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Abstract. Kontsevich’s formality theorem states that the differential graded Lie
algebra of multidifferential operators on a manifold M is L∞-quasi-isomorphic to
its cohomology. The construction of the L∞-map is given in terms of integrals of
differential forms on configuration spaces of points in the upper half-plane. Here
we consider configuration spaces of points in the disk and work equivariantly with
respect to the rotation group. This leads to considering the differential graded Lie
algebra of multivector fields endowed with a divergence operator. In the case of R

d

with standard volume form, we obtain an L∞-morphism of modules over this differ-
ential graded Lie algebra from cyclic chains of the algebra of functions to multivector
fields. As a first application we give a construction of traces on algebras of functions
with star-products associated with unimodular Poisson structures. The construction
is based on the Batalin–Vilkovisky quantization of the Poisson sigma model on the
disk and in particular on the treatment of its zero modes.
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1 Introduction

The Hochschild complex of any algebra with unit carries a differential graded
Lie algebra structure introduced by Gerstenhaber [14]. In the case of the
algebra of smooth functions on a manifold, one has a differential graded
Lie subalgebra gG of multidifferential operators, whose cohomology is the
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graded Lie algebra gS of multivector fields with Schouten–Nijenhuis bracket.1

Kontsevich [17] showed that gG and gS are quasi-isomorphic as L∞-algebras,
a notion introduced by Stasheff as the Lie version of A∞-algebras [28], see
[24, 20]. A striking application of this result is the classification of formal as-
sociative deformations of the product of functions in terms of Poisson struc-
tures. Kontsevich’s L∞-quasi-isomorphism is given in terms of integrals over
configuration spaces of points in the upper half-plane. As shown in [3], these
are Feynman amplitudes of a topological quantum field theory known as the
Poisson sigma model [16, 23].

In this paper we consider the case of a manifold M endowed with a volume
form Ω. In this case gS comes with a differential, the divergence operator divΩ
of degree −1. One considers then the differential graded Lie algebra gΩS = gS [v]
where v is an indeterminate of degree 2, the bracket is extended by v-linearity
and the differential is v divΩ. The relevant topological quantum field theory
is a BF theory (or Poisson sigma model with trivial Poisson structure) on a
disk whose differential is the Cartan differential on S1-equivariant differential
forms. This theory is described in Section 2. The new feature, compared to
the original setting of Kontsevich’s formality theorem, is that zero modes are
present. We use recent ideas of Losev, Costello and Mnev to treat them in the
Batalin–Vilkovisky quantization scheme. This gives the physical setting from
which the Feynman amplitudes are derived. In the remaining sections of this
paper, which can be read independently of Section 2, we give a purely math-
ematical treatment of the same objects. The basic result is the construction
for M = R

d of an L∞-morphism of gΩS -modules from the module of negative
cyclic chains (C−•(A)[u], b + uB) to the trivial module (Γ (∧−•TM ), divΩ).
We also check that this L∞-morphism has properties needed to extend the
result to general manifolds.

As in the case of Kontsevich’s theorem, the coefficients of the L∞-
morphism are integrals of differential forms on configuration spaces. Whereas
Kontsevich considers the spaces of n-tuples of points in the upper half-plane
modulo the action of the group of dilations and horizontal translations, we
consider the space of n-tuples of points in the unit disk and work equivari-
antly with respect to the action of the rotation group. The quadratic identities
defining the L∞-relations are then proved by means of an equivariant version
of the Stokes theorem.

As a first application we construct traces in deformation quantization as-
sociated with unimodular Poisson structures. Our construction can also be
extended to the case of supermanifolds; the trace is then replaced by a non-
degenerate cyclic cocycle (Calabi–Yau structure, see [18], Section 10.2, and
[10]) for the A∞-algebra obtained by deformation quantization in [5]. Fur-
ther applications will be studied in a separate publication [6]. In particular
we will derive the existence of an L∞-quasi-isomorphism of gΩS -modules from

1 We use Tsygan’s notation [30]. Kontsevich’s notation [17] is Dpoly = gG,
Tpoly = gS.
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the complex gΩS with the adjoint action to the complex of cyclic cochains
with a suitable module structure. This is a module version of the Kontsevich–
Shoikhet formality conjecture for cyclic cochains [26].

Notations and conventions

All vector spaces are over R. We denote by Sn the group of permutations of
n letters and by ε : Sn → {±1} the sign character. We write |α| for the degree
of a homogeneous element α of a Z-graded vector space. The sign rules for
tensor products of graded vector spaces hold: if f and g are linear maps on
graded vector spaces, (f⊗g)(v⊗w) = (−1)|g|·|v|f(v)⊗g(w). The graded vector
space V [n] is V shifted by n: V [n]i = V n+i. There is a canonical map (the
identity) sn : V [n] → V of degree n. The graded symmetric algebra S•V =
⊕n≥0S

nV of a graded vector space V is the algebra generated by V with
relations a · b = (−1)|a|·|b|b · a, a, b ∈ V ; the degree of a product of generators
is the sum of the degrees. If σ ∈ Sn is a permutation and a1, . . . , an ∈ V , then
aσ(1) · · · aσ(n) = εa1 · · · an; we call ε = ε(σ; a1, . . . , an) the Koszul sign of σ and
ai. The exterior algebra

∧
V is defined by the relations a∧b = −(−1)|a|·|b|b∧a

on generators. We have a linear isomorphism Sn(V [1]) → (∧nV )[n] given by
v1 · · · vn �→ s−n(−1)

∑
(n−j)(|vj |−1)sv1 ∧ · · · ∧ svn, vj ∈ V [1].

2 BV formalism and zero modes

This section provides the interested reader with some “physical” motivation
for the constructions in this paper. It may be safely skipped by the reader
who is only interested in the construction and not in its motivation.

The basic idea is to use the Batalin–Vilkovisky (BV) formalism in order
to deal with theories with symmetries (like the Poisson sigma model). What
is interesting for this paper is the case when “zero modes” are present.

It is well known in algebraic topology that structures may be induced on
subcomplexes (in particular, on an embedding of the cohomology) like, e.g.,
induced differentials in spectral sequences or Massey products. It is also well
known in physics that low-energy effective field theories may be induced by
integrating out high-energy degrees of freedom. As observed by Losev [21] (and
further developed by Mnev [22] and Costello [9]), the two things are actually
related in terms of the BV approach to (topological) field theories. We are
interested in the limiting case when the low-energy fields are just the zero
modes, i.e., the critical points of the action functional modulo its symmetries.

Let M be an SP-manifold, i.e., a graded manifold endowed with a sym-
plectic form of degree −1 and a compatible Berezinian [25]. Let Δ be the cor-
responding BV-Laplace operator. The compatibility amounts to saying that
Δ squares to zero and that it generates the BV bracket ( , ) (i.e., the Poisson
bracket of degree 1 determined by the symplectic structure of degree −1):
namely,

Δ(AB) = (ΔA)B + (−1)|A|AΔB − (−1)|A|(A,B). (1)
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Assume now that M is actually a product of SP-manifolds M1 and M2,
with BV-Laplace operatorsΔ1 and Δ2, Δ = Δ1+Δ2. The central observation
is that for every Lagrangian submanifold L of M2 and any function F on M
– for which the integral makes sense – one has

Δ1

∫

L
F =

∫

L
ΔF. (2)

In infinite dimensions, where we would really like to work, this formula is
very formal as both the integration and Δ are ill-defined. In finite dimensions,
on the other hand, this is just a simple generalization of the fact that, for any
differential form α on the Cartesian product of two manifolds M1 and M2 and
any closed submanifold S of M2 on which the integral of α converges, we have

d
∫

S

α = ±
∫

S

dα,

where integration on S yields a differential form on M1. The correspondence
with the BV language is obtained by taking M1,2 := T ∗[−1]M1,2 and L :=
N∗[−1]S (where N∗ denotes the conormal bundle). The Berezinian on M
is determined by a volume form v = v1 ∧ v2 on M := M1 × M2, with vi
a volume form on Mi. Finally, Δ is φ−1

v ◦ d ◦ φv, with φv : Γ (∧•TM ) →
ΩdimM−•(M), X �→ φv(X) := ιXv. The generalization consists in the fact
that there are Lagrangian submanifolds of M2 not of the form of a conormal
bundle; however, by a result of Schwarz [25], they can always be brought to
this form by a symplectomorphism so that formula (2) holds in general.

