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Abstract: An approach using the upper level set (ULS) scan statistic to detect
geospatial hotspots along with its software implementation is presented for con-
tinuous response. The ULS scan statistic is based on the ULS scan tree. A ULS
scan tree is a data structure constructed from response data over a geographic
region partitioned into cells. Candidates for hotspots are zones in the region.
Each such candidate zone consists of cells that are connected geographically.
A ULS scan tree is used to identify candidate zones systematically. Nodes of the
ULS scan tree are connected zones. The root (the bottom level) of the ULS scan
tree is a zone consisting of the entire region. Zones at the top level (leaf zones)
consist of cells with maximal response values. For in-between levels, zones at a
given level consist of connected cells with higher response values than zones at
a lower level. A suitable likelihood statistic and Monte Carlo analysis are used
to determine the significance of zonal nodes as hotspots. The gamma response
model is studied in detail. A case study illustrating application of the gamma
response model is presented.
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12.1 Introduction

The one-dimensional scan statistic has been exhaustively covered in two books
[Glaz and Balakrishnan (1999), Glaz et al., (2001)]. A wide variety of methods
has been proposed for modeling and analyzing geospatial data [Cressie (1991)].
More recently, the spatial scan statistic proposed by Kulldorff and Nagarwala
(1995) and Kulldorff (1997) has provided a popular tool in the form of the
SatScan software system developed by Kulldorff et al. (1998) for detection and
evaluation of disease clusters for discrete response data. It is available on the
web free of charge. A commercial software system [Biomedware (2001)] is also
available. With suitable modifications, the scan statistic approach can be used
for critical area analysis in fields other than the health sciences, and also for
continuous response data.

Basic components of the scan statistic are the topological structure un-
der investigation, the probability distribution used to model responses and the
shapes and sizes of the scanning window. In this paper, we present an approach
to the scan statistic: the upper level set (ULS) tree scan statistic, as well as its
software implementation, with characteristics that are different from a typical
spatial scan statistic software in the following ways.

• The ULS scan statistic uses an irregularly shaped scanning window, unlike
most other scan statistics, which are based on some regularly (circularly
or elliptically) shaped windows.

• Applicability of the ULS scan statistic is not limited to geospatial regions.
It can be conveniently used to detect hotspots in any structure with the
network topology.

• The software provides an option of the use of the gamma distribution to
model response data that are of a continuous nature in addition to the
binomial and the Poisson models.

In Sections 12.2, 12.3 and 12.4 we introduce basic ideas behind the ULS scan
statistic based on Patil and Taillie (2003, 2004). In Section 12.5 we discuss some
computational aspects. The gamma response model is presented in Section 12.6.
Section 12.7 contains a fairly detailed account of software implementation of
the ULS scan statistic. We conclude with an environmental application of the
software using the gamma response model.
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12.2 Basic Ideas

We consider the following scenario: A geospatial region R is partitioned or
tessellated into N cells. Response data on y1, y2, . . . , yN are available for the N
cells, ya being the response for cell a. y1, y2, . . . , yN are regarded as observed
values of independently distributed response variates Y1, Y2, . . . , YN . Also known
is the “size” Aa of cell a, a = 1, 2, . . . , N . Interpretation of size depends on the
context in which the data are collected. Thus, in a situation where response data
are counts of incidences of a certain disease in R, Aa is the size of the exposed
population of cell a. If ya is arable acreage, then Aa can be the geographic area
of the cell. Of essential interest are the response rates or response intensities,
Ga = ya/Aa, a = 1, 2, . . . , N .

The spatial scan statistic seeks to identify “hotspots,” which are clusters of
cells in R that have elevated response rates compared with the rest of the region.
A cluster of cells in R must satisfy two properties before it can be considered
as a hotspot candidate:

1. The cluster must be geographically connected. Such a cluster will be re-
ferred to as a zone. The set of all zones is denoted by Ω.

2. The zone should not be excessively large; otherwise, the zone rather than
its exterior would constitute background. Generally, we limit the search
for hotspots to zones that do not comprise more than, say, fifty percent
of the region.

