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Abstract: In 1965, Joseph Naus published his now classical paper on spatial
scan statistics, entitled ‘Clustering of random points in two dimensions’. This
paper set in motion an important statistical theory of spatial scan statistics and
an avalanche of spatial scan statistics applications in a wide variety of fields, in-
cluding archaeology, astronomy, brain imaging, criminology, demography, early
detection of disease outbreaks, ecology, epidemiology, forestry, geology, history,
psychology and veterinary medicine. In this chapter, we survey this wide variety
of applications.
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6.1 Introduction

Suppose we observe a number of points located within a geographical or spatial
region. These points may, for example, reflect the locations of trees, ant nests,
diseased individuals or post offices. The general aim of the spatial scan statistic
is to detect and evaluate the statistical significance of a spatial cluster of events
that cannot be explained by an underlying probability model defined by a null
hypothesis of spatial randomness. There are spatial scan statistics for two, three
and more dimensions. If the scanning is done over a three-dimensional area
defined by both space and time, we have a space-time scan statistic, which is
an important special case of the three-dimensional spatial scan statistic.

Since first presented by Naus in 1965, spatial scan statistics have been ap-
plied in many different fields such as infectious diseases, cancer, cardiology,
pediatrics, rheumatology, auto-immune diseases, neurological diseases, liver dis-
eases, diabetes, geriatrics, parasitology, alcohol and drugs, accidents, veterinary
medicine, demography, forestry, toxicology, psychology, medical imaging, his-
tory, criminology, astronomy and geology. The aim of this chapter is to present
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a review of the areas in which the spatial scan statistic has been applied, pro-
viding a broad sense of how it is being used across the globe and across scientific
disciplines. After a brief methodological review, we present examples of applica-
tions by field of study. A final discussion presents a brief summary of the main
findings.

Although this chapter emphasizes the use of spatial scan statistics, there
are many other important spatial statistical methods. From a user perspective,
the spatial scan statistic is best viewed as one of several important tools for the
successful analysis of geographical and spatial data. Other important methods
include visualization techniques, descriptive statistics of rates and proportions,
spatial smoothing methods, kriging, global clustering tests, regression for spa-
tially correlated data and so on.

6.2 Brief Methodological Overview

Suppose we have a square region with a number of points. In its original form,
studied by Naus (1965), the spatial scan statistic consists of a rectangular scan-
ning window with a fixed size and shape. This window is continuously moved
over the predefined square study region, covering all possible locations, and the
definition of the spatial scan statistic is the maximum number of points in the
scanning window at any given time. The next step is to find the probability of
observing at least that many points within the window, under the null hypoth-
esis of randomly located points, generated by a homogeneous Poisson process.
In mathematical language, we want to know the probability of finding at least
one rectangle with dimensions u and v with at least n out of N points uni-
formly distributed in the unit square. While simple to state, the complexity of
this problem lies in the multiple testing inherent in the many window locations
and the overlapping nature of those windows, resulting in the maximum being
taken from a set of highly dependent observations. Using some very beautiful
and powerful mathematics, Naus (1965) developed theoretical formulas to ob-
tain upper and lower bounds for those probabilities, showing that the bounds
converge to the true probability.

Following the pioneering paper by Naus, there have been a number of further
methodological developments of spatial scan statistics, in order to handle differ-
ent types of data. The spatial region to be scanned may be of different shapes;
the scanning window may be of different sizes and shapes; the analysis may or
may not be conditional on the total number of points observed; the observations
may be generated by a homogeneous Poisson process, an inhomogeneous Pois-
son process, or by a Bernoulli, multinomial, normal or exponential distribution
function; there may be a need to adjust for covariates or temporal trends; and
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so on. For each application, the scan statistic parameters and probabilistic mod-
els must be appropriately selected to fit the data and the scientific questions
asked.

The study region is usually defined directly by the data and can be of a
variety of shapes and sizes. The exact locations of the points may be known, so
that we have a spatial point process. Alternatively, the data may be spatially
aggregated, so that instead of points we have counts in a set of squares on a
lattice or in a set of administrative geographical areas such as postal codes,
census tracts or counties.

