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Abstract: Patterns and motifs on finite alphabets are of interest in many
applied areas, such as computational molecular biology, computer science, com-
munication theory, and reliability theory. The exact distribution theory associ-
ated with occurrences of patterns (single or compound) and motifs, in random
strings of letters, is treated in this chapter. The strings are generated by a
Markov source, and for the case of single patterns, they are generated by gen-
eral discrete-time or continuous-time models. Here, the interest is in finding
closed-form expressions for the distributions of the following quantities: (i) the
waiting time until the first occurrence of a pattern (motif), (ii) the intersite
distances between consecutive occurrences of such, and (iii) the count of occur-
rences of a pattern, or more generally, the weighted count of occurrences of a
compound pattern, both within a finite time horizon. General exact distribu-
tion results are discussed. Also, a brief guide on various methodological tools
used in the area is provided in the Introduction.

Keywords and phrases: Pattern, motif, waiting time, Markov chain, semi-
Markov process

16.1 Introduction

Patterns and motifs on finite alphabets are of interest in many applied areas,
such as computational molecular biology, computer science, communication the-
ory, and reliability theory. A word on an alphabet is called a single pattern,
and a set of distinct single patterns (words) is called a compound pattern. The
strings (texts) of letters can be generated either by independent and identically
distributed multinomial trials, or by general discrete-time or continuous-time
models (Markov chains or semi-Markov processes). The main interest, from a
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probabilistic/statistical point of view, is in finding practicable closed-form ex-
pressions for the distributions of the following quantities: the waiting time until
the first occurrence of a pattern (single or compound) or motif, the intersite
distances between consecutive occurrences of such, and the count(s) of occur-
rences of a pattern(s) or motif within a finite time horizon. Motifs are special
cases of compound patterns which usually contain a huge number of distinct
single patterns.

The theory on pattern occurrence attracted a variety of methodological
tools. For example, the following methodologies have been widely used in the
literature: combinatorial methods and classical probabilistic methods based on
conditioning arguments, Markov chain embeddings, Markov renewal embed-
dings, exponential families, martingale techniques, and automata theory. The
usefulness of these methodologies to the area is well illustrated in the sources
which follow.

Runs are the simplest patterns. Feller (1950) showed how recurrent event
theory can be used to solve problems about success runs. For a comprehensive
account of the literature on runs see Balakrishnan and Koutras (2002). The
key to handling complex patterns was provided by Conway’s leading numbers,
which account for the overlapping structure of a pattern. Guibas and Odlyzko
(1981) derived results applying elementary methods, and Chryssaphinou and
Papastavridis (1990) extended them to more general models [see also Robin
and Daudin (1999, 2001), Rukhin (2002, 2006), Han and Hirano (2003), and
Inoue and Aki (2007)]. Li (1980) introduced martingale techniques to the area,
and Gerber and Li (1981) combined the latter with a relevant Markov chain
embedding. Martingale tools have also been used in Pozdnyakov et al. (2005),
Glaz et al. (2006), and Pozdnyakov (2008).

Markov chain embeddings have been widely used in the area for treating
problems on pattern occurrence; a few relevant sources are Fu (1996), Chadji-
constantinidis, Antzoulakos, and Koutras (2000), Antzoulakos (2001), Fu and
Chang (2002), and Fu and Lou (2003). Blom and Thorburn (1982) made con-
nections with Markov renewal theory, and this was systematically exploited by
Biggins and Cannings (1987) and Biggins (1987). Stefanov and Pakes (1997)
introduced exponential family methodology, combined with a minimal Markov
chain embedding, and Stefanov (2000) extended it in combination with suitable
Markov renewal embeddings to handle some special compound patterns (sets
of runs).

Nicodème, Salvy, and Flajolet (2002) used automata theory comprehen-
sively. Nuel (2008) combined automata theory with Markov chain embeddings
and elaborated on a route which leads, for any given pattern(s), to a mini-
mal embedding Markov chain. Reinert, Schbath, and Waterman (2000) pro-
vided a survey on some probabilistic tools used in the theory of patterns, and
Szpankowski (2001) treated problems on pattern occurrence associated with
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average case analysis of string searching algorithms. The first exact distribu-
tional results on structured motifs are found in Stefanov, Robin, and Schbath
(2007) [cf. also Robin et al. (2002), Nuel (2008), and Pozdnyakov (2008)].

In this chapter, results are discussed which provide explicit, closed-form
solutions for the distributions of the aforementioned random quantities associ-
ated with the occurrence of patterns and structured motifs. These results are
derived using predominantly simple probabilistic tools. Also, for a given alpha-
bet, they require a preliminary (easy) evaluation of a few basic characteristics,
and then each pattern case is covered in an automated way.