To detect a hotspot, the circle-based scan statistic due to Kulldorff adopts a
hypothesis testing model. In order to illustrate the concept, let us consider
the case when each Ya ∼ Binomial(na, pa) where 0 < pa < 1 is an unknown
parameter and na is the cell size. With this, the following is a statement of the
null and the alternative hypotheses:

H0 : pa is the same for all cells a in R

H1 : there is a non-empty zone Z ∈ Ω and parameter values
0 < p0, p1 < 1 such that
pa = p1 for all cells a in Z

pa = p0 for all cells a in R − Z and
p1 > p0

H0 asserts that there is no hotspot. Z occurs in H1 as an unknown parameter
so that the full model H0 ∪ H1 involves three parameters, Z, p0, and p1.
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Under H1 we need to compute the likelihood L(Z, p0, p1) maximized over Z ∈ Ω,
and 0 < p0, p1 < 1. For a given Z, the profile likelihood

L(Z) = max{L(Z, p0, p1) : 0 < p0, p1 < 1}

is readily determined with maximum likelihood estimations (MLEs) of p0 and
p1. The difficult part is to maximize L(Z) over Z ∈ Ω since usually Ω is ex-
tremely large, making exhaustive, search for the maximum impractical. One
common approach to obtain at least an approximately optimal solution is to
use reduced parameter space, that is, to maximize L(Z) over a suitable subset
Ω0 of Ω. The success of this approach depends on whether Ω0 contains the
MLE of Z over Ω or at least a satisfactorily close approximation to it. The tra-
ditional circular scan statistic uses expanding circles with centers in each cell
to determine Ω0. This strategy tends to produce compact candidate zones and
may do a poor job of approximating actual clusters of arbitrary shapes. The
reduced parameter space is determined by the geometry of tessellation without
involving the response data.

The ULS scan statistic described below and implemented as a software
package described later also uses the approach of parameter space reduction.
Its central idea lies in the concept of upper level sets. This approach takes an
adaptive view so that the resulting reduced parameter space, ΩULS , depends
on data.

12.3 ULS Scan Statistic

The ULS approach views the response data as a surface in three dimensions.
With the region R in the xy-plane, the surface is constructed by erecting a solid
cylinder along the z-axis over each cell. The height of the cylinder over cell a is
proportional to the response rate of the cell.

To begin, we construct zones at different levels. A zone at level g is a con-
nected component of the upper level set

Ug = {a ∈ R : Ga ≥ g},

where g ∈ G = {Ga : a ∈ R}.
The reduced set of candidate zones, ΩULS , is the collection of all connected

components of all upper level sets. Graphically, the upper level set at level g
is the projection on R of the cross section of the response surface with the
horizontal plane z = g.

ΩULS can also be thought of as a data structure in the form of a tree.
All members of ΩULS are nodes of the ULS tree. To further describe the tree
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structure, let us assume the set G has m elements: g1 > g2 > . . . > gm and
define the sets

Ti = {a ∈ R : Ga = gi}, i = 1, 2, . . . , m.

Also, for brevity, denote the set Ug by Ui when g = gi. Then

Ui = T1 ∪ T2 ∪ . . . ∪ Ti, i = 1, 2, . . . , m.

With this notation, connected components of Ui are level i nodes. The root
of the ULS tree is Um = R, the lowest level node. Connected components of
U1, the highest level nodes, are leaf nodes. Given Ti, 1 < i < m, consider a
fixed connected component C of Ti. If C has no cell adjacent to any of the
higher level nodes, then C is also a leaf node. (Such a zone is a local peak of
the response surface.) On the other hand, if C has cells that are adjacent to
higher level nodes, say Z1, Z2, . . . , Zk, then we have a connected component
C ∪ Z1 ∪ Z2 ∪ . . . ∪ Zk of Ui as a level i node and this node is the parent node
of Z1, Z2, . . . , Zk. Figures 12.1, 12.2, and 12.3 illustrate the ULS tree building
process.

As implied in the discussion above, it is convenient for our purpose to orient
the ULS tree with the leaf nodes at the top and the root node at the bottom.
As we trace the ULS tree from the top node towards the root, each cell in R
makes its entry in the tree in a uniquely determined node. This implies that
the cardinality of ΩULS is less than or equal to N and is equal to N if m = N .
Thus, our search for the maximized L(Z) over ΩULS is at most N evaluations,
but actually substantially less than N , since we stipulate that a hotspot not be
more than fifty percent of the size of R.

