
8

1-Dependent Stationary Sequences
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Abstract: A new method of estimating the distribution function of scan statis-
tics was presented and studied by the authors in a series of papers. This method
is based on the application of some results concerning the distribution function
of the partial maximum sequence generated by a 1-dependent stationary se-
quence. We present a review of our results and compare the method with other
existing methods.
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8.1 Introduction

Let N be a Poisson process of intensity λ on the real line and let u > 0 and
T > u be fixed constants. Let νt = N(t + u)−N(t) be the number of points in
the interval [t, t + u[, t ∈ [0, T − u].

The one-dimensional continuous scan statistic is defined [see Glaz et al.
(2001)] as

S = S(u, λ, T ) = max
0≤t≤T−u

νt. (8.1)

Let T = τu, τ ∈ N and let

Xn = max
(n−1)u≤t<nu

νt, n = 1, . . . , τ − 1. (8.2)

It can be easily seen that {Xn} forms a 1-dependent stationary sequence and

S = Sτ = max
1≤n≤τ−1

Xn. (8.3)
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Then, in order to approximate the distribution function (d.f.) of S, we can apply
either one of the following equivalent versions of Haiman (1999), Theorems 3
and 4.

Let {Xn} be a general 1-dependent stationary sequence of random variables
(r.v.’s) and let

qn = qn(x) = P {max(X1, . . . , Xn) ≤ x} , n ≥ 1.

Theorem 8.1.1 For any x such that 1 − q1(x) ≤ 0.025 and any integer n > 3
such that 88n(1 − q1)3 ≤ 1, we have

∣
∣
∣
∣qn−

4q3 − 3q4 + 6(q1 − q2)2

(1 + q1 − q2 + q3 − q4 + 2q2
1 + 3q2

2 − 5q1q2)n

∣
∣
∣
∣
/
qn

(8.4)
≤(1−q1)3[88n(1 + 124n(1−q1)3) + 561].

Theorem 8.1.2 For any x such that 1 − q1(x) ≤ 0.025 and any integer n > 3
such that 3.3n(1 − q1)2 ≤ 1, we have

∣
∣
∣
∣qn − 2q1 − q2

(1 + q1 − q2 + 2(q1 − q2)2)n

∣
∣
∣
∣
/
qn

(8.5)
≤ (1 − q1)2[3.3n(1 + 4.7n(1 − q1)2) + 9 + 561(1 − q1)].

From Theorem 8.1.1 and Theorem 8.1.2 we deduce, respectively, the
approximations

P(Sτ ≤ x) ≈ 4q3 − 3q4 + 6(q1 − q2)2

(1 + q1 − q2 + q3 − q4 + 2q2
1 + 3q2

2 − 5q1q2)τ−1
(8.6)

with a relative error bound of about 88τ(1 − q1)3 and

P(Sτ ≤ x) ≈ 2q1 − q2

(1 + q1 − q2 + 2(q1 − q2)2)τ−1
(8.7)

with a relative error bound of about 3.3τ(1 − q1)2.
The approximations (8.6) and (8.7) for the d.f. of continuous scan statistics

have been introduced and studied in Haiman (2000). A characteristic of these
approximations is that they depend on a prior knowledge of qi = qi(x) =
P(Si+1 ≤ x), i = 1, . . . , 4, respectively, i = 1, 2.

Let Z1, . . . , ZN be a sequence of integer-valued r.v.’s that are independent
and identically distributed (i.i.d.), typically Bernoulli B(1, p). Let 1 ≤ m ≤ N
be a fixed positive integer, let

μt =
t+m−1∑

i=t

Zi, i ≤ t ≤ N − m + 1, (8.8)
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and define the one-dimensional discrete scan statistic [see Glaz et al. (2001)] by

S = S(m, p, N) = max
1≤t≤N−m+1

μt. (8.9)

Let N = τm, τ ∈ N, τ ≥ 1, and let

Yn = max
(n−1)m+1≤t≤nm+1

μt, n ∈ N, n ≥ 1. (8.10)

Then {Yn} similarly forms a stationary 1-dependent sequence, S = Sτ =
max1≤n≤τ−1 Yn and the d.f. of S can again be approximated by either one
of the corresponding versions of approximations (8.6) and (8.7).

