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Abstract: The theory of boundary crossing probabilities in the study of re-
peated likelihood ratio tests was developed by Lai, Siegmund and Woodroofe in
a series of articles and monographs appearing in the late 1970s and early to mid
1980s. This work formed part of the foundation for subsequent developments in
the analysis of maxima of Gaussian and Poisson random fields used to provide
accurate tail probability approximations of scan statistics. In this chapter, we
(i) track these theoretical developments, (ii) study their applications on spatial
scan statistics in astronomy and epidemiological studies and (iii) relate these
theoretical developments to scan statistics used recently in genomics.
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4.1 Introduction

The study of scan statistics to detect either a signal at an unknown location
or the presence of spatial clustering in a compact domain is a very active area
of research, and the areas of applications are diverse, including astronomy, epi-
demiology, genomics, neuroscience, botany and ecology. The basic idea is as
follows. A list of spatial or space-time vectors x1, . . . ,xJ associated with the
occurrence of certain events of interest is observed in a domain D. In addition,
there may also be a random variable or vector Xj that provides additional in-
formation on the jth occurrence for each 1 ≤ j ≤ J . If there is a source of a
cluster at an unknown location t (or a signal centered at t), it may result either
in an unusually large number of occurrences near t or the distribution of Xj
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might be different when xj is near t. For example, in case-control datasets in
epidemiological studies, Xj = 1 denotes the occurrence of a case and Xj = 0
the occurrence of a control. When there is a source of a cluster of cases at t, the
probability that Xj = 1 will be higher when xj is near t. A score S(t) is com-
puted from {(xj , Xj) : 1 ≤ j ≤ J} and a high score is expected when the source
of the cluster is at t. Since t is unknown, the scan statistic M := supt∈D S(t)
is the summary score for the presence of a cluster in D.

Lai and Siegmund (1977, 1979), Woodroofe (1978, 1982) and Siegmund
(1985) developed a set of techniques to study boundary crossing probabilities
of generalized likelihood ratio (GLR) sequential test statistics. These techniques
were subsequently refined and extended by many researchers so that they can
be applied on a wide variety of settings. We track these developments in Sec-
tion 4.2 and elaborate on their applications in scan statistics in astronomy
and epidemiology in Section 4.3 and genomics in Section 4.4. We conclude the
paper with a few brief remarks in Section 4.5.

4.2 Theoretical Developments

Throughout this paper, I shall denote the indicator function, | · | the Lebesgue
measure of a set or the determinant of a square matrix and ‖ ·‖ the L2 norm. In
addition, ϕ(x) = (2π)−1/2e−x2/2 and Φ(y) =

∫ y
−∞ ϕ(x) dx are the density and

cumulative distribution, respectively, of the standard normal. We write an ∼ bn

if limn→∞(an/bn) = 1. If t = (t1, . . . , td) ∈ Rd and A is a subset of Rd, then
for any w > 0, t + wA = {t + wu : u ∈ A}. Before proceeding to the analytical
techniques, we give a few examples to illustrate how the scores S(t) are defined
in different settings.

Example 4.2.1 Let J be either a fixed positive integer or a Poisson random
variable. Assume that under the null hypothesis of no clustering, x1, . . . ,xJ are
independent and identically distributed (i.i.d.) random variables uniformly dis-
tributed on a compact domain D. Let A be a nice compact set, for example, the
box kernel A = {u : maxi |ui| ≤ w/2} or the spherical kernel A = {u : ‖u‖ ≤ w}
for some w > 0. Let S(t) be the number of occurrences xj lying inside t+A and
M the corresponding scan statistic. Naus (1965, 1966, 1982), Huntington and
Naus (1975) and Glaz (1989) provided approximate and exact p-value calcula-
tions of M when A is the box kernel. See Glaz, Naus and Wallenstein (2001) for
comparisons against competing p-value approximations and bounds and also
for a good overview of recent developments in scan statistics.

Example 4.2.2 Let x1, . . . ,xJ be the points on a lattice grid in a compact do-
main D. The detection of a signal is of interest here. Under the null hypothesis
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of no signal, X1, . . . , XJ are i.i.d. random variables from a baseline distribu-
tion F with log moment generating function ψ(θ) := log EeθX1 . Assume that
Θ := {θ : ψ(θ) < ∞} is finite in a neighborhood of 0. Then the rate function
of F is given by φ(μ) = supθ∈Θ[θμ − ψ(θ)] and F can be embedded in an ex-
ponential family {Fθ, θ ∈ Θ}, with dFθ(x) = eθx−ψ(θ)dF (x). Let A be a given
signal shape and consider the alternative hypothesis

H1: there exists θ �= 0 and t ∈ D such that X1, . . . , XJ are independent
with Xj ∼ Fθ if xj ∈ t + A and Xj ∼ F otherwise,

indicating that a signal of shape A is centered at some unknown t ∈ D. The
log GLR score for testing the null hypothesis against the alternative hypothesis
is S(t) = ntφ(X̄t), where nt is the number of points xj lying in t + A and
X̄t = n−1

t

∑
xj∈t+A Xj . Tail probabilities for the maxima of S(t) were computed

in Siegmund and Yakir (2000) via a change of measure argument.