In Sections 16.2 and 16.3 we discuss single patterns. The strings are gen-
erated by discrete- or continuous-time semi-Markov processes. The exact dis-
tribution of the waiting time until the first occurrence of a pattern, given any
(fixed) portion of it has been reached, is found. Also joint distributional results
are discussed. The method relies on the knowledge of basic characteristics as-
sociated with the underlying model used to generate the strings. These basic
characteristics are the probability generating functions (pgf’s) of the waiting
times until another letter of the alphabet is reached. In other words, we need
to know only the pgf’s of the waiting times until the simplest special patterns
consisting of a single letter from the alphabet are first reached. These pgf’s
can be evaluated using well-known analytical results if the underlying model
is a discrete- or continuous-time finite-state semi-Markov process. In terms of
these basic characteristics, simple recurrence relations are provided; these lead
to exact evaluation of the relevant pgf’s for any pattern. The results on single
patterns, as provided in Sections 16.2 and 16.3, lead to an easy solution for
compound patterns, which consist of a small to moderate number of distinct
single patterns. This is discussed in Subsection 16.4.1. The distribution of the
count, and more generally the weighted count, of a compound pattern within a
finite time horizon is discussed in Subsection 16.4.2. A neat explicit expression
is derived for this distribution in terms of the aforementioned waiting time dis-
tributions. The result in Subsection 16.4.2 has not appeared in the literature
before. Structured motifs are covered in Subsection 16.4.3. It is shown that re-
sults on compound patterns, consisting of only two single patterns, are enough
to derive exact distribution results on structured motifs.

16.2 Patterns: Discrete-Time Models

In this section we explain how to derive a closed-form expression for the pgf of
the waiting time to reach a pattern (word) starting from either a given letter or
an already-achieved portion of the pattern. The strings of letters are generated
by a finite-state discrete-time Markov chain whose state space and states are
also called alphabet and letters, respectively.
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Let {X(n)}n≥0 be an ergodic finite-state Markov chain with discrete-time
parameter, state space {1, 2, . . . , N}, and one-step transition probabilities pi,j ,
i, j = 1, 2, . . . , N. Denote by gi,j(t) the pgf of the waiting time, τi,j , to reach
state j from state i, that is gi,j(t) = E(tτi,j ), and

τi,j = inf{n : X(n) = j|X(0) = i}.

We assume τi,i = 0, and therefore gi,i(t) = 1, for each i. The first return time
to state i is denoted by τ̃i,i, that is,

τ̃i,i = inf{n > 0 : X(n) = i|X(0) = i},

and its pgf is denoted by g̃i,i(t).
The pattern of interest is wk = w1w2 . . . wk, where 1 ≤ wi ≤ N, i =

1, 2, . . . , k. For j < k, the subpattern wj is also called a prefix of wk. For each
j, j = 2, 3, . . . , k − 1, and r < j, and each n, n = 1, 2, . . . , N, denote by Ir,j,n

the indicator function which is equal to one if and only if none of the strings
wiwi+1 . . . wjn for i = 2, 3, . . . , r is a prefix of wk but wr+1wr+2 . . . wjn is. Also,
the indicator function Ij,j,n is equal to one if and only if none of the strings
wiwi+1 . . . wjn for i = 2, 3, . . . , j is a prefix of wk.

Denote by G
(s)
j (t) (G̃(s)

j (t)), j = 1, 2, . . . , k, the pgf of the waiting time to
reach the pattern wj from state s, allowing (not allowing) the initial state s to
contribute to the pattern. Also, denote by G

(wr)
j (t), 1 ≤ r ≤ j, the pgf of the

waiting time to reach the pattern wj , given that the pattern wr has already
been reached (note that G

(wj)
j (t) = 1). The following theorem provides a simple

route for evaluating these pgf’s knowing the pgf’s, gi,j(t), of the transition
times between the states of the original Markov chain X(n). The expressions
for the pgf’s gi,j(t) are easily recoverable from well-known analytical results [see
Theorem 2.19 on page 81 of Kijima (1997)], for any given finite-state Markov
chain with not too large a state space.

