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Abstract: Precedence-type tests are proposed for comparing several treatments
with a control. The null distributions of these test statistics are derived, and
critical values for some combination of sample sizes are then presented. Next, the
exact power function of these tests under the Lehmann alternative is derived
and used to compare the power properties of the proposed test procedures.
Finally, an example is presented to illustrate all the test procedures discussed
here.
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2.1 Introduction

In life-testing and reliability experiments, it is natural to compare several treat-
ments with a standard treatment (control). For example, a manufacturer of elec-
tronic components may wish to compare (k−1) new production processes with
the standard process and then determine whether any of these new processes
would produce more reliable components than the standard process. In many
cases, the costs of production for the new processes are relatively high because
they are under development, and so it would be desirable to have a statistical
test procedure which allows the experimenter to make a decision early on in
the life-test.

The precedence test, first proposed by Nelson (1963), is a distribution-free
two-sample life-test (i.e., a special case when k = 2) based on the order of
early failures. Assume that a random sample of n1 units from distribution FX

and another independent sample of n2 units from distribution FY are placed
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simultaneously on a life-testing experiment. Suppose the null hypothesis is that
the two lifetime distributions are equal, and the alternative hypothesis of in-
terest is that one distribution is stochastically larger than the other, say, FX

is stochastically larger than FY . This alternative corresponds to the situation
wherein the Y -units are more reliable than the X-units. The experiment is ter-
minated as soon as the r-th failure from the Y -sample is observed. Then, the
precedence test statistic P(r) is defined simply as the number of failures from
the X-sample that precede the r-th failure from the Y -sample. It is obvious
that large values of P(r) lead to the rejection of the hypothesis that FX = FY

and in favor of the above-mentioned alternative hypothesis. The precedence
test will be useful (i) when a life-test involves expensive units as the units that
had not failed could be used for some other testing purposes, and (ii) to make
quick and reliable decisions early on in the life-testing experiment. Many au-
thors have studied the power properties of the precedence test and have also
proposed some alternative tests; see, for example, Eilbott and Nadler (1965),
Shorack (1967), Nelson (1986, 1993), Lin and Sukhatme (1992), Balakrishnan
and Frattina (2000), Balakrishnan and Ng (2001), Ng and Balakrishnan (2002,
2004), and van der Laan and Chakraborti (2001). A brief review of all these
precedence-type tests is first presented in Section 2.2, while an elaborate dis-
cussion of precedence-type tests and their variants can be found in the review
articles by Chakraborti and van der Laan (1996, 1997) and also in the recent
book by Balakrishnan and Ng (2006).

In this work, different precedence-type test procedures are proposed for the
k-sample problem. Specifically, suppose we have (k−1) treatments that we wish
to compare with a control, or (k−1) new processes that we wish to compare with
the standard process. With F1(x) denoting the lifetime distribution associated
with the control (or the standard process) and Fi+1(x) denoting the lifetime
distribution associated with the i-th treatment (or the i-th new process) for
i = 1, 2, . . . , k − 1, our null hypothesis is simply

H0 : F1(x) = F2(x) = · · · = Fk(x) for all x. (2.1)

We are specifically concerned with a stochastically ordered alternative of the
form

H1 : {F2(x) ≤ F1(x)} ∪ {F3(x) ≤ F1(x)} ∪ · · · ∪ {Fk(x) ≤ F1(x)} for all x,

with at least one holding strictly for some x. (2.2)

Suppose k independent random samples of sizes n1, n2, . . . , nk from F1(x),
F2(x), . . . , Fk(x), respectively, are placed simultaneously on a life-testing exper-
iment. The experiment is terminated as soon as the r-th failure from F1(x) is
observed. Then, the number of failures from Fi(x), i = 2, . . . , k, in between the
failures from F1(x) are counted and their functions are used as test statistics
for testing the hypothesis in (2.1).
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The chapter is organized as follows. In Section 2.2, we review some results
on the precedence-type tests which are considered in the subsequent sections. In
Section 2.3, we propose the precedence-type tests, which include tests based on
the precedence, weighted maximal precedence and minimum Wilcoxon rank-
sum precedence test statistics, for testing the hypothesis in (2.1). The exact
null distributions of the proposed test statistics are derived in Section 2.3, and
critical values for some selected choices of sample sizes are also tabulated. Ex-
act power properties of these tests under Lehmann alternatives are derived in
Section 2.4. We then compare the power properties of the proposed precedence-
type tests under Lehmann alternatives. Finally, an example is presented to
illustrate all the tests discussed here.

2.2 Review of Precedence-Type Tests

The precedence-type test allows a simple and robust comparison of two distri-
bution functions. Suppose there are two failure time distributions FX and FY

and that we are interested in testing

H∗
0 : FX = FY against H∗

1 : FX > FY . (2.3)

Note that some specific alternatives such as the location-shift alternative and
the Lehmann alternative are subclasses of the stochastically ordered alternative
considered in (2.3).

Assume that a random sample of n1 units from distribution FX and another
independent sample of n2 units from distribution FY are placed simultaneously
on a life-testing experiment. Let X1, . . . , Xn1 denote the sample from FX , and
Y1, . . . , Yn2 denote the sample from FY . Let us denote the order statistics from
the X- and Y -samples by X1:n1 ≤ · · · ≤ Xn1:n1 and Y1:n2 ≤ · · · ≤ Yn2:n2 ,
respectively. Further, let M1 denote the number of X-failures before Y1:n2 and
Mi the number of X-failures between Yi−1:n2 and Yi:n2 , i = 2, 3, . . . , r. Figure 2.1
gives a schematic representation of this precedence setup.

Note here that the idea of precedence-type test is closely related to that
of a run, which is defined as an uninterrupted sequence. Wald and Wolfowitz
(1940) used runs to establish a two-sample test for testing the hypothesis in
(2.3). They suggested that one should combine the two samples, arrange the
n1 + n2 observations in increasing order of magnitude, and replace the ordered
values by 0 or 1 depending on whether it originated from the X-sample or the
Y -sample, respectively. For example, in Figure 2.1, we have a binary sequence
(1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1). Then, the total number of runs in that binary
sequence is used as a test statistic to test the hypothesis in (2.3). Instead of
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Figure 2.1. Schematic representation of a precedence life-test.

using the number of runs in the binary sequence, the precedence-type tests use
the length of the runs of 0’s (i.e., Mi, i = 1, . . . , n2) and their functions as test
statistics for testing the hypotheses in (2.3). For extensive reviews on runs and
applications, one may refer to Balakrishnan and Koutras (2002) and Fu and
Lou (2003).

2.2.1 Precedence test

The precedence test statistic P(r) is defined simply as the number of failures
from the X-sample that precede the r-th failure from the Y -sample, i.e.,

P(r) =
r∑

j=1

Mj .

Large values of P(r) lead to the rejection of H∗
0 and in favor of H∗

1 in (2.3).
In other words, H∗

0 is rejected if P(r) ≥ s, where s is the critical value of the
precedence test statistic for specific values of n1, n2, r and level of significance
(α). For example, from Figure 2.1, with r = 4, the precedence test statistic
takes on the value P(4) =

∑4
i=1 Mi = 0+3+4+1 = 8. If we have n1 = n2 = 10

and we use the precedence test with r = 4, the near 5% critical value will be
s = 8 with exact level of significance 0.035, in which case H∗

0 would be rejected
if there were at least 8 failures from the X-sample before the fourth failure
from the Y -sample. Therefore, the null hypothesis that the two distributions
are equal is rejected based on the precedence test in this example.

From Balakrishnan and Ng (2006, Theorem 4.1), we have the joint proba-
bility mass function of (M1, . . . , Mr), under H∗

0 : FX = FY , to be
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Pr (M1 = m1, M2 = m2, . . . , Mr = mr | H0 : FX = FY )

=

⎛

⎝
n1 + n2 −

r∑

j=1
mj − r

n2 − r

⎞

⎠

(
n1 + n2

n2

) . (2.4)

The null distribution and critical values of the precedence test statistic P(r) can
be readily computed from (2.4). The critical values and their exact levels of
significance (as close as possible to 5% and 10%) for different choices of r and
the sample sizes n1 and n2 are presented, for example, in Balakrishnan and Ng
(2006).

