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Abstract: Statistics of motifs have been widely revisited in the last 15 years
due to the increasing availability of genomic sequences. The identification of
DNA motifs with biological functions is still a huge challenge of genome anal-
ysis. Many functional and essential motifs have the particularity to be very
frequent all along the chromosome or to be concentrated in some particular re-
gions (e.g. in front of genes) or to be co-oriented with the replication direction.
The prediction of functional motifs is then mostly based on statistical proper-
ties of pattern occurrences in Markovian sequences. This chapter is primarily
devoted to such properties with a special focus on pattern frequency. How does
one compute or approximate the count distribution to assess motif exception-
ality? How can we test if a motif is significantly unbalanced between two (sets
of) sequences? How should one deal with degenerated patterns? How can we
model occurrences to find regions significantly enriched with a given pattern?
Examples of functional motifs will illustrate all these questions, and we will see
how the Chi motif has been identified in Staphylococcus aureus because of its
statistical properties.

Keywords and phrases: Pattern statistics, word count, Markov chain, DNA
sequence, exceptional words, unexpected frequency, compound Poisson process

15.1 Introduction

For the last 15 years, genomic sequence analysis has probably offered the widest
variety of problems on pattern statistics. This variety is due to the huge length
of the sequences and to their heterogeneous composition and structure, but also
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to the complexity of the functional motifs. These motifs take place in funda-
mental molecular processes like chromosome maintenance or gene transcription,
but few of them have been completely identified (i.e. their sequence of letters
is known). Moreover, they are rarely conserved through species, leading to a
very challenging area of DNA motif discovery. This chapter is related to the
statistical approach used to predict candidate functional motifs. Indeed, many
known functional motifs are characterized by an exceptional behavior of their
occurrences. Some of them are extremely frequent along the entire genome (or
along a particular DNA strand), others are avoided because their occurrences
are lethal for the chromosome, and some are preferred in particular genomic re-
gions. Thus, two main quantities have been widely studied from a probabilistic
and statistical point of view: the number of occurrences of a motif in a random
sequence and the distances (cumulated or not) between occurrences of a mo-
tif. To avoid a huge list of references, we recommend Chapters 6 and 7 from
Lothaire (2005) for technical expositions and Robin et al. (2005) for a more
applied exposition. In this chapter, we have chosen to present the main statis-
tical results that are really used in practice to help identify functional DNA
motifs. Many biological examples will then be given to illustrate the usefulness
of the approaches. Most will be devoted to the question of detecting words with
an exceptional frequency in a given sequence. Distribution of a word count in
Markovian sequences will be studied in Section 15.2. We will also consider the
related problem of comparing the exceptionality of a word frequency between
two independent sequences. Functional motifs can indeed be specific from known
parts of the chromosome (or from some particular chromosomes). In this case,
the word occurrences themselves are modeled and a statistical test is derived
from the two count processes (Section 15.3). However, when one look for regions
significantly enriched with (or devoid of) a given word, the quantity of interest
becomes the distance between occurrences. Section 15.3 also presents results
on the distance distribution when the occurrences are modeled by a compound
Poisson process. Other results on distances and waiting times can be found
in Stefanov (2009) when the sequence is Markovian. Section 15.4 addresses
the generalization to more complex patterns, namely degenerated patterns and
structured motifs. Finally, we end with some ongoing works and open problems.

15.2 Words with Exceptional Frequency

Many functional DNA motifs are extremely over-represented in complete
genomes, or in specific genomic regions, whichever compositional level of the
biological sequence one takes into account. This statistical property reveals a
strong constraint on the DNA sequence. For instance, if we look for the two
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Table 15.1. Expected counts of aagtgcggt and accgcactt in random sequences
having on average the same composition as the H. influenzae complete genome.

Markov fitted expected count expected count
model composition of aagtgcggt of accgcactt
M0 letters 4.694 3.779
M1 2-letter words 6.279 4.847
M2 3-letter words 8.603 6.208
M3 4-letter words 18.601 15.080
M4 5-letter words 55.704 48.658
M5 6-letter words 219.081 220.284
M6 7-letter words 549.815 574.734
M7 8-letter words 719.440 722.366

most over-represented 9-letter words in the complete genome of the bacteria
Haemophilus influenzae (1830140 letters long), we find the two reverse comple-
mentary oligonucleotides aagtgcggt and accgcactt which occur respectively
740 and 731 times. As an illustration, Table 15.1 gives the expected count of
these two words when fitting the sequence composition of smaller words. These
two 9-letter words are very well known from the biologists: they are the two
DNA uptake sequences involved in discriminating self from foreign entering
DNA during competence in the bacteria.

Another example is the word gctggtgg which is the “crossover hotspot in-
stigator” (Chi) motif in the bacteria Escherichia coli and is involved in chromo-
some maintenance. Chi is among the five most over-represented 8-letter words
in the E. coli genome (4638858 letters long). This example will be detailed in
Section 15.2.5.

In contrast, many restriction sites (generally 6-letter words) are strongly
under-represented along bacterial genomes, which is not surprising because
they induce a double-strand break of the bacterial DNA. The aim of this
section is precisely to show how to assess the significance of over- and under-
representations.

When we want to analyze the distribution of a word along a sequence or
when we want to know if a word occurs significantly more often in one sequence
compared to another one (Section 15.3), it is relevant to model the occurrences
themselves in order to fit the observed frequencies of this word. However, if the
problem is precisely to know if a given word occurs in a DNA sequence with
a frequency that seems either too low or too high, one needs to compare it
to an expected frequency. Usually, we compare the observation with what one
would expect in random sequences sharing common properties with the DNA
sequence. Under classical sequence models (Section 15.2.1), we can analytically
calculate the moments of the count (Section 15.2.2) and sometimes obtain its
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distribution or some approximations (Section 15.2.3), leading to p-values (Sec-
tion 15.2.4). We will end this section by presenting how the Chi motif of Staphy-
lococcus aureus was predicted, because of its exceptional frequency, before being
experimentally validated [Halpern et al. (2007)].

15.2.1 Sequence models

The commonly used sequence models have the property to fit the letter com-
position of the observed sequence and more generally its composition in small
words of a given length. For instance, it is common to fit the 3-letter word com-
position of coding DNA sequences because the letters of these sequences are
read 3 by 3 by the ribosome, which translates each disjoint triplet into amino
acids to form a protein. The most intuitive model is therefore the permutation
model (or shuffling model), consisting in shuffling the letters of the observed
sequence so that the composition remains exactly the same. Preserving exactly
the letter composition is an easy task, but it is more difficult for 2-letter words
or longer words, from both algorithmic and probabilistic points of view. In that
respect, stationary Markov chains are particularly interesting if one accepts fit-
ting the composition on average rather than exactly. Moreover, if one wants to
take some periodicity or a heterogeneous composition along the sequence into
account, permutation models become very complicated to manipulate.

In our discussion, we will consider a random sequence S = X1X2 · · ·Xn on
the 4-letter DNA alphabet, i.e. Xi ∈ A := {a, c, g, t}.

Permutation models These models assume that random sequences are uni-
formly drawn from the set Sm of sequences having exactly the same counts of
words of length 1 up to m as the observed DNA sequence, for a given integer
m ≥ 1. The probability of a sequence S is then 1/|Sm|. For m = 1 or m = 2,
for instance, we have

|S1| =
n!

Nobs(a)! × Nobs(c)! × Nobs(g)! × Nobs(t)!

|S2| =
∏

a∈A

Nobs(a+)!
∏

b∈A Nobs(ab)!
× HXn,X1(S),

where Nobs(·) denotes the count in the observed sequence Sobs, Nobs(a+) :=∑
b Nobs(ab) and HXn,X1(S) is the cofactor corresponding to row Xn and col-

umn X1 of the matrix
(
1I{a = b} − N(ab)/N(a+)

)
a,b∈A [Whittle (1955)]. Note

that the constraint for S ∈ S2 to have the same letter composition as Sobs is
equivalent to starting (resp. ending) with the first (resp. last) letter of Sobs.
Indeed, we have Nobs(a+) = Nobs(a) for all a ∈ A except for the last nucleotide
of Sobs for which the counts differ from 1. Knowing the letter composition in
addition to the dinucleotide composition determines the last letter Xn of the
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sequences S ∈ S. We use the same procedure for the first letter X1 by using
the numbers Nobs(+b) of dinucleotides that end with b.