Theorem 16.2.1 Let the pattern of interest be wk. The following recurrence
relations hold for each j, j = 1, 2, . . . , k − 1, and each r, r = 1, 2, . . . , j (with
the convention

∑0
i=1 = 0):

G̃
(s)
j+1(t) =

pwj ,wj+1tG̃
(s)
j (t)

1 −
N∑

n=1, n=wj+1

pwj ,nt

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,

G
(wr)
j+1 (t) =

pwj ,wj+1tG
(wr)
j (t)

1 −
N∑

n=1, n=wj+1

pwj ,nt

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,
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where

G̃
(s)
j+1(t) = G

(s)
j+1(t), if s �= w1,

G̃
(w1)
j+1 (t) = g̃w1,w1(t)G

(w1)
j+1 (t),

G
(s)
1 (t) = gs,w1(t),

G̃
(s)
1 (t) = g̃w1,w1(t) =

N∑

n=1

pw1,ntgn,w1(t),

and the gi,j(t) and the indicator functions Ii,j,n are as above.

The pgf of the intersite distance between consecutive occurrences of the
pattern wk is given by G

(wj)
k (t), where j is the largest integer such that wj is a

proper prefix as well as a suffix of the pattern wk. Also, the pgf of the waiting
time until the r-th occurrence of the pattern wk, given the initial state i, is

equal to G
(i)
k (t)

(
G

(wj)
k (t)

)r−1
, where j has the same property as above.

The proof of Theorem 16.2.1 is based on the following simple idea. Let
τwj |w̄j+1

be the waiting time for the first return (strictly positive) from pattern
wj to itself given that the pattern wj+1 is not achieved. Of course, the pattern
wj+1 is not achieved if the first state visited is not state wj+1. Therefore, the
pgf of τwj |w̄j+1

is equal to

gτwj |w̄j+1
(t) =

N∑

n=1, n=wj+1

pwj ,nt

1 − pwj ,wj+1

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

)

.

Then, the waiting time to reach pattern wj+1 starting from state s is equal to
one plus a geometric sum of independent random variables, Y1, Y2, . . . , say, such
that Y1 has the distribution of the waiting time to reach subpattern wj from
state s and the remaining Yn have the distribution of τwj |w̄j+1

. This implies
that

G̃
(s)
j+1(t) =

pwj ,wj+1tG̃
(s)
j (t)

1 −
N∑

n=1, n=wj+1

pwj ,nt

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) .

A detailed proof of Theorem 16.2.1 is found in Stefanov (2003).
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16.3 Patterns: General Discrete-Time
and Continuous-Time Models

In this section, extensions of the result from the preceding section are presented.
Finite-state semi-Markov processes, with either discrete- or continuous-time
parameters, are the underlying models for generating the strings. Also, joint
distributions of the waiting time to reach a pattern, together with the associated
counts of occurrences of each letter, are of interest.

16.3.1 Waiting times

The notation from the preceding section is further used here for identifying the
counterparts of similar quantities. For example, gi,j(t) will again denote the pgf
of the waiting time to reach state j from state i in the more general discrete-
or continuous-time model considered here.

Let {X(u)}u≥0 (the time parameter u may be either discrete or continuous)
be a semi-Markov process whose associated embedded discrete-time Markov
chain has a finite state space {1, 2, . . . , N} and one-step transition probabilities
pi,j , i, j = 1, 2, . . . , N. For a formal definition of a semi-Markov process see
Çinlar (1975). Denote by φi,j(t) the pgf of the holding (sojourn) time in state i,
given that the next state to be visited is state j (if the holding time distributions
are discrete, then the time parameter is discrete). We denote by gi,j(t) the pgf
of the waiting time, τi,j , to reach state j from state i; that is, gi,j(t) = E(tτi,j ),
where

τi,j = inf{u : X(u) = j|X(0) = i}.

We assume τi,i = 0, and therefore gi,i(t) = 1, for each i. The first return time to
state i is denoted by τ̃i,i and its pgf by g̃i,i(t). Of course, if X(u) is a discrete-time
Markov chain,

τ̃i,i = inf{u > 0 : X(u) = i|X(0) = i},

and if X(u) is a continuous-time Markov chain,

τ̃i,i = inf{u > 0 : X(u) = i, X(u−) �= i|X(0) = i}.

If X(u) is a general semi-Markov process, then τ̃i,i is understood to be the wait-
ing time to reach state i from itself given that at least one transition has been
made in the associated embedded discrete-time Markov chain. This clarifies the
interpretation of τ̃i,i in case one-step transitions are allowed from a state to
itself in the embedded discrete-time Markov chain.