This type of approximation for the d.f. of discrete scan statistics was intro-
duced and studied in Haiman (2007).

In Section 8.2 we present and discuss the main aspects related to the ap-
plication of approximations (8.6) and (8.7) to continuous and discrete one-
dimensional scan statistics.

Let N be a two-dimensional Poisson process of intensity λ. For fixed positive
u and v, let νt,s(u, v) be the number of points in the rectangle [t, t+u)×[s, s+u),
i.e.,

νt,s = νt,s(u, v) = N([t, t + u) × [s, s + v)). (8.11)

For 0 < u < L and 0 < v < K, the two-dimensional continuous scan statistic

S = S((u, v), λ, L, K) = max
0 ≤ t ≤ L − u
0 ≤ s ≤ K − v

νt,s (8.12)

represents the largest number of points in any rectangle of dimension u × v
within the rectangular region [0, L] × [0, K]. Observing that for any 0 < u < L
and 0 < v < K we have

P (S((u, v), λ, L, K) ≤ k) = P
(

S((1, 1), λuv,
L

u
,
K

v
) ≤ k

)

,

we now suppose that u = v = 1.
Let K and L be positive integers and let

Xk = max
0 ≤ t ≤ L − 1
k − 1 ≤ s ≤ k

νt,s, k = 1, . . . , K − 1. (8.13)

We first observe that {Xk} is a stationary 1-dependent sequence and

S = SL,K = max
1≤k≤K−1

Xk.
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Then, a first application of Theorem 8.1.2 (under the required conditions)
leads to the approximation

P(S ≤ n) ≈ (2q1 − q2)(1 + q1 + q2 + 2(q1 − q2)2)−(K−1), n ∈ N. (8.14)

with an error bound of about 3.3(K − 1)(1 − q1)2. Here q1 = P(X1 ≤ n)
and q2 = P(X1 ≤ n, X2 ≤ n). In order to obtain the final approximation of
P(S ≤ n), q1 and q2 are replaced in (8.14) by their approximations obtained
using again Theorem 8.1.2. Indeed,

Yl = max
l − 1 ≤ t ≤ l
0 ≤ s ≤ 1

νt,s, l = 1, . . . , L − 1 (8.15)

is a 1-dependent stationary sequence and

q1 = P
(

max
0≤l≤L−1

Yl ≤ n

)

. (8.16)

Analogously,
Zl = max

l − 1 ≤ t ≤ l
0 ≤ s ≤ 2

νt,s, l = 1, . . . , L − 1

is also a 1-dependent stationary sequence and

q2 = P
(

max
0≤l≤L−1

Zl ≤ n

)

. (8.17)

Then, Theorem 8.1.2 provides the approximations

q1 ≈ (2q2,2 − q2,3)(1 + q2,2 + q2,3 + 2(q2,2 − q2,3)2)−(L−1), (8.18)

and

q2 ≈ (2q3,2 − q3,3)(1 + q3,2 + q3,3 + 2(q3,2 − q3,3)2)−(L−1), (8.19)

where q2,2 = P(S2,2 ≤ n), q2,3 = q3,2 = P(S2,3 ≤ n) and q3,3 = P(S3,3 ≤ n).
Thus, in the two-dimensional case, the final approximation of P(SL,K ≤ n)

depends on a prior knowledge of q2,2, q2,3 and q3,3. If q2,2, q2,3 and q3,3 are known
and L ≤ K, it can be shown that the resulting error on the approximation of
P(S ≤ n) is bounded by about

e = 3.3(L−1)(K −1)
(
(1 − q2,2)2 + (1 − q3,2)2 + (L − 1)(q2,2 − q3,2)2

)
. (8.20)

The main difficulty in the two-dimensional case arises from the fact that cur-
rently there are no, exact formulas for q2,2, q3,2 and q3,3. This type of approx-
imation for the d.f. of two-dimensional scan statistics generated by a Poisson
process was introduced and studied in Haiman and Preda (2002).
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As in the one-dimensional case, the method can be adapted to the two-
dimensional discrete scan statistics defined as follows.