2.2.2 Weighted maximal precedence test

Balakrishnan and Frattina (2000) observed that a masking effect is present in
the precedence test which has an adverse effect on its power properties. The
maximal precedence test proposed by Balakrishnan and Frattina (2000) and
Balakrishnan and Ng (2001) was specifically to avoid this masking problem. It
is a test procedure based on the maximum number of failures occurring from the
X-sample before the first, between the first and the second, . . . , between the
(r− 1)-th and the r-th failures from the Y -sample. Then, Ng and Balakrishnan
(2005) proposed the weighted maximal precedence test by giving a decreasing
weight to mj as j increases, which is given by

M(r) = max
1≤j≤r

(n2 − j + 1)Mj . (2.5)

It is also a test procedure suitable for testing the hypotheses in (2.3) with large
values of M(r) leading to the rejection of H∗

0 and in favor of H∗
1 in (2.3). The

null distribution of the weighted maximal precedence test statistic M(r) can also
be obtained from (2.4). The critical values and their exact levels of significance
(as close as possible to 5% and 10%) for different choices of r and the sample
sizes n1 and n2 are presented, for example, in Balakrishnan and Ng (2006).
For example, if we refer to Figure 2.1, with r = 4 and with n1 = n2 = 10,
the critical value is 42 with exact level of significance 0.043 and the weighted
maximal precedence test statistic is M(4) = max(10 × 0, 9 × 3, 8 × 4, 7 × 1) =
max(0, 27, 32, 7) = 32. Therefore, the null hypothesis that the two distributions
are equal is not rejected based on the weighted maximal precedence test in this
example.

2.2.3 Minimal Wilcoxon rank-sum precedence test

The Wilcoxon rank-sum test is a well-known nonparametric procedure for
testing the hypotheses in (2.3) based on complete samples. For testing the
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hypotheses in (2.3), if complete samples of sizes n1 and n2 are available from
FX and FY , respectively, one can use the standard Wilcoxon’s rank-sum
statistic, proposed by Wilcoxon (1945), which is simply the sum of ranks of
X-observations in the combined sample.

Ng and Balakrishnan (2002, 2004) proposed the Wilcoxon-type rank-sum
precedence tests for testing the hypotheses in (2.3) in the context of precedence
test described earlier, i.e., when the Y -sample is Type-II right censored. This
test is a variation of the precedence test and a generalization of the Wilcoxon
rank-sum test. In order to test the hypotheses in (2.3), instead of using the
maximum of the frequencies of failures from the X-sample between the first
r failures of the Y -sample, one could use the sum of the ranks of those fail-
ures. More specifically, suppose that M1, M2, . . . , Mr denote the number of X-
failures that occurred before the first, between the first and the second, . . . ,
between the (r− 1)-th and the r-th Y -failures, respectively; see Figure 2.1. Let
W be the rank-sum of the X-failures that occurred before the r-th Y -failure.
The Wilcoxon’s rank-sum test statistic will be smallest when all the remaining(

n1 −
r∑

j=1
Mj

)

X-failures occur between the r-th and (r+1)-th Y -failures. The

test statistic in this case would be

W(r) = W +

⎡

⎣

⎛

⎝
r∑

j=1

Mj + r + 1

⎞

⎠+

⎛

⎝
r∑

j=1

Mj + r + 2

⎞

⎠+ · · · + (n1 + r)

⎤

⎦

=
n1(n1 + 2r + 1)

2
−

r∑

j=1

(r − j + 1)Mj .

This is called the minimal rank-sum statistic. Note that in the special case of
r = n2 (that is, when we observe a complete sample), W(n2) is equivalent to
the classical Wilcoxon’s rank-sum statistic. Small values of W(r) lead to the
rejection of H∗

0 and in favor of H∗
1 in (2.3). The null distribution of the minimal

Wilcoxon-type rank-sum precedence test statistic can once again be obtained
from (2.4). The critical values and their exact levels of significance (as close as
possible to 5% and 10%) for different choices of r and the sample sizes n1 and
n2 are presented, for example, in Balakrishnan and Ng (2006).

For example, from Figure 2.1, when n1 = n2 = 10 and r = 4, we have

W(4) = 2 + 3 + 4 + 6 + 7 + 8 + 9 + 11 + 13 + 14 = 77

and the critical value of the test is 81 with exact level of significance 0.050.
Therefore, the null hypothesis that the two distributions are equal is not rejected
based on the minimal Wilcoxon rank-sum precedence test in this example.

Ng and Balakrishnan (2002, 2004) observed that the large-sample normal
approximation for the null distribution of these statistics is not satisfactory in
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the case of small or moderate sample sizes. For this reason, they developed an
Edgeworth expansion to approximate the significance probabilities. They also
derived the exact power function under the Lehmann alternative and examined
the power properties of the minimal Wilcoxon-type rank-sum precedence test.

2.3 Test Statistics for Comparing k − 1 Treatments
with Control

Suppose k independent random samples of sizes n1, n2, . . . , nk from F1(x),
F2(x), . . . , Fk(x), respectively, are placed simultaneously on a life-testing ex-
periment. When the sample sizes are all equal, we have a balanced case which
usually provides a favorable setting for carrying out a precedence-type proce-
dure for testing H0 in (2.1) against the alternative in (2.2); however, the test
can be carried out even in the unbalanced case, although the power of the test
may be adversely affected in this case.

A precedence-type test procedure, for this specific testing problem, may
be constructed as follows. After pre-fixing an r (≤ n1), the life-test continues
until the r-th failure in the sample from the control group. We then observe
M2 = (M12, M22, . . . , Mr2), . . . ,Mk = (M1k, M2k, . . . , Mrk) from the (k − 1)
treatments, where M1i, M2i, . . . , Mri are the numbers of failures in the sample
from the (i−1)-th treatment (for i = 2, 3, . . . , k) before the first failure, between
the first and second failures, . . . , and between the (r − 1)-th and r-th failures
from the control group, respectively. The observed value of M i is denoted by
mi, i = 2, . . . , k.

2.3.1 Tests based on precedence statistic

Let us consider

P(r)i =
r∑

j=1

Mji for i = 2, 3, . . . , k (2.6)

for the precedence statistic corresponding to the sample from the (i−1)-th treat-
ment. For convenience of notation, let Mj· =

∑k
i=2 Mji and denote its observed

value by mj·, j = 1, . . . , r. We may then propose the following precedence-type
test statistics:

P1 =
k∑

i=2

P(r)i =
k∑

i=2

r∑

j=1

Mji =
r∑

j=1

Mj· (2.7)
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and

P2 = min
2≤i≤k

P(r)i = min
2≤i≤k

⎧
⎨

⎩

r∑

j=1

Mji

⎫
⎬

⎭
. (2.8)

The rationale for the use of the statistics in (2.7) and (2.8) is that, under
the stochastically ordered alternative H1 in (2.2), we would expect some of the
precedence statistics P(r)i in (2.6) to be too small. Consequently, we will tend to
reject H0 in (2.1) in favor of H1 in (2.2) for small values of P1 and P2 in which the
critical values can be determined for specific values of k, r, ni, i = 1, 2, . . . , k, and
pre-fixed level of significance α. Specifically, {0 ≤ P1 ≤ cP1} and {0 ≤ P2 ≤ cP2}
will serve as critical regions, where cP1 and cP2 are determined such that

Pr(P1 ≤ cP1 |H0) = α and Pr(P2 ≤ cP2 |H0) = α. (2.9)

The null distributions of the test statistics P1 and P2 can be expressed as

Pr(P1 = p1|H0)

=
n2∑

p(r)2=0

. . .

nk∑

p(r)k=0

Pr(P(r)i = p(r)i, i = 2, . . . , k|H0)I

(
k∑

i=2

p(r)i = p1

)

(2.10)

for p1 = 0, 1, . . . ,
∑k

i=2 ni, and

Pr(P2 = p2|H0)

=
n2∑

p(r)2=0

. . .

nk∑

p(r)k=0

Pr(P(r)i = p(r)i, i = 2, . . . , k|H0)I
(

min
2≤i≤k

p(r)i = p2

)

(2.11)

for p2 = 0, 1, . . . ,min2≤i≤k ni, where I(A) is the indicator function defined by

