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Detection of Disease Clustering
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Abstract: In epidemiological studies, it is often of interest to evaluate whether
a disease is randomly distributed over time and/or space after being adjusted
for a known heterogeneity, which may provide clues to the etiology of disease.
To do this, we can apply tests for spatial randomness, or disease clustering.
In this paper, I review the existing tests for disease clustering and discuss the
advantages and disadvantages of these test statistics. These tests are illustrated
and compared with several real temporal and spatial data sets.
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17.1 Introduction

There has been great public concern about the clustering of health events such
as the occurrence of childhood leukemia, birth defects, and cancer. To investi-
gate whether clustering is real and significant, many different tests have been
proposed for different purposes. Besag and Newell (1991) classified these tests
into two families: focused tests and general tests. The former family of tests
assesses the clustering around a pre-fixed point like a nuclear installation. The
latter is aimed at investigating the question of whether clustering occurs over
the study region. General tests were further classified by Kulldorff (1998) into
two groups: the first group, global clustering tests (GCTs), is designed for evalu-
ating whether cases tend to come in groups or whether cases are located close to
each other no matter when and where they occur, and the second group, cluster
detection tests (CDTs), is designed to both detect local clusters and evaluate
their significance. Recently, Kulldorff (2006) discussed the general framework
into which most of the many different proposed test statistics for spatial ran-
domness can be placed.
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This paper is concerned with general tests and is organized as follows.
Section 17.2 reviews tests for detecting temporal clustering, and Section 17.3
reviews tests for spatial clustering. This paper concludes with a discussion in
Section 17.4.

17.2 Temporal Clustering

17.2.1 Disjoint tests

Ederer, Myers, and Mantel (1964) developed a GCT for temporal clustering
using a cell-occupancy approach. They divided the time period into m disjoint
subintervals. Under the null hypothesis of no clustering, the n cases are ran-
domly distributed among the subintervals (i.e., are multinomially distributed).
The test statistic M is the maximum number of cases occurring in a subinterval,
i.e., M = max(n1, ..., nm). If the health event is rare and of unknown etiology,
M is summed over several locations and time periods. The sum is tested by
using a single degree of freedom chi-square test. Ederer, Myers, and Mantel
(1964) and Mantel, Kryscio, and Myers (1976) provide tables of the exact null
distribution of M for selected values of m and n.

17.2.2 Scan statistics for individual time points data

Naus (1965) proposed a CDT for temporal clustering that is known as the
scan statistic and is applicable when individual time points data (t1, . . . , tn) are
available during the study period. The test statistic Sd, the maximum number
of cases observed in an interval of length d, is found by “scanning” all intervals
of length d, known as the scanning window of fixed size d, in the time period.
In certain cases, this approach is intuitively more appealing than the disjoint
interval approach of Ederer, Myers, and Mantel (1964), but it is more compli-
cated mathematically. A major challenge with the scan statistic has been to find
analytical results concerning its statistical significance. Unfortunately, the com-
putations necessary to obtain exact p-values for the scan statistic are complex
and often not feasible. For selected interval lengths, time lengths, and sample
sizes, the tables of p-values provided by Naus (1966) and Wallenstein (1980)
can be used. Knox and Lancashire (1982) found a pragmatic approximation to
the p-value but it was not so good. In 1987, Wallenstein and Neff proposed a
simple but excellent approximation for small p-values such as p < 0.10. Let T
denote the length of the entire study period and w = d/T . Then we have

Pr{Sd ≥ k | n, T} ≈ (
k

w
− n − 1)b(k | n, w) + 2

n∑

i=k+1

b(i | n, w), (17.1)
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where

b(i | n, w) =
(

n

i

)

wi(1 − w)n−i.

Although this formula often gives a poor approximation for larger p-values, it
does not matter in terms of statistical significance. For example, when n = 62,
k = 7, d = 1, T = 24 in examples of trisomy data, we have p ≈ 1.09 > 1,
indicating that the test result is not significant anyway.

Naus (1996) compared the power of the scan test with that of the Ederer,
Myers, and Mantel (1964) test and concluded that if the scanning interval is
small and the data are continuous over the interval, the scan test is the more
powerful of the two. Weinstock (1981) proposed a generalization of the scan
test that adjusts for changes in the population at risk. Later, Nagarwalla (1996)
extended the scan statistic to one with a variable window, whose size does not
need to be chosen a priori. Let (t1, ..., tn) denote a random sample of n points
from the density f(t) in an interval [0, T ]. For the hypothesis testing problem
H0 : f(x) = 1/T , H1 : f(x) = 1/T + δ for a ≤ x ≤ a + d, the test is the
maximized likelihood ratio test statistic λ, which allows for clusters of variable
width d:

λ = supd, k≥n0

(
k

n

)k (n − k

n

)n−k (T

d

)k ( T

T − d

)n−k

, (17.2)

where k = k(a, d) is the number of points in the window (a, a + d]. Nagarwalla
gave a simple algorithm for the implementation of the method, but Monte Carlo
hypothesis testing is used to obtain the p-value since it is not possible to obtain
the null distribution of λ analytically.