An important component of the spatial scan statistic is the shape and size
of the scanning window. Naus (1965) used a rectangular window of any fixed
shape and size, while Loader (1991) used a variable size rectangular window.
Alm (1997, 1998) used circles, ellipses and triangles. Kulldorff (1997) defined a
spatial scan statistic for any variably sized collection of windows, using a contin-
uously variable size circle in his example. More recently, spatial scan statistics
have also been defined using non-parametrically defined windows [Duczmal and
Assunção (2004), Patil and Taillie (2003, 2004), Assunção et al. (2006), Tango
and Takahashi (2005)], taking very irregular shapes. The shape of the window
does not need to be the same as the shape of the study region.

Rather than defining the null hypothesis based on a homogeneous Poisson
process, another assumption for the null hypothesis implies that intensity varies
within the region, following an underlying known population defined by an inho-
mogeneous Poisson process [Turnbull et al. (1990)]. Areas with higher popula-
tion are then expected to have more points under the null hypothesis, reflecting,
for example, the fact that there are more cancer cases per geographical unit in
urban compared to rural areas, simply because of the higher population density.
Spatial scan statistics have also been developed for discrete 0/1 Bernoulli data
[Chen and Glaz (1996), Kulldorff (1997)], as well as for multinomial [Jung,
Kulldorff and Klassen (2007)], normal [Kulldorff, Huang and Konty (2008);
Huang et al. (2009)] and survival type data [Huang, Kulldorff and Gregorio
(2007); Cook, Gold and Li (2007)].

An important extension of the spatial scan statistic is to three or more di-
mensions [Alm (1998)]. The most common of these is the space-time scan statis-
tic, where time is added as a third dimension [Kulldorff et al. (1998)]. The size
and shape of the study region and scanning window can be defined as before for
the purely spatial scan statistic, while time is added as a third dimension. Retro-
spective space-time scan statistics provide a mechanism to detect and evaluate
past or present clusters that might have appeared anytime during the study pe-
riod. Prospective space-time scan statistics only consider windows that touch
the current date in order to only detect and evaluate the existence of clusters
that are currently present. The latter method is used in early disease outbreak
detection surveillance systems [Kulldorff (2001); Kulldorff et al. (2005)].
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As we survey the application of spatial and space-time scan statistics, we
will consider most of the above variants of the spatial scan statistic, as different
versions are useful for different types of applications.

6.3 Applications in Medical Imaging

The spatial scan statistic has been applied to important problems in brain imag-
ing. Naiman and Priebe (2001) have used it for positron emission tomography
(PET) scan brain imagery data. Yoshida, Naya and Miyashita (2003) have ap-
plied it for neural response data in monkeys. Injections of retrograde tracers in
a specific region (cases) and adjacent regions (control) in the brain generated
maps with pixels associated to selective and non-selective neurons. Significant
clusters of selective neurons were found, assuming a Bernoulli model.

Spatial scan statistics have also been used for breast cancer digital mammog-
raphy data. The goal is the detection of clustered microcalcifications, which may
be indicative of a cancerous tumor [Priebe, Olson and Healy (1997a); Naiman
and Priebe (2001)]. Popescu and Lewitt (2006a, 2006b) mimic a cancer nodule
detection system. A circular scanning window with fixed radius and variable
center is used. The test statistic is the sum of the values of the pixels inside
the window. The null distribution of the test statistic is generated by scanning
background-only images.

6.4 Applications in Cancer Epidemiology

The incidence, prevalence or mortality rates of cancer may vary geographically
for a number of reasons, including spatial variation of environmental or behav-
ioral risk factors or the genetic make-up of the population. Spatial scan statistics
have often been used to detect and/or evaluate the statistical significance of ge-
ographical cancer clusters, as cancer clusters will also occur simply by chance in
some parts of the map. Leukemia was the first cancer that was observed using
spatial scan statistics, with Turnbull et al. (1990) studying leukemia in upstate
New York and Hjalmars et al. (1996) studying childhood leukemia in Sweden.
Hjalmars et al. (1996) did not find any statistically significant clusters in their
data, even though there had been one leukemia cluster alarm reported in the
press a few years earlier. While the cluster was detected, it was not statistically
significant and was not even among the three top clusters. In contrast, Viel
et al. (2000) found a statistically significant cluster of soft-tissue sarcoma and
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non-Hodgkins lymphoma clusters around a municipal solid waste incinerator
with high dioxin emission levels in France.