Figure 12.1. Illustrative data.
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Figure 12.2. Cells topologically sorted.

Figure 12.3. The ULS tree.

12.4 Computational Aspects

A consequence of the adaptive approach of the ULS scan statistic is that ΩULS

must be computed fresh for each simulation run. Hence, it is important that
the algorithm to construct the ULS tree be efficient, especially for a large
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Table 12.1. Computational time for selected datasets.

Time in seconds to do the task
Response Number Total Data ULS tree Likelihood
model of population simulation construc- compu-

cells size tion tation
Gamma 211 N/A 1 84 138
Binomial 211 21,100 18 14 <1
Binomial 12 3,067,740 232 <1 <1

tessellation. At the same time, realize that construction of the ULS tree is
only a part of the overall computational effort. We can identify three main
tasks involved in the whole process: Construction of the ULS tree, generation
of simulated data and calculation of L(Z) for each Z in the (reduced) parame-
ter space. Major factors contributing to the execution time can be the type of
the response model (discrete or continuous), population size, and complexity of
the likelihood equations. These factors have effects on the three tasks in vary-
ing degrees. Table 12.1 illustrates the point. The numbers shown in the table
are derived from 999 iterations of simulation runs with actual datasets. The
results were obtained on a Dell Dimension� 8200 Series computer with Intel�
Pentium� 4 2.40GHz CPU and 2.39GHz, 1.12GB RAM, running a Windows
XP� operating system. The program was compiled using MicroSoft� Visual
Studio� 2005.

Of the three datasets, the one with the gamma response model is the subject
matter of the case study presented in Section 12.9. It is a part of a Pennsylvania
biodiversity research project [Joly (1996), Myers et al. (2000)]. The second
dataset is also a part of the same project. It consists of the percentage of the
land under forest in each cell. All 211 cells are identical in shape and size. We
processed the data to identify significantly forested parts of the state assuming
the binomial response model with a population of 100 units of area for each
cell. Details of the finding are not presented in this chapter. Only the processing
time statistics are included in the table to underscore some contrasts between
a continuous response model and a discrete response model with respect to the
three computational tasks. The third dataset has only 12 cells. In none of the
three cases presented in the table is construction of the ULS tree the most time-
consuming task, but of all the three it is most so for the gamma distribution.
Samples with the most distinct values are expected for a continuous distribution,
resulting in more levels for the ULS tree than for a discrete distribution. The
complexity of the likelihood equations for the gamma distribution is clearly
reflected by the time it takes to compute likelihoods. The effect of the large
population size in the case of the binomial response model is clear from the
third dataset. We point out that the sampling involved for the binomial model
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is actually from the multivariate hypergeometric distribution. To generate a
vector (y′1, y

′
2, . . . , y

′
N ) from the (N−1) dimensional hypergeometric distribution

one needs to generate t = y1+y2+· · ·+yN random numbers, and t is potentially
quite large. On the other hand, to generate a similar vector from the Dirichlet
distribution for the gamma model, the generation of only N random numbers
is required.

12.5 Testing Significance of the Scan Statistic

We will be primarily interested in determining the significance of the likeli-
hood of a candidate zone with the maximum likelihood. The distribution of the
scan statistic under the null hypothesis is intractable mathematically. Tradi-
tionally, the p-value of the statistic is determined using Monte Carlo methods.
The process involves obtaining the conditional distribution of Y1, Y 2, . . . , YN

under the null hypothesis conditioned on a suitable statistic. For binomial and
Poisson response models, it is obtained by holding Y1 + Y2 + · · · + YN fixed
at y1, +y2 + · · · + yN . This sum being sufficient for the respective parameter
under investigation, the conditional distribution (multivariate hypergeometric
and multinomial, respectively) is independent of the respective parameter. Sim-
ulated samples from the conditional distribution are used to construct the scan
statistic for comparison with the observed scan statistic. The entire process for
binomial and Poisson response models is straightforward. In some cases a suf-
ficient statistic may not exist or may not be suitable, as will be seen with the
gamma distribution in the next section.