In the application we have in mind, M2 (and so M) is infinite-dimensional,
but M1 is not. Thus, we have a well-defined BV-Laplace operator Δ1 and try
to make sense of Δ by imposing (2), following ideas of [21,22] and, in particu-
lar, [9]. More precisely, we consider “BF -like” theories. Namely, let (V , δ) and
(Ṽ , δ) be complexes with a nondegenerate pairing 〈 , 〉 of degree −1 which
relates the two differentials:

〈B , δA 〉 = 〈 δB , A 〉 , ∀A ∈ V , B ∈ Ṽ. (3)

We set M = V ⊕ Ṽ and define S ∈ C∞(M) as

S(A,B) := 〈B , δA 〉 . (4)

The pairing defines a symplectic structure of degree −1 on M and the BV
bracket with S is δ. In particular,

(S, S) = 0. (5)

We denote by H (H̃) the δ-cohomology of V (Ṽ). Then we choose an embedding
of M1 := H⊕ H̃ into M and a complement M2.
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Example 1. Take V = Ω(Σ)[1] and Ṽ = Ω(Σ)[s−2], with Σ a closed, compact
s-manifold, and δ = d, the de Rham differential, on V ; up to a sign, δ on
Ṽ is also the de Rham differential if the pairing is defined by integration:
〈B , A 〉 :=

∫
Σ B∧A, A ∈ V , B ∈ Ṽ . In this case M1 = H(Σ)[1]⊕H(Σ)[s−2],

with H(Σ) the usual de Rham cohomology. A slightly more general situation
occurs when Σ has a boundary; in this case, appropriate boundary conditions
have to be chosen so that δ has an adjoint as in (3). Let ∂Σ = ∂1Σ � ∂2Σ
(each of the boundary components ∂1,2Σ may be empty). We then choose V =
Ω(Σ, ∂1Σ)[1] and Ṽ = Ω(Σ, ∂2Σ)[s−2], where Ω(Σ, ∂iΣ) denotes differential
forms whose restrictions to ∂iΣ vanish. In this case, M1 = H(Σ, ∂1Σ)[1] ⊕
H(Σ, ∂2Σ)[s− 2].

Example 2. Suppose that S1 acts on Σ (and that the ∂iΣs are invariant).
Let v denote the vector field on Σ generating the infinitesimal action. Let
ΩS1(Σ, ∂Σ) := Ω(Σ, ∂Σ)S

1
[u] denote the Cartan complex with differential

dS1 = d−uιv, where u is an indeterminate of degree 2. Then we may generalize
Example 1 replacing Ω(Σ, ∂Σ) with ΩS1(Σ, ∂Σ).

Now suppose that H (and so H̃) is finite-dimensional, as in the examples
above. In this case it is always possible to choose a BV-Laplacian Δ1 on M1.
Once and for all we also choose a Lagrangian submanifold L on which the
infinite-dimensional integral makes sense in perturbation theory. Assuming
ΔS = 0, the first consequence of (2) and (5) is that the partition function

Z0 =
∫

L
e

i
�
S

is Δ1-closed. Actually, in the case at hand, Z0 is constant on M1.
For every functional O on M for which integration on L makes sense, we

define the expectation value

〈 O 〉0 :=

∫
L e

i
�
S O

Z0
.

The second consequence of (2), and of the fact that Z0 is constant on M1, is
the Ward identity

Δ1〈 O 〉0 =
〈

ΔO − i
�
δO

〉

0

, (6)

where we have also used (1).
To interpret the Ward identity for O = B ⊗ A, we denote by {θμ} a

linear coordinate system on H and by {ζμ} a linear coordinate system on
H̃, such that their union is a Darboux system for the symplectic form on
M1 with Δ1 = ∂

∂θμ
∂
∂ζμ

. We next write A = αμθ
μ + a and B = βμζμ + b

with a ⊕ b ∈ M2. The left-hand side of the Ward identity is now simply
Δ1〈 B ⊗ A 〉0 =

∑
μ(−1)|β

μ|βμ ⊗ αμ =: φ. On the assumption that the ill-
defined BV-Laplacian Δ should be a second-order differential operator, the
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first term 〈 Δ(B ⊗ A) 〉0 on the right-hand side is ill-defined but constant on
M1; we denote it by K. Since δ vanishes in cohomology and, as a differential
operator, it can be extracted from the expectation value, (6) yields a constraint
for the propagator

ω :=
i
�
〈 b ⊗ a 〉0; (7)

namely,
δω = K − φ.

From now on we assume that M is defined in terms of differential forms as
in Examples 1 and 2. In this case, ω is a distributional (s− 1)-form on Σ×Σ
while φ is a representative of the Poincaré dual of the diagonal DΣ in Σ×Σ.
By the usual naive definition of Δ, K is equal to the delta distribution on DΣ.
Thus, the restriction of ω to the configuration space C2(Σ) := Σ ×Σ \DΣ is
a smooth (m− 1)-form satisfying dω = φ. If Σ has a boundary, ω satisfies in
addition the conditions ι∗1ω = ι∗2ω = 0 with ι1 the inclusion of Σ × ∂1Σ into
Σ ×Σ and ι2 the inclusion of ∂2Σ ×Σ into Σ ×Σ. Denoting by π1,2 the two
projections Σ ×Σ → Σ and by π1,2

∗ the corresponding fiber-integrations, we
may define P : Ω(Σ, ∂1Σ) → Ω(Σ, ∂1Σ) and P̃ : Ω(Σ, ∂2Σ) → Ω(Σ, ∂2Σ) by
P (σ) = π2

∗(ω∧π∗
1σ) and P̃ (σ) = π1

∗(ω∧π∗
2σ). Then the equation for ω implies

that P and P̃ are parametrices for the complexes Ω(Σ, ∂1Σ) and Ω(Σ, ∂2Σ);
namely, dP +Pd = 1−� and dP̃ + P̃d = 1− �̃, where � and �̃ denote the
projections onto cohomology.

This characterization of the propagator of a “BF -like” theory also appears
in [9]. Even though not justified in terms of the BV formalism, this choice of
propagator was done before in [2] for Chern–Simons theory out of purely
topological reasons, and later extended to BF theories in [7]. A propagator
with these properties also appears in [13] for the Poisson sigma model on the
interior of a polygon.

The quadratic action (4) is usually the starting point for a perturbative
expansion. The first singularity that may occur comes from evaluating ω on
DΣ (“tadpole”). A mild form of renormalization consists in removing tadpoles
or, in other words, in imposing that ω should vanish on DΣ . By consistency,
one has then to set K equal to the restriction of φ to DΣ . In other words, one
has to impose

Δ(B(x)A(x)) = ψ(x) :=
∑

μ

(−1)|β
μ|βμ(x)αμ(x), ∀x ∈ Σ. (8)

Observe that ψ is a representative of the Euler class of Σ. By (1) and (8) one
then obtains a well-defined version of Δ on the algebra C∞(M)′ generated
by local functionals. This may be regarded as an asymptotic version (for the
energy scale going to zero) of Costello’s regularized BV-Laplacian [9]. Actually,

Lemma 1. (C∞(M)′, Δ) is a BV algebra.
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We now restrict ourselves to the setting of the Poisson sigma model [16,23].
Namely, we assume Σ to be two-dimensional and take V = Ω(Σ, ∂1Σ)[1] ⊗
(Rm)∗ and Ṽ = Ω(Σ, ∂2Σ)⊗R

m. Here (Rm)∗×R
m is a local patch of the cotan-

gent bundle of an m-dimensional target manifold M . (Whatever we say here
and in the following may be globalized by taking M to be the graded submani-
fold of Map(T [1]Σ, T ∗[1]M) defined by the given boundary conditions.) There
is a Lie algebra morphism from the graded Lie algebra gS = Γ (∧•+1TM ) of
multivector fields on M to C∞(M)′ endowed with the BV bracket [4]: to
γ ∈ Γ (∧kTM ) it associates the local functional

Sγ =
∫

Σ

γi1,...,ik(B)Ai1 · · ·Aik .