17.2.3 Clustering index

Tango (1984) developed a GCT for temporal clustering based on the distribu-
tion of counts in m disjoint subintervals. However, it can provide a statistic to
estimate the clustering periods which made large contributions to significant
clustering. The test is useful when the data are grouped. The test statistic,
known as a clustering index, is a quadratic form involving the relative frequen-
cies in each subinterval and a measure of closeness between subintervals,

C = rtAr =
m∑

i=1

m∑

j=1

ninj

n2
aij , (0 < C ≤ 1), (17.3)

where rt = (n1, ..., nm)/n and the entries aij of the m × m symmetric matrix
A are arbitrary known measures of closeness between the ith and jth subinter-
vals with the property aii = 1 and where aij is a monotonically nonincreasing
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function of dij , the time between the ith and jth subintervals. Tango used the
following form as a natural choice:

aij = exp(−dij) = exp(− | i − j |).

The clustering index obtains a maximum value of 1 when all cases occur in
the same subinterval. Although the statistic is easy to calculate, the proposed
asymptotic null distribution was rather complex for simple use. Whittemore and
Keller (1986) showed that the distribution of Tango’s index is asymptotically
normal with mean and variance that are simple to compute. However, later on,
Tango (1990) showed that their normal approximation was very poor for mod-
erately large sample sizes and suggested a central chi-square distribution with
degrees of freedom ν adjusted by the skewness as a better approximation, i.e.,

Pr{C > c | H0} ≈ Pr

{

χ2
ν > ν +

√
2ν

(
c − E(C)
√

V ar(C)

)}

, (17.4)

where

E(C) = m−2{1tA1 + n−1tr[AV ]}
Var(C) = m−4n−1{41tAV A1 + 2n−2tr[(AV )2]}

ν = 8/(
√

β1(C))2

√
β1(C) =

8{31t(AV )2A1 + n−1tr[(AV )3]}√
n{41tAV A1 + 2n−1tr[(AV )2]}3/2

1 = (1, ..., 1)t (length m)
V = diag(m1) − 11t,

where diag(x) is the m × m diagonal matrix with the vector x. If the null
hypothesis of no clustering is rejected, we can apply the same idea adopted
in the spatial clustering index [Tango (2000)], i.e., the most likely center of
clustering period may be identified by the subinterval i with maximum of

Ui =
1
C

m∑

j=1

ninj

n2
aij , (

m∑

i=1

Ui = 1), (17.5)

which denotes the percentage of the ith subinterval’s contribution to the sig-
nificant clustering. Empirically, the subintervals with high outlying percentages
will be likely periods of clusters.

17.2.4 Other methods

Bailar, Eisenberg, and Mantel (1970) suggested a GCT for detecting temporal
clustering based on the number of pairs of cases in a given area that occur
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within a specified length of time d of each other. The numbers of close pairs
occurring in q areas are summed. The test statistic is assumed to be approx-
imately normally distributed. Larsen, Holmes, and Heath (1973) developed a
rank order GCT for detecting temporal clustering. The time period is divided
into disjoint subintervals that are numbered sequentially (i.e., ranked). The test
statistic K is the sum of absolute differences between the rank of the subin-
terval in which a case occurred and the median subinterval rank. Small values
of K indicate unimodal clustering. Generally, the K statistics for multiple geo-
graphic areas are summed. The resulting statistic is asymptotically normal with
simple mean and variance. This test is sensitive only to unimodal clustering;
it cannot distinguish multiple clustering from randomness. Molinari, Bonaldi,
and Daures (2001) proposed a CDT by applying a piecewise-constant regres-
sion model which allows for multiple cluster detection. They used the Akaike
information criterion and the Bayesian information criterion to determine the
optimal model including the number of clusters.

17.2.5 Illustration with congenital oesophageal atresia data

The data we use to illustrate several tests here consists of individual dates of
birth of n = 35 cases of the birth defects oesophageal atresia and tracheo-
oesophageal fistula observed in a hospital in Birmingham, U.K., from 1950
through 1955. The study was first published by Knox (1959) and subsequently
analyzed by Weinstock (1981) using a scan statistic with a fixed window and
by Nagarwalla (1996) using a scan statistic with a variable window. The data is
shown in Table 17.1. The second column is the number of days past 1 January
1950 on which each case was observed. The third, fourth, and fifth columns
of the table denote the frequency of cases per 100 days, 200 days, and 365
days (one year), respectively. Visual inspection of the data suggests that there
occurs a clustering during three close subintervals [1200, 1299], [1300, 1399],
[1400, 1499] and another less striking concentration occurs in the last three
subintervals [1900, 1999], [2000, 2099], [2100, 2199]. We shall show the results
of application of the scan statistic with a fixed window, the scan statistics with
a variable window, and the clustering index.