Let N1 and N2 be positive integers and {Xi,j ; 0≤ i≤N1 −1, 0≤ j ≤N2 −1}
be a family of i.i.d. nonnegative integer valued r.v.’s from some specified distri-
bution (typically B(n, p) or Poisson(λ)). For ≤ i ≤ N1 − 1 and 0 ≤ j ≤ N2 − 1,
Xi,j represents the number of some events observed in the elementary square
subregion [i, i + 1] × [j, j + 1]. Let m1, m2 be positive integers, 1 ≤ m1 ≤ N1,
1 ≤ m2 ≤ N2. For 0 ≤ t ≤ N1 − m1, 0 ≤ s ≤ N2 − m2, let

νt,s = νt,s(m1, m2) =
t+m1−1∑

i=t

s+m2−1∑

j=s

Xi,j . (8.21)

The two-dimensional discrete scan statistic is defined as the largest number of
events in any m1 × m2 rectangular scanning window within the rectangular
region [0, N1] × [0, N2], i.e.,

S = SN1,N2(m1, m2) = max
0≤t≤N1−m1
0≤s≤N2−m2

νt,s. (8.22)

Let N1 = Lm1, N2 = Km2, with L and K integers, L > 3, K > 3. In this case,
the same arguments and formulas as those leading to the approximation for the
continuous scan statistics can be used with the following changes:

- Xk in formula (8.13) is now

Xk = max
0≤t≤(L−1)m1

(k−1)m2≤s≤km2

νt,s, k = 1, . . . , K − 1,

- Yl in formula (8.15) becomes

Yl = max
(l−1)m1≤t≤lm1

0≤s≤m2

νt,s, l = 1, . . . , L − 1,

- and Zl is
Zl = max

(l−1)m1≤t≤lm1
0≤s≤2m2

νt,s, l = 1, . . . , L − 1.

This type of approximation for the d.f. of discrete two-dimensional scan statis-
tics was studied in Haiman and Preda (2006).

The main aspects related to the application of this method to two-
dimensional scan statistics are presented and discussed in Section 8.3.



184 G. Haiman and C. Preda

8.2 Application of the Approximations (8.6)
and (8.7) to One-Dimensional Scan Statistics

The approximations (8.6) and (8.7) require a prior knowledge of qi = qi(x) =
P(Si+1 ≤ x), i = 1, 2, 3, 4, respectively, i = 1, 2. In the one-dimensional case,
for both continuous and discrete scan statistics, there are exact formulas for
qn (see the references in Subsections 8.2.1 and 8.2.2). However, these formulas
become rapidly intractable as n becomes large. There are also bounds and
approximations as those mentioned below. The approximation formulas are
based on heuristics, and their accuracy is evaluated using simulation results
only in some particular configurations.

Our formulas include error bounds from which one can characterize com-
pletely their domain of applicability. A typical application of our method is the
following. Suppose we want to establish, for a large τ ∈ N, the value of x0.95

such that qτ−1(x0.95) ≈ 0.95. In the case of the continuous scan statistic, x0.95

represents the critical value for testing the intensity λ of the underlying Pois-
son distribution at the 5% level of significance, i.e., reject the null hypothesis
(λ = λ0) if Sτ−1 > x0.95(λ0).

Under the condition “large τ”, 1− q1 is then necessarily small with respect
to 0.05 and condition 1 − q1 ≤ 0.025 is satisfied. Indeed, we then have

qτ−1(x0.95) ≈ (2q1 − q2)
(
1 + (q1 − q2) + 2(q1 − q2)2

)−(τ−1)

≈ 1 − (τ − 1)(q1 − q2) ≈ 0.95 as q1 → 1.
(8.23)

By Haiman et al. (1998), Proposition 2.1, page 490, if 1−q1 is sufficiently small,
we have 1 − q1 ≤ 2(q1 − q2).

Thus,

1 − qτ−1(x0.95) ≈ 0.05 ≈ (τ − 1)(q1 − q2) ≥ 2(τ − 1)(1 − q1), (8.24)

whereas the error bound is about 3.3τ(1− q1)2, thus very small with respect to
the approximated value of 0.05. When q3 and q4 are available, the approximation
(8.6) is more accurate (error of order (1−q1)3 instead of (1−q1)2), but generally,
the approximation (8.7) appears to be sufficiently precise.

We now examine separately the application of the method to continuous
and discrete scan statistics.

