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Foreword

You have tendered us a great honor.
Beyond that, we have listened throughout this conference with fascination

and pleasure to the advances those invited here have made in the bloodless
battle against an ever-retreating foe1 in which we are all engaged. In this
battle, where we start from ground gained by our teachers and predecessors –
some of whom held forth in these same halls – our only weapons are those of
thought. We devote our lives to this struggle against ignorance driven mainly
by the hope of occasional triumphs and the joy of experiencing them when
they occur.

Rewards and honors are usually bestowed on individuals but should really
be shared by our whole community of mathematicians. Without each other’s
support, little progress is possible. And so while we thank you for the recog-
nition you have given us and acknowledge our indebtedness to the organizers
Professors Alberto Cattaneo and Ping Xu, to the institutions which provided
the funds that enabled us to gather here the European Science Foundation,
the National Science Foundation, and the National Security Agency of the
USA, and to the Institut Henri Poincaré – for providing the venue in which
we gathered, we also recognize our indebtedness to the continuing community
of scholars, which we have been privileged to join. We have freely used their
ideas. We hope that those newly joined in the battle will share our enthusiasm,
go farther tomorrow than we, and look on our yesterday with appreciation that
the ground we won has been not just for ourselves but for them.

Again, you have tendered us a great honor, but the celebration is really
one of our communal spirit. Our knowledge will never be perfect nor will
our understanding of the mysteries of mathematics ever be complete, but our
searching, too, will never cease. And may we and those who succeed us gather
often to celebrate this restless spirit.

1 André Weil.



Preface

This book arose from a meeting centered on higher algebraic structures
that are now ubiquitous in various areas of mathematics (algebra, algebraic
topology, differential geometry, algebraic geometry, mathematical physics)
and theoretical physics (quantum field theory, string theory). These structures
provide a common language essential for the study of deformation quantiza-
tion, theory of algebroids and groupoids, symplectic field theory, and much
more.

These higher algebraic structures first appeared in 1963, in Murray
Gerstenhaber’s1 The cohomology structure of an associative ring and in Jim
Stasheff’s Homotopy associativity of H-spaces. I, II .2 In these fundamental
publications, one finds the introduction of the notions that were to be called
a Gerstenhaber algebra (developed in part to understand algebraic defor-
mation theory) and an A∞ algebra (developed in part to understand higher
homotopies). While the relation between these notions was not immediately
recognized, the ideas of higher homotopies and algebraic deformation would
merge decades later and they are now permanently intertwined. The ideas of
Gerstenhaber and Stasheff are present in every contribution of this volume.

1 Ann. Math. 78, 267–288 (1963).
2 Trans. Am. Math. Soc. 108, 275–292 (1963).
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Université des Sciences
et Technologies de Lille,
CNRS-UMR 8524,

breen@math.univ-paris13.fr
mcahen@ulb.ac.be
alberto.cattaneo@math.uzh.ch
vald@math.ucr.edu
giovanni.felder@math.ethz.ch
tonyg@math.luc.edu
gutt@poncelet.univ-metz.fr


XIV List of Contributors

59655 Villeneuve d’Ascq Cedex,
France
Johannes.Huebschmann@math.
univ-lille1.fr

T. Kadeishvili
A. Razmadze Mathematical
Institute,
1, M. Alexidze Str.,
Tbilisi, 0193 Georgia
kade@rmi.acnet.ge

Hiroshige Kajiura
Department of Mathematics
and Informatics,
Chiba University, 263-8522 Japan
kajiura@math.s.chiba-u.ac.jp

Bernhard Keller
Institut de Mathématiques
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Topics in Algebraic Deformation Theory

Anthony Giaquinto

Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60626, USA,
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Dedicated to Murray Gerstenhaber and Jim Stasheff

Abstract. We give a selective survey of topics in algebraic deformation theory
ranging from its inception to current times. Throughout, the numerous contribu-
tions of Murray Gerstenhaber are emphasized, especially the common themes of
cohomology, infinitesimal methods, and explicit global deformation formulas.

Key words: Deformation theory, Cohomology, Quantization

2010 Mathematics Subject Classification: 16S80

1 Introduction

The concept of deformation is pervasive in mathematics. Its aim is to study
objects of some type by organizing them into continuous families and deter-
mine how objects in the same family are related. This is the classic problem
of determining the “moduli” of an algebra or of a more general structure. The
moduli are, roughly, the parameters on which the structure depends. The idea
goes back at least to Riemann who, in his famous treatise [Ri57] on abelian
functions, showed that the Riemann surfaces of genus g form a single con-
tinuous family of dimension 3g − 3. This family is the prototype of a moduli
space, a concept central to deformation theory.

The modern era of deformations began with the pioneering work of
Fröhlicher–Nijenhuis [FN57] and Kodaira–Spencer [KS58] on deformations of
complex manifolds. In particular, we see in [FN57] the first formal use of in-
finitesimal (cohomological) methods in a deformation problem as the authors
prove that if X is a complex manifold, T its sheaf of holomorphic tangent
vectors, then there can be no perturbation of the complex structure when-
ever H1(X,T ) = 0. In the monumental treatise [KS58], Kodaira and Spencer

A.S. Cattaneo et al. (eds.), Higher Structures in Geometry and Physics, 1
Progress in Mathematics 287, DOI 10.1007/978-0-8176-4735-3 1,
c© Springer Science+Business Media, LLC 2011

tonyg@math.luc.edu


2 A. Giaquinto

then developed a systematic theory of deformations of complex manifolds,
including the infinitesimal and obstruction theories. For the case of Riemann
surfaces, there are no obstructions as H2(X,T ) = 0.

Algebraic deformation theory began with Gerstenhaber’s seminal paper
[Ge64]. Although the analytic theory served as a model, numerous new con-
cepts lie within the realm of algebraic deformation theory. In fact, all formal
aspects of analytic deformations of manifolds are special cases of those in the
algebraic theory — this will be made precise in Section 8.

Infinitesimal methods for algebra deformations are governed by Hochschild
cohomology. The study of infinitesimals led to the discovery of the
Gerstenhaber algebra structure on HH∗(A,A), see [Ge63]. The ingredients of a
Gerstenhaber algebra — compatible graded Lie and commutative products —
occupy a central position in “higher structures in mathematics and physics.”
Another key higher structure is that of the various infinity algebras: A∞, L∞
and their generalizations. These structures have roots in Stasheff’s land-
mark treatise [Sta63], which coincidentally appeared in the same year as
[Ge63]. While disjoint at the time, the ideas in Gerstenhaber’s and Stash-
eff’s 1963 papers would become closely intertwined in the years to come.
Indeed, Gerstenhaber called the entire Hochschild cohomology HH∗(A,A)
the “infinitesimal ring” of A in [Ge63], even though only the components of
HHi(A,A) with i ≤ 3 had natural interpretations related to infinitesimals
and obstructions. But more than 30 years later, it became well known that
the entire Hochschild cohomology HH∗(A,A) is the space of infinitesimals of
deformations of A to an A∞ algebra.

This survey only represents a sampling of ideas in algebraic deformation
theory. None of the discussion is new, except for the results in the last section
on algebra variations. Many ideas are only sketched and proofs are omitted.
More topics are left out than included. In particular, the theory of deformation
quantization is largely left out — the reader is referred to Sternheimer’s contri-
bution [Ste] in this volume and the references therein for the important phys-
ical perspective. Also left out is the deformation theory of infinity algebras,
gerbes, stacks, chiral algebras, affine and dynamical quantum groups, and the
like. More comprehensive surveys of algebraic deformation theory and quanti-
zation can be found in the excellent treatises [GS88], [CKTB05] and [DMZ07].

Algebraic Deformations

Let A be an associative algebra over a commutative ring k.

Definition 1. A formal deformation of A is a k[[t]]-algebra At which is flat
and t-adically complete as a k[[t]]-module, together with an isomorphism A �
At/tAt.

For every deformation, there is a k[[t]]-module isomorphism between At and
A[[t]]. Once such an isomorphism is fixed, the multiplication in At is neces-
sarily of the form
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μt : A[[t]]⊗k[[t]]A[[t]] → A[[t]] with μt(a, b) = ab+μ1(a, b)t+μ2(a, b)t2+· · ·

where ab represents the multiplication of A and each μi ∈ Hom(A ⊗ A,A) is
extended to be k[[t]]-bilinear. Setting μ0(a, b) = ab, we have μt =

∑
μit

i and
μt(a, b) will be denoted = a ∗ b.

It is clear that one can consider formal deformations of other algebraic
structures (Lie algebras, bialgebras, algebra homomorphisms, etc.) by modi-
fying the above definition to suit the appropriate category. The deformation of
an algebraic structure is usually subjected to the same equational constraints
as the original structure:

• Associative algebra A: (a ∗ b) ∗ c = a ∗ (b ∗ c). If A is commutative, we can
also require a ∗ b = b ∗ a.

• Lie algebra L: [a, b]t = −[b, a]t and the Jacobi identity for [a, b]t = [a, b] +
[a, b]1t + [a, b]2t2 + · · · .

• Bialgebra B: associativity of ∗, coassociativity of Δt(a) = Δ(a)+Δ1(a)t+
· · · , and Δt(a ∗ b) = Δt(a) ∗Δt(b).

• Algebra homomorphism φ : A → A′: φt(ab) = φt(a)φt(b) with φt(a) =
φ(a) + φ1(a)t + φ2(a)t2 + · · · .

Even though in this note we are concerned with formal deformations, there
are many important and explicit instances for which the deformed products
converge or are even polynomial in t when k = R or C.

2 The deformation philosophy of Gerstenhaber

The pioneering principle of Gerstenhaber is that the equational constraints
above can be naturally interpreted in terms of the appropriate cohomology
groups and higher structures on them. In particular, the infinitesimal (linear
term of the deformation) is a cocycle in the cohomology group — Hochschild
HH2(A,A) in the associative case, Harrison Har2(A,A) in the commutative
case, Chevalley–Eilenberg H2

CE(L,L) in the Lie case, Gerstenhaber–Schack
H2
GS(B,B) in the bialgebra case, and the diagram cohomology H2

d(φ, φ) in
the algebra homomorphism case. Moreover, the obstructions to extending in-
finitesimal and n-th order deformations to global ones are controlled by the
differential graded Lie algebra structure on the cohomology.

In the associative case, the graded Lie structure (and much more) was
laid out in [Ge63]. There it was shown that the Hochschild cohomology
HH∗(A,A) =

⊕
n≥0 Hn(A,A) has a remarkably rich structure consisting of

two products,

• A graded commutative product where deg HHp(A,A) = p,
• A graded Lie product where deg HHp(A,A) = p− 1,
• [α,−] is a graded derivation of the commutative product.
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A graded k-module satisfying the above conditions is a Gerstenhaber algebra.
Other notable examples are

∧∗ L (where L is a Lie algebra), H∗(X,
∧∗ T )

(where X is a manifold and T is its sheaf of tangent vectors), and the diagram
cohomology H∗

d (A, A) of an arbitrary presheaf A of k-algebras (to be defined
in Section 8). The Chevalley–Eilenberg, Harrison, and bialgebra cohomology
cohomologies carry graded Lie brackets, but are not Gerstenhaber algebras in
general.

In [Ge63], the commutative and Lie products on the Hochschild cohomol-
ogy HH∗(A,A) are defined at the cochain level and are proved to descend to
the level of cohomology. An intrinsic interpretation of the graded Lie struc-
ture was given by Stasheff in [Sta93]. There he proved that the Gerstenhaber
bracket coincides with the natural graded bracket on Coder(BA,BA), where
BA is the bar complex of A.

Returning to the equational constraints for a deformation of an algebra A,
the associativity of μt can succinctly be expressed in terms of the Gerstenhaber
bracket as [μt, μt] = 0. Writing μt = μ0 +μ′ it follows that 2[μ0, μ

′]+[μ′, μ′] =
0. Since the coboundary in the shifted Hochschild complex C∗(A,A)[1] is
δ = [μ0,−], the first summand is 2δμ′. Thus we arrive at the fundamental
associativity equivalences

μt associative ⇐⇒ [μt, μt] = 0 ⇐⇒ δ(μ′) +
1
2
[μ′, μ′] = 0. (1)

Thus μt is associative if and only if μ′ satisfies the Maurer–Cartan equation.
Although not explicitly stated as such, the idea that deformations are gov-
erned by a differential graded Lie algebra and solutions to the Maurer–Cartan
equation goes back to Gerstenhaber’s original paper [Ge64].

3 Algebras with Deformations

The search for deformations of an algebraic structure A begins with the
appropriate cohomology group (usually H2(A,A)) which comprises the in-
finitesimals. Given an infinitesimal μ1, the basic question is whether it can
be integrated to a full deformation or not. In other words, is it possible to
find μ2, μ3, . . . such that μ′ =

∑
i≥1 μit

i satisfies the Maurer–Cartan equa-
tion? Of course, the vanishing of the obstruction group (usually H3(A,A))
guarantees that any infinitesimal is integrable, but this is rarely the case. A
necessary condition in general is that the primary obstruction, [μ1, μ1], must
equal zero. There are then higher obstructions which must vanish in order for
μ1 to be integrable. Thus, a reasonable starting point for deformations is to
first determine which infinitesimals have a vanishing primary obstruction. Re-
markably, in several fundamentally important cases, all infinitesimals μ1 with
[μ1, μ1] = 0 can be integrated. In fact, some of the most celebrated theorems
in deformation theory are expressions of this phenomenon.



Topics in Algebraic Deformation Theory 5

Perhaps the most studied algebra deformations are those which lie in
the realm of deformation quantization, a concept introduced in the semi-
nal paper [BFFLS78]. Suppose X is a real manifold and A = C∞(X). Then
HH2(A,A) can be identified with the space of bivector fields α ∈ Γ (X,∧2T ),
and the primary obstruction to α is the Schouten bracket [α, α]. The condition
[α, α] = 0 asserts that α determines Poisson structure on X . In [BFFLS78] it
was asked whether any Poisson structure can be quantized. The affirmative
answer to this question is one of the jewels of deformation theory.

Theorem 1 (Kontsevich [Ko97]). Any Poisson manifold can be quantized.
More generally, there is, up to equivalence, a canonical correspondence between
associative deformations of the algebra A and formal Poisson structures αt =
α1t + α2t

2 + · · · on A.

Also in [Ko97] is a remarkable explicit quantization formula for X = R
n.

The formula involves certain weighted graphs which determine the ∗-product
expansion. A physical interpretation of the deformation quantization for-
mula in terms of path integrals of models in string theory was made pre-
cise by Cattaneo and Felder in [CF00]. In the case where X is a smooth
algebraic variety, quantization of Poisson brackets is also possible, but sig-
nificant modifications of the approach are necessary, see [Ko01], [VdB07],
and [Ye05].

Another case where the primary obstruction to integrating an infinitesimal
is the only one is in the realm of quantum groups. Consider a Lie bialgebra a.
The cocommutator, δ : a → a ⊗ a, can be extended to an infinitesimal de-
formation of the coalgebra structure of Ua which is compatible with the Lie
bracket on a, and hence the multiplication in Ua. The cocommutator may thus
be viewed as an infinitesimal whose primary obstruction vanishes. Drinfel’d
asked in [Dr92] whether any Lie bialgebra can be quantized. The affirmative
answer to this question is another famous result in deformation theory.

Theorem 2 (Etingof–Kazhdan [EK96]). Any Lie bialgebra can be quan-
tized. That is, if a is a Lie bialgebra, then there exists a Hopf algebra defor-
mation of Ua whose infinitesimal is the cocommutator of a.

The quantization of Ua depends on a choice of Drinfel’d associator. It is known
that associators are not unique and are notoriously difficult to compute with.

Many of the results pertaining to quantization of solutions to the various
types of classical Yang–Baxter equation can also be viewed as examples of the
phenomenon that in certain situations, the primary obstruction to integrating
an infinitesimal structure is the only one. Some of these instances will be
discussed in Section 7.

In general, the condition [μ1, μ1] = 0 does not guarantee that an infinites-
imal μ1 is integrable. The earliest known example is geometric in nature and
predates the algebraic theory. In [Do60], Douady exhibited an example of an
infinitesimal deformation (in the Kodaira–Spencer sense) of the Heisenberg
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group whose primary obstruction vanishes, yet its secondary obstruction, a
Lie–Massey bracket, fails to vanish. More recently and in the algebraic case,
Mathieu has given examples of commutative Poisson algebras which cannot
be quantized, see [Mat97].

4 Algebras without Deformations

A deformation At of an algebra A is trivial if there is a k[[t]]-algebra isomor-
phism Φt : At → A[[t]] which reduces the identity modulo t. An algebra is
rigid if it has no nontrivial deformations. The cohomology results of Section 2
provide the first elementary result in deformation theory.

Theorem 3. If H2(A,A) = 0, then A is rigid.

Algebras which satisfy the hypothesis of Theorem 3 are called absolutely
rigid. Here are some notable examples of absolutely rigid algebras in various
categories.

• Any separable k-algebra A is rigid as these are characterized by HHn(A,−)
for all n ≥ 1.

• The enveloping algebra Ug of a finite-dimensional semisimple Lie algebra
g is rigid as an algebra as HHn(Ug, Ug) = 0 for n ≥ 1. It does admit
deformations as a Hopf algebra.

• The coordinate ring O(V ) of a smooth affine variety V is rigid as a com-
mutative algebra as Harn(O(V ),O(V )) = 0 for n ≥ 1 – a more precise
interpretation of the cohomology O(V ) will be given in Section 6. It does
admit noncommutative deformations, however.

• The m-th Weyl (Heisenberg) algebra Am is rigid as HHn(Am, Am) = 0 for
n ≥ 1.

The converse of Theorem 3 is known to be false in many instances.
Richardson has provided in [Ri67] examples of rigid Lie algebras L with
H2
CE(L,L) �= 0. In the associative case, Gerstenhaber and Schack have given

examples of rigid associative algebras when char(k) = p in [GS86]. Remark-
ably, whether there exist rigid associative algebras A in characteristic zero
with HH2(A,A) �= 0 is still an open question even in the case where A is a
finite-dimensional C-algebra.

The rigid algebras of Gerstenhaber and Schack in char(k) = p are not ev-
eryday examples. The smallest rigid algebra constructed with HH2(A,A) �= 0
is a 669-dimensional algebra over F2. The algebra is a poset algebra of a
suspension of a triangulation of the projective plane.

The proof of the rigidity of these algebras despite nonzero HH2(A,A) is
based on an elementary but fundamental theorem of [GS86] concerning relative
Hochschild cohomology. If S is a subalgebra of A, then a cochain F ∈ Cn(A,A)
is S-relative if
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F (sa1, . . . , an) = sF (a1, . . . , an), F (a1, . . . , ans) = F (a1, . . . , an)s,
and F (. . . , ais, ai+1, . . .) = F (. . . , ai, sai+1, . . .) (2)

for all s ∈ S and ai ∈ A. Further, an S-relative cochain F is reduced if
F (a1, . . . , an) = 0 whenever any ai ∈ S.

Theorem 4. If S is a separable subalgebra of k, then the inclusion of the
complex of reduced S-relative cochains into the full Hochschild complex induces
an isomorphism of cohomology.

The theorem significantly reduces cohomology computations whenever A
has a large separable subalgebra. For example, a poset algebra is a subset of
the algebra of n×n matrices and one may take S to be the diagonal matrices.
Using Theorem 4 it is elementary to show that the Hochschild cohomology of
the poset algebra coincides with the simplicial cohomology of the geometric
realization or nerve (see Section 8) of the poset.

Another application of the theorem is in the computation of the cohomol-
ogy of a crossed product algebra. Let V be a finite-dimensional k-vector space,
SV its symmetric algebra, and G a finite group which acts on V , and hence
on SV . For x ∈ SV and g ∈ G denote the action of g on x by xg. The crossed
product SV �G has underlying space SV ⊗kG, with the usual multiplication
in SV and kG, and relations (1⊗ g)(x⊗ 1) = xg ⊗ g for x ∈ SV and g ∈ G.
For simplicity, we omit the tensor product symbol and write an element x⊗ g
simply as xg.

When |G| is invertible in k, then Maschke’s Theorem asserts that kG is
separable – let us assume this here. In this case, we may compute HH∗(SV �

G,SV �G) using reduced kG-relative cochains. For such a cochain F , we have

F (x1g1, x2g2, . . . , xngn) = F (x1, x
g1
2 , . . . , xg1···gn−1

n ) g1 · · · gn.

The right side of the equation is an element of Cn(SV, SV � kG) and it is
easy to see that it is G-invariant in the sense that

gF (x1, . . . , xn)g−1 = F (gx1g
−1, . . . , gxng

−1).

Therefore we obtain

HH∗(SV � G,SV � G) � (HH∗(SV, SV � G))G.

A complete computation of the cohomology can be found in many sources, and
one which explicitly uses kG-relative cohomology is [Pi06]. There is interest in
crossed product cohomology and deformations as they have geometric impli-
cations for orbifolds (see [CGW04]) and in the theory of symplectic reflection
algebras (see [EG02] and Section 9 of this survey).
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It is interesting to note that some of the rigid algebras listed above natu-
rally appear in parametrized families, a seeming contradiction to the general
theory. For example, considerOλ = C[x, y] with y2 = x(x−1)(x−λ), the ring of
regular functions on an affine elliptic curve. If λ is close to λ′, then Oλ � Oλ′ .
Nevertheless, HH2(Oλ,Oλ) = 0. According to Kontsevich, the problem here is
that the variety, being affine, is not compact and formal deformation theory for
noncompact objects can give “nonsensical” results, see [Ko01]. In the associa-
tive case, a “compact” object is a finite-dimensional algebra and so we expect
other nonsensical results for some infinite-dimensional algebras. Here is such
an example: the first quantized Weyl algebra Aq = C〈x, y〉/(qxy − yx− 1) is
not isomorphic to A1 for q near 1. However, as noted above, HH2(A1, A1) = 0.
To put this into a formal deformation theoretic perspective, let q = 1+t. Then
there is indeed an analytic isomorphism φ : A1[[t]] → Aq[[t]], but it has zero
radius of convergence. A similar phenomenon happens for the situation with
Oλ and Oλ′ . The problem is that passing to the formal power series versions
of these algebras has trivialized the deformations.

The above examples suggest that the classic deformation theory of a single
algebra does not always detect the dependency of an algebra on parameters.
However, the more general diagram cohomology theory of Section 8 can detect
such dependencies, but does not show how the algebras vary with the param-
eters. The construction of the algebras with varying moduli can sometimes be
accomplished through the idea of a variation of algebras. This concept will
be addressed in Section 10.

5 Universal Deformation Formulas

The process of constructing deformations using the infinite step-by-step proce-
dure of extending deformations of order n to n+1 for each n ≥ 1 is impractical.
There are instances though in which a closed form for μt is known. One is
the explicit quantization of Poisson brackets on R

n given in [Ko97]. Another
comes from the use of “universal deformation formulas” which are, in essence,
Drinfel’d twists which act on certain classes of algebras. The prototypical ex-
ample of this type of formula was given by Gerstenhaber in [Ge68]. There it
was observed that if φ and ψ are commuting derivations of any associative

algebra (in characteristic zero), then a ∗ b =
∑

φn(a)ψn(b)
tn

n!
is associative.

The most famous use of this idea gives the Moyal product. For example, if
A = k[x, y] with φ = ∂x and ψ = ∂y, then we have x ∗ y − y ∗ x = t, and the
deformation is isomorphic to the first Weyl algebra as long as t �= 0. When
φ = x∂x and ψ = y∂y, then the deformation is graded and isomorphic to the
skew-polynomial ring k〈x, y〉/(qxy − yx) with q = et. These examples can of
course be extended to higher dimensions.
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Definition 2. Suppose B = (B,Δ, 1, ε) is a bialgebra with comultiplication
Δ, unit 1, and counit ε. A universal deformation formula (UDF) based on B
is an element F ∈ (B ⊗B)[[t]] such that

((Δ⊗1)(F ))(F ⊗1) = ((1⊗Δ)(F ))(1⊗F ) and (ε⊗1)F = (1⊗ε)F = 1⊗1.

The virtue of a UDF is that for any B-module algebra A, the product a ∗ b =
μ ◦ F (a⊗ b) is associative and hence is a deformation of A, see [GZ98].

Example 1. Suppose B is commutative and let r ∈ P ⊗P where P is the space
of primitive elements. Then F = exp(tr) is a UDF. Primitive elements of B
act as derivations of any B-module algebra and so this UDF gives a wide
range of Moyal-type deformations.

Example 2. Let B = Us, where s is the Lie algebra with basis {H,E}
and relation [H,E] = E. Set H〈n〉 = H(H + 1) · · · (H + n − 1). Then

F =
∑ tn

n!
H〈n〉⊗En is UDF. For an example of its use, take A = k[x, y] with

the derivations H = x∂x and E = x∂y. The deformed algebra has the relation
x ∗ y − y ∗ x = tx2 and is the Jordan quantum plane. Numerous generations
of this UDF can be found in [KLO01], [LS02] and the references therein.

Example 3. Let g⊗g be a Lie algebra and let r ∈ g∧g satisfy [r, r] = 0, where
[−,−] is the Schouten bracket. Drinfel’d has shown in [Dr83] that there exists
a UDF F = 1⊗1+ tr+O(t2). Examples 1 and 2 are of this form. It should be
noted that [r, r] = 0 means that r is a skew-symmetric solution of the classical
Yang–Baxter equation.

Example 4. Let B be the bialgebra generated by {D1, D2, σ} with relations
D1D2 = D2D1, Diσ = qσDi (i = 1, 2), and comultiplication

Δ(D1) = D1 ⊗ σ + 1⊗D1, Δ(D2) = D2 ⊗ 1 + σ ⊗D1, Δ(σ) = σ ⊗ σ.

Then F = expq(tD1 ⊗ D2) is a UDF, where the q-exponential is the usual
exponential series with n! replaced by nq!.

Note that for any B-module algebra, σ acts as an automorphism and. the
elements D1, D2 act as commuting skew derivations with respect to σ. Thus,
this UDF provides q-Moyal type deformations. For example, it can be used
to deform the quantum plane k〈x, y〉/(qxy − yx) to the first quantized Weyl
algebra Aq = k〈x, y〉/(qxy − yx− 1). Formulas of this type were also used in
[CGW04] to deform certain crossed products SV � G.

Recently, universal deformation formulas have arisen naturally in the work
of Connes and Moscovici on Rankin–Cohen brackets and the Hopf algebra H1

of transverse geometry, see [CM04]. Rankin–Cohen brackets are families of
bi-differential operators on modular forms. These brackets can be assembled
to give universal deformation formulas. Some applications appear in [CM04].
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The formulas based on H1 are also connected to certain topics in deformation
quantization as it relates to the Poisson geometry of groupoids and foliations.
see [BTY07].

6 Commutative Algebras and the Hodge Decomposition

Let A be a commutative algebra over a field of characteristic zero. In [Ba68],
Barr proved that the Harrison cohomology Harn(A,A) is a direct sum-
mand of the Hochschild cohomology HHn(A,A). The key to this splitting
was Barr’s discovery of an idempotent en in QSn, the rational group alge-
bra of the symmetric group. The symmetric group acts on Cn(A,M) (the
Hochschild n-cochains of A with coefficients in a symmetric A-bimodule M)
via σF (a1, . . . , an) = F (aσ1, . . . , aσn). Barr proved that δ(enF ) = en+1(δF ),
where δ is the Hochschild coboundary operator. Thus HHn(A,M) splits as
ennHH(A,M)⊕ (1− en)HHn(A,M), and the latter piece is Harn(A,M). Barr’s
work received little attention until 1987 when Gerstenhaber and Schack ex-
tended the splitting, see [GS87]. In QSn there are n mutually orthogonal idem-
potents en(1), . . . , en(n) with the property that δ(en(r)F ) = en+1(r)(δF ) for
all F ∈ Cn(A,M). The relation between the idempotents and coboundary
give the following fundamental theorem.

Theorem 5 (Hodge Decomposition). Suppose char(k) = 0 and let A be a
commutative algebra and M a symmetric A-bimodule. Then there is a splitting

HHn(A,M) = HH1,n−1(A,M)⊕HH2,n−2(A,M)⊕ · · · ⊕HHn,0(A,M)

where HHr,n−r(A,M) is the cohomology of the complex e∗(r)C∗(A,M).

Around the same time as the Gerstenhaber–Schack paper [GS87], Loday,
using different techniques, exhibited a splitting of the Hochschild and cyclic
cohomologies of a commutative algebra, see [Lo88], [Lo89].

The idempotents en(r), which have independent interest apart from co-
homology, are most easily described using the following elegant generating
function discovered by Garsia in [Ga90]:

∑
e(r)
n xr =

1
n!

∑

σ∈Sn

sgn(σ)(x − dσ)(x− dσ + 1) · · · (x− dσ + n− 1)σ

where dσ is the number of descents in σ, i.e., the number of i with σ(i) >
σ(i + 1).

The following diagram, in which HHi,n−i(A,M) is abbreviated as Hi,n−i,
is instructive in understanding the Hodge decomposition.
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. . .

H5,0 −→ · · ·

H4,0 −→ H4,1 −→ · · ·

H3,0 −→ H3,1 −→ H3,2 −→ · · ·

H2,0 −→ H2,1 −→ H2,2 −→ H2,3 −→ · · ·

H1,0 −→ H1,1 −→ H1,2 −→ H1,3 −→ H1,4 −→ · · ·

In the diagram, vertical columns represent the breakup of HHn(A,M),
starting with n = 1, and the horizontal arrows display the Hochschild
coboundary. The bottom row, HH1,∗(A,M), is the Harrison cohomology
Har(A,M) which is associated to Barr’s idempotent. The idempotent en(0) is

the skew-symmetrizer
1
n!

∑

σ∈Sn

(−1)σσ and it follows that the diagonal compo-

nents, HHn,0(A,M), are the skew multi-derivations,
∧n
A Der(A), of A into M .

If A = O(V ), the ring of regular functions on a smooth affine variety V ,
then the celebrated Hochschild–Kostant–Rosenberg Theorem asserts that
HHn(A,A) =

∧n
A Der(A), where Der(A). In terms of the Hodge decom-

position, the theorem becomes HHn(A,A) = HHn,0(A,A). In particular,
Har2(A,A) = 0 and these algebras have no commutative deformations. In the
case V is not smooth, one expects the components HHr,n−r(A,A) to encode
information regarding the singularities. Some interesting results by Fronsdal
in this direction can be found in [Fr07].

It is clear that the refinement of HH∗(A,A) provided by the Hodge de-
composition can be useful. For example, if HH∗(A,A) is infinite-dimensional,
then its Euler–Poincare characteristic is not well-defined. However, its partial
Euler–Poincare characteristics (alternating sums of dimHr,∗−r(A,A)) may
all be defined. Here is an example which illustrates this phenomenon. Let
A = k[ε]/ε2 be the ring of dual numbers. It is well-known that HHn(A,A) has
dimension one for all n ≥ 1. Using the Hodge decomposition, one can show

that HHn(A,A) = Hk,n−k(A,A), where k = �n + 1
2
�. The partial Euler–

Poincare characteristics are deformation invariant and as such they can be
helpful in detecting whether a given scheme is a deformation of another one.

N. Bergeron and Wolfgang showed that the components
⊕k

r=1 HHr,n−r

(A,A) consist of those classes of cocycles vanishing on (k + 1)-shuffles but
not on m-shuffles for any m < k + 1, see [BW95] for the precise defini-
tion and explanation. This generalizes the fact that Harrison cohomology
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consists of those cocycles vanishing on 2-shuffles. Another fact proved in
[BW95] is that HHr,n−r(A,A) behaves well with respect to the filtration
Fm =

⊕
r≥mHH∗,r(A,A) in the sense that [Fp,Fq] ⊂ Fp+q.

Other instances of cohomology decompositions arising from group actions
are possible. For example, F. Bergeron and N. Bergeron found in [BB92] a type
B decomposition. Specifically, they showed that there are n idempotents in the
descent algebra of the Weyl group of type B, the group of signed permutations
on n letters. Moreover, if A is an algebra with involution and M is a symmetric
A-bimodule, then there is an action of Bn on A⊗n with the property that the
idempotents are compatible with the Hochschild coboundary map. Thus there
is a “type B” splitting of the cohomology. This raises the question of whether
there are idempotents in the descent algebras of other Coxeter systems (W,S)
which decompose HH∗(A,M) for algebras A with a suitable W -action.

7 Bialgebra Deformations

It was clear that, after discovery of quantum groups in the 1980s, there should
be a cohomology theory of bialgebras with the usual features related to defor-
mations. In [GS90a] Gerstenhaber and Schack introduced such a theory which
we now describe.

The Gerstenhaber–Schack bialgebra cohomology H∗
GS(B,B′) is defined for

certain matched pairs of bialgebras B and B′. For simplicity, we only describe
here the case B′ = B (any bialgebra is matched with itself). Since B is a bial-
gebra, any tensor power B⊗m is both a B-bimodule and a B-bicomodule and
thus the Hochschild cohomology HH∗(B,B⊗m) and the coalgebra (Cartier) co-
homology H∗

c (B
⊗m, B) are well-defined. Set Cp,q(B,B) = Homk(B⊗p, B⊗q).

The Hochschild coboundary operator provides a map δh : Cp,q(B,B) →
Cp+1,q(B,B) while the coalgebra coboundary yields δc : Cp,q(B,B) →
Cp,q+1(B,B). These coboundaries commute giving the Gerstenhaber–Schack
complex

C∗,∗
GS(B,B) with Cn

GS(B,B) =
⊕

p+q=n
p,q>0

Cp,q(B,B) and δGS=δh+(−1)qδc.

The bialgebra cohomology H∗
GS(B,B) is then the homology of this complex.

There are variants of this theory. For example, if one takes p > 0, q ≥ 0 in
the definition of Cn

GS(B,B), then the resulting cohomology controls the defor-
mations of B to a Drinfel’d (quasi-Hopf) algebra, see [GS90b], [MS96]. Markl
has shown in [Mar07] that H∗

GS(B,B) carries an intrinsic graded bracket.
In fact, Markl’s construction shows the existence of a bracket for any type of
(bi)algebra over an operad or PROP.

For the rest of this section, B will denote either O(G) or Ug, where G
is a reductive algebraic group and g = Lie(G). In these cases, the bial-
gebra cohomology is easy to compute since HHn(−,O(G)) = 0 and the
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Hn
c (Ug,−) vanish in positive dimensions. Explicitly, if B = O(G) or Ug, then

Hn
GS(B,B) =

∧n
g/(
∧n

g)g, where (
∧

g)g is the space of g-invariants in
∧n

g
[GS90b]. The Schouten bracket on

∧∗
g corresponds to the graded Lie algebra

structure on Hn
GS(B,B). There are no invariants in g ∧ g and, up to a scalar

multiple, there is a unique nonzero invariant in
∧3

g. The infinitesimal bial-
gebra deformations of B are then elements r ∈ g ∧ g. The condition [r, r] = 0
in H3

GS(B,B) means either that r is a solution to the classical Yang–Baxter
equation (CYBE) (in the case [r, r] = 0) or that it is a solution to the modified
CYBE (in the case that [r, r] is a nonzero invariant). Any solution to either
of these Yang–Baxter equations gives a Poisson–Lie group structure on G.

The quantization problem for both types of r-matrices is solved. For r
a solution to the CYBE, the quantization is given by the UDF associated
to r, see Example 3 of Section 5 and [Dr83]. For the solutions to the modified
CYBE, the quantization can be deduced from the “dynamical twist” found in
[ESS00]. The quantizations of [Dr83] and [ESS00] are universal in the sense
that they lie in (Ug ⊗ Ug)[[t]], and so they provide a quantum Yang–Baxter
matrix in End(V ⊗ V )[[t]] for any representation V of g. Computing this R-
matrix from the universal quantization can require great effort. However, in
[GGS93] a simple explicit “GGS” formula was conjectured to quantize any
modified r-matrix for g = sl(n) and V = kn, the vector representation. After
performing computer checks for over ten thousand cases, the GGS formula
was proven correct by Schedler in [Sc00]. The proof is far from elementary
as it uses intricate combinatorial manipulations to show that the universal
solution of [ESS00] coincides with the simple GGS formula. Something is
wanting for a simpler proof and real meaning of the GGS formula. It would
also be interesting to extend the result to yield elementary quantizations of
the modified r-matrices in the symplectic and orthogonal cases.

The bialgebra cohomology of O(G) also guarantees that any deformation
is equivalent to one with a deformed product ∗ which is compatible with the
original comultiplication Δ. A deformation of the form (O(G), ∗, Δ) is called
preferred. Similarly, all bialgebra deformations of Ug are preferred, although
in this case it is the original multiplication which is unchanged. The stan-
dard quantization Oq(G) is equivalent to a preferred deformation but no such
presentation has been exhibited – even in the simplest case of Oq(SL(2)).
As in the case of Lie bialgebra quantization, the difficulty in performing ex-
plicit computations seems to be that preferred deformations are linked with
a choice of Drinfel’d associator. See [BGGS04] for a more complete discussion
of deformation quantization as it relates to quantum groups.

Returning to the Yang–Baxter equations, it should be noted that the
moduli space of solutions to the MCYBE for a simple Lie algebra has been
constructively described by Belavin and Drinfel’d in [BD82]. The solutions
fall into a finite disjoint union of components, each of which is determined
by an “admissible triple” (certain combinatorial data associated with the
root system). In contrast, an explicit classification of solutions to the CYBE
is intractable, for it would require as a special case the knowledge of all
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abelian Lie subalgebras of g. There is, however, a nonconstructive description
of such r-matrices in terms of “quasi-Frobenius” Lie algebras, see [BD82],
[Sto91]. A Lie algebra q is quasi-Frobenius if there is a nondegenerate function
φ : q ∧ q → k which is a two-cocycle in the Chevalley–Eilenberg cohomology.
The Lie algebra is Frobenius if the two-cocycle can be taken to be a cobound-
ary, that is, if φ(a, b) = F ([a, b]) for some F ∈ q∗. If B = (Bij) is the matrix
of φ with respect to some basis {x1, . . . , xm} of q, then r =

∑
B−1
ij xi ∧ xj is

a solution to the CYBE. In [GG98] it was shown that some solutions to the
CYBE arise as degenerations of solutions to the MCYBE, and others do not.
Perhaps it may be feasible to describe all of these “boundary” solutions using
the Belavin–Drinfel’d triples.

8 Diagrams of algebras

A “diagram” of algebras is a contravariant functor A from a small category
C to the category of associative k-algebras, i.e., a presheaf of algebras over C.
So for each i ∈ Ob(C) there is an algebra A

i and for each morphism i → j
there is an algebra map φij : A

j → A
i. Presheaves of algebras are abundant

and surface in a variety of contexts: A single algebra is a diagram over a
one-object category with only the identity morphism. A diagram over the
category with two objects and one nontrivial morphism u : 0 → 1 is nothing
but a homomorphism of algebras φ : B → A. The structure sheaf OX on
a quasi-projective variety X is a diagram of commutative algebras over the
category U of open subsets of X . Here U is a category in which the morphisms
correspond to inclusion maps.

In a series of papers, Gerstenhaber and Schack developed natural cohomol-
ogy and deformation theories for diagrams and proved a number of remark-
able results. A description of the theory can be found in the survey [GS88].
The Hochschild cohomology of sheaves of algebras and abelian categories stud-
ied [Hi05] and [LVdB06] are closely related to the Gerstenhaber–Schack dia-
gram cohomology.

Perhaps the most useful and difficult result in diagram cohomology the-
ory is the General Cohomology Comparison Theorem (see Theorem 6) which
asserts, in a sense, that the cohomology and deformation theories of an arbi-
trary diagram are no more general than that of a single algebra. In order to
explain more clearly what this means we give a quick review of the basics of
the theory.

An A-bimodule M is a contravariant functor from C to the category of
abelian groups assigning to every i ∈ Ob(C) an A

i-bimodule M
i and to every

morphism u : i → j in C a map T ij : M
j → M

i which is required to be an
A
j-bimodule map. Here, M

i becomes an A
j-module by virtue of the algebra

homomorphism φij .
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Just as in the case of a single algebra, there are various descriptions of the
diagram cohomology H∗

d(A, M). Once the requisite categorical machinery is
laid out, one may define H∗

d (A, M) = ExtA−A(A, M). There is also a cochain
description which is quite useful and we present this here. There is a cochain
complex (C∗

d (A, M), δd) whose homology coincides with ExtA−A(A, M). The
description of C∗

d(A, M) has both algebraic and simplicial aspects. The nerve
Σ of C is the simplicial complex whose 0-simplices are the objects of C and the
p-simplices are the composable maps σ = (i0 → ii → · · · → ip). For simplicity
we write σ = (i0, . . . , ip). The boundary of σ is ∂σ =

∑
(−1)jσj , where σj is

the j-th face of σ obtained by omitting ij .
For a diagram A and A-bimodule M, the n-cochains are Cn

d (A, M) =⊕
p+q=n Cp,q

d (A, M), where

Cp,q
d (A, M) =

∏

p−simplices
(i0,...,ip)

Cq(A(ip), M(i0)).

Fix Γ ∈ Cp,q
d (A, M). The diagram coboundary will have two components:

δalgΓ ∈ Cp,q+1
d (A, M) and δsimp ∈ Cp+1,q

d (A, M). The algebraic component
is defined by (δalgΓ )σ = δh(Γ σ) where δh : Cq(Aip , Mi0) → Cq+1(Aip , Mi0)
is the ordinary Hochschild coboundary operator. The simplicial component
is defined as follows. Let σ = (i0, . . . , ip+1) be a p + 1-simplex. For faces σj
with 1 ≤ j ≤ p, we have Γ σj ∈ Cq(Aip+1 , Mi0), while Γ σ0 ∈ Cq(Aip+1 , Mi1)
and Γ σp+1 ∈ Cq(Aip , Mi0). The extreme cases Γ σ0 and Γ σp+1 lie in different
cochain groups than the others, but there are adjustments which correct this.
For σ0 note that the composite T i0i1Γ σ0 ∈ Cq(Aip+1 , Mi0 ). For σp+1 define
Γ σp+1φip+1ip ∈ Cq(Aip+1 , Mi0 ) by

Γ σp+1φip+1ip(a1, . . . , aq) = Γ σp+1(φip+1ipa1, . . . , φ
ip+1ipaq).

Now set

(δsimpΓ )σ = “Γ ∂σ” = T i0i1Γ σ0 − Γ σ1 + Γ σ2 − · · ·+ (−1)pΓ σpφipip+1.

The full diagram coboundary is then

δd = δalg + (−1)pδsimp

and the diagram cohomology H∗
d (A, M) is defined to be the homology of the

complex

C∗
d (A, M) =

⊕

p+q=n

Cp,q
d (A, M) with δd = δalg + (−1)pδsimp.

Note that the cohomology of the bottom row H∗,0
d (A, M) coincides with the

simplicial cohomology of Σ(C) with local coefficients M.
A deformation of A is a diagram of k[[t]]-algebras whose reduction modulo t

is A. The diagram cohomology H∗
d (A, A) is too large to govern deformations of
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A since the simplicial cohomology of Σ may not be trivial. There are remedies
such as using “asimplicial” cochains or adjoining a terminator to C, see [GS88].
Naturally, we would like a graded Lie structure on H∗

d (A, A) which controls
obstructions. It turns out that, unlike the case of a single algebra, the natural
bracket on C∗

d(A, A) gives the structure of only a homotopy graded Lie algebra.
Proving that this bracket descends to a graded Lie structure at the cohomology
level would be at best a nasty computation using the cochain description.
However, the following very difficult and useful result of [GS88] settles this
question.

Theorem 6 (General Cohomology Comparison Theorem). Associated
to each diagram A is a single k-algebra A!! such that the cohomology and de-
formation theories of A are naturally isomorphic to those of A!!. In particular,
H∗
d (A, A) is a Gerstenhaber algebra.

The diagram algebra A!! is rather complicated and we will not describe it
here, although we will see a special case in Section 10. The proof of Theorem 6
relies on the Special Cohomology Comparison Theorem which is the case when
A is a poset. To derive the general case, Gerstenhaber and Schack perform a
barycentric subdivision of A. It turns out that the second subdivision of an
arbitrary diagram is a poset and subdivision preserves the cohomology. Van
den Bergh and Lowen have proved Special Cohomology Comparison Theory
for prestacks in [LVdB09].

Another important result in diagram cohomology theory is the following
theorem which completely reconciles the Kodaira–Spencer manifold deforma-
tion theory with the Gerstenhaber–Schack diagram deformation theory.

Theorem 7. Let X be a smooth compact algebraic variety with tangent bundle
T . Suppose U is an affine open cover of X and let A be the restriction of
OX to U . Then there is a Gerstenhaber algebra isomorphism H∗

d (A, A) �
H∗(X,

∧∗
T ).

Using the theorem, one sees that

H2
d(A, A) � H2(X,OX)

⊕
H1(X,T )

⊕
H0(X,∧2T ).

The middle term consists of the infinitesimal deformations of X in the
Kodaira–Spencer theory. The last term is the space of infinitesimal deforma-
tions of X to “noncommutative” spaces; those with vanishing primary obstruc-
tion are precisely the Poisson structures on X and, by Theorem 1, these are
quantizable. The meaning of the first term of H2

d(A, A) is not well-understood.
Besides applications to geometric situations, diagrams naturally arise in

other contexts. For example, given an algebra A and an A-module M , one
can deform the action of A on M in the evident way, and it is relatively
easy in this case to deduce the appropriate deformation cohomology. More
generally, one can simultaneously deform A and its action on M in a compat-
ible way. These situations are special cases of diagram deformations. Indeed,
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the original A-module structure on M is simply an algebra homomorphism
φ : A → End(M), and hence is a diagram. Deformations of this diagram
yield the various possibilities of deforming A, the action of A on M , or both.
The general theory automatically yields appropriate cohomology and obstruc-
tion theories. In Section 10 the diagram cohomology theory will be used to
cohomologically explain how certain rigid algebras can appear in naturally
parametrized families.

9 Deforming relations

Suppose an algebra is given as A = TX/J where X is the k-module spanned
by finitely many generators xi, TX is the tensor algebra, and J is the ideal
of relations. If Jt is an ideal of TX [[t]] which reduces to J modulo t, then
a natural question is whether At = TX [[t]]/Jt is a deformation of A or not.
Associativity of At is automatic but to be a deformation it must be flat as a
k[[t]]-module. There is no efficient way in general to determine if the relations
in Jt insure flatness. An elementary case where flatness fails is the following:
Let A = k[x, y, z] and let Jt be generated by yx − (1 + t)txy, zx − xz − ty2

and yz − zy. When t = 0 all variables commute and the polynomial algebra
k[x, y, z] is obtained. For t �= 0, the deformed relations allow for a PBW-type
ordering in which every monomial of At can be reduced to one of the form
xiykzk. However, the element t(1 + t)y3 lies in Jt and so At has t-torsion and
thus is not flat.

Flatness is relatively easy to check for certain deformations of Koszul al-
gebras, which comprise an important class of quadratic algebras. An algebra
A is quadratic if A = TX/J , with J generated by relations R ⊂ X⊗X . Since
the relations are homogeneous, such algebras are N-graded, A =

⊕
i≥0 A[i]

and dim A[i] < ∞ for each i. In particular, A[0] = k. A quadratic algebra
A is Koszul if its dual A! is isomorphic to the Yoneda algebra Ext∗A(k, k).
Variations of the following fundamental theorem have appeared in several
places in the literature, most notably in the works of Drinfel’d [Dr86] and
Braverman–Gaitsgory [BG96].

Theorem 8 (Koszul Deformation Criterion). Suppose that A = TX/J
is Koszul and At = TX [[t]]/Jt, where Jt is generated by relations Rt ⊂ (X ⊗
X)[[t]] which reduce to J modulo t. Then At is a deformation of A if and only
if At[3] is a flat k[[t]]-module.

The point of the theorem is that in the Koszul case, flatness in dimensions
greater than 3 is a consequence of flatness in degree 3. Flatness in the cases
of degrees 1 and 2 is automatic.

One of the most interesting and explicit uses of the Koszul deformation cri-
terion has been carried out by Etingof and Ginzburg in the theory of symplectic
reflection algebras, which are deformations of crossed product algebras SV �G,
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see [EG02]. One can try to deform SV � G by imposing additional relations
of the form xy − yx = κ(x, y) where x, y ∈ V and κ(x, y) = −κ(y, x) ∈ CG.
For an arbitrary skew-symmetric function κ, the underlying vector space of
the resulting algebra, Aκ, will be smaller than that of A0 = SV �G – that is,
the deformation will not be flat.

In the case where V is a symplectic vector space and G ∈ Sp(V ), Etingof
and Ginzburg have an explicit and remarkable classification of which skew
forms κ lead to deformations. To describe these, we first need some notation.
Suppose V is a complex vector space equipped with a skew bilinear form
ω : V × V → C, and let G be a finite subgroup of Sp(V ). An element s ∈ G
is a symplectic reflection if the rank of 1 − s is 2. The set of all symplectic
reflections is denoted S. For each s ∈ S, let ωs denote the form on V with
radical Ker(1−s) and which coincides with ω on Im(1−s). The triple (V, ω,G)
is indecomposable if V cannot be split into a nontrivial direct sum of G-
invariant symplectic subspaces.

Theorem 9 (Etingof–Ginzburg [EG02]). Suppose (V, ω,G) is an inde-
composable triple, and let κ : V × V → CG be a skew form. Then Aκ is a
flat deformation of SV � G if and only if there exists a G-invariant function
c : S → C, s �→ cs and a constant t, such that

κ(x, y) = tω(x, y) +
∑

s∈S
csωs(x, y)s.

As stated earlier, the applications of symplectic reflection algebras are
many. Here is one particularly interesting one. The center of SV � G is the
algebra (SV )G of G-invariant polynomial functions, which can be viewed as
the functions on the orbit space V/G. If e = 1

|G|
∑
g∈G g is the symmetrizing

idempotent in CG, then the spherical subalgebra of Aκ is defined to be eAκe.
It is known that eA0e � (SV )G, and so eAκe provides a noncommutative de-
formation of (SV )G. However, if t = 0, then the algebra eAκe is commutative.
Thus the symplectic reflection algebras can provide geometric deformations
of V/G.

Returning to Theorem 8, there are algebras where, unlike the symplectic
reflection algebras, there is no evident ordered or PBW-type basis of At.
For example, Sklyanin (or elliptic) deformations of polynomial algebras have
this property. The simplest case is the algebra with generators {x, y, z} and
relations

ax2 + byz + czy = 0, ay2 + bzx + cxz = 0, az2 + bxy + cyx = 0.

The triple (a, b, c) = (0, 1,−1) gives the polynomial algebra k[x, y, z], but for
generic (a, b, c) the relations are such that there is no PBW-type basis. One
way to prove flatness is to associate certain geometric data (an elliptic curve E
and point η ∈ E) to the algebra in question. The geometric information allows
one to construct a factor ring of the Sklyanin algebra which can be exploited
to establish flatness. A survey of elliptic deformations of polynomial algebras
can be found in [Od02].
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10 Variation of algebras

As mentioned in Section 4, an algebra with H2(A,A) = 0 may depend essen-
tially on parameters and so the classic deformation theory of A does not detect
this dependence. If we instead pass to an appropriate diagram of algebras, it
is possible in many cases to detect the dependence of A on parameters from
the diagram cohomology and construct the new algebra with the concept of
algebra variation.

Suppose that we have k-algebras A,B,B′ and monomorphisms φ : B → A
and φ′ : B′ → A such that A is generated by the images φ(B) and φ′(B′). If V
is the direct sum of the underlying k-modules of B and B′, then A = TV/J ,
where J is the ideal of TV generated by relations which we write in the form
R(φ(b), φ(b′)) for b ∈ B and b′ ∈ B′. In this case we have a diagram A over
the poset C = {0, 1, 1′}:

0

����
��
��
��
��
��
�

���
��

��
��

��
��

��
A

A ��

1 1′ B

φ

���������������
B′.

φ′

���������������

Now consider a deformation At of A in which the algebras A, B, and B′

remain fixed but the homomorphism φ is deformed as φt = φ+tφ1+t2φ2+ · · ·
and similarly assume φ′ is deformed to φ′

t. We can use the same relations
determining A with deformed inputs to construct a new algebra At.

Definition 3. Suppose A,B,B′, V, R, A, and, At are as above. Let Jt be the
ideal of TV [[t]] generated by all elements of the form R(φt(b), φ′

t(b
′)) for b ∈ B

and b′ ∈ B′. The algebra At = TV [[t]]/Jt is called a variation of A.

A variation At is certainly associative but there is no guarantee that it is
flat, and as noted earlier, there is in general no easy way to determine when
such algebras are flat. The concept of variation can clearly be generalized by
letting A be generated by more than two subalgebras.

It is important to note that not all algebras of the form TV [[t]]/Jt where
Jt is an ideal of TV [[t]] with J0 = J are variations of A. As an example,
take A to be commutative. Then we have in J all relations of the form
φ(b)φ′(b′) − φ′(b′)φ(b). The ideal Jt defining the variation At will therefore
have all relations of the form φt(b)φ′

t(b
′)−φ′

t(b
′)φt(b) and so At remains com-

mutative.
Let us return now to the deformation of the diagram A in the above

figure obtained by replacing φ with φt and φ′ with φ′
t. Its infinitesimal lies

in H2
d(A, A) and is the class of a cocycle of the form Γ = (ΓA, ΓB, ΓB′ , ΓBA,

ΓB′A) with
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ΓA ∈ HH2(A,A), ΓB ∈ HH2(B,B), ΓB′ ∈ HH2(B′, B′),

ΓBA ∈ HH1(B,A), and ΓB′A ∈ HH1(B′, A). (3)

The first three components of Γ have algebraic dimension 2 and simplicial
dimension 0 while the last two have algebraic and simplicial dimension 1 as
these correspond to the 1-simplices of the underlying category. The deforma-
tion At may be viewed as an integral of this cohomology class. We also assign
this class to the variation At.

Even if the algebras A, B, and B′ are absolutely rigid, H2
d(A, A) may not

vanish in general as HH1(B,A) = Der(B,A) �= 0 and similarly for HH1(B′, A).
In this case, Γ obviously can be taken to be of the form (0, 0, 0, ΓBA, ΓB′A).
However, if the characteristic of k is zero, then we may further assume that
Γ = (0, 0, 0, 0, ΓB′A).

Remark 1. The diagram algebra A!! associated to A (see Theorem 6) can be
viewed as the algebra of 3× 3 matrices of the form

⎡

⎢
⎢
⎣

a1 a2 a3

0 b 0

0 0 b′

⎤

⎥
⎥
⎦ , with ai ∈ A, b ∈ B, b′ ∈ B′,

where the multiplication in A!! uses the convention that ba = φ(b)a and
similarly for b′a. Even in this simple case it is difficult to see how to canonically
relate the cohomology and deformations of A with those of A!!.

We end with a reconsideration of the first quantized Weyl algebra Aq =
C[x, y] with relation qxy − yx = 1. We have already remarked that Aq is not
isomorphic to A1 for q near 1, yet HH2(A1, A1) = 0. Consider now whether A1

can be varied to Aq. Using our earlier notation, suppose A = A1, B = C[x],
and B′ = C[y] and let φ : B → A and φ : B′ → A be the inclusion maps. All
of these algebras are absolutely rigid. Thus, based on the comments above, it
suffices to vary the inclusion morphism of C[y] into A1. The question becomes
whether there exists an element y′ ∈ A1[[t]] of the form y + tη1 + t2η2 +
· · · , ηi ∈ A1 such that the relation [x, y′] = xy′ − y′x = 1 is equivalent to
having [x, y] = 1− txy, for this would give (1+ t)xy− yx = 1, i.e., Aq[[t]] with
q = 1 + t. There are indeed elements y′ of the desired form. In [GG08b], it is
shown that one may take

y′ = y + a1(t)xy2 + a2(t)x2y3 + . . . , where ar(t) =
tr+1

(1 + t)r+1 − 1
.

Thus, Aq is a variation of A1. It is easy to use the formula for y′ to
show that the corresponding diagram infinitesimal is Γ = (0, 0, 0, 0, δ), where
δ ∈ Der(C[y], A1) is the derivation with δ(y) = xy2. This is a nontrivial
cohomology class in H2

d(A, A) and so the diagram cohomology has detected
the variation from A1 to Aq.
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It is instructive to note that in the power series representation of the ar(t)
there could be no value of t for which all the series converge, for each ar(t) is
a rational function with a pole wherever t has the form ω − 1 where ω is an
(r + 1)st root of unity and every neighborhood of 0 in C contains infinitely
many of these. Those Aq with q a root of unity are in some sense “unreachable”
from A1. Nevertheless, y′ can actually be evaluated for any complex number
t with 1 + t not a root of unity.
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theory] Panoramas et Synthèses [Panoramas and Syntheses], 20. Société
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Origins and Breadth of the Theory

of Higher Homotopies
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UFR de Mathématiques, Université des Sciences et Technologies de Lille,
CNRS-UMR 8524, 59655 Villeneuve d’Ascq Cedex, France,
Johannes.Huebschmann@math.univ-lille1.fr

To Murray Gerstenhaber and Jim Stasheff

Abstract. Higher homotopies are nowadays playing a prominent role in mathemat-
ics as well as in certain branches of theoretical physics. The purpose of the talk is
to recall some of the connections between the past and the present developments.
Higher homotopies were isolated within algebraic topology at least as far back as the
1940s. Prompted by the failure of the Alexander–Whitney multiplication of cocy-
cles to be commutative, Steenrod developed certain operations which measure this
failure in a coherent manner. Dold and Lashof extended Milnor’s classifying space
construction to associative H-spaces, and a careful examination of this extension led
Stasheff to the discovery of An-spaces and A∞-spaces as notions which control the
failure of associativity in a coherent way so that the classifying space construction
can still be pushed through.

Algebraic versions of higher homotopies have, as we all know, led Kontsevich
eventually to the proof of the formality conjecture. Homological perturbation theory
(HPT), in a simple form first isolated by Eilenberg and Mac Lane in the early
1950s, has nowadays become a standard tool to handle algebraic incarnations of
higher homotopies. A basic observation is that higher homotopy structures behave
much better relative to homotopy than strict structures, and HPT enables one to
exploit this observation in various concrete situations which, in particular, leads to
the effective calculation of various invariants which are otherwise intractable.

Higher homotopies abound but they are rarely recognized explicitly and their
significance is hardly understood; at times, their appearance might at first glance
even come as a surprise, for example in the Kodaira–Spencer approach to deforma-
tions of complex manifolds or in the theory of foliations.
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1 Introduction

It gives me great pleasure to join in this celebration of Murray Gerstenhaber’s
80th and Jim Stasheff’s 70th birthday. I had the good fortune to get into
contact with Jim some 25 years ago. In 1981/1982 I spent 6 months at the
Swiss Federal Institute of Technology (Zürich) as a Research Scholar. At the
time, I received a letter from Jim asking for details concerning my application
of twisting cochains to the calculation of certain group cohomology groups.
What had happened? At Zürich, I had lectured on this topic, and Peter Hilton
was among the audience. This was before the advent of the Internet; not
even e-mail was available, and people would still write ordinary snail mail
letters. Peter Hilton traveled a lot and in this way transmitted information;
in particular, he had told Jim about my attempts to do these calculations by
means of twisting cochains. By the way, since Peter Hilton was moving around
so much, once someone tried to get hold of him, could not manage to do so,
and asked a colleague for advice. The answer was: Stay where you are, and
Peter will certainly pass by.

At that time I knew very little about higher homotopies, but over the
years I have, like many of us, learned much from Jim’s insight, his habit of
bringing his readers, students, and coworkers out from “behind the cloud of
unknowing”, to quote some of Jim’s own prose in his thesis. All of us have
benefited from Jim’s generosity with ideas.

I cannot reminisce indefinitely, yet I would like to make two more remarks,
one related with language and in particular with language skills: For exam-
ple, I vividly remember, in the fall of 1987, there was a crash at Wall Street.
I inquired via e-mail – which was then available – whether this crash created
a problem, for Jim or more generally for academic life. His answer sounded
somewhat like “Not a problem, but quite a tizzy here”. So I had to look up
the meaning of “tizzy” in the dictionary. This is just one instance of how I and
presumably many others profited from Jim’s language skills. Sometimes Jim
answers an e-mail message of mine in Yiddish – apparently his grandfather
spoke Yiddish to his father. There is no standard Yiddish spelling and, when
I receive such a message, to uncover it, I must read it aloud myself to un-
derstand the meaning, for example “OY VEH” which, in standard German
spelling would be “Oh Weh”.

I feel honored by the privilege to have been invited to deliver this tribute
talk. I would like to make a few remarks related to Murray Gerstenhaber.
I met Murray some 20 years ago when I spent some time at the Institute in
Princeton. From my recollections, Murray was then a member of the alumni
board of the Institute and was always very busy. We got into real scientific
and personal contact only later. In particular, I was involved in reviewing
some of the Gerstenhaber–Schack results, and I will never forget that I learnt
from Murray about Wigner’s approach to the idea of contraction. Also from
time to time, beyond talking about mathematics, we talked about history.
For example, Ruth Gerstenhaber once observed how people would gather for
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tea in the Fuld Hall common room in the afternoon as usual around the
table, and no-one would say a word but, one after another, would eventually
leave the room murmuring “There is no counterexample”. The perception of
a mathematician through a nonmathematician is sometimes revealing.

Before I go into the mathematical details of my talk, let us wish many
more years to Jim and Murray and their wives.

Let me now turn to my talk. There would be much more to say than
what I can explain in the remaining time. I shall touch on various topics and
make a number of deliberate choices and I will make the attempt to explain
some pieces of mathematics. However, my exposition will be far from being
complete or systematic and will unavoidably be biased. For example, there are
higher homotopies traditions in Russia and in Japan related with Lie loops,
Lie triple systems, and the like which I cannot even mention, cf. e.g., [Ki75]
and [SaMi88]. There is a good account of Jim Stasheff’s contributions up to
his 60th birthday, published at the occasion of this event [McCl99]. This was
just before the advent of Kontsevich’s proof of the formality conjecture. I will
try to complement this account and can thereby, perhaps, manage to avoid
too many repetitions. Also I will try to do justice to a number of less well
known developments.

2 The formality conjecture

Let me run right into modern times and right into our topic: Algebraic versions
of higher homotopies have, as we all know, led Kontsevich eventually to the
proof of the formality conjecture [Kon97]: Let M be a smooth manifold, let
A = C∞(M) and L = Vect(M), and consider the exterior A-algebra ΛAL on
L. Let Hoch(A) denote the Hochschild complex of A, suitably defined, e.g., in
the Fréchet sense. Given the vector fields X1, . . . , Xn on M , let ΦX1,...,Xn be
the Hochschild cochain given by

ΦX1,...,Xn(a1, . . . , an) =
1
n!

∑
sign(σ)

n∏

j=1

Xσ(j)(aj), a1, . . . , an ∈ A.

By a version of a classical result of Hochschild–Kostant–Rosenberg, the obvi-
ous map

ΛAL −→ Hoch(A), X1 ∧ . . . ∧Xn �→ ΦX1,...,Xn , (1)

is an isomorphism on cohomology. That is to say, the Hochschild cohomology
of A = C∞(M) amounts to the graded algebra ΛAL of multi vector fields
on M .

The standard Schouten–Nijenhuis bracket turns the suspension s(ΛAL) of
ΛAL – this is ΛAL, regraded up by 1, into an ordinary graded Lie algebra.
Here the grading convention is the standard one in algebraic topology to
the effect that, in particular, a differential lowers degree by 1. Likewise, the
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familiar Gerstenhaber bracket on Hoch(A) turns the suspension s(Hoch(A))
of Hoch(A) into an ordinary differential graded Lie algebra. However, the
morphism (1), while certainly being compatible with the differentials, is not
compatible with the Lie brackets.

For any differential graded Lie algebra g, the familiar C(artan) C(hevalley)
E(ilenberg)-construction Sc[g] furnishes a d(ifferential) g(raded) coalgebra.
In fact, given g, differential graded Lie algebra structures on g can be charac-
terized in terms of dg coalgebra structures on the symmetric coalgebra Sc[s(g)]
on the suspension s(g) of g: They correspond precisely to the dg coalgebra
structures determined by a linear term, the differential, and a quadratic term,
the bracket. This allows for immediate generalization: An sh-Lie algebra is a
vector space g together with a coalgebra differential on the symmetric coalge-
bra Sc[s(g)] on the suspension s(g) of g. The formality conjecture, as formu-
lated and established by Kontsevich [Kon97], says that (1) extends to a Lie
algebra twisting cochain

τ : Sc[s2(ΛAL)] −→ s(Hoch(A)). (2)

Here τ being a twisting cochain means that τ satisfies the deformation or
Maurer–Cartan equation. Such a Lie algebra twisting cochain furnishes an
sh-map from the ordinary (differential) graded Lie algebra s(ΛAL) to the
ordinary differential graded Lie algebra s(Hoch(A)).

The twisting cochain τ has homogeneous constituents τj , τ1 being essen-
tially the above morphism (1). The higher terms τj (j ≥ 2) are an instance
of higher homotopies, and τ is an instance of an sh-map, a term created by
Jim Stasheff, inspired by terminology introduced by Sugarawa [Su60/61], see
Section 4 below; here “sh” stands for “strongly homotopic.” Thus, without
having the language and notation of higher homotopies and that of defor-
mations at his disposal – remarkably, both Murray Gerstenhaber and Jim
Stasheff are behind the scene at this point and both from 1963 –Kontsevich
would not even have been able to phrase the formality conjecture. This con-
firms a variant of an observation which, with a grain of salt, reads thus:
Mathematics consists in continuous and discreet development of language and
notation.1

A key observation, advocated by Jim Stasheff from early on, is this: Even
though we start with strict objects, an sh-map between them may lead to
new insight, not necessarily available from ordinary strict maps. This kind of
observation has been successfully exploited in rational homotopy theory for
decades. Kontsevich noticed its significance in an area at first independent of
rational homotopy and, furthermore, managed to exhibit a particular sh-map
which establishes the formality conjecture.

R. Thom had raised the issue of existence of a graded commutative dif-
ferential graded algebra of cochains on a space [Th54/55]. This prompted the
1 In the early 1970s, when I was a student at the ETH Zürich, in lectures of

Prof. K. Chandrasekharan, I learned the following B. Russell quote: “What is
mathematics? Mathematics is a continuous and discreet science.”
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development of rational homotopy, starting notably with D. Quillen [Qu69]
and D. Sullivan [Su78]. A space whose rational (or real) cochain algebra is
sh-equivalent to its cohomology algebra is said to be formal , the term formal
referring to the fact that the rational homotopy type is then a formal conse-
quence of the structure of the cohomology ring. The term formality conjecture
derives from this tradition.

The statement of the formality conjecture implies, as we know, that every
Poisson bracket on a smooth manifold admits a deformation quantization.

3 Early History

One of the origins of homotopy is Gauß’ analytic expression for the linking
number of two closed curves (1833). One of the origins of higher homotopies
is the idea of a classifying space; this idea goes again back to Gauß (1828).
Another origin of higher homotopies is the usage of resolutions. It is a common
belief, perhaps, that resolutions go back at least to Hilbert’s exploration of
syzygies [Hi1890]. Hilbert studied syzygies in order to show that the generat-
ing function for the number of invariants of each degree is a rational function.
He also showed that, for a homogeneous ideal I of a polynomial ring S, the
“number of independent linear conditions for a form of degree d in S to lie
in I” is a polynomial function of d. However, this is not the entire story.
The problem of counting the number of conditions had already been con-
sidered for some time; it arose both in projective geometry and in invariant
theory. A general statement of the problem, with a clear understanding of
the role of syzygies – but without the word, introduced a few years later by
Sylvester (1814–1897) [Sy1853] – is given by Cayley (1821–1895) [Ca1848].
In fact, in a sense, Cayley somewhat develops what is nowadays referred to as
the Koszul resolution [Kos50] more than 100 years before Koszul. The termi-
nology homotopy was apparently created by H. Poincaré (1895). Poincaré also
introduced the familiar loop composition. Thus we see that, in the historical
perspective, Jim Stasheff is in excellent company.

4 Various 20th-century higher homotopies

Prompted by the failure of the Alexander–Whitney multiplication of cocy-
cles to be commutative, Steenrod developed the system of ∪i-products [St47].
These induce the squaring operations which, in turn, measure this failure
of commutativity in a coherent manner. The nontriviality of these operations
implies in particular that, over the integers, there is no way to introduce a dif-
ferential graded commutative algebra of cochains on a space. The ∪i-products
entailed the development of s(trongly)h(omotopy)c(ommutative) structures as
well as that of Steenrod operations.

An A∞-structure may be described as a system of higher homotopies to-
gether with suitable coherence conditions. Massey products [Mas58] may be
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seen as invariants of certain A∞-structures. An elementary example arises
from the familiar Borromean rings, consisting of three circles which are pair-
wise unlinked but all together are linked. The name “Borromean” derives
from their appearance in the coat of arms of the house of the aristocratic
Borromean family in northern Italy. If we regard these rings as situated in
the 3-sphere, then the cohomology ring of the complement is a trivial algebra,
but there is a Massey product of three variables detecting the simultaneous
linking of all three circles.

At the time Massey products were isolated, Jim Stasheff was a graduate
student at Princeton. His advisor J. Moore suggested he look at the problem
of determining when a cohomology class of a based loop space ΩX was a
suspension or a loop class , i.e., came from a cohomology class of X . In pur-
suing this question, Stasheff was led to work of Sugawara [Su57], who had a
recognition principle for characterizing loop spaces up to homotopy type.

The ordinary loop multiplication on ΩX gives it the structure of an
H-space that is associative up to homotopy. Moore’s version of the loop space
shows that there is a based loop space which is homotopic to the familiar one
for which the loop multiplication is strictly associative. The conclusion is that
associativity is not a homotopy invariant property; we owe Jim a complete
understanding of the homotopy invariance properties of associativity, and his
solution furnishes a clean recognition principle for loop spaces and, in fact,
for an entire hierarchy of spaces between loop spaces and H-spaces, the loop
spaces being spaces which admit a classifying space.

Specifically, Stasheff defined a nested sequence of homotopy associativity
conditions and called a space an An-space if it satisfies the nth condition.
Every space is an A1-space, an H-space is an A2-space, and every homotopy
associative H-space is A3. An A∞-space has the homotopy type of a loop
space.

A. Dold and R. Lashof [DoLa59] generalized to associative H-spaces Mil-
nor’s construction of a classifying space for a topological group [Mi56]. Jim
Stasheff extended the Dold–Lashof construction to A∞-spaces through his
study of homotopy associativity of higher order: an A∞-structure precisely
gives a classifying space. All this was worked out in his thesis, published as
[St63]. Sugawara had introduced conditions for a group-like space, see the
definition in terms of the conditions 3.1–3.3 on p. 129 of [Su57] to be im-
posed upon two maps related by what Sugawara had called an iteration of
the standard relations. Altering the appropriate part of these conditions to
suit the case of associativity more precisely and naturally led Jim Stasheff,
apparently prompted by F. Adams, to isolating a now familiar family of poly-
hedra, that of associahedra. We shall see below that these polyhedra actually
constitute an operad . Moreover, following Sugawara [Su60/61], Stasheff de-
fined maps of An-spaces, referred to as An-maps, which are special kinds
of H-maps [St63] (Def. 4.4 p. 298); these maps are homotopy multiplicative
in a strong sense. Via Sugawara’s work, An-maps are related to the Dold
and Lashof construction. When the homotopies defining an An-map exist for
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all n, the corresponding map is strongly homotopy multiplicative in the sense
of Sugawara [Su60/61] (p. 259). Thus the sh-terminology we are so familiar
with nowadays was born.

The algebraic analogue of an An-space in the category of algebras is an
An-algebra, the case n = ∞ being included here. The original and motivating
example was provided by the singular chains on the based loop space of a
space. This notion, and variants thereof, has found many applications. One
such variant, L∞-algebras, has already been mentioned. A key observation
here is that A∞-structures behave correctly with respect to homotopy, which
is not the case for strict structures. What corresponds to the classifying space
construction in geometry is now the bar tilde construction. Inside the bar tilde
construction, Massey products show up which determine the differentials in
the resulting bar construction spectral sequence. Stasheff referred to these
operations as Yessam operations. History relates that once, at the end of a
talk of Jim’s, S. Mac Lane asked the question: Who was Yessam?

Let me recall a warning, one of Jim’s favorite warnings in this context:
When the differential of an A∞-algebra is zero, the conditions force the algebra
to be strictly associative but there may still be nontrivial higher operations
encapsulating additional information, as the example of the Borromean rings
already shows where the nontriviality of the Massey product reflects the triple
linking.

Jim Stasheff continued to work in the realm of fibrations. There is, for
example, a notion of topological parallel transport developed by him. A recent
joint article of J. Stasheff and J. Wirth entitled Homotopy transition cocy-
cles [StWi] reworks and extends J. Wirth’s thesis written in 1965 under the
supervision of J. Stasheff.

5 Homological perturbations

Homological perturbation theory (HPT) has nowadays become a standard tool
to construct and handle A∞-structures. The term “homological perturbation”
is apparently due to J. Milgram [GuMi70]. The basic HPT-notion, that of
contraction, was introduced in Section 12 of [EML53/54]: A contraction

(X
∇−−−−→←−−−−
π

Y, h)

consists of chain complexes X and Y , chain maps ∇ : X → Y and π : Y → X ,
and a degree 1 morphism h : Y → Y such that

π∇ = Id, ∇π − Id = dh + hd, h∇ = 0, πh = 0, hh = 0.

The notion of “recursive structure of triangular complexes” in Section 5 [He54]
is also an example of what was later identified as a perturbation. The “per-
turbation lemma” [Gu72] is lurking behind the formulas in Chapter II of
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Section 1 of [Sh62] and seems to have first been made explicit by M. Barrat
(unpublished). The first instance known to us where it appeared in print is
[Br64]. Jim Stasheff collaborated with various colleagues on questions related
with homological perturbation theory [GuSt86], [GuLaSt90], [GuLaSt91] in-
cluding myself [HuSt02]. An issue dealt with in these papers, as well as in
my joint paper [HuKa91] with T. Kadeishvili, is that of compatibility of the
perturbation constructions with algebraic structure. This issue actually shows
up when one tries to construct e.g., models for differential graded algebras,
cf. also [Hu04b].

A homological algebra and higher homotopies tradition was created as well
by Berikashvili and his students in Georgia (at the time part of the USSR).
More precise comments about the historical development until the mid eighties
may be found in the article [HuKa91], and some specific comments about the
Georgian tradition in [Hu99].