Under the null hypothesis, the incidence or mortality of cancer is assumed to
follow a Poisson distribution, where the expected number of cases in a particular
location is proportional to the covariate-adjusted population in that location.
Age and other covariates are adjusted for by using indirect standardization. Let
b(i,k) be the population in age group k in location i and let B(k) be the total
population in age group k. Let C(k) be the total number of cases in age group k.
The indirectly age standardized expected number of cases in location i is then

μi =
∑

k

b(i,k) · C(k)/B(k) (6.1)

Age must always be adjusted for in cancer incidence and mortality studies.
If not, there will be significant clusters in areas with a predominately older
population, since older people are at higher risk of being diagnosed with and
dying from cancer. It is often interesting to also adjust for other known risk
factors, including socio-economic variables such as ethnicity, educational levels
or urbanicity, as well as biological variables such as skin color for skin cancer
or parity for breast cancer studies [Kulldorff et al. (1997); Hsu et al. (2004);
Klassen, Kulldorff and Curriero (2005)]. A very interesting approach is to reduce
the number of socio-economic variables by only taking a few components from
principal component analysis [Sheehan et al. (2004), Sheehan and DeChello
(2005), Fukuda et al. (2005)], usually two independent components. After an
adjustment, cancer clusters will disappear if they can be explained by the covari-
ates that were adjusted for. However, the number of clusters can also increase,
as a true cluster can be hidden in an unadjusted analysis.

The spatial scan statistic is able to detect and evaluate the statistical sig-
nificance of individual clusters, but it won’t provide an estimate of incidence
or mortality rates throughout the map. For that, other statistical methods are
needed as a complement, such as the mapping of smoothed rates using con-
ditional autoregressive models [Thomas and Carlin (2003) and Buntinx et al.
(2003)].

For most cancer sites, there may be a long time between exposure and
diagnosis and an even longer time between exposure and death. Han et al.
(2004) presents a notable approach for breast cancer clustering analysis by using
place of residency at the (i) time of birth, (ii) time of menarche and (iii) time
of birth of the first child, as alternative geographical coordinates in separate
spatial analyses. In this way, the study provides an opportunity to examine
geographical clustering of breast cancer at various points during life. Significant
clusters were found for the time of birth and time of menarche analyses, with
similar results. There were fewer clusters when the data was analyzed using
place of residence at time of diagnosis.
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Spatial scan statistics can also be used to study the geographical variation
of a particular subtype, in order to determine if there are geographical clusters
of late stage cancer or cancer of a particular type or grade [Roche, Skinner
and Weinstein (2002); Gregorio et al. (2002); Sheehan and DeChello (2005);
Klassen, Kulldorff and Curriero (2005)]. The detection of a geographical cluster
with a high proportion of late stage breast cancer cases may indicate a need to
improve breast cancer mammography screening in that geographical area. In
these analyses, no census population data are used. Rather, the total number
of diagnosed cancer cases is the ‘population’ while the ‘cases’ are those cancer
cases that are of a certain type, such as late stage. A Bernoulli probability model
is suitable for this type of data. These types of spatial scan statistics have also
been used to study the geographical variation in cancer treatments [Gregorio
et al. (2001)]. When there are more than two different stages or grades, it is
possible to use a spatial scan statistic for ordinal data, which Jung, Kulldorff
and Klassen (2007) did for prostate cancer stage in Maryland, United States.

There may also be an interest in the geographical variation in the survival
time after a cancer diagnosis, to determine if there are geographical areas with
exceptionally poor survival. This is a continuous outcome. Such analyses must
be able to handle censored data and adjust for differences in prognostic factors
such as the age of the patient and the stage or grade of the cancer. Using a
spatial scan statistic for exponentially distributed data with censoring, Huang,
Kulldorff and Gregorio (2007) studied prostate cancer survival in Connecticut,
United States.

