)

In other words, this is invariant under coordinate changes.
The inverse of (7.52) defines a transformation rule

[G′(q′)]−1 =
(

∂q
∂q′T

)−1

[G(q)]−1
(

∂q
∂q′T

)−T

=
∂q′

∂qT
[G(q)]−1

(
∂q′

∂qT

)T

(7.55)

written in component form as

g′ ij =
n∑

k,l=1

gkl ∂q
′
i

∂qk

∂q′
j

∂ql
. (7.56)

More generally a mixed tensor of contravariant valency r and covariant valency s,
denoted here as A, is a quantity expressed in terms of coordinates (q1, ..., qn) as an
array of nr+s scalar functions a i1,i2,...,ir

j1,j2,...,js
(q1, ..., qn) such that the corresponding array of

functions defined by a change of coordinates (q1, ..., qn) → (q′
1, ..., q

′
n) satisfies

a′ i1,i2,...,ir

j1,j2,...,js
=

∑
k1, k2, ..., kr

l1, l2, ..., ls

a k1,k2,...,kr

l1,l2,...,ls

∂q′
i1

∂qk1

. . .
∂q′

ir

∂qkr

· ∂ql1

∂q′
j1

. . .
∂qls

∂q′
js

(7.57)

where each a′ i1,i2,...,ir

j1,j2,...,js
is a function of (q′

1, ..., q
′
n) and a k1,k2,...,kr

l1,l2,...,ls
is a function of

(q1, ..., qn). When a tensor is (purely) covariant, r = 0, and when a tensor is (purely)
contravariant, s = 0. The sum r + s is called the rank of the tensor. A scalar is a tensor
of rank zero, and a vector is a tensor of rank 1. G = [gij ] is a purely covariant tensor
of rank 2, and G−1 = [gij ] is a purely contravariant tensor of rank 2. G and G−1 are
very special tensors because they can be used to change the valence of any tensor. For
example, starting with a mixed rank three tensor defined by the functions {as

jk}, the
metric tensor can be used to obtain a purely covariant tensor as

aijk =
n∑

s=1

as
jkgis.

7.4.2 Derivatives and Differentials

If G = [gij ] and G−1 = [gij ] are expressed in coordinates (q1, ..., qn), then the derivatives
of these entries with respect to coordinates can be expressed in terms of themselves and
the Christoffel symbols as [69]
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∂gjk

∂ql
=
∑

s

(
Γ s

jlgsk + gjsΓ
s
kl

)
and

∂gij

∂qk
= −

∑
s

(
Γ i

skg
sj + gisΓ j

sk

)
.

The covariant differential of a contravariant vector with ith entry vi is a new con-
travariant vector with ith entry Dvi defined as [69]

Dvi .= dvi +
∑
jk

vjΓ i
jkdqk. (7.58)

The covariant differential of a covariant vector with ith entry vj is a new covariant
vector with jth entry Dvj defined as [69]

Dvj
.= dvj −

∑
ik

viΓ
i
jkdqk. (7.59)

In contrast, the covariant derivative of contravariant and covariant vectors are respec-
tively defined in component form as [69]

vi
;k =

∂vi

∂qk
+
∑

j

vjΓ i
jk (7.60)

and
vj;k =

∂vj

∂qk
−
∑

i

viΓ
i
jk. (7.61)

The first of these is a mixed second-order tensor, and the second is purely covariant.
Differentials and derivatives are related by the expressions

Dvi =
∑

k

vi
;kdqk and Dvj =

∑
k

vj;kdqk.

The covariant derivative of any covariant tensor can be defined in an analogous way.
For example, the covariant derivative of ajk is

ajk;l
.=

∂ajk

∂ql
−
∑

s

(
askΓ

s
jl + ajsΓ

s
kl

)
.

Since vj;k is covariant, its second covariant derivative can be defined using the above
definition. The Riemannian curvature tensor can then be viewed as the four-index array
of scalar functions such that [69]

vj;k;l − vj;l;k =
∑

i

viR
i
jkl (7.62)

for any covariant vector vi. The Riemannian curvature tensor Ri
jkl is a rank four tensor

with covariant latency of three and contravariant latency of one.
The discussion of embedded manifolds presented in the previous section is reformu-

lated in the language of differential forms in the next section.
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7.5 Embedded Manifolds, Part II: Using Differential Forms

Consider the same situation as in the previous sections, now using the notation of
differential forms. Let M ⊂ Rm denote a connected and bounded domain in which a
vector q ∈ M is allowed to roam. Suppose that there is a mapping x : M → N ⊂ Rn

where n > m. The result is analogous to an m-dimensional parameterized “surface” in
an n-dimensional space. The use of the word surface here is really not correct, since it
implies that m = 2, much like the word curve corresponds to m = 1, regardless of the
value of n. The word embedding will be used here to denote the generalization of the
mapping that defines a curve or surface in Rn. The geometrical object resulting from an
embedding locally “looks like” Rm, and is called an “m-dimensional manifold embedded
in Rn.” A precise mathematical definition of the word manifold will be provided later.
For now, a manifold can be thought of as an embedded manifold10 for which the following
two properties hold:

x(q1) = x(q2) =⇒ q1 = q2 (7.63)

and

rank
(

∂x
∂qT

)
= m ∀ q ∈ M. (7.64)

These conditions guarantee that the embedded manifold observes constraints analogous
to those imposed for simple curves in the plane and simply connected surfaces in R3. If
(7.64) holds but (7.63) does not, then x : M → N is called an immersion.

7.5.1 Push-Forwards and Pull-Backs (Revisited)

Let q ∈ M ⊂ Rm and x ∈ N ⊂ Rn. Let γ : [0, 1] → M be a differentiable mapping. In
other words, γ(t) for t ∈ [0, 1] is a differentiable curve segment that exists in a part of
Rm denoted as M . Let f : N → R be a differentiable function. Let ψ : M → N be a
differentiable mapping. That is, x = ψ(q). This could also be written as x = x(q), but
in order to be consistent with the literature, the former notation in which the mapping
and the result of the mapping are denoted with different symbols.

Define
ψ∗ = ψ ◦ γ such that ψ∗ : [0, 1] → N.

This is the image of the curve γ(t) ∈ M as it looks in N , i.e., ψ∗(t) = ψ(γ(t)). It is
called the “push-forward of γ by ψ.” Using the notation of the previous section, another
way to denote the same thing is ψ∗(t) = x(q(t)) where the curve is denoted as q = q(t)
(rather than introducing the new name γ and writing q = γ(t)) and x = x(q) (rather
than introducing the new name ψ for the mapping).

Now define
ψ∗ = f ◦ ψ such that ψ∗ : M → R.

10From a pedagogical perspective, it might seem backwards to define “embedded manifold”
first and “manifold” later, but there are benefits to this approach. For example, when defining
the concept of “dog” to a child, a natural thing to do is to point to a “shaggy dog,” a “big
dog,” a “sled dog,” etc., and then the intuition behind the concept of “dog” will emerge. In
contrast, while the top down approach of first defining the concept of “animal” followed by the
concept of “mammal” and then defining a dog as a mammalian animal that is a member of the
canine genus and subspecies canis lupus familiaris may be more precise, that level of precision
would not add much to the child’s understanding.
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This is called the “pull-back of f by ψ.” For example, for each fixed value of t the mass
density ρ∗(x, t) defined in (1.41) is the pull-back of ρ(X, t) under the map X(x, t).

Push-forwards and pull-backs are dual operations in the sense that the former takes
an object from a subset of the real line and produces an object in a higher-dimensional
space (i.e., a curve segment), and the latter takes points in a high-dimensional space
and returns a value on the real line (i.e., it is a function).

The tangent to the pushed-forward curve (ψ ◦ γ)(t) = ψ(γ(t)) is given by the chain
rule as

d(ψ ◦ γ)
dt

= [Dψ]γ(t) γ
′
(t)

where

[Dψ]γ(t) =
∂ψ

∂qT

∣∣∣∣
q=γ(t)

and γ
′
(t) =

dγ

dt
.

Alternatively, this could be written as

[Dψ]γ(t) =
∂x
∂qT

∣∣∣∣
q(t)

.

In this notation, the differential of a pulled-back function is

d(f ◦ ψ) =
∂

∂xT
(f(ψ(q))dq =

∂f

∂xT

∂x
∂qT

dq = dqT [Dx]T ∇xf.

7.5.2 Expressing Pull-Backs of Forms in Coordinates

Let k ≤ min(m,n). Let x = x(q) (or equivalently x = ψ(q)) and ψ : M → N where
M ⊂ Rm and N ⊂ Rn. Let ωk be a k-form on N , written explicitly as

ωk =
∑

1≤i1<...<ik≤n

ai1,...,ik
(x) dxi1 ∧ dxi2 ∧ . . . ∧ dxik

. (7.65)

From the chain rule,

dxij = eT
ij

∂x
∂qT

dq.

Therefore, pulling back this form to the coordinate patch M � q yields

αk
.= ψ∗ωk =

∑
1≤i1<...<ik≤n

ai1,...,ik
(x(q))

(
eT

i1

∂x
∂qT

dq
)

∧ . . . ∧
(
eT

ik

∂x
∂qT

dq
)

. (7.66)

This pulled-back k-form can be written as

αk =
∑

1≤j1<...<jk≤m

ãj1,...,jk
(q) dqj1 ∧ dqj2 ∧ . . . ∧ dqjk

(7.67)

where ãj1,...,jk
(q) results from collecting all of the Jacobian factors and combining with

ai1,...,ik
(x(q)).

According to Schreiber [56], (7.66) can be written explicitly as

ψ∗ωk =
∑

1 ≤ i1 < i2 < . . . < ik ≤ n
1 ≤ j1 < j2 < . . . < jk ≤ m

ai1,...,ik
(x(q))

∂(xi1 , ..., xik
)

∂(qj1 , ..., qjk
)
dqj1 ∧ dqj2 ∧ . . . ∧ dqjk

(7.68)
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where ∂(xi1 , ..., xik
)/∂(qj1 , ..., qjk

) is the determinant of the particular k × k minor of
the full Jacobian matrix with entries ∂xir/∂qjs where r and s run from 1 to k. Equation
(7.68) results from

dxi1 ∧ dxi2 ∧ . . .∧ dxik
=

∑
1≤j1<j2<...<jk≤m

∂(xi1 , ..., xik
)

∂(qj1 , ..., qjk
)
dqj1 ∧ dqj2 ∧ . . .∧ dqjk

. (7.69)

Therefore, comparing (7.66), (7.67), and (7.68), it becomes clear that

ãj1,...,jk
(q) =

∑
1≤i1<i2<...<ik≤n

ai1,...,ik
(x(q))

∂(xi1 , ..., xik
)

∂(qj1 , ..., qjk
)
. (7.70)

When there is only one mapping ψ : M → N , in a particular problem it is convenient
to simply use the x(q) notation rather than ψ(q), as was done above. However, when
there are multiple mappings from M to N , this shorthand can lead to confusion.

7.5.3 Volume Element of an Embedded Manifold

In the special case when k = m ≤ n, then all choices dqj1 ∧ dqj2 ∧ . . . ∧ dqjm
for

j1 < j2 < . . . < jm reduce to dq1 ∧ dq2 ∧ . . . ∧ dqm. Let

vi1,...,im(x(q)) .=
∂(xi1 , ..., xim)
∂(q1, ..., qm)

for i1 < i2 < . . . < im. Let these
(

n
m

)
functions be viewed as the entries of a long

vector,

v(x) ∈ R

(
n
m

)
. (7.71)

The order in which these entries are arranged is unimportant in the current discussion.
Let νm (rather than ωk) be the form that results from letting v/‖v‖ be substituted

for a in (7.65) when k = m. Expressed in terms of the coordinates q, this becomes

ai1,...,im(x(q)) =
vi1,...,im

(x(q))
‖v‖ =

∂(xi1 ,...,xim )
∂(q1,...,qm)(∑

1≤l1<l2<...<lm≤m

∣∣∣∂(xl1 ,...,xlm )
∂(q1,...,qm)

∣∣∣2) 1
2
. (7.72)

Then the pull-back of the form νm can be calculated using (7.68). This is

ψ∗νm =

⎡⎣ ∑
1≤i1<i2<...<im≤n

∣∣∣∣∂(xi1 , ..., xim
)

∂(q1, ..., qm)

∣∣∣∣2
⎤⎦

1
2

dq1 ∧ dq2 ∧ . . . ∧ dqm

(7.73)
= ‖v‖ dq1 ∧ dq2 ∧ . . . ∧ dqm,

and this defines the volume integral for the embedded manifold:∫
ψ(M)

νm =
∫

M

ψ∗νm =
∫

M

dV. (7.74)
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The dV in the last equality is the volume element for the manifold, which can be
computed in coordinates as discussed earlier.

A natural issue to address at this point is why the volume element can be written as
in (7.73) on the one hand, and as |G| 1

2 dq1dq2 . . . dqm on the other. The reason for this
is that given an n×m matrix J with m < n, if Ji denotes the ith of the m×m minors
of this matrix, then

det(JTJ) =

(
n
m

)
∑
i=1

|detJi|2. (7.75)

This fact from linear algebra is independent of the way the minors are labeled as long
as every minor is represented exactly once in the summation. For example, if

J =

⎛⎝a11 a12
a21 a22
a31 a32

⎞⎠ then JTJ =

⎛⎝ a2
11 + a2

21 + a2
31 a11a12 + a21a22 + a31a32

a11a12 + a21a22 + a31a32 a2
12 + a2

22 + a2
32

⎞⎠
and one way to order the minors is

J1 =
(

a11 a12
a21 a22

)
; J2 =

(
a11 a12
a31 a32

)
; J3 =

(
a21 a22
a31 a32

)
.

A straightforward calculation then shows that

det(JTJ) = |detJ1|2 + |detJ2|2 + |detJ3|2,

which is a special case of (7.75).
This linear algebraic fact is useful in the setting of differential geometry because

when J = ∂x/∂qT is the Jacobian for an m-dimensional smooth embedded manifold in
Rn, the metric tensor is written as G = JTJ and (7.75) becomes

detG =
∑

1≤i1<i2<...<im≤n

∣∣∣∣∂(xi1 , ..., xim)
∂(q1, ..., qm)

∣∣∣∣2 . (7.76)

7.5.4 Conversion to Vector Notation

The
(

n
k

)
coefficients ai1,...,ik

for 1 ≤ i1 < i2 < . . . < ik ≤ n that define a multi-

vector in Λk(Rn) can be thought of as a column vector in
(

n
k

)
-dimensional space. In

other words, in analogy with the way ∨ operations were defined elsewhere in the text
to convert an m×n matrix into an m ·n-dimensional vector, a different ∨ operator can
be defined in the present context such that

∨ : Λk(Rn) → R

(
n
k

)
. (7.77)

This is reminiscent of (7.71), though in that context ∨ : Ωm(Rn) → R

(
n
k

)
. In other

words, the object on which the ∨ operation is acting is different in these two cases. If
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a ∈ R

⎛
⎝n

k

⎞
⎠

is the vector resulting from a mapping such as (7.77) (which amounts to an
arrangement of the coefficients ai1,...,ik

in a single column), then doing the same to the
coefficients

vi1,...,im
(q) .=

∂(xi1 , ..., xim
)

∂(q1, ..., qm)

will produce a vector v ∈ R

⎛
⎝n

k

⎞
⎠

.
Let D ⊂ Rm denote the coordinate domain that parameterizes the manifold, i.e.,

x : D → M . Following Schreiber [56],∫
ψ(M)

ω =
∫
q∈M

ai1,...,im
(x(q))vi1,...,im

(q) dq1 ∧ dq2 ∧ . . . ∧ dqm (7.78)

=
∫
q∈D

a · v dq1 ∧ dq2 ∧ . . . ∧ dqm (7.79)

=
∫
q∈D

a · v
‖v‖‖v‖ dq1 ∧ dq2 ∧ . . . ∧ dqm (7.80)

=
∫
q∈D

a · v
‖v‖ |G| 1

2 dq1dq2 . . . dqm (7.81)

=
∫

M

a · v
‖v‖dV. (7.82)

7.5.5 General Properties of Differential Forms on Embedded Manifolds

If ωi and αi are r and s forms, respectively, and f : Rn → R and ψ : Rm → Rn, then it
can be shown that

ψ∗(ω1 + ω2) = ψ∗ω1 + ψ∗ω2 (7.83)

ψ∗(fω) = ψ∗(f)ψ∗(ω) (7.84)

ω ∧ α = (−1)rsα ∧ ω (7.85)

ψ∗(ω ∧ α) = ψ∗(ω) ∧ ψ∗(α). (7.86)

In addition, if φ : Rn → Rp, then φ ◦ ψ : Rm → Rp and

(φ ◦ ψ)∗(ω) = ψ∗(φ∗(ω)). (7.87)

The exterior derivative of a differential form has the following properties:

d(ω ∧ α) = dω ∧ α + (−1)rω ∧ dα (7.88)

d(ψ∗ω) = ψ∗(dω). (7.89)

The proofs of some of the properties in (7.83)–(7.89) are left as exercises. They can
be found in books on forms and calculus on manifolds such as [1, 6, 29, 38, 45, 56, 58].
The following section uses these properties in the context of manifolds that are not
necessarily embedded.
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7.6 Intrinsic Description of Riemannian Manifolds

Manifolds are one of the central objects studied in modern geometry. A manifold can
be thought of as the generalization of simple curves and surfaces.11 An n-dimensional
manifold locally “looks like” Rn in the sense that there is an invertible mapping between
open subsets containing each point in a manifold, and open subsets in Rn. There is no
unique way to measure distance between points in an arbitrary abstract manifold. This
requires the introduction of a Riemannian metric, after which point it is possible to
measure the distance between points in a manifold. It is known that any n-dimensional
manifold can be viewed as an “n-dimensional simple surface” that sits in R2n+1 “in some
way” [67].12 In the special case when an n-dimensional manifold is embedded in Rn+1,
then the manifold is called a hyper-surface. For the case of manifolds embedded in a
higher-dimensional Euclidean space, the way that it is embedded defines a Riemannian
metric.

One way to measure distance between distant points in a manifold embedded in a
Euclidean space would be the straight-line distance between the points using the norm
of the difference of their vector positions in that space. This is one of the less elegant
ways of measuring distance between points in a manifold. But for points that are close
in this metric it is not a bad way to measure distance, and can be used to define a
Riemannian metric tensor.

In principle, the coordinate-dependent extrinsic formulation of geometry for curves
and surfaces in Rn used in Chapter 5 and earlier in this chapter can be used for manifolds
also. However, this is not the approach that is favored in modern mathematics. And
so, to relate the methods developed in later chapters to the more popular intrinsic
coordinate-free approach to modern geometry, some review is provided here.

Many excellent texts exist on modern differential geometry and differential topology
of manifolds. These include Kobayashi and Nomizu [38], Guillemin and Pollack [29],
Warner [64], and most recently Tu [63]. The definitions that are reviewed below can be
found in any of these texts.

Let M be an n-dimensional manifold, as understood by the intuitive description
provided earlier.13 In order to make a precise mathematical definition, some additional
ideas must first be introduced. First, an open neighborhood about any point in an
embedded manifold can always be constructed by intersecting the manifold with an
open ball in R2n+1 centered on the point of interest. This fact is independent of the
details of the embedding. Or, using a distance function between points x, u ∈ M , U can
be defined as the set of all points u such that 0 < d(x, u) < ε ∈ R>0. An n-dimensional

11The word simple denotes that a curve or surface does not intersect itself or form branches.
If it did, then there could not be an invertible mapping between the subset containing the
intersection or branch point with an open subset of the real line or plane.

12However, the way in which such a manifold is set into the higher-dimensional Euclidean
space is not unique. As is illustrated by the example of a knot in R3 (which is topologically the
same manifold as a circle), the essence of some problems is to get not just “an” embedding,
but rather the “right one.”

13Previously the dimension of M was denoted as m and it was defined to be embedded in Rn.
In the present context, there is no explicit embedding and n is used to denote the dimension
of M . From the famous theorems of Whitney and Nash [50, 67] it is always possible to embed
an n-dimensional manifold in R2n+1.
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proper coordinate chart about x ∈ M is the pair (U, φ) where U is an open neighborhood
of x and φ is an invertible mapping of the form φ : U → V ⊂ Rn where V is open.14

A collection of coordinate charts {(Ui, φi)} for i ∈ I (I is a set that indexes the
charts) is called an atlas. The following conditions are imposed on the coordinate charts:

• {Ui, φi} exists so that for each x ∈ M , x ∈ Ui for some i ∈ I.
• If (Ui, φi) and (Uj , φj) are any two coordinate charts in the atlas for which (Ui, φi)∩

(Uj , φj) = Ø, then the composed map

φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) (7.90)

is continuous.
• All possible charts with the above two properties are contained in the atlas.

Since it is well-known what it means for a mapping between open sets in Euclidean
space to be continuous, if the condition that the composite maps of the form φj ◦φ−1

i are
all continuous mappings between the open subsets φi(Ui ∩ Uj) and φj(Ui ∩ Uj) (which
are both in Rn) for all i, j ∈ I, then we say that each φi is a continuous mapping from
U to φi(U).

In practice the manifolds most often encountered are even more well-behaved.
Namely, if all of the functions φj◦φ−1

i are differentiable (with respect to any set of Carte-
sian coordinates imposed on the Euclidean space that contains the open sets φi(Ui ∩Uj)
and φj(Ui ∩ Uj)), then M is called a differentiable manifold. If each φj ◦ φ−1

i can be
differentiated an infinite number of times, then M is called a smooth manifold. And if
each φj ◦φ−1

i is an analytic function (i.e., a function for which a convergent Taylor series
exists), then M is called an analytic manifold. An analytic manifold is always smooth,
but it is possible to be smooth yet not analytic [63].

A differentiable manifold is called orientable if an atlas can be defined such that the
sign of the Jacobian determinant of φj ◦φ−1

i is positive for all i, j for which Ui ∩Uj = Ø.
Since φj ◦ φ−1

i is a mapping between two open sets in Rn, its Jacobian is computed
using methods of multivariable calculus. Unless stated otherwise, all manifolds discussed
throughout this book will be both orientable and analytic.15

A differential k-form, ω, on a patch U in an n-dimensional manifold, M , can be
defined with respect to a particular set of coordinates q = [q1, ..., qn]T ∈ φi(Ui), and a
set of smooth functions {ai1,i2,...,ik

(q)} as

ω =
∑

i1,i2,...,ik

ai1,i2,...,ik
(q) dqi1 ∧ dqi2 ∧ . . . ∧ dqik

where 1 ≤ i1 < i2 < . . . < ik ≤ n.

Here the set of coordinates {qi} are treated in the same way as Cartesian coordinates
in Rn, and, {dq1, ..., dqn} are interpreted according to the same rules as the differentials
in Rn. The set of all such k-forms on U is denoted as Ωk(U).

Due to the properties of the wedge product from Chapter 6, the only non-zero
contributions to the sum appear when there are no repeated indices. The above equation
can be written more concisely as

14Note that the perspective here is reversed from that in classical surface theory. Instead of
mapping from open sets in the coordinate domain to the manifold, φ maps from the manifold to
the coordinate domain. Stated another way, if q ∈ φ(U) ⊂ Rn is a vector of local coordinates,
then φ−1(q) is a local parametrization of the manifold.

15The Klein bottle and RP 2 are examples of nonorientable manifolds.
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ω =
∑
Ik

aIk
dqIk

(7.91)

where Ik = {i1, i2, ..., ik} is any subset of {1, ..., n} consisting of k distinct numbers
written in strictly increasing order, aIk

= ai1,i2,...,ik
and dqIk

= dqi1 ∧ dqi2 ∧ . . . ∧ dqik
.

In this notation, the exterior derivative of a k-form can be uniquely defined by the
properties [63, 59]

dω =
∑
Ik

(daIk
) ∧ dqIk

=
∑
Ik

∑
j

∂aIk

∂qj
dqj ∧ dqIk

. (7.92)

The first equality above results because of the defining property d(dqIk
) = 0. Note that

the introduction of the additional wedge product makes dω a (k + 1)-form whereas an
arbitrary form is denoted here as ω, an n-form on an n-dimensional manifold will be
denoted here as α. That is, for each patch Ui ∈ M , α ∈ Ωn(Ui) where φi(Ui) ⊂ Rn.

A beautiful theory of integration for n-forms on orientable n-dimensional manifolds
has been developed. Let Ui ⊂ M and α ∈ Ωn(Ui). Then this n-form can be expressed
in local coordinates {q1, ..., qn} on φi(Ui) as

(φ−1
i )∗α = a(q1, q2, ..., qn) dq1 ∧ dq2 ∧ . . . ∧ dqn

and using (6.95) the integral of α is defined as [13, 23, 19, 63]∫
Ui

α =
∫

φi(Ui)
(φ−1

i )∗α =
∫

φi(Ui)
a(q1, q2, ..., qn) dq1dq2 . . . dqn. (7.93)

This defines integration of an n-form on one patch of the manifold. If Ui and Uj are over-
lapping patches, then (7.90) holds, and due to the properties of the pull-back map [63],∫

φi(Ui∩Uj)
(φ−1

i )∗α =
∫

φj(Ui∩Uj)
(φi ◦ φ−1

j )∗(φ−1
i )∗α =

∫
φj(Ui∩Uj)

(φ−1
j )∗α.

The n-form α then can be integrated over the whole manifold by defining it in coordi-
nates in each patch. The trick is to make sure that there is no double counting or missed
spots. The two ways to do this are: (1) to break the manifold up into polytopes (such as
hyper-cubes), that are conjoined by shared (n − 1)-dimensional faces but are otherwise
disjoint, and integrate over each; or (2) introduce a partition of unity and blend the
local descriptions of α (which by definition must be the same on overlapping patches).

In Chapter 1, the concept of compactness was introduced to describe a body in Rn

that was closed and bounded, and therefore had finite volume. This working definition
was used throughout the book. A more precise definition in the present context is to
say that a compact manifold is a manifold that can be reconstructed from (or covered
by) taking the union of a finite number of patches, each of which is bounded in its size.

It is sometimes useful to consider n-dimensional orientable manifolds with boundary.
The boundary (which is also taken to be orientable) is then (n − 1)-dimensional. One
way to view this is by starting with an orientable manifold, M̃ , without boundary,
and embedding an orientable submanifold, ∂M , of dimension n − 1 in such a way that
it partitions M̃ into two disjoint components, each of which is an open set. This is
analogous to the way that the famous Jordan curve theorem describes how a simple
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closed curve partitions the plane into two disjoint parts, one that describes points on
the interior of the curve and one that describes the exterior. If we call one of these parts
M ⊂ M̃ , then M∪∂M is a manifold with boundary. A manifold with boundary, M ⊂ M̃ ,
is usually defined in books on differential geometry by piecing together patches for M
and patches that locally look like the closed half space in Rn defined by the constraint
xn ≥ 0.

For example, if M̃ = S2, the unit sphere in R3, then by inscribing a simple closed
curve on the sphere defines a boundary between two regions. Each of these open regions
is a manifold. Taking the union of either one with the closed curve defines a manifold
with boundary.

In the discussions above there has been very little geometric content because there
was no mention of distance. The distinction between differential topology and differential
geometry is that in geometric discussions a metric is required. Earlier, a Riemannian
metric was induced by the way a manifold was embedded in Euclidean space. However,
it is possible to define this in an intrinsic way. If TxM denotes the tangent space to the
smooth manifold M at the point x ∈ M , then the Riemannian metric is a family of
functions .

gx : TxM × TxM → R ∀ x ∈ M (7.94)

such that the function f(x) .= gx(A(x), B(x)) is differentiable for all x ∈ M and
A(x), B(x) ∈ TxM . Furthermore, if {Xi(x)} is a basis for TxM , the matrix with entries
gij(x) .= gx(Xi(x), Xj(x)) is symmetric in the arguments. A corresponding tensor is
denoted as

G =
n∑

i,j=1

gij(x)dxi ⊗ dxj , (7.95)

where the tensor product ⊗ in the above expression is between elements of the ba-
sis {dxi} for the dual space (TxM)∗, which is called the cotangent space of M at x.
The tensor G is the Riemannian metric tensor. A smooth manifold equipped with a
Riemannian metric tensor is called a Riemannian manifold. i̇ndexRiemannian!manifold

7.6.1 Computing Tangent Vectors and Boundary Normals in Local
Coordinates

As an alternative to describing vector fields on manifolds in an ambient Euclidean space
in which the manifold is taken to be embedded, it is possible to describe vector fields
in terms of coordinate charts and mappings among the charts. For example, given a
vector field V =

∑
i vi(q)∂/∂qi in coordinate system {q1, ..., qm} and given φ = φ(q),

it is possible to use the mapping φ to push forward the vector field and express it as
φ∗V =

∑
i e

T
i [∂φ/∂qT ]|q(φ)v(q(φ))∂/∂φi.. This is nothing more than (6.80). The local

geometry of the manifold is encoded in the transition between the maps and the metric.
As a concrete example, consider the vector field W defined in terms of coordinate

{q1, q2, q3} for the hyper-spherical cap example presented in Section 7.3.2 as

W .= w1
∂

∂q1
+ w2

∂

∂q2
+ w3

∂

∂q3
, (7.96)

or equivalently, w = [w1, w2, w3]T where

wi =
qi√

q2
1 + q2

2 + q2
3

.
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Since the Jacobian matrix has already been computed, and since from (7.29)
[∂φ/∂qT ]|q(φ) = [∂q/∂φT ]−1, which was already computed explicitly, the vector field
ψ∗W can be written by inspection (together with some trigonometry) as

ψ∗W = tanψ
∂

∂ψ
.

Now suppose that an abstract manifold M is defined locally in terms of the coordi-
nates q and metric G(q). From the example above it should be clear how to transform
vector fields between coordinates. In principle, as the whole manifold is traversed a se-
ries of such changes in coordinates can be made. Now suppose that a submanifold is
defined locally in terms of coordinates as q(s) where m− 1 = dim(s) = dim(q)− 1. The
question then becomes, how can the normal to ∂M be defined without reference to any
knowledge of how M might be embedded?

The answer is that analogs of the calculations performed for the embedded case follow
when the abstract inner product (∂/∂qi, ∂/∂qj)

.= gij is defined for tangent vectors. If
the coordinates s are chosen in such a way φ = [sT , sm]T is a full set of local coordinates
for a neighborhood in M with sm = 0 locally defining the submanifold, then the normal
direction for the submanifold in this coordinate system will be ∂/∂sm. If q = q(φ),
then pushing ∂/∂sm forward will provide the description of the normal to ∂M in the
coordinates q.

7.6.2 Stokes’ Theorem for Manifolds

Let M be a compact orientable manifold of dimension m with boundary ∂M of dimen-
sion m−1. Let ω denote an (m−1)-form on M , and dω denote the m-form resulting from
exterior differentiation of ω. Then Stokes’ theorem for manifolds is stated as [20, 23, 1]∫

M

dω =
∫

∂M

ω. (7.97)

Suppose that M and ∂M are contained in a manifold M̃ of dimension m and that
their volume elements are respectively dV and dS. (Both of these are defined by the
Riemannian metric on M̃ .) At any point p ∈ ∂M let n(p) denote the unit normal vector
to ∂M that points away from M , and that is contained in the tangent space of M̃ at
p. When written as n(p), this vector can be thought of as an m-dimensional array of
functions {ni}. Alternatively, calligraphic “N” will denote the same vector field written
as in (6.60).16

If the metric tensor for M in coordinates q is G(q), then the inner product of two
vector fields, V =

∑
i vi∂/∂qi and W =

∑
i wi∂/∂qi, at the point in M defined by a

specific value of q is

(V,W) .= (v,w) = [v(q)]T [G(q)]w(q).

16The difference is that nφ = φn is just scalar multiplication of the entries in the array n
by φ, whereas Nφ =

∑
i ni∂φ/∂qi = n · grad φ is not the same as φN = φ

∑
i ni∂/∂qi.
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Given a vector field w defined on the tangent bundle17 of M , and scalar function
φ defined on M , the following (more explicit, and more specialized) forms of Stokes’
theorem for orientable manifolds can be written as18 (see, e.g., [43])

Theorem 7.1. The Divergence Theorem for Manifolds with Boundary:∫
M

div(w) dV =
∫

∂M

(w,n) dS. (7.98)

Theorem 7.2. First Green’s Theorem for Manifolds with Boundary:∫
M

[φ1 div(gradφ2) + (gradφ1 , gradφ2)] dV =
∫

∂M

φ1Nφ2 dS. (7.99)

Theorem 7.3. Second Green’s Theorem for Manifolds with Boundary:∫
M

[φ1 div(gradφ2) − φ2 div(gradφ1)] dV =
∫

∂M

(φ1Nφ2 − φ2Nφ1) dS. (7.100)

Theorem 7.4. Integration-by-Parts for Manifolds with Boundary:∫
M

(gradφ ,w) dV =
∫

∂M

(w,n)φdS −
∫

M

φdiv(w) dV. (7.101)

These can either be proved as special cases of Stokes’ theorem using intrinsic and
coordinate-free geometric techniques, or using the extrinsic and coordinate-dependent
approach described earlier in this chapter for the case of an embedded manifold.

These theorems are now demonstrated with the example of a hyper-spherical cap
and its boundary submanifold from Section 7.3.2.

Example 1: Inner Product of Vector Fields

The calculations involved in computing the inner product of vector fields on a man-
ifold are now illustrated with an example using both intrinsic and extrinsic approaches.
Previous examples demonstrated the inner product of vector fields and Stokes’ theorem
for domains and surfaces in R3. However, it also applies to embedded manifolds as well
as to manifolds defined by coordinate charts that need not be embedded in Rn. We first
consider the case of an embedded manifold with boundary, and then consider intrin-
sic calculations. Again, the example of an open hyper-spherical cap, M , with spherical
boundary, ∂M , will be used as the example. In this example, one coordinate chart is
sufficient to cover the whole manifold. When performing integrations over M and ∂M ,

17The tangent space at one point on a manifold is not the same object as the tangent spaces
at another point on the same manifold. However, they are equivalent in that they have the same
dimension, and for manifolds embedded in Euclidean space, one tangent space can be rigidly
moved so as to coincide with another. The collection of all of these tangent spaces indexed by
points on the manifold, together with a projection map, is called the tangent bundle. A single
vector that is tangent to a manifold at a particular point is contained in a single tangent space.
In contrast, a vector field “on the manifold” can be viewed as a mapping from the manifold to
the tangent bundle.