Working with these permutation models requires a lot of combinatorics.

Stationary Markov chains Let us consider the first order stationary
Markov model, denoted by M1. This means that the random letters Xi are not
independent and satisfy the following Markov property:

P(Xi = b | X1, X2, . . . , Xi−1) = P(Xi = b | Xi−1), ∀b ∈ A.

The transition probabilities will be denoted as follows:

π(a, b) = P(Xi = a | Xi−1 = b),∀a, b ∈ A;

Π = (π(a, b))a,b will denote the transition matrix. Moreover, all Xi’s have the
same distribution, namely the stationary distribution μ which satisfies the re-
lation μ = μΠ.

The transition probabilities are estimated by their maximum likelihood es-
timators (MLEs), i.e.

π̂(a, b) =
N(ab)
N(a+)

, a, b,∈ A, (15.1)

where N(·) denotes the number of occurrences in the sequence S = X1X2 · · ·Xn.
Moreover, the letter probability μ(a) is usually estimated by μ̂(a) = N(a)

n .
An important consequence of this estimation is that the plug-in estimator of

the expected number of ab in model M1 is approximately equal to the observed
count of ab in the DNA sequence. Indeed, we will see in Section 15.2.2 that
E[N(ab)] = (n − 1)μ(a)π(a, b), which leads to

Ê[N(ab)] := (n − 1)μ̂(a)π̂(a, b) � N(ab).

In other words, model M1 fits on average the 2-letter word composition of the
observed sequence.

Similarly, the stationary m-th order Markov chain model (Mm) fits on aver-
age the (m + 1)-letter word composition of the observed sequence. In practice,
the choice of the order m of the model Mm is important because it defines the
set of reference sequences and, as we will see in Section 15.2.5, this choice often
has a strong influence on the statistical results. This influence can already be
observed in Table 15.1: the expected counts vary with respect to the chosen
model.

Since model Mm on the A alphabet can be considered as a model M1 on the
larger alphabet Am, we will focus on first order Markov chains in this chapter.
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Phased Markov chains for coding sequences The interest in considering
phased Markov chains comes from the analysis of coding DNA sequences. Such
sequences are split into adjacent 3-letter words called codons, each of which
is translated into an amino acid to form a protein. The succession of codons
ensures the reading frame for the translation. The nucleotides of a coding DNA
sequence are then alternatively the first letter of a codon, the second letter of
a codon, the third letter of a codon, and so on. The phase of a nucleotide is
its position with respect to the codons; a letter can then be in three different
phases in a coding sequence. The three positions of a codon do not have the
same importance. First of all, an amino acid is often determined by the two first
letters of a codon according to the genetic code. Moreover, the 3D structure
of the protein usually implies constraints on the succession of amino acids. It
is therefore important to take the phase of the nucleotides into account when
modeling coding DNA sequences.

In a phased Markov chain of order 1, the transition probability from letter
a to letter b depends on the phase φ ∈ {1, 2, 3} of the nucleotide b. We then
have the three following transition probabilities:

πφ(a, b) = P(X3i+φ = b | X3i+φ−1 = a), a, b ∈ A.

We can also define the distributions μφ of letters on each phase φ ∈ {1, 2, 3}.
They satisfy μ1 = μ3Π1, μ2 = μ1Π2 and μ3 = μ2Π3.

When estimating these parameters by the maximum likelihood method, we
can fit on average the composition of the coding DNA sequence in ab’s on phase
1, in ab’s on phase 2 and ab’s on phase 3, for all a, b ∈ A.

With an appropriate change of alphabet, the phased Markov model on the
A alphabet can be considered like a model M1 on A × {1, 2, 3}. It suffices
to rewrite the sequence S over the alphabet A × {1, 2, 3} by defining X�

i =
(Xi, i modulo 3). The transition probability from (a, φ′) to (b, φ) is then equal
to πφ(a, b) if φ = φ′ + 1 modulo 3, and 0 otherwise.

Heterogeneous Markov models Some entire chromosomes have been
completely sequenced for several years, and it was quickly noticed that their
composition is more or less heterogeneous. There may be many reasons for this
heterogeneity: genes are more constrained than intergenic regions because they
have to code for functional proteins, bacteria can exchange genomic regions
(horizontal transfers) but they all have their own signature in terms of com-
position, etc. It is thus natural to use heterogeneous Markov models. Usually
the heterogeneity is considered like a piecewise homogeneity, i.e. homogeneous
regions alternate along the genome. If the heterogeneity is known in advance
(for instance genes/intergenic regions), one may then use piecewise homoge-
neous Markov models. When the aim is precisely to recover the heterogeneous
structure, then the most popular models in genome analysis are hidden Markov
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models. Note that a hidden Markov chain with a hidden state space Q and an
observation space A can be considered as a Markov chain on A×Q.

15.2.2 Mean and variance for the count

The derivation of the expectation and the variance of a word count under the
permutation model based on S2 can be found in Cowan (1991) and Prum et al.
(1995) [see Schbath (1995b) and Robin et al. (2005) for the letter permutation
model].

In this section, we assume that the sequence S = X1X2 · · ·Xn is a first order
stationary Markov chain (model M1) with nonzero transition probabilities.

The number of occurrences N(w) of an h-letter word w = w1w2 · · ·wh in
the sequence S = X1X2 · · ·Xn can be simply defined by

N(w) =
n−h+1∑

i=1

Yi(w), (15.2)

where Yi(w) equals 1 if and only if an occurrence of w starts at position i
in the sequence and 0 otherwise. Therefore, to get the mean and variance of
the count, we need to study the distribution of the random indicators Yi(w)’s,
namely their expectation, variance and covariances.

Random indicator of an occurrence The position of an occurrence of w
is defined by the position of its first letter w1. We define the random indicator
Yi(w) of an occurrence of w at position i, 1 ≤ i ≤ n − h + 1, in S by

Yi(w) =
{

1 if (Xi, Xi+1, . . . , Xi+h−1) = (w1, w2, . . . wh),
0 otherwise.

It is a random Bernoulli variable with parameter P(Yi(w) = 1) given by

P(Yi(w) = 1) = P(Xi = w1, . . . , Xi+h−1 = wh)
= μ(w1) × π(w1, w2) × · · · × π(wh−1, wh).

For convenience, μ(w) will denote the probability for the word w to appear at
a given position in the sequence. The Yi(w)’s are then Bernoulli variables with
expectation μ(w) and variance μ(w)[1 − μ(w)], with

μ(w) = μ(w1) ×
h∏

j=2

π(wj−1, wj). (15.3)

However, these random indicators Yi(w) are not independent, not only because
the sequence is Markovian, but most importantly because occurrences of a given
word may overlap in a sequence. Consequently, their sum over the positions
i = {1, . . . , n − h + 1} (namely the number of occurrences—or count—of the
word) is not distributed according to a binomial distribution.
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S g a a t a a t g a g a a t a a a t a a t a a g

2

a a t a a

11 15 18

a a t a a

a a t a a

a a t a a

Figure 15.1. Four occurrences of aataa in sequence S leading to two clumps of
aataa, the first one of size 1 and the second one of size 3.

Overlaps Occurrences of a given word may overlap in a sequence. For in-
stance, w = aataa occurs four times in the sequence given in Figure 15.1, at
positions i = 2, 11, 15 and 18. The third occurrence overlaps both the second
and the fourth occurrences, leading to a clump of three overlapping occurrences
of aataa starting at position 11.

The overlapping structure of a word can be described by two equivalent
quantities: the overlapping indicators or the periods.

Overlapping indicators The overlapping indicator εu(w), for 1 ≤ u ≤ h, is
equal to 1 if two occurrences of w can overlap on u letters, meaning that the
last u letters of w are identical to its first u letters, and 0 otherwise:

εu(w) =
{

1 if (wh−u+1, wh−u+2, . . . , wh) = (w1, w2, . . . , wu),
0 otherwise.

By definition, εh(w) = 1. A non-overlapping word w is such that εu(w) = 0 for
all 1 ≤ u ≤ h − 1.

Periods of a word An integer p ∈ {1, . . . , h−1} is said to be a period of w if
and only if two occurrences of w can start at a distance p apart (εh−p(w) = 1).
It implies the following periodicity: wj = wj+p for all j ∈ {1, . . . , h − p}.