1. Scan statistic with a fixed window d = 100

Sd = 7 for the cluster of 7 cases from the day 1233 (17 May 1953) to
the day 1305 (28 July 1953). Using the approximation (17.1) we obtain
p = 0.088.

2. Scan statistic with a fixed window d = 200

Sd = 10 for the cluster of 10 cases from the day 1233 (17 May 1953) to
the day 1390 (21 October 1953). Using (17.1) we obtain p = 0.0499.
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Table 17.1. n = 35 cases of oesophageal atresia and tracheo-oesophageal fistula
over 2191 days from 1950 to 1955. Day 1 was set as 1 January 1950. (Data from
Knox, 1959)

Interval Day number Frequency per d days
d = 100 200 365

0–99 0
100–199 170 1 1
200–299 0
300–399 316 1 1 2
400–499 445, 468 2
500–599 0 2
600–699 0
700–799 0 0 2
800–899 0
900–999 938 1 1

1000–1099 1034 1 2
1100–1199 1128 1 2
1200–1299 1233, 1248, 1249, 1252, 1259, 1267 6
1300–1399 1305, 1385, 1388, 1390 4 10
1400–1499 1446, 1454, 1458, 1461, 1491 5 14
1500–1599 1583 1 6
1600–1699 1699 1
1700–1799 1702, 1787 2 3
1800–1899 0 6
1900–1999 1924, 1974 2 2
2000–2099 2049, 2051, 2067, 2075 4
2100–2199 2108, 2151, 2174 3 7 9

Total 35

3. Scan statistic with a fixed window d = 300

Sd = 15 for the cluster of 15 cases from the day 1233 (17 May 1953) to
the day 1491 (30 January 1954). Using (17.1) we obtain p = 0.0014.

4. Scan statistic with a fixed window d = 365 [Weinstock (1981)]

Sd = 16 for the cluster of 16 cases from the day 1233 (17 May 1953) to
the day 1583 (2 May 1954). Using (17.1) we obtain p = 0.0027.

5. Scan statistic with a variable window [Nagarwalla (1996)]

Results of four different scan statistics with fixed windows d =
100, 200, 300, and 365 suggest the optimal window could exist between 200
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and 365. With n0 = 5, the maximum likelihood ratio (17.2) is λ∗ = 43, 968,
and the most likely cluster is the set of 15 cases from the day 1233 (17
May 1953) to the day 1491 (30 January 1954), which is the same as that
of the scan statistic with fixed window d = 300. The optimal and mini-
mum window is 1491 − 1233 + 1 = 259. Using Monte Carlo testing with
9999 replicates, the observed rank of λ∗ due to Nagarwalla’s computation
is 58, i.e., p = 0.0058.

6. Clustering index for the frequency data per 100 days

Observed standardized clustering index is c = 5.015 and using the ap-
proximation (17.4) we obtain p = 0.00027. By examining the percent
contribution Ui to C, we can see that three successive subintervals
[1200, 1299], [1300, 1399], [1400, 1499] (15 cases from the day 1233
to the day 1491) have quite large values compared with those of other
subintervals, and their contribution is 61.7%, indicating strong cluster-
ing period in these three successive subintervals. Furthermore, we can
indicate another possible clustering period in two successive subintervals
[2000, 2099], [2100, 2199] (7 cases from the day 2049 to the last day
2174) which contributed about 18.7%.

7. Clustering index for the frequency data per 200 days

Observed standardized clustering index is c = 5.222 and using (17.4) we
obtain p = 0.0004. By examining the percent contribution Ui to C, we can
see a cluster in the two successive subintervals [1200, 1399], [1400, 1599]
(16 cases from the day 1233 to the day 1583) which has 61.8% contribu-
tion. Furthermore, we can indicate another possible clustering period in
the last subinterval [2000, 2199] (7 cases from the day 2049 to the last
day 2174) which contributed about 18.0%.

8. Clustering index for the frequency data per one year (365 days)

Observed standardized clustering index is c = 4.745 and using (17.4) we
obtain p = 0.0014. By examining the percent contribution Ui to C, we
can see a cluster in the subinterval [1095, 1459] (14 cases from the day
1128 to the day 1458) which has about 51.3% contribution. Furthermore,
we can indicate another possible clustering period in the last subinterval
[1825, 2190] (9 cases from the day 1924 to the last day 2174) which
contributed about 23.6%.