6.5 Applications in Infectious Disease Epidemiology

In infectious disease surveillance, the spatial and space-time scan statistics are
used for two different purposes. The first is retrospective in nature, where his-
torical data are used to detect geographical areas with many cases of the disease.
Such clusters can either be temporary in nature, due to an outbreak, or long
lasting, if the area or population is especially prone to infection. Different as-
pects of the infectious disease will influence the proper choice of spatial scan
statistic parameters. The incubation time of the disease, for example, is a very
important feature to incorporate in the selection of the scanning time window
length.

Cousens et al. (2001) describe the spatial investigation of 84 cases of variant
Creutzfeldt–Jakob disease (vCJD), a rare and fatal disease caused by the same
transmissible agent as in bovine spongiform encephalopathy (mad cow disease)
and therefore hypothetically associated with the consumption of beef products.
With the spatial scan statistic, one statistically significant cluster with five
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cases was detected. A subsequent investigation revealed a local butcher shop as
a likely common source of infection.

Fevre et al. (2001) used the spatial scan statistic to study sleeping sickness
in Uganda. Sleeping sickness is caused by a parasite that is transmitted to
humans by the tsetse fly, which picks up the infection from domestic cattle. A
purely spatial analysis was performed using the number of cases diagnosed over
a 32-day period, from the time of the first recorded case to the time when vector
control measures started to be implemented. A case control study was designed,
where each case was matched with one control by age, gender and month of
admission. Consequently, the spatial analysis was carried out assuming that
cases and controls followed a Bernoulli distribution. One significant cluster was
found around an important regional cattle market.

Chaput, Meek and Heimer (2002) provide some useful insights into exploring
the data through evaluating separate data streams from just-confirmed and
confirmed plus probable cases of human granulocytic ehrlichiosis. A spatial
analysis in a 12-town area for tick-borne infections is presented using cases
during four years of surveillance. The cluster analyses were conducted using
either confirmed or both confirmed and probable disease cases obtained from
active and passive surveillance system reports. Both datasets provided similar
results.

A purely spatial analysis of a variation of vCJD in France is presented by
Huillard d’Aignaux et al. (2002). In addition to the use of the spatial scan statis-
tic for cluster detection and evaluation, exploratory analyses are also provided,
including maps and tests for global spatial clustering. Due to evidence that the
incubation period for the disease can be longer, the cluster analyses were done
for both place of residency and place of birth.

Listeriosis is a bacterial food-borne pathogen that may be present in 1 to 5
percent of common ready-to-eat food products and which can cause a rare severe
invasive disease manifestation and even death in humans [Sauders et al. (2003)].
In particular, since the spread of the bacteria is associated with contaminated
food, the source of exposure might come from either global food distribution
or local sources. As a consequence, spatial-temporal clustering might detect
large or small clusters. A cluster analysis using the spatial scan statistic was
conducted using different molecular subtyping strategies (ribotype) from sterile
sites. Clusters with the same subtyping may represent clusters with a common
source of exposure, potentially increasing the ability to detect outbreaks.

When studying sexually transmitted diseases, Wylie, Cabral and Jolly
(2005) also used the spatial scan statistic by differentiating the cases by geno-
type. According to the authors, the underlying assumption behind genotyping
is that two individuals infected by the same strain of an infectious agent are
more likely to have an epidemiological link to each other than two individuals
infected by a different strain.
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Pearl et al. (2006) used the scan statistic to detect outbreaks of Escherichia
coli O157. The study used a sequential cluster detection procedure, which starts
with a purely temporal analysis followed by a purely spatial analysis for each
year and finally by a spatio-temporal analysis.

The second purpose for using scan statistics for infectious disease data is
prospective in nature, when continuously collected data are analyzed in real or
near real time in order to quickly detect an emerging infectious disease outbreak.
In most cases, a space-time scan statistic is then used. As soon as a new cluster
is detected, specific actions to contain and eradicate the contaminant source of
the disease or to stop the disease dynamics would be taken.

Mostashari et al. (2003) have proposed a surveillance system for West Nile
virus through the daily reporting of dead birds by the public. The county-level
density of dead birds and crows was strongly correlated with levels of West
Nile virus activity in 2000, suggesting that dead bird surveillance could detect
subsequent outbreaks in. Multiple dead bird reports for the same location on
the same day were counted as one. Results show that in most cases, dead bird
clusters not only preceded the time of collection of mosquitoes and birds that
were tested positive for West Nile virus but also the reports of human cases
near the cluster area.