18M has m-dimensional volume element dV and ∂M has (m−1)-dimensional volume element
dS.
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they will therefore be performed in the coordinates q. The range of parameters in the
integrations will be

D = {q | ‖q‖ < rh} and ∂D = {q | ‖q‖ = rh}. (7.102)

As an initial example, let

K(q) .= (1 − q2
2 − q2

3)−1q1
∂x
∂q1

and H(q) .= (1 − q2
1 − q2

2 − q2
3)

3
2

∂x
∂q1

,

or equivalently,

k(q) = [(1 − q2
2 − q2

3)−1q1, 0, 0]T and h(q) = [(1 − q2
1 − q2

2 − q2
3)

3
2 , 0, 0]T .

Note that K ∈ R4, but k ∈ R3. These contain equivalent information as the modern
notation

K = k1
∂

∂q1
and H = h1

∂

∂q1
.

Then (7.19) reduces to

〈k,h〉 =
∫

D

‖T1‖2 q1 |G(q)| 1
2 dq =

∫
‖q‖<rh

q1 dq.

This integral is most easily evaluated by converting q to the spherical coordinates

q1 = r cosφ sin θ; q2 = r sinφ sin θ; q3 = r cos θ.

Then

〈k,h〉 =
∫ rh

0

∫ π

0

∫ 2π

0
(r cosφ sin θ)r2 sin θ dφdθdr = 0

since
∫ 2π

0 cosφdφ = 0.

Example 2: Divergence Theorem for Vector Fields on Manifolds Without
Embedding

Let us assume that G(q) is given as in (7.23), and that one coordinate chart is
enough in this example. Since G is specified, the way that the sphere is embedded in
R4 can be completely forgotten, and all calculations can be performed in this chart.

For the vector field in (7.96),

div(w) = |G(q)|− 1
2

3∑
i=1

∂

∂qi
(|G(q)| 1

2 wi)

= (1 − ‖q‖2)
1
2

3∑
i=1

[
(1 − ‖q‖2)− 3

2 qiwi + (1 − ‖q‖2)− 1
2
∂wi

∂qi

]

=
3∑

i=1

[
(1 − ‖q‖2)−1qiwi +

∂wi

∂qi

]

= (1 − ‖q‖2)−1
3∑

i=1

qiwi +
3∑

i=1

∂wi

∂qi

= (1 − ‖q‖2)−1‖q‖ + 2‖q‖−1.
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Then ∫
M

div(w) dV =
∫

D

{
(1 − ‖q‖2)−1‖q‖ + 2‖q‖−1} |G(q)| 1

2 dq1dq2dq3

=
∫ rh

0

∫ π

0

∫ 2π

0

{
r

[1 − r2]
3
2

+
2

r[1 − r2]
1
2

}
r2 sin θ dφdθdr

= 4π
∫ rh

0

r3

[1 − r2]
3
2
dr + 8π

∫ rh

0

r

[1 − r2]
1
2
dr

= 4π
[
(1 − r2)

1
2 + (1 − r2)− 1

2

]rh

0
− 8π

[
(1 − r2)

1
2

]rh

0

=
4π
h

(1 − h2).

On the other hand, for this particular vector field and bounding surface, (w,n) =
wTGn = 1/h and so∫

∂M

(w,n) dS =
∫

∂D

(wTGn)|JT (s)G(q(s))J(s)| ds

=
∫ π

0

∫ 2π

0
(1/h) · (rh)2 sin s2 ds1ds2

=
4π
h

(1 − h2).

This illustrates Theorem 7.1 in the context of this particular example.

Example 3: Integration by Parts on Manifolds Without Embedding

In addition to the vector field defined in (7.96), define the scalar function

φ
.= q2

3 .

With these and the metric tensor defined in (7.23), the integration-by-parts formula in
Theorem 7.4 can be demonstrated. First, observe that∫

M

(gradφ,w) dV =
∫

D

(G−1∇qφ)TGw |G| 1
2 dq

=
∫

D

(∇qφ)T w |G| 1
2 dq

= 2
∫

D

q2
3 · ‖q‖− 1

2 · (1 − ‖q‖2)− 1
2 dq

= 2
∫ rh

0

∫ π

0

∫ 2π

0
(r cos θ)2(r)−1(1 − r2)− 1

2 r2 sin θ dφdθdr

= 2 ·
(∫ rh

0

r3

(1 − r2)
1
2
dr

)
·
(∫ π

0

∫ 2π

0
cos2 θ sin θ dφdθ

)
=

8π
3

∫ rh

0

r3

(1 − r2)
1
2
dr =

8π
3

[
1
3
(1 − r2)

3
2 − (1 − r2)

1
2

]rh

0

=
8π
3

[h3/3 − h + 2/3].

For the particular vector field w = n/h and bounding surface ∂M , wTGn = 1/h.
Therefore
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∂M

(w,n)φdS =
∫

∂D

φ(q(s))[w(q(s))]TG(q(s))n(q(s))|JT (s)G(q(s)J(s))| 1
2 ds

=
∫ π

0

∫ 2π

0
(rh cos s2)2 · 1

h
· (rh)2 sin s2ds1ds2

=
(1 − h2)2

h

∫ π

0

∫ 2π

0
cos2 s2 sin s2ds1ds2

=
4π
3

(1 − h2)2

h
.

And ∫
M

φdiv(w) dV =
∫

D

φ(q)
{
(1 − ‖q‖2)−1‖q‖ + 2‖q‖−1} |G(q)| 1

2 dq

=
∫

D

2q2
3‖q‖−1(1 − ‖q‖2)− 1

2 dq +
∫

D

q2
3(1 − ‖q‖2)− 3

2 ‖q‖dq

=
∫ rh

0

∫ π

0

∫ 2π

0

{
2(r cos θ)2

(1 − r2)
1
2 r

+
(r cos θ)2r
(1 − r2)

3
2

}
r2 sin θ dφdθdr

=
4π
3

[∫ rh

0

2r3dr

(1 − r2)
1
2

+
∫ rh

0

r5dr

(1 − r2)
3
2

]
=

4π
3
[
(2h3/3 − 2h + 4/3) + (−h3/3 + 2h + h−1 − 8/3)

]
.

Substituting these into the formula in Theorem 7.4 verifies integration by parts for this
example.

Example 4: Green’s First Theorem for Vector Fields on Manifolds Without
Embedding

In addition to the vector field defined in (7.96), define the scalar functions

φ1(q) .= q2
1 + q2

2 and φ2(q) .= q2
3 .

Then Green’s theorems (7.2 and 7.3) can be demonstrated. Only Theorem 7.2 is demon-
strated here.

To begin, observe that for this example

G−1∇qφ2 = [−2q1q
2
3 ,−2q2q

2
3 , 2(1 − q2

3)q3]T

and so

3∑
i=1

∂

∂qi

⎛⎝|G(q)| 1
2

3∑
j=1

gij(q)
∂φ2

∂qj

⎞⎠ = −2
∂

∂q1

[
(1 − ‖q‖2)− 1

2 q1q
2
3

]
−2

∂

∂q2

[
(1 − ‖q‖2)− 1

2 q2q
2
3

]
+2

∂

∂q3

[
(1 − ‖q‖2)− 1

2 (1 − q2
3)q3

]
= −2(1 − ‖q‖2)− 1

2 [(1 − ‖q‖2)−1(q2
1 + q2

2)q2
3 + 2q2

3 ]

+ 2(1 − ‖q‖2)− 1
2 [(1 − ‖q‖2)−1

(1 − q2
3)q2

3 + (1 − 3q2
3)]

= 2(1 − ‖q‖2)− 1
2 [1 − 4q2

3 ]
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and
(∇qφ1)TG−1∇qφ2 = −4(q2

1q
2
3 + q2

2q
2
3).

Also,
3∑

i=1

ni
∂φ2

∂qi

∣∣∣∣∣
q=q(s)

= (h cos s2)(2 cos s2).

Now consider each of the three integrals in this theorem:∫
M

φ1div(gradφ2) dV =
∫

D

φ1

3∑
i=1

∂

∂qi

⎛⎝|G(q)| 1
2

3∑
j=1

gij(q)
∂φ2

∂qj

⎞⎠ dq

= 2
∫

D

(q2
1 + q2

2)[1 − 4q2
3 ]

(1 − ‖q‖2)
1
2

dq

= 2
∫ rh

0

∫ π

0

∫ 2π

0

[1 − 4r2 cos2 θ]r2 sin2 θ

(1 − r2)
1
2

r2 sin θdrdφdθ

= 2
(∫ π

0

∫ 2π

0
sin3 θdφdθ

)
·
∫ rh

0

r4

(1 − r2)
1
2
dr

−8
(∫ π

0

∫ 2π

0
cos2 θ sin3 θdφdθ

)
·
∫ rh

0

r6

(1 − r2)
1
2
dr

=
16π
3

∫ rh

0

r4

(1 − r2)
1
2
dr − 64π

15

∫ rh

0

r6

(1 − r2)
1
2
dr (7.103)

∫
M

(gradφ1, gradφ2) dV =
∫

D

(∇qφ1)T [G(q)]−1(∇qφ2)|G(q)| 1
2 dq

=
∫

D

−4(q2
1q

2
3 + q2

2q
2
3)

(1 − ‖q‖2)
1
2

dq

=
∫ rh

0

∫ π

0

∫ 2π

0

−4r4 sin2 θ cos2 θ

(1 − r2)
1
2

r2 sin θdrdφdθ

= −4
(∫ π

0

∫ 2π

0
cos2 θ sin3 θdφdθ

)
·
∫ rh

0

r6

(1 − r2)
1
2
dr

= −32π
15

∫ rh

0

r6

(1 − r2)
1
2
dr (7.104)

and ∫
∂M

φ1Nφ2 dS =
∫

∂D

φ1 ·
[

3∑
i=1

ni
∂φ2

∂qi

]
· |JT (s)G(q(s))J(s)| 1

2 ds

=
∫ π

0

∫ 2π

0
[(rh cos s1 sin s2)2 + (rh sin s1 sin s2)2] (7.105)

· (2hrh cos2 s2) · (rh)2 sin s2 ds1ds2

= 2h(rh)5
∫ π

0

∫ 2π

0
sin3 s2 cos2 s2 ds1ds2

=
16π
15

h(1 − h2)
5
2 . (7.106)
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Green’s First Theorem will then hold in this example if

1
3

∫ rh

0

r4

(1 − r2)
1
2
dr − 2

5

∫ rh

0

r6

(1 − r2)
1
2
dr =

1
15

h(1 − h2)
5
2 .

Indeed, this can be verified by consulting tables of integrals.
Equation (7.103) is a straightforward implementation of (5.50) and the factor of

|G(q)|− 1
2 from div(grad(φ2)) cancels with the factor of |G(q)| 1

2 in the definition of
dV = |G(q)| 1

2 dq. The inner product in (7.104) is interpreted as in (7.14), where gradφ =
[G(q)]−1(∇qφ), and so (gradφ1, gradφ2) = ([G(q)]−1∇qφ1)T [G(q)]([G(q)]−1∇qφ2),
leading to the simplification in (7.104). And the vector field N in the equation pre-
ceding (7.105) is interpreted as in Section 7.6.1.

Example 5: Integration of Forms on Manifolds Without Embedding

Let M be the manifold defined by (7.20) with ‖q‖ < rh
.= (1 − h2)

1
2 , and let

∂M ∼= S2
rh

be the boundary of M . If

α = a3(q) dq1 ∧ dq2 − a2(q) dq1 ∧ dq3 + a1(q) dq2 ∧ dq3,

then

dα =
(
∂a1

∂q1
+

∂a2

∂q2
+

∂a3

∂q3

)
dq1 ∧ dq2 ∧ dq3

and ∫
M

dα =
∫

‖q‖≤rh

∇ · a dq

where ∇· is the usual divergence operator in R3.
More specifically, define a 2-form

α
.=

q1√
q2
1 + q2

2 + q2
3

dq1 ∧ dq2 +
q2√

q2
1 + q2

2 + q2
3

dq1 ∧ dq3 +
q3√

q2
1 + q2

2 + q2
3

dq2 ∧ dq3.

The exterior derivative of this form is computed according to the rule (7.92) as

dα = − q2
2 + 2q1q3 + q2

3

(q2
1 + q2

2 + q2
3)

3
2
dq1 ∧ dq2 ∧ dq3.

Therefore, ∫
M

dα = −
∫

‖q‖<rh

q2
2 + 2q1q3 + q2

3

(q2
1 + q2

2 + q2
3)

3
2
dq1 ∧ dq2 ∧ dq3.

This is most easily computed by converting to a spherical coordinate system such as

q1 = r cosφ sin θ; q2 = r sinφ sin θ; q3 = r cos θ.

It follows from (6.77) that

dq1 ∧ dq2 ∧ dq3 = −r2 sin θ dφ ∧ dθ ∧ dr.

And since q2
1 + q2

2 + q2
3 = q′2

3, and the negative signs in the above expressions cancel,∫
M

dα =
∫ rh

0

∫ π

0

∫ 2π

0

r2f(φ, θ)
(q′

3)3
r2 sin θ dφdθdr

=
(rh)2

2

∫ π

0

∫ 2π

0
f(φ, θ) sin θ dφdθ
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where
f(φ, θ) = cos2 φ sin2 θ + 2 cosφ sin θ cos θ + cos2 θ.

Evaluating the integrals using trigonometric identities gives∫
M

dα =
4π
3

(rh)2. (7.107)

Spherical coordinates can be used to parameterize this boundary as

q1 = rh cos s1 sin s2; q2 = rh sin s1 sin s2; q3 = rh cos s2.

In these coordinates,

α = (rh)2(sin2 s1 sin3 s2 − 2 cos s1 sin2 s2 cos s2) ds1 ∧ ds2

and∫
∂M

α = (rh)2
∫ π

0

∫ 2π

0
(sin2 s1 sin3 s2 − 2 cos s1 sin2 s2 cos s2) ds1ds2 =

4π
3

(rh)2,

which is the same as the result in (7.107), thus illustrating Stokes’ theorem.

7.6.3 The Gauss–Bonnet–Chern Theorem

There are two ways to extend the Gauss–Bonnet theorem to higher dimensions. The
first approach is extrinsic, viewing the manifold as being embedded in some Euclidean
space. For an n-dimensional hyper-surface in Rn+1, it is possible to define a normal line
corresponding to each point, exactly as in the case of two-dimensional surfaces in R3. Ie
this approach is taken for an n-dimensional manifold in Rn+p, the problem arises that
there is not a single normal vector for each point on the manifold, but rather a whole
normal space of dimension p. Every vector in this normal space will be orthogonal to
every vector in the tangent to the manifold. An (n+p+1)-dimensional plane spanned by
the normal space and one of the tangent vectors can be used to “slice” the manifold. The
result will be a one-dimensional curve, the signed curvature of which can be computed.
This can be done for each of n independent tangent directions. The resulting curvatures
can be used in a similar way to construct an analog of the Gaussian curvature for
manifolds. This can then be integrated over a compact oriented Riemannian manifold
to obtain a generalization of the Gauss–Bonnet theorem.19 The case when p = 1 was
addressed by Hopf [33]. The case for arbitrary p was addressed by Allendoerfer and Weil
[2, 3] and Fenchel [22].

The second approach, which is purely intrinsic, is due to Chern [16], and uses dif-
ferential forms. It is considered to be more general than the approaches in which the
manifold is embedded in Euclidean space, and thus the renaming of this result as the
Gauss–Bonnet–Chern theorem. From a purely computational point of view, the end
result can be written in coordinates as∫

M

k dV =
1
2
On+1χ(M) (7.108)

19A compact manifold with Riemannian metric defined will have a total volume with respect
to that metric that is finite.
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where k is the appropriate generalization of the Gaussian curvature and χ(M) is the
Euler characteristic of M .

In local coordinates dV (q) = |G(q)| 1
2 dq1 . . . dqn is the volume element for the mani-

fold (defined with respect to an appropriate metric tensor, G(q)). Recall from Section 2.3
that On+1 denotes the volume of the unit sphere in Rn+1. The function that takes the
place of curvature in the classical Gauss–Bonnet theorem is k(q) = P(R(q)) where [48]

P(R) =
∑

σ,π∈Πn

sgn(σ)sgn(π)
2n/2n!detG

Rσ(1),σ(2),π(1),π(2)Rσ(3),σ(4),π(3),π(4) . . . Rσ(n−1),σ(n),π(n−1),π(n).

(7.109)
Here sgn(π) is the sign of a permutation π. The function P(·), called the Pfaffian,

converts the Riemannian metric tensor, R, into a scalar. Recall that the Riemannian
metric tensor can be written in component form as Rl

ijk or Rijkl =
∑

m glmRm
ijk. If the

manifold is embedded in Euclidean space and parameterized as x = x(q1, ..., qn) ∈ Rn+p,
the elements of the metric tensor are then gij = ∂x/∂qi · ∂x/∂qj and all of the other
formulas from Section 5.4.2 that are based on the metric tensor (such as those for the
Christoffel symbols, Γ k

ij , and the elements of the Riemannian metric tensor, Rm
ijk) still

apply. The only difference is that the indices now all range from 1 to n rather than 1
to 2.

The definition in (7.109) can be thought of as the natural higher-dimensional gen-
eralization of (5.65), and can be restated in terms of the language of differential forms
as follows. Define the curvature 2-form as [45]

Ωj
l = −1

2

∑
hk

Rj
lhkdqh ∧ dqk. (7.110)

If these are viewed as the entries in an n × n skew-symmetric matrix Ω = [Ωj
l ], then∫

M

k(q)dV (q) =
∫

M

P(Ω)

where the Pfaffian of an even-dimensional skew-symmetric matrix S can be reinterpreted
as [58]

P(S) .=
1

2n/2(n/2)!

∑
π∈Πn

ε(π)Sπ(1),π(2) . . . Sπ(n−1),π(n)

and is related to the determinant of S as

[P(S)]2 = detS.

In the case when n is odd, this will always be zero, and hence so too will be (7.108).
The torsion 2-form for M is defined as [45]

Ωj =
∑
hk

Γ j
hkdqh ∧ dqk. (7.111)

Given an embedding, this form describes how the n-dimensional manifold “twists
around” in Rn+p.

7.7 Fiber Bundles and Connections

In this section two concepts that play important roles in modern differential geome-
try are reviewed. Section 7.7.1 focuses on the concept of fiber bundles, which includes
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vector bundles, tangent bundles, normal bundles, and frame bundles, among others.
Section 7.7.2 discusses the concept of affine and Riemannian connections. In the world
of coordinate-free intrinsic differential geometry these concepts play a vital role. In the
stochastic modeling problems that arise in engineering and biology where the mani-
folds of interest are usually embedded in Euclidean space in a way that is dictated
by the problem, these concepts are less critical. However, they are provided here for
completeness.

7.7.1 Fiber Bundles

In Chapter 5 we encountered the concept of tubular surfaces. A tubular surface can be
decomposed in two natural ways. The planes normal to the backbone curve (i.e., those
planes that have as their normal the tangent to the backbone curve) can be used to
“chop up” a tubular surface into an infinite number of circles. Alternatively, a tubular
surface can be viewed as an infinite number of parallel curves that are offset from the
backbone by a fixed radius. It is natural to think of these offset curves as fibers. Each
fiber can be associated with one point on one of the circles resulting from the intersection
of a plane normal to the backbone curve and the tubular surface. Picking one of these
circles, the tube can be thought of as a collection of fibers sprouting from the circle.
The circle in this context is called a base space, and the whole tube can be thought of
as a “bundle” of offset curves. Given the same example, we could pick one of the offset
curves, and use it as the base space, in which case associated with each point of an
offset curve would be one and only one circle. Then the circles become fibers, and the
tube could be called a bundle of circles.

The above two scenarios define two different fiber bundles from the same tubular
surface. The tubular surface, which is an example of a total space (also called the entire
or bundle space), is the same in both cases and can be viewed locally as the direct
product of a base space and a fiber space. In other words, the tube locally looks like
a cylinder. It is not until the larger picture is viewed that the distinction between, for
example, a knotted torus and a cylinder becomes clear. The way that the total space is
decomposed into fibers and base space defines different fiber bundles.

Equipped with this intuitive picture, a more precise and general definition can now
be understood more easily. A fiber bundle is a mathematical structure consisting of the
four objects (E,B, π, F ) where B is the base space, F is the fiber space, E is the entire
(or total) space (which “locally looks like” a direct product B×F ), and π is a continuous
projection map π : E → B. This map has the property that for any open neighborhood
Ux ⊂ B of a point x ∈ B, the inverse image π−1(Ux) can be mapped bijectively and
continuously to an open subset of Ux × F . A set π−1(x) ⊂ π−1(Ux) is called the fiber
over the point x ∈ B. For a tubular surface in R3 with a circle as the base space, π can
be thought of as the operation of collapsing each offset curve to a single point on the
circle. Then π−1(x ∈ S1) is a particular offset curve, or fiber.

A vector bundle is a special kind of fiber bundle in which the fibers are each vector
spaces and the projection map satisfies some additional properties. Since every point on
an m-dimensional manifold, x ∈ M , has an associated tangent space, TMx, the total
space consisting of all pairs (x, TMx) where x ∈ M together with B = M and F ∼= Rm,
and an appropriate projection map20 is a special kind of vector bundle called a tangent

20The projection map, π, is defined as π : TM → M where vx ∈ TMx gets mapped to x,
i.e., π(vx) = x. For any tangent vector field X : M → TM , the projection map is defined to
satisfy the additional condition that π ◦ X : M → M is the identity map.
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bundle. If M is m-dimensional, then the total space in this case will be 2m-dimensional.
Alternatively, for an m-dimensional manifold embedded in Rn, each point x ∈ M has an
associated normal space, NMx, which is the (n−m)-dimensional orthogonal complement
of TMx in Rn. The total space consisting of all pairs (x,NMx) is n-dimensional. This
total space together with B = M , F ∼= Rn−m, and an appropriate projection map
defines a normal bundle.

Other sorts of fiber bundles exist. (For example, the tubular surface example is not
a vector bundle.) A framed simple curve or surface, or more generally a manifold with
a frame attached at each point, defines a frame bundle. If associated with each point
x ∈ M a sphere is attached, then the result is a sphere bundle. The previously described
decomposition of the tubular surface into a bundle of circles is an example of this. A
famous use of the concept of a fiber bundle is the Hopf fibration of the three sphere
[33, 34]. Whereas S3 = S1 × S2, it is possible to view S3 as a fiber bundle in which S2

is the base space and each fiber is isomorphic to a copy of S1.
The following example arose as part of the author’s studies in the statistical me-

chanics of polymer chains. Consider a “semi-flexible polymer” (i.e., one whose shape
can be described by a differentiable backbone curve). An example of such a polymer
is the DNA molecule. Let the end positions be fixed at a distance that is shorter than
the length of the backbone curve segment connecting the end points. As the molecule is
subjected to forcing due to Brownian motion, the minimal energy shape of this polymer
(highlighted as the dark path in Figure 7.7.1) will be perturbed, and will produce an
ensemble of different shapes. Each of these shapes is called a conformation.

Each of the backbone curves corresponding to an individual conformation can be
fully described at a certain level of detail as a framed curve. Each of these conformations
may have a different length as they stretch or compress. However, each framed curve
representing an individual conformation can be parameterized with the arc length s ∈
(0, 1) of the baseline (minimal energy) conformation, where the values s = 0 and s = 1
corresponding to the end constraints are excluded. Suppose that a continuous index
set, Υ , is assigned to track all possible conformations. For example, at s = 1/2 we can
imagine recording the cloud of reference frames that are visited by the infinite number of
possible conformations, and tag each one with an element of Υ . Each tag υ ∈ Υ might be
constructed with a lot of detailed facts about the conformation, including the curvature
and torsion functions that define it. If enough of the attributes of each conformation
are captured by each tag, then it is acceptable to assume as part of this model that for
each υ ∈ Υ there is only one conformation.

Then when considering all possible conformations, the full set of reference frames
will be

E = {g(s, υ) | s ∈ (0, 1), υ ∈ Υ}.

This set can be fibered in two ways. Perhaps the most intuitive way is to treat
each conformation as a fiber that sprouts in both directions from the base space
B = {g(1/2, υ) | υ ∈ Υ} and terminates at the fixed end points. The projection map
in this case shrinks each fiber (i.e., each framed curve) to a specific tag, υ ∈ Υ . And
each fiber can be viewed as the inverse image of this projection map. Locally, any slice
of this bundle of conformations from s = s0 to s = s0 + ε looks like the manifold
U × (s0, s0 + ε) where U ⊂ SE(3) (the Lie group of rigid-body motions in three-
dimensional space). And, if each tag is constructed with enough detail, it is possible
to map each U × (s0, s0 + ε) to a specific υ ∈ Υ for sufficiently small ε ∈ R>0.

But, as with the torus example described earlier, there can be more than one way to
describe a given space as a fiber bundle. Rather than treating conformations as fibers,
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we can treat the unperturbed minimal energy conformation as the base space. Then,
for each fixed value of s ∈ (0, 1) corresponding to a specific point on this baseline
conformation, fibers can be defined as the subset of rigid-body motions attainable by
the specific frame at arc-length s under forcing by Brownian motion:

F (s) = {g(s, υ) | υ ∈ Υ} ⊂ SE(3).

Fig. 7.6. A Conformational Bundle

A classic work on fiber bundles in which topological and group-theoretic aspects are
addressed is Steenrod [60]. Kobayashi and Nomizu [38] also provide a comprehensive
geometric treatment. However, they do not consider the sort of infinite dimensional
conformational bundles discussed here and in [17].

7.7.2 Connections

For an m-dimensional manifold embedded in Rn, many geometric calculations are
straightforward, and are quite similar to those performed for a curve or surface in R3.
This is because the position of every point on a curve in an embedded manifold is a
parameterized curve in Rn. The tangent vector to this curve is tangent to the manifold,
and is also a vector in Rn. Explicitly this tangent vector is obtained by simply taking
the derivative of the parameterized vector of Cartesian coordinates of position along the
curve in Rn. The second derivative of position with respect to curve parameter will have
a component in the tangent space and a component in the normal space. This is not
a problem at all for curves on embedded manifolds. However, for an abstract manifold
that is not embedded in Rn, there is no ambient space that “ties together” each of the
local coordinate charts, and there is no normal space defined in which the second deriva-
tive can have a component. However, it is still possible to consider the component of the
derivative of the tangent to a curve in the tangent space. In the context of an embedded
manifold, this component is the projection of the second derivative of position along a
curve onto the tangent space, which defines the covariant derivative of a tangent vector.

In the case when a manifold is not embedded in Rn, things are not as straightforward,
since the tangent space at x(t) and x(t + dt) are two different spaces. Whereas this is
not a big deal for embedded manifolds because in that context TMx(t) and TMx(t+dt)
can be related by an affine motion in Rn, in the case when the way the manifold is
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embedded in Rn is not known, an additional quantity must be defined to “connect”
the properties of the tangent space at one point in a manifold with those of a tangent
space of a nearby point in the manifold. This connection can be thought of as a rule
for computing the part of the rate of change of a tangent vector that remains in the
tangent space as a curve meanders through a manifold.

In Section 7.3.1, vector fields were defined in a coordinate-dependent way for man-
ifolds embedded in Rn. In that context, the basis vectors for a vector field were given
as vectors ∂x/∂qi ∈ Rn. In the coordinate-free setting, the basis vectors are denoted
as Xi for i = 1, ...,m and there is no dependence of the definition on a particular set
of coordinates or a particular embedding of the manifold in Rn. In this context the set
of all smooth vector fields on a manifold M is denoted as X(M). For any V ∈ X(M)
evaluated at any x ∈ M as Vx =

∑
i vi(x)Xi this means that each vi(x) ∈ C∞(M). In

this notation given any φ ∈ C∞(M) the product φVx is simply scalar multiplication,
but when written in the reverse order, Vx(φ) involves differentiation of φ.

Given a Riemannian manifold, M , with metric tensor G = [gij ] and Christoffel
symbols Γ k

ij = Γ k
ji, a symmetric Riemannian connection can be defined to be the unique

mapping that takes in any two smooth vector fields X,Y ∈ X(M) and produces a
new one, ∇XY ∈ X(M) with certain properties. In particular, if V,WX, Y ∈ X(M) and
φ, ψ ∈ C∞(M), the following properties are defined to hold for a symmetric Riemannian
connection ∇ as stated in [9, 20]:

∇φV +ψWY = φ∇V Y + ψ∇WY (7.112)
∇X(V + W ) = ∇XV + ∇XW (7.113)

∇X(φY ) = φ∇XY + X(φ)Y (7.114)

∇XiXj =
∑

k

Γ k
ijXk. (7.115)

Furthermore, the covariant derivative of a vector field Vx(q(t)) =
∑

i vk(t)Xk defined in
terms of coordinates q as

DV

dt

.=
∑

k

⎛⎝dvk

dt
+
∑
i,j

vj
dqi

dt
Γ k

ij

⎞⎠Xk (7.116)

satisfies the condition [20]

d

dt
(V,W ) =

(
DV

dt
,W

)
+
(
V,

DW

dt

)
(7.117)

where (·, ·) is the coordinate-free version of the inner product defined in coordinates in
(7.15). This bare-bones description of connections can be augmented by further reading.
See, for example, [11] and references therein.

Such tools are obviously important for physicists studying the large-scale structure
of the physical universe since it is not at all obvious how the universe might be embedded
in some larger Euclidean space. However, for engineering and biology problems, where
the manifolds of interest are those that describe allowable motions of a physical system,
the embedding in Rn is often dictated by the problem itself. And it is therefore not
necessary to pretend that the way in which the configuration manifold is embedded is
not known.
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7.8 The Heat Equation on a Riemannian Manifold

The heat equation on a Riemannian manifold can be defined as

∂f

∂t
= div(gradf). (7.118)

An eigenfunction of the Laplacian21 is a function that satisfies

div(gradψ) = λψ

for some scalar number λ, called an eigenvalue. For a compact Riemannian manifold,
M , the set of all such numbers is discrete (i.e., infinite but countable). Furthermore,
given two eigenvalue–eigenfunction pairs, (ψi, λi) and (ψj , λj), the rules for integration
discussed in prior sections of this chapter can be used to show that for a compact
Riemannian manifold without boundary

λi = λj =⇒ (ψi, ψj) = 0,

where (·, ·) denotes the inner product of scalar functions on M , i.e., the integral over
M of the product of the functions. The set of all eigenfunctions forms a complete
orthogonal system of functions on M that can be taken to be orthonormal without
loss of generality. Furthermore, λi ∈ R and it is a non-positive number. For a compact
Riemannian manifold without boundary, the eigenvalue with smallest absolute value
will be λ0 = 0.

Letting q denote local coordinates, expanding f(q, t) =
∑

i ci(t)ψi(q), and substi-
tuting into (7.118) then gives

f(q, t) =
∞∑

i=0

ci(0)e−t|λi|ψi(q).

If f(q, 0) is a pdf, then so too will be f(q, t). In this case c0(0) = 1/V ol(M). And so

lim
t→∞

f(q, t) = 1/V ol(M).

The values of all of the coefficients {ci(0)} are dictated by initial conditions. The rate
at which the above limit is reached is dictated by the value of the eigenvalue with next
smallest absolute value. The geometric meanings of eigenvalues of the Laplacian have
been studied extensively. See [15, 54] for details and numerous references.

7.9 Chapter Summary

This chapter introduced the concept of a manifold together with the mathematical
tools required to compute curvature and to integrate on manifolds. The concept and
properties of convex polytopes were explored. The relationship between the Minkowski
sum of polytopes and the convolution product of functions was examined.

21In differential geometry the Laplacian is usually defined as the negative of this, so that the
eigenvalues are all non-negative. The notation used here differs from that convention in order
to be more consistent with the way Laplacians are defined in engineering applications.
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In this chapter polytopes and manifolds were treated. While it was not proven here
that the formula for the Euler characteristic extends to higher-dimensional Euclidean
spaces, this fact can be found in the literature. See, for example, [42]. In recent years
some work has been done to merge these topics [8]. The differential topology of man-
ifolds via the Gauss–Bonnet–Chern theorem and the use of the Euler characteristic in
higher dimensions were briefly touched on. Works that focus on the connection between
geometry and topology of manifolds include [10, 68, 69]. Other readable introductions
to differential geometry and topology of manifolds include [5, 27, 40, 49]. Applications
of differential geometry to mechanics are addressed in [1, 7, 11, 12].

In the next chapter stochastic differential equations on manifolds are discussed, and
the corresponding Fokker–Planck equations are derived. This general theory is illus-
trated in the context of Brownian motion on the sphere. The specialized case of Brown-
ian motion on Lie groups will be discussed in detail in Volume 2. It is important to keep
in mind that the problems discussed in the next chapter involve the flow of probability
density on a manifold. The corresponding partial differential (Fokker–Planck) equations
are linear. This is very different than the topic of Ricci flow, which has received consid-
erable attention in recent years. In Ricci flow, a non-linear partial differential equation
of the form

∂G

∂t
= −2Ric(G)

is propagated for given initial metric tensor G0, where Ric(G) is the Ricci curvature
tensor defined in (7.42). The long-time behavior of G(t) governed by this equation is
then used to determine topological properties of the manifold described by G(t) as
t → ∞. While this subject is not addressed in this book other than in this paragraph,
it is a hot area of research worth knowing about. For additional reading, see [31, 52, 62]
and references therein.

7.10 Exercises

7.1. Verify that the Euler characteristic of the surfaces of the regular polyhedra in R3

(Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron) are all χ(∂B) = 2. Then
divide up the polyhedral bodies defined by these surfaces into pyramidal cells, and verify
that χ(B) = 1.

7.2. The Klein bottle is like a 2-torus that is twisted in R4. It can be parameterized as [6]

x1 = (a + b sin θ) cosφ
x2 = (a + b sin θ) sinφ

x3 = b cos θ cos
φ

2
(7.119)

x4 = b cos θ sin
φ

2
where 0 ≤ θ, φ ≤ 2π and a > b. Demonstrate that this is not orientable.

7.3. Using integration by parts, prove that the gradient and divergence are the “dual”
(or adjoint) of each other in the sense that (7.38) holds.

7.4. Which of the following are manifolds? (a) the standard unit circle in the plane;
(b) the open disk (region enclosed by, but not including, the unit circle); (c) a figure-
eight curve; (d) a two-sided cone; (e) a one-sided cone; (f) a sphere; (g) the set of all n×n
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real matrices; (h) the intersection of a sphere and infinite cylinder in three-dimensional
space.