Again, as in the preceding section, the pattern of interest is denoted by
wk. Denote by G

(s)
j (t) (G̃(s)

j (t)), j = 1, 2, . . . , k, the pgf of the waiting time
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to reach the pattern wj from state s, allowing (not allowing) the initial state
s to contribute to the pattern. Also denote by G

(wr)
j (t), 1 ≤ r ≤ j, the pgf

of the waiting time to reach the pattern wj , given that the pattern wr has
already been reached (note that G

(wj)
j (t) = 1). The following theorem provides

a simple route for evaluating these pgf’s in terms of the following characteristics
of the original semi-Markov process X(u): the pgf’s, gi,j(t), of the transition
times between the states, the pgf’s, φi,j(t), of the holding time distributions,
and the transition probabilities, pi,j , of the embedded discrete-time Markov
chain.

Theorem 16.3.1 Let the pattern of interest be wk. The following recurrence
relations hold for each j, j = 1, 2, . . . , k − 1, and each r, r = 1, 2, . . . , j (with
the convention

∑0
i=1 = 0):

G̃
(s)
j+1(t) =

pwj,wj+1φwj,wj+1 (t)G̃
(s)
j (t)

1−
N∑

n=1,
n=wj+1

pwj ,nφwj ,n(t)

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,

G
(wr)
j+1 (t) =

pwj,wj+1φwj,wj+1 (t)G
(wr)
j (t)

1−
N∑

n=1,
n=wj+1

pwj ,nφwj ,n(t)

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,

where

G̃
(s)
j+1(t) = G

(s)
j+1(t), if s �= w1,

G̃
(w1)
j+1 (t) = g̃w1,w1(t)G

(w1)
j+1 (t),

G
(s)
1 (t) = gs,w1(t),

G̃
(w1)
1 (t) = g̃w1,w1(t) =

N∑

n=1

pw1,nφw1,n(t)gn,w1(t).

The proof is based on the same idea as that used to prove Theorem 16.2.1.
Similarly to the preceding section, denote by τwj |w̄j+1

the waiting time to reach
wj from itself given that the pattern wj+1 is not achieved. Then one may notice
that the waiting time to reach pattern wj+1 starting from state s is equal to
the sum of two independent random variables, where the first has a pgf which
equals φwj ,wj+1(t) and the second one is a geometric sum of independent random
variables, Y1, Y2, . . . , say, such that Y1 has the distribution of the waiting time
to reach subpattern wj from state s and the remaining Yn have the distribution
of τwj |w̄j+1

.
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16.3.2 Joint generating functions associated with waiting times

In this subsection we consider the same general semi-Markov model X(u) that
has been introduced in the preceding subsection. Recall that its embedded
discrete-time Markov chain has N states. Throughout this subsection these
states will be called ‘symbols’. Again the notation from the preceding subsec-
tions is further used in this subsection for identifying the counterparts of similar
quantities (such as G

(s)
j (·), etc.). Note that basic quantities of the underlying

model, such as τi,j and φi,j , have the same meaning as that in the preceding
subsection.

Let Ci(u) be the count of occurrences of symbol i up to time u, and let
gi,j(t), where t = (t0, t1, . . . , tN ), be the joint pgf of (τi,j , C1(τi,j), . . . , CN (τi,j)),
where the τi,j have been introduced in the preceding subsection. Likewise, let
g̃i,i(t) be the joint pgf of (τ̃i,i, C1(τ̃i,i), . . . , CN (τ̃i,i)), where again the τ̃i,i have
been introduced in the preceding subsection. Note that gi,i(t) = 1. Denote by
ν

(s)
j the waiting time to reach the pattern wj from state s. Let G

(s)
j (t), (G̃(s)

j (t)),

be the joint pgf of ν
(s)
j , C1(ν

(s)
j ), . . . , CN (ν(s)

j ), allowing (not allowing) the first

symbol to contribute to the pattern. Further, let ν
(wr)
j be the waiting time

to reach the pattern wj from the already-reached prefix wr, and let G
(wr)
j (t)

be the joint pgf of ν
(wr)
j , C1(ν

(wr)
j ), . . . , CN (ν(wr)

j ). Note that the methodology
introduced in Stefanov (2000; see Section 3) yields explicit expressions for the
pgf’s gi,j(t) associated with any given semi-Markov process, whose embedded
discrete-time Markov chain has a relatively small number of states. Therefore,
the recurrence relations in the following theorem provide a simple route for
explicit evaluation of the joint pgf’s of the waiting time to reach, or the intersite
distance between two consecutive occurrences of, a pattern and the associated
counts of occurrences of the corresponding symbols (letters).