12.6 Gamma Response Model

Binomial and Poisson response models have been studied extensively in hotspot-
ting because of their wide applicability to epidemiology. Relatively, continuous
distributions have received less attention. Here we use the gamma model to
illustrate application of the ULS scan statistic to continuous distributions.

The gamma distribution has two parameters, k and β, where k is the index
parameter and β is the scale parameter. Thus, if Y is a gamma variate,

E[Y ] = kβ and V ar [Y ] = kβ.

Here both k and β can vary from cell to cell, but additivity of the family of
gamma distributions with respect to the index parameter suggests that we take
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k to be proportional to the size Aa of the cell:

ka = Aa/c,

where c is an unknown but whose value is the same for all cells in R. Thus, we
have

E[Ya] = βaAa/c,

and given a candidate zone Z, the null hypothesis to test absence of a hotspot
becomes

H0 : βa are the same, say β0 for all cells in R

against the alternative hypothesis

H1 : βa =

{
β′

1 for all cells a in Z
β′

0 for all cells a outside Z and β′
1 > β′

0.

Incidentally, for the reparametrized gamma response model, the coefficient of
variation square is

CV 2[Ya] = c/Aa,

which says that the relative variability of the response decreases as the cell size
increases and is a desirable property of the model.

The likelihood equation for estimating c0 (c under H0), β0, c1 (c under H1),
β′

1, and β′
0 take the form

∑

R

Aa [log(Aa/c0) − ψ(Aa/c0)]

=(
∑

R

Aa) log(
∑

R

ya/
∑

R

Aa) −
∑

R

[Aa log(ya/Aa)] (12.1)

β0 = c0

∑

R

ya/
∑

R

Aa (12.2)

∑

R

[log(Aa/c1) − ψ(Aa/c1)]

=(
∑

NZ

Aa) log(
∑

NZ

ya/
∑

NZ

Aa) + (
∑

Z

Aa) log(
∑

Z

ya/
∑

Z

Aa)

−
∑

R

[Aa log(ya/Aa)] (12.3)
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β′
0 = c1(

∑

NZ

ya/
∑

NZ

Aa) (12.4)

and

β′
1 = c1(

∑

Z

ya/
∑

Z

Aa), (12.5)

where
∑

R,
∑

Z and
∑

NZ denote summation of summands for all cells belonging
to R, all cells inside Z, and all cells outside Z, respectively, and ψ(·) is the
digamma function.

It is known that

g(t) = log(t) − ψ(t), t ≥ 0,

is strictly increasing with g(0) = 0 and g(∞) = ∞. Further analysis shows that
Equations (12.1) and (12.3) give unique solutions for c0 and c1, respectively. It
has been verified that the Newton–Raphson algorithm gives rapid convergence.
In the software implementation discussed in the next section, starting with
moment estimates as initial guesses, satisfactory convergence never took more
than ten iterations, and frequently took much fewer.

12.6.1 Monte Carlo simulation

As noted above, the gamma model is additive with respect to the index param-
eter so that, under the null hypothesis,

∑
R Ya is a gamma variable with param-

eters (β,
∑

R Aa/c) and the conditional distribution of (Z1, Z2, . . . , ZN ), Za =
Ya/

∑
Ya, given

∑
R Ya = t is Dirichlet with parameters (k1, k2, . . . , kN ). Thus,

to generate simulated y1, y2, . . . , yN we simulate generation of Z1, Z2, . . . , ZN

from the Dirichlet distribution with parameters (k1, k2, . . . , kN ) and compute
ya = tZa. To generate simulated Z1, Z2, . . . , ZN it is enough to generate
x1, x2, . . . , xN from independent gamma distributions with (β̂0, Aa/ĉ0) as their
respective parameters. Here ĉ0 and β̂0 are MLEs of c and β under the null
hypothesis that there is no hotspot. Once x1, x2, . . . , xN are generated, one
computes Za as xa/(x1 + x2 + · · · + xN ) and finally, simulated response ya as
ya = tZa.