7.5. The 2-torus examined in Section 5.4.5 is embedded in R3. It is possible to embed a
2-torus in R4 as

x(θ, φ) = [r cos θ, r cos θ,R cosφ,R sinφ]T .

Compute the metric tensor and Gaussian curvature for this 2-torus, and use the Gauss–
Bonnet theorem to verify that it has the same genus as the 2-torus in Section 5.4.5.

7.6. In analogy with (5.140), for a four-dimensional array of hyper-cubes compute
f0(∂B), f1(∂B), f2(∂B), and f3(∂B).

7.7. Using the result of the previous problem, show that

χ(∂B) = f0(∂B) − f1(∂B) + f2(∂B) − f3(∂B) = 0,

and this remains true regardless of any sculpting, void formation, drilling, or cleaving
operations.

7.8. Using Stokes’ theorem, show that if ω = θ∧τ is an (n−1)-form with θ being a p-form
and τ being a q-form (so that p + q = n − 1), then the following integration-by-parts
formula holds [6]: ∫

M

dθ ∧ τ =
∫

∂M

θ ∧ τ − (−1)p

∫
M

θ ∧ dτ , (7.120)

and in particular, if φ is a scalar function (i.e., a 0-form) and α is an (n− 1)-form, then
from Stokes’ theorem ω = φα satisfies∫

M

dφ ∧ α =
∫

∂M

φα −
∫

M

φ dα . (7.121)

7.9. Consider two surfaces x(u1, u2),y(v1, v2) ∈ R3 that respectively have Gaussian
curvatures kx(u1, u2) and ky(v1, v2). Embed the Cartesian product of these surfaces in
R6 using the rule

z(u1, u2, v1, v2) =
(

x(u1, u2)
y(v1, v2)

)
.

Using the Gauss–Bonnet–Chern theorem, show that (5.104) holds in this special case.

7.10. Using (6.96) as the starting point, the Hodge star operator, ∗, applied to a k-form,
βk, on an n-dimensional manifold, M , can be defined as ∗βk such that for any k-form
αk the following equality holds:∫

M

αk ∧ ∗βk =
∫

M

α · β dV.

Here α and β can be thought of as column arrays of length
(

n
k

)
that define the forms

αk and βk, where each entry in these arrays is a real-valued function on M . From this
definition: (a) choose your favorite three-dimensional manifold, and compute the Hodge
star operator for generic 1-, 2-, and 3-forms on that manifold; (b) use the generalized
Levi–Civita symbol to write ∗βk for any βk on any n-manifold.
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pp. 637–665, 1931.

35. Johnson, C.K., Burnett, M.N., Dunbar, W.D., “Crystallographic topology and its applica-
tions,” in Crystallographic Computing 7: Macromolecular Crystallographic Data, edited by
P.E. Bourne and K.D. Watenpaugh, Oxford University Press, Oxford, 1997.
http://www.ornl.gov/sci/ortep/topology/preprint.html

36. Kavraki, L.E., “Computation of configuration-space obstacles using the fast Fourier trans-
form,” IEEE Trans. Robotics Automation, 11, pp. 408–413, 1995.

37. Klein, F., Vorlesungen über nicht-euklidische Geometrie, Springer-Verlag, New York, 1968.
38. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry Vols. I and II, John

Wiley & Sons, New York, 1963 (Wiley Classics Library Edition 1996).
39. Ladd, M.F.C., Symmetry in Molecules and Crystals, Ellis Horwood/John Wiley & Sons,

New York, 1989.
40. Lang, S., Fundamentals of Differential Geometry, Springer, New York, 1999.
41. Lattman, E.E., Loll, P.J., Protein Crystallography: A Concise Guide, The Johns Hopkins

University Press, Baltimore, 2008.
42. Lawrence, J., “A short proof of Euler’s relation for convex polytopes,” Can. Math. Bull.,

40, pp. 471–474, 1997.
43. Lee, J.M., Riemannian Manifolds: An Introduction to Curvature, Springer, New York, 1997.
44. Lockwood, E.H., MacMillan, R.H., Geometric Symmetry, Cambridge University Press,

London, 1978.
45. Lovelock, D., Rund, H., Tensors, Differential Forms, and Variational Principles, Dover,

New York, 1989.
46. McPherson, A., Introduction to Macromolecular Crystallography, John Wiley & Sons,

Hoboken, NJ, 2003.
47. Montesinos, J.M., Classical Tessellations and Three-Manifolds, Springer-Verlag, Berlin,

1987.
48. Morgan, F., Riemannian Geometry : A Beginner’s Guide, 2nd ed., A.K. Peters, Wellesley,

MA, 1998.
49. Mukherjee, A., Topics in Differential Topology, Hindustan Book Agency, New Delhi, 2005.
50. Nash, J., “The embedding theorem for Riemannian manifolds,” Ann. Math., 63, pp. 20–63,

1956.
51. Oprea, J., Differential Geometry and Its Applications, 2nd ed., The Mathematical Associ-

ation of America, Washington, DC, 2007.
52. Perelman, G., “The entropy formula for the Ricci flow and its geometric applications,”

http://arXiv.org/math.DG/0211159v1 (2002). Updated Feb 1, 2008.
53. Rhodes, G., Crystallography Made Crystal Clear, 2nd ed., Academic Press, San Diego, CA,

2000.
54. Rosenberg, S., The Laplacian on a Riemannian Manifold: An Introduction to Analysis on

Manifolds (London Mathematical Society Student Texts, No. 31), Cambridge University
Press, London, 1997.

55. Satake, I., “On a generalization of the notion of a manifold,” Proc. Nat. Acad. Sci. USA,
42, pp. 359–363, 1956.

56. Schreiber, M., Differential Forms: A Heuristic Introduction, Universitext, Springer-Verlag,
New York, 1977.

57. Scott, P., “The geometries of 3-manifolds,” Bull. London Math. Soc., 15, pp. 401–487, 1983.
58. Spivak, M., A Comprehensive Introduction to Differential Geometry, Vols. 1, 2, Publish or

Perish, Houston, TX, 1970.



288 7 Polytopes and Manifolds

59. Spivak, M., Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced
Calculus, HarperCollins, New York, 1965.

60. Steenrod, N., The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ,
1951 (reprinted 1999).

61. Thurston, W.P., Three-Dimensional Geometry and Topology, Vol. 1, (edited by S. Levy),
Princeton University Press, Princeton, NJ, 1997.

62. Topping, P., Lectures on the Ricci Flow, London Mathematical Society Lecture Notes 325,
Cambridge University Press, London, 2006.

63. Tu, L.W., An Introduction to Manifolds, Springer, New York, 2008.
64. Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag,

New York, 1983.
65. Weeks, J.R., The Shape of Space, Marcel Dekker, New York, 1985.
66. Weinstein, A., “Groupoids: Unifying internal and external symmetry,” Not. Amer. Math.

Soc., 43, pp. 744–752, 1996.
67. Whitney, H., “Differentiable manifolds,” Ann. Math., 37, pp. 645–680, 1936.
68. Willmore, T.J., Total Curvature in Riemannian Geometry, Ellis Horwood/John Wiley &

Sons, New York, 1982.
69. Yano, K., Bochner, S., Curvature and Betti Numbers, Annals of Mathematics Studies 32,

Princeton University Press, Princeton, NJ, 1953.
70. Ziegler, G.M., Lectures on Polytopes, Springer, New York, 1995.



8

Stochastic Processes on Manifolds

This chapter extends the discussion of stochastic differential equations and Fokker–
Planck equations on Euclidean space initiated in Chapter 4 to the case of processes that
evolve on a Riemannian manifold. The manifold either can be embedded in Rn or can be
an abstract manifold with Riemannian metric defined in coordinates. Section 8.1 formu-
lates SDEs and Fokker–Planck equations in a coordinate patch. Section 8.2 formulates
SDEs for an implicitly defined embedded manifold using Cartesian coordinates in the
ambient space. Section 8.3 focuses on Stratonovich SDEs on manifolds. The subtleties
involved in the conversion between Itô and Stratonovich formulations are explained.
Section 8.4 explores entropy inequalities on manifolds. In Section 8.5 the following ex-
amples are used to illustrate the general methodology: (1) Brownian motion on the
sphere and (2) the stochastic kinematic cart described in Chapter 1. Section 8.6 dis-
cusses methods for solving Fokker–Planck equations on manifolds. Exercises involving
numerical implementations are provided at the end of the chapter.

The main points to take away from this chapter are:

• SDEs and Fokker–Planck equations can be formulated for stochastic processes in
any coordinate patch of a manifold in a way that is very similar to the case of Rn;

• Stochastic processes on embedded manifolds can also be formulated extrinsically, i.e.,
using an implicit description of the manifold as a system of constraint equations;

• In some cases Fokker–Planck equations can be solved using separation of variables;
• Practical examples of this theory include Brownian motion on the sphere and the

kinematic cart with noise.

8.1 The Fokker–Planck Equation for an Itô SDE on a Manifold:
A Parametric Approach

The derivation of the Fokker–Planck equation governing the time evolution of pdfs on
a Riemannian manifold proceeds in an analogous way to the derivation in Rn that was
provided in Section 4.5.6. This subject has been studied extensively in the mathematics
literature. See, for example, the classic works of Yosida [30, 31, 32], Itô [11, 12],and
McKean [17]. Aspects of diffusion processes on manifolds remain of interest today (see,
e.g., [1, 5, 6, 8, 10, 13, 14]).

Unlike many derivations in the modern mathematics literature, the derivation of the
Fokker–Planck equation for the case of a Riemannian manifold presented in this section
is strictly coordinate-dependent.
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The coordinates for a patch in a d-dimensional manifold are written as a column
vector q = [q1, ..., qd]T . In this context qi(t) denotes a stochastic process corresponding
to the coordinate qi.

Consider the Itô SDE
dq = h(q, t) + H(q, t)dw (8.1)

where h,q ∈ Rd and w ∈ Rm.
The notation dq has been “double packed” in the sense that it has two meanings that

are distinguished by their context. In the first meaning in (8.1), dq = q(t + dt) − q(t).
However, it is also convenient to write dq = dq1dq2 . . . dqd as the volume element in
parameter space. These two very different quantities typically do not appear in the
same equation. If ever they do, then the volume element is denoted as d(q).

The definition of the Wiener process and associated derivations proceed as in Chapter
4. The metric tensor for the manifold is G = [gij ], the inverse of which is denoted
G−1 = [gij ]. The only difference now is that the integration by parts required to isolate
the function ε(q) from the rest of the integrand in the final steps in the derivation in
Section 4.5.6 will be weighted by |G| 1

2 due to the fact that the volume element in the
manifold M is dV (q) = |G(q)| 1

2 dq where dq = dq1 . . . dqd. In particular, if p(q|s, t)
denotes the transition probability for the stochastic process corresponding to the SDE
from the state s = q(t − dt) to q = q(t), then∫

M

∂ε

∂si
hi(s, t)p(q|s, t)dV (s) =

∫
Rd

∂ε

∂si
hi(s, t)p(q|s, t)|G(s)| 1

2 ds =

−
∫

Rd

ε(s)
∂

∂si

(
hi(s, t)p(q|s, t)|G(s)| 1

2

)
ds.

The integration over all Rd is valid since ε(s) and its derivatives vanish outside of a
compact subset of Rd which can be assumed to be contained in the range of a single
coordinate chart of M . Then integrating by parts twice yields∫

M

∂2ε

∂si∂sj
hi(s, t)p(q|s, t)dV (s) =

∫
Rd

ε(s)
∂2

∂si∂sj

(
hi(s, t)p(q|s, t)|G(s)| 1

2

)
ds.

Using the standard localization argument as in Section 4.5.6, extracting the functional
which multiplies ε(s), and setting it equal to zero yields, after division by |G(q)| 1

2 , the
following Fokker–Planck equation:

∂f

∂t
+ |G|− 1

2

d∑
i=1

∂

∂qi

(
|G| 1

2 hif
)

=
1
2

|G|− 1
2

d∑
i,j=1

∂2

∂qi∂qj

(
|G| 1

2

m∑
k=1

HikH
T
kjf

)
(8.2)

where the simplifying notation f(q, t) .= p(q|s, t) is used. The second term on the left
side of the equation above can be written as div(fh) (where the divergence operator
is defined in (5.49)), and this raises questions about the differential-geometric interpre-
tation of the right-hand side. In many cases of interest, the matrices Hik(q, t) will be
the inverse of the Jacobian matrix, and hence in these cases

∑
k Hik(q, t)HT

kj(q, t) =∑
k((Jik)−1((Jkj)−1)T ) = (gij(q))−1 = (gij(q)). In those cases, the Fokker–Planck

equation on M becomes
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∂f(q, t)
∂t

+ |G(q)|− 1
2

d∑
i=1

∂

∂qi

(
|G(q)| 1

2 hi(q, t)f(q, t)
)

= (8.3)

1
2

|G(q)|− 1
2

d∑
i,j=1

∂2

∂qi∂qj

(
|G(q)| 1

2 (gij(q))f(q, t)
)
.

This equation is similar to, though not exactly the same as, the heat equation on M
written in coordinate-dependent form. In fact, a straightforward calculation explained
by Brockett [4] equates the Fokker–Planck and heat equation

∂f(q, t)
∂t

=
1
2

|G(q)|− 1
2

d∑
i,j=1

∂

∂qi

(
|G(q)| 1

2 (gij(q))
∂

∂qj
f(q, t)

)
=

1
2

∇2f (8.4)

in the special case when

hi(q) =
1
2

d∑
j=1

(
|G(q)|− 1

2 (gij(q))
∂|G(q)| 1

2

∂qj
+

∂gij(q)
∂qj

)
.

This is clear by expanding the term on the right-hand side of (8.3) as

1
2
|G(q)|− 1

2

d∑
i,j=1

∂

∂qi

[
∂

∂qj

(
|G(q)| 1

2 (gij(q))f(q, t)
)]

,

and observing the chain rule:

∂

∂qj

(
|G(q)| 1

2 (gij(q))f(q, t)
)

=

(
(gij(q))

∂|G(q)| 1
2

∂qj
+ |G(q)| 1

2
∂gij

∂qj

)
f(q, t)

+(gij(q))|G(q)| 1
2
∂f(q, t)

∂qj
.

8.2 Itô Stochastic Differential Equations on an Embedded
Manifold: An Implicit Approach

8.2.1 The General Itô Case

Let x(t) ∈ Rn denote a vector-valued stochastic process. Define the vector-valued func-
tion a(x, t) ∈ Rn and the matrix-valued function B(x, t) ∈ Rn×n. Then x(t) is defined
by the stochastic differential equation (SDE)

dx = a(x, t)dt + B(x, t)dw (8.5)

where dw ∈ Rn is a vector of uncorrelated, unit-strength white noise processes. This is
not the same as the equation defined in coordinates in the previous section. It does not
have the same dimensions or variables.

Now suppose that a system of constraints y = g(x, t) = 0 ∈ Rm is used to define
a manifold, M , of dimension d = n − m embedded in Rn. What must be true for the
Itô SDE in (8.5), which is defined in the ambient Euclidean space, to evolve on the

Itô Stochastic Differential Equations on an Embedded Manifold: An Implicit Approach
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manifold M? The answer is provided by Itô’s rule (4.55), which in the current context
means that starting from a value x0 such that g(x0, t) = 0 and satisfying the condition
that dy = 0, then in component form the following condition must hold:

∂gk

∂t
dt +

n∑
i=1

∂gk

∂xi
dxi +

1
2

n∑
i,j=1

∂2gk

∂xi∂xj
dxidxj = 0 (8.6)

when (8.5) is substituted in. This imposes conditions on the allowable a and B such
that the sample paths of the SDE will evolve on the time-evolving manifold M . In
practice, the case when M does not change with time is more common. In that case,
g(x, t) = g(x).

8.2.2 Bilinear Itô Equations that Evolve on a Quadratic Hyper-Surface in
Rn

In [3], Brockett examined the properties of Itô SDEs of the form

dx = Ax dt +
m∑

i=1

dwiBix (8.7)

(where A and Bi are independent of x) and explained simple conditions under which
this equation would evolve on a quadratic hyper-surface in Rn of the form

xTQx = 1 (8.8)

where Q = QT ∈ Rn. These include ellipsoidal and hyperbolic hyper-surfaces.
Applying the derivative to (8.8) results in the condition d(xTQx) = 0, which is

evaluated using Itô’s rule (8.6), in the case of the equation y = xTQx (which has no
subscript k since it is a single scalar equation), to yield

2(Qx)T dx + dxTQdx = 0. (8.9)

Substitution of (8.7) into this equation gives

2xT

[
QAdt +

∑
i

dwiQBi

]
x + xT

⎡⎣(AT dt +
∑

i

dwiB
T
i )Q(Adt +

∑
j

dwjBj)

⎤⎦x = 0.

(8.10)
From the rules of stochastic calculus, dtdwi = 0 and dwidwj = δijdt (where equality is
under the expectation operator), which reduce the second term to

xT

⎡⎣(AT dt +
∑

i

dwiB
T
i )Q(Adt +

∑
j

dwjBj)

⎤⎦x = xT

[∑
i

BT
i QBidt

]
x.

Furthermore, since in general xTPx = 1
2x

T (P + PT )x, the first term in (8.10) can be
symmetrized as

2xT

[
QAdt +

∑
i

dwiQBi

]
x = xT

[
(QA + ATQ)dt +

∑
i

dwi(QBi + BT
i Q)

]
x.
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Therefore, (8.10) is written by combining these two terms as

xT

[
(QA + ATQ +

∑
i

BT
i ABi)dt +

∑
i

dwi(QBi + BT
i Q)

]
x = 0.

It follows that sufficient conditions for (8.7) to “stay on” the manifold defined by (8.8)
are

QA + ATQ +
m∑

i=1

BT
i ABi = 0 and QBj + BT

j Q = 0 for j = 1, ...,m. (8.11)

Each of the above symmetric n × n matrix equations represents n(n + 1)/2 scalar con-
straints, and there are m + 1 such equations leading to (m + 1)n(n + 1)/2 scalar con-
straints.

Of course, the SDEs in (8.7) are not the only ones that will “stay on” the manifold
defined by (8.8). Returning to (8.5) and substituting this SDE into (8.9) yields the
conditions

BTQx = 0 and xTQa +
1
2
tr(BTQB) = 0. (8.12)

This is a far less restrictive condition than (8.11) because it only imposes n + 1 scalar
constraints.

8.3 Stratonovich SDEs and Fokker–Planck Equations on
Manifolds

In analogy with the way Itô equations can be defined either parametrically or implicitly,
the same can be done for Stratonovich SDEs. The general theory for the parametric
case is presented in Section 8.3.1. The implicit formulation for Stratonovich SDEs on
manifolds is discussed in Section 8.3.2.

8.3.1 Stratonovich SDEs on Manifolds: Parametric Approach

The Stratonovich SDE corresponding to (8.1) is

dq = hs(q, t) + Hs(q, t) � dw (8.13)

where � is used to denote the Stratonovich interpretation of an SDE, and

hs
i = hi − 1

2

m∑
j=1

d∑
k=1

Hkj
∂Hij

∂qk
and Hs

ij = Hij . (8.14)

If instead the SDE (8.13) is given and the corresponding Itô equation (8.1) is sought,
then (8.14) is used in reverse to yield

hi = hs
i +

1
2

m∑
j=1

d∑
k=1

Hs
kj

∂Hs
ij

∂qk
and Hij = Hs

ij . (8.15)

Therefore, it follows from substitution of (8.15) into (8.2) that the Stratonovich
version of a Fokker–Planck equation describing a process on a manifold is
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∂f

∂t
+ |G|− 1

2

d∑
i=1

∂

∂qi

⎡⎣⎛⎝hs
i +

1
2

m∑
j=1

d∑
k=1

Hs
kj

∂Hs
ij

∂qk

⎞⎠ f |G| 1
2

⎤⎦ =

1
2
|G|− 1

2

d∑
i,j=1

∂2

∂qi∂qj

(
m∑

k=1

Hs
ikH

s
jkf |G| 1

2

)
.

(8.16)

This is important because in many physical modeling problems, the following sort
of Stratonovich SDE is presented:

J(q)dq = b(t) + B0 � dw (8.17)

where B0 is a constant coupling matrix. For example, if g(t) represents a rotational or
full rigid-body motion, then infinitesimal motions are described in terms of a Jacobian
matrix as

(g−1ġ)∨dt = J(q)dq, (8.18)

where ∨ is an operation that extracts the non-redundant information in g−1ġ and collects
it in the form of a column vector. The Jacobian matrix is related to the metric tensor
as G = JTJ .

And (8.17) is written as

dq = [J(q)]−1b(t) + [J(q)]−1B0 � dw. (8.19)

The interpretation of (8.17) is what allows for the simple expression in (8.18), rather
than the extra terms that would be required when using Itô’s rule. Clearly the final
result in (8.19) now has a coupling matrix that is not constant, and so even if (8.17)
could be interpreted as either Itô or Stratonovich, the result after the Stratonovich
interpretation in (8.18) must thereafter be interpreted as a Stratonovich equation.

8.3.2 Stratonovich SDEs on Manifolds: Implicit Approach

Given a Stratonovich SDE in Rn of the form

dx = as(x, t)dt + Bs(x, t) � dw, (8.20)

conditions under which it will evolve on an implicitly defined manifold of dimension
d = n−m follow from the rules of usual calculus. Namely, given the system of constraints
g(x, t) = 0 ∈ Rm that define a manifold, M , then as long as the initial value x(0) =
x0 ∈ Rn satisfies this constraint, the necessary condition for (8.20) to evolve on M at
all future times is simply

n∑
j=1

∂gi

∂xj
dxj = 0 for i = 1, ...,m. (8.21)

For example, the condition that the system

dx = Asx dt +
m∑

i=1

dwiB
s
i �x (8.22)

evolve on a quadratic hyper-surface in Rn of the form in (8.8) is simply xTQdx = 0.
However, the difficulty comes when trying to simplify the result since in the Stratonovich
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calculus 〈xidwjdwk〉 = xi〈dwjdwk〉. Therefore, at the stage where (8.7) is substituted
into xTQdx = 0 it is convenient to convert everything to Itô form to obtain the con-
straints on As and Bs

i for the process to evolve on the manifold defined by xTQdx = 0.
Having said this, a word of caution is in order about implicit equations and SDEs on

manifolds. Both the formulation in this subsection and that in Section 8.2 are mathe-
matical statements of the problem of SDEs on manifolds. This does not mean that they
are good numerical ways to model SDEs on manifolds. In fact, when using the simplest
codes for integrating SDEs, such as the Euler–Maruyama method referenced in Chapter
4, these implicit descriptions can give rise to “solutions” that rapidly diverge from the
manifold of interest. In contrast, solutions to SDEs defined parametrically will always
stay within the manifold if they remain in a coordinate patch and do not get close to
singularities where the parametric description breaks down.

8.4 Entropy and Fokker–Planck Equations on Manifolds

The entropy of a probability density function on a manifold can be defined as

S(f) .= −
∫

M

f(x) log f(x)dV = −
∫
q∈D

f(q) log f(q)|G(q)| 1
2 d(q) (8.23)

where in the second equality f(q) is shorthand for f(x(q)) and D ⊂ Rn is the coor-
dinate domain (assuming that the whole manifold minus a set of measure zero can be
parameterized by one such domain).

A natural issue to address is how the entropy S(f) behaves as a function of time
when f(x; t) satisfies a Fokker–Planck equation. Differentiating (8.23) with respect to
time gives

dS

dt
= −

∫
M

{
∂f

∂t
log f +

∂f

∂t

}
dV.

The Fokker–Planck equation (8.2) itself can be used to replace the partial derivatives
with respect to time with derivatives in local coordinates in the manifold. Then integra-
tion by parts can be used. Taking the coordinate-free view, the formulas in (7.98)–(7.101)
can be used to convert the integrals of differential operators over the manifold to more
convenient integrals. In the case of a manifold without boundary, the same formulas
apply with the boundary integrals set equal to zero.

It is easy to show that ∫
M

∂f

∂t
dV =

d

dt

∫
M

f dV = 0

because probability density is preserved by the Fokker–Planck equation.
Taking a coordinate-dependent view, the remaining term is written as

dS

dt
= −

∫
q∈D

∂f

∂t
log f |G| 1

2 d(q)

=
∫
q∈D

⎧⎨⎩
d∑

i=1

∂

∂qi

(
|G| 1

2 hif
)

− 1
2

d∑
i,j=1

∂2

∂qi∂qj

(
|G| 1

2

m∑
k=1

HikH
T
kjf

)⎫⎬⎭ log f d(q).

Integrating by parts, and ignoring the boundary terms, gives dS/dt equal to
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−
∫
q∈D

⎧⎨⎩
d∑

i=1

∂f

∂qi
hi +

1
2

d∑
i,j=1

[
− 1

f

m∑
k=1

HikH
T
kj

∂f

∂qi

∂f

∂qj
+

∂2f

∂qi∂qj

m∑
k=1

HikH
T
kj

]⎫⎬⎭ |G| 1
2 d(q).

(8.24)
In general it is not guaranteed that this will be a non-negative quantity. For exam-
ple, the Ornstein–Uhlenbeck process in Rn forces an initial distribution to converge
to the equilibrium one, regardless of whether the initial covariance is smaller or larger
than the equilibrium covariance. However, if some constraints on the coefficient func-
tions {hi(q, t)} and {Hij(q, t)} are preserved, then entropy can be shown to be non-
decreasing. In particular, in cases when the first and third term vanish, the entropy will
be non-decreasing because

1
f

∑
i,j,k

∂f

∂qi
HikH

T
kj

∂f

∂qj
≥ 0.

8.5 Examples

This section begins by seeking the answer to a simply stated question: What SDEs will
describe processes that evolve on the unit sphere, and of these, which have a Fokker–
Planck equation that is simply the heat equation? In principle since operations with
Stratonovich integrals parallel those of standard calculus, it would seem that this should
be straightforward. However, there are some subtle points that need to be kept in mind.
This is first illustrated in the context of processes on the unit sphere in R3, and then
for the stochastic kinematic cart that moves by translation and rotation on the plane
R2.

8.5.1 Stochastic Motion on the Unit Circle

Consider the SDE

dx1 = −1
2
x1dt − x2dw

(8.25)

dx2 = −1
2
x2dt + x1dw.

Interpret (x1, x2) as Cartesian coordinates in the plane. Convert to polar coordinates,
x1 = x1(r, θ) = r cos θ, and x2 = x2(r, θ) = r sin θ. In this problem the coordinates
q = [q1, q2]T are q1 = r and q2 = θ. And so,⎛⎝ ∂x1

∂q1

∂x1
∂q2

⎞⎠ =
(

cos θ
−r sin θ

)
and

⎛⎝ ∂x2
∂q1

∂x2
∂q2

⎞⎠ =
(

sin θ
r cos θ

)
.

Likewise, ⎛⎜⎝ ∂2x1
∂q1∂q1

∂2x1
∂q1∂q2

∂2x1
∂q2∂q1

∂2x1
∂q2∂q2

⎞⎟⎠ =
(

0 − sin θ
− sin θ −r cos θ

)
and
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∂q1∂q1

∂2x2
∂q1∂q2

∂2x2
∂q2∂q1

∂2x2
∂q2∂q2

⎞⎟⎠ =
(

0 cos θ
cos θ −r sin θ

)
.

Substitution into Itô’s rule, which holds regardless of the SDE in (8.25), gives

dx1 = cos θdr − r sin θdθ − sin θdrdθ − 1
2
r cos θ(dθ)2 (8.26)

dx2 = sin θdr + r cos θdθ + cos θdrdθ − 1
2
r sin θ(dθ)2. (8.27)

Now, assume that an SDE in these new variables exists and can be written as

dr = a1dt + b1dw

dθ = a2dt + b2dw

where ai = ai(r, θ) and bi = bi(r, θ).
Substitution of the above expressions into (8.26) and (8.27), and using the stochastic

calculus rules dw2 = dt and dt2 = dtdw = 0 gives

dx1 =
[
a1 cos θ − a2r sin θ − b1b2 sin θ − 1

2
b22r cos θ

]
dt + (b1 cos θ − b2r sin θ)dw

and

dx2 =
[
a1 sin θ + a2r cos θ + b1b2 cos θ − 1

2
b22r sin θ

]
dt + (b1 sin θ + b2r cos θ)dw.

Then substituting these into (8.25) forces a1 = a2 = b1 = 0 and b2 = 1, resulting in the
SDE

dθ = dw.

This shows that (8.25) are Itô stochastic differential equations for a process that
evolves only in θ, with r remaining constant. In other words, this is a kind of stochastic
motion on the circle.

8.5.2 The Unit Sphere in R3: Parametric Formulation

Let the position of any point on the unit sphere, S2, be parameterized as

u(φ, θ) .=

⎛⎝ cosφ sin θ
sinφ sin θ

cos θ

⎞⎠ . (8.28)

It follows from the fact that u · u = 1 that taking the derivative of both sides yields
u · du = 0 where

du =
∂u
∂θ

dθ +
∂u
∂φ

dφ. (8.29)

And since dθ and dφ are independent,

u · ∂u
∂θ

= u · ∂u
∂φ

= 0. (8.30)
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Of course, this can be verified by direct calculation. Furthermore, since

∂u
∂θ

· ∂u
∂θ

= 1 and
∂u
∂φ

· ∂u
∂φ

= sin2 θ,

the vectors
v1

.=
∂u
∂θ

and v2
.=

1
sin θ

∂u
∂φ

form an orthonormal basis for the tangent plane to the sphere at the point u(φ, θ), with
v1 × v2 = u.

Indeed, any version of this coordinate system rotated around the vector u of the
form

v′
1 = v1 cosα − v2 sinα

v′
2 = v1 sinα + v2 cosα

(8.31)

will also form an orthonormal basis for this tangent plane, where α = α(φ, θ) is an
arbitrary smooth function. This will be relevant later, but for now the focus will be the
basis {v1,v2}.

Consider the Stratonovich equation

du = v1 � dw1 + v2 � dw2,

which would seem like a reasonable definition of Brownian motion on the sphere. Taking
the dot product of both sides with respect to v1 and v2, and observing (8.29), the
resulting two scalar equations can be written as(

dθ
dφ

)
=
(

1 0
0 1/ sin θ

)
�
(

dw1
dw2

)
. (8.32)

The corresponding Fokker–Planck equation is

∂f

∂t
=

1
2

[
∂2f

∂θ2 + 2 cot θ
∂f

∂θ
− f +

1
sin2 θ

∂2f

∂φ2

]
,

which is clearly not the heat equation.
Using the result of Exercise 8.2, a Stratonovich SDE that does correspond to the

heat equation,
∂f

∂t
=

1
2

[
∂2f

∂θ2 +
1

sin2 θ

∂2f

∂φ2

]
,

is (
dθ
dφ

)
=

1
2

cot θ ei +
(

1 0
0 1/ sin θ

)
�
(

dw1
dw2

)
. (8.33)

Using the result of Exercise 8.3, the Itô SDE corresponding to (8.33) is of exactly
the same form.
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8.5.3 SDEs on Spheres and Rotations: Extrinsic Formulation

Let z ∈ Rn and consider the Itô SDE given in Øksendal [19]:

dz = a(z)dt + B(z)dw where a(z) = − (n − 1)
2

z and B(z) = I − zzT . (8.34)

It is easy to verify that (8.34) satisfies the conditions (8.12) for Q = cI for any c ∈ R>0,
and hence if ‖z(0)‖ = 1, the sample paths will stay on the sphere in n-dimensional
space, Sn−1, for all values of time. This is left as an exercise.

The Itô SDE⎛⎝dx1
dx2
dx3

⎞⎠ = −

⎛⎝x1
x2
x3

⎞⎠ dt +

⎛⎝ x2 x3 0
−x1 0 x3
0 −x1 −x2

⎞⎠⎛⎝dw1
dw2
dw3

⎞⎠ , (8.35)

which can be thought of as a kind of spatial generalization of (8.25), or as a special case
of (8.7), defines sample paths that evolve on the sphere S2, as verified in Exercise 8.4.

Consider the matrix Itô SDE where R ∈ Rn×n:

dR = − (n − 1)
2

dt +
n∑

i,j=1

(Eij − Eji)Rdwij (8.36)

where dwij are n2 uncorrelated unit-strength white noises. If Eij is the matrix with
the number 1 in the ijth entry and zero everywhere else, Brockett [3, 4] showed that if
R(0) ∈ SO(n), then R(t) ∈ SO(n) for all t ≥ 0.1

8.5.4 The SDE and Fokker–Planck Equation for the Kinematic Cart

Each matrix g(x, y, θ) of the form in (1.1) for θ ∈ [0, 2π) and x, y ∈ R can be identified
with a point on the manifold M = R2 × S1. In addition, the product of such matrices
produces a matrix of the same kind. Explicitly, if

gi =

⎛⎝ cos θi − sin θi xi

sin θi cos θi yi

0 0 1

⎞⎠
for i = 1, 2, then

g1g2 =

⎛⎝ cos(θ1 + θ2) − sin(θ1 + θ2) x1 + x2 cos θ1 − y2 sin θ1
sin(θ1 + θ2) cos(θ1 + θ2) y1 + x2 sin θ1 + y2 cos θ1

0 0 1

⎞⎠ .

This product is an analytic function from M ×M → M , which makes M (together with
the operation of matrix multiplication) a Lie group (called the Special Euclidean group,
or motion group, of the plane, and denoted as SE(2)). Lie groups are not addressed
formally in this volume, and M is treated simply as a manifold. The added structure
provided by Lie groups makes the formulation of problems easier rather than harder.

1SO(n) denotes the set of “special orthogonal” n × n matrices defined by the condition
RRT = I and detR = +1. The set of all such matrices forms a group under matrix multiplica-
tion. This set is also an n(n − 1)/2-dimensional manifold. In fact SO(n) is an example of a Lie
group.
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Lie groups are addressed in detail in Volume 2. For now, the manifold structure of M
is sufficient to formulate the problem of the stochastic cart.