Moreover, for k > 0, (S, Sγ) = 0. With the regularized version of the BV-
Laplacian, we get

ΔSγ =
∫

Σ

ψ (divΩ γ)i1,...,ik−1(B)Ai1 · · ·Aik−1 ,

where divΩ is the divergence with respect to the constant volume form Ω
on R

n. To account for this systematically, we introduce the differential graded
Lie algebra gΩS := gS [v], where v is an indeterminate of degree two and
the differential δΩ is defined as v divΩ (and the Lie bracket is extended by
v-linearity). To γ ∈ Γ (∧kTM ) vl we associate the local functional

Sγ = (−i�)l
∫

Σ

ψl γi1,...,ik(B)Ai1 · · ·Aik .

It is now not difficult to prove the following

Lemma 2. The map γ �→ Sγ is a morphism of differential graded Lie al-
gebras from (gΩS , [ , ], δΩ) to (C∞(M)′, ( , ),−i�Δ). Moreover, for every
γ ∈ Γ (∧kTM ) vl with k or l strictly positive, we have (S, Sγ) = 0. If ∂Σ = ∅,
the last statement holds also for k = l = 0.

Observe that ψ2 = 0 by dimensional reasons. However, in the generalization
to the equivariant setting of Example 2, higher powers of ψ survive.

A first application of this formalism is the Poisson sigma model on Σ.
If π is a Poisson bivector field (i.e., π ∈ Γ (∧2TM ), [π, π] = 0), then Sπ :=
S + Sπ satisfies the master equation (Sπ, Sπ) = 0 but in general not the
quantum master equation 1

2 (Sπ, Sπ) + i�ΔSπ = 0, which by (1) is equivalent
to Δe

i
�

Sπ = 0. Unless ψ is trivial2 (which is, e.g., the case for Σ the upper half

2 If the class of ψ is trivial, one may always choose bases in the embedded co-
homologies so that ψ = 0. If one does not want to make this choice, one
observes anyway that for ψ = dτ one has −i�ΔSγ = (S, S′

γ) with S′
γ =

(−i�)l
∫
Σ
τψl−1 γi1,...,ik (B)Ai1 · · ·Aik , for γ ∈ Γ (∧kTM ) vl, l > 0. In the case

at hand, one may then define a solution of the quantum master equation as
S + Sπ + S′

π.
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plane, as in [3], or the torus), this actually happens only if π is divergence free.
More generally, if π is unimodular [19], by definition we may find a function
f such that divΩ π = [π, f ]. So π̃ := π + vf is a Maurer–Cartan element in
gΩS (i.e., δΩπ̃− 1

2 [π̃, π̃] = 0). Hence Sπ̃ := S+Sπ̃ satisfies the quantum master
equation. It is not difficult to check that, for ψ nontrivial, the unimodularity of
π is a necessary and sufficient condition for having a solution of the quantum
master equation of the form S+Sπ+O(�). For Σ the sphere this was already
observed in [1] though using slightly different arguments.

We will now restrict ourselves to the case of interest for the rest of the
paper: namely, Σ the disk and ∂2Σ = ∅. In this case H(Σ) is one-dimensional
and concentrated in degree 0 while H(Σ, ∂Σ) is one-dimensional and con-
centrated in degree two. Thus, H = (Rm)∗[−1] and H = R

m which implies
M1 = T ∗[−1]M . Functions on M1 are then multivector fields on M but with
reversed degree and the operator Δ1 turns out to be the usual divergence
operator divΩ (which is now of degree +1) for the constant volume form. A
first simple application is the expectation value

tr g :=

∫
L e

i
�

Sπ̃ Og

Z0
=

〈
e

i
�
Sπ̃ Og

〉

0
, g ∈ C∞(M),

where π̃ is a Maurer–Cartan element corresponding to a unimodular Pois-
son structure and Og(A,B) := g(B(1)), with 1 in ∂Σ which we identify

with the unit circle. Consider now tr2(g, h) :=
〈

e
i
�
Sπ̃ Og,h

〉

0
, with Og,h :=

g(B(1))
∫
∂Σ\{1} h(B). By (1), we then have Δ1 tr2(g, h) =

〈
e

i
�
Sπ̃ δOg,h

〉

0
.

Arguing as in [3], we see that the right-hand side corresponds to moving the
two functions g and h close to each other (in the two possible ways) and by
“bubbling” the disk around them; so we get

Δ1 tr2(g, h) = tr g � h− tr h � g,

where � is Kontsevich’s star product [17] which corresponds to the Poisson
sigma model on the upper half plane [3]. Since Δ1 is just the divergence
operator with respect to the constant volume form Ω, for compactly supported
functions we have the trace

Tr g :=
∫

M

tr g Ω.

More generally, we may work out the Ward identities relative to the quadratic
action (4) (there is also an equivariant version for S1 acting by rotations onΣ).
Given a0, a1, . . . , ap in C∞(M) (or in C∞(M)[u] for the equivariant version),
we define

Oa0,...,ap := a0(B(1))
∫

t1<t2<···<tp∈∂Σ\{1}
a1(B) · · · ap(B)
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and
Gn(γ1, . . . , γn; a0, . . . , ap) :=

〈
Sγ1 . . . Sγn Oa0,...,ap

〉
0
,

γi ∈ gΩS , i = 1, . . . , n. By (6) we then have

−i�Δ1Gn(γ1, . . . , γn; a0, . . . , ap) = −i�
〈
Δ(Sγ1 . . . Sγn Oa0,...,ap)

〉
0

+

+
〈
δ(Sγ1 . . . Sγn Oa0,...,ap)

〉
0
.

The left-hand side is just (−i�) times the divergence operator applied to the
multivector field Gn. The first term on the right-hand side may then be com-
puted as

−i�
〈
Δ(Sγ1 . . . Sγn Oa0,...,ap)

〉
0

=

=
n∑

i=1

(−1)σiGn(γ1, . . . , δΩγi, . . . , γn; a0, . . . , ap) +

−i�
∑

1≤i<j≤n
(−1)σijGn−1([γi, γj], γ1, . . . , γ̂i, . . . , γ̂j , . . . , γn; a0, . . . , ap),

where the caret denotes omission and

σi :=
i−1∑

c=1

|γc|,

σij := |γi|
i−1∑

c=1

|γc| + |γj |
j−1∑

c=1, c �=i
|γc| + |γi| + 1,

with |γ| = k for γ ∈ Γ (∧kTM )[v]. The second term on the right-hand side is
a boundary contribution (in the equivariant sense if δ = dS1 = d − uιv). By
bubbling as in [3], some of the γis collapse together with some of the consec-
utive aks and the result – which is Kontsevich’s formality map – is put back
into G. The whole formula can then be interpreted as an L∞-morphism from
the cyclic Hochschild complex to the complex of multivector fields regarded
as L∞-modules over gΩS , as we are going to explain in the rest of the paper.

The only final remark is that i� occurs in this formula only as a book-
keeping device. We define Fn by formally setting i� = 1 in Gn.

3 Hochschild chains and cochains of algebras of smooth
functions

Kontsevich’s theorem states that there is an L∞-quasi-isomorphism from the
graded Lie algebra gS = Γ (∧•+1TM ) of multivector fields on a smooth man-
ifold M , with the Schouten–Nijenhuis bracket and trivial differential, to the
differential graded Lie algebra gG of multidifferential operators on M with
Gerstenhaber bracket and Hochschild differential. Through Kontsevich’s mor-
phism the Hochschild and cyclic chains become a module over gS . In this
section we review these notions as well as results and conjectures about them.
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3.1 Multivector fields and multidifferential operators

Let gS be the graded vector space gS = ⊕j≥−1g
j
S of multivector fields: g−1

S =
C∞(M), g0

S = Γ (TM ), g1
S = Γ (∧2TM ), and so on. The Schouten–Nijenhuis

bracket of multivector fields is defined to be the usual Lie bracket on vector
fields and is extended to arbitrary multivector field by the Leibniz rule: [α ∧
β, γ] = α ∧ [β, γ] + (−1)|γ|·(|β|+1)[α, γ] ∧ β, α, β, γ ∈ gS . The graded Lie
algebra gS is considered here as a differential graded Lie algebra with trivial
differential.