12.7 Details of Software Implementation

The program was written in C++ using Microsoft Visual Studio 2005 on the
Windows platform. While the software can still be considered as a prototype,
consideration was given to two important objectives so that the current version
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Class adjacentNode 
friend class cellNode 
member data: 
int          cellID 
adjacentNode *next

Class region
friend class ULSTree 
member data:
int          numCELLS
cellNode     **cellList
double       sizeTotal
double       responseTotal

Class ULSNode 
friend class ULSTree 
member data: 
double      gValue 
double      exposedSizeTotal 
double      exposedResponseTotal 
ULSNode     *downLink 
zoneNode    *zonePtr 

Class ULSTree 
member data:
responseModel *M 
ULSNode     *TreeTop 
int         levelCount 
int         zoneCount 
zoneNode    **zoneList; 
int         *rankIndexZ 
double      maxZoneLoglikelihood 
double      maxZoneSize 
double      maxZoneSizeFraction 
double      exposedSizeTotal 
double      exposedResponseTotal 

Class zoneNode 
friend class ULSNode 
friend class ULSTree 
member data: 
int          zoneNumber 
zoneNode     *parent 
double       gValue 
adjacentNode *memberList 
int          memberCount 
double       sizeTotal 
double       responseTotal 
double       logLikelihood 
int          exceeders 
double       p_value 
zoneNode     *next

Class cellNode 
friend class  zoneNode 
friend class  region 
member data: 
int           cellID 
double        size 
double        response 

rate 
        *zonePtr 

            zoneNumber 
           visited 

    *adjacent 
           exposed 

These boxes show classes and member data 
that model the geospatial data and the ULS
tree structure.  The abstract class to model
the distribution of response data is shown
separately in Figure 5 

double
zoneNod
int
bool

bool
adjacentNode

Figure 12.4. Overall data structure.

may form a basis for developing a production model. The first objective was to
model the data structure to closely match the geostatistical model while using
the computer memory economically. The second was to make it easily extensible
if one wishes to add a new distribution to model responses or to deal with multi-
response data or to construct confidence sets for hotspots. Figure 12.4 shows
how the objectives were met. The figure shows essential data definitions. We
suppress details of data, input/output and utility functions/methods used for
debugging or that do trivial things.

The most basic object is cellNode, which is used to store the cell response
value y (identifier named response in the program), area or N (represented
by the identifier size), rate (y/N), pointer to the list of cells adjacent to the
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given cell, and a link to the zone containing the cell. The Boolean data member
visited is used to construct connected components during the building of the
ULS tree. The exposed flag is set to true when the cell becomes a member of a
connected zone during the ULS tree construction. The object region is an array
of cellNode’s. The object zoneNode represents a set of connected cells in the
region and is a linked list of adjacentNodes, one adjacentNode for each cell in
the zone, such that the y/N (that is, response/size) value for the cell is greater
than or equal to a given g value. Each zoneNode except the root zone has a link
to its parent. It also stores other attribute values of the zone. For each level of
the ULS tree there is one instance of the object ULSNode. It points to a linked
list of connected components/zones making up the level. Each instance of UL-
SNode has a link to the ULSNode instance representing the next level down
(towards the root level) except for the root level ULSNode instance. Each UL-
SNode instance stores the corresponding g value. This linked list of ULSNodes
is a ULSTree that we construct. Finally, one instance of the object ULSTree
points to the linked list of ULSNodes making up one ULSTree. There are two
ULSTree node instances, one pointing to the ULSTree constructed from the
observed responses and the other pointing to the ULSTree constructed from a
simulated copy of responses. For every simulation run we destroy the linked list
of ULSNodes that makes up the tree and create a new list for the new tree.
Both trees (observed and simulated) share the same storage to store observed
and simulated responses and adjacency data. This is possible since all the infor-
mation necessary for processing observed data is saved into the corresponding
ULSTree structure consisting of ULSNodes and zoneNodes. The second objec-
tive of making the software flexible enough so that a new response model can
be included in the program is achieved by means of an abstract class response-
Model, as shown in Figures 12.4 and 12.5. In order to include a new response

Abstract class responseModel
friend   class ULSTree;
virtual void   computeMLE (void) = 0;
virtual void   computeMLE (zoneNode *zone)=0;
virtual void   computeLogLikelihoodNull(void)=0;
//             computes loglikelihood under H0
virtual double getLogLikelihoodNull(void)=0;
virtual void   computeZoneLogLikelihoodRatio(zoneNode* zone)=0;
virtual void   SimulateData(void)=0; 
member data: 
int            numCELLS
cellNode       **cellList
int            *V              // array to sort response rates
double         sizeTotal       // for the region
double         responseTotal   // for the region

Figure 12.5. Abstract response model class.
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model one needs to create a new concrete class derived from the base abstract
class responseModel and instantiate an object of the new concrete class in the
main program on the lines of the currently available concrete classes for the
binomial, Poisson and gamma models. The main program and the algorithm
used to construct the ULSTree are outlined next.