Consider the following variant on the SDE stated in (1.4) that describes the scenario
in Figure 1.1:⎛⎝dx

dy
dθ

⎞⎠ =

⎛⎝ rω cos θ
rω sin θ

0

⎞⎠ dt +
√
D

⎛⎝ r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
L − r

L

⎞⎠(dw1
dw2

)
. (8.37)

Using the general formulation in (8.2), the Fokker–Planck equation becomes

∂f ′

∂t
= − rω cos θ

∂f ′

∂x
− rω sin θ

∂f ′

∂y

+
D

2

(
r2

2
cos2 θ

∂2f ′

∂x2 +
r2

2
sin 2θ

∂2f ′

∂x∂y
+

r2

2
sin2 θ

∂2f ′

∂y2 +
2r2

L2

∂2f ′

∂θ2

)
.(8.38)

The notation f ′ is used here to distinguish the solution to the above Fokker–Planck
equation from the following one which arises in a variety of applications, as will be seen
in Volume 2:

∂f

∂t
+ α

[
cos θ

∂f

∂x
+ sin θ

∂f

∂y

]
− β

∂2f

∂θ2 − ε

[
∂2f

∂x2 +
∂2f

∂y2

]
= 0. (8.39)

This diffusion equation with drift is highly degenerate when ε = 0, which happens
frequently in applications. See, for example, [28].

8.6 Solution Techniques

Once Fokker–Planck equations are derived, the goal becomes either solving them, or
at least obtaining as many properties of the solutions as possible. The emphasis here
will be solution methods. These fall into two categories (1) analytical solutions and
(2) numerical solutions. Both kinds of solution methods are discussed below.

8.6.1 Finite Difference and Finite Elements

Finite-difference methods are standard in the solution of partial differential equations.
In this method, differential operators applied to a function f(x) are approximated as

∂f

∂xi
≈ 1

ε
[f(x + εei) − f(x)] (8.40)

where ε is a small positive number. Exactly how small is small is sometimes the subject
of debate. One strategy for choosing ε is to try a value, then try half of that value,
and repeat. Each time compare how the approximated value of the partial derivative
compared with the prior one. If the value is chosen to be too small, the limitations of
machine precision will come into play to ruin the approximation. If the value of epsilon
is too large relative to the size of the smallest fluctuations of the function, then the
approximation will also fail. The value of ε for which doubling and halving will cause
the least effect on the estimate of the partial derivative is then a robust choice.

The approximation in (8.40) is often called a “forward difference,” in contrast to
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∂f

∂xi
≈ 1

ε
[f(x) − f(x − εei)],

which is a “backward difference” and
∂f

∂xi
≈ 1

2ε
[f(x + εei) − f(x − εei)],

which is called a “centered difference.”
In finite-difference schemes applied to linear PDEs such as the Fokker–Planck equa-

tion, the parametric domain is sampled on a regular grid. The value of the function
f(q, t) at each grid point q then becomes a component in a vector of dimension Nd

where d is the dimension of the manifold and N is the number of discretizations in
each parameter. The original PDE then becomes a system of ODEs in this vector. This
approach can be used for relatively low-dimensional problems (i.e., when d = 1, 2, 3),
but can be prohibitive for high-dimensional problems, even for moderate values of N .

Numerical losses in the finite-difference method can be substantial as the time param-
eter becomes large. The finite-element method (FEM) goes one step further to attempt
to conserve quantities that should not vary. In the finite-element method the functions
are not simply sampled on a grid, but expanded in a basis of local shape functions.
These ensure that piecewise smooth functions are defined on polytopes in parameter
space, and meet each other with differentiability conditions that are specified by the
programmer. This means that a continuous solution results. Finite-element methods
are used in engineering practice to model mechanical systems (i.e., solid mechanics,
fluid mechanics, and heat transfer problems) because they do well at conserving mass,
momentum, heat, etc. By extension, it would make sense that they would do well to
conserve probability density when applied to a Fokker–Planck equation. However, they
suffer from the same “curse of dimensionality” as finite differences.

8.6.2 Non-Parametric Density Estimation

In contrast to finite-difference methods and FEM, which are generic numerical tools for
solving PDEs, numerical methods exist specifically for approximating the solutions to
Fokker–Planck equations. This is because Fokker–Planck equations were derived from
SDEs. And therefore, if a very large number of sample paths are generated from the
SDE and stored, the histograms that result will approximate the desired pdfs.

In a sense, taking this approach would circumvent the need to derive a Fokker–Planck
in the first place, since when it comes time to solving the Fokker–Planck equation the
approach returns to the SDE. While this approach is valid, it has several limitations.
First, the number of samples needed to recover the salient features of a pdf at each
fixed value of time can be quite large. And this method also can suffer from the curse
of dimensionality if a grid is established in the parametric domain to evaluate the pdf.
The actual estimation of values of the pdf on the grid can be performed in a variety
of ways. The simplest of these is the histogram method. More sophisticated schemes
use kernel-based density estimation in which each sample point is replaced by a small
probability density function (such as a Gaussian distribution). Each of these is called a
kernel. Then the contributions of each kernel are added at each grid point to estimate
the overall pdf.

8.6.3 Separation of Variables: Diffusion on SE(2) as a Case Study

For particular kinds of linear partial differential equations, the standard solution method
is separation of variables. When this method works, it is very convenient because it re-
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duces the original multi-dimensional problem to many coupled single-dimensional ones.
This is a powerful tool to circumvent the curse of dimensionality because the full multi-
dimensional solution can be reconstructed at relatively low resolution in an efficient
way.

The drawback of this method is that not every linear PDE can be separated. Con-
ditions for separability were discussed in the context of the heat equation in Chapter
2. These conditions need to be applied on a case-by-case basis. This section therefore
addresses the separation-of-variables solution of (8.39) which is a Fokker–Planck equa-
tion on the three-dimensional manifold of SE(2). Note that when α = 0 this is nothing
more than a special case of the driftless time-varying diffusion equation examined in
Section 2.6.

The following subsections address various issues related to when the above equations
can be solved using separation of variables.

Transformation of Coordinates in the SE(2) Diffusion Equation

Let α = α0 and β = β0 be positive constants, ε = 0, and consider the following special
case of (8.39):

∂f

∂t
+ α0

[
cos θ

∂f

∂x
+ sin θ

∂f

∂y

]
− β0

∂2f

∂θ2 = 0. (8.41)

Can this equation be solved by separation of variables? In 1999, a graduate student in
the author’s research group proclaimed “of course, just make a change of coordinates
of the form

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ
θ′ = θ

and all of the trigonometric coefficients will disappear.”
Indeed, if f(x, y, θ; t) = f ′(x′, y′, θ′; t), then by the chain rule

∂f

∂x
=

∂f ′

∂x′
∂x′

∂x
+

∂f ′

∂y′
∂y′

∂x
+

∂f ′

∂θ′
∂θ′

∂x
=

∂f ′

∂x′ cos θ − ∂f ′

∂y′ sin θ

∂f

∂y
=

∂f ′

∂x′
∂x′

∂y
+

∂f ′

∂y′
∂y′

∂y
+

∂f ′

∂θ′
∂θ′

∂y
=

∂f ′

∂x′ sin θ +
∂f ′

∂y′ cos θ

and so

cos θ
∂f

∂x
+ sin θ

∂f

∂y
=

∂f ′

∂x′ .

However, this is not the end of the story since

∂f

∂θ
=

∂f ′

∂x′
∂x′

∂θ
+

∂f ′

∂y′
∂y′

∂θ
+

∂f ′

∂θ′
∂θ′

∂θ
= ∂f ′

∂θ′ .

Noting that

∂x′

∂θ
= −x sin θ + y cos θ = y′

∂y′

∂θ
= −x cos θ − y sin θ = −x′

∂θ′

∂θ
= 1,
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∂f

∂θ
= y′ ∂f

′

∂x′ − x′ ∂f
′

∂y′ +
∂f ′

∂θ′ .

This means that (8.41) is transformed to

∂f ′

∂t
+ α0

∂f ′

∂x′ + β0

(
y′ ∂f

′

∂x′ − x′ ∂f
′

∂y′ +
∂f ′

∂θ′

)2

f ′ = 0. (8.42)

While it is true that the trigonometric terms have been removed, new terms have been
introduced.

This begs the question: “Is it possible to find any coordinate system in which sepa-
ration of variables will work for (8.41) or (8.42)?” To address this question, the method
of symmetry operators will be attempted.

Symmetry Operators for the SE(2) Diffusion Equation

Here the methodology discussed in Section 2.8 is applied to (8.41). When written in
terms of the original parameters, any symmetry operators will be of the form

L = X(x, y, θ, t)
∂

∂x
+ Y (x, y, θ, t)

∂

∂y
+ Θ(x, y, θ, t)

∂

∂θ
+ T (x, y, θ, t)

∂

∂t
+ Z(x, y, θ, t).

It follows that

LQf = X
∂2f

∂t∂x
+ α0 cos θX

∂2f

∂x2 + α0 sin θX
∂2f

∂x∂y
− β0X

∂3f

∂x∂θ2

+Y
∂2f

∂t∂y
+ α0 cos θ Y

∂2f

∂x∂y
+ α0 sin θ Y

∂2f

∂y2 − β0Y
∂3f

∂y∂θ2

+Θ
∂2f

∂t∂θ
+ α0Θ

∂

∂θ

(
cos θ

∂f

∂x

)
+ α0Θ

∂

∂θ

(
sin θ

∂f

∂y

)
− β0Θ

∂3f

∂θ3

+T
∂2f

∂t2
+ α0T cos θ

∂2f

∂x∂t
+ α0T sin θ

∂2f

∂y∂t
− β0T

∂3f

∂θ2∂t

+Z
∂f

∂t
+ α0Z cos θ

∂f

∂x
+ α0Z sin θ

∂f

∂y
− β0Z

∂2f

∂θ2

and

QLf =
∂

∂t

(
X

∂f

∂x

)
+ α0 cos θ

∂

∂x

(
X

∂f

∂x

)
+ α0 sin θ

∂

∂y

(
X

∂f

∂x

)
− β0

∂2

∂θ2

(
X

∂f

∂x

)
+

∂

∂t

(
Y

∂f

∂y

)
+ α0 cos θ

∂

∂x

(
Y

∂f

∂y

)
+ α0 sin θ

∂

∂y

(
Y

∂f

∂y

)
− β0

∂2

∂θ2

(
Y

∂f

∂y

)
+

∂

∂t

(
Θ

∂f

∂θ

)
+ α0 cos θ

∂

∂x

(
Θ

∂f

∂θ

)
+ α0 sin θ

∂

∂y

(
Θ

∂f

∂θ

)
− β0

∂2

∂θ2

(
Θ

∂f

∂θ

)
+

∂

∂t

(
T
∂f

∂t

)
+ α0 cos θ

∂

∂x

(
T
∂f

∂t

)
+ α0 sin θ

∂

∂y

(
T
∂f

∂t

)
− β0

∂2

∂θ2

(
T
∂f

∂t

)
+

∂

∂t
(Zf) + α0 cos θ

∂

∂x
(Zf) + α0 sin θ

∂

∂y
(Zf) − β0

∂2

∂θ2 (Zf).

Expanding these out further using the chain rule,
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LQf = X
∂2f

∂t∂x
+ α0 cos θX

∂2f

∂x2 + α0 sin θX
∂2f

∂x∂y
− β0X

∂3f

∂x∂θ2

+Y
∂2f

∂t∂y
+ α0 cos θ Y

∂2f

∂x∂y
+ α0 sin θ Y

∂2f

∂y2 − β0Y
∂3f

∂y∂θ2

+Θ
∂2f

∂t∂θ
− α0Θ sin θ

∂f

∂x
+ α0Θ cos θ

∂f2

∂x∂θ

+α0Θ cos θ
∂f

∂y
+ α0Θ sin θ

∂f2

∂y∂θ
− β0Θ

∂3f

∂θ3

+T
∂2f

∂t2
+ α0T cos θ

∂2f

∂x∂t
+ α0T sin θ

∂2f

∂y∂t
− β0T

∂3f

∂θ2∂t

+Z
∂f

∂t
+ α0Z cos θ

∂f

∂x
+ α0Z sin θ

∂f

∂y
− β0Z

∂2f

∂θ2

and

QLf =
∂X

∂t

∂f

∂x
+ X

∂2f

∂x∂t
+ α0 cos θ

∂X

∂x

∂f

∂x
+ α0 cos θX

∂2f

∂x2 + α0 sin θ
∂X

∂y

∂f

∂x

+α0 sin θX
∂2f

∂x∂y
− β0

∂2X

∂θ2

∂f

∂x
− 2β0

∂X

∂θ

∂2f

∂x∂θ
− β0X

∂3f

∂x∂θ2

+
∂Y

∂t

∂f

∂y
+ Y

∂2f

∂y∂t
+ α0 cos θ

∂Y

∂x

∂f

∂y
+ α0 cos θ Y

∂2f

∂y∂x

+α0 sin θ
∂Y

∂y

∂f

∂y
+ α0 sin θ Y

∂2f

∂y2 − β0
∂2Y

∂θ2

∂f

∂y
− 2β0

∂Y

∂θ

∂2f

∂y∂θ
− β0Y

∂3f

∂y∂θ2

+
∂Θ

∂t

∂f

∂θ
+ Θ

∂2f

∂θ∂t
+ α0 cos θ

∂Θ

∂x

∂f

∂θ
+ α0 cos θ Θ

∂2f

∂θ∂x

+α0 sin θ
∂Θ

∂y

∂f

∂θ
+ α0 sin θ Θ

∂2f

∂θ∂y
− β0

∂2Θ

∂θ2

∂f

∂θ
− 2β0

∂Θ

∂θ

∂2f

∂θ2 − β0Θ
∂3f

∂θ2

+
∂T

∂t

∂f

∂t
+ T

∂2f

∂t2
+ α0 cos θ

∂T

∂x

∂f

∂t
+ α0 cos θ T

∂f2

∂t∂x
+ α0 sin θ

∂T

∂y

∂f

∂t

+α0 sin θ T
∂2f

∂t∂y
− β0

∂2T

∂θ2

∂f

∂t
− 2β0

∂T

∂θ

∂2f

∂t∂θ
− β0T

∂3f

∂θ2∂t

+
∂Z

∂t
f + Z

∂f

∂t
+ α0 cos θ

∂Z

∂x
f + α0 cos θ Z

∂f

∂x
+ α0 sin θ

∂Z

∂y
f + α0 sin θ Z

∂f

∂y

−β0
∂2Z

∂θ2 f − 2β0
∂Z

∂θ

∂f

∂θ
− β0Z

∂2f

∂θ2
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[Q,L]f =
(
∂X

∂t
+ α0 cos θ

∂X

∂x
+ α0 sin θ

∂X

∂y
− β0

∂2X

∂θ2 + α0Θ sin θ

)
∂f

∂x

− 2β0
∂X

∂θ

∂2f

∂x∂θ

+
(
∂Y

∂t
+ α0 cos θ

∂Y

∂x
+ α0 sin θ

∂Y

∂y
− β0

∂2Y

∂θ2 − α0Θ cos θ
)

∂f

∂y

− 2β0
∂Y

∂θ

∂2f

∂y∂θ

+
(
∂Θ

∂t
+ α0 cos θ

∂Θ

∂x
+ α0 sin θ

∂Θ

∂y

)
∂f

∂θ
− β0

∂2Θ

∂θ2

∂f

∂θ
− 2β0

∂Θ

∂θ

∂2f

∂θ2

+
(
∂T

∂t
+ α0 cos θ

∂T

∂x
+ α0 sin θ

∂T

∂y
− β0

∂2T

∂θ2

)
∂f

∂t
− 2β0

∂T

∂θ

∂2f

∂t∂θ

+
(
∂Z

∂t
+ α0 cos θ

∂Z

∂x
+ α0 sin θ

∂Z

∂y
− β0

∂2Z

∂θ2

)
f − 2β0

∂Z

∂θ

∂f

∂θ

By the definition of a symmetry operator, multipliers of each partial derivative of f in
this expression must equal the multipliers in

−RQf = −R
∂f

∂t
− Rα0 cos θ

∂f

∂x
− Rα0 sin θ

∂f

∂y
+ Rβ0

∂2f

∂θ2 .

This results in the following equations:

∂X

∂t
+ α0 cos θ

∂X

∂x
+ α0 sin θ

∂X

∂y
− β0

∂2X

∂θ2 + α0Θ sin θ = −Rα0 cos θ

∂Y

∂t
+ α0 cos θ

∂Y

∂x
+ α0 sin θ

∂Y

∂y
− β0

∂2Y

∂θ2 − α0Θ cos θ = −Rα0 sin θ

∂Θ

∂t
+ α0 cos θ

∂Θ

∂x
+ α0 sin θ

∂Θ

∂y
= 0

∂2Θ

∂θ2 = 0

2
∂Θ

∂θ
= −R

∂T

∂t
+ α0 cos θ

∂T

∂x
+ α0 sin θ

∂T

∂y
− β0

∂2T

∂θ2 = −R

∂Z

∂t
+ α0 cos θ

∂Z

∂x
+ α0 sin θ

∂Z

∂y
− β0

∂2Z

∂θ2 = 0

and
∂X

∂θ
=

∂Y

∂θ
=

∂T

∂θ
=

∂Z

∂θ
= 0.

This leads to the reduction
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∂X

∂t
+ α0 cos θ

∂X

∂x
+ α0 sin θ

∂X

∂y
+ α0Θ sin θ = 2α0 cos θ

∂Θ

∂θ
(8.43)

∂Y

∂t
+ α0 cos θ

∂Y

∂x
+ α0 sin θ

∂Y

∂y
− α0Θ cos θ = 2α0 sin θ

∂Θ

∂θ
(8.44)

∂Θ

∂t
+ α0 cos θ

∂Θ

∂x
+ α0 sin θ

∂Θ

∂y
= 0 (8.45)

∂T

∂t
+ α0 cos θ

∂T

∂x
+ α0 sin θ

∂T

∂y
= 2

∂Θ

∂θ
(8.46)

∂Z

∂t
+ α0 cos θ

∂Z

∂x
+ α0 sin θ

∂Z

∂y
= 0 (8.47)

together with the conditions

X = X(x, y, t); Y = Y (x, y, t); T = T (x, y, t); Z = Z(x, y, t)

and
Θ(x, y, θ, t) = c1(x, y, t)θ + c2(x, y, t).

Since the trigonometric sequence {1, cos θ, sin θ, ...} forms a basis for the set of square-
integrable functions on the unit circle, and since Z does not depend on θ, each coefficient
of the terms 1, cos θ, and sin θ in (8.47) must be zero. This forces Z to be a constant,
which is denoted here as Z = Z0. A similar argument applied to (8.46) forces T = T (t)
and the coefficient function c1 = T ′(t) in the definition of Θ(x, y, θ, t). Equation (8.45)
becomes

T ′′(t)θ + α0 cos θ
∂c2
∂x

+ α0 sin θ
∂c2
∂y

= 0.

Now the function h(θ) = θ can be expanded in a Taylor series, and since h(−θ) = −h(θ)
the result will be a sine series of the form

h(θ) =
∞∑

k=1

ak sin kθ.

The exact values of {ak} can be obtained in a similar way as in Exercise 1.1. It suffices
to say that since ak = 0 for at least one value of k > 1, it must be the case that

T ′′(t) = 0 → ∂c2
∂x

= 0;
∂c2
∂y

= 0.

This forces
T (t) = b0t + T0 and c2 = c2(t) (8.48)

where b0 and T0 are undetermined constants. Now turning to (8.43) and (8.44), the
completeness of the Fourier basis forces ∂X

∂t = ∂Y
∂t = 0. Substituting (8.48) into these

equations results in the equalities

∂Y

∂x
= Θ = T ′(t)θ + c2(t)

∂X

∂y
= −Θ = −T ′(t)θ − c2(t).
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But since X and Y must both be independent of θ and t, it must be that c2(t) = b0 = 0.
This means that Θ = 0 and X, Y , Z, and T are all constants, and the resulting Lie

algebra of differential operators is spanned by the basis

L1 =
∂

∂x
; L2 =

∂

∂y
; L3 =

∂

∂t
; L4 = 1.

This is a commutative Lie algebra as is observed from the condition

[Li, Lj ] = 0.

Therefore the Fokker–Planck equation in (8.41) is separable.

Separation of the SE(2) Diffusion Equation

Knowing that a separable solution exists is the first step to finding the solution. In
classical separation of variables, a separable solution is assumed and substituted into
the partial differential equation of interest. In the current context, this becomes

f(x, y, θ; t) = fx(x)fy(y)fθ(θ)ft(t).

Examining the special case of (8.39) when ε0 = 0 and α0 = 1 that results in (8.41),

−λ0 = cos θ
f ′

x(x)
fx(x)

− sin θ
f ′

y(y)
fy(y)

+ β0
f ′′

θ (θ)
fθ(θ)

,

which can be separated by dividing by cos θ and isolating f ′
x(x)/fx(x) as

−f ′
x(x)

fx(x)
=

λ0

cos θ
− tan θ

f ′
y(y)

fy(y)
+

β0

cos θ
f ′′

θ (θ)
fθ(θ)

.

Setting f ′
x(x)/fx(x) = −μ0 means that fx(x) = C2e

−μ0x. Separating what remains by
isolating f ′

y(y)/fy(y) (which requires a division by tan θ) gives f ′
y(y)/fy(y) = −ν0 or

fy(y) = C3e
−ν0y. Finally, fθ is solved as

β0f
′′
θ (θ) + (λ0 − μ0 cos θ + ν0 sin θ)fθ(θ) = 0 (8.49)

which should be solved subject to the periodic boundary conditions

fθ(0) = fθ(2π) and f ′
θ(0) = f ′

θ(2π).

Equation (8.49) could also have been obtained from the original equation by applying the
2D Fourier transform in x and y to f(x, y, θ; t), in which case μ0 = iω1 and ν0 = iω2.
Let the solution to (8.49) subject to these boundary conditions such that fθ(0) = 1
be denoted as Φλ0

μ0,ν0
(θ). These solutions will contain freedom in scaling. The periodic

boundary conditions are automatically satisfied by taking a solution of the form of a
Fourier series:

Φλ0
μ0,ν0

(θ) =
1
2π

∞∑
n=−∞

Φ̂λ0
μ0,ν0

(n)einθ.

Substitution into (8.49) leads to recurrence relations of the form

(λ0 − n2)Φ̂λ0
μ0,ν0

(n) − 1
2
(μ0 + ν0i)Φ̂λ0

μ0,ν0
(n − 1) +

1
2
(μ0 + ν0i)Φ̂λ0

μ0,ν0
(n + 1) = 0.
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Then putting everything together,

f(x, y, θ; t) = e−λ0te−μ0xe−ν0y Φλ0
μ0,ν0

(θ). (8.50)

We know that
∫

G
f(g, t)dg = 1, and so∫ ∞

−∞

∫ ∞

−∞

∫ π

−π

f(x, y, θ; t)dθdxdy = 1.

Therefore μ0 and ν0 cannot have real parts. It was suggested to the author by Profs. E.
Kalnins and W. Miller that the solution based on (8.50) might be written in the form

f(x, y, θ; t) =
∑

λ

∫
ω∈R2

f̂(ω1, ω2, λ; 0)e−λte−iω1xe−iω2y Φλ
−iω1,−iω2

(θ)dω (8.51)

where rather than expanding Φλ
−iω1,−iω2

(θ) in a Fourier series (which is divergent), that
it be expressed either in terms of Mathieu functions as defined in [18], or using solutions
to quantum mechanical analogies as described in [7]. Numerically, this would involve
discretizing the Fourier integral and truncating the sum over allowable values of λ.

Returning to the general case in (8.39), substitution of an assumed separable solution
and division by f results in

f ′
t(t)

ft(t)
= α(t) cos θ

f ′
x(x)

fx(x)
− α(t) sin θ

f ′
y(y)

fy(y)
+ β(t)

f ′′
θ (θ)
fθ(θ)

+ ε(t)
(
f ′′

x (x)
fx(x)

+
f ′′

y (y)
fy(y)

)
where a ′ denotes differentiation in the context of functions of only one variable.

When α, β, and ε are all independent functions of time that are not constant multi-
ples of each other, the author has not found separable solutions of (8.39). In the special
case when they are constants α0, β0, and ε0, then the term f ′

t(t)/ft(t) written on the
left side of the equation, separated from the rest, depends only on t whereas the terms
on the right side do not depend on t. Therefore both sides must be equal to a constant,
−λ0, and so ft(t) = C1e

−λ0t. It is no longer obvious to the author how x, y, and θ would
separate when ε0 = 0. This is one of the motivations for pursuing the non-commutative
harmonic analysis tools that are developed in Volume 2.

8.7 Chapter Summary

In this chapter the theory of SDEs and their corresponding Fokker–Planck equations
was extended from Euclidean space to the case of random processes on manifolds. This
was done in two ways: (1) using a parametric approach in which the SDE is expressed
in a local coordinate system and (2) defining an embedded manifold implicitly with
a system of constraints and expressing the SDE in the Cartesian coordinates of the
ambient Euclidean space. Examples illustrated the general methods. When it comes to
simple numerical implementations, the parametric approach is generally more reliable
because SDEs based on the implicit approach have the potential to generate sample
paths that diverge from the manifold in which they are supposed to be contained.

Models of stochastic motion on spheres were illustrated in this chapter. More ad-
vanced treatments of stochastic motion on spheres and other manifolds can be found
in [9, 15, 20, 24, 25, 26, 27]. A particularly important stochastic motion on a manifold
that arises in molecular applications is that of Brownian motion on the rotation group
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SO(3) [21, 22, 23]. Since Fokker–Planck equations are related to the heat equation with
a drift term, literature that connects the geometry of manifolds with the heat equation,
such as references provided in the previous chapter and [2, 16, 21, 29], are relevant to
studying the behavior of stochastic flows.

8.8 Exercises

8.1. As an alternative to the coordinate conversion in Section 8.5.1, show that (8.25)
corresponds to Brownian motion on the circle by proving that this SDE satisfies the
constraint g(x) = x2

1 + x2
2 − 1 = 0 when g(x0) = 0 is observed for x(0) = x0.

8.2. Modify (8.32) by including a drift term of the form a(θ, φ)dt. Substitute this modi-
fied SDE into the Stratonovich form of the Fokker–Planck equation and verify that the
choice of a(θ, φ) that results in the heat equation is that defined by (8.33).

8.3. Show that the Itô equation corresponding to (8.33) has exactly the same form, and
the corresponding Fokker–Planck equation is also the heat equation.

8.4. Verify that (8.34) for n = 3 and (8.35) both define stochastic processes that evolve
on the sphere S2. Convert each of these into their equivalent spherical coordinate rep-
resentation, and derive the corresponding the Fokker–Planck equations. Do (8.34) for
n = 3 and (8.35) define equivalent processes?

8.5. Verify that R(t) in (8.36) satisfies the constraint R(t)RT (t) = I for all values of
time as long as the same constraint is satisfied at t = 0.

8.6. Prove that if q parameterizes a whole manifold (up to a set of measure zero defined
by singularities) and |G(q0)| = 0, then the solution to a Fokker–Planck equation on a
manifold, f(q, t), satisfies the constraint∫

q
f(q, t)|G(q)| 1

2 dq = 1 (8.52)

when f(q, 0) = δ(q − q0).

8.7. Using the fact that the volume element for SE(2) is of the form dxdydθ (i.e., the
determinant of the metric tensor is equal to unity), derive (8.38) from (8.37).

8.8. Show that the Stratonovich SDE corresponding to (8.37) is of exactly the same
form, and has the Fokker–Planck equation (8.38).

8.9. Starting with the Fokker–Planck equation in (8.39), work backwards and obtain
one or more Itô SDEs that would give rise to it.
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12. Itô, K., “Stochastic differential equations in a differentiable manifold (2),” Sci. Univ. Kyoto

Math. Ser. A, 28, pp. 81–85, 1953.
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9

Summary

This volume presented the fundamentals of probability, parts of information theory,
differential geometry, and stochastic processes at a level that is connected with phys-
ical modeling. The emphasis has been on reporting results that can be readily imple-
mented as simple computer programs, though detailed numerical analysis has not been
addressed. In this way it is hoped that a potentially useful language for describing phys-
ical problems from various engineering and scientific fields has been made accessible to
a wider audience. Not only the terminology and concepts, but also the results of the
theorems presented serve the goal of efficient physical description. In this context, effi-
ciency means that the essence of any stochastic phenomenon drawn from a broad set of
such phenomena can be captured with relatively simple equations in few variables. And
these equations can be solved either analytically or numerically in a way that requires
minimal calculations (either by human or computer). This goal is somewhat different
than that of most books on stochastic processes. A common goal in other books is to
train students of mathematics to learn how to prove theorems. While the ability to
prove a theorem is at the center of a pure mathematician’s skill set, the results that are
spun off during that process sometimes need reinterpretation and restatement in less
precise (but more accessible) language in order to be used by practitioners. In other
words, rather than stating results in the classical definition–theorem–proof style aimed
at pure mathematicians, this book is intended for mathematical modelers including en-
gineers, computational biologists, physical scientists, numerical analysts, and applied
and computational mathematicians.

A primary goal of mathematical modeling is to obtain the equations that govern a
physical phenomenon. After that point, the rest becomes an issue of numerical imple-
mentation. In this volume many equations have been provided that can serve as potent
descriptive tools. The combination of geometry, information theory, and stochastic cal-
culus that is provided here can be applied directly to model engineering and biological
problems. The numerous explicit examples and exercises make the presentation of what
would otherwise be an abstract subject much more concrete. Additional examples can
be found in the author’s technical articles.

The emphasis here has been on continuous-time processes. This emphasis will con-
tinue in Volume 2, in which the topic of stochastic processes on Lie groups is addressed.
The first three chapters in Volume 2 define, in a concrete way, the properties of Lie
groups. These are special mathematical objects that have the benefits of both group
theory and differential geometry behind them. Since a Lie group is both a group and a
manifold, more detailed results about the theoretical performance of stochastic processes

G.S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results
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on Lie groups can be made than for abstract manifolds. In addition, numerical methods
based on harmonic analysis (Fourier expansions) on Lie groups become possible.

Topics that received considerable attention in the current volume, but which were
not directly applied to stochastic processes here, are used to a large degree in Volume 2.
These include differential forms, Weyl’s tube theorem, Steiner’s formula, and curvature
integrals over bodies and their bounding surfaces. It will be shown that such things play
important roles in the area of mathematics known as integral geometry or geometric
probability.

Many other topics are covered in Volume 2 including: variational calculus, Shannon’s
information theory, ergodic theory, multivariate statistical analysis, statistical mechan-
ics, and Fourier methods on Lie groups.

The topics covered in Volume 2 are not the only ones that follow naturally from
the background that has been established in this volume. For those readers with more
theoretical interests, but who are not inclined to go on to Volume 2, plenty of pointers
to the literature have been provided throughout this volume. The following references
cover material not addressed in Volume 2 that will also be of interest: [1, 2, 3, 4, 5].
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A

Review of Linear Algebra, Vector Calculus, and
Systems Theory

Throughout this book, methods and terminology from the area of mathematics known
as linear algebra are used to facilitate analytical and numerical calculations. Linear
algebra is concerned with objects that can be scaled and added together (i.e., vectors),
the properties of sets of such objects (i.e., vector spaces), and special relationships
between such sets (i.e., linear mappings expressed as matrices). This appendix begins
by reviewing the most relevant results from linear algebra that are used elsewhere in the
book. Section A.1 reviews the definition and properties of vectors, vector spaces, inner
products, and norms. Section A.2 reviews matrices, matrix norms, traces, determinants,
etc. Section A.3 reviews the eigenvalue–eigenvector problem. Section A.4 reviews matrix
decompositions. The theory of matrix perturbations is reviewed in Section A.5, the
matrix exponential is reviewed in Section A.6, and Kronecker product of matrices is
reviewed in Section A.7. Whereas the emphasis in this appendix (and throughout the
book) is on real vector spaces, Section A.8 discusses the complex case. Basic linear
systems theory is reviewed in Section A.9. The concept of a product integral, which
is important for defining Brownian motions in Lie groups, is covered in Section A.10.
Building on linear-algebraic foundations, concepts from vector and matrix calculus are
reviewed in Section A.11. Section A.12 presents exercises.

A.1 Vectors

The n-dimensional Euclidean space, Rn = R × R × . . . × R (n times), can be viewed as
the set of all “vectors” (i.e., column arrays consisting of n real numbers, xi ∈ R) of the
form

x .=

⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ .

A very special vector is the zero vector, 0, which has entries that are all equal to the
number zero.

A.1.1 Vector Spaces

When equipped with the operation of vector addition for any two vectors, x,y ∈ Rn,
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x + y .=

⎡⎢⎢⎢⎣
x1 + y1
x2 + y2

...
xn + yn

⎤⎥⎥⎥⎦ ,

and scalar multiplication by any c ∈ R,

c · x .=

⎡⎢⎢⎢⎣
c · x1
c · x2

...
c · xn

⎤⎥⎥⎥⎦ ,

it can be shown that eight properties hold. Namely:

x + y = y + x ∀ x,y ∈ Rn (A.1)
(x + y) + z = x + (y + z) ∀ x,y, z ∈ Rn (A.2)

x + 0 = x ∈ Rn (A.3)
∃ − x ∈ Rn for each x ∈ Rn s.t. x + (−x) = 0 (A.4)
α · (x + y) = α · x + α · y ∀ α ∈ R and x,y ∈ Rn (A.5)
(α + β) · x = α · x + β · x ∀ α, β ∈ R and x ∈ Rn (A.6)

(α · β) · x = α · (β · x) ∀ α, β ∈ R and x ∈ Rn (A.7)
1 · x = x ∀ x ∈ Rn. (A.8)

Here the symbol ∃ means “there exists” and ∀ means “for all.” The “·” in the above
equations denotes scalar–scalar and scalar–vector multiplication.

The above properties each have names: (A.1) and (A.2) are respectively called com-
mutativity and associativity of vector addition; (A.3) and (A.4) are respectively called
the existence of an additive identity element and an additive inverse element for each
element; (A.5), (A.6), and (A.7) are three different kinds of distributive laws; and (A.8)
refers to the existence of a scalar that serves as a multiplicative identity.

These properties make (Rn,+, ·) a real vector space. Moreover, any abstract set,
X, that is closed under the operations of vector addition and scalar multiplication and
satisfies the above eight properties is a real vector space (X,+, ·). If the field1 over which
properties (A.5)–(A.7) hold is extended to include complex numbers, then the result is
a complex vector space.

It is often convenient to decompose an arbitrary vector x ∈ Rn into a weighted sum
of the form

x = x1e1 + x2e2 + . . . + xnen =
n∑

i=1

xiei.

Here the scalar–vector multiplication, ·, is implied. That is, xiei = xi · ei. It is often
convenient to drop the dot, because the scalar product of two vectors (which will be
defined shortly) is also denoted with a dot. In order to avoid confusion, the dot in the
scalar–vector multiplication is henceforth suppressed.