Theorem 16.3.2 Let the pattern of interest be wk. The following recurrence
relations hold for each j, j = 1, 2, . . . , k − 1, and each r, r = 1, 2, . . . , j:

G̃
(s)
j+1(t) =

pwj,wj+1 twj+1φwj,wj+1 (t0)G̃
(s)
j (t)

1−
N∑

n=1,
n=wj+1

pwj ,ntnφwj ,n(t0)

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,

G
(wr)
j+1 (t) =

pwj,wj+1 twj+1φwj,wj+1 (t0)G
(wr)
j (t)

1−
N∑

n=1,
n=wj+1

pwj ,ntnφwj ,n(t0)

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,
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where

G̃
(s)
j+1(t) = G

(s)
j+1(t), if s �= w1,

G̃
(w1)
j+1 (t) = g̃w1,w1(t)G

(w1)
j+1 (t),

G
(s)
1 (t) = gs,w1(t),

G̃
(w1)
1 (t) = g̃w1,w1(t) =

N∑

n=1

pw1,ntnφw1,n(t0)gn,w1(t).

The proof of this theorem is found in Stefanov (2003).

16.4 Compound Patterns

Throughout this section we assume that the strings are generated by discrete-
time Markov chains.

16.4.1 Compound patterns containing a small number
of single patterns

Denote by W a compound pattern which consists of k distinct single patterns,
w(1),w(2), . . . ,w(k). The latter may have different lengths, and it is assumed
that none of them is a proper substring of any of the others. Let a be an arbitrary
pattern; in particular, if a has length 1, that is, it is equal to a particular letter,
s say, then we will denote a by s. Introduce the following quantities.

Ta,W — the waiting time, starting from pattern a, to reach for the
first time the compound pattern W; if a equals one of the w(i), then
this waiting time is assumed to be greater than 0;

Ta,W|w(j) — the waiting time, starting from pattern a, to reach for
the first time the compound pattern W, given that W is reached
via w(j);

Ta,b — the waiting time to reach pattern b starting from pattern a;

Xi,j — the interarrival time between two consecutive occurrences of
pattern W, given that the starting pattern is w(i) and the reached
pattern is w(j);

ri,j — the probability that the first reached pattern from W is w(j),
given that the starting pattern is w(i).
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Of course, Xi,j = Tw(i),W|w(j) . Introduce the following pgf’s:

Ga,W,j(t) =
∞∑

n=1

P
(
Ta,W = Ta,W|w(j) = n

)
tn, j = 1, 2, . . . , k,

and recall that by GY (t) we denote the pgf of a random variable Y. Clearly,

ri,j = P
(
Tw(i),W = Tw(i),W|w(j)

)
= Gw(i),W,j(1).

Also, it is easy to see that

GXi,j (t) =
Gw(i),W,j(t)

ri,j
.

Therefore, both the ri,j and the pgf’s GXi,j (t) can be recovered from the pgf’s
Gw(i),W,j(t). The following theorem [see Chryssaphinou and Papastavridis
(1990) and Gerber and Li (1981)] provides, for each pattern a, a system of
linear equations from which one can recover the pgf’s Ga,W,j(t) and GTa,W

(t)
in terms of the pgf’s GT

w(i),w(j)
(t). The GT

w(i),w(j)
(t) are derived from the results

in Section 16.2.

Theorem 16.4.1 The following identities hold:

GTa,W
(t) =

k∑

j=1

Ga,W,j(t),

GT
a,w(i)

(t) =
k∑

j=1

GT
w(i),w(j)

(t)Ga,W,j(t), i = 1, 2, . . . , k.

In particular, we get the following explicit expressions for the Gw(i),W,j(t) in
terms of the GT

w(i),w(j)
(t) if the compound pattern W = {w(1),w(2)} consists

of two patterns. For brevity, GTi,j below stands for GT
w(i),w(j)

(t).

Gw(1),W,1(t) =
GT1,1GT2,2 − G2

T1,2

GT1,1GT2,2 − GT1,2GT2,1

,

Gw(1),W,2(t) =
GT1,1GT1,2 − GT1,1GT2,1

GT1,1GT2,2 − GT1,2GT2,1

,

Gw(2),W,1(t) =
GT2,1GT2,2 − GT1,2GT2,2

GT1,1GT2,2 − GT1,2GT2,1

,

Gw(2),W,2(t) =
GT1,1GT2,2 − G2

T2,1

GT1,1GT2,2 − GT1,2GT2,1

.
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16.4.2 Weighted counts of compound patterns

A quantity of interest is the count of occurrences of a compound pattern, W
say (as introduced in Subsection 16.4.1), within a finite time horizon. A more
general quantity is the weighted count of pattern occurrences which attaches
a weight, hi say, to each occurrence of a single pattern, w(i), from W. More
specifically, introduce