We denote by P(w) the set of periods of the word w. For instance,
P(aataataa) = {3, 6, 7}. Periods that are not a strict multiple of the smallest
period are said to be principal since they will be more important, as we will
see later. P ′(w) denotes the set of the principal periods of w; for instance,
P ′(aataataa) = {3, 7}.

In the rest of our discussion, we will use the periods rather than the over-
lapping indicators because this simplifies formulas. We will denote by wpw the
word composed of two overlapping occurrences of w starting at a distance p
apart:

wpw = w1 · · ·wpw1 · · ·wh.
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Dependence between occurrences The variables Yi(w) and Yi+d(w),
d > 0, are not independent. Their covariance is defined by

C[Yi(w), Yi+d(w)] = E[Yi(w) × Yi+d(w)] − E[Yi(w)] × E[Yi+d(w)]
= P(Yi(w) = 1, Yi+d(w) = 1) − [μ(w)]2. (15.4)

To calculate the probability P(Yi(w) = 1, Yi+d(w) = 1), we distinguish two
cases: 1 ≤ d < h (two overlapping occurrences) and d ≥ h (two disjoint
occurrences).

• The probability that w occurs both at positions i and i + d, 1 ≤ d < h,
is different from 0 only if d is a period of w. In this case, it is equal to
μ(wdw).

• The probability that two disjoint occurrences of w are separated by d−h
letters (d ≥ h) is given by μ(w)πd−h+1(wh, w1)μ(w)/μ(w1), where π�(·, ·)
denotes �-step transition probabilities in S.

The covariance between two random indicators of occurrence is thus

C[Yi(w), Yi+d(w)] =

⎧
⎪⎪⎨

⎪⎪⎩

−[μ(w)]2 if 0 < d < h, d∈/ P(w),
μ(wdw) − [μ(w)]2 if d ∈ P(w),

[μ(w)]2
[
πd−h+1(wh, w1)

μ(w1)
− 1

]

if d ≥ h.

(15.5)

Mean and variance of the count Finally, we get the following expression
for the expectation and the variance of N(w):

E[N(w)] =
n−h+1∑

i=1

E[Yi(w)] = (n − h + 1)μ(w) (15.6)

V[N(w)] =
n−h+1∑

i=1

V[Yi(w)] + 2
n−h+1∑

i=1

n−h+1∑

j=i+1

C[Yi(w), Yj(w)] (15.7)

= (n−h+1)μ(w)
(
1−μ(w)

)
+2

n−h+1∑

i=1

n−h−i+1∑

d=1

C[Yi(w), Yi+d(w)],

where μ(w) is given by Equation (15.3), and the covariance term is given by
Equation (15.5).

15.2.3 Word count distribution

We will now focus on the statistical distribution of the count N(w). Several
methods have been proposed to derive the exact distribution of N(w) in a se-
quence of independent letters (model M0) or in model M1. Most of them use
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pattern matching principles or language theory (see for instance Chapter 7 from
Lothaire (2005)). The most probabilistic approach is probably the one that uses
the following duality principle: P(N(w) ≥ j) = P(Tj ≤ n), where Tj denotes
the position of the j-th occurrence of the word w along a random sequence S of
length n. The distribution of Tj can be obtained via the distribution of the dis-
tance between two successive occurrences of w [see Robin and Daudin (1999)].
However, all these methods are fastidious to implement, with many technical
limitations as soon as the sequence is long, or if the order of the Markov model
is greater than 1, or if the motif is complex. In practice, approximate distribu-
tions are used. In this section, we will present two approximations of the word
count distribution that have been theoretically proved under some asymptotic
framework: the Gaussian approximation, which is valid if the expected count is
far enough from zero, and a compound Poisson approximation, which is adapted
for the count of rare and clumping events. The quality of these approximations
has been studied in Robin and Schbath (2001) and in Nuel (2006). No theoret-
ical result exists so far on the binomial approximation that would result from
neglecting the dependence between the occurrences.

Gaussian approximation

Recall that N(w) is a sum of (n−h+1) random Bernoulli variables Yi(w) with
mean μ(w) and variance μ(w)[1 − μ(w)].

Asymptotic normality If the Bernoulli variables Yi(w) were independent,
then the classical central limit theorem would ensure that the count the conver-
gence in distribution is a special probabilistic convergence for random variables
to a Gaussian variable. But the Yi(w)’s are not independent for two reasons:
the occurrences of w can overlap, and the letters of the sequence are not inde-
pendent. Nonetheless, by using a central limit theorem for Markov chains, the
asymptotic normality of the count can be established:

N(w) − E[N(w)]
√

V[N(w)]
D−→ N (0, 1) as n → +∞. (15.8)

Estimating the parameters In the previous convergence, both the expec-
tation and variance of the count depend on the model parameters, which are
not known in practice. Let us estimate the expected count by its plug-in es-
timator, i.e. by replacing the transition probabilities π(a, b) by their MLEs
π̂(a, b) = N(ab)/N(a+) and the probability μ(w1) by μ̂(w1) = N(w1)/n in
Equation (15.6). We then consider the following estimator:

Ê[N(w)] =
N(w1w2) × · · · × N(wh−1wh)

N(w2) × · · · × N(wh−1)
. (15.9)
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Because the estimator Ê1[N(w)] is expressed like a function of several asymp-
totically Gaussian counts, the δ-method ensures that there exists a constant
v2(w) such that

N(w) − Ê[N(w)]
√

(n − h + 1)v2(w)
D−→ N (0, 1) as n → +∞. (15.10)

However, since Ê[N(w)] is random, the variance of {N(w) − Ê[N(w)]} is dif-
ferent from V[N(w)] and (n− h + 1)v2(w) is therefore not related to V[N(w)].

Asymptotic variance Several approaches have been used to derive the
asymptotic variance (n−h+1)v2(w). The first one is the δ-method in Lundstrom
(1990): it uses the fact that n−1/2{N(w) − Ê[N(w)]} is a function of the
asymptotically Gaussian vector

(
N(w), N(w1w2), . . . , N(wh−1wh), N(w2), . . . ,

N(wh−1)
)

from (15.8). However, the function and the size of this vector depend
both on the length and on the 2-letter composition of w, so it does not give a
unified formula for the asymptotic variance.

Prum et al. (1995) proposed a second method: they showed that the estima-
tor Ê[N(w)] is asymptotically equivalent to E[N(w) |S2], the expected count of
N(w) under the 2-letter word permutation model, and that v2(w) is the limit
of n−1

V[N(w) | S2]. They obtained

v2(w) = μ(w) + 2
∑

p∈P(w), p<h−1

μ(wpw)

+ [μ(w)]2

⎡

⎣
∑

a

[Nw(a+)]2

μ(a)
−
∑

a,b

[Nw(ab)]2

μ(ab)
+

1 − 2Nw(w1+)
μ(w1)

⎤

⎦ ,

(15.11)

where Nw(·) stands for the count inside the word w. The overlaps of w on two
or more letters explicitly appear in this formula (p < h − 1). The overlap on a
unique letter is taken into account in the [μ(w)]2 term.

Since model M1 allows more variability than the corresponding permutation
model, one expects the variance (n−h+1)v2(w) to be smaller than the variance
V[N(w)]. This is not difficult to show in the Bernoulli model (m = 0); for higher
models, it has been numerically verified.

Generalizations to m > 1 and to phased models can be found in Schbath
et al. (1995) and Schbath (1995b). When m = h − 2, i.e. in the Markov chain
model fitting the counts of all the (h − 1)-letter words (we call this model the
maximal model regarding the analysis of h-letter words), a third approach can
be used to derive the asymptotic variance. This approach is based on martingale
theory and provides a simpler expression for the asymptotic variance [see Prum
et al. (1995) or Reinert et al. (2000)].
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Compound Poisson approximation

Poisson approximations can also be used for the count of rare events, i.e. when
E[N(w)] = O(1). Note that this condition implies that log n = O(h) (long
enough words). In this section, we will assume the rare event condition but also
assume that h = o(n).