Here the natural basis vectors ei are
1This can be thought of as the real or complex numbers. More generally a field is an

algebraic structure that is closed under addition, subtraction, multiplication, and division. For
example, the rational numbers form a field.
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e1
.=

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ ; e2
.=

⎡⎢⎢⎢⎣
0
1
...
0

⎤⎥⎥⎥⎦ ; . . . en
.=

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦ .

This (or any) basis is said to span the whole vector space. And “the span” of this basis
is Rn.

A.1.2 Linear Mappings and Isomorphisms

In some situations, it will be convenient to take a more general perspective. For exam-
ple, when considering the tangent planes at two different points on a two-dimensional
surface in three-dimensional Euclidean space, these two planes are not the same plane
since they sit in space in two different ways, but they nonetheless have much in com-
mon. It is clear that scalar multiplies of vectors in either one of these planes can be
added together and the result will remain within that plane, and all of the other rules
in (A.1)–(A.8) will also follow. By attaching an origin and coordinate system to each
plane at the point where it meets the surface, all vectors tangent to the surface at that
point form a vector space. If two of these planes are labeled as V1 and V2, it is clear that
each one is “like” R2. In addition, given vectors in coordinate systems in either plane,
it is possible to describe those two-dimensional vectors as three-dimensional vectors in
the ambient three-dimensional space, E = R3, in which the surfaces sit. Both trans-
formations between planes and from a plane into three-dimensional space are examples
of linear transformations between two vector spaces of the form f : V → U , which are
defined by the property

f(av1 + bv2) = a f(v1) + b f(v2) (A.9)

for all a, b ∈ R (or C if V is complex), and vi ∈ V .
Most linear transformations f : V1 → V2 that will be encountered in this book will

be of the form
f(x) = Ax

where the dimensions of the matrix A are dim(V2) × dim(V1). (Matrices, as well as
matrix–vector multiplication, are defined in Section A.2.)

The concept of two planes being equivalent is made more precise by defining the
more general concept of a vector-space isomorphism. Specifically, two vector spaces, V1
and V2, are isomorphic if there exists an invertible linear transformation between them.
And this is reflected in the matrix A being invertible. (More about matrices will follow.)
When two vector spaces are isomorphic, the notation V1 ∼= V2 is used.

A.1.3 The Scalar Product and Vector Norm

The scalar product (also called the inner product) of two vectors x,y ∈ Rn is defined as

x · y .= x1y1 + x2y2 + . . . xnyn =
n∑

i=1

xiyi.

Sometimes it is more convenient to write x · y as (x , y). The comma in this notation
is critical. With this operation, it becomes clear that xi = x · ei. Note that the inner
product is linear in each argument. For example,
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x · (α1y1 + α2y2) = α1(x · y1) + α2(x · y2).

Linearity in the first argument follows from the fact that the inner product is symmetric:
x · y = y · x.

The vector space Rn together with the inner-product operation is called an inner-
product space. The norm of a vector can be defined using the inner product as

‖x‖ .=
√

(x,x). (A.10)

If x = 0, this will always be a positive quantity, and for any c ∈ R,

‖cx‖ = |c| ‖x‖. (A.11)

The triangle inequality states that

‖x + y‖ ≤ ‖x‖ + ‖y‖. (A.12)

This is exactly a statement (in vector form) of the ancient fact that the sum of the
lengths of any two sides of a triangle can be no less than the length of the third side.

Furthermore, the well-known Cauchy–Schwarz inequality states that

(x,y) ≤ ‖x‖ · ‖y‖. (A.13)

This is used extensively throughout the rest of the book, and it is important to know
where it comes from.

The proof of the Cauchy–Schwarz inequality is actually quite straightforward. To
start, define f(t) as

f(t) = (x + ty,x + ty) = ‖x + ty‖2 ≥ 0.

Expanding out the inner product results in a quadratic equation in t:

f(t) = (x,x) + 2(x,y)t + (y,y)t2 ≥ 0.

Since the minimum of f(t) occurs when f
′
(t) = 0 (i.e., when t = −(x,y)/(y,y)), the

minimal value of f(t) is

f(−(x,y)/(y,y)) = (x,x) − (x,y)2/(y,y)

when y = 0. Since f(t) ≥ 0 for all values of t, the Cauchy–Schwarz inequality follows.
In the case when y = 0, the Cauchy–Schwarz inequality reduces to the equality 0 = 0.

Alternatively, the Cauchy–Schwarz inequality is obtained for vectors in Rn from
Lagrange’s equality [2]:(

n∑
k=1

a2
k

)(
n∑

k=1

b2k

)
−
(

n∑
k=1

akbk

)2

=
n−1∑
i=1

n∑
j=i+1

(aibj − ajbi)2 (A.14)

by observing that the right-hand side of the equality is always non-negative. Lagrange’s
equality can be proved by induction.

The norm in (A.10) is often called the “2-norm” to distinguish it from the more
general vector “p-norm”

‖x‖p
.=

(
n∑

i=1

|xi|p
) 1

p
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for 1 ≤ p ≤ ∞, which also satisfies (A.11) and (A.12). The vector space Rn together
with the norm operation is called a normed vector space. Furthermore, if instead of
vectors with real-valued entries, we consider vectors with complex-valued entries, then
the inner product

(x,y) .=
n∑

i=1

xiyi

can be defined where for any complex number c = a+b
√

−1, the notation c = a−b
√

−1
defines the complex conjugate of c. In doing so (A.10)–(A.13) all still hold, with |c| =√
cc =

√
a2 + b2 replacing the absolute value in (A.11).

A.1.4 The Gram–Schmidt Orthogonalization Process

Let V = {v1, ...,vn} be a nonorthogonal basis for Rn. That is, any vector x ∈ Rn can
be expressed as x =

∑n
i=1 χivi for an appropriate choice of real numbers χ1, χ2, ..., χn.

Any collection of m < n vectors {vi1 , ...,vim} with 1 ≤ i1 < . . . < im ≤ n is said to
span a vector subspace of Rn (i.e., a vector space strictly contained in Rn). This vector
subspace is denoted as span{vi1 , ...,vim}.

An orthonormal basis for Rn can be constructed from V as follows. First normalize
v1 and define

u1 =
v1

‖v1‖
.

Then define u2 by removing the part of v2 that is parallel to u1 and normalizing what
remains:

u2 =
v2 − (v2 · u1)u1

‖v2 − (v2 · u1)u1‖
.

It is easy to verify that u1 · u1 = u2 · u2 = 1 and u1 · u2 = 0. The process can then
be performed recursively by removing the parts of vi that are parallel to each of the
{u1, ...,ui−1}. Then ui is defined as the unit vector of what remains. In other words,
the following formula is used recursively for i = 2, 3, ..., n:

ui =
vi −

∑i−1
k=1(vi · uk)uk

‖vi −
∑i−1

k=1(vi · uk)uk‖
. (A.15)

This process is repeated until a full set of orthonormal basis vectors {u1, ...,un} is
constructed.

Gram–Schmidt orthogonalization works equally well on inner product spaces other
than Rn, such as the space of square-integrable functions L2(R), where the dot product
is replaced with the inner product defined for that space.

A.1.5 Dual Spaces

Given the space of n-dimensional real column vectors, each of which is described by
x ∈ Rn, it is possible to define the linear mapping

a : Rn → R where a(x) .= a · x

for some fixed a ∈ Rn. This linear mapping can be written as a(x) = aT x where aT is
an n-dimensional row vector, called the transpose of a.

The fact that the function a(x) is linear is clear, since



320 A Review of Linear Algebra, Vector Calculus, and Systems Theory

a(αx1 + βx2) = αa(x1) + βa(x2).

Furthermore, given two such functionals, a(x) and b(x), together with scalars α and β,
it is possible to define the functional

(αa + βb)(x) = αaT x + βbT x.

That is, linear functionals can be scaled and added like vectors and the space of linear
functionals “acts like” Rn. This is not surprising, because each linear functional a(x)
is defined by an element a ∈ Rn. The space of all linear functionals is a vector space
called the dual space of Rn, and can be thought of intuitively as the collection of all
n-dimensional row vectors.

If V = Rn and the dual space is denoted as V ∗, then the inner product of two vectors
in V instead can be thought of as a product between one vector in V and one in V ∗.
And if V has the basis {ei}, then V ∗ has the basis {e∗

i } such that e∗
i ej = δij . In the

present context when everything is real, the ∗ has no meaning other than transpose, but
when the discussion is broadened to include vectors with complex entries, or infinite-
dimensional spaces of functions, the value of the dual space concept becomes more
apparent. For more, see [12, 23].

A.1.6 The Vector Product in R3

Given two vectors a,b ∈ R3, the vector product (or cross product) is defined as

a × b .=

⎛⎝a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎞⎠ .

A real matrix is called skew-symmetric (or anti-symmetric) if its transpose is equal
to its negative. Any 3 × 3 skew-symmetric matrix, S = −ST , can be written as

S =

⎛⎝ 0 −s3 s2
s3 0 −s1

−s2 s1 0

⎞⎠ , (A.16)

where s1, s2, and s3 can be viewed as the components of a vector s ∈ R3, called the
dual vector of S.

The relationship between skew-symmetric matrices and the cross product is

Sx = s × x. (A.17)

The triple product of three vectors, a, b, c ∈ R3, is

det[a,b, c] .= a · (b × c).

This has the geometric meaning of the volume of the region in R3 defined by all vectors
of the form x(u, v, w) = ua + vb + wc where (u, v, w) ∈ [0, 1] × [0, 1] × [0, 1].

The above concepts only apply to vectors in R3. R3 (viewed as a vector space) when
augmented with the cross-product operation, becomes a new kind of space with richer
structure. This is similar to the way in which an inner-product space or normed vector
space is richer than a vector space.
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A Lie algebra is a special kind of vector space, V , with an additional operation [·, ·],
such that for any x, y, z ∈ V , [x, y] ∈ V and for any α ∈ C the following properties are
satisfied:

[x + y, z] = [x, z] + [y, z] (A.18)
[z, x + y] = [z, x] + [z, y] (A.19)

[αx, y] = [x, αy] = α[x, y] (A.20)
[x, y] = −[y, x] (A.21)

0 = [x, [y, z]] + [y, [z, x]] + [z, [x, y]]. (A.22)

The first three of these properties, (A.18)–(A.20), are true for any “algebra,” whereas
property (A.21) (which is called anti-symmetry) and (A.22) (which is called the Jacobi
identity) turn the algebra into a Lie algebra. To distinguish a Lie algebra from a generic
vector space, V , it is sometimes written as (V, [·, ·]). The operation [x, y] is called the
Lie bracket of the vectors x and y. The property [x, x] = 0 follows automatically. Note
that Lie algebras are not generally associative with respect to the Lie bracket operation.

For example, R3 together with the cross product [a,b] = a × b makes R3 a Lie
algebra. (See Exercise A.9(a).)

A.2 Matrices

An m × n matrix A is an array of real or complex numbers:

A = [aij ]
.=

⎛⎜⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . .
...

...
...

. . . am−1,n

am1 . . . am,n−1 amn

⎞⎟⎟⎟⎟⎠ .

The numbers m and n are called the dimensions of A. The element (or entry) in the ith
row and jth column of the m × n matrix A is denoted as aij . Likewise, the elements of
any matrix denoted with an upper case letter are generally written as subscripted lower
case letters.

Sometimes it is convenient to write this as an array of n column vectors:

A = [a1, ...,an] where ai =

⎛⎜⎜⎜⎝
a1 i

a2 i

...
am i

⎞⎟⎟⎟⎠ ∈ Rm for i = 1, 2, ..., n.

Addition of two matrices with the same dimensions is defined by the scalar addition
of elements with the same indices:

A + B = [aij ] + [bij ] = [aij + bij ].

Multiplication of a scalar and a matrix is defined as the matrix

c · A = [c · aij ]
.=

⎛⎜⎜⎜⎜⎝
c · a11 c · a12 . . . c · a1n

c · a21 c · a22 . . .
...

...
...

. . . c · am−1,n

c · am1 . . . c · am,n−1 c · amn

⎞⎟⎟⎟⎟⎠ .
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The complex conjugate of a matrix A is the matrix consisting of the complex conjugate
of all of its entries: A = [aij ].

The transpose of a matrix A, denoted as AT , is the matrix resulting by interchanging
the role of the rows and the columns:

AT .=

⎛⎜⎜⎜⎜⎝
a11 a21 . . . am1

a12 a22 . . .
...

...
...

. . . am,n−1
a1n . . . am−1,n amn

⎞⎟⎟⎟⎟⎠ . (A.23)

In other words, [aij ]T = [aji].
The Hermitian conjugate of a matrix is the complex conjugate and transpose:

A∗ = [aij ]∗
.= A

T
= [aji].

A.2.1 Matrix Multiplication and the Trace

Given an m × n matrix A, and an n × p matrix B the (i, j)th element of the product
AB is defined as

(AB)ij
.=

n∑
k=1

aikbkj .

The particular label for k is unimportant because it is summed over all values, i.e., k in
the above equation can be replaced with l (or any other letter not already being used),
and the meaning will be the same.

When three square n × n matrices are multiplied, the (i, j)th element of the result
is

(ABC)ij =
n∑

k=1

n∑
l=1

aikbklclj .

This can be broken up in two ways as

(ABC)ij =
n∑

k=1

aik

(
n∑

l=1

bklclj

)
=

n∑
l=1

(
n∑

k=1

aikbkl

)
clj .

In terms of the original matrices, this is the associative law

ABC = A(BC) = (AB)C.

Note that the order of the matrices when written from left to right stays the same and
so there is no need to compute a product between A and C. But there is nonetheless
some choice in the way that the matrices can be grouped together when performing the
constituent pairwise matrix products.

When A is n × n, the trace of A is defined as

trace(A) .=
n∑

i=1

aii. (A.24)
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A convenient shorthand for this is tr(A). Note that for square matrices A and B with
the same dimensions and a scalar, c,

tr(c · A) = c · tr(A) tr(A + B) = tr(A) + tr(B)
tr(AB) = tr(BA) tr(AT ) = tr(A). (A.25)

Given n × n matrices A = [aij ] and B = [bij ], computing the product C = AB by
the definition

cik =
n∑

j=1

aijbjk

uses n multiplications and n − 1 additions for each fixed pair of (i, k). Doing this for
all i, k ∈ [1, n] then uses n3 scalar multiplications and n2(n − 1) additions. However,
if the matrices have special structure, then this computational cost can be reduced
tremendously. For example, the product of n×n diagonal matrices (i.e., A with aij = 0
when i = j) can be computed using n multiplications and n − 1 additions.

Other methods for reducing the complexity of matrix multiplication even when they
have no special structure also exist [20, 21].

A.2.2 The Determinant

A determinant of an n× n matrix, A = [a1,a2, ...,an], is a scalar-valued function, detA
(also denoted as det(A) and |A|) with the following properties:

1. Multilinearity
det[a1,a2, ...,ai−1, αv + βw,ai+1, ...,an] =

α det[a1,a2, ...,ai−1,v,ai+1, ...,an] + β det[a1,a2, ...,ai−1,w,ai+1, ...,an].

2. Anti-symmetry

det[a1, ...,ai, ...,aj , ...,an] = −det[a1, ...,aj , ...,ai, ...,an].

3. Normalization
detI = det[e1, ..., en] = 1.

Here I = [δij ] is the identity matrix consisting of diagonal entries with a value of unity
and all other entries with a value of zero. Similarly, O denotes the matrix with entries
that are all zeros.

It can be shown (see, e.g., [14]) that these three properties are satisfied by a single
unique function which exists for every square matrix. Therefore, we refer to “the” de-
terminant rather than “a” determinant. Furthermore, the above conditions could have
been stated by decomposing A into rows rather than columns. It then becomes clear
that Gaussian elimination computations in exact arithmetic (which correspond to the
row version of #1 above) leave the determinant unchanged.

The determinant function satisfying the above three properties can be defined by
the Leibniz formula
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detA .=
∑

σ∈Πn

sgn(σ)
n∏

i=1

ai,σ(i) =
n!∑

j=1

sgn(σj)
n∏

i=1

ai,σj(i) (A.26)

where σ is a permutation2 of the numbers (1, 2, ..., n), and the sign (or signature)
sgn(σ) = +1 for even permutations, and sgn(σ) = −1 for odd permutations.3 An even
permutation is one defined by an even number of pairwise swaps, and an odd permu-
tation is one defined by an odd number of pairwise swaps. Every permutation is either
even or odd, but cannot be both. For example, the cyclic permutation

(1, 2, ..., n) → (n, 1, 2, ..., n − 1)

will be even when n is odd, and it will be odd when n is even since it can be realized
as the product (i.e., composition) of n − 1 pairwise swaps.

As examples of permutations, the elements of S3 are denoted as

σ0 =
(

1 2 3
1 2 3

)
; σ1 =

(
1 2 3
2 3 1

)
; σ2 =

(
1 2 3
3 1 2

)
;

σ3 =
(

1 2 3
2 1 3

)
; σ4 =

(
1 2 3
3 2 1

)
; σ5 =

(
1 2 3
1 3 2

)
.

These are not matrices. They represent assignments of the upper numbers to the lower
ones. For example, σ1(1) = 2 and σ4(3) = 1.

The signs of the permutations listed above are

sgn(σ0) = sgn(σ1) = sgn(σ2) = +1

sgn(σ3) = sgn(σ4) = sgn(σ5) = −1.

The formula (A.26) is independent of the way we label the n! elements of Πn.
Due to the factorial growth in |Πn|, (A.26) is not a practical method for computing the
determinant of large matrices. In practice, the properties #1 and #2 from the beginning
of this subsection are used together with matrix decompositions and the fact that the
determinant of a matrix is equal to the product of its eigenvalues (a fact that will be
reviewed in Section A.3). Having said this, (A.26) can be useful. For example, if any
column or row of A consists of all zeros, (A.26) indicates that detA = 0.

The determinant has several very useful properties listed below:

If A and B are square matrices with the same dimensions,

det(AB) = det(A)det(B). (A.27)

If A is square,
det(AT ) = det(A). (A.28)

If A−1 exists (see next subsection), then

det(A−1) = 1/det(A). (A.29)

If P is invertible, then
2See Chapter 6 for a more detailed discussion of permutations.
3The name Πn stands for “permutation group on n elements.” It is also called the “sym-

metric group” on n elements.
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det(P−1AP ) = det(A). (A.30)

If A is m × m and B is n × n, then the (m + n) × (m + n) matrix

A ⊕ B
.=
(

A 0
0 B

)
(called the direct sum) of A and B has the determinant

det(A ⊕ B) = det(A)det(B). (A.31)

Note also that
trace(A ⊕ B) = trace(A) + trace(B). (A.32)

A.2.3 The Inverse of a Matrix

Given a square matrix A with det(A) = 0, there exists a matrix A−1 called the inverse
of A, which is the unique matrix such that

AA−1 = A−1A = I

where I is the identity matrix with the same dimensions as A. The set of all invertible
n × n matrices with complex (or real) entries is denoted as GL(n,C) (or GL(n,R)).

It follows that when the inverse of the product AB exists, it must have the property
that (AB)−1(AB) = I. But since det(AB) = det(A)det(B), the necessary and sufficient
conditions for (AB)−1 to exist are that det(A) = 0 and det(B) = 0. If these conditions
hold, then from the associativity of matrix multiplication,

(B−1A−1)(AB) = (B−1(A−1A)B) = B−1B = I.

From the uniqueness property of the inverse of a matrix, it follows that

(AB)−1 = B−1A−1. (A.33)

A similar-looking rule, called the transpose rule, states that

(AB)T = BTAT and (AB)∗ = B∗A∗. (A.34)

It can be shown that when the inverse of a matrix exists, the transpose and Hermitian
conjugate operations commute with the inverse:

(A−1)T = (AT )−1 and (A−1)∗ = (A∗)−1.

Sometimes the abbreviation A−T is used to denote the combination of transpose and
inverse.

It is useful to compute the inverse of the sum of two matrices. The following identity
is derived in [8]:

(A + BTC)−1 = A−1 − A−1BT (I + CTA−1B)−1CA−1 (A.35)

under the assumption that A + BTC, A, and I + CTA−1B are all invertible.
Following [8], (A.35) is proved by first observing that
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I = (A + BTC)−1(A + BTC)

and expanding the right side so that

I = (A + BTC)−1A + (A + BTC)−1BTC.

Then multiplying both sides on the right by A−1,

A−1 = (A + BTC)−1 + (A + BTC)−1BTCA−1, (A.36)

which can be rearranged as

(A + BTC)−1BTCA−1 = A−1 − (A + BTC)−1.

Following [8], and returning to (A.36) and multiplying both sides on the right by
BT gives

A−1BT = (A+BTC)−1BT +(A+BTC)−1BTCA−1BT = (A+BTC)−1BT (I+CA−1BT ).

Multiplying the first and last terms in the above double equality by (I+CA−1BT )−1CA−1

on their right sides gives

A−1BT (I + CA−1BT )−1CA−1 = (A + BTC)−1BTCA−1.

But the right side of this expression is the same as the rightmost term in (A.36). There-
fore making this substitution results in (A.35).

A similar identity is stated in [15] as

(A + SBTT )−1 = A−1 − A−1S(B−1 + TTA−1S)−1TTA−1, (A.37)

and is left as an exercise to prove.

A.2.4 Pseudo-Inverses and Null Spaces

In some applications it happens that a relationship of the form

Jx = b (A.38)

is presented, where x ∈ Rn, b ∈ Rm, and J ∈ Rm×n where m = n, and the goal is
“to find as good of an approximation to a solution as possible.” If m < n and J has m
independent rows, then in general an infinite number of solutions will exist. If m > n,
then in general no solution will exist. However, in both of these situations it can happen
that if x and b are specially chosen vectors, then unique solutions can exist.

In the general case when m < n and J has m independent rows (i.e., it has full row
rank), then a common way to find a “good” solution is to treat (A.38) as a constraint
imposed on the minimization of a quadratic cost function of the form C1 = 1

2x
TWx

where W = WT ∈ Rn×n is a positive definite matrix. That is, W is chosen in such a
way that C1 > 0 for all x ∈ Rn except x = 0, in which case C1 = 0.

The resulting solution (which can be obtained using the method of Lagrange multi-
pliers described in Section A.11.1) is [3]

x = J+
W b where J+

W
.= W−1JT (JW−1JT )−1. (A.39)
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The matrix J+
W is called the weighted pseudo-inverse of J with weighting matrix W .

In the event that rank(J) < m, and so an exact solution may not exist, then a damped
pseudo-inverse can be defined as

J+
W,ε

.= W−1JT (JW−1JT + ε I)−1

where I is the n × n identity matrix and ε ∈ R>0. Typically, the larger the value of ε,
the worse the approximate solution will be.

The null space projector matrix for J is defined as

NJ,W
.= I − J+

WJ. (A.40)

When J is full rank, then the solution J+
W b can be thought of as rejecting the contri-

bution of any linear combination of columns of NJ,W because

NJ,WJ+
W = [I − W−1JT (JW−1JT )−1J ][W−1JT (JW−1JT )−1]

= [W−1JT (JW−1JT )−1 − W−1JT (JW−1JT )−1(JW−1JT )(JW−1JT )−1]
= [W−1JT (JW−1JT )−1 − W−1JT (JW−1JT )−1]
= Om,

and similarly
J NJ,W = Om.

In the case when m > n, the “best” approximate solution to (A.38) can be obtained
as that which minimizes a cost function of the form C2 = (Jx − b)TM(Jx − b) where
M = MT ∈ Rm×m is chosen to be positive definite. This result is denoted as

x = J†
Mb where J†

M = (JTMJ)−1JTM. (A.41)

This will not solve the equation, but will provide an approximation that minimizes the
cost C2, as long as J has rank n. In the event that the rank of J is less than n, then a
damped version of this pseudo-inverse also exists, and can be written in the form

J†
M,ε = (JTMJ + ε I)−1JTM.

All of the versions of these pseudo-inverses have practical applications. For example,
see [4] for applications to the design of robotic manipulator arms.

A.2.5 Special Kinds of Matrices

Many special kinds of matrices are defined in terms of the transpose and Hermitian
conjugate. For example, a symmetric matrix is one for which A = AT . A skew-symmetric
matrix is one for which A = −AT . An orthogonal matrix is one for which AAT = I. A
Hermitian matrix is one for which A = A∗. A skew-Hermitian matrix is one for which
A = −A∗. A unitary matrix is one for which AA∗ = I. All of these are examples of
normal matrices, which have the property that AA∗ = A∗A.

The properties of the determinant immediately indicate that for all unitary matrices

det(AA∗) = det(A)det(A∗) = det(I) = 1.

Furthermore, since the determinant is unchanged under transposition, det(A∗) =
det(A). But since the operation of complex conjugation distributes over scalar multipli-
cation and addition, it must also do so for the determinant since (A.26) is a combination
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of products and sums of the scalar elements. Therefore, if A is unitary det(A)det(A) = 1,
indicating that the determinant of a unitary matrix is of the form det(A) = eiθ for some
θ ∈ [0, 2π). For real orthogonal matrices, |det(A)|2 = 1, indicating that det(A) = ±1.

Two “special” sets of matrices that are encountered frequently are

SO(n) = {A |AAT = I and det(A) = +1}

and
SU(n) = {A |AA∗ = I and det(A) = +1}.

These are respectively the “special orthogonal” and “special unitary” matrices.
A rotation in n-dimensional space is described with a special orthogonal matrix. In

the case of three-dimensional rotation about a fixed axis by an angle φ, the rotation
only has one degree of freedom. In particular, for counterclockwise rotations about the
e1, e2, and e3 axes:

R1(φ) .=

⎛⎝1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞⎠ (A.42)

R2(φ) .=

⎛⎝ cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

⎞⎠ (A.43)

R3(φ) .=

⎛⎝ cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎞⎠ . (A.44)

A.2.6 Matrix Norms

Throughout this text, the Frobenius norm of a square n × n matrix is used:

‖A‖ .=

⎛⎝ n∑
i=1

n∑
j=1

|aij |2
⎞⎠

1
2

= (tr(AA∗))
1
2 . (A.45)

A can have either real or complex entries, and |aij | is interpreted as the absolute value
of a real number, or modulus of this complex number. When A is infinite-dimensional,
‖A‖ is also called the Hilbert–Schmidt norm.

In general a matrix norm must satisfy the properties

‖A + B‖ ≤ ‖A‖ + ‖B‖ (A.46)
‖cA‖ = |c| ‖A‖ (A.47)
‖A‖ ≥ 0 (A.48)

‖A‖ = 0 ⇐⇒ A = O. (A.49)

The last quality above is referred to as positive definiteness.
In addition, the Frobenius norm has the sub-multiplicative property:

‖AB‖ ≤ ‖A‖ ‖B‖; (A.50)
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it is invariant under Hermitian conjugation:

‖A∗‖ = ‖A‖;

and is invariant under products with arbitrary unitary matrices of the same dimensions
as A:

‖AU‖ = ‖UA‖ = ‖A‖.

Throughout the text, ‖·‖ denotes the Frobenius norm. This norm is easy to compute,
and has many nice properties such as those mentioned above. However, one desirable
property of norms to use in the analysis of limiting behaviors of Fourier transforms
of pdfs on Lie groups in Volume 2 is that the norm of the identity matrix should be
equal to unity. Unfortunately, the Frobenius norm returns ‖I‖ =

√
n. And if we define

‖A‖′ = ‖A‖/
√
n, then this new norm does not have the sub-multiplicative property. For

this reason, in some problems it is useful to use an alternative norm, ‖| ·‖| that possesses
both the sub-multiplicative property ‖|AB‖| ≤ ‖|A‖| · ‖|B‖| and ‖|I‖| = 1. An infinite
number of such norms exist. These are the induced norms:

‖A‖p
.= max

x�=0

‖Ax‖p

‖x‖p

where

‖x‖p
.=

(
n∑

i=1

|xi|p
) 1

p

.

The matrix and vector p-norms are said to be consistent with each other in the sense
that ‖Ax‖p ≤ ‖A‖p‖x‖p. More generally, any norm that remains sub-multiplicative
when applied to the product of matrices with any compatible dimensions (including
matrix-vector products) is called consistent. Three examples are the induced 1-norm,
2-norm, and ∞-norms:

‖A‖1
.= max

1≤j≤n

n∑
i=1

|aij |

‖A‖2
.= max

x�=0

(
x∗A∗Ax

x∗x

) 1
2

and

‖A‖∞
.= max

1≤i≤n

n∑
j=1

|aij | .

The trouble is, with the exception of ‖·‖2, these norms are not invariant under products
with unitary matrices and under Hermitian conjugation. Therefore, as a second “special”
norm for use in the analysis of probability problems on groups, the following notation
will be used:

‖|A‖| .= ‖A‖2 (A.51)

which has the properties

‖|A‖| = ‖|AU‖| = ‖|UA‖| = ‖|A∗‖| and ‖|U‖| = 1 ∀ U ∈ SU(n). (A.52)

One final set of norms that have some of the desirable properties are
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‖A‖R
.= max

1≤i≤n

√√√√ n∑
j=1

|aij |2 = max
1≤i≤n

(
eT

i AA∗ei

) 1
2 (A.53)

and

‖A‖L
.= max

1≤j≤n

√√√√ n∑
i=1

|aij |2 = max
1≤j≤n

(
eT

j A∗Aej

) 1
2 . (A.54)

To see that ‖A‖R is a norm, simply evaluate the following:

‖A + B‖R = max
1≤i≤n

√√√√ n∑
j=1

|aij + bij |2

≤ max
1≤i≤n

⎡⎣√√√√ n∑
j=1

|aij |2 +

√√√√ n∑
j=1

bij |2
⎤⎦

≤ max
1≤i≤n

√√√√ n∑
j=1

|aij |2 + max
1≤i≤n

√√√√ n∑
j=1

|bij |2

= ‖A‖R + ‖B‖R.

Clearly ‖cA‖R = |c| · ‖A‖R and it is positive definite. And while it does not appear to
be sub-multiplicative, it does have some other useful properties under multiplication:

‖AB‖R = max
1≤i≤n

√√√√ n∑
j=1

∣∣∣∣∣
n∑

k=1

aikbkj

∣∣∣∣∣
2

≤ max
1≤i≤n

√√√√ n∑
j=1

(
n∑

k=1

|aik|2
)(

n∑
l=1

|blj |2
)

(A.55)

= max
1≤i≤n

√√√√ n∑
k=1

|aik|2
√√√√ n∑

j,l=1

|blj |2

= ‖A‖R · ‖B‖.

And so
‖AB‖R ≤ ‖A‖R · ‖B‖. (A.56)

If in the above derivation at the point where the Cauchy–Schwarz inequality is used at
(A.55), the weaker condition

n∑
l=1

|blj |2 ≤ n · max
1≤l≤n

|blj |2

is substituted, then the following inequality results:

‖AB‖R ≤
√
n ‖A‖R · ‖B‖R. (A.57)
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Similar arguments yield analogous relationships for ‖AB‖L.
Note that ‖AU‖R = ‖A‖R is “right” invariant under multiplication by a unitary

matrix and ‖UA‖L = ‖A‖L is “left” invariant. Unlike the Frobenius norm ‖ · ‖ and
the induced two-norm ‖| · ‖|, these norms are not bi-invariant. However, they are not as
costly to compute as ‖| · ‖|, yet have the nice property that ‖I‖L = ‖I‖R = 1.

In fact, there are an infinite number of possible matrix norms (just as there are an
infinite number of vector norms), but the additional useful properties (A.52) are usually
not satisfied by norms, making ‖ · ‖ and ‖| · ‖| particularly useful in the context of the
problems addressed in this book and its companion volume.

A set of norms that do not have the complete set of desired properties, but are
nonetheless useful in some circumstances, is

‖A‖′
p

.=

⎛⎝ n∑
i=1

n∑
j=1

|aij |p
⎞⎠

1
p

(A.58)

for 1 < p = 2.
As has been illustrated, various norms exist for matrices and vectors. And while

matrix and vector p-norms are consistent, these are not the only consistent norms that
satisfy ‖Ax‖ ≤ ‖A‖ · ‖x‖. For example, the Frobenius matrix norm together with the
vector 2-norm satisfies this condition. For any consistent norm,

‖x‖ = ‖Ix‖ ≤ ‖I‖ · ‖x‖ =⇒ 1 ≤ ‖I‖.

A.2.7 Matrix Inequalities

The Cauchy–Schwarz inequality for vectors as presented in (A.13) can be extended to
matrices in several ways.

For example, if A,B ∈ Rn×n, then [17]

[tr(ATB)]2 ≤ tr(ATA)tr(BTB) (A.59)

(with equality if and only if B = αA for α ∈ R), and

tr(ATB)2 ≤ tr[(ATA)(BTB)] (A.60)

(with equality if and only if ABT = BAT ). As a consequence,

trA2 ≤ ‖A‖2

with equality holding if and only if A = AT .

A.3 Eigenvalues and Eigenvectors

Given a square matrix, A, with real or complex entries, an eigenvector is any unit vector
v such that

Av = λv (A.61)

where λ is a scalar called the eigenvalue. These can be computed as the roots of the
characteristic polynomial
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det(A − λI) = 0. (A.62)

From the definition of a consistent norm, it follows that

‖A‖ · ‖v‖ ≥ ‖Av‖ = ‖λv‖ = |λ| · ‖v‖ =⇒ ‖A‖ ≥ |λ|.

If A is n×n, then there will always be n eigenvalues, though they may not be unique.
For example, the identity matrix has the eigenvalues λk = 1 for k = 1, ..., n. In contrast,
it does not have to be the case that a matrix has n eigenvectors. (For example, see the
discussion of Jordan blocks in Section A.4.1.)

It can be shown that the trace and determinant of a matrix can be expressed in
terms of its eigenvalues as

tr(A) =
n∑

i=1

λi and det(A) =
n∏

i=1

λi. (A.63)

In general, the eigenvalues of a matrix will be complex numbers, even if the matrix
has real entries. However, in some matrices with special structure, the eigenvalues will be
real. Below the eigenvalues in the case when A = A∗ ∈ Cn×n are examined, and special
properties of the eigenvectors are derived. The results presented hold as a special case
when A = AT ∈ Rn×n.

Theorem A.1. Eigenvalues of Hermitian matrices are real.