In the articles [Hu89a], [Hu89b], [Hu89c], [Hu91], I explored the compati-
bility of the perturbation constructions with algebraic structure and developed
suitable algebraic HPT-constructions to exploit A∞-modules arising in group
cohomology. In this vein, I constructed suitable free resolutions from which I
was able to do explicit numerical calculations in group cohomology which until
today still cannot be done by other methods. In particular, spectral sequences
show up which do not collapse from E2. These results illustrate a typical phe-
nomenon: Whenever a spectral sequence arises from a certain mathematical
structure, there is, perhaps, a certain strong homotopy structure lurking be-
hind, and the spectral sequence is an invariant thereof. The higher homotopy
structure is then somewhat finer than the spectral sequence itself. It is also
worthwhile noting that the “tensor trick”, developed in [Hu86], may be seen
as a predecessor of the method of “labelled rooted trees”.

6 Quantum groups

The issues of associativity and coassociativity, as clarified by Jim Stasheff,
play a major role in the theory of quantum groups and variants thereof, e.g.,
quasi-Hopf algebras. Suffice it to mention here that Drinfel’d has introduced
a notion of quasi-Hopf algebra in which coassociativity of the diagonal is
modified in a way in which the pentagon condition plays a dominant role,
analogous to the hexagonal Yang–Baxter equation replacement for cocom-
mutativity. Now, given a quasi-Hopf algebra A, the quasi-Hopf structure
induces a multiplication BC × BC −→ BC on the classifying space BC of the
category C of A-modules, and the quasi-Hopficity says that this multiplication
is homotopy associative. More details and suitable references may be found
in [St90] and [St92].
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7 Operads

The notion of An-spaces and the clarity they provide for the recognition
problem for topological groups became the basis for the development of ho-
motopy invariant algebraic structures. In particular, the recognition problem
for infinite loop spaces and the simultaneous interest in coherence properties
in categories led to the idea of an operad [MacL65], [May72]. With hindsight
we recognize that a space is an A∞-space if and only if it is an algebra over a
suitably defined operad, the nonsymmetric operad K = {Kn} of associahedra.
In fact, this is the main result of Stasheff’s thesis, though not spelled out in
this language:

A connected space Y of the homotopy type of a CW-complex has the ho-
motopy type of a loop space if and only if there exist maps Kn × Y n → Y
which fit together to make Y an algebra over the operad K. In fact, Y then
has the homotopy type of the space ΩX where X is constructed as a quotient
of
∐

Kn × Y n. This brings the generalized classifying space construction to
the fore.

Likewise a graded object is an A∞-algebra if and only if it is an algebra
over a suitably defined operad, and an L∞-algebra can be characterized in
the same manner as well. In recent years many more new phenomena and
structures and, in particular, applications of operads have been found, in
particular in the theory of moduli spaces and in mathematical physics.

8 Deformation theory

There is an obvious formal relationship between homological perturbations
and deformation theory but the relationship is actually much more profound:
In [HaSt79], Steve Halperin and Jim Stasheff developed a procedure by means
of which the classification of rational homotopy equivalences inducing a fixed
cohomology algebra isomorphism can be achieved. Moreover, one can explore
the rational homotopy types with a fixed cohomology algebra by studying
perturbations of a free differential graded commutative model by means of
techniques from deformation theory. This was initiated by M. Schlessinger and
J. Stasheff [SchlSt]. A related and independent development, phrased in terms
of what is called the functor D, is due to N. Berikashvili and his students at
Georgia, notably T. Kadeishvili and S. Saneblidze. Some details and references
are given in [Hu99]. A third approach in which only the underlying graded
vector space was fixed is due to Y. Felix [Fel79].

Prompted by a paper of Barannikov and Kontsevich [BaKo98], in [HuSt02],
Jim Stasheff and I developed an approach to constructing solutions of the mas-
ter equation by means of techniques from HPT. In that paper, we restricted
attention to contractions of a differential graded Lie algebra onto its homology.
More recently, I extended this approach to the situation of a contraction of a
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differential graded Lie algebra onto a general chain complex and thereby es-
tablished the perturbation lemma for differential graded Lie algebras [Hu07a].
Further, I generalized the statement of the perturbation lemma to arbitrary
sh-Lie algebras [Hu07b].

9 Strings

Operads and sh-Lie algebras show up naturally in string and conformal field
theories, and Jim Stasheff contributed to this area as well. Some details and
more references may be found in [St97b].

10 Cohomological physics

One of Jim’s long-term interests is physics. Due to his efforts it is, perhaps, no
longer a surprise that some structures of interest in physics can be explored
by means of tools going back to topology, including graded Lie algebras and
homological perturbations. Jim contributed to anomalies [St85] and invested
time and effort to unravel, for example, the structure behind a field theory
construction which originally goes back to Batalin, Fradkin, and Vilkovisky.
The term “cohomological physics” was created by Jim. See in particular [St96]
and [St97a] for details.

11 Higher homotopies, homological perturbations,
and the working mathematician

I have already explained how higher homotopies and homological perturba-
tions may be used to solve problems phrased in language entirely different
from that of higher homotopies and HPT. Higher homotopies and HPT-
constructions occur implicitly in a number of other situations in ordinary
mathematics where they are at first not even visible. I can only mention some
examples; these are certainly not exhaustive.

• Kodaira–Nirenberg–Spencer: Deformations of complex structures [KNS58];
• Frölicher spectral sequence of a complex manifold [Hu00];
• Toledo–Tong: Parametrix [ToTo76];
• Fedosov: Deformation quantization [Fed94];
• Whitney, Gugenheim: Extension of geometric integration to a contrac-

tion [Gu76], [Wh57]. Whitney’s geometric integration theory laid some of
the groundwork for Sullivan’s theory of rational differential forms quoted
above. The upshot of Gugenheim’s contribution here is that the integra-
tion map in de Rham theory is sh-multiplicative, the de Rham algebra
being an ordinary graded commutative algebra. This situation is formally
the same as that of the formality conjecture explained above;
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• Huebschmann: Foliations [Hu04a]; in this paper, the requisite higher ho-
motopies are described in terms of a generalized Maurer–Cartan algebra;

• Huebschmann: Equivariant cohomology and Koszul duality [Hu04c],
[Hu04d];

• Operads; see e.g., the conference proceedings which contain the article
[St97b].
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1 Introduction: Deformations

This paper is based on my presentation at the Conference in honor of Murray
Gerstenhaber’s 80th and Jim Stasheff’s 70th birthdays, dedicated to “Higher
Structures in Geometry and Physics.” The bulk of it will deal with defor-
mations of algebras and their ins and outs. That is a subject in which Ger-
stenhaber had seminal contributions, starting with his celebrated 1964 paper
[Ge64] which Moshé Flato and I discovered in Paris shortly after its publica-
tion. It soon became clear to us, and to a number of theoretical physicists in
France and elsewhere, that physicists had, unbeknown to them, been speaking
the language of deformations like Monsieur Jourdain was speaking prose.
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The paradigm which triggered that realization was the passage from the
Galilean invariance of Newtonian mechanics to the Poincaré invariance of
special relativity. It took another 10 years or so to develop the tools which
enabled us to make explicit, rigorous and convincing, what was in the back of
the mind of many: quantum mechanics is a deformation of classical mechanics.
That developed into what became known as deformation quantization and its
manifold avatars and more generally into the realization that quantization is
deformation. This stumbling block being removed, the paramount importance
of deformations in theoretical physics became clear [Fl82].

It is a pleasure to pay this tribute to Murray’s extensive and ongoing
contributions. Due mention has to be made to the impact of his (and our)
friend Jim, who stressed in his works the importance of higher structures both
in mathematics and in physics, where many originated. In fact the two aspects
are increasingly imbricated, as exemplified by the use of higher structures in
Kontsevich’s approach to deformation quantization.

1.1 Deformations in physics, the beginning

The first example of deformations in Physics is probably the realization that
the earth is not flat. Without going back to “bereshit” (Hebrew for “in the be-
ginning”) from the Bible dear to Murray, where the issue is cautiously avoided,
in the antiquity (e.g., Mesopotamia or ancient Greece) it was generally con-
sidered that the earth is a flat disk floating on an ocean (wherever the latter
may have been) or a plate supported by a giant named Atlas (wherever he
may have been placed). Similar assumptions were also present in China.

In the sixth century B.C. that assumption was contradicted by Pythagoras,
whom we shall define in this respect as a “theoretical astrophysicist.” He is
usually considered as the first mathematician. He and his students believed
that everything is related to mathematics (which most of us agree with), and
on æsthetic grounds he conjectured that all celestial bodies are spherical, not
only e.g., the moon and the sun. There may also have been some “democratic
principle” in the background, which even nowadays might be (sometimes is)
considered as heretic by clerics: the idea is that our earth is an “ordinary”
part of the universe (and maybe man too).

Around 330 B.C. came Aristotle, a “phenomenologist astronomer” even if
nowadays he is more considered as a philosopher, student of Plato and teacher
of Alexander the Great. He noted that travelers going South see southern
constellations rise higher above the horizon, and that the shadow of the earth
on the moon during the partial phase of a lunar eclipse is always circular. That
fitted with the spherical hypothesis of Pythagoras and with the observation
that, for incoming or outgoing boats, the top of the masts appears first or
disappears last, a phenomenon known since at least the seventh century B.C.
at the time of Homer.
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With ups and downs, the realization that we have to deform the Flat Earth
model into a spherical model became accepted throughout the Western World
since that time (though nowadays some still believe in a flat earth).

Then ca. 240 B.C. came Eratosthenes, for us an “experimentalist” even if
he did not perform the experiment by himself, only collected data. He noted
that at the summer solstice, the sun is at the vertical of Aswan while its rays
have an angle of 2π

50 in Alexandria, about 5,000 “stadions” away. Assuming
that the sun is at infinity, he deduced mathematically a circumference of
252,000 “stadions” for the earth, which is within 2% to 20% of the correct
value (given the uncertainty as to the value of a stadion in kilometers).

Remarkably a similar observation was used in China around that time
to measure the distance to the sun, assuming that the earth is flat – an
assumption which remained largely prevalent there until the introduction of
European astronomy in the seventeenth century, though celestial bodies were
usually considered as spherical since the Han dynasty. I shall refrain from
drawing “Pythagorean” conclusions based on that apparent contradiction.

1.2 Riemann and Einstein

The first example of deformations in mathematics dates probably back to Rie-
mann, with his introduction of metric and of Riemann surfaces in the middle
of the nineteenth century, a century before the seminal works by Kodaira and
Spencer [KS58] and Gerstenhaber [Ge64]. Riemann tackled also questions re-
lated to physics already in 1854 in his posthumously published Habilitations-
schrift [Ri54] (and in two short papers in 1854 and 1858, see the EMIS site).
Quoting1 from its Section III, §3:

The questions about the infinitely great are for the interpretation of nature
useless questions. But this is not the case with the questions about the infinitely
small. [. . . ] It seems that the empirical notions on which the metrical determina-
tions of space are founded, the notion of a solid body and of a ray of light, cease
to be valid for the infinitely small. We are therefore quite at liberty to suppose
that the metric relations of space in the infinitely small do not conform to the
hypotheses of geometry; and we ought in fact to suppose it, if we can thereby
obtain a simpler explanation of phenomena.

The first part was contradicted by the paradox coming from the Michelson
and Morley experiment (1887), resolved in 1905 by Einstein with the special
theory of relativity which evolved into general relativity where ideas of Rie-
mann proved essential. Here, experimental need triggered the theory and con-
tradicted the physical intuition of one of the greatest mathematicians. The
latter part can be considered as prophetic of noncommutative geometry, a
major example of deformations.

In modern language one can express the advent of special relativity by
saying that the Galilean geometrical symmetry group of Newtonian mechanics

1 I owe the quotation (in German) to the late Julius Wess.
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(SO(3)·R3 ·R4) is deformed, in the Gerstenhaber sense [Ge64], to the Poincaré
group (SO(3, 1) ·R4) of special relativity. A deformation parameter comes in,
c−1 where c is a new fundamental constant, the velocity of light in vacuum.
Time has to be treated on the same footing as space, expressed mathematically
as a purely imaginary dimension.

General relativity is another, more subtle, example of the paramount im-
portance of deformations in physics. In that counterexample to Riemann’s
conjecture about the infinitely great, one deforms flat Minkowskian space-
time by introducing a nonzero pseudo-Riemannian curvature. For instance,
one can consider a nonzero constant curvature, de Sitter space (with posi-
tive curvature and SO(4, 1) symmetry) or anti de Sitter space (AdS, with
negative curvature and SO(3, 2) symmetry). The latter two symmetry groups
are further deformations of the Poincaré group (or Lie algebra) in the sense of
Gerstenhaber. Being simple and therefore with zero cohomology (Whitehead’s
lemma), the Gerstenhaber theory of deformations [Ge64] shows that “the buck
stops there” in the category of Lie groups or algebras. However, if one looks
at the richer structure of bialgebras or Hopf algebras, one can deform one
step further into quantized enveloping algebras, which are intertwined (by the
Drinfeld twist) with the undeformed structures but not equivalent to them as
deformations of Hopf algebras.

1.3 The deformation philosophy

Physical theories have their domain of applicability defined by the relevant
distances, velocities, energies, etc. involved. But the passage from one domain
(of distances, etc.) to another does not happen in an uncontrolled way: ex-
perimental phenomena appear that cause a paradox and contradict accepted
theories. Eventually a new fundamental constant enters and the formalism is
modified: the attached structures (symmetries, observables, states, etc.) de-
form the initial structure to a new structure which in the limit, when the new
parameter goes to zero, “contracts” to the previous formalism. That constata-
tion is the basis of Flato’s deformation philosophy [Fl82], which has been in the
background of most of our works since Gerstenhaber’s seminal paper [Ge64].

Mathematics and physics are two communities separated by a common
language. In mathematics one starts with axioms and uses logical deduction
therefrom to obtain results that are absolute truth in that framework. In
physics one has to make approximations, depending on the domain of ap-
plicability, and often resort to formal calculations “at the physical level of
rigor” that, in the good cases (motivated by strong physical intuition), can be
considered as heuristic and may eventually be rigorously proved.

The deformation philosophy can be very useful to try to obtain a mathe-
matical framework in which we can develop the new models or theories needed
to take into account new physical phenomena or paradoxes. The question is
therefore, in which category do we seek for deformations? Usually physics
is conservative and if we start e.g., with the category of associative or Lie
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algebras, we tend to deform in the same category. But there are important
generalizations: e.g., quantum groups are deformations of (some commutative)
Hopf algebras. We shall make use of that in the present paper.

As in other areas, a quantitative change produces a qualitative change.
Engels [En77] developed that point and gave a series of examples in Science
to illustrate the transformation of quantitative change into qualitative change
at critical points. That is also a problem in psychoanalysis that was tackled
using Thom’s catastrophe theory [GL78]. Deformation theory is an algebraic
mathematical way to deal with such “catastrophic” situations.

2 Quantization is deformation

2.1 The background

Scientists should keep in mind that there are three questions which they should
answer in their research: Why, What, and How. Too often, the “foot soldiers”
of the armies of researchers, needed in our modern society, deal only with
the “how” question. Even for leading scientists like Gerstenhaber, that is the
question which requires the bulk of the work. My mother used to tell me
that work is 99% perspiration and 1% inspiration. But the latter is essential.
I shall stress that aspect in the present paper. All scientists should have at
least some (preferably personal) understanding of why they are doing what
they are doing, before tackling the “how” question. The understanding may
evolve, as it often happens when qualitative changes occur, and the answers to
the same question may be different in the various sciences where the question
should be asked. Quantization in an excellent example.

Why Quantization?

In physics the answer is canonical: because there is experimental need for
it. That is how it all started, not without hesitations and eventually futile
attempts to circumvent it.

In mathematics, a simplistic canonical answer may be: because physicists
need it. A more subtle (sometimes subconscious) complementary answer is
that it gives nice mathematics. Indeed, very often problems posed by Nature
turn out to be more seminal in mathematics than those mathematicians can
imagine “out of the blue”. That is particularly true of physics, the language
of which is traditionally the most mathematical among sciences, even if math-
ematics plays now an increasing role in all sciences, with mutual benefits.

But physicists and mathematicians speak the mathematical language with
different accent and grammar. That is why (cf. the title of [MR74]) we distin-
guish between three different (even if overlapping) categories:

• Theoretical Physics, in which mathematics is used in an (often much)
looser way in order to try and account for difficult physics problems.
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• Mathematical Physics, which aims at doing the same thing in as rigorous a
mathematical form as possible and at being honest when the conventions
of mathematics are stretched.

• Physical Mathematics, which is pure mathematics motivated and inspired
by physics. The works of Gerstenhaber and even more Stasheff clearly
belong to the latter category.

Deformation quantization, depending on how it is developed and used, belongs
to all three categories.

What is quantization?

In (theoretical and mathematical) physics, that is a way to describe new
(“quantum”) phenomena which appear (usually) in the microworld, on the
basis of the (“classical”) knowledge which comes from our perception and
description of the macroworld. In theoretical physics it often takes the form
of effective recipes, while in mathematical physics one aims at a better un-
derstanding of the process of quantization itself. That is what we have been
doing with deformation quantization [BFFLS].

In (physical) mathematics, one can define quantization in a concise way as
a passage from commutative to noncommutative structures. It covers a wide
area of mathematics, from more concrete examples such as the quantization of
Lie bialgebras to more abstract or involved ones such as quantum cohomology
and noncommutative differential geometry.

How do we quantize?

In physics, the traditional way to quantize is via the correspondence principle,
in which classical observables, functions on a phase space, are replaced by
operators on a Hilbert space following some “quantization rule.”

Many mathematicians (Berezin [Be75], Kostant [Kt70], even in a way Weyl
[We28], etc.) express that physical idea by saying (in different forms) that
quantization is a functor between categories of algebras of “functions” on
phase spaces and of operators in Hilbert spaces. They take the physicists’
formulation for God’s axiom, forgetting that physicists are neither God nor
Jesus but humans and that when the best of them “walk over mathematical
waters,” their physical intuition tells them where, under the surface of the
water, lie the stones on which they can walk in relative safety, albeit getting
their feet wet.

Deformation quantization is not only an alternative to that formalization
of what physicists are doing, it is also (and above all) an autonomous ap-
proach to as rigorous as possible a mathematical treatment of quantization,
sometimes the only one available for that purpose. The idea, coming from our
deformation philosophy, is that quantization is a deformation of the compo-
sition laws of physical observables.
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We shall now very briefly present the initial object of quantization
(classical mechanical systems), the traditional approaches to their quanti-
zation, and the most typical example of our deformation philosophy, de-
formation quantization, surveying some of its manifold avatars. For more
details see e.g., [DS02,BGGS] and the (extensive but not exhaustive, and still
growing) list of references therein.

2.2 Classical systems and their traditional quantization

Even when we start with the simplest example of phase space, R
2n, it of-

ten happens that the physical problem considered imposes constraints on the
phase space. That reduces it (in the language of Definition 1 below, see e.g.,
Section V in [FLS76]) to a symplectic submanifold when we have only what
Dirac [Di50] called second-class constraints given by some equations, con-
straining both configuration space and conjugate momenta, and otherwise to
a Poisson manifold (in the case of first-class constraints). So we shall recall
some basic facts about the mathematical formalism of classical systems in
order to make precise what we need to quantize.

Definition 1. 1. A symplectic manifold is a differentiable manifold M en-
dowed with a nondegenerate closed 2-form ω on M .
2. Given a 2-tensor π on a differentiable manifold M , π =

∑
i,j πij∂i∧∂j (lo-

cally, with obvious notations), a bracket {·, ·} : C∞(M)×C∞(M) → C∞(M)
defined locally by {F,G} = πij∂iF∂jG is called a Poisson bracket if it
is a skew-symmetric ({F,G} = −{G,F}) bilinear map satisfying (F,G ∈
C∞(M)):

• Jacobi identity: {{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0
• Leibniz rule: {FG,H} = {F,H}G + F{G,H}.

3. A Poisson manifold is a differentiable manifold M endowed with a skew-
symmetric contravariant 2-tensor π (not necessarily nondegenerate) such that
{F,G} = i(π)(dF ∧ dG) is a Poisson bracket.
4. A classical system is a Poisson manifold (M,π) with a distinguished smooth
function, the Hamiltonian H : M → R.

Remark 1. For a symplectic manifold M , necessarily dim M = 2n. We can
write locally ω = ωijdx

i ∧ dxj with ωij = −ωji, Alt(∂iωjk) = 0 and (non-
degeneracy) detωij �= 0. There are (Darboux) coordinates (qα, pα) for which
ω is constant: ω =

∑α=n
α=1 dqα ∧ dpα. Every Poisson manifold is “foliated” by

symplectic manifolds, usually of nonconstant dimension.

Example 1. a. Symplectic manifolds:
(1) R

2n with ω = dqα ∧ dpα (summation on repeated indices).
(2) Cotangent bundle T ∗N , ω = dλ (the 1-form on T ∗N is locally λ =
−pαdq

α).
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b. Poisson manifolds:
(3) Symplectic manifolds (dω = 0 = [π, π] ≡ Jacobi identity, (ωij) = (πij)−1).
(4) Lie algebra with structure constants Ck

ij and πij =
∑
k xkCk

ij .
(5) π = X ∧ Y , where (X,Y ) are two commuting vector fields on M .

The beginning of quantum mechanics

The experimental need for quantization became clear when, around 1900, in
order to explain the blackbody radiation (cf. any textbook), Planck proposed
the quantum hypothesis: the energy of light is not emitted continuously but
in quanta proportional to its frequency. He wrote h (= 2π�) for the propor-
tionality constant which bears his name. That paradoxical situation got a
beginning of a theoretical basis when, in 1905, Einstein came with the the-
ory of the photoelectric effect and, in 1913, with Bohr’s model for the atom.
Reflecting on the photoelectric effect, Louis de Broglie suggested in 1923 that
waves and particles are two manifestations of the same physical reality or (as
he formulated it in [LdB29]) the concept of the duality of waves and corpuscles
in Nature. That brought him to what he called “wave mechanics” in his Thesis,
published in 1925, and to Stockholm after (quoting from [LdB29]) experiment
which is the final judge of theories, has shown that the phenomenon of electron
diffraction by crystals actually exists and that it obeys exactly and quantitatively
the laws of wave mechanics.

These laws [LdB29] proved to be identical with a mechanics independently de-
veloped (published shortly afterwards) by Schrödinger, Heisenberg and many
others, quantum mechanics, which uses the concept of inner product vector
space invented by Hilbert in 1916 for purely mathematical reasons. The lat-
ter formulation proved extraordinarily effective but led to its probabilistic
“Copenhagen” interpretation that neither Einstein nor de Broglie was at ease
with, and it obscured the link with classical mechanics.

In the traditional quantization of a classical system (R2n, {·, ·}, H) we take
a Hilbert space H = L2(Rn) � ψ in which acts a “quantized” Hamiltonian Ĥ,
the energy levels of which are defined by an eigenvalue equation Ĥψ = λψ.
An essential ingredient is the von Neumann representation of the canonical
commutation relations (CCR) for which, defining the operators q̂α(f)(q) =
qαf(q) and p̂β(f)(q) = −i�∂f(q)∂qβ

for f differentiable in H, we have (CCR)
[p̂α, q̂β ] = i�δαβI (α, β = 1, ..., n). We say that the couple (q̂, p̂) “quantizes”
the coordinates (q, p). A polynomial classical Hamiltonian H is quantized once
chosen an operator ordering, e.g., the (Weyl) complete symmetrization of p̂
and q̂. In general the quantization on R

2n of a function H(q, p) with inverse
Fourier transform H̃(ξ, η) can be given by (cf. [We28] where the weight is
� = 1):

H �→ Ĥ = Ω
(H) =
∫

R2n

H̃(ξ, η)exp(i(p̂.ξ + q̂.η)/�)�(ξ, η)dnξdnη. (1)
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Classical limit, deformation theory and around

In spite of the drastic change in the nature of observables that occurs in
passing from classical to quantum mechanics, physicists have almost from the
beginning tried to express at least the former as a limit of the latter when
h → 0. A posteriori one can see that as a kind of inverse of deformations, in
the sense of Gerstenhaber or possibly more general ones [Na98]. The notion is
called Wigner–Inönü “contraction” [IW53] for limits of Lie algebras and (in
that context) is already present in [Se51].

A first step in that direction was to recover the classical observables
from the quantum ones, which was done, shortly after Weyl’s 1931 visit to
Princeton, by Wigner [Wi32] in the form of a trace, which can be written
H = (2π�)−nTr[Ω1(H) exp((ξ.p̂ + η.q̂)/i�)]. The map Ω1 defined by (1) for
� = 1 is an isomorphism of Hilbert spaces between L2(R2n) and the space of
Hilbert–Schmidt operators on L2(Rn). It took some time before physicists re-
alized that the correspondence H �→ Ω(H) is not an algebra homomorphism,
neither for ordinary product of functions nor for the Poisson bracket P (“Van
Hove theorem”). In fact, for two functions u1 and u2 we have [Gr46, Mo49]
Ω−1

1 (Ω1(u1)Ω1(u2)) = u1u2 + i�
2 {u1, u2}+ O(�2), and similarly for bracket.

More precisely Ω1 maps, into product and bracket of operators (resp.), the
“functions” defined by the formal series (Moyal product and Moyal bracket):
u1 ∗M u2 = exp(νP )(u1, u2) = u1u2 +

∑∞
r=1

νr

r! P
r(u1, u2) (with 2ν = i�),

M(u1, u2) = ν−1 sinh(νP )(u1, u2) = P (u1, u2) +
∑∞
r=1

ν2r

(2r+1)!P
2r+1(u1, u2).

We recognize formulas for deformations of algebras in the sense of Gersten-
haber, which can be concisely defined as follows:

Definition 2. A deformation of an algebra A over a field K is an algebra Ã
(flat) over K[[ν]] such that Ã/νÃ ≈ A. Two deformations Ã and Ã′ are said
to be equivalent if they are isomorphic over K[[ν]] and a deformation Ã is
said to be trivial if it is isomorphic to the original algebra A considered by
base field extension as a K[[ν]]-algebra.

Indeed for associative (resp. Lie) algebras, Definition 2 tells us that there
exists a new product ∗ (resp. bracket [·, ·]) such that the new (deformed)
algebra is again associative (resp. Lie). Denoting the original composition laws
by ordinary product (resp. {·, ·}) this means that for u1, u2 ∈ A (we can extend
this to A[[ν]] by K[[ν]]-linearity) we have the formal series expansion u1 ∗
u2 = u1u2+

∑∞
r=1 νrCr(u1, u2), [u1, u2] = {u1, u2}+

∑∞
r=1 νrBr(u1, u2) where

the Cr are Hochschild 2-cochains and the Br (skew-symmetric) Chevalley
2-cochains, such that for u1, u2, u3 ∈ A we have (u1 ∗ u2) ∗ u3 = u1 ∗ (u2 ∗ u3)
and S[[u1, u2], u3] = 0, where S denotes summation over cyclic permutations.

In the early 1970s, at the time when we were “pregnant with” deforma-
tion quantization, two related approaches to quantization (see [St06] for a
comparison) were initiated by mathematicians who, with different motiva-
tions, tried to develop a mathematical framework permitting one to express
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the correspondence principle in a context more general and intrinsic than e.g.,
in the canonical or Dirac constraints [Di50] approaches.

The first is Geometric Quantization [Kt70,So70]. One looks for a general-
ized Weyl map from functions on a symplectic manifold M : one starts with
“prequantization” on L2(M) and tries to halve the number of degrees of free-
dom using (complex, in general) polarizations to get a Lagrangian submanifold
L of dimension half of that of M , and quantized observables as operators in
L2(L). That approach proved very powerful in representation theory (M be-
ing a coadjoint orbit, e.g., for solvable Lie groups) but it has turned out that
few observables can be so quantized (linear or maybe quadratic).

The second is Berezin quantization (see e.g., [Be75]). There quantization
is an algorithm by which a quantum system corresponds to a classical dy-
namical one, i.e., (roughly) is a functor between a category of algebras of
classical observables (on phase space) and a category of algebras of operators
(in Hilbert space). Several examples (M,π) were treated, e.g., Euclidean and
Lobatchevsky planes, cylinder, torus and sphere, Kähler manifolds and duals
of Lie algebras. But Hamiltonians H were not considered and the notion of
deformation was not present (even if a posteriori one can find it there).

In a visionary 1949 Congress presentation, Dirac [Di49] wrote: One should
examine closely even the elementary and the satisfactory features of our Quantum
Mechanics and criticize them and try to modify them, because there may still be
faults in them. The only way in which one can hope to proceed on those lines is
by looking at the basic features of our present Quantum Theory from all possible
points of view. Two points of view may be mathematically equivalent and you may
think for that reason if you understand one of them you need not bother about
the other and can neglect it. But it may be that one point of view may suggest a
future development which another point does not suggest, and although in their
present state the two points of view are equivalent they may lead to different
possibilities for the future. Therefore, I think that we cannot afford to neglect any
possible point of view for looking at Quantum Mechanics and in particular its
relation to Classical Mechanics. Any point of view which gives us any interesting
feature and any novel idea should be closely examined to see whether they suggest
any modification or any way of developing the theory along new lines. A point
of view which naturally suggests itself is to examine just how close we can make
the connection between Classical and Quantum Mechanics. That is essentially a
purely mathematical problem – how close can we make the connection between
an algebra of non-commutative variables and the ordinary algebra of commutative
variables? In both cases we can do addition, multiplication, division . . . .

Dirac’s exceptional intuition permitted him, at that time, to only stress
that there was a problem in the relation between classical and quantum me-
chanics. Shortly afterwards [Di50] he introduced his formalism of constraints,
probably in an attempt to address the problem. Though we knew the latter,
it is only a few years ago that I discovered the above quote, which can be now
interpreted as an invitation to develop deformation quantization.
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2.3 Deformation quantization

We forget about the correspondence principle Ω and work in an autonomous
manner with “functions” on general phase spaces. The framework is a Poisson
manifold (M,π) and, in the spirit of our deformation philosophy, quantization
is understood [BFFLS] as a deformation of the usual product of classical
observables.

More precisely we start with an algebra Aν = C∞(M)[[ν]] of formal series
in a parameter ν with coefficients in A = C∞(M).

Definition 3. A star product is a bilinear map ∗ν : Aν×Aν → Aν defined by
f ∗ν g = fg +

∑
r≥1 νrCr(f, g) where the Cr are bidifferential operators null

on constants, ∗ν is associative and C1(f, g)− C1(g, f) = 2{f, g}.
Remark 2. 1. Two star products ∗1 and ∗2 are equivalent (in the sense of

Definition 2) if there exists a formal series T (f) = f +
∑
r≥1 νrTr(f) inter-

twining them (T (f∗1g) = T (f)∗2T (g)), the Tr being (necessarily [BFFLS])
differential operators.

2. If we do not require that the unit of the algebra is unchanged by defor-
mation, i.e., that the Cr are null on constants (1 ∗ν f = f ∗ν 1 = f),
an equivalence can always bring a so-deformed algebra to one with unit
unchanged. That was proved by Gerstenhaber [GS88] in the more general
context of deformations leaving a subalgebra unchanged.

3. [f, g]ν ≡ 1
2ν (f ∗ν g − g ∗ν f) = {f, g}+ O(ν) is Lie algebra deformation.

The basic paradigm is the above-mentioned Moyal product on R
2n. The choice

of a star product fixes a quantization rule. Operator orderings can be imple-
mented by good choices of T (or of the weight �).

If (M,π) is a Poisson manifold, f �̃g = fg + νP (f, g) does not define an
associative product, but (f �̃g)�̃h−f �̃(g�̃h) = O(ν2). The question is therefore
whether it is always possible to modify �̃ in order to get an associative prod-
uct. The answer is positive. That was proved in increasing generality over 20
years, from [BFFLS] to [Ko97,Ko99] where it is a consequence of a “formality
theorem” in which higher structures play an essential role. See e.g., [DS02] for
a presentation of the main steps.

For symplectic manifolds, the equivalence classes of star products are
parametrized by the second de Rham cohomology space H2

dR(M) (cf.
e.g., [NT95]). In particular, if H2

dR(R2n) is zero, all deformations are equiv-
alent. On R

2n, all star products are equivalent to the Moyal product (cf.
the von Neumann uniqueness theorem for projective unitary irreducible
representations of the CCR). In the general case of Poisson manifolds, the
equivalence classes of star products are [Ko97] those of formal Poisson tensors
πν = π + νπ1 + · · · .

That is quantization: some physical applications

The time evolution of an observable F ∈ A in a classical system (M,π,H),
governed by Ḟ ≡ dF

dt = P (H,F ), keeps the same form after star quantization,
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the Poisson bracket P being replaced by the deformed bracket [·, ·]ν . When
there is a (possibly generalized) Weyl mapping Ω between functions on phase
space and operators, what corresponds to the unitary evolution operator is
the (autonomously defined) star exponential: Exp∗(

tH
i� ) =

∑
r≥0

1
r!(

t
i� )rH∗r

(here we write again 2ν = i�). It is a singular object, i.e., does not belong to
the quantized algebra (A[[ν]], ∗) but to (A[[ν, ν−1]], ∗). Spectrum and states
are given by a “spectral” (Fourier–Stieltjes in the time t) decomposition of
the star exponential.

In order to show that a star product provides an autonomous quantiza-
tion of a manifold M we treated in [BFFLS] a number of examples. For the
harmonic oscillator H = 1

2 (p2 + q2), with the Moyal product on R
2n, we

obtain Exp∗(
tH
i� ) = (cos( t2 ))−1 exp(2H

i� tan( t2 )) =
∑∞
k=0 exp (−i(k + n

2 )t)πnk
where πnk can be expressed as a function of H . As expected the energy levels
of H are Ek = �(k+ n

2 ). With normal ordering, Ek = k�: E0 →∞ for n→∞
in Moyal ordering but E0 ≡ 0 in normal ordering, preferred in Field The-
ory. Other standard examples can be quantized in an autonomous manner by
choosing adapted star products, e.g., the angular momentum with spectrum
k(k+(n−2))�2 for the Casimir element of so(n) and the hydrogen atom with
H = 1

2p2−|q|−1 on M = T ∗S3, E = 1
2 (k+1)−2

�
−2 for the discrete spectrum,

and E ∈ R
+ for the continuous spectrum; etc.

The Feynman path integral is, for Moyal ordering, the Fourier transform
in p of the star exponential, and is equal to it (up to multiplicative factor) for
the normal ordering [Dt90]. More recently the Kontsevich star product was
expressed as a path integral [CF00]. There are now many examples (including
in string theory) showing the importance of star products in physics.

It is a matter of practical feasibility of calculations, when there are Weyl
and Wigner maps intertwining between both formalisms, to choose to work
with operators in Hilbert spaces or with functional analysis methods (distribu-
tions, etc.) Dealing e.g., with spectroscopy (where it all started) and matrices
on finite-dimensional Hilbert spaces, the operatorial formulation is probably
easier, and safer for physicists to use. But when there are no precise Weyl and
Wigner maps (e.g., for general phase spaces, possibly singular and/or infinite
dimensional which is the case of Field Theory) one does not have much choice
but to work (maybe “at the physical level of rigor”) with functional analysis.

Some avatars: a very quick overview

2.3.2.1 (Topological) Quantum Groups. See e.g., [BGGS] for more details. One
deforms the Hopf algebras of functions (differentiable vectors) on a Poisson–
Lie group, and/or their topological duals (as nuclear topological vector space,
Fréchet or dual thereof). It is often enough to consider only “preferred defor-
mations” in which one deforms either the product or the coproduct, e.g., for G
a semisimple compact Lie group with A = C∞(G) (one gets a differential star
product) or its dual (compactly supported distributions on G, completion



Deformations, Quantization and Noncommutative Space-Time Structures 51

of Ug, for which we deform the coproduct with a Drinfeld twist); or with
A = H(G), the coefficient functions of finite-dimensional representations of
G, or its dual.

2.3.2.2 Algebraic varieties, “manifolds with singularities” and higher struc-
tures. A natural question, especially in view of the Dirac constraints formalism
where the constraints are often polynomial, is to deal with Gerstenhaber de-
formations of the commutative product of functions in an algebraic geometry
context, on varieties. The subject, initiated by Kontsevich [Ko01] is very active
now. Recent references are e.g. [Ye03,Hi05,BGNT,VdB07].

A remarkable property in the case of differentiable manifolds is the van-
ishing of the Harrison [GS88] (or Tyurina [Pa07]) cohomology which governs
commutative deformations, making them trivial. That is why we could not
simply deform the product of entries in determinants in our quantization of
Nambu brackets (multilinear brackets, the typical example of which is given
by a determinant, the Poisson bracket in the bilinear case) and we had to
quantize that higher structure in a more complicated way [DFST].

The above vanishing is no more true when singularities are present (e.g., a
cone [FK07]), or in the context of complex analytic geometry (cf. e.g., [Pa07],
based on the lesser known developments of [KS58] by Grothendieck in the
1960/61 Cartan Seminar) and is related to recent studies (see e.g., [MMS06]) of
index theorems for pseudodifferential operators on manifolds with boundary.

Challenging new phenomena occur. Various higher structures (groupoids
and algebroids of all kinds, operads, props, gerbes, stacks, etc.) play an impor-
tant role and constitute a subject of independent interest (see e.g., [BGNT] for
deformation quantization of gerbes). A significant presentation of all would,
however, exceed both the margin of this survey and the competence of its au-
thor. I shall therefore refer for more details to the quoted papers and references
therein (or coming soon at an arXiv near you).

2.3.2.3 Noncommutative geometry. The Gelfand duality theorem states
(roughly speaking) that a commutative topological algebra A can be repre-
sented as an algebra of functions on a topological space, its spectrum (the
set of maximal ideals). Woronowicz’s matrix C∗ pseudogroups, another form
of quantum groups which came after his earlier works [Wo79] more directly
inspired by the idea of finding a noncommutative analogue, can be seen as
an attempt in that direction. Gelfand’s recent study [GR05] of polynomials
in noncommutative variables from a combinatorial point of view is another.

By far the most successful development is Connes’ noncommutative geom-
etry, a fast-growing frontier domain of mathematics with many ramifications.
Deformed algebras of the type (A[[ν]], ∗ν) belong [Co94] to that framework.
The strategy is to formulate usual differential geometry in an unusual man-
ner, using in particular algebras and related concepts, so as to be able to
“plug in” noncommutativity in a natural way. That is now a huge subject
in itself with dedicated web sites. It gave precise constructions of quantized
Riemannian manifolds and of the Standard Model (see e.g., [CDV05,CM08]).
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The last Section will deal with the background and main lines of a recent
attempt in that general direction, in which we deform and quantize Minkowski
space-time.

3 Deformed symmetries, particle physics and cosmology

Traditionally elementary particles are associated with unitary irreducible rep-
resentations (UIR) of a symmetry group, in particular the Poincaré group,
which is why (following Dirac’s suggestion) Wigner studied these, obtaining
in 1939 the first example of the unitary dual of a (noncompact) Lie group
which developed into a new field of mathematics. Since the background has
been reviewed in [St07] we shall here only sketch the main points, referring
to that paper (and references therein) for more details, and to [BCSV] for a
later development and some new perspectives.

In line with our deformation philosophy, we studied extensively the impli-
cations for particle physics of deforming Minkowski space-time by introducing
a tiny negative curvature, to AdS4. It turned out that the UIR which, for many
good reasons, represent massless particles in AdS4, are composite of two “more
elementary” particles (massless in 1+2 dimensional Minkowski space-time),
the “singletons” that were discovered by Dirac in 1963 [Di63], which for that
reason we call Di and Rac. That kinematical description (based on UIR of
SO(2, 3)) was made dynamical for photons as 2-Rac states in [FF88] in a
way compatible with quantum electrodynamics. Many more properties were
studied in what we call “singleton physics,” in particular conformal covariance
(giving a prototype of the now extensively studied AdS/CFT correspondence)
and BRST. A lot more needs to be done in that spirit, most notably an ex-
tension of the new infinite-dimensional Lie algebra defined in [FF88], which
is a “square root of the CCR,” to a (much more complex, not yet introduced)
“square root of a superalgebra” when dealing with both Di and Rac.

About 10 years later, when neutrino oscillations were confirmed, we sug-
gested [FFS99] that they could be interpreted in that framework. Shortly
afterwards Frønsdal [Fr00] suggested to interpret the leptons (electron, muon,
tau, their antiparticles and neutrinos), none of which is now considered as
massless, as initially massless and therefore 2-singleton states in AdS4, in
three flavors and massified by interaction with (five pairs of) Higgs. That pre-
dicts two new mesons (the analogs of W and Z for flavor symmetry) which
are yet to be observed (as well as the Higgs).

But why deform Minkowski space-time only by introducing a small cur-
vature? Surprising phenomena appear when quantizing the AdS4 symme-
try SO(2, 3), e.g., there exist [FHT93] finite-dimensional UIR at even root
of unity, hinting that the corresponding quantized AdS spaces should be
“q-compact,” and (BTZ) black holes occur in AdSn≥3. The physical Ansatz
is that there may remain after the Big Bang, at the edge of our Universe,
“shrapnel” from the initial singularity, playing a role similar to that of stem
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cells, which in view of our deformation philosophy could be black holes hav-
ing the form of quantized AdS (deformed Minkowski) spaces, possibly at even
root of unity.

A first step is to develop a noncommutative geometry approach to such
structures. That was done in [BCSV]. In a nutshell we build a (closed [Co94])
star product using an oscillatory integral, on a 1-dimensional extension R0

of the Heisenberg group (naturally endowed with a left invariant symplectic
structure) and a Dirac operator D on the space H of a regular representation
of R0. The star product endows the space A∞ of smooth vectors in H with a
noncommutative Fréchet algebra structure. We get in this way a noncommuta-
tive spectral triple (A∞,H, D) à la Connes, but in a Lorentzian context, which
induces on (an open R0-orbit M0 in) AdS space-time a pseudo-Riemannian
deformation triple – and raises further questions even for that part.

Another direction is to try to adapt singleton physics, the background of
which is nonquantized AdS spaces, in the new quantized context. In particu-
lar, to try to develop an analog, on quantized space-times, of the composite
electrodynamics of [FF88] and of the incorporation of flavor symmetry [Fr00].
And then possibly to try to extend that to quarks and baryons, which would
be created from analogs of singletons emerging from “qAdS black holes” and
be massified e.g., by interaction with dark matter or dark energy, which are
now believed to constitute 96% of our universe. As we suggest in [BCSV]
that (very ambitious) program might provide an explanation of baryogenesis,
both as to how and where matter is created in our universe in accelerated
expansion, and why there is an imbalance between matter and antimatter.

That approach raises many questions which we can already foresee, and
in the course of study more will surge. We can also expect that new higher
structures will be needed, even more so if one wants to put it all into a “theory
of everything” of a new kind, possibly bundled with strings. In my opinion
these problems are definitely worthy of attack. They can be expected to prove
their worth by hitting back. Solving them would be a major achievement,
solving some should be at least nice mathematics.
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Abstract. We discuss certain aspects of the combinatorial approach to the
differential geometry of non-abelian gerbes due to W. Messing and the author
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1 Introduction

It is a classical fact1 that to a principal G-bundle P on a scheme X , endowed
with a connection ε, is associated a Lie (G)-valued 2-form κ on P , the curvature
of the connection, satisfying a certain G-equivariance condition. While κ does
not in general descend to a 2-form on X , the equivariance condition may
be viewed as a descent condition for κ from a 2-form on P to a 2-form on
X , but now with values in the Lie algebra of the gauge group P ad of P .
The connection on P also induces a connection μ on the group P ad, and the
2-form κ satisfies the Bianchi equation, an equation which may be expressed
in global terms as

dκ + [μ, κ] = 0 (1)

([5] Proposition 1.7, [4] Theorem 3.7). Choosing a local trivialization of the
bundle P , on an open cover U :=

∐
i∈I Ui of X , the connection ε is described

1 At least in a differential geometric setting, see [9], but the same construction can
be carried out within the context of algebraic geometry.
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by a family of Lie (G)-valued connection 1-forms ωi defined on the open sets
Ui, and the associated curvature κ corresponds to a family of Lie (G)-valued
2-forms κi defined, according to what is known as the structural equation of
Elie Cartan, by the formula2

κi = dωi +
1
2

[ωi, ωi]. (2)

Equation (1) then reduces to the classical Bianchi identity

dκi + [ωi, κi] = 0. (3)

J.-L. Brylinski introduced in [7] the notions of connection ε and curving
K on an abelian G-gerbe P on a space X (where G was the multiplicative
group Gm, or rather in his framework the group U(1)), and showed that to
such connective data (ε, K) is associated a closed Gm-valued 3-form ω on X ,
the 3-curvature. More recently, W. Messing and the author extended these
concepts in [5] from abelian to general, not necessarily abelian, gerbes P on
a scheme X . The coefficients of such a gerbe no longer constitute a sheaf of
groups as in the principal bundle situation, but rather a monoidal stack G
on X , as is to be expected in that categorified setting. In particular, when the
gerbe is associated to a given non-abelian group G (so that we refer to it as a
G-gerbe), the corresponding coefficient stack G is the monoidal stack associ-
ated to the prestack determined by the crossed module G −→ Aut(G), where
Aut(G) is the sheaf of local automorphisms of G. It may also be described
more invariantly as the monoidal stack of G-bitorsors on X . Once more, to
the gerbe P is associated its gauge stack, a twisted form Pad := Eq(P , P)
of the given monoidal stack G, and the connection on P induces a connec-
tion μ on Pad. By analogy with the principal bundle case, the corresponding
3-curvature Ω, viewed as a global 3-form on X , now takes its values in the
arrows of the stack Pad.

There now arises a new, and at first sight somewhat surprising feature,
but which is simply another facet of the categorification context in which we
are operating. The 3-form Ω is accompanied by an auxiliary 2-form κ with
values in the objects of the gauge stack Pad, which we called in [5] the fake
curvature of the given connective structure (ε, K). A first relation between
the forms Ω and κ comes from the very definition [5] (4.1.20), (4.1.22) of Ω,
and may be stated as in [5](4.3.8) as the categorical equation

tΩ + dκ + [μ, κ] = 0 (4)

where t stands for “target” of a 1-arrow with source the identity object I in
the stack of Lie(Pad)-valued 3-forms on X . On the other hand, the 3-form Ω
is no longer closed, even in the μ-twisted sense described for principal bundles

2 The canonical divided power 1/2[ω, ω] of the 2-form [ω, ω] is also denoted ω ∧ ω
or [ω](2).
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by (1). It satisfies instead the following more complicated analogue [5] (4.1.33)
of the Bianchi identity (1):

dΩ + [μ, Ω] + [K, κ] = 0 . (5)

While the first two terms in this equation are similar to those of (1), the
categorification term K is an arrow in the stack of 2-forms with values in the
monoidal stack Eq(Pad, Pad) induced by the curving K. The pairing of K
with κ is induced by the evaluation of the natural transformation K between
functors from Pad to itself on the object κ of Pad.

The price to be paid for the compact form in which the global curvature
equations (4) and (5) have been stated is their rather abstract nature, and
it is of interest to describe them in a more local form in terms of traditional
group-valued differential forms, just as was done in (3) for equation (1). Such
a local description was already obtained in [5], both for the cocycle conditions
(4) and (5), and for the corresponding coboundary equations which arise when
alternate local trivializations of the gerbe have been chosen. However, the de-
termination of those local equations was rather indirect, as it required a third
description of a gerbe, which we have called the semi-local description [6] §4,
and which has also appeared elsewhere in various situations [15], [13], [8].

The present text may be viewed as a companion piece to the author’s [6].
Its main purpose is to provide a more transparent construction than in [5]
of the cocycle conditions and related equations associated to a gerbe with
curving data summarized in [5] Theorem 6.4. We restrict our attention, as
in [6], to gerbes which are connected rather than locally connected, as these
determine Čech cohomology classes. A cocyclic description in the general case
requires hypercovers and could be dealt with along the lines discussed in [3],
but would not shed any additional light on the phenomena being investigated
here. Our main results are to be found in Sections 4 and 5, while Section 3
reviews for the reader’s convenience some aspects of [5] and [6]. Section 2 is
a review of some of the formulas in the differential calculus of Lie (G)-valued
forms, a few of which do not appear to be well-known.

Another aim of the present work is to revisit the quite complicated
coboundary equations of [5] §6.2. The coboundary equations which arise here
are simpler, and more consistent than those of [5] with a non-abelian Čech–de
Rham interpretation. We refer to remark 5.1 for a specific comparison between
the two notions. In order to make this comparison easier, we have chosen the
orientations of our arrows consistently with [5]. This accounts for example for
the strange choice of orientation of the arrow Bi in diagram (76), or for the
change of sign (91) for the arrow γij .

A final purpose of this text is to explain how the diagrammatic proofs
of some of the local results of [5] can be replaced by more classical compu-
tations involving Lie (G)-valued differential forms. For this reason, we have
given two separate computations for certain equations, one diagrammatic
and the other classical. We do not assert that one of the two methods of
proof is always preferable, though one might contend that diagrams provide a
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better understanding of the situation than the corresponding manipulation of
differential forms. As the level of categorification increases, so will the dimen-
sion of the diagrams to be considered, and it may not be realistic to expect
to tread along the diagrammatic path much beyond the hypercube proof [5]
(4.1.33) of the higher Bianchi equation (5). The generality and algebraicity of
the formalism of differential forms must then come into its own. In addition, it
is our hope that the present approach, which extends to the gerbe context the
traditional methods of differential geometry, will provide an accessible point
of entry into this topic. A number of other authors have recently described
certain aspects of the differential geometry of gerbes in terms of differential
forms, particularly [1], [12], and [14], [2].

I wish to thank Bernard Julia and Camille Laurent-Gengoux for enlight-
ening discussions on related topics. The impetus for the present work was
provided by my collaboration with Wiliam Messing on our joint papers [4]
and [5]. It is a pleasure to thank him here for our instructive and wide-ranging
discussions over all these years.

2 Group-valued differential forms

2.1

Let X be an S-scheme. We assume from now on for simplicity that the primes
2 and 3 are invertible in the ring of functions of S (for example S = Spec(k)
where k is a field of characteristic �= 2, 3). A relative differential n-form on
an S-scheme X , with values in a sheaf of OS-Lie algebras g, is defined as a
global section of the sheaf g⊗OS Ωn

X/S on X . When X/S is smooth,

g⊗OS Ωn
X/S � HomOX (T nX/S , gX) (6)

where gX := g ⊗OS OX and T nX/S is the n-th exterior power ∧nTX/S of the
relative tangent sheaf TX/S , i.e., the sheaf of relative n-vector fields on X .
Such an n-form is nothing else than an OX -linear map

T nX/S −→ gX . (7)

In view of this definition, such a map is classically called a g-valued dif-
ferential form. A more geometric description of such forms is given in [4],
following the ideas of A. Kock in the context of synthetic differential geom-
etry [10], [11]. It is based on the consideration, for any positive integer n,
of the scheme Δn

X/S of relative infinitesimal n-simplexes on X . For any
S-scheme T , a T -valued point of Δn

X/S consists of an (n+1)-tuple of T -valued
points (x0, . . . , xn) of X which are pairwise close to first order in an appro-
priate sense [4] (1.4.9). We view Δn

X as an X-scheme via the projection p0
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of such points to x0. As n varies, the schemes Δn
X/S determine a simplicial

X-scheme Δ∗
X/S , whose face and degeneracy operations are induced by the

usual projection and injection morphisms Xn −→ Xn±1.
Let G be a flat S-group scheme, with OS-Lie algebra g. A relative g-valued

n-form (7) on X/S may then be identified by [4] Proposition 2.5 with a mor-
phism of S-schemes

Δn
X/S

f−→ G (8)

whose restriction to the degenerate subsimplex sΔn
X/S of Δn

X/S factors
through the unit section of G. When differential forms are expressed in this
combinatorial language, they deserve to be called G-valued differential forms,
even though they actually coincide with the traditional g-valued differential
forms (6), (7). In the combinatorial context, our notation will be multiplica-
tive, and additive when we pass to the traditional language of differential
forms.

We will now discuss some of the features of these g-valued forms, and refer
to [4] for further discussion. First of all, let us recall that the action of the
symmetric group Sn+1 on a combinatorial differential n-form ω(x0, . . . , xn)
by permutation of the variables is given by

ω(xσ(0), . . . , xσ(n)) = ω(x0, . . . , xn)ε(σ)

where ε(σ) is the signature of σ. Also, the commutator pairing

[g, h] := g h g−1h−1

on the group G determines a bracket pairing on g-valued forms of degree ≥1,
defined combinatorially by the rule

(g⊗OS Ωm
X/S)× (g⊗OS Ωn

X/S) �� (g⊗OS Ωm+n
X/S ) (9)

which sends (ω, ω′) to [ω, ω′], where

[ω, ω′](x0, . . . , xm+n) := [ω(x0, . . . , xm), ω′(xm, . . . , xm+n)] .

This pairing is defined in classical terms, by

[ω, ω′] := [Y, Y ′]⊗ (η ∧ η′)

for any pair of forms ω := Y ⊗ η and ω′ := Y ′ ⊗ η′ in g⊗OS Ω∗
X/S . It endows

g⊗OS Ω∗
X/S with the structure of a graded OS-Lie algebra. In particular, the

bracket satisfies the graded commutativity rule

[f, g] = (−1)|f ||g|+1[g, f ] , (10)

where |f | is the degree of the form f , so that

[f, f ] = 0
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whenever |f | is even. The graded Jacobi identity is expressed (in additive
notation) as

(−1)|f ||h|[f, [g, h]] + (−1)|f ||g|[g, [h, f ]] + (−1)|g||h|[h, [f, g]] = 0 .

In particular,
[f, [f, f ]] = 0 (11)

and, when |f | = |g| = 1,

[f, 1
2 [g, g]] = [[f, g] , g] .

Let Aut(G) be the sheaf of local automorphisms of G, whose group of
sections above an S-scheme T is the group AutT (GT ) of automorphisms of
the T -group GT := G ×S T . The definition (8) of a combinatorial n-form
still makes sense when G is replaced by a sheaf of groups F on S, and the
traditional description of such combinatorial n-forms as n-forms with values
in the Lie algebra of F remains valid by [4] Proposition 2.3 when F = Aut(G).
The evaluation map

Aut(G)×G −→ G
(u, g) �→ u(g)

induces for all pairs of positive integers a bilinear pairing

(Lie (Aut(G))⊗OS Ωm)× (g⊗OS Ωn
X/S) �� (g⊗OS Ωm+n

X/S ) (12)

which sends (u, g) to [u, g], where

[u, g](x0, . . ., xm+n) := u(x0, . . ., xm)(g(xm, . . . , xm+n)) g(xm, . . . , xm+n)−1 .

(13)

This pairing is compatible with the pairings (9) associated to the S-groups G
and Aut(G) in the following sense. For any pair of g-valued forms g, g′, and
an Aut(G)-valued form u,

[i(g), g′ ] = [g, g′ ] and i([u, g]) = [u, i(g)] (14)

where i : G −→ Aut(G) is the inner conjugation map i(γ)(g) := γ g γ−1. More
generally, an isomorphism r : G −→ G′ induces a morphism r from G-valued
combinatorial n-forms to G′-valued combinatorial n-forms, compatible with
the Lie bracket operation (9), and which corresponds in classical terms to the
morphism Lie(r)⊗osc 1 : g⊗OS Ωn

X/S −→ g′ ⊗Ωn
X/S . The functoriality of the

bracket (12) is expressed by the formula

r[u, g] = [ ru, r(g)] (15)

where ru := r u r−1.



Differential Geometry of Gerbes and Differential Forms 63

When u is an Aut(G)-valued form of degree m ≥ 1 and g is a G-valued
function, the definition of a pairing

(Lie Aut(G)⊗OS Ωm
X/S)×G −→ g⊗OS Ωm

X/S

(u, g) �→ [u, g]

is still given by the formula (13), but now with n = 0. This pairing is no
longer linear in g, but instead satisfies the equation

[u, g g′] = [u, g] + g[u, g′]

where for any G-valued form ω and any G-valued function g the adjoint left
action gω of a function g on a form ω is defined combinatorially by

(gω)(x0, . . . , xn) := g(x0) ω(x0, . . . , xn) g(x0)−1

(and this expression is in fact equal to g(xi) ω(x0, . . . , xn) g(xi)−1 for any
0 ≤ i ≤ n). In classical notation this corresponds, for ω = Y ⊗ η ∈ g⊗Ωn

X/S,
to the formula

g(Y ⊗ η) = g Y ⊗ η

for the adjoint left action of g on Y . The adjoint right action ω γ is defined by

ω g := (g−1) ω

so that
ωg(x0, . . . , xn) = g(x0)−1 ω(x0, . . . , xn) g(x0) .

Similarly, when g is a G-valued and u an Aut(G)-valued form, a pairing
[g, u] is defined by the combinatorial formula

[g, u](x0, . . . , xm+n) := g(x0, . . . , xm) (u(xm, . . . , xm+n)(g(x0, . . . , xm)−1)) .
(16)

The pairing (16) satisfies the analogue

[g, u] = (−1)|g||u|+1[u, g]

of the graded commutativity rule (10), so that its properties may be deduced
from those of the pairing [u, g]. In particular,

[g−1, u] = −[u, g−1] = [u, g]g .

We refer to appendix A of [5] for additional properties of these pairings.

2.2

The de Rham differential map

g⊗OS Ωn
X/S

dn
X/S �� g⊗OS Ωn+1

X/S (17)
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is defined combinatorially for n ≥ 2, in Alexander–Spanier fashion, by

dnX/Sω(x0, . . . , xn+1) :=
n+1∏

i=0

ω(x0, . . . , x̂i, . . . , ωn+1)(−1)i

. (18)

This definition agrees for n > 1 with the classical definition of the G-valued
de Rham differential:

dnX/S ω := dX/S ω (19)

where for ω = Y ⊗ η in g⊗Ωn
X/S ,

dX/S ω := Y ⊗ dη . (20)

In particular, dn is an OS-linear map whenever n ≥ 2, and it follows
from (20) that the composite dn+1 dn is trivial. This also follows from the
combinatorial definition of dn, since for n ≥ 2 the factors in the expression
(18) for dnω commute with each other.

For any section g of G, we set

d0
X/S(g)(x0, x1) := g(x0)−1g(x1) . (21)

The map

GX

d0
X/S−→ g⊗OS Ω1

X/S

g �→ g−1dg
(22)

is a crossed homomorphism, for the adjoint left action of G on g. Observe
that the expression g−1dg is consistent with the combinatorial definition (21)
of d0

X/S(g). While this traditional expression of d0
X/S(g) as a product of the

two terms g−1 and dg does make sense whenever G is a subgroup scheme
of the linear group GLn,S , such a decomposition is purely conventional for a
general S-group scheme G. A companion to d0

X/S is the differential d̃0 : G −→
g⊗OS Ω1

X/S , defined by

d̃ 0
X/S(g)(x0, x1) := g(x1)g(x0)−1 .

The traditional notation for this expression is dg g−1. This notation is consis-
tent with such formulas (in additive notation) as

g(g−1dg) = dg g−1 and − (g−1dg) = dg−1 g .

The differential d1
X/S is defined combinatorially by

(d1
X/S ω)(x, y, z) := ω(x, y)ω(y, z)ω(z, x). (23)

In classical terms, it follows (see [4] Theorem 3.3) that

d1
X/S ω := dω +

1
2
[ω, ω]. (24)
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We will henceforth denote dnX/S simply by dn for all n.
The quadratic term 1

2 [ω, ω] implies that d1
X/S is not a linear map; in

fact, it follows from (24), or the elementary combinatorial calculation of [4]
Lemma 3.2, that

d1(ω + ω′) = d1ω + d1ω′ + [ω, ω′] .

In particular,
d1(−ω) = −d1(ω) + [ω, ω] .

It is immediate, from the combinatorial point of view, that

d1d0(g) = d1(g−1 dg) = 0 (25)

for all g in G. The differential d1 has a companion, which we will denote by
d̃1, defined by

d̃1(ω)(x, y, z) := ω(z, x)ω(y, z)ω(x, y) .

A combinatorial computation implies that

d̃1ω = d1ω − [ω, ω]
= dω − 1

2 [ω, ω] ,

and the analogue
d̃1(d̃0(g)) = d̃1(dg g−1) = 0

of (25) is satisfied. Finally, it follows from (19) that the dn satisfy

di+j [ω, ω′] = [diω, ω′] + (−1)i[ω, djω′]

whenever i, j ≥ 2, and the corresponding formula for the pairing [u, g] (13) is
also valid.

2.3

We now choose, for any S-scheme X and any S-group scheme G, an Aut(G)-
valued 1-form m on X . We extend the definition of the de Rham differentials
(22), (23) and (17) to the twisted differentials

dnX/S,m : g⊗OS Ωn
X/S −→ g⊗OS Ωn+1

X/S (26)

(or simply dnm) defined combinatorially by the following formulas:

d1
m ω(x0, x1) := ω(x0, x1) m(x0, x1)(ω(x1, x2))m(x0, x1)m(x1, x2)(ω(x2, x0))

= ω(x0, x1) m(x0, x1)(ω(x1, x2))ω(x0, x2)−1

dnm ω(x0, . . . , xn+1)

:= m(x0, x1)(ω(x1, . . . xn+1))
n+1∏

i=1

ω(x0, . . . , x̂i, . . . , xn+1)(−1)i
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when n > 1. When the Aut(G)-valued form m is the image i(η) under inner
conjugation of a G-valued form η, the expression dni(η)ω will simply be denoted
dnη ω. The corresponding degree zero map d0

m : G −→ g⊗OS Ω1
X/S is defined by

d0
m(g)(x0, x1) := g(x0)−1 m(x0, x1)(g(x1))

(and d0
m(g) will also be denoted g−1dm(g), consistently with (21)).

It follows from elementary combinatorial computations that the differen-
tials dnm can be defined in classical terms by

dnmω = dnω + [m, ω] (27)

for all n, so that for any g-valued 1-form η,

dnm+iη (ω) = dnm(ω) + [η, ω] . (28)

In particular,

d1
m(ω) = d1ω + [m, ω] = dω +

1
2
[ω, ω] + [m, ω] .

While the map dnm is linear for n ≥ 2,

d1
m(ω + ω′) = d1

mω + d1
mω′ + [ω, ω′] (29)

so that
d1
m(−ω) = −d1

m(ω)− [ω, ω]. (30)

Finally, for any section g of Γ ,

g−1dmg = g−1dg + [m, g] .

The composite morphism dn+1
m dnm is in general nontrivial, and the previous

classical definitions of dnm imply that

dn+1
m dnm ω = [d1m, ω] (31)

whenever n ≥ 2. For n = 0, the corresponding formulas are

d1
m d0

mg = [g−1, d1m] and d̃1
m d̃0

mg = [d1m, g] (32)

so that, for n �= 1, we recover the well-known assertion that the vanishing of
d1m = 0 implies that dn+1dn = 0. One verifies that for any 1-form ω

d2
m d1

m(ω) = [d1m,ω] + [d1
mω, ω] (33)

= [d1m,ω] + [d1ω, ω] + [[m, ω], ω] . (34)

This reduces to the equation

d2
m d1

m(ω) = [d1m, ω]
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of type (31) whenever d1
mω = 0. For m = i(ω), equation (33) is equivalent to

the classical Bianchi identity [9] II Theorem 5.4:

d2
ω d1ω = 0 . (35)

We now state the functoriality properties of the differential (27) dnm for
n ≥ 1. We define the twisted conjugate g ∗ω of a G-valued 1-form ω by

g ∗ω := (p∗0g) ω (p∗1g)−1 = gω + g dg−1 (36)

= ω + [g, ω] + g dg−1 .

It follows from the combinatorial definition (23) of d1 that
g(d1ω) = d1(g ∗ω) . (37)

More generally, for any G-valued form ω of degree n ≥ 1, and any section u
of Aut(G) on X ,

u(dnm(ω)) = dn(u ∗m) u(ω) (38)

= dn( um) u(ω) + [u du−1, u(ω)]

= dnm(u(ω)) + [[u, m], u(ω)] + [u du−1, u(ω)] . (39)

3 Gerbes and their connective structures

3.1

Let P be a gerbe3 on an S-scheme X . For simplicity, in discussing gerbes we
will make two additional assumptions:

• P is a G-gerbe, for a given S-group scheme G.
• P is connected.

The first assumption gives us, for any object x in the fiber category PU
above an open set U ⊂ X , an isomorphism of sheaves on U

G|U
∼ �� AutPU (x) . (40)

The second assumption asserts that for any pair of objects x, y ∈ ob(PU )
there exists an arrow x −→ y in the category PU . This ensures that the gerbe
is described by an element in the degree 2 Čech cohomology of X rather than
by degree 2 cohomology with respect to a hypercover of X .

Let us choose a family of local objects xi ∈ PUi , for some open cover
U =

∐
i Ui of X , and a family of arrows

xj
φij �� xi (41)

3 We refer to [3] and [6] for the definition of a gerbe, and for additional details
regarding the associated cocycle and coboundary equations (46), (53).
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in PUij . Identifying elements of both AutP(xi) and AutP(xj) with the
corresponding sections of G above Ui and Uj , these arrows determine a family
of section λij ∈ Γ (Uij , Aut(G)), defined by the commutativity of the diagrams

xj
γ ��

φij

��

xj

φij

��
xi

λij(γ)
�� xi

(42)

for every γ ∈ G |Uij
. In addition, the arrows φij determine a family of elements

gijk ∈ G|Uijk
for all (i, j, k) by the commutativity of the diagrams

xk
φjk ��

φik

��

xj

φij

��
xi gijk

�� xi

(43)

above Uijk. By conjugation in the sense made clear by diagram (42), it follows
that the λij satisfy the cocycle condition

λij λjk = i(gijk)λik . (44)

By [6] Lemma 5.1, the G-valued cochains gijk also satisfy the cocycle condition

λij(gjkl) gijl = gijk gikl . (45)

These two cocycle equations may be written more compactly as
{

δ1λij = i(gijk)
δ2
λij

(gijk) = 1 ,
(46)

where δ2
λ is the λ-twisted degree 2 Čech differential determined by equa-

tion (45). They may be jointly viewed as the (G −→ Aut(G))-valued Čech
1-cocycle4 equations associated to the gerbe P , the open cover U of X , and
the trivializing families of objects xi and arrows φij in P .

Let us choose a second family of local objects x′
i in PUi , and of arrows

x′
j

φ′
ij �� x′

i (47)

4 We prefer to emphasize the fact that λij is a 1-cochain since this is more consistent
with a simplicial definition of the associated cohomology, even though it is more
customary to view the pair of equations (46) as a 2-cocycle equation, with (44)
an auxiliary condition.
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above Uij . To these correspond a new cocycle pair (λ′
ij , g′ijk). In order to

compare this set of arrows with the previous one, we choose (after a harmless
refinement of the given open cover U of X) a family of arrows

xi
χi �� x′

i (48)

in PUi for all i. The arrow χi induces by conjugation a section ri in the group
of sections Γ (Ui, Aut(G)), characterized by the commutativity of the square

xi

χi

��

u �� xi

χi

��
x′
i ri(u)

�� x′
i

(49)

for all u ∈ G. The lack of compatibility between these arrows χi and the
arrows φij , φ′

ij (41), (47) is measured by the family of sections ϑij ∈ Γ (Uij , G)
determined by the commutativity of the following diagram:

xj
φij ��

χj

��

xi

χi��
x′
i

ϑij
��

x′
j

φ′
ij

�� x′
i .

(50)

Under the identifications (40), diagram (50) induces by conjugation, in a sense
made clear by the definition (49) of the automorphism ri, a commutative
diagram of group schemes above Uij

G
λij ��

rj

��

G
ri
��

G

i(ϑij)
��

G
λ′

ij

�� G ,

whose commutativity is expressed by the equation

λ′
ij = i(ϑij) ri λij r−1

j (51)

in Aut(G).
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Consider now the diagram

xk

φjk

����
��

��
��

��
��

�

φik �� xi
χi��gijk

����
��

��
��

��
��

�

x′
i

ri(gijk)����
��

��
��

��
��

�

ϑik

��

xj
φij

��

χj

��

χk

xi
χi ��
x′
i

ϑij��
x′
j

φ′
ij ��

ϑjk

��

��

x′
i

λ′
ij(ϑjk)

��

x′
k

φ′
jk

		���
��

��
��

��
�

φ′
ik �� x′

i

g′ijk


���

���
���

���
�

x′
j

φ′
ij

�� x′
i

.

(52)

Both the top and the bottom squares commute, since these squares are of
type (43). So do the back, the left and the top front vertical squares, since
all three are of type (50). The same is true of the lower front square, and
the upper right vertical square, since these two are respectively of the form
(42) and (49). It follows that the remaining lower right square in the diagram
is also commutative, since all the arrows in diagram (52) are invertible. The
commutativity of this final square is expressed algebraically by the equation

g′ijk ϑik = λ′
ij (ϑjk )ϑij ri(gijk ) .

We say that two cocycle pairs (λij , gijk) and (λ′
ij , g′ijk) are cohomologous

if we are given a pair (ri, ϑij), with ri ∈ Γ (Ui, Aut(G)) and ϑij ∈ Γ (Uij , G),
satisfying those two equations

{
λ′
ij = i(ϑij) ri λij r−1

j

g′ijk ϑik = λ′
ij(ϑjk)ϑij ri(gijk)

(53)

and display this as

(λij , gijk)
(ri,ϑij)∼ (λ′

ij , g′ijk) . (54)

The equivalence class of the cocycle pair (λij , gijk) for this relation is inde-
pendent of the choices of objects xi and arrows φij from which it was con-
structed. By definition, it determines an element in the first non-abelian Čech
cohomology set Ȟ1(U , G

i−→ Aut(G)) with coefficients in the crossed module
i : G −→ Aut(G).
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3.2

In [5], the combinatorial description of differential forms is used in order
to define the concepts of connections and curvings on a gerbe. For any
S-group scheme G, a (relative) connection on a principal G-bundle P above
the S-scheme X may be defined as a morphism

p∗1P
ε �� p∗0P (55)

between the two pullbacks of P to Δ1
X/S , whose restriction to the diagonal

subscheme
Δ : X ↪→ Δ1

X/S

is the identity morphism 1P .
This type of definition of a connection, as a vehicle for parallel transport,

remains valid for other structures than principal bundles. In particular, for
any X-group scheme Γ , a connection on Γ is a morphism of group schemes

μ : p∗1Γ −→ p∗0Γ (56)

above Δ1
X/S whose restriction to the diagonal subscheme X ↪→ Δ1

X/S is the
identity morphism 1Γ . When Γ is the pullback to X of an S-group scheme G,
the inverse images p∗1G and p∗0G of GX above Δ1

X/S are canonically isomor-
phic, so that the connection (56) is then described by a Lie(Aut(G))-valued
1-form m.

A connection μ on a group Γ determines de Rham differentials

dnX/S, μ : Lie(Γ )⊗OS Ωn
X/S −→ Lie(Γ )⊗OS Ωn+1

X/S

(or simply dnμ) defined combinatorially by the formulas [5] (A.1.9)–(A.1.11)
and their higher analogues. When Γ is the pullback of an S-group scheme, dnμ
is described in classical terms as the deformation (27)

dnμ := dnm
of the de Rham differential dn determined by the associated 1-form m. When
the curvature d1m of the connection μ is trivial, the connection is said to
be flat (or integrable). In that case, it follows from (31) and (32) that the
de Rham differentials satisfy the condition dn+1

m dnm = 0 for all n �= 1.
The curvature of a connection ε (55) on a principal bundle P is the unique

arrow
κε : p∗0P −→ p∗0P

such that the following diagram above Δ2
X/S commutes, with εij the pullbacks

of ε under the corresponding projections pij : Δ2
X/S −→ Δ1

X/S :

p∗2P
ε12 ��

ε02

��

p∗1P

ε01

��
p∗0P κε

�� p∗0P
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By construction, κε is a relative 2-form on X with values in the gauge group
P ad := IsomG(P, P ) of P .

The connection ε on P induces a connection με on the group P ad, deter-
mined by the commutativity of the squares

p∗1P
u ��

ε

��

p∗1P

ε

��
p∗0P

με(u)
�� p∗0P

(57)

for all sections u of p∗1(P
ad). By [11], [5] Proposition 1.7, the curvature 2-form

κε satisfies the Bianchi identity

d2
με

(κε) = 0. (58)

For a given family of local sections of P , with associated G-valued 1-cocycles
gij , the connection (55) is described by a family of G-valued 1-forms ωi ∈
g⊗Ω1

Ui/S
, satisfying the gluing condition

ωj = ω
∗ gij

i = ω
gij

i + g−1
ij dgij (59)

above Uij , for the action of G on g ⊗OS Ω1
Ui/S

induced by the adjoint right
action of G on g. A 1-form satisfying this equation is classically known as a
connection form. The induced curvature κ is locally described by the family
of 2-forms

κi := d1ωi = dωi +
1
2
[ωi, ωi],

and these satisfy the simpler Čech (or gluing) condition

κj = κ
gij

i .

Equation (58) is reflected at the local level in the equation

d2
ωi

κi = 0 ,

which is simply the classical Bianchi identity (35) for the 1-form ωi.

3.3

The notion of a connective structure on a G-gerbe P is a categorification of the
notion of a connection on a principal bundle, as we will now recall, following
[5] §4. To P is associated its gauge stack Pad. By definition this is the monoidal
stack EqX(P , P) of self-equivalences of the stack P , the monoidal structure
being defined by the composition of equivalences. A connection on a P is an
equivalence between stacks
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p∗1P
ε �� p∗0P (60)

above Δ1
X/S , together with a natural isomorphism between the restriction

Δ∗ε of ε to the diagonal subscheme X of Δ1
X/S and the identity morphism

1P . Such a connection ε induces as in (57) a connection μ on the gauge stack
Pad.

A curving of (P , ε) is a natural isomorphism K

p∗2P
ε12 ��

ε02

��

p∗1P

ε01

��
p∗0P κ

�� p∗0P ,

K ��				

(61)

for some morphism
κ : p∗0P −→ p∗0P

above Δ2
X/S . It is determined by the choice of some explicit quasi-inverse of

the connection ε. The arrow κ which arises as part of the definition of K is
called the fake curvature associated to the connective structure (ε, K). It is a
global object in the pullback to Δ2

X/S of the gauge stack Pad.
The connective structure (ε, K) determines a 2-arrow

p∗0P
κ013 ��

κ023

��

p∗0P

μ01(κ123)

��
p∗0P κ012

���� p∗0P .

Ω
�� ������

This is the unique 2-arrow which may be inserted in the diagram

p∗3P
ε13 ��

ε03



���
��

��
��

ε23

��

p∗1P
ε01

		















κ123

��

p∗0P
κ013 ��

κ023

��

p∗0P

μ01(κ123)

��

p∗2P

ε02



���
��

��
��

ε12 �� p∗1P

ε01		















p∗0P κ012
�� p∗0P .