HW(t) =
k∑

i=1

hiNw(i)(t),

where Nw(i)(t) is the count of occurrences of pattern w(i) within a time inter-
val of length t. Recall the meaning of the ri,j , Xi,j , and Ts,W|w(j) which are
introduced in Subsection 16.4.1. Of course, the occurrence of W can be mod-
elled by a k-state semi-Markov process, where an entry to state i identifies an
occurrence of pattern w(i). The one-step transition probabilities of the embed-
ded discrete-time Markov chain of this semi-Markov process are the ri,j . The
holding time at state i, given that the next state to be visited is state j, is
identified by the random variable Xi,j . For each initial letter, s say, we augment
this semi-Markov process with one initial state, 0 say, and relevant one-step
transition probabilities and holding times as follows (we denote the probability
to move from state 0 to state j by r0,j):

r0,0 = 0, r0,j = Gs,W,j(1), j = 1, 2, . . . , k,

and the holding time at state 0, given that the next state to be visited is state
j, is identified by Ts,W|w(j) , where the latter and Gs,W,j(t) are introduced in
Subsection 16.4.1. Now consider the semi-Markov processes, Yt say, derived
from that above as follows. The state space has (k+1)2 states, identified by the
pairs (i, j), i, j = 0, 1, . . . , k. The process Yt enters state (i, j) if pattern w(i) is
reached, given that the next occurrence of W is via pattern w(j). The initial
states are the states (0, j) for j = 1, 2, . . . , k, and the initial probabilities are the
r0,j . Clearly, the holding time distributions for this new semi-Markov process
do not depend on the next state visited. Also, the holding time in state (i, j)
is identified by the random variable Xi,j , and that in state (0, j) by Ts,W|w(j) .
Then the weighted count HW(t), introduced above, is equal to

HW(t) =
k∑

i=0

k∑

j=0

hiN(i,j)(t),

where N(i,j)(t) counts the number of visits of Yt to state (i, j) within a time
interval of length t. Denote by ν(i1,j1),(i2,j2) the first passage time of Yt from state
(i1, j1) to state (i2, j2) and by L

ν(i1,j1),(i2,j2)

HW
(s1, s2) the joint Laplace transform

of the random variables ν(i1,j1),(i2,j2) and HW

(
ν(i1,j1),(i2,j2)

)
, that is,

L
ν(i1,j1),(i2,j2)

HW
(s1, s2) = E

(
exp

(
−s1ν(i1,j1),(i2,j2) − s2HW(ν(i1,j1),(i2,j2))

))
.



362 V.T. Stefanov

Closed-form expressions for the L
ν(i1,j1),(i2,j2)

HW
(s1, s2) are derivable in terms of

the ri,j and the Laplace transforms of the Xi,j and the Ts,W|w(j) , as explained
in Stefanov (2006) for general reward functions on semi-Markov processes. Let

L
(s)
t,HW

(s1, s2) =
∫ ∞

0

∫ ∞

0
e−s1t−s2xP (HW(t) ≤ x| the initial letter is s) dxdt

The following theorem follows from a general result on reward functions for
semi-Markov processes [see Theorem 2.1 in Stefanov (2006)]. It provides an
explicit, closed-form expression for the Laplace transform, L

(s)
t,HW

(s1, s2), of the
weighted count of W occurrences within a time interval of length t, in terms
of the ri,j , the Laplace transforms, L[Xi,j ](·), of the interarrival times Xi,j of
the compound pattern W, and the Laplace transforms, L[Ts,W|w(j) ](·), of the
waiting time to reach W from an initial letter s, for s = 1, 2, . . . , N.

Theorem 16.4.2 The following identity holds for the Laplace transform
L

(s)
t,HW

:

L
(s)
t,HW

(s1, s2) =
k∑

m=1

r0,m

k∑

i,j=1

(1 − L[Xi,j ](s1 + s2hi))L
ν(0,m),(i,j)

HW
(s1, s2)

s2(s1 + s2hi)
(
1 − L

ν(i,j),(i,j)

HW
(s1, s2)

) ,

where the joint Laplace transforms L
ν(i1,j1),(i2,j2)

HW
(s1, s2) have been introduced

above.