Example 4.2.3 Researchers in neuroscience are interested in knowing if a
neural spike time pattern, for example the pattern observed when a bird is
learning a new song while awake, is repeated when the bird is sleeping. See
Dave and Margoliasch (2000) for a more elaborate introduction to the problem.
Let T > 0 and Y = {y1, . . . , yN} be a given template spike time pattern with
0 ≤ yn ≤ T for all n and X = {x1, . . . , xJ} the neural spike times when the
bird is sleeping, with 0 ≤ xj ≤ U for all j, U large compared to T . We want to
check if the spike time pattern Y is repeated inside X ; in other words, if there
exists a time t such that t + Y and X ∩ [t, t + T ] are similar.

In Chi, Rauske and Margoliasch (2003), a pattern-filtering algorithm was
used to match the spike time patterns. Let f be a nonincreasing kernel scoring
function on [0,∞) with f(0) > 0 and limu→∞ f(u) < 0. Common examples
include the continuous Hamming window kernel

f(u) =
{

1
2(1 − β) + 1

2(1 + β) cos
(

πu
ε

)
if u < ε

−β if u ≥ ε,

or the box kernel

f(u) =
{

1 if u < ε
−β if u ≥ ε.

The score
S(t) =

∑

xj∈[t,t+T ]

max
1≤n≤N

f(|xj − t − yn|)

provides the value of a match between t + Y and X ∩ [t, t + T ]. In Chi (2004),
under the assumption that x1 and xi+1−xi, i ≥ 1, are i.i.d. exponential random
variables, the exponent of the tail probability of M = supt S(t) was obtained
using large deviation theory. Using the theory of boundary crossing probabili-
ties, Chan and Loh (2007) obtained a more precise estimate, an approximation
of the tail probability of M .
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We shall illustrate the techniques behind the computation of boundary cross-
ing probabilities with the signal detection problem described in Example 4.2.2.
Let d = 1 and X̄i,j = (j − i)−1

∑j
i+1 Xk when i < j. Let X1, . . . , XJ be i.i.d.

random variables with distribution F under the null hypothesis and let the
score

S(i, j) = (j − i)φ(X̄i,j),

where φ is defined in Example 4.2.2. Let the scan statistic

M = sup
0≤i<j≤J,w0≤(j−i)≤w1

S(i, j).

We shall consider here the computation of P{M ≥ c} when log J = o(c),
J/c → ∞ and wk ∼ αkc for some 0 < α0 < α1 as c → ∞. The problem has
applications in sequential change-point detection, and is solved, for normal Xj

when w0 = 0 and w1 = ∞, in Siegmund and Ventrakaman (1995) and extended
to Markovian Xj satisfying minorization and drift conditions and φ replaced by
a general function in Chan and Lai (2002, 2003).

Large deviation approximations
Let vμ = d2

dθ2 ψ(θ)|θ=θμ and Λ = {μ : α−1
1 ≤ φ(μ) ≤ α−1

0 }. Assume for conve-
nience that F has a continuous bounded density and Λ is a compact set lying
in the interior of the support of F . Then the saddlepoint approximation

P{X̄i0,j0 ∈ dμ} ∼
(

j0 − i0
2πvμ

)1/2

e−(j0−i0)φ(μ) dμ (4.1)

holds uniformly over μ ∈ Λ. Our interest is focused on μ satisfying (j0 − i0)
φ(μ) = c + x for some x either of order 1 or small compared to c.

Local random walk
The next step involves an analysis of the local behavior of S(i, j) for (i, j)
close to (i0, j0) when S(i0, j0) = c + x. Let μ = X̄i0,j0 and let θμ ∈ Θ satisfy
φ(μ) = θμμ−ψ(θμ). Since d

dμφ(μ) = θμ, it follows from a Taylor series expansion
that

S(i, j) = (j − i)φ((X̄i,j − μ) + μ) .= (j − i)[φ(μ) + (X̄i,j − μ)θμ]

= S(i0, j0) +
J∑

k=1

(I{k∈[i,j]} − I{k∈[i0,j0]})[θμXk − ψ(θμ)]. (4.2)

Clearly, Xk follows distribution F for k ≤ i0 and k > j0 irregardless of the
conditioning on X̄i0,j0 . In addition, by Siegmund (1988), Xk is asymptotically
of distribution Fμ (that is Fθμ) and asymptotically independent (for a fixed
number of random variables) for i0 < k ≤ j0, when we condition on X̄i0,j0 = μ.
Hence, under the conditioning,

J∑

k=1

(I{k∈[i,j]} − I{k∈[i0,j0]})[θμXk − ψ(θμ)] ⇒ Wi−i0 + W̃j−j0 , (4.3)
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where W and W̃ are independent random walks with independent increments
[θμXn − ψ(θμ)] and [θμX̃n − ψ(θμ)], respectively, with Xn ∼ Fμ for n ≥ 1,
Xn ∼ F for n ≤ 0, X̃n ∼ F for n ≥ 1 and X̃n ∼ Fμ for n ≤ 0. We shall
denote by Pμ the probability when W and W̃ have increments with these joint
distributions.

We are now left with the task of combining these large deviation approxi-
mations and local random walks, and we shall highlight three approaches here.