A nice method to establish Poisson approximations of counts is the
Chen–Stein method [see Arratia et al. (1990) for an introduction and Barbour
et al. (1992b) for a more general presentation]. This method gives a bound on
the total variation distance between the distribution of a sum of dependent
Bernoulli variables and the Poisson distribution with the same expectation.
The lower the dependence, the better the Poisson approximation quality. Un-
fortunately, the local dependence between occurrences of an overlapping word
w is too important, and a Poisson approximation of the distribution of N(w)
generally does not hold. One can clearly show that the bound provided by the
Chen–Stein method does not converge to zero [it is of order μ(wp0w) with p0

the minimal period of w, see Schbath (1995a)]. But one can also show that a
geometric distribution (discrete version of the exponential distribution) does
not fit the distribution of the distance between two successive occurrences of
an overlapping word [Robin and Daudin (1999)].

The solution is to take advantage of the clump structure (clumps do not
overlap) and to use the following relations between the number of occurrences
N(w) and the clumps (size and count). Indeed we have

N(w) =
Ñ(w)∑

i=1

Ki(w), (15.12)

where Ñ(w) is the number of clumps of w and Ki(w) is the size of the i-th
clump, but we also have

N(w) =
∑

k>0

kÑk(w), (15.13)

where Ñk(w) is the number of clumps of w of size k in S. Since a compound Pois-
son variable is defined like

∑
k>0 k Zk where the Zk’s are independent Poisson

variables, or like
∑Z

i=1 Ci with Z a Poisson variable and the Ci’s independent
and identically distributed (i.i.d.) variables, the Poisson approximation of the
number of clumps (of any size or of size k) is the core of the compound Pois-
son approximation of the word count. In the remainder of this section, we will
explicitly define the clumps and give some of their probabilistic properties.

Random indicator of a clump occurrence A clump of a word w in a
sequence S is a maximal succession of overlapping occurrences of w. The size of
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a clump is the number of occurrences of w of which the clump is composed. For
instance, in Figure 15.1, there are two clumps of aataa: one of size 1 starting
at position 2, the other one of size 3 starting at position 11. The position of
a clump of w in the sequence is defined by the position (start) of the first
occurrence of w in the clump. Let us define Ỹi(w) as the random indicator that
an occurrence of a clump of w starts at position i in S. A clump of w occurs
at position i if and only if an occurrence of w occurs at position i without
overlapping a previous occurrence of w. Therefore, if we neglect end effects (i.e.
when i < h), we can write

Ỹi(w) = Yi(w)[1 − Yi−1(w)] × · · · × [1 − Yi−h+1(w)]. (15.14)

(End effects are corrected by considering an infinite sequence.) Now an occur-
rence of w which overlaps a previous occurrence of w is necessarily preceded by
a prefix w1 · · ·wp of w, where p is a period of w. If we restrict ourselves to prin-
cipal periods, this is a necessary and sufficient condition [Schbath (1995a)]. For
instance, an occurrence of aataataa overlaps a previous occurrence of aataataa
if and only if it is preceded either by aat (prefix of size 3) or by aataata (pre-
fix of size 7). If it was preceded by aataat (prefix of size 6), it would also be
preceded by aat.

Therefore, we have

Ỹi(w) =
∑

p∈P ′(w)

[1 − Yi−p(w1 · · ·wp)] × Yi(w).

Clump probability Let us denote by μ̃(w) the probability that a clump of
w occurs at a given position, i.e. μ̃(w) = E[Ỹi(w)]. The previous equation gives

μ̃(w) = [1 − a(w)] × μ(w), (15.15)

where a(w) is the probability that an occurrence of w overlaps a previous
occurrence of w and is given by

a(w) =
∑

p∈P ′(w)

p∏

j=1

π(wj , wj+1). (15.16)

Symmetrically, the probability that an occurrence of w overlaps a next occur-
rence of w is also equal to a(w). Therefore, a(w) will be simply called the
probability of self-overlap of w. Note that a(w) = 0 if and only if w is a non-
overlapping word (we assumed that all transition probabilities were nonzero).
In that case we also have Ỹi(w) = Yi(w) and μ̃(w) = μ(w).
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Poisson approximation for the number of clumps Let us define the
number of clumps of w by Ñ(w) :=

∑n−h+1
i=1 Ỹi(w). The mean number of

clumps is then equal to (n−h+1)μ̃(w) = [1−a(w)]E[N(w)] from (15.15). The
Poisson approximation of Ñ(w) follows from a direct application of the Chen–
Stein method to the Bernoulli variables Ỹi(w) [Schbath (1995a)]. The error
bound is indeed of order (ρh + hμ(w)) where 0 < ρ < 1 is the second largest
eigenvalue (in modulus) of the transition matrix Π. Recall that nμ(w) = O(1)
from the rare event condition and that h = o(n).

The exact distribution of the number of clumps of w in model M1 has been
recently derived through its generating function [Stefanov et al. (2007)] and
compared to the Poisson distribution; The conclusion was that the smaller the
expected count of the word, the better the Poisson approximation.

Size of a clump A clump is of size k if and only if the first occurrence
of w in the clump overlaps from the right a second occurrence (probability
a(w)), the second occurrence of w in the clump overlaps a third occurrence
(probability a(w)), . . . , the (k − 1)-th occurrence overlaps a k-th occurrence of
w (probability a(w)), and this k-th occurrence of w does not overlap a next
occurrence (probability 1− a(w)). Thus, if we denote by Ki(w) the size of the
i-th clump of w in the sequence, the random variable Ki(w) is geometrically
distributed:

P(Ki(w) = k) = [1 − a(w)] × [a(w)](k−1). (15.17)

Compound Poisson approximation for rare word counts As previously
stated, the Poisson approximations of the number of clumps of any size and
more particularly of size k for k ≥ 1 are the key ingredients for the compound
Poisson approximation of N(w). Indeed, let us denote by CP(λk, k ≥ 1) the
compound Poisson distribution of

∑
k>0 kZk with Zk ∼ P(λk). Since N(w) =

∑
k>0 kÑk(w), the total variation distance properties give

dTV(L(N(w)), CP(E[Ñk(w)], k ≥ 1)) ≤ dTV(L(Ñk(w), k ≥ 1),⊗P(E[Ñk(w)])).

The joint Poisson approximation of (Ñk(w), k ≥ 1) is more involved to obtain
than the one for Ñ(w) [Schbath (1995a)], but the error bound is of the same
order and

E[Ñk(w)] = [1 − a(w)]2[a(w)](k−1)
E[N(w)].

The above formula means that the limiting compound Poisson distribution
CP(E[Ñk(w)], k ≥ 1) is in fact a Pólya–Aeppli distribution (also called a
geometric-Poisson distribution) with parameter (E[Ñ(w), a(w)]) [Johnson et al.
(1992)].

Direct compound Poisson approximation methods exist and can be alterna-
tively applied to the word count [Erhardsson (1999), Erhardsson (2000)]. Their
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advantage is that they provide better error bounds, but they give the same lim-
iting compound Poisson distribution as above [see Lothaire (2005), Chapter 6].

Generalization to Mm and phased models As in the Gaussian approx-
imation, the generalization to the phased Markov model of order 1 is done by
rewriting the sequence with the new alphabet A×{1, 2, 3} (see Section 15.2.1).
However, note that the occurrence of a single word w in sequence S corresponds
to the occurrence of a word family composed of three phased words in the new
sequence. Therefore, one has to use the compound Poisson approximation for
the count of a set of words in M1 (see Section 15.4.1).

When one changes the alphabet (see Section 15.2.1) to generalize the com-
pound Poisson approximation in model M1 to model Mm, m > 1, one must be
very careful with the word overlaps. Indeed, there is no one-to-one transforma-
tion between clumps of w in S and clumps of w� (word w written on Am) in
the new sequence S�. Let us take an example with m = 2. Set w = aataa and
let S be the following sequence on the A alphabet:

S = gaataatgagaataaataataag.

S contains four occurrences of w and two clumps of w (one of size 1, the other
one of size 3). Now, we write the word and the sequence in the new alphabet
A2. For this, we set ga = γ, aa = α, at = β, ta = τ , tg = δ, ag = κ. We have

w� = αβτα and S� = γαβταβδγκγαβτα αβταβτακ.

We can see that the word w� still appears four times in the sequence S� (N(w) is
equal to the count of w� in S�) but there are now three clumps of w� in S� (two
of size 1 and one of size 2). This is due to the fact that w� has just one unique
period (P(αβτα) = {3}), whereas w has two periods (P(aataa) = {3, 4}).
Therefore, when the results for the word w� in M1 are “translated” into the
alphabet A, some overlaps will not appear explicitly in the formulas. In Mm,
only the overlaps on m letters or more will be taken into account since the
principal periods of w� are the periods of w that are less than or equal to
(h − m). The word w� is non-overlapping as soon as w is not sufficiently self-
overlapping.