Space-time scan statistics have also been used for syndromic surveillance,
where a daily feed of automated medical health records is used for the early
detection of infectious disease outbreaks [Kulldorff et al. (2005)].

6.6 Applications in Parasitology

Enemark et al. (2002), Washington et al. (2004), Odoi et al. (2004) and
Reperant and Deplazes (2005) have all used spatial statistics in parasitology.
A very nice subtype clustering analysis is presented by Enemark et al. (2002)
for Crypstosporidium parvum, a protozoan parasite that infects the gastroin-
testinal tract and is recognized as a major cause of diarrhea. Washington et al.
(2004) performed clustering analysis in sentinel sites before and after a public
intervention program for the elimination of lymphatic filariasis in Haiti. After
the intervention occurred, the most significant cluster was found in an area
where drug coverage was low. Odoi et al. (2004) used the spatial scan statistic
to study giardiasis in Canada and Reperant and Deplazes (2005) used it to
study Capillaria hepatica infection in Switzerland.
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6.7 Other Medical Applications

Hypoplastic left heart malformation is a congenital cardiovascular malforma-
tion. Parental exposure to various categories of solvents is correlated to the
occurrence of cases in newborn children. Kuehl and Loffredo (2006) used the
spatial scan statistic to search for disease clusters and evidence of industrial
release of solvents in Baltimore, Maryland, United States. After geographical
clusters were detected, the results were used to fit different multiple logistic
regression models stratified by residence within or outside the clusters at the
time of conception.

Several papers [Sankoh et al. (2001), George et al. (2001), Forand et al.
(2002), Andrade et al. (2004), Ozdenerol et al. (2005), Ali et al. (2005)] have
used spatial and space-time scan statistics for pediatric data. Sankoh et al.
(2001) analyzed childhood mortality in northwest Burkina Faso (West Africa)
in the 1993–1998 period. A purely spatial analysis was performed for each year
of data, providing time-independent analyses that detect clusters for specific
years. Their results show that a particular village was found as the most likely
cluster in both the purely spatial and space-time analyses. When this village
was omitted from the analysis, a new analysis was conducted which identified
the previous secondary cluster as the most likely. Data exclusion is one way to
focus spatial clustering away from an evident area.

Sabel et al. (2003) used the spatial scan statistic to detect and evaluate geo-
graphical clusters of amyotrophic lateral sclerosis in Finland. Separate analyses
were done using place of birth and place of death as the geographical coor-
dinates. The cluster found using the place of birth overlapped with the most
significant cluster found using the place of death.

Using the spatial scan statistic, Ala et al. (2006) showed that the prevalence
of primary biliary cirrhosis patients listed for transplantation was higher near a
New York City superfund toxic waste site. In this particular analysis, a focused
cluster analysis was also done by including the longitude and latitude of each
New York City superfund site. This approach changed the center of the most
significant cluster to a new location.

The spatial scan statistic has also been used for systemic sclerosis in the
United States [Walsh and Fenster (1997)], lupus in the United States [Walsh and
DeChello (2001)], diabetes in Canada [Green et al. (2003)], multiple sclerosis in
Scotland [Donnan et al. (2005)] and asthma in the United States [Cook, Gold
and Li (2007)], among many other diseases and locations. It has also been used
to study the geography of alcohol and drug use [Hanson and Wieczorek (2002)]
and pesticide exposure [Sudakin, Horowitz and Giffin (2002)].
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6.8 Applications in Veterinary Medicine

In veterinary medicine, spatial scan statistics have been used for domestic an-
imals as well as wildlife. Many different domestic animals have been studied,
including cattle [Norström, Pfeiffer and Jarp (2000)], horses [USDA (2001)],
sheep [Ward (2001); Falconi, Ochs and Deplazes (2002)], pigs [Berke and Grosse
(2003)], chickens and turkeys [Guerin et al. (2005)], farmed salmon [Knuesel,
Segner and Wahli (2003)] and dogs [Ward (2002)]. The spatial scan statistic has
been especially popular for epidemiological investigations of bovine spongiform
encephalopathy (mad cow disease), with studies in Switzerland [e.g. Schwermer
et al. (2002)], France [Abrial et al. (2003)], Ireland [Sheridan et al. (2005)],
Spain [Allepuz et al. (2007)] and the Netherlands [Heres, Brus and Hagenaars
(2008)].