The differential graded Lie algebra gG of multidifferential operators is, as a
complex, the subcomplex of the shifted Hochschild complex Hom(A⊗(•+1), A)
of the algebraA = C∞(M) of smooth functions, consisting of multilinear maps
that are differential operators in each argument. The Gerstenhaber bracket
[14] on gG is the graded Lie bracket [φ, ψ] = φ •G ψ − (−1)|φ|·|ψ|ψ •G φ with
Gerstenhaber product3

φ •G ψ =
n∑

k=0

(−1)|ψ|(|φ|−k)φ ◦ (id⊗k ⊗ ψ ⊗ id⊗|φ|−k). (9)

The Hochschild differential can be written in terms of the bracket as [μ, ·],
where μ ∈ g1

G = Hom(A⊗A,A) is the multiplication in A.
The Hochschild–Kostant–Rosenberg map g•S → g•G induces an isomor-

phism of graded Lie algebras on cohomology. It is the identity on g−1
S =

C∞(M) = g−1
G and, for any vector fields ξ1, . . . , ξn, it sends the multivector

field ξ1 ∧ · · · ∧ ξn to the multidifferential operator

f1 ⊗ · · · ⊗ fn �→ 1
n!

∑

σ∈Sn

ε(σ)ξσ(1)(f1) · · · ξσ(n)(fn), fi ∈ A.

Although the HKR map is a chain map inducing a Lie algebra isomorphism
on cohomology, it does not respect the Lie bracket at the level of complexes.
The correct point of view on this problem was provided by Kontsevich in his
formality conjecture, which he then proved in [17]. The differential graded Lie
algebras gS , gG should be considered as L∞-algebras and the HKR map is
the first component of an L∞-morphism. Let us recall the definitions.

3.2 L∞-algebras

For any graded vector space V let S+V = ⊕∞
j=1S

jV be the free coalge-
bra without counit cogenerated by V . The coproduct is Δ(a1 · · · an) =
∑n−1

p=1

∑
σ ±aσ(1) · · ·aσ(p) ⊗ aσ(p+1) · · ·aσ(n), with summation over shuf-

fle permutations with Koszul signs. A coderivation of a coalgebra is an
3 The sign differs by a factor (−1)|φ|·|ψ| from the sign in [14]. We have chosen

the convention making the induced bracket on cohomology equal to the standard
Schouten–Nijenhuis bracket on multivector fields.
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endomorphism D obeying Δ ◦ D= (D ⊗ id + id ⊗ D) ◦ Δ. Coderivations
with the commutator bracket form a Lie algebra. What is special about
the free coalgebra S+V is that for any linear map D : S+V → V there is
a unique coderivation D̃ such that D = π ◦ D̃, where π is the projection
onto V = S1V . By definition an L∞-algebra is a graded vector space g
together with a coderivation D of degree 1 of S+(g[1]) obeying [D,D] = 0.
A coderivation is thus given by a sequence of maps (the Taylor components)
Dn : Sng[1] → g[2] (or ∧ng → g[2 − n]), n = 1, 2, . . . , obeying quadratic
relations. In particular D1 is a differential and D2 is a chain map obeying the
Jacobi identity up to a homotopy D3. It follows that D2 induces a Lie bracket
on the D1-cohomology. Differential graded Lie algebras are L∞-algebras with
D3 = D4 = · · · = 0. An L∞-morphism (g, D) � (g′, D′) is a homomor-
phism U : S+g[1] → S+g′[1] of graded coalgebras such that U ◦D = D′ ◦ U .
Homomorphisms of free coalgebras are uniquely defined by their composition
with the projection π′ : S+g′[1] → g′[1]; thus U is uniquely determined by
its Taylor components Un : Sng[1] → g′[1] (or ∧ng → g′[1 − n]): Un is the
restriction to Sng[1] of π′ ◦ U . Conversely, any such sequence Un comes from
a coalgebra homomorphism. The first relation between D,D′ and U is that
U1 is a chain map.

Theorem 1. (Kontsevich [17]) There is an L∞-morphism gS(M) � gG(M)
whose first Taylor component U1 is the Hochschild–Kostant–Rosenberg map.

If M is an open subset of R
d the formula for the Taylor components Un is

explicitly given in [17] as a sum over Feynman graphs.

3.3 Multivector fields and differential forms

The algebra Ω•(M) of differential forms on a manifold M is a module over
the differential graded Lie algebra gS(M) of multivector fields: a multivector
field γ ∈ Γ (∧p+1TM ) acts on forms as Lγω = dιγ + (−1)pιγd generalizing
Cartan’s formula for Lie derivatives of vector fields. Here d is the de Rham
differential and the interior multiplication ιγ is the usual multiplication if γ
is a function and is the composition of interior multiplications of vector fields
ξj if γ = ξ1 ∧ · · · ∧ ξk. Moreover the action of gS(M) on Ω•(M) commutes
with the de Rham differential and induces the trivial action on cohomology.

3.4 Hochschild cochains and cyclic chains

The algebras Ω•(M) and H•(M) are cohomologies of the complexes of the
Hochschild and of the periodic cyclic chains of C∞(M). The normalized
Hochschild chain complex of a unital algebra A is C•(A) = A ⊗ Ā⊗•, where
Ā = A/R1. If we denote by (a0, a1, . . . , ap) the class of a0 ⊗ · · ·⊗ ap in Cp(A),
the Hochschild differential is
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b(a0, . . . , ap) =
p−1∑

i=0

(−1)i(a0, . . . , aiai+1, . . . , ap)

+(−1)p(apa0, a1, . . . , ap−1).

We set Cp(A) = 0 for p < 0. There is an HKR map C•(A) → Ω•(M) given by

(a0, . . . , ap) �→ 1
p!
a0da1 · · · dap. (10)

It is a chain map if we consider differential forms as a complex with trivial
differential. The HKR map induces an isomorphism on homology, provided we
take a suitable completion of the tensor product C∞(M)⊗(p+1), for example
the jets at the diagonal of smooth maps Mp+1 → R. On the Hochschild chain
complex there is a second differential B of degree 1 and anticommuting with
b, see [8]:

B(a0, . . . , ap) =
p∑

i=0

(−1)ip(1, ai, . . . , ap, a0, . . . ai−1).

The negative cyclic complex, in the formulation of [15], is CC−
−•(A) =

C−•(A)[u] with differential b + uB, where u is of degree 2. The extension
of the HKR map by R[u]-linearity defines a quasi-isomorphism

(CC−
−•(A), b+ uB) → (Ω−•(M)[u], u d).

Now both C(A) and CC−(A) are differential graded modules over the Lie
algebra gG of multidifferential operators. The action is the restriction of the
action of cochains on chains Ck(A) ⊗ Cp(A) → Cp−k+1(A), φ ⊗ a �→ φ · a,
defined for any associative algebra with unit as

(−1)(k−1)(p+1)φ · (a0, . . . , ap)

=
p−k+1∑

i=0

(−1)i(k−1)(a0, . . . , ai−1, φ(ai, . . . , ai+k−1), ai+k, . . . , ap)

+
p∑

i=p−k+2

(−1)ip(φ(ai, . . . , ap, a0, . . . , ai+k−p−2), ai+k−p−1, . . . , ai−1).

This action extends by R[u]-linearity to an action on the negative cyclic
complex.

3.5 L∞-modules

Let (g, D) be an L∞-algebra. The free S+g[1]-comodule generated by a vector
space V is V̂ = Sg[1] ⊗ V with coaction ΔV : V̂ → S+g[1] ⊗ V̂ defined as

ΔV (γ1 · · · γn ⊗ v) =
n∑

p=1

∑

σ∈Sp,n−p

±γσ(1) · · · γσ(p) ⊗ (γσ(p+1) · · · γσ(n) ⊗ v).
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A coderivation of the L∞-module V is then an endomorphism DV of V̂ obey-
ing ΔV ◦DV = (D⊗ id+id⊗DV )ΔV . An L∞-module is a coderivation DV of
degree 1 of V̂ obeying DV ◦DV = 0. A coderivation is uniquely determined by
its composition with the projection V̂ → V onto the first direct summand and
is thus given by its Taylor components DV

n : Sng[1] ⊗ V → V [1]. The lowest
component DV

0 is then a differential on V and DV
1 a chain map inducing an

honest action of the Lie algebra H(g, D1) on the cohomology H(V,DV
0 ). A

morphism of L∞-modules V1 → V2 over g is a degree 0 morphism of S+g[1]-
comodules F : V̂1 → V̂2 intertwining the coderivations. The composition with
the projection V̂2 → V2 gives rise to Taylor components

Fn : Sng[1] ⊗ V1 → V2, n = 0, 1, 2, . . .

that determine F completely. The lowest component F0 is then a chain map
inducing a morphism of H(g, D1)-modules on cohomology.