15.2.4 p-values and scores of exceptionality

The significance of the over-representation of a word w in a given DNA sequence
is measured by the p-value p(w):

p(w) = P{N(w) ≥ Nobs(w)},

where Nobs(w) is the observed count of w in the DNA sequence. If p(w) is close
to 0, then the word is exceptionally frequent: there is no chance to observe it
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so many times in random sequences. On the other hand, the significance of an
under-representation is measured by the p-value p′(w) = P{N(w) ≤ Nobs(w)}.
If p′(w) is close to 0, then w is exceptionally rare under the model: there
is no chance that w occurs so rarely in random sequences. Since the exact
distribution of the count N(w) is rarely available in practice, approximate p-
values are calculated to detect exceptional words and are usually converted into
scores of exceptionality.

Approximate p-values A natural way of approximating p-values is to use
an approximate distribution of N(w); for instance, a Gaussian distribution for
highly expected words or a compound Poisson distribution for rarely expected
words, as we have seen in Section 15.2.3. Calculating approximate p-values only
requires us to compute the tail of the Gaussian or compound Poisson distribu-
tion. An efficient algorithm to compute tails of geometric-Poisson distributions
has been proposed by Nuel (2008).

For exceptional words, i.e. words whose count strongly deviates from what is
expected, large deviation theory is probably the most accurate way to approxi-
mate p-values. This approach has been studied in Nuel (2004). Since it requires
sophisticated numerical analysis and longer computation times, this method
should be restricted to the most exceptional words (filtered from Gaussian or
compound Poisson approximations for instance).

Score of exceptionality In practice, it is often more convenient to manipu-
late scores from R than probabilities of the form p(w) = P{N(w) ≥ Nobs(w)},
especially when the ones we are interested in are very close to 0 or very close
to 1. For symmetrical reasons we prefer to use the probit transformation rather
than the − log transformation. Therefore, to each probability p(w) we associate
the score u(w) such that

P{N (0, 1) ≥ u(w)} = p(w).

Therefore, words with a high positive score are exceptionally frequent, whereas
words with a negative but high absolute value score are exceptionally rare in
the observed sequence.

The Gaussian approximation of N(w) has a great practical advantage: it al-
lows us to directly calculate the score of exceptionality u(w) without calculating
the associated p-value. Indeed, if we set

u(w) =
N(w) − Ê[N(w)]

√
σ̂2(w)

, (15.18)

where Ê[N(w)] is the estimator of the expected count given by Equation (15.9),
and σ̂2(w) is a plug-in estimator of (n − h + 1)v2(w) (cf. Equation (15.11)),
namely
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σ̂2(w) = Ê[N(w)] + 2
∑

p∈P(w),p<h−1

Ê[N(wpw)] (15.19)

+{Ê[N(w)]}2

⎡

⎣
∑

a

[Nw(a+)]2

N(a)
−
∑

a,b

[Nw(ab)]2

N(ab)
+

1 − 2Nw(w1+)
N(w1)

⎤

⎦,

then we have

P{N(w) ≥ Nobs(w)} � P{N (0, 1) ≥ u(w)}.

15.2.5 Example of DNA motif discovery

Chi motifs in bacterial genomes Chi motifs have been identified in several
bacterial genomes, and they are not conserved through species. Their identi-
fication in a new species is still a challenge. They are involved in the repair
of double-strand DNA breaks by homologous recombination. More precisely,
they interact specifically with an enzyme that processes along the DNA and
degrades it (exonuclease activity). When the enzyme encounters a Chi site, its
exonuclease activity is strongly reduced and altered, but it still continues to
separate the two DNA strands, forming a substrate for homologous pairing and
repair of the deleted DNA parts. Since Chi motifs protect the bacterial genome
from degradation and stimulate its repair, it seems important that these motifs
appear as frequently as possible along the bacterial genome. Biologists expect
them to be significantly over-represented.

Moreover, Chi activity is strongly orientation dependent. The Chi motif is
only recognized when the enzyme enters a double-strand DNA molecule from
the right side of the motif. In many bacteria for which the Chi motif has been
identified, the Chi orientation is correlated with the direction of DNA repli-
cation, meaning that it occurs preferentially on the leading strand [El Karoui
et al. (1999), Halpern et al. (2007)]. The over-representation of Chi should
then be important on the leading strands. Biologists classically measure the
asymmetry strand of a motif by calculating its skew. The skew of a motif w is
simply the ratio N(w)/N(w), where w is the reverse complement of the word
w; in other words N(w) is simply the count of w in the complementary strand.
Therefore, biologists expect Chi to be relatively skewed, i.e. with a skew much
greater than one.

E. coli as a learning case The Chi motif of E. coli has been known for a
long time: it is the 8-letter word gctggtgg. If we study the statistical properties
of the Chi frequency along the E. coli genome, we note some significant charac-
teristics. First of all, its 762 occurrences in the complete genome (concatenation
of both leading stands, n = 4.6 106) are significantly high whatever model we
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Table 15.2. Statistics of gctggtgg in the complete genome (left) and in the
backbone genome (right) of E. coli K12 under various models Mm. The rank
is obtained while sorting the 65,536 scores by decreasing order.

complete genome backbone
762 occurrences 675 occurrences

m Êm[N ] σ̂2
m um rank Êm[N ] σ̂2

m um rank
0 85.9 85.8 72.96 3 73.10 73.02 70.44 3
1 84.9 84.8 73.54 1 71.47 71.32 71.46 1
2 206.8 203.9 38.88 1 186.68 183.82 36.02 1
3 355.5 338.9 22.08 5 315.26 299.68 20.78 1
4 355.3 314.4 22.94 2 309.79 272.90 22.11 2
5 420.9 298.0 19.76 1 376.68 262.42 18.42 1
6 610.1 203.3 10.65 3 539.09 176.02 10.24 1

choose. In other words, its high frequency cannot be explained by the genome
composition. As we can see in Table 15.2, Chi has very high over-representation
scores and is always among the five most exceptionally frequent 8-letter words.
Second, if we restrict the analysis to the E. coli backbone1 (n = 3.7 106), Chi
becomes the most exceptionally frequent 8-letter word in five models, especially
in the maximal model M6 (see Table 15.2). Analyzing only the backbone seems
therefore to reduce the noise produced by the regions which are either highly
variable or specific to one or few strains (mobile elements). Indeed, there is a
priori no biological reason for Chi to occur in such regions.

The choice of the model does not seem to affect the significance of the Chi
frequency (it is always exceptional), but this is not a general picture. Note
that, when the order of the Markov model increases, the model better fits the
sequence composition and fewer exceptional words are found. This is illustrated
by the boxplots of Figure 15.2. Moreover, in a high order model we have a more
accurate knowledge of the sequence composition than in a low order model: the
significance of a word frequency then has no reason to be the same. This point is
illustrated by the plot of Figure 15.2 which compares scores in models M1 and
M6. We recognize the Chi motif, which is clearly outside the cloud, but let us
take the case of the word ggcgctgg. It occurs 761 times in the E.coli backbone,
and it has a significantly high score of 62.4 in model M1 (it is the second most
exceptional word) but has a score of 0.8 in model M6 (rank 17100). It simply
means that its high frequency can be explained by the composition of 7-letter
words; indeed, it is expected about 749 times in M6.

1The backbone of a bacterial genome is composed of the genomic regions conserved in
several strains of the bacteria. Here, we used the backbone obtained from the alignment of the
three strains K12, O157:H7 and CFT and available at http://genome.jouy.inra.fr/mosaic/
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Figure 15.2. Exceptionality scores for the 65,536 8-letter words in the E. coli
backbone. Left: Boxplots of the scores under models M0 to m6. Right: Scores
under models M1 (x-axis) and M6 (y-axis).

The third characteristic of Chi in the E.coli backbone is that it is sig-
nificantly skewed. Its skew is equal to 3.20, and the method described in
Section 15.4.1 to assess skew significance gives a score of 6.53 in M6 (p-value
of 3.3 10−11).