I(A) =
{

1 if A is true,
0 otherwise,

and

Pr(P(r)i = p(r)i, i = 2, . . . , k|H0)

=
∑

m2

. . .
∑

mk

δ(m2, . . . ,mk)I

⎛

⎝
r∑

j=1

mji = p(r)i, i = 2, . . . , k

⎞

⎠ (2.12)

with

∑

mi

def.
=

ni∑

m1i=0

ni−m1i∑

m2i=0

. . .

ni−
∑r−1

j=1 mji∑

mri=0

for i = 2, . . . , k



Precedence-Type Tests 35

and δ(m2, . . . ,mk) is the probability mass function of (M2, . . . ,Mk) under H0

(see Appendix A)

δ(m2, . . . ,mk) = Pr(M2 = m2, . . . ,Mk = mk|H0 : F1 = F2 = · · · = Fk)

=
1

( ∑k
i=1 ni

n1, . . . , nk

)

⎧
⎨

⎩

r∏

j=1

(
mj·

mj2, . . . , mjk

)
⎫
⎬

⎭

×
( ∑k

i=1 ni −
∑r

j=1 mj· − r

n1 − r, n2 −
∑r

j=1 mj2, . . . , nk −
∑r

j=1 mjk

)

,

where
(

a1 + · · · + al

a1, . . . , al

)

=
(a1 + . . . + al)!

a1! . . . al!
.

From Equations (2.9)–(2.12), the critical values cP1 , cP2 and their exact levels of
significance as close as possible to α = 5% for k = 3, 4 with equal sample sizes
n1 = · · · = nk = n and r = 4(1)n were computed and are presented in Tables 2.1
and 2.2; similarly, for the unequal sample sizes n1 = 10, n2 = · · · = nk = 15;
n1 = 15, n2 = · · · = nk = 20 and r = 4(1)n1, the values are presented in
Tables 2.3 and 2.4. Due to the heavy computational demand in going through
all the possible outcomes, the critical values of the tests discussed in this section
were obtained from the exact null distribution for r ≤ 8 and through 20,000,000
Monte Carlo simulations for r > 8.

2.3.2 Tests based on weighted maximal precedence statistic

We can proceed similarly and propose weighted maximal precedence-type statis-
tics for the testing problem discussed here. Once again, we terminate the life-test
when the r-th failure occurs in the sample from the control group. Then, with
M i = (M1i, M2i, . . . , Mri), for i = 2, . . . , k, being observed from the (k − 1)
treatments, where Mji denotes the number of failures in the sample from the
(i − 1)-th treatment between the (j − 1)-th and j-th failures from the control
group, we may set

M(r)i = max
1≤j≤r

(n1 − j + 1)Mji for i = 2, 3, . . . , k

for the weighted maximal precedence statistic corresponding to the sample
from the (i − 1)-th treatment. We may then propose the weighted maximal
precedence-type test statistics as

T1 =
k∑

i=2

M(r)i =
k∑

i=2

max
1≤j≤r

(n1 − j + 1)Mji (2.13)
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Table 2.1. Near 5% critical values and exact levels of significance (l.o.s.) for P1,
P2, T1, T2, W1 and W2 with k = 3, n1 = n2 = n3 = n = 10, 15 and 20.

n = 10
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 1 0.031 0 0.079 10 0.047 0 0.079 186 0.058 95 0.079
5 3 0.056 0 0.031 17 0.047 6 0.050 202 0.051 104 0.050
6 4 0.039 1 0.052 19 0.045 7 0.050 216 0.049 112 0.045
7 6 0.045 2 0.063 21 0.048 8 0.061 228 0.048 119 0.044
8 8 0.045 3 0.062 22 0.050 8 0.043 237 0.052 124 0.052
9 11 0.062 4 0.051 23 0.051 8 0.037 244 0.051 128 0.054
10 13 0.038 5 0.029 23 0.051 8 0.037 248 0.050 131 0.048

n = 15
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 1 0.036 0 0.090 15 0.053 0 0.090 357 0.042 180 0.090
5 3 0.068 0 0.040 26 0.047 0 0.040 383 0.046 195 0.040
6 4 0.052 1 0.073 30 0.053 11 0.042 407 0.052 208 0.042
7 5 0.039 1 0.033 35 0.047 12 0.043 430 0.050 220 0.048
8 7 0.048 2 0.046 39 0.052 13 0.044 451 0.050 232 0.045
9 9 0.054 3 0.055 41 0.051 14 0.055 470 0.050 242 0.051
10 11 0.056 4 0.059 42 0.051 14 0.042 487 0.050 252 0.047
11 13 0.055 5 0.059 43 0.048 15 0.058 502 0.049 260 0.050
12 15 0.051 6 0.054 44 0.053 15 0.048 514 0.050 267 0.051
13 17 0.043 7 0.045 44 0.052 15 0.045 524 0.049 273 0.049
14 20 0.050 8 0.032 44 0.052 15 0.045 530 0.051 277 0.049
15 23 0.045 10 0.037 44 0.052 15 0.045 534 0.050 279 0.050

n = 20
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 1 0.038 0 0.096 20 0.057 0 0.096 577 0.045 290 0.096
5 2 0.036 0 0.044 36 0.051 0 0.044 613 0.050 310 0.044
6 4 0.059 0 0.019 39 0.049 16 0.048 648 0.048 328 0.048
7 5 0.046 1 0.041 49 0.048 17 0.051 681 0.050 345 0.057
8 7 0.059 2 0.059 54 0.052 18 0.054 712 0.053 362 0.055
9 8 0.044 2 0.029 57 0.048 19 0.057 742 0.051 378 0.054
10 10 0.051 3 0.038 60 0.050 20 0.059 770 0.050 394 0.047
11 12 0.056 4 0.044 63 0.048 20 0.047 796 0.050 408 0.049
12 14 0.059 5 0.049 65 0.048 22 0.045 820 0.050 421 0.050
13 15 0.041 6 0.051 67 0.051 25 0.048 842 0.049 433 0.051
14 18 0.059 7 0.051 67 0.046 26 0.052 861 0.051 444 0.051
15 20 0.056 8 0.048 68 0.051 26 0.048 879 0.049 454 0.050
16 22 0.051 9 0.044 68 0.050 27 0.051 894 0.049 462 0.052
17 24 0.044 10 0.037 68 0.049 27 0.050 906 0.050 470 0.049
18 27 0.052 12 0.057 68 0.049 27 0.050 915 0.051 475 0.051
19 30 0.056 13 0.039 68 0.049 27 0.050 922 0.050 479 0.050
20 33 0.048 15 0.041 68 0.049 27 0.050 925 0.051 481 0.051

and

T2 = min
2≤i≤k

M(r)i = min
2≤i≤k

{

max
1≤j≤r

(n1 − j + 1)Mji

}

. (2.14)

Here again, the rationale for the use of the statistics in (2.13) and (2.14) is
that, under the stochastically ordered alternative H1 in (2.2), we would expect
some of the weighted maximal precedence statistics M(r)i in (2.12) to be too
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Table 2.2. Near 5% critical values and exact levels of significance (l.o.s.) for P1,
P2, T1, T2, W1 and W2 with k = 4, n1 = n2 = n3 = n4 = n = 10, 15 and 20.