8.2.1 Application to one-dimensional continuous scan statistics

Let S = S(u, λ, T ) be the scan statistic generated by a Poisson process as
defined in (8.1). Huntington and Naus (1975) give an exact formula for P(S ≤ n)
for n ≥ 0 and T ≥ u that sums many products of determinants and for large
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T requires excessive computation time. This formula is used in Neff and Nauss
(1980) to establish tables for the d.f. of S(1, λ, τ) (notice that S(u, λ, T ) =
S(1, λu, T

u )) for several discrete values of λ and τ ≤ 100.
In Haiman (2000) we have applied the approximation (8.7) with q1 and

q2 from Neff and Naus tables and τ = 1000. Notice that when we mention a
numerical application of the approximations (8.6) or (8.7), it means that we
also provide the corresponding error bound.

Naus (1982), making a reasoning based on the hypothesis of a Markov-like
behavior of the sequence {Xn} defined in (8.2), proposes the approximation

qτ = qτ(x) = P(Sτ ≤ x) ≈ q1

(
q2

q1

)τ−2

, τ > 2. (8.25)

He shows, using the exact formula, that for λ and τ ranging in a certain domain,
and also compared to other existing approximations, approximation (8.25) is
remarkably accurate. This fact is not surprising: if we denote, respectively, by
qH
τ and qN

τ the approximations in (8.7) and (8.25), it can be shown that for
τ sufficiently large we have |qH

τ − qN
τ | ≤ 5(1 − q1)2. Table 8.1 presents some

numerical examples of these approximations and illustrates this fact.
Another scan statistic of interest generated by a Poisson process is defined as

S∗ = S∗(u, λ, T ) = min
0≤t≤T−u

νt, (8.26)

where, as in (8.1), νt = N(t + u) − Nt.
Let T = τu, τ ∈ N, τ > 0 and let

X∗
k = − min

(k−1)u≤t≤ku
νt. (8.27)

Then {X∗
k} forms a 1-dependent stationary sequence and

q∗τ (n) = P(S∗
τ > n) = P

(

max
1≤k≤τ−1

X∗
k < −n

)

, n ≥ 0. (8.28)

Theorems 8.1.1 and 8.1.2 can also be applied here and corresponding versions
of the approximations (8.6) and (8.7) can be used to estimate q∗τ (n). The values

Table 8.1. Approximations for P(S ≤ x) by approximations (8.25) and (8.7).
T = 1001.

x λ Naus (1982) Haiman (2000) Error
4 0.1 0.985399334 0.9854 2 × 10−6

6 0.5 0.930142831 0.9302 2.5 × 10−5

9 1.3 0.940503808 0.9405 1.7 × 10−5
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of q∗i (n), i = 1, 2, 3, 4, or i = 1, 2 used in these approximations can be obtained
from the exact formulas established in Huntington (1978) (these exact formulas
also become intractable as τ becomes large).

Janson (1984) gives upper and lower bounds for qτ and q∗τ . In Haiman (2000)
we have shown that the approximation (8.7) and Janson’s bounds have similar
precision.

The waiting time until the first occurrence of n points within an interval of
length u, Wn, is an r.v. whose distribution is important in several applications
(see Naus (1982)). For n ≥ 1 and t ≥ 2 we have

P(Wn > t) = P
(

max
0≤s≤t−u

νs < n

)

. (8.29)

Let W ∗
n be the corresponding discretized waiting time defined as

W ∗
n =

[
min{s ≥ 0 : νs = n}

u

]

u, (8.30)

where [ · ] stands for integer part.
For n ≥ 1 and τ = 2, 3, . . ., we have

P(W ∗
n > τ) = P(Sτ ≤ n − 1) = qτ−1(n − 1). (8.31)

We then can apply the approximations (8.6) or (8.7) to estimate the ex-
pected waiting time, E(W ∗

n). Details about this application and a numerical
example are given in Haiman (2000).