17.2.6 Illustration with trisomy data

In this section, we shall consider a grouped data of N = 62 cases of trisomy
among karyotyped spontaneous abortions of pregnancies, by calendar month of
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the last menstrual period, July 1975 to June 1977, in three New York hospitals.
This study was first analyzed by Wallenstein (1980) and subsequently by Tango
(1984, 1990). The data is shown in Table 17.2. The trisomy data was tabulated
in two ways: (1) monthly data over 24 months, (ii) bimonthly data over 24
months. Visual inspection of the data suggests that a cluster seems to occur
during the period November 1976 to January 1977. The results are as follows.

1. Scan statistic [Wallenstein (1980)]

Wallenstein (1980) applied the scan statistic with a fixed window to
individual trisomy data (not shown in his paper). In his illustration, he
set d = 60 days and found Sd = 14, p = 0.038 based on his unpub-

Table 17.2. Frequency of trisomy among karyotyped spontaneous abortions of
pregnancies, by calendar month of the last menstrual period, July 1975 to June
1977, in three New York hospitals. (Data from Wallenstein, 1980; Tango, 1984)

Year Month Frequency
per month per two months

1975 7 0
8 4 4
9 1

10 2 3
11 1
12 3 4

1976 1 1
2 3 4
3 2
4 2 4
5 3
6 4 7
7 1
8 1 2
9 1

10 2 3
11 4
12 7 11

1977 1 7
2 2 9
3 2
4 6 8
5 1
6 2 3

Total 62
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lished extensive table. Linear interpolation based on his Table 17.1 yields
p = 0.040. Using the approximation (17.1) we obtain p = 0.037. In this ex-
ample, the maximum number of trisomies in two consecutive months was
also 14. In general, inspection of all 60-day intervals may yield a higher
value than the maximum number of two consecutive months.

2. Clustering index [Tango (1984, 1990)]

All the following three results are significant at the 5% level: (i) for
monthly data over 24 months, C = 0.1139, p = 0.023, (ii) for bimonthly
data over 24 months, C = 0.1975, p = 0.035, and (iii) for monthly data
over the last 12 months, C = 0.2354, p = 0.0046. Using Ui, we can find
a likely cluster in the period from November 1976 to January 1977 which
has 18 cases and 45.5% contribution.

3. Use of SaTScan

SaTScan is a free software developed by Kulldorff et al. (2007) imple-
menting several types of spatial, temporal, and space-time scan statistics.
Purely temporal, analysis is essentially the same idea as Nagarwalla’s scan
statistic with a variable window for individual data. The details will be
described in the next section. We shall show the results only for monthly
data over 24 months. The most likely cluster is the set of 28 cases from
November 1976 to April 1977. Using Monte Carlo testing with 999 repli-
cates, the observed rank of the log-likelihood ratio statistic is 22, i.e.,
p = 0.022.

17.3 Spatial Clustering

For spatial analysis, it was/is sometimes practically impossible to obtain
individual point location data in space due to confidentiality restrictions on
individual privacy. Therefore, most tests for spatial clustering developed so far
have been designed for regional count data. Although there are some important
tests using individual point data or a sample of case-control location data,
e.g., Cuzick and Edwards’s test (1990) based on k-nearest neighbors and its
generalized version by Tango (2007), in what follows, I shall confine myself to
considering the situation where an entire study area is divided into m adminis-
trative regions (for example, county, census tract, block group) and the region
i(= 1, ..., m) has the observed number of cases ni and the expected number of
cases ei under the null hypothesis of no clustering such that
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n =
m∑

i=1

ni =
m∑

i

ei. (17.6)

17.3.1 Tests based on adjacencies

Geary (1954) developed a test of spatial clustering that assesses whether rates
for adjacent areas are more similar than would be expected if they were ran-
domly distributed among the geographic areas. The test statistic is the ratio of
the sum of mean squared differences between rates for pairs of adjacent areas
to the weighted sum of mean-squared differences between rates for all pairs of
areas. If the rates are geographically distributed at random, the test statistic
is close to one; otherwise, it is less than one. Geary derived an expression for
the approximate variance of the ratio. If the number of areas is not too small,
the ratio is asymptotically normally distributed. Ohno, Aoki, and Aoki (1979)
and Ohno and Aoki (1981) developed a simple test for spatial clustering that
uses rates for geographic areas (e.g., census tracts, counties, or states) rather
than data for individual cases. The test assesses whether the rates in adjacent
areas are more similar than would be expected under the null hypothesis of no
clustering. For this test, the rate for each area is classified into one of several
categories, and each pair of adjacent areas is identified. The test statistic is the
number of adjacent concordant pairs; i.e., the number of pairs of areas that
are adjacent and have rates in the same category. An overall clustering mea-
sure summed across all categories can be obtained as well as category-specific
clustering measures. The observed number of adjacent concordant pairs is com-
pared with the expected number by using a chi-square test. Ohno, Aoki, and
Aoki (1979) provide a simple formula for calculating the expected number of
pairs. Grimson, Wang, and Johnson (1981) proposed a test of spatial clustering
for use in detecting clusters of geographic areas designated as high risk. The
null hypothesis is that high-risk areas are randomly distributed within a larger
area and do not cluster. Given the number of high-risk areas, the test statistic
is the number of pairs of high-risk areas that are adjacent to each other. This
statistic is equivalent to the category-specific statistic from Ohno, Aoki, and
Aoki (1979).