n = 10
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 3 0.052 0 0.109 22 0.050 0 0.109 278 0.050 95 0.109
5 5 0.050 0 0.044 28 0.051 0 0.044 301 0.051 105 0.044
6 7 0.042 1 0.073 32 0.049 6 0.043 322 0.047 113 0.043
7 10 0.049 1 0.027 35 0.050 7 0.040 339 0.049 120 0.045
8 13 0.048 2 0.030 36 0.049 8 0.061 353 0.049 126 0.045
9 17 0.058 4 0.070 37 0.052 8 0.053 363 0.049 130 0.050
10 21 0.052 5 0.040 37 0.052 8 0.053 368 0.051 133 0.046

n = 15
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 3 0.058 0 0.125 30 0.052 0 0.125 533 0.056 180 0.125
5 5 0.060 0 0.056 42 0.048 0 0.056 572 0.050 195 0.056
6 7 0.056 0 0.024 52 0.051 11 0.059 608 0.052 208 0.059
7 9 0.049 1 0.047 57 0.048 12 0.061 642 0.050 221 0.050
8 12 0.059 2 0.064 62 0.050 12 0.039 673 0.049 233 0.048
9 14 0.047 2 0.028 65 0.048 13 0.039 701 0.050 244 0.048
10 17 0.050 3 0.033 68 0.052 14 0.059 726 0.049 254 0.047
11 20 0.049 4 0.035 69 0.049 14 0.043 747 0.051 262 0.053
12 23 0.045 5 0.033 70 0.052 14 0.035 765 0.050 270 0.049
13 27 0.052 7 0.062 70 0.051 15 0.065 779 0.051 276 0.049
14 31 0.054 8 0.044 70 0.050 15 0.064 789 0.050 280 0.050
15 35 0.042 10 0.050 70 0.050 15 0.064 794 0.051 282 0.052

n = 20
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 3 0.062 0 0.132 39 0.048 0 0.132 864 0.046 290 0.132
5 4 0.039 0 0.063 57 0.052 0 0.063 917 0.054 310 0.063
6 6 0.040 0 0.028 71 0.051 15 0.044 969 0.050 329 0.044
7 9 0.057 1 0.057 79 0.050 16 0.046 1018 0.051 347 0.043
8 11 0.051 1 0.027 87 0.050 17 0.049 1065 0.050 364 0.047
9 13 0.044 2 0.041 93 0.050 18 0.051 1109 0.050 380 0.052
10 16 0.051 3 0.053 97 0.048 19 0.053 1150 0.050 396 0.047
11 19 0.056 4 0.062 101 0.050 20 0.066 1188 0.051 410 0.052
12 21 0.045 5 0.067 104 0.051 20 0.052 1224 0.049 424 0.049
13 24 0.046 5 0.033 106 0.052 22 0.049 1256 0.050 436 0.052
14 27 0.046 6 0.034 107 0.049 22 0.042 1285 0.050 448 0.049
15 30 0.044 8 0.066 108 0.052 24 0.054 1310 0.050 458 0.050
16 34 0.052 9 0.060 108 0.050 24 0.049 1332 0.050 467 0.049
17 37 0.045 10 0.051 108 0.050 25 0.050 1350 0.050 474 0.051
18 41 0.048 11 0.039 108 0.050 25 0.050 1364 0.050 480 0.050
19 45 0.045 13 0.053 108 0.050 25 0.050 1374 0.050 484 0.051
20 50 0.046 15 0.055 108 0.050 25 0.050 1379 0.050 486 0.051

small. Therefore, we would reject H0 in (2.1) in favor of H1 in (2.2) for small
values of T1 and T2 in which the critical values can be determined for specific
values of k, r, ni, i = 1, 2, . . . , k, and pre-fixed level of significance α. Specifically,
{0 ≤ T1 ≤ cT1} and {0 ≤ T2 ≤ cT2} will serve as critical regions, where cT1 and
cT2 are determined such that

Pr(T1 ≤ cT1 |H0) = α and Pr(T2 ≤ cT2 |H0) = α. (2.15)
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Table 2.3. Near 5% critical values and exact levels of significance (l.o.s.) for
P1, P2, T1, T2, W1 and W2 with k = 3, n1 = 10, n2 = n3 = 15 and n1 = 15,
n2 = n3 = 20.

n1 = 10, n2 = n3 = 15
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 3 0.052 0 0.031 19 0.050 7 0.052 353 0.050 179 0.052
5 5 0.050 1 0.041 25 0.050 8 0.046 376 0.051 192 0.041
6 7 0.042 2 0.040 28 0.050 9 0.039 397 0.047 203 0.048
7 10 0.049 3 0.033 30 0.049 10 0.054 414 0.049 213 0.046
8 13 0.048 5 0.050 32 0.052 10 0.037 428 0.049 221 0.046
9 17 0.058 7 0.058 32 0.049 12 0.063 438 0.049 226 0.053
10 21 0.052 9 0.048 32 0.049 12 0.063 443 0.051 230 0.048

n1 = 15, n2 = n3 = 20
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 2 0.041 0 0.048 27 0.050 0 0.048 575 0.043 290 0.048
5 4 0.052 1 0.072 35 0.047 12 0.047 609 0.050 308 0.047
6 6 0.055 1 0.029 41 0.051 13 0.046 641 0.052 325 0.051
7 8 0.054 2 0.035 45 0.050 14 0.043 671 0.052 341 0.054
8 10 0.049 3 0.036 49 0.048 16 0.051 699 0.050 356 0.053
9 12 0.043 4 0.034 52 0.051 18 0.045 724 0.050 370 0.050
10 15 0.051 6 0.060 54 0.053 21 0.053 746 0.051 382 0.052
11 18 0.057 7 0.049 55 0.050 21 0.045 765 0.051 393 0.051
12 20 0.042 8 0.036 55 0.047 22 0.053 781 0.051 402 0.051
13 24 0.056 10 0.046 56 0.054 22 0.051 794 0.050 410 0.048
14 27 0.047 12 0.050 56 0.054 22 0.051 803 0.050 415 0.049
15 31 0.043 14 0.041 56 0.054 22 0.051 808 0.049 418 0.048

Table 2.4. Near 5% critical values and exact levels of significance (l.o.s.) for P1,
P2, T1, T2, W1 and W2 with k = 3, n1 = 10, n2 = n3 = n4 = 15 and n1 = 15,
n2 = n3 = n4 = 20.

n1 = 10, n2 = n3 = n4 = 15
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 5 0.047 0 0.043 32 0.049 0 0.043 528 0.050 180 0.043
5 8 0.045 1 0.056 40 0.051 7 0.038 562 0.051 192 0.058
6 12 0.051 2 0.054 45 0.047 9 0.054 592 0.051 204 0.050
7 16 0.051 3 0.045 49 0.049 9 0.033 618 0.049 214 0.050
8 20 0.044 5 0.067 51 0.050 10 0.052 638 0.051 222 0.053
9 26 0.055 6 0.039 51 0.047 10 0.042 653 0.050 229 0.046
10 32 0.050 9 0.063 51 0.047 11 0.042 661 0.050 232 0.050

n2 = 15, n2 = n3 = n4 = 20
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 4 0.046 0 0.067 43 0.052 0 0.067 860 0.052 290 0.067
5 7 0.055 0 0.025 56 0.050 11 0.041 911 0.052 309 0.041
6 10 0.057 1 0.041 66 0.050 12 0.040 959 0.051 326 0.052
7 13 0.055 2 0.049 73 0.049 14 0.061 1004 0.049 343 0.046
8 16 0.050 3 0.050 79 0.050 15 0.056 1045 0.049 358 0.050
9 20 0.056 4 0.047 83 0.050 16 0.050 1082 0.049 372 0.051
10 23 0.046 5 0.041 85 0.049 18 0.050 1114 0.051 385 0.049
11 27 0.046 7 0.066 87 0.050 20 0.055 1143 0.050 396 0.050
12 32 0.054 8 0.049 88 0.051 20 0.049 1166 0.051 406 0.048
13 36 0.046 10 0.062 88 0.050 20 0.045 1185 0.050 413 0.051
14 42 0.056 11 0.035 88 0.050 21 0.055 1198 0.050 419 0.048
15 48 0.054 14 0.054 88 0.050 21 0.055 1205 0.050 422 0.048
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The null distributions of the test statistics T1 and T2 can be expressed as

Pr(T1 = t1|H0)

=
n2∑

m(r)2=0

. . .

nk∑

m(r)k=0

Pr(M(r)i = m(r)i, i = 2, . . . , k|H0)I

(
k∑

i=2

m(r)i = t1

)

(2.16)

for t1 = 0, 1, . . . ,
∑k

i=2 ni, and

Pr(T2 = t2|H0)

=
n2∑

m(r)2=0

. . .

nk∑

m(r)k=0

Pr(M(r)i = m(r)i, i = 2, . . . , k|H0)I
(

min
2≤i≤k

m(r)i = t2

)

(2.17)

for t2 = 0, 1, . . . ,min2≤i≤k ni, where Pr(M(r)i = m(r)i|H0) is

Pr(M(r)i = m(r)i, i = 2, . . . , k|H0)

=
∑

m2

. . .
∑

mk

δ(m2, . . . ,mk)I
(

max
1≤j≤r

(n1 − j + 1)mji = m(r)i, i = 2, . . . , k

)

.