(I) Conditioning on the last-exit (or first-passage) time. This is
the method most closely identified with the techniques developed to analyze
sequential GLR test statistics. Unlike in sequential analysis where only one
index is involved and what the last time is needs no explanation, here we need
to deal with two indices i and j. We handle this by defining an ordering � with
(i, j) � (i0, j0) if either i > i0 and j = j0 both occur or if j > j0 occurs. By
(4.1)–(4.3), if (j0 − i0)φ(μ) = c + x, then

P{X̄i0,j0 ∈ dμ, (j − i)φ(X̄i,j) < c for all (i, j) � (i0, j0)}

∼
(

c + x

2πφ(μ)vμ

)1/2

e−c−xPμ

{

max
k≥1

Wk ≤ −x

}

×Pμ

{

max
k≤0

Wk + max
�≥1

W̃� ≤ −x

}

dμ. (4.4)

We sum (4.4) over j0 ≥ i0 + c/φ(μ) for a fixed i0, noting that x increases by
φ(μ) for each increase of j0 by 1, integrate over μ ∈ Λ and sum over 1 ≤ i0 ≤ J
to obtain

P{M ≥ c} ∼ J
( c

2π

)1/2
e−c

∫

Λ
γ(μ)(φ(μ))−3/2v−1/2

μ dμ, (4.5)

where

γ(μ) =
∫ ∞

0
e−xPμ

{

max
k≥1

Wk ≤ −x

}

Pμ

{

max
k≤0

Wk + max
�≥1

W̃� ≤ −x

}

dx.

A rigorous justification of (4.5) is more involved, as given in Siegmund and
Venkatraman (1995) for the case of normal Xi. They also provided a simplifi-
cation, relating γ to the overshoot constant

ν(x) = 2x−2 exp
{
− 2

∞∑

n=1

n−1/2Φ
(
− x

√
n

2

)}
(x > 0), (4.6)

in the normal case. This is achieved via an identity in Siegmund (1992). Analo-
gous overshoot constant expressions for general Xi, relevant to both p-value and
sample size calculations, can be found in Woodroofe (1979), Tu and Siegmund
(1999), Storey and Siegmund (2001) and Tu (2009).
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(II) Conditioning on local or global maxima. Let (i0, j0) be the indices
at which the maximal value M = S(i0, j0) ≥ c is attained. By (4.1)–(4.3), we
obtain (4.5) with the alternative representation

γ(μ) = Pμ

{

max
k =0

Wk < 0
}

Pμ

{

max
�=0

W̃� < 0
}

.

This approach is more commonly used when the score is obtained via a con-
tinuous kernel function. A good reference is Rabinowitz and Siegmund (1997),
which considers signal detection on a homogeneous Poisson process. This work
is discussed in more detail in Section 4.3.1.

(III) Conditioning below a high crossing. The first two approaches in-
volve conditioning above a high level c. There is yet another approach, adapted
by Hogan and Siegmund (1986) from tail probability approximations of Gaus-
sian random fields developed in Pickands (1969), Bickel and Rosenblatt (1973)
and Qualls and Watanabe (1973). Fix i0 and j0 and let them be multiples
of n for some large n. We condition on S(i0, j0) < c, compute the condi-
tional probability that S(i, j) exceeds c for some (i, j) lying in the domain
[i0, i0 + n] × [j0, j0 + n], then add up these probabilities over different i0 < j0.
By (4.1)–(4.3), if (j0 − i0)φ(μ) = c − x, then

P{X̄i0,j0 ∈ dμ, (j − i)φ(X̄i,j) ≥ c for some (i, j) ∈ [i0, i0 + n] × [j0, j0 + n]}

∼
(

c − x

2πφ(μ)vμ

)1/2

e−c+xPμ

{

max
0≤k≤n

Wk + max
0≤�≤n

W̃� ≥ x

}

dμ. (4.7)

We sum (4.7) over i0 ≤ j0 ≤ i0 + c/φ(μ) with j0 a multiple of n and i0 fixed,
integrate over μ ∈ Λ, then sum over 1 ≤ i0 ≤ J with i0 a multiple of n, while
choosing n large, to obtain (4.5) with

γ(μ) = lim
n→∞

n−2

∫ ∞

−∞
exPμ

{

max
0≤k≤n

Wk + max
0≤�≤n

W̃� ≥ x

}

dx.

Again, additional technical arguments are needed here for a rigorous justifica-
tion of these calculations. This approach was used in Chan and Zhang (2007)
to compute tail probabilities of weighted scan statistics and in Chan and Loh
(2007) to compute tail probabilities of template scoring scan statistics. The first
problem will be elaborated further in Section 4.4.1.

4.3 Applications in Spatial Scan Statistics

We focus here on two examples to illustrate how the theory of boundary crossing
probabilities can be used to obtain analytical p-values for spatial or space-time
scan statistics. We start off on a problem with motivations in astronomy. Note
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that the calculations for continuous kernel functions [Rabinowitz and Siegmund
(1997)] and kernels containing discontinuities [Loader (1991)] are different. We
then consider the problem of detecting clusters in a nonhomogeneous population
using a case-control dataset.