Proof: To show that something is real, all that is required is to show that it is equal
to its own complex conjugate. Recall that given a, b ∈ R, a complex number c = a +
b
√

−1 has a conjugate c = a − b
√

−1. If c = c, then b = 0 and therefore c = a is
real. The complex conjugate of a vector or matrix is just the complex conjugate of
its elements. Furthermore, the complex conjugate of a product is the product of the
complex conjugates. Therefore, given Aui = λiui, applying the Hermitian conjugate to
both sides yields

u∗
i A

∗ = λiu∗
i .

In this derivation A∗ = A because A is Hermitian, and so making this substitution and
multiplying on the right by ui gives

u∗
i Aui = λiu∗

i ui.

In contrast, starting with Aui = λjui and multiplying on the left by u∗
i gives

u∗
i Aui = λiu∗

i ui.

Since the left sides of both of these equations are the same, the right sides can be equated
to give

λiu∗
i ui = λiu∗

i ui.

Dividing by u∗
i ui, which is a positive real number, gives λi = λi which means that the

imaginary part of λi is zero, or equivalently λi ∈ R.

Theorem A.2. Eigenvectors of Hermitian matrices corresponding to distinct eigenval-
ues are orthogonal.
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Proof: Given a Hermitian matrix A and two of its eigenvalues λi = λj with corresponding
eigenvectors ui and uj , by definition the following is true: Aui = λiui, and Auj = λjuj .
Multiplying the first of these on the left by u∗

j , and multiplying the second one on the
left by u∗

i , these become

u∗
jAui = λiu∗

jui and u∗
i Auj = λju∗

i uj .

Taking the Hermitian conjugate of the second expression gives

u∗
jA

∗ui = λju∗
jui.

But since A is Hermitian, A∗ = A, and from Theorem A.1, λj = λj . Therefore, combin-
ing the above yields

λju∗
i uj = λiu∗

jui.

Subtracting one from the other and using the fact that u∗
jui = u∗

i uj then gives

(λi − λj)u∗
i uj = 0.

Since λi = λj , division by their difference yields u∗
i uj = 0, which is a statement of

orthogonality.

Any invertible n × n matrix consisting of real or complex entries which has distinct
eigenvalues (i.e., none of the eigenvalues are repeated) can be written as

A[u1, ...,un] = [λ1u1, ..., λnun] or AU = UΛ,

where

U = [u1, ...,un] and Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 . . . . . . 0

0 λ2 0
. . .

...

0
. . . . . . . . . 0

...
. . . 0 λn−1 0

0 . . . . . . 0 λn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

In other words, A can be decomposed as

A = UΛU−1. (A.64)

In fact, this would be true even if there are repeated eigenvalues (as long as there are n
linearly independent eigenvectors), but this will not be proven here.

In the special case when A = A∗, Theorems A.1 and A.2 above indicate that Λ will
have all real entries, and U will be unitary, and so U−1 = U∗. In the case when A has
real entries and A = AT , then U becomes a real orthogonal matrix.

An n × n positive-definite Hermitian matrix, A, is one for which

x∗Ax ≥ 0

for all x ∈ Cn with equality holding only when x = 0. This is equivalent to all of the
eigenvalues being positive.
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A.4 Matrix Decompositions

A.4.1 Jordan Blocks and the Jordan Decomposition

A Jordan block corresponding to a k-fold repeated eigenvalue is a k × k matrix with
the repeated eigenvalue on its diagonal and the number 1 in the superdiagonal. For
example,

J2(λ) =
(

λ 1
0 λ

)
,

J3(λ) =

⎛⎝λ 1 0
0 λ 1
0 0 λ

⎞⎠ ,

etc.
Jordan blocks are degenerate in the sense that (to within a sign change) the unit

vector e1 ∈ Rk is the only eigenvector of Jk(λ), and the corresponding eigenvalue is λ
repeated k times:

[Jk(λ)]e1 = λe1.

The determinant and trace of a Jordan block are respectively

det[Jk(λ)] = λk and tr[Jk(λ)] = k · λ.

From this it is clear that Jk(λ) is invertible when λ = 0.
The notation niJi stands for the ni-fold direct sum of Ji with itself:

niJi
.= Ji ⊕ Ji ⊕ . . . ⊕ Ji =

⎛⎜⎝Ji 0 0

0
. . . 0

0 0 Ji

⎞⎟⎠ .

The notation
m∑

i=1

⊕
Ai

.= A1 ⊕ A2 ⊕ . . . ⊕ Am

can be useful shorthand. Note that Jk(λ) is a k×k matrix, or equivalently dim(Jk) = k.
Therefore,

dim

(
m∑

i=1

⊕
Ai

)
=

m∑
i=1

dimAi.

Every matrix A ∈ Cn×n can be written in the form

A = TJT−1 (A.65)

where T is an invertible matrix and

J =
q∑

j=1

⊕(
m∑

i=1

⊕
nj

iJi(λj)

)

is the direct sum of a direct sum of Jordan blocks with m being the dimension of the
largest Jordan block, q being the number of different eigenvalues, and nj

i being the
number of times Ji(λj) is repeated in the decomposition of A. Note that
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q∑
j=1

m∑
i=1

i · nj
i = dim(A).

The matrix J in (A.65) is called the Jordan normal form of A.
For instance, if

J = J1(λ1) ⊕ J1(λ2) ⊕ J2(λ3) ⊕ J2(λ3) ⊕ J3(λ4) ⊕ J5(λ5) ⊕ J6(λ5),

then m = 6, q = 5, and all values of nj
i are zero accept for

n1
1 = n2

1 = n4
3 = n5

5 = n5
6 = 1; n3

2 = 2.

A.4.2 Decompositions into Products of Special Matrices

When linear algebraic operations are performed on a computer, a number of other
matrix decompositions are useful. Several of these are reviewed here. For more details
see [11, 13, 22].

(QR Decomposition) [13]: For any n × n matrix, A, with complex entries, it is possible
to find an n × n unitary matrix Q such that

A = QR

where R is upper triangular. In the case when A is real, it is possible to take Q ∈ SO(n)
and R real.

(Cholesky Decomposition) [13]: Let B be an n×n complex matrix that is decomposable
as B = A∗A for some n×n complex matrix A. Then B can be decomposed as B = LL∗

where L is lower triangular with non-negative diagonal entries.

(Schur Decomposition)[13]: For any A ∈ Cn×n, it is possible to find a matrix U ∈ SU(n)
such that

U∗AU = T

where T is upper (or lower) triangular with the eigenvalues of A on its diagonal.
Note: This does not mean that for real A that U will necessarily be real orthogonal.

For example, if A = −AT , then QTAQ for Q ∈ O(n) will also be skew symmetric and
hence cannot be upper triangular.

(Unitary Diagonalizability of normal matrices)[13]: Recall that a normal matrix is one
for which AA∗ = A∗A. Any such matrix can be decomposed as A = UΛU∗ where
UU∗ = I. Examples of normal matrices include Hermitian, skew-Hermitian, unitary,
real orthogonal, and real symmetric matrices.

(Singular Value Decomposition or SVD) [11]: For any real m × n matrix A, there exist
orthogonal matrices U ∈ O(m) and V ∈ O(n) such that

A = UΛV T

where Λ is an m × n matrix with real entries Λij = σiδij . The value σi is called the ith
largest singular value of A. If A has complex entries, then the decomposition becomes

A = UΛV ∗
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with U and V unitary rather than orthogonal.

(Polar Decomposition): Every real square matrix A can be written as the product of a
symmetric matrix S1 = UΛUT and the orthogonal matrix

R = UV T , (A.66)

or as the product of R and S2 = V ΛV T . Hence it is possible to write

A = S1R = RS2. (A.67)

In the case when detA = 0, R can be calculated as

R = A(ATA)− 1
2 (A.68)

(the negative fractional root makes sense for a symmetric positive definite matrix). Note
that (A.66) is always a stable numerical technique for finding R, whereas (A.68) becomes
unstable as det(A) becomes small.

(LU-Decomposition) [11]: For n×n real matrices such that det(Ai) = 0 for i = 1, ..., n,4

it is possible to write
A = LU

where L is a unique lower triangular matrix and U is a unique upper triangular matrix.
See the classic references [10, 29] for other general properties of matrices.

A.4.3 Decompositions into Blocks

It is often convenient to partition a matrix into blocks that are themselves matrices as

M =
(

A B
C D

)
.

When M is square, the most common kind of partitioning would be one in which A
and D are square. Even when A and D are square, their dimensions will generally be
different. In the case when M = MT , it necessarily means that A = AT , D = DT , and
C = BT .

If M is square and invertible, its inverse can be written in terms of the blocks
A,B,C,D. This is accomplished by decomposing M into a product of the form

M =
(

I 0
L I

)(
P 0
0 Q

)(
I U
0 I

)
(A.69)

where L and U are general matrices, P and Q are general invertible matrices, and I is
the identity of appropriate dimension. Multiplying this out gives four matrix equations
in the unknown matrices that can be solved in terms of the originally given blocks.
Explicitly,

A = P ; B = PU ; LP = C; D = LPU + Q.

Therefore,
P = A; U = A−1B; L = CA−1; Q = D − CA−1B.

4The notation Ai denotes the i × i matrix formed by the first i rows and i columns of the
matrix A.
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This means that M−1 can be computed by applying the rule for the inverse of
products of matrices to (A.69) as

M−1 =
(

I U
0 I

)−1(
P 0
0 Q

)−1(
I 0
L I

)−1

=
(

I −U
0 I

)(
P−1 0

0 Q−1

)(
I 0

−L I

)

=
(

P−1 + UQ−1L −UQ−1

−Q−1L Q−1

)
.

Then substituting the above expressions for L,U, P,Q in terms of A,B,C,D gives an
expression for the inverse of M in terms of its blocks:

(
A B
C D

)−1

=

⎛⎝A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

⎞⎠ .

(A.70)
By recursively using the above procedure, a matrix can be decomposed into smaller

blocks, and the inverse of the original matrix can be expressed in terms of the smaller
blocks.

A.5 Matrix Perturbation Theory

This section reviews an important theorem regarding the norm of the inverse of a matrix.

Theorem A.3. [27] Let ‖ · ‖ denote a consistent matrix norm. Given A ∈ GL(n,C),
and Ã = A + E, then if Ã is non-singular,

‖Ã−1 − A−1‖
‖Ã−1‖

≤ ‖A−1E‖. (A.71)

Furthermore, if ‖A−1E‖ < 1, then Ã must be non-singular and

‖Ã−1 − A−1‖
‖A−1‖ ≤ ‖A−1E‖

1 − ‖A−1E‖ . (A.72)

Proof: Since Ã−1 exists, ÃÃ−1 = (A + E)Ã−1 = I. Multiplying on the left by A−1

results in (I + A−1E)Ã−1 = A−1. Therefore,

Ã−1 − A−1 = −A−1EÃ−1. (A.73)

Taking the norm of both sides gives

‖Ã−1 − A−1‖ = ‖A−1EÃ−1‖ ≤ ‖A−1E‖ ‖Ã−1‖,

and hence (A.71).
Instead of assuming that Ã is non-singular, if we assume that ‖A−1E‖ < 1, then

I+A−1E must be non-singular. This is because λ(I+A−1E) = 1+λ(A−1E) > 0, which
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follows when ‖ · ‖ is consistent because consistency implies |λ(A−1E)| ≤ ‖A−1E‖ < 1.
Then Ã must be non-singular, since Ã = A(I+A−1E). Again taking the norm of (A.73),
but this time grouping terms in a different order,

‖Ã−1‖ = ‖A−1 − A−1EÃ−1‖ ≤ ‖A−1‖ + ‖A−1E‖ ‖Ã−1‖.

This can be rearranged as
‖Ã−1‖
‖A−1‖ ≤ 1

1 − ‖A−1E‖ .

Multiplying the left side of this inequality with the left side of (A.71), and likewise for
the right sides, yields (A.72).

A.6 The Matrix Exponential

Given the n × n matrices X and A where X = X(t) is a function of time and A is
constant, the solution to the differential equation

d

dt
(X) = AX (A.74)

subject to the initial conditions X(0) = I is

X(t) = exp(tA).

The matrix exponential of any square matrix B is defined by the Taylor series:

expB = I + B + B2/2 + B3/3! + B4/4! + . . . . (A.75)

The matrix exponential has some very interesting and useful properties. The exponential
of the direct sum of two square matrices is the direct sum of their exponentials:

exp(A ⊕ B) = eA ⊕ eB . (A.76)

Below, a proof of the following equality is provided:

det(expA) = etr(A). (A.77)

Using the notation

detX =

∣∣∣∣∣∣∣∣∣∣
x11 x12 . . . x1n

x21 x22 . . .
...

...
...

. . .
...

xn 1 xn 2 . . . xn n

∣∣∣∣∣∣∣∣∣∣
,

it follows from the product rule for differentiation and the defining properties of the
determinant that
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d

dt
(detX) =

∣∣∣∣∣∣∣∣∣∣

dx11
dt

dx12
dt . . . dx1n

dt

x21 x22 . . .
...

...
...

. . .
...

xn 1 xn 2 . . . xn n

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
x11 x12 . . . x1n

dx21
dt

dx22
dt . . .

...
...

...
. . .

...
xn 1 xn 2 . . . xn n

∣∣∣∣∣∣∣∣∣∣
+ . . . +

∣∣∣∣∣∣∣∣∣
x11 x12 . . . x1n

...
...

. . .
...

dxn−1, 1
dt

dxn−1, 2
dt . . .

dxn−1, n

dt
xn 1 xn 2 . . . xn n

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣∣

x11 x12 . . . x1n

x21 x22 . . .
...

...
...

. . .
...

dxn 1
dt

dxn 2
dt . . . dxn n

dt

∣∣∣∣∣∣∣∣∣∣
. (A.78)

Equation (A.74) is written in component form as

dxik

dt
=

n∑
j=1

aijxjk.

After making this substitution, the ith term in (A.78) becomes∣∣∣∣∣∣∣∣∣∣

x11 x12 . . . x1n∑n
j=1 aijxj 1

∑n
j=1 aijxj 2 . . .

...
...

...
. . .

...
xn 1 xn 2 . . . xn n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
x11 x12 . . . x1n

aiixi 1 aiixi 1 . . .
...

...
...

. . .
...

xn 1 xn 2 . . . xn n

∣∣∣∣∣∣∣∣∣∣
.

This follows by subtracting aij times the jth row of X from the ith row of the left side
for all j = i.

The result is then
d

dt
(detX) = trace(A)(detX). (A.79)

Since detX(0) = 1, this implies

detX = exp(trace(A)t).

Evaluation of both sides at t = 1 yields (A.77).
A sufficient condition for the equalities

exp(A + B) = expA expB = expB expA (A.80)

to hold is
AB = BA. (A.81)

This can be verified by expanding both sides in a Taylor series and equating term by
term. What is perhaps less obvious is that sometimes the first and/or the second equality
in (A.80) can be true when A and B do not commute. For example, Fréchet [9] observed
that when

A =
(

0 2π
−2π 0

)
and B =

(
1 0
0 −1

)
AB = BA but it is nonetheless true that

eAeB = eBeA.
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In [26] it is shown that for the non-commuting complex matrices

A =
(

πi 0
0 −πi

)
and B =

(
0 1
0 −2πi

)
eA+B = eAeB .

Other examples can be found in [9, 31].
Having said this, AB = BA is a necessary condition for exp t(A+B) = exp tA exp tB =

exp tB exp tA to hold for all values of t ∈ R>0. Furthermore, (A.81) becomes a necessary
condition for (A.80) if A and B are Hermitian [26].

A.7 Kronecker Products and Kronecker Sums

The Kronecker product can be defined for any two matrices

H =

⎛⎜⎜⎜⎜⎝
h11 h12 . . . h1q

h21 h22 . . .
...

...
...

. . .
...

hp1 hp2 . . . hpq

⎞⎟⎟⎟⎟⎠ ∈ Rp×q

and

K =

⎛⎜⎜⎜⎜⎝
k11 k12 . . . krs

k21 k22 . . .
...

...
...

. . .
...

kr1 kr2 . . . krs

⎞⎟⎟⎟⎟⎠ ∈ Rr×s

as [7]

H⊗̂K
�
=

⎛⎜⎜⎜⎜⎝
h11K h12K . . . h1qK

h21K h22K . . .
...

...
...

. . .
...

hp1K hp2K . . . hpqK

⎞⎟⎟⎟⎟⎠ ∈ Rpr×qs.

It follows immediately that
(H⊗̂K)T = HT ⊗̂KT .

Note that this is in the opposite order than the “transpose rule” for the transpose of
the matrix product: (HK)T = KTHT .

The Kronecker product has the interesting property that for matrices A,B,C,D of
compatible dimensions,

(A⊗̂B)(C⊗̂D) = (AC)⊗̂(BD). (A.82)

Note that in general, H⊗̂K = K⊗̂H. However, when H and K are both square,
there exists a permutation matrix P such that

H⊗̂K = P (K⊗̂H)PT ,

which means that λi(K⊗̂H) = λi(H⊗̂K) for all values of i. Furthermore, if H and K
are invertible,
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(K⊗̂H)−1 = K−1⊗̂H−1.

In general, given X ∈ Rq×s, it is possible to write x ∈ Rq·s by sequentially stacking
columns of X on top of each other. This operation is denoted as x = (X)∨. It is easy
to verify that

(HXKT )∨ = (K⊗̂H)x (A.83)

where ⊗̂ is the Kronecker product.
Since an n-dimensional column vector, a, can be viewed as an n × 1 matrix, and

its transpose is an n-dimensional row vector, it is a well-defined operation to “take the
vector of a vector” as

a∨ = (aT )∨ = a.

Furthermore, for vectors a and b (not necessarily of the same dimensions) the following
equalities hold [17]:5

(abT )∨ = b⊗̂a (A.84)

and
(A∨)TB∨ = tr(ATB) (A.85)

where A and B have dimensions such that ATB makes sense. Note that [(AT )∨]T = A∨.
For example, in the 2 × 2 case

A∨ =

⎛⎜⎜⎝
a11
a21
a12
a22

⎞⎟⎟⎠ = [(AT )∨]T = [a11, a12, a21, a22] .

The Kronecker sum of two square matrices A ∈ Rm×m and B ∈ Rn×n is the matrix

A ⊕̂B = A⊗̂In + Im⊗̂B

where Im is the m-dimensional identity matrix. This Kronecker sum is not the same as
the direct sum A⊕B. It does not even have the same dimensions. This should be clear
since

Im⊗̂B = B ⊕ B ⊕ . . . ⊕ B

(the m-fold direct sum of B with itself).
An interesting property of the Kronecker sum is that

expA ⊕̂B = eA⊗̂eB .

Note the difference with (A.76).
Another useful application of the Kronecker sum is in solving equations of the form

AX + XBT = C

for given A,B,C and unknown X, all of which are square. Application of the ∨ operator
as in (A.83) converts this to

(A ⊕̂B)x = c =⇒ x = (A ⊕̂B)−1c,

from which X can be obtained.
5Note that abT = a ⊗ b, where ⊗ is the tensor product discussed in Section 6.4. This is a

good way to remember that ⊗ �= ⊗̂.
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A.8 Complex Numbers and Fourier Analysis

Throughout these volumes, complex numbers and Fourier analysis are used extensively.
However, the following restrictions in scope apply: (1) only real vector spaces are used;
(2) only real-valued functions (in particular, probability densities) are of concern; (3)
only real Lie groups are studied. The reason for this limitation in scope is to avoid the
intricacies associated with taking Taylor series of functions on complex Lie groups and
other more mundane problems that can lead to significant confusion when introducing
complex numbers. For example, in mathematical notation, the inner product of two
complex-valued functions on the real interval [a, b] is

(f1, f2) =
∫ b

a

f1(x)f2(x)dx,

whereas in physics the conjugate is over f1(x) rather than f2(x).
But how is it possible to address problems of interest without using complex num-

bers? It is actually quite simple to circumvent the use of complex numbers. The funda-
mental properties of complex arithmetic revolve around the way complex numbers are
added, multiplied, and conjugated. If c1 = a1 + ib1 and c2 = a2 + ib2, then the sum and
product of these two numbers, and the conjugation of c = a + ib are

c1+c2 = (a1+a2)+(b1+b2)i ; c1·c2 = (a1a2−b1b2)+(b1a2+a1b2)i ; c = a−ib (A.86)

where ak, bk ∈ R and i =
√

−1 and the usual scalar arithmetic operations are followed
to produce the equalities in (A.86). In a sense, the simplicity of scalar operations is
retained at the expense of adding the abstraction of i =

√
−1. Of course, on one level

the very concept of
√

−1 is absurd. But, the elegance and compactness of expressions
such as

(eiθ)m = eimθ = cosmθ + i sinmθ (A.87)

make it worth accepting the concept. But this does not mean that the concept is neces-
sary when doing the calculations in this book. Rather, in all of the problems addressed
in this book, complex numbers are nothing more than a convenient shorthand for things
that can be expressed as real quantities in higher dimensions.

For example, referring back to the properties in (A.86), rather than using complex
numbers, it is possible to introduce the vectors ck = [ak, bk]T ∈ R2 with the properties

c1 + c2 =
(

a1 + a2
b1 + b2

)
; c1 × c2 =

(
a1a2 − b1b2
b1a2 + a1b2

)
; c =

(
a

−b

)
. (A.88)

Or, without introducing the operator ×, real 2 × 2 matrices of the form

M(c) =
(

a b
−b a

)
can be defined, and using only real matrix operations,

M(c1)M(c2) = M(c1) + M(c2); M(c1)M(c2) = M(c1 · c2); [M(c)]T = M(c).

Taking this point of view, (A.87) is equivalent to

[R(θ)]m = R(mθ); where R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.
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An obvious place where complex notation seems required is in the discussion of
unitary groups. After all, in Volume 2, when it comes time to discuss the concepts
of inner products on Lie algebras, computation of Jacobians, adjoint matrices, Killing
forms, etc., definitions are only provided for real Lie groups. Fortunately, elements of
SU(n) can be identified with a subgroup of SO(2n).

Given the unitary matrix U ,

U = A + iB ∈ Cn×n; where A,B ∈ Rn×n

the constraint

UU∗ = I =⇒ AAT + BBT = I; BAT − ABT = O.

If

R(U) =
(

A B
−B A

)
,

then
R(U1U2) = R(U1)R(U2); R(I) = I ⊕ I; R(U∗) = [R(U)]T

and so it is easy to see that a unitary matrix can be represented as a higher-dimensional
orthogonal matrix.

But what about the Lie algebras and the exponential map? For example, if S = −S∗

is a skew-Hermitian matrix, then U = expS will be special unitary. Letting S = W + iV
where W and V are both real matrices, it becomes clear that W = −WT and V = V T .
Therefore,

Ω(S) =
(

W V
−V T W

)
is skew-symmetric, and

expΩ(S) = R(exp(S)). (A.89)

In fact, most of the Lie groups of practical interest consist of elements that are
n × n complex matrices that can be viewed instead as a group with elements that are
(2n) × (2n) real matrices.

This means that, for example, if it is desired to compute Jacobian matrices or invari-
ant integration measures for groups such as SU(2), this can be done without introducing
an inner product on a complex vector space. Rather, these groups can be viewed as being
equivalent to higher-dimensional groups of real matrices, and the computations demon-
strated for the evaluation of Jacobians for real matrix groups can be applied here as
well.

In summary, while complex numbers are used extensively throughout the text in the
context of both classical and non-commutative Fourier expansions, the functions being
expanded as well as the arguments of those functions can always be viewed as real,
rather than complex, quantities. And while complex number notation leads to elegant
simplifications in the way quantities are written, there is nothing necessary about their
use in the class of problems discussed in this book. Taking this point of view, relatively
simple tools such as the classical Taylor series for real-valued functions and operations
on spaces of real-valued functions on real matrix Lie groups can be understood and
applied without the extra effort required to master the theory of complex functions.
Of course, this statement does not generalize to other areas of mathematics and its
applications.
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A.9 Important Inequalities from the Theory of Linear Systems

In this section, three fundamental results from the theory of linear systems of ordinary
differential equations are presented. Extensive use of the property

‖Ax‖ ≤ ‖A‖ · ‖x‖ (A.90)

is made where ‖ · ‖ is any vector norm and the corresponding induced matrix norm.
Equation (A.90) also holds when ‖A‖ is the Frobenius norm of A and ‖x‖ is the 2-norm
of x.

1. Let A ∈ Rn×n be a constant matrix and x(t),g(t) ∈ Rn be vector-valued functions
of time. The solution to

dx
dt

= Ax + g(t) with x(0) = x0

is

x(t) = exp(At)x0 +
∫ t

0
exp(A(t − τ))g(τ)dτ. (A.91)

From the properties of matrix norms, it is easy to see if 0 > −a > Re(λi(A)) for all
values of i that for some positive constant scalar c the following holds:

‖x(t)‖ = ‖ exp(At)x0 +
∫ t

0
exp(A(t − τ))g(τ)dτ ||

≤ ‖ exp(At)x0‖ + ‖
∫ t

0
exp(A(t − τ))g(τ)dτ ||

≤ ‖ exp(At)‖ ‖x0‖ +
∫ t

0
‖ exp(A(t − τ))‖ ‖g(τ)‖dτ

≤ ce−at‖x0‖ + c

∫ t

0
e−a(t−τ) ‖g(τ)‖dτ.

Hence, if ‖g(τ)‖ ≤ γ for some scalar constant γ, it follows that the integral in the above
expression will be less than

γ

∫ t

0
e−a(t−τ)dτ = γe−at

∫ t

0
eaτdτ = γe−at(eat − 1)/a ≤ γ/a,

and hence ‖x(t)‖ will be bounded. Likewise, if

f(t) =
∫ t

0
eaτ ‖g(τ)‖dτ

is bounded by a constant, then ‖x(t)‖ will decay to zero as t → ∞.

2. The Bellman–Gronwall lemma states that for any two functions u(t) and v(t) that
are continuous on 0 ≤ t ≤ ∞, and satisfy the inequality

u(t) ≤ α +
∫ t

0
v(s)u(s)ds (A.92)

for some α > 0 and t > 0, it must be the case that
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u(t) ≤ α exp
(∫ t

0
v(s)ds

)
. (A.93)

To prove this, first multiply both sides of (A.92) by v(t) and divide by α+
∫ t

0 v(s)u(s)ds
resulting in

u(t)v(t)

α +
∫ t

0 v(s)u(s)ds
≤ v(t).

Integrating both sides from 0 to t gives

log
[
α +

∫ t

0
v(s)u(s)ds

]
− logα ≤

∫ t

0
v(s)ds.

Adding logα to both sides and exponentiating preserves the inequality and results in
(A.93).

3. The “solution” for the system

dx
dt

= (A + B(t))x with x(0) = x0

(where B(t) ∈ Rn×n is a matrix-valued function of time) is

x(t) = exp(At)x0 +
∫ t

0
exp(A(t − τ))B(τ)x(τ)dτ. (A.94)

(Of course, this is not truly a solution because x appears on both sides of the equa-
tion, but it is nonetheless a useful expression.) This can be used to write the following
inequalities:

‖x(t)‖ = ‖ exp(At)x0 +
∫ t

0
exp(A(t − τ))B(τ)x(τ)dτ‖

≤ ‖ exp(At)‖ ‖x0‖ + ‖
∫ t

0
exp(A(t − τ))B(τ)x(τ)dτ‖

≤ ‖ exp(At)‖ ‖x0‖ +
∫ t

0
‖ exp(A(t − τ))‖ ‖B(τ)‖ ‖x(τ)‖dτ.

If a > 0 is a number that bounds from below the absolute value of the real part of
all the eigenvalues of A such that

‖ exp(At)‖ ≤ ce−at,

then

‖x(t)‖ ≤ ce−at ‖x0‖ + c

∫ t

0
e−a(t−τ) ‖B(τ)‖ ‖x(τ)‖dτ.

The Bellman–Gronwall lemma can be used as follows. Multiply both sides by eat and
let α = c, u(t) = ‖x(t)‖eat, and v(t) = ‖B(τ)‖.

The Bellman–Gronwall lemma then indicates that systems for which A has eigen-
values all with negative real parts and, for example,∫ ∞

0
‖B(t)‖dt < ∞

or
‖B(t)‖ < β

for a sufficiently small real number β, will be stable in the sense that limt→∞ ‖x(t)‖ = 0.
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A.10 The State-Transition Matrix and the Product Integral

Given a general (possibly non-linear) scalar differential equation with initial conditions
of the form

dx

dt
= f(x, t) and x(0) = x0 , (A.95)

the simplest numerical integration scheme approximates the solution x(t) at regularly
spaced increments of time, Δt, by replacing the derivative in (A.95) with the finite-
difference approximation

ẋ(t) ≈ 1
Δt

[x(t + Δt) − x(t)]

for 0 < Δt << 1. Substituting this approximation into (A.95) results in a difference
equation of the form

xn+1 = xn + Δtf(xn, tn) where tn = nΔt (A.96)

and xn is the approximation to x(tn) for n = 0, 1, 2, .... This scheme (which is called
Euler integration) is known to diverge from the actual solution as n gets large. However,
if n is relatively small, and as Δt → 0, the approximation is not bad when f(x, t) is well
behaved. And (A.96) has some convenient properties that will be used in the sequel.

In the special case when f(x, t) = a(t)x, and hence (A.95) is a scalar time-varying
linear ordinary differential equation (ODE), the exact solution can be written in closed
form as

x(t) = x0 exp
∫ t

0
a(s)ds. (A.97)

How does the approximate solution in (A.96) compare with this? The statement

xn+1 = [1 + a(nΔt)Δt]xn

is equivalent to

xn = x0

n∏
k=1

[1 + a(nΔt)Δt].

If n → ∞ and Δt → 0 in such a way that 0 < tn < ∞, then

xn → x0 exp

(
Δt

n∑
k=1

a(kΔt)

)
= x0 exp

∫ tn

0
a(τ)dτ = x(tn).

In other words, the numerical integration scheme in (A.96) can be thought of as an
algorithm that produces the correct solution under the special conditions described
above.

Now consider the time-invariant system of n × n matrix differential equations

dX

dt
= AX where X(0) = X0. (A.98)

The solution to this system is known to be of the form

X(t) = [exp(At)]X0. (A.99)

It is easy to show that this is a solution using the definition of the matrix exponential as
a Taylor series, direct substitution into (A.98), and matching each term in the resulting
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Taylor series. The fact that it is the only solution follows from existence and uniqueness
theorems from the classical theory of ordinary differential equations.

In contrast, a numerical approximation of the solution to the system (A.98) can be
made in analogy with the scalar case as

Xn+1 = Xn + ΔtAXn = [I + ΔtA]Xn ≈ exp(ΔtA)Xn.

The approximation above becomes accurate as Δt → 0, and so the actual solution is
obtained at the discrete sample points in that limit:

Xn =

(
n∏

k=1

exp(ΔtA)

)
X0 = exp

(
Δt

n∑
k=1

A

)
X0 = exp(tnA)X0 = X(tn).

Now if A = A(t) in (A.98), the solution will no longer be (A.99). However, if[
A(t) ,

∫ t

0
A(s)ds

]
= 0 (A.100)

for all values of t (where in this context the brackets mean [A,B] = AB − BA), then

X(t) = exp
(∫ t

0
A(s)ds

)
X0. (A.101)

And the same numerical scheme gives

Xn+1 =
[
I +
∫ tn+1

tn

A(s)ds
]
Xn (A.102)

and

Xn =

(
n∏

k=1

exp
∫ tn

tn−1

A(s)ds

)
X0 = exp

(
n∑

k=1

∫ tn

tn−1

A(s)ds

)
X0

= exp
(∫ tn

0
A(s)ds

)
X0 = X(tn).

In the more general case when (A.100) does not necessarily hold, a unique solution
will still exist, and it will be of the form

X(t) = Φ(t, 0)X0

where the state transition matrix can be thought of as the limit

Φ(t2, t1) = lim
k→∞

Φk(t2, t1) where Φk(t2, t1) = I +
∫ t2

t1

A(σ)Φk−1(σ, t1)dσ. (A.103)

Or, written in a different way [6, 24],

Φ(t2, t1) = I +
∫ t2

t1

A(σ1)dσ1 +
∫ t2

t1

A(σ1)
[∫ σ1

t1

A(σ2)dσ2

]
dσ1

+
∫ t2

t1

A(σ1)
[∫ σ1

t1

[∫ σ2

t1

A(σ3)dσ3

]
A(σ2)dσ2

]
dσ1 + . . . . (A.104)
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In addition to being called the state transition matrix, this is sometimes called the
matrizant or matricant. It is easy to see that if the solution from t = t0 to t = t1 is
X(t1) = Φ(t1, t0)X(t0) where t1 > t0, and then if X(t1) is used as the initial conditions
for a solution evaluated at t2 > t1, then X(t2) = Φ(t2, t1)X(t1). It then follows that

X(t2) = Φ(t2, t1)Φ(t1, t0)X(t0) =⇒ Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0). (A.105)

On the other hand, even when (A.100) does not hold, (A.102) will still hold, and for
very small values of Δt it is possible to write

Xn+1 ≈ exp
[∫ tn+1

tn

A(s)ds
]
Xn (A.106)

since (A.102) can be thought of as the first two terms in the expansion of the Taylor
series for the matrix exponential, with all other terms being insignificant since they
involve higher powers of Δt.

It follows from back substituting (A.102) into itself that

Xn+1 ≈ exp
[∫ tn+1

tn

A(s)ds
]

exp

[∫ tn

tn−1

A(s)ds

]
. . . exp

[∫ t0

t1

A(s)ds
]
X0,

or equivalently,

X(tn+1) =
n∏

k=0

exp
(∫ tk+1

tk

A(s)ds
)

X0 (A.107)

where the order in the products is understood to be in decreasing values of k written
from left to right.

In the limit at Δt → 0 and n → ∞ in such a way that their product is the finite value,
t, the above approximate solution becomes exact, and the corresponding state-transition
matrix can be written as the product integral [1, 18, 30]:

Φ(t, t0) = lim
n→∞

n∏
k=0

exp
(∫ tk+1

tk

A(s)ds
)

. (A.108)

Shorthand that is sometimes used for this is [19]6

Φ(t, t0)
.=
⋂

t0<s<t

exp[A(s)ds]. (A.109)

Interestingly, even though Φ(t, t0) cannot be written as a single matrix exponential
unless (A.100) holds, (A.79) still holds for the case when A = A(t), and so

detΦ(t, t0) = exp
∫ t

t0

trA(s)ds.