3.6 Tsygan and Kontsevich conjectures [30], [26]

Conjecture 1. There exists a quasi-isomorphism of L∞-modules

F : C−•(C∞(M)) � (Ω−•(M), 0)

such that F0 is the HKR map.

Conjecture 2. There exists a natural C[[u]]-linear quasi-isomorphism of L∞-
modules

F : CC−
−•(C

∞(M)) � (Ω−•(M)[[u]], ud)

such that F0 is the Connes quasi-isomorphism [8], given by the u-linear ex-
tension of the HKR map (10).

Conjecture 1 is now a theorem. Different proofs for M = R
d were given in

[29] and [27]. Shoikhet’s proof [27] gives an explicit formula for the Taylor
components of F in terms of integrals over configuration spaces on the disk
and extends to general manifolds, as shown in [11].

Let us turn to Kontsevich’s formality conjecture for cyclic cochains, as
quoted in [26]. Recall that a volume form Ω ∈ Ωd(M) on a d-dimensional
manifold defines an isomorphism Γ (∧kTM ) → Ωd−k(M), γ �→ ιγΩ. The de
Rham differential d on Ω•(M) translates to a differential divΩ, the divergence
operator of degree −1. The divergence operator is a derivation of the bracket
on gS = Γ (∧•+1TM ) of degree −1. Let us introduce the differential graded
Lie algebra gΩS = (gS [v], δΩ), where v is a formal variable of degree 2. The
bracket is the Schouten–Nijenhuis bracket and the differential is δΩ = v divΩ.
The cyclic analogue of gG is the differential graded Lie algebra

gcycl
G =

{

ϕ ∈ gG,

∫

M

a0ϕ(a1, . . . , ap)Ω = (−1)p
∫

M

apϕ(a0, . . . , ap−1)Ω
}

.
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Conjecture 3. For each volume form Ω ∈ Ωd(M) there exists an L∞-quasi-
isomorphism of L∞-algebras F : gΩS � gcycl

G .

Shoikhet [26] constructed a quasi-isomorphism of complexes C1 : gΩS →
gcycl
G and conjectural formulae for an L∞-morphism whose first component

is C1 in terms of integrals over configuration spaces. One consequence of the
conjecture is the construction of cyclically-invariant star-products from diver-
genceless Poisson bivector fields. Such star-products were then constructed
independently of the conjecture, see [12].

4 An L∞-morphism for cyclic chains

4.1 The main results

Let Ω be volume form on a manifold M and gΩS be the differential graded Lie
algebra gS [v] with Schouten bracket and differential δΩ = v divΩ, see Section
3.6. The Kontsevich L∞-morphism composed with the canonical projection
gΩS → gS = gΩS /vg

Ω
S is an L∞-morphism gΩS � gG. Through this morphism

the differential graded gG-module CC−• (A) of negative cyclic chains of A =
C∞(M) becomes an L∞-module over gΩS .

Theorem 2. Let M be an open subset of R
d with coordinates x1, . . . , xn and

volume form Ω = dx1 · · ·dxd. Let A = C∞(M). Let Γ (∧−•TM ) be the dif-
ferential graded module over gΩS with differential divΩ and trivial gΩS -action.
Then there exists an R[u]-linear morphism of L∞-modules over gΩS

F : CC−
−•(A) � Γ (∧−•TM )[u],

such that

(i) The component F0 of F vanishes on CCp(A), p > 0 and for f ∈ A ⊂
CC−

0 (A), F0(f) = f .
(ii) For γ ∈ Γ (∧kTM ), � = 0, 1, 2, . . . , a = (a0, . . . , ap) ∈ CC−

p (A),

F1(γv
; a) =
{

(−1)pusγ�H(a), if k ≥ p and s = k + �− p− 1 ≥ 0,
0, otherwise.

Here � : Γ (∧kTM ) ⊗Ωp(M) → Γ (∧k−pTM ) is the contraction map and
H is the HKR map (10).

(iii) The maps Fn are equivariant under linear coordinate transformations and
Fn(γ1 · · · γn; a) = γ1∧Fn−1(γ2 · · · γn; a) whenever γ1 =

∑
(cikxk+di)∂i ∈

gS ⊂ gΩS is an affine vector field and γ2, . . . , γn ∈ gΩS .
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The proof of this Theorem is deferred to Section 6.3.
In explicit terms, F is given by a sequence of R[u]-linear maps

Fn : SngΩS [1] ⊗ CC−(A) → Γ (∧nTM ), γ ⊗ a �→ Fn(γ; a), n ≥ 0, obeying
the following relations. For any γ = γ1 · · · γn ∈ SngΩS [1], a ∈ CC−

p (A).

Fn(δΩγ; a) + (−1)|γ|+pFn(γ; (b+ uB)a) (11)

+
n−1∑

k=0

∑

σ∈Sk,n−k

(−1)|γ|−1ε(σ; γ)Fk(γσ(1) · · · γσ(k);Un−k(γ̄σ(k+1) · · · γ̄σ(n)) · a)

+
∑

i<j

εijFn−1((−1)|γi|−1[γi, γj ] · γ1 · · · γ̂i · · · γ̂j · · ·γn; a) = divΩ Fn(γ; a).

Here γ̄i denotes the projection of γi to gS [1] = gΩS [1]/vgΩS [1]; Sp,q ⊂ Sp+q is the
set of (p, q)-shuffles and the signs ε(σ; γ), εij are the Koszul signs coming from
the permutation of the γi ∈ gS [1]; |γ| =

∑
i |γi|; the differential δΩ is extended

to a degree 1 derivation of the algebra SgΩS [1]; the maps Uk : SkgS [1] → gG[1]
are the Taylor components of the Kontsevich L∞-morphism of Theorem 1.

We give the explicit expressions of the maps Fn in Section 5. Before that
we explore some consequences.

4.2 Maurer–Cartan elements

An element of degree 1 in gΩS has the form π̃ = π + vh where π is a bivector
field and h is a function. The Maurer–Cartan equation δΩπ̃ − 1

2 [π̃, π̃] = 0
translates to

[π, π] = 0, divΩ π − [h, π] = 0.

Thus π is a Poisson bivector field whose divergence is a Hamiltonian vector
field with Hamiltonian h. Such Poisson structures are called unimodular [19].
As explained in [17], Poisson bivector fields in εgS [[ε]] are mapped to solu-
tion of the Maurer–Cartan equations in εgG[[ε]], which are star-products, i.e.,
formal associative deformations of the pointwise product in C∞(M):

f � g = fg +
∞∑

n=1

εn

n!
Un(π, . . . , π)(f ⊗ g).

Here the function part of π̃ does not contribute as it is projected away in the
L∞-morphism gΩS � gG.

If π̃ = π + vh is a Maurer–Cartan element in gΩS then π̃ε = επ + vh is
a Maurer–Cartan element in gΩS [[ε]]. The twist of F by π̃ then gives a chain
map from the negative cyclic complex of the algebra Aε = (C∞(M)[[ε]], �) to
Γ (∧TM )[u][[ε]]. In particular, we get a trace

f �→ τ(f) =
∞∑

n=0

1
n!

∫

M

Fn(π̃ε, . . . , π̃ε; f)Ω, (12)
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on the subalgebra of Aε consisting of functions with compact support. Here
there is a question of convergence since there are infinitely many terms con-
tributing to each fixed power of ε. The point is that these infinitely many
terms combine to exponential functions. More precisely we have the following
result.

Proposition 1. The trace (12) can be written as

τ(f) =
∞∑

n=0

εn

n!

∫

M

Hn(π, h, f)ehΩ =
∫

M

fehΩ +O(ε)

where Hn is a differential polynomial in π, h, f .

The proof is based on the expression of Fn in terms of graphs. We postpone
it to Section 5.5, after we introduce this formalism.

5 Feynman graph expansion of the L∞-morphism

In this section we construct the morphism of L∞-modules of Theorem 2. The
Taylor components have the form

Fn(γ; a) =
∑

Γ∈Gk,m

wΓFΓ (γ; a).