12.8 Construction of the ULS Scan Tree

Our algorithm to construct the ULS tree begins with sorting the array of n
cells representing the region in descending order by the g value (rate) using
a sort index V , that is, V [i] is the cellID with the i-th largest g value, for
i = 0, 1, 2, . . . , n − 1. Here n is the number of cells in the region. The following
algorithm expressed in pseudocode returns a pointer TreeTop to a linked list
of ULSNode’s. The number of nodes in this linked list will be the number of
distinct g values obtained from the data plus 1. The first node is only a header
node. Each of the remaining nodes in this list will point to the list of connected
zones of the ULSTree occurring at one particular level corresponding to one
distinct g value.

Algorithm construct ULSTree

oldgvalue = infinity
TreeTop = a new ULSNode with g value set to infinity.

//points to an empty list of zones
//serves as the header node for list of ULSNode

currentU = TreeTop
zoneCount = 0 // count of the zones created
create an empty stack // used in computation of connected

//component below
for i = 0 to n − 1 {

currentcellID = the cellID whose rank is i; call it currentCell
newgvalue = gvalue of currentcellID
if currentcellID is exposed

// do nothing, the cell is already exposed, continue with next
// i value

else { // we have either a new level or we continue with the same
// level in either case we have new connected zone

if ( newgvalue < oldgvalue ) { // we have a new level
newU = new ULSNode
set down link of currentU to newU
currentU = newU
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clear visited tag of all cellNodes
}
// we have new zone
Z = new zoneNode; initialize member data of Z
Increase zoneCount by one
Make currentcellID a member of Z - this also sets exposed tag
to true
append Z to the linked list of zones belonging to currentU
ULS Node
//at this point we do the standard depth-first traversal of all
//cells reachable from currentcellID and build up Z
//as a connected zone that contains currentcellID
// and all cells that are reachable from currentcellID
// whose gvalue is greater than or equal to newgvalue
set visited tag of currentCell
push currentCell
while (stack is not empty) {

cellC = pop()
for each neighbor neighborCell p of cellC do

if (visited tag of neighborCell is clear)
if (g value of neighborCell < newgvalue)

set visited tag of neighborCell
else if (g value of neighborCell is equal newgvalue) {

augment current zone Z with neighborCell
update all stats of the current zone Z
set visited tag of neighborCell
push neighborCell

}
else if (the neighborCell is not already in Z)

// case g value of neighborCell > newgvalue
set parent link of zone of neighborCell to Z
augment Z with all cells in the child zone

}
} // end of while stack is not empty

}
oldgvalue = newgvalue

} // end of for i = 0 to n − 1
Update totals for the root level, current.
// Finally, we construct an array of pointers pointing to each zone in the
//tree in the order in which zones were created for an easy access
// to the zones zoneList is an array of pointers to zoneNode
i = 0;
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currentU = TreeTop
while (curentU is not null) {

Z = current’zonePtr
while (Z is not null) {

zoneList[i] = Z
i = i + 1
Z = Z → next

}
currentU = currentU→downlink

} // end of algorithm constructULSTree

12.9 A Case Study

In this section we present an application of the gamma response model to data
collected to study biodiversity in the state of Pennsylvania. The section also
illustrates input data and its format.