Identification of Chi motif in S. aureus We will describe here the strategy
used in Halpern et al. (2007) to identify the Chi motif in the bacteria S. aureus.
The first step was to extract the backbone of the S. aureus genome by comparing
the genome of six strains of the bacteria. The obtained backbone contains about
2.44 106 letters.

The second step was to search for motifs which are frequent enough, ex-
ceptionally frequent and relatively skewed. They started by analyzing 8-letter
words (as for E. coli) but none of the most over-represented and skewed motifs
were frequent enough to be retained as potential Chi candidates. They thus
focused on 7-letter words. Scores of exceptionality were calculated with the
Gaussian approximation and in the maximal model, namely model M5. Six
motifs have an exceptionality score greater than 11 (see Table 15.3 or Figure
15.3 for a global view). Two of them have a negative skew score, so they were
not retained. A biological experiment was then performed to test for S. aureus
Chi activity of the four candidates: gaaaatg, ggattag, gaagcgg and gaattag.
The conclusion was that gaagcgg is necessary and sufficient to confer Chi ac-
tivity in S. aureus. This strategy has also been successfully used to predict and
validate the Chi motif of three species of the Streptococcus genus [Halpern et al.
(2007)].
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Table 15.3. The 10 most exceptionally frequent 7-letter words under model
M5 in the S. aureus complete genome. Columns correspond respectively to the
word, its observed count, its estimated expected count, its normalizing factor,
its score of over-representation under model M5, its observed skew and its skew
score under model M0.

w Nobs(w) Ê5[N(w)] σ̂2
5(w) u5(w) Skew Score

taaaaaa 1542 1214.3 603.4 13.34 1.61 −1.28
gaaaatg 1067 789.9 454.2 13.00 2.48 1.13
taaaatt 1356 1062.6 552.8 12.48 1.04 −1.53
ggattag 266 143.2 97.5 12.43 2.53 1.52
gaagcgg 272 162.4 88.1 11.67 7.56 2.91
gaattag 614 420.7 274.4 11.67 3.89 7.23
gaaaaag 1177 942.1 518.0 10.32 3.52 2.53
taagatt 316 201.3 130.9 10.03 1.07 −2.98
ttaaaag 1059 856.5 431.6 9.75 2.00 3.85
gatttag 657 488.1 305.9 9.66 2.16 4.25

Figure 15.3. Over-representation scores under M5 and skew scores under M0
for the most over-represented 7-letter words (over-representation scores greater
than 5) in the complete genome of S. aureus. The four best candidates (motifs
A to D) are indicated. Motif C (gaagcgg) is the functional Chi site of S. aureus.
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15.3 Words with Exceptional Distribution

The way the occurrences of a given motif w are spread along a sequence or
among different sequences or subsequences may provide functional information.
When the motif (and its functional properties) is known, this gives us hints
about the function of the regions where it occurs (or where it is avoided). Con-
versely, new interesting motifs may be discovered by comparing their relative
frequencies in different well-defined sequences or subsequences (e.g. regions of
a genome).

15.3.1 Compound Poisson process

For both problems, we need a probabilistic model describing the motif occur-
rences process to assess the significance of the observed results. In this section,
we will focus on the (compound) Poisson process, which is simple and provides
a surprisingly good approximation of the distribution of the word count [Robin
and Schbath (2001)].

In this model, the sequence is viewed as a continuous line. To account
for possible overlaps between occurrences, the word is assumed to occur in
clumps along the sequence. We assume that the counting process of the clumps
{C(x)}x≥0 is a homogeneous Poisson process with intensity λ (in all of Section
15.3, we will avoid indexing the quantities by (w) because there will be no am-
biguity). Each clump contains a random number of occurrences, referred to as
the clump size. The clump sizes {K1, K2, . . . } are supposed to be i.i.d. with dis-
tribution p(k). The counting process {N(x)}x≥0 is hence the compound Poisson
process defined as

N(x) =
∑

c=1...C(x)

Kc.

In the case of a single fixed word, the clump size has a geometric distribution:
p(k) = (1 − a)ak−1, where a stands for the overlapping probability of the word
(see Section 15.2.3). In the case of more complex motifs, p(k) may have a
more complicated form [Robin (2002)]. The estimates of parameters λ and a
depend on the biological question: empirical estimates will fit the observed word
frequency (and clumping), while estimates based on a Markov chain model will
account for the sequence composition.

15.3.2 Words significantly unbalanced between two sequences

We first consider the detection of motifs having different frequencies between
two sequences S1 and S2. To avoid artifacts and spurious detections, the test-
ing procedure must account for the different lengths and composition of the
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sequences, and for the fact that the word may have an unexpected frequency
in one or both of them.

We only consider the non-overlapping case (i.e. a = 0). In sequence Si

(i = 1, 2), the count Ni of w is supposed to have a Poisson distribution

Ni ∼ P(λi), λi = ki�iμi,

where �i is the length of Si, μi = μi(w) is the occurrence probability of w under
a Markov model fitted to the composition of Si (see Section 15.2.2) and ki is
the exceptionality coefficient of w in Si. This framework is described in Robin
et al. (2007).

Our purpose is to test if the counts of w in both sequences deviate from their
expected values in the same way. We hence want to test the hypothesis H0 :
{k1 = k2} versus {k1 �= k2}. A test procedure can be derived from the following
property: for two independent Poisson variables N1 and N2 with respective
means λ1 and λ2, the conditional distribution of N1 given the sum N1 + N2 is
binomial B(N1 + N2, λ1/(λ1 + λ2)). Hence, we have under H0:

N1|(N1 + N2) ∼ B (N1 + N2, �1μ1/[�1μ1 + �2μ2]) .

The distribution of the counts of overlapping words is characterized by two
parameters (λ and a). For such words, the frequency comparison must be stated
in both terms. Assuming that the overlapping probability is the same in the
two sequences leads us to define the same binomial test procedure as above on
the number of clumps (rather than the number of occurrences itself), which is
supposed to have a Poisson distribution (see Section 15.2.3).

To illustrate this procedure, we consider the occurrences of the Chi motif
w = gctggtgg in the genome of E. coli. This genome can be split into a
very conserved part (called the backbone) that is common to various strains
of E. coli and a remaining part (called variable segments) that is specific to
the strain under study: K12. The occurrences of Chi actually never overlap
in the whole genome; the number of clumps is the number of occurrences.
Chi occurs 691 times in the backbone2 and 66 times in the variable segments,
while the expected numbers of clumps �iμ̃i under model M1 are 73.6 and 11.3,
respectively, so �1μ1/(�1μ1 +�2μ2) = 86.7%. It seems therefore more frequent in
the backbone than in the loops. To assess the significance of this difference, we
calculate the p-value Pr{B(757, 86.7%) ≥ 691} = 5.12 10−5, which shows that
Chi is significantly more frequent in the most conserved regions of the genome,
which is consistent with its favorable function.

Testing the equality of the two overlapping probabilities (H0 : {a1 = a2})
leads to a hypergeometric test [see Robin et al. (2007)].

2In contrast to Section 15.2.5, the backbone here is the one obtained from the alignment
of two strains: K12 and 0157:H7.
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15.3.3 Detecting regions significantly enriched
with or devoid of a word

We now want to detect genome regions where the occurrences of a given word
w are unexpectedly frequent (or rare). The standard strategy in such a sit-
uation is to use scan statistics, i.e. distances between successive occurrences.
This strategy was first proposed in a genomic context by Karlin and Macken
(1991). In this setting, the occurrences are supposed to occur according to a
homogeneous Poisson process, which actually corresponds to a non-overlapping
word.

Overlapping words can be studied in the compound Poisson model. Since the
clump size has a geometric distribution, the distance D between two successive
occurrences is either (i) 0 (if the two occurrences belong to the same clump)
or (ii) exponential (if they belong to two successive clumps). (i) occurs with
probability a and (ii) with probability (1 − a). The cumulative distribution
function (cdf) of D is hence F (y) = 1 − (1 − a)e−λy. The analogous exact
distribution is derived in Robin and Daudin (2001) in the Markov chain model.
Because the occurrence process is a renewal process, the cdf Fr of the r-scan,
i.e. the cumulated distance Dr between the i-th occurrence and the (i + r)-th
is simply the r times self-convolution of F : Fr = F⊗r.