(2.18)

From Equations (2.15)–(2.18), the critical values cT1 , cT2 and their exact levels
of significance as close as possible to α = 5% for k = 3, 4 with equal sample
sizes n1 = · · · = nk = n and r = 4(1)n were computed and are presented in
Tables 2.1 and 2.2; similarly, for the unequal sample sizes n1 = 10, n2 = · · · =
nk =15; n1 = 15, n2 = · · · = nk = 20 and r = 4(1)n1, the values are presented in
Tables 2.3 and 2.4.

2.3.3 Tests based on minimal Wilcoxon rank-sum
precedence statistic

Similarly, we propose test procedures based on minimal Wilcoxon rank-sum
precedence statistic for the testing problem discussed here. We set

W(r)i =
ni(ni + 2r + 1)

2
−

r∑

j=1

(r − j + 1)Mji for i = 2, 3, . . . , k (2.19)

for the minimal Wilcoxon rank-sum precedence statistic corresponding to the
sample from the (i − 1)-th treatment. We may then propose the minimal
Wilcoxon rank-sum precedence statistics as

W1 =
k∑

i=2

W(r)i
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and

W2 = max
2≤i≤k

W(r)i.

Under the stochastically ordered alternative H1 in (2.2), we would expect some
of the minimal Wilcoxon rank-sum precedence statistics W(r)i in (2.19) to be
large. Therefore, we would reject H0 in (2.1) in favor of H1 in (2.2) for large
values of W1 and W2 in which the critical values can be determined for specific
values of k, r, ni, i = 1, 2, . . . , k, and pre-fixed level of significance α. Specifically,
{W1 ≥ cW1} and {W2 ≥ cW2} will serve as critical regions, where cW1 and cW2

are determined such that

Pr(W1 ≥ cW1 |H0) = α and Pr(W2 ≥ cW2 |H0) = α. (2.20)

The null distributions of the test statistics W1 and W2 can be expressed as

Pr(W1 = w1|H0)

=
u2∑

w(r)2=l2

. . .

uk∑

w(r)k=lk

Pr(W(r)i = w(r)i, i = 2, . . . , k|H0)I

(
k∑

i=2

w(r)i = w1

)

(2.21)

for w1 = min2≤i≤k li, . . . ,max2≤i≤k ui, with li = ni(ni + 1)/2, ui = (r + ni)(r +
ni + 1)/2 − r(r + 1)/2, and

Pr(W2 = w2|H0)

=
u2∑

w(r)2=l2

. . .

uk∑

w(r)k=lk

Pr(W(r)i = w(r)i, i = 2, . . . , k|H0)I
(

max
2≤i≤k

w(r)i = w2

)

(2.22)

for w2 = min2≤i≤k li, . . . ,min2≤i≤k ui, where Pr(W(r)i = w(r)i|H0) is given by

Pr(W(r)i = w(r)i, i = 2, . . . , k|H0)

=
∑

m2

. . .
∑

mk

δ(m2, . . . ,mk)

×I

⎛

⎝ni(ni + 2r + 1)
2

−
r∑

j=1

(r − j + 1)mji = w(r)i, i = 2, . . . , k

⎞

⎠ .

(2.23)

From Equations (2.20)–(2.23), the critical values cW1 , cW2 and their exact levels
of significance as close as possible to α = 5% for k = 3, 4 with equal sample
sizes n1 = · · · = nk = n and r = 4(1)n were computed and are presented in
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Tables 2.1 and 2.2; similarly, for the unequal sample sizes n1 = 10, n2 = · · · =
nk = 15; n1 = 15, n2 = · · · = nk = 20 and r = 4(1)n1, the values are presented
in Tables 2.3 and 2.4.

2.4 Exact Power Under Lehmann Alternative

The Lehmann alternative H1 : [Fi(x)]γi = F1(x) for some γi, i = 2, . . . , k,
which was first proposed by Lehmann (1953), is a subclass of the alternative
H1 : Fi(x) > F1(x) when at least one γi ∈ (0, 1) (see Gibbons and Chakraborti,
2003). In this section, we will derive an explicit expression for the power func-
tions of the proposed test procedures under the Lehmann alternative.

When γ2 = · · · = γk = γ, for some γ ∈ (0, 1), under the Lehmann alternative
H1 : [Fi(x)]γ = F1(x), the probability mass function of (M2, . . . ,Mk) is (see
Appendix B)

δ∗(m2, . . . ,mk)
= Pr(M2 = m2, . . . ,Mk = mk|H1 : [Fi]γ = F1, i = 2, . . . , k)

=
γrn1!

(n1 − r)!

{
k∏

i=2

(
ni

m1i, m2i, . . . , mri, ni −
∑r

j=1 mji

)}

×

⎧
⎨

⎩

r−1∏

j=1

B (m1· + . . . + mj· + jγ, mj+1· + 1)

⎫
⎬

⎭

×

⎧
⎨

⎩

n1−r∑

l=0

(
n1 − r

l

)

(−1)lB

⎛

⎝
r∑

j=1

mj· + (r + l)γ,
k∑

i=2

ni−
r∑

j=1

mj· + 1

⎞

⎠

⎫
⎬

⎭
,

(2.24)

where B(a, b) =
∫ 1
0 xa−1(1 − x)b−1dx is the complete beta function. Note that

the exact distribution of (M2, . . . ,Mk) under the general Lehmann alternative
H1 : [Fk(x)]γk = [Fk−1(x)]γk−1 = · · · = [F2(x)]γ2 = [F1(x)] can also be obtained.
For the purpose of illustration, we present the result for k = 3 in Appendix B.

Under the Lehmann alternative, the probability mass functions of P1, P2, T1,
T2, W1 and W2 can be computed from Equations (2.10), (2.11), (2.16), (2.17),
(2.21) and (2.22), respectively, by replacing δ(m2, . . . ,mk) with δ∗(m2, . . . ,mk)
in Equations (2.12), (2.18) and (2.23). Here, we computed the power values
of the proposed test procedures for k = 3, 4 with n1 = · · · = nk = 10,
γ = 0.2(0.2)1.0, i = 2, . . . , k. Note that when γ = 1.0, the power values are
precisely the exact levels of significance. These results are presented in Tables
2.5 and 2.6.
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Table 2.5. Power values under Lehmann alternative for k = 3, n1 = n2 = n3 =
10, r = 4(1)10 and γ2 = γ3 = γ = 0.2(0.2)1.0.

γ = 1.0 r P1 P2 T1 T2 W1 W2

4 0.031 0.079 0.047 0.079 0.058 0.079
5 0.056 0.031 0.047 0.050 0.051 0.050
6 0.039 0.052 0.045 0.050 0.049 0.045
7 0.045 0.063 0.048 0.061 0.048 0.044
8 0.045 0.062 0.050 0.043 0.052 0.052
9 0.062 0.051 0.051 0.037 0.051 0.054
10 0.038 0.029 0.051 0.037 0.050 0.048

γ = 0.8 r P1 P2 T1 T2 W1 W2

4 0.084 0.163 0.112 0.163 0.147 0.163
5 0.133 0.073 0.115 0.114 0.134 0.114
6 0.095 0.113 0.105 0.114 0.132 0.106
7 0.102 0.126 0.105 0.131 0.129 0.106
8 0.094 0.118 0.104 0.094 0.134 0.120
9 0.112 0.092 0.106 0.082 0.130 0.121
10 0.065 0.051 0.106 0.081 0.125 0.108

γ = 0.6 r P1 P2 T1 T2 W1 W2

4 0.221 0.334 0.263 0.334 0.346 0.334
5 0.302 0.181 0.271 0.261 0.329 0.261
6 0.231 0.246 0.240 0.259 0.326 0.252
7 0.229 0.255 0.229 0.277 0.319 0.252
8 0.202 0.229 0.219 0.208 0.323 0.275
9 0.208 0.174 0.219 0.181 0.311 0.273
10 0.118 0.094 0.218 0.181 0.299 0.246

γ = 0.4 r P1 P2 T1 T2 W1 W2

4 0.524 0.632 0.564 0.632 0.691 0.632
5 0.612 0.438 0.567 0.557 0.678 0.557
6 0.514 0.515 0.510 0.548 0.673 0.554
7 0.488 0.505 0.480 0.544 0.661 0.553
8 0.422 0.445 0.445 0.435 0.657 0.575
9 0.390 0.340 0.433 0.385 0.636 0.563
10 0.224 0.186 0.432 0.383 0.617 0.522

γ = 0.2 r P1 P2 T1 T2 W1 W2

4 0.918 0.945 0.926 0.945 0.973 0.945
5 0.940 0.859 0.917 0.923 0.970 0.923
6 0.893 0.886 0.879 0.907 0.967 0.924
7 0.858 0.859 0.845 0.877 0.962 0.920
8 0.784 0.792 0.793 0.779 0.957 0.922
9 0.703 0.658 0.757 0.712 0.948 0.910
10 0.455 0.407 0.756 0.705 0.939 0.886

2.5 Discussion

The results in Tables 2.5 and 2.6 show that the test procedures can detect the
difference between two distributions effectively in most cases early in the life-
testing experiment. Note that the desired level of significance may be impossible
to attain for some test statistics when r is small, especially for the tests based on
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Table 2.6. Power values under Lehmann alternative for k = 4, n1 = · · · = n4 =
10, r = 4(1)10 and γ2 = γ3 = γ4 = γ = 0.2(0.2)1.0.