K123
�
 ���� K013 
���� ���

K023��






K012

������

Ω
�� ����

M01(κ123)
��������

(62)
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so that the two composite 2-arrows

p∗3P

μ01(κ123)κ013 ε03

����

ε01 ε12 ε23

���� p
∗
0P��

which may be constructed by composition of 2-arrows in (62) coincide.
This 2-arrow Ω may also be viewed as a 1-arrow above Δ3

X/S in the gauge
group Pad, or even as an arrow in the stack Lie(Pad) ⊗OS Ω3

X/S of relative
Lie(Pad)-valued 3-forms on X . Returning to the combinatorial definition [5]
(A.1.10) of the de Rham differential, we may finally view Ω, by horizontal
composition with appropriate 1-arrows, as a 1-arrow in Pad whose source
object is the identity arrow IPad :

I
Ω �� d2

μ(κ
−1). (63)

Denoting the twisted differential d2
μ by the expression d + [μ, ] to which it

reduces when appropriate trivializations have been chosen, the 3-curvature
arrow Ω (63) is described by the equation (4). By [5] Theorem 4.4 it satisfies
another relation, described by the cubical pasting diagram [5] (4.1.24), and
which may be expressed by the higher Bianchi identity5 (5). The pair of
equations (4) and (5) may now be thought of as a categorified version, satisfied
by the pair of Pad-valued forms (κ, Ω), of the classical Bianchi identity (58),
and can be written in symbolic form as

d2
μ,K(κ, Ω) = 0 ,

where dnμ,K is the twisted de Rham differential on Lie(Pad)-valued n-forms
determined by twisting data (μ, K) associated to the given connective struc-
ture on P .

4 Čech–de Rham cocycles

4.1

We observed in Section 3.1 that a gerbe could be expressed in cocyclic terms,
once local trivializations were chosen. We will now show that this is also the
case for the connection ε. We choose, for each i ∈ I, an arrow

γi : εp∗1xi −→ p∗0xi (64)

in p∗0PUi such that Δ∗γi = 1xi . The arrow γi determines by conjugation a
connection

mi : p∗1G|Ui
−→ p∗0G|Ui

5 See [5] (4.1.28) for a proof of this identity.
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on the pullback G|Ui
of the group G above the open set Ui ⊂ X . The arrow

mi is described, for any section g ∈ Γ (Δ1
X/SUi

, p∗1G), by the commutativity
of the diagram

εp∗1xi
ε(g) ��

γi

��

εp∗1xi
γi

��
p∗0xi mi(g)

�� p∗0xi .

(65)

The pair (φij , γi) determines a family of arrows γij in the pullback GΔ1
Uij

of G, defined by the commutativity of the diagram

εp∗1xj
γj ��

εp∗1φij

��

p∗0xj
p∗0φij��

p∗0xi
γij
��

εp∗1xi γi

�� p∗0xi.

(66)

By conjugation, this determines a commutative diagram

p∗1G
mj ��

p∗1λij

��

p∗0G
p∗0λij��

p∗0G
i(γij)��

p∗1G mi

�� p∗0G

(67)

so that the equation

i(γij) (p∗0λij)mj (p∗1λij)
−1 = mi (68)

of [5] (6.1.2) is satisfied.
We may restate (68) as

i(γij) [(p∗0λij)mj (p∗0λij)
−1] = mi [p∗1λij (p∗0λ

−1
ij )] , (69)

an equation all of whose factors are Aut(G)-valued 1-forms on Uij and there-
fore commute with each other. In the notation introduced in (36), equation
(69) can be rewritten as

λij ∗mj = mi − i(γij) , (70)

or more classically as

λijmj = mi − λij dλ−1
ij − i(γij) . (71)
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This is the analogue for the Aut(G)-valued forms mi and λij of the classical
expression (59) for a connection form, but now categorified by the insertion
of an additional summand −i(γij).

Consider now the following diagram in PΔ1
Uijk

:

εp∗1xk

εp∗1φjk

		





















εp∗1φik �� εp∗1xi
γi��εp∗1gijk

		���
���

���
���

��

p∗0xi

mi(p
∗
1gijk)		���

���
���

���
��

��

γik

εp∗1xj
εp∗1φij

��

γj

��

εp∗1xi
γi ��
p∗0xi��

γij

p∗0xj
p∗0φij ��

��

γjk

γk ��

p∗0xi��
λij(γjk)

p∗0xk
p∗0φjk

�����
���

���
���

�

p∗0φik �� p∗0xi

p∗0gijk�����
���

���
���

p∗0xj
p∗0φij

�� p∗0xi.

(72)

Of the eight faces of this cube, seven are known to be commutative. It follows
that the remaining lower square on the right vertical side is also commutative.
This is the square

p∗0xi
p∗0gijk ��

γik

��

p∗0xi

λij(γjk)
��

p∗0xi
γij

��
p∗0xi

mi(p
∗
1gijk)

�� p∗0xi ,

(73)

whose commutativity corresponds to the equation

γij (p∗0λij(γjk)) = mi(p∗1gijk) γik (p∗0gijk)
−1,

in other words to the equation [5] (6.1.7), all of whose factors are G-valued
1-forms on Uijk. We may rewrite this as

γij p∗0λij(γjk) = (mi(p∗1gijk) p∗0g
−1
ijk) (p∗0gijk γik p∗0g

−1
ijk)

so that, taking into account the equation (44), we finally obtain (in additive
notation)

γij + λij(γjk)− λijλjk(λ−1
ik (γik)) = dgijk g−1

ijk + [mi, gijk] ,
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with bracket defined by (12) an equation which can be written in abbreviated
form as

δ1
λij

(γij) = dmigijk g−1
ijk . (74)

4.2

We now describe in similar terms the curving K and the fake curvature κ
of diagram (61). Just as we associated to the connection ε (60) a family of
arrows γi (64), we now choose, for each i ∈ I, an arrow

κp∗0xi
δi �� p∗0xi (75)

in the category PΔ2
Ui

, whose restriction to the degenerate subsimplex sΔ2
Ui

of Δ2
Ui

is the identity. To the curving K is associated a family of “B-field”
g-valued 2-forms Bi ∈ g ⊗ Ω2

Ui
, characterized by the commutativity of the

following diagram6 in which an expression such as γ12
i is the pullback of γi by

the corresponding projection p12 : Δ2
X/S −→ Δ1

X/S :

ε01ε12(p∗2xi)

ε01γ
12
i

��

K(p∗2xi) �� κε02(p∗2xi)

κγ02
i

��
ε01(p∗1xi)

γ01
i

��

κp∗0xi

δi

��
p∗0xi �� Bi

p∗0xi.

(76)

Let us now define a family of G-valued 2-forms νi on Ui by the equations

νi := d1mi − i(Bi) (77)

in Lie Aut(G)⊗Ω2
Ui

, in other words by the commutativity of the diagram

p∗2G

m12
i

��

p∗2G

m02
i

��
p∗1G

m01
i

��

p∗0G

νi

��
p∗0Gi

��
i(Bi)

p∗0G .

(78)

By comparing diagram (78) with the conjugate of diagram (76), we see that
νi is simply the conjugate of the arrow δi. It can therefore be described by
the commutativity of the diagram
6 The chosen orientation of the arrow Bi is consistent with that in [5].
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κp∗0xi
κ(g) ��

δi

��

κp∗0xi

δi

��
p∗0xi

νi(g)
�� p∗0xi

(79)

for all g ∈ Γ (Δ2
Ui/S

, p∗0G), just as the connection mi was described by
diagram (65).

We also define a family of 2-forms δij by the commutativity of the diagram

p∗0xi
λij(Bj) ��

δij

��

p∗0xi

γ01
ij

��
p∗0xi

γ02
ij

��

p∗0xi

m01
i (γ12

ij )
��

p∗0xi Bi

�� p∗0xi ,

(80)

i.e., since all terms commute, by the equation

δij := λij(Bj)−Bi − d1
mi

(−γij)

in Lie(G)⊗Ω2
Ui/S

. In Čech–de Rham notation, this is

δij := δ0
λij

(Bi)− d1
mi

(−γij) , (81)

and in classical notation

δij := λij(Bj)−Bi + dγij −
1
2
[γij , γij ] + [mi, γij ] .

Here is another characterization of δij :

Lemma 4.1. For every pair (i, j) ∈ I, the analogue

κp∗0xj
δj ��

κp∗0φij

��

p∗0xj
p∗0φij��

p∗0xi
δij��

κp∗0xi δi

�� p∗0xi

(82)

of diagram (66) is commutative.
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Proof: Consider the diagram

κε02(κp∗2xj)
κγ02

j �� κp∗0xj

κp∗0φij

��

δj �� p∗0xj

p∗0φij

��
ε01ε12(p∗2xj)

ε01ε12(p∗2φij)

��

γ12
j ��

K(p∗2xj)
�������������

κε02(p
∗
2φij)

��

ε01(p∗1xj)
γ01

j ��

ε01(p
∗
1φij)

��

p∗0xj
��
Bj

���������������

p∗0φij

��

p∗0xi

δij

��
p∗0xi

��

λij(Bj)

���������������
κp∗0xi

δi �� p∗0xi

νi(γ
02
ij )

��

ε01(p∗1xi)
γ01

i

�� p∗0xi
��

γ01
ij

κε02(p∗2xi)
κγ02

i �� κp∗0xi
δi ��

��

κγ02
ij

p∗0xi

ε01ε12(p∗2xi)

K(p∗2xi)
�������������

ε01(γ
12
i )

�� ε01(p∗1xi)
��

ε01(γ
12
ij )

γ01
i

�� p∗0xi
��

m01
i (γ12

ij )

��
Bi

���������������
.

(83)

Diagrams (76), (80) and (79) imply that all squares in (83) are commuta-
tive7, except possibly the rear right upper one. This remaining square (82) is
therefore also commutative. ��

Conjugating diagram (82), we obtain as in (67) a square

p∗0G
νj ��

p∗0λij

��

p∗0G
p∗0λij��

p∗0G
iδij��

κp∗0G νi

�� p∗0G ,

7 This is true for diagram (80) since νi(γ
02
ij ) = γ02

ij .
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whose commutativity is expressed algebraically as

i(δij) (p∗0λij) νj = νi (p∗0λij) . (84)

In additive notation, this is equation

λijνj = νi − i(δij) , (85)

in other words

δ0
λij

νi = − i(δij) .

It is instructive to note that this equation can be derived directly from equa-
tion (71) and the definitions (77) and (81) of νi and δij . First of all, observe
that by (37)

d1(λij∗mi) = λij(d1mi) . (86)

One then computes

λijνj = λij(d1(mj)− iBj )

= d1(λij∗mj)− i(λij(Bj))

= d1(mi − i(γij)) − i(Bi + d1
mi

(−γij) + δij)

= d1mi − d1(i(γij))− [mi, γij ]− i(Bi)− i(d1mi(−γij))− i(δij) .

Since the homomorphism i commutes with d1m and [mi, i(γij)] = i([mi, γij ]),
the summands i(d1m(−γij)) and d1(i(γij)) + [mi, γij ] cancel out. The first
two remaining summands describe νi, so that equation (85) is satisfied.

In the same vein, the analogue for the fake curvature κ of (73) is the
following assertion.

Lemma 4.2. The diagram

p∗0xi
p∗0gijk ��

δik

��

p∗0xi

λij(δjk)
��

p∗0xi

δij

��
p∗0xi

νi(p
∗
0gijk)

�� p∗0xi

(87)

is commutative.
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Proof: By (82), (43) and (79), all squares in the diagram

κp∗0xk

κp∗0φjk

����
��

��
��

��
��

��
��

κp∗0φik �� κp∗0xi
δi��κp∗0gijk

����
��

��
��

��
��

��
��

p∗0xi

νi(p
∗
0gijk)����

��
��

��
��

��
��

��
��

δik

κp∗0xj
κp∗0φij

��

δj

��

δk

κp∗0xi
δi

��
p∗0xi��

δij

p∗0xj
p∗0φij ��

��

δjk

��

p∗0xi��
λij(δjk)

p∗0xk

p∗0φjk

		





















p∗0φik �� p∗0xi

p∗0gijk

		���
���

���
���

��

p∗0xj
p∗0φij

�� p∗0xi

(88)

are commutative, except possibly the lower right-hand one. It follows that the
latter one, which is simply (87), also commutes. ��

The commutativity of (87) corresponds to the equation

δij (p∗0λij)(δjk) = νi(p∗0gijk) δik (p∗0gijk)
−1 ,

an equation whose terms are G-valued 2-forms on Uijk. By the same reasoning
as for (74), this can be written additively as

δij + λij(δjk)− λijλjk(λ−1
ik (δik)) = [νi, gijk] ,

or, in the compact form of [5] (6.1.15), as

δ1
λij

(δij) = [νi, gijk] . (89)

Just as we were able to derive (85) directly from (71) and the definitions (77)
and (81), we now show that it is possible to deduce (89) from (81), (77) and
(74). First of all,

δ1
λij

(δij) = δ1
λij

(δ0
λij

(Bi)− d1
mi

(−γij))

= δ1
λij

δ0
λij

(Bi)− δ1
λij

d1
mi

(−γij) . (90)

We now wish to assert that the Čech differential δ1
λij

and de Rham differ-
ential d1

mi
in (90) commute with each other, despite the fact that the 1-form
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γij takes its values in a noncommutative group G, and that d1
mi

is not a
homomorphism. For this we simplify our notation, by setting

γ̃ij := −γij ∈ g⊗Ω1
Uij

(91)

and
λijk := λij λjk λ−1

ik ∈ Γ (Uijk, Aut(Gi)).

Equation (74) can be restated as

δ1
λij

γ̃ := γ̃ij + λij(γ̃jk)− λijk(γ̃ik) = − dgijk g−1
ijk − [mi, gijk] . (92)

Lemma 4.3. The following equality between G-valued 2-forms above Uijk is
satisfied:

d1
mi

δ1
λij

(γ̃ij) = δ1
λij

d1
mi

(γ̃ij) . (93)

Proof: We compute the left-hand side of the equation (93), taking into ac-
count the quadraticity equation (29)

d1
mi

δ1
λij

(γ̃ij) = dmi(γ̃ij) + d1
mi

(λij(γ̃jk)) + d1
mi

(−λijk(γ̃ik))
+ [γ̃ij , λij(γ̃jk)]− [γ̃ij , λijk(γ̃ik)]− [λij(γ̃jk), λijk(γ̃ik)]

= dmi(γ̃ij) + d1
mi

(λij(γ̃jk))− d1
mi

(λijk(γ̃ik))
+ [λijk(γ̃ik), λijk(γ̃ik)] + [γ̃ij , λij(γ̃jk)]
− [γ̃ij + λij(γ̃jk), λijk(γ̃ik)] .

We now compute the right-hand side of (93):

δ1
λij

d1
mi

(γ̃ij) = d1
mi

(γ̃ij) + λij(d1
mj

(γ̃jk))− λijk(d1
mi

(γ̃ik)) . (94)

By (70) and by the functoriality property (37), we find that

λij(d1
mj

(γ̃jk)) = d1
λij ∗mj

(λij(γ̃jk))

= d1
mi

(λij(γ̃jk)) + [γ̃ij , λij(γ̃jk)]

and by (39)

λijk(d1
mi

(γ̃ik)) = d1
λijk∗mi

(λijk(γ̃ik))

= d1
mi

(λijk(γ̃ik)) + [[λijk, mi], λijk(γ̃ik)]

+ [λijk dλ−1
ijk , λijk(γ̃ik)] .

Inserting these expressions for λij(d1
mj

(γ̃jk)) and λijk(d1
mi

(γ̃ik)) into the right-
hand side of (94) we find the following expression for δ1

λij
d1
mi

(γ̃ij):

δ1
λij

d1
mi

(γ̃ij) = d1
mi

(γ̃ij) + d1
mi

(λij γ̃jk) + [γ̃ij , λij(γ̃jk)]

−d1
mi

(λijk)(γ̃ik) − [[λijk , mi], λijk(γ̃ik)] − [λijk dλ−1
ijk , λijk(γ̃ik)]

− d1
mi

(λijk)(γ̃ik)− [λijk dλ−1
ijk , λijk(γ̃ik)] .
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Comparing this with the expression (94) for d1
mi

δ1
λij

(γ̃ij), we see that the
equation (93) is satisfied if and only if

[γ̃ij + λij(γ̃jk)− λijk(γ̃ik), λijk(γ̃ik)] = [[λijk , mi], λijk(γ̃ik)]

+ [λijk dλ−1
ijk , λijk(γ̃ik)] .

By (14), this is simply a consequence of (92), since λijk = i(gijk) . ��

We now return to our computation (90):

δ1
λij

(δij) = δ1
λij

δ0
λij

(Bi)− δ1
λij

d1
mi

(−γij)

= δ1
λij

δ0
λij

(Bi)− d1
mi

δ1
λij

(−γij)

= [gijk, Bi]− d1
mi

(gijk dmi(g
−1
ijk))

= [gijk, iBi − dmi] by (32)

= [νi, gijk] .

This finishes the second proof of equation (89). ��

We now set
ωi := d2

mi
(Bi) . (95)

Since the combinatorial definition of the twisted de Rham differential d2 ([4]
(3.3.1)) matches the global geometric definition (62) of the 3-curvature Ω, this
3-curvature Ω is locally described by the G-valued 3-forms ωi.

It follows from the definitions (77) and (95) of the forms νi and ωi, and
from (31), that

d3
mi

(ωi) = d3
mi

d2
mi

(Bi)

= [d1mi, Bi]

= [νi, Bi] + [Bi, Bi]

so that the local 3-curvature form ωi satisfies the higher Bianchi identity

d3
mi

(ωi) = [νi, Bi] . (96)

A second relation between the forms νi and ωi follows from their definitions
and the Bianchi identity for the Aut(G)-valued 1-form mi:

i(ωi) = d2
mi

i(Bi)

= d2
mi

(d1mi − νi)

= d2
mi

(−νi) ,
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in other words
d2
mi

νi + i(ωi) = 0 . (97)

This equation is the local form of equation (4), just as (96) was the local form
of (5).

We will now show that the equation (81) for the 2-forms Bi, which we
write here as

δ0
λij

(Bi) = d1
mi

(−γij) + δij ,

induces the corresponding gluing equation for the local 3-forms ωi. From the
definition of λij(ωj) and (38), it follows that

λij(ωj) = λij(d2
mj

(Bj))

= d2
λij ∗mj

λij(Bj)

and by the gluing laws (71) and (81) for mi and Bi, this can be stated as

λij(ωj) = d2
mi−i(γij)

(Bi + δij + d1
mi

(− γij))

= d2
mi

(Bi) + d2
mi

(δij) + d2
mi

d1
mi

(− γij)− [γij , Bi + δij + d1
mi

(− γij)] .

By (33), this last equality can be rewritten as

λij(ωj) = ωi + d2
mi

(δij) + [d1mi, − γij ]− [γij , Bi]− [γij , δij ]

= ωi + d2
mi

(δij) + [γij , d1mi −Bi]− [γij , δij ]

and by (84) this proves the gluing law for the 3-forms ωi [5] (6.1.23):

λij(ωj) = ωi + d2
mi

(δij) + [γij , νi]− [γij , δij ] .

By combining this with the gluing law (85) for νi, we see that (98) can finally
be rewritten in the more compact form

λij(ωj) + [λijνj , γij ] = ωi + d2
mi

(δij). (98)

5 Čech–de Rham coboundaries

5.1

We saw in Section 2 how a change in the choice trivializing data (xi, φij) in a
gerbe P could be measured by a pair (ri, θij) (49),(50) inducing a coboundary
relation (54) between the corresponding cocycle pairs (λij , gijk). We will now
examine how the terms (mi, γij), (νi, δij) and Bi introduced in Section 4
vary when the arrows γi (64) and δi (75) which determine them have been
modified.
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The difference between the arrow γi and an analogous arrow γ′
i is measured

by a 1-form ei ∈ Lie (G)⊗ Ω1
Ui

, defined by the commutativity of the following
diagram:

εp∗1xi
εp∗1χi ��

γi

��

εp∗1x
′
i

γ′
i

��
p∗0xi

p∗0χi

�� p∗0x
′
i ei

�� p∗0x
′
i.

(99)

This conjugates to a commutative diagram

p∗1G
p∗1ri ��

mi

��

p∗1G

m′
i

��
p∗0G

p∗0ri

�� p∗0G i(ei)
�� p∗0G

so that

m′
i = i(ei) (p∗0ri)mi (p∗1ri)

−1

= i(ei) [p∗0ri mi p
∗
0ri

−1] [p∗0ri p
∗
1ri

−1].

In classical terms, this is expressed as an equation

m′
i = ri mi + ridr−1

i + i(ei) (100)
= ri∗ mi + i(ei), (101)

which compares the connections mi and m′
i induced on the group G by the

arrows γi and γ′
i.

We now consider the following diagram in PUij :

p∗0x
′
i

ei

��

p∗0x
′
i

ri(γij)��

p∗0θij

��
p∗0x

′
i

m′
i(p

∗
1θij)

��

p∗0x
′
i

λ′
ij(ej)

��
p∗0x

′
i p∗0x

′
i .

γ′
ij

��

(102)

Proposition 5.1. The diagram (102) is commutative.
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Proof: Consider the diagram

εp∗1xj

εp∗1φij



���
��

��
��

��
��

��
��

γj �� p∗0xj

p∗0χj

��

p∗0φij�����
���

�

p∗0xi
γij

�����
���

�

p∗0χi

��

εp∗1xi

εp∗1χi

��

γi ��

εp∗1χj

��

p∗0xi

p∗0χi

��

p∗0x
′
i

p∗0θij

��

p∗0ri(γij)

		���
���

�
p∗0x

′
j

p∗0φ
′
ij		���

���
�

ej

��

p∗0x
′
i

ei

��

p∗0x
′
i

p∗0λ
′
ij(ej)

��

εp∗0x′
j

εp∗1φ
′
ij

���
���

��



���
���

��

γ′
j �� p∗0x′

j

p∗0φ
′
ij		���

���
�

εp∗1x
′
i

γ′
i ��

εp∗1θij ��

p∗0x
′
i

m′
i(p

∗
1θij) ��

p∗0x
′
i

γ′
ij

�����
���

�

εp∗1x′
i

γ′
i

�� p∗0x′
i

(103)

The lower front square of the right-hand face of this cube is just the square
(102). Since we know that all the other squares in this diagram commute, so
does the square (102). ��

The commutativity of (102) is equivalent to the equation

m′
i(p

∗
1θij) ei ri(γij) = γ′

ij λ′
ij(ej) p∗0θij . (104)

This may be rewritten in classical notation as

(γ′
ij − θijri(γij)) + (λ′

ij(ej)− θijei) = dm′
i
θij θ−1

ij . (105)

We now choose a family of arrows δ′i : κp∗0x
′
i −→ p∗0x

′
i. The families δ′i and

γ′
i determine as in (76) a family of g-valued 2-form B′

i above Ui. The latter in
turn determines, together with the pair of form (m′

i, γ′
ij) (100), (105), a new

pair of 2-forms (ν′
i, δ′ij) and a 3-form ω′

i satisfying the corresponding equations
(85), (97), (89), (96) and (98). The families δi and δ′i are compared by the
following analogue of diagram (99):
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κp∗0xi
κp∗0χi ��

δi

��

κp∗0x′
i

δ′i
��

p∗0xi
p∗0χi

�� p∗0x′
i ni

�� p∗0x′
i .

(106)

We will now compare the 2-forms Bi and B′
i . We consider the diagram

ε01ε12(p∗2xi)
ε01ε12(p∗2χi)

�����������������

K(p∗2xi) ��

ε01(γ12
i )

κε02(p∗2xi)
κ ε02(p

∗
2χi)

������
����

����
��

κ(γ02
i )

��
ε01ε12(p∗2x

′
i)

ε01 γ
′12
i

��

K(p∗2x
′
i)

��
��

κ ε02(p∗2x
′
i)

κ(γ′02
i )

��

ε01p
∗
1xi

ε01p
∗
1χi

������
���

�

γ01
i

��

κ p∗0xi

κp∗0χi�����
���

��

δi

��

ε01p
∗
1x

′
i

�����

γ′01
i

��

κp∗0x
′
i

δ′i

��

κ(e02i )
�����

ε01 p∗0 x′
i

γ′01
i

��

κp∗0x
′
i

δ′i

��

p∗0xi ��
Bi

p∗0χi

�����
�

p∗0xi
p∗0χi
�����

p∗0x
′
i
�� ri(Bi)

ei
01



��
p∗0x

′
i

ni
����

p∗0x
′
i

�����
��

p∗0x
′
i

ν′i(e
02
i )

�����
�

p∗0x
′
i
��

B′
i

p∗0x
′
i

(107)

in which the upper and lower unlabeled arrows are respectively ε01(p∗1e
12
i ) and

m′
i
01(e12

i ).
The front square (or rather hexagon) of the bottom face

p∗0x
′
i
�� ri(Bi)

ei
01

��

p∗0x
′
i

p∗0ni

��
p∗0x

′
i

m′
i
01(e12i )

��

p∗0x
′
i

ν′i(e
02
i )

��
p∗0x

′
i
��

B′
i

p∗0x
′
i

is commutative, since all other squares in diagram (107) are. Equivalently,
since the action of the Aut(G)-valued 2-form ν′

i on e02
i is trivial, this proves

that the equation
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B′
i = ri(Bi)− d1

m′
i
(−ei)− ni (108)

is satisfied. In particular for given Bi and ei, the 2-forms B′
i and ni actually

determine each other.
By conjugation, diagram (106) induces a commutative diagram

p∗0G
p∗0ri ��

νi

��

p∗0G

ν′i
��

p∗0G
p∗0ri

�� p∗0G ini

�� p∗0G

equivalent to the equation

i(ni) p∗0ri νi = ν′
i p∗0ri .

In classical terms, this is the simpler analogue

ν′
i = riνi + i(ni) (109)

for νi of the equation (100) for mi.
We will now show that this coboundary equation for νi can be derived

from the definition (77) of νi, and the coboundary equations (100) and (108)
for mi and Bi:

ν′
i = d1m′

i − i(B′
i)

= d1(ri∗mi + i(ei))− i(ri(Bi) + ni + d1
m′

i
(−ei))

= rid1mi + i(d1ei) + [ri∗mi, i(ei)]− i(ri(Bi)) + i(d1
m′

i
(−ei)) + i(ni)

= ri(d1mi − i(Bi)) + i(ni) + i(d1
m′

i
(−ei) + d1ei + [ri∗mi, ei])

In order to prove (109), it now suffices to verify that the three terms in the
last summand of the final equation cancel each other out:

d1
m′

i
(−ei) + d1(ei) + [ri∗mi, ei] = d1(−ei)− [m′

i, ei] + d1ei + [ri∗mi, ei]

= d1(−ei) + d1ei − [ei, ei]
= 0. ��

The other equation satisfied by the forms ni is the counterpart of equation
(104). It is obtained by considering the following diagram, analogous to (103):
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κp∗0xj

κp∗0φij



���
��

��
��

��
��

��
��

δj �� p∗0xj

p∗0χj

��

p∗0φij		���
���

�

p∗0xi
δij

		���
���

�

p∗0χi

��

κp∗0xi

κp∗0χi

��

δi ��

κp∗0χj

��

p∗0xi

p∗0χi

��

p∗0x
′
i

p∗0θij

��

ri(δij)

		










p∗0x

′
j

p∗0φ
′
ij

		











nj

��

p∗0x
′
i

ni

��

p∗0x
′
i

p∗0λ
′
ij(nj)

��

κp∗0x
′
j

κp∗0φ
′
ij

���
���

��



���
���

��

δ′j �� p∗0x
′
j

p∗0φ
′
ij

		











κp∗0x′
i

δ′i ��

κp∗0θij ��

p∗0x′
i

ν′i(p
∗
0θij) ��

p∗0x′
i

δ′ij
		











κp∗0x
′
i

δ′i
�� p∗0x

′
i

.

(110)
The lower front square on the right-hand face

p∗0x′
i

p∗0θij ��

ri(δij)

��

p∗0x′
i

p∗0λ
′
ij(nj) �� p∗0x′

i

δ′ij

��
p∗0x

′
i ni

�� p∗0x
′
i
ν′i(p

∗
0θij)

�� p∗0x
′
i

of diagram (110) is commutative, since all other squares in this diagram are.
This proves that equation

ν′
i(p

∗
0 θij) ni ri(δij) = δ′ij p∗0λ

′
ij(nj) p∗0θij

in Lie (G)⊗Ω2
Ui/S

is satisfied. Regrouping the various terms in this equation
as we did above for equation (104), we find that it is equivalent, in additive
notation, to

(δ′ij − ri(δij)) + (λ′
ij(nj)− θijni) = [ν′

i, θij ] ,

an equation for 2-forms very similar to equation (105) for 1-forms.
We will now examine the effect of the chosen transformations

(λij , gijk, mi, γij) −→ (λ′
ij , g′ijk, m′

i, γ′
ij) (111)
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and Bi −→ B′
i (108) on the 3-curvature 3-forms ωi (95). For this, it will be

convenient to set

ēi := r−1
i (ei) and n̄i := r−1

i (ni) .

It follows from (28), (15), and the transformation formula (101) that

dnm′
i
(ri(η)) = ri(dnmi

(η) + [ēi, η]) (112)

for any G-valued n-form η with n > 1. In particular,

d1
m′

i
(−ei) = d1

ri∗mi
(−ei)− [ei, ei]

= ri(d1
mi

(−ēi)− [ēi, ēi])

so that (108) may be expressed as

B′
i = ri(Bi − d1

mi
(−ēi) + [ēi, ēi]− n̄i) .

Applying once more the formula (112), we find that

ω′
i = d2

m′
i
(B′

i)

= d2
m′

i
(ri(Bi − d1

mi
(−ēi) + [ēi, ēi]− n̄i))

= ri(d2
mi

(Bi − d1
mi

(−ēi) + [ēi, ēi]− n̄i))

+ [ēi, Bi − d1
mi

(−ēi) + [ēi, ēi]− n̄i] . (113)

We now make use of (33) in order to compute the value of the expression
d2
mi

d1
mi

(−ēi) which arises when we expand the first summand of the last
equation (113):

d2
mi

d1
mi

(− ēi) = [d1mi , − ēi] + [d1(− ēi), − ēi] + [[mi, − ēi], − ēi]

= − [d1mi , ēi] + [d1ēi, ēi] + [[mi, ēi], ēi] .

Inserting this expression into (113), we find that

ω′
i = ri(ωi + [d1mi, ēi]− [d1ēi, ēi]− [[mi, ēi], ēi]− d2

mi
(n̄i)

+ d2
mi

[ēi, ēi] + [ēi, Bi]− [ēi, d1
mi

(−ēi)]− [ēi, n̄i]) . (114)

The four terms

−[d1ēi, ēi]− [[mi, ēi], ēi] + d2
mi

[ēi, ēi]− [ēi, d1
mi

(−ēi)]

cancel each other out, so that we are left in (114) with
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ω′
i = ri(ωi + [d1mi, ēi]− d2

mi
(n̄i) + [ēi, Bi]− [ēi, n̄i])

= ri(ωi + [d1mi − i(Bi), ēi] + [n̄i, ēi]− d2
mi

(n̄i))

= ri(ωi) + ri([νi, ēi]) + ri([n̄i, ēi])− ri(d2
mi

(n̄i))

= ri(ωi) + [riνi, ei] + [ni, ei]− d2
ri ∗mi

(ni) (115)

where in the last line we made use of the functoriality property (15) of the
bracket operation. Amalgamating the last two summands, we may finally write
the coboundary transformation for the 3-curvature form ωi in the compact
form

ω′
i = ri(ωi) + [riνi, ei]− d2

m′
i
(ni) .

If instead we amalgamate the second and third terms in (115), we find the
equivalent formulation

ω′
i = ri(ωi) + [ν′

i, ei]− d2
ri ∗mi

(ni) . (116)

Remark 5.1 (Comparison with [5]):
The coboundary equation (116) is compatible with equation (6.2.19) of [5],

but neither is a special case of the other. Here we allowed both the trivializing
data (xi, φij) for the gerbe and the expressions (γi, δi, Bi) for the curving data
to vary, whereas in the coboundary equations of [5] the gerbe data (xi, φij)
was fixed and only the (γi, δi, Bi) varied. This restriction amounted to set-
ting (ri, θij) = (1, 1) in our equation (105). On the other hand, a notion of
equivalence between cocycles was introduced in [5] which was more extensive
than the one considered here. In order for these to be comparable, one must
suppose that the arrow h in diagram (4.2.1) of [5] is the identity map, i.e.,
that the pair of differential forms (πi, ηij) associated to h in loc. cit. § 6.2 is
trivial. This is a reasonable assumption, since a nontrivial arrow h could really
be termed a gauge transformation, rather than a coboundary term. With this
additional condition, the last two summands in equation (6.2.19) of [5] vanish,
so that this equation reduces to

ω′
i = ωi + δ2

mi
(αi)− [ν′

i, Ei] . (117)

This simplified equation is compatible with our equation (116) with ri = 1,
under the correspondence ei := −Ei and ni := −αi.
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8. Hitchin, N.: Lectures on special lagrangian submanifolds, in “winter school on
mirror symmetry, vector bundles and lagrangian submanifolds (Cambridge, MA,
1999)”. AMS/IP Stud. Adv. Math. 23, 151–182 (2001)

9. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Intersci. Tracts
Pure Appl. Math. 15 (1969)

10. Kock, A.: Differential forms with values in groups. Bull. Aust. Math. Soc. 25,
357–386 (1982)

11. Kock, A.: Combinatorics of curvature, and the Bianchi identity. Theory Appl.
Categories 2, 69–89 (1996)

12. Laurent-Gengoux, C., Stenion, M., Xu, P.: Non-abelian differential gerbes. Adv.
Math. 220, 1357–1427 (2009)

13. Murray, M.K.: Bundle Gerbes, J. Lond. Math. Soc. 54, 403–416 (1996)
14. Schreiber, U.: From loop space mechanics to nonabelian strings, Univer-

sity of Duisburg-Essen doctoral dissertation (2005), available as Arxiv:

hep-th/0509163

15. Ulbrich, K.-H.: On cocycle bitorsors and gerbes over a Grothendieck topos.
Math. Proc. Camb. Phil. Soc. 110, 49–55 (1991)



Symplectic Connections of Ricci Type

and Star Products

Michel Cahen1, Simone Gutt1,2,∗, and Stefan Waldmann3
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Introduction

Deformation quantization [4] is a formal deformation – in the sense of Murray
Gerstenhaber [18] – of the algebraic structure of the space of smooth functions
on a manifold M ; it yields at first order in the deformation parameter a
Poisson structure on M . When this Poisson structure is nondegenerate, i.e.,
when the manifold is symplectic, deformation quantization at second-order
yields a symplectic connection on M [22].

On a symplectic manifold (M,ω), symplectic connections always exist but
are not unique. The curvature R∇ of such a connection ∇ splits [23] under the
action of the symplectic group (when the dimension of M is at least 4), into
two irreducible components R∇ = E∇ +W∇ with E∇ completely determined
by the Ricci tensor of the connection. A symplectic connection is said to be
of Ricci-type if R∇ = E∇.
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Marsden–Weinstein reduction, see e.g. [1, Sect. 4.3], is a method in sym-
plectic geometry to construct a symplectic manifold (M,ω) – called the re-
duced space – from a bigger one (P, μ) and the extra data of a coisotropic
submanifold C in P .

Under some further assumptions, one can sometimes reduce connections
[3, 2], i.e., define a symplectic connection ∇M on M from a connection ∇P
on P . In particular, any Ricci-type connection on a simply connected 2n(≥4)
dimensional manifold can be obtained [12] by reduction from a flat connection
∇ on a 2n + 2 dimensional manifold P , with the coisotropic codimension 1
submanifold C defined by the zero set of a function F : P → R whose third
covariant derivative vanishes.

One way to describe the algebra of functions on the reduced space is the
use of BRST methods. Jim Stasheff participated actively in the development
of this point of view, see e.g. [17] among many others. Reduction of deforma-
tion quantization has been studied by various authors [16, 9, 6, 14, 20, 13]. In
particular, a quantized version of BRST methods was introduced in [9] to con-
struct reduction in deformation quantization. We use here those methods to
define a star product on any symplectic manifold endowed with a Ricci-type
connection.

In this context we rely both on the work of Murray and on the work of
Jim and we are very happy and honoured to dedicate this to them.

In Section 1, we recall some basic properties of Ricci-type symplectic con-
nections. Section 2 introduces a natural differential operator of order 2 on a
symplectic manifold endowed with a symplectic connection. In Section 3, we
recall the expression of the Weyl–Moyal star product on a symplectic man-
ifold with a flat connection. Section 4 explains the construction of reduced
star product in our context where the reduced space (M,ω) is a symplectic
manifold of dimension 2n ≥ 4, endowed with a Ricci-type connection, and
where the big space (P, μ) is of dimension 2n + 2 with a flat connection and
the related Weyl–Moyal star product. In Section 5, we show some properties
of the reduced star product, in particular that the connection defined by the
reduced star product is the Ricci-type connection.

1 Preliminary Results on Ricci-Type Connections

In this section we recall some basic properties of Ricci-type symplectic con-
nections to explain our notation. We follow essentially [12, 11] and refer for
further details to the expository paper [5].

Let (M,ω) be a 2n ≥ 4-dimensional symplectic manifold which allows for
a Ricci-type symplectic connection: this is a symplectic connection ∇M (i.e.,
a linear torsion-free connection so that the symplectic 2-form ω is parallel)
such that the curvature tensor R is entirely determined by its Ricci tensor
Ric. Precisely, for X,Y ∈ Γ∞(TM) we have
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R(X,Y ) = − 1
2n + 1

(
− 2ω(X,Y )�− �(Y )⊗X�

+ �(X)⊗ Y � −X ⊗ (�(Y ))� + Y ⊗ (�(X))�
)
, (1)

where X� = iX ω as usual and � is the Ricci endomorphism defined by

Ric(X,Y ) = ω(X, �(Y )). (2)

It follows that there exists a vector field U ∈ Γ∞(TM), a function f ∈ C∞(M)
and a constant K such that the following identities hold:

∇MX � = − 1
2n + 1

(
X ⊗ U� + U⊗X�

)
, (3)

∇MX U = − 2n + 1
2(n + 1)

�2X + fX, (4)

tr(�2) +
4(n + 1)
2n + 1

f = K. (5)

One of the fundamental properties of such a Ricci-type connection is that
(M,ω,∇M ) can be obtained from a Marsden–Weinstein reduction out of a
(2n+2)-dimensional symplectic manifold (P, μ) which is equipped with a flat
symplectic torsion-free connection ∇. In fact, we have to assume that M is
simply-connected; then by [12] there exists a (2n + 1)-dimensional manifold
Σ with a surjective submersion

π : Σ −→M (6)

together with a contact one-form α ∈ Γ∞(T ∗Σ), i.e., α ∧ (dα)n is nowhere
vanishing with π∗ω = dα, whose Reeb vector field Z ∈ Γ∞(TΣ), defined by
α(Z) = 1 and iZ dα = 0, has a flow such that (6) is the quotient onto the
orbit space with respect to this flow. This manifold Σ is constructed as the
holonomy bundle over M for a connection defined on an extension of the frame
bundle. It is an R or S1 principal bundle over M with connection one-form α.

Then we consider P = Σ × R with pr1 : P −→ Σ being the canonical
projection and ι : Σ −→ P being the embedding of Σ as Σ × {0}. The
coordinate along R is denoted by s and we set S = ∂

∂s ∈ Γ∞(TP ). On P one
has the following exact symplectic form:

μ = d(espr∗1α) = esds ∧ pr∗1α + esdpr∗1α. (7)

Thanks to the Cartesian product structure we can lift vector fields on Σ
canonically to P . In particular, the lift E of the Reeb vector field Z (defined
by ds(E) = 0 and Tpr1(E) = Z) turns out to be Hamiltonian E = −XH with

H = es ∈ C∞(P ). (8)
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We have
LS XH = 0, LS H = H, and LS μ = μ, (9)

whence in particular S is a conformally symplectic vector field. Moreover,
μ(XH , S) = H and we can rewrite μ as

μ = dH ∧ pr∗1α + Hpr∗ω, (10)

where pr = π ◦ pr1 : P −→ M . Then (M,ω) is the (Marsden–Weinstein)
reduced phase space of (P, μ) with respect to the Hamiltonian flow of H at
momentum value H = 1, since indeed Σ = H−1({1}) and ι∗μ = π∗ω by (10).

Using the contact form α we can lift vector fields X ∈ Γ∞(TM) horizon-
tally to vector fields X ∈ Γ∞(TΣ) by the condition

Tπ ◦X = X ◦ π and α(X) = 0. (11)

Since dα = π∗ω we have [X,Y ] = [X,Y ] − π∗(ω(X,Y ))Z. Using also the
canonical lift to P , we can lift X ∈ Γ∞(TM) horizontally to Xhor ∈ Γ∞(TP ),
now subject to the conditions

Tpr ◦Xhor = X ◦ pr and pr∗1α(Xhor) = 0 = ds(Xhor). (12)

We have [
Xhor, Y hor

]
= [X,Y ]hor + pr∗(ω(X,Y ))XH (13)

as well as [
S,Xhor

]
= 0 =

[
XH , Xhor

]
. (14)

We shall speak of “invariance” always with respect to the flow of XH

(or Z on Σ, respectively) and of “homogeneity” always with respect to the
conformally symplectic vector field S, e.g., a differential operator D on P is
called homogeneous of degree k ∈ Z if [LS , D] = kD, etc.

Denote the Poisson tensor on M by ΛM and the one on P by ΛP , respec-
tively. We can also extend the horizontal lift to bivectors as usual. Since we
have curvature, Λhor

M is no longer a Poisson bivector, instead one finds
�
Λhor
M , Λhor

M

�
= −2Λhor

M ∧XH . (15)

From the Definition (7) of the symplectic 2-form μ on P , we have the relation

ΛP =
1
H

(
Λhor
M + S ∧XH

)
. (16)

In particular, for u, v ∈ C∞(M) we find for the Poisson brackets

{pr∗u, pr∗v}P =
1
H

pr∗{u, v}M . (17)

We are now in the position to define the flat connection ∇ on P by speci-
fying it on horizontal lifts, on S and on XH . One defines [12]
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∇XhorY hor =
(
∇MX Y

)hor
+

1
2
pr∗(ω(X,Y ))XH + pr∗(t(X,Y ))S, (18)

∇XhorXH = ∇XH Xhor = (τ(X))hor − pr∗(ω(X,V))S, (19)

∇XhorS = ∇SXhor =
1
2
Xhor, (20)

∇XH XH = pr∗φS − Vhor, (21)

∇XH S = ∇SXH =
1
2
XH , (22)

∇SS =
1
2
S, (23)

where we used the abbreviations

t =
1

n + 1
Ric, (24)

V =
2

(n + 1)(2n + 1)
U, (25)

φ =
4

(n + 1)(2n + 1)
f, (26)

and τ is the endomorphism corresponding to t analogously to (2). In [12], the
following statement was obtained:

Theorem 1. By (18)–(23) a flat symplectic torsion-free connection ∇ is de-
fined on P and ∇ is invariant under XH and S. Moreover, the third sym-
metrized covariant derivative of H vanishes.

Recall that the operator of symmetrized covariant differentiation as a deriva-
tion of the symmetric tensor product D : Γ∞(SkT ∗P ) −→ Γ∞(Sk+1T ∗P ) is
defined by

(Dγ)(X1, . . . , Xk+1) =
k+1∑

�=1

(∇X�
γ) (X1, . . . ,

�
∧, . . . , Xk+1), (27)

where X1, . . . , Xk+1 ∈ Γ∞(TP ) and γ ∈ Γ∞(SkT ∗P ). Locally, D can be
written as

D = dxi ∨∇ ∂

∂xi
, (28)

where ∨ denotes the symmetrized tensor product. Then Theorem 1 means

D3H = 0. (29)

Remark 1. The Ricci-type connection on M is symmetric iff U = 0 in which
case f turns out to be constant. This particular case has been studied in detail
in [5]. In fact, this situation can be specialized to the case where the big space
P is an open subset of R2n+2, the flat connection is the usual one, and the
Hamiltonian H is a quadratic function. Then depending on the remaining
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data f, K and �, one obtains as reduced spaces, e.g., the complex projective
space CPn with its usual Kähler structure, the cotangent bundle of the sphere
Sn and other examples, see the discussion in [12].

2 General Remarks on the Ricci Operator

Before discussing the star products on P and M , respectively, we introduce
the following second-order differential operator on a symplectic manifold with
symplectic connection, which is also of independent interest. Let (M,ω) be
symplectic with a torsion-free symplectic connection ∇ (not necessarily of
Ricci-type). Then the Ricci tensor Ric ∈ Γ∞(S2T ∗M) can be used to define
a “Laplace”-like operator ΔRic as follows: We denote by Ric� ∈ Γ∞(S2TM)
the symmetric bivector obtained from Ric under the musical isomorphism !
with respect to ω.

Definition 1 (Ricci operator). The Ricci operator ΔRic : C∞(M) −→
C∞(M) is defined by

ΔRic u =
1
2

〈
Ric�,D2u

〉
, (30)

where 〈·, ·〉 denotes the natural pairing.

If locally we write Ric� = 1
2 Ricij ∂

∂xi ∨ ∂
∂xj , then

ΔRic u = Ricij
(

∂2u

∂xi∂xj
− Γ kij

∂u

∂xk

)

, (31)

where Γ kij are the local Christoffel symbols of ∇.
Since on a symplectic manifold we have a canonical volume form, the

Liouville form Ω, one can ask whether ΔRic is a symmetric operator with
respect to the L2-inner product on C∞

0 (M) induced by Ω: in general, this is
not the case. However, there is an easy way to correct this. We need to recall
some basic features of the global symbol calculus for differential operators on
manifolds with connection; see, e.g., [10, 8].

We denote by (q, p) the canonical coordinates on T ∗U ⊆ T ∗M induced
by a local chart (U, x) of M . Then the standard-ordered quantization of a
function f ∈ Pol•(T ∗M) on the cotangent bundle π : T ∗M −→ M , which is
polynomial in the momenta, is defined by

�Std(f)u =
∞∑

r=0

1
r!

(
�

i

)r
∂rf

∂pi1 · · · ∂pir

∣
∣
∣
p=0

is

(
∂

∂xi1

)

· · · is
(

∂

∂xir

)
1
r!

Dru,

(32)

where u ∈ C∞(M) and is denotes the (symmetric) insertion map into the
first argument. Clearly, (32) is globally well-defined and does not depend
on the coordinates. The constant �

i can safely be set to 1 in our context;
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however, we have included it for the sake of physical interpretation of �Std as
a quantization map. Then (32) gives a linear bijection �Std : Pol•(T ∗M) −→
Diffop(M).

The symmetric algebra S•(TM) =
⊕∞

r=0 Γ∞(SrTM) is canonically iso-
morphic to the polynomial functions Pol•(T ∗M) as graded associative alge-
bra via the “universal momentum map” J , determined by J (u) = π∗u and
(J (X))(αq) = αq(X(q)) for u ∈ S0(TM) = C∞(M) and X ∈ S1(TM) =
Γ∞(TM). Thus, we can rephrase (30) as

ΔRic = − 2
�2

�Std(J (Ric�)), (33)

whence ΔRic is the standard-ordered quantization of the quadratic function
J (Ric�) on T ∗M .

The standard-ordered quantization can be seen as a particular case of the
κ-ordered quantization which is obtained as follows. On C∞(T ∗M) one has a
Laplace operator Δ0 arising from the pseudo-Riemannian metric g0, which is
defined by the natural pairing of the vertical and horizontal (with respect to
∇) subspaces of T (T ∗M). Locally, Δ0 is given by

Δ0

∣
∣
∣
T∗U

=
∂2

∂qi∂pi
+ pkπ

∗(Γ kij)
∂2

∂pi∂pj
+ π∗(Γ iij)

∂

∂pj
. (34)

On polynomial functions Δ0 is just the covariant divergence operator [8,
Eq. (111)], i.e.,

Δ0J (T ) = J (div∇ T ) (35)

for T ∈ Sk(TM) where with α1, . . . , αk−1 ∈ Γ∞(T ∗M)

(div∇ T )(α1, . . . , αk−1) = tr (X �→ (∇XT )(·, α1, . . . , αk−1)) . (36)

Locally, div∇ = is(dxi)∇ ∂

∂xi
. Using Δ0, the κ-ordered quantization is defined

by [10]
�κ(f) = �Std

(
e−iκ�Δ0f

)
, (37)

where in particular the Weyl-ordered case �Weyl = �κ=1/2 is of interest for us.
In general, we have for the formal adjoint of �κ(f) with respect to Ω

�κ(f)† = �κ

(
e−i�(1−2κ)Δ0f

)
(38)

whence �Weyl(f)† = �Weyl(f). Thus, �Weyl(J (Ric�)) gives a symmetric operator.
Explicitly, one finds using (35)

− 2
�2

�κ(J (Ric�)) = ΔRic +2κLdiv∇ Ric	 +κ2 div2
∇(Ric�), (39)

since no higher order terms contribute thanks to Ric� ∈ S2(TM). Moreover,
κ2 div2

∇(Ric�) is already a multiplication operator with a real function and
hence symmetric itself for all κ. For κ = 1

2 we have:
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Lemma 1. The operator ΔRic + Ldiv∇ Ric	 + 1
4 div2

∇ Ric� as well as the
operator ΔRic + Ldiv∇ Ric	 are symmetric.

We conclude this section with the computation of the covariant divergences
of Ric� in the case of a Ricci-type connection. In view of equation (3) and the
fact that ∇X commutes with !, we have

∇X Ric� = (∇X Ric)� =
1

2n + 1

(
X� ∨ U�

)�
=

1
2n + 1

X ∨ U (40)

whence
div∇ Ric� = U. (41)

Moreover, from (4) and (5) we get

div2
∇
(
Ric�

)
= div∇ U = − 2n + 1

2(n + 1)
K + 2(n + 1)f. (42)

We can also obtain from this the symmetric version of the Ricci operator,
according to Lemma 1.

3 The Weyl–Moyal Star Product

After this excursion on the Ricci operator, we are now back to the situation
of Section 1. On the big space P , the symplectic connection ∇ is flat. We have
thus a Weyl–Moyal star product on P , explicitly given by

f � g =
∞∑

r=0

1
r!

(ν

2

)r
Cr(f, g) (43)

for f, g ∈ C∞(P )[[ν]], where

Cr(f, g) =
〈

ΛP ⊗ · · · ⊗ ΛP ,
1
r!

Drf ⊗ 1
r!

Drg

〉

(44)

and the natural pairing is done “over cross.” Locally we have

Cr(f, g) = Λi1j1P · · ·ΛirjrP is

(
∂

∂xi1

)

· · · is
(

∂

∂xir

)
1
r!

Drf

× is

(
∂

∂xj1

)

· · · is
(

∂

∂xjr

)
1
r!

Drg. (45)

Since ∇ is flat � defines an associative law on the space of formal power series
in the parameter ν with coefficients in C∞(P ) [4]. The Cr are bidifferential
operators which are of order at most r in each argument, and satisfy the sym-
metry condition Cr(u, v) = (−1)rCr(v, u). These properties are summarized
by saying that � is a natural star product of Weyl-type.
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We have now two derivations of �: first it follows directly from the fact
that ∇ is S-invariant and LS ΛP = −ΛP that

E = ν
∂

∂ν
+ LS (46)

is a ν-Euler derivation, i.e., a C-linear derivation of �, see e.g. [21]. Second, we
consider the quasi-inner derivation 1

ν ad(H). Since D3H = 0, only the terms
of order ν1 and ν2 contribute. But thanks to the Weyl-type symmetry of �,
only odd powers of ν occur in commutators, this is immediate from (45). Thus
we have

1
ν

ad(H)f =
1
ν
ν{H, f} = XH(f), (47)

which shows that XH is a quasi-inner derivation. With other words, � is
strongly invariant with respect to the (classical) momentum map H . This
strong invariance will allow us to use the phase space reduction also for � to
obtain a star product on M . To this end, we first note the following:

Lemma 2. There are unique bidifferential operators Ĉred
r on M of order r in

each argument such that

pr∗u � pr∗v =
∞∑

r=0

1
r!

(ν

2

)r 1
Hr

pr∗Ĉred
r (u, v). (48)

In particular, we have Ĉred
1 (u, v) = 〈ΛM , du⊗ dv〉.

Proof. Clearly, HrCr(pr∗u, pr∗v) is invariant under XH and homogeneous of
degree 0 under S, hence a pull-back of a function Ĉred

r (u, v) ∈ C∞(M) via
pr. This defines Ĉred

r uniquely. The statement on the order of differentiation
is straightforward. Finally, Ĉred

1 is obtained from (17). ��

Remark 2. Though it seems tempting, the operators Ĉred
r do not combine into

a star product on M directly: the prefactors Hr spoil the associativity as one
can show by a direct computation. Hence we will need a slightly more involved
reduction.

We will need the second-order term of H � f with an arbitrary function
f ∈ C∞(P ). By the symmetry properties of (45) we know that C2(H, f) =
C2(f,H).

Proposition 1. Let f ∈ C∞(P ), then

C2(f,H) =
1
H

(

− 1
n + 1

(
ΔRic

)hor
f − 1

2
LVhor f − pr∗(φ)L 2

S f

+ (LVhor LS + LS LVhor) f +
1
2

L 2
XH

f

)

,

(49)
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where
(
ΔRic

)hor
f is the pairing of the horizontal lift of the 2-tensor RicM�

with the second covariant derivative with respect to the flat connection ∇ on P .
Precisely, in a local chart, it is given by

pr∗(RicM�ij)[L∂hor
i

L∂hor
j

f − pr∗(ΓMk
ij )L∂hor

k
f +

1
n + 1

pr∗ RicMij LS f ]. (50)

Observe that RicM�ij RicMij = − tr(ρ2).

Proof. First we note that is(X)D2f = 2∇Xdf by the very definition of D.
Thus using (16) we can compute C2(f, g) for f, g ∈ C∞(P ) explicitly and get

C2(f, g) =
1

H2

(

pr∗
(
ΛijredΛ

kl
red

)(
∇∂hor

k
df
)

(∂hor
i )

(
∇∂hor

l
dg
)

(∂hor
j )

+ pr∗
(
Λklred

) (
∇∂hor

k
df
)

(S)
(
∇∂hor

l
dg
)

(XH)

+ pr∗
(
Λklred

) (
∇∂hor

l
df
)

(XH)
(
∇∂hor

k
dg
)

(S)

+ pr∗
(
Λijred

)
(∇Sdf) (∂hor

i ) (∇XH dg) (∂hor
j )

+ pr∗
(
Λijred

)
(∇XH df) (∂hor

j ) (∇Sdg) (∂hor
i )

+ (∇Sdf) (S) (∇XH dg) (XH) + (∇XH df) (XH) (∇Sdg) (S)

− (∇Sdf) (XH) (∇XH dg) (S)− (∇XH df) (S) (∇Sdg) (XH)

)

, (51)

where we have used local coordinates on M as well as the horizontal lift
according to (12). Next, one computes the second covariant derivatives of H
explicitly. One finds

(∇XhordH)
(
Y hor

)
= −pr∗(t(X,Y ))H, (52)

(∇XhordH) (XH) = pr∗(ω(X,V))H = (∇XH dH)
(
Xhor

)
, (53)

(∇XhordH) (S) = 0 = (∇SdH)
(
Xhor

)
, (54)

(∇XH dH) (S) = 0 = (∇SdH) (XH) , (55)

(∇XH dH) (XH) = −pr∗(φ)H and (∇SdH) (S) =
1
2
H, (56)

where we used dH(XH) = 0 and dH(S) = H as well as dH(Xhor) = 0 together
with the explicit formulas (18)–(23). Putting things together gives the result
thanks to the local form (31) for ΔRic and Ricij = ΛikMΛjlM Rickl. ��
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Definition 2. For f ∈ C∞(P ) we define the second-order differential operator
Δ by

Δf = C2(f,H). (57)

As we shall see in the next section, this operator will be crucial for the con-
struction of the reduced star product.

4 Reduction of the Star Product

We come now to the reduction of �. Here we follow essentially the BRST /
Koszul approach advocated in [9] which simplifies drastically thanks to the
codimension one reduction. Codimension one reductions have also been dis-
cussed by Glößner [20,19] and Fedosov[15], while the general case of reduction
for coisotropic constraint manifolds is discussed in [7,6,14,13]. We shall briefly
recall those aspects of [9] which are needed here.

We first consider the classical situation: the classical Koszul operator ∂ :
C∞(P ) −→ C∞(P ) is defined by

∂f = f(H − 1). (58)

In the general case the Koszul complex is built on C∞(P )⊗Λ•g if the reduction
procedure is done with respect to a group action of some Lie group G with Lie
algebra g at momentum level 0. In our case g = R is one-dimensional whence
the Koszul complex is just C∞(P ) ⊕ C∞(P ). Next we define the classical
homotopy h : C∞(P ) −→ C∞(P ) by

hf =

{
1

H−1 (f − pr∗1ι
∗f) on P \ ι(Σ)

LS f on ι(Σ).
(59)

An easy argument shows that hf is actually smooth. Then we have the ho-
motopy formula

f = ∂hf + pr∗1ι
∗f (60)

for f ∈ C∞(P ) together with the properties

ι∗∂ = 0 and hpr∗1 = 0. (61)

Moreover, ∂, h, ι∗, and pr∗1 are equivariant with respect to the action of XH

on P and the Reeb vector field on Σ, respectively. The classical vanishing
ideal IΣ of Σ is given by

IΣ = ker ι∗ = im ∂ (62)

by (60), and turns out to be a Poisson subalgebra of C∞(P ) as Σ is coisotropic.
Moreover,

BΣ =
{
f ∈ C∞(P )

∣
∣ {f, IΣ} ⊆ IΣ

}
(63)
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is the largest Poisson subalgebra of C∞(P ) such that IΣ ⊆ BΣ is a Poisson
ideal. It is well-known and easy to see that BΣ can also be characterized by

BΣ =
{
f ∈ C∞(P )

∣
∣ ι∗f ∈ C∞(Σ)Z = π∗C∞(M)

}
(64)

from which it easily follows that the Poisson algebra BΣ
/
IΣ is isomorphic to

the Poisson algebra C∞(M) via ι∗ and π∗.
We shall now deform the above picture according to [9] where we only use

the “Koszul part” of the BRST complex. First we define the quantum Koszul
operator ∂ : C∞(P )[[ν]] −→ C∞(P )[[ν]] by

∂ f = f � (H − 1). (65)

We set
IΣ = im ∂ =

{
f ∈ C∞(P )[[ν]]

∣
∣ f = g � (H − 1)

}
, (66)

which is the left ideal generated by H − 1 with respect to �. Next we consider

BΣ =
{
f ∈ C∞(P )[[ν]]

∣
∣ [f,IΣ ]� ⊆ IΣ

}
, (67)

which is the largest subalgebra of C∞(P )[[ν]] such that IΣ ⊆ BΣ is a two-
sided ideal, the so-called idealizer of IΣ . The following simple algebraic lemma
is at the core of Bordemann’s interpretation of the reduction procedure [6,7]:

Lemma 3. Let A be a unital k-algebra and I ⊆ A a left ideal. Let B ⊆ A be
the idealizer of I and Ared = B

/
I. Then the left A-module A

/
I becomes a

right Ared-module via [b] : [a] �→ [ab] for [b] ∈ Ared and [a] ∈ A
/
I, such that

Ared
∼= EndA

(
A
/
I
)opp

. (68)

This way A
/
I becomes a (A,Ared)-bimodule.

In our situation, we want to show that C∞(P )[[ν]]
/IΣ provides a defor-

mation of C∞(Σ) and BΣ

/IΣ induces a star product �red on M . This can
be done in great generality, in our situation the arguments simplify thanks to
the codimension one case.

We define the quantum homotopy

h = h (id +(∂−∂)h)−1 (69)

and the quantum restriction map

ι∗ = ι∗ (id+(∂ −∂)h)−1 , (70)

which are clearly well-defined since ∂−∂ is at least of order λ and thus
id+(∂ −∂)h is invertible by a geometric series. From (60) we immediately find

f = ∂ hf + pr∗1ι
∗f (71)
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for all f ∈ C∞(P )[[ν]]. Moreover, we still have the relations

ι∗pr∗1 = idC∞(Σ)[[ν]] and hpr∗1 = 0, (72)

as in the classical case. Finally, all maps are still equivariant with respect to
the flow of XH and Z, respectively.

Proposition 2. The function C∞(Σ)[[ν]] becomes a left �-module via

f • ψ = ι∗(f � pr∗1ψ). (73)

This module structure is isomorphic to the module structure of C∞(P )[[ν]]
/IΣ

via pr∗1 and ι∗.

Proof. Since im∂ = ker ι∗ by (71), the quantum restriction map ι∗ induces a
linear bijection C∞(P )[[ν]]

/IΣ −→ C∞(Σ)[[ν]] whose inverse is induced by
pr∗1 by (72). Then (73) is just the pulled-back module structure. ��

From the strong invariance of the star product � we obtain the following
characterization of BΣ :

Lemma 4. BΣ =
{
f ∈ C∞(P )[[ν]]

∣
∣ ι∗f ∈ π∗C∞(M)[[ν]]

}
.

Proof. Indeed, on one hand we have Zι∗f = −νι∗ ad(H)f by equivariance
of ι∗. Since for f ∈ BΣ we have ad(H)f ∈ IΣ , this gives ι∗f = 0 by (71).
Conversely, ι∗f = 0 implies ad(H)f ∈ IΣ and hence (H − 1) � f ∈ IΣ from
which IΣ � f ⊆ IΣ follows. But this implies f ∈ BΣ . ��

Theorem 2. The quotient BΣ

/IΣ is C[[ν]]-linearly isomorphic to C∞(M)
[[ν]] via

C∞(M)[[ν]] � u �→ [pr∗u] ∈ BΣ

/IΣ (74)

with inverse induced by

BΣ

/IΣ � [f ] �→ ι∗f ∈ π∗C∞(M)[[ν]]. (75)

This induces a deformed product �red for C∞(M)[[ν]] via

π∗(u �red v) = ι∗(pr∗u � pr∗v), (76)

which turns out to be a differential star product quantizing {·, ·}M . Finally,
the bimodule structure of C∞(Σ)[[ν]] according to Lemma 3 and Proposition 2
is given by

ψ • u = ι∗(pr∗1ψ � pr∗u). (77)

Proof. For u ∈ C∞(M)[[ν]] we clearly have ι∗pr∗u = ι∗pr∗1π
∗u = π∗u ∈

π∗C∞(M)[[ν]] whence pr∗u ∈ BΣ by Lemma 4 and (74) is well-defined. Since
IΣ = ker ι∗, by Lemma 4 it follows that (75) is well-defined and injective.
Clearly, (74) and (75) are mutually inverse by (72) whence �red is an associa-
tive C[[ν]]-bilinear product for C∞(M)[[ν]]. It can be shown [9, Lem. 27] that
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there exists a formal series S = id+
∑∞
r=1 νrSr of differential operators Sr on

P such that ι∗ = ι∗ ◦S, from which it easily follows that �red is bidifferential.
Finally, computing the first orders of

u �red v =
∞∑

r=0

1
r!

(ν

2

)r
Cred
r (u, v) (78)

explicitly gives Cred
0 (u, v) = uv and Cred

1 (u, v) = {u, v}M , whence �red is a
star product quantizing the correct Poisson bracket. The last statement is
clear by construction. ��

Up to now we just followed the general reduction scheme from [9] which
simplifies for the codimension one case, see also [20,19]. Let us now bring our
more specific features into the game:

Lemma 5. Let f ∈ C∞(P )XH [[ν]] be invariant. Then

(∂−∂)f =
ν2

8
Δf. (79)

The operator Δ is invariant.

Proof. By invariance of f we only have the second-order term in the right
multiplication by H−1, which was computed in Proposition 1. The invariance
of Δ follows from the strong invariance of � by

XH(Δf) = XH

(
f � H − ν

2
C1(f,H)− fH

)

=
1
ν

ad(H)(f � H) +
ν

2
XH(XH(f))−XH(f)H

=
1
ν

(ad(H)(f)) � H − ν

2
C1(XH(f), H)−XH(f)H

= Δ(XH(f)). ��

Lemma 6. Let f ∈ C∞(P )XH [[ν]] be invariant. Then

ι∗f = ι∗
(

id +
ν2

8
Δh

)−1

f. (80)

Proof. Since h and Δ preserve invariance this follows by induction from the
last lemma. ��

Proposition 3. Let u, v ∈ C∞(M)[[ν]]. Then u �red v is determined by

π∗(u �red v) = ι∗
( ∞∑

r=0

νr
∑

2s+t=r

1
(−8)s2tt!

(Δh)s
(

1
Ht

pr∗Ĉred
t (u, v)

))

. (81)

Proof. This is a simple consequence of Lemma 6 together with Lemma 2. ��
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From this formula we see that we have to proceed in two steps in order to
compute the true bidifferential operators Cred

r out of the operators Ĉred
r : first

we have to control Δ and h applied to functions of the form 1
Ht pr∗u. Second,

the application of ι∗ simply sets H = 1 and gives ι∗pr∗ = π∗, whence this
part can be considered to be trivial.

Lemma 7. Let u ∈ C∞(M) and k ∈ N. Then

h

(
1

Hk
pr∗u

)

= −
(

1
H

+ · · ·+ 1
Hk

)

pr∗u. (82)

Proof. On P \ ι(Σ) we have from (59)

h

(
1

Hk
pr∗u

)

=
1

H − 1

(
1

Hk
pr∗u− pr∗1ι

∗
(

1
Hk

pr∗u
))

=
1

H − 1

(
1

Hk
− 1
)

pr∗u

= −
(

1
H

+ · · ·+ 1
Hk

)

pr∗u.

By continuity this extends also to ι(Σ). ��

In particular, applying the homotopy h to a linear combination of functions
of the form 1

Hk pr∗u gives again such a linear combination.

Lemma 8. Let u ∈ C∞(M) and k ∈ N. Then

Δ

(
1

Hk
pr∗u

)

= − 1
n + 1

1
Hk+1

pr∗
(

ΔRic u

+
4k + 1
2n + 1

LU u +
k

n + 1
tr(�2)u +

4k2

2n + 1
fu

)

.

(83)

Proof. This follows from LXH H = 0 = LXhor H and LS H = H together with
LXhor pr∗u = pr∗ LX u and LXH pr∗u = 0 = LS pr∗u as well as Proposition 1.

��

Again, we see that applying Δ to this particular class of functions re-
produces such linear combinations, though, of course, the combinatorics gets
involved. In contrast to (82), the function u is differentiated in (83).

Remark 3. From the above two lemmas the star product �red can be computed
by Proposition 3 in all orders. However, the explicit evaluation of the iteration
(Δh)s seems to be tricky: the combinatorics gets quite involved, even in the
case, where ∇M is symmetric, i.e., U = 0 and f = const , tr(�2) = const . In
this particular case only the Ricci operator ΔRic has to be applied successively
to the Ĉred

r to produce the Cred
r , including, of course, still some nontrivial

combinatorics.
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5 Properties of the Reduced Star Product

In this section we collect some further properties of the reduced star product.

Proposition 4. The star product �red is of Weyl-type, i.e., the bidifferential
operators Cred

r satisfy
Cred
r (u, v) = Cred

r (u, v) (84)

and
Cred
r (u, v) = (−1)rCred

r (v, u). (85)

In particular, complex conjugation becomes a ∗-involution

u �red v = v �red u, (86)

where ν = −ν by definition. Moreover, �red is natural in the sense of [22],
i.e., Cred

r is a bidifferential operator of order r in each argument.

Proof. The operators Ĉred
r clearly satisfy (84) and (85). From (78) it follows

that the operators Cred
r are real operators, i.e., they satisfy (84), since Δ and

h are real. Moreover, by (81), only the operators Ĉred
r−2s with 0 ≤ 2s ≤ r

contribute to Cred
r whence Cred

r also satisfy (85) as 2s is even. Then (86)
follows. Moreover, Ĉred

r is a differential operator of order r in each argument.
Since the application of Δh to 1

Hk pr∗u by Lemmas 7 and 8 gives a second-
order differential operator on the part pr∗u, we conclude that Cred

r is of order
r in each argument, too. ��

In a next step, we explicitly compute the second-order term Cred
2 of �red.

According to [22], the second-order term of a natural star product determines
uniquely a symplectic connection: in our case, we reproduce the Ricci-type
connection ∇M .

Proposition 5. Let u, v ∈ C∞(M)[[ν]]. Then

Cred
2 (u, v) =

〈

Λred ⊗ Λred,
1
2
D2
Mu⊗ 1

2
D2
Mv

〉

+
2

n + 1

〈
Ric�, du⊗ dv

〉
. (87)

In particular, the symplectic connection determined by �red is ∇M .

Proof. From (81) we see that

π∗Cred
2 (u, v) = 8ι∗

(
∑

2s+t=2

1
(−8)s2tt!

(Δh)s
(

1
Ht

pr∗Ĉred
2 (u, v)

))

= ι∗
(

1
H2

pr∗Ĉred
2 (u, v)−Δhpr∗Ĉred

0 (u, v)
)

= π∗Ĉred
2 (u, v),
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since hpr∗ =0 by the very definition (59) of h. Thus Cred
2 = Ĉred

2 in this order
of ν. The corrections to the terms Ĉred

r start only in order r ≥ 3. To compute
Ĉred

2 we need the second covariant derivatives∇dpr∗u of pull-backs pr∗u. Here
we obtain

(∇Xhordpr∗u)
(
Y hor

)
= pr∗

((
∇MX du

)
(Y )
)
, (88)

(∇Xhordpr∗u) (XH) = −pr∗ (du(τX)) = (∇XH dpr∗u)
(
Xhor

)
, (89)

(∇Xhordpr∗u) (S) = −1
2
pr∗ (du(X)) = (∇Sdpr∗u)

(
Xhor

)
, (90)

(∇XH dpr∗u) (XH) = pr∗ (du(V)) , (91)

(∇XH dpr∗u) (S) = (∇Sdpr∗u) (XH) = (∇Sdpr∗u) (S) = 0. (92)

Inserting this into the general expression (51) for C2 and using pr∗Ĉred
2 (u, v) =

H2C2(pr∗u, pr∗v) gives the result (87). From this, the last statement follows
directly as the star product �red is of Weyl type and the only second-order
terms in Cred

2 are described by using ∇M , see [22, Prop. 3.1]. ��
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12. Cahen, M., Gutt, S., Schwachhöfer, L.: Construction of Ricci-type connections
by reduction and induction. In: Marsden, J.E., Ratiu, T.S. (eds.) The Breadth of
Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 41–57.
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Abstract. Kontsevich’s formality theorem states that the differential graded Lie
algebra of multidifferential operators on a manifold M is L∞-quasi-isomorphic to
its cohomology. The construction of the L∞-map is given in terms of integrals of
differential forms on configuration spaces of points in the upper half-plane. Here
we consider configuration spaces of points in the disk and work equivariantly with
respect to the rotation group. This leads to considering the differential graded Lie
algebra of multivector fields endowed with a divergence operator. In the case of R

d

with standard volume form, we obtain an L∞-morphism of modules over this differ-
ential graded Lie algebra from cyclic chains of the algebra of functions to multivector
fields. As a first application we give a construction of traces on algebras of functions
with star-products associated with unimodular Poisson structures. The construction
is based on the Batalin–Vilkovisky quantization of the Poisson sigma model on the
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1 Introduction

The Hochschild complex of any algebra with unit carries a differential graded
Lie algebra structure introduced by Gerstenhaber [14]. In the case of the
algebra of smooth functions on a manifold, one has a differential graded
Lie subalgebra gG of multidifferential operators, whose cohomology is the

A.S. Cattaneo et al. (eds.), Higher Structures in Geometry and Physics, 111
Progress in Mathematics 287, DOI 10.1007/978-0-8176-4735-3 6,
c© Springer Science+Business Media, LLC 2011



112 A.S. Cattaneo and G. Felder

graded Lie algebra gS of multivector fields with Schouten–Nijenhuis bracket.1

Kontsevich [17] showed that gG and gS are quasi-isomorphic as L∞-algebras,
a notion introduced by Stasheff as the Lie version of A∞-algebras [28], see
[24, 20]. A striking application of this result is the classification of formal as-
sociative deformations of the product of functions in terms of Poisson struc-
tures. Kontsevich’s L∞-quasi-isomorphism is given in terms of integrals over
configuration spaces of points in the upper half-plane. As shown in [3], these
are Feynman amplitudes of a topological quantum field theory known as the
Poisson sigma model [16, 23].

In this paper we consider the case of a manifold M endowed with a volume
form Ω. In this case gS comes with a differential, the divergence operator divΩ
of degree−1. One considers then the differential graded Lie algebra gΩS = gS [v]
where v is an indeterminate of degree 2, the bracket is extended by v-linearity
and the differential is v divΩ. The relevant topological quantum field theory
is a BF theory (or Poisson sigma model with trivial Poisson structure) on a
disk whose differential is the Cartan differential on S1-equivariant differential
forms. This theory is described in Section 2. The new feature, compared to
the original setting of Kontsevich’s formality theorem, is that zero modes are
present. We use recent ideas of Losev, Costello and Mnev to treat them in the
Batalin–Vilkovisky quantization scheme. This gives the physical setting from
which the Feynman amplitudes are derived. In the remaining sections of this
paper, which can be read independently of Section 2, we give a purely math-
ematical treatment of the same objects. The basic result is the construction
for M = R

d of an L∞-morphism of gΩS -modules from the module of negative
cyclic chains (C−•(A)[u], b + uB) to the trivial module (Γ (∧−•TM ), divΩ).
We also check that this L∞-morphism has properties needed to extend the
result to general manifolds.

As in the case of Kontsevich’s theorem, the coefficients of the L∞-
morphism are integrals of differential forms on configuration spaces. Whereas
Kontsevich considers the spaces of n-tuples of points in the upper half-plane
modulo the action of the group of dilations and horizontal translations, we
consider the space of n-tuples of points in the unit disk and work equivari-
antly with respect to the action of the rotation group. The quadratic identities
defining the L∞-relations are then proved by means of an equivariant version
of the Stokes theorem.

As a first application we construct traces in deformation quantization as-
sociated with unimodular Poisson structures. Our construction can also be
extended to the case of supermanifolds; the trace is then replaced by a non-
degenerate cyclic cocycle (Calabi–Yau structure, see [18], Section 10.2, and
[10]) for the A∞-algebra obtained by deformation quantization in [5]. Fur-
ther applications will be studied in a separate publication [6]. In particular
we will derive the existence of an L∞-quasi-isomorphism of gΩS -modules from

1 We use Tsygan’s notation [30]. Kontsevich’s notation [17] is Dpoly = gG,
Tpoly = gS.
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the complex gΩS with the adjoint action to the complex of cyclic cochains
with a suitable module structure. This is a module version of the Kontsevich–
Shoikhet formality conjecture for cyclic cochains [26].