Let M(T ) be the number of subintervals, each of length u, dropped so that
their midpoints are the occurrence points of a homogenous Poisson process N
in the interval [0, T ]. We say that a point x is covered by a subinterval with
midpoint y if y− u

2 ≤ x ≤ y + u
2 . The calculation of the probability of the event

En = “all points of the interval [0,T] are covered by at least n subintervals” is
of interest in several applications [see Glaz and Naus (1978)]. Let T = τu,
τ = 2, 3, . . .. In Haiman (2000) we use the fact that the calculation of P(En)
is related to the calculation of q∗τ . Thus, via the approximation (8.7) we obtain
an approximation formula for P(En).

Let Fn be the event “there does not exist a subarc of length u = 1 of a
circle with circumference τ , τ = 2, 3, . . . , that contains n points.” Using similar
arguments, in Haiman (2000) we obtain an approximation formula for P(Fn).

8.2.2 Application to one-dimensional discrete scan statistics

Let Z1, . . . , ZN be a sequence of integer-valued r.v.’s that are i.i.d. and consider
the discrete scan statistic S defined in (8.9). Exact formulas for P(S ≥ k) exist,
and some of them are tractable only in a limited number of situations. The
Bernoulli case (Zi ∼ B(1, p)) plays an important role in the applications. In
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this case, exact formulas have been obtained by Naus (1982) for N = 2m and
N = 3m, i.e., for q1 and q2. As for continuous scan statistics, Naus uses q1

and q2 to estimate qτ = qτ (k) = P(Sτ ≤ k) (N = τm, τ ≥ 3) by formula (8.25).
Fu (2001) employed a finite Markov chain embedding method to derive

exact formulas for P(Sτ ≤ k). However, this method involves quite complicated
computations, and it may become difficult to use for large or very large values
of m and τ = N

m .
Thereby, various approximation methods and bounds for P(S ≤ k) have

been proposed by several authors. However, the quality of these approximations
and bounds can be evaluated for a limited number of particular configurations.
An overview of these results as well as a complete bibliography on the subject
are given in Glaz et al. (2001). In Haiman (2007) we have illustrated by several
numerical examples the application of our approximation (8.7) in parallel with
formula (8.25) of Naus. In these examples, m = 30, p = 0.1 and N ranges from
256× 30 to 1024× 30. As for continuous scan statistics and for a similar reason
(see Section 8.2.1) the approximations (8.7) and (8.25) give very close results.

Let V (N) denote the length of the longest success run in N Bernoulli B(1, p)
trials (1 = success, 0 = failure). We then have

P(V (N) ≥ m) = P(S ≥ m) = P(S = m). (8.32)

Thus, if N = τm, τ ≥ 2,

P(V (N) ≥ m) = P(Sτ ≥ m) = 1 − qτ−1(m). (8.33)

An exact formula for P(V (N) ≥ m) of Bateman (1948) allows in this case an
easy calculation of qi(m), i = 1, 2, 3, 4, from which P(V (N) ≥ m) can be ap-
proximated by either one of the approximations (8.6) or (8.7). In Haiman (2007)
we have used numerical examples to illustrate and compare these two approxi-
mations. It appears that the approximations (8.6) and (8.7) provide very close
results. Table 8.2 presents some numerical examples of these approximation and
illustrates this fact.

Fu et al. (2003) have used the finite Markov chain embedding to obtain the
exact distribution of V (N). They also obtained a large deviation approximation
of the above distribution [in relationship to this problem, see also Lou (1996),
Vaggelatou (2003) and the references quoted in these papers].

In Haiman (2007), we also compare the approximation (8.6) and exact values
of V (N) calculated in Fu et al. (2003).

Let k and m, 1 ≤ k ≤ m, be positive integers and define the waiting time,
until “k − in − m quota” by

T = Tk,m = inf{t ≥ 1 : μt ≥ k}, (8.34)

where μt is defined in (8.8).
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Table 8.2. Approximations for P(S ≤ x) by Haiman (2007) and Naus (1982),
Xi ∼ B(1, p), p = 0.1, m = 30.

x 9 10 11
P(S(30, 256 × 30) ≤ x) :
App. (8.7) 0.5161 0.85979 0.970613
Error 0.008 0.0023 10−6

App. (8.25) 0.5172 0.86028 0.970726
P(S(30, 512 × 30) ≤ x) :
App. (8.7) 0.2658 0.73888 0.941997
Error 0.017 0.00046 0.000017
App. (8.25) 0.2663 0.739295 0.9421067

Huntington (1974) derives an exact and quite complicated formula for E(T ),
in terms of ratios of determinants of some matrices. Naus (1982), using the fact
that

E(Tk,m) =
∞∑

N=0

(1 − P(SN < k)),

uses the approximation (8.25) to obtain the approximation

E(Tk,m) ≈ 2m +
q2

(1 − q2

q1
)

1
m

. (8.35)

In Haiman (2007), we similarly use the approximation (8.7) to establish upper
and lower bounds for E(Tk,m) and give some numerical examples.