Here γ = γ1 · · ·γn, with γi ∈ Γ (∧kiTM )[v], k = (k1, . . . , kn) and a =
(a0, . . . , am) ∈ Cm(A). The sum is over a finite set Gk,m of directed graphs
with some additional structure. To each graph a weight wΓ ∈ R[u], defined as
an integral over a configuration space of points in the unit disk, is assigned.

We turn to the descriptions of the graphs and weights.

5.1 Graphs

Let m,n ∈ Z≥0, k = (k1, . . . , kn) ∈ Z
n
≥0. We consider directed graphs Γ

with n + m vertices with additional data obeying a set of rules. The data
are a partition of the vertex set into three totally ordered subsets V (Γ ) =
V1(Γ )�V2(Γ )�Vw(Γ ), a total ordering of the edges originating at each vertex
and the assignment of a nonnegative integer, the degree, to each vertex in
V1(Γ ). The rules are:

1. There are n vertices in V1(Γ ). There are exactly ki edges originating at
the ith vertex of V1(Γ ).

2. There are m vertices in V2(Γ ). There are no edges originating at these
vertices.

3. There is exactly one edge pointing at each vertex in Vw(Γ ) and no edge
originating from it.
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4. There are no edges starting and ending at the same vertex.
5. For each pair of vertices i, j there is at most one edge from i to j.

The last rule is superfluous, but since all graphs with multiple edges will have
vanishing weight we may just as well exclude them from the start. This has
the notational advantage that we may think of the edge set E(Γ ) as a subset
of V (Γ ) × V (Γ ).

Two graphs are called equivalent if there is a graph isomorphism between
them that respects the partition and the orderings. The set of equivalence
classes is denoted Gk,m.

The vertices in V1(Γ ) are called vertices of the first type, those in V2(Γ ) of
the second type. The vertices in Vb(Γ ) = V1(Γ )∪V2(Γ ) are called black, those
in Vw(Γ ) are called white. We denote by Eb(Γ ) the subset of E(Γ ) consisting
of edges whose endpoints are black.

To each Γ ∈ Gk,m there corresponds a multivector field FΓ (γ; a) whose
coefficients are differential polynomials in the components of γi, ai. The rules
are the same as in [17] except for the additional white vertices, representing
uncontracted indices and the degrees di, that select the power di of v in γi.
Let us consider for example the graph of Fig. 1 and suppose that the degrees
of the two vertices of the first type are k and �. The algebra of multivector
fields on M ⊂ R

d is generated by C∞(M) and anticommuting generators
θν = ∂/∂xν . Thus γ ∈ Γ (∧kTM ) has the form

γ =
1
k!

∑

ν1,...,νk

γν1...νkθν1 · · · θνk
.

The components γν1...νk ∈ C∞(M) are skew-symmetric under permutation
of the indices νi. The graph of Fig. 1, with the convention that the edges
originating at each vertex are ordered counterclockwise, gives then

FΓ (γ1v
k, γ2v


; a0, a1, a2) =
∑

γij1 ∂jγ
pqr
2 ∂ia0∂pa1∂qa2θr,

and is zero on other monomials in v.

�a0
�a1

�a2

�

γ1v
k

�

γ2v
�

�

�

�

�
�

�
�

�
��

�

�

Fig. 1. A graph in G(2,3),3 with two vertices in V1 of valencies (2, 3), three in V2 and
one white vertex. The degrees of the vertices of the first type are k and �
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5.2 Equivariant differential forms on configuration spaces

Let Σ be a manifold with an action of the circle S1 = R/Z. The infinitesimal
action Lie(S1) = R

d
dt → Γ (TΣ) is generated by a vector field v ∈ Γ (TΣ),

the image of d
dt . The Cartan complex of S1-equivariant forms, computing the

equivariant cohomology with real coefficients, is the differential graded algebra

Ω•
S1(Σ) = Ω•(Σ)S

1
[u],

of polynomials in an undetermined u of degree 2 with coefficients in the S1-
invariant smooth differential forms. The differential is dS1 = d−uιv, where d is
the de Rham differential and ιv denotes interior multiplication by v, extended
by R[u]-linearity. If Σ has an S1-invariant boundary ∂Σ and j : ∂Σ → Σ
denotes the inclusion map, then the relative equivariant complex is

Ω•
S1(Σ, ∂Σ) = Ker(j∗ : Ω•

S1(Σ) → Ω•
S1(∂Σ)).

In the case of the unit disk we have:

Lemma 3. Let D̄ = {z ∈ C, |z| ≤ 1} be the closed unit disk.

(i) The equivariant cohomology H•
S1(D̄) of D̄ is the free R[u]-module gener-

ated by the class of 1 ∈ Ω0(D̄).
(ii) The relative equivariant cohomology H•

S1(D̄, ∂D̄) of (D̄, ∂D̄) is the free
R[u]-module generated by the class of

φ(z, u) =
i

2π
dz ∧ dz̄ + u(1 − |z|2). (13)

5.3 The propagator

The integrals over configuration spaces defining the L∞-morphism are con-
structed out of a propagator, a differential 1-form ω on D̄ × D̄ � Δ, with a
simple pole on the diagonal Δ = {(z, z), z ∈ D̄} and defining the integral
kernel of a homotopy contracting equivariant differential forms to a space
of representatives of the cohomology. The explicit formula of the propagator
associated to the choice of cocycles in Lemma 3 is given by

ω(z, w) =
1

4πi

(

d ln
(z − w)(1 − zw̄)
(z̄ − w̄)(1 − z̄w)

+ z dz̄ − z̄ dz
)

. (14)

Lemma 4. Let pi : D̄ × D̄ → D̄ be the projection to the i-th factor, i = 1, 2.
The differential form ω ∈ Ω1

S1(D̄ × D̄ �Δ) has the following properties:

(i) Let j : ∂D̄ × D̄ → D̄ ×D be the inclusion map. Then j∗ω = 0.
(ii) dS1ω = −p∗1φ.
(iii) As z → w, ω(z, w) = (2π)−1d arg(z − w)+ smooth.
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(iv) As z and w approach a boundary point, ω(z, w) converges to the Kontse-
vich propagator ωK(x, y) = (2π)−1(d arg(x−y)−d arg(x̄−y)) on the upper
half-plane H+ from [17]. More precisely, for small t > 0 let ϕt(x) = z0eitx

be the inclusion of a neighbourhood of 0 ∈ H+ into a neighbourhood of
z0 ∈ ∂D in D. Then limt→0(ϕt × ϕt)∗ω = ωK.

The proof is a simple computation left to the reader.

5.4 Weights

The weights are integrals of differential forms over configuration spaces
C0
n,m(D) of n points in the unit disk D = {z ∈ C , |z| < 1} and m + 1

cyclically ordered points on its boundary ∂D̄, the first of which is at 1:

C0
n,m(D) = {(z, t) ∈ Dn × (∂D̄)m , zi �= zj, (i �= j),

0 < arg(t1) < · · · < arg(tm) < 2π}.
The differential forms are obtained from the propagator ω, see (14), and the
form φ, see (13). Let Γ ∈ G(k1,...,kn),m. The weight wΓ of Γ is

wΓ =
1

∏n
i=1 ki!

∫

C0
n,m(D)

ωΓ

where ω ∈ Ω•(C0
n,m(D))[u] is the differential form

ωΓ =
∏

i∈V1(Γ )

∏

(i,j)∈Eb(Γ )

ω(zi, zj)
∏

i∈V1(Γ )

φ(zi, u)ri .

Here zi is the coordinate of z ∈ C0
n,m(D) assigned to the vertex i of Γ : to

the vertices of the first type we assign the points in the unit disk and to the
vertices of the second type the points on the boundary. The assignment is
uniquely specified by the ordering of the vertices in Γ . The number ri is the
degree of the vertex i plus the number of white vertices connected to it. The
product over (i, j) is over the edges connecting black vertices to black vertices.
For example, a point of C0

2,3(D) is given by coordinates (z1, z2, 1, t1, t2) with
zi ∈ D and ti ∈ S1. The differential form associated to the graph of Fig. 1,
with degree assignments k, �, is

±ωΓ = ω(z1, 1)ω(z1, z2)ω(z2, t1)ω(z2, t2)φ(z1, u)kφ(z2, u)
+1.