Let Dr
1, D

r
2, . . . denote the successive r-scans. The richest region in terms

of occurrences is characterized by the smallest Dr
min = mini D

r
i . To check if

the observed minimum distance dr
min is significantly small, we need to evaluate

Pr{Dr
min ≤ dr

min}. A Poisson approximation strategy is proposed by Dembo and
Karlin (1992):

Pr{Dr
min ≤ dr

min} ≈ 1 − exp[−(N − r)Fr(dmin)],

where N is the total number of occurrences. Chen–Stein bounds for this ap-
proximation are provided. These results can be applied for both the compound
Poisson process [Robin (2002)] and Markov chain [Robin and Daudin (2001)]
frameworks.

As an illustration, we consider the occurrences of the Chi motif in the
genome of Haemophilus influenzae, and study their distribution using 3-scans
(see Section 15.2.5 to get the description of the Chi motif). The x-axis of
Figure 15.4 gives the positions in Mbps, and the y-axis gives the intensity 3/D3

multiplied by 103 (in log scale); peaks correspond to rich regions. We observe
several peaks, the highest one being near the center, i.e. near the terminus of
replication. Chi motifs are expected to be frequent here because this region is
crucial in the replication mechanism of the cell. The four horizontal lines give,
in ascending order, the theoretical mean intensity, the lower bound of the Chen–
Stein approximation, the Chen–Stein threshold and the upper bound. We see
that several peaks are significant under the M1 model, but the mean intensity
of the occurrence process is highly underestimated by this model. Using MLEs,
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Figure 15.4. Significance of the intensity peaks for the occurrences of the Chi
site of H. influenzae.

the compound Poisson model fits the observed mean intensity. In this model,
even the highest peak is no longer significant.

15.4 More Sophisticated Patterns

Biological motifs are not always exact and simple words. They often contain
some uncertainties (degenerated motifs) like the Chi motif gntggtgg of H.
influenzae (the n stands for any of the four DNA letters). In this case, we have
to consider the occurrences of a set of words rather than a single word. In the
case of transcription factor binding sites, we have to deal with several (exact
or not) words that should occur at a constrained distance apart (structured
motifs). In Section 15.4.1, we give major extensions required to generalize the
results on simple words presented in the previous sections to a set of words.
Then, we present some results for structured motifs in Section 15.4.2.

15.4.1 Family of words

Let W be a set (family) of r words: W = {w1, . . . ,wr}. To simplify the expo-
sition, we will assume that all of the r words have the same length h. In the
general case, one just makes the assumption that no word from the family, is
part of another word of the family, and the results can be easily generalized.

Distribution of the count of a word family (model M1) The number
of occurrences of the word family, denoted by N(W), is simply the sum of the
counts of each word taken from W:

N(W) =
r∑

j=1

N(wj).
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The expected count E[N(W)] is then simply the sum of the r expected counts
E[N(wj)], j = 1, . . . , r. For the variance, we have V[N(W)] =

∑r
j=1 V[N(wj)]+

2
∑

j<j′ C[N(wj), N(wj′)], so we just need to derive the covariance between two
word counts (see below). The Gaussian approximation of N(W) is immediate,
and it is easy to derive a score of exceptionality for any family of words. For
the compound Poisson approximation, it is much more involved. A first strat-
egy could be to approximate separately the clumps of each word, and then to
combine the associated Poisson variables [Reinert and Schbath (1998)]. Unfor-
tunately, words from W can overlap each other, and this will lead to a bad
approximation for overlapping families. The alternative is to consider clumps
of the word family itself, i.e. clumps composed of overlapping occurrences of
W [Roquain and Schbath (2007)]. This leads to a compound Poisson distri-
bution, whose parameters are derived from an overlapping probability matrix
(A(wj , wj′))1≤j,j′≤r, but which is not a geometric Poisson distribution. Tails of
general compound Poisson distributions can be calculated by using the algo-
rithm from Barbour et al. (1992a).

Covariance between two word counts in M1 Let there be two different
words w and w′ of length h. The covariance C[N(w), N(w′)] is given by

C[N(w), N(w′)] = −E[N(w)] E[N(w′)] +
∑

i
=j

E[Yi(w)Yj(w′)].

Because of symmetry, let us restrict ourselves to the calculation of
E[Yi(w)Yi+d(w′)] for d > 0. If 0 < d < h, an occurrence of w′ at position
i + d would overlap an occurrence of w at position i. We then need to intro-
duce the possible lags between an occurrence of w and a following overlapping
occurrence of w′.

w′

w′
1 w′

h

w1 wp
︸ ︷︷ ︸

p∈P(w,w′)

wh

w
Let P(w,w′) be the set of these possible lags, namely

p ∈ P(w,w′) ⇐⇒ w′
j = wj+p, ∀j ∈ {1, . . . , h − p}.

Overlaps are not necessarily symmetric so P(w,w′) �= P(w′,w). For in-
stance, atcg can be overlapped from the right by cgct after a lag of 2
(P(atcg, cgct) = {2}), whereas cgct cannot be overlapped from the right
by atcg (P(cgct, atcg) = ∅).

If p ∈ P(w,w′), let wpw′ be the word composed of two overlapping occur-
rences of w and w′: wpw′ = w1 · · ·wpw

′
1 · · ·w′

h.
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By analogy with Equation (15.5), one can show that

E[Yi(w), Yi+d(w′)] =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ d < h, d∈/ P(w,w′),
μ(wdw′) if d ∈ P(w,w′),

μ(w)μ(w′)πd−h+1(wh,w′
1)

μ(w′
1)

if d ≥ h,

which finally leads to the following expression for the covariance:

C[N(w), N(w′)] = − E[N(w)] E[N(w′)] +
∑

p∈P(w,w′)

(n − h − p + 1)μ(wpw′)

+
∑

p∈P(w′,w)

(n − h − p + 1)μ(w′pw)

+ μ(w)μ(w′)

×
n−2h+1∑

t=1

(n − 2h − t + 2)
[
πt(wh, w′

1)
μ(w′

1)
+

πt(w′
h, w1)

μ(w1)

]

.

Note that it is also possible to calculate the asymptotic variance of N(W) −∑
j Ê[N(wj)] by using the conditional covariances of (N(wj), N(w�)) in the

permutation model (see Schbath et al. (1995)).

Skew distribution As we have seen in Section 15.2.5, biologists may be
interested in the statistical significance of the skew of a word w. The skew
is defined like the ratio N(w)/N(w) where w is the reverse complementary3

word of w (for instance, if w = gctggtgg then w = ccaccagc). To calculate the
significance of the skew, one then has to get (or to approximate) the following
p-value:

P

(
N(w)
N(w)

≥ b

)

,

where b is the observed skew. This requires at least the joint distribution of
(N(w), N(w)).

If we assume that (N(w), N(w)) can be approximated by a Gaussian vector
with mean (Ê[N(w)], Ê[N(w)]) and covariance matrix Σ, the above p-value can
be approximated by

P

(

N (0, 1) ≥ bÊ[N(w)] − Ê[N(w)]√
Σ11 − 2bΣ12 + b2Σ22

)

.

The right term of the preceding inequality will then be considered like a score
to measure the significance of the skew. Typically, Σ11 and Σ22 are given by
Equation (15.19), and Σ12 can be obtained similarly because of the conditional
covariances between counts.

3a is the complement of t whereas c is the complement of g.
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If N(w) and N(w) are more likely to be (compound) Poisson distributed,
no solution exists for now. If w and w do not overlap each other, their counts
can be approximated by two independent geometric Poisson variables [Reinert
and Schbath (1998)], but it does not help to derive an asymptotic distribution
for the skew.

Distances between multiple words Because of the possible overlaps be-
tween words of the family, the distribution of the intersite distances between two
word family occurrences depends on which word actually occurs first and which
word occurs next [Robin (2002)]. Therefore, in the general case, the occurrences
of a set of words do not constitute a renewal process, and the methodology de-
scribed in Section 15.3.3 cannot be used to get the r-scan distribution. In the
Markov chain framework, the occurrences of a set of words turns out to be a
semi-Markov process.