4.3.1 Searching for a source of muon particles in the sky

Continuous kernel functions
Consider a background of homogeneous random cosmic rays with known in-
tensity λ. By taking D sufficiently large, we may assume that edge effects are
absent and that the particles are observed on Rd. We shall denote the set of
observed particle locations by {xj}∞j=1. Let f be a non-negative kernel function
on Rd that satisfies

∫
f2(x)dx = 1, is smooth and symmetric in each argument

and vanishes rapidly at infinity. One concrete example is the Gaussian kernel
f(x) = π−d/4e−‖x‖2/2. Let μ =

∫
f(x)dx and let the score

S(t) = λ−1/2
[ ∞∑

j=1

f(xj − t) − λμ]. (4.8)

Let Pθ,t (Eθ,t) denote the probability measure (expectation) under which
{xj}∞j=1 is generated from a nonhomogeneous Poisson process with intensity

λθ,t(x) := λ exp[θf(x − t)], (4.9)

and let Pθ,0 be denoted more simply by Pθ. The nonhomogeneous Poisson pro-
cess motivates S(t) as the efficient score statistics as we let θ → 0 and also
provides the change of measure for computing the tail probabilities of the scan
statistic M = supt∈D S(t).

We provide an outline of the calculations and arguments given in Rabinowitz
and Siegmund (1997) and refer the reader to the article itself for the details. Fix
c > 0 and let b = cλ1/2. By the Poisson clumping heuristic, see, for example,
Siegmund (1988) or Aldous (1989),

P0{M ≥ b} ≈ 1 − e−E0K ,

where K is the number of local maxima in D exceeding the threshold b. Since
f is smooth, ∇S(t) and ∇2S(t), the gradient and Hessian, respectively, of S at
t, are both well defined and continuous. It follows from Theorem 6.1 of Adler
(1981), using a local maxima conditioning argument, that

E0K = |D|Eθ

[(
dP0

dPθ

)

|∇2S(0)|I{S(0)≥b,∇S(0)=0,∇2S(0)<0}

]

, (4.10)

where the statement “∇2S(0) < 0” means ∇2S(0) is a negative definite matrix,
and the expectation on the right-hand side of (4.10) is defined with respect to
a joint probability-density. Let
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ψ(θ) = log E0[eθλ1/2S(0)] = λ

∫

[eθf(x) − 1 − θf(x)] dx.

Then

Eθ(λ1/2S(0)) = ψ′(θ) = λ

∫

f(x)[eθf(x) − 1]dx,

Varθ(λ1/2S(0)) = ψ′′(θ) = λ

∫

f2(x)eθf(x)dx.

Let the rate function I(θ) = θψ′(θ) − ψ(θ) and select θ to satisfy ψ′(θ) = cλ.
By a Gaussian approximation on the process S(t) under Pθ, and making use of
the relations

Eθ[∇S(0)] = 0, Covθ(S(0),∇S(0)) = 0,

Eθ[λ1/2∇2S(0)] = −θCovθ(λ1/2∇S(0)), Eθ(∇2S(0),∇S(0)) = 0,

Covθ

(
∂

∂ti
S(0),

∂

∂tj
S(0)

)

= I{i=j}

∫ [
∂

∂xi
f(x)

]2

eθf(x)dx,

Covθ(S(0),∇2S(0)) =
∫

f(x)∇2f(x)eθf(x)dx,

Rabinowitz and Siegmund obtained the approximation

E0K ∼ θd−1e−I(θ)(2π)−(d+1)/2|D|

⎧
⎨

⎩

∏d
i=1 Varθ

(
λ1/2 ∂

∂ti
S(0)

)

Varθ(λ1/2S(0))

⎫
⎬

⎭

1/2

.

Rabinowitz and Siegmund (1997) also considered scaling of f by an unknown
σ to capture clusters of different sizes. Consider the more general score function

S(t, σ) = λ−1/2

⎡

⎣σ−d/2
∞∑

j=1

f

(
xj − t

σ

)

− σd/2λμ

⎤

⎦ ,

and let the scan statistic Mσ0,σ1 = supt∈D,σ0≤σ≤σ1
S(t, σ), where 0<σ0<σ1<∞.

We refer the reader to Rabinowitz and Siegmund (1997) pp. 175–179 for the
tail approximation of Mσ0,σ1 , which involves a more complicated derivation.

Kernel functions containing discontinuities
When f is not continuous, then S(t) is also not continuous, and the approach
given above does not work. We illustrate the general approach with the box-
shaped kernel

f = IAΔ
, where AΔ = {(x1, x2) : 0 ≤ x1 ≤ Δ1, 0 ≤ x2 ≤ Δ2},
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considered in Loader (1991). Let N(t, Δ) denote the number of points xj lying
inside t + AΔ. Let D = [0, 1]2 and consider (t, Δ) such that t + AΔ ⊂ D. We
shall use as our score function at (t, Δ), the log GLR test statistic for testing

H0: intensity of Poisson process is λ at all t ∈ D,
vs. H1: intensity at x is λ(x) = λ exp(θI{x∈t+AΔ}) for some θ > 0.