Note that, although these tests based on adjacencies are easy to use, they
do not properly take the sampling variability of rates into account, and so they
are not recommendable in the sense that they may produce spurious results in
practice.

17.3.2 Tests based on scanning regions

As the first method using scanning local regional rates, Openshaw et al. (1988)
developed a geographical analysis machine (GAM) that is an exploratory tool
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for searching for potential clusters. GAM constructs overlapping circles of differ-
ent radii centered at each grid point defined a priori, counts the number of cases
and the number of people at risk within the circle, and displays those circles
with local incidence proportions exceeding some predefined threshold. However,
GAM has attracted much criticism since it produces large numbers of highly
correlated ovelapped circles. Turnbull et al. (1990), on the other hand, proposed
a more statistically sound cluster evaluation permutation procedure (CEPP),
where, for each region, a window is constructed by absorbing the nearest neigh-
boring regions such that each window contains just a pre-fixed population size
R. These windows vary in geographic shape and size but maintain a constant
population size at risk so that observed counts are identically distributed. How-
ever, these windows of cases and populations overlap, and the counts are not
independently distributed. The test statistic of the CEPP is given by the max-
imum number of cases in the window, which is not necessarily integer due to
the adjustment of each population size to R. Monte Carlo testing is needed to
obtain the p-value for the test statistic.

Besag and Newell (1991) considered windows with a pre-fixed number of
cases k rather than a pre-fixed population size. It was originally designed for
quite rare diseases, and thus a typical value of k might be small such as k =
2, 4, .... Each region with nonzero cases is considered in turn as the center of
a possible cluster. When considering a particular region, we label it as region
0 and order the remaining regions by their distance to the region 0. We label
these regions j = 1, 2, ..., m − 1 and define

Di =
i∑

j=0

n(j), ui =
i∑

j=0

ξ(j),

where n(j) and ξ(j) denote the number of cases and population in the region la-
belled j, respectively. Then, the test statistic for detecting individual clusters is

S = min{i : Di ≥ k}. (17.7)

Namely, the nearest S regions contain the closest k cases. A small observed
value of S indicates a cluster centered at region 0. The significance level for
each potential cluster is

Pr{S ≤ s} = 1 −
k−1∑

t=0

exp(−usQ)(usQ)t/t!, Q = n+/ξ+. (17.8)

As the test statistic of overall clustering within the entire study area, Besag and
Newell (1991) suggested the total number TBN of significant (p < 0.05, say)
individual clusters. The significance of the observed TBN may be determined
by Monte Carlo simulation.
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17.3.3 Spatial scan statistics

Kulldorff and Nagarwalla (1995) and Kulldorff (1997) proposed the spatial scan
statistic, which is a spatial version of the scan statistic with a variable window
size and is a generalization of CEPP. The spatial scan statistic imposes a circular
window Z on each centroid of a region. For any of those centroids, the radius of
the circle varies from zero to some preset upper limit. If the window contains
the centroid of a region, then that whole region is included in the window. In
total, a very large number of different but overlapping circular windows are
created, each with a different location and size, and each being a potential
cluster. Let Zik, k = 1, . . . , Ki, denote the window composed by the (k − 1)-
nearest neighbors to region i. Then, all the windows to be scanned by the spatial
scan statistic are included in the set

Z1 = {Zik | 1 ≤ i ≤ m, 1 ≤ k ≤ Ki}.

Under the alternative hypothesis, there is an elevated risk within some window
Z as compared to outside:

H0 : E(N(Z)) = e(Z), for all Z,

H1 : E(N(Z)) > e(Z), for some Z,

where N() and e() denote the random number of cases and the null expected
number of cases within the specified window, respectively. For each window, it
is possible to compute the likelihood to observe the observed number of cases
within and outside the window, respectively. Under the Poisson assumption,
which is a typical distribution for rare diseases, the test statistic is the likelihood
ratio maximized for Z:

sup
Z∈Z1

(
n(Z)
e(Z)

)n(Z) (n(Zc)
e(Zc)

)n(Zc)

I

(
n(Z)
e(Z)

>
n(Zc)
e(Zc)

)

, (17.9)

where Zc indicates all the regions outside the window Z, and n() denotes the
observed number of cases within the specified window and I() is the indicator
function. The window Z∗ that attains the maximum likelihood is defined as the
most likely cluster (MLC). To find the distribution of the test statistic under the
null hypothesis, Monte Carlo hypothesis testing is required. Kulldorff’s spatial
scan statistic has been applied to a wide variety of epidemiological studies
and also to disease surveillance for the detection of disease clusters along with
SaTScan Software (Kulldorff et al. 2007).