15.4.2 Structured motifs

A structured motif is composed of several words which should occur in a given
order and at some distance apart from each other. Let consider the simple case
of two fixed words u and v. We define a structured motif m like a pattern
whose u is a prefix, v is a suffix and whose length is |u| + d + |v|, d ≥ 0.
Moreover, we impose d1 ≤ d ≤ d2. Since d1 can be large (typically 12 to 20
for transcription factor binding sites), it is not reasonable to view a structured
motif like a set of words (i.e. a very degenerated word). Dedicated methods
should then be provided. The two main questions related to structured motif
occurrences are: (i) what is the probability that a random sequence contains at
least one occurrence of a given structured motif? (ii) Is this structured motif
more over-represented in front of genes than along the whole chromosome? For
the first question, an approximate probability has been derived by assuming
that the random indicator of occurrence Yi(m) only depends on Yi−1(m) [Robin
et al. (2002)]. More recently, the generating function of the waiting time for the
first occurrence of a structured motif was proposed [Stefanov et al. (2007); see
also Stefanov (2009)]. For the second question, one can use the test described
in Section 15.3.2 which just requires us to compute μ(m) = E[Yi(m)], the
occurrence probability of m. An example of the transcription factor binding
site discovery method can be found in Touzain et al. (2008).

Occurrence probability The probability for m to occur at a given position
in a random sequence X1, X2, . . . , Xn (model M1) is given by

μ(m) = μ(u)
d2∑

d=d1

P(Du,v = d)μ(v)/μ(v1),
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where Du,v is the random distance between an occurrence of u and the next
occurrence of v, and v1 is the first letter of v. The distribution of Du,v is given
in Robin and Daudin (2001) [see also Stefanov (2009)].

15.5 Ongoing Research and Open Problems

Multiple testing problem Multiple testing problems immediately arise in
motif detection studies: looking for exceptional 8-letter words leads to perform-
ing thousands of tests at the same time. The control of the false discovery rate
[Benjamini and Hochberg (1995)] has received huge attention in the last few
years in the gene expression context, but it is still neglected in most motif
statistic studies. The main difficulty comes from the dependency between the
counts—and hence between the tests—of all words under study. Under the null
(Markov) model, all word counts are correlated, since they are observed on the
same sequence. The covariance between any pair of counts is actually known
(see Section 15.4.1), but is difficult to account for in multiple testing procedures,
partly because of high dimensionality problems.

Sequence classification Many genomes, e.g. bacterial ones, can be char-
acterized in terms of oligonucleotides composition. This phenomenon is often
referred to as the “genome signature.” Several new genomic approaches aim at
classifying sequences with similar origins: comparative genomics aims at finding
similarities between complete genomes, typically in an evolutionary perspective;
meta-genome analysis considers sets of hundreds of species living in the same
environment (soil, human intestine) and deals with mixtures of subsequences
coming from these different species.

As seen before, the Mm Markov chain model accounts for the composition
of a sequence in (m + 1)-letter works. Mixture models [McLachlan and Peel
(2000)] provide a natural framework to classify objects into unknown groups.
Such a model assumes that the sequences actually come from Q groups, each
characterized by one transition matrix; sequence i coming from group number
q is a random path with transition matrix Πq. The expectation-maximization
algorithm is the standard way to estimate both group proportions and matrices
Πq, which make (Q − 1) + 3Q4m independent parameters. However, mixture
models generally lead to model selection problems, typically to choose the un-
known number of groups Q. In the case of sequences, this problem turns out to
be very complex because of different sequence lengths: long sequences tend to
discriminate very easily from each other, while small sequences have almost no
influence on the global model. Combinatorial arguments are needed to evaluate
the number of “efficient” parameters, i.e. the number of transition probabilities
for which some information can actually be derived from the data.
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High throughput sequencing This new technology is likely to be used in
many biological experiments in the next decade, typically in the place of micro-
arrays. It consists in sequencing a huge number (40 millions) of small DNA
fragments (25 nucleotides) in one run. It can be used to count the number of
copies of the transcripts of a given gene, to evaluate its expression level, or to
explore the meta-genome of a given ecosystem. Dealing with such large datasets
is an open problem. Markov models and motif statistics can probably help to
organize all this information, but we admit that we still do not really know
how.

References

1. Arratia, R., Goldstein, L. and Gordon, L. (1990). Poisson approximation
and the Chen-Stein method, Statistical Science, 5, 403–434.

2. Barbour, A. D., Chen, L. H. Y. and Loh, W.-L. (1992a). Compound Pois-
son approximation for nonnegative random variables via Stein’s method,
Annals of Probability, 20, 1843–1866.

3. Barbour, A. D., Holst, L. and Janson, S. (1992b). Poisson Approximation,
Oxford University Press, London.

4. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery
rate: a practical and powerful approach to multiple testing, Journal of the
Royal Statistical Society, B, 57, 289–300.

5. Cowan, R. (1991). Expected frequencies of DNA patterns using Whittle’s
formula, Journal of Applied Probability, 28, 886–892.

6. Dembo, A. and Karlin, S. (1992). Poisson approximations for r-scan
processes, Annals of Applied Probability, 2, 329–357.

7. El Karoui, M., Biaudet, V., Schbath, S. and Gruss, A. (1999). Char-
acteristics of Chi distribution on several bacterial genomes, Research in
Microbiology, 150, 579–587.

8. Erhardsson, T. (1999). Compound Poisson approximation for Markov
chains using Stein’s method, Annals of Probability, 27, 565–596.

9. Erhardsson, T. (2000). Compound Poisson approximation for counts of
rare patterns in Markov chains and extreme sojourns in birth-death chains,
Annals of Applied Probability, 10, 573–591.



348 S. Schbath and S. Robin

10. Halpern, D., Chiapello, H., Schbath, S., Robin, S., Hennequet-Antier,
C., Gruss, A. and El Karoui, M. (2007). Identification of DNA motifs im-
plicated in maintenance of bacterial core genomes by predictive modelling,
PLoS Genetics, 3, e153.

11. Johnson, N. L., Kotz, S. and Kemp, A. W. (1992). Univariate Discrete
Distributions, Wiley, New York.

12. Karlin, S. and Macken, C. (1991). Some statistical problems in the assess-
ment of inhomogeneities of DNA sequence data, Journal of the American
Statistical Association, 86, 27–35.

13. Lothaire, M. (2005). Applied Combinatorics on Words, volume 105 of
Encyclopedia of Mathematics and its Applications, Cambridge University
Press, London.

14. Lundstrom, R. (1990). Stochastic models and statistical methods for DNA
sequence data, Ph.D. thesis, University of Utah, Salt Lake City.

15. McLachlan, G. and Peel, D. (2000). Finite Mixture Models, Wiley, New
York.

16. Nuel, G. (2004). LD-SPatt: Large deviations statistics for patterns on
Markov chains, Journal of Computational Biology, 11, 1023–1033.

17. Nuel, G. (2006). Numerical solutions for patterns statistics on Markov
chains, Statistical Applications in Genetics and Molecular Biology, 5,
Article 26.

18. Nuel, G. (2008). Cumulative distribution function of a geometric Pois-
son distribution, Journal of Statistical Computation and Simulation, 78,
385–394.

19. Prum, B., Rodolphe, F. and de Turckheim, E. (1995). Finding words with
unexpected frequencies in DNA sequences, Journal of the Royal Statistical
Society, B, 57, 205–220.

20. Reinert, G. and Schbath, S. (1998). Compound Poisson and Poisson
process approximations for occurrences of multiple words in Markov chains,
Journal of Computational Biology, 5, 223–254.

21. Reinert, G., Schbath, S. and Waterman, M. (2000). Probabilistic and
statistical properties of words, Journal of Computational Biology, 7, 1–46.

22. Robin, S. (2002). A compound Poisson model for words occurrences in
DNA sequences, Journal of the Royal Statistical Society, C, 51, 437–451.



Pattern Statistics for DNA Motif Discovery 349

23. Robin, S. and Daudin, J.-J. (1999). Exact distribution of word occurrences
in a random sequence of letters, Journal of Applied Probability, 36,
179–193.

24. Robin, S. and Daudin, J.-J. (2001). Exact distribution of the distances be-
tween any occurences of a set of words, Annals of the Institute of Statistical
Mathematics, 53, 895–905.

25. Robin, S., Daudin, J.-J., Richard, H., Sagot, M.-F. and Schbath, S.
(2002). Occurrence probability of structured motifs in random sequences,
Journal of Computational Biology, 9, 761–773.

26. Robin, S., Rodolphe, F. and Schbath, S. (2005). DNA, Words and Mod-
els, Cambridge University Press, English version of ADN, mots et modèles,
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