Let t ≺ u if ti < ui for all i. Then

S(t, Δ) =
{

N(t, Δ) log
(

N(t, Δ)
nΔ1Δ2

)

+[n − N(t, Δ)] log
(

n − N(t, Δ)
n(1 − Δ1Δ2)

)}
I{N(t,Δ)≥nΔ1Δ2}, (4.11)

where n is the total number of points in D, and we consider the scan statistic

Mw1,w2 = sup
w1≺Δ≺w2

[

sup
t+AΔ⊂D

S(t, Δ)

]

, (4.12)

for some 0 ≺ w1 ≺ w2.
Loader (1991) first considered the case of fixed Δ and n. Let D′ = [0, 1 −

Δ1] × [0, 1 − Δ2] and consider the lattice grid D′
δ = D′ ∩ (δZ)2. Let M =

supt∈D′ N(t, Δ) and Mδ = supt∈D′
δ
N(t, Δ). Let P (n) denote probability condi-

tioned on n. Using the first-passage time approach given in (I) of Section 4.2,
the tail approximations of Mδ := supt∈D′

δ
N(t, Δ) is first obtained. By using a

good bound of P (n){M − Mδ > 0} for small δ > 0, Loader (1991) showed that
for any ε > 0 with Δ1Δ2(1 + ε) rational,

P (n){M ≥ m} ∼ n2Δ1Δ2(1 − Δ1)(1 − Δ2)ε3

(1 − Δ1Δ2)3(1 + ε)
P (n){N(0, Δ) = m},

as m → ∞ with m = nΔ1Δ2(1 + ε) a positive integer.
We shall now proceed to the tail probabilities of Mw1,w2 . For given η > 0,

let h(Δ) be defined implicitly as a solution to the equation

h(Δ) log
(

h(Δ)
Δ

)

+ [1 − h(Δ)] log
(

1 − h(Δ)
1 − Δ

)

=
η2

2
, (4.13)

subject to the constraint h(Δ) > Δ. Let c = η
√

n. Then by (4.11) and (4.12),

{
Mw1,w2 ≥ c2/2

}
=

{

sup
w1≺Δ≺w2

sup
t+AΔ⊂D

[N(t, Δ) − nh(Δ1Δ2)] ≥ 0

}

.(4.14)

The local random walk analysis of S(t, Δ) involves both a tangent approximation

h(Δ′) .= h(Δ) + (Δ′ − Δ)h′(Δ)



96 H.P. Chan, I.-P. Tu, and N.R. Zhang

and a decomposition

N(t′, Δ′) − N(t, Δ) .= Z1(t′1 − t1) + Z2(t′2 − t2)

+Z3(t′1 − t1 + Δ′
1 − Δ1) + Z4(t′2 − t2 + Δ′

2 − Δ2),

where Z1, . . . , Z4 are independent two-sided Poisson processes. Then

P (n){Mw1,w2 ≥ c2/2} ∼ c7φ(c)
∫ u1

u0

u2

η7[h′(u)]3

(

h′(u) − 1 − h(u)
1 − u

)4

×
(

1 − h(u)
1 − u

− h(u)
u

)3
(
−(1 + u) log u − 2(1 − u)

√
h(u)(1 − h(u))

)

du, (4.15)

where u0 = w10w20 and u1 = w11w21 are the areas of the smallest and largest
windows, respectively. A simulation study conducted in Loader (1991) shows
(4.15) to be more accurate than the approximation obtained using an asymp-
totic Gaussian process argument.

4.3.2 Case-control epidemiological studies

In the detection of disease clusters, we have to adjust for the nonhomogeneity
of the underlying population, both in terms of the population, density and
the distribution of disease risk factors like gender, age or ethnic group. One
way to achieve this is through a case-control epidemiological study; see, for
example, Whittemore et al. (1987), Cuzick and Edwards (1990), Diggle (1990)
and Kulldorff (1997).

Assume we have a dataset of locations of disease cases and a corresponding
dataset of locations of healthy controls. We merge the two datasets into one
and denote it by {(xj , Xj) : 1 ≤ j ≤ J}, xj denoting the location of the jth
subject with Xj = 1 if it corresponds to a case and Xj = 0 if it corresponds to
a control.

We focus here on the model proposed in Diggle (1990) to test if there exists
a location risk factor that increases the occurrence rate of cases. Let λ(x) be
the rate of generating controls at position x and let ρλ(x)eθg(x,t) be the rate
of generating cases at position x with θ > 0 when there is a risk factor at
t and θ = 0 when there is no risk factor. The semi-parametric likelihood is
proportional to

J∏

j=1

{[λ(xj)ρeθg(xj ,t)]Xj [λ(xj)]1−Xj}

while the conditional likelihood for given x1, . . . ,xJ and I =
∑J

j=1 Xi is
∏J

j=1 eXjθg(xj ,t)

∑
α∈U

∏J
j=1 eI{j∈α}θg(xj ,t)

,
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where U is the class of all
(
J
I

)
subsets of {1, . . . , J} of size I. Let p̂0 = I/J

and ḡ(t) = J−1
∑J

j=1 g(xj , t). Then the efficient score statistic for testing the
presence of a localized risk factor at t is

Tt =
J∑

j=1

(Xj − p̂0)[g(xj , t) − ḡ(t)]. (4.16)

Let the normalized score S(t) = Tt/
√

Var(Tt), where Var(Tt) = p̂0(1 − p̂0)
(J − 2)

∑J
j=1[g(xj , t) − ḡ(t)]2/(J − 1). Rabinowitz (1994) obtained p-value

estimates of M = supt∈D S(t) by applying the tail probability approxima-
tion of a Gaussian process having the same covariance structure as S(t). Let
σt,u = Cov(S(t), S(u)), Λt a matrix with (i, j)th element −

(
∂2σ(s,u)
∂si∂sj

) ∣
∣
∣
s=u

and

Λ′
t = P T

t ΛtPt, where Pt is a d × (d − 1) matrix comprising of orthonormal
vectors of the tangent space of the boundary ∂D at t. Then by Knowles and
Siegmund (1989), Corollary 2,