Notations and conventions

All vector spaces are over R. We denote by Sn the group of permutations of
n letters and by ε : Sn → {±1} the sign character. We write |α| for the degree
of a homogeneous element α of a Z-graded vector space. The sign rules for
tensor products of graded vector spaces hold: if f and g are linear maps on
graded vector spaces, (f⊗g)(v⊗w) = (−1)|g|·|v|f(v)⊗g(w). The graded vector
space V [n] is V shifted by n: V [n]i = V n+i. There is a canonical map (the
identity) sn : V [n] → V of degree n. The graded symmetric algebra S•V =
⊕n≥0S

nV of a graded vector space V is the algebra generated by V with
relations a · b = (−1)|a|·|b|b · a, a, b ∈ V ; the degree of a product of generators
is the sum of the degrees. If σ ∈ Sn is a permutation and a1, . . . , an ∈ V , then
aσ(1) · · · aσ(n) = εa1 · · · an; we call ε = ε(σ; a1, . . . , an) the Koszul sign of σ and
ai. The exterior algebra

∧
V is defined by the relations a∧b = −(−1)|a|·|b|b∧a

on generators. We have a linear isomorphism Sn(V [1]) → (∧nV )[n] given by
v1 · · · vn �→ s−n(−1)

∑
(n−j)(|vj |−1)sv1 ∧ · · · ∧ svn, vj ∈ V [1].

2 BV formalism and zero modes

This section provides the interested reader with some “physical” motivation
for the constructions in this paper. It may be safely skipped by the reader
who is only interested in the construction and not in its motivation.

The basic idea is to use the Batalin–Vilkovisky (BV) formalism in order
to deal with theories with symmetries (like the Poisson sigma model). What
is interesting for this paper is the case when “zero modes” are present.

It is well known in algebraic topology that structures may be induced on
subcomplexes (in particular, on an embedding of the cohomology) like, e.g.,
induced differentials in spectral sequences or Massey products. It is also well
known in physics that low-energy effective field theories may be induced by
integrating out high-energy degrees of freedom. As observed by Losev [21] (and
further developed by Mnev [22] and Costello [9]), the two things are actually
related in terms of the BV approach to (topological) field theories. We are
interested in the limiting case when the low-energy fields are just the zero
modes, i.e., the critical points of the action functional modulo its symmetries.

Let M be an SP-manifold, i.e., a graded manifold endowed with a sym-
plectic form of degree −1 and a compatible Berezinian [25]. Let Δ be the cor-
responding BV-Laplace operator. The compatibility amounts to saying that
Δ squares to zero and that it generates the BV bracket ( , ) (i.e., the Poisson
bracket of degree 1 determined by the symplectic structure of degree −1):
namely,

Δ(AB) = (ΔA)B + (−1)|A|AΔB − (−1)|A|(A,B). (1)
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Assume now that M is actually a product of SP-manifolds M1 and M2,
with BV-Laplace operators Δ1 and Δ2, Δ = Δ1+Δ2. The central observation
is that for every Lagrangian submanifold L of M2 and any function F on M
– for which the integral makes sense – one has

Δ1

∫

L
F =

∫

L
ΔF. (2)

In infinite dimensions, where we would really like to work, this formula is
very formal as both the integration and Δ are ill-defined. In finite dimensions,
on the other hand, this is just a simple generalization of the fact that, for any
differential form α on the Cartesian product of two manifolds M1 and M2 and
any closed submanifold S of M2 on which the integral of α converges, we have

d
∫

S

α = ±
∫

S

dα,

where integration on S yields a differential form on M1. The correspondence
with the BV language is obtained by taking M1,2 := T ∗[−1]M1,2 and L :=
N∗[−1]S (where N∗ denotes the conormal bundle). The Berezinian on M
is determined by a volume form v = v1 ∧ v2 on M := M1 × M2, with vi
a volume form on Mi. Finally, Δ is φ−1

v ◦ d ◦ φv, with φv : Γ (∧•TM ) →
ΩdimM−•(M), X �→ φv(X) := ιXv. The generalization consists in the fact
that there are Lagrangian submanifolds of M2 not of the form of a conormal
bundle; however, by a result of Schwarz [25], they can always be brought to
this form by a symplectomorphism so that formula (2) holds in general.

In the application we have in mind,M2 (and soM) is infinite-dimensional,
but M1 is not. Thus, we have a well-defined BV-Laplace operator Δ1 and try
to make sense of Δ by imposing (2), following ideas of [21,22] and, in particu-
lar, [9]. More precisely, we consider “BF -like” theories. Namely, let (V , δ) and
(Ṽ , δ) be complexes with a nondegenerate pairing 〈 , 〉 of degree −1 which
relates the two differentials:

〈B , δA 〉 = 〈 δB , A 〉 , ∀A ∈ V , B ∈ Ṽ. (3)

We set M = V ⊕ Ṽ and define S ∈ C∞(M) as

S(A,B) := 〈B , δA 〉 . (4)

The pairing defines a symplectic structure of degree −1 on M and the BV
bracket with S is δ. In particular,

(S, S) = 0. (5)

We denote byH (H̃) the δ-cohomology of V (Ṽ). Then we choose an embedding
of M1 := H⊕ H̃ into M and a complement M2.
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Example 1. Take V = Ω(Σ)[1] and Ṽ = Ω(Σ)[s−2], with Σ a closed, compact
s-manifold, and δ = d, the de Rham differential, on V ; up to a sign, δ on
Ṽ is also the de Rham differential if the pairing is defined by integration:
〈B , A 〉 :=

∫
Σ B∧A, A ∈ V , B ∈ Ṽ . In this case M1 = H(Σ)[1]⊕H(Σ)[s−2],

with H(Σ) the usual de Rham cohomology. A slightly more general situation
occurs when Σ has a boundary; in this case, appropriate boundary conditions
have to be chosen so that δ has an adjoint as in (3). Let ∂Σ = ∂1Σ � ∂2Σ
(each of the boundary components ∂1,2Σ may be empty). We then choose V =
Ω(Σ, ∂1Σ)[1] and Ṽ = Ω(Σ, ∂2Σ)[s−2], where Ω(Σ, ∂iΣ) denotes differential
forms whose restrictions to ∂iΣ vanish. In this case, M1 = H(Σ, ∂1Σ)[1] ⊕
H(Σ, ∂2Σ)[s− 2].

Example 2. Suppose that S1 acts on Σ (and that the ∂iΣs are invariant).
Let v denote the vector field on Σ generating the infinitesimal action. Let
ΩS1(Σ, ∂Σ) := Ω(Σ, ∂Σ)S

1
[u] denote the Cartan complex with differential

dS1 = d−uιv, where u is an indeterminate of degree 2. Then we may generalize
Example 1 replacing Ω(Σ, ∂Σ) with ΩS1(Σ, ∂Σ).

Now suppose that H (and so H̃) is finite-dimensional, as in the examples
above. In this case it is always possible to choose a BV-Laplacian Δ1 on M1.
Once and for all we also choose a Lagrangian submanifold L on which the
infinite-dimensional integral makes sense in perturbation theory. Assuming
ΔS = 0, the first consequence of (2) and (5) is that the partition function

Z0 =
∫

L
e

i
�
S

is Δ1-closed. Actually, in the case at hand, Z0 is constant on M1.
For every functional O on M for which integration on L makes sense, we

define the expectation value

〈 O 〉0 :=

∫
L e

i
�
S O

Z0
.

The second consequence of (2), and of the fact that Z0 is constant on M1, is
the Ward identity

Δ1〈 O 〉0 =
〈

ΔO − i
�
δO
〉

0

, (6)

where we have also used (1).
To interpret the Ward identity for O = B ⊗ A, we denote by {θμ} a

linear coordinate system on H and by {ζμ} a linear coordinate system on
H̃, such that their union is a Darboux system for the symplectic form on
M1 with Δ1 = ∂

∂θμ
∂
∂ζμ

. We next write A = αμθ
μ + a and B = βμζμ + b

with a ⊕ b ∈ M2. The left-hand side of the Ward identity is now simply
Δ1〈 B⊗ A 〉0 =

∑
μ(−1)|β

μ|βμ ⊗ αμ =: φ. On the assumption that the ill-
defined BV-Laplacian Δ should be a second-order differential operator, the
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first term 〈 Δ(B⊗ A) 〉0 on the right-hand side is ill-defined but constant on
M1; we denote it by K. Since δ vanishes in cohomology and, as a differential
operator, it can be extracted from the expectation value, (6) yields a constraint
for the propagator

ω :=
i
�
〈 b⊗ a 〉0; (7)

namely,
δω = K − φ.

From now on we assume thatM is defined in terms of differential forms as
in Examples 1 and 2. In this case, ω is a distributional (s− 1)-form on Σ×Σ
while φ is a representative of the Poincaré dual of the diagonal DΣ in Σ×Σ.
By the usual naive definition of Δ, K is equal to the delta distribution on DΣ.
Thus, the restriction of ω to the configuration space C2(Σ) := Σ ×Σ \DΣ is
a smooth (m− 1)-form satisfying dω = φ. If Σ has a boundary, ω satisfies in
addition the conditions ι∗1ω = ι∗2ω = 0 with ι1 the inclusion of Σ × ∂1Σ into
Σ ×Σ and ι2 the inclusion of ∂2Σ ×Σ into Σ ×Σ. Denoting by π1,2 the two
projections Σ ×Σ → Σ and by π1,2

∗ the corresponding fiber-integrations, we
may define P : Ω(Σ, ∂1Σ)→ Ω(Σ, ∂1Σ) and P̃ : Ω(Σ, ∂2Σ)→ Ω(Σ, ∂2Σ) by
P (σ) = π2

∗(ω∧π∗
1σ) and P̃ (σ) = π1

∗(ω∧π∗
2σ). Then the equation for ω implies

that P and P̃ are parametrices for the complexes Ω(Σ, ∂1Σ) and Ω(Σ, ∂2Σ);
namely, dP + Pd = 1−� and dP̃ + P̃d = 1− �̃, where � and �̃ denote the
projections onto cohomology.

This characterization of the propagator of a “BF -like” theory also appears
in [9]. Even though not justified in terms of the BV formalism, this choice of
propagator was done before in [2] for Chern–Simons theory out of purely
topological reasons, and later extended to BF theories in [7]. A propagator
with these properties also appears in [13] for the Poisson sigma model on the
interior of a polygon.

The quadratic action (4) is usually the starting point for a perturbative
expansion. The first singularity that may occur comes from evaluating ω on
DΣ (“tadpole”). A mild form of renormalization consists in removing tadpoles
or, in other words, in imposing that ω should vanish on DΣ . By consistency,
one has then to set K equal to the restriction of φ to DΣ . In other words, one
has to impose

Δ(B(x)A(x)) = ψ(x) :=
∑

μ

(−1)|β
μ|βμ(x)αμ(x), ∀x ∈ Σ. (8)

Observe that ψ is a representative of the Euler class of Σ. By (1) and (8) one
then obtains a well-defined version of Δ on the algebra C∞(M)′ generated
by local functionals. This may be regarded as an asymptotic version (for the
energy scale going to zero) of Costello’s regularized BV-Laplacian [9]. Actually,

Lemma 1. (C∞(M)′, Δ) is a BV algebra.
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We now restrict ourselves to the setting of the Poisson sigma model [16,23].
Namely, we assume Σ to be two-dimensional and take V = Ω(Σ, ∂1Σ)[1] ⊗
(Rm)∗ and Ṽ = Ω(Σ, ∂2Σ)⊗R

m. Here (Rm)∗×R
m is a local patch of the cotan-

gent bundle of an m-dimensional target manifold M . (Whatever we say here
and in the following may be globalized by takingM to be the graded submani-
fold of Map(T [1]Σ, T ∗[1]M) defined by the given boundary conditions.) There
is a Lie algebra morphism from the graded Lie algebra gS = Γ (∧•+1TM ) of
multivector fields on M to C∞(M)′ endowed with the BV bracket [4]: to
γ ∈ Γ (∧kTM ) it associates the local functional

Sγ =
∫

Σ

γi1,...,ik(B)Ai1 · · ·Aik .

Moreover, for k > 0, (S, Sγ) = 0. With the regularized version of the BV-
Laplacian, we get

ΔSγ =
∫

Σ

ψ (divΩ γ)i1,...,ik−1(B)Ai1 · · ·Aik−1 ,

where divΩ is the divergence with respect to the constant volume form Ω
on R

n. To account for this systematically, we introduce the differential graded
Lie algebra gΩS := gS [v], where v is an indeterminate of degree two and
the differential δΩ is defined as v divΩ (and the Lie bracket is extended by
v-linearity). To γ ∈ Γ (∧kTM ) vl we associate the local functional

Sγ = (−i�)l
∫

Σ

ψl γi1,...,ik(B)Ai1 · · ·Aik .

It is now not difficult to prove the following

Lemma 2. The map γ �→ Sγ is a morphism of differential graded Lie al-
gebras from (gΩS , [ , ], δΩ) to (C∞(M)′, ( , ),−i�Δ). Moreover, for every
γ ∈ Γ (∧kTM ) vl with k or l strictly positive, we have (S, Sγ) = 0. If ∂Σ = ∅,
the last statement holds also for k = l = 0.

Observe that ψ2 = 0 by dimensional reasons. However, in the generalization
to the equivariant setting of Example 2, higher powers of ψ survive.

A first application of this formalism is the Poisson sigma model on Σ.
If π is a Poisson bivector field (i.e., π ∈ Γ (∧2TM ), [π, π] = 0), then Sπ :=
S + Sπ satisfies the master equation (Sπ, Sπ) = 0 but in general not the
quantum master equation 1

2 (Sπ, Sπ) + i�ΔSπ = 0, which by (1) is equivalent
to Δe

i
�

Sπ = 0. Unless ψ is trivial2 (which is, e.g., the case for Σ the upper half

2 If the class of ψ is trivial, one may always choose bases in the embedded co-
homologies so that ψ = 0. If one does not want to make this choice, one
observes anyway that for ψ = dτ one has −i�ΔSγ = (S, S′

γ) with S′
γ =

(−i�)l
∫
Σ
τψl−1 γi1,...,ik (B)Ai1 · · ·Aik , for γ ∈ Γ (∧kTM ) vl, l > 0. In the case

at hand, one may then define a solution of the quantum master equation as
S + Sπ + S′

π.
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plane, as in [3], or the torus), this actually happens only if π is divergence free.
More generally, if π is unimodular [19], by definition we may find a function
f such that divΩ π = [π, f ]. So π̃ := π + vf is a Maurer–Cartan element in
gΩS (i.e., δΩπ̃− 1

2 [π̃, π̃] = 0). Hence Sπ̃ := S +Sπ̃ satisfies the quantum master
equation. It is not difficult to check that, for ψ nontrivial, the unimodularity of
π is a necessary and sufficient condition for having a solution of the quantum
master equation of the form S +Sπ+O(�). For Σ the sphere this was already
observed in [1] though using slightly different arguments.

We will now restrict ourselves to the case of interest for the rest of the
paper: namely, Σ the disk and ∂2Σ = ∅. In this case H(Σ) is one-dimensional
and concentrated in degree 0 while H(Σ, ∂Σ) is one-dimensional and con-
centrated in degree two. Thus, H = (Rm)∗[−1] and H = R

m which implies
M1 = T ∗[−1]M . Functions on M1 are then multivector fields on M but with
reversed degree and the operator Δ1 turns out to be the usual divergence
operator divΩ (which is now of degree +1) for the constant volume form. A
first simple application is the expectation value

tr g :=

∫
L e

i
�

Sπ̃ Og
Z0

=
〈

e
i
�
Sπ̃ Og

〉

0
, g ∈ C∞(M),

where π̃ is a Maurer–Cartan element corresponding to a unimodular Pois-
son structure and Og(A,B) := g(B(1)), with 1 in ∂Σ which we identify

with the unit circle. Consider now tr2(g, h) :=
〈

e
i
�
Sπ̃ Og,h

〉

0
, with Og,h :=

g(B(1))
∫
∂Σ\{1} h(B). By (1), we then have Δ1 tr2(g, h) =

〈
e

i
�
Sπ̃ δOg,h

〉

0
.

Arguing as in [3], we see that the right-hand side corresponds to moving the
two functions g and h close to each other (in the two possible ways) and by
“bubbling” the disk around them; so we get

Δ1 tr2(g, h) = tr g � h− tr h � g,

where � is Kontsevich’s star product [17] which corresponds to the Poisson
sigma model on the upper half plane [3]. Since Δ1 is just the divergence
operator with respect to the constant volume form Ω, for compactly supported
functions we have the trace

Tr g :=
∫

M

tr g Ω.

More generally, we may work out the Ward identities relative to the quadratic
action (4) (there is also an equivariant version for S1 acting by rotations on Σ).
Given a0, a1, . . . , ap in C∞(M) (or in C∞(M)[u] for the equivariant version),
we define

Oa0,...,ap := a0(B(1))
∫

t1<t2<···<tp∈∂Σ\{1}
a1(B) · · · ap(B)
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and
Gn(γ1, . . . , γn; a0, . . . , ap) :=

〈
Sγ1 . . . Sγn Oa0,...,ap

〉
0
,

γi ∈ gΩS , i = 1, . . . , n. By (6) we then have

−i�Δ1Gn(γ1, . . . , γn; a0, . . . , ap) = −i�
〈

Δ(Sγ1 . . . Sγn Oa0,...,ap)
〉
0

+

+
〈

δ(Sγ1 . . . Sγn Oa0,...,ap)
〉
0
.

The left-hand side is just (−i�) times the divergence operator applied to the
multivector field Gn. The first term on the right-hand side may then be com-
puted as

−i�
〈

Δ(Sγ1 . . . Sγn Oa0,...,ap)
〉
0

=

=
n∑

i=1

(−1)σiGn(γ1, . . . , δΩγi, . . . , γn; a0, . . . , ap) +

−i�
∑

1≤i<j≤n
(−1)σijGn−1([γi, γj], γ1, . . . , γ̂i, . . . , γ̂j , . . . , γn; a0, . . . , ap),

where the caret denotes omission and

σi :=
i−1∑

c=1

|γc|,

σij := |γi|
i−1∑

c=1

|γc|+ |γj |
j−1∑

c=1, c 
=i
|γc|+ |γi|+ 1,

with |γ| = k for γ ∈ Γ (∧kTM )[v]. The second term on the right-hand side is
a boundary contribution (in the equivariant sense if δ = dS1 = d − uιv). By
bubbling as in [3], some of the γis collapse together with some of the consec-
utive aks and the result – which is Kontsevich’s formality map – is put back
into G. The whole formula can then be interpreted as an L∞-morphism from
the cyclic Hochschild complex to the complex of multivector fields regarded
as L∞-modules over gΩS , as we are going to explain in the rest of the paper.

The only final remark is that i� occurs in this formula only as a book-
keeping device. We define Fn by formally setting i� = 1 in Gn.

3 Hochschild chains and cochains of algebras of smooth
functions

Kontsevich’s theorem states that there is an L∞-quasi-isomorphism from the
graded Lie algebra gS = Γ (∧•+1TM ) of multivector fields on a smooth man-
ifold M , with the Schouten–Nijenhuis bracket and trivial differential, to the
differential graded Lie algebra gG of multidifferential operators on M with
Gerstenhaber bracket and Hochschild differential. Through Kontsevich’s mor-
phism the Hochschild and cyclic chains become a module over gS . In this
section we review these notions as well as results and conjectures about them.
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3.1 Multivector fields and multidifferential operators

Let gS be the graded vector space gS = ⊕j≥−1g
j
S of multivector fields: g−1

S =
C∞(M), g0

S = Γ (TM ), g1
S = Γ (∧2TM ), and so on. The Schouten–Nijenhuis

bracket of multivector fields is defined to be the usual Lie bracket on vector
fields and is extended to arbitrary multivector field by the Leibniz rule: [α ∧
β, γ] = α ∧ [β, γ] + (−1)|γ|·(|β|+1)[α, γ] ∧ β, α, β, γ ∈ gS . The graded Lie
algebra gS is considered here as a differential graded Lie algebra with trivial
differential.

The differential graded Lie algebra gG of multidifferential operators is, as a
complex, the subcomplex of the shifted Hochschild complex Hom(A⊗(•+1), A)
of the algebra A = C∞(M) of smooth functions, consisting of multilinear maps
that are differential operators in each argument. The Gerstenhaber bracket
[14] on gG is the graded Lie bracket [φ, ψ] = φ •G ψ − (−1)|φ|·|ψ|ψ •G φ with
Gerstenhaber product3

φ •G ψ =
n∑

k=0

(−1)|ψ|(|φ|−k)φ ◦ (id⊗k ⊗ ψ ⊗ id⊗|φ|−k). (9)

The Hochschild differential can be written in terms of the bracket as [μ, ·],
where μ ∈ g1

G = Hom(A⊗A,A) is the multiplication in A.
The Hochschild–Kostant–Rosenberg map g•S → g•G induces an isomor-

phism of graded Lie algebras on cohomology. It is the identity on g−1
S =

C∞(M) = g−1
G and, for any vector fields ξ1, . . . , ξn, it sends the multivector

field ξ1 ∧ · · · ∧ ξn to the multidifferential operator

f1 ⊗ · · · ⊗ fn �→
1
n!

∑

σ∈Sn

ε(σ)ξσ(1)(f1) · · · ξσ(n)(fn), fi ∈ A.

Although the HKR map is a chain map inducing a Lie algebra isomorphism
on cohomology, it does not respect the Lie bracket at the level of complexes.
The correct point of view on this problem was provided by Kontsevich in his
formality conjecture, which he then proved in [17]. The differential graded Lie
algebras gS , gG should be considered as L∞-algebras and the HKR map is
the first component of an L∞-morphism. Let us recall the definitions.

3.2 L∞-algebras

For any graded vector space V let S+V = ⊕∞
j=1S

jV be the free coalge-
bra without counit cogenerated by V . The coproduct is Δ(a1 · · · an) =
∑n−1
p=1

∑
σ ±aσ(1) · · ·aσ(p) ⊗ aσ(p+1) · · ·aσ(n), with summation over shuf-

fle permutations with Koszul signs. A coderivation of a coalgebra is an
3 The sign differs by a factor (−1)|φ|·|ψ| from the sign in [14]. We have chosen

the convention making the induced bracket on cohomology equal to the standard
Schouten–Nijenhuis bracket on multivector fields.
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endomorphism D obeying Δ ◦ D = (D ⊗ id + id ⊗ D) ◦ Δ. Coderivations
with the commutator bracket form a Lie algebra. What is special about
the free coalgebra S+V is that for any linear map D : S+V → V there is
a unique coderivation D̃ such that D = π ◦ D̃, where π is the projection
onto V = S1V . By definition an L∞-algebra is a graded vector space g
together with a coderivation D of degree 1 of S+(g[1]) obeying [D,D] = 0.
A coderivation is thus given by a sequence of maps (the Taylor components)
Dn : Sng[1] → g[2] (or ∧ng → g[2 − n]), n = 1, 2, . . . , obeying quadratic
relations. In particular D1 is a differential and D2 is a chain map obeying the
Jacobi identity up to a homotopy D3. It follows that D2 induces a Lie bracket
on the D1-cohomology. Differential graded Lie algebras are L∞-algebras with
D3 = D4 = · · · = 0. An L∞-morphism (g, D) � (g′, D′) is a homomor-
phism U : S+g[1] → S+g′[1] of graded coalgebras such that U ◦D = D′ ◦ U .
Homomorphisms of free coalgebras are uniquely defined by their composition
with the projection π′ : S+g′[1] → g′[1]; thus U is uniquely determined by
its Taylor components Un : Sng[1] → g′[1] (or ∧ng → g′[1 − n]): Un is the
restriction to Sng[1] of π′ ◦ U . Conversely, any such sequence Un comes from
a coalgebra homomorphism. The first relation between D,D′ and U is that
U1 is a chain map.

Theorem 1. (Kontsevich [17]) There is an L∞-morphism gS(M) � gG(M)
whose first Taylor component U1 is the Hochschild–Kostant–Rosenberg map.

If M is an open subset of R
d the formula for the Taylor components Un is

explicitly given in [17] as a sum over Feynman graphs.

3.3 Multivector fields and differential forms

The algebra Ω•(M) of differential forms on a manifold M is a module over
the differential graded Lie algebra gS(M) of multivector fields: a multivector
field γ ∈ Γ (∧p+1TM ) acts on forms as Lγω = dιγ + (−1)pιγd generalizing
Cartan’s formula for Lie derivatives of vector fields. Here d is the de Rham
differential and the interior multiplication ιγ is the usual multiplication if γ
is a function and is the composition of interior multiplications of vector fields
ξj if γ = ξ1 ∧ · · · ∧ ξk. Moreover the action of gS(M) on Ω•(M) commutes
with the de Rham differential and induces the trivial action on cohomology.

3.4 Hochschild cochains and cyclic chains

The algebras Ω•(M) and H•(M) are cohomologies of the complexes of the
Hochschild and of the periodic cyclic chains of C∞(M). The normalized
Hochschild chain complex of a unital algebra A is C•(A) = A ⊗ Ā⊗•, where
Ā = A/R1. If we denote by (a0, a1, . . . , ap) the class of a0⊗ · · ·⊗ ap in Cp(A),
the Hochschild differential is
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b(a0, . . . , ap) =
p−1∑

i=0

(−1)i(a0, . . . , aiai+1, . . . , ap)

+(−1)p(apa0, a1, . . . , ap−1).

We set Cp(A) = 0 for p < 0. There is an HKR map C•(A) → Ω•(M) given by

(a0, . . . , ap) �→
1
p!

a0da1 · · · dap. (10)

It is a chain map if we consider differential forms as a complex with trivial
differential. The HKR map induces an isomorphism on homology, provided we
take a suitable completion of the tensor product C∞(M)⊗(p+1), for example
the jets at the diagonal of smooth maps Mp+1 → R. On the Hochschild chain
complex there is a second differential B of degree 1 and anticommuting with
b, see [8]:

B(a0, . . . , ap) =
p∑

i=0

(−1)ip(1, ai, . . . , ap, a0, . . . ai−1).

The negative cyclic complex, in the formulation of [15], is CC−
−•(A) =

C−•(A)[u] with differential b + uB, where u is of degree 2. The extension
of the HKR map by R[u]-linearity defines a quasi-isomorphism

(CC−
−•(A), b + uB)→ (Ω−•(M)[u], u d).

Now both C(A) and CC−(A) are differential graded modules over the Lie
algebra gG of multidifferential operators. The action is the restriction of the
action of cochains on chains Ck(A) ⊗ Cp(A) → Cp−k+1(A), φ ⊗ a �→ φ · a,
defined for any associative algebra with unit as

(−1)(k−1)(p+1)φ · (a0, . . . , ap)

=
p−k+1∑

i=0

(−1)i(k−1)(a0, . . . , ai−1, φ(ai, . . . , ai+k−1), ai+k, . . . , ap)

+
p∑

i=p−k+2

(−1)ip(φ(ai, . . . , ap, a0, . . . , ai+k−p−2), ai+k−p−1, . . . , ai−1).

This action extends by R[u]-linearity to an action on the negative cyclic
complex.

3.5 L∞-modules

Let (g, D) be an L∞-algebra. The free S+g[1]-comodule generated by a vector
space V is V̂ = Sg[1]⊗ V with coaction ΔV : V̂ → S+g[1]⊗ V̂ defined as

ΔV (γ1 · · · γn ⊗ v) =
n∑

p=1

∑

σ∈Sp,n−p

±γσ(1) · · · γσ(p) ⊗ (γσ(p+1) · · · γσ(n) ⊗ v).
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A coderivation of the L∞-module V is then an endomorphism DV of V̂ obey-
ing ΔV ◦DV = (D⊗ id+id⊗DV )ΔV . An L∞-module is a coderivation DV of
degree 1 of V̂ obeying DV ◦DV = 0. A coderivation is uniquely determined by
its composition with the projection V̂ → V onto the first direct summand and
is thus given by its Taylor components DV

n : Sng[1] ⊗ V → V [1]. The lowest
component DV

0 is then a differential on V and DV
1 a chain map inducing an

honest action of the Lie algebra H(g, D1) on the cohomology H(V,DV
0 ). A

morphism of L∞-modules V1 → V2 over g is a degree 0 morphism of S+g[1]-
comodules F : V̂1 → V̂2 intertwining the coderivations. The composition with
the projection V̂2 → V2 gives rise to Taylor components

Fn : Sng[1]⊗ V1 → V2, n = 0, 1, 2, . . .

that determine F completely. The lowest component F0 is then a chain map
inducing a morphism of H(g, D1)-modules on cohomology.

3.6 Tsygan and Kontsevich conjectures [30], [26]

Conjecture 1. There exists a quasi-isomorphism of L∞-modules

F : C−•(C∞(M)) � (Ω−•(M), 0)

such that F0 is the HKR map.

Conjecture 2. There exists a natural C[[u]]-linear quasi-isomorphism of L∞-
modules

F : CC−
−•(C

∞(M)) � (Ω−•(M)[[u]], ud)

such that F0 is the Connes quasi-isomorphism [8], given by the u-linear ex-
tension of the HKR map (10).

Conjecture 1 is now a theorem. Different proofs for M = R
d were given in

[29] and [27]. Shoikhet’s proof [27] gives an explicit formula for the Taylor
components of F in terms of integrals over configuration spaces on the disk
and extends to general manifolds, as shown in [11].

Let us turn to Kontsevich’s formality conjecture for cyclic cochains, as
quoted in [26]. Recall that a volume form Ω ∈ Ωd(M) on a d-dimensional
manifold defines an isomorphism Γ (∧kTM ) → Ωd−k(M), γ �→ ιγΩ. The de
Rham differential d on Ω•(M) translates to a differential divΩ, the divergence
operator of degree −1. The divergence operator is a derivation of the bracket
on gS = Γ (∧•+1TM ) of degree −1. Let us introduce the differential graded
Lie algebra gΩS = (gS [v], δΩ), where v is a formal variable of degree 2. The
bracket is the Schouten–Nijenhuis bracket and the differential is δΩ = v divΩ.
The cyclic analogue of gG is the differential graded Lie algebra

gcycl
G =

{

ϕ ∈ gG,

∫

M

a0ϕ(a1, . . . , ap)Ω = (−1)p
∫

M

apϕ(a0, . . . , ap−1)Ω
}

.
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Conjecture 3. For each volume form Ω ∈ Ωd(M) there exists an L∞-quasi-
isomorphism of L∞-algebras F : gΩS � gcycl

G .

Shoikhet [26] constructed a quasi-isomorphism of complexes C1 : gΩS →
gcycl
G and conjectural formulae for an L∞-morphism whose first component

is C1 in terms of integrals over configuration spaces. One consequence of the
conjecture is the construction of cyclically-invariant star-products from diver-
genceless Poisson bivector fields. Such star-products were then constructed
independently of the conjecture, see [12].

4 An L∞-morphism for cyclic chains

4.1 The main results

Let Ω be volume form on a manifold M and gΩS be the differential graded Lie
algebra gS [v] with Schouten bracket and differential δΩ = v divΩ, see Section
3.6. The Kontsevich L∞-morphism composed with the canonical projection
gΩS → gS = gΩS /vgΩS is an L∞-morphism gΩS � gG. Through this morphism
the differential graded gG-module CC−• (A) of negative cyclic chains of A =
C∞(M) becomes an L∞-module over gΩS .

Theorem 2. Let M be an open subset of R
d with coordinates x1, . . . , xn and

volume form Ω = dx1 · · ·dxd. Let A = C∞(M). Let Γ (∧−•TM ) be the dif-
ferential graded module over gΩS with differential divΩ and trivial gΩS -action.
Then there exists an R[u]-linear morphism of L∞-modules over gΩS

F : CC−
−•(A) � Γ (∧−•TM )[u],

such that

(i) The component F0 of F vanishes on CCp(A), p > 0 and for f ∈ A ⊂
CC−

0 (A), F0(f) = f .
(ii) For γ ∈ Γ (∧kTM ), % = 0, 1, 2, . . . , a = (a0, . . . , ap) ∈ CC−

p (A),

F1(γv�; a) =
{

(−1)pusγ�H(a), if k ≥ p and s = k + %− p− 1 ≥ 0,
0, otherwise.

Here � : Γ (∧kTM )⊗Ωp(M) → Γ (∧k−pTM ) is the contraction map and
H is the HKR map (10).

(iii) The maps Fn are equivariant under linear coordinate transformations and
Fn(γ1 · · · γn; a) = γ1∧Fn−1(γ2 · · · γn; a) whenever γ1 =

∑
(cikxk+di)∂i ∈

gS ⊂ gΩS is an affine vector field and γ2, . . . , γn ∈ gΩS .
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The proof of this Theorem is deferred to Section 6.3.
In explicit terms, F is given by a sequence of R[u]-linear maps

Fn : SngΩS [1] ⊗ CC−(A) → Γ (∧nTM ), γ ⊗ a �→ Fn(γ; a), n ≥ 0, obeying
the following relations. For any γ = γ1 · · · γn ∈ SngΩS [1], a ∈ CC−

p (A).

Fn(δΩγ; a) + (−1)|γ|+pFn(γ; (b + uB)a) (11)

+
n−1∑

k=0

∑

σ∈Sk,n−k

(−1)|γ|−1ε(σ; γ)Fk(γσ(1) · · · γσ(k);Un−k(γ̄σ(k+1) · · · γ̄σ(n)) · a)

+
∑

i<j

εijFn−1((−1)|γi|−1[γi, γj ] · γ1 · · · γ̂i · · · γ̂j · · ·γn; a) = divΩ Fn(γ; a).

Here γ̄i denotes the projection of γi to gS [1] = gΩS [1]/vgΩS [1]; Sp,q ⊂ Sp+q is the
set of (p, q)-shuffles and the signs ε(σ; γ), εij are the Koszul signs coming from
the permutation of the γi ∈ gS [1]; |γ| =

∑
i |γi|; the differential δΩ is extended

to a degree 1 derivation of the algebra SgΩS [1]; the maps Uk : SkgS [1]→ gG[1]
are the Taylor components of the Kontsevich L∞-morphism of Theorem 1.

We give the explicit expressions of the maps Fn in Section 5. Before that
we explore some consequences.

4.2 Maurer–Cartan elements

An element of degree 1 in gΩS has the form π̃ = π + vh where π is a bivector
field and h is a function. The Maurer–Cartan equation δΩπ̃ − 1

2 [π̃, π̃] = 0
translates to

[π, π] = 0, divΩ π − [h, π] = 0.

Thus π is a Poisson bivector field whose divergence is a Hamiltonian vector
field with Hamiltonian h. Such Poisson structures are called unimodular [19].
As explained in [17], Poisson bivector fields in εgS [[ε]] are mapped to solu-
tion of the Maurer–Cartan equations in εgG[[ε]], which are star-products, i.e.,
formal associative deformations of the pointwise product in C∞(M):

f � g = fg +
∞∑

n=1

εn

n!
Un(π, . . . , π)(f ⊗ g).

Here the function part of π̃ does not contribute as it is projected away in the
L∞-morphism gΩS � gG.

If π̃ = π + vh is a Maurer–Cartan element in gΩS then π̃ε = επ + vh is
a Maurer–Cartan element in gΩS [[ε]]. The twist of F by π̃ then gives a chain
map from the negative cyclic complex of the algebra Aε = (C∞(M)[[ε]], �) to
Γ (∧TM )[u][[ε]]. In particular, we get a trace

f �→ τ(f) =
∞∑

n=0

1
n!

∫

M

Fn(π̃ε, . . . , π̃ε; f)Ω, (12)
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on the subalgebra of Aε consisting of functions with compact support. Here
there is a question of convergence since there are infinitely many terms con-
tributing to each fixed power of ε. The point is that these infinitely many
terms combine to exponential functions. More precisely we have the following
result.

Proposition 1. The trace (12) can be written as

τ(f) =
∞∑

n=0

εn

n!

∫

M

Hn(π, h, f)ehΩ =
∫

M

fehΩ + O(ε)

where Hn is a differential polynomial in π, h, f .

The proof is based on the expression of Fn in terms of graphs. We postpone
it to Section 5.5, after we introduce this formalism.

5 Feynman graph expansion of the L∞-morphism

In this section we construct the morphism of L∞-modules of Theorem 2. The
Taylor components have the form

Fn(γ; a) =
∑

Γ∈Gk,m

wΓFΓ (γ; a).

Here γ = γ1 · · ·γn, with γi ∈ Γ (∧kiTM )[v], k = (k1, . . . , kn) and a =
(a0, . . . , am) ∈ Cm(A). The sum is over a finite set Gk,m of directed graphs
with some additional structure. To each graph a weight wΓ ∈ R[u], defined as
an integral over a configuration space of points in the unit disk, is assigned.

We turn to the descriptions of the graphs and weights.

5.1 Graphs

Let m,n ∈ Z≥0, k = (k1, . . . , kn) ∈ Z
n
≥0. We consider directed graphs Γ

with n + m vertices with additional data obeying a set of rules. The data
are a partition of the vertex set into three totally ordered subsets V (Γ ) =
V1(Γ )�V2(Γ )�Vw(Γ ), a total ordering of the edges originating at each vertex
and the assignment of a nonnegative integer, the degree, to each vertex in
V1(Γ ). The rules are:

1. There are n vertices in V1(Γ ). There are exactly ki edges originating at
the ith vertex of V1(Γ ).

2. There are m vertices in V2(Γ ). There are no edges originating at these
vertices.

3. There is exactly one edge pointing at each vertex in Vw(Γ ) and no edge
originating from it.
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4. There are no edges starting and ending at the same vertex.
5. For each pair of vertices i, j there is at most one edge from i to j.

The last rule is superfluous, but since all graphs with multiple edges will have
vanishing weight we may just as well exclude them from the start. This has
the notational advantage that we may think of the edge set E(Γ ) as a subset
of V (Γ )× V (Γ ).

Two graphs are called equivalent if there is a graph isomorphism between
them that respects the partition and the orderings. The set of equivalence
classes is denoted Gk,m.

The vertices in V1(Γ ) are called vertices of the first type, those in V2(Γ ) of
the second type. The vertices in Vb(Γ ) = V1(Γ )∪V2(Γ ) are called black, those
in Vw(Γ ) are called white. We denote by Eb(Γ ) the subset of E(Γ ) consisting
of edges whose endpoints are black.

To each Γ ∈ Gk,m there corresponds a multivector field FΓ (γ; a) whose
coefficients are differential polynomials in the components of γi, ai. The rules
are the same as in [17] except for the additional white vertices, representing
uncontracted indices and the degrees di, that select the power di of v in γi.
Let us consider for example the graph of Fig. 1 and suppose that the degrees
of the two vertices of the first type are k and %. The algebra of multivector
fields on M ⊂ R

d is generated by C∞(M) and anticommuting generators
θν = ∂/∂xν . Thus γ ∈ Γ (∧kTM ) has the form

γ =
1
k!

∑

ν1,...,νk

γν1...νkθν1 · · · θνk
.

The components γν1...νk ∈ C∞(M) are skew-symmetric under permutation
of the indices νi. The graph of Fig. 1, with the convention that the edges
originating at each vertex are ordered counterclockwise, gives then

FΓ (γ1v
k, γ2v

�; a0, a1, a2) =
∑

γij1 ∂jγ
pqr
2 ∂ia0∂pa1∂qa2θr,

and is zero on other monomials in v.

�a0
�a1

�a2

�

γ1v
k

�

γ2v
�

�

�

�

�
�

�
�

�
��

�

�

Fig. 1. A graph in G(2,3),3 with two vertices in V1 of valencies (2, 3), three in V2 and
one white vertex. The degrees of the vertices of the first type are k and 
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5.2 Equivariant differential forms on configuration spaces

Let Σ be a manifold with an action of the circle S1 = R/Z. The infinitesimal
action Lie(S1) = R

d
dt → Γ (TΣ) is generated by a vector field v ∈ Γ (TΣ),

the image of d
dt . The Cartan complex of S1-equivariant forms, computing the

equivariant cohomology with real coefficients, is the differential graded algebra

Ω•
S1(Σ) = Ω•(Σ)S

1
[u],

of polynomials in an undetermined u of degree 2 with coefficients in the S1-
invariant smooth differential forms. The differential is dS1 = d−uιv, where d is
the de Rham differential and ιv denotes interior multiplication by v, extended
by R[u]-linearity. If Σ has an S1-invariant boundary ∂Σ and j : ∂Σ → Σ
denotes the inclusion map, then the relative equivariant complex is

Ω•
S1(Σ, ∂Σ) = Ker(j∗ : Ω•

S1(Σ)→ Ω•
S1(∂Σ)).

In the case of the unit disk we have:

Lemma 3. Let D̄ = {z ∈ C, |z| ≤ 1} be the closed unit disk.

(i) The equivariant cohomology H•
S1(D̄) of D̄ is the free R[u]-module gener-

ated by the class of 1 ∈ Ω0(D̄).
(ii) The relative equivariant cohomology H•

S1(D̄, ∂D̄) of (D̄, ∂D̄) is the free
R[u]-module generated by the class of

φ(z, u) =
i

2π
dz ∧ dz̄ + u(1− |z|2). (13)

5.3 The propagator

The integrals over configuration spaces defining the L∞-morphism are con-
structed out of a propagator, a differential 1-form ω on D̄ × D̄ � Δ, with a
simple pole on the diagonal Δ = {(z, z), z ∈ D̄} and defining the integral
kernel of a homotopy contracting equivariant differential forms to a space
of representatives of the cohomology. The explicit formula of the propagator
associated to the choice of cocycles in Lemma 3 is given by

ω(z, w) =
1

4πi

(

d ln
(z − w)(1 − zw̄)
(z̄ − w̄)(1 − z̄w)

+ z dz̄ − z̄ dz

)

. (14)

Lemma 4. Let pi : D̄ × D̄ → D̄ be the projection to the i-th factor, i = 1, 2.
The differential form ω ∈ Ω1

S1(D̄ × D̄ � Δ) has the following properties:

(i) Let j : ∂D̄ × D̄ → D̄ ×D be the inclusion map. Then j∗ω = 0.
(ii) dS1ω = −p∗1φ.
(iii) As z → w, ω(z, w) = (2π)−1d arg(z − w)+ smooth.
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(iv) As z and w approach a boundary point, ω(z, w) converges to the Kontse-
vich propagator ωK(x, y) = (2π)−1(d arg(x−y)−d arg(x̄−y)) on the upper
half-plane H+ from [17]. More precisely, for small t > 0 let ϕt(x) = z0eitx

be the inclusion of a neighbourhood of 0 ∈ H+ into a neighbourhood of
z0 ∈ ∂D in D. Then limt→0(ϕt × ϕt)∗ω = ωK.

The proof is a simple computation left to the reader.

5.4 Weights

The weights are integrals of differential forms over configuration spaces
C0
n,m(D) of n points in the unit disk D = {z ∈ C , |z| < 1} and m + 1

cyclically ordered points on its boundary ∂D̄, the first of which is at 1:

C0
n,m(D) = {(z, t) ∈ Dn × (∂D̄)m , zi �= zj, (i �= j),

0 < arg(t1) < · · · < arg(tm) < 2π}.

The differential forms are obtained from the propagator ω, see (14), and the
form φ, see (13). Let Γ ∈ G(k1,...,kn),m. The weight wΓ of Γ is

wΓ =
1

∏n
i=1 ki!

∫

C0
n,m(D)

ωΓ

where ω ∈ Ω•(C0
n,m(D))[u] is the differential form

ωΓ =
∏

i∈V1(Γ )

∏

(i,j)∈Eb(Γ )

ω(zi, zj)
∏

i∈V1(Γ )

φ(zi, u)ri .

Here zi is the coordinate of z ∈ C0
n,m(D) assigned to the vertex i of Γ : to

the vertices of the first type we assign the points in the unit disk and to the
vertices of the second type the points on the boundary. The assignment is
uniquely specified by the ordering of the vertices in Γ . The number ri is the
degree of the vertex i plus the number of white vertices connected to it. The
product over (i, j) is over the edges connecting black vertices to black vertices.
For example, a point of C0

2,3(D) is given by coordinates (z1, z2, 1, t1, t2) with
zi ∈ D and ti ∈ S1. The differential form associated to the graph of Fig. 1,
with degree assignments k, %, is

±ωΓ = ω(z1, 1)ω(z1, z2)ω(z2, t1)ω(z2, t2)φ(z1, u)kφ(z2, u)�+1.

The signs are tricky. A consistent set of signs may be obtained by the follow-
ing procedure. View a multivector field γ ∈ gS [v] as a polynomial γ(x, θ, v)
whose coefficients are functions on T ∗[1]M = M × R

d[1]. Build a function in
C∞((T ∗[1]M)n+m)[v1, . . . , vn]:

g(x(1), θ(1), v1, . . . , x
(m̄))

= γ1(x(1), θ(1), v1) · · · γn(x(n), θ(n), vn)a0(x(0̄)) · · · am(x(m̄)).
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Then

Fn(γ; a) = (−1)|γ|m
∫

C0
n,m(D)

i∗Δ ◦ exp(Φn)(g)|v1=···=vn=0,

Φn =
∑

i
=k
ω(zi, zk)

d∑

ν=1

∂2

∂θ
(i)
ν ∂x

(k)
ν

+
∑

i

φ(zi, u)

(
d∑

ν=1

θν
∂

∂θ
(i)
ν

+
∂

∂vi

)

.

The sums over i are from 1 to n and the sum over k is over the set
{1, . . . , n, 1̄, . . . , m̄}, with the understanding that zj̄ = tj . The map i∗Δ is
the restriction to the diagonal: its effect is to set all x(i) to be equal to x
and all θ(i) to be equal to θ. The integrand is then an element of the tensor
product of graded commutative algebras Ω(C0

n,m(D))⊗C∞(T ∗[1]M)[u]. The
integral is defined as

∫
(α⊗ γ) = (

∫
α)γ and the expansion of the exponential

functions gives rise to a finite sum over graphs.

5.5 Proof of Proposition 1 on page 126

A vertex of a directed graph is called disconnected if there is no edge origi-
nating or ending at it.

Lemma 5. Let F̃n be defined as Fn except that the sum over graphs is re-
stricted to the graphs without disconnected vertices of the first type. Then

Fk+n((hv)k · πn; f) =
k∑

s=0

(
k

s

)

hsF̃k−s+n((hv)k−s · πn; f).

Proof. For each fixed graph Γ0 without disconnected vertices of the first type,
we consider all graphs Γ contributing to Fk+n that reduce to Γ0 after remov-
ing all disconnected vertices of the first type. The contribution to Fk+n of
such a graph Γ is hs times the contribution of Γ0, where s is the number of
disconnected vertices of the first type. Indeed, each disconnected vertex in a
graph Γ gives a factor h to FΓ and a factor

∫
D φ = 1 to the weight wΓ . The

proof of the lemma is complete. ��
Let

Hn(π, h, f) =
∞∑

r=0

1
r!

F̃n+r((hv)r · πn; f).

In this sum there are finitely many terms since in the absence of disconnected
vertices only derivatives of h can appear and the number of derivatives is
bounded (by 2n). Therefore Hn(π, h, f) is a differential polynomial in π, h, f .
We conclude that

∞∑

n=0

1
n!

Fn(π̂n; f) =
∞∑

n,k=0

εn

k!n!
Fk+n((hv)kπn; f)

=
∞∑

n,r,s=0

εn

r!s!n!
hsF̃n+r((hv)rπn; f) = eh

∞∑

n=0

εn

n!
Hn(π, h, f).

This concludes the proof of Proposition 1.
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6 Equivariant differential forms on configuration spaces
and Stokes theorem

6.1 Configuration spaces and their compactifications

We consider three types of configuration spaces of points, the first two ap-
pearing in [17].
(i) Configuration spaces of points in the plane. Let Confn(C) = {z ∈ C

n , zi �=
zj , (i �= j)}, n ≥ 2. The three-dimensional real Lie group G3 of affine
transformations w �→ aw + b, a > 0, b ∈ C acts freely on the manifold
Confn(C). We set Cn(C) = Confn(C)/G3 (n ≥ 2). It is a smooth man-
ifold of dimension 2n − 3. We fix the orientation defined by the volume
form dϕ2 ∧

∧
j≥3 dRe(zj) ∧ dIm(zj), with the choice of representatives with

z1 = 0, z2 = eiϕ2 .
(ii) Configuration spaces of points in the upper half-plane. Let H+ = {z ∈
C , Im(z) > 0} be the upper half-plane. Let Confn,m(H+) = {(z, x) ∈ Hn

+ ×
R
m, zi �= zj, (i �= j), t1 < · · · < tm}, 2n + m ≥ 2. The two-dimensional

real Lie group G2 of affine transformations w �→ aw + b, a > 0, b ∈ R acts
freely on the manifold Confn,m(H+). We set Cn,m(H+) = Confn,m(H+)/G2

(2n+m ≥ 2). It is a smooth manifold of dimension 2n+m−2. If n ≥ 1, we fix
the orientation by choosing representatives with z1 = i and taking the volume
form dt1∧· · ·∧dtm ∧

∧
j≥2 dRe(zj)∧dIm(zj). If m ≥ 2, we fix the orientation

defined by the volume form (−1)mdt2 ∧· · · ∧dtm−1∧
∧
j≥1 dRe(zj)∧dIm(zj),

with the choice of representatives with t1 = 0, tm = 1. If m ≥ 2 and n ≥ 1, it
is easy to check that the two orientations coincide.
(iii) Configuration spaces of points in the disk. Let D = {z ∈ C , |z| < 1}
be the unit disk, S1 = ∂D̄ the unit circle. Let Cn,m+1(D) = {(z, x) ∈ Dn ×
(S1)m+1, zi �= zj , (i �= j), arg(t0) < · · · < arg(tm) < arg(t0) + 2π}, m ≥ 0.
The circle group acts freely on Cn,m+1(D) by rotations. We do not take a
quotient here, since the differential forms we will introduce are not basic, and
work equivariantly instead. Instead of the quotient we consider the section
C0
n,m(D) = {(z, x) ∈ Cn,m+1(D) , t0 = 1}, (m ≥ 1). It is a smooth manifold

of dimension 2n + m. The orientation of Cn,m+1(D) is defined by d arg(t0) ∧
· · ·∧d arg(tm)∧

∧n
j=1 dRe(zj)∧dIm(zj). The orientation of C0

n,m(D) is defined
by d arg(t1) ∧ · · · ∧ d arg(tm) ∧

∧n
j=1 dRe(zj) ∧ dIm(zj).

As in [17], compactifications C̄n(C), C̄n,m(H+), C̄n,m+1(D), C̄0
n,m(D) of

these spaces as manifolds with corners are important. Their construction is
the same as in [17]. Roughly speaking, one adds strata of codimension 1 cor-
responding to limiting configurations in which a group of points collapses to
a point, possibly on the boundary, in such a way that within the group the
relative position after rescaling remains fixed. Higher codimension strata cor-
respond to collapses of several groups of points possibly within each other.
The main point is that the Stokes theorem applies for smooth top differential
forms on manifold with corners, and for this only codimension 1 strata are
important.
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Let us describe the codimension 1 strata of C0
n,m(D).

Strata of type I. These are strata where a subset A of n′ ≥ 2 out of n points
zi in the interior of the disk collapse at a point in the interior of the disk, the
relative position of the collapsing points is described by a configuration on
the plane and the remaining points and the point of collapse are given by a
configuration on the disk. This stratum is thus

∂AC̄0
n,m(D) � C̄n′(C)× C̄0

n−n′+1,m(D). (15)

Strata of type II. These are strata where a subset A of n′ out of n points zi
and a subset B of the m points ti collapse at a point on the boundary of the
disk (2n′ +m′ ≥ 2). The relative position of the collapsing points is described
by a configuration on the upper half-plane and the remaining points and the
point of collapse are given by a configuration on the disk. This stratum is thus

∂A,BC̄0
n,m(D) � C̄n′,m′(H+)× C̄0

n−n′,m−m′+1(D). (16)

6.2 Forgetting the base point and cyclic shifts

Let j0 : C0
n,m(D) → Cn,m(D) be the map (z, 1, t1, . . . , tm) �→ (z, t1, . . . , tm)

forgetting the base point t0 = 1. It is an orientation preserving open embed-
ding.

The cyclic shift λ : C0
n,m(D) → C0

n,m(D) is the map

λ : (z1, . . . , zn, 1, t1, . . . , tm) �→ (z1, . . . , zn, 1, tm, t1, . . . , tm−1).

It is a diffeomorphism preserving the orientation if m is odd and reversing the
orientation if m is even. The following fact is then easily checked.

Lemma 6. The collection of maps jk = j0 ◦ λ◦k, k = 0, . . . ,m − 1, defines
an embedding j : C0

n,m(D) � · · · � C0
n,m(D) → Cn,m(D) with dense image.

The restriction of j to the kth copy of Cn,m(D) multiplies the orientation by
(−1)(m−1)k.

6.3 Proof of Theorem 2 on page 124

The proof uses the Stokes theorem as in [17]. The new features are: (i) the
differential forms in the integrand are not closed and (ii) an equivariant version
of the Stokes theorem is used.

We first compute the differential of the differential form associated to a
graph Γ .



Effective BV Theory and Cyclic Chains 133

Lemma 7. Let ∂eΓ be the graph obtained from Γ by adding a new white vertex
∗ and replacing the black-to-black edge e ∈ Eb(Γ ) by an edge originating at
the same vertex as e but ending at ∗. Then

dS1ωΓ =
∑

e∈Eb(Γ )

(−1)�eω∂eΓ ,

where !e = k if e = ek and e1, . . . , eN are the edges of Γ in the ordering
specified by the ordering of the vertices and of the edges at each vertex.

Proof. This follows from the fact that dS1 is a derivation of degree 1 of the
algebra of equivariant forms and Lemma 4, (ii). ��

The next lemma is an equivariant version of the Stokes theorem.

Lemma 8. Let ω ∈ Ω•
S1(C̄n,m+1(D)). Denote also by ω its restriction to

C̄0
n,m(D) ⊂ C̄n,m+1(D) embedded as the subspace where t0 = 1 and to the

codimension 1 strata ∂iC
0
n,m(D) of C0

n,m(D). Then
∫

C̄0
n,m(D)

dS1ω =
∑

i

∫

∂iC̄0
n,m(D)

ω − u

∫

C̄n,m+1(D)

ω.

Proof. Write dS1 = d − uιv. For u = 0 the claim is just the Stokes theorem
for manifolds with corners. Let us compare the coefficients of u. The action
map restricts to a diffeomorphism f : S1 × C̄0

n,m(D) → C̄n,m+1(D). Since ω
is S1-invariant, ιvω is also invariant and we have f∗ω = 1 ⊗ ω + dt ⊗ ιvω ∈
Ω(S1) ⊗ Ω(C̄0

n,m(D)) ⊂ Ω(S1 × C̄0
n,m(D)), where t is the coordinate on the

circle S1 = R/Z. Thus
∫

C̄n,m+1(D)

ω =
∫

S1×C̄0
n,m(D)

dt⊗ ιvω =
∫

C̄0
n,m(D)

ιvω. ��

Finally we use Lemma 6 to reduce the integral over C̄n,m+1(D) to integrals
over C̄0

n,m+1(D). We obtain:

Lemma 9. Let ω ∈ Ω•
S1(C̄n,m+1(D)) and let jk be the maps defined in

Lemma 6. Then
∫

C̄n,m+1(D)

ω =
m∑

k=0

(−1)mk
∫

C̄0
n,m+1(D)

j∗kω.

We can now complete the proof of Theorem 2. We first prove the identity
(11), starting from the right-hand side. Suppose that a = (a0, . . . , am) ∈
C−m(A), γ = γ1 · · · γn, with γi ∈ Γ (∧kiTM ). It is convenient to identify
Γ (∧TM ) with C∞(M)[θ1, . . . , θn] where θi are anticommuting variables, so
that divΩ =

∑
∂2/∂ti∂θi. It follows that for any Γ ∈ Gk,m, divΩ FΓ (γ; a) can

be written as a sum (with signs) of terms FΓ ′(γ; a), where Γ ′ is obtained from
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Γ by identifying a white vertex with a black vertex and coloring it black. Some
of these graphs Γ ′ have an edge connecting a vertex to itself and contribute
to Fn(δΩγ; a). The remaining ones yield, in the notation of Lemma 7:

divΩ Fn(γ; a)− Fn(δΩγ; a) =
∑

(Γ,e)

(−1)�ew∂eΓFΓ (γ; a).

The summation is over pairs (Γ, e) where Γ ∈ Gk,m and e ∈ Eb(Γ ) is a
black-to-black edge. By Lemmas 8 and 9,

∑

e∈Eb(Γ )

(−1)�ew∂eΓ =
∑

i

∫

∂iC0
n,m(D)

ωΓ − u

m∑

k=0

(−1)km
∫

C̄0
n,m+1

j∗kωΓ .

The second term on the right-hand side, containing the sum over cyclic per-
mutations, gives rise to Fn+1(γ;Ba). The first term is treated as in [17]: the
strata of type I (see Section 6.1) give zero by Kontsevich’s lemma (see [17],
Theorem 6.5) unless the number n′ of collapsing interior points is 2. The sum
over graphs contributes then to the term with the Schouten bracket [γi, γj ] in
(11). The strata of type II such that n − k > 0 interior points approach the
boundary give rise to the term containing the components of the Kontsevich
L∞-morphism Un−k. Finally the strata of type II in which only boundary
points collapse give the term with Hochschild differential Fn−1(γ; ba). This
proves (11).

Property (i) is clear: F0 is a sum over graphs with vertices of the second
type only. These graphs have no edges. Thus the only case for which the
weight does not vanish is when the configuration space is 0-dimensional,
namely, when there is only one vertex. Property (ii) is checked by an explicit
calculation of the weight. The only graphs with a nontrivial weight have edges
connecting the vertex of the first type with white vertices or to vertices of the
second type. There must be at least p edges otherwise the weight vanishes
for dimensional reasons. In this case, i.e., if k ≥ p, the integral computing the
weight is

wΓ =
∫

φ(z, u)�+k−pω(z, t1) · · ·ω(z, tp), (17)

with integration over z ∈ D, ti ∈ S1, 0 < arg(t1) < · · · < arg(tp) < 2π. The
integral of the product of the 1-forms ω is a function of z that is independent
of z, as is easily checked by differentiating with respect to z, using the Stokes
theorem and the boundary conditions of ω. Thus it can be computed for
z = 0. Since ω(0, ti) = 1

2πd arg(ti) the integral is 1/p!. The remaining integral
over z can then be performed. Set % + k − p = s + 1. This power must be
positive otherwise the integral vanishes for dimensional reasons.

∫

D

φ(z, u)s+1 =
i

2π
(s + 1)us

∫

D

(1− |z|2)sdz ∧ dz̄ = us, s ≥ 0,

and we obtain wΓ = us/p!. We turn to Property (iii). The equivariance under
linear coordinate transformations is implicit in the construction. The graphs
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contributing to Fn(γ1 · · · ; a) for linear γ1 are of two types: either the vertex
associated with γ1 has exactly one ingoing and one outgoing edge or it has
an outgoing edge pointing to a white vertex and there are no incoming edges.
The graphs of the second type contribute to γ1 ∧ Fn−1(· · · ; a), since their
weight factorize as 1 =

∫
D

φ times the weight of the graphs obtained by
omitting the vertex associated to γ1 and the white vertex connected to it.
The claim then follows from the following vanishing lemma.

Lemma 10. (i) For all z, z′ ∈ D̄,
∫
w∈D ω(z, w)ω(w, z′) = 0.

(ii) For all z ∈ D̄,
∫
w∈D ω(z, w)φ(w, u) = 0.

Proof. (i) We reduce the first claim to the second: consider the integral

I(z, z′) =
∫

w1,w2∈D
d(ω(z, w1)ω(w1, w2)ω(w2, z

′)).

On the one hand, I(z, z′) can be evaluated by using Stokes’s theorem, giving
three terms all equal up to sign to the integral appearing in (i). On the other
hand, the differential can be evaluated explicitly giving

I(z, z′) = −
∫

w1,w2∈D
ω(z, w1)ω(w1, w2)φ(w2, 0).

The integral over w2 vanishes if (ii) holds. The proof of (ii) is an elementary
computation that uses the explicit expression of ω and φ. Alternatively, one
shows that

∫
w∈D ω(z, w)φ(w, u) is a closed 1-form on the disk that vanishes on

the boundary, is invariant under rotations and odd under diameter reflections.
Therefore it vanishes. We leave the details to the reader. ��
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1 Introduction

In this paper we apply the techniques of brace algebras of Gerstenhaber and
of A∞ and L∞ algebras of Stasheff to develop a part of what we call non-
commutative differential calculus. Noncommutative calculus is a theory that
reconstructs basic algebraic structures arising from the calculus on a manifold
in terms of the algebra of functions on this manifold, in a way that works for
any algebra, commutative or not. This program is being developed in [12],
[13], [14], [43], [45]. Let us start by observing that there are several algebraic
structures arising from the standard calculus on a manifold:

I. (Differential graded) Lie algebras and modules over them. Sev-
eral key formulas from differential calculus on manifolds, namely, the Cartan
formulas, use nothing but commutators (the commutator is always understood
in the graded sense) and therefore give rise to graded Lie algebras. It has been
emphasized by Dorfman and Gelfand [15] that these graded Lie algebras and
their representations are worthy of being studied and generalized. We use the
following notation to describe these algebras.
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(a) Multivector fields with the Schouten–Nijenhuis–Richardson bracket
form a graded Lie algebra that we denote by g•; g• = ∧•+1T. This graded Lie
algebra acts on the space Ω−• of forms with reversed grading by the gener-
alized Lie derivative: LD = [d, ιD] where ιD is the contraction of a form by a
multivector.

(b) There is a bigger differential graded Lie algebra (DGLA) g[ε, u] with
the differential u ∂

∂ε . Here u is a formal parameter of degree 2 and ε is a formal
parameter of degree 1 such that ε2 = 0. It acts on the complex Ω−•[[u]] with
the differential ud as follows: X + εY acts by LX + ιY .

II. (Differential graded) associative algebras. There are several:
(a) Forms with wedge multiplication.
(b) Multivectors with wedge multiplication.
(c) Differential operators on functions (and sections of other vector

bundles).
(d) In particular, differential operators on differential forms.
The algebras II(a) and II(b) are graded commutative.
III. Calculi. The structures from I, as well as from II(b), give rise to an

algebraic structure that we call a calculus. In particular, multivectors form
a Gerstenhaber algebra, or simply a G-algebra. We recall the definitions in
4.1. They formalize algebraic properties of multivectors with the wedge prod-
uct and the Schouten bracket, forms with the De Rham differential, and of
the former acting on the latter by contraction and by Lie derivative. One re-
constructs the algebra II(d) from the calculus as an enveloping algebra of a
certain kind.

We would like to generalize all the above constructions to the case when
a manifold is replaced by a possibly noncommutative algebra over a field of
characteristic zero. First note that all the algebras as in I–III will be replaced
by algebras up to homotopy, namely, L∞, A∞, C∞, G∞, and Calc∞ algebras.

There are two ways to look at such objects. One is to say that a complex
C• is an algebra of certain type up to homotopy if a DG algebra C• of this
type is given, together with a quasi-isomorphism of complexes C• → C•. (In
the case of Calc∞ algebras one talks rather about pairs of complexes.) An
A∞, etc. morphism C1 → C2 is a chains of morphisms C1 ← C → C2 where
the arrow on the left is a quasi-isomorphism. Such a morphism is a quasi-
isomorphism if the map on the right is a quasi-isomorphism, too. There is a
natural way of composing such morphisms.

Another way to talk about an algebra up to homotopy is to talk about the
complex C• equipped with a series of higher operations satisfying certain rela-
tions. We recall the definition of A∞ algebras and modules in terms of higher
operations in 2.3, and (implicitly) an analogous definition of L∞ modules,
in the beginning of Section 3. The definition of G∞ algebras in these terms
was given in [19], cf. also [39], [21]; an analogous definition of Calc∞ algebras
will be given in a subsequent work. Morphisms are defined in terms of higher
operations as well. In all of the cases discussed above, including the BV case,
a homotopy algebra structure can be defined as a coderivation of degree one
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of a free coalgebra of appropriate type (namely, over the cooperad Liedual,
Calcdual, BVdual, etc.); that coderivation satisfies the Maurer–Cartan equa-
tion. A morphism of two homotopy algebras can be defined as a morphism of
resulting DG coalgebras.

One can move between the two ways of defining algebras up to homotopy:
from the first definition to the second by a procedure called transfer of struc-
ture, from the second to the first by another procedure called rectification,
cf. [23], [32], [28], [34].

Let C•(A) be the Hochschild cochain complex and C•(A) the Hochschild
chain complex of an algebra A over a field of characteristic zero. The former
will play the role of noncommutative multivectors and the latter of noncom-
mutative forms. We will start with the noncommutative analog of III and
work our way back to I.

It was proven in [13], [28] that the pair C•(A), C•(A) is a Calc∞ algebra
whose underlying L∞ structure is the one from Hochschild theory, given by
the Gerstenhaber bracket on cochains and by some explicit action of cochains
on chains. (Those two Lie operations should be viewed as a noncommutative
analog of I(a).)

Noncommutative version of III. The Calc∞ structure from [13] has
two related drawbacks: its construction is highly inexplicit and involved, and it
is not canonical. The latter part is due to a fundamental fact about Calc∞ (as
well as G∞) structures: they know how to generate new such structures from
themselves. That is, starting from a Gerstenhaber algebra, one can construct
new algebras (deformations of the old one) in a universal way, using only the
Gerstenhaber operations of the bracket and the product. Similarly, there are
universal moves that produce one G∞ structure from another (indeed, pass
from a G∞ algebra to a DG G-algebra by rectification, then apply the above
construction, and go back by the transfer of structure).

The group generated by these moves is a group of symmetries acting on
the set of G∞ algebra structures on any given space. (Or, which is the same,
the operad G∞ has a nontrivial group of symmetries.) It follows from results
of [26], [28], [40] that the Grothendieck–Teichmüller group maps to this group
of symmetries. Apparently, all of the above is true for Calc∞ algebras.

This is a phenomenon that is largely absent from the world of associative
or Lie algebras (note, however, that a Lie algebra structure [, ] automatically
comes in a one-dimensional family t[, ]). Indeed, higher operations in an L∞
or an A∞ algebra are of negative degree, and there is no way to produce a
universal formula for such an operation using only the commutator or the
product that are of degree zero.

On the other hand, if one has a Gerstenhaber algebra, one can define,
say, a new A∞ structure on it in a universal way, using only the multiplica-
tion and the bracket. An example of such a structure over the ring C[�]/(�2):
m3 = 0; m4(a1, a2, a3, a4) = (−1)|a1|+|a2|�[a1, a2][a3, a4]; mk = 0, k > 4.
(This A∞ structure can be extended to a G∞ structure; to see this, re-
call from [19], [39] that a G∞ structure on C is a collection of operations
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mk1,...,kn : Ck1+...+kn → C subject to some relations; let m4 be as above,
m2,2(a1, a2; a3, a4) = �[[a1, a2], [a3, a4]] and let all other higher operations be
zero).

Note that all of the above applies to the classical calculus structure on
the spaces of multivectors and forms; many other Calc∞ structures may be
generated from it. But, on the one hand, the standard structure is clearly
the most natural; on the other hand, one can prove that all Calc∞ structures
that could be written naturally on a smooth manifold are equivalent to the
standard one. This can be done using the argument as in [39] and [21], plus
some formal differential geometry. (There are nonstandard Calc∞ structures
on multivectors and fields; any 3-cohomology class gives one. All this is of
course consistent with the fact that there are no natural odd cohomology
classes on manifolds; there are natural even classes, namely, the Chern classes
of the tangent bundle).

If we try to look at the noncommutative analogs of the structures I and
II that arise from the noncommutative version of III, the situation becomes
easier for II and a lot easier for I.

Noncommutative version of II. The structures (a) does not generalize
to our version of noncommutative calculus. Indeed, there is a product on the
Hochschild homology, but only for a commutative ring A. For example, the
degree zero Hochschild homology of A is A/[A,A], the quotient of A by the
linear span of commutators; this space does not have any natural multiplica-
tion. In comparison, the zero degree Hochschild cohomology of A is the center
of A which is always a commutative algebra. (Note, however, that for a de-
formation quantization of a smooth manifold the space of noncommutative
forms, i.e., the Hochschild chain complex, is quasi-isomorphic to the Poisson
chain complex; this follows from [11] and [37], cf. also [42]. But the differential
in the Poisson chain complex is a BV operator. Therefore, in the case of defor-
mation quantization, the Hochschild chain complex is a homotopy BV algebra;
that is, there is a natural model for chains that carries a graded commuta-
tive product; the differential is not a derivation with respect to this product
but rather a BV operator (in particular, a differential operator of order two).
As for the structure (c), its generalization to our version of noncommutative
calculus is unknown and, in our view, not likely to exist.

The noncommutative version of the DG algebra IId) of differential oper-
ators on differential forms was described in [43] (we recall and use it in this
paper). It was proven there that, indeed, it is the one coming from the Calc∞
structure generalizing III.

As for the generalized algebra II(b) of multivectors, the situation is more
delicate. It is easy to name one candidate, the DG algebra C•(A) of Hochschild
cochains with the standard differential δ and the cup product &. All we know
is that the C∞ algebra structure on C•(A) which is a part of the Calc∞ struc-
ture from [13] and [28] is an A∞ deformation of the cup product. Equivalently,
the cup product is an A∞ deformation of the C∞ algebra C•(A) coming from
the Calc∞ structure. But, as we discussed above, there may be many such
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deformations. So far we do not even know whether the DGA (C•(A), δ,&) is
A∞ equivalent to a C∞ algebra.

Noncommutative version of I. Here the situation becomes much easier:
a noncommutative version of I is explicit and canonical. Namely, the nega-
tive cyclic complex CC−

−•(A) = (C−•(A)[[u]], b + uB) is an L∞ module over
the DGLA (g•A[ε, u], δ + u ∂

∂ε) where g•A = (C•+1
A , δ, [, ]) is the DG Lie alge-

bra of Hochschild cochains with the Gerstenhaber bracket. We give explicit
formulas for this L∞ structure (Theorem 3) and prove that this structure is
L∞ equivalent to the one induced by the Calc∞ structure on (C•(A), C•(A))
(Theorem 5).

The reason for the latter statement is the following. Unlike the associative
multiplication, the Lie algebra structures that are part of the definition of a
calculus live, degreewise, on the very edge of the calculus structure and do not
have any room for change. For example, unlike the product, the Lie bracket
on a Gerstenhaber algebra cannot be universally deformed, simply because
there are no universal operations of needed degrees. Likewise, the DG Lie
algebra structure of I(b) cannot be universally deformed: universal operations
of needed degrees are too few and easily controlled.

To define the L∞ structure from Theorem 3, we, following [45], construct
it from the noncommutative version of the ring IId) of differential operators
on forms, namely, the A∞ algebra CC−

−•(C
•(A)) that was studied in [43]. It

would be interesting, instead of describing the latter by explicit formulas, to
interpret it as a part of the A∞ category of A∞ functors as described in [28],
[25], as well as in [41]. (In a crude form, this was basically the idea in [35].)

We conclude the paper by showing that, given a family A of algebras on
a variety S, assuming that this family admits a connection as a family of
vector spaces, there exists a flat superconnection on the family of complexes
s �→ CCper

−• (As). This generalizes Getzler’s construction of the Gauss–Manin
connection [17] from the level of homology to the level of actual complexes.
Note that a modified version of Getzler’s construction was used in [24].

It would be interesting to compare the results of this paper to the ones
from [20] and [44].

Concluding remarks. We see that noncommutative differential calculus
has two levels. At the higher level, there is an inexplicit, noncanonical struc-
ture of a Calc∞ algebra on the pair (C•(A), C•(A)). At the lower level, there
are some simpler structures whose existence is implied by the existence of the
Calc∞ structure but they themselves are explicit and canonical. They are:

(1) the A∞ algebra CC−
−•(C•(A)) and the A∞ module CC−

−•(A) over it
(noncommutative differential operators on forms);

(2) the DGLA g•A = C•+1(A) (noncommutative multivectors);
(3) the L∞ module structure on CC−

−•(A) over (gA[ε, u], δ + u ∂
∂ε ) (non-

commutative analog of multivectors acting on forms by Lie derivative and by
contraction); and also

(4) the calculus (H•(A), H•(A)), the homology of (C•(A), C•(A)). The
explicit formulas were given in [10].
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A large group of symmetries acts on the space of choices for the Calc∞
structure. Note that the group acts not by automorphisms of any structure
but on the space of choices of the structure itself. There is an important case
when (some extension of) this group acts by automorphisms of the structures
(1)–(4).

Indeed, take for A the sheaf of functions on a smooth manifold (real,
complex, or algebraic). A formality theorem is true for the Calc∞ structure
above (cf. [13], [14]); namely, for any choice α of the Calc∞ structure, there
is a Calc∞ quasi-isomorphism of sheaves of Calc∞ algebras

Φα : (C•(OX), C•(OX))α
∼−→ (∧•TX , Ω•

X) (1)

Here the left-hand side is equipped with the Calc∞ structure given by α
and the right-hand side with the standard calculus structure. The coho-
mology of the right-hand side can be identified with the standard calculus
(H•(OX), H•(OX)); comparing two such identifications, for any α and β we
get an automorphism of the standard calculus

Φαβ : (H•(X,∧•TX);H•(X,Ω•
X)) ∼−→ (H•(X,∧•TX);H•(X,Ω•

X)) (2)

It would be very interesting to compare the above construction to the L∞
quasi-isomorphisms constructed by Merkulov in [33].

In [26], Kontsevich constructed automorphisms of the cohomology with
coefficients in multivector fields that are probably part of the above con-
struction. Similarly, for any α and β one constructs an automorphism of the
classical analog of any of the structures (1)–(3): an L∞ quasi-isomorphism of
Ω0,•(X,∧•+1TX) with itself; a compatible quasi-isomorphism of L∞ modules
over (Ω0,•(X,∧•+1TX)[ε, u], ∂+u ∂

∂ε ) between (Ω0,•(X,Ω−•
X )[[u]], ∂ +u∂) and

itself, etc. Indeed, one has

C•+1(OX)Gerst
Ψα←− C•+1(OX)α

Φα−→ ∧•+1TX

The DGLA on the left is the Hochschild cochain complex with the Gersten-
haber bracket. The map on the right is a G∞ quasi-isomorphism of sheaves of
G∞ algebras (formality); the one on the right is the L∞ quasi-isomorphism of
sheaves of DGLA (rigidity). Comparing two such sequences for α and β, we
get an L∞ quasi-isomorphism at the level of algebras; similarly for modules.