12.9.1 Description of Pennsylvania hexagonal
biodiversity data

For the study, hexagonal tessellation of the state was used. The total number
of hexagons covering the state is 211. The area of each hexagon is 635 sq km.
The entire dataset consists of measurements, for each hexagon, of four different
variables reflecting biodiversity or characteristics favorable to biodiversity. The
four variables are bird species count, mammal species count, standard devia-
tion of elevation, and percentage of the area covered by forest. Out of the 211
hexagonal areas in Pennsylvania, Table 12.2 shows the first five rows of the
data for all the four variables. We will use the elevation data to locate highly
rough terrain. For the purpose of measuring the elevation standard deviation a
uniform grid of points was overlaid on the hexagonal tessellation. The elevation
standard deviation is based on elevation measurements at these grid points.

Table 12.2. Biodiversity data for Pennsylvania hexagonal tessellates.

HexID BirdSp MamlSp ElevSD PctForst
1714 55 34 11 35.4
1827 58 37 32 84.3
1828 116 37 27 50.3
1829 96 34 17 25.3
1941 86 37 51 100.0
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12.9.2 Pennsylvania elevation hotspot and illustrative
data items and format

The gamma distribution appears to be an appropriate model to treat the eleva-
tion data. First we shall square each standard deviation to obtain the variance
of the elevation measurements. Under the assumption of normality, the chi-
square distribution is ideally suited for the transformed data. Even if basic
measurements deviate from normality, the gamma distribution seems to be an
acceptable model. Figure 12.6 shows only the first five lines of the data file
actually used as input to the program. The input text file needs one line for
each cell in the region. The first entry in each line is the cell identification num-
ber (cellID). The current version of the program requires that the cellID’s be
sequentially numbered starting with 0. For the current dataset, HexID’s had
to be translated sequentially into 0, 1, 2, . . . , 210. The second entry in each line
is the “size” of the cell. The actual area of each hexagon is 635 sq km, but
since the unit of measurement of size is irrelevant, we use 1 as the area of each
cell. The third entry in each line is the value of the response variable for the
cell. For Figure 12.6, it is the square of the elevation standard deviation so
that the gamma model can be applied. The subsequent entries in each line are
identification numbers of cells that are adjacent to the cell. Entries in each line
are to be separated by one or more blank spaces or tabs. The end of line marks
the end of data for the current cell. The format of the input data file described
here remains the same irrespective of the response model used.

In addition to the basic data file in the form as shown in Figure 12.6, the user
needs to specify the threshold, the maximal size that a potential hotspot could
have. The threshold is a proper fraction relative to the size of the entire region.
For the Pennsylvania data, we specified it as 0.50 for the elevation hotspot (as
well as for the forest cover hotspot). In addition to the program run to detect
the hotspot with respect to the high elevation standard deviation, the program
was also run separately to detect the “coldspot,” that is, the hotspot with
respect to the low values of the elevation standard deviation, again with the
threshold fraction of 0.50. The idea is to see if certain marginal hexagons qualify
according to the program to be included in a hotspot as well as in a coldspot. An
occurrence of one or more cells of this type could present a dilemma to decision
makers. In our case three such cells were detected. The program outputs all

Figure 12.6. Input data file for elevation hotspot. The size is 1 here since all
cells have the same area.
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Figure 12.7. Elevation hotspot is in gray.

Figure 12.8. Topographical map of Pennsylvania.

hotspots, that is, the candidate zones with a p-value of 0.05 or less. With a
little manual processing and inspection, by working towards the leaf nodes of
the ULS tree, a maximal hotspot with no intersection with the coldspot was
discovered. This hotspot is shown in Figure 12.7.

We show in Figure 12.8 a topographical map of Pennsylvania to facilitate
comparison between the actual central high ridge terrain where rougher land-
scape is expected and the ULS hotspot.

12.10 Conclusions

We have presented the ULS scan statistic for geospatial hotspot detection and
its object-oriented software implementation. The ULS scan statistic provides an
effective means to handle arbitrarily shaped hotspots with significant reduction
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of the parameter space. The software implementation contains an object rep-
resenting the gamma response model, which is a continuous model, in addition
to objects representing the more traditional discrete response models, binomial
and Poisson. The flexibility of the software makes it convenient to introduce
objects representing additional response models. A comparison between the
gamma and the binomial response models with respect to the computational
activity shows that for the gamma model construction of the ULS tree and like-
lihood calculations are more computer intensive, while Monte Carlo simulation
is more so for the latter. Finally, a case study illustrating application of the
gamma response model has been presented.
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