Let now r.v. Zi, i = 1, . . . , N take values −1, 0 and 1. The corresponding
discrete scan statistic S is associated to the “charge problem.” Exact results for
P(S ≤ k) have been obtained in this case by Saperstein (1976) for N ≤ 2m and
by Karwe (1993) for N ∈ {2m − 1, 2m (thus q1), 3m − 1 and 3m (thus q2)}. In
Haiman (2007) we give numerical examples and compare the approximations
(8.7) and (8.25) using values of q1 and q2 provided in Karwe (1993).

8.3 Application of the Method to Two-Dimensional
Scan Statistics

As mentioned in Section 8.1, the main difficulty in applying the method to
both, continuous and discrete two-dimensional scan statistics arises from the
fact that at present there are no exact formulas allowing us to calculate qi,j ,
i, j = 2, 3.
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There are some approximation formulas (see references below) based on
heuristics; their accuracy is evaluated using simulation results only in some
particular configurations. As in the one-dimensional case, the characteristic of
our approximation formulas is that they include error bounds.

8.3.1 Application to continuous scan statistics

Let S be defined in (8.12) and for u = v = 1 and K, L integers, K, L > 3, put

SL,K = S = S((1, 1), λ, L, K). (8.36)

Previously, Aldous (1989) and Alm (1997) have established approximation for-
mulas for the d.f. of SL,K .

Let

qn
L,K(k) = P

(

SL,K ≤ k

∣
∣
∣
∣N([0, L] × [0, K]) = n

)

, 1 ≤ k ≤ n (8.37)

denote the d.f. of the conditional scan statistic, i.e., the scan statistic given
that a fixed number n of points fall in [0, L]× [0, K]. Notice that qn

L,K is the d.f.
of the r.v. Sn

L,K = maximum number of points obtained by scanning with the
[0, 1] × [0, 1] window a rectangle [0, L] × [0, K] in which n independent points
are drawn uniformly.

We then have

qL,K(k) = P (SL,K ≤ k)

= e−λLK

⎛

⎝
k∑

j=0

(λLK)j

j!
+

kLK∑

j=k+1

qj
L,K(k)

(λLK)j

j!

⎞

⎠ .
(8.38)

In Haiman and Preda (2002) we have developed a method of “perfect” sim-
ulation of independent replications of r.v.’s Sn

i,j , i, j = 2, 3. We construct (Theo-
rem 2) a stopping time T with respect to the filtration generated by a sequence
{Zn}n≥1 of Bernoulli B(1, 1

2) i.i.d. r.v’s together with functions ft(z1, . . . , zt)
such that the r.v. Sn

i,j = fT (Z1, . . . , ZT ) has the same distribution as Sn
i,j . We use

this method to obtain via formula (8.38) empirical estimations of qn
i,j(k), i, j =

2, 3 and then we calculate (see Section 8.1) the final approximation of qL,K(k).
The empirical estimation of qn

i,j generates additional errors. These errors

are bounded at the 95% confidence level by εi,j , where εi,j ≈ 1.96
√

qn
i,j(1−qn

i,j)

M .
M is the number of replications of r.v.’s Sn

i,j , i, j = 2, 3. The total error on
P(SL,K ≤ k) is then bounded by about

E = e + LK(ε2,2 + ε2,3 + ε3,3), (8.39)

with e, the error bound when qi,j are known, given in (8.20). Naus (1965) and
Neff (1978) give exact formulas for qm

L,K(m − 1) and qm
L,K(m − 2). In Haiman
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Table 8.3. Approximation for P(S ≤ n). L = 500, K = 500, λ = 0.01.
n App. (8.14) Error Alm (1997) Aldous (1989)
2 0.69318103 0.008570775 0.7839302629 0.8484459199
3 0.998401542 6.37679E-05 0.9987785770 0.9990759644

and Preda (2002) we use these formulas for L, K = 2, 3 to evaluate our sim-
ulation results. We then give numerical examples for several values of L, K
and λ (L, K = 10, 50, 100, 1000, λ = 0.01, 0.05, 0.1, 1) and compare our results
with corresponding results obtained by other approximation formulas in Aldous
(1989) and Alm (1997).