Let us finish by some remarks about the algebraic index theorem. The
formality Calc∞ quasi-isomorphism implies a quasi-isomorphism of complexes

Ω0,•(X,CCper
−• (OX)) ∼−→ Ω0,•(X,Ω−•

X ((u))) (3)

An algebraic index theorem is a statement comparing it to the standard
Hochschild–Kostant–Rosenberg map (and an analogous statement for a defor-
mation quantization of OX ; cf. [3], [4] for the symplectic case). Equivalently,
it is a statement about the image of the zero-homology class 1. One can show
that this image is an expression in the Chern classes of TX that becomes
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√

Â(TX) if we send all the odd Chern classes to zero. If the automorphisms
in [26] do extend to automorphisms of calculi that come from (2), then it
looks like any multiplicative characteristic class with the above property may
occur, for an appropriate choice of α. Note also that nothing in our argument
implies that the symmetries constructed above are Calc∞ quasi-isomorphisms
of (∧•TX , Ω•

X) with itself. On the other hand, there definitely are some Calc∞
quasi-isomorphisms, for instance the exponential of the following derivation:

ιc1(TX) : Ω0,•(X,∧•TX) → Ω0,•+1(X,∧•−1TX)

and
c1(TX)∧ : Ω0,•(X,Ω•

X)→ Ω0,•+1(X,Ω•+1
X )

Note also that the Hochschild–Rosenberg map, followed with multiplica-
tion by the square root of the Todd class, appears in [31], [5], [6], [7], and
[36] and is characterized by preserving another algebraic structure. Namely, it
intertwines the Mukai pairing with the standard pairing on the cohomology.
This suggests that the correct formality theorem could be formulated for an
algebraic structure encompassing both the calculus and the pairing, probably
related to (genus zero part of) the TQFT structure from [9] and [28].

2 Operators on forms in noncommutative calculus

2.1 The Hochschild cochain complex

Let A be a graded algebra with unit over a commutative unital ring K of
characteristic zero. A Hochschild d-cochain is a linear map A⊗d → A. Put,
for d ≥ 0,

Cd(A) = Cd(A,A) = HomK(A
⊗d

, A)

where A = A/K · 1. Put |D| = ( degree of the linear map D) + d.
Put for cochains D and E from C•(A,A)

(D & E)(a1, . . . , ad+e) = (−1)|E|∑ i≤d(|ai|+1)D(a1, . . . , ad)E(ad+1, . . . , ad+e);

(D ◦ E)(a1, . . . , ad+e−1)

=
∑

j≥0

(−1)(|E|+1)
∑ j

i=1(|ai|+1)D(a1, . . . , aj , E(aj+1, . . . , aj+e), . . . );

[D, E] = D ◦ E − (−1)(|D|+1)(|E|+1)E ◦D

These operations define the graded associative algebra (C•(A,A) ,&) and
the graded Lie algebra (C•+1(A,A), [ , ]) (cf. [8]; [17]). Let

m(a1, a2) = (−1)deg a1 a1a2;
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this is a 2-cochain of A (not in C2). Put

δD = [m,D];

(δD)(a1, . . . , ad+1) = (−1)|a1||D|+|D|+1a1D(a2, . . . , ad+1)

+
d∑

j=1

(−1)|D|+1+
∑ j

i=1(|ai|+1)D(a1, . . . , ajaj+1, . . . , ad+1)

+(−1)|D|∑d
i=1(|ai|+1)D(a1, . . . , ad)ad+1

One has

δ2 = 0; δ(D & E) = δD & E + (−1)|degD|D & δE

δ[D,E] = [δD,E] + (−1)|D|+1 [D, δE]

(δ2 = 0 follows from [m,m] = 0).
Thus C•(A,A) becomes a complex; we will denote it also by C•(A).

The cohomology of this complex is H•(A,A) or the Hochschild cohomol-
ogy. We denote it also by H•(A). The & product induces the Yoneda prod-
uct on H•(A,A) = Ext•A⊗A0(A,A). The operation [ , ] is the Gerstenhaber
bracket [16].

If (A, ∂) is a differential graded algebra, then one can define the differ-
ential ∂ acting on A by

∂D = [∂,D]

Theorem 1 [16] The cup product and the Gerstenhaber bracket induce a Ger-
stenhaber algebra structure on H•(A).

2.2 Hochschild chains

Let A be an associative unital DG algebra over a ground ring K. The differ-
ential on A is denoted by δ. Recall that by definition

A = A/K · 1

Set

Cp(A,A) = Cp(A) = A⊗A
⊗p

Define the differentials δ : C•(A) → C•(A), b : C•(A) → C•−1(A), B :
C•(A) → C•+1(A) as follows:

δ(a0 ⊗ · · · ⊗ ap) =
p∑

i=1

(−1)
∑

k<i (|ak|+1)+1(a0 ⊗ · · · ⊗ δai ⊗ · · · ⊗ ap);

b(a0 ⊗ · · · ⊗ ap) =
p−1∑

k=0

(−1)
∑k

i=0 (|ai|+1)+1a0 · · · ⊗ akak+1 ⊗ · · · ap (4)
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+(−1)|ap|+(|ap|+1)
∑p−1

i=0 (|ai|+1)apa0 ⊗ · · · ⊗ ap−1;

B(a0⊗· · ·⊗ap) =
p∑

k=0

(−1)
∑

i≤k(|ai|+1)
∑

i≥k(|ai|+1)1⊗ak+1⊗· · · ap⊗a0⊗· · ·⊗ak

(5)

(cf. [30]).
The complex C•(A) is the total complex of the double complex with the

differential b + δ.
Let u be a formal variable of degree two. The complex (C•(A)[[u]], b + δ +

uB) is called the negative cyclic complex of A.
Now put

LD(a0 ⊗ · · · ⊗ an) =
n−d∑

k=1

εka0 ⊗ · · · ⊗D(ak+1, . . . , ak+d)⊗ · · · ⊗ an (6)

+
n∑

k=n+1−d
ηkD(ak+1, . . . , an, a0, . . .)⊗ · · · ⊗ ak

(The second sum in the above formula is taken over all cyclic permutations
such that a0 is inside D.) The signs are given by

εk = (|D|+ 1)(|a0|+
k∑

i=1

(|ai|+ 1))

and
ηk = |D|+

∑

i≤k
(|ai|+ 1)

∑

i≥k
(|ai|+ 1)

Proposition 1

[LD, LE ] = L[D,E]; [b, LD] + LδD = 0; [LD, B] = 0

2.3 A∞ algebras and modules

Recall [29], [38] that an A∞ algebra is a graded vector space C together with
a Hochschild cochain m of total degree 1,

m =
∞∑

n=1

mn

where mn ∈ Cn(C) and
[m,m] = 0
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Recall also the definition of A∞ modules over A∞ algebras. First, note that
for a graded space M, the Gerstenhaber bracket [ , ] can be extended to the
space

Hom(C⊗•
, C)⊕Hom(M⊗C⊗•

,M)

For a graded k-module M, a structure of an A∞ module over an A∞
algebra C on M is a cochain of total degree one

μ =
∞∑

n=1

μn

μn ∈ Hom(M⊗C⊗n−1
,M)

such that
[m + μ,m + μ] = 0

2.4 The A∞ structure on chains of cochains for the definition
of the negative cyclic complex, cf. [30]

Theorem 2 There is a structure {mn} of an A∞ algebra on CC−
−•(C

•(A)),
and a structure {μn} of an A∞ module over this A∞ algebra on C−•(A)[[u]],
such that:

• All mn and μn are k[[u]]-linear, (u)-adically continuous.
• m1 = b + δ + uB; μ1 = b + uB.
• Modulo u, the space C0(C•(A)) = C•(A) is a subalgebra, with the structure

given by the cup product.
• For a ∈ C−•(A)[[u]], D ∈ C•(A): μ2(a, 1⊗D) = (−1)|a||D|LDa.

Explicit formulas can be found in [43], [45]. They are valid for any brace
algebra. In the case of a commutative algebra, i.e. when all the brace oper-
ations are zero, they where discovered in [18] and [22]. The proof is given
in [45].

3 The L∞ module structure on the negative cyclic
complex

Now introduce the following differential graded algebras. Let C(g•A[u, ε]) be the
standard Chevalley–Eilenberg chain complex of the DGLA g•A[u, ε] over the
ring of scalars K[u]. It carries the Chevalley–Eilenberg differential ∂ and the
differentials δ and ∂ε induced by the corresponding differentials on g•A[u, ε].
Let C+(g•A[u, ε]) be the augmentation co-ideal, i.e., the sum of all positive
exterior powers of our DGLA. The comultiplication defines maps

C+(g•A[u, ε]) �→ C+(g•A[u, ε])⊗n;

c �→
∑

c+
1 ⊗ · · · ⊗ c+

n
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Definition 1. Define the associative DGA B(g•A[u, ε]) over K[[u]] as the ten-
sor algebra of C+(g•A[u, ε]) with the differential d determined by

dc = (δ + ∂)c− 1
2

∑
(−1)|c

+
1 |c+

1 c+
2 + u∂εc.

Definition 2. Let the associative DGA Btw(g•A[u, ε]) over K[[u]] be the tensor
algebra of C+(g•A[u, ε]) with the differential d determined by

dc = (δ + ∂)c− 1
2

∑
(−1)|c

+
1 |c+

1 c+
2 + u

∞∑

n=1

∂εc
+
1 · · · ∂εc+

n

A structure of an L∞ module over g•A[u, ε] on a complex M is by definition a
morphism of DGA B(g•A[u, ε]) → End(M). It would be nice to have explicit
formulas for such a morphism. What we can do instead is construct an explicit
morphism

Btw(g•A[u, ε])→ EndCC−
−•(A)

together with a quasi-isomorphism of DGAs

U(g•A[u, ε])→ Btw(g•A[u, ε])

Let S(g•A)+ be the augmentation ideal, and let

Y �→
∑

Y +
1 ⊗ . . .⊗ Y +

n (7)

denote the map
S(g•A)+ → (S(g•A)+)⊗n (8)

defined as the n-fold coproduct, followed by the nth power of the projection
from S(g•A) to S(g•A)+ along K · 1.

Definition 3. For n ≥ 1, define:

x · (εE1 ∧ . . . ∧ εEn) =
∑

n≥1

(−1)|x|μn+1(x, Y
+

1 , . . . , Y
+

n );

for n ≥ 0,

x · (εE1 ∧ . . . ∧ εEn ∧D) =
∑

n≥1

(−1)|x|μn+2(x, Y
+

1 , . . . , Y
+

n , 1⊗D);

x · (εE1 ∧ . . . ∧ εEn ∧D1 ∧ . . . ∧Dk) = 0

for k > 1. Here D, Di, Ej ∈ g•A and Y = E1 · · ·En ∈ S(g•A)+.

Proposition 2 The formulas from Definition 3 above define an action of the
DGA Btw(g•A[u, ε]) on CC−

−•(A).

The proof is contained in [45].
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3.1 The L∞ action

It remains to pass from Btw(g•A[ε, u]) to U(g•A[ε, u]).
The following is contained in [45].

Lemma 1 The formulas
D → D;

εE1 ∧ . . . ∧ εEn �→
1
n!

∑

σ∈Sn

1
n!

(εEσ1)Eσ2 · · ·Eσn ;

D1 ∧ . . . Dk ∧ εE1 ∧ . . . ∧ εEn �→ 0

for k > 1 or k = 1, n ≥ 1 define a quasi-isomorphism of DGAs

Btw(g•A[ε, u])→ U(g•A[ε, u])

Proof. The fact that the above map is a morphism of DGAs follows from
an easy direct computation. To show that this is a quasi-isomorphism, con-
sider the increasing filtration by powers of ε. At the level of graded quotients,
Btw(g•A[ε, u]) becomes the standard free resolution of (U(g•A[ε, u]), δ), and the
morphism is the standard map from the resolution to the algebra, therefore a
quasi-isomorphism. The statement now follows from the comparison argument
for spectral sequences.

To summarize, we have constructed explicitly a DGA Btw(g•A[ε, u]) and
the morphisms of DGAs

U(g•A[ε, u])← Btw(g•A[ε, u])→ EndK[[u]](CC−
−•(A)) (9)

where the morphism on the left is a quasi-isomorphism. This yields an A∞
morphism

U(g•A[ε, u])→ EndK[[u]](CC−
−•(A))

and therefore an L∞ morphism

g•A[ε, u]→ EndK[[u]](CC−
−•(A))

We get

Theorem 3 The maps (9) define on CC−(A) a K[u]-linear, (u)-adically con-
tinuous structure of an L∞ module over the DGLA (g•A[ε, u], δ + u ∂

∂ε) where
g•A = (C•+1(A), δ, [, ]G).

Remark 1 The property of being K[u]-linear is crucial. Indeed, as pointed
out by K. Costello, g•[ε, u] is quasi-isomorphic to g•, so every g•-module is
an L∞ module over g•[ε, u] by transfer of structure.



Noncommutative Calculus and the Gauss–Manin Connection 151

4 Relation to the homotopy calculus structure

4.1 Calculi

A Gerstenhaber algebra is a graded space V• together with

• A graded commutative associative algebra structure on V•;
• A graded Lie algebra structure on V•+1 such that

[a, bc] = [a, b]c + (−1)(|a|−1)|b|)b[a, c]

Definition 4. A precalculus is a pair of a Gerstenhaber algebra V• and a
graded space Ω• together with

• A structure of a graded module over the graded commutative algebra V•

on Ω−• (corresponding action is denoted by ia, a ∈ V•);
• A structure of a graded module over the graded Lie algebra V•+1 on Ω−•

(corresponding action is denoted by La, a ∈ V•) such that

[ia, Lb] = i[a,b]

and
Lab = Laib + (−1)|a|iaLb

Definition 5. A calculus is a precalculus together with an operator d of de-
gree 1 on Ω• such that d2 = 0 and

[d, ia] = La

Example 1. For any manifold one defines a calculus Calc(M) with V• being
the algebra of multivector fields, Ω• the space of differential forms, and d
the De Rham differential. The operator ia is the contraction of a form by a
multivector field.

Definition 6. A differential graded calculus is a calculus (V•, Ω−•) with dif-
ferentials δ on V• and b on Ω• that are both of degree one and are derivations
with respect to the calculus structure.

The following construction is motivated by Example 1. For a Gerstenhaber
algebra V•, let Y(V•) be the associative algebra generated by two sets of
generators ia, La, a ∈ V•, both i and L linear in a,

|ia| = |a|; |La| = |a| − 1

subject to relations
iaib = iab; [La, Lb] = L[a,b];

[ia, Lb] = i[a,b]; Lab = Laib + (−1)|a|iaLb
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The algebra Y(V•) is equipped with the differential d of degree one which
is defined as a derivation sending ia to La and La to zero.

For a smooth manifold M one has a homomorphism

Y(T •+1
poly (M)) → D(Ω•(M))

The right-hand side is the algebra of differential operators on differential forms
on M , and the above homomorphism sends the generators ia, La to corre-
sponding differential operators on forms (cf. Example 1). The above map is
in fact an isomorphism, cf. [13], Proposition 11 in Section 6.3.

4.2 Comparing the two L∞ module structures

For a DG calculus (V•, Ω•), let g• be the DGLA (V•+1, δ, {, }). One has:
(a) (Ω−•[[u]], b + ud) is a DG module over g•. Moreover:
(b) (Ω−•[[u]], b+uB) is a DG module over (g•[ε, u], δ+u ∂

∂ε), X+εY acting
via LX + ιY .

The same is true for a Calc∞ algebra (V•, Ω•) if one replaces DG modules
by L∞ modules. Recall from [13]:

Theorem 4 (C•(A), C•(A)) is a Calc∞ algebra whose underlying L∞ struc-
ture as in (a) above is: g• = g•A = (C•+1(A), δ, [, ]G), acting on CC−

−•(A) via
the Lie derivative LD.

From this, and from (b) above, we conclude that CC−
−•(A) is an L∞ mod-

ule over (g•[ε, u], δ + u ∂
∂ε ). Indeed, as explained in the introduction, the pair

(C•, C•) is quasi-isomorphic to another pair of complexes that is actually a
DG calculus, with the DGLA structure equivalent to the one given by the
Gerstenhaber bracket. Apply (b) to that pair and then get the L∞ module
structure on C•(A)[[u]] by transfer of structure. Note also that an L∞ algebra
and an L∞ module are in particular complexes, and the differentials coincide
with the Hochschild differentials δ and b.

Theorem 5 The above L∞ structure is equivalent to the one given by
Theorem 3.

Proof. First, recall from [28], [27], [43] the notion of a two-colored operad
and a chain of quasi-isomorphisms of two-colored operads

Calcalg ← Calcgeom ← Calc∞ → Calc (10)

Here Calcalg is the operad which acts on cochains and chain and which is
generated by the cup-product on cochains, the insertions of cochains into a
cochain, and insertions of components of a chain into a cochain compatible
with the cyclic order on these components. The precise description of this
operad can be found in [13] (Section 4.1) or [28] (Sections 11.1–11.3). Note
that Calcalg was denoted by KS in [13].
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The two-colored operad Calcgeom is the operads of chain complexes of the
spaces of configurations of little discs (on a disc and on a cylinder); algebras
over Calc are by definition calculi, and Calc∞ is a cofibrant resolution of Calc;
algebras over it are Calc∞ algebras. The two-colored operad Lie+

∞ maps to
Calc∞. An algebra over Lie+

∞ is a pair consisting of an L∞ algebra and an
L∞ module over it. There is a parallel diagram for precalculi.

Note that for any L∞ algebra L and any graded space M, an L∞
L-module structure on M is the same as a Maurer–Cartan element of the
Chevalley–Eilenberg complex C•(L,End(M)) of cochains of L with coeffi-
cients in End(M) (viewed as a trivial L∞ module). The DGLA structure
on the Chevalley–Eilenberg complex is given by the commutator on End(M)
combined with the wedge product. Now, assume that we have an algebra
(L,M) over a two-colored operad P to which the L∞ operad maps. Then L∞
L-module structures on M that are given by universal formulas in terms of
operations from P are the same as Maurer–Cartan elements of the complex
CP(L,End(M)) of Lie algebra cochains given by universal operations from P .

It is clear that the L∞ module structure from Theorem 3 is given by uni-
versal formulas in terms of operations from Calcalg. Modulo u, these formulas
involve only the precalculus analog of Calcalg. Consider three complexes

C•
P (g•[ε, u],EndK[[u]](Ω−•[[u]])) (11)

where P stands for Calcalg, Calc∞, or Calc. As explained above, these
are complexes of cochains of g•[ε, u] with coefficients in EndK[[u]](Ω−•[[u]])
that are given by universal operations from Calcalg, resp. Calc∞, resp.
Calc. Here (V•, Ω•) is any algebra over one of the three two-colored op-
erads; g• is V•+1 viewed as an L∞ algebra via the map of Lie+

∞ to one
of these operads. In particular, a cochain in (11) produces a cochain in
C•(g•[ε, u],EndK[[u]](Ω−•[[u]])) for any P-algebra.

Recall that a two-colored operad is, in particular, a collection of complexes
O(n) and M(n); the first stands for operations V•⊗n → V•; the second for
operations V•⊗n ⊗Ω• → Ω•.

First, observe that the three complexes are all quasi-isomorphic. Indeed,
they are given by direct sums or products of copies of subspaces of invariants
of M(n) with respect to some subgroups of the symmetric group Sn, with
an extra (Chevalley–Eilenberg) differential. Therefore a quasi-isomorphism of
operads leads to a quasi-isomorphism of complexes.

The L∞ module structures that we are looking for are Maurer–Cartan
elements of the DGLAs of cochains of the type as above. The above quasi-
isomorphisms preserve the Lie algebra structure and therefore induce isomor-
phisms on the sets of Maurer–Cartan elements up to equivalence. We want
to prove that any two Maurer–Cartan cochains as above, defined by universal
operations from Calcalg, are equivalent. We see that we can replace Calcalg by
Calc. Therefore, it suffices to prove the following. Let an L∞ module struc-
ture be given by universal formulas purely in terms of the calculus operations
[a, b], ab, La, ιa, d; moreover, modulo u, it is given by the first four, and it is
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the original action (b) at the level of homology. We claim that any such L∞
structure is L∞ equivalent to the original one.

More precisely, we have to prove the following. Let (V•, Ω•) be any DG
calculus; g• = (V•+1, δ, {, }); consider a Maurer–Cartan element of the DGLA
C•(g•[ε, u],EndΩ−•[[u]]), the cochain complex of (g•[ε, u], δ + u ∂

∂ε ) with co-
efficients in EndΩ−•[[u]] on which g•[ε, u] acts trivially. The Maurer–Cartan
element, by definition, satisfies

(δ + u
∂

∂ε
+ ∂Lie)λ +

1
2
[λ, λ] = 0

where ∂Lie is the Chevalley–Eilenberg differential. The element λ is a cochain
defined by universal operations given by formulas involving the five calculus
operations; modulo u, it involves the four precalculus operations only. For an
n-linear map ϕ, put

Avgϕ(a1, . . . , an) =
1
n!

∑

σ∈Sn

±ϕ(aσ1, . . . , aσn)

The only cochains of suitable degree are of the form

λ =
∑

n≥1

αnΦn + u
∑

n≥1

βnΨn +
∑

n≥0; k

γknΘ
k
n (12)

where
Φ(a1ε, . . . , anε) = AvgLa1 · · ·Lan−1ιan ;

Ψ(a1ε, . . . , anε) = AvgLa1 · · ·Land;
Θk
n(a1ε, . . . , anε, c) = AvgLa1 · · ·Lak

ιcLak+1 . . . Lan

First, note that γ0
0 = 1 and γkn = 0 for all n ≥ 1. Indeed, the component of

∂Lie with values in cochains ϕ(a1ε, . . . , anε, c1, c2) is zero on all Φn and Ψn; for
Θk
n, it is equal to ±AvgLa1 · · ·Lak

ι{c1,c2}Lak+1 · · ·Lan . But this component
must be zero for a Maurer–Cartan element.

Note that any cochain λ =
∑
n≥1 αnΦn defines an L∞ action of (g•[ε], δ);

these actions are nonequivalent. For

λ =
∑

n≥1

αnΦn + u
∑

n≥1

βnΨn

the terms δλ, u ∂
∂ελ, and ∂Lieλ are all zero. Thus we have

udλ +
1
2
[λ, λ] = 0

One has β1 = 0 and α1 = 1 because the action on the cohomology is the
original one. Now, the gauge transformation

exp(
∑

κnXn),

Xn(a1ε, . . . , anε) = AvgLa1 . . . Lan−1ιand,

kills the Ψn terms, n ≥ 2. Finally, the Maurer–Cartan equation for the cochain∑
αnΦn shows that αn = 0, n ≥ 2.
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4.3 Comparison to Section 2

We conclude this section by citing the result from [43] that explains the title
of Section 2.

As above, let A be an associative unital algebra over a unital ring K of char-
acteristic zero. Because of Theorem 4, the pair of complexes (C•(A), C•(A)) is
quasi-isomorphic to a pair of complexes (V•(A), Ω•(A)) that has a structure
of a DG calculus.

Theorem 6 There is an A∞ quasi-isomorphism

(Y(V•(A))[[u]], δ + ud)→ CC−
−•(C

•(A))

where the left-hand side is an A∞ algebra as in Theorem 2. There is also an
A∞ quasi-isomorphism of A∞ modules

(Ω−•(A)[[u]], b + ud)→ CC−
−•(A)

compatible with the A∞ map above.

5 The Gauss–Manin connection

Let A be a sheaf of OS-algebras where S is a manifold (real, complex, or
algebraic). We assume that A carries a connection∇ (not necessarily compati-
ble with the product). Let CCper

• (A) be the sheaf of periodic cyclic complexes
of A over OS . (If A is the sheaf of local sections of a bundle of algebras,
then CCper

• (A) is the sheaf of local sections of the bundle of complexes
s �→ CCper

• (As)). We conclude the paper by constructing a flat supercon-
nection on CCper

• (A), i.e., an operator

∇GM : Ω•
S ⊗OS CCper

• (A) → Ω•
S ⊗OS CCper

• (A)

of degree one such that ∇2
GM = 0 and ∇GM(fa) = f∇GM(a) + df · a for a

function f and a local section a.
Let C•(A) be the sheaf of Hochschild cochain complexes ofA overOS . The

product on A defines a two-cochain m; then ∇m is a section of Ω1(S,C2(A)).
Note also that ∇2 = R ∈ Ω2(S,End(A)) = Ω2(S,C0(A)). Put

α = ∇m + R;

one has
(δ +∇)2 = α; (δ +∇)(α) = 0

(recall that δ = [m, ?] is the Hochschild differential). Put

∇GM = b + uB +∇+
∑

k,n≥1; k+n>0

u−n

n!
φn(m, . . . ,mεα, . . . , εα)

where φn : Sn(g•A[ε, u][1]) → End(CCper
• (A)) are the components of the L∞

module structure given by Theorem 3.
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Proposition 3 ∇GM is a flat superconnection.

The proof easily follows from the L∞ identities. The interpretation of a Gauss-
Manin connection in terms of teh above differential graded Lie algebra is due
to Barannikov [1].
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5. Căldăraru, A.: The Mukai pairing, I: the Hochschild structure, Preprint,

arXiv:math/0308079
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Deligne conjecture, Conférence Moshe Flato 1999, vol. 1 (Dijon), pp. 255–307.
Math. Phys. Stud., 21. Kluwer, Dordrecht (2000)

28. Kontsevich, M., Soibelman, Y.: Notes on A-infinity algebras, A-infinity cate-
gories and non-commutative geometry. I, math.RA/0606241

29. Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Int.
J. Theor. Phys. 32(7), 1087–1103 (1993)

30. Loday, J.-L.: Cyclic homology. Gründlehren der mathematischen Wis-
senschaften, 301. Springer, Berlin (1992)

31. Markarian, N.: The Atiyah class, Hochschild cohomology and the Riemann-Roch
theorem, J. Lond. Math. Soc. (2) 79(1), 129–143 (2009), arXiv:math/0610553

32. Merkulov, S.: An L∞ algebra of an unobstructed deformation functor. Int. Math.
Res. Not. 3, 147–164 (2000)

33. Merkulov, S.: Exotic automorphisms of the Schouten algebra of polyvector fields,
arXiv:0809.2385

34. Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s
(2007), arXiv:0707.0889

35. Nest, R., Tsygan, B.: On the cohomology ring of an algebra. In: Advances in
geometry. Progress in Mathematics, vol. 172, pp. 337–370. Birkhäuser, Boston,
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Abstract. Let R be a commutative ring which contains the rational numbers as a
subring. We shall establish the following.

Theorem. Let (M
∇−−−−−→

←−−−−−
π

g, h) be a contraction of chain complexes and suppose

that g is endowed with a bracket [ · , · ] turning it into differential graded Lie alge-
bra. Then the given contraction and the bracket [ · , · ] determine an sh-Lie algebra
structure on M , that is, a coalgebra perturbation D of the coalgebra differential d0

on (the cofree coaugmented differential graded cocommutative coalgebra) Sc[sM ]
(on the suspension sM of M), the coalgebra differential d0 being induced by the
differential on M , a Lie algebra twisting cochain τ : Sc

D[sM ] −→ g and, furthermore,
a contraction

(

Sc
D[sM ]

τ−−−−−→
←−−−−−

Π

C[g],H

)

of chain complexes which are natural in terms of the data.
Here C[g] refers to the classifying coalgebra of g.

Key words: Differential graded Lie algebra, Homological perturbation, Lie algebra
perturbation, sh-Lie algebra, Cartan-Chevalley-Eilenberg coalgebra, Classifying
coalgebra, Twisting cochain, Maurer-Cartan equation
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1 Introduction

The purpose of this paper is to establish the perturbation lemma for differential
graded Lie algebras. The main technique is H(omological) P(erturbation)
T(heory).
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A special case of the Lie algebra perturbation lemma has been explored
in [HuSt02] (Theorem 2.7), and the details of the proof of that Theorem have
been promised to be given elsewhere; the present paper includes these details.
The main application of the quoted theorem in [HuSt02] was the construction
of solutions of the master equation under suitable general circumstances, and
the present paper in particular yields solutions of the master equation under
circumstances even more general than those in [HuSt02]. In the present paper,
we will not elaborate on the master equation, though; suffice it to mention
that the master equation amounts to the defining equation of a Lie algebra
twisting cochain which, in turn, will be reproduced as (10) below. Detailed
comments related with the master equation may be found in [HuSt02].

The ordinary perturbation lemma for chain complexes (reproduced below
as Lemma 2) has become a standard tool to handle higher homotopies in a
constructive manner. This lemma is somehow lurking behind the formulas (1)
in Ch. II §1 of [Sh62], seems to have first been made explicit by M. Barratt
(unpublished) and, to our knowledge, appeared first in print in [Br64]. There-
after it has been exploited at various places in the literature, cf. among others
[Gu72]–[HuSt02]. The basic reason why HPT works is the old observation
that an exact sequence of chain complexes which splits as an exact sequence
of graded modules and which has a contractible quotient necessarily splits in
the category of chain complexes [Do60] (2.18).

Some more historical comments about HPT may be found e.g. in [Hu07b]
and in Section 1 (p. 248) and Section 2 (p. 261) of [HuKa91], which has one of
the strongest results in relation to compatibility with other such as algebra or
coalgebra structure, since it was perhaps first recognized in [Hu89a]. Suitable
HPT constructions that are compatible with other algebraic structure enabled
us to carry out complete numerical calculations in group cohomology [Hu89b],
[Hu89c], [Hu91] which cannot be done by other methods.

In view of the result of Kontsevich that the Hochschild complex of
the algebra of smooth functions on a smooth manifold, endowed with the
Gerstenhaber bracket, is formal as a differential graded Lie algebra [Ko97],
sh-Lie algebras have become a fashionable topic. The attempt to treat the cor-
responding higher homotopies by means of a suitable version of HPT, relative
to the requisite additional algebraic structure, that is, to make the perturba-
tions compatible with Lie brackets or more generally with sh-Lie structures,
led to the paper [HuSt02], but technical complications arise since the ten-
sor trick , which was successfully exploited in [GuLaSta91], [Hu86], [Hu89a],
[Hu89b], [HuKa91] and elsewhere, breaks down for cocommutative coalgebras;
indeed, the notion of homotopy of morphisms of cocommutative coalgebras is a
subtle concept [SchlSt], and only a special case was handled in [HuSt02], with
some of the technical details merely sketched. The present paper provides all
the necessary details and handles the case of a general contraction whereas
in [HuSt02] only the case of a contraction of a differential graded Lie algebra
onto its homology was treated.
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In a subsequent paper [Hu07a] we have extended the perturbation lemma
to the more general situation of sh-Lie algebras.

I am much indebted to Jim Stasheff for having prodded me on various
occasions to pin down the perturbation lemma for Lie algebras as well as for
a number of comments on a draft of the paper, and to J. Grabowski and
P. Urbanski for discussions about the symmetric coalgebra.

2 The Lie algebra perturbation lemma

To spell out the Lie algebra perturbation lemma, and to illuminate the unex-
plained terms in the introduction, we need some preparation.

The ground ring is a commutative ring with 1 which is supposed to contain
the rational numbers as a subring and will be denoted by R. We will take
chain complex to mean differential graded R-module. A chain complex will
not necessarily be concentrated in non-negative or non-positive degrees. The
differential of a chain complex will always be supposed to be of degree −1.
For a filtered chain complex X , a perturbation of the differential d of X is a
(homogeneous) morphism ∂ of the same degree as d such that ∂ lowers the
filtration and (d + ∂)2 = 0 or, equivalently,

[d, ∂] + ∂∂ = 0. (1)

Thus, when ∂ is a perturbation on X , the sum d + ∂, referred to as the per-
turbed differential , endows X with a new differential. When X has a graded
coalgebra structure such that (X, d) is a differential graded coalgebra, and
when the perturbed differential d+ ∂ is compatible with the graded coalgebra
structure, we refer to ∂ as a coalgebra perturbation; the notion of algebra
perturbation is defined similarly. Given a differential graded coalgebra C and
a coalgebra perturbation ∂ of the differential d on C, we will occasionally
denote the new or perturbed differential graded coalgebra by C∂ .

A contraction

(N
∇−−−−→←−−−−
π

M,h) (2)

of chain complexes [EML53/54] consists of
– chain complexes N and M ,
– chain maps π : N →M and ∇ : M → N ,
– a morphism h : N → N of the underlying graded modules of degree 1;

these data are required to satisfy

π∇ = Id, (3)
Dh = Id−∇π, (4)
πh = 0, h∇ = 0, hh = 0. (5)

The requirements (5) are referred to as annihilation properties or side
conditions.
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Let g be (at first) a chain complex, the differential being written as the
operator d : g → g, and let

(M
∇−−−−→←−−−−
π

g, h) (6)

be a contraction of chain complexes; later we will take g to be a differential
graded Lie algebra. In the special case where the differential on M is zero, M
plainly amounts to the homology H(g) of g; in this case, with the notation
H = ∇H(g), the resulting decomposition

g = dg⊕ ker(h) = dg⊕H ⊕ hg

may be viewed as a generalization of the familiar Hodge decomposition.
Let C be a coaugmented differential graded coalgebra with coaugmentation

map η : R → C and coaugmentation coideal JC = coker(η), the diagonal map
being written as Δ : C → C⊗C as usual. Recall that the counit ε : C → R and
the coaugmentation map determine a direct sum decomposition C = R⊕JC.
The coaugmentation filtration {FnC}n≥0 is as usual given by

FnC = ker(C −→ (JC)⊗(n+1)) (n ≥ 0)

where the unlabelled arrow is induced by some iterate of the diagonal Δ of C.
This filtration is well known to turn C into a filtered coaugmented differential
graded coalgebra; thus, in particular, F0C = R. We recall that C is said to
be cocomplete when C = ∪FnC.

Write s for the suspension operator as usual and accordingly s−1 for the
desuspension operator. Thus, given the chain complex X , (sX)j = Xj−1, etc.,
and the differential d : sX → sX on the suspended object sX is defined in the
standard manner so that ds + sd = 0. Let Sc = Sc[sM ], the cofree coaug-
mented differential graded cocommutative coalgebra or, equivalently, differen-
tial graded symmetric coalgebra, on the suspension sM of M . This kind of
coalgebra is well known to be cocomplete. Further, let d0 : Sc −→ Sc denote
the coalgebra differential on Sc = Sc[sM ] induced by the differential on M .
For b ≥ 0, we will henceforth denote the homogeneous degree b component of
Sc[sM ] by Sc

b ; thus, as a chain complex, FbSc = R⊕ Sc
1 ⊕ · · · ⊕ Sc

b . Likewise,
as a chain complex, Sc = ⊕∞

j=0Sc
j . We denote by

τM : Sc −→M

the composite of the canonical projection proj: Sc → sM from Sc = Sc[sM ]
to its homogeneous degree 1 constituent sM with the desuspension map s−1

from sM to M .
Given two chain complexes X and Y , recall that Hom(X,Y ) inherits the

structure of a chain complex by the operator D defined by

Dφ = dφ− (−1)|φ|φd (7)

where φ is a homogeneous homomorphism from X to Y and where |φ| refers
to the degree of φ.
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Consider the cofree coaugmented differential graded cocommutative coal-
gebra Sc[sg] on the suspension sg of g and, as before, let

τg : Sc[sg] −→ g

be the composite of the canonical projection to Sc
1 [sg] = sg with the desuspen-

sion map. Suppose that g is endowed with a graded skew-symmetric bracket
[ · , · ] that is compatible with the differential but not necessarily a graded Lie
bracket, i.e. does not necessarily satisfy the graded Jacobi identity. Let C be
a coaugmented differential graded cocommutative coalgebra. Given homoge-
neous morphisms a, b : C → g, with a slight abuse of the bracket notation
[ · , · ], the cup bracket [a, b] is given by the composite

C
Δ−−−−→ C ⊗ C

a⊗b−−−−→ g⊗ g
[·,·]−−−−→ g. (8)

The cup bracket [ · , · ] is well known to be a graded skew-symmetric bracket
on Hom(C, g) which is compatible with the differential on Hom(C, g). Define
the coderivation

∂ : Sc[sg] −→ Sc[sg]

on Sc[sg] by the requirement

τg∂ = 1
2 [τg, τg] : Sc

2 [sg]→ g. (9)

Then D∂ (= d∂ + ∂d) = 0 since the bracket on g is supposed to be compat-
ible with the differential d. Moreover, the bracket on g satisfies the graded
Jacobi identity if and only if ∂∂ = 0, that is, if and only if ∂ is a coalgebra
perturbation of the differential d on Sc[sg], cf. e.g. [HuSt02]. The Lie algebra
perturbation lemma below will generalize this observation.

We now suppose that the graded bracket [ · , · ] on g turns g into a differen-
tial graded Lie algebra and continue to denote the resulting coalgebra pertur-
bation by ∂, so that Sc

∂ [sg] is a coaugmented differential graded cocommuta-
tive coalgebra; in fact, Sc

∂ [sg] is then precisely the ordinary C(artan)C(he-
valley)E(ilenberg) or classifying coalgebra for g and, following [Qu69]
(p. 291), we denote it by C[g]. Furthermore, given a coaugmented differential
graded cocommutative coalgebra C, the cup bracket turns Hom(C, g) into a
differential graded Lie algebra. In particular, Hom(Sc, g) and Hom(FnSc, g)
(n ≥ 0) acquire differential graded Lie algebra structures.

Given a coaugmented differential graded cocommutative coalgebra C and
a differential graded Lie algebra h, a Lie algebra twisting cochain t : C → h is
a homogeneous morphism of degree −1 whose composite with the coaugmen-
tation map is zero and which satisfies

Dt = 1
2 [t, t], (10)

cf. [Mo71], [Qu69]. In particular, relative to the graded Lie bracket [ · , · ]
on g, the morphism τg : C[g] → g is a Lie algebra twisting cochain, the
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C(artan)C(hevalley) E(ilenberg) or universal Lie algebra twisting
cochain for g. It is, perhaps, worth noting that, when g is viewed as an
abelian differential graded Lie algebra relative to the zero bracket, Sc[sg] is
the corresponding CCE or classifying coalgebra and τg : Sc[sg] → g is still
the universal Lie algebra twisting cochain. Likewise, when M is viewed as
an abelian differential graded Lie algebra, Sc = Sc[sM ] may be viewed as
the CCE or classifying coalgebra C[M ] for M , and τM : Sc → M is then the
universal differential graded Lie algebra twisting cochain for M .

At the risk of making a mountain out of a molehill, we note that, in (9)
and (10) above, the factor 1

2 is a mere matter of convenience. The correct
way of phrasing graded Lie algebras when the prime 2 is not invertible in
the ground ring is in terms of an additional operation, the squaring operation
Sq: godd → geven and, by means of this operation, the factor 1

2 can be avoided.
Indeed, in terms of this operation, the equation (10) takes the form

Dt = Sq(t).

For intelligibility, we will follow the standard convention, avoid spelling out
the squaring operation explicitly, and keep the factor 1

2 .
Given a chain complex h, an sh-Lie algebra structure or L∞-structure on

h is a coalgebra perturbation ∂ of the differential d on the coaugmented differ-
ential graded cocommutative coalgebra Sc[sh] on sh, cf. [HuSt02] (Def. 2.6).
Given two sh-Lie algebras (h1, ∂1) and (h2, ∂2), an sh-morphism or sh-Lie map
from (h1, ∂1) to (h2, ∂2) is a morphism Sc

∂1
[sh1]→ Sc

∂2
[sh2] of coaugmented

differential graded coalgebras, cf. [HuSt02].

Theorem 1 (Lie algebra perturbation lemma). Suppose that g carries
a differential graded Lie algebra structure. Then the contraction (6) and the
graded Lie algebra structure on g determine an sh-Lie algebra structure on M ,
that is, a coalgebra perturbation D of the coalgebra differential d0 on Sc[sM ],
a Lie algebra twisting cochain

τ : Sc
D[sM ] −→ g (11)

and, furthermore, a contraction
(

Sc
D[sM ]

τ−−−−→←−−−−
Π

C[g], H
)

(12)

of chain complexes which are natural in terms of the data so that

πτ = τM : Sc[sM ] −→M, (13)
hτ = 0, (14)

and so that, since by construction, the injection τ : Sc
D[sM ]→ C[g] of the con-

traction is the adjoint τ of τ , this injection is then a morphism of coaugmented
differential graded coalgebras.



The Lie Algebra Perturbation Lemma 165

In the statement of this theorem, the perturbation D then encapsulates
the asserted sh-Lie structure on M , and the adjoint τ of (11) is plainly an sh-
equivalence in the sense that it induces an isomorphism on homology, including
the brackets of all order that are induced on homology.

The proof of Theorem 1 to be given below includes, in particular, a proof
of Theorem 2.7 in [HuSt02]; in fact, the statement of that theorem is the
special case of Theorem 1 where the differential on M is zero, and the details
of the proof of that theorem had been promised to be given elsewhere.

Theorem 1 asserts not only the existence of the Lie algebra twisting cochain
(11) and contraction (12) but also includes explicit natural constructions for
them. The explicit constructions for the coalgebra perturbation D and Lie
algebra twisting cochain (11) will be spelled out in Complement I below, and
explicit constructions of the remaining constituents of the contraction (12)
will be given in Complement II. As a notational road map for the reader, we
note at this stage that Complement II involves an application of the ordinary
perturbation lemma which will here yield, as an intermediate step, yet another
contraction of chain complexes, of the kind

(

Sc
δ [sM ]

∇̃−−−−→←−−−−
Π̃

C[g], H̃

)

,

to be given as (22) below. In particular, δ is yet another perturbation on
Sc[sM ] which we distinguish in notation from the perturbation D; apart from
trivial cases, the perturbation δ is not compatible with the coalgebra structure
on Sc[sM ], though, and the injection ∇̃ and homotopy H̃ differ from the
ultimate injection τ and homotopy H .

Complement I. The operator D and twisting cochain τ are obtained as
infinite series by the following recursive procedure:

τ1 = ∇τM : Sc → g, (15)

τ j = 1
2h([τ1, τ j−1] + · · ·+ [τ j−1, τ1]) : Sc → g, j ≥ 2, (16)

τ = τ1 + τ2 + . . . : Sc → g, (17)

D = D1 +D2 + . . . : Sc → Sc (18)

where, for j ≥ 1, the operator Dj is the coderivation of Sc[sM ] determined
by the identity

τMDj = 1
2π([τ1, τ j ] + · · ·+ [τ j , τ1]) : Sc

j+1 →M. (19)

In particular, for j ≥ 1, the coderivation Dj is zero on FjSc and lowers
coaugmentation filtration by j.

The sums (17) and (18) are in general infinite. However, applied to a
specific element which, since Sc is cocomplete, necessarily lies in some finite
filtration degree subspace, since the operators Dj (j ≥ 1) lower coaugmen-
tation filtration by j, only finitely many terms will be non-zero, whence the
convergence is naive.
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In the special case where the original contraction (6) is the trivial contrac-
tion of the kind

(g
Id−−−−→←−−−−
Id

g, 0), (20)

M and g coincide as chain complexes, the perturbation D coincides with the
perturbation ∂ determined by the graded Lie bracket [ · , · ] on g, and Sc

D[sM ]
coincides with the ordinary CCE or classifying coalgebra C[g] for g; the Lie
algebra twisting cochain τ then comes down to the CCE or universal Lie
algebra twisting cochain τg : C[g] → g for g and in fact coincides with τ1

(in the present special case) and, furthermore, the new contraction (12) then
amounts to the trivial contraction

(C[g]
Id−−−−→←−−−−
Id

C[g], 0).

In fact, in this case, the higher terms τ j and Dj (j ≥ 2) are obviously zero, and
the operator D1 manifestly coincides with the CCE-operator. Likewise, in the
special case where the bracket on g is trivial or, more generally, when M carries
a graded Lie bracket in such a way that ∇ is a morphism of differential graded
Lie algebras, the construction plainly stops after the first step, and τ = τ1.

Complement II. Application of the ordinary perturbation lemma (repro-
duced below as Lemma 2) to the perturbation ∂ on Sc[sg] determined by the
graded Lie algebra structure on g and the induced filtered contraction

(

Sc[sM ]
Sc[s∇]−−−−→←−−−−
Sc[sπ]

Sc[sg],Sc[sh]

)

(21)

of coaugmented differential graded coalgebras, the filtrations being the ordi-
nary coaugmentation filtrations, yields a perturbation δ of the differential d0

on Sc[sM ] and a contraction
(

Sc
δ [sM ]

∇̃−−−−→←−−−−
Π̃

C[g], H̃

)

(22)

of chain complexes. Furthermore, the composite

Φ : Sc
D[sM ] τ−−−−→ C[g] Π̃−−−−→ Sc

δ [sM ] (23)

is an isomorphism of chain complexes, and the morphisms

Π = Φ−1Π̃ : C[g] −→ Sc
D[sM ], (24)

H = H̃ − H̃τ Π : C[g] −→ C[g] (25)

complete the construction of the contraction (12).

In general, none of the morphisms δ, ∇̃, Π̃ , Π , H̃ , H is compatible with
the coalgebra structures. The isomorphism Φ admits an explicit description
in terms of the data as a perturbation of the identity and so does its inverse;
details will be given in Section 5 below.
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3 Some additional technical prerequisites

Let R be a commutative ring which, for the moment, we do not assume to
contain the rational numbers as a subring. Let Y be a chain complex. The
cofree coaugmented differential graded cocommutative coalgebra or graded
symmetric coalgebra Sc[Y ] on the chain complex Y is characterized by a
universal property as usual. To guarantee the existence of a diagonal map for
Sc[Y ], some hypothesis is necessary, though: The ordinary tensor coalgebra
Tc[Y ], that is, the cofree (coaugmented) coalgebra on Y , decomposes as the
direct sum

Tc[Y ] = ⊕∞
j=0T

c
j [Y ]

of its homogeneous constituents Tc
j [Y ] = Y ⊗j (j ≥ 0). For j ≥ 0, let Sc

j [Y ] ⊆
Tc
j [Y ] be the submodule of invariants in the jth tensor power Tc

j [Y ] relative
to the obvious action on Tc

j [Y ] of the symmetric group Sj on j letters, and
let Sc[Y ] be the direct sum

Sc[Y ] = ⊕∞
j=0Sc

j [Y ]

of chain complexes. So far, the construction is completely general, even func-
torial, and works over any ground ring. In particular, a chain map φ : Y1 → Y2

induces a chain map
Sc[φ] : Sc[Y1] −→ Sc[Y2].

However, some hypothesis is, in general, necessary in order for the homoge-
neous constituents

Tc
j+k[Y ] −→ Tc

j [Y ]⊗ Tc
k[Y ] (j, k ≥ 0)

of the diagonal map Δ : Tc[Y ] → Tc[Y ] ⊗ Tc[Y ] of the graded tensor coalge-
bra Tc[Y ] to induce a graded diagonal map on Sc[Y ]. (I am indebted to P.
Urbanski for having prodded me to clarify this point.) Indeed, the diagonal
map for Y induces a morphism from Sc[Y ] to Sc[Y ⊕ Y ] and the diagonal
map for Sc[Y ] is well defined whenever the canonical morphism

⊕j1+j2=kSc
j1 [Y ]⊗ Sc

j2 [Y ] −→ Sc
k[Y ⊕ Y ] (26)

is an isomorphism for every k ≥ 1.
To explain the basic difficulty, let k ≥ 1, let Y1 and Y2 be two graded

R-modules, and consider the kth homogeneous constituent

Sc
k[Y1 ⊕ Y2] =

(
(Y1 ⊕ Y2)

⊗k)Sk

⊆ (Y1 ⊕ Y2)
⊗k

of Sc[Y1 ⊕ Y2]. For 0 ≤ j ≤ k, define S(k
j)[Y1 ⊕ Y2] to be the direct sum

Y ⊗j
1 ⊗ Y

⊗(k−j)
2 ⊕ Y

⊗(j−1)
1 ⊗ Y2 ⊗ Y1 ⊗ Y

⊗(k−j−1)
2 ⊕ . . .⊕ Y

⊗(k−j)
1 ⊗ Y ⊗j

2
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of
(
k
j

)
summands which arises by substituting in the possible choices of j

objects out of k objects a tensor factor of Y1 for each object and filling in the
“holes” remaining between the various tensor powers of Y1 by the appropriate
tensor powers of Y2. Let RSk denote the group ring of Sk. For 0 ≤ j ≤ k,
relative to the Sj- and Sk−j-actions on Y ⊗j

1 and Y
⊗(k−j)
2 , respectively, there

is a canonical isomorphism
(
Y ⊗j

1 ⊗ Y
⊗(k−j)
2

)
⊗Sj×Sk−j

RSk −→ S(k
j)[Y1 ⊕ Y2]

of Sk-modules. Consequently, for 0 ≤ j ≤ k, the canonical injection

(
Y ⊗j

1 ⊗ Y
⊗(k−j)
2

)Sj×Sk−j

−→
(
S(k

j)[Y1 ⊕ Y2]
)Sk

is an isomorphism. As an Sk-module, (Y1 ⊕ Y2)
⊗k is well known to decompose

as the direct sum
(Y1 ⊕ Y2)

⊗k = ⊕kj=0S(k
j)[Y1 ⊕ Y2]

whence Sc
k[Y1 ⊕ Y2] decomposes as the direct sum

Sc
k[Y1 ⊕ Y2] = ⊕kj=0

(
Y ⊗j

1 ⊗ Y
⊗(k−j)
2

)Sj×Sk−j

.

However, some hypothesis is needed in order for the canonical morphisms

Sc
j [Y1]⊗Sc

k−j [Y2] =
(
Y ⊗j

1

)Sj

⊗
(
Y

⊗(k−j)
2

)Sk−j

−→
(
Y ⊗j

1 ⊗ Y
⊗(k−j)
2

)Sj×Sk−j

of graded R-modules to be isomorphisms for 1 ≤ j ≤ k − 1. This will be so
when the ground ring contains the rational numbers as a subring.

The diagonal map Y → Y ×Y ∼= Y ⊗Y of Y induces a diagonal map for the
graded symmetric algebra S[Y ] on Y turning that algebra into a differential
graded Hopf algebra. We now suppose that the ground ring R contains the
rational numbers as a subring. Then the coalgebra which underlies the graded
symmetric algebra S[Y ] may be taken as a model for Sc[Y ], cf. the discussion
in Appendix B of [Qu69]. Indeed, the map

S[Y ] −→ Tc[Y ], x1 . . . xn �−→
1
n!

∑

σ∈Sn

±xσ1 ⊗ . . .⊗ xσn, xj ∈ Y, n > 0,

induces an explicit isomorphism of S[Y ] onto Sc[Y ] ⊆ Tc[Y ].
As chain complexes, not just as graded objects, the Hom-complexes

Hom(Sc, g) and Hom(FnSc, g) (n ≥ 0) manifestly decompose as direct
products

Hom(Sc, g) ∼=
∞∏

j=0

Hom(Sc
j , g), Hom(FnSc, g) ∼=

n∏

j=0

Hom(Sc
j , g), (n ≥ 0),
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and the restriction mappings induce a sequence

. . .Hom(Fn+1Sc, g) −→ Hom(FnSc, g) −→ . . .Hom(F1Sc, g) −→ g (27)

of surjective morphisms of differential graded Lie algebras. Furthermore, by
construction, for each n ≥ 0, the canonical injection of FnSc into Sc is a
morphism of coaugmented differential graded coalgebras and hence induces
a projection Hom(Sc, g) → Hom(FnSc, g) of differential graded Lie algebras,
and these projections assemble to an isomorphism from Hom(Sc, g) onto the
projective limit lim←−Hom(FnSc, g) of (27) in such a way that, in each degree,
the limit is attained at a finite stage.

4 The crucial step

For ease of exposition, we introduce the notation D0 = D0 = 0. For a ≥ 1, let

τa = τ1 + τ2 + · · ·+ τa, (28)

Da = D1 +D2 + · · ·+Da, (29)

Θa+1 = −Dτa − τaDa−1 + 1
2 [τa, τa] : Sc −→ g; (30)

ϑa+1 = Θa+1|Sc
a+1

: Sc
a+1 −→ g. (31)

We note that (30) is equivalent to

Θa+1 = −dτa − τa(d0 +Da−1) + 1
2 [τa, τa] : Sc −→ g. (32)

The crucial step for the proof of the Lie algebra perturbation lemma, in par-
ticular for the statement given as Complement I above, is provided by the
following.

Lemma 1. Let a ≥ 1.

πτa+1 = 0; (33)

ϑa+1 = −τ2Da−1 − . . .− τaD1 + 1
2

(
[τ1, τa] + . . . + [τa, τ1]

)
; (34)

hϑa+1 = 1
2h
(
[τ1, τa] + . . . + [τa, τ1]

)
= τa+1 : Sc

a+1 −→ g; (35)

πϑa+1 = 1
2π
(
[τ1, τa] + . . . + [τa, τ1]

)
= τMDa : Sc

a+1 −→M ; (36)

Θa+1 : Sc −→ g is zero on FaSc, i.e. goes to zero in Hom(FaSc, g); (37)

Dϑa+1 = τ1(D1Da−1 + · · ·+Da−1D1) : Sc
a+1 −→ g; (38)

Dτa+1 = ϑa+1 − τ1Da : Sc −→ g; (39)

0 = d0Da +D1Da−1 + · · ·+Da−1D1 +Dad0 : Sc −→ Sc. (40)
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For clarity we note that the morphism (34) is of the kind ϑa+1 : Sc
a+1 −→ g

and that, for a = 1, the formula (34) signifies

ϑ2 = 1
2 [τ1, τ1]; (41)

further, (38) signifies that ϑ2 is a cycle in this case, i.e. Dϑ2 = 0.
Let b ≥ 1. The property (40) implies that, on the differential graded coal-

gebra Fb+1Sc, the operator Db−1 is a coalgebra perturbation of the differen-
tial d0 and hence d0 + Db−1 is a coalgebra differential and thence turns the
coaugmented graded cocommutative coalgebra Fb+1Sc into a coaugmented
differential graded cocommutative coalgebra which, according to the conven-
tion introduced above, we write as Fb+1Sc

Db−1
. Furthermore, property (37)

implies that the restriction of τb to FbSc is a Lie algebra twisting cochain
FbSc

Db−1
→ g whence, as b tends to infinity, τb tends to a Lie algebra twisting

cochain, that is, τ is a Lie algebra twisting cochain. Indeed, in a given de-
gree, the statements of Lemma 1 come down to corresponding statements in
a suitable finite stage constituent of the sequence (27).

Proof. The property (33) is an immediate consequence of the annihilation
properties (5). Next, let a ≥ 1. For degree reasons, the restriction of

Θa+1 = −Dτa−τaDa−1+ 1
2 [τa, τa] = −dτa−τa(d0+Da−1)+ 1

2 [τa, τa] : Sc −→ g

to Sc
a+1 comes down to

−τ2Da−1 − . . .− τaD1 + 1
2

(
[τ1, τa] + . . . + [τa, τ1]

)
: Sc

a+1 −→ g,

whence (34), being interpreted as (41) for a = 1. The identity (34), combined
with the annihilation properties (5), immediately implies (35) and (36), in
view of the definitions (17) and (19) of the terms τ j+1 and Dj , respectively,
for j ≥ 1.

Furthermore, the property (39) is a formal consequence of the definitions
(19) and (31), combined with (38) and the annihilation properties (5). Indeed,

Dτa+1 = D(hϑa+1) = (Dh)ϑa+1 − hDϑa+1

= ϑa+1 −∇πϑa+1 − hτ1(D1Da−1 + · · ·+Da−1D1)
= ϑa+1 −∇τMDa

= ϑa+1 − τ1Da : Sc
a+1 −→ g,

whence (39).
By induction on a, we now establish the remaining assertions (37), (38),

and (40). To begin with, let a = 1. Since τ1 is a cycle in Hom(Sc, g) and since
[τ1, τ1] vanishes on F1Sc,

Θ2 = −dτ1 − τ1d
0 + 1

2 [τ1, τ1] = 1
2 [τ1, τ1] : Sc → g
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vanishes on F1Sc, whence (37) holds for a = 1. Furthermore, since Θ2 is a
cycle, so is ϑ2 whence (38) is satisfied for a = 1. Consequently

Dτ2 = Dhϑ2 = ϑ2 −∇πϑ2 = 1
2 [τ1, τ1]−∇πϑ2

= 1
2 [τ1, τ1]−∇τMD1 = 1

2 [τ1, τ1]− τ1D1

whence (39) for a = 1. Finally, the identity (40) for a = 1 reads

d0D1 +D1d0 = 0. (42)

The identity (42), in turn, is a consequence of the bracket on g being compat-
ible with the differential d on g since this compatibility entails that [τ1, τ1] is
a cycle in Hom(Sc, g). Indeed, since

d0D1 +D1d0 = [d0,D1]

is a coderivation on Sc, the bracket being the commutator bracket in the
graded Lie algebra of coderivations of Sc, it suffices to show that

τM (d0D1 +D1d0) = τM [d0,D1]

vanishes. However, since τMD1 = 1
2π[τ1, τ1], cf. (19),

τM (d0D1 +D1d0) = −dτMD1 + τMD1d0 = − 1
2D(π[τ1, τ1]),

and D(π[τ1, τ1]) vanishes since [τ1, τ1] is a cycle in Hom(Sc, g) and since π is a
chain map. Consequently the identity (40) holds for a = 1. Thus the induction
starts.

Even though this is not strictly necessary we now explain the case a = 2.
This case is particularly instructive. Now

dτ2 + τ2(d0 +D1) = dτ1 + dτ2 + τ1d0 + τ1D1 + τ2d0 + τ2D1

= Dτ1 + Dτ2 + τ1D1 + τ2D1

= 1
2 [τ1, τ1]− τ1D1 + τ1D1 + τ2D1

= 1
2 [τ1, τ1] + τ2D1

whence

Θ3 = −dτ2 − τ2(d0 +D1) + 1
2 [τ2, τ2] = −τ2D1 + [τ1, τ2] + 1

2 [τ2, τ2]

which clearly vanishes on F2Sc, whence (37) holds for a = 2. Furthermore, it
is manifest that the restriction ϑ3 of Θ3 to Sc

3 takes the form

ϑ3 = [τ1, τ2]− τ2D1 : Sc
3 −→ g, (43)
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which amounts to (34) for the special case a = 2. Hence

Dϑ3 = −[τ1, Dτ2]− (Dτ2)D1

= −[τ1,−τ1D1 + 1
2 [τ1, τ1]] + τ1D1D1 − 1

2 [τ1, τ1]D1

= [τ1, τ1D1] + τ1D1D1 − [τ1, τ1D1]

= τ1D1D1

whence (38) at stage a = 2. Since

Dτ2 = 1
2 [τ1, τ1]− τ1D1

and since [τ1, [τ1, τ1]] = 0,

D
[
τ1, τ

2
]

=
[
τ1,−Dτ2

]
=
[
τ1, τ1D1 − 1

2 [τ1, τ1]
]

= [τ1, τ1D1] .

Thus, in view of (19), viz.

πτ1D1 = 1
2π[τ1, τ1],

we find
D(π

[
τ1, τ

2
]
) = πτ1D1D1, (44)

whence
D(π

[
τ1, τ

2
]
) = τMD1D1. (45)

Since, in view of (43) or (34),

πϑ3 = π[τ1, τ
2] : Sc

3 [sM ] −→ M,

D2 : Sc → Sc is the coderivation which is determined by the requirement that
the identity

πϑ3 = τMD2 : Sc
3 [sM ] −→M (46)

be satisfied. Then

τM (d0D2 +D1D1 +D2d0) = τM (DD2 +D1D1) = 0. (47)

Indeed,

τMDD2 = −D(τMD2)

= −D(πϑ3) = −D(π
[
τ1, τ

2
]
)

= −τMD1D1.

Consequently
d0D2 +D1D1 +D2d0 = 0 (48)

since d0D2 + D1D1 + D2d0 is a coderivation of Sc[sM ]. This establishes the
identity (40) for a = 2.
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We pause for the moment; suppose that we are in the special situation
where the original contraction (6) is the trivial one of the kind (20) and
identify M with the chain complex which underlies g, endowed with the zero
bracket. Then Sc amounts to the CCE-coalgebra for M (endowed with the
zero bracket), the operator D1 is precisely the ordinary CCE-operator relative
to the Lie bracket on g, the twisting cochain τ1 is the CCE-twisting cochain
relative to the Lie bracket on g, the term τ2 is zero (since h is zero), and the
construction we are in the process of explaining stops at the present stage.
Indeed, τ1 then coincides with τ2 and Θ3 = 0. Moreover, the identity

D1D1 = 0 (49)

is then equivalent to the bracket on g satisfying the graded Jacobi identity.
Likewise, in the special case where the differential on M is zero so that M

amounts to the homology H(g) of g, the identity (48) comes down to

D1D1 = 0. (50)

This identity, in turn, is then equivalent to the fact that the induced graded
bracket on H(g) satisfies the graded Jacobi identity.

We now return to the case of a general contraction (6). Let b > 2 and sup-
pose, by induction that, at stage a, 2 ≤ a < b, (37)–(40) have been established.
Our aim is to show that (37)–(40) hold at stage b. Now

Θb+1 = −Dτb − τbDb−1 + 1
2 [τb, τb] : Sc[sM ] −→ g

= −Dτb−1 −Dτb − (τb−1 + τb)(Db−2 +Db−1)

+ 1
2 ([τb−1, τb−1] + [τb, τb−1] + [τb−1, τ

b] + [τb, τb])

= Θb −Dτb − τb−1Db−1 − τbDb−1 + 1
2 ([τb, τb−1] + [τb−1, τ

b] + [τb, τb]).

By the inductive hypothesis (37) at stage b − 1, the operator Θb vanishes on
Fb−1Sc whence Θb+1 vanishes on Fb−1Sc as well since the remaining terms
obviously vanish on Fb−1Sc. Moreover,

Θb+1

∣
∣
Sc

b

= ϑb−Dτb− τb−1Db−1− τbDb−1 + 1
2 ([τb, τb−1]+ [τb−1, τ

b]+ [τb, τb]).

In view of the inductive hypothesis (39),

Dτb = ϑb − τ1Db−1

and, for degree reasons,
τ1Db−1 = τb−1Db−1

whence

Θb+1

∣
∣
Sc

b

= −τbDb−1 + 1
2 ([τb, τb−1] + [τb−1, τ

b] + [τb, τb])

which, for degree reasons, is manifestly zero. Consequently Θb+1 vanishes on
FbSc whence (37) at stage b.
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Next we establish the identity (38) at stage b. Recall that, by construction,
cf. (30) and (32),

Θb+1 = −Dτb − τbDb−1 + 1
2 [τb, τb]

whence

DΘb+1 = −D(τbDb−1) + 1
2D[τb, τb] = −(Dτb)Db−1 + τbDDb−1 + [Dτb, τb].

However, b ≥ 2 whence Db−1 lowers filtration, i.e. maps Fb+1Sc to FbSc.
Since (37) has already been established at stage b, restricted to Fb+1Sc,

0 = −Θb+1Db−1 = DτbDb−1 + τbDb−1Db−1 − 1
2 [τb, τb]Db−1

whence

(Dτb)Db−1 + τbDb−1Db−1 = 1
2 [τb, τb]Db−1 = [τb, τbDb−1] ∈ Hom(Fb+1Sc, g).

Consequently

Dϑb+1 = τbDb−1Db−1 − [τb, τbDb−1] + τbDDb−1 + [Dτb, τb] ∈ Hom(Fb+1Sc, g)
= τb(Db−1Db−1 + DDb−1)− [τb, τbDb−1 + Dτb].

By induction, in view of (37),

τbDb−1 + Dτb = 1
2 [τb, τb] ∈ Hom(FbSc, g),

whence
[τb, τbDb−1 + Dτb] = 1

2 [τb, [τb, τb]]

which, each homogeneous constituent of τb being odd, is zero, in view of the
graded Jacobi identity in Hom(FbSc, g). Moreover, by induction, in view of
(40), for 1 ≤ a < b,

D1Da−1 + · · ·+Da−1D1 + DDa = 0

whence
Db−1Db−1 + DDb−1 = D1Db−1 + · · ·+Db−1D1.

Consequently, on Sc
b+1,

Dϑb+1 = τb(D1Db−1 + · · ·+Db−1D1) : Sc
b+1 → g

and, for degree reasons,

τb(D1Db−1 + · · ·+Db−1D1) = τ1(D1Db−1 + · · ·+Db−1D1) : Sc
b+1 → g

whence
Dϑb+1 = τ1(D1Db−1 + · · ·+Db−1D1).

This establishes the identity (38) at stage b.
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Alternatively, in view of what has already been proved, by virtue of (34),

ϑb+1 = −τ2Db−1 − . . .− τbD1 + 1
2

(
[τ1, τb] + . . . + [τb, τ1]

)
: Sc

b+1 −→ g,

whence, since Dτ1 = 0,

Dϑb+1 = −(Dτ2)Db−1 + τ2DDb−1 ± . . .− (Dτb−1)D2

+ τb−1DD2 −DτbD1

+ [Dτ2, τb−1] + . . . + [Dτb, τ1].

(51)

Thus, using the inductive hypotheses, we can establish (38) at stage b by
evaluating the terms on the right-hand side of (51).

Finally, to settle the identity (40) at stage b, we note first that, since

d0Db +D1Db−1 + · · ·+Db−1D1 +Dbd0 = D1Db−1 + · · ·+Db−1D1 + DDb

is a coderivation of Sc, it suffices to prove that

τM
(
D1Db−1 + · · ·+Db−1D1 + DDb

)
= 0.

However, we have already observed that the identity (39) at stage b is a formal
consequence of (38) and, since the latter has already been established, (39) is
now available at stage b, viz.

Dτb+1 = ϑb+1 − τ1Db : Sc −→ g.

Hence
0 = Dϑb+1 −D(τ1Db) = Dϑb+1 + τ1DDb.

Substituting the right-hand side of (38) at stage b for Dϑb+1, we obtain the
identity

0 = d0Db +D1Db−1 + · · ·+Db−1D1 +Dbd0 : Sc −→ Sc,

that is, the identity (40) at stage b. This completes the inductive step.

5 The proof of the Lie algebra perturbation lemma

Lemma 1 entails that the operator D given by (18) is a coalgebra perturbation
and that the morphism τ given by (17) is a Lie algebra twisting cochain. We
will now establish Complement II of the Lie algebra perturbation lemma.

The contraction (21) may be obtained in the following way: Any contrac-
tion of chain complexes of the kind (2) induces a filtered contraction

(

Tc[M ]
Tc[∇]−−−−→←−−−−
Tc[π]

Tc[N ],Tc[h]

)

(52)
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of coaugmented differential graded coalgebras. A version thereof is spelled out
as a contraction of bar constructions already in Theorem 12.1 of [EML53/54];
the filtered contraction (52) may be found in [GuLaSta91] (2.2) and [HuKa91]
(2.2.0)∗ (the dual filtered contraction of augmented differential graded alge-
bras being spelled out explicitly in [HuKa91] as (2.2.0)∗). The differential
graded symmetric coalgebras Sc[M ] and Sc[N ] being differential graded sub-
coalgebras of Tc[M ] and Tc[N ], respectively, the morphisms Tc[∇] and Tc[π]
pass to corresponding morphisms Sc[∇] and Sc[π] respectively, and Sc[h]
arises from Tc[h] by symmetrization, so that

(

Sc[M ]
Sc[∇]−−−−→←−−−−
Sc[π]

Sc[N ],Sc[h]

)

(53)

constitutes a filtered contraction of coaugmented differential graded coalge-
bras. Alternatively, since Sc is a functor, application of this functor to (2)
yields (53). Here Sc[∇] and Sc[π] are morphisms of differential graded coalge-
bras but, beware, even though Tc[h] is compatible with the coalgebra structure
in the sense that it is a homotopy of morphisms of differential graded coal-
gebras, Sc[h] no longer has such a compatibility property in a naive fashion.
Indeed, for differential graded cocommutative coalgebras, the notion of homo-
topy is a subtle concept, cf. [SchlSt]. To sum up, application of the functor Sc

to the induced contraction
(

sM
s∇−−−−→←−−−−
sπ

sg, sh

)

which arises from (6) by suspension yields the contraction (21).
To establish Complement II of the Lie algebra perturbation lemma, we

will view the contraction (53) merely as one of filtered chain complexes, that
is, we forget about the coalgebra structures. As before, we denote by ∂ the
coalgebra perturbation on Sc[sg] which corresponds to the graded Lie bracket
on g, so that the differential on the CCE-coalgebra C[g] (having Sc[sg] as its
underlying coaugmented graded coalgebra) is given by d+∂. For intelligibility,
we recall the following.

Lemma 2 (Ordinary perturbation lemma). Let
(

M
∇−−−−→←−−−−
π

N, h

)

be a filtered contraction, let ∂ be a perturbation of the differential on N , and let

δ =
∑

n≥0

π∂(−h∂)n∇ =
∑

n≥0

π(−∂h)n∂∇

∇∂ =
∑

n≥0

(−h∂)n∇
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π∂ =
∑

n≥0

π(−∂h)n

h∂ = −
∑

n≥0

(−h∂)nh = −
∑

n≥0

h(−∂h)n.

If the filtrations on M and N are complete, these infinite series converge, δ
is a perturbation of the differential on M and, when N∂ and Mδ refer to the
new chain complexes, (

Mδ

∇∂−−−−→←−−−−
π∂

N∂ , h∂

)

(54)

constitute a new filtered contraction that is natural in terms of the given data.

Proof. See [Br64] or [Gu72].

Application of the ordinary perturbation lemma to the contraction (53)
and the perturbation ∂ of the differential d on Sc[sg] yields the perturbation δ

of the differential d0 on Sc[sM ] and the contraction (22) where the notation ∇̃,
Π̃ , H in (22) corresponds to, respectively,∇∂ , π∂ , h∂ in (54). By construction,
the composite

Φ : Sc
D[sM ] τ−−−−→ C[g] Π̃−−−−→ Sc

δ [sM ]

introduced as (23) above is a morphism of chain complexes and, modulo the
filtrations, as a morphism of the underlying graded R-modules, this composite
is the identity. More precisely, Φ can be written as an infinite series

Φ = Id + Φ1 + · · ·+ Φj + . . . (55)

such that, for j ≥ 1, the operator Φj lowers the coaugmentation filtrations
by j. Furthermore, the convergence of the series (55) is naive, that is, in each
degree, the limit is achieved after finitely many steps. Consequently Φ is an
isomorphism of chain complexes. The inverse Ψ of Φ can be obtained as the
infinite series

Ψ = Id + Ψ1 + · · ·+ Ψ j + . . . (56)

determined by the requirement ΦΨ = Id or, equivalently, Ψ is given by the
recursive description

Ψ j + Φ1Ψ j−1 + · · ·+ Φj−1Ψ1 + Φj = 0, j ≥ 1, (57)

with the convention Φ0 = Id and Ψ0 = Id. Recall from (24) and (25) that, by
definition,

Π = ΨΠ̃ : C[g] −→ Sc
D[sM ],

H = H̃ − H̃τ Π : C[g] −→ C[g].
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By construction,
Π τ = Id: Sc

D[sM ] −→ Sc
D[sM ]

and, since (22) is a contraction of chain complexes,

DH = D(H̃ − H̃τ Π) = (Id− ∇̃Π̃)(Id− τ Π)

= Id− ∇̃Π̃ − τ Π + ∇̃Π̃τ Π

= Id− ∇̃ΦΠ − τ Π + ∇̃Π̃τ Π = Id− τ Π

since Φ = Π̃τ and ΦΠ = Π̃. Consequently

(d + ∂)H + H(d + ∂) = Id− τ Π,

that is, H is a chain homotopy between Id and τ Π . Moreover, since (22) is a
contraction of chain complexes, the side conditions (5) hold, that is

ΠH = 0, H τ = 0, HH = 0. (58)

Consequently τ , Π and H constitute a contraction of chain complexes of the
kind (12) as asserted and this contraction is obviously natural in terms of the
data. This establishes Complement II and thus completes the proof of the Lie
algebra perturbation lemma.
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[Ca54/55] Cartan, H.: Algèbres d’Eilenberg–Mac Lane et homotopie. Exposés
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Abstract. We study the notion of twisting elements da = a �1 a with respect
to �1 product when it is a part of homotopy Gerstenhaber algebra structure. This
allows us to bring to one context the two classical concepts, the theory of deformation
of algebras of M. Gerstenhaber, and A(∞)-algebras of J. Stasheff.
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1 Introduction

A twisting element in a differential graded algebra (dga) (A = {Ai}, d : An →
An+1, am · bn ∈ Am+n) is defined as an element t ∈ A1 satisfying Brown’s
condition

dt = t · t. (1)

Denote the set of all twisting elements by Tw(A). A useful consequence of
Brown’s condition is the following: let M be a dg module over A, then a
twisting element t ∈ Tw(A) defines on M a new differential dt : M → M by
dt(x) = dx + t · x, and the condition (1) guarantees that dtdt = 0.

Twisting elements show up in various problems of algebraic topology and
homological algebra. The first appearance was in homology theory of fibre
bundles [5]: For a fibre bundle F → E → B with a structure group G there
exists a twisting element t ∈ A = C∗(B,C∗(G)) such that (M = C∗(B) ⊗
C∗(F ), dt) (the twisted tensor product) gives homology of the total space E.

Later N. Berikashvili [4] has introduced in Tw(A) an equivalence relation
induced by the following group action. Let G be the group of invertible ele-
ments in A0, then for g ∈ G and t ∈ Tw(A) let

g ∗ t = g · t · g−1 + dg · g−1, (2)
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and it is easy to see that g ∗ t ∈ Tw(A). The factor set D(A) = Tw(A)/G,
called Berikashvili’s functor D, has nice properties and useful applications. In
particular, if t ∼ t′, then (M,dt) and (M,dt′) are isomorphic.

The notion of homotopy G-algebra (hGa) was introduced by Gerstenhaber
and Voronov in [8] as an additional structure on a dg algebra (A, d, ·) that
induces a Gerstenhaber algebra structure on homology. The main example is
the Hochschild cochain complex of an algebra.

Another point of view is that hGa is a particular case of B(∞)-algebra
[10]: this is an additional structure on a dg algebra (A, d, ·) that induces a dg
bialgebra structure on the bar construction BA.

There is a third aspect of hGa [16]: this is a structure which measures the
noncommutativity of A. The Steenrod &1 product which is the classical tool
which measures the noncommutativity of a dg algebra (A, d, ·) satisfies the
condition

d(a &1 b) = da &1 b + a &1 db + a · b + b · a. (3)

The existence of such &1 guarantees the commutativity of H(A), but a &1

product satisfying just the condition (3) is too poor for some applications. In
many constructions some deeper properties of &1 are needed, for example the
compatibility with the dot product of A (the Hirsch formula)

(a · b) &1 c + a · (b &1 c) + (a &1 c) · b = 0. (4)

An hGa (A, d, ·, {E1,k}) is a dga (A, d, ·) equipped additionally with a sequence
of operations (some authors call them braces)

{E1,k : A⊗A⊗k → A, k = 1, 2, ...}

satisfying some coherence conditions (see bellow). The starting operation E1,1

is a kind of &1 product: it satisfies the conditions (3) and (4). As for the
symmetric expression

a &1 (b · c) + b · (a &1 c) + (a &1 b) · c,

it is just homotopical to zero and the appropriate chain homotopy is the op-
eration E1,2. So we can say that an hGa is a dga with a “good” &1 product.