However, since it uses a circular window to scan the potential cluster areas,
it has difficulty in correctly detecting actual noncircular clusters. To detect
arbitrarily shaped clusters which cannot be detected by the circular spatial
scan statistic, Patil and Taillie (2004), Duczmal and Assunção (2004), Tango
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and Takahashi (2005), and Assunção et al. (2006) have proposed different spatial
scan statistics. Patil and Taillie (2004) used the notion of “upper level set” to
reduce the size of windows to be scanned and proposed the “upper level set
scan statistic.” However, they do not discuss how to select the level g which
defines the upper level set. Duczmal and Assunção (2004), on the other hand,
have applied a simulated annealing method, in which they try to examine only
the most promising windows using a graph-based algorithm to obtain the local
maxima of a certain likelihood function over a subset of the collection of all
the connected regions. Their method seems to be very complicated, but they
do not show any programmable procedure for it. Tango and Takahashi (2005)
called their spatial scan statistic the flexible spatial scan statistic in contrast
to Kulldorff’s circular spatial scan statistic and provided FleXScan Software
[Takahashi, Yokoyama, and Tango (2007)].

The flexible spatial scan statistic imposes an irregularly shaped window Z on
each region by connecting its adjacent regions. For any given region i, we create
the set of irregularly shaped windows with length k consisting of k connected
regions including i and let k move from 1 to the preset maximum length of
cluster K. To avoid detecting a cluster of unlikely peculiar shape, the connected
regions are restricted as the subsets of the set of regions i and (K − 1)-nearest
neighbors to the region i. In total, as in the circular spatial scan statistic, a
very large number of different but overlapping arbitrarily shaped windows are
created. Let Zik(j), j = 1, . . . , Jik denote the jth window which is a set of
k regions connected starting from the region i, where Jik is the number of j
satisfying Zik(j) ⊆ Zik for k = 1, . . . , Ki = K. Then, all the windows to be
scanned are included in the set

Z2 = {Zik(j) | 1 ≤ i ≤ m, 1 ≤ k ≤ K, 1 ≤ j ≤ Jik}. (17.10)

In other words, for any given region i, the circular spatial scan statistic considers
K concentric circles, whereas the flexible scan statistic considers K concentric
circles plus all the sets of connected regions (including the single region i) whose
centroids are located within the Kth largest concentric circle. So, the size of
Z2 is far larger than that of Z1, which is at most mK. Under the Poisson
assumption, the test statistic is the same form as (17.9) where Z1 is replaced
by Z2.

17.3.4 Clustering index

Tango (1995) proposed the following test statistic for spatial disease clustering:

C = (r − p)tA(r − p)

=
m∑

i=1

m∑

j=1

(
ni − ei

n

)(
nj − ej

n

)

aij , (17.11)
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where rt = (n1, ..., nm)/n denotes a vector of the observed relative frequencies,
p = EH0(r), and ei = npi, i = 1, ..., m. This is a generalization of his tem-
poral clustering index in that it allows for heterogeneous population size and
confounding factors based on indirect standardization. Namely, let us partition
the population into K categories and let nik and ξik denote the observed num-
ber of cases and the population size, respectively, in the kth category of the
confounding factor of the ith region. Then, we have

p =
K∑

k=1

n+k

n
pk =

K∑

k=1

n+k

n
(p1k, ..., pmk)t, (17.12)

where pik = ξik/
∑m

j=1 ξjk. As a measure of closeness, aij(λ), between the regions
i and j, Tango (1995, 2000) recommended the double exponential form:

aij = exp

{

−4
(

dij

λ

)2
}

, (17.13)

where λ is a measure of cluster size and is essentially equal to the maximum
distance between cases, such that any pair of cases far apart beyond the distance
λ cannot be considered as a cluster. Large λ will give a test sensitive to a large
cluster and small λ to a small cluster. In practical application, it is rare that
we can predict the cluster size before examining data. Therefore, we usually
repeat the procedure using different parameter settings and, consequently, face
multiple testing problems. To take this problem into account, Tango (2000)
propose, as an extended test statistic, the minimum of the profile P -value of C
for λ where λ varies continuously from a small value near zero upwards until
λ reaches about one-fourth the maximum distance dij in the study area. The
proposed test statistic Pmin is defined as

Pmin = min
λ

Pr{C > c | H0, λ} = Pr{C > c | H0, λ = λ∗}, (17.14)

where λ∗ attains the minimum p-values of C. A practical implementation of this
procedure is to use “line search” by discretization of λ. The null distribution of
Pmin can be obtained by using Monte Carlo simulation. This test is also called
Tango’s MEET (maximized excess event test) in the literature [e.g., Kulldorff
et al. (2003, 2006); Song and Kulldorff (2003, 2005)].