The signs are tricky. A consistent set of signs may be obtained by the follow-
ing procedure. View a multivector field γ ∈ gS [v] as a polynomial γ(x, θ, v)
whose coefficients are functions on T ∗[1]M = M × R

d[1]. Build a function in
C∞((T ∗[1]M)n+m)[v1, . . . , vn]:

g(x(1), θ(1), v1, . . . , x
(m̄))

= γ1(x(1), θ(1), v1) · · · γn(x(n), θ(n), vn)a0(x(0̄)) · · · am(x(m̄)).
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Then

Fn(γ; a) = (−1)|γ|m
∫

C0
n,m(D)

i∗Δ ◦ exp(Φn)(g)|v1=···=vn=0,

Φn =
∑

i�=k
ω(zi, zk)

d∑

ν=1

∂2

∂θ
(i)
ν ∂x

(k)
ν

+
∑

i

φ(zi, u)

(
d∑

ν=1

θν
∂

∂θ
(i)
ν

+
∂

∂vi

)

.

The sums over i are from 1 to n and the sum over k is over the set
{1, . . . , n, 1̄, . . . , m̄}, with the understanding that zj̄ = tj . The map i∗Δ is
the restriction to the diagonal: its effect is to set all x(i) to be equal to x
and all θ(i) to be equal to θ. The integrand is then an element of the tensor
product of graded commutative algebras Ω(C0

n,m(D))⊗C∞(T ∗[1]M)[u]. The
integral is defined as

∫
(α⊗ γ) = (

∫
α)γ and the expansion of the exponential

functions gives rise to a finite sum over graphs.

5.5 Proof of Proposition 1 on page 126

A vertex of a directed graph is called disconnected if there is no edge origi-
nating or ending at it.

Lemma 5. Let F̃n be defined as Fn except that the sum over graphs is re-
stricted to the graphs without disconnected vertices of the first type. Then

Fk+n((hv)k · πn; f) =
k∑

s=0

(
k

s

)

hsF̃k−s+n((hv)k−s · πn; f).

Proof. For each fixed graph Γ0 without disconnected vertices of the first type,
we consider all graphs Γ contributing to Fk+n that reduce to Γ0 after remov-
ing all disconnected vertices of the first type. The contribution to Fk+n of
such a graph Γ is hs times the contribution of Γ0, where s is the number of
disconnected vertices of the first type. Indeed, each disconnected vertex in a
graph Γ gives a factor h to FΓ and a factor

∫
D φ = 1 to the weight wΓ . The

proof of the lemma is complete. ��
Let

Hn(π, h, f) =
∞∑

r=0

1
r!
F̃n+r((hv)r · πn; f).

In this sum there are finitely many terms since in the absence of disconnected
vertices only derivatives of h can appear and the number of derivatives is
bounded (by 2n). Therefore Hn(π, h, f) is a differential polynomial in π, h, f .
We conclude that

∞∑

n=0

1
n!
Fn(π̂n; f) =

∞∑

n,k=0

εn

k!n!
Fk+n((hv)kπn; f)

=
∞∑

n,r,s=0

εn

r!s!n!
hsF̃n+r((hv)rπn; f) = eh

∞∑

n=0

εn

n!
Hn(π, h, f).

This concludes the proof of Proposition 1.
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6 Equivariant differential forms on configuration spaces
and Stokes theorem

6.1 Configuration spaces and their compactifications

We consider three types of configuration spaces of points, the first two ap-
pearing in [17].
(i) Configuration spaces of points in the plane. Let Confn(C) = {z ∈ C

n , zi �=
zj , (i �= j)}, n ≥ 2. The three-dimensional real Lie group G3 of affine
transformations w �→ aw + b, a > 0, b ∈ C acts freely on the manifold
Confn(C). We set Cn(C) = Confn(C)/G3 (n ≥ 2). It is a smooth man-
ifold of dimension 2n − 3. We fix the orientation defined by the volume
form dϕ2 ∧ ∧

j≥3 dRe(zj) ∧ dIm(zj), with the choice of representatives with
z1 = 0, z2 = eiϕ2 .
(ii) Configuration spaces of points in the upper half-plane. Let H+ = {z ∈
C , Im(z) > 0} be the upper half-plane. Let Confn,m(H+) = {(z, x) ∈ Hn

+ ×
R
m, zi �= zj, (i �= j), t1 < · · · < tm}, 2n + m ≥ 2. The two-dimensional

real Lie group G2 of affine transformations w �→ aw + b, a > 0, b ∈ R acts
freely on the manifold Confn,m(H+). We set Cn,m(H+) = Confn,m(H+)/G2

(2n+m ≥ 2). It is a smooth manifold of dimension 2n+m−2. If n ≥ 1, we fix
the orientation by choosing representatives with z1 = i and taking the volume
form dt1∧· · ·∧dtm ∧∧

j≥2 dRe(zj)∧dIm(zj). If m ≥ 2, we fix the orientation
defined by the volume form (−1)mdt2 ∧· · · ∧dtm−1∧

∧
j≥1 dRe(zj)∧dIm(zj),

with the choice of representatives with t1 = 0, tm = 1. If m ≥ 2 and n ≥ 1, it
is easy to check that the two orientations coincide.
(iii) Configuration spaces of points in the disk. Let D = {z ∈ C , |z| < 1}
be the unit disk, S1 = ∂D̄ the unit circle. Let Cn,m+1(D) = {(z, x) ∈ Dn ×
(S1)m+1, zi �= zj , (i �= j), arg(t0) < · · · < arg(tm) < arg(t0) + 2π}, m ≥ 0.
The circle group acts freely on Cn,m+1(D) by rotations. We do not take a
quotient here, since the differential forms we will introduce are not basic, and
work equivariantly instead. Instead of the quotient we consider the section
C0
n,m(D) = {(z, x) ∈ Cn,m+1(D) , t0 = 1}, (m ≥ 1). It is a smooth manifold

of dimension 2n+m. The orientation of Cn,m+1(D) is defined by d arg(t0) ∧
· · ·∧d arg(tm)∧∧n

j=1 dRe(zj)∧dIm(zj). The orientation of C0
n,m(D) is defined

by d arg(t1) ∧ · · · ∧ d arg(tm) ∧ ∧n
j=1 dRe(zj) ∧ dIm(zj).

As in [17], compactifications C̄n(C), C̄n,m(H+), C̄n,m+1(D), C̄0
n,m(D) of

these spaces as manifolds with corners are important. Their construction is
the same as in [17]. Roughly speaking, one adds strata of codimension 1 cor-
responding to limiting configurations in which a group of points collapses to
a point, possibly on the boundary, in such a way that within the group the
relative position after rescaling remains fixed. Higher codimension strata cor-
respond to collapses of several groups of points possibly within each other.
The main point is that the Stokes theorem applies for smooth top differential
forms on manifold with corners, and for this only codimension 1 strata are
important.
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Let us describe the codimension 1 strata of C0
n,m(D).

Strata of type I. These are strata where a subset A of n′ ≥ 2 out of n points
zi in the interior of the disk collapse at a point in the interior of the disk, the
relative position of the collapsing points is described by a configuration on
the plane and the remaining points and the point of collapse are given by a
configuration on the disk. This stratum is thus

∂AC̄
0
n,m(D) � C̄n′(C) × C̄0

n−n′+1,m(D). (15)

Strata of type II. These are strata where a subset A of n′ out of n points zi
and a subset B of the m points ti collapse at a point on the boundary of the
disk (2n′ +m′ ≥ 2). The relative position of the collapsing points is described
by a configuration on the upper half-plane and the remaining points and the
point of collapse are given by a configuration on the disk. This stratum is thus

∂A,BC̄
0
n,m(D) � C̄n′,m′(H+) × C̄0

n−n′,m−m′+1(D). (16)

6.2 Forgetting the base point and cyclic shifts

Let j0 : C0
n,m(D) → Cn,m(D) be the map (z, 1, t1, . . . , tm) �→ (z, t1, . . . , tm)

forgetting the base point t0 = 1. It is an orientation preserving open embed-
ding.

The cyclic shift λ : C0
n,m(D) → C0

n,m(D) is the map

λ : (z1, . . . , zn, 1, t1, . . . , tm) �→ (z1, . . . , zn, 1, tm, t1, . . . , tm−1).