There is one more aspect of hGa: the operation E1,1 =&1 is not associative
but the commutator [a, b] = a &1 b − b &1 a satisfies the Jacobi identity, so
it forms on the desuspension s−1A the structure of a dg Lie algebra.

Let us present three remarkable examples of homotopy G-algebras.
The first one is the cochain complex of 1-reduced simplicial set C∗(X).

The operations E1,k here are dual to cooperations defined by Baues in [2],
and the starting operation E1,1 is the classical Steenrod’s &1 product.

The second example is the Hochschild cochain complex C∗(U,U) of an
associative algebra U . The operations E1,k here were defined in [14] with
the purpose to describe A(∞)-algebras in terms of the Hochschild cochains
although the properties of those operations which where used as defining
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ones for the notion of homotopy G-algebra in [8] did not appear there. These
operations were defined also in [9], [10]. Again the starting operation E1,1 is
the classical Gerstenhaber circle product which is sort of &1-product.

The third example is the cobar construction ΩC of a dg bialgebra C.
The operations E1,k are constructed in [17]. And again the starting operation
E1,1 is classical: it is Adams’s &1-product defined for ΩC in [1] using the
multiplication of C.

The main task of this paper is to introduce the notion of a twisting element
and their transformation in an hGa. Shortly a twisting element in an hGa
(A, d, ·, {E1,k}) is an element a ∈ A such that da = a &1 a and two twisting
elements a, a ∈ A we call equivalent if there exists g ∈ A such that

a = a + dg + g · g + g &1 a + a &1 g + E1,2(a; g, g) + E1,3(a; g, g, g) + · · · .

As we see in the definition of a twisting element participates just the operation
E1,1 =&1 but in the definition of equivalence participates the whole hGa
structure. We remark that such a twisting element a ∈ A is a Lie twisting
element in the dg Lie algebra (s−1A, d, [ , ]), i.e., satisfies da = 1

2 [a, a].
In this paper we present the following application of the notion of twisting

element in an hGa: it allows us to unify two classical concepts, namely the
theory of deformation of algebras of M. Gerstenhaber, and J. Stasheff’s A(∞)-
algebras.

Namely, a Gerstenhaber’s deformation of an associative algebra U (see [7],
and below)

a � b = a · b + B1(a⊗ b)t + B2(a⊗ b)t2 + B3(a⊗ b)t3 + · · · ∈ U [[t]],

can be considered as a twisting element B = B1 + B2 + · · · ∈ C2(U,U) in
the Hochschild cochain complex of U with coefficients in itself: the defining
condition of deformation means exactly dB = B &1 B. Furthermore, two
deformations are equivalent if and only if the corresponding twisting elements
are equivalent in the above sense.

On the other side, the same concept of twisting elements in hGa works
in the following problem. Suppose (H,μ : H ⊗H → H) is a graded algebra.
Let us define its Stasheff deformation (or minimal A(∞ deformation)) as
an A(∞) algebra structure (H, {mi}) with m1 = 0 and m2 = μ, i.e., which
extends the given algebra structure. Then each deformation can be considered
as a twisting element m = m3 + m4 + · · · , mi ∈ Ci(H,H) in the Hochschild
cochain complex of H with coefficients in itself: the Stasheff defining condition
of A(∞)-algebra means exactly dm = m &1 m. Furthermore, to isomorphic
(as A(∞)-algebras) deformations correspond equivalent twisting elements in
the above sense.

In both cases we present the obstruction theory for the existence of suitable
deformations. The obstructions live in suitable Hochschild cohomologies: in
H2(U,U) in the Gerstenhaber deformation case and in Hi(H,H), i = 3, 4, ...
in the Stasheff deformation case.
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Note that the interpretation of minimal A(∞)-algebra structure on a given
graded algebra (H,μ) as a twisting element in the Hochschild cochain complex
C∗(H,H), as well as interpretation of an isomorphism of such A(∞)-algebras
as equivalence of corresponding twisting elements, was given in [14].

We hope that more general A(∞) deformations, known in the literature,
also can be treated as certain twisting elements in corresponding hGa or more
general brace algebra.

The structure of the paper is the following. In Section 2 necessary defini-
tions are given. In Section 3 the definition of homotopy G-algebra is presented.
In Section 4 the notion of twisted element in a homotopy G-algebra is stud-
ied. In the last two Sections 5 and 6 the above-mentioned applications of this
notion are given.
Acknowledgements. Dedicated to Murray Gerstenhaber’s 80th and Jim
Stasheff’s 70th birthdays.

The author thanks the referee for various suggestions that improved the
readability and content of this paper.

2 Notation and Preliminaries

We work over R = Z2. For a graded module M we denote by sM the suspen-
sion of M , i.e., (sM)i = M i−1. Respectively, (s−1M)i = M i+1.

2.1 Differential Graded Algebras and Coalgebras

A differential graded algebra (dg algebra, or dga) is a graded R-module C =
{Ci, i ∈ Z} with an associative multiplication μ : Ci ⊗ Cj → Ci+j and a
differential d : Ci → Ci+1 satisfying dd = 0 and the derivation condition
d(x · y) = dx · y + x · dy, where x · y = μ(x ⊗ y). A dga C is connected if
C<0 = 0 and C0 = R. A connected dga C is n-reduced if Ci = 0 for 1 ≤ i ≤ n.

A differential graded coalgebra (dg coalgebra, or dgc) is a graded R-module
C = {Ci, i ∈ Z} with a coassociative comultiplication Δ : C → C ⊗ C
and a differential d : Ci → Ci+1 satisfying dd = 0 and the coderivation
conditionΔd = (d ⊗ id + id ⊗ d)Δ. A dgc C is connected if C<0 = 0 and
C0 = R. A connected dgc C is n-reduced if Ci = 0 for 1 ≤ i ≤ n.

A differential graded bialgebra (dg bialgebra) (C, d, μ,Δ) is a dg coalgebra
(C, d,Δ) with a morphism of dg coalgebras μ : C ⊗ C → C turning (C, d, μ)
into a dg algebra.

2.2 Cobar and Bar Constructions

Let M be a graded R-module with M i≤0 = 0 and let T (M) be the tensor
algebra of M , i.e., T (M) = ⊕∞

i=0M
⊗i. Tensor algebra T (M) is a free graded

algebra generated by M : for a graded algebra A and a homomorphism
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α : M → A of degree zero there exists a unique morphism of graded
algebras fα : T (M) → A (called the multiplicative extension of α)such that
fα(a) = α(a). The map fα is given by fα(a1 ⊗ · · · ⊗ an) = α(a1) · · · · · α(an).

Dually, let T c(M) be the tensor coalgebra of M , i.e., T c(M) = ⊕∞
i=0M

⊗i,
and the comultiplication ∇ : T c(M)→ T c(M)⊗ T c(M) is given by

∇(a1 ⊗ · · · ⊗ an) =
n∑

k=0

(a1 ⊗ · · · ⊗ ak)⊗ (ak+1 ⊗ · · · ⊗ an).

The tensor coalgebra (T c(M),∇) is a cofree graded coalgebra: for a graded
coalgebra C and a homomorphism β : C → M of degree zero there exists a
unique morphism of graded coalgebras gβ : C → T c(M) (called the comulti-
plicative coextension of β) such that p1gβ = β, here p1 : T c(M) → M is the
obvious projection. The map gβ is given by

gβ =
∞∑

n=0

(β ⊗ · · · ⊗ β)Δn,

where Δn : C → C⊗n is the nth iteration of the diagonal Δ : C → C ⊗ C,
i.e., Δ1 = id, Δ2 = Δ, Δn = (Δn−1 ⊗ id)Δ.

Let (C, dC , Δ) be a connected dg coalgebra and Δ(c) = c ⊗ 1R + 1R ⊗
c + Δ′(c). The (reduced) cobar construction ΩC on C is a dg algebra whose
underlying graded algebra is T (sC>0). An element (sc1⊗· · ·⊗scn) ∈ (sC)⊗n ⊂
T (sC>0) is denoted by [c1, ..., cn] ∈ ΩC. The differential dΩ of ΩC for a
generator [c] ∈ ΩC is defined by dΩ [c] = [dC(c)] +

∑
[c′, c′′] where Δ′(c) =∑

c′ ⊗ c′′, and is extended as a derivation.
Let (A, dA, μ) be a 1-reduced dg algebra. The (reduced) bar construction

BA on A is a dg coalgebra whose underlying graded coalgebra is T c(s−1A>0).
Again an element (s−1a1⊗· · ·⊗s−1an) ∈ (s−1A)⊗n ⊂ T c(s−1A>0) we denote
as [a1, ..., an] ∈ BA. The differential dB of BA is defined by

dB [a1, ..., an] =
∑n
i=1[a1, ..., dAai, ..., an] +

∑n−1
i=1 [a1, ..., ai · ai+1, ..., an].

2.3 Twisting Cochains

Let (C, d,Δ) be a dgc and (A, d, μ) be a dga. A twisting cochain [5] is a
homomorphism τ : C → A of degree +1 satisfying Brown’s condition

dτ + τd = τ & τ, (5)

where τ & τ ′ = μA(τ ⊗ τ ′)Δ. We denote by Tw(C,A) the set of all twisting
cochains τ : C → A.

There are universal twisting cochains τC : C → ΩC and τA : BA → A
being obvious inclusion and projection, respectively.
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Here are essential consequences of the condition (5):
(i) The multiplicative extension fτ : ΩC → A is a map of dg algebras, so
there is a bijection Tw(C,A) ↔ Homdg−Alg(ΩC,A);
(ii) The comultiplicative coextension gτ : C → BA is a map of dg coalgebras,
so there is a bijection Tw(C,A) ↔ Homdg−Coalg(C,BA).

3 Homotopy G-algebras

A homotopy G-algebra (hGa) is a dg algebra with “good” &1 product. The
general notion was introduced in [8], see also [25].

Definition 1. A homotopy G-algebra is defined as a dg algebra (A, d, ·) with
a given sequence of operations

E1,k : A⊗ (A⊗k)→ A, k = 0, 1, 2, 3, ...

(the value of the operation E1,k on a⊗ b1 ⊗ · · · ⊗ bk ∈ A ⊗ (A ⊗ · · · ⊗ A) we
write as E1,k(a; b1, ..., bk)) which satisfies the conditions

E1,0 = id, (6)

dE1,k(a; b1, ..., bk) + E1,k(da; b1, ..., bk) +
∑
iE1,k(a; b1, ..., dbi, ..., bk)

= b1 ·E1,k−1(a; b2, ..., bk) + E1,k−1(a; b1, ..., bk−1) · bk+∑
i E1,k−1(a; b1, ..., bi · bi+1, ..., bk),

(7)

E1,k(a1 · a2; b1, .., bk)
= a1 · E1,k(a2; b1, ..., bk) + E1,k(a1; b1, ..., bk) · a2+∑k−1

p=1 E1,p(a1; b1, ..., bp) ·E1,m−p(a2; bp+1, ..., bk),
(8)

E1,n(E1,m(a; b1, ..., bm); c1, ..., cn)
=
∑

0≤i1≤j1≤···≤im≤jm≤n
E1,n−(j1+···+jm)+(i1+···+im)+m(a; c1, ..., ci1 , E1,j1−i1(b1; ci1+1, ..., cj1),
cj1+1, ..., ci2 , E1,j2−i2(b2; ci2+1, ..., cj2), cj2+1, ..., cim ,
E1,jm−im(bm; cim+1, ..., cjm), cjm+1, ..., cn).

(9)

Let us present these conditions in low dimensions.
The condition (7) for k = 1 looks as

dE1,1(a; b) + E1,1(da; b) + E1,1(a; db) = a · b + b · a. (10)

So the operation E1,1 is a sort of &1 product: it is the chain homotopy which
measures the noncommutativity of A, cf. the condition (3). Below we denote
a &1 b = E1,1(a; b).

The condition (8) for k = 1 looks as

(a · b) &1 c + a · (b &1 c) + (a &1 c) · b = 0, (11)

this means that the operation E1,1 =&1 satisfies the left Hirsch formula (4).
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The condition (7) for k = 2 looks as

dE1,2(a; b, c) + E1,2(da; b, c) + E1,2(a; db, c) + E1,2(a; b, dc)
= a &1 (b · c) + (a &1 b) · c + b · (a &1 c), (12)

this means that this &1 satisfies the right Hirsch formula just up to homotopy
and the appropriate homotopy is the operation E1,2.

The condition (9) for n = m = 2 looks as

(a &1 b) &1 c + a &1 (b &1 c) = E1,2(a; b, c) + E1,2(a; c, b), (13)

this means that the same operation E1,2 measures also the deviation from the
associativity of the operation E1,1 =&1.

3.1 hGa as a B(∞)-algebra

The notion of B∞-algebra was introduced in [10] as an additional structure
on a dg module (A, d) which turns the tensor coalgebra T c(s−1A) into a dg
bialgebra. So it requires a differential

d̃ : T c(s−1A)→ T c(s−1A)

which is a coderivation (that is an A(∞)-algebra structure on A, see below)
and an associative multiplication

μ̃ : T c(s−1A)⊗ T c(s−1A) → T c(s−1A)

which is a map of dg coalgebras.
Here we show that an hGa structure on A is a particular B(∞)-algebra

structure: it induces on B(A) = (T c(s−1A), dB) a multiplication but does not
change the differential dB (see [10], [16], [17], [18] for more details).

Let us extend our sequence {E1,k, k = 0, 1, 2, ...} to a sequence {Ep,q :
(A⊗p)⊗ (A⊗q)→ A, p, q = 0, 1, ...} adding

E0,1 = id, E0,q>1 = 0, E1,0 = id, Ep>1,0 = 0, (14)

and Ep>1,q = 0.
This sequence defines a map E : B(A) ⊗ B(A) → A by E([a1, ..., am] ⊗

[b1, ..., bn]) = Ep,q(a1, ..., am; b1, ..., bn). The conditions (7) and (8) mean ex-
actly dE + E(dB ⊗ id+ id⊗ dB) = E & E, i.e., E is a twisting cochain. Thus
according to Section 2.3 its coextension is a dg coalgebra map

μE : B(A)⊗B(A) → B(A).

The condition (9) can be rewritten as E(μE ⊗ id − id ⊗ μE) = 0, so this
condition means that the multiplication μE is associative. And the condition
(14) implies that [ ] ∈ B(A) is the unit for this multiplication.
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Finally we obtained that (B(A), dB , Δ, μE) is a dg bialgebra thus an hGa
is a B(∞)-algebra.

Let us mention that a twisting cochain E satisfying just the starting con-
dition (14) was constructed in [19] using acyclic models for A = C∗(X), the
singular cochain complex of a topological space. The condition (14) determines
this twisting cochain E uniquely up to equivalence of twisting cochains (2).

3.2 Homology of an hGa is a Gerstenhaber algebra

The structure of an hGa on A induces on the homology H(A) the structure
of a Gerstenhaber algebra (G-algebra).

Gerstenhaber algebra (see [6], [8], [25]) is defined as a commutative graded
algebra (H, ·) together with a Lie bracket of degree −1

[ , ] : Hp ⊗Hq → Hp+q−1

(i.e., a graded Lie algebra structure on the desuspension s−1H) which is a
biderivation: [a, b · c] = [a, b] · c + b · [a, c]. Main example of Gerstenhaber
algebra is the Hochschild cohomology of an associative algebra.

The following argument shows the existence of this structure on the ho-
mology H(A) of an hGa.

First, there appears on the desuspension s−1A the structure of a dg Lie
algebra: although the &1= E1,1 is not associative, the condition (13) implies
the pre-Jacobi identity

a &1 (b &1 c) + (a &1 b) &1 c = a &1 (c &1 b) + (a &1 c) &1 b,

this condition guarantees that the commutator [a, b] = a &1 b + b &1 a
satisfies the Jacobi identity, besides the condition (10) implies that [ , ] :
s−1A ⊗ s−1A → s−1A is a chain map. Consequently there is on s−1H(A) a
structure of a graded Lie algebra. The Hirsch formulae (11) and (12) imply
that the induced Lie bracket is a biderivation.

3.3 Operadic Description

The operations E1,k forming hGa have a nice description in terms of the sur-
jection operad, see [20], [21] [22], [3] for definition. Namely, to the dot product
corresponds the element (1, 2) ∈ χ0(2); to E1,1 =&1 product corresponds
(1, 2, 1) ∈ χ1(2), and generally to the operation E1,k corresponds the element

E1,k = (1, 2, 1, 3, ..., 1, k, 1, k + 1, 1) ∈ χk(k + 1). (15)

We remark here that the defining conditions of an hGa (6), (7), (8), (9) can
be expressed in terms of the operadic structure (differential, symmetric group
action and composition product) and the elements (15) satisfy these conditions
already in the operad χ.

Note that the elements (15) together with the element (1, 2) generate the
suboperad F2χ which is equivalent to the little square operad ([20], [22], [3]).
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This in particular implies that a cochain complex (A, d) is an hGa if and only
if it is an algebra over the operad F2χ.

This fact and the hGa structure on the Hochschild cochain complex
C∗(U,U) of an algebra U [14] were used by some authors to prove the Deligne
conjecture about the action of the little square operad on the Hochschild
cochain complex C∗(U,U).

3.4 Hochschild Cochain Complex as a hGa

Let A be an algebra and M be a two-sided module on A. The Hochschild
cochain complex C∗(A;M) is defined as Cn(A;M) = Hom(A⊗n

,M) with
differential δ : Cn−1(A;M)→ Cn(A;M) given by

δf(a1 ⊗ · · · ⊗ an) = a1 · f(a2 ⊗ · · · ⊗ an)
+
∑n−1
k=1 f(a1 ⊗ · · · ⊗ ak−1 ⊗ ak · ak+1 ⊗ · · · ⊗ an)

+f(a1 ⊗ · · · ⊗ an−1) · an.

We focus on the case M = A.
In this case the Hochschild complex becomes a dg algebra with respect to

the & product defined in [6] by

f & g(a1 ⊗ · · · ⊗ an+m) = f(a1 ⊗ · · · ⊗ an) · g(an+1 ⊗ · · · ⊗ an+m).

In [14] (see also [9], [10], [8]) there are defined the operations

E1,i : Cn(A;A)⊗ Cn1(A;A) ⊗ · · · ⊗ Cni(A;A) → Cn+n1+···+ni−i(A;A)

given by E1,i(f ; g1, ..., gi) = 0 for i > n and

E1,i(f ; g1, ..., gi)(a1 ⊗ · · · ⊗ an+n1+···+ni−i)
=
∑
k1,...,ki

f(a1 ⊗ · · · ⊗ ak1 ⊗ g1(ak1+1 ⊗ · · · ⊗ ak1+n1)⊗ ak1+n1+1 ⊗ · · ·
⊗ak2 ⊗ g2(ak2+1 ⊗ · · · ⊗ ak2+n2)⊗ ak2+n2+1 ⊗ · · ·
⊗aki ⊗ gi(aki+1 ⊗ · · · ⊗ aki+ni)⊗ aki+ni+1 ⊗ · · · ⊗ an+n1+···+ni−i).

(16)
The straightforward verification shows that the collection {E1,k} satisfies the
conditions (6), (7), (8), and (9), thus it forms on the Hochschild complex
C∗(A;A) the structure of a homotopy G-algebra.

We note that the operation E1,1 coincides with the circle product defined
by Gerstenhaber in [6], note also that the operation E1,2 satisfying (12) and
(13) also is defined there.

4 Twisting Elements

In this section we present an analog of the notion of twisting element (see
the introduction) in a homotopy G-algebra replacing in the defining equation
da = a · a the dot product by the &1 product. The appropriate notion of
equivalence also will be introduced.
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Let (C∗,∗, d, ·, {E1,k}) be a bigraded homotopy G-algebra. That is, (C∗,∗, ·)
is a bigraded algebra Cm,n ·Cp,q ⊂ Cm+p,n+q, and we require the existence of
a differential (derivation) d(Cm,n) ⊂ Cm+1,n and of a sequence of operations

E1,k : Cm,n ⊗ Cp1,q1 ⊗ · · · ⊗ Cpk,qk → Cm+p1+···+pk−k,n+q1+···+qk

so that the total complex (the total degree of Cp,q is p + q) is an hGa.
Below we introduce two versions of the notion of twisting elements in a

bigraded homotopy G-algebra. Although it is possible to reduce them to each
other by changing gradings, we prefer to consider them separately in order to
emphasize different areas of their applications. The first one controls Stasheff
A∞-deformation of graded algebras and the second controls Gerstenhaber
deformation of associative algebras, see the next two sections.

4.1 Twisting Elements in a Bigraded Homotopy G-algebra
(version 1)

A twisting element in C∗,∗ we define as

m = m3 + m4 + · · ·+ mp + · · · , mp ∈ Cp,2−p

satisfying the condition dm = E1,1(m;m) or changing the notation dm =
m &1 m. This condition can be rewritten in terms of the components as

dmp =
p−1∑

i=3

mi &1 mp−i+2. (17)

Particularly dm3 = 0, dm4 = m3 &1 m3, dm5 = m3 &1 m4+m4 &1 m3, ... .
The set of all twisting elements we denote by Tw(C∗,∗).

Consider the set G = {g = g2 + g3 + · · ·+ gp + · · · ; gp ∈ Cp,1−p}, and let
us introduce on G the operation

g ∗ g = g + g +
∞∑

k=1

E1,k(g; g, ..., g), (18)

particularly

(g ∗ g)2 = g + g2;
(g ∗ g)3 = g3 + g3 + g2 &1 g3;
(g ∗ g)4 = g4 + g3 + g2 &1 g3 + g3 &1 g2 + E1,2(g2; g2, g2).

It is possible to check, using the defining conditions of an hGa (6), (7), (8),
(9), that this operation is associative, has the unit e = 0 + 0 + · · · and the
opposite g−1 can be solved inductively from the equation g ∗ g−1 = e. Thus
G is a group.
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The group G acts on the set Tw(C∗,∗) by the rule g ∗m = m where

m = m + dg + g · g + E1,1(g;m) +
∞∑

k=1

E1,k(m; g, ..., g), (19)

particularly

m3 = m3 + dg2;
m4 = m4 + dg3 + g2 · g2 + g2 &1 m3 + m3 &1 g2;
m5 = m5 + dg4 + g2 · g3 + g3 · g2 + g2 &1 m4 + g3 &1 m3

+m3 &1 g3 + m4 &1 g2 + E1,2(m3; g2, g2).

Note that although on the right-hand side of the formula (19) participates m
but it has less dimension than the left-hand side m, thus this action is well
defined: the components of m can be solved from this equation inductively. It
is possible to check that the resulting m is a twisting element. By D(C∗,∗) we
denote the set of orbits Tw(C∗,∗)/G.

This group action (19) allows us to perturb twisting elements in the fol-
lowing sense. Let gn ∈ Cn,1−n be an arbitrary element, then for homogeneous
g = 0 + · · ·+ 0 + gn + 0 + · · · the twisting element m = g ∗m defined by (19)
in this case looks as

m = m3 + · · ·+ mn + (mn+1 + dgn) + mn+2 + mn+3 + · · · , (20)

so the components m3, ...,mn remain unchanged and mn+1 = mn+1 + dgn.
The perturbation (20) allows us to consider the following two problems.

Quantization. Let us first mention that for a twisting element m =
∑

mk

the first component m3 ∈ C3,−1 is a cycle and any perturbation does not
change its homology class [m3] ∈ H3,−1(C∗,∗). Thus we have a well-defined
map φ : D(C∗,∗)→ H3,−1(C∗,∗).

A quantization of a homology class α ∈ H3,−1(C∗,∗) is defined as a twisting
element m = m3 + m4 + · · · such that [m3] = α. Thus α is quantizable if it
belongs to the image of φ.

The obstructions for quantizability lie in homologies Hn,3−n(C∗,∗), n ≥ 5.
Indeed, let m3 ∈ C3,−1 be a cycle from α. The first step to quantize α is to
construct m4 such that dm4 = m3 &1 m3. The necessary and sufficient
condition for this is [m3 &1 m3] = 0 ∈ H5,−2(C∗,∗), so this homology class is
the first obstruction O(m3). Suppose it vanishes; so there exists m4. Then it is
easy to see that m3 &1 m4 + m4 &1 m3 is a cycle and its class O(m3,m4) ∈
H6,−3(C∗,∗) is the second obstruction. If O(m3,m4) = 0, then there exists
m5 such that dm5 = m3 &1 m4 + m4 &1 m3. If not, then we take another
m4 and try new second obstruction (we remark that changing of m3 makes
no sense). Generally the obstruction is

O(m3,m4, ...,mn−2) = [
n−2∑

k=3

mk &1 mn−k+1] ∈ Hn,3−n(C∗,∗).
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Rigidity. A twisting element m = m3 + m4 + · · ·+ mp + · · · is called trivial
if it is equivalent to 0. A bigraded hGa C∗,∗ is rigid if each twisting element
is trivial, i.e., if D(C∗,∗) = {0}. The obstructions to triviality of a twisting
element lie in homologies Hn,2−n(C∗,∗), n ≥ 3. Indeed, for a twisting element
m = m3 + m4 + · · ·+ mp + · · · the first component m3 is a cycle and by (19)
each perturbation of m leaves the class [m3] ∈ H3,−1(C∗,∗) unchanged and
this class is the first obstruction for triviality. If this class is zero, then we
choose g2 ∈ C2,−1 such that dg2 = m3. Perturbing m by g = g2 + 0 + 0 + · · ·
we kill the first component m3, i.e., we get a twisting element m ∼ m, which
looks as m = 0 + m4 + m5 + · · · · Now, because of (17), the component m4

becomes a cycle and its homology class is the second obstruction. If this class
is zero, then we can kill m4. If it is not, then we take another g2 and try
new second obstruction. Generally after killing first components, for m =
0 + 0 + · · · + 0 + mn + mn+1 + · · · the obstruction is the homology class
[mn] ∈ Hn,2−n(C∗,∗).

This in particular implies that if for a bigraded homotopy G-algebra C∗,∗

all homology modules Hn,2−n(C∗,∗) are trivial for n ≥ 3, then D(C∗,∗) = 0,
thus C∗,∗ is rigid.

4.2 Twisting Elements in a Bigraded Homotopy G-algebra
(version 2)

This version can be obtained from the previous one by changing grading: take
new bigraded module C

p,q
= Cp+q,−q. The same operations turn C

∗,∗
into a

bigraded hGa.
A twisting element m ∈ C∗,2−∗ in this case looks as b = b1 + b2 + · · · +

bn+ · · · , bn ∈ C
2,n

where bk = mk−2 and satisfies the condition db = b &1 b,
or equivalently dbn =

∑n−1
i=2 bi &1 bn−i.

Here we have the group G′ = {g = g1 + g2 + · · · + gp + · · · ; gp ∈ C
1,p}

with operation g′ ∗ g = g′ + g +
∑∞
k=1 E1,k(g′; g, .., g). This group acts on the

set Tw′(C
∗,∗

) by the rule g ∗ b = b′ where

b′ = b + dg + g · g + E1,1(g; b) +
∞∑

k=1

E1,k(b′; g, ..., g). (21)

By D′(C
∗,∗

) we denote the set of orbits Tw′(C
∗,∗

)/G′.
We consider the following two problems.

Quantization. The first component b1 ∈ C
2,1

of a twisting element b =
∑

bi
is a cycle and any perturbation does not change its homology class α = [b1] ∈
H2,1(C

∗,∗
). Thus we have a correct map ψ : D′(C

∗,∗
)→ H2,1(C

∗,∗
).

A quantization of a homology class α ∈ H2,1(C
∗,∗

) is defined as a twisting
element b = b1+b2+· · · such that [b1] = α. Thus α is quantizable if α ∈ Im ψ.

The argument similar to the above shows that the obstructions to quanti-
zability lie in homologies H3,n(C

∗,∗
), n ≥ 2.
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Rigidity. A twisting element b = b1+b2+· · · is called trivial if it is equivalent
to 0. A bigraded hGa C

∗,∗
is rigid if each twisting element is trivial, i.e., if

D′(C
∗,∗

) = {0}. The obstructions to triviality of a twisting element lie in
homologies H2,n(C

∗,∗
), n ≥ 1.

This in particular implies that if for a bigraded hGa C
∗,∗

we have
H2,n(C

∗,∗
) = 0, n ≥ 1, then D′(C

∗,∗
) = 0, thus C

∗,∗
is rigid.

4.3 Twisting Elements in a dg Lie Algebra corresponding to a hGa

As described above for a homotopy G-algebra (C, ·, d, {E1k}) the desuspension
s−1C is a dg Lie algebra with the bracket [a, b] = a &1 b− b &1 a. Note that
if C∗,∗ is a bigraded homotopy G-algebra, then L∗,∗ = s−1C∗,∗ = C∗−1,∗ is a
bigraded dg Lie algebra.

Suppose m ∈ C∗,2−∗ is a twisting element in C∗,∗. The defining equation
dm = m &1 m can be rewritten in terms of the bracket as dm = 1

2 [m,m] (at
this moment we have to switch to the field Q of rationales), so the same m
can be regarded as a Lie twisting element in the bigraded dg Lie algebra L∗,∗.

So the notion of a twisting element in an hGa, which involves just the
operation E1,1 =&1, in fact can be expressed in terms of the Lie bracket [ , ].

But it is unclear whether the group action formulas (19) and (21), which
involve all the operations {E1,k, k = 1, 2, ...}, can be expressed just in terms
of the bracket.

5 Deformation of Algebras

This is just an illustrative application. Using the homotopy G-algebra struc-
ture, the notions of twisting element and their transformation, one can obtain
the well-known results of Gerstenhaber from [7].

Let (A, ·) be an algebra over a field k, k[[t]] be the algebra of formal power
series in variable t and A[[t]] = A⊗k[[t]] be the algebra of formal power series
with coefficients from A.

Gerstenhaber deformation of an algebra (A, ·) is defined as a sequence of
homomorphisms

Bi : A⊗A→ A, i = 0, 1, 2, ...; B0(a⊗ b) = a · b

satisfying the associativity condition
∑

i+j=n

Bi(a⊗Bj(b⊗ c)) =
∑

i+j=n

Bi(Bj(a⊗ b)⊗ c). (22)

Such a sequence determines the star product

a � b = a · b + B1(a⊗ b)t + B2(a⊗ b)t2 + B3(a⊗ b)t3 + · · · ∈ A[[t]],



194 T. Kadeishvili

which can be naturally extended to a k[[t]]-bilinear product � : A[[t]]⊗A[[t]]→
A[[t]] and the condition (22) guarantees its associativity.

Two deformations {Bi} and {B′
i} are called equivalent if there exists a

sequence of homomorphisms {Gi : A → A; i = 0, 1, 2, ...;G0 = id} such that
∑

r+s=n

Gr(Bs(a⊗ b)) =
∑

i+j+k=n

B′
i(Gj(a)⊗Gk(b)). (23)

The sequence {Gi} determines homomorphism G =
∑

Git
i : A→ A[[t]]. In its

turn this G naturally extends to a k[[t]]-linear bijection (A[[t]], �) → (A[[t]], �′)
and the condition (23) guarantees that this extension is multiplicative.

A deformation {Bi} is called trivial, if {Bi} is equivalent to {B0, 0, 0, ...}.
An algebra A is called rigid, if each of its deformation is trivial.

Now we present the interpretation of deformations and their equivalence
in terms of twisting elements of version 2 type and their equivalence in hGa
of Hochschild cochains.

As mentioned in Section 3.4 the Hochschild complex C∗(A,A) for an alge-
bra A is a homotopy G-algebra. Then the tensor product C∗,∗ = C∗(A,A) ⊗
k[[t]] is a bigraded Hirsch algebra with the structure

Cp,q = Cp(A,A) · tq, δ(f · tq) = δf · tq, f · tp & g · tq = (f & g) · tp+q,
E1,k(f · tp; g1 · tq1 , ..., gk · tqk) = E1,k(f ; g1, ..., gk) · tp+q1+···+qk ,

here we use the notation f ⊗ tp = f · tp.
Then each deformation {Bi : A⊗2 → A, i = 1, 2, 3, ...} can be interpreted

as a version 2 type twisting element b = b1 + b2 + · · ·+ bk+ · · · , bk = Bk · tk ∈
C2,k: the associativity condition (22) can be rewritten as

δBn · tn =
∑

i+j=n

Bi · ti &1 Bj · tj.

Suppose now two deformations {Bi} and {B′
i} are equivalent, i.e., there

exists {Gi} such that the condition (23) is satisfied. In terms of the Hochschild
cochains this condition looks as

b′ = b + δg + g & g + g &1 b + E1,1(b′; g) + E1,2(b′; g, g),

where g = g1 + · · · + gk + · · · , gk = Gk · tk ∈ C1,k. This equality slightly
differs from (21), but since g ∈ C1(A,A) and b′ ∈ C2(A,A), we have
E1,k(b′; g, ..., g) = 0 for k ≥ 3 (see Section 3.4), thus they in fact coincide.

So we obtain that deformations are equivalent if and only if the corre-
sponding Hochschild twisting elements b and b′ are equivalent. Consequently
the set of equivalence classes of deformations is bijective to D′(C∗,∗).

It is obvious that Hp,q(C∗,∗) = HHp(A,A) · tq. Then from Section 4.2
follow the classical results of Gerstenhaber: obstructions for quantization of a
homomorphism b1 : A ⊗ A → A lie in HH3(A,A), and if HH3(A,A) = 0
then each b1 is quantizable (or integrable as it is called in [7]). Further-
more, the obstructions for triviality of a deformation lie in HH2(A,A), and
if HH2(A,A) = 0, then A is rigid.
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Remark 1. As we see in the definition of equivalence of deformations partic-
ipate just the operations E1,1 and E1,2, the higher operations E1,k, k > 2
disappear because of (16). So observing the just deformation problem it is
impossible to establish general formula (21) for transformation of twisting
elements.

6 A(∞)-deformation of Graded Algebras

In this section we give a similar description of A(∞)-deformation of graded
algebras in terms of twisting elements in the hGa of Hochschild cochains.
So these two types of deformation will be unified by the notion of twisting
element in hGa. Partially these results are given in [14], [15].

6.1 A(∞)-algebras

The notion of A(∞)-algebra was introduced by J.D. Stasheff in [24]. This
notion generalizes the notion of dg algebra.

An A(∞)-algebra is a graded module M with a given sequence of opera-
tions

{mi : M⊗i →M, i = 1, 2, ..., deg mi = 2− i}
which satisfies the conditions

∑

i+j=n+1

n−j∑

k=0

mi(a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an) = 0. (24)

Particularly, for the operation m1 : M → M we have deg m1 = 1 and
m1m1 = 0, this m1 can be regarded as a differential on M . The operation
m2 : M ⊗M →M is of degree 0 and satisfies

m1m2(a1 ⊗ a2) + m2(m1a1 ⊗ a2) + m2(a1 ⊗m1a2) = 0,

i.e., m2 can be regarded as a multiplication on M and m1 is a derivation. Thus
(M,m1,m2) is a sort of (maybe nonassociative) dg algebra. For the operation
m3 we have deg m3 = −1 and

m1m3(a1 ⊗ a2 ⊗ a3) + m3(m1a1 ⊗ a2 ⊗ a3) + m3(a1 ⊗m1a2 ⊗ a3)
+m3(a1 ⊗ a2 ⊗m1a3) + m2(m2(a1 ⊗ a2)⊗ a3) + m2(a1 ⊗m2(a2 ⊗ a3)) = 0,

thus the multiplication m2 is homotopy associative and the appropriate chain
homotopy is m3.

The sequence of operations {mi} determines on the tensor coalgebra

T c(s−1M) = R + s−1M + s−1M ⊗ s−1M + s−1M ⊗ s−1M ⊗ s−1M + · · ·
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a coderivation

dm(a1 ⊗ · · · ⊗ an) =
∑

k,j

a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an,

and the condition (24) is equivalent to dmdm = 0. The obtained dg coalgebra
(T c(s−1M), dm) is called bar construction and is denoted as B(M, {mi}).

A morphism of A(∞)-algebras (M, {mi}) → (M ′, {m′
i}) is defined as a

sequence of homomorphisms

{fi : M⊗i →M ′, i = 1, 2, ..., deg fi = 1− i},

which satisfy the condition
∑
i+j=n+1

∑n−j
k=0 fi(a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an)

=
∑
k1+···+kt=n

m′
t(fk1(a1 ⊗ · · · ⊗ ak1)⊗ fk2(ak1+1 ⊗ · · · ⊗ ak1+k2)

⊗ · · · ⊗ fkt(ak1+···+kt−1+1 ⊗ · · · ⊗ an)).
(25)

In particular for n = 1 this condition gives f1m1(a) = m′
1f1(a), i.e., f1 :

(M,m1) → (M ′,m′
1) is a chain map; for n = 2 it gives

f1m2(a1 ⊗ a2) + m′
2(f1(a1)⊗ f1(a2))

= m′
1f2(a1 ⊗ a2) + f2(m1a1 ⊗ a2) + f2(a1 ⊗m1a2),

thus f1 : (M,m1,m2)→ (M ′,m′
1,m

′
2) is multiplicative up to homotopy f2.

A collection {fi} defines a homomorphism f : B(M, {m1}) → M ′. Its
comultiplicative coextension, see Section 2.2, is a graded coalgebra map of the
bar constructions

B(f) : B(M, {mi})→ B(M ′, {m′
i}),

and the condition (25) guarantees that B(f) is a chain map, i.e., B(f) is a
morphism of dg coalgebras. So B is a functor from the category of A(∞)-
algebras to the category of dg coalgebras.

A weak equivalence of A(∞)-algebras is defined as a morphism f = {fi}
for which B(f) is a weak equivalence of dg coalgebras. It is possible to show
(see for example [15]) that:
(i) f is a weak equivalence of A(∞)-algebras if and only if f1 is a weak equiv-
alence of dg modules;
(ii) f is an isomorphism of A(∞)-algebras if and only if f1 is an isomorphism
of dg modules.

An A(∞)-algebra (M, {mi}) we call minimal if m1 = 0. In this case
(M,m2) is strictly associative graded algebra.

The following proposition is the immediate consequence of (i) and (ii):

Proposition 1. Each weak equivalence of minimal A(∞)-algebras is an iso-
morphism.
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6.2 Stasheff Deformation of Graded Algebras as Twisting Element

Let (H,μ : H ⊗H → H) be a graded algebra. A Stasheff (or minimal A(∞))
deformation is defined as a minimal A(∞)-algebra (H, {mi}) with m2 = μ.
Two deformations (H, {mi}) and (H, {m′

i}) we call equivalent if there exists
an isomorphism of A(∞)-algebras {fi} : (H, {mi})→ (H, {m′

i}) with f1 = id.
A deformation (H, {mi}) we call trivial if it is equivalent to (H, {m1 = 0,

m2 = μ,m≥3 = 0}). An algebra (H,μ) we call rigid (or intrinsically formal,
this term is borrowed from rational homotopy theory) if each of its deforma-
tions is trivial.

Now we present the interpretation of deformations and their equivalence
in terms of twisting elements and their equivalence in hGa of Hochschild
cochains.

The Hochschild cochain complex of a graded algebra H with coefficients
in itself is bigraded: Cm,n(H,H) = Homn(H⊗m, H), here Homn denotes
degree n homomorphisms. The coboundary operator δ maps Cm,n(H,H) to
Cm+1,n(H,H). Besides, for f ∈ Cm,n(H,H) and gi ∈ Cpi,qi(H,H) one has
f & g ∈ Cm+p,n+q(H,H), f &1 g ∈ Cm+p−1,n+q(H,H), and

E1,k(f ; g1, ..., gk) ∈ Cm+p1+···+pk−k,n+q1+···+qk(H,H),

thus the Hochschild complex C∗,∗(H,H) is a bigraded homotopy G-algebra
in this case. Let us denote the nth homology module of the complex
(C∗,k(H,H), δ) by HHn,k(H,H).

Suppose now that (H, {mi}) is a Stasheff deformation of H . Each operation
mi : H⊗i → H can be regarded as a Hochschild cochain from Ci,2−i(H,H).
The condition (24) can be rewritten as

δmk =
k−1∑

i=3

mi &1 mk−i+2,

thus m = m3 + m4 + · · · is a twisting element (version 1) in C∗,∗(H,H).
Now let (H, {mi}) and (H, {m′

i}) be two Stasheff deformations of H . Then
it follows from (19) that the corresponding twisting elements m and m′ are
equivalent if and only if these two Stasheff deformations are equivalent: if
m′ = p∗m, then {pi} : (H, {mi})→ (H, {m′

i}) with p1 = id is an isomorphism
of A(∞)-algebras. So we obtain the following:

Theorem 1. The set of isomorphism classes of all Stasheff deformations of
a graded algebra (H,μ) is bijective to the set of equivalence classes of twisting
elements D(C∗,∗(H,μ)).

Moreover, from 4.1 we get the following:

Theorem 2. If for a graded algebra (H,μ) its Hochschild cohomology modules
HHn,2−n(H,H) are trivial for n ≥ 3, then (H,μ) is intrinsically formal.
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A(∞)-algebra Structure on the Homology of a dg algebra

Let (A, d, μ) be a dg algebra and (H(A), μ∗) be its homology algebra. Although
the product in H(A) is associative, there is a structure of a (generally
nondegenerate) minimal A(∞)-algebra, which is a Stasheff deformation of
(H(A), μ∗). Namely, in [12], [13] the following result was proved (see also
[23], [11]):

Theorem 3. If for a dg algebra all homology R-modules Hi(A) are free, then
there exist: a structure of a minimal A(∞)-algebra (H(A), {mi}) on H(A)
and a weak equivalence of A(∞)-algebras

{fi} : (H(A), {mi})→ (A, {d, μ, 0, 0, ...})

such that m1 = 0, m2 = μ∗, f∗
1 = idH(A), such a structure is unique up to

isomorphism in the category of A(∞)-algebras.

In particular, we get an A(∞)-algebra structure on cohomology H∗(X)
of a topological space X or in the homology H∗(G) of a topological group
or H-space G. (Co)homology algebra equipped with this additional structure
carries more information than just the (co)homology algebra. Some applica-
tions of this structure are given in [13] and [15]. For example, the cohomology
A(∞)-algebra (H∗(X), {mi}) determines the cohomology of the loop space
H∗(ΩX) when just the algebra (H∗(X),m2) does not. Similarly, the homology
A(∞)-algebra (H∗(G), {mi}) determines the homology of the classifying space
H∗(BG) when just the Pontriagin algebra (H∗(G),m2) does not. Furthermore,
the rational cohomology A(∞)-algebra (H∗(X,Q), {mi}) (which actually is
C(∞) in this case) determines the rational homotopy type of 1-connected X
when just the cohomology algebra (H∗(X,Q),m2) does not.

Therefore of a particular interest are the cases when this additional struc-
ture vanishes, that is, when the A(∞)-algebra (H(A), {mi}) is degenerate (in
this case a dg algebra A is called formal). The above Theorem 2 gives a suf-
ficient condition of formality of A in terms of the Hochschild cohomology of
H(A).
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Abstract. In this article, we discuss an application of homological perturbation
theory (HPT) to homological mirror symmetry (HMS) based on Kontsevich and
Soibelman’s proposal [Kontsevich, M., Soibelman, Y. (2001) Homological mirror
symmetry and torus fibrations]. After a brief review of Morse theory, Morse homo-
topy and the corresponding Fukaya categories, we explain the idea of deriving a
Fukaya category from a DG category via HPT, which is expected to give a solu-
tion to HMS, and apply it to the cases of R

2 discussed in [Kajiura, H. (2007) An
A∞-structure for lines in a plane] and then T 2. A finite dimensional A∞-algebra
obtained from the Fukaya category on T 2 is also presented.
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1 Introduction

A strong homotopy associative algebra (= A∞-algebra) is introduced by
Stasheff [46, 47] in the study of H-spaces. Differential graded (DG) algebras,
familiar as the algebras of smooth differential forms on manifolds, are the
special examples. An A∞-algebra contains, in addition to a differential and a
product, higher products which can be thought of as (higher) Massey prod-
ucts and their generalization. To explore such algebraic properties, homolog-
ical perturbation theory (HPT) has been developed by Gugenheim, Lambe,
Stasheff, Huebschmann, Kadeishvili, etc., [15, 16, 17, 20], which implies that
A∞-algebras are a homotopy invariant notion. The category version of an
A∞-algebra is an A∞-category introduced by Fukaya [7] to formulate Morse
homotopy theory and Floer theory of Lagrangian submanifolds in a symplec-
tic manifold. A category for the latter theory is called a Fukaya category. The
Lie version, a strong homotopy Lie algebra (= L∞-algebra) [38], appeared in
closed string field theory [52,32], though it was already implicitly an essential
tool in studying deformation theory (see [44]).
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These “infinity-frameworks” became more important via the homological
mirror symmetry (HMS) conjecture by Kontsevich [34], which states an equiv-
alence between the Fukaya category on a symplectic manifold X and the
category of coherent sheaves on the mirror dual complex manifold X̂ for a
given mirror pair X and X̂. The strongest form of HMS may be to show
the equivalence at the level of A∞-categories up to homotopy equivalence.
The deformation of these A∞-categories should be described by DG Lie alge-
bras of Hochschild complexes of the corresponding A∞-structure, as a natural
generalization of deformation theory of algebras by Gerstenhaber [12, 13] to
that for A∞-structures due to [48]. On the other hand, a more traditional
mirror symmetry setup is to show the equivalence of two Frobenius manifold
structures associated to X and X̂ . HMS is expected to give a homological
algebraic realization of this traditional mirror symmetry (cf. [34, 1]). From
the string theory viewpoint, those Frobenius manifolds and A∞-categories
are associated to certain topological models of tree-level closed strings and
tree-level open strings, respectively. A system of tree open-closed strings,
i.e., an open-closed homotopy algebra [29, 30], gives a map from the space
of closed string states to the space of deformations of an A∞-category; a typ-
ical example is the deformation quantization [35, 4]. Then, the “pullback” of
a certain algebraic structure on the space of A∞ deformations by the map
should induce a Frobenius manifold structure (for a different but related ap-
proach, see [6]). In any case, to explore the underlying operad structure is
important; see [40].

Though such fruitful plans continue to the HMS setup, to formulate and
show the HMS itself is still not easy. So, let us concentrate on the HMS.
The HMS had been discussed positively, for instance, for two-tori [43, 41, 37]
for abelian varieties [8], and for noncommutative tori [21, 42, 22, 25, 23], etc.
However, at least for the author, it had been quite mysterious why such equiv-
alences hold even for two-tori.

Kontsevich and Soibelman [36] then proposed a strategy to show the HMS
based on Strominger–Yau–Zaslow’s torus fibrations [49] (see also [9] for a re-
lated approach). The key idea there was to apply HPT to a kind of DG
categories of differential forms and “derive” Morse homotopy theory slightly
generalized to torus fibration setting. The DG category is related to the cat-
egory of coherent sheaves on a complex manifold X̂ . Thus, an equivalence of
the category of Morse homotopy with the Fukaya category is supposed to give
a solution to the HMS. Physically, those DG categories are related to a kind of
Chern–Simons field theory. Applying HPT to the DG categories corresponds
to considering perturbation theory of the Chern–Simons theory at tree level.
This kind of Chern–Simons theory is thought of as a topological open string
field theory [51, 39], where a homotopy operator in HPT corresponds to a
gauge fixing for the open string field theory (see [27]). To find a “good” choice
of the homotopy operator is the key point in these arguments.
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Though Fukaya categories should give interesting geometric examples of
A∞-categories, it is still difficult to define them completely as A∞-categories
because of the problem of transversality of Lagrangians (see FOOO [11]). On
this point, it is plausible to expect that the Kontsevich–Soibelman argument
[36] derives a suitable Fukaya category from the DG category. The aim of
this article is to present the setup of deriving Fukaya categories from the DG
categories so that it works explicitly at least for the first few simple exam-
ples, X = R

2n, T 2n, etc. For the case X = R
2, the construction is given in

detail in [24]. In this article, we rather explain the background of the construc-
tion in [24]. Also, finally, we give an explicit example of a finite dimensional
A∞-algebra obtained as a full subcategory of the Fukaya category on T 2.

This article is organized as follows. In Section 2, we recall terminologies for
A∞-categories and HPT. In Section 3, we briefly review Morse theory, Morse
homotopy and its relation to a Fukaya category. In particular, a relation of
Morse theory to the de Rham theory given by Harvey and Lawson [18] is
recalled in Section 3.1, which plays a key role in our discussions. In Section
4, we recall the easy part, transversal A∞-products, in the Fukaya category
of lines in R

2 according to [24]. Section 5 is the main part of this article,
where we discuss a general approach to HMS via HPT with some insight from
Section 3.1. It is then applied to our special example, the Fukaya category of
lines in R

2, and we explain how this thought leads to the construction of the
A∞-structure in [24], i.e., how the technical formulation there to determine
nontransversal A∞-products is natural. Finally, in Section 6, we present an
example of a finite dimensional (cyclic) A∞-algebra, which should be a full
subcategory of the Fukaya A∞-category of a two-torus and is obtained by
applying the argument in the previous section to the case of two-tori.

Throughout this article, by (graded) vector spaces we indicate those over
fields k = R. Also, we denote i :=

√
−1, Zn := Z/nZ for an integer n, and M

stands for an n-dimensional (compact) Riemannian manifold (M, g).
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2 A∞-categories and their homotopical properties

2.1 A∞-algebras and A∞-categories

Definition 2.1 (A∞-algebra [46, 47]) An A∞-algebra (V,m) consists of a
Z-graded vector space V := ⊕r∈ZV r with a collection of multilinear maps
m := {mn : V ⊗n → V }n≥1 of degree (2 − n) satisfying

0 =
∑

k+l=n+1

k−1∑

j=0

(−1)σ mk(w1, . . . , wj ,ml(wj+1, . . . , wj+l), wj+l+1, . . . , wn)

(1)
for n ≥ 1 with homogeneous elements wi ∈ V |wi|, i = 1, . . . , n, where σ =

(j + 1)(l + 1) + l(|w1|+ · · ·+ |wj |).

That the multilinear map mk has degree (2 − k) indicates the degree of
mk(w1, . . . , wk) is |w1|+· · ·+|wk|+(2−k). The A∞-relations include (m1)2 = 0
for n = 1, the Leibniz rule of the differential m1 with respect to the product
m2 for n = 2, and the associativity of m2 up to homotopy for n = 3. In
particular, the product m2 is strictly associative if m3=0.

Definition 2.2 An A∞-algebra (V,m) with higher products all zero, m3 =
m4 = · · · = 0, is called a differential graded algebra (DGA).

Let s : V r → (V [1])r−1 be the suspension and T c(V [1]) := ⊕k≥1(V [1])⊗k the
tensor coalgebra of V [1]. By the suspension, the A∞-structure

∑
k mk turns

out to be a degree one multilinear map
∑
k mk ∈ Hom(T c(V [1]), V [1]), which

is lifted to be a coderivation m ∈ Coder(T c(V [1])) satisfying (m)2 = 0. Thus,
an A∞-algebra (V,m) is equivalent to a DG coalgebra (T c(V [1]),m).

Remark 2.3 By the one-to-one correspondence between Hom(T c(V [1]), V [1])
and Coder(T c(V [1])), the Gerstenhaber bracket in Hom(T c(V [1]), V [1]) is de-
scribed by the graded commutator of coderivations in Coder(T c(V [1])). Then,
Coder(T c(V [1])) with the commutator and the differential D := [m, ] forms a
DG Lie algebra, which controls deformation of the A∞-structure m [48].

The coalgebra description is simpler in sign, so we define morphisms between
A∞-algebras in this framework.

Definition 2.4 (A∞-morphism) Given two A∞-algebras (V,m) and
(V ′,m′), a collection of degree-preserving (= degree zero) multilinear
maps G := {gk : (V [1])⊗k → V ′[1]}k≥1 is called an A∞-morphism
G : (V,m) → (V ′,m′) if and only if G gives a map of DG coalgebras:

G ◦m = m′ ◦ G, (2)

where m and m′ are the codifferentials on T c(V [1]) and T c(V ′[1]), respec-
tively, and G : T c(V [1]) → T c(V ′[1]) is the coalgebra homomorphism whose
restriction onto V ′[1] ⊂ T c(V ′[1]) is given by

∑
k≥1 gk. (Such a coalgebra

homomorphism is determined uniquely.)
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The definition, in particular, implies that g1 : V [1]→ V ′[1] forms a chain map
g1 : (V [1],m1)→ (V ′[1],m′

1).

Definition 2.5 An A∞-morphism G : (V,m) → (V ′,m′) is called an
A∞-quasi-isomorphism if and only if g1 : (V [1],m1) → (V ′[1],m′

1) in-
duces an isomorphism between the cohomologies of these two complexes. In
this situation, we say (V,m) is homotopy equivalent to (V ′,m′) and call the
A∞-quasi-isomorphism G : (V,m)→ (V ′,m′) a homotopy equivalence.

A justification to call it a homotopy equivalence is given by HPT; see the next
subsection.

We need the categorical version of these terminologies.

Definition 2.6 (A∞-category [7]) An A∞-category C consists of a set of
objects Ob(C) = {a, b, . . . }, a Z-graded vector space Vab := HomC(a, b) for
each two objects a, b ∈ Ob(C) and a collection of multilinear maps

m := {mn : Va1a2 ⊗ · · · ⊗ Vanan+1 → Va1an+1}n≥1

of degree (2− n) satisfying the A∞-relations (1).
In particular, an A∞-category C with higher products all zero, m3 = m4 =

· · · = 0, is called a DG category.

The suspension s(C) of an A∞-category C is defined by the shift

s : HomC(a, b)→ s(HomC(a, b)) =: Homs(C)(a, b)

for any a, b ∈ Ob(C) = Ob(s(C)), where the degree |mn| of the A∞-products
becomes one for all n ≥ 1 as in the case of A∞-algebras.

Definition 2.7 (A∞-functor) Given two A∞-categories C, C′, an A∞-
functor G := {g; g1, g2, . . . } : s(C)→ s(C′) is a map g : Ob(s(C)) → Ob(s(C′))
of objects with degree-preserving multilinear maps

gk : Homs(C)(a1, a2)⊗ · · · ⊗Homs(C)(ak, ak+1) → Homs(C′)(g(a1), g(ak+1))

for k ≥ 1 satisfying the defining relations of an A∞-morphism (2).
In particular, if g : Ob(s(C)) → Ob(s(C′)) is bijective and g1 :

Homs(C)(a, b) → Homs(C′)(g(a), g(b)) induces an isomorphism between the
cohomologies for any a, b ∈ Ob(s(C)), we call the A∞-functor a homotopy
equivalence.

2.2 Homological perturbation theory (HPT) for A∞-structures

For a DG algebra A, HPT starts with what is called strong deformation retract
(SDR) data [15, 16, 17, 20]:

( B
ι ��

A
π

�� , h), (3)
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where (B, dB := π ◦ dA ◦ ι) is a complex with chain maps ι and π so that
π ◦ ι = IdB and h : A→ A is a contracting homotopy satisfying

dAh + hdA = IdA − P, P := ι ◦ π. (4)

By definition, P is an idempotent in A which commutes with dA, PdA = dAP .
If dP = 0, then the SDR (3) gives a Hodge decomposition of the complex
(A, dA), where P (A) � H(A) gives the cohomology.

The next step is the “tensor trick” [16, 17, 20]; the SDR data (3) can be
lifted to the one on coalgebras:

( T c(B[1])
ι �� T c(A[1])
π

�� , h),

where we used the same notation ι, π for those lifted to the coalgebra maps and
then h is the contracting homotopy on T c(A[1]). Let m be the codifferential
on T c(A[1]) obtained by the lift of the DGA structure m1 := dA and m2. The
HPT, as in the sense of [16, 17, 20], states that a codifferential, i.e., an A∞-
structure m′, is induced on T c(B[1]) so that the coalgebra maps ι and π can
be perturbed to be DG-coalgebra maps together with a contracting homotopy
which is also obtained by perturbing h.

There is a way to construct such an A∞-structure m′ on B together with
an A∞-quasi-isomorphism G : (T c(B[1]),m′) → (T c(A[1]),m), the perturbed
ι (see [17, 20]). First, a collection of degree zero maps G = {gl : (B[1])⊗l →
A[1]}l≥1 is defined recursively with respect to k as

gk = −h
∑

k1+k2=k

m2(gk1 ⊗ gk2), k ≥ 2, (5)

with g1 := ι : B[1] → A[1] the inclusion. Then, m′ = {m′
k : (B[1])⊗k →

A[1]}k≥1 is given recursively by

m′
k = π

∑

k1+k2=k

m′
2(gk1 ⊗ gk2), k ≥ 2, (6)

with m′
1 := dB.

This G in Eq. (5) is in fact an A∞-quasi-isomorphism. For the case B �
H(A), the induced higher products m′ can be thought of as a generalization
of (higher) Massey products.

The A∞-structure m′ can also be described in terms of rooted planar trees
as follows (due to [36]).

A rooted planar tree is a simply connected planar graph consisting of
vertices, internal edges and external edges, where an external edge is dis-
tinguished as the root edge from the remaining external edges called leaves
(see [40]). The number of incident edges at a vertex is greater than two. A
k-vertex, k ≥ 2, is a vertex at which the number of incident edges is (k + 1).
By a k-tree, we mean a rooted planar tree having k leaves. For k ≥ 2, the
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set of the isomorphism classes of k-trees is denoted Gk. The subset consisting
of 2-vertices is denoted Gtri

k ⊂ Gk. Each edge of a planar rooted tree has a
unique orientation so that the orientations form a flow from the leaves to the
root edge. We sometimes indicate the orientation by arrows.

For any element Γn ∈ Gtri
n , n ≥ 2, let us define m′

Γn
: (B[1])⊗n → B[1]

by attaching ι : B[1] → A[1] to each leaf, m2 : A[1] ⊗ A[1] → A[1] to each
2-vertex, −h : A[1] → A[1] to each internal edge, π : A[1] → B[1] to the root
edge and then composing them. For example,

m′
Γ3

(b1, b2, b3)
= πm2(−hm2(ι(b1), ι(b2)), ι(b3)),

Γ3 =

for b1, b2, b3 ∈ B[1]. Then, {m′
n}n≥1 is given by m′

1 = dB and

m′
n =

∑

Γn∈Gtri
n

m′
Γn

(7)

for n ≥ 2. Thus, m′
n is described as the sum of the value m′

Γn
over all the

n-trees Γn ∈ Gtri
n . Similarly, {gn}n≥1 is given by g1 = ι and gn =∑

Γn∈Gtri
n

gΓn for n ≥ 2, where gΓn : (B[1])⊗n → A[1] is obtained by re-
placing π by −h in the definition of m′

Γn
.

If we start from an A∞-algebra (A,m), we may simply replace Gtri
k by Gn

and attach mk : (A[1])⊗k → A[1] to each k-vertex [36]. The generalization of
HPT to A∞-categories is also straightforward. In Section 5, we employ HPT
for a DG category with the SDR a Hodge–Kodaira decomposition.

2.3 Cyclic structure

A cyclic A∞-algebra (V, η,m) is an A∞-algebra (V,m) with a nondegenerate
symmetric bilinear map η : V ⊗ V → C of a fixed degree |η| ∈ Z satisfying

η(mn(w1, . . . , wn), wn+1) = ±η(mn(w2, . . . , wn+1), w1), n ≥ 1, (8)

for homogeneous elements w1, . . . , wn+1 ∈ V (see [41, 22] for the sign).
A cyclic A∞-category is an A∞-category C with a nondegenerate inner

product η : HomC(a, b) ⊗ HomC(b, a) → C of a fixed degree |η| ∈ Z for any
a, b ∈ Ob(C) which is symmetric, η(wab, wba) = (−1)|wab||wba|η(wba, wab) for
homogeneous elements wab ∈ HomC(a, b) and wba ∈ HomC(b, a), and satisfies
cyclicity conditions similar to Eq. (8) (see [41, 22]).

HPT can be applied also for cyclic A∞-algebras and cyclic A∞-categories.
In particular, the analog of gk in Eq. (5) gives a homotopy equivalence of
cyclic A∞-categories by starting with an SDR data being compatible with
the inner product [27].
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3 Morse theory and Morse homotopy

3.1 Morse theory in relation to de Rham theory

A Morse function f ∈ C∞(M) is a smooth function whose Hessian at each
critical point is nondegenerate. Let Crλ(f) be the set of critical points p such
that the number of negative eigenvalues of the Hessian at p is λ. For any
critical point p ∈ Crλ(f), λ = λ(p) is called the Morse index of p.

A gradient line of f from p ∈ Crλ(f) to q ∈ Crλ′(f), λ > λ′, is a map
γ : R →M defined by

dγ(t)
dt

= −grad(f(γ(t))), (9)

limt→−∞ γ(t) = p and limt→∞ γ(t) = q. The Morse complex (C•(f), ∂)
consists of the free abelian group Cλ(f) := ⊕p∈Crλ(f)Z[p] generated by
the bases [p] of Cλ(f) associated to the critical points p ∈ Crλ(f) with a
differential ∂ : Cλ(f)→ Cλ−1(f) defined by

∂([p]) =
∑

q∈Crλ(p)−1(f)

〈p, q〉 · [q],

where 〈p, q〉 ∈ Z is given by counting the number of gradient lines from p
to q with an appropriate sign (cf. [3, 18]). When f is generic (that satisfying
the Smale condition), the homology of the Morse complex is known to be
isomorphic to the homology of M .

By using Eq. (9), one can define the gradient flow ϕt : M →M , t ∈ R, of f
by the correspondence γ(0) �→ γ(t). To each p ∈ Crλ(f), there are associated
stable manifolds Sp and unstable manifolds Up defined by

Sp = {x ∈ M | lim
t→−∞ϕt(x) = p }, Up = {x ∈ M | lim

t→∞ϕt(x) = p }.

They are contractible submanifolds of dim(Sp) = λ(p) and dim(Up) = n−λ(p).
Then, the differential ∂ on [p] is also understood as the boundary operator on
the closer S̄p of Sp.

E. Witten [50] gave an elegant interpretation about the relation between
the homology of the Morse complex and the de Rham cohomology of the
same smooth manifold M . (See also Bott’s survey [3].) Let Ω := ⊕nr=0Ω

r(M)
be the space of smooth differential forms on M . For the exterior derivative
d : Ωr(M) → Ωr+1(M) and the adjoint operator d∗ : Ωr(M) → Ωr−1(M),
the kernel of the Laplacian Δ := dd∗ + d∗d : Ωr(M) → Ωr(M), which is the
zero-eigenspace of Δ, gives a representative of the cohomology Hr(M, R). For
a Morse function f of M , Witten introduced the operator

ds := e−sfdesf , s ∈ R≥0,

the adjoint d∗s := esfd∗e−sf and then the corresponding Laplacian

Δs := dsd
∗
s + d∗sds.
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Since the cohomology of ds is independent of s, let us consider very large s.
One can see that the eigenspaces of Δs with very small eigenvalues are gen-
erated by differential forms localized at the critical points of f , where the
differential d of the Morse complex is interpreted by the instantons between
the vacua, i.e., the critical points (see [3]). Remember that, in this large s
limit, d∗s = esfd∗e−sf = d∗ + sιgrad(f) “approaches” the inner derivative of
the gradient flow up to the constant s.

Another interesting relation of Morse theory to the de Rham theory was
discussed by Harvey and Lawson [18]. First, for a chain complex (A :=
⊕r∈ZAr, dA), consider a degree minus one linear map d†A : Ar → Ar−1 and
define a map ψt : Ar → Ar, t ∈ R≥0, by ψ0 := IdA and

dψt
dt

= −HAψt, HA := dAd†A + d†AdA. (10)

The map ψt is formally given by

ψt = exp(−tHA) = 1− tHA +
t2

2!
H2
A − · · · ,

so ψt commutes with dA, ψtdA = dAψt. Integrating Eq. (10) with respect to t
yields

IdA − ψt = (dAht + htdA), ht :=
∫ t

0

dt′ψt′ d
†
A. (11)

In particular, if ϕt : M → M , t ∈ [0,∞), ϕ0 = Id, is a flow of a vector
field X ∈ TM , then differentiating the pullback ϕ∗

t : Ωr(M) → Ωr(M) with
respect to t gives Eq. (10) with A = Ω(M), ψt = ϕ∗

t and −HA = LX :=
dιX + ιXd, the Lie derivative of X . Harvey and Lawson consider the case ϕt
is the gradient flow of −f . Here we flip the sign compared to Eq. (9) in order
to correspond the geometric flow in Eq. (9) to the “algebraic” flow given by
its pullback. They asked whether the limit t → ∞ exists or not. The answer
is positive if we extend Ω(M) to the space D′(M) of currents. It is known
by the de Rham theorem that the natural inclusion I : Ωr(M) → D′r(M),
r = 0, ..., n, induces an isomorphism on the cohomologies.

Theorem 3.1 (Harvey–Lawson [18, Theorem 4.1]) For generic f , one
has

dh + hd = I−P, (12)

where h := h∞ = −
∫∞
0

dtϕ∗
t ιgrad(f) : Ωr(M) → D′r−1(M), P :=

limt→∞ ϕ∗
t : Ωr(M) → D′r(M). Furthermore, for any α ∈ Ωr(M), P(α)

is given by

P(α) =
∑

p∈Cr(f)

(∫

Up

α

)

[Sp],

where
∫
Up

α = 0 if r �= n− λ(p).
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Since by Eq. (12) dP = Pd holds, the restriction of the operation d : D′(M)→
D′(M) onto P(Ω(M)) is well-defined, and one has a quasi-isomorphism

(Ω(M), d) � (P(Ω(M)), d).

In particular, the complex (P(Ω(M)), d) is isomorphic to the dual Morse
complex (C•(f), d) defined by

Cr(f) := Hom(Cn−r(f), Z) ( � Cr(−f) )

with the differential d being induced from the one in (C•(f), ∂). The corre-
spondence is clear by the realization of the differential ∂ as the boundary
operator on S̄p.

Roughly speaking, compared to Witten’s approach, this Harvey–Lawson
situation corresponds to fixing d, instead of ds, and considering very large s
for d†s with a Morse function −f . As we explain later, another combination,
ds with s = 1 and large s limit for d†s, provides us with a solution for HMS.

3.2 Morse homotopy and Fukaya category

Morse homotopy [7, 10] deals with many functions on M . This enables us to
discuss (higher) products on M in a geometric way as the de Rham theory, an
algebraic formulation, has the wedge product and the cup product in its co-
homology. These higher products are associated to rooted planar trees, which
is the key point in discussing their relation to HPT.

For convenience, in this section, we attach an external (= a leaf or the root)
vertex to the free end of each external edge of a k-tree and denote it by the
same notation Γk ∈ Gk. Any k-tree Γk can be embedded into a disk D so that
all the external vertices are on the boundary ∂(D) of the disk D cyclically.
Let (z12, . . . , zk(k+1), z(k+1)1) be the external vertices on ∂(D), where z(k+1)1

is the root vertex. Then, the disk is separated into (k +1)-regions by the tree.
Denote by ∂i(D) the boundary piece in ∂(D) having endpoints z(i−1)i and
zi(i+1), where we identify i and i + (k + 1) and then let i ∈ Zk+1. We attach
the number i to the region including ∂i(D). For any (internal or external) edge
e of Γk, we denote by r(e) ∈ Zk+1 (resp. l(e) ∈ Zk+1) the number attached to
the region right (resp. left) to the edge e with respect to the orientation on e.

First, we recall a Morse homotopy. Let f := (f1, . . . , fk+1) be smooth
functions on M . Assume that fi − fi+1 is a Morse function for each i ∈
Zk+1. We fix a critical point pi(i+1) ∈ Cr(fi − fi+1) for each i and denote
p := (p12, . . . , pk(k+1), p(k+1)1). The moduli space Mg(M, f ,p) consists of
pairs (Γk, γ), where Γk ∈ Gk and γ : Γk → M is a continuous map such
that γ(zi(i+1)) = pi(i+1), i ∈ Zk+1, and, for each edge e and an orientation
preserving identification e ⊂ R, γ|e is included in a gradient line (9) of fr(e)−
fl(e). Then, for generic f1, ..., fk+1 ∈ C∞(M), Mg(M, f ,p) is a C∞-manifold
of dimension
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n−
∑

i∈Zk+1

(n− λ(pi(i+1))) + (k − 2), (13)

where λ(pi(i+1)) is the Morse index of pi(i+1) ∈ Cr(fi− fi+1), and the natural
projection π :Mg(M, f ,p)→ Gk is a smooth map [10].

The category Ms(M) of Fukaya–Oh Morse homotopy [7, 10] is defined
as follows. The objects are smooth functions f ∈ C∞(M). If the difference
fab := fa− fb of two functions fa, fb ∈ C∞(M) is a Morse function, the space
HomMs(M)(a, b) of morphisms is set to be the dual Morse complex C•(fab).
The (transversal) A∞-structure on Ms(M) is defined by

mk([pa1a2 ], . . . , [pakak+1 ]) =
∑

p∈Cr(fa1ak+1 )

∑

(Γk,γ)∈Mg(M,f ,p)

±[p], (14)

where [pab] is a base of C•(fab) associated to a critical point pab ∈ Cr(fab), f =
(fa1 , . . . , fak+1) and p = (pa1a2 , . . . , pakak+1 , p). Here the degree deg([paiai+1 ])
of [paiai+1 ] is n − λ(paiai+1). To p ∈ Cr(fa1ak+1) are associated two bases
[p] ∈ C•(fa1ak+1) and [p]∗ ∈ C•(fak+1a1) such that deg([p]) + deg([p]∗) = n.
Recall that mk is of degree (2 − k); by comparing the degree counting
with Eq. (13) one sees that Mg(M, f ,p) in Eq. (14) is zero-dimensional
and the summation

∑
(Γk,γ)

is well-defined. Remember that, for generic f ,
the A∞-structure is given by an element Γk ∈ Gtri

k .
Next, we discuss the corresponding Fukaya category. For given generic

functions fi, i ∈ Zk+1, the graph dfi ∈ Γ (T ∗M) defines a Lagrangian sub-
manifold which we denote by Li. The intersections of two generic Lagrangian
submanifolds Li and Li+1 of fi and fi+1 are points. We denote Li(i+1) :=
Li ∩ Li+1.

Let Mk+1 be the moduli space of a disk D with cyclic ordered
(k + 1) points z12, . . . , z(k+1)1 ∈ ∂(D). For generic fi, i ∈ Zk+1, let
v := (v12, . . . , vk(k+1), v(k+1)1), vi(i+1) ∈ Li(i+1), be a sequence of intersection
points. The moduli space MJ(T ∗M, f ,v) consists of the pairs (z, φ), where
z ∈ Mk+1 and φ : D → T ∗M is a map satisfying the following conditions:

• φ(zi(i+1)) = vi(i+1) and φ(∂i(D)) ⊂ Li for each i ∈ Zk+1,
• J ◦ Tφ = Tφ ◦ J , where J : TD → TD is a holomorphic structure on D

and J : T (T ∗M)→ T (T ∗M) is the canonical almost complex structure on
T ∗M associated to the metric g.

Then, MJ(T ∗M, f ,v) is a C∞-manifold of dimension

n−
∑

i∈Zk+1

(n− λ(vi(i+1))) + (k − 2)

and there is a natural map MJ(T ∗M, f ,p) →Mk+1 [10].
The Fukaya category Fuk(T ∗M) is defined as follows. The objects are

Lagrangian submanifolds La ⊂ T ∗M of graphs dfa. The space of morphisms
is set to be HomFuk(T∗M)(a, b) := ⊕vab∈Lab

Z[vab], where [vab] is the base
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associated to the intersection point vab ∈ Lab. The projection x : T ∗M → M
induces a bijection between Lab and Cr(fab) and then HomFuk(T∗M)(a, b) �
C•(fab); the degree of [vab] is defined by this isomorphism.1 The (transversal)
A∞-structure mk, k ≥ 1, is given in a similar way as Eq. (14):

mk([va1a2 ], . . . , [vakak+1 ]) =
∑

v∈La1ak+1

∑

(z,φ)∈MJ (T∗M,f ,v)

±[v], (15)

where v = (va1a2 , . . . , vakak+1 , v). The equivalence of the category Ms(M)
with the Fukaya category Fuk(T ∗M) on T ∗M , though intuitively being given
by the embedding of each k-tree Γk into a disk D as we did and the projection
x : T ∗M → M , follows from the following.

Theorem 3.2 (Fukaya–Oh [10]) For generic f , one has an oriented diffeo-
morphism

Mg(M, f ,p) �MJ(T ∗M, f ,p).

In the above constructions, we considered transversal A∞-products only,
where one sees that the cyclicity in the sense of Section 2.3 is manifest.

The A∞-structure Eq. (15) was further modified by Kontsevich [34] by
multiplying e−

∫
D
φ∗ω, where

∫
D

φ∗ω is the symplectic area of the disk φ(D).
The complexes are then defined over R. This modified version is what we
shall discuss, and our interest is the corresponding modification for the Morse
homotopy side. In the rest of this article, we denote vab := [vab].

4 Fukaya category of lines in a plane

For a fixed integer N ≥ 2, let {f1, . . . , fN} be a set of polynomial functions
on R of degree equal or less than two. For each a ∈ {1, . . . , N}, y = dfa/dx is
a line La in R

2 with coordinates (x, y) described as

La : y = μax + νa, μa, νa ∈ R.

Let FN be a collection {f1, . . . , fN} satisfying the following two conditions:

(i) For any a �= b = 1, . . . , N , the slopes are different from each other: μa �= μb.
(ii)More than two lines do not intersect at the same point in R

2.

We shall construct an A∞-category C(FN ) with FN the set of objects in the
next subsection. In order that C(FN) would be called a Fukaya category, the
following two conditions should be satisfied:

(C1) For any two objects a �= b ∈ FN , the space HomC(FN )(a, b) =: Vab of
morphisms is the following graded vector space of degrees zero and one:

1 Originally, these degrees in Fukaya categories are defined by the Maslov indices;
which consequently coincide with the one defined via the Morse indices [10].
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V 0
ab = R · vab, V 1

ab = 0, μa < μb,

V 0
ab = 0, V 1

ab = R · vab, μa > μb.

Here, vab are the bases associated to the intersection points vab ∈ Lab.
(C2) Let a1, . . . , ak+1 ∈ FN , k ≥ 1, be objects such that ai �= aj for any

i �= j ∈ Zk+1 and v := (va1a2 , . . . , vakak+1 , vak+1a1) the sequence of points.
Then, for k = 1, the differential m1 : Va1a2 → Va1a2 is trivial, m1 = 0. For
k ≥ 2, the structure constant c(v) ∈ R for the higher A∞-product

mk(va1a2 , . . . , vakak+1) = c(v) · va1ak+1 (16)

is given by c(v) = ±e−Area(v) if v does not form a clockwise convex (CC)
polygon and zero otherwise, where Area(v) is the area of the CC-polygon.