γ = 1.0 r P1 P2 T1 T2 W1 W2

4 0.052 0.109 0.050 0.109 0.050 0.109
5 0.050 0.044 0.051 0.044 0.051 0.044
6 0.042 0.073 0.049 0.043 0.047 0.043
7 0.049 0.027 0.050 0.040 0.049 0.045
8 0.048 0.030 0.049 0.061 0.049 0.045
9 0.058 0.070 0.052 0.053 0.049 0.050
10 0.052 0.040 0.052 0.053 0.051 0.046

γ = 0.8 r P1 P2 T1 T2 W1 W2

4 0.135 0.216 0.127 0.216 0.141 0.216
5 0.128 0.102 0.128 0.102 0.146 0.155
6 0.108 0.151 0.119 0.102 0.136 0.102
7 0.114 0.063 0.118 0.094 0.140 0.107
8 0.105 0.066 0.113 0.129 0.137 0.107
9 0.110 0.122 0.118 0.113 0.128 0.116
10 0.088 0.067 0.118 0.113 0.136 0.106

γ = 0.6 r P1 P2 T1 T2 W1 W2

4 0.326 0.416 0.309 0.416 0.358 0.416
5 0.307 0.238 0.304 0.238 0.368 0.332
6 0.263 0.310 0.279 0.244 0.351 0.247
7 0.257 0.156 0.267 0.223 0.354 0.258
8 0.225 0.152 0.251 0.269 0.344 0.255
9 0.210 0.219 0.255 0.238 0.322 0.265
10 0.152 0.120 0.254 0.238 0.330 0.244

γ = 0.4 r P1 P2 T1 T2 W1 W2

4 0.665 0.719 0.645 0.719 0.723 0.719
5 0.633 0.525 0.621 0.525 0.733 0.645
6 0.566 0.596 0.577 0.541 0.714 0.549
7 0.533 0.381 0.541 0.489 0.710 0.564
8 0.461 0.349 0.507 0.519 0.692 0.553
9 0.400 0.400 0.500 0.468 0.662 0.556
10 0.273 0.226 0.499 0.467 0.664 0.520

γ = 0.2 r P1 P2 T1 T2 W1 W2

4 0.964 0.969 0.960 0.969 0.981 0.969
5 0.950 0.906 0.943 0.906 0.981 0.953
6 0.918 0.921 0.916 0.914 0.977 0.922
7 0.884 0.794 0.879 0.857 0.974 0.924
8 0.814 0.730 0.841 0.833 0.968 0.913
9 0.717 0.710 0.816 0.776 0.958 0.906
10 0.510 0.456 0.815 0.772 0.956 0.882

extrema (viz., P2, T2 and W2). For instance, for k = 4, n1 = n2 = n3 = n4 = 20
and r = 4, the minimum level of significance attainable by the tests based on
P2, T2 and W2 are all equal to 0.132. It is, therefore, not possible to test the
hypotheses in (2.1) at 5% level in this setting based on P2, T2 and W2. For this
reason, the tests based on the extrema of the precedence statistics from the
treatments may not be applicable for small values of r in practice.

From Tables 2.5 and 2.6, we can observe that the power values of the tests
increase with the number of treatments (i.e., k− 1) as expected, but the power
values do not increase with r under Lehmann alternatives. We can also see that
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the tests based on precedence statistics (P1 and P2) suffer from the masking
effect. In other words, the power values of P1 and P2 decrease as r increases and
the information given by a larger value of r is thus being masked. The tests based
on weighted maximal precedence statistics (T1 and T2) and minimal Wilcoxon
rank-sum precedence statistics (W1 and W2) reduce the masking effect that
affects the performance of P1 and P2.

In comparing the power performance of tests based on the sum of the prece-
dence statistics from the treatments (viz., P1, T1 and W1) with those based on
the extrema of the precedence statistics from the treatments (viz., P2, T2 and
W2), we observe that the former have better power performance than the latter.
Furthermore, among all the tests discussed here, the test based on the sum of
minimal Wilcoxon rank-sum precedence statistics among treatments (viz., W1)
seems to give overall the best power performance under the Lehmann alterna-
tive, and hence is the one that we recommend for the problem discussed here.

Further, the decrease in power values with increasing r also suggests that
the test procedures based on the order of early failures can be more powerful
than those based on a complete sample. In fact, r (≤ n1) need not be large to
provide reliable comparison between treatments and the control. This can save
both time and experimental units in a life-testing experiment, which are clear
advantages of precedence-type tests. One may be interested in maximizing the
power with respect to r, i.e., to determine the best choice of r in designing
the experiment. When prior information about the alternative is available, this
task can be achieved by comparing the power values for different values of r.
For example, for k = 4, n1 = n2 = n3 = n4 = 10, if prior information suggests
γ = 0.4 for the Lehmann alternative, we would recommend the use of W1 with
r = 6 based on the power values presented in Table 2.6.

2.6 Illustrative Example

Let us consider X2, X3 and X1 samples to be the data on appliance cord life
in flex tests 1, 2 and 3, respectively, of Nelson (1982, p. 510). These three tests
were done using two types of cord, viz., B6 and B7, where flex tests 1 and 2 were
done with cord type B6 and test 3 was done with cord type B7. Suppose cord B7
was the standard production cord and B6 was proposed as a cost improvement.
We will then be interested in testing the equality of the lifetime distributions
of these cords. For these data, we have k = 3, n1 = n2 = n3 = 12. Had we fixed
r = 8, the experiment would have stopped as soon as the eighth failure from
the X1-sample (cord B7) had been observed, i.e., at 128.7 hours. The data are
presented in Table 2.7. The observed values of (m1i, . . . , m8i) and the values of
the statistics P(8)i, M(8)i and W(8)i, i = 2, 3, are presented in Table 2.8.
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Table 2.7. Appliance cord life data from Nelson (1982, p. 510) (∗ denotes cen-
sored observations).

Test 1 (X2)
Cord B6 96.9 100.3 100.8 103.3 103.4 105.4 122.6 ∗ ∗ ∗ ∗ ∗

Test 2 (X3)
Cord B6 57.5 77.8 88.0 98.4 102.1 105.3 ∗ ∗ ∗ ∗ ∗ ∗

Test 3 (X1)
Cord B7 72.4 78.6 81.2 94.0 120.1 126.3 127.2 128.7 ∗ ∗ ∗ ∗

Table 2.8. Values of (m1i, . . . , m8i) and the statistics P(8)i, M(8)i and W(8)i for
i = 2, 3.

m1i m2i m3i m4i m5i m6i m7i m8i P(8)i M(8)i W(8)i

i = 2 0 0 0 0 6 1 0 0 7 48 147
i = 3 1 1 0 1 3 0 0 0 6 24 142

The near 5% critical values for k = 3, n1 = n2 = n3 = 12 and r = 8 and
their exact level of significance (in parentheses) for the test procedures discussed
in the preceding sections are as follows:

P1: 8 (0.061), P2: 2 (0.033), T1: 29 (0.048), T2: 10 (0.044),
W1: 317 (0.052), W2: 164(0.056).