It is a diffeomorphism preserving the orientation if m is odd and reversing the
orientation if m is even. The following fact is then easily checked.

Lemma 6. The collection of maps jk = j0 ◦ λ◦k, k = 0, . . . ,m − 1, defines
an embedding j : C0

n,m(D) � · · · � C0
n,m(D) → Cn,m(D) with dense image.

The restriction of j to the kth copy of Cn,m(D) multiplies the orientation by
(−1)(m−1)k.

6.3 Proof of Theorem 2 on page 124

The proof uses the Stokes theorem as in [17]. The new features are: (i) the
differential forms in the integrand are not closed and (ii) an equivariant version
of the Stokes theorem is used.

We first compute the differential of the differential form associated to a
graph Γ .
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Lemma 7. Let ∂eΓ be the graph obtained from Γ by adding a new white vertex
∗ and replacing the black-to-black edge e ∈ Eb(Γ ) by an edge originating at
the same vertex as e but ending at ∗. Then

dS1ωΓ =
∑

e∈Eb(Γ )

(−1)�eω∂eΓ ,

where �e = k if e = ek and e1, . . . , eN are the edges of Γ in the ordering
specified by the ordering of the vertices and of the edges at each vertex.

Proof. This follows from the fact that dS1 is a derivation of degree 1 of the
algebra of equivariant forms and Lemma 4, (ii). ��
The next lemma is an equivariant version of the Stokes theorem.

Lemma 8. Let ω ∈ Ω•
S1(C̄n,m+1(D)). Denote also by ω its restriction to

C̄0
n,m(D) ⊂ C̄n,m+1(D) embedded as the subspace where t0 = 1 and to the

codimension 1 strata ∂iC0
n,m(D) of C0

n,m(D). Then
∫

C̄0
n,m(D)

dS1ω =
∑

i

∫

∂iC̄0
n,m(D)

ω − u

∫

C̄n,m+1(D)

ω.

Proof. Write dS1 = d − uιv. For u = 0 the claim is just the Stokes theorem
for manifolds with corners. Let us compare the coefficients of u. The action
map restricts to a diffeomorphism f : S1 × C̄0

n,m(D) → C̄n,m+1(D). Since ω
is S1-invariant, ιvω is also invariant and we have f∗ω = 1 ⊗ ω + dt ⊗ ιvω ∈
Ω(S1) ⊗ Ω(C̄0

n,m(D)) ⊂ Ω(S1 × C̄0
n,m(D)), where t is the coordinate on the

circle S1 = R/Z. Thus
∫

C̄n,m+1(D)

ω =
∫

S1×C̄0
n,m(D)

dt⊗ ιvω =
∫

C̄0
n,m(D)

ιvω. ��

Finally we use Lemma 6 to reduce the integral over C̄n,m+1(D) to integrals
over C̄0

n,m+1(D). We obtain:

Lemma 9. Let ω ∈ Ω•
S1(C̄n,m+1(D)) and let jk be the maps defined in

Lemma 6. Then
∫

C̄n,m+1(D)

ω =
m∑

k=0

(−1)mk
∫

C̄0
n,m+1(D)

j∗kω.

We can now complete the proof of Theorem 2. We first prove the identity
(11), starting from the right-hand side. Suppose that a = (a0, . . . , am) ∈
C−m(A), γ = γ1 · · · γn, with γi ∈ Γ (∧kiTM ). It is convenient to identify
Γ (∧TM ) with C∞(M)[θ1, . . . , θn] where θi are anticommuting variables, so
that divΩ =

∑
∂2/∂ti∂θi. It follows that for any Γ ∈ Gk,m, divΩ FΓ (γ; a) can

be written as a sum (with signs) of terms FΓ ′(γ; a), where Γ ′ is obtained from
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Γ by identifying a white vertex with a black vertex and coloring it black. Some
of these graphs Γ ′ have an edge connecting a vertex to itself and contribute
to Fn(δΩγ; a). The remaining ones yield, in the notation of Lemma 7:

divΩ Fn(γ; a) − Fn(δΩγ; a) =
∑

(Γ,e)

(−1)�ew∂eΓFΓ (γ; a).

The summation is over pairs (Γ, e) where Γ ∈ Gk,m and e ∈ Eb(Γ ) is a
black-to-black edge. By Lemmas 8 and 9,

∑

e∈Eb(Γ )

(−1)�ew∂eΓ =
∑

i

∫

∂iC0
n,m(D)

ωΓ − u

m∑

k=0

(−1)km
∫

C̄0
n,m+1

j∗kωΓ .

The second term on the right-hand side, containing the sum over cyclic per-
mutations, gives rise to Fn+1(γ;Ba). The first term is treated as in [17]: the
strata of type I (see Section 6.1) give zero by Kontsevich’s lemma (see [17],
Theorem 6.5) unless the number n′ of collapsing interior points is 2. The sum
over graphs contributes then to the term with the Schouten bracket [γi, γj ] in
(11). The strata of type II such that n − k > 0 interior points approach the
boundary give rise to the term containing the components of the Kontsevich
L∞-morphism Un−k. Finally the strata of type II in which only boundary
points collapse give the term with Hochschild differential Fn−1(γ; ba). This
proves (11).

Property (i) is clear: F0 is a sum over graphs with vertices of the second
type only. These graphs have no edges. Thus the only case for which the
weight does not vanish is when the configuration space is 0-dimensional,
namely, when there is only one vertex. Property (ii) is checked by an explicit
calculation of the weight. The only graphs with a nontrivial weight have edges
connecting the vertex of the first type with white vertices or to vertices of the
second type. There must be at least p edges otherwise the weight vanishes
for dimensional reasons. In this case, i.e., if k ≥ p, the integral computing the
weight is

wΓ =
∫

φ(z, u)
+k−pω(z, t1) · · ·ω(z, tp), (17)

with integration over z ∈ D, ti ∈ S1, 0 < arg(t1) < · · · < arg(tp) < 2π. The
integral of the product of the 1-forms ω is a function of z that is independent
of z, as is easily checked by differentiating with respect to z, using the Stokes
theorem and the boundary conditions of ω. Thus it can be computed for
z = 0. Since ω(0, ti) = 1

2πd arg(ti) the integral is 1/p!. The remaining integral
over z can then be performed. Set � + k − p = s + 1. This power must be
positive otherwise the integral vanishes for dimensional reasons.

∫

D

φ(z, u)s+1 =
i

2π
(s+ 1)us

∫

D

(1 − |z|2)sdz ∧ dz̄ = us, s ≥ 0,

and we obtain wΓ = us/p!. We turn to Property (iii). The equivariance under
linear coordinate transformations is implicit in the construction. The graphs
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contributing to Fn(γ1 · · · ; a) for linear γ1 are of two types: either the vertex
associated with γ1 has exactly one ingoing and one outgoing edge or it has
an outgoing edge pointing to a white vertex and there are no incoming edges.
The graphs of the second type contribute to γ1 ∧ Fn−1(· · · ; a), since their
weight factorize as 1 =

∫
D
φ times the weight of the graphs obtained by

omitting the vertex associated to γ1 and the white vertex connected to it.
The claim then follows from the following vanishing lemma.

Lemma 10. (i) For all z, z′ ∈ D̄,
∫
w∈D ω(z, w)ω(w, z′) = 0.

(ii) For all z ∈ D̄,
∫
w∈D ω(z, w)φ(w, u) = 0.

Proof. (i) We reduce the first claim to the second: consider the integral

I(z, z′) =
∫

w1,w2∈D
d(ω(z, w1)ω(w1, w2)ω(w2, z

′)).

On the one hand, I(z, z′) can be evaluated by using Stokes’s theorem, giving
three terms all equal up to sign to the integral appearing in (i). On the other
hand, the differential can be evaluated explicitly giving

I(z, z′) = −
∫

w1,w2∈D
ω(z, w1)ω(w1, w2)φ(w2, 0).

The integral over w2 vanishes if (ii) holds. The proof of (ii) is an elementary
computation that uses the explicit expression of ω and φ. Alternatively, one
shows that

∫
w∈D ω(z, w)φ(w, u) is a closed 1-form on the disk that vanishes on

the boundary, is invariant under rotations and odd under diameter reflections.
Therefore it vanishes. We leave the details to the reader. ��
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mero Hors Série), 257–271 (1985) The mathematical heritage of Élie Cartan
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