We call an A∞-product mk, k ≥ 2, of the type in (C2) transversal and that of
the other type nontransversal. For a sequence v = (va1a2 , . . . , vakak+1 , vak+1a1)
of intersection points, hereafter the degree of the point vaiai+1 , i ∈ Zn+1,
indicates the degree |vaiai+1 | of the associated elements vaiai+1 ∈ Vaiai+1 .

Let us observe briefly how the formula (16) is compatible with the A∞-
constraint (1) and why we need nontransversal A∞-products. First, the for-
mula mn(va1a2 , . . . , vanan+1) for the transversal A∞-products in Eq. (16) is
compatible with that the degree of mn should be (2− n). Indeed, for the CC

Fig. 1. A clockwise convex polygon (CC-polygon) v = (va1a2 , . . . , vanan+1 , van+1a1)

(n + 1)-gon v := (va1a2 , . . . , vanan+1 , van+1a1), if we clockwisely count the de-
grees of the points vaiai+1 , i ∈ Zn+1, only those of the left and right extrema
have degree zero and the remaining (n+1)−2 points have degree one (Fig. 1).
Thus, one has ∑

i∈Zn+1

|vaiai+1 | = (n + 1)− 2,

which implies that the degree of mn is (2−n), since |va1an+1 | = 1−|vvan+1a1
|.
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The A∞-constraints for transversal A∞-products have a geometric inter-
pretation in terms of a clockwise polygon having one nonconvex vertex of the
polygon. There exist two ways to divide the polygon into two convex poly-
gons. The corresponding terms then appear with opposite signs and cancel
each other in the A∞-constraint. For example, in Fig. 2, consider the polygon

Fig. 2. A clockwise polygon which has one nonconvex vertex vef

consisting of the sequence (vab, vbc, vcd, vde, vef , vfg, vgh, vhi) of points. We see
that this polygon is nonconvex at vef . The area X + Y + Z is divided into
two by (i) X + (Y + Z) or (ii) (X + Y ) + Z, to which are associated the
compositions of transversal A∞-products:

(i)±m5(vab,m4(vbc, vcd, vde, vef ), vfg, vgh, vhi),
(ii)±m6(vab, vbc, vcd, vde,m3(vef , vfg, vgh), vhi),

where m4(vbc, vcd, vde, vef ) = ±e−Xvbf , m5(vab, vbf , vfg, vgh, vhi) = ±e−(Y+Z)

vai, etc. Since a transversal A∞-product can be nonzero only if the correspond-
ing polygon forms a CC-polygon, there does not exist any other composition
of A∞-products, and one has

±m5(vab,m4(vbc, vcd, vde, vef ), vfg, vgh, vhi) = ±e−X−(Y+Z)vai

= ±e−(X+Y )−Zvai = ±m6(vab, vbc, vcd, vde,m3(vef , vfg, vgh), vhi),

which is just the A∞-constraint (1) on (vab, vbc, vcd, vde, vef , vfg, vgh, vhi).
Next, in Fig. 2, let us consider the sequence (vab, vbf , vfe, vef , vfg, vgh, vhi)

and the corresponding A∞-constraint. There exists a composition

m5(vab, vbf , vfe,m3(vef , vfg, vgh), vhi) = e−(Y+Z)vai

of two transversal A∞-products. The A∞-constraint (1) then implies that
this composition cancels with other terms. However, there does not exist



Homological Perturbation Theory and Homological Mirror Symmetry 215

any more composition of two nonzero transversal A∞-products on the se-
quence (vab, vbf , vfe, vef , vfg, vgh, vhi). This shows the necessity of nonzero
nontransversal A∞-products. For the A∞-category C(FN ) we shall construct,
one has m2(vfe, vef ) = δvfe

∈ V 1
ff and then obtain the A∞-constraint

m5(vab, vbf , vfe,m3(vef , vfg, vgh), vhi)
= m6(vab, vbf ,m2(vfe, vef ), vfg, vgh, vhi).

5 Deriving A∞-structures on Fukaya categories

We first define a DG category CDR(M) which is expected to derive a Fukaya
A∞-category on T ∗M . We set Ob(CDR(M)) := C∞(M). For two objects
fa, fb ∈ C∞(R), the space of morphisms HomCDR(a, b) is set to be the
space Ω(M) of smooth differential forms, where we set the differential dab :
HomCDR(a, b)→ HomCDR(a, b) as

dab := d− d(fab)∧ = efab d e−fab .

The composition of morphisms is the wedge product of differential forms.
Clearly, CDR(M) forms a DG category.

For a �= b ∈ FN , assume that fab is a Morse function, and let us apply
Eq. (10) with A = Ω(M), dA = dab and

d†A = d†ab := −ιgrad(fab).

Since H := dabd
†
ab + d†abdab = −efabLgrad(fab)e

−fab , one obtains a modified
version of the Harvey–Lawson one in Theorem 3.1 by efab :

hab = −
∫ ∞

0

dtefabϕ∗
t (e

−fab ιgrad(fab)), Pab = lim
t→∞ efab ϕ∗

t e−fab , (17)

where ϕt : M → M is the gradient flow of −fab. At least for transversal
A∞-products, this is expected to lead to the correct structure constant of the
A∞-structure; via HPT, a modification of the A∞-category Ms(M) of Morse
homotopy given as in [36] is derived, which is further equivalent to a Fukaya
category having e−

∫
D
φ∗ω as the coefficients of transversal A∞-products.

However, as in the case in Theorem 3.1, this Pab in Eq. (17) is a map from
Ω(M) not to Ω(M) itself but to D′(M). Thus, we need some modification of
the story. A natural way may be to modify h as hε with a parameter ε such
that dDRhε + hεdDR = Id − Pε holds on Ω(M) if ε �= 0 and limε→0 hε = h.
Then, we may apply HPT with contracting homotopy hε, ε �= 0, construct
the induced A∞-products, and finally take the limit ε → 0.2 We propose the
following modification: define d†ε;ab : Ωr

ab → Ωr−1
ab , ε ∈ (0, 1], as

2 A general approach to such a modification hε is discussed in [36].
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d†ε;ab = ε d∗ − ιgrad(fab) (= ε · e−
fab

ε d∗e
fab

ε )

and then HA = Hε := dabd
†
ε;ab + d†ε;abdab. Since this Hε defines an elliptic

operator called a generalized Laplacian, the limit t → ∞ of ψt and ht of
Eq. (10) exists [2], which gives an SDR data.

Now, let us discuss the case M = R in some detail, where we set
g(d/dx, d/dx) = 1. Let Ω(R) := Ω0(R) ⊕ Ω1(R) be the graded vector
space defined by Ω0(R) := S(R), the space of Schwartz functions, and
Ω1(R) := S(R) · dx, where dx is the base of one-form on R. We consider
the set FN of N lines in Section 4, and consider the DG category CDR(FN )
with FN the set of objects, where HomCDR(FN )(a, b) := Ω(R).

Theorem 5.1 ([24]) There exists an A∞-category which satisfies Conditions
(C1) and (C2) and is homotopy equivalent to CDR(FN ).

In the rest of this section, we explain the rough idea on how to construct such
a Fukaya A∞-category C(FN). For the precise formulation, see [24].

For any a ∈ FN , the graph dfa of fa is a line La in R
2 � T ∗

R. Then,
for any a �= b ∈ FN , the intersection point vab of La and Lb is only one and
so is the critical point pab = x(vab) of fab. Furthermore, Hε := dabd

†
ε;ab +

d†ε;abdab in fact has only nonnegative real eigenvalues. In particular, H1 gives
a Hamiltonian of a harmonic oscillator. For any ε, the corresponding Hodge–
Kodaira decomposition dabhε;ab + hε;abdab = IdΩab

− Pε;ab gives

Pε;abΩ
0
ab = Ker(dab : Ω0

ab → Ω1
ab), Pε;abΩ

1
ab = Ker(d†ε;ab : Ω1

ab → Ω0
ab).

We set bases eε;ab of Pε;abΩ
r
ab, r = 0, 1, as follows. If μa < μb, then it is a

Gaussian:
eε;ab = const · efab ,

where the “const” is normalized so that eε;ab(x(vab)) = 1. On the other hand,
if μa > μb, it is a Gaussian one-form:

eε;ab = const · e− 1
ε (fab)dx

normalized so that
∫∞
−∞ eε;ab = 1, which approaches to the delta function

one-form localized at the point x(vab) in the limit ε → 0. Thus, in the limit
ε → 0, the base eε;ab is thought of [Sx(vab)] multiplied by the weight efab ,
where Sx(vab) = R for deg(eε;ab) = 0 and Sx(vab) = x(vab) for deg(eε;ab) = 1.

Let us observe how, in the limit ε → 0, hab acts on a delta function one-
form. By Eq. (17), it turns out that

hab(δ(x − p)dx) = −efab(x)−fab(p)

∫ ϕ∞(x)

ϕ0(x)

d(ϕt(x)) δ(ϕt(x)− p).

This is a step function multiplied by efab . For instance, for μa < μb and
x(vab) < p, one has the one as in Fig. 3.
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Fig. 3. hab(δ(x− p)dx) is a step function multiplied by efab

Now, let us apply HPT to the DG category CDR(FN ) and derive some
examples of the A∞-products {mn} of C(FN ) under the identifications

limε→0 Pε;abΩab ←→ HomC(FN )(a, b) = Vab,

limε→0 eε;ab = eab ←→ vab

for any a �= b. Here, if a = b, there is no natural choice of the Hodge
decomposition, so we set haa = 0. We denote the product in C′DR(FN ) by
m.

Example 1 Let us consider a transversal A∞-product m3(eab, ebc, ecd) such
as |vab| = |vcd| = 0, |vbc| = 1, x(vab) < x(vbc) < x(vda) < x(vcd) (Fig. 4). The
HPT implies

m3(eab, ebc, ecd) = + . (18)

On the other hand, one can associate a planar tree graph to the CC-polygon
v as follows. First, connect two points vab, vcd of v of degree zero with an
interval. For each point of v of degree one, draw an interval (external edge
= leaf) which is perpendicular to the x-axis, starts from the point, and ends
on the interval (vabvcd). Choosing the interval starting from the point vda as
the root edge, one obtains a planar rooted tree as in Fig. 4. One can see that
the resulting planar rooted tree corresponds to the one in the first term of the
right-hand side of Eq. (18). The second term of the right-hand side of Eq. (18)
in fact vanishes and the first term derives the area Area(v). The first term
is calculated as follows. As in Fig. 4, we divide the CC-polygon v into three
by the two lines which are perpendicular to the x-axis and pass through vbc or
vda. The areas between x(vab) and x(vbc), x(vbc) and x(vda), x(vda) and x(vcd)
are denoted X, Y , Z, respectively. First, one gets m(eab, ebc) = ±e−Xδvbc

.
We know hacδvbc

= ±efac−fac(x(vbc)) · ϑvbc
. Then, Padm(−hacδvbc

, ecd) is ead
times the value of the product of −hacδvbc

and ecd at the point x(vda) ∈ R:

Padm(−hacδvbc
, ecd) = ±

(
efac(x(vda))−fac(x(vbc)) · efcd(x(vda))−fcd(x(vcd))

)
· ead

= ±
(
e−Y · e−Z

)
· ead,

where we note that fac(x(vbc)) − fac(x(vda)) = Y and fcd(x(vcd)) −
fcd(x(vda)) = Z. Combining all these together, we obtain the first term
on the right-hand side of Eq. (18): ±e−X−(Y+Z)ead.
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Fig. 4. CC-polygon v = (vab, vbc, vcd, vda)

Thus, HPT machinery defines a higher product mk in terms of the sum of
values associated to planar rooted k-trees over all the k-trees, but only the
one compatible with the k-tree associated to the corresponding CC-polygon
survives and produces the area of the CC-polygon.

Example 2 Consider the nontransversal A∞-product m4(eab, ebc, ecd, eda)
with |vbc| = |vcd| = 0, |vab| = 1, x(vbc) < x(vab) < x(vda) < x(vcd) as in
Fig. 5. This is again given as the sum of the values associated to trivalent
planar rooted 4-trees via HPT. On the other hand, the 4-tree corresponding to
the CC-polygon v is obtained as follows. Connect the two degree zero points
vbc and vcd with an interval. For each degree one point vab or vda, draw an
interval which is perpendicular to the x-axis, starts from the point and ends
on the interval (vbcvcd). Then, we add the root edge which, perpendicularly
to the x-axis, starts from a point on the interval (vbcvcd) between x(vab) and
x(vda) and ends on the interval (vabvda) (Fig. 5).

In fact, only the multilinear map corresponding to this 4-tree is nonzero
and it turns out to be ±e−(X+Y+Z)(ϑvab

−ϑvda
), where ϑv, x(v) ∈ R, denotes

the step function on R such that ϑv(x) = 0 for x < x(v) and ϑv(x) = 1 for
x > x(v).

Now, the step functions ϑv, v ∈ {vab}b∈FN\{a}, appear, which should be in-
cluded as elements in V 0

aa. Then, d(ϑv) will be a delta function one form with
support x(v). Thus, for each a ∈ FN , we introduced a DGA Vaa generated
by “step functions” and “delta function one forms” in [24, Definition 3.3].
The algebraic structure on Vaa is defined so that it is natural as the limit
δvab

:= limε→0 eε;abeε;ba and ϑvab
(x) := limε→0

∫ x
−∞ eε;abeε;ba. Then, any other

nontransversal A∞-products can be calculated. The following is a typical ex-
ample of them.
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Fig. 5. CC-polygon v = (vab, vbc, vcd, vda)

Example 3 Consider the nontransversal A∞-product

m1+d+1(eab, (ebc)⊗d, ecd) := m1+d+1(eab,

d
︷ ︸︸ ︷
δvbc

, . . . , δvbc
, ebc, δvbc

, . . . , δvbc
, ecd)

in the same situation as Example 1 for eab, ebc, ecd but we have a d-tuple
of elements associated to the point vbc. In fact, the result is indepen-
dent of the order of δvbc

’s and ebc. We obtain m1+d+1(eab, (ebc)⊗d, ecd) =
±(1/d!) e−(X+Y+Z)ead.

In [24], in order to proceed with the construction of C(FN) as above rig-
orously, we introduced other DG categories C′DR(FN ) and C̃DR(FN ) of the
same objects so that there exist inclusions ι : C′DR(FN ) → C̃DR(FN ) and
ι : CDR(FN ) → C̃DR(FN ) giving homotopy equivalences between them. Here,
the space HomC′

DR(FN )(a, b) is that generated by step functions and delta-
function one-forms multiplied by efab , and the space HomC̃DR(FN )(a, b) in ad-
dition includes smooth differential forms. Then, an SDR can be given explicitly
for C′DR(FN ) and HPT was applied directly there.

C(FN ) G→ C′DR(FN ) ι→ C̃DR(FN ) ι← CDR(FN ).

The intermediate DG category C′DR(FN ) also enabled us to show that all
the A∞-categories C(FN) are homotopy equivalent, being independent of the
slopes of the lines [24, Theorem 3.8]. However, as we see below, if we apply this
construction to T 2, the resulting Fukaya A∞-category on T 2 depends on them.

6 Finite-dimensional A∞-algebras from two-tori

We can apply the arguments in the previous section to the HMS of two-
tori. Namely, applying HPT to a DG category of holomorphic vector bundles
(or coherent sheaves in more general) on an elliptic curve (a two-torus with
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a fixed complex structure τ ∈ H) yields a Fukaya A∞-category on the mirror
dual symplectic two-torus T 2, where R

2 is the universal cover of T 2. For
the DG category, the one in the framework of noncommutative tori (with
noncommutativity being set to be zero) [21, 42, 22] fits with our purpose.3

In Section 6.1, we briefly recall this DG category and explain the relation
to CDG(FN ). In Section 6.2, we present a finite-dimensional A∞-algebra as a
subcategory of the Fukaya A∞-category of finitely many objects.

6.1 DG category for (noncommutative) elliptic curve

A noncommutative torus Aθ, θ ∈ R, is an algebra generated by two unitary
generators U1, U2 satisfying the relation U1U2 = e2πiθU2U1. We treat finitely
generated projective modules Eq,p,θ, called Heisenberg modules, equipped
with constant curvature connection, where (p, q) are pairs of relatively prime
integers. The numbers p and q are thought of as the noncommutative analogue
of the first Chern class and the rank, respectively. For p �= 0, the Heisenberg
module Ep,q,θ is given by

Ep,q,θ := S(R × Zp),

the |p| copies of S(R), where the (right) action of Aθ is given in an appropriate
way. For p = 0, the corresponding vector bundle can be thought of as a trivial
one, so we set E0,1,θ := Aθ, the free module.

According to A. Schwarz [45], introduce a complex structure τ ∈ H+ on
Aθ and a holomorphic structure ∇̄ on Ep,q,θ, which is given by

∇̄ :=
(

∇1 −
1
τ
∇2

)

dz̄ : Ep,q,θ → Ep,q,θ ⊗ dz̄,

where ∇1,∇2 : Ep,q,θ → Ep,q,θ is a constant curvature connection and dz̄ is
the formal base of anti-holomorphic one form. Note that any Ep,q,θ equipped
with a connection is lifted to be a holomorphic vector bundle in this way in
the case of a noncommutative analogue of two-dimensional torus. We denote
E := (E, ∇̄).

The space of morphisms between two holomorphic vector bundles Ea, Eb
is set to be the graded vector space Hom•(Ea, Eb) = HomAθ

(Ea, Eb) ⊕
HomAθ

(Ea, Eb) ·dz̄ with HomAθ
(Ea, Eb) the space of the module maps of the

underlying finitely generated projective modules Ea, Eb, where a differential
dab : HomAθ

(Ea, Eb)→ HomAθ
(Ea, Eb) · dz̄ is induced naturally by the holo-

morphic structures of Ea and Eb. However, when Ea and Eb are Heisenberg
modules, the space HomAθ

(Ea, Eb) is again isomorphic to a Heisenberg mod-
ule Epab,qab,θa with some pab, qab and θa so that EndAθ

(Ea) � Aθa , where the
differential dab coincides with the holomorphic structure ∇̄ab on Epab,qab,θa

3 For the relation of the noncommutative complex torus description and the usual
complex torus description, for instance see [42,23].
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[42, 22] (see [28]). Here, we set τ = i for simplicity, and compare the
commutative case θ = 0 with the DG category CDG(FN ) in the R

2 case.
We concentrate on Heisenberg modules Ep,q,0 with q �= 0 since otherwise the
Heisenberg module (rank zero vector bundle) cannot be defined for θ = 0. We
can conclude that, for pa/qa �= pb/qb, the space Hom(Ea, Eb) is the |pab| copies
of Ωab in CDG(FN ), where the differentials on both spaces are of the same form
under the identification of dz̄ with dx. On the other hand, for pa/qa = pb/qb,
say b = a, one has HomAθ=0(Ea, Ea) � EndAθ=0(Ea) � Aθa , which implies
that one has the identity morphism 1a ∈ Hom(Ea, Ea) and its “dual” degree
one element 1a · dz̄ ∈ Hom(Ea, Ea) as opposed to the case Ωaa of CDG(FN ).

Thus, the structures above form a DG category and, in addition, we have a
nondegenerate pairing between Hom(Ea, Eb) and Hom(Eb, Ea) for any Ea and
Eb, which gives a cyclic structure on the DG category. In the case CDG(FN ),
clearly the space Ωaa (and the corresponding cohomology H•(Ωaa) � Vaa)
cannot have a nondegenerate pairing.

6.2 Examples of finite-dimensional minimal A∞-algebras

Let us consider a two-torus T 2 whose covering space is R
2 with coordinates

(x, y) ∈ R
2. We have πxyR

2 = T 2, πxy := πxπy = πyπx, where πx and πy
are the projections associated to the identifications x ∼ x + 1 and y ∼ y + 1,
respectively.

Let pa and qa be relatively prime integers such that qa > 0. Denote μa :=
pa/qa, and consider a geodesic cycle πxy(La) ∈ T 2,

La : y = μax + νa, νa ∈ R.

One sees that π−1
xy πxy(La) is a copy of lines y = μax + νa + Z in R

2.4 We
denote by FN the set of N distinct geodesic cycles such that (ii’): more than
two objects in FN do not intersect at the same point in T 2.

For two objects a, b ∈ FN , we denote μab := μb−μa. If μab �= 0, there exist
|paqb − pbqa| (transversal) intersection points of πxy(La) with πxy(Lb) in T 2.
We denote Lab := πxy(La) ∩ πxy(Lb). The degree is attached by |vab| = 0 if
μab > 0 and |vab| = 1 if μab < 0.

Now, let a := (a1, . . . , an+1), a1, . . . , an+1 ∈ FN , be a collection such
that μaiai+1 > 0 for two of i ∈ {1, . . . , n + 1} and μaiai+1 < 0 for other i,
where we identify aj+(n+1) with aj. We call such a a CC-collection. Consider a
sequence v := (va1a2 , . . . , vanan+1 , van+1a1) of intersection points in T 2, where
vaiai+1 ∈ Laiai+1 , i ∈ Zn+1. Let CC′(a,v) = CC′(v) be a subset of

π−1
xy (v) := (π−1

xy (va1a2), . . . , π
−1
xy (vanan+1), π

−1
xy (van+1a1))

consisting of all elements ṽ := (ṽa1a2 , . . . , ṽanan+1 , van+1a1) ∈ π−1
xy (v) such

that the geodesic interval [ṽai−1ai , ṽaiai+1 ] is included in π−1
xy πxy(Lai) and

4 The number νa corresponds to αa/qa in the general setting [22]. The effect of flat
connections βa there is set to be zero in this article for simplicity.
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0≤Angle(ṽai−1ai ṽaiai+1 ṽai+1ai+2)<π for any i ∈ Zn+1. Here, we fix ṽan+1a1 =
van+1a1 ∈ R

2, that is, we fix an inclusion of the fundamental domain of T 2

to the covering space R
2 and denote the image of van+1a1 by the same letter

van+1a1 . We call an element ṽ ∈ CC′(v) a CC semi-polygon. For a CC semi-
polygon ṽ ∈ CC′(v), let 1 ≤ i− < i+ ≤ n+1 be the pair such that μaiai+1 > 0
for i = i− and i = i+. Then, the left/right extrema of x(ṽaiai+1), i ∈ Zn+1,
are given by i = i−, i+. If x(ṽai−ai−+1) = x(ṽai+ai++1), we call ṽ a point. The
set of points in CC′(v) is denoted P (v). If ṽ is not a point, the sign σ(v) of
a CC semi-polygon ṽ is defined by

σ(v) :=

{
−1 x(ṽai−ai−+1) < x(ṽai+ai++1)
+1 x(ṽai+ai++1) < x(ṽai−ai−+1).

Let L(v; ai, aj), 1 ≤ i < j ≤ n+1, be the set of all elements ṽ ∈ CC′(v)\P (v)
such that ṽai−1ai = ṽajaj+1 and ṽaj−1aj = ṽaiai+1 . If L(v; ai, aj) �= ∅, then
ai = aj , n = 3 and j = i + 2 where we set

ζd(v; ai, aj) =
∑

n∈Z\{0}

1
(2πin)d

exp(−2πinli(ṽ)), d = 1, 2, . . .

with li(ṽ) := (x(ṽaiai+1)− x(ṽai−1ai))/qai except that we set ζd(v; ai, aj) = 0
when li(ṽ) ∈ Z and d is odd. If L(v; ai, aj) = ∅, we set ζd(v; ai, aj) = 0. One
sees that ζd(v; ai, aj) is independent of the choice of ṽ.

Let

CC(v) := CC′(v)
∖
⎛

⎝
∐

i<j

L(v; ai, aj)
∐

P (v)

⎞

⎠ .

For a given CC-collection a := (a1, . . . , an+1), v = (va1a2 , . . . , vanan+1 , van+1a1)
and b := (b1, . . . , bn+1) ∈ (Z≥0)n+1, define

Fb(v) :=
∑

ṽ∈CC(v)

(σ(ṽ))n+b

(
n+1∏

i=1

|li(ṽ)|bi

(bi)!

)

exp(−Area(ṽ)), (19)

where b := b1 + · · ·+ bn+1.
Now, we construct a Fukaya A∞-category C = C(T 2; FN ). The set Ob(C)

of objects is FN . For any a, b ∈ FN , the space of morphisms HomC(a, b) =: Vab
is a graded vector space of degree zero and one only. If μab �= 0, we set

Vab := ⊕vab∈Lab
R · vab,

where vab’s are the bases of Vab associated to the intersection points vab’s.
The degree of the bases vab is zero if μab > 0 and one if μab < 0. If μab = 0,
we set Vab = 0 for a �= b. For a = b, we introduce the base 1a of V 0

aa and the
base 1̄a of V 1

aa and set

V 0
aa := R · 1a, V 1

aa := R · 1̄a.
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Let us define a degree minus one nondegenerate symmetric inner product
η : Vab ⊗ Vba → C, a, b ∈ Ob(C). For a, b ∈ Ob(C) such that μab �= 0, we set

η(vab, vba) = 1

if vab = vba ∈ R
2 and η(vab, vba) = 0 otherwise. For a = b ∈ Ob(C), we set

η(1a, 1̄a) = η(1̄a,1a) = 1.

For any base vab ∈ Vab, this pairing η defines a dual base which we denote by
(vab)∗ ∈ V

1−|vab|
ba . This means that (1a)∗ = 1̄a and (1̄a)∗ = 1a if a = b.

Next, for any n ≥ 2 and a1, . . . , an+1 ∈ Ob(C), we define a collection
{ϕn+1}n≥2 of multilinear maps

ϕn+1 : Va1a2 ⊗ · · · ⊗ Vanan+1 ⊗ Van+1a1 → R

of degree (1− n) which satisfies the cyclicity

ϕn+1(wa1a2 , . . . , wanan+1 , wan+1a1)

= (−1)n(|wan+1a1 |+1)ϕn+1(wan+1a1 , wa1a2 , . . . , wanan+1 , wan+1a1)

for any homogeneous elements waiai+1 ∈ Vaiai+1 , i ∈ Zn+1.
For n ≥ 3, if ai = ai+1 and waiai+1 = 1ai for some i ∈ Zn+1, then we

set ϕn+1(wa1a2 , . . . , wanan+1 , wan+1a1) = 0. For n = 2, for any a, b ∈ Ob(C),
define a trilinear map ϕ3 : Vab ⊗ Vba ⊗ V 0

aa → R by

ϕ3(vab, vba,1a) = η(vab, vba).

Next, for n≥ 2 and a given (b1, . . . , bn+1)∈ (Z≥0)⊗(n+1), assume
μaiai+1 �= 0 for i ∈ Zn+1. We set

ϕn+1+b : (V 1
a1

)⊗b1 ⊗ Va1a2 ⊗ (V 1
a2

)⊗b2 ⊗ · · · ⊗ (V 1
an+1

)⊗bn+1 ⊗ Van+1a1 → R

by

ϕn+1+b((1̄a1)
⊗b1 , va1a2 , (1̄a2)

⊗b2 , . . . , (1̄an+1)
⊗bn+1 , van+1a1)

:=
∑

i<j s.t. L(v;ai,aj) 
= 0

δb,bi+bj −
b!

bi!bj !
ζbi+bj+1(v; ai, aj) + Fb(v)

for v = (va1a2 , . . . , vanan+1 , van+1a1) if (a1, . . . , an+1) is a CC-collection and
zero otherwise. These data determine all the cyclic multilinear maps ϕn+1 for
n ≥ 2.

Define multilinear maps mn, n ≥ 1, of degree (2− n) by m1 = 0 and

mn(wa1a2 , . . . , wanan+1) :=
∑

v∈La1an+1

ϕ(wa1a2 , . . . , wanan+1 , (v)∗) · v

for n ≥ 2 and waiai+1 ∈ Vaiai+1 , i = 1, . . . , n. Let V := ⊕a,b∈FN Vab.
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Theorem 6.1 The triple (V, η,m) forms a minimal cyclic A∞-algebra.

Note that the minimal cyclic A∞-algebra (V, η,m) is unital. The appearance
of the terms |li(ṽ)|bi/bi! in Eq. (19) is new, which is due to the effect of 1̄
treated as the integration of δv over x(v) ∈ R.

For the construction of C(T 2,FN ), i.e., (V, η,m), we imposed two condi-
tions (i) and (ii’) on the configurations of lines. They are just for avoiding
additional complicated preparation for the setup; the full version of the Fukaya
A∞-category consisting of all geodesic lines is presented in [26] (see also [28]).

There are other versions of HMS setup. From the physical viewpoint, the
HMS we discussed is the duality of tree open strings of A-twisted/B-twisted
topological sigma models. Other versions deal with topological strings of
Landau–Ginzburg type [19, 31] also. Recently, for two-tori, the correspond-
ing category of matrix factorizations associated to the B-twisted Landau-
Ginzburg model together with an HMS has begun to be studied [14,33]. See,
for instance, [5] for the case of toric Fano varieties.
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Abstract. This is a concise introduction to Fomin–Zelevinsky’s cluster algebras
and their links with the representation theory of quivers in the acyclic case. We
review the definition cluster algebras (geometric, without coefficients), construct
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1 Introduction

1.1 Context

Cluster algebras were invented by S. Fomin and A. Zelevinsky [27] in the spring
of 2000 in a project whose aim it was to develop a combinatorial approach
to the results obtained by G. Lusztig concerning total positivity in algebraic
groups [54] on the one hand and canonical bases in quantum groups [53] on the
other hand (let us stress that canonical bases were discovered independently
and simultaneously by M. Kashiwara [45]). Despite great progress during the
last few years [28], [9], [31], we are still relatively far from these initial aims.
Presently, the best results on the link between cluster algebras and canonical
bases are probably those of C. Geiss, B. Leclerc and J. Schröer [38], [39],
[35] but even they cannot construct canonical bases from cluster variables
for the moment. Despite these difficulties, the theory of cluster algebras has
witnessed spectacular growth thanks notably to the many links that have been
discovered with a wide range of subjects including:
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• Poisson geometry [40], [41] . . . ,
• Integrable systems [30] . . . ,
• Higher Teichmüller spaces [20], [22], [23] [21] . . . ,
• Combinatorics and the study of combinatorial polyhedra like the Stasheff

associahedra [18], [17], [52], [25], [58], [26] . . . ,
• Commutative and non-commutative algebraic geometry, in particular

the study of stability conditions in the sense of Bridgeland [11], [10],
Calabi–Yau algebras [42], Donaldson–Thomas invariants [66], [49], [50],
[51] . . . ,

• And Last but not least the representation theory of quivers and finite-
dimensional algebras, cf. for example the surveys [4], [64], [62].

We refer to the introductory papers [68], [29], [69], [70], [71] and to the cluster
algebras portal [24] for more information on cluster algebras and their links
with other parts of mathematics.

The link between cluster algebras and quiver representations follows the
spirit of categorification: One tries to interpret cluster algebras as combinato-
rial (perhaps K-theoretic) invariants associated with categories of representa-
tions. Thanks to the rich structure of these categories, one can then hope to
prove results on cluster algebras which seem beyond the scope of the purely
combinatorial methods. It turns out that the link becomes especially beauti-
ful if we use a triangulated category constructed from the category of quiver
representations, the so-called cluster category.

In this brief survey, we will review the definition of cluster algebras and
Fomin–Zelevinsky’s classification theorem for cluster-finite cluster algebras
[28]. We will then recall some basic notions on the representations of a quiver
without oriented cycles, introduce the cluster category and describe its link
with the cluster algebra.

2 Cluster algebras

The cluster algebras we will be interested in are associated with antisymmetric
matrices with integer coefficients. Instead of using matrices, we will use quivers
(without loops and 2-cycles), since they are easy to visualize and well-suited
to our later purposes.

2.1 Quivers

Let us recall that a quiver Q is an oriented graph. Thus, it is a quadruple given
by a set Q0 (the set of vertices), a set Q1 (the set of arrows) and two maps
s : Q1 → Q0 and t : Q1 → Q0 which take an arrow to its source respectively
its target. Our quivers are “abstract graphs” but in practice we draw them as
in this example:
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Q : 3
λ

����
��

��
�

5α
�� ������ 6

1 ν
�� 2

β ��

μ
���������

4.
γ

��

A loop in a quiver Q is an arrow α whose source coincides with its target;
a 2-cycle is a pair of distinct arrows β �= γ such that the source of β equals
the target of γ and vice versa. It is clear how to define 3-cycles, connected
components, . . . . A quiver is finite if both its set of vertices and its set of
arrows are finite.

2.2 Seeds and mutations

Fix an integer n ≥ 1. A seed is a pair (R, u), where

(a) R is a finite quiver without loops or 2-cycles with vertex set {1, . . . , n};
(b)u is a free generating set {u1, . . . , un} of the field Q(x1, . . . , xn) of fractions

of the polynomial ring Q[x1, . . . , xn] in n indeterminates.

Notice that in the quiver R of a seed, all arrows between any two given vertices
point in the same direction (since R does not have 2-cycles). Let (R, u) be a
seed and k a vertex of R. The mutation μk(R, u) of (R, u) at k is the seed
(R′, u′), where:

(a) R′ is obtained from R as follows:
(1) Reverse all arrows incident with k;
(2) For all vertices i �= j distinct from k, modify the number of arrows

between i and j as follows:

R R′

i
r ��

s ���
��

j

k
t

�����
i

r+st �� j

t� ��
�

k
s

�!���

i
r �� j

t� ��
�

k
s

�!���
i

r−st ��

s ���
��

j

k
t

�����

where r, s, t are nonnegative integers, an arrow i
l �� j with l ≥ 0 means

that l arrows go from i to j and an arrow i
l �� j with l ≤ 0 means

that −l arrows go from j to i.
(b)u′ is obtained from u by replacing the element uk with

u′
k =

1
uk

⎛

⎝
∏

arrows i → k

ui +
∏

arrows k → j

uj

⎞

⎠ . (1)
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In the exchange relation (1), if there are no arrows from i with target k,
the product is taken over the empty set and equals 1. It is not hard to
see that μk(R, u) is indeed a seed and that μk is an involution: we have
μk(μk(R, u)) = (R, u).

2.3 Examples of mutations

Let R be the cyclic quiver
1

2 3

 "�������� !#�
��

��
��

�

��

(2)

and u = {x1, x2, x3}. If we mutate at k = 1, we obtain the quiver

1

2 3
"$��
��
��
��

�����������

and the set of fractions given by u′
1 = (x2 + x3)/x1, u′

2 = u2 = x2 and
u′

3 = u3 = x3. Now, if we mutate again at 1, we obtain the original seed. This
is a general fact: Mutation at k is an involution. If, on the other hand, we
mutate (R′, u′) at 2, we obtain the quiver

1

2 3

 "��������

#%�������

and the set u′′ given by u′′
1 = u′

1 = (x2 + x3)/x1, u′
2 = x1+x2+x3

x1x2
and u′′

3 =
u′

3 = x3.
Let us consider the following, more complicated quiver glued together from

four 3-cycles:
1

2 3

4
5

6.

����� ���
��

��
 "   

���� ��!!
!#�

��

$&���� %'""""

(3)

If we successively perform mutations at the vertices 5, 3, 1 and 6, we obtain
the sequence of quivers (we use [46])
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Notice that the last quiver no longer has any oriented cycles and is in fact an
orientation of the Dynkin diagram of type D6. The sequence of new fractions
appearing in these steps is

u′
5 =

x3x4 + x2x6

x5
, u′

3 =
x3x4 + x1x5 + x2x6

x3x5
,

u′
1 =

x2x3x4 + x2
3x4 + x1x2x5 + x2

2x6 + x2x3x6

x1x3x5
, u′

6 =
x3x4 + x4x5 + x2x6

x5x6
.

It is remarkable that all the denominators appearing here are monomials and
that all the coefficients in the numerators are positive.

Finally, let us consider the quiver

1

2 3

4 5 6

7 8 9 10.

 "    ���
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� ������ ���

��
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��
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��
�
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(4)

One can show [48] that it is impossible to transform it into a quiver without
oriented cycles by a finite sequence of mutations. However, its mutation class
(the set of all quivers obtained from it by iterated mutations) contains many
quivers with just one oriented cycle, for example
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In fact, in this example, the mutation class is finite and it can be completely
computed using, for example, [46]: It consists of 5739 quivers up to isomor-
phism. The above quivers are members of the mutation class containing rel-
atively few arrows. The initial quiver is the unique member of its mutation
class with the largest number of arrows. Here are some other quivers in the
mutation class with a relatively large number of arrows:
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Only 84 among the 5739 quivers in the mutation class contain double arrows
(and none contain arrows of multiplicity ≥ 3). Here is a typical example:

1
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3 4

5

6

7

8

9

10

NQ���� O�RRR
R

PRSSSSS
HLIIIIIIIII

QSTTTT

QSUUUUUUUUU

HLFFFFFF

2
���

�

����
�

R�VVVV

03WW
WW
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The quivers (2), (3) and (4) are part of a family which appears in the study
of the cluster algebra structure on the coordinate algebra of the subgroup
of upper unitriangular matrices in SLn(C), cf. [39]. The study of coordinate
algebras on varieties associated with reductive algebraic groups (in particular,
double Bruhat cells) has provided a major impetus for the development of
cluster algebras, cf. [9].

2.4 Definition of cluster algebras

Let Q be a finite quiver without loops or 2-cycles with vertex set {1, . . . , n}.
Consider the seed (Q, x) consisting of Q and the set x formed by the variables
x1, . . . , xn. Following [27] we define:

• The clusters with respect to Q to be the sets u appearing in seeds (R, u)
obtained from (Q, x) by iterated mutation,

• The cluster variables for Q to be the elements of all clusters,
• The cluster algebra AQ to be the Q-subalgebra of the field Q(x1, . . . , xn)

generated by all the cluster variables.

Thus the cluster algebra consists of all Q-linear combinations of monomials in
the cluster variables. It is useful to define another combinatorial object associ-
ated with this recursive construction: The exchange graph associated with Q
is the graph whose vertices are the seeds modulo simultaneous renumbering of
the vertices and the associated cluster variables and whose edges correspond
to mutations.



Categorification of Acyclic Cluster Algebras: An Introduction 233

2.5 The example A3

Let us consider the quiver

Q : 1 �� 2 �� 3

obtained by endowing the Dynkin diagram A3 with a linear orientation. By
applying the recursive construction to the initial seed (Q, x) one finds exactly
fourteen seeds (modulo simultaneous renumbering of vertices and cluster vari-
ables). These are the vertices of the exchange graph, which is isomorphic to
the third Stasheff associahedron [65], [18]:
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The vertex labeled 1 corresponds to (Q, x), the vertex 2 to μ2(Q, x), which is
given by

1
<?

2�� 3�� , {x1,
x1 + x3

x2
, x3} ,

and the vertex 3 to μ1(Q, x), which is given by

1 2�� �� 3 , {1 + x3

x1
, x2, x3}.

We find a total of 9 cluster variables, namely,

x1 , x2 , x3,
1 + x2

x1
,

x1 + x3 + x2x3

x1x2
,

x1 + x1x2 + x3 + x2x3

x1x2x3
,

x1 + x3

x2
,

x1 + x1x2 + x3

x2x3
,

1 + x2

x3
.

Again we observe that all denominators are monomials. Notice also that
9 = 3 + 6 and that 3 is the rank of the root system associated with A3 and
6 its number of positive roots. Moreover, if we look at the denominators of
the nontrivial cluster variables (those other than x1, x2, x3), we see a natural
bijection with the positive roots

α1, α1 + α2, α1 + α2 + α3, α2, α2 + α3, α3

of the root system of A3, where α1, α2, α3 denote the three simple roots.
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2.6 Cluster algebras with finitely many cluster variables

The phenomena observed in the above example are explained by the following
key theorem:

Theorem 1 (Fomin–Zelevinsky [28]). Let Q be a finite connected quiver
without loops or 2-cycles with vertex set {1, . . . , n}. Let AQ be the associated
cluster algebra:

(a)All cluster variables are Laurent polynomials, i.e., their denominators are
monomials.

(b) The number of cluster variables is finite iff Q is mutation equivalent to an
orientation of a simply laced Dynkin diagram Δ. In this case, Δ is unique
and the nontrivial cluster variables are in bijection with the positive roots
of Δ; namely, if we denote the simple roots by α1, . . . , αn, then for each
positive root

∑
diαi, there is a unique nontrivial cluster variable whose

denominator is
∏

xdi

i .

3 Categorification

We refer to the books [63], [33], [2] and [1] for a wealth of information on the
representation theory of quivers and finite-dimensional algebras. Here, we will
only need very basic notions.

Let Q be a finite quiver without oriented cycles. For example, Q can be
an orientation of a simply laced Dynkin diagram or the quiver

2
β

TU\\
\\\

\

1 γ
��

α
UV������

3.

Let k be an algebraically closed field. Recall that a representation of Q is a
diagram of finite-dimensional vector spaces of the shape given by Q. Thus, in
the above example, a representation of Q is a (not necessarily commutative)
diagram

V2 Vβ

TU]]
]]]

]

V1
Vγ

��

Vα
UV������

V3

formed by three finite-dimensional vector spaces and three linear maps. A
morphism of representations is a morphism of diagrams. We thus obtain the
category of representations rep(Q). Notice that it is an abelian category (since
it is a category of diagrams in an abelian category, that of finite-dimensional
vector spaces): Sums, kernels and cokernels in the category rep(Q) are com-
puted componentwise. We denote by DQ its bounded derived category. Thus,
the objects of DQ are the bounded complexes
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. . . �� V p d �� V p+1 �� . . .

of representations and its morphisms are obtained from morphisms of
complexes by formally inverting all quasi-isomorphisms (=morphisms
inducing isomorphisms in homology). The category DQ is still an addi-
tive category (direct sums are given by direct sums of complexes) but it is
almost never abelian. In fact, it is abelian if and only if Q does not have any
arrows. But it is always triangulated. This means that DQ is additive and
endowed with

(a) A suspension functor Σ : DQ ∼→ DQ, namely, the functor taking a complex
V to V [1], where V [1]p = V p+1 for all p ∈ Z and dV [1] = −dV ;

(b)A class of triangles, namely, the sequences

U �� V �� W �� ΣU

which are “induced” from short exact sequences of complexes.

The triangulated category DQ admits a Serre functor, i.e., an autoequivalence
S : DQ ∼→ DQ which makes the Serre duality formula true: We have

D Hom(X,Y ) ∼→ Hom(Y, SX)

bifunctorially in X , Y belonging to DQ, where D denotes the duality functor
Homk(?, k) over the ground field k. The cluster category is defined as the orbit
category

CQ = DQ/(S−1 ◦Σ2)Z

of DQ under the action of the cyclic group generated by the automorphism
S−1 ◦ Σ2. Thus, its objects are the same as those of DQ and its morphisms
are defined by

HomCQ(X,Y ) =
⊕

p∈Z

HomDQ(X, (S−1 ◦Σ2)pY ).

One can show [47] that CQ admits a structure of triangulated category such
that the projection functor DQ → CQ becomes a triangle functor (in general,
the orbit category of a triangulated category under the action of an automor-
phism group is no longer triangulated). It is not hard to see that the cluster
category has finite-dimensional morphism spaces, and that it admits a Serre
functor induced by that of the derived category. The definition of the cluster
category then immediately yields an isomorphism

S ∼→ Σ2

and this means that CQ is 2-Calabi–Yau: A k-linear triangulated category with
finite-dimensional morphism spaces is d-Calabi–Yau if it admits a Serre func-
tor S and if S is isomorphic to Σd (the dth power of the suspension functor)
as a triangle functor. The definition of the cluster category is due to Buan–
Marsh–Reineke–Reiten–Todorov [5] (for arbitrary Q without oriented cycles)
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and, independently and with a very different, more geometric description, to
Caldero–Chapoton–Schiffler [13] (for Q of type An).

To state the close relationship between the cluster category CQ and the
cluster algebra AQ, we need some notation: For two objects L and M of CQ,
we write

Ext1(L,M) = HomCQ(L,ΣM).

Notice that it follows from the Calabi–Yau property that we have a canonical
isomorphism

Ext1(L,M) ∼→ D Ext1(M,L).

An object L of CQ is rigid if we have Ext1(L,L) = 0. It is indecomposable if it
is nonzero and in each decomposition L = L1⊕L2, we have L1 = 0 or L2 = 0.

Theorem 2 ([15]). Let Q be a finite quiver without oriented cycles with ver-
tex set {1, . . . , n}.
(a)There is an explicit bijection L �→ XL from the set of isomorphism classes

of rigid indecomposables of the cluster category CQ onto the set of cluster
variables of the cluster algebra AQ.

(b) Under this bijection, the clusters correspond exactly to the cluster-tilting
subsets, i.e., the sets T1, . . . , Tn of rigid indecomposables such that

Ext1(Ti, Tj) = 0

for all i, j.
(c) If L and M are rigid indecomposables such that the space Ext1(L,M) is

one-dimensional, then we have the generalized exchange relation

XL =
XB + XB′

XM
(5)

where B and B′ are the middle terms of “the” nonsplit triangles

L �� B �� M �� ΣL and M �� B′ �� L �� ΣM

and we define

XB =
s∏

i=1

XBi ,

where B = B1 ⊕ · · · ⊕Bs is a decomposition into indecomposables.

The relation (5) in part (c) of the theorem can be generalized to the case
where the extension group is of higher dimension, cf. [14], [43], [67]. One can
show using [6] that relation (5) generalizes the exchange relation (1) which
appeared in the definition of the mutation.

The proof of the theorem builds on work by many authors notably Buan–
Marsh–Reiten–Todorov [7], Buan–Marsh–Reiten [8], Buan–Marsh–Reineke–
Reiten–Todorov [5], Marsh–Reineke–Zelevinsky [57], . . . and especially on
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Caldero–Chapoton’s explicit formula for XL proved in [12] for orientations
of simply laced Dynkin diagrams. We include the formula below. Another
crucial ingredient of the proof is the Calabi–Yau property of the cluster cate-
gory. An alternative proof of part (c) was given by A. Hubery [43] for quivers
whose underlying graph is an extended simply laced Dynkin diagram.

The theorem does shed new light on cluster algebras. In particular, we
have the following

Corollary 1 (Qin [61], Nak [59]). Suppose that Q does not have oriented
cycles. Then all cluster variables of AQ belong to N[x±

1 , . . . , x±
n ].

This settles a conjecture of Fomin–Zelevinsky [27] in the case of cluster
algebras associated with acyclic quivers. The proof is based on Lusztig’s [55]
and in this sense it does not quite live up to the hopes that cluster theory
ought to explain Lusztig’s results. However, it does show that the conjecture
is true for this important class of cluster algebras.

4 Caldero–Chapoton’s formula

We describe the bijection of part (a) of Theorem 2. Let k be an algebraically
closed field and Q a finite quiver without oriented cycles with vertex set
{1, . . . , n}. Let L be an object of the cluster category CQ. With L, we will
associate an element XL of the field Q(x1, . . . , xn). According to [5], the object
L decomposes into a sum of indecomposables Li, 1 ≤ i ≤ s, unique up to
isomorphism and permutation. By defining

XL =
s∏

i=1

XLi

we reduce to the case where L is indecomposable. Now again by [5], if L is in-
decomposable, it is either isomorphic to an object π(V ), or an object Σπ(Pi),
where π : DQ → CQ is the canonical projection functor, Σ is the suspension
functor of CQ, V is a representation of Q (identified with a complex of rep-
resentations concentrated in degree 0) and Pi is the projective representation
associated with a vertex i (Pi is characterized by the existence of a functorial
isomorphism

Hom(Pi,W ) = Wi

for each representation W ). If L is isomorphic to Σπ(Pi), we put XL = xi. If
L is isomorphic to π(V ), we define

XL = XV =
1

∏n
i=1 xdi

i

∑

0≤e≤d
χ(Gre(V ))

n∏

i=1

x
∑

j→i ej+
∑

i→j(dj−ej)

i ,

where di = dimVi, 1 ≤ i ≤ n, the sum is taken over all elements e ∈ N
n

such that 0 ≤ ei ≤ di for all i, the quiver Grassmannian Gre(V ) is the variety
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of n-tuples of subspaces Ui ⊂ Vi such that dimUi = ei and the Ui form a
subrepresentation of V , the Euler characteristic χ is taken with respect to
étale cohomology (or with respect to singular cohomology with coefficients
in a field if k = C) and the sums in the exponent of xi are taken over all
arrows j → i respectively all arrows i → j. This formula was invented by
P. Caldero and F. Chapoton in [12] for the case of a quiver whose underlying
graph is a simply laced Dynkin diagram. It is still valid for arbitrary quivers
without oriented cycles [15] and further generalizes to arbitrary triangulated
2-Calabi–Yau categories containing a cluster-tilting object [60].

5 Some further developments

The extension of the results presented here to quivers containing oriented
cycles is the subject of ongoing research. In a series of papers [38], [34],
[39], [35], [36], Geiss–Leclerc–Schröer have obtained remarkable results for
a class of quivers which are important in the study of (dual semi-)canonical
bases. They use an analogue [37] of the Caldero–Chapoton map due ulti-
mately to Lusztig [56]. The class they consider has been further enlarged
by Buan–Iyama–Reiten–Scott [3]. Thanks to their results, an analogue of
Caldero–Chapoton’s formula and a version of Theorem 2 was proved in [32]
for an even larger class.

Building on [57] Derksen–Weyman–Zelevinsky are developing a represen-
tation-theoretic model for mutation of general quivers in [19]. Their approach
is related to Kontsevich-Soibelman’s work [51], where 3-Calabi–Yau categories
play an important rôle, as was already the case in [44].
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Abstract. Emphasizing the role of Gerstenhaber algebras and of higher derived
brackets in the theory of Lie algebroids, we show that the several Lie algebroid
brackets which have been introduced in the recent literature can all be defined
in terms of Poisson and pre-symplectic functions in the sense of Roytenberg and
Terashima. We prove that in this very general framework there exists a one-to-one
correspondence between nondegenerate Poisson functions and symplectic functions.
We also determine the differential associated to a Lie algebroid structure obtained by
twisting a structure with background by both a Lie bialgebra action and a Poisson
bivector.
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1 Introduction

Toward 1958, Ehresmann [14] introduced the idea of differentiable categories,
of which the differentiable groupoids, now called Lie groupoids, are an exam-
ple, and he developed this theory further in the 1960s [15]. At the end of the
decade, Pradines introduced the corresponding infinitesimal objects which he
called Lie algebroids [45]. The theory of Lie algebroids, which has since been
developed by many authors, and in particular by Mackenzie [40, 42], encom-
passes both differential geometry – because the tangent bundle of a smooth
manifold is the prototypical Lie algebroid –, and Lie algebra theory – be-
cause the Lie algebras are Lie algebroids whose base manifold is a singleton –,
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while other examples of Lie algebroids occur in the theory of foliations (see,
e.g., [44]) and in Poisson geometry [9,42]. The corresponding, purely algebraic
concept, called pseudo-Lie algebras [41] or Lie–Rinehart algebras [19], among
many other names, dates back to Jacobson [21], as has been observed in [29].

While the structure of what is now called a Gerstenhaber algebra appeared
in the work of Murray Gerstenhaber on the Hochschild cohomology of asso-
ciative algebras [16], it became clear in the work of Koszul [33] and of many
other authors [30,57] that Gerstenhaber algebras play an essential role in the
theory of Lie algebroids. Whenever a vector bundle has the structure of a
Lie algebroid, the linear space of sections of its exterior algebra bundle is a
Gerstenhaber algebra, the prototypical example of which is the linear space
of fields of multivectors equipped with the Schouten–Nijenhuis bracket on any
smooth manifold. The close relationship between Poisson geometry and Lie
algebroid theory appears clearly in the concept of a Lie bialgebroid defined
by Mackenzie and Xu [43] as the infinitesimal object of a Poisson groupoid,
and characterized in terms of derivations in [24]. For any Poisson manifold
M with tangent bundle TM , the pair (TM, T ∗M) is a Lie bialgebroid, while
the Lie bialgebroids over a point are Drinfeld’s Lie bialgebras of Poisson–Lie
group theory [12].

When passing from the case of Lie bialgebras to that of the Lie-quasi
bialgebras [13], or their dual version, the quasi-Lie bialgebras, or the more
general case of proto-bialgebras [23]1, higher structures, in the sense of
Jim Stasheff [51], appear. The associated algebra is not a Gerstenhaber al-
gebra but only a Gerstenhaber algebra up to homotopy, but with all n-ary
brackets beyond the third vanishing (see [20,3,4]). The analogous theory gen-
eralizing Lie algebroids was developed by Roytenberg [46] and, more recently,
by Terashima [54]. Their articles form the basis of the present exposition2.

The concept of twisting for proto-bialgebroids was defined by Roytenberg
[46] as a generalization of the twisting of proto-bialgebras introduced in [23],
itself a generalization of the twisting of Lie bialgebras defined by Drinfeld
in the theory of the semiclassical limit of the quasi-Hopf algebras [13], while
the concept of Poisson function, which was already implicit in [46], has now
been formally introduced by Terashima in [54], with interesting applications
which we review and develop here. Poisson functions generalize both Poisson

1 In [23, 5], Lie-quasi bialgebras were called Jacobian quasi-bialgebras, and quasi-
Lie bialgebras were called co-Jacobian quasi-bialgebras. We also point out that,
in the translation of Drinfeld’s original paper [13], the term “quasi-Lie bialgebra”
is used for what we call Lie-quasi bialgebra. Proto-bialgebras were introduced in
[23] where they were called proto-Lie-bialgebras, to distinguish them from the
associative version of this notion.

2 There are some changes in the notations. In particular, the notations φ and ψ
used by Roytenberg in [46] are exchanged in order to return to the conventions
of [23,5,27].
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structures on manifolds and triangular r-matrices on Lie algebras, and, more
generally, Poisson structures on Lie algebroids as well as their twisted versions
(see [36, 46, 54]).

The cohomological approach to Lie algebroid theory arose from the view-
point developed for Lie bialgebras by Lecomte and Roger [34], itself based on
the even Poisson bracket introduced by Kostant and Sternberg in [32]3. In [23],
we extended this approach to the Lie-quasi bialgebras defined by Drinfeld [13],
and we introduced the dual objects and the more general notion of proto-Lie
bialgebra, encompassing both the Lie-quasi bialgebras and their duals. In [46]
Roytenberg extended the cohomological approach to Lie bialgebra theory to
the “oid” case by combining the supermanifold approach due to Vaintrob [55]
and T. Voronov (see [56] citing earlier publications) with the results of [23].

The preprint that Terashima communicated to me in 2006 [54] goes further
along the same lines and provides a beautiful unification of results in both
recent [6,8] and not so recent papers [38], showing that they are special cases
of a general construction of Lie algebroid structures obtained by twisting
certain basic structures.

The main features of this paper are the following. Section 2 deals with the
general definition of a structure on a vector bundle, V . The basic tool for the
study of the properties of “structures” is the big bracket, denoted by { , },
the bigraded even Poisson bracket which is the canonical Poisson bracket on
the cotangent bundle of the supermanifold ΠV , i.e., V with reversed parity
on the fibers, which, on vector-valued forms or 1-form-valued multivectors,
coincides with the Nijenhuis–Richardson bracket up to sign. The “structures”
are cubic functions on this cotangent bundle whose Poisson square vanishes.
Vector bundles equipped with a “structure” generalize the Lie, Lie-quasi and
quasi-Lie bialgebroids, in particular the Lie bialgebras.

In Sect. 3, we introduce the dual notions of twisting by a bivector and twist-
ing by a 2-form, and we define the Poisson functions and the pre-symplectic
functions with respect to a given structure. Such bivectors (resp., 2-forms)
give rise by twisting to quasi-Lie (resp., Lie-quasi) bialgebroids. We show that
the twist of Lie-quasi bialgebras in the sense of Drinfeld [13] and the twisted
Poisson structures on manifolds, introduced by Klimč́ık and Strobl in [22] (un-
der the name WZW-Poisson structures) and studied by Ševera and Weinstein
in [49] (where they are called Poisson structures with background), are both
particular cases of the general notion of a twisted structure.

In Sect. 4 we prove that the graphs of Poisson functions and of pre-
symplectic functions are Dirac sub-bundles of the Courant algebroid V ⊕ V ∗,
which is the “double” of V .

The aim of Sect. 5 is to prove Theorem 5.2, which states that nondegenerate
Poisson functions are in one-to-one correspondence with symplectic functions,

3 Even Poisson brackets had already appeared in the context of the quantization
of systems with constraints in the work of Batalin, Fradkin and Vilkovisky. See
[50] and references therein.



246 Y. Kosmann-Schwarzbach

a generalization of the well-known fact that a nondegenerate bivector on a
manifold defines a Poisson structure if and only if its inverse is a closed 2-form.
We believe that this theorem had not yet been proved in so general a form.

In Sect. 6, we study the case where a Poisson function involves both a
Poisson structure on a manifold M in the ordinary sense and a Lie algebra
action on this manifold. In the general case, with nontrivial Lie-quasi bialge-
bra actions and background 3-forms on the manifold, we determine explicit
expressions for the bracket and the differential thus defined. In fact, the twist-
ing of a structure on a vector bundle V by a Poisson function gives rise to a
Lie algebroid structure on the dual vector bundle V ∗ and, dually, to a differ-
ential on the sections of ∧•V , the exterior algebra bundle of V . In particular
cases, we recover the brackets on vector bundles of the form T ∗M × g which
were associated to Poisson actions of Poisson–Lie groups on Poisson manifolds
by Lu in [38] and, more generally, to quasi-Poisson G-manifolds in the sense
of [2] by Bursztyn and Crainic in [6], and to quasi-Poisson G-spaces in the
sense of [1] by Bursztyn, Crainic and Ševera in [8]. This approach gives an
immediate proof that these brackets satisfy the Jacobi identity and are indeed
Lie algebroid brackets. The formulas for the differential in the general case
are, to the best of our knowledge, new.

2 Definition of Structures

2.1 Toward a Unification

It was already clear in the theory of Lie bialgebras that the “big bracket” was
the appropriate tool for their study. Roytenberg extended the definition and
the use of the big bracket to the case of Lie algebroids [46], and Terashima’s
article [54] proves additional results, by suitably twisting certain basic
structures.

2.2 The Big Bracket

Consider the bigraded supermanifold X = T ∗ΠV , where V is a vector bundle
over a manifold M , and where Π denotes the change of parity of the fibers.
Then X is canonically equipped with an even Poisson bracket [32], the Poisson
structure on X actually being symplectic. This Poisson bracket, called the
big bracket, is here denoted by { , }. The algebra F of smooth functions
on X is bigraded in the following way. If (xi, ξa) are local coordinates on
ΠV (i = 1, . . . ,dimM , a = 1, . . . , rankV ), we denote by (xi, ξa, pi, θa) the
corresponding local coordinates on T ∗ΠV , and we assign them the bidegrees
(0, 0), (0, 1), (1, 1) and (1, 0), respectively. An element of F of bidegree (k, %),
with k ≥ 0 and % ≥ 0, is said to be of shifted bidegree (p, q) when p = k − 1
and q = %− 1 (p ≥ −1 and q ≥ −1), whence the table

xi ξa pi θa
(0, 0) (0, 1) (1, 1) (1, 0) bidegree

(−1,−1) (−1, 0) (0, 0) (0,−1) shifted bidegree
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The total degree (resp., total shifted degree) will be called, for short, the
degree (resp., shifted degree). The big bracket is of shifted bidegree (0, 0), and
it satisfies

{xi, pj} = δij = −{pj, xi} , {ξa, θb} = δab = {θb, ξa} .

2.3 Definition of Structures

As in [55, 46, 56] (also see [27]) we consider functions on X that define bi-
algebroid structures or generalizations thereof on (V, V ∗). See [23, 5, 46] for
proofs of the statements in this section.

Definition 2.1. A structure on V is a homological function on X of degree 3,
i.e., an element S ∈ F of shifted degree 1 such that {S, S} = 0.

Let
S = φ + γ + μ + ψ (1)

in the notations of [23] and [5]. Then,
• φ, of shifted bidegree (2,−1), is a 3-form on V ∗,

φ =
1
6
φabcθaθbθc ,

• γ, of shifted bidegree (1, 0), defines an anchor, a∗ : V ∗ → TM , and a bracket
on V ∗,

γ = (a∗)ibpiθb +
1
2
γbca θbθcξ

a ,

• μ, of shifted bidegree (0, 1), defines an anchor, a∗ : V → TM , and a bracket
on V ,

μ = (a∗)ibpiξ
b +

1
2
μabcθaξ

bξc ,

• ψ, of shifted bidegree (−1, 2), is a 3-form on V ,

ψ =
1
6
ψabcξ

aξbξc .

Then S is a structure if and only if
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2{μ, μ}+ {γ, ψ} = 0 ,

{μ, γ}+ {φ, ψ} = 0 ,
1
2{γ, γ}+ {μ, φ} = 0 ,

{μ, ψ} = 0 ,

{γ, φ} = 0 .
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By definition, when S is a structure on V, the pair (V ,V ∗) is a proto-bialgebroid .
The anchor and bracket of V and of V ∗ are the following derived brackets
[25, 26, 27, 46, 56]:

anchor of V, a∗(X) · f = {{X,μ}, f} ,

bracket of V, μ(X,Y ) = {{X,μ}, Y } ,

anchor of V ∗, a∗(α) · f = {{α, γ}, f} ,

bracket of V ∗, γ(α, β) = {{α, γ}, β} ,

for f ∈ C∞(M), X and Y ∈ Γ(V ), α and β ∈ Γ(V ∗). The quasi-
Gerstenhaber brackets on Γ(∧•V ), where ∧•V is the exterior algebra of V ,
and on Γ(∧•V ∗), are expressed by the same formulas. They are denoted by
[ , ]μ and [ , ]γ , respectively.

The Lie-quasi bialgebroids, quasi-Lie bialgebroids and Lie bialgebroids are
defined as follows:
• (V, V ∗) is a Lie-quasi bialgebroid if and only if S = φ + γ + μ, i.e., if ψ = 0.
Then V is a Lie algebroid, Γ(∧•V ) is a Gerstenhaber algebra, while Γ(∧•V ∗)
is a quasi-Gerstenhaber algebra.
• (V, V ∗) is a quasi-Lie bialgebroid if and only if S = γ + μ + ψ, i.e., if φ = 0.
Then V ∗ is a Lie algebroid, Γ(∧•V ∗) is a Gerstenhaber algebra, while Γ(∧•V )
is a quasi-Gerstenhaber algebra.
• (V, V ∗) is a Lie bialgebroid if and only if S = γ + μ, i.e., if φ = ψ = 0.
Then both V and V ∗ are Lie algebroids, and both Γ(∧•V ) and Γ(∧•V ∗) are
Gerstenhaber algebras.

The quasi-Gerstenhaber algebras (see [46,20,3,4]) are the simplest higher
structures beyond the Gerstenhaber algebras themselves; they correspond to
the case where all n-ary brackets, %n, vanish for n ≥ 4.

On the Poisson manifold T ∗ΠV , we can consider the Hamiltonian vector
field with Hamiltonian S ∈ F , which we denote by dS = {S, .}. Because
{S, S} = 0, dS is a differential on the space of smooth functions on T ∗ΠV ,
i.e., a derivation of F of degree 1 and of square zero.

Example 1. When V = TM and S = μ = piξ
i, then μ(X,Y ) is the Lie

bracket of vector fields X and Y , the corresponding Gerstenhaber bracket
on Γ(∧•TM) is the Schouten–Nijenhuis bracket of multivector fields, and
the restriction of dS = dμ to the differential forms on M is the de Rham
differential.

Example 2. When M is a point, then V = g is a vector space and a structure
S = μ + γ on V is a Lie bialgebra structure on (g, g∗), also denoted by
Sg +Sg∗ in Sect. 6, while dS = dμ+dγ is the Chevalley–Eilenberg cohomology
operator of the double of the Lie bialgebra. More generally, on V = g, a
structure S = μ + γ + φ, where φ ∈ ∧3V , is a Lie-quasi bialgebra structure
on (g, g∗).
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3 Twisting

We consider a structure S on the vector bundle V that defines a proto-
bialgebroid structure on (V, V ∗), and we shall now study the twisting, e−σS,
of S by a function σ of shifted bidegree (1,−1) or (−1, 1).

3.1 Twisting by Poisson or Pre-Symplectic Functions

Let σ ∈ F be a function of shifted bidegree (1,−1) or (−1, 1). Since the
right adjoint action, adσ = { ., σ}, of an element σ of shifted degree 0 is a
derivation of degree 0 of (F , { , }), and since, for any a ∈ F , the series
a + {a, σ} + 1

2!{{a, σ}, σ}+ 1
3!{{{a, σ}, σ}, σ}+ . . . terminates for reasons of

bidegrees, the exponential of adσ is well-defined and is an automorphism of
(F , { , }), which, in an abuse of notation, we shall denote by eσ. It follows
that, for any structure S, and for any σ of shifted degree 0, {eσS, eσS} =
eσ{S, S} = 0, and therefore eσS is also a structure.

Definition 3.1. When σ is a function of shifted bidegree (1,−1) or (−1, 1),
the structure e−σS is called the twisting of S by σ.

A function of shifted bidegree (1,−1) is a bivector σ on V , expressed in
local coordinates as

σ =
1
2
σabθaθb ,

while a function of shifted bidegree (−1, 1) is a 2-form τ on V , expressed in
local coordinates as

τ =
1
2
τabξ

aξb .

We list the explicit formulas [46] for the homogeneous components of twisted
structures.
• For σ of shifted bidegree (1,−1), let e−σS = φσ + γσ + μσ + ψσ be the
decomposition (1) of e−σS as a sum of terms of homogeneous bidegrees. Then,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φσ = φ− {γ, σ}+ 1
2{{μ, σ}, σ} − 1

6{{{ψ, σ}, σ}, σ} ,

γσ = γ − {μ, σ}+ 1
2{{ψ, σ}, σ} ,

μσ = μ− {ψ, σ} ,

ψσ = ψ .

(2)

• For τ of shifted bidegree (−1, 1), let e−τS = φτ + γτ + μτ + ψτ be the
decomposition (1) of e−τS as a sum of terms of homogeneous bidegrees. Then,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φτ = φ ,

γτ = γ − {φ, τ} ,

μτ = μ− {γ, τ},+ 1
2{{φ, τ}, τ} ,

ψτ = ψ − {μ, τ}+ 1
2{{γ, τ}, τ} − 1

6{{{φ, τ}, τ}, τ} .

(3)
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Definition 3.2. Let S be a structure on V .
(i) A function σ of shifted bidegree (1,−1) such that φσ = 0 is called a Poisson
function with respect to S.
(ii) A function τ of shifted bidegree (−1, 1) such that ψτ = 0 is called a pre-
symplectic function with respect to S.

In view of these definitions, we immediately obtain

Proposition 3.3. Let S be a structure on V and let σ (resp., τ) be a function
of shifted bidegree (1,−1) (resp., (−1, 1)).
(i) If σ is a Poisson function, the twisted structure e−σS is a quasi-Lie
bialgebroid structure.
(ii) If τ is a pre-symplectic function, the twisted structure e−τS is a Lie-quasi
bialgebroid structure.

3.2 Twisting by Poisson Functions

It follows from the formula for φσ in (2) that a section σ of ∧2V is a Poisson
function with respect to a structure S = φ + γ + μ + ψ if and only if

φ− {γ, σ}+
1
2
{{μ, σ}, σ} − 1

6
{{{ψ, σ}, σ}, σ} = 0 . (4)

Equation (4) is called a generalized twisted Maurer–Cartan equation, or simply
a Maurer–Cartan equation.

For any bivector σ, we set σ�α = iασ, for α ∈ Γ(V ∗), where i denotes
the interior product. Whenever σ is a Poisson function with respect to S =
φ + γ + μ + ψ, the term of shifted bidegree (1, 0) in e−σS,

γσ = γ − {μ, σ}+
1
2
{{ψ, σ}, σ} ,

defines an anchor a∗ + a∗ ◦ σ� and a Lie bracket on Γ(V ∗), as well as a
Gerstenhaber bracket on Γ(∧•V ∗), which we denote by [ , ]γσ , and a differ-
ential dγσ = {γσ, .} on Γ(∧•V ). There is also a bracket, [ , ]μσ , on Γ(∧•V )
defined by the term of shifted bidegree (0, 1), μσ = μ−{ψ, σ}, and a derivation
of degree 1, dμσ = {μσ, .}, of Γ(∧•V ∗). Then 1

2{μσ, μσ}+{γσ, ψ} = 0, so that
ψ measures the defect in the Jacobi identity for [ , ]μσ , and (dμσ )2 = [ψ, ·]γσ .

It appears that the twisting of Lie bialgebras in the sense of Drinfeld
[13], as well as its generalizations to proto-bialgebras [23, 5] and to proto-
bialgebroids [46], and the twisting of Poisson structures in the sense of Ševera
and Weinstein [49], and its generalizations to structures on Lie algebroids
[46,28], all fit into this general framework, although the meaning of the word
“twisting” is not quite the same in both instances. In the first instance, one
twists a given structure, in the sense of Definition 2.1, on a Lie algebra g by
an element σ ∈ ∧2g (often denoted by t or f), called the “twist” [13, 1]. For
any twist, a Lie-quasi bialgebra is twisted into a Lie-quasi bialgebra. In the
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second case, it would be more appropriate to speak of “Poisson structures
with background”: the given structure on the vector bundle V is of the form
μ + ψ, where ψ is a dμ-closed 3-form, and equation (4) which reduces to the
twisted Poisson condition (6) below is the condition for σ ∈ Γ(∧2V ) to twist
μ + ψ into a quasi-Lie bialgebroid structure.
(i) Twist in the sense of Drinfeld. In the case of a twist of a Lie-quasi
bialgebra, one twists a structure S = φ + γ + μ + 0 on a Lie algebra g by an
arbitrary σ ∈ ∧2g into

e−σS =
(

φ− {γ, σ}+
1
2
{{μ, σ}, σ}

)

+ (γ − {μ, σ}) + μ + 0 ,

and one obtains a “twisted Lie-quasi bialgebra”. The resulting object is a Lie
bialgebra, with μσ = μ and γσ = γ − {μ, σ}, if and only if σ is a Poisson
function, i.e., satisfies the condition

1
2
[σ, σ]μ + dγσ − φ = 0 .

If one twists a Lie bialgebra (ψ = φ = 0), this condition reduces to the usual
Maurer–Cartan equation,

1
2
[σ, σ]μ + dγσ = 0 . (5)

If one twists a trivial Lie bialgebra (ψ = φ = γ = 0), the Maurer–Cartan
equation reduces to [σ, σ]μ = 0, i.e., to the classical Yang–Baxter equation. In
fact, for σ = r ∈ ∧2g,

−1
2
[r, r]g = [r12, r13] + [r12, r23] + [r13, r23] ,

and the classical Yang–Baxter equation (CYBE) on a Lie algebra g is the
condition [r12, r13] + [r12, r23] + [r13, r23] = 0, for r ∈ ∧2g.

When S = μ, the necessary and sufficient condition for μ + γσ to be a Lie
bialgebra structure on (g, g∗) is {μ, {{μ, σ}, σ}} = 0, the generalized classical
Yang–Baxter equation, which states that [σ, σ]μ is adμ-invariant.

In the same way, a Lie-quasi bialgebroid can be twisted by a bivector, and
a Lie bialgebroid is twisted into a Lie bialgebroid if and only if the bivector
satisfies the Maurer–Cartan equation (5) (see [36, 46, 27]).
(ii) Twisted Poisson structures. If S is a structure on a vector bundle V
such that γ = 0 and φ = 0, then {μ, μ} = 0, i.e., V is a Lie algebroid, and ψ
is a dμ-closed section of ∧3V ∗. In this case, one twists S = 0 + 0 + μ + ψ into

e−σS =
(

1
2
{{μ, σ}, σ} − 1

6
{{{ψ, σ}, σ}, σ}

)

+
(

−{μ, σ}+
1
2
{{ψ, σ}, σ}

)

+ (μ− {ψ, σ}) + ψ .
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Thus, σ is a Poisson function if and only if

{{μ, σ}, σ} − 1
3
{{{ψ, σ}, σ}, σ} = 0 ,

which is the condition
1
2
[σ, σ]μ = (∧3σ�)ψ , (6)

i.e., (σ, ψ) is a twisted Poisson structure on the Lie algebroid V . When σ
satisfies the twisted Poisson condition (6), the resulting object is a quasi-Lie
bialgebroid. In particular, −{μ, σ} + 1

2{{ψ, σ}, σ} is a Lie algebroid bracket
on V ∗.

If, in addition, ψ = 0, then σ is a Poisson function if and only if

{{μ, σ}, σ} = 0 ,

which is the condition
[σ, σ]μ = 0 ,

i.e., σ is a Poisson structure in the usual sense, a section of ∧2V with Schouten–
Nijenhuis square zero. The Poisson case is also called the triangular case by
extension of the terminology used in the theory of Lie bialgebras.
The twisted differential. In the Poisson case (γ = 0 and ψ = 0), the an-
chor of V ∗ is a∗ ◦ σ�, and the bracket on Γ(∧•V ∗) is γσ = {σ, μ}, the Koszul
bracket4. The corresponding differential on Γ(∧•V ) is the Lichnerowicz–
Poisson differential, [35], dσ = {{σ, μ}, .} = [σ, .]μ, while the differential
on Γ(∧•V ∗) is the Lie algebroid cohomology operator dμ = {μ, .}. The pair
(V, V ∗) is a Lie bialgebroid.

In the twisted Poisson case, γσ = −{μ, σ}+ 1
2{{ψ, σ}, σ} restricts to the Lie

algebroid bracket on sections of V ∗ defined by Ševera and Weinstein [49], and
the corresponding differential on Γ(∧•V ) is the twisted Poisson differential,
dσ + iψ(2) , where ψ(2) = 1

2{{ψ, σ}, σ} = (∧2σ�)ψ, while the derivation {μσ, .}
is the derivation dμ + iψ(1) , where ψ(1) = {ψ, σ} = σ�ψ (see [49, 46, 28]). The
pair (V, V ∗) is then a quasi-Lie bialgebroid.

3.3 Twisting by Pre-Symplectic Functions

It follows from formula (3) that a section τ of ∧2V ∗ is a pre-symplectic func-
tion with respect to a structure S = φ + γ + μ + ψ if and only if

4 The Koszul bracket [33] restricts to the bracket of sections of Γ(V ∗) generalizing
the well-known bracket of 1-forms on a Poisson manifold. The bracket of 1-forms
on symplectic manifolds was introduced in the book of Abraham and Marsden
(1967). For Poisson manifolds, it was discovered independently in the 1980s by
several authors – Gelfand and Dorfman, Fuchssteiner, Magri and Morosi, Daletskii
– and Weinstein (see [9]) has shown that it is a Lie algebroid bracket.
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ψ − {μ, τ}+
1
2
{{γ, τ}, τ} − 1

6
{{{φ, τ}, τ}, τ} = 0 . (7)

Equation (7) is dual to (4) and it is also called a generalized twisted Maurer–
Cartan equation or again simply a Maurer–Cartan equation. Pre-symplectic
functions generalize pre-symplectic structures on manifolds as well as their
twisted versions.