Then the test statistics and their p-values are

P1 = 13 (p-value = 0.363), P2 = 6 (p-value = 0.491),
T1 = 72 (p-value = 0.813), T2 = 24 (p-value = 0.697),
W1 = 289 (p-value = 0.398), W2 = 147 (p-value = 0.507),

and so we will not reject the null hypothesis that the lifetime distributions of
these cords are equal. This means that the cord B6 is not better than the cord
B7. Incidentally, this finding agrees with that of Nelson (1982), who analyzed
these data by assuming a normal model.

Appendix A: Probability Mass Function
of (M2, . . . , M k) Under the Null Hypothesis

Let the ordered failures from the control be x1 < x2 < · · · < xr. Consider
the (i − 1)-th treatment, conditional on the failures from the control. Then,
the probability that there are m1i failures from the treatment before x1 and
mji failures between xj−1 and xj , j = 2, . . . , r, is given by the multinomial
probability
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Pr (M i = mi|x1, . . . , xr)
= Pr (M1i = m1i, . . . , Mri = mri|x1, . . . , xr)

=
(

ni

m1i, . . . , mri, ni −
∑r

j=1 mji

)

×[Fi(x1)]m1i

⎧
⎨

⎩

r∏

j=2

[Fi(x2) − Fi(x1)]mji

⎫
⎬

⎭
[1 − Fi(xr)]

(

ni−
r∑

j=1
mji

)

.

For fixed values of x1 < x2 < · · · < xr, due to the independence of the samples
from the (k−1) treatments, we readily have the conditional joint probability as

Pr (M2 = m2, . . . ,Mk = mk|x1, . . . , xr)

=

{
k∏

i=2

(
ni

m1i, . . . , mri, ni −
∑r

j=1 mji

)}

×
{

k∏

i=2

[Fi(x1)]m1i

}⎧
⎨

⎩

k∏

i=2

r∏

j=2

[Fi(xj) − Fi(xj−1)]mji

⎫
⎬

⎭

×

⎧
⎪⎨

⎪⎩

k∏

i=2

[1 − Fi(xr)]

(

ni−
r∑

j=1
mji

)⎫
⎪⎬

⎪⎭
.

Now, we have the joint density of the first r order statistics from the control as

f1,...,r:n1(x1, . . . , xr) =
n1!

(n1 − r)!

⎡

⎣
r∏

j=1

f1(xj)

⎤

⎦ [1 − F1(xr)]n1−r, x1 < . . . < xr.

As a result, we obtain the unconditional probability of (M2 = m2, . . . ,Mk =
mk) as

Pr (M2 = m2, . . . ,Mk = mk)

= C

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞

{
k∏

i=2

[Fi(x1)]m1i

}⎧
⎨

⎩

k∏

i=2

r∏

j=2

[Fi(xj) − Fi(xj−1)]mji

⎫
⎬

⎭

×

⎧
⎪⎨

⎪⎩

k∏

i=2

[1 − Fi(xr)]

(

ni−
r∑

j=1
mji

)⎫
⎪⎬

⎪⎭

×

⎡

⎣
r∏

j=1

f1(xj)

⎤

⎦ [1 − F1(xr)]n1−rdx1 · · · dxr, (2.25)
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where

C =
n1!

(n1 − r)!

k∏

i=2

(
ni

m1i, . . . , mri, ni −
∑r

j=1 mji

)

.

Under the null hypothesis, H0 : F1(x) = F2(x) = · · · = Fk(x), by denoting
mj· =

∑k
i=2 mji, the expression in (2.25) becomes

Pr (M2 = m2, . . . ,Mk = mk|H0)

= C

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞

{
k∏

i=2

[F1(x1)]m1i

}⎧
⎨

⎩

k∏

i=2

r∏

j=2

[F1(xj)−F1(xj−1)]mji

⎫
⎬

⎭

×

⎧
⎪⎨

⎪⎩

k∏

i=2

[1 − F1(xr)]

(

ni−
r∑

j=1
mji

)⎫
⎪⎬

⎪⎭

×

⎡

⎣
r∏

j=1

f1(xj)

⎤

⎦ [1 − F1(xr)]n1−rdx1 · · · dxr

= C

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞
[F1(x1)]m1·

⎧
⎨

⎩

r∏

j=2

[F1(xj) − F1(xj−1)]mj·

⎫
⎬

⎭

×[1 − F1(xr)]

(
k∑

i=1
ni−

r∑

j=1
mj·−r

) ⎡

⎣
r∏

j=1

f1(xj)

⎤

⎦ dx1 · · · dxr.

Upon setting ui = F1(xi) for i = 1, . . . , r, the above expression becomes

Pr (M2 = m2, . . . ,Mk = mk|H0)

= C

∫ 1

0

∫ ur

0
. . .

∫ u2

0
u

m1·
1

[
k∏

i=2

(uj − uj−1)mj·
]

×(1 − ur)

(
k∑

i=1
ni−

r∑

j=1
mj·−r

)

du1 · · · dur.

Using the transformation w1 = u1/u2, we have
∫ u2

0
u

m1·
1 (u2 − u1)m2·du1 = u

m1·+m2·
2

∫ 1

0
w

m1·
1 (1 − w1)m2·dw1

= u
m1·+m2·+1
2 B(m1· + 1, m2· + 1),

where, as before, B(a, b) =
∫ 1
0 xa−1(1 − x)b−1dx is the complete beta func-

tion. Proceeding similarly and using the transformations wl = ul/ul+1 for
l = 2, . . . , r − 1, we obtain
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Pr (M2 = m2, . . . ,Mk = mk|H0)

= C

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + j, mj+1· + 1)

⎫
⎬

⎭

×
∫ 1

0
u

(
r∑

j=1
mj·+r+1

)

r (1 − ur)

(
k∑

i=1
ni−

r∑

j=1
mj·−r

)

dur

= C

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + j, mj+1· + 1)

⎫
⎬

⎭

×B

⎛

⎝
r∑

j=1

mj· + r,
k∑

i=1

ni −
r∑

j=1

mj· − r + 1

⎞

⎠

=
n1!

(n1 − r)!

{
k∏

i=2

(
ni

m1i, . . . , mri, ni −
∑r

j=1 mji

)}

×

(
k∑

i=1
ni −

r∑

j=1
mj· − r

)

!m1·! . . .mr·!
(

k∑

i=1
ni

)

!

=
1

( ∑k
i=1 ni

n1, . . . , nk

)

⎧
⎨

⎩

r∏

j=1

(
mj·

mj2, . . . , mjk

)
⎫
⎬

⎭

×
( ∑k

i=1 ni −
∑r

j=1 mj· − r

n1 − r, n2 −
∑r

j=1 mj2, . . . , nk −
∑r

j=1 mjk

)

.

Appendix B: Probability Mass Function
of (M2, . . . , M k) Under the Lehmann Alternative

Under the Lehmann alternative H1: [Fk(x)]γk = [Fk−1(x)]γk−1 = · · · =
[F2(x)]γ2= F1(x), for some γi ∈ (0, 1), the expression in (2.25) can be ex-
pressed as follows:
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Pr
(
M2 = m2, . . . ,Mk = mk|H1 : F γk

k = · · · = F γ2
2 = F1

)

= Cγr
k

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞

{
k∏

i=2

[Fk(x1)]m1iγk/γi

}

×

⎧
⎨

⎩

k∏

i=2

r∏

j=2

[F γk/γi

k (xj) − F
γk/γi

k (xj−1)]mji

⎫
⎬

⎭

×

⎧
⎪⎨

⎪⎩

k∏

i=2

[1 − F
γk/γi

i (xr)]

(

ni−
r∑

j=1
mji

)⎫
⎪⎬

⎪⎭

⎡

⎣
r∏

j=1

F γk−1
k (xj)

⎤

⎦

×

⎡

⎣
r∏

j=1

fk(xi)

⎤

⎦ [1 − F γk
k (xr)]n1−rdx1 · · · dxr. (2.26)

In the special case when γi = γ for i = 2, . . . , k, the expression in (2.26) can
be simplified as

Pr
(
M2 = m2, . . . ,Mk = mk|H1 : F γ

k = · · · = F γ
2 = F1

)

= Cγr

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞
[Fk(x1)]m1·+γ−1

×

⎧
⎨

⎩

r∏

j=2

F γ−1
k (xj)[Fk(xj) − Fk(xj−1)]mj·

⎫
⎬

⎭

×[1 − Fk(xr)]

(
k∑

i=2
ni−

r∑

j=1
mj·

) ⎡

⎣
r∏

j=1

fk(xi)

⎤

⎦ [1 − F γ
k (xr)]n1−rdx1 · · · dxr.