P{M > b} ≈ (2π)−d/2bd−1ϕ(b)
(∫

D
|Λt|1/2dt

+(π/2)1/2b−1

∫

∂D
|Λ′

t|1/2dt
)

. (4.17)

The SaTScan software developed by Kulldorff (2006) and Information Man-
agement Services, Inc. considers g(x, t) = I{x−t‖≤w} for some w > 0. Let mt,w

and nt,w be the total number of cases and the total number of occurrences
(=cases+controls), respectively, in {u : ‖u − t‖ ≤ w}. Instead of the efficient
score statistic, they consider the log GLR score

S(t, w) = [nt,wφ(mt,w/nt,w)+(I−nt,w)φ((J−mt,w)/(I−nt,w))]I{mt,w/nt,w>p̂0},

where φ(p) = p log(p/p̂0)+(1−p) log[(1−p)/(1− p̂0)]. In the SaTScan software,
p-values of the scan statistics, including scan statistics involving other types of
data, are computed using permutation tests.

4.4 Recent Applications in Genomics

Scan statistics are useful for interpreting genomes in the post-sequencing phase.
They play an exploratory role, with the goal of locating genomic regions ex-
hibiting properties of extreme deviation to be singled out for further testing.
There is a rich source of statistical problems here, many still relatively unex-
plored. Due to space constraints, we focus only on two examples because the
description and solution of each category of problems require a different set of
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domain knowledge. The first problem is on the scanning of a DNA sequence
for predefined word patterns. The second is on the analysis of genomic profiling
data, in particular DNA copy number profiling.

4.4.1 Biomolecular sequence analysis

DNA and protein sequences can be modeled as a linear sequence drawn from a
stationary distribution on an alphabet representing either the 21 amino acids
in the case of protein sequences, or the bases A,C,G and T in the case of DNA
sequences. Over the years, researchers have identified specific word patterns
that are associated with either the encouragement or suppression of certain
biological activity.

Transcription factors are proteins that bind to specific parts of DNA, known
as transcription factor binding sites (TFBSs), to control the timing and rate
of transcription of DNA into RNA. The TFBSs are identified by scoring with
respect to certain scoring matrices, and the presence of a cluster of these sites
indicates that genes regulated by the associated transcription factors may be
located nearby. Lifanov et al. (2003) successfully used scan statistics to locate
clusters of binding sites in DNA sequences by counting the number of TFBS
located in a sliding window, while Rajewsky et al. (2002) weighed the TFBS
by the scores obtained from the scoring matrices.

A more classical application of scan statistics in counting word patterns is in
the identification of origins of replication in viruses, cf. Masse et al. (1992). The
four letters in the DNA alphabet can be divided into two complementary pairs
with A–T one pair and C–G the second pair. In DNA sequences, a palindrome
is a DNA word which, when read backwards, has the complementary spelling
of the original word. For example, the word ACGCGCGT is a palindrome be-
cause its letter-wise complementary spelling is TGCGCGCA. In bacterial and
viral genomes, palindromes occur with unusually high frequency near locations
associated with the initiation of replication, known as origins of replication.

Karlin and Brendel (1992) formulated the r-scan statistic to detect anoma-
lies in the spacing between occurrences of word patterns. Let n be the length
of the genomic sequence and x1 < · · · < xJ the locations of the patterns. Let
dj = xj+1 − xj be the inter-feature distances, A

(r)
i =

∑i+r−1
k=i dk the r-scan

process and A(r) = min1≤i≤J−r A
(r)
i the minimal r-scan. Let Nu(t) be the num-

ber of word patterns in the interval (t, t + u] and Mu = sup0≤t≤n−u Nu(t) the
maximal scan statistic. Then we have the duality

{Mu ≥ r + 1} = {A(r) ≤ u},

and the two scan statistics can be used interchangeably. P-value approximations
for the significance of r-scans were obtained by Arratia, Goldstein and Gordon
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(1989) and Glaz et al. (1994) using Poisson and compound Poisson approxima-
tions, respectively. See also Leung and Yamashita (1999) for the applications of
these p-value approximations on palindrome counting scan statistics.

In addition to Rajewsky et al. (2002), weighted scan statistics was also
considered in Chew, Choi and Leung (2005) for scoring palindromic patterns,
which we consider here to be palindromes having a length of at least ten DNA
letters. Since the length of a palindrome must be even, Chew et al. let Xj = �j/2,
where �j is the length of the jth palindromic pattern. Let Su(t) =

∑
xj∈(t,t+u] Xj

and let the weighted scan statistic Mn,u = sup0≤t≤n−u Su(t). Chan and Zhang
(2007) used a marked Poisson process approximation of Su(t) to obtain an
approximation of the p-value of Mn,u. Let F be the distribution of Xj , which
we assume to have positive mean μ. Let λ be the probability of observing a
palindromic pattern at any one location. Let K(θ) = E(eθX1) and for given
x > λμ, define θx(> 0) and αx(> λ) to be the unique constants satisfying

K ′(θx) = x/λ, αx = λK(θx). (4.18)