Given λ and under the null hypothesis H0, the test statistic C was shown
to be asymptotically approximated by the same type of chi-square distribution
as (17.4), where
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E(C) = n−1tr(AV )
V ar(C) = 2n−2tr(AV )2

ν = 8/{
√

β1(C)}2

√
β1(C) = 2

√
2tr(AV )3/{tr(AV )2}3/2

V =
K∑

k=1

n+k

n
{diag(pk) − pkp

t
k}.

This chi-square approximation is generally quite accurate even for small n. If
the null hypothesis of no clustering is rejected, we can use a statistic similar to
(17.5) to indicate the most likely center i of clustering area with large values of

Ui =
1
C

m∑

j=1

(
ni − ei

n

)(
nj − ej

n

)

aij , (17.15)

which denote the percentage of the ith region’s contribution to the significant
clustering. More specifically, we may use the following condition of standardized
Ui to suggest the center of clustering areas:

(Ui − Ū)/SDU ≥ 2.0 or 3.0.

17.3.5 Other methods

Whittemore et al. (1987) developed a test statistic for spatial clustering,

W = rtDr,

which is identical in form to Tango’s clustering index C (17.3), but for which
D = (dij) is used as a measure of distance. They proved the asymptotic distri-
bution of this index to be normal and insisted that the clustering index C (17.3)
also has an asymptotic normal distribution. However, it does depend largely on
the element A or D used. When the distance measure D is used, convergence to
normality is very fast. On the contrary, when the closeness measure A is used,
the speed is shown to be too slow, and thus normality is not valid even for
fairly large sample sizes such as n = 1000 [Tango (1986, 1990)]. Furthermore,
more substantially, it has been shown that (1) the quadratic form in (r − p)
should be used to properly adjust for heterogeneous populations, and (2) the
power of W often falls below the nominal α level depending on the clustering
models due to the use of distance measure D [Tango (1995, 1999)]. Therefore,
the test of Whittemore et al. cannot be recommended for practical use. Bonetti
and Pagano (2005) proposed a test using the interpoint distance distribution
for spatial clustering, but it generally does not perform quite as well as the
spatial scan statistic and Tango’s clustering index [Kulldorff et al. (2003), Song
and Kulldorff (2003)].
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17.3.6 Illustration with gallbladder cancer mortality data

As an illustration, we shall apply three tests, 1) circular spatial scan statistic,
2) flexible spatial scan statistic, and 3) spatial clustering index, to the mortality
data from gallbladder cancer (male, 1993–1997) in the areas of three adjacent
prefectures (Niigata, Fukushima, and Yamagata) in Japan. The total observed
number of deaths for five years was 665 in this area with m = 246 regions
(cities and villages). Before applying these three tests for spatial clustering,
we drew a disease map based on the standardized mortality ratio (SMR) in
Figure 17.1, which shows the maximum likelihood estimates for the relative
risks. No clear spatial pattern emerges from this map. SMRs are commonly used
in disease mapping, but they are very unstable in the sense that they can yield
large changes in estimate with relatively small changes in expected number of
cases. So, to overcome the drawbacks of the SMRs in disease mapping, Bayesian
approaches have been used to obtain more smoothed estimates [for example,
see Lawson, Browne, and Vidal Rodeiro (2003)]. In this paper we shall omit
Bayes estimates of for disease mapping.

The results of Kulldorff’s circular spatial scan statistic and Tango–
Takahashi’s flexible spatial scan statistic are shown in Figure 17.2 and Figure
17.3, respectively, where K = 20. The most likely cluster and the secondary
cluster detected by the flexible spatial scan statistic are very similar to, but
have a slightly different shape than, those of the circular spatial scan statistic.
Regarding the application of Tango’s clustering index, we took a sequence of

Figure 17.1. The SMRs of gallbladder cancer (male) in three prefectures,
Niigata, Fukushima, and Yamagata, in Japan (1996–2000).
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Figure 17.2. The most likely cluster (shaded area) and the secondary cluster
(a lighter shaded area) detected by SaTScan for gallbladder cancer mortality
data (male) in three prefectures, Niigata, Fukushima, and Yamagata, in Japan.