For wildlife data, the spatial scan statistic has been used to study various
diseases among foxes in Germany [Berke et al. (2002)], sea otters in California
[Miller et al. (2002)], coyotes in California [Hoar et al. 2003], deer in Wisconsin
[Joly et al. (2003)] and badgers in Ireland [Olea-Popelka et al. (2003)]. When
evaluating spatial clusters for wildlife data, a main challenge is the nonstation-
arity of many animals, and their ability to travel a long distance before being
sampled [Hoar et al. 2003]. Miller et al. (2002) tried to detect spatial clusters
of parasites in sea otters, but possibly due to high mobility, the spatial analysis
did not detect any statistically significant clusters. An alternative is to sample
static sources of isolates such as animal carcasses [Smith et al. (2000)].

In the geographical analysis of disease, it is often useful to use multiple spa-
tial statistical methods to investigate different aspects or features of the spatial
pattern. For example, in their study of acute respiratory disease in Norwegian
cattle, Norström, Pfeiffer and Jarp (2000) also used the Knox test (1964) and
Jacquez’s k -nearest neighbor test (1996) to look at space-time interaction and a
kernel-density interpolation for exploratory analysis. Sheridan et al. (2005) used
the coordinates of major cattle feed suppliers to evaluate clusters around such
prespecified locations by using a focused cluster test. Results provided evidence
of association between significant clusters and feed sources.

6.9 Applications in Forestry

Coulston and Riitters (2003) and Riitters and Coulston (2005) have used the
spatial scan statistic for forest data from the eastern United States. In a purely
spatial analysis, the population size is the number of 0.009-ha units of forest
land in a county and the number of cases are the number of units with perforated
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forest, which is forest located near holes in an otherwise intact and continuous
forest cover. So, counties with a higher population mean more forest land, and
counties with a high ratio of cases to population mean a high proportion of
perforated forest. In a posterior spatial analysis, they take a previously detected
primary cluster as the new study region and apply the spatial scan statistic a
second time to see if there are any new smaller clusters within the old larger
cluster. In this way, they have found several small clusters arranged in a linear
fashion along the I-95 highway. This result shows that the primary cluster had
an irregular spatial component. In another analysis, using the space-time scan
statistic and 10 years of data, they defined cases as the number of units with
insects or pathogens.

Tuia et al. (2008) used the spatial scan statistic to detect and evaluate space-
time clusters of forest fires. They conclude that the ‘evaluation of the presence
of spatial and temporal patterns in fire occurrence and their significance could
have a great impact in forthcoming studies on fire occurrences prediction’.

6.10 Applications in Geology

Conover, Bement and Iman (1979) applied the spatial scan statistic to geology
data, where the aim was to detect uranium deposits by using radiation mea-
surement taken from an airplane. As the measurements contain a fair amount
of random background noise, the goal was to detect clusters of high radiation
readings.

6.11 Applications in Astronomy

Astronomy would seem like a natural area of application for the three-
dimensional scan statistic, but we are not aware of any such application.
However, the two-dimensional scan statistic has been applied in astronomy. In
a study on star formation, Marcos and Marcos (2008) used the two-dimensional
scan statistic to study the spatial clustering of ‘open star clusters’, which are
physically related groups of stars held together by mutual gravitational attrac-
tion. The ‘spatial’ study regions were defined by galactic longitude as the first
dimension and either radial velocity, proper motion or inclination as the second
dimension, in three different analyses. A number of statistically significant
clusters were found.
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6.12 Applications in Psychology

Margai and Henry (2003) used the spatial scan statistic to detect geographical
clusters of high prevalence of learning disabilities among children in Bingham-
ton, New York, United States. They found a statistically significant cluster in
the northwestern part of the city. As a complement to the spatial scan statistic,
they used Moran’s I to evaluate whether there was general evidence of global
spatial clustering throughout the city. They also explored a set of socio-economic
variables potentially correlated to the spatial occurrence of individuals with
learning disabilities. They compared the means of these variables inside and
outside the detected spatial cluster through t-tests. They also applied discrimi-
nant analysis using the cluster status as the dependent variable and significant
variables obtained from previous t-test analyses. This last approach represents
an alternative and indirect method to associate detected geographical clusters
to a set of socio-economic variables.