In order to obtain error bounds εi,j such that their contribution to the total
error E has the same order of magnitude as e, we use in our examples up to
107 replications of r.v.’s Sn

i,j , i, j = 2, 3.
Table 8.3 presents some numerical examples of application of our method

and the corresponding results obtained using the methods of Aldous and Alm.

8.3.2 Application to discrete scan statistics

Let S = SN1,N2 be defined in (8.22) where the underlying Xi,j are binomial
B(n, p) or Poisson P(λ). Since there are no exact formulas for P(S ≤ k),
various methods of approximation and bounds have been proposed by sev-
eral authors. An overview of these methods as well as a complete bibliog-
raphy on the subject are given in Glaz et al. (2001). In particular, the case
where Xi,j are binary variables, with application to reliability (two-dimensional
r − within m1 × m2 − out − of N1 × N2) has received considerable research
interest during the last years. In this framework, several approximations and
bounds have been proposed and studied in the literature [see, e.g., Chen and
Glaz (1996), Boutsikas and Koutras (2003) and references therein].

Let N1 = Lm1 and N2 = Km2 with L and K integers, L, K > 3. In Haiman
and Preda (2006) we have applied our approximation method of P(SN1,N2 ≤ k)
using, similarly to the previous continuous case, empirical estimations of

qi,j(k) = P(Sim1,jm2 ≤ k)

obtained by simulating i.i.d. replications of r.v.’s Sim1,jm2 , i, j = 2, 3. The error
bound due to simulation, esim, is then also proportional to LK√

M
, where M is the

number of replications and the total error bound, as in (8.39), is

E = e + esim.

For Xi,j binomial and Poisson we give numerical examples and compare our
results with those obtained using the product-type approximation, the Poisson
approximation and Bonferroni inequality techniques, as presented in Glaz et al.
(2001).
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Table 8.4. Approximation for P(S ≤ x) : Xi,j ∼ Poisson(0.25), m1 = m2 =
5, L = 5, K = 5, M = 109.

x P̂(S ≤ x) P-T Bonferroni Poisson H-P Error
15 0.8596 0.8374 0.7700 0.8292 0.860427482 0.067409646
16 0.9402 0.9351 0.9130 0.9314 0.940749305 0.010867255
17 0.9783 0.9764 0.9691 0.9750 0.977260378 0.001546897
18 0.9930 0.9920 0.9896 0.9916 0.991966851 0.000217233

Table 8.5. Approximation for P(S ≤ x) : Xi,j ∼ B(5, 0.05), m1 = m2 = 5,
L = 5, K = 5, M = 109.

x P̂(S ≤ x) P-T Bonferroni Poisson H-P Error
15 0.8932 0.8830 0.8387 0.8768 0.896135764 0.035108915
16 0.9617 0.9577 0.9441 0.9554 0.960112719 0.004770939
17 0.9868 0.9862 0.9819 0.9854 0.986256278 0.000584065
18 0.9948 0.9958 0.9946 0.9956 0.995633424 8.08015E-05

For binary Xi,j we compare our approximations with bounds obtained in
Boutsikas and Koutras (2003).

In all these examples we use up to M = 109 replications of r.v. Sim1,jm2 ,
i, j = 2, 3. Tables 8.4 and 8.5 present some numerical examples of the application
of our method and the corresponding results obtained using the product-type
(P-T), the Poisson and the Bonferroni approximation methods. P̂(S ≤ x) de-
notes the empirical estimation of P(S ≤ x) using 10,000 trials [see Glaz et al.
(2001)].

For binomial Xi,j , and in particular Bernoulli, the current work of the au-
thors consists in constructing computer algorithms allowing one to obtain, with-
out using simulations, exact values or sufficiently accurate (with respect to the
method) approximations of qi,j(m), i, j = 2, 3.
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