Let the large deviation rate function I(x) = −(αx − λ) + θxx and define Fθ

to be the tilted distribution of F satisfying Fθ(dx) = eθxF (dx)/K(θ), with
probability mass function (density) fθ when F is discrete (continuous). Let
Y1, Y2, . . . be i.i.d. random variables with the mixture probability mass function
(density)

g(y) =
( αx

λ + αx

)
fθx(y) +

( λ

λ + αx

)
f(−y), (4.19)

and let Rk = Y1 + · · · + Yk. Define the overshoot constant

νx = lim
b→∞

E[e−θx(Rτb
−b)], where τb = inf{k ≥ 1 : Rk ≥ b}, (4.20)

with b a multiple of η if F is arithmetic with span η, in other words, if F has sup-
port on the grid {0,±η,±2η, . . .} but not on a coarser lattice grid containing 0.
By the approach of conditioning below a high crossing, see (III) in Section 4.2,
Chan and Zhang (2007) showed that

P{Mn,u ≥ ux} ∼ 1 − exp

{

−(n − u)νxe−uI(x)(x − λμ)
√

2πuλK ′′(θx)

}

, (4.21)

if u → ∞ and (n − u) → ∞ as n → ∞.
In Figure 4.1, we use (4.21) to obtain threshold levels corresponding to a

p-value of 0.001 in the search for clusters of palindromic patterns with window
size u equal to 0.5 % of the genome length. For the unweighted case, Xj = 1 for
all palindromic patterns, while for the weighted case, we choose Xj = (�j/2)−4.
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Figure 4.1. The x coordinate represents the locations of three well-known virus
genomes. The y coordinate represents either half the length of the palindromic
patterns (top plots), u−1Nu(t − u/2) for the unweighted case (middle plots)
or u−1Su(t − u/2) for the weighted case (bottom plots). The dotted lines are
threshold levels corresponding to p-values of 0.001. The inverted triangles are
experimentally validated origins of replication.

4.4.2 Detecting changes in DNA copy number

The DNA copy number is the number of copies of DNA at a region of a genome,
the default being two for all human autosomes. The variation of this number,
known as the DNA copy number variation (CNV), corresponds to gains and
losses of specific chromosomal segments. These variations may be inherited
[Redon et al. (2006)], or they may occur due to mutation and are then associated
with certain diseases like cancer [Pinkel and Albertson (2005)]. In DNA copy
number data, the quantity of homologous DNA present in a population of cells is
measured by a set of probes, each mapping to a specific location in the genome.

Let Xj be the measured DNA quantity at probe j, relative to the expected
value of two, at a fixed location xj in the genome. We do not observe integer
valued Xj due to inhomogeneity of the cell sample and substantial measure-
ment error. Our objective is to partition the genome into segments of equal
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copy number. We shall disregard irregularities in the spacing of the probe loca-
tions, a reasonable assumption for most experimental platforms and accepted
in practice. Many different statistical methods have been applied to this prob-
lem; see Lai et al. (2005) for a broad survey of these methods. We shall focus
here on the approach taken by Olshen et al. (2004). Consider a segment of the
genome, containing J probes, which we would like to test for constant CNV.
Define X̄ = J−1

∑J
1 Xj and σ̂2 = J−1

∑J
1 (Xj − X̄)2. Let

U(s, t) =

∑t
j=s+1(Xj − X̄)

σ̂
√

(t − s)[1 − (t − s)/J ]
, (4.22)

and
M = max

0≤s<t≤J,v0<t−s<v1

U2(s, t). (4.23)

When a significant p-value is obtained, for example by using the approximation
in Siegmund (1986), we partition the segment and test each sub-segment further
in the same manner.

Since most genomic profiling studies involve cohorts of individuals, it is of
interest to pool samples together to gain power in detecting recurrent CNVs.
This problem was first analyzed using hidden Markov models, cf. Shah et al.
(2007), and has also been studied recently by Zhang et al. (2008) under the
framework of a simultaneous scan of multiple aligned sequences for recurrent
variant intervals of shared location. The formulation in Zhang et al. (2008) is as
follows. For each sequence i = 1, . . . , N and position j = 1, . . . , J , the random
variables Xij are mutually independent and normally distributed with mean
values μij and variances σ2

i . Under the null hypothesis, μi1 = · · · = μiJ for each
sample i, and under the alternative hypothesis, there exists J ⊂ {1, . . . , N}
(with J �= ∅), and τ1 < τ2 with v0 ≤ (τ2 − τ1) ≤ v1 for some 1 ≤ v0 ≤ v1 < J ,
such that for each i ∈ J , μij = μi0 + δiI{τ1<j≤τ2} for some δi �= 0. The GLR
test in this setting yields the scan statistic

M = max
0≤s<t≤J,v0≤t−s≤v1

Zs,t, where Zs,t =
N∑

i=1

[U2
i (s, t) − 1]√

2N
, (4.24)

and Ui(s, t) is defined as in (4.22) relative to the ith sequence.
The sum of chi-squares statistic in (4.24) pools signals from all samples,

however weak. Zhang et al. (2008) also proposed a weighted sum of chi-squares
statistic that requires individual sequences to show some evidence of a signal
before it is allowed to contribute significantly to the pooled scan. Let Qi(s, t) =
I{i∈J} (the presence of (s, t) in the notation will be clear later). If J is known,
then the log likelihood ratio statistic is

max
s<t

N∑

i=1

log{[1 − Qi(s, t)] + Qi(s, t)eU2
i (s,t)/2} = max

s<t

N∑

i=1

Qi(s, t)U2
i (s, t)/2.