16.4.3 Structured motifs

Structured motifs are special compound patterns, usually containing a huge
number of single patterns. In this subsection we consider both the waiting time
until the first occurrence, and the intersite distance between consecutive occur-
rences, of a structured motif. The interest in these waiting times is due to the
biological challenge of identifying promoter motifs along genomes. A structured
motif is composed of several patterns separated by a variable distance. If the
number of patterns is n, then the structured motif is said to have n boxes. The
formal definition of a structured motif with 2 boxes follows. Let w(1) and w(2)

be two patterns of length k1 and k2, respectively. The alphabet size equals N ,
and the strings are generated by the Markov chain introduced in Section 16.2.
A structured motif m formed by the patterns w(1) and w(2), and denoted by
m = w(1)(d1 : d2)w(2), is a string with the following property. Pattern w(1) is
a prefix and pattern w(2) is a suffix of the string, and the number of letters be-
tween the two patterns is not smaller than d1 and not greater than d2. Also, it is
assumed that patterns w(1) and w(2) appear only once in the string. The pgf’s
of both the waiting time, τ

(s)
m , to reach for the first time the structured motif
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m from state s, and the intersite distance, τ
(intersite)
m , between two consecutive

occurrences of m, are of interest.
Let W = {w(1),w(2)} be a compound pattern consisting of two patterns. For

brevity, denote by Ti,j , i, j ∈ {1, 2}, the waiting time to reach pattern w(j) from
pattern w(i), and by T

(s)
j the waiting time to reach pattern w(j) from state s.

The quantities ri,j and Xi,j , i, j ∈ {1, 2}, are introduced in Subsection 16.4.1.
Let

ai,j(x) = P (Xi,j = x).

In order to reach the structured motif m, we need to reach first the pattern
w(1) and, from this occurrence of w(1), to reach the pattern w(2) such that
d1 + k2 ≤ X1,2 ≤ d2 + k2. Introduce the following random variables:

F12 = (X1,2 | X1,2 < d1 + k2 or X1,2 > d2 + k2),
S12 = (X1,2 | d1 + k2 ≤ X1,2 ≤ d2 + k2).

F12 corresponds to an occurrence of w(2) that fails to achieve the structured
motif, whereas for S12, w(2) achieves the structured motif. One may notice that
the pgf’s of F12 and S12 are given by

GF12(t) =

⎛

⎝GX12(t) −
d2+k2∑

x=d1+k2

a1,2(x)tx

⎞

⎠ (1 − qS)−1

GS12(t) =

⎛

⎝
d2+k2∑

x=d1+k2

a1,2(x)tx

⎞

⎠ q−1
S ,

where qS is the probability of ‘success’ (w(2) achieves the structured motif),
i.e., the probability that d1 + k2 ≤ X1,2 ≤ d2 + k2. Namely, we have

qS =
d2+k2∑

x=d1+k2

a1,2(x).

The following theorem provides explicit and calculable expressions for the
pgf’s of both the waiting time to reach for the first time the structured motif
m = w(1)(d1 : d2)w(2) from state s, and the intersite distance between two
consecutive occurrences of m.

Theorem 16.4.3 The pgf, G
(s)
m (t), of the waiting time to reach for the first

time a structured motif m starting from state s, and the pgf, G
(intersite)
m (t),

of the intersite distance between two consecutive occurrences of m, admit the
following explicit expressions:

G
(s)
m (t) =

r1,2 qS G
T

(s)
1

(t)GS12(t)

(1 − (1 − r1,2)GX1,1(t))
(

1 − (1 − qS)
(

r1,2 GT2,1
(t) GF12

(t)

1−(1−r1,2)GX1,1
(t)

)) ,
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G
(intersite)
m (t) =

r1,2 qS GT2,1(t)GS12(t)
(
1 − (1 − r1,2)GX1,1(t)

)
(

1 − (1 − qS)
(

r1,2 GT2,1
(t) GF12

(t)

1−(1−r1,2)GX1,1
(t)

)) ,

where GF12(t), GS12(t), and qS are given above.

The proof of this theorem is found in Stefanov, Robin, and Schbath (2007).
Note that, in view of this theorem, the availability of the pgf’s GXi,j (t), i, j =

1, 2, is enough to calculate explicit, closed-form expressions for G
(s)
m (t) and

G
(intersite)
m (t). Explicit expressions for the GXi,j (t), in terms of the GT

w(i),w(j)
(t),

are derived from the identities at the end of Subsection 16.4.1. Also, recall that
the GT

w(i),w(j)
(t) are calculated from Theorem 16.2.1 in Section 16.2.

Neat closed-form expressions for the relevant pgf’s associated with struc-
tured motifs with n boxes are found in Stefanov, Robin, and Schbath (2009).
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8. Çinlar, E. (1975). Introduction to Stochastic Processes. Prentice-Hall,
Englewood Cliffs, NJ.

9. Feller, W. (1950). An Introduction to Probability Theory and Its Applica-
tions, Vol. 1. Wiley, New York.

10. Fu, J. C. (1996). Distribution theory of runs and patterns associated with
a sequence of multistate trials. Statistica Sinica, 6, 957–974.