The interpretations in (A.103) and (A.107) both have certain advantages from the
perspective of numerical approximation. For example, if the system has many dimen-
sions, then for small values of time, (A.103) has the advantage that the numerical

6The most rigorous definition of the product integral summarized by this shorthand is
somewhat more involved than described here.
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evaluation of the matrix exponential is not required. However, in the case when the
system of equations describes a process evolving subject to constraints, then (A.109)
will usually observe those constraints better than will (A.103).

For example, the constraint XT (t)X(t) = I indicates that X(t) is an orthogonal ma-
trix. Taking the time derivative of both sides means that ẊXT must be skew-symmetric.
Therefore, the system Ẋ = A(t)X where A(t) is a specified skew-symmetric matrix and
X(0) is orthogonal, should produce an X(t) that is orthogonal. However, if (A.103) is
truncated at a finite number of nested integrals and used as an approximate solution,
or if (A.102) is iterated with a finite value of Δt, errors will add up and the solution will
no longer obey the constraint XT (tn)X(tn) = I as the value of tn increases. In contrast,
if A(s) is skew-symmetric, then each integral inside of each exponential in (A.107) will
also be skew-symmetric. And since the exponential of a skew-symmetric matrix is al-
ways orthogonal, the solution obtained by the product integral will, in principle, obey
the orthogonality constraint that the true solution should have, since the product of
orthogonal matrices is orthogonal.

Now just because a numerical approximation observes constraints is not a guarantee
that it is accurate. That is, it is a necessary property of a solution, but it is not a
sufficient property. And furthermore, the product-integral formulation is not the only
way to enforce constraints. For example, it is possible to use one of the other numerical
approximations discussed above and incorporate a correction step that first generates
an approximate solution, and then modifies that approximation so as to be consistent
with the constraints. Another alternative would be to parameterize all possible states
that are consistent with the constraints, and replace the original linear system of ODEs
with a smaller number of non-linear ODEs in the parameter space, the solution of which
will necessarily observe the constraints. A more detailed discussion of this is given in
Volume 2.

A.11 Vector Calculus

Vector calculus addresses differentiation and integration of functions and vector fields in
analogy with the way calculus in one dimension works. The subsections that follow serve
as a review of the basic results of vector calculus. Section A.11.1 begins with a review of
basic optimization. Section A.11.2 focuses on differential operations in Euclidean space
using Cartesian coordinates, and Section A.11.3 addresses the spatial generalizations of
the fundamental theorem of calculus (i.e., the theorems named after Gauss, Green, and
Stokes). Section A.11.4 discusses integration by parts in Rn. Section A.11.5 reviews the
chain rule. And Section A.11.6 serves as an introduction to matrix calculus.

A.11.1 Optimization in Rn

In this section optimization problems in Rn are reviewed. Given a smooth function
f : Rn → R, classical calculus provides the necessary and sufficient conditions for a
particular point x0 to be a critical point or extremum (i.e., a local minimum, local
maximum, or saddle point). The necessary condition for a critical point is that the
gradient vector evaluated at x0 is zero:

∂f

∂x

∣∣∣∣
x0

= 0. (A.110)
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Computing the matrix of second derivatives, ∂2f/∂xi∂xj , and examining its properties
determines what kind of critical point x0 is. In particular, the n× n symmetric matrix

H(x0) =
∂2f

∂x∂xT

∣∣∣∣
x0

, (A.111)

which is called the Hessian, describes the shape of the local landscape in the neighbor-
hood of x0. And the eigenvalues of H characterize the type of critical point. If all of the
eigenvalues of H(x0) are positive, then x0 is a local minimum. If all of the eigenvalues
of H(x0) are negative, then x0 is a local maximum. If they are mixed, then the result
is a saddle.

Often in optimization problems, it is desirable to minimize a function subject to
constraints. This changes the problem stated above from one of finding the critical points
of f(x) where x can take any value in the n-dimensional space, Rn, to one of finding
constrained extrema that are contained within an extrinsically defined hyper-surface
h(x) = 0. Sometimes multiple constraints of the form hi(x) = 0 for i = 1, ...,m < n
are provided. When constraints are present, the goal becomes one of finding the values
x0 that extremize f(x) while exactly satisfying all of these hi(x) = 0. The combination
of m constraint surfaces, when intersected in an n-dimensional space generally gives
an (n − m)-dimensional manifold. If a parametrization x = x(u) can be found where
u ∈ Rn−m such that hi(x(u)) = 0 for i = 1, ...,m, then the original problem can be
reduced to the minimization of the function f̃(u) = f(x(u)). While in general it can be
difficult to find such a parametrization, it is still useful to think of the problem in this
way. The necessary conditions for finding a constrained extremum are then ∂f̃/∂ui = 0
for i = 1, ..., n−m. By the chain rule (see (1.33)), this necessary condition is written as

∂f

∂x
∂xT

∂u
= 0.

If h(x) = [h1(x), ..., hm(x)]T , then since h(x) = 0, it follows that h(x(u)) = 0 and

∂hT

∂x
∂xT

∂u
= 0.

This says that ∂f/∂x and ∂hT /∂x are both orthogonal (or normal) to ∂xT /∂u, which
describes the tangent to the constraints. Since the tangent space is m-dimensional, and
the original space was n-dimensional, the fact that the n−m vectors ∂hi/∂x are normal
to the constraints means that they form a basis for all normal vectors. Since ∂f/∂x is
one such normal vector, then it must be possible to expand it as a linear combination
of the basis for normal vectors. Therefore, it must be possible to find constants, λi for
i = 1, ...,m, such that

∂f

∂x
=

m∑
i=1

λi
∂hi

∂x
or

∂f

∂x
=

∂hT

∂x
λ . (A.112)

The constants λ = [λ1, ..., λm]T are called Lagrange multipliers. The method of Lagrange
multipliers, as stated in (A.112), enforces constraints while working in the original co-
ordinates, x. And while (A.112) was derived by assuming that the constraints could be
described parametrically, the end result does not require that such a parametrization
be found. For other explanations, see [16, 28].

In practice, when seeking to minimize a function f(x) subject to constraints h(x) =
0, Lagrange multipliers are integrated into a modified cost function, c(x) = f(x) +
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λT h(x). Then simultaneously solving ∂c/∂x = 0 (which is (A.112)), and ∂c/∂λ =
h(x) = 0, provides n + m equations to be solved in the n + m variables [xT ,λT ]T ∈
Rn+m. This may seem wasteful since doing calculations in an (n + m)-dimensional
space is more costly than in the (n − m)-dimensional space that would have resulted
if parametric constraints had been obtained, but it is easier said than done to find
parametric descriptions of constraints. And so, the method of Lagrange multipliers is
widely used in practice.

A.11.2 Differential Operators in Rn

The gradient of a differentiable scalar function, φ(x) for x ∈ Rn, is defined as the vector
grad(φ) ∈ Rn with ith entry

ei · grad(φ) =
∂φ

∂xi
.

Usually the notation grad(φ) = ∇φ is used as shorthand, where the “del” operator, ∇,
itself is viewed as a vector of the form

∇ =
n∑

i=1

ei
∂

∂xi
.

The divergence of a vector field (i.e., vector-valued function of vector-valued argument),
f(x), is defined as

div(f) .=
n∑

i=1

∂fi

∂xi
= ∇ · f . (A.113)

The Laplacian is defined as

div(grad(φ)) .=
n∑

i=1

∂2φ

∂x2
i

= ∇ · (∇φ). (A.114)

This is often denoted as ∇2φ or Δφ.
In three-dimensional space, we can also define a curl operator,

curl(f) = ∇ × f =
[
∂f3

∂x2
− ∂f2

∂x3
,
∂f1

∂x3
− ∂f3

∂x1
,
∂f2

∂x1
− ∂f1

∂x2

]T

. (A.115)

These operators play central roles in mechanics and theory of electromagnetism.

A.11.3 Integral Theorems in R2 and R3

The Fundamental Theorem of Calculus states that for a differentiable real-valued func-
tion on the interval [a, b], f : [a, b] → R,∫ b

a

df

dx
dx = f(b) − f(a). (A.116)

A natural question to ask is, “How does this extend to higher dimensions?” Consider
a region in the plane bounded by differentiable curves. Each curve can be assigned an
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orientation defined such that the region is “always on the left” as a curve is traversed,
as shown in Figure 5.4.

Let x be a vector-valued function (f : R2 → R2) defined on the closure of the region
(i.e., the union of its interior and the boundary curves). The value of the function on
the oriented boundary curves is, in a sense, like the values f(a) and f(b) in (A.116). It
should not be surprising, then, that evaluating the integral of “some kind of derivative”
of f(x) on the interior of the region should relate values evaluated on the boundary. In
fact, the detailed relationship is written as∫

B⊂R2
div(f)dx1dx2 =

∑
i

∫
Ci

f(x(i)(s)) · n(i)(s)ds (A.117)

where i = 1, 2, ...,m enumerates the boundary curves, C1,...,Cm, each of which has
a parametric description x(i)(s) with tangent t(i)(s) pointing along the direction of
increase of s (which is a dummy variable of integration that need not be arc length).
The unit normal that points away from the region at each boundary point is n(i)(s),
which by definition satisfies n(i)(s) · t(i)(s) = 0.

Note that the right-hand side of (A.116) can be re-written as (+1)f(b) + (−1)f(a)
where +1 denotes the “direction” on the real line pointing away from the interval [a, b]
when x = b, and −1 points away from the interval when x = a and a < b. Hence, the
issue of “orientation” was present even in the one-dimensional case.

By slightly changing notation, if we let f = [f1, f2]T = [h2,−h1], and recognize that
a vector v ∈ R2 can always be constructed to be orthogonal to a given vector u ∈ R2 as

v =
(

v1
v2

)
= ±

(
−u2
u1

)
= ±

(
−u · e2
u · e1

)
, (A.118)

then (A.117) is re-written as Green’s theorem:∫
B⊂R2

(
∂h2

∂x1
− ∂h1

∂x2

)
dx1dx2 =

∑
i

∫
Ci

f(x(i)) · dx(i) (A.119)

where dx(i) = t(i)ds, and the construction (A.118) is used to relate the normal and
tangent, with the choice ± such that the curves are oriented as described earlier.

The spatial generalization of (A.117) is the divergence theorem (or Gauss’ theorem):∫
B

div(f)dx1dx2dx3 =
∑

i

∫
∂Bi

f(x(i)) · n(i)dS (A.120)

where now xi ranges over each of the bounding surfaces of the domain (or “body”), B,
with n(i) denoting the outward-pointing normal to the surface, and dS is an element of
surface area.

The spatial generalization of (A.119) is Stokes’ theorem,∑
i

∫
Si

curl(f) · n(i)dS =
∑

j

∫
Cj

f · dx(j) (A.121)

where j can be used to enumerate oriented curves on the exterior surface of the body.
Collectively, these curves “carve out” oriented surface patches and strips. In contrast, i
runs over all interior surfaces and the part of the exterior surface defined by the curves.

The extension of these theorems to higher dimensions (and even to non-Euclidean
spaces such as group manifolds and homogeneous spaces) is possible. This is facilitated
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by the use of differential forms, which are used in place of the cross product. Recall that
the cross product was used to define the normal to a surface, and the element of surface
area is also defined using the cross product. And so as written, (A.120) and (A.121) are
limited to three-dimensional space.

Differential forms and the generalization of Stokes’ theorem, Green’s theorem, and
the divergence theorem are discussed in Chapter 6.

A.11.4 Integration by Parts in Rn

The inner product of two real-valued functions on the interval [a, b] ⊂ R is defined as

(f, h) =
∫ b

a

f(x)h(x)dx. (A.122)

Clearly (f, h) = (h, f).
Using the notation f ′ = df/dx, the familiar integration-by-parts formula,∫ b

a

f(x)h′(s)dx = f(b)h(b) − f(a)h(a) −
∫ b

a

h(x)f ′(s)dx, (A.123)

can be written compactly as

(f, h′) = fh|ba − (h, f ′).

Let φ : Rn → R and v : Rn → Rn. Let D ∈ Rn be a compact (i.e., closed and
bounded) domain with smooth boundary ∂D. The integration-by-parts formula (A.123)
generalizes to n-dimensional domains D ⊂ Rn as∫

D

n∑
i=1

∂φ

∂xi
vi dV =

∫
∂D

φ

n∑
i=1

vini dS −
∫

D

n∑
i=1

φ
∂vi

∂xi
dV,

which is written more compactly as∫
D

(gradφ) · v dV =
∫

∂D

φv · n dS −
∫

D

φdiv(v) dV, (A.124)

where n ∈ Rn is the unit outward-pointing normal to the bounding surface ∂D. Using
the divergence theorem, (A.124) can be restated as∫

D

(gradφ) · v dV =
∫

D

{div(φv) − φdiv(v)}dV.

A.11.5 The Chain Rule

Given a scalar-valued function of multiple arguments, f(x1, ..., xn), a vector-valued func-
tion of a single argument, x(t) = [x1(t), ..., xn(t)]T , or a vector-valued function of vector-
valued argument, classical multi-variate calculus addresses how rates of change of these
quantities relate to each other. For example, the chain rule states that

df

dt
=

n∑
i=1

∂f

∂xi

dxi

dt
. (A.125)
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Given the system of equations yi = fi(x1, ..., xn) for i = 1, ...,m,

dyi

dt
=

n∑
i=1

∂fi

∂xj

dxj

dt
. (A.126)

Treating the variables xj and yi as entries in a vector, the above can be written as

dy
dt

= J(x)
dx
dt

where the m × n Jacobian matrix J(x) is defined as

J(x) =
∂y
∂xT

⇐⇒ Jij =
∂fi

∂xj
.

The chain rule can be iterated. If y = f(x), and z = g(y), then

dz
dt

=
∂z
∂yT

dy
dt

=
∂z
∂yT

∂y
∂xT

dx
dt

.

Here the order of multiplication of the Jacobian matrices matters.
Using this notation, the gradient of a scalar function f = f(x1, ..., xn) (which was

defined earlier as a column vector) is written as

gradf =
∂f

∂x
=
(

∂f

∂xT

)T

.

The chain rule is an important tool that allows the differential operations in Sec-
tion A.11.2 and integral theorems in Section A.11.3 to be expressed in different coor-
dinate systems. For example, the expressions for divergence, curl, etc. take on different
forms when expressed in cylindrical or spherical coordinates than in Cartesian coor-
dinates. And likewise, the expressions for volume elements and surface area differ in
appearance when expressed in various coordinate systems. The chain rule links these
expressions.

A.11.6 Matrix Differential Calculus

In some contexts, matrix-valued functions of a scalar, vector, or even another matrix
arise in applications. For example, the state-transition matrix in Section A.10 gives the
solution X(t) = Φ(t, t0) for the linear system dX/dt = A(t)X subject to given initial
conditions X(t0).

Given two such matrix-valued functions of scalar argument, X(t) and Y (t), and
constant matrices A and B such that the products X(t)Y (t) and AX(t)B make sense,
matrix differential calculus in one variable gives

d

dt
(XY ) =

dX

dt
Y + X

dY

dt
and

d

dt
(AXB) = A

dX

dt
B.

From the first of these expressions, the derivative of the inverse of a matrix can be
computed from the fact that XX−1 = I and dI/dt = O as

d

dt
(XX−1) =

dX

dt
X−1 + X

dX−1

dt
= O ⇐⇒ dX−1

dt
= −X−1 dX

dt
X−1. (A.127)
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In contrast to matrix-valued functions of scalar argument, it is also possible to have
scalar-valued functions of matrix argument. For example, the functions tr(X), detX,
and ‖X‖ all take in matrices as their arguments and return scalars. The derivative
of a real-valued function, φ(X), with respect to the (m × n)-dimensional real matrix
argument can be defined in terms of components as[

∂φ

∂X

]
ij

=
∂φ

∂Xij
for (i, j) ∈ [1, ...,m] × [1, ..., n]. (A.128)

Within the context of this notation, it is straightforward to show for constant matrices
A and B that

∂ trX
∂X

= I ;
∂ tr(ATX)

∂X
= A ;

∂ tr(AX−1)
∂X

= −(X−1AX−1)T (A.129)

and

∂ tr(XAXB)
∂X

= (AXB + BXA)T ;
∂ tr(XAXTB)

∂X
= BTXAT + BXA. (A.130)

In addition to matrix-valued functions of scalar argument, and scalar-valued func-
tions of matrix argument, the problem of matrix-valued functions of matrix-valued argu-
ments sometimes arises in applications. While the system of scalar equations in multiple
scalar variables of the form yi = fi(x1, ..., xn) for i = 1, ...,m was treated as a vector-
valued function of vector-valued argument in Section A.11.5, if n = r · s and m = p · q
for positive integers p, q, r, s, then rather than viewing this as the vector expression
y = f(x), it could be viewed as the matrix expression Y = F (X) where x = X∨,
y = Y ∨, and f = F∨ are the long column vectors obtained by stacking columns of the
matrices to which the ∨ operator is applied. And if two such expressions exist such that
Y = F (X) and Z = G(Y ), it is natural to ask what the chain rule looks like. Several
possible notations exist. One could define the Jacobian corresponding to the derivative
of a matrix with respect to a matrix as a three-dimensional array; or one could treat
the operator ∂/∂X as a matrix (in analogy with the way ∇ is treated as a vector) and
define a Jacobian as a Kronecker product (∂/∂X)⊗̂F . While these and other possible
concepts exist, one that is very convenient in many applications is to convert X ∈ Rr×s

and Y = F (X) ∈ Rp×q back to vectors and then use the definition [17]

DF (X) =
∂F∨

∂[X∨]T
∈ Rp·q×r·s.

Then if X = X(t),
dY ∨

dt
= DF (X)

dX∨

dt

and the chain rule for concatenated transformations of the form Z = G(F (X)) can be
expressed simply as the matrix product

dZ∨

dt
= DG(F (X))DF (X)

dX∨

dt

without having to worry about how matrices multiply multi-dimensional arrays or any
of the other problems associated with other definitions of Jacobians associated with
matrix-valued functions of matrix argument.

For a more detailed treatment of matrix differential calculus, see [17].
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A.12 Exercises

A.1. Show that: (a) the “triple product” [a,b, c] .= det(a,b, c) has the property

a · (b × c) = c · (a × b) = b · (c × a). (A.131)

and (b) any vector v ∈ R3 can be expressed in terms of three non-coplanar vectors a,
b, c ∈ R3 as

v =
det(v,b, c)
det(a,b, c)

a +
det(a,v, c)
det(a,b, c)

b +
det(a,b,v)
det(a,b, c)

c. (A.132)

A.2. Show that for a 2 × 2 matrix, A, the 2-norm is related to the Frobenius norm and
determinant of A as [14]

‖A‖2
2 =

1
2

(
‖A‖2 +

√
‖A‖4 − 4|det(A)|2

)
.

A.3. Solve the above expression for ‖A‖2 as a function of ‖A‖2
2 and detA.

A.4. Show that the 2-norm is the same as max eigenvalue

‖A‖2 =
√

λmax(A∗A).

A.5. Show that for an n × n matrix, A, with characteristic polynomial p(λ) = det(λI −
A) = λn − I1(A)λn−1 + . . . + (−1)n−1In−1(A)λ + (−1)nIn(A) = 0, that I1(A) = tr(A)
and In(A) = det(A).

A.6. Using the properties of the trace and determinant, prove that if det(P ) = 0, then:
(a) det(PAP−1) = det(A) and (b) tr(PAP−1) = tr(A). (c) Is this true for all of the
scalar invariants7 Ik(A) in the characteristic polynomial pA(λ) = 0?

A.7. For the matrices

A1 =
(

2 −1
−1 2

)
A2 =

⎛⎝ 2 −1 0
−1 2 −1

0 −1 2

⎞⎠ A3 =

⎛⎜⎜⎝
2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎞⎟⎟⎠
compute the following by hand, without the assistance of a software package: (a) tr(Ak);
(b) ‖Ak‖; (c) ‖Ak‖2; (d) det(Ak); (e) all of the eigenvalues, λi(Ak), and eigenvectors,
vi(Ak); (f) show that (vi(Ak),vj(Ak)) = 0 if λi(Ak) = λj(Ak).

A.8. Compute by hand analytically the eigenvalues and eigenvectors of the following
matrices: (a) the arbitrary real skew-symmetric matrix in (A.16) and (b) the arbitrary
rotation around the e3 axis denoted as R3(θ) in (A.44).

A.9. (a) Show that the cross product makes R3 a Lie algebra. (b) Show that the set of
skew-symmetric matrices together with the matrix commutator

7The characteristic polynomial for any matrix A ∈ Cn×n is defined as pA(λ) = det(λI−A).
It can be written in the form pA(λ) = λn−I1(A)λn−1+. . .+(−1)kIk(A)λn−k+. . .+(−1)nIn(A)
where Ik(A) is called the kth scalar invariant of A. For example, I1(A) = tr(A) and In(A) =
det(A).
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[A,B] = AB − BA (A.133)

is a Lie algebra. (c) Show that there is a bijective (one-to-one and onto) mapping between
these two Lie algebras.

A.10. Prove (A.27). Hint: Start with the case when detA = 0, and let f(B) =
det(AB)/detA, and show that f(B) satisfies the three properties that are unique to
the determinant.

A.11. Prove the sub-multiplicative property (A.50) for the Frobenius and induced 2-
norm.

A.12. Determine whether or not the Frobenius and induced 2-norms are invariant under:
(a) transformations of the form A → UAV where U and V are unitary; (b) arbitrary
similarity transformations of the form A → PAP−1 where detP = 0.

A.13. The norm ‖A‖∞ is sub-multiplicative and ‖I‖∞ = 1, but is ‖U‖∞ ≤ 1 for U ∈
SU(n)?

A.14. Show that: (a) As p → ∞ the norm in (A.58) approaches

‖A‖′
∞ = max

1≤i,j≤n
|aij |

(b) The norm ‖A‖′
∞ has the property ‖I‖′

∞ = 1 and ‖U‖′
∞ ≤ 1 for all U ∈ SU(n).

(c) This norm lacks the sub-multiplicative property. If we define ‖A‖′′
∞ = n · ‖A‖′

∞, will
it become sub-multiplicative? Will ‖I‖′′

∞ = 1 and ‖U‖′′
∞ ≤ 1?

A.15. Show that if ‖A‖′ and ‖A‖′′ are matrix norms, then

‖A‖′′′ = max{‖A‖′, ‖A‖′′} (A.134)

is also a matrix norm.

A.16. Show that if ‖A‖′ is a matrix norm, and φ : R → R is a function with the
properties

φ(x) ≥ 0 with φ(x) = 0 ⇐⇒ x = 0
φ(xy) ≤ φ(x)φ(y) ∀ x, y ∈ R>0 (A.135)

φ(ax + by) ≤ aφ(x) + bφ(y) ∀ a, b ∈ R>0,

then φ(‖A‖′) is a matrix norm.

A.17. Use (A.27) and the fact that AA−1 = I to prove (A.29) and (A.30).

A.18. Use the Jordan decomposition together with the results of Exercises A.10 and A.17
above to prove (A.28).

A.19. Using the proof of (A.35) as a guide, prove (A.37).

A.20. Prove that [14] [
d

dt
det(A + tB)

]
t=0

= detA tr(A−1B). (A.136)

Hint: First prove it for the case A = I by observing the part of the function f(t) =
det(I + tB) that is linear in the parameter t.
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A.21. Verify the following vector identities for arbitrary a, b, c, d ∈ R3:

a × (b × c) = (a · c)b − (a · b)c (A.137)

(a × b) × (c × d) = det(a, c,d)b − det(b, c,d)a (A.138)

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) (A.139)

A.22. Show that for all matrices A,B,C of compatible dimensions, the Kronecker prod-
uct satisfies

A⊗̂(B + C) = A⊗̂B + A⊗̂C

(A + B)⊗̂C = A⊗̂C + B⊗̂C

(αA)⊗̂B = A⊗̂(αB) = α(A⊗̂B)
(A⊗̂B)⊗̂C = A⊗̂(B⊗̂C).

A.23. Show that in general if A ∈ Rm×m and B ∈ Rn×n, then

tr(A⊗̂B) = trAtrB and det(A⊗̂B) = detAn detBm.

A.24. Verify the following for matrices of compatible dimensions [17]:

(ABC)∨ = (CT ⊗̂A)B∨

tr(ABCD) = [(DT )∨]T (CT ⊗̂A)B∨ = [D∨]T (A⊗̂CT )(BT )∨.

A.25. Assuming A ∈ RN×N and P ∈ GL(N,R) (i.e., P ∈ RN×N and it is invertible),
show the following:

(a) exp(P−1AP ) = P−1 exp(A)P ;
(b) exp(−At) = [exp(At)]−1.

A.26. The Cayley–Hamilton theorem states that any matrix satisfies its own character-
istic polynomial (i.e., if p(λ) = 0, then p(A) = 0). Use the Cayley–Hamilton theorem
to compute by hand a closed-form expression for exp(tA) where

A =

⎛⎝2 1 4
0 2 0
0 3 1

⎞⎠ .

A.27. Determine the stability of the following system:

d

dt

⎡⎣x1
x2
x3

⎤⎦ =

⎛⎝−2 1 2
0 −1 6
0 0 −3

⎞⎠⎡⎣x1
x2
x3

⎤⎦+

⎡⎣ e−2t

cos 12t
0

⎤⎦ .

A.28. Let A ∈ Rn×n be a constant matrix and x(t),g(t) ∈ Rn be vector-valued functions
of time. The solution to
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dx
dt

= Ax + g(t) with x(0) = x0

is

x(t) = exp(At)x0 +
∫ t

0
exp(A(t − τ))g(τ)dτ. (A.140)

Similarly, given
dx
dt

= (A + B(t))x with x(0) = x0

(where B(t) ∈ Rn×n is a matrix-valued function of time) it is possible to write

x(t) = exp(At)x0 +
∫ t

0
exp(A(t − τ))B(τ)x(τ)dτ. (A.141)

(a) Prove Equation (A.91).
(b) Prove Equation (A.94).

A.29. Use Equation (A.91) and/or Equation (A.94) and/or the Bellman–Gronwall in-
equality to determine the behavior of x(t) governed by the following equations as t → ∞:

(a) ẍ + ẋ + (1 + e−t)x = 0
(b) ẍ + ẋ + (1 + 0.2 cos t)x = 0
(c) ẍ + ẋ + x = cos t
(d) ẍ + ẋ + x = e−t

(e) ẍ + ẋ + x = e2t.
Hint: Rewrite the above second-order differential equations as a system of first-order
differential equations in terms of the vector x(t) = [x1(t), x2(t)]T where x1 = x and
x2 = ẋ.

A.30. Verify the following well-known formulas, assuming φi(x), f(x), and g(x) are
sufficiently differentiable [5, 25]:

∇(φ1φ2) = φ1∇φ2 + φ2∇φ1 (A.142)

∇ · (φ f) = φ∇ · f + f · ∇φ (A.143)

∇ × (φ f) = φ∇ × f + (∇φ) × f (A.144)

∇ × (∇φ) = 0 (A.145)

∇ · (∇ × f) = 0 (A.146)

∇ · (∇φ1 × ∇φ2) = 0 (A.147)

∇ · (f × g) = g · (∇ × f) − f · (∇ × g) (A.148)

∇2(φ1φ2) = φ1∇2φ2 + 2(∇φ1) · (∇φ2) + φ2∇2φ1 (A.149)
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∇ · (φ1∇φ2) = φ1∇2φ2 + ∇φ1 · ∇φ2 (A.150)

∇ × (∇ × f) = ∇(∇ · f) − ∇2f (A.151)

where ∇2f .=
∑3

i=1 ei∇2fi.

A.31. Given the Hermitian positive definite matrix A, prove that

|x∗Ay|2 ≤ (x∗Ax)(y∗Ay) (A.152)

with equality if and only if x = cy for some c ∈ C.

A.32. Prove the equalities in (A.129).

A.33. Prove the equalities in (A.130).
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Index

A = [aij ] (See matrix), 321
(U, φ) (See coordinate chart), 267
(f1 ∗ f2)(x) (See convolution), 36
(l ◦ n)(·) or l(n(·)) (See composed mapping),

13
(x,y) (See inner product), 319
∗ω (See Hodge star operator (applied to

differential form ω)), 224
+ (See addition), 315
= (See equality), 4
A∗ (See Hermitian conjugate (of A)), 322
A−1 (See inverse of a matrix), 325
B (See body), 178
B1 × B2 (See Cartesian product of two

bodies), 179
C0(S1) (See continuous functions on the

circle), 6
Cn(a, b) (See n-times continuously differen-

tiable function on the interval (a, b)),
5

DFI(f1 ‖ f2) (See Fisher information
divergence), 76

DKL(f1 ‖ f2) (See Kullback–Leibler
divergence), 71, 76

Dij(t) (See time-varying diffusion constants),
50

Df , ∂f
∂xT , J (See Jacobian (of f)), 18

E[X] (See expected value (of X)), 64
En (See n-dimensional Euclidean space), 8
F (θ; f) (See Fisher information matrix), 78
F (f) (See Fisher information, (3.40)), 78
G (See metric tensor, or in other contexts,

group), 161
G\Rn (See unit cell), 244
I(f1, f2; f) (See mutual information), 76
J(x), also denoted as Dy and ∂y/∂xT (See

Jacobian matrix), 354
Jk(λ) (See Jordan block), 334
K (See total Gaussian curvature), 166

L2(S1) (See square-integrable functions on
the circle), 6

Lp(S1) (See functions on the circle, the
integral of the pth power of which is
finite), 6

M (See total mean Gaussian curvature), 166
N(p) (See entropy power), 85
O(g(x)) (See Big-O notation), 6
Rl

ijk (See Riemannian curvature tensor), 165
S(f) (See entropy), 34
S(fX|Y ; f) (See conditional entropy), 74
S(fY ; f), or S(fY ) (See marginal entropy),

74
SE(2) (See special Euclidean group of the

plane), 239
SO(3) (See special orthogonal group), 240
SO(n) (See special orthogonal n × n

matrices), 328
SU(n) (See special unitary n × n matrices),

328
S1 (See unit circle), 5, 6
Sn−1 (See hypersphere in Rn), 5
Sn−1 (See unit sphere in n-dimensional

space), 6
S1 × S2 (See Cartesian product (of sets S1

and S2)), 15
Sn

r (See sphere of radius r in (n+1)-
dimensional space), 6

T 3 (See three-torus), 244
TxRn (See tangent space to Rn at the point

x), 213
V (See volume, or in other contexts, vector

space), 167
V (C) (See volume of a convex body, C), 235
V ∗ (See dual (of the vector space V )), 206,

320
V ol(Bn) (See volume of a unit ball in Rn), 45
V ol(Sn−1) (See volume of unit sphere in Rn),

44, 45
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[gij ] (See inverse of the metric tensor), 161
[gij ] (See metric tensor), 161
[x, y] (See Lie bracket), 321
[a,b, c] (See triple product), 320
Γ (α) (See Gamma function), 44
Γ k

ij (See Christoffel symbol), 164
I (See identity matrix), 26
R (See real numbers), 4
Rn (See n-dimensional real vector space), 8,

315
Z (See integers), 102
ΛpV , or Λp(V ) (See pth exterior power of V ),

209
⇐⇒ (See iff, or “if and only if”), 11
=⇒ (See “implies”), 12
O (the zero matrix), 53
Ωk(U) (See differential k-forms on U), 267
Ωk(Rn) (See set of differential k-forms on

Rn), 197
Ωj (See torsion 2-form), 278
Ωj

l (See curvature 2-form, 278
Φ(x) (See convex function), 71
Φ(t2, t1) (See state transition matrix), 347
Πn (See permutation, or symmetric, group),

201, 323
Σ (See covariance matrix), 40, 66(

n
k

)
(See binomial coefficients), 39

μ (See mean), 40⋂
t0<s<t (See product integral), 348

∩ (See intersection), 12
· (See scalar product), 317
χ(B) (See Euler characteristic (of a body

B)), 176
χ(S) (See Euler characteristic (of closed

surface S)), 170
χ(∂B) (See Euler characteristic (for the

boundary of body B)), 159, 178
∪ (See union), 12
δij (See Kronecker delta function), 102, 203
.= (See defining equality), 4
Ø (See empty set), 12
εijk (See Levi–Civita symbol), 203
≡ (See identically equal), 4
∃ (See “there exists”), 316
exp B (See exponential (of matrix B)), 338
∀ (See “for all”), 13, 316
d2f
dx2 (See the second derivative of f(x)), 5
df
dx

(See the derivative of f(x)), 5
γ(S) (See genus (of closed surface S)), 170
f̂(ω) (See Fourier transform of f(x)), 37
f̂(n) (See Fourier coefficient of f(θ)), 48
∈ (See “in”), 12

κ(s) (See unsigned (or absolute) curvature
(of an arc length-parameterized curve)),
155

κ(t) (See unsigned curvature (of an arbitrarily
parameterized curve)), 156

κg(s) (See geodesic curvature), 163
κn(s) (See normal curvature), 163
〈α(x)〉 (See ensemble average (of α(x))), 65
〈φ(x) | y〉 (See conditional expectation), 71
−→ (See “goes to”), 12
μ(Si) (See valuation (on Si)), 16
∇2 (See Laplacian), 351∮

(See integral around a closed curve), 157
ω1 (See differential 1-form), 194
ω2 (See differential 2-form), 195
⊕ (See direct sum), 325
⊗ (See tensor product), 206
∂B (See boundary (of body B)), 158, 178
φ(x) = 0 (See implicit surface), 180
π (See a permutation), 201
ρ(x; μ, Σ) (See Gaussian distribution,

multivariate), 40
ρ(x; μ, σ2) (See Gaussian distribution,

univariate), 34
ρW (θ; μ, σ) (See Gaussian distribution

wrapped around the circle), 47
R>0 (See positive real numbers), 14, 15
R≥0 (See non-negative real numbers), 14, 15
∼ (See equivalence relation), 12
⊂ (See strictly contained), 12
⊆ (See contained, or subset), 12
τ(t) (See torsion (of an arbitrarily parame-

terized curve), 156
× (See cross product), 320
‖| · ‖| (See sub-multiplicative matrix norm),