Upon setting ui = Fk(xi) for i = 1, . . . , r, the above expression becomes

Pr
(
M2 = m2, . . . ,Mk = mk|H1 : F γ

k = · · · = F γ
2 = F1

)

= Cγr

∫ 1

0

∫ ur

0
. . .

∫ u2

0
u

m1·+γ−1
1

⎧
⎨

⎩

r∏

j=2

uγ−1
j (uj − uj−1)mj·

⎫
⎬

⎭

×(1 − ur)

(
k∑

i=2
ni−

r∑

j=1
mj·

)

(1 − uγ
r )n1−rdx1 · · · dxr.
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Adopting an approach similar to the one used in Appendix A, we obtain

Pr
(
M2 = m2, . . . ,Mk = mk|H1 : F γ

k = · · · = F γ
2 = F1

)

= Cγr

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + jγ, mj+1· + 1)

⎫
⎬

⎭

×
∫ 1

0
u

(
r∑

j=1
mj·+rγ+1

)

r (1 − ur)

(
k∑

i=2
ni−

r∑

j=1
mj·

)

(1 − uγ
r )n1−rdur

= Cγr

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + jγ, mj+1· + 1)

⎫
⎬

⎭

×
[

n1−r∑

l=0

(
n1 − r

l

)

(−1)l

×
∫ 1

0
u

(
r∑

j=1
mj·+rγ+1+lγ

)

r (1 − ur)

(
k∑

i=2
ni−

r∑

j=1
mj·

)
]

dur

= Cγr

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + jγ, mj+1· + 1)

⎫
⎬

⎭

×
n1−r∑

l=0

(
n1 − r

l

)

(−1)lB

⎛

⎝
r∑

j=1

mj· + (r + l)γ,
k∑

i=2

ni −
r∑

j=1

mj· + 1

⎞

⎠ .

The exact distribution of (M2, . . . ,Mk), under the general Lehmann alterna-
tive H1 : [Fk(x)]γk = [Fk−1(x)]γk−1 = · · · = [F2(x)]γ2 = F1(x), can be derived in
a similar manner by expanding each term by the binomial formula, and the final
expression would then involve multiple summation. For purposes of illustration,
we present the result for k = 3. In this case, we have from Equation (2.26)

Pr (M2 = m2, M3 = m3|H1 : F γ3
3 = F γ2

2 = F1)

= Cγr
3

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞
[F3(x1)]m12γ3/γ2 [F3(x1)]m13

×

⎧
⎨

⎩

r∏

j=2

[F γ3/γ2

3 (xj) − F
γ3/γ2

3 (xj−1)]mj2

⎫
⎬

⎭

⎧
⎨

⎩

r∏

j=2

[F3(xj) − F3(xj−1)]mj3

⎫
⎬

⎭

×[1 − F
γ3/γ2

3 (xr)]

(

n2−
r∑

j=1
mj2

)

[1 − F3(xr)]

(

n3−
r∑

j=1
mj3

)

×

⎧
⎨

⎩

r∏

j=1

[F3(xi)]γ3−1f3(xi)

⎫
⎬

⎭
[1 − F γ3

3 (xr)]n1−rdx1 · · · dxr.
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Upon setting ui = F3(xi) for i = 1, . . . , r, the preceding expression becomes

Pr (M2 = m2, M3 = m3|H1 : F γ3
3 = F γ2

2 = F1)

= Cγr
3

∫ 1

0

∫ ur

0
. . .

∫ u2

0
u

(
m12γ3

γ2
+m13+γ3−1

)

1

×

⎧
⎨

⎩

r∏

j=2

uγ3−1
j

(
u

γ3/γ2

j − u
γ3/γ2

j−1

)mj2

(uj − uj−1)
mj3

⎫
⎬

⎭

×
(
1 − uγ3/γ2

r

)
(

n2−
r∑

j=1
mj2

)

(1 − ur)

(

n3−
r∑

j=1
mj3

)

du1 · · · dur.

The first integral with respect to u1 can be expressed as

∫ u2

0
u

(
m12

γ3
γ2

+m13+γ3−1
)

1

(
u

γ3/γ2

2 − u
γ3/γ2

1

)m22

(u2 − u1)
m23 du1

=
∫ u2

0
u

(
m12γ3

γ2
+m13+γ3−1

)

1

×

⎧
⎨

⎩

m22∑

l1=0

(
m22

l2

)

(−1)l1u
(m22−l1)

γ3
γ2

2 u

(
l1γ3
γ2

)

1

⎫
⎬

⎭
(u2 − u1)

m23 du1

= u

(
(m12+m22)

γ3
γ2

+(m13+m23)+γ3−1
)

2

×
m22∑

l1=0

(
m22

l2

)

(−1)l1B

(

(m12 + l1)
γ3

γ2
+ m13 + γ3, m23 + 1

)

.

Similarly, the j-th integral with respect to uj (j = 2, . . . , r − 1) becomes

u

(
(m12+...+m(j+1)2)

γ3
γ2

+(m13+...+m(j+1)3)+γ3−1
)

j+1

×
m(j+1)2∑

lj=0

(
m(j+1)2

lj

)

(−1)lj

×B

(

(m12 + · · · + mj2 + lj)
γ3

γ2
+ (m13 + · · · + mj3)γ3, m(j+1)3 + 1

)

,
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while the last integral with respect to ur becomes

∫ ur

0
u

((
r∑

j=1
mj2

)
γ3
γ2

+

(
r∑

j=1
mj3

)

+γ3−1

)

r (1 − uγ3/γ2
r )

(

n2−
r∑

j=1
mj2

)

×(1 − ur)

(

n3−
r∑

j=1
mj3

)

(1 − uγ3
r )n1−rdur

=

n2−
r∑

j=1
mj2

∑

lr=0

n1−r∑

l=0

(
n2 −

∑r
j=1 mj2

lr

)(
n1 − r

l

)

(−1)lr+l

×
∫ 1

0
u

((
r∑

j=1
mj2

)
γ3
γ2

+

(
r∑

j=1
mj3

)

+γ3−1+lr
γ3
γ2

+lγ3

)

r (1 − ur)
n3−

r∑

j=1
mj3

dur

=

n2−
r∑

j=1
mj2

∑

lr=0

n1−r∑

l=0

(
n2 −

∑r
j=1 mj2

lr

)(
n1 − r

l

)

(−1)lr+l

×B

⎛

⎝

⎛

⎝
r∑

j=1

mj2 + lr

⎞

⎠ γ3

γ2
+

⎛

⎝
r∑

j=1

mj3

⎞

⎠ + (l + 1)γ3, n3−
r∑

j=1

mj3 + 1

⎞

⎠ .

Combining all these expressions, we finally obtain

Pr (M2 = m2, M3 = m3|H1 : F γ3
3 = F γ2

2 = F1)

= Cγr
3

m22∑

l1=0

. . .

mr2∑

lr−1=0

n2−
r∑

j=1
mj2

∑

lr=0

n1−r∑

l=0

⎧
⎨

⎩

r∏

j=2

(
mj2

lj−1

)
⎫
⎬

⎭

×
(

n2 −
∑r

j=1 mj2

lr

)(
n1 − r

l

)

(−1)

(
r∑

j=1
lj+l

)

×

⎧
⎨

⎩

r∏

j=2

B

((
j∑

l∗=1

ml∗2 + lj

)
γ3

γ2
+

(
j∑

l∗=1

ml∗3

)

γ3, m(j+1)3 + 1

)⎫
⎬

⎭

×B

⎛

⎝

⎛

⎝
r∑

j=1

mj2 + lr

⎞

⎠ γ3

γ2
+

⎛

⎝
r∑

j=1

mj3

⎞

⎠+ (l + 1)γ3, n3−
r∑

j=1

mj3 + 1

⎞

⎠ .
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