Figure 17.3. The most likely cluster (shaded area) and the secondary cluster
(a lighter shaded area) detected by FleXScan for gallbladder cancer mortality
data (male) in three prefectures, Niigata, Fukushima, and Yamagata, in Japan.
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Figure 17.4. Two centers of clustering areas (shaded area) detected by Tango’s
spatial clustering index for gallbladder cancer mortality data (male) in three
prefectures, Niigata, Fukushima, and Yamagata, in Japan.

values of cluster size λ as λ = 0.1, 5, 10, 15, ..., 100 (km) to obtain the test
statistic

Pmin = min
λ∈{0.1,5,10,...,100}

Pr{C > c | H0, λ}

and obtained Pmin = 0.00004 at λ = 45. This Pmin value is the second largest
among 999 Monte Carlo replicates and, therefore, the adjusted p-value of Pmin

was 2/(999 + 1) = 0.002. As possible centers of clusters, regions with standard-
ized Ui ≥ 2.0 are indicated in Figure 17.4, and these regions are found to be
included in the most likely cluster and secondary cluster detected by both the
circular scan statistic and flexible scan statistic.

17.4 Discussion

Many different test statistics have been designed for detecting disease clustering
in time and in space. Most tests proposed before 1995, however, suffer from
multiple testing problems due to one or two unknown parameters that must
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be set prior to their applications. For example, Naus’s scan statistic (1965) for
individual time points data has an unknown length d of the scanning window,
the procedure by Turnbull et al. (1990) has an unknown parameter regarding
the common size of the population at risk R, Cuzick and Edwards’s test (1995)
has an unknown number of k-nearest-neighbors, and Besag and Newell’s test
(1991) has an unknown number of cases k for the size of the cluster. However,
tests proposed in recent years tend to take such multiple testing into account.
For example, such tests include Nagarwalla’s scan statistic with variable window
(1996), Kulldorff’s spatial scan statistic (1997), Tango and Takahashi’s flexible
spatial scan statistic (2005), and Tango’s clustering index (2000), where we have
only to specify the maximum possible cluster size.

In recent power comparisons of disease clustering tests including CDTs and
GCTs by Kulldorff et al. (2003) and Song and Kulldorff (2003), 1) Kulldorff’s
circular spatial scan statistic is shown to be the most powerful for detecting lo-
calized clusters, and 2) Tango’s clustering index is the most powerful for general
clustering throughout the study area. Note, however, that the power estimates
provided reflect only the “power to reject the null hypothesis for whatever rea-
son” and that the probability of both rejecting the null hypothesis and detecting
the true cluster correctly is a different matter. To investigate the performance
of power of the CDT, Tango and Takahashi (2005) proposed a new bivariate
power distribution P (l, s), which is the probability that the significant MLC has
length l(≥1) and includes s regions within the true cluster with length s∗. The
usual power is defined by

∑
l

∑s∗

s=1 P (l, s). Our simulation study using P (l, s)
revealed that the circular spatial scan statistic shows a high level of accuracy
in detecting circular clusters exactly and reasonably good power for includ-
ing some true cluster regions into the MLC. However, the circular spatial scan
statistic is also shown to have a tendency to detect a cluster much larger than
the true cluster assumed in the simulation, even when the true cluster is circu-
lar. The flexible spatial scan statistic, on the other hand, exhibits no such high
power regarding exact identification of clusters, but the support of the power
distribution is shown to be concentrated in a relatively narrow range of length
l on the line s = s∗, indicating that an observed significant MLC contains the
true cluster with quite high probability.

Tango and Takahashi (2005) have also shown examples which cast a doubt
on the validity of the model selection based on maximizing the likelihood ratio:
Duczmal and Assunção’s procedure (2004) detected a quite large and peculiar
shaped MLC that had the largest likelihood ratio among the three different
MLCs, identified by three different spatial scan statistics, Kulldorff’s (1997),
Duczmal and Assunção’s (2004), and Tango and Takahashi’s (2005). Such a
doubt can also be seen in the above-stated simulation results of the circular
spatial scan statistic that had nonnegligible probabilities of detecting much
longer clusters, than the true cluster. The flexible spatial scan statistic, on the
other hand, is shown not to detect such an unexpected long cluster, probably
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because it has the restriction that our windows are constructed only from mem-
bers of the (K−1)-nearest neighbors to the starting region. Nevertheless, these
undesirable properties produced by the maximum likelihood ratio might suggest
the use of a different criterion for model selection.

In this chapter, we did not include tests for space-time disease clustering
due to the limitation of space. As far as I know, Kulldorff (2001) proposed a
procedure for prospective time periodic geographical disease surveillance using
a scan statistic for the first time. In the aftermath of the World Trade Center
attacks on September 11, 2001 and the anthrax-laden letters that followed in
October 2001, a syndromic surveillance has been poised for deployment across
the USA [Lawson and Kleinman, (2005)]. Therefore, statistical methods for
timely detection of an outbreak threat, which are closely related to tests for
space-time clustering, will be increasingly needed.
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