329
u(t) (See unit tangent vector (to a curve),

155
ϕ(v) (See dual vector), 206
⊕̂ (See Kronecker sum), 341
⊗̂ (See Kronecker product), 340
xT (See transpose (of x)), 319
‖A‖ (See Frobenius norm (of matrix A)), 328
‖A‖p (See induced norm (of matrix A)), 329
‖x‖ (See vector norm), 318
‖x‖p (See p-norm), 319
d(x) = dx1dx2 · · · dxn, or dx for short (See

differential volume element for Rn), 40
d(dω) = 0 (See (double) exterior derivative of

a k-form), 199
d(s1, s2) (See metric, or distance, function),

15
dA (See differential area element), 20
dS (See element of surface area), 161
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dV (See differential volume element), 20
dω (meaning 1: differential element in

frequency space), 37
dω (meaning 2: exterior derivative (of the

differential form ω)), 196
dx (meaning 1: vector with infinitesimal

length), 18
dx (meaning 2: infinitesimal volume element

dx1dx2 · · · dxn), 19
dwi(t) = wi(t + dt) − wi(t) (See increments of

a Wiener process, or white noise), 109
dx1 ∧ dx2 (See wedge product (of dx1 and

dx2)), 195
dxi(t), ith entry of dx(t) = x(t + dt) − x(t),

Not to be confused with the differential
used in integration (See (4.38)), 114

f(x1 | x2) (See conditional density), 42
f(k; n, p) (See binomial distribution), 39
f(x) = O(g(x)) (See Big-O notation), 7
f(x; a) (See family of functions (parameter-

ized by a)), 8
k(q1, q2) (See Gaussian curvature (of a

surface)), 165
k(s) (See signed curvature (of an arc-length-

parameterized curve)), 155
m(q1, q2) (See mean (sectional) curvature of

a surface), 166
p(x, t;x2, t2;x3, t3; . . . ;xn, tn) (See random

process, pdf for a), 105
p(x|y, t) (See transition probability), 121
wi(t) (See Wiener process), 108
Ri(φ) (See a fundamental rotation), 328
T 2 (See 2-torus), 171
ek (See kth natural basis vector for Rn), 316
n1(s) (See principal normal (for a space

curve)), 155
n2(s) (See binormal (of a space curve)), 156
o(s; r) (See offset curve), 171
o(t1, t2; r) (See offset surfaces, or tubes), 175
w(t) (See Wiener process, m-dimensional),

111
F(f) (See Fourier transform of f), 37
F (1)(dq, dq) (See first fundamental form),

161
F (2)(dq, dq) (See second fundamental form),

162
F−1(f̂) (See inverse Fourier transform), 37
N (D) (See space of “nice functions” on

domain D), 9
On (See volume of a (unit) sphere in Rn), 45
P(R) (See Pfaffian), 278
X(M) (See set of smooth vector fields on M),

281
curl(f) (See curl operator (applied to f)), 351

det(A) (See determinant (of matrix A)), 323
div(f) (See divergence (of f)), 162, 351
div(gradf) (See Laplacian (of f)), 162
erf(x) (See error function), 46
grad(φ), ∇xφ, or ∇φ, or ∂φ

∂x (See gradient (of
φ(x))), 18, 25, 161, 180

sgn(π) (See signature (of permutation π)),
201, 323

span{vi1 , ...,vim} (See span of a set of
vectors), 319

trace(A) or tr(A) (See trace (of matrix A)),
323

|Df |, or ∂(f1,...,fn)
∂(x1,...,xn) , J (See Jacobian

determinant), 18
|G| (See metric tensor determinant, or in

other contexts, number of elements in a
group), 161

|S| (See number of elements in a finite set),
14

Abbena, E., 191
Abhyankar, S.S., 190
Abraham, R., 232, 286
Ackerman, M., vii
action (of a group), 17
Adams, C.C., 190
addition

matrix, 321
vector, 315

additive measure, 16
admissible deformation, 21
affine transformation, 152
Aguilar, A., 61
Aleksandrov–Fenchel inequality, 236
Algebra, 10
algebraic equations, 150
Allendoerfer, C.B., 286
alternating tensor, 203
Amari, S., 29
analytic

function, 9
manifold, 267

angular momentum, 25
anti-commuting, 195
anti-symmetric (Same as skew-symmetric),

320
Apéry, F., 286
Applebaum, D., 97, 309
arc length, 155
Arfken, G.B., 29
Arnol’d, V.I., viii
associative law

for group operations, 16
for matrix multiplication, 322
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asymmetric unit, 241, 242
Atiyah, M., 309
atlas, 267
axioms, 11

backbone, 169
Baillieul, J., 286
balls

boundary of, 45
volume of, 43–45

band limit, 6
Barron, A.R., 97
Barroso, V., 99
base space, 279
basis

non-orthogonal, 319
orthogonal, 319

basis vectors for Rn, 316
Bates, P.W., 190
Bayes’ rule, 69
bell curve, 32
Bell, D.R., 314
Bellman–Gronwall lemma, 344
Belopolskaya, Ya. I., 314
Ben-Israel, A., 190
Benedetto, J.J., 60
Berger, M., 286
Bertsekas, D., 97
Bhattacharya, R, 98
bi-unit cube (and Stokes’ theorem), 224
bi-variate distribution, 70
bi-variate pdf, 68
Bianchi identity, 257
Big-O notation, 6
bijective mapping, 14
binary operations, 15
binomial

coefficients, 39
distribution, 39, 103
theorem, 39

binormal of a space curve, 156
Birkhoff, G., 29, 360
Bishop, R., 190, 286
Blachman, N.M., 98
Blackmore, D., 190
Bloch, A.M., 286
Bloomenthal, J., 190
Bluman, G., 60
Bobenko, A.I., 286
Bochner, S., 288
body, 178

planar, 158
spatial, 159

Boothby, W.M., 286

Borel measurability, 63
Bott, R., 286, 309
Bottema, O., 190
Bouleau, N., 138
boundary, 158
boundary of a body, 178
bounding sub-manifold terms, 255
Boy’s surface, 241
Boyce, W.E., 360
Boyer, C., 60
Bracewell, R.N., 60
Brakke, K.A., 190
Braunstein, S.L., 98
Brenner, J., 361
bridging

index, 157
number, 157

Brockett, R.W., 310
Brown, L.D., 98
Brownian motion, 3, 85, 102, 103, 111
Bruckstein, A.M., 191
Brunn–Minkowski inequality, 235
Bullo, F., 286
bundle space, 279
Burke, W.L., 286
Burke-Hubbard, B., 360
Burnett, M.N., 287
Burrus, C.S., 60
Buttazzo, G., 190

calculus, 10
matrix, 353–355
multivariable, 18, 349–353

Campbell, S.L., 360
Canny, J., 192
cart

kinematic, 3
stochastic, 3

cart-like robot, 2
Cartan, E., 193
Cartan, H., 232, 286
Cartesian product, 15

and Euler characteristic, 179
of two bodies, 179

Casimir, H.B.G., 138
Cauchy distribution, 68
Cauchy–Bunyakovsky–Schwarz (CBS)

inequality, 79
Cauchy–Schwarz inequality, 83, 318

for matrices, 331
Caves, C.M., 98
Cayley–Hamilton theorem, 358
cells, 176
central limit theorem
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for real line, 90–95
Chan, T.F., 190
change of coordinates

and entropy, 88
and integration, 21

change of variables, 65
Chapman–Kolmogorov equation, 108, 118

and derivation of the Fokker–Planck
equation, 120

characteristic polynomial, 356
Charlap, L.S., 286
Chavel, I., 286
Chazvini, M., 190
Chen, B.-Y., 190
Chern, S.-S., 286
Chern–Lashof inequality, 171
Chirikjian, G.S., x, 61, 98, 190, 286, 310, 360
Cholesky decomposition, 335
Chopp, D.L., 191
Christoffel symbol, 164
Clausius–Duhem inequality, 27
clipped Gaussian distributions

multi-dimensional, 46
one-dimensional, 45
variance of, 46

closed form, 226
closure

under conditioning, 68
under convolution, 68
under marginalization, 68

co-dimension, 248
Codazzi–Mainardi equations, 188
Cole, J., 60
commutative diagrams, 17, 19
commutativity, 17
compact, 10

domain, 353
manifold, 268
support, 89

complex
numbers, 341–343
vector space, 316

composed mapping, 13
conditional

density, 41
entropy, 74
expectation, 68–73

convolution and, 72
Jensen’s inequality and, 71

mean, 69
conditioning, 65
conformation (of a polymer), 281
conformational bundle, 281
conformations (of a robot arm), 143

connected, 10
connection

affine, 281
Riemannian, 281
symmetric, 281

conservation of mass, 24
consistent matrix norm, 329, 337
contained, 12
continuity equation

for fluids, 24
for heat flow, 26
for solids, 23

continuous entropy, 73
continuous function, 5
continuously differentiable, 5
continuum mechanics, 20
convex

function, 71
polytopes, 234

convolution, 36, 65
and implicit surfaces, 180
information and, 78
on the integers, 102

Cooley, J.W., 61
coordinate changes

and Fokker–Planck equations, 130
and Itô SDEs, 135
and SDEs, 130
and Stratonovich SDEs, 136

coordinate chart, 267
coordinates

non-linear transformations of, 57
corollaries, 11
Costa, M.H., 98
cotangent space, 269
covariance matrix, 41, 66
Cover, T.M., 98
Cramér, H., 98
Cramér–Rao bound, 81–84
Crassidis, J.L., 98
cross product (See vector product), 320
Crouch, P., 286
crystallographic space group, 244
crystallography, 241
cumulative distribution function, 34
curl operator, 351
curvature

2-form, 278
flow, 179, 185
Gaussian, 165
geodesic, 163
mean, 165
normal, 163
of an implicit surface, 181
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of planar curve, 155
of surfaces, 163
principal, 165
Ricci, 257
Riemannian, 165
signed, 155
unsigned, 155

curves
differential geometry of, 155
implicit, 179–185
simple, 157

cyclic permutation, 324

Dalecky, Yu. L., 314
damping, 124
Darboux frame, 163
Darling, R.W.R., 232, 286
Davis, H.F., 360
Davis, J.H., 360
de Bruijn identity, 84–85
decomposition

of a matrix, 331–337
spectral, 126

defining equality, 4
Dembo, A., 98
densities

conditional, 40
marginal, 40

derivative, 5
detailed balance, 127
determinant of a matrix, 323
diffeomorphism, 213, 241
differential

2-form, 194
area element, 20
entropy, 73
equations, 10
forms

in Euclidean space, 194–200
geometry

of curves, 155
of surfaces, 159

manifold, 267
volume element, 20
volume element for Rn, 40

diffusion constants
time-varying, 50

diffusion equations, 38
DiPrima, R.C., 360
direct kinematics, 142
direct sum, 325
discrete entropy, 90
dispersion

measures of, 95

distance function, 15
distribution

bi-variate, 70
binomial, 39
Cauchy, 68
Gaussian, 29
maximum entropy, 40
multi-Gaussian, 92
multi-variate, 70
tri-variate, 70

distributions
parametric, 45

divergence, 351
Fisher information, 76
information-theoretic, 76
of a vector field, 162

divergence theorem, 9, 160, 352
and forms, 224
for implicitly defined surface, 184
for manifolds with boundary, 271

DNA, 3, 281
do Carmo, M., 191
do Carmo, M.P., 232, 286
dodecahedron, 237, 244
Dombrowski, P., 191
donut, 10, 144
Doob, J.L., 98, 138
dot product (See scalar product), 317
double exterior derivative of a k-form, 199
dual

of a vector space, 206
spaces, 319–320
vector, 206, 320

dummy variable, 13
Dunbar, W.D., 287
Durrett, R., 138

E. coli, 3
edges, 158, 170
Edwards, B.H., 360
Edwards, H.M., 360
eigenvalues, 26, 127, 331
eigenvectors, 127, 331
Einstein, A., 138
Elbert, T.F., 360
elbow down, 144
elbow up, 144
element of surface area, 161
elimination theory, 146
ellipsoid

metric tensor for, 167
of revolution, 167
surface area of the, 168
total Gaussian curvature of the, 168
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total mean curvature of the, 168
volume of the, 168

Elworthy, K.D., 310
embedding, 141, 266
Emery, M., 310
empty set, 12
end effector, 143
ensemble average, 65
entire space, 279
entropy, 34

and change of coordinates, 88
and discretization, 89
conditional, 74
continuous, 73
differential, 73
discrete, 90
marginal, 74
power inequality, 75
statistical mechanical, 90
thermodynamic, 27

entropy power inequality, 85–87
equality

defining, 4
different meanings of, 4
in the mean-squared sense, 5, 6
philosophical view, 7

equations
algebraic, 150
polynomial, 150
rate-linearized, 150

equivalence
classes, 12
relation, 12

ergodic (ergodicity), 109
error

function, 46
mean-squared, 5

estimation of parameters, 81
estimators

unbiased, 82
Euclidean space, 8, 64, 315
Euler

integration, 346
Euler characteristic, 158, 170, 175–179

in N dimensions, 176
of a body, 178
of a boundary, 178
of a Cartesian product, 179

Euler parameters, 240
Euler–Maruyama integration, 115
Eulerian description, 22
Evans, L.C., 191
even function, 32
evolution equations, 53

evolving surfaces, 185
exact form, 226
expectation, 63–73

conditional, 68–73
expectation, or expected value, 64
exponential (of a matrix), 338–340
exterior

algebra, 204–221
calculus, 195
derivative, 195
power, 209
product, 207

faces, 158, 170
factorial, 39
family

of functions, 8, 11
of parametric distributions, 45
of sets, 16

Farmer, D.W., 286
Farouki, R.T., 191
Fary, I., 191
Fary–Milnor theorem, 157
fast marching methods, 184
Faugeras, O., 191
Feder, M., 99
Fedkiw, R.P., 192
Feller,W., 98
Fenchel’s theorem, 157
Fenchel, W., 191, 286
FFT (Fast Fourier Transform), 237
fiber bundles, 278
fiber space, 279
fibers, 172
Fick’s law, 25
field, 316
filtrations, 63
finite-difference approximation, 346
Finney, R.L., 361
first fundamental form, 161
Fisher information, 77

divergence, 76
matrix, 77

Fisher, R.A., 98
Flanders, H., 232, 286
Flannery, B.P., 360
fluctuation–dissipation theorem, 130
Flügge, S., 310
Fokker, A.D., 138
Fokker–Planck equation, 3, 38

and coordinate changes, 130
derivation of, 120–121
in Euclidean space, 123–127

folded Gaussian distribution, 47–48
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for all, 13
form

closed, 226
exact, 226

forms
one-, 194
quadratic, 195
two-, 194
zero-, 194

forward kinematics, 142
Fourier

analysis, 5, 10
coefficient, 48
reconstruction formula, 37
series, 48
transform, 37

Fourier’s law of heat conduction, 25
Fourier, J.B.J., 61
Fowler, R.H., 138
Fox, R.H., 191
Fréchet, M., 360
Frenet frames, 156
Frieden, B.R., 98, 99
Fris, I., 61
Frobenius norm, 328
Fukuda, K., 286
function, 11, 14

analytic, 9
band-limited, 6
complex-valued, 5
continuous, 5
continuously differentiable, 5
convex, 71
error, 46
even, 32
family of, 8, 11
Fourier series of, 48
indicator, 14
integrable, 33
Kronecker delta, 102
matrix-valued, 26
natural logarithm, 75
nice, 9, 36
non-anticipating, 118
non-pathological, 9
odd, 32
on the unit circle, 48
periodic, 48
smooth, 29
well-behaved, 9

fundamental form
first, 161
second, 161

Fundamental Theorem of Calculus, 5, 351

Gage, M., 191
Gamma function, 44
Gantmacher, F.R., 360
Gard, T.C., 138
Gardiner, C.W., 138
Gardner, R.J., 98
Gauss’ theorem (See divergence theorem),

160, 352
Gauss–Bonnet theorem, 170
Gauss–Bonnet–Chern theorem, 277
Gaussian

curvature, 165
of an implicit surface, 181

distribution, 29–48
clipped, 45–47
folded (or wrapped), 47–48
multi-dimensional, 39–43
multivariate, 40
on the real line, 31–39
wrapped around the circle, 47

integrals, 42
random processes, 106–108

genus, 157, 170
geodesic curvature, 163
geodesics, 165
Geometry, 10
geometry

algebraic, 11
differential, 11
of curves and surfaces, 139–190

GL(n, C), 325
GL(n, R), 325
gluing, 244
Gnedenko, B.V., 98
goes to, or is mapped to, 12
Goldberg, S.I., 286
Goldman, R., 191
Golub, G.H., 360
González, M., 61
gradient, 18, 25, 162, 180
Gram–Schmidt orthogonalization process,

251, 319
Gray, A., 61, 191
Grayson, M., 191
Green’s theorem, 352

and forms, 223
for manifolds with boundary, 271

Grenander, U., 98
Greub, W.H., 232
Greville, T.N.E., 190
Gromoll, D., 191
group, 16

action, 17
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permutation, 323
symmetric, 323
transformation, 17

group manifold, 239
groupoid, 244
Gruber, P.M., 286
Grünbaum, B., 286
Guggenheimer, H.W., 191, 232, 286
Guibas, L., 286
Guillemin, V., 232, 286
Guo, D., 99

Hadwiger, H., 191, 286
Haker, S., 192
Halmos, P., 360
Hamilton, R.S., 191, 287
Hammond, C., 287
Hardy, G.I., 98
heat, 25

conduction, 25
current density, 26
flow, 20
flux, 26

heat equation, 26, 38, 48–58
multi-dimensional, 51–53
on a Riemannian manifold, 283
on the circle, 50–51
on the line, 48–50
symmetry analysis of, 53–58

Heaviside step function, 34
heavy tails, 67
helix (right-handed circular), 187
Hendricks, H., 98
Hermitian conjugate, 322
Hermitian matrix, 327
Hermitian positive definite, 360
Hida, T., 310
Higham, D.J., 138
Hilbert–Schmidt norm, 328
hip implant, 147
Hodge star operator, 204, 224, 285
Hodge, W.V.D., 191
homothetic, 236
Hopf, H., 287
Hörmander, L., 314
Horn, R.A., 360
Hostetler, R.P., 360
Hsu, E.P., 310
Hubbard, J.H., 360
Huisken, G., 191
hyper-sphere, 5
hyper-surface, 233, 266

icosahedron, 237

identity matrix, 21, 26
if, 11
iff, 11
Ikeda, N., 310
image, 13
immersion, 261
implicit equation, 149
implicit surfaces, 179–185

Gaussian curvature of, 181
mean curvature of, 181

in, or “is an element of”, 12
increment (of a Wiener process), 108
independent (statistically), 67
index set, 200
indexing set, 16
indicator function, 14, 237
induced norms, 329
inequality

Aleksandrov–Fenchel, 236
Brunn–Minkowski, 235

information
and convolution, 78
and entropy, 76

information theory, 73–80
information-theoretic divergence, 76
injective mapping, 14
inner product (See scalar product), 317
inner-product space, 317
integral

around a closed curve, 157
Riemann, 114

integral geometry, 166
integrating by parts, 50
integration by parts, 47

for manifolds with boundary, 271
in Rn, 353

intersection, 12
interval

closed, 5
open, 5

intrinsic
quantity, 164
volumes, 236

intrinsic geometry
of space curves, 155
of surfaces, 159

inverse
of a matrix, 325–326
of the metric tensor, 161

inverse Fourier transform, 37
inverse function theorem, 21
inverse kinematics, 144

analytical solution, 145
incremental linearization, 144
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invertible mapping, 13, 14
isomorphisms (between vector spaces), 317
Itô, K., 310
iterations; using inverse Jacobian, 151
Itô

integral, 113
SDE, 114

and coordinate changes, 135
in Cartesian coordinates, 132
in polar coordinates, 133
relationship with Stratonovich SDE, 134

stochastic calculus, 112
stochastic differential equations

in Rd, 112–114
stochastic integral, 116–119

Itô, K., 138, 310
Itoh, Y., 98
Itô’s rule, 119–120

Jacobi identity, 321
Jacobian matrix, 18, 119, 131, 354
Jaynes, E.T., 98
Jensen’s inequality, 71
Jensen, J.L.W.V., 98
Johnson, C.K., 287
Johnson, C.R., 360
Johnson, O.T., 98
Jordan block, 334
Jordan curve theorem, 157
Joshi, A.W., 29
Juan, O., 191
Junkins, J.L., 98

k-form, 208
k-vector, 207
Kalnins, E., 61
Kanatani, K., 360
Karatzas, I., 138
Karlin, S., 138
Kass, M., 191
Katsoulakis, M.A., 191
Kavraki, L.E., 287
Keriven, R., 191
Kho, A.T., 191
Kimmel, R., 191
kinematic cart, 3
Klein bottle, 244
Klein, F., vii, 287
Klingenberg, W., 191
Kloedon, P.E., 138
Knight, F.B., 138
knotted curves, 157
Kobayashi, S., 287
Kohli, D., 191

Kolmogorov’s forward equation (See
Fokker–Planck equation), 38

Kolmogorov, A.N., 98, 138
Körner, T.W., 61
Krempl, E., 29
Kreyszig, E., 29
Kronecker

delta, 202
product, 340–341
sum, 340–341

Kronecker delta, 125
Kronecker delta function, 102
Kronecker product, 340, 358
Kronecker sum, 341
Kuiper, N.H., 191
Kullback, S., 98
Kullback–Leibler divergence, 71, 76
Kunita, H., 309, 310
Kuo, H.-H., 138
Kyatkin, A.B., 61, 98, 286

Ladd, M.F.C., 287
Lagrange multipliers, 35
Lagrangian description, 22
Lai, W.M., 29
Lang, S., 232, 287
Langevin, P., 104, 138
Langevin, R., 192
Laplace–Beltrami operator (See Laplacian),

162
Laplacian, 162, 351

for a Riemannian manifold, 283
Larson, R., 360
lattice (partially ordered), 16
Lattman, E.E., 287
Lawler, G.F., 99
Lawrence, J., 287
Lee, J.M., 287
Leibniz formula, 323
Leite, F.S., 361
lemmas, 11
Lépingle, D., 138
Leu, M.C., 190
level set, 179
level set methods, 184
Levi–Civita symbol, 203
Lévy, P., 138
Lewis, A.D., 286
Lewis, J., 310
lexicographical ordering, 207, 231
Lie

algebra, 320
bracket, 212, 320
group, 17, 284
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six-dimensional, 58
Lie, S., 61
Lindell, I.V., 232
linear algebra, 10, 315–331
linear mappings, 317
linear systems theory, 343–345
linear transformations, 317
Linnik, Y.V., 99
Lipschitz condition, 114
Lipschutz, M.M., 192
Littlewood, J.E., 98
local volume change, 40
Lockwood, E.H., 287
Loll, P.J., 287
Lovelock, D., 232, 287
LU-decomposition, 336

Mace, G.E., 29
MacLane, S., 29
MacMillan, R.H., 287
Madiman, M., 99
Magnus, J.R., 360
Magnus, W., 360
Malliavin, P., 314
Malvern, L.E., 29
manifold, 228, 233, 260–282

analytic, 267
compact, 277
heat equation on a, 282–283
smooth, 267
stochastic processes on a, 288–309
with boundary, 246, 268

manifolds
examples of, 238

Manocha, D., 192
mapping, 11

bijective, 14
composed, 13
injective, 14
invertible, 13
linear, 317
one-to-one, 14
onto, 14
surjective, 14

marginal
density, 41
entropy, 74

marginalization, 65
Markov

property, 105
random processes, 106–108, 118

Markovian (See Markov), 108
Marsden, J., 286
Marsden, J.E., 232, 286

martingales, 63
Maruyama, G., 138
Maslen, D.K., 310
material description, 22
mathematical notation, 10
matrix, 321–331

commutator, 356
decompositions, 331–337
exponential of a, 338–340
Hermitian, 327
inequalities, 331
inverse of a, 325–326
Lie groups, 57
normal, 327
norms, 328–331

Frobenius, 328
induced, 329
sub-multiplicative, 328

orthogonal, 327
perturbations, 337–338
positive definite, 326
skew-Hermitian, 327
skew-symmetric, 327
special orthogonal, 328
special unitary, 328
unitary, 327
version of Cauchy–Schwarz, 331

matrix calculus, 353–355
matrix Lie group, 239
matrix norm

consistent, 329
matrix norm, consistent, 337
matrix-valued function, 26
matrizant, or matricant (See state transition

matrix), 348
maximum entropy

distribution, 40
property, 34

McKean, H.P., Jr., 138, 310, 360
McLachlan, N.W., 310
McPherson, A., 287
McShane, E.J., 138
McWhorter, L., 99
mean, 33, 66

conditional, 69
curvature, 165

of an implicit surface, 181
total, 170

squared error, 5
measures of dispersion, 95
mechanics

continuum, 20
medial circle, 169
median, 33
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medical imaging, 147
Meeks, W.H., 191
metric, 15
metric tensor, 161

for the ellipsoid, 167
for the sphere, 166
for the torus, 169

Meyer, C.D., Jr., 360
Meyer, W., 191
Miller, W., Jr., 61
Millman, R.S., 192
Millstein, G.N., 138
Milnor, J., 192
Minkowski sum, 235
mixed volumes, 236
mode, 33
moment of momentum, 25
momentum balance, 24
Montesinos, J.M., 287
Morgan, F., 287
motion

Brownian, 3
rigid body, 152
rigid-body, 97, 294
rotational, 153, 309

Mukherjee, A., 232, 287
multi-Gaussian distributions, 92
multi-set, 204
multi-variate distribution, 70
multi-vector, 207
multilinearity, 323
multinomial expansion, 92
multivariable calculus, 18, 349–353
multivariate Gaussian distribution, 40
Mumford, D., 192
Munkres, J.R., 29
mutual information, 76

n-dimensional space, 8
n-times continuously differentiable, 5
Nagaoka, H., 29
Nash, J., 287
natural basis vectors for Rn, 316
natural logarithm function, 75
necessary conditions, 11
Neff, C.A., 191
Neudecker, H., 360
Neyfeh, A., 29
nice functions, 36

on a domain D, 9
on an interval, 9

Nikolov, B., 99
noise, 103
Nomizu, K., 287

non-anticipating functions, 118
non-linear transformations of coordinates, 57
non-negative real numbers, 14, 15
non-orientable surface, 244
non-orthogonal basis, 319
non-pathological function, 9
non-stationary random processes, 104–106
Norbert Wiener, 111
norm of a matrix, 328–331
normal

curvature, 163
distribution, 34
distribution (See Gaussian distribution),

29
matrix, 327

Norman, E., 361
normed vector space, 319
null space, 326
number of

edges, 170
faces, 170
vertices, 170

numbers
complex, 14
real, 5, 14

numerical approximations
finite difference, 301
of SDE sample paths, 115

numerical integration of SDEs, 115

O-U (See Ornstein–Uhlenbeck), 123
odd function, 32
ODEs, 349
offset curves, 171
offset surfaces (and tubes), 171–175
Øksendal, B., 138, 310
Olver, P.J., 61, 192
one-to-one, 14
only if, 11
Onsager relations, 127
Onsager, L., 138
onto, 14
open interval, 5
Oprea, J., 192, 287
orbifold, 244
ordinary differential equation (ODE), 346
orientable differential manifold, 267
Ornstein, L.S., 139
Ornstein–Uhlenbeck process, 123
Orsingher, E., 310
orthogonal matrix, 327
Osher, S.J., 192
Osserman, R., 192
Osvatic, M., 191
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outer product, 206
Ovsiannikov, L.V., 61

p-norm, 318
Pan, V., 360
parameter estimation, 81
parametric distributions, 67
parametrization of a manifold, 266, 267
Parker, G.D., 192
Parks, T.W., 60
partially ordered lattice, 16
partition, 13
Patera, J., 61
Patodi, V.K., 309
Patrangenaru, V., 98
pdf, 63

(See probability density function), 63
mean of, 33
median of, 33
mode of, 33
spread of, 33
standard deviation of, 33
variance of, 33
weighted sum of, 87

Pedoe, D., 191
Pennec, X., 99
Perelman, G., 287
permutation

group, 201
sign of a, 202

permutation group, 323, 324
Perrin, P.F., 310
Pfaffian, 278
Pham, B., 192
phase factor, 39
Pinsky, M., 29, 310
Pitts, D.R., 29
planar

body
simple, 157

region
simply connected, 157

Planck, M., 138
Platen, E., 138
polar

coordinates
and Gaussians, 32
and Itô SDEs, 132
and Stratonovich SDEs, 134

decomposition, 336
Pollack, A., 232, 286
Poluyanov, L.V., 61
Pólya, G., 98
polyhedra, 234–237

volume of, 235
polynomial

elimination, 146
equations, 150

polytopes, 234–237
pose (or position and orientation), 3
positive definite matrix, 326
positive real numbers, 14, 15
Postelnicu, G., 191
postulates, 11
pre-image, 13
Press, W.H., 360
principal curvatures, 165
principal normal vector

to a space curve, 155
probability density function, 63–68
probability density function (See pdf), 33, 64
process

random, 103
return-to-equilibrium, 127

Prodon, A., 286
product

exterior, 207
outer, 206
tensor, 206
wedge, 207

product integral, 345–349
projection

stereographic, 7
projective geometry

and medical imaging, 147–154
proper subset, 12
Protter, P., 139
pseudo-inverse, 326
pull-back, 21, 214
punctured sphere, 7
push-forward, 21, 214

QR decomposition, 335
quadratic form, 195
Queiro, J.F., 361
quermassintegrals, 236

Raghavan, M., 192
Ramshaw, L., 286
random

noise, 103
processes, 102, 104–108

Gaussian, 106–108
Markov, 106–108
non-stationary, 104–106
pdfs for, 105
stationary, 104–105
strong stationarity, 105–106
weak stationarity, 105–106
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walker, 1, 102
walks

on the integers, 101–104
rank (of a matrix), 326
Rao, C.R., 99
Rastamian, R., 188
rate-linearized equations, 150
Ratiu, T., 232, 286
Ratnanather, J.T., 192
real numbers, 4, 5
real projective plane, 240, 244
referential state, 21
reflexive property, 12
Rényi, A., 61, 139
return-to-equilibrium process, 127
reverse kinematics (See inverse kinematics),

144
Reynolds transport theorem, 24, 29
Rhodes, G., 287
ribbons, 172
Ricci

curvature tensor, 257
flow, 284

Riemann integral, 112, 114
Riemann–Stieltjes integral, 112
Riemannian

curvature, 165, 257
manifold, 266
metric, 247, 269

Riemannian metric tensor, 269
right-handed circular helix, 187
rigid body, 3
Ripley, B.D., 139
Risken, H., 139
RMSD (See root-mean-square deviation), 93
Roberts, P.H., 310
robotic manipulators, 142–147
Rockafellar, R.T., 99
Rogers, L.C.G., 139
Rolfsen, D., 192
Roman surface, 241
root-mean-square deviation, 93
Ros, A., 192
Rosenberg, S., 287
Rosenburg, H., 192
rotations

in n-dimensional space, 133
in the plane, 17
spatial, 148

Roth, B., 190, 192
Rubin, D., 29
Rudin, W., 361
Rugh, W.J., 361
ruled surface, 188

Rund, H., 232, 287

Salamon, S., 191
Samorodnitsky, G., 99
sample paths, 115
San Jose Estepar, R., 192
Satake, I., 287
scalar (dot) product, 22
scalar multiplication, 315
scalar product, 317–319
Scharf, L.L., 99
Scheinerman, E.R., x
Schervish, M.J., 99
Schey, H.M., 361
Schreiber, M., 232, 287
Schröder, P., 286
Schubert, H., 192
Schur decomposition, 335
Scott, P., 287
sculpting operations, 158
SDEs, 114

and coordinate changes, 130
Stratonovich, 122

SDEs (See stochastic differential equations),
101

second fundamental form, 161, 162
Second Law of Thermodynamics, 27
sectional curvature, 165, 257
semi-flexible polymer, 281
set

countably infinite, 16
finite, 16
indexing, 16
uncountably infinite, 16

Sethian, J.A., 192
sets, 11
Shah, J., 192
Shannon entropy, 64, 80
Shannon, C. E., 61
Shannon, C.E., 99
shear, 152
Shiohama, K., 192
Shoemake, K., 190
Shreve, S.E., 138
sign (or signature) of a permutation, 202, 324
signed curvature, 155
simple

curve, 157
planar body, 157

simply connected planar region, 157
Singer, I.M., 310
singular value decomposition, 336
singularities (of a robot arm), 143
Sissom, L.E., 29
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skew-Hermitian matrix, 327
skew-symmetric, 195

(Same as anti-symmetric), 320
matrix, 327

Smith, S.T., 99
smooth, 19

function, 29
manifold, 267
vector fields, 281

Snider, A.D., 360
So, W., 361
Sommese, A.J., 192
Soner, H.M., 192
space curve

binormal of, 156
curvature of, 155
torsion of, 156

spaces, 15
span, 317, 319
spatial

body, 159
description, 22

special
orthogonal matrices, 328
unitary matrices, 328

special Euclidean group, 239
special orthogonal group, 240
spectral decomposition, 126
sphere, 166

metric tensor for the, 166
punctured, 7
surface area of the, 167
total Gaussian curvature of the, 167
total mean curvature of the, 167
volume in Rn, 43–45
volume of the, 167

spherical coordinates, 148
Spivak, M., 287, 288
spread, 33
Spruck, J., 191
square-integrable function

on the circle, 6
Stam, A.J., 99
standard deviation, 33
state

space, 124
transition matrix, 347

stationarity
strong, 105–106
weak, 105–106

stationary
strictly, 106
wide-sense, 106

stationary random processes, 104–105

Steenrod, N., 288
Stein, D., x
Steiner’s formula

in R3, 175
multi-dimensional version, 236

stereographic projection, 7
Stewart, G.W., 361
stiffness, 124
Stirling series, 39
Stirling’s formula, 39
stochastic

calculus
Itô, 112, 119
Stratonovich, 121

differential equations
and changes of coordinates, 130–136
in Euclidean space, 99–137
Itô, 112–114
numerical approximation of, 114–116
Stratonovich, 130

integral
Itô, 116–119
Stratonovich, 130

process
Ornstein–Uhlenbeck, 123

processes (See random processes), 102, 104
systems, 6

Stokes’ theorem, 352
and forms, 224
for bi-unit cube, 224
for implicitly defined surface, 184
for manifolds, 270
in cylindrical coordinates, 225
light form of, 9

Stolfi, J., 286
Stratonovich

integral, 113
SDE, 122, 130

and coordinate changes, 136
in polar coordinates, 134
relationship with Itô SDE, 134

stochastic calculus, 121
stochastic integral, 130

Stratonovich, R.L., 139
strictly

contained, 12
stationary, 106

strongly stationary Markov process, 107
Stroock, D., 139
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