(4.25)
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Since Qi(s, t) is not observable, a plug-in estimate is derived by using a Bayesian
formulation. Let p denote the prior probability that Qi(s, t) = 1. Then the pos-
terior mean of Qi(s, t), after maximizing with respect to the unknown parame-
ters, is

Q̂i(s, t) =
eU2

i (s,t)/2

rp + eU2
i (s,t)/2

, (4.26)

where rp = (1 − p)/p. Replacing Qi by Q̂i in (4.25) and standardizing leads to
the weighted sum of chi-squares statistic

Z(p)(s, t) =
∑N

i=1[w(Ui(s, t))U2
i (s, t) − μp]

σp

√
N

, (4.27)

where w(u) = eu2/2/{rp + eu2/2} and μp, σ2
p are the mean and variance, respec-

tively, of w(U)U2 when U is a standard normal random variable.
An approximation of the significance of scans using either (4.24) or (4.27)

can be obtained via a last-exit time approach. Instead of the process Z
(p)
s,t , we

consider more generally

Zf
s,t =

∑N
i=1[f(Ui(s, t)) − μ]

σ
√

N
,

where f is a well-behaved function, μ = Ef(U) and σ2 = Var(f(U)). Under the
assumption that the noise is independent between samples, Zf

s,t is a normalized
sum of N i.i.d. processes, and thus for large N is approximately a mean zero
Gaussian process on the two-dimensional indexing set D={(s, t) : 0≤s< t≤J,
v0 ≤ t − s ≤ v1} with covariance function

ρ(s, t, u, v) = Cov(Zf
s,t, Z

f
u,v) = σ−2Cov(f(U1(s, t)), f(U1(u, v))). (4.28)

The function ρ is not differentiable, but its left and right partial derivatives
exist and have the same magnitude. Hence, we may define

ρ′(s, t) = lim
a↑0

∣
∣
∣
∣
ρ(s, t, s + a, t) − ρ(s, t, s, t)

a

∣
∣
∣
∣ . (4.29)

By conditioning on the last-exit time, it follows from the calculations in
Siegmund (1988) that

P

{

max
(s,t)∈D

Zf
s,t > c

}

≈ ϕ(c)
c

∑

(s,t)∈D

∫ ∞

0
e−xP

{

max
n≥1

W (s,t)
n ≤ −x

}

×P

{

min
n≥0

W (s,t)
n + min

n≥1
W̃ (s,t)

n ≥ x

}

dx, (4.30)
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where W
(s,t)
n is a random walk of i.i.d. normal random variables with mean

−c2ρ′(s, t) and variance 2c2ρ′(s, t), and W̃
(s,t)
n is an identically distributed

random walk, independent of the first random walk. The formula in (4.30) uses
a Gaussian approximation on Zf

s,t, which is asymptotically a function of the
chi-square random variables.

A more accurate approximation can be obtained by correcting for the skew-
ness of f(U). Let ψ(θ) = log exp{θ[f(U)−μ]/σ} and select θ to be the positive
root of the equation N1/2ψ′(θ) = c. Replace ϕ(c)/c in (4.30) with the saddle-
point approximation [2πψ′′(θ)]−1/2 exp{−N [θψ′(θ)−ψ(θ)]} and use Lemma 21
of Siegmund (1992) to evaluate the integral to obtain

P

{

max
(s,t)∈D

Zf
s,t > c

}

≈ [2πψ′′(θ)]−1/2e−N [θψ′(θ)−ψ(θ)]c3

×
∑

(s,t)∈D

[ρ′(s, t)]2ν2
(
c0[2ρ′1(s, t)]

1/2
)

, (4.31)

where c0 = c/
√

N and ν is the overshoot constant given in (4.6).
The computation of the partial derivatives ρ′ can be simplified by using the

expression

ρ′(s, t) = (2σ2)−1{E[f(Us,t)f ′(Us,t)Us,t] − E[f(Us,t)f ′′(Us,t)]}κ(t − s), (4.32)

where κ(r) = [r(1 − r/J)]−1. For example, f(x) = x corresponds to the simple
one sample case and by (4.32), ρ′(s, t) = κ(t − s)/2. Substituting this in (4.31)
provides us with the significance level approximation of Siegmund (1992). The
sum of chi-squares statistic (4.24) corresponds to f(x) = x2 and ρ′(s, t) =
κ(t − s).

4.5 Concluding Remarks

In addition to DNA copy number, scan statistics can be applied on many other
types of genomic profiling data. Recent technological advancements have al-
lowed the measurement of many types of genomic activity, all of which produce
enormous quantities of data, where the primary goal is to locate regions of
change from baseline in a linear sequence. There is a common theme of scan-
ning for signals of unknown width and scanning for simultaneous signals in
multiple sequences. Hoh and Ott (2000), Ji and Wong (2005) and Keles et al.
(2006) are recent articles that apply scan statistics on the DNA genome. These
advancements and advancements in other applied fields like neuroscience have
resulted in the collection of a huge amount of data, and scan statistics have
been useful in identifying meaningful signals and patterns.
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In more traditional areas of scan statistics applications, for example in as-
tronomy and epidemiological studies, there are still many important issues that
can occupy the attention and time of researchers. Current scan statistics are
geared towards the detection of one cluster of a predetermined shape. It will be
interesting to study how scan statistics can be modified so that they can detect
multiple clusters or signals with irregular shapes more effectively.
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