11. Fu, J. C. and Chang, Y. M. (2002). On probability generating functions for
waiting time distributions of compound patterns in a sequence of multistate
trials. Journal of Applied Probability, 39, 70–80.

12. Fu, J. C. and Lou, W. Y. W. (2003). Distribution Theory of Runs and
Patterns and its Applications, World Scientific, Hackensack, NJ.

13. Gerber, H. and Li, S-Y. R. (1981). The occurrence of sequence patterns
in repeated experiments and hitting times in a Markov chain. Stochastic
Processes and Their Applications, 11, 101–108.

14. Glaz, J., Kulldorff, M., Pozdnyakov, V. and Steele, J. M. (2006). Gambling
teams and waiting times for patterns in two-state Markov chains. Journal
of Applied Probability, 43, 127–140.

15. Guibas, L. J. and Odlyzko, A. M. (1981). String overlaps, pattern matching,
and nontransitive games. Journal of Combinatorial Theory. Series A, 30,
183–208.

16. Han, Q. and Hirano, K. (2003). Sooner and later waiting time problems for
patterns in Markov dependent trials. Journal of Applied Probability, 40,
73–86.

17. Inoue, K. and Aki, S. (2007). On generating functions of waiting times and
numbers of occurrences of compound patterns in a sequence of multistate
trials. Journal of Applied Probability 44, 71–81.

18. Kijima, M. (1997). Markov Processes for Stochastic Modeling. Chapman &
Hall, London.

19. Li, S-Y. R. (1980). A martingale approach to the study of occurrence
of sequence patterns in repeated experiments. Annals of Probability, 8,
1171–1176.

20. Nicodème, P., Salvy, B. and Flajolet, P. (2002). Motif statistics. Theoretical
Computer Science, 287, 593–617.



366 V.T. Stefanov

21. Nuel, G. (2008). Pattern Markov chains: optimal Markov chain embedding
through deterministic finite automata. Journal of Applied Probability, 45,
226–243.

22. Pozdnyakov, V. (2008). A note on occurrence of gapped patterns in i.i.d.
sequences. Discrete Applied Mathematics 156, 93–102.

23. Pozdnyakov, V., Glaz, J., Kulldorff, M. and Steele, J. M. (2005). A mar-
tingale approach to scan statistics. Annals of the Institute of Statistical
Mathematics, 57, 21–37.

24. Reinert, G., Schbath, S. and Waterman, M. (2000). Probabilistic and sta-
tistical properties of words: an overview. Journal of Computational Biology,
7, 1–46.

25. Robin, S. and Daudin, J. (1999). Exact distribution of word occurrences in
a random sequence of letters. Journal of Applied Probability, 36, 179–193.

26. Robin, S. and Daudin, J. (2001). Exact distribution of the distances between
any occurrences of a set of words. Annals of the Institute of Statistical
Mathematics, 36, 895–905.

27. Robin, S., Daudin, J., Richard, H., Sagot, M.-F. and Schbath, S. (2002).
Occurrence probability of structured motifs in random sequences. Journal
of Computational Biology, 9, 761–773.

28. Rukhin, A. (2002). Distribution of the number of words with a prescribed
frequency and tests of randomness. Advances in Applied Probability, 34,
775–797.

29. Rukhin, A. (2006). Correlation matrices of chains for Markov sequences, and
testing for randomness. (Russian) Teoriya Veroyatnostei i ee Primeneniya,
51, 712–731.

30. Stefanov, V. T. (2000). On some waiting time problems. Journal of Applied
Probability, 37, 756–764.

31. Stefanov, V. T. (2003). The intersite distances between pattern occurrences
in strings generated by general discrete- and continuous-time models: an
algorithmic approach. Journal of Applied Probability, 40, 881–892.

32. Stefanov, V. T. (2006). Exact distributions for reward functions on semi-
Markov and Markov additive processes. Journal of Applied Probability, 43,
1053–1065.

33. Stefanov, V. T. and Pakes, A. G (1997). Explicit distributional results in
pattern formation. Annals of Applied Probability, 7, 666–678.



Patterns and Motifs 367

34. Stefanov, V. T., Robin, S. and Schbath, S. (2007). Waiting times for clumps
of patterns and for structured motifs in random sequences. Discrete Applied
Mathematics, 155, 868–880.

35. Stefanov, V. T., Robin, S. and Schbath, S. (2009). Occurrence of structured
motifs in random sequences: arbitrary number of boxes. (in preparation).

36. Szpankowski, W. (2001). Average Case Analysis of Algorithms on Se-
quences. John Wiley & Sons, New York.