6.13 Applications to Accidents

Nkhoma et al. (2004) applied spatial scan statistics for accidental poisoning
mortality data. Cases were divided according to specific toxic agents. Both
spatial and space-time scan statistics were used to evaluate the data with and
without the influence of a time trend. Yiannakoulias et al. (2003) used the
spatial scan statistic to study the geography of fall injuries in the elderly.

6.14 Applications in Criminology and Warfare

Beato et al. (2001) used both the spatial scan statistic and Bayesian smooth-
ing techniques to study the geographical distribution of homicides in Belo
Horizonte, Brazil. Statistically significant clusters were found in areas known
for drug trafficking activities. Ceccato and Haining (2004) used the spatial scan
statistic to compare the location of crime events during two distinct periods in
Malmö, Sweden, before and after the building of the new Öresund bridge con-
necting Malmö with Copenhagen, Denmark. No significant clusters were found
close to the vicinity of the bridge, but there were notable shifts in the geograph-
ical locations of some clusters as well as new clusters for some of the crimes.
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Priebe, Olson and Healy (1997b) have used the spatial scan statistic for
minefield detection using remote sensing data.

6.15 Applications in Demography

Callado Chavez (2003) has used the spatial scan statistic to evaluate the geog-
raphy of fecundity, the potential for reproduction, in Costa Rica.

6.16 Applications in the Humanities

Spatial scan statistics are not widely used in the humanities, but there are
some examples from anthropology, archaeology and history. In a very interesting
study, Witham and Oppenheimer (2004) used the spatial scan statistic to study
the geographical distribution of excess deaths in England due to the 1783 Laki
Craters volcanic eruption in Iceland, which fumigated many parts of Europe
with volcanic gases and particles. They found that the eastern part of England
was the most affected region. In anthropology, Usher and Allen (2005) used
the scan statistic for spatial genetic analysis to evaluate kinship clusters in
cemeteries. Waller (2006) used the spatial scan statistic as well as many other
spatial statistical techniques to compare the geographical distribution of early
versus late period archaeological sites from the Anasazi culture in Black Mesa,
Arizona.

6.17 Scan Statistic Software

Different versions of the spatial scan statistic have been included in a cou-
ple of statistical software packages. The freely available SaTScanTM software
(www.satscan.org) can be used to run the purely spatial and space-time scan
statistics for Poisson, Bernoulli, multinomial, normal and exponentially dis-
tributed data. ClusterSeer (www.terraseer.com) is a commercial software that
includes the purely spatial and space-time scan statistics together with a num-
ber of other spatial statistical methods.
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6.18 Discussion

Different types of data require different forms of the spatial scan statistic, but
the underlying principle is the same as in the pioneering paper by Naus in
1965. In this chapter, we have presented a partial sample of the applications for
which the spatial scan statistic has been used. As can be seen from the literature
review, the spatial scan statistic has been applied in a remarkable number of
different subject areas, from the small spatial scale of medical imaging to the
large spatial scale of astronomy. The method is most commonly used in cancer,
infectious disease and veterinary epidemiology. These are areas with a long
and strong interest in epidemiology in general. They are also areas with a long
tradition of disease cluster and outbreak investigations, for which the spatial
scan statistic is ideally suited.

The spatial scan statistic is increasingly being used for other diseases as
well. The number of applications in non-medical areas is more limited, but
we think that may change with time. With the increasing use of geographical
information systems in many different disciplines, there will be an increase in the
use of formal methods of statistical inference to complement the beautiful maps
that are created. Areas for which we think that the spatial scan statistic will
play an especially important role include archaeology, astronomy, criminology,
demography, ecology, geography and medical imaging.

The spatial scan statistic is also used in ways that do not lead to publica-
tions in scientific journals. For example, many public health officials use it for
routine disease surveillance on a daily, weekly or yearly basis to monitor the
geographical distribution of disease. Likewise, spatial scan statistics are used
by law enforcement agencies for the routine monitoring of crime activities.
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