If γ = φ = 0, then {μ, μ} = 0, i.e., V is a Lie algebroid, and ψ is a dμ-
closed section of ∧3V ∗. In this case, τ is pre-symplectic if and only if the pair
(τ, ψ) satisfies the twisted pre-symplectic condition,

ψ − {μ, τ} = 0 ,

which is the condition, dμτ = ψ, i.e., (τ, ψ) is a twisted pre-symplectic
structure on the Lie algebroid V . (See [49] and see [48] for an example of
a twisted symplectic structure arising in the theory of the lattices of Neumann
oscillators.)

If, in particular, γ = φ = ψ = 0, then {μ, μ} = 0 and V is a Lie algebroid.
In this case, τ is pre-symplectic if and only if τ satisfies the pre-symplectic
condition,

{μ, τ} = 0 ,

which is the condition, dμτ = 0, i.e., τ is a dμ-closed section of ∧2V ∗, the
pre-symplectic case.

4 The Graphs of Poisson and Pre-Symplectic Functions

4.1 Courant Algebroids, the Courant Algebroid V ⊕ V ∗

A Loday algebra (called Leibniz algebra by Loday [37]) is equipped with a
bracket (in general non-skew-symmetric) satisfying the Jacobi identity in the
form [u, [v, w]] = [[u, v], w] + [v, [u,w]]. We give the definition of Courant
algebroids in [27] which is equivalent to the original definition of Courant and
Weinstein [11, 10].

A Courant algebroid is a vector bundle E → M , equipped with a vector
bundle morphism, aE : E → TM , called the anchor, a fiber-wise nondegener-
ate symmetric bilinear form ( , ), and a bracket, [ , ] : Γ(E)× Γ(E) → Γ(E),
called the Dorfman–Courant bracket, such that
• Γ(E) is a Loday algebra,
• for all x, u, v ∈ Γ(E),

aE(x) · (u, v) = (x , [u, v] + [v, u]) = ([x, u] , v) + (u , [x, v]) .
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A sub-bundle, F ⊂ E, is called a Dirac sub-bundle if
• F is maximally isotropic,
• Γ(F ) is closed under the bracket.

When S is a structure on V , the vector bundle E = V ⊕ V ∗ with the
canonical scalar product,

(u, v) = {u, v} ,

and bracket
[u, v]S = {{u, S}, v} , (8)

for u, v ∈ Γ(V ⊕V ∗), is a Courant algebroid [46,56,27], called the double of V .

Lemma 4.1. Let S be a structure on V .
(i) The function σ ∈ Γ(∧2V ) is a Poisson function with respect to S if and
only if V ∗ is a Dirac sub-bundle of (V ⊕ V ∗, [ , ]e−σS).
(ii) The function τ ∈ Γ(∧2V ∗) is a pre-symplectic function with respect to S
if and only if V is a Dirac sub-bundle of (V ⊕ V ∗, [ , ]e−τS).

Proof. Part (i) (resp., (ii)) follows from the computation of the bidegrees of
the homogeneous terms in [u, v]e−σS (resp., [u, v]e−τS) for u, v ∈ Γ(V ) (resp.,
u, v ∈ Γ(V ∗)). �

4.2 Graphs as Dirac Structures

Theorem 4.2 below generalizes the characterization of the graphs of Pois-
son, quasi-Poisson and pre-symplectic structures in [36] and [49], and that of
twisted pre-symplectic structures in [6] (see also Alekseev and Xu, Derived
brackets and Courant algebroids, 2000, Unpublished manuscript). The state-
ment of this theorem can be found in Remark 4.2 in [46] (cf. also Prop. 5 in
[8]), and the proof given here is also due to Roytenberg [47]. Both theorems
in this section have been proved by Terashima [54].

Theorem 4.2. Let S be a structure on V .
(i) A section σ of ∧2V is a Poisson function with respect to S if and only if
its graph in the Courant algebroid (V ⊕ V ∗, [ , ]S) is a Dirac sub-bundle.
(ii) A section τ of ∧2V ∗ is a pre-symplectic function with respect to S if and
only if its graph in the Courant algebroid (V ⊕V ∗, [ , ]S) is a Dirac sub-bundle.

Proof. We need only prove (ii), since the proof of (i) is entirely similar. We
shall denote by τ � the vector bundle morphism from V to V ∗ induced by
τ ∈ Γ(∧2V ∗), such that τ �X = −iXτ , for X ∈ V , as well as the associated
map on sections of V . By the graph of τ , we mean the graph of τ �. Since
τ �(X) = {X, τ}, for all X ∈ Γ(V ), and since, for reasons of bidegree, eτX =
X + {X, τ}, it follows that

Graph(τ) = eτV . (9)
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Since eτ is an automorphism of (F , { , }), it is an isomorphism from
(V ⊕ V ∗, [ , ]e−τS) to (V ⊕ V ∗, [ , ]S). Thus eτV is a Dirac sub-bundle of
(V ⊕ V ∗, [ , ]S) if and only if V is a Dirac sub-bundle of (V ⊕ V ∗, [ , ]e−τS).
Thus (ii) follows from (9) and Lemma 4.1 (ii). �

Theorem 4.3. Let S = φ + γ + μ + ψ be a structure on V .
(i) Let σ be a Poisson function with respect to S. The projection Graph(σ) →
V ∗ is a morphism of Lie algebroids when Γ(Graph(σ)) is equipped with the
Lie bracket induced from the Dorfman–Courant bracket [ , ]S and Γ(V ∗) is
equipped with the Lie bracket γσ = γ − {μ, σ}+ 1

2{{ψ, σ}, σ}.
(ii) Let τ be a pre-symplectic function with respect to S. The projection
Graph(τ) → V is a morphism of Lie algebroids when Γ(Graph(τ)) is equipped
with the Lie bracket induced from the Dorfman–Courant bracket [ , ]S and
Γ(V ) is equipped with the Lie bracket μτ = μ− {γ, τ}+ 1

2{{φ, τ}, τ}.

Proof. We need only prove (ii), since the proof of (i) is entirely similar. For
any τ ∈ Γ(∧2V ∗), X and Y ∈ Γ(V ), [eτX, eτY ]S = eτ [X,Y ]e−τS . If τ is a
pre-symplectic function with respect to S, then [eτX, eτY ]S = eτ [X,Y ]μτ =
[X,Y ]μτ + {[X,Y ]μτ , τ}, whose V -component is [X,Y ]μτ . �

5 Symplectic Functions

Let us now assume that σ ∈ Γ(∧2V ) is nondegenerate, i.e., the map σ� :
V ∗ → V defined by σ�α = iασ, for α ∈ Γ(V ∗), is invertible. Set τ � = (σ�)−1,
and let τ ∈ Γ(∧2V ∗) be such that τ �X = −iXτ , for X ∈ Γ(V ). We say that
τ ∈ Γ(∧2V ∗) and σ ∈ Γ(∧2V ) are inverses of one another. A nondegenerate
pre-symplectic function is called symplectic.

5.1 “Nondegenerate Poisson” is Equivalent to “Symplectic”

Many classical results are corollaries of the general theorem which we state
and prove in this section. Recall that ξaθb = −θbξ

a, {ξa, θb} = δab = {θb, ξa}
and, for u, v, w ∈ F ,

{u, vw} = {u, v}w + (−1)|u||v|v{u,w} ,

{uv, w} = u{v, w}+ (−1)|v||w|{u,w}v ,

where |u| is the degree of u, and

{u, {v, w}} = {{u, v}, w}+ (−1)‖u‖‖v‖{v, {u,w}} ,

{{u, v}, w} = {u, {v, w}}+ (−1)‖v‖‖w‖{{u,w}, v} ,

where ‖u‖ is the shifted degree of u. The proof of the theorem depends on the
following lemma.
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Lemma 5.1. Assume that σ ∈ Γ(∧2V ) is nondegenerate and that its inverse
is τ . Then
(i) {σ, τ} = −{τ, σ} = IdV .
(ii) If S is of shifted bidegree (p, q), then

{{σ, τ}, S} = (q − p)S . (10)

Proof. This lemma is proved by straightforward computations, using the
equality IdV = ξaθa. �

Theorem 5.2. Let S be a structure on V . Let σ ∈ Γ(∧2V ) be a nondegenerate
bivector with inverse τ ∈ Γ(∧2V ∗). Then σ is a Poisson function with respect
to S if and only if −τ is a symplectic function with respect to S.

Proof. Lemma 5.1(ii) applied in the cases (p, q) = (2,−1), (1, 0), (0, 1) and
(−1, 2), and repeated applications of the Jacobi identity yield the following
computations. Let μ be of shifted bidegree (0, 1). From

{{μ, τ}, σ} = {μ, {τ, σ}}+ {{μ, σ}, τ} = μ + {{μ, σ}, τ} ,

we obtain
{{{μ, τ}, σ}, σ} = {μ, σ}+ {{{μ, σ}, τ}, σ}

= {μ, σ}+ {{μ, σ}, {τ, σ}}+ {{{μ, σ}, σ}, τ} = {{{μ, σ}, σ}, τ} .

Whence

{{{{μ, τ}, σ}, σ}, σ} = {{{{μ, σ}, σ}, τ}, σ} = {{{μ, σ}, σ}, {τ, σ}}

= − 3 {{μ, σ}, σ} .

Similarly, if γ is of shifted bidegree (1, 0),

{{{{{γ, τ}, τ}, σ}, σ}, σ} = 12 {γ, σ} .

If φ is of shifted bidegree (2,−1),

{{{{{{φ, τ}, τ}, τ}, σ}, σ}, σ} = − 36 φ .

Let S = φ + γ + μ + ψ. The term of shifted bidegree (−1, 2) in e−τS is

ψτ = ψ − {μ, τ} +
1
2
{{γ, τ}, τ} − 1

6
{{{φ, τ}, τ}, τ} ,

and the term of shifted bidegree (2,−1) in e−σS is

φσ = φ− {γ, σ}+
1
2
{{μ, σ}, σ} − 1

6
{{{ψ, σ}, σ}, σ} .
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The preceding equalities and analogous results for other iterated brackets,
reversing the roles of σ and τ , yield the equalities:

{{{ψτ , σ}, σ}, σ} = 6 φ−σ

and
{{{φσ, τ}, τ}, τ} = 6 ψ−τ .

Therefore ψτ = 0 implies φ−σ = 0, and conversely. �

The method of proof used above in the general case can be applied to give
one-line proofs of some well-known results.
• For the case of nondegenerate Poisson structures, the proof reduces
to {μ, τ} = 0 implies that {{{{μ, τ}, σ}, σ}, σ} = 0, which implies that
{{μ, σ}, σ} = 0, and a similar argument applies to the converse. This simple
argument proves the classical result: nondegenerate closed 2-forms are in
one-to-one correspondence with nondegenerate Poisson bivectors.
• For the case of nondegenerate twisted Poisson structures (see Sect. 3.2 (ii)),
the proof reduces to {μ, τ} = −ψ implies that {{{{μ, τ}, σ}, σ}, σ} =
−{{{ψ, σ}, σ}, σ}, which implies that {{μ, σ}, σ} = 1

3{{{ψ, σ}, σ}, σ}, and a
similar argument for the converse. Thus dμτ = −ψ implies 1

2 [σ, σ]μ = (∧3σ�)ψ
and conversely. This constitutes a direct proof of the following corollary of
Theorem 5.2 (see [49, 31]).

Corollary 5.3. (i) A nondegenerate bivector on a Lie algebroid defines a
twisted Poisson structure if and only if its inverse is a twisted symplectic
2-form.
(ii) The leaves of a twisted Poisson manifold are twisted symplectic manifolds.

It follows from this corollary that, in the case of Lie algebras, considered
to be Lie algebroids over a point, a nondegenerate r ∈ ∧2g is a solution of the
twisted classical Yang–Baxter equation, generalizing the classical Yang–Baxter
equation (see Sect. 3.2),

1
2
[r, r]g = (∧3r�)ψ ,

where ψ is a dg-closed 3-form on the Lie algebra g, if and only if its inverse is
a nondegenerate 2-form τ satisfying the twisted closure condition, dgτ = −ψ.
Here dg is the Chevalley–Eilenberg cohomology operator of g and the bracket,
[ , ]g, is the algebraic Schouten bracket on ∧•g.

Recall that a Lie algebra is called quasi-Frobenius if it possesses a
nondegenerate 2-cocycle. Thus, we recover in particular the well-known
correspondence [53, 17, 18] between nondegenerate triangular r-matrices,
i.e., skew-symmetric solutions of the classical Yang–Baxter equation, and
quasi-Frobenius structures.

Corollary 5.4. A nondegenerate bivector in ∧2g is a solution of the classi-
cal Yang–Baxter equation if and only if its inverse defines a quasi-Frobenius
structure on g.
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5.2 Regular Twisted Poisson Structures

We summarize a result from [31] which can now be considered to be a corollary
of Theorem 5.2. Let A be a vector bundle with a bivector π ∈ Γ(∧2A) such
that π� is of constant rank. Let B be the image of π�. Then B is a Lie sub-
bundle of A and, because π is skew-symmetric, π� defines an isomorphism,
π�B : B∗ → B, where B∗ = A∗/ kerπ� is the dual of B. Then the inverse of π�B
defines a nondegenerate 2-form on B, ωB ∈ Γ(∧2B∗), by (π�B)−1X = −iXωB,
for X ∈ Γ(B).

Assume that the vector bundle, A, is in fact a Lie algebroid. Let ψ be
a dA-closed 3-form on A, and let ψB denote the pull-back of ψ under the
canonical injection ιB : B ↪→ A. Then

Proposition 5.5. Under the preceding assumptions, (A, π, ψ) is a Lie al-
gebroid with a regular twisted Poisson structure if and only if (B,ωB, ψB)
is a Lie algebroid with a twisted symplectic structure, i.e., if and only if
dBω = −ψB.

This proposition constitutes a linearization of the twisted Poisson condi-
tion, and can be applied in particular to the case of Lie algebras [31].

6 Another Type of Poisson Function:
Lie Algebra Actions on Manifolds

In this section, we consider the twisting of various structures involving the
action of a Lie algebra on a manifold.

6.1 Structures on TM × g∗

Let g be a Lie algebra, and let M be a manifold. We consider the vector
bundle V = TM × g∗ over M which is, by definition, TM ⊕

M
(M × g∗)→ M .

We introduce local coordinates on T ∗ΠV , (xi, ξi, eA, pi, θi, εA), where
i = 1, . . . ,dimM , and A = 1, . . . ,dim g, with the following bidegrees,

xi ξi eA pi θi εA

(0, 0) (0, 1) (0, 1) (1, 1) (1, 0) (1, 0) bidegree
(−1,−1) (−1, 0) (−1, 0) (0, 0) (0,−1) (0,−1) shifted bidegree

satisfying
{xi, pj} = δij , {ξi, θj} = δij , {eA, εB} = δBA .

Let
Sg =

1
2
CD
ABεAεBeD
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be the function on T ∗ΠV of shifted bidegree (1, 0) defining the Lie bracket of
g, and let

SM = piξ
i

be the function on T ∗ΠV of shifted bidegree (0, 1) which defines the Schouten–
Nijenhuis bracket of multivectors on M . Then

[u, v]g = {{u, Sg}, v} , (11)

for all u, v ∈ g, and
[X,Y ]M = {{X,SM}, Y } , (12)

for all X , Y ∈ Γ(TM). It is easy to show that Sg + SM is a structure on V .
More generally, consider the following functions on T ∗ΠV of shifted bide-

gree (−1, 2), a 3-form ΨM on M ,

ΨM =
1
6
Ψijkξ

iξjξk ,

and a 3-form Ψg on g∗,

Ψg =
1
6
ΨABCeAeBeC .

Then Sg + SM + (Ψg + ΨM ) is a structure on V if and only if
• {SM , ΨM} = 0, i.e., ΨM is a closed 3-form on M , and
• {Sg, Ψg} = 0, i.e., Ψg is a 0-cocycle on g with values in ∧3g.

More generally still, we can, in addition, introduce a function on T ∗ΠV of
shifted bidegree (0, 1) which defines a bracket on g∗,

Sg∗ =
1
2
ΓABC eAeBεC .

Then S = Sg + (Sg∗ + SM ) + (Ψg + ΨM ), a sum of terms of shifted bidegrees
(1, 0), (0, 1) and (−1, 2), respectively, is a structure on V if and only if
• {SM , ΨM} = 0, i.e., ΨM is a closed 3-form on M , and
• {Sg +Sg∗ +Ψg, Sg +Sg∗ +Ψg} = 0, the condition that (g, g∗) be a Lie-quasi
bialgebra.

Let us assume that these conditions are satisfied. By what function can
we twist the structure Sg + (Sg∗ + SM ) + (Ψg + ΨM )? We can twist it by any
function of shifted bidegree (1,−1). Therefore we can choose

ρ = ρiAεAθi ,

and twist S by ρ, and/or we can twist S by the bivector

π =
1
2
πijθiθj .

We shall now prove, following Terashima [54], that twisting by ρ+π provides a
natural and unified way of determining the Lie algebroid structures discovered
by Lu [38] and by Bursztyn, Crainic and Ševera [6,8]. This method yields an
immediate proof of the fact that these are indeed Lie algebroid structures.
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6.2 Twisting by a Lie Algebra Action

Let us first determine the meaning of the condition that ρ be a Poisson
function with respect to S = Sg + SM . We remark that ρ, considered either
as a function on T ∗ΠV or as a map from g to Γ(TM), satisfies, for all u ∈ g,

{ρ, u} = ρ(u) .

Computing the terms of shifted bidegrees (2,−1), (1, 0) and (0, 1) of the
twisted structure, e−ρS, we obtain

e−ρ(Sg + SM ) =
(

−{Sg, ρ}+
1
2
{{SM , ρ}, ρ}

)

+ (Sg − {SM , ρ}) + SM .

Therefore ρ is a Poisson function with respect to S = Sg + SM if and only if

−{Sg, ρ}+
1
2
{{SM , ρ}, ρ} = 0 . (13)

Lemma 6.1. The function ρ is a Poisson function with respect to Sg +SM if
and only if it is a Lie algebra action of g on M .

Proof. The proof of the fact that relation (13) is equivalent to

ρ([u, v]g) = [ρ(u), ρ(v)]M

for all u, v ∈ g, depends on formulas (11) and (12), the Jacobi identity and
the vanishing of all brackets of the form {eA, θi} and {εA, θi}, whence

ρ([u, v]g) = {{{Sg, ρ}, u}, v}

and

[ρ(u), ρ(v)]M =
1
2
{{{{SM , ρ}, ρ}, u}, v} . �

6.3 Introducing Additional Twisting by a Bivector

Let us now twist S = Sg + (Sg∗ + SM ) + (Ψg + ΨM ) by

σ = π + ρ .

We first observe that the brackets {π, ρ}, {Sg, π}, {Sg∗, π}, {{Sg∗, ρ}, π} and
{Ψg, π} vanish. Computing the term of shifted bidegree (2,−1) in e−(π+ρ)S,
we see that π + ρ is a Poisson function with respect to S if and only if

−{Sg, ρ}+ 1
2{{Sg∗, ρ}, ρ} + 1

2{{SM , π + ρ}, π + ρ}
− 1

6{{{Ψg + ΨM , π + ρ}, π + ρ}, π + ρ} = 0.

The computation of the several terms in this generalized twisted Maurer–
Cartan equation yields
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Proposition 6.2. The function π + ρ is a Poisson function with respect to
S = Sg + (Sg∗ + SM ) + (Ψg + ΨM ) if and only if the following four conditions
are satisfied:

(A) {{{ΨM , ρ}, ρ}, ρ} = 0 ,

(B) −{Sg, ρ}+
1
2
{{SM , ρ}, ρ} − 1

2
{{{ΨM , ρ}, ρ}, π} = 0 ,

(C) {{SM , π}, ρ}+
1
2
{{Sg∗, ρ}, ρ} −

1
2
{{{ΨM , ρ}, π}, π} = 0 ,

(D) {{SM , π}, π} − 1
3
{{{Ψg, ρ}, ρ}, ρ} −

1
3
{{{ΨM , π}, π}, π} = 0 .

Condition (A) is the relation iρ(u)∧ρ(v)∧ρ(w)ΨM = 0, for all u, v, w ∈ g,
which means that ΨM is in the kernel of ∧3ρ∗, where ρ∗ is the dual of ρ.

Condition (B) is the relation

ρ([u, v]g)− [ρ(u), ρ(v)]M = π�(iρ(u)∧ρ(v)ΨM ) , (14)

for all u, v ∈ g. This is proved by the same computations as in Lemma 6.1.
Thus (B) expresses the fact that ρ is a twisted action of g on M .

Condition (C) is the relation

Lρ(u)π = −(∧2ρ)(γ(u)) + (∧2π�)(iρ(u)ΨM ) , (15)

for all u ∈ g, where γ : g → ∧2g is Sg∗ viewed as a cobracket on g. In fact,

{{{SM , π}, ρ}, u} = {{{ρ, u}, SM}, π} = [{ρ, u}, π]M = Lρ(u)π ,

while
1
2
{{{Sg∗, ρ}, ρ}, u} = (∧2ρ)(γ(u)) ,

and
1
2
{{{{ΨM , ρ}, π}, π}, u} = (∧2π�)(iρ(u)ΨM ) .

Condition (D) is the relation

1
2
[π, π]M = (∧3ρ)(Ψg) + (∧3π�)(ΨM ) . (16)

6.4 Particular Cases

In the light of Proposition 6.2 and formulas (14), (15) and (16), we can in-
terpret several important particular cases of Poisson functions of the type
π + ρ.
• Case ρ = 0, already studied in Sect. 3.2. Conditions (A), (B) and (C)
are identically satisfied and (D) is the condition that M be a twisted Poisson
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manifold. If ρ = 0 and ΨM = 0, then (D) is the condition that M be a Poisson
manifold.
• Case ΨM = 0. While condition (A) is identically satisfied, conditions (B),
(C) and (D) express the fact that M is a quasi-Poisson g-space, the version
of the quasi-Poisson G-spaces in the sense of [1] in which only an infinitesimal
Lie algebra action is assumed. When the Lie group G is connected and sim-
ply connected, conditions (B), (C) and (D) imply that M is a quasi-Poisson
G-space, and conversely.
• Case ΨM = 0 and Sg∗ = 0. Conditions (B), (C) and (D) are
(B) M is a g-manifold,
(C) π is a g-invariant bivector,
(D) 1

2 [π, π]M = (∧3ρ)(Ψg).
If Ψg is the Cartan 3-vector of the Lie algebra g of a connected and simply

connected Lie group with a bi-invariant scalar product, conditions (B), (C)
and (D) express the fact that M is a quasi-Poisson g-manifold, the version of
the quasi-Poisson G-manifolds in the sense of [2] in which only an infinitesimal
Lie algebra action is assumed. When the Lie group G is connected and sim-
ply connected, conditions (B), (C) and (D) imply that M is a quasi-Poisson
G-manifold, and conversely.
• Case ΨM = 0 and Ψg = 0. In this case, (g, g∗) is a Lie bialgebra. Condi-
tion (D) expresses the fact that π is a Poisson bivector, and equations (14)
and (15) show that conditions (B) and (C) express the fact that ρ is an in-
finitesimal Poisson action of the Lie bialgebra (g, g∗) on the Poisson manifold
M in the sense of Lu and Weinstein [39, 38] (which can also be called a Lie
bialgebra action), corresponding to a Poisson action of the connected and
simply connected Poisson–Lie group with Lie algebra g.

Remark The method described here for the characterization of Poisson and
quasi-Poisson structures can be used to recover conditions defining Poisson–
Nijenhuis [30] and Poisson quasi-Nijenhuis [52] structures.

6.5 The Lie Algebroid Structure of V ∗ = T ∗M × g

Whenever σ is a Poisson function with respect to a structure S on V , with
e−σS, (V, V ∗) becomes a quasi-Lie bialgebroid. Therefore when σ = π +ρ is a
Poisson function with respect to the structure S = Sg+(Sg∗ +SM )+(Ψg+ΨM )
on V = TM × g∗, there is a Lie algebroid structure on V ∗ = T ∗M × g, with
anchor π� + ρ and Lie bracket

γσ = Sg − {Sg∗ + SM , π + ρ}+
1
2
{{Ψg + ΨM , π + ρ}, π + ρ} , (17)

and {γσ, .} is a differential on Γ(∧•(TM × g∗)). Dually, there is a bracket
μσ on TM × g∗, but the Jacobi identity is not satisfied in general and the
derivation {μσ, .} on Γ(∧•(T ∗M×g)) does not square to zero in general, since
(V, V ∗) is only a quasi-Lie bialgebroid. From formula (17) and Proposition 6.2,
we obtain:
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Theorem 6.3. When conditions (A)–(D) are satisfied, T ∗M × g is a Lie
algebroid with anchor π� + ρ and Lie bracket

γσ = Sg − {Sg∗ , ρ} − {SM , π} − {SM , ρ}
+ 1

2{{Ψg, ρ}, ρ}+ 1
2{{ΨM , π}, π}+ {{ΨM , π}, ρ}+ 1

2{{ΨM , ρ}, ρ} .
(18)

We shall now show that the preceding general formula yields the brackets
of [38], of [6], and of [8] as particular cases.
Case ρ = 0. Formula (18) reduces to γσ = Sg−{SM , π}+ 1

2{{ΨM , π}, π}. The
Lie algebroid structure of V ∗ = T ∗M × g is the direct sum of the pointwise
Lie bracket of sections of M ×g →M and the Lie algebroid bracket of Ševera
and Weinstein [49] on Γ(T ∗M) for the twisted Poisson manifold (M,π, ΨM ).
Case ΨM = 0. Formula (18) reduces to

γσ = Sg − {Sg∗, ρ} − {SM , π} − {SM , ρ}+
1
2
{{Ψg, ρ}, ρ} .

For u, v ∈ Γ(M × g) and α, β ∈ Γ(T ∗M), we obtain the following expressions
entering in the brackets of sections of T ∗M × g.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{{u, Sg − {SM , ρ}}, v} = [u, v]g + Lρ(u)v − Lρ(v)u ,

{{α, {Sg∗, ρ}}, u} = −iρ∗(α){Sg∗ , u} = ad∗
ρ∗(α)u ,

{{α, {SM , π}}, u} = −Lπ	(α)u ,

{{α, {SM , ρ}}, u} = Lρ(u)α ,

{{α, {SM , π}}, β} = −[α, β]π ,

1
2{{α, {{Ψg, ρ}, ρ}, β} = i(∧2ρ∗)(α∧β)Ψg ,

where L denotes the Lie derivation of vector-valued functions and of forms by
vectors, and ad∗ is defined by means of the bracket of g∗. The bracket defined
by γσ is therefore

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[u, v] = [u, v]g + Lρ(u)v − Lρ(v)u ,

[α, u] = Lπ	(α)u− Lρ(u)α− ad∗
ρ∗(α)u ,

[α, β] = [α, β]π + i(∧2ρ∗)(α∧β)Ψg .

The bracket [u, v] is the transformation Lie algebroid bracket [40, 42] on
M × g →M . Summarizing this discussion, we obtain

Proposition 6.4. If ΨM = 0, then M is a quasi-Poisson g-space in the sense
of [1] and the Lie algebroid bracket of T ∗M × g is the bracket of Bursztyn,
Crainic and Ševera [8]. In particular, if ΨM = 0 and Sg∗ = 0, then M is a
quasi-Poisson g-manifold in the sense of [2], and the Lie algebroid bracket of
T ∗M × g is the bracket of Bursztyn and Crainic [6].
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Case ΨM = Ψg = 0. Formula (18) reduces to

γσ = Sg − {Sg∗ , ρ} − {SM , π} − {SM , ρ} .

Introducing the notations of Lu [38], the bracket of Bursztyn, Crainic and
Ševera reduces to the following expressions, for α, β ∈ Γ(T ∗M), and constant
sections u, v of M × g,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[u, v] = [u, v]g,

[α, u] = Dαu−Duα,

[α, β] = [α, β]π .

Proposition 6.5. If ΨM = 0 and Ψg = 0, then M is a manifold with a Lie
bialgebra action and the Lie algebroid bracket of T ∗M × g is the bracket of Lu
[38], defining a matched pair of Lie algebroids.

6.6 The Twisted Differential

Let us determine the differential dγσ = {γσ, .} on Γ(∧•(TM × g∗)), where
γσ is defined by (18). The particular case of the quasi-Poisson g-spaces was
recently treated in [7].

We first prove that the image of a section X⊗η of ∧kTM⊗∧�g∗ is a section
of
∑

−1≤j≤2 ∧k+jTM ⊗∧�+1−jg∗. We shall write Γ(g∗) for Γ(M × g∗ → M).
In fact, for X ∈ Γ(∧kTM),

⎧
⎪⎨

⎪⎩

{{SM , π}, X} and {{{ΨM , π}, π}, X} ∈ Γ(∧k+1TM) ,

{{SM , ρ}, X} and {{{ΨM , π}, ρ}, X} ∈ Γ(∧kTM ⊗ g∗) ,

{{{ΨM , ρ}, ρ}, X} ∈ Γ(∧k−1TM ⊗ ∧2g∗) ,

and for η ∈ Γ(∧�g∗),
⎧
⎪⎨

⎪⎩

{Sg, η} and {{SM , ρ}, η} ∈ Γ(∧�+1g∗) ,

{{Sg∗ , ρ}, η} ∈ and {{SM , π}, η} ∈ Γ(TM ⊗ ∧�g∗) ,

{{{Ψg, ρ}, ρ}, η} ∈ Γ(∧2TM ⊗ ∧�−1g∗) ,

while all other brackets vanish.
Each derivation is determined by its values on the elements of degree 0

and 1. If f ∈ C∞(M),

(dγσf)(α + u) = (π�(α) + ρ(u)) · f , (19)

for α ∈ Γ(T ∗M) and u ∈ Γ(g). If X ∈ Γ(TM), dγσ(X) is the sum of the
following terms,
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−{{SM , π}, X}+ 1
2{{{ΨM , π}, π}, X} = [π,X ]M + (∧2π�)(iXΨM )

∈ Γ(∧2TM) ,

−{{SM , ρ}, X}+ {{{ΨM , π}, ρ}, X} = [ρ(.), X ]M + (π� ∧ ρ)(iXΨM )
∈ Γ(TM ⊗ g∗) ,

1
2{{{ΨM , ρ}, ρ}, X} = (∧2ρ)(iXΨM ) ∈ Γ(∧2g∗) ,

where [ρ(.), X ]M : u ∈ g �→ [ρ(u), X ]M ∈ Γ(TM). For η ∈ Γ(g∗), dγσ(η) is the
sum of the following terms,
⎧
⎪⎨

⎪⎩

{Sg, η} − {{SM , ρ}, η} = dgη+ ' Lρ(.)η, .(∈ Γ(∧2g∗) ,

−{{Sg∗ , ρ}, η}−{{SM, π}, η} = ρ(ad∗
η(.)) + Lπ	(.)η ∈ Γ(TM ⊗ g∗),

1
2{{{Ψg, ρ}, ρ}, η} = −(∧2ρ)(iηΨg) ∈ Γ(∧2TM) ,

(20)

where ' Lρ(.)η, . (: (u, v) ∈ ∧2g �→ 〈Lρ(u)η, v〉 − 〈Lρ(v)η, u〉 ∈ C∞(M),
ρ(ad∗

η(.)) : u ∈ g → ρ(ad∗
η(u)) ∈ Γ(TM), and Lπ	(.)η : α ∈ Γ(T ∗M) �→

Lπ	(α)η ∈ Γ(g∗). The derivation dγσ is then extended to all sections of
∧•(TM×g∗) by the graded Leibniz rule. We have thus obtained the following:

Theorem 6.6. Let σ = π + ρ be a Poisson function with respect to the struc-
ture S = Sg + (Sg∗ + SM ) + (Ψg + ΨM ).
(i) For γσ defined by (18), dγσ = {γσ, .} is a differential on Γ(∧•(TM × g∗)).
(ii) dγσ =

∑
−1≤j≤2 d(j,1−j), where

d(j,1−j) : Γ(∧kTM ⊗ ∧�g∗)→ Γ(∧k+jTM ⊗ ∧�+1−jg∗) ,

and
d(−1,2) = 1

2{{{ΨM , ρ}, ρ}, .} ,
d(0,1) = {−{SM , ρ}+ {{ΨM , π}, ρ}+ Sg, .} ,
d(1,0) = {−{SM , π}+ 1

2{{ΨM , π}, π} − {Sg∗ , ρ}, .} ,
d(2,−1) = 1

2{{{Ψg, ρ}, ρ}, .} .

(iii) For f ∈ C∞(M) and η ∈ Γ(M × g∗ → M), dγσ (f) and dγσ (η) are
determined by Equations (19) and (20) while, for X ∈ Γ(TM),

dγσ (X) = [π,X ]M + [ρ(.), X ]M + (∧2π� + π� ∧ ρ + ∧2ρ)(iXΨM ) .

These formulas simplify in each of the particular cases listed in Sect. 6.4.
In the case of the quasi-Poisson g-spaces, dγσ (X) = [π,X ]M + Lρ(.)X . From
this formula and from (19), it follows that the restriction of dγσ to the
space of g-invariant multivectors on M is the differential of the quasi-Poisson
cohomology introduced in [2]. This fact was observed in [54].

Remark Throughout this section, the tangent bundle TM can be replaced
by an arbitrary Lie algebroid over M , provided that the de Rham differential
is replaced by the differential associated with the Lie algebroid in order to
yield more general results.
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The Diagonal of the Stasheff Polytope
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To Murray Gerstenhaber and Jim Stasheff

Abstract. We construct an A-infinity structure on the tensor product of two
A-infinity algebras by using the simplicial decomposition of the Stasheff polytope.
The key point is the construction of an operad AA-infinity based on the simplicial
Stasheff polytope. The operad AA-infinity admits a coassociative diagonal and the
operad A-infinity is a retract by deformation of it. We compare these constructions
with analogous constructions due to Saneblidze–Umble and Markl–Shnider based
on the Boardman–Vogt cubical decomposition of the Stasheff polytope.

Key words: Stasheff polytope, Associahedron, Operad, Bar–cobar construction,
Cobar construction, A-infinity algebra, AA-infinity algebra, Diagonal

Introduction

An associative algebra up to homotopy, or A∞-algebra, is a chain complex
(A, dA) equipped with an n-ary operation μn for each n ≥ 2 verifying μ◦μ = 0.
See [15], or, for instance, [5]. Here we put

μ := dA + μ2 + μ3 + · · · : T (A)→ T (A),

where μn has been extended to the tensor coalgebra T (A) by coderivation.
In particular, μ2 is not associative, but only associative up to homotopy in
the following sense:

μ2 ◦ (μ2 ⊗ id)− μ2 ◦ (id⊗ μ2) = dA ◦ μ3 + μ3 ◦ dA⊗3 .

Putting an A∞-algebra structure on the tensor product of two A∞-algebras
is a longstanding problem, cf. for instance [12,2]. Recently a solution has been
constructed by Saneblidze and Umble, cf. [13, 14], by providing a diagonal

A.S. Cattaneo et al. (eds.), Higher Structures in Geometry and Physics, 269
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A∞ → A∞ ⊗ A∞ on the operad A∞ which governs the A∞-algebras. Recall
that, over a field, the operad A∞ is the minimal model of the operad As gov-
erning the associative algebras. The differential graded module (A∞)n of the
n-ary operations is the chain complex of the Stasheff polytope. The method
of Saneblidze and Umble consists in providing an explicit (i.e., combinatorial)
diagonal of the Stasheff polytope considered as a cellular complex. In [11]
Markl and Shnider give a construction of the Saneblidze–Umble diagonal by
using the Boardman–Vogt model of As. This model is the bar–cobar con-
struction on As, denoted ΩBAs, in the operadic framework. It turns out that
there exists a coassociative diagonal on ΩBAs, which is constructed out of
the diagonal of the cube. This diagonal, together with the quasi-isomorphisms
q : A∞→ΩBAs and p : ΩBAs→A∞ permit them to construct a diagonal on
A∞ by composition:

A∞
q→ ΩBAs→ ΩBAs⊗ΩBAs

p⊗p−→ A∞ ⊗A∞.

The aim of this paper is to give an alternative solution to the diagonal
problem by relying on the simplicial decomposition of the Stasheff polytope
described in [8] and using the diagonal of the standard simplex. It leads to
a new model AA∞ of the operad As, whose dg module (AA∞)n is the chain
complex of a simplicial decomposition of the Stasheff polytope. Because of its
simplicial nature, the operad AA∞ has a coassociative diagonal (by means
of the Alexander–Whitney map) and therefore we get a diagonal on A∞ by
composition:

A∞
q′→ AA∞ → AA∞ ⊗AA∞

p′⊗p′−→ A∞ ⊗A∞.

The map q′ : A∞ → AA∞ is induced by the simplicial decomposition
of the associahedron. The map p′ : AA∞ → A∞ is slightly more involved
to construct. It is induced by the deformation of the “main simplex” of the
associahedron into the big cell of the associahedron. Here the main simplex
is defined by the shortest path in the Tamari poset structure of the planar
binary trees.

We compute the diagonal map on (A∞)n up to n = 5 and we find the same
result as the Saneblidze–Umble diagonal. So it is reasonable to conjecture that
they coincide.

In the last part we give a similar interpretation of the map p : ΩBAs→A∞
constructed in [11] and giving rise to the Saneblidze–Umble diagonal. It is
induced by the deformation of the “main cube” into the big cell.

1 Stasheff polytope (associahedron)

We recall briefly the construction of the Stasheff polytope, also called associ-
ahedron, and its simplicial realization, which is the key tool of this paper. All
chain complexes in this paper are made of free modules over a commutative
ring K (which can be Z or a field).
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1.1 Planar binary trees

We denote by PBTn the set of planar binary trees having n leaves:

PBT1 := {|}, PBT2 := { ��
ZZ }, PBT3 := {

�� ����
ZZZZ ,

ZZ����
ZZZZ },

PBT4 := {
!! !!!

!!!!!

����� ,

��!!!
!!!!!

����� ,
!! ��!!!!!

����� ,
!!��� !!!!!

����� ,

����� !!!!!

����� } .

So t ∈ PBTn has one root, n leaves, (n − 1) internal vertices, (n − 2)
internal edges. Each vertex is binary (two inputs, one output). The number of
elements in PBTn+1 is known to be the Catalan number cn = (2n)!

n! (n+1)! . There
is a partial order on PBTn, called the Tamari order, defined as follows. On
PBT3 it is given by

�� ����

ZZZZ →
ZZ����

ZZZZ .

More generally, if t and s are two planar binary trees with the same number
of leaves, there is a covering relation t → s if and only if s can be obtained

from t by replacing a local pattern like
�� ����

ZZZZ by
ZZ����

ZZZZ . In other words

s is obtained from t by moving a leaf or an internal edge from left to right
over a fork.

Examples:

			
,,,

•
1





\\\�����

^̂ ^̂
^

�����

^̂ ^̂
^

��

12 21

123

�����
���

VŴ
^̂

^̂
^̂

^̂
^

213

��
����

��
��

��
�� 141

312
<?YY

YYY
Y

321

where the elements of PBT4 (listed above) are denoted 123, 213, 141, 312, 321,
respectively. We recall from [7] how this way of indexing is obtained. First
we label the leaves of a tree from left to right by 0, 1, 2, . . . . Then we label
the vertices by 1, 2, . . . by saying that the label i vertex lies in between the
leaves i− 1 and i (drop a ball). To any binary tree t we associate a sequence
of integers x1x2 · · ·xn−1 as follows: xi = aibi where ai (resp. bi) is the number
of leaves on the left (resp. right) side of the ith vertex.
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1.2 Shortest path and long path

The Tamari poset admits an initial element: the left comb 12 · · · (n− 1), and
a terminal element: the right comb (n − 1)(n − 2) · · · 1. There is a shortest
path from the initial element to the terminal element. It is made of the trees
which are the grafting of some left comb with a right comb. In PBTn there
are n− 1 of them. This sequence of planar binary trees will play a significant
role in the comparison of different cell realizations of the Stasheff polytope.

Example: the shortest path in PBT4:

!! !!!
!!!!!

����� →
!! ��!!!!!

����� →
����� !!!!!

�����

We also define “the long path” as follows. The long path from the left
comb to the right comb is obtained by taking a covering relation at each step
with the following rule: the vertex which is moved is the one with the smallest
label (among the movable vertices, of course).

Examples: n = 2

!! !!!
!!!!!

����� →
��!!!

!!!!!

����� →
!!��� !!!!!

����� →
����� !!!!!

�����

n = 3
!! !!!

!!!!!

!!!!!!!

������� →
��!!!

!!!!!

!!!!!!!

������� →
!!��� !!!!!

!!!!!!!

������� →
!! !!!

�����
!!!!!!!

������� →

��!!!
�����

!!!!!!!

������� →
!!���

�����
!!!!!!!

������� →
�����

�����
!!!!!!!

�������

Observe that there are (for n ≥ 3) other paths with the same length.

1.3 Planar trees

We now consider the planar trees for which an internal vertex has one root
and k leaves, where k can be any integer greater than or equal to 2. We denote
by PTn the set of planar trees with n leaves:

PT1 := {|}, PT2 := { ��
ZZ }, PT3 := {

�� ����

ZZZZ ,
ZZ����

ZZZZ ,
����

ZZZZ },

PT4 := {
!! !!!

!!!!!

����� , . . . ,
!!!

!!!!!

����� , . . . ,
!!!!!

�����

OOOO
**** } .
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Each set PTn is graded according to the number of internal vertices,
i.e., PTn =

⋃p=n
p=1 PTn,p where PTn,p is the set of planar trees with n

leaves and p internal vertices. For instance, PTn,1 contains only one element
which we call the n-corolla (the last element in the above sets). It is clear
that PTn,n−1 = PBTn.

We order the vertices of a planar tree by using the same procedure as for
the planar binary trees.

1.4 The Stasheff polytope, alias associahedron

The associahedron is a cellular complex Kn of dimension n, first constructed
by Jim Stasheff [15], which can be realized as a convex polytope whose
extremal vertices are in one-to-one correspondence with the planar binary
trees in PBTn+2. We showed in [7] that it is the convex hull of the points
M(t) = (x1, . . . , xn+1) ∈ R

n+1, where the computation of the xi’s has been
recalled in Section 1.1. The edges of the polytope are indexed by the covering
relations of the Tamari poset.
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Its k-cells are in one-to-one correspondence with the planar trees in
PTn+2,n+1−k. For instance, the 0-cells are indexed by the planar binary trees,
and the top cell is indexed by the corolla.

It will prove helpful to adopt the notation Kt to denote the cell in Kn
indexed by t ∈ PTn+2. For instance, if t is the corolla, then Kt = Kn. As
a space Kt is the product of p associahedrons (or associahedra, as you like),
where p is the number of internal vertices of t:

Kt = Ki1 × · · · × Kip

where ij+2 is the number of inputs of the jth internal vertex of t. For instance,

if t =
!!!

!!!!!!!

333333

������� , then Kt = K1 ×K1.

The shortest path and the long path defined combinatorially in Section 1.1
give rise to concrete paths on the associahedron.

To the cellular complex Kn we associate its chain complex C∗(Kn). The
module of k-chains admits the set of trees PTn+2,n+1−k as a basis:
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Ck(Kn) = K[PTn+2,n+1−k].

In particular, C0(Kn) = K[PBTn+2] and Cn(Kn) = K tn+2 where tn+2 is the
corolla.

1.5 The simplicial associahedron

In [8] we constructed a simplicial set Knsimp whose geometric realization gives
a simplicial decomposition of the associahedron. In other words, the associa-
hedron Kn is viewed as a union of n-simplices (there are (n+ 1)n−1 of them).
This simplicial decomposition is constructed inductively as follows. We fat-
ten the simplicial set Kn−1

simp into a new simplicial set fatKn−1
simp, cf. [8]. Then

Knsimp is defined as the cone over fatKn−1
simp (as in the original construction of

Stasheff [15]).
For n = 1, we have K1

simp = K1 = [0, 1] (the interval).
Examples: K2

simp and fatK3
simp
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Since, in the process of fattenization, the new cells are products of smaller
dimensional associahedrons we get the following main property.

Proposition 1.6 The simplicial decomposition of a face Ki1 × · · · × Kik of
Kn is the product of the simplicializations of each component Kij .

Proof. It is immediate from the inductive procedure which constructs Kn out
of Kn−1. �

Considered as a cellular complex, still denoted Knsimp, the simplicialized
associahedron gives rise to a chain complex denoted C∗(Knsimp). This chain
complex is the normalized chain complex of the simplicial set. It is the quo-
tient of the chain complex associated to the simplicial set, divided out by the
degenerate simplices (cf. for instance [9] Chapter VIII). A basis of C0(Knsimp)
is given by PBTn+2 and a basis of Cn(Knsimp) is given by the (n + 1)n−1 top
simplices (in bijection with the parking functions, cf. [8]). It is zero higher up.

In the sequel “a simplex of Knsimp” always means a nondegenerate simplex
of Knsimp.
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Among the top simplices there is a particular one which we call the main
simplex. Its vertices are indexed by the planar binary trees which are part of
the shortest path constructed in Section 1.1 (observe that the shortest path
has n + 1 vertices).

Examples (the main simplex is highlighted):
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2 The operad AA∞

We construct the operad AA∞ and we construct a diagonal on it. A morphism
from the operad A∞ governing the associative algebras up to homotopy to the
operad AA∞ is deduced from the simplicial structure of the associahedron.

2.1 Differential graded nonsymmetric operad [10]

By definition a differential graded nonsymmetric operad, dgns operad for short,
is a family of chain complexes Pn = (Pn, d) equipped with chain complex
morphisms

γi1···in : Pn ⊗ Pi1 ⊗ · · · ⊗ Pin → Pi1+···+in ,

which satisfy the following associativity property. Let P be the endofunctor
of the category of chain complexes over K defined by P(V ) :=

⊕
n Pn⊗V ⊗n.

The maps γi1···in give rise to a transformation of functors γ : P ◦ P → P .
This transformation of functors γ is supposed to be associative. Moreover we
suppose that P0 = 0,P1 = K (trivial chain complex concentrated in degree 0).
The transformation of functors Id → P determined by P1 is supposed to be
a unit for γ. So we can denote by id the generator of P1. Since Pn is a
graded module, P is bigraded. The integer n is called the “arity” in order to
differentiate it from the degree of the chain complex.

2.2 The fundamental example A∞

The operad A∞ is a dgns operad constructed as follows:

A∞,n := C∗(Kn−2) (chain complex of the cellular space Kn−2).
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Let us denote by As¡ the family of one-dimensional modules (As¡
n)n≥1

generated by the corollas (unique top cells). It is easy to check that there is
a natural identification of graded (by arity) modules A∞ = T (As¡), where
T (As¡) is the free ns operad over As¡. This identification is given by grafting
on the leaves as follows. Given trees t, t1, . . . , tn where t has n leaves, the tree
γ(t; t1, . . . , tn) is obtained by identifying the ith leaf of t with the root of ti.
For instance:

γ( ��
ZZ ;

ZZ����

ZZZZ ,
��

ZZ ) =

�� ��!!!
!!!!!!!

������� .

Moreover, under this identification, the composition map γ is a chain map,
therefore A∞ is a dgns operad.

This construction is a particular example of the so-called “cobar construc-
tion” Ω, i.e., A∞ = ΩAs¡ where As¡ is considered as the cooperad governing
the coassociative coalgebras (cf. [10]).

For any chain complex A there is a well-defined dgns operad End(A) given
by End(A)n = Hom(A⊗n, A). An A∞-algebra is nothing but a morphism of
operads A∞ → End(A). The image of the corolla under this isomorphism is
the n-ary operation μn alluded to in the introduction.

2.3 Hadamard product of operads, operadic diagonal

Given two operads P and Q, their Hadamard product, also called tensor
product, is the operad P⊗Q defined as (P⊗Q)n := Pn⊗Qn. The composition
map is simply the tensor product of the two composition maps.

A diagonal on a nonsymmetric operad P is a morphism of operads
Δ : P → P ⊗ P , which is compatible with the unit. Explicitly it is given by
chain complex morphisms Δ : Pn → Pn ⊗ Pn which commute with the com-
position in P . In other words, the following diagram, where m := i1 + · · ·+ in,
is commutative:

Pn ⊗ Pi1 ⊗ · · ·
γ ��

Δ⊗Δ⊗···
��

Pm Δ �� Pm ⊗ Pm

(Pn ⊗ Pn)⊗ (Pi1 ⊗ Pi1)⊗ · · ·
∼= �� (Pn ⊗ Pi1 ⊗ · · · )⊗ (Pn ⊗ Pi1 ⊗ · · · )

γ⊗γ
��

We do not ask for Δ to be coassociative.

2.4 Tensor product of A∞-algebras

It is a longstanding problem to decide if, given two A∞-algebras A and B,
there is a natural A∞-structure on their tensor product A ⊗ B which ex-
tends the natural dg nonassociative algebra structure, cf. [12, 2]. It amounts
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to construct a diagonal on A∞, i.e., an operad morphism Δ : A∞ → A∞⊗A∞,
since, by composition, we get an A∞-structure on A⊗B:

A∞ → A∞ ⊗A∞ → End(A) ⊗ End(B) → End(A⊗B) .

Let us recall that the classical associative structure on the tensor product of
two associative algebras can be interpreted operadically as follows. There is a
diagonal on the operad As given by

Asn → Asn ⊗Asn, mn �→ mn ⊗mn ,

where mn is the standard n-ary operation in the associative framework. Since
we want the diagonal Δ on A∞ to be compatible with the diagonal on As
(μ2 �→ m2), there is no choice in arity 2, and we have Δ(μ2) = μ2 ⊗ μ2.
Observe that these two elements are in degree 0. In arity 3, since μ3 is of
degree 1 and μ3 ⊗ μ3 of degree 2, this last element cannot be the answer.
In fact, there is already a choice (parameter a) for a solution:

Δ(
����

ZZZZ ) = a
( ����

ZZZZ ⊗
�� ����

ZZZZ +
ZZ����

ZZZZ ⊗
����

ZZZZ
)

+(1− a)
( ����

ZZZZ ⊗
ZZ����

ZZZZ +
�� ����

ZZZZ ⊗
����

ZZZZ
)
.

By some tour de force Samson Saneblidze and Ron Umble constructed such a
diagonal on A∞ in [13]. Their construction was reinterpreted in [11] by Markl
and Shnider through the Boardman–Vogt construction (see Section 4 below
for a brief account of their work). We will use the simplicialization of the
associahedron described in [8] to give a solution to the diagonal problem.

2.5 Construction of the operad AA∞

We define the dgns operad AA∞ as follows. The chain complex AA∞,n is the
chain complex of the simplicialization of the associahedron considered as a
cellular complex (cf. Section 1.5):

AA∞,n := C∗(Kn−2
simp) .

In low dimension we take AA∞,0 = 0, AA∞,1 = K id. So a basis of AA∞,n

is made of the (nondegenerate) simplices of Kn−2
simp. Let us now construct the

composition map

γ = γAA∞ : AA∞,n ⊗AA∞,i1 ⊗ · · · ⊗AA∞,in → AA∞,i1+···+in .

We denote by Δk the standard k-simplex. Let ι : Δk � Kn−2
simp be a cell,

i.e., a linear generator of Ck(Kn−2
simp). Given such cells
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ι0 ∈ AA∞,n, ι1 ∈ AA∞,i1 , . . . , ιn ∈ AA∞,in

we construct their image γ(ι0; ι1, . . . , ιn) ∈ AA∞,m, where m := i1 + · · ·+ in
as follows. We denote by ki the dimension of the cell ιi.

Let tn be the n-corolla in PTn and let s := γ(tn; ti1 , . . . , tin) ∈ PTm be
the grafting of the trees ti1 , . . . , tin on the leaves of tn. As noted before this is
the composition in the operad A∞. The tree s indexes a cell Ks of the space
Km−2, which is combinatorially homeomorphic to Kn−2×Ki1−2×· · ·×Kin−2.
In other words it determines a map

s∗ : Kn−2 ×Ki1−2 × · · · × Kin−2 = Ks � Km−2.

The product of the inclusions ιj , j = 0, . . . , n, defines a map

ι0 × ι1 × · · · × ιn : Δk0 ×Δk1 × · · · ×Δkn � Kn−2 ×Ki1−2 × · · · × Kin−2.

Let us recall that a product of standard simplices can be decomposed into the
union of standard simplices. These pieces are indexed by the multi-shuffles α.
Example: Δ1 ×Δ1 = Δ2 ∪Δ2:

��

(2, 1)

(1, 2)

��

��

UV�����������������

��

So, for any multi-shuffle α there is a map

fα : Δl → Δk0 ×Δk1 × · · · ×Δkn ,

where l = k0 + · · ·+ kn. By composition of maps we get

s∗ ◦ (ι0 × · · · × ιn) ◦ fα : Δl → Km−2

which is a linear generator of Cl(Km−2
simp ) by construction of the triangulation

of the associahedron, cf. [7]. By definition γ(ι0; ι1, . . . , ιn) is the algebraic sum
of the cells s∗ ◦ (ι0 × · · · × ιn) ◦ fα over the multi-shuffles.

Proposition 2.6 The graded chain complex AA∞ and γ constructed above
define a dgns operad, denoted AA∞. The operad AA∞ is a model of the
operad As.

Proof. We need to prove associativity for γ. It is an immediate consequence of
the associativity for the composition of trees (operadic structure of A∞) and
the associativity property for the decomposition of the product of simplices
into simplices.

Since the associahedron is contractible, taking the homology gives a graded
linear map C∗(Kn−2

simp) → K mn, where mn is in degree 0. This map sends
any planar binary tree having n leaves to mn, and obviously induces an iso-
morphism on homology. These maps assemble into a dgns operad morphism
AA∞ → As. Since it is a quasi-isomorphism, AA∞ is a resolution of As, that
is, a model of As in the category of dgns operads. �
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Proposition 2.7 The operad AA∞ admits a coassociative diagonal.

Proof. This diagonal Δ : AA∞ → AA∞ ⊗AA∞ is determined by its value in
arity n for all n, that is, a chain complex morphism

C∗(Kn−2
simp)→ C∗(Kn−2

simp)⊗ C∗(Kn−2
simp).

This morphism is defined as the composite

C∗(Kn−2
simp) Δ∗−→ C∗(Kn−2

simp ×K
n−2
simp) AW−→ C∗(Kn−2

simp)⊗ C∗(Kn−2
simp),

where Δ∗ is induced by the diagonal on the simplicial set, and where AW is
the Alexander–Whitney map. Observe that under the identification

C∗(Kn−2
simp)⊗ C∗(Kn−2

simp) = C∗(Kn−2
simp ×Kn−2

simp)

the composite morphism maps a k-simplex into a 2k-simplex. Let us recall
from [9], Chapter VIII, the construction of the AW map. Denote by d0, . . . , dk
the face operators of the simplicial set. If x is a simplex of dimension k, then
we define dmax(x) := dk(x). So, for instance, (dmax)2(x) = dk−1dk(x). By
definition the AW map on Ck is given by

(x, y) �→
k∑

i=0

(
(dmax)k−i(x), (d0)i(y)

)
.

We need to check that the diagonal is compatible with the operad struc-
ture, that is, the diagram of Section 2.3 for P = AA∞ is commutative. First
we remark that the diagonal of a product of standard simplices satisfies the
following commutativity property:

C∗(Δk ×Δl) Δ ��

Δ⊗Δ
��

C∗(Δk ×Δl)⊗ C∗(Δk ×Δl)

=
��

C∗(Δk ×Δk)⊗ C∗(Δl ×Δl)
∼= �� C∗(Δk ×Δl ×Δk ×Δl)

where the isomorphism∼= involves the switching isomorphism V ⊗V ′ ∼= V ′⊗V .
A similar property holds for a finite product of simplices. Starting with a linear
generator

(ι; ι1, . . . , ιn) ∈ AA∞,n ⊗AA∞,i1 ⊗ · · · ⊗AA∞,in

we see that Δ(γ(ι; ι1, . . . , ιn)) is made of diagonals of products of simplices.
Applying the preceding result we can rewrite this element as the composite
of diagonals of simplices. Hence we get

Δ(γ(ι; ι1, . . . , ιn)) = γ(Δ(ι);Δ(ι1), . . . , Δ(ιn))

as expected.
The coassociativity property follows from the coassociativity property of

the Alexander–Whitney map. �
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2.8 Comparing A∞ to AA∞

Since Knsimp is a decomposition of Kn, there is a chain complex map

q′ : C∗(Kn)→ C∗(Knsimp),

where a cell of Kn is sent to the algebraic sum of the simplices it is made of.

Proposition 2.9 The map q′ : A∞ → AA∞ induced by the maps q′ :
C∗(Kn) → C∗(Knsimp) is a quasi-isomorphism of dgns operads.

Proof. It is sufficient to prove that the maps q′ on the chain complexes are
compatible with the operadic composition:

q′(γAs(t; t1, . . . , tn)) = γAA∞(q′(t); q′(t1), . . . , q′(tn)).

This equality follows from the definition of γAA∞ given in Section 2.5 and
Proposition 1.6. �

Moreover we have commutative diagrams:

C∗(Kn−2)
q′ ��

H∗

TU\\
\\

\\
\\

C∗(Kn−2
simp)

H∗

		












K μn

A∞
q′ ��

H∗

14a
aa

aa
aa

AA∞
H∗

��..
..

..
.

As

3 From AA∞ to A∞

The aim of this section is to construct a quasi-inverse to q′, that is, a quasi-
isomorphism of dgns operads p′ : AA∞ → A∞. We first construct chain maps
p′ : C∗(Knsimp) → C∗(Kn) by using a deformation of the main simplex to the
top cell of the associahedron. This is obtained by an inflating process that we
first describe on the cube and on the product of simplices.

3.1 Deformation of the cube

The cube In is a polytope whose vertices are indexed by (x1, . . . , xn), where
xi = 0 or 1. The long path in In is, by definition, the path

(0, . . . , 0, 0)→ (0, . . . , 0, 1)→ (0, . . . , 1, 1)→ · · · → (1, . . . , 1, 1).

The cube is a cell complex which can be decomposed into n! top simplices,
i.e., viewed as the realization of a simplicial set Insimp. The simplex which
corresponds to the identity permutation is called the main simplex of the
cube. Let us describe the deformation from the main simplex to the cube,
which gives rise to a chain map
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p′ : C∗(Insimp)→ C∗(In) .

We work by induction on n. In I2
simp the main simplex, denoted α, is deformed

to the square by pushing the diagonal to the long path:

(0, 1) �� (1, 1) (0, 1) () (1, 1)

β �→
α

(0, 0)

��

��

��bbbbbbbbbbbbbbb

bbbbbbbbbbbbbbb

��

(1, 0) (0, 0) ��

��

(1, 0)

So p′ is given by the identity on the boundary and by

((0, 0), (1, 1)) �→ ((0, 0), (0, 1)) + ((0, 1), (1, 1)),
α �→ I2,
β �→ 0,

on the interior simplices. So, under this inflating process, the main simplex
α is mapped to the whole square and the other simplex β is flattened. More
generally, the main simplex of Insimp is deformed into the top cell of In by
sending the diagonal to the long path. The other edges of the main simplex
are deformed according to the lower-dimensional deformation.

Here is the example of the 3-dimensional cube:
������������ ��

����������

��

�� c`

���������� ()
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3.2 Deformation of a product of simplices

Similarly we define a deformation of the product of simplices Δr × Δs by
inflating the main simplex as follows. Let us denote by {0, . . . , r} the vertices
of Δr. The main simplex of Δr×Δs is chosen as being the simplex Δr+s with
vertices

(0, 0), (1, 0), . . . , (r, 0), (r, 1), . . . , (r, s), .

We deform the main simplex into the whole product by induction on s. So it
suffices to give the image of the edge ((0, 0), (r, s)). We send it to the “long
path” defined as

(0, 0), (0, 1), . . . , (0, s), (1, s), . . . , (r, s), .

Under this deformation the main simplex becomes the whole product and all
the other simplices are flattened. This deformation defines a chain complex
morphism
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C∗((Δr ×Δs)simp) → C∗(Δr ×Δs)

where, on the right side, Δr × Δs is considered as a cell complex with only
one r + s cell.

Observe that some simplices may happen to be deformed into cells of
various dimensions. For instance, in Δ2 × Δ1 the triangle with vertices
(0, 0), (1, 0), (2, 1) is deformed into the union of a square (with vertices
(0, 0), (1, 0), (0, 1), (1, 1)) and an edge (with vertices (1, 1), (2, 1)). Its image
under the chain morphism is the square.

3.3 Deformation of the associahedron

We construct a topological deformation of the simplicial associahedron by
pushing the main simplex to the whole associahedron. All the other simplices
are going to be flattened. This topological deformation will induce the chain
map p′ we are looking for. This inflating process is analogous to what we did
for the cube and the product of simplices above. We work by induction on the
dimension.

For n = 1, there is no deformation since K1
simp = K1. For n = 2, the

deformation is the identity on the boundary and the only edge of the main
simplex which is not on the boundary is “pushed” to the long path.
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In the meantime, the other interior edge is pushed to the union of two
boundary edges and the two other top simplices are flattened.

For higher n we use the inductive construction of Knsimp out of fatKn−1
simp.

We suppose that the deformation is known for any i < n and we construct it
on fatKn−1

simp. The simplicial set fatKn−1
simp is the union of the simplicial sets of

the form Ktsimp = Kisimp × K
j
simp indexed by some trees t with one and only

one internal edge. The main simplex of this product is the main simplex Δi+j

of Δi × Δj where Δi, resp. Δj , is the main simplex of Kisimp, resp. Kjsimp.
The deformation is obtained by, first, deforming the main simplex Δi+j into
Δi × Δj as described in Section 3.2 and then use the inductive hypothesis
(deformation from the main simplex to the associahedron).

The deformation of the interior cells is obtained by pushing the main
simplex of Knsimp to the top cell. It is determined by the image of the edges of
the main simplex. By induction, it suffices to construct the image of the edge
which goes from the vertex indexed by the left comb (initial element) to the
vertex indexed by the right comb (terminal element). We choose to deform it
to the long path of the associahedron as constructed in Section 1.2. Since any
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simplex of Knsimp is either on the boundary, or is a cone (for the last vertex)
over a simplex in the boundary, we are done. In particular, the edge going
from a 0-simplex labelled by the tree t to the right comb is deformed into a
path made of 1-cells of the associahedron, constructed with the same rule as
in the construction of the long path.

The deformed tetrahedron:
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3.4 The map p′ : C∗(Kn
simp) → C∗(Kn)

We define the map p′ as follows. Under the deformation map any simplex of
Knsimp is sent to the union of cells of Kn. The image of such a simplex under
p′ is the algebraic sum of the cells of the same dimension in the union. For
instance, the main simplex is sent to the top cell (indexed by the corolla),
and all the other top simplices are sent to 0, since under the deformation they
are flattened. From its topological nature it follows that p′ is a chain complex
morphism.

In low dimension we get the following. For n = 1, the map p′ is the identity.
For n = 2, the map p′ is the identity on the 0-simplices and the 1-simplices of
the boundary, and on the interior cells, we get:

a =
( !! !!!

!!!!!

����� ,
!! ��!!!!!

����� ,

����� !!!!!

�����
)
�→

!!!!!

�����

OOOO
****

b =
( !! !!!

!!!!!

����� ,

��!!!
!!!!!

����� ,

����� !!!!!

�����
)
�→ 0

c =
( ��!!!

!!!!!

����� ,
!!��� !!!!!

����� ,

����� !!!!!

�����
)
�→ 0

( !! !!!
!!!!!

����� ,

����� !!!!!

�����
)
�→

!!!
!!!!!

����� +
��!! !!!!!

����� +
��� !!!!!

�����

( ��!!!
!!!!!

����� ,

����� !!!!!

�����
)
�→

��!! !!!!!

����� +
��� !!!!!

�����
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Here are examples of the image under p′ of some interior 2-dimensional
simplices for n = 3:

( !! !!!
!!!!!

!!!!!!!

������� ,

!! ����� !!!!!!!

������� ,

�����
�����

!!!!!!!

�������

)
�→

****

OOOO
!!!!!

!!!!!!!

������� +
!!�� !!!!!!!

�������

======
*****

+

��� !!!!!!!

�������

====== .

(
��!!!

!!!!!

!!!!!!!

������� ,

�� ��!!!
!!!!!!!

������� ,

�����
�����

!!!!!!!

�������

)
�→

!!�� !!!!!!!

�������

DDDDDD
+

!!!
��� !!!!!!!

������� +

�����

OOOO
****

!!!!!!!

������� .

Proposition 3.5 The chain maps p′ : C∗(Knsimp) → C∗(Kn) assemble into a
morphism of dgns operads p′ : AA∞ → A∞.

Proof. We adopt the notation of Section 2.5 where the operadic composition
map γAA∞ is constructed. From this construction it follows that there is a
main simplex in ω := γAA∞(ι0; ι1, . . . , ιn) if and only if all the simplices ιj are
main simplices.

Suppose that one of them, say ιj , is not a main simplex. Then we have
p′(ιj) = 0, and therefore γA∞(p′(ι0); p′(ι1), . . . , p′(ιn)) = 0. But since there is
no main simplex in ω, we also get p′(ω) = 0 as expected.

Suppose that all the simplices are main simplices. Then p′(ιj) = tij for
all j and therefore γA∞(p′(ι0); p′(ι1), . . . , p′(ιn)) = γA∞(ti0 ; ti1 , . . . , tin).
On the other hand, ω contains the main simplex, therefore p′(ω) =
γA∞(ti0 ; ti1 , . . . , tin) and we are done. �

Corollary 3.6 The composite

A∞
q′→ AA∞

Δ−→ AA∞ ⊗AA∞
p′⊗p′−→ A∞ ⊗A∞

is a diagonal for the operad A∞.

Proof. It is immediate to check that this composite of dgns operad morphisms
sends μ2 to μ2 ⊗ μ2, since μ2 corresponds to the 0-cell of K0. �

Proposition 3.7 If A is an associative algebra and B an A∞-algebra, then
the A∞-structure on A⊗B is given by

μn(a1 ⊗ b1, . . . , an ⊗ bn) = a1 · · · an ⊗ μn(b1, . . . , bn).
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Proof. In the formula for Δ we have μn = 0 for all n ≥ 3, that is, any tree
with a k-valent vertex for k ≥ 3 is 0 on the left side. Hence the only term
which is left is comb⊗ corolla, whence the assertion. �

3.8 The first formulas

Let us give the explicit form of Δ(μn) for n = 2, 3, 4:

Δ( ��
ZZ ) = ��

ZZ ⊗ ��
ZZ

,

Δ
( ����

ZZZZ
)

=
�� ����

ZZZZ ⊗
����

ZZZZ +
����

ZZZZ ⊗
ZZ����

ZZZZ ,

Δ
( !!!!!

�����

OOOO
****

)
=

!! !!!
!!!!!

����� ⊗
!!!!!

�����

OOOO
**** +

!!!!!

�����

OOOO
**** ⊗

����� !!!!!

�����

+
!! !!!!!

����� ⊗
��!!!!!

����� −
!!!

!!!!!

����� ⊗
��� !!!!!

�����

−
!!!

!!!!!

����� ⊗
��!! !!!!!

����� −
��!! !!!!!

����� ⊗
��� !!!!!

����� .

In this last formula the first three summands comes from the triangle
(123, 141, 321), the next two summands come from the triangle (123, 213, 321)
and the last summand comes from the last triangle (213, 312, 321). It is ex-
actly the same formula as the one obtained by Saneblidze and Umble (cf. [13]
Example 1, [11] Exercise 12). Topologically the diagonal of the pentagon is
approximated as a union of products of cells as follows:
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Each cell of this decomposition corresponds to a summand of the above for-
mula, which indicates where the cell goes in the product K2 ×K2.
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3.9 On the non-coassociativity of the diagonal

Though the diagonal of AA∞ that we constructed is coassociative, the diag-
onal of A∞ is not. In fact, it has been shown in [11] that there does not exist
any coassociative diagonal on A∞. The obstruction to coassociativity can be
seen topologically on the picture “Iterated diagonal” (see Fig. 1.).

Fig. 1. Iterated diagonal

Both pictures are the same combinatorially, except for a hexagon (high-
lighted on the pictures), which is the union of three squares one way on the
left and the other way on the right. This is the obstruction to coassociativity.
Of course there is a way to reconcile these two decompositions via a homotopy
which is given by the cube.

Exercise 1. Show that the image of this cube in K2 × K2 ×K2 is indexed

by
!!!

!!!!!

����� ×
��!! !!!!!

����� ×
��� !!!!!

����� .

Exercise 2. Compare the five iterated diagonals of the next step (some nice
pictures to draw).

4 Comparing the operads AA∞ and ΩBAs

We first give a brief account of [11, 13] where a diagonal of the operad A∞
is constructed by using a coassociative diagonal on the dgns operad ΩBAs.
Then we compare the two operads AA∞ and ΩBAs.
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4.1 Cubical decomposition of the associahedron [1]

The associahedron can be decomposed into cubes as follows.
For each tree t ∈ PBTn+2 we take a copy of the cube In (where I = [0, 1]

is the interval) which we denote by Int . Then the associahedron Kn is the
quotient

Kn :=
⊔

t

Int / ∼

where the equivalence relation is as follows. We think of an element τ =
(t;λ1, . . . , λn) ∈ Int as a tree of type t where the λi’s are the lengths of the
internal edges. If some of the λi’s are 0, then the geometric tree determined by
τ is not binary anymore (since some of its internal edges have been shrunken
to a point). We denote the new tree by τ̄ . For instance, if none of the λi’s is
zero, then τ̄ = t ; if all the λi’s are zero, then the tree τ̄ is the corolla (only
one vertex). The equivalence relation τ ∼ τ ′ is defined by the following two
conditions:

– τ̄ = τ̄ ′,
– the lengths of the nonzero-length edges of τ are the same as those of τ ′.
Hence Kn is obtained as a cubical realization denoted Kncub.
Examples:
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4.2 Markl–Shnider version of Saneblidze–Umble diagonal [11, 13]

In [1] Boardman and Vogt showed that the bar–cobar construction on the
operad As is a dgns operad ΩBAs whose chain complex in arity n can be
identified with the chain complex of the cubical decomposition of the associ-
ahedron:

(ΩBAs)n = C∗(Kn−2
cub ) .

In [11] (where Kn−2
cub is denoted Wn and Kn−2 is denoted Kn) Markl and

Shnider use this result to construct a coassociative diagonal on the operad
ΩBAs. There is a quasi-isomorphism q : A∞ → ΩBAs induced by the cubical
decomposition of the associahedron (the image of the top cell is the algebraic
sum of the cn−1 cubes). They construct an inverse quasi-isomorphism p :
ΩBAs → A∞ by giving explicit algebraic formulas. At the chain level the map
p : C∗(Kncub) → C∗(Kn) has a topological interpretation using a deformation
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of the cubical associahedron as follows. The cube indexed by the left comb is
called the main cube of the decomposition. The deformation sends the main
cube to the top cell of the associahedron and flattens all the other ones.

Example:
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The exact way the main cube is deformed is best explained by draw-
ing the associahedron on the cube. This is recalled in the Appendix. In [4]
Kadeishvili and Saneblidze give a general method for constructing a diagonal
on some polytopes admitting a cubical decomposition along the same principle
(inflating the main cube).

Markl and Shnider claim that the composite

A∞
q→ ΩBAs → ΩBAs⊗ΩBAs

p⊗p−→ A∞ ⊗A∞

is the Saneblidze–Umble diagonal.

5 Appendix 1: Drawing a Stasheff polytope on a cube

This is an account of some effort to construct the Stasheff polytope that I did
in 2002 while visiting Northwestern University. During this visit I had the
opportunity to meet Samson Saneblidze and Ron Umble, who were drawing
the same kind of figures for different reasons (explained above). It makes
the link between Markl and Shnider algebraic description of the map p, the
pictures appearing in the Saneblidze and Umble paper, and some algebraic
properties of the planar binary trees.

There is a way of constructing an associahedron structure on a cube as
follows. For n = 0 and n = 1 there is nothing to do since K0 and K1 are
the cubes I0 and I1, respectively. For n = 2, we simply add one point in the
middle of an edge to obtain a pentagon:

• �� •

•

��

•

��

�� •

��
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Inductively we draw Kn on In out of the drawing of Kn−1 on In−1 as
follows. Any tree t ∈ PBTn+1 gives rise to an ordered sequence of trees
(t1, . . . , tk) in PBTn+2 as follows. We consider the edges which are on the
right side of t, including the root. The tree t1 is formed by adding a leaf which
starts from the middle of the root and goes rightward (see [6] p. 297). The
tree t2 is formed by adding a leaf which starts from the middle of the next
edge and goes rightward. And so forth. Obviously k is the number of vertices
lying on the right side of t plus one (so it is always greater than or equal to 2).

Example:

if t =
ZZ����

ZZZZ , then t1 =
��!!!

!!!!!

����� , t2 =
!!��� !!!!!

����� , t3 =
����� !!!!!

����� .

In In = In−1 × I we label the point {t} × {0} by t1, the point {t} × {1}
by tk, and we introduce (in order) the points t2, . . . , tk−1 on the edge {t}× I.
For n = 2 we obtain (with the coding introduced in Section 1.1):

141 �� 321

312

��
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��

�� 213

��

For n = 3 we obtain the following picture:
�� MP�����

��

MP����������

��

MP�����

��

��

��

MP�����

��

��

��

��

MP�����

��

��

MP����������

��

MP�����

��

(It is a good exercise to draw the tree at each vertex). Compare with [13],
p. 3.) The case n = 4 can be found on my home-page. It is important to
observe that the order induced on the vertices by the canonical orientation
of the cube coincides precisely with the Tamari poset structure. The referee
informed me that these pictures already appeared (without any mention of
the Stasheff polytope) in [3].

Surprisingly, this way of viewing the associahedron is related to an alge-
braic structure on the set of planar binary trees PBT =

⋃
n≥1 PBTn, related

to dendriform algebras. Indeed there is a noncommutative monoid structure on
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the set of homogeneous nonempty subsets of PBT constructed in [6]. It comes
from the associative structure of the free dendriform algebra on one generator.
This monoid structure is denoted by +, the neutral element is the tree | .
If t ∈ PBTp and s ∈ PBTq, then s + t is a subset of PBTp+q−1. It is proved
in [6] that the trees which lie on the edge {t} × I ⊂ In are precisely the trees

of t + ��
ZZ

. For instance:

�� ����

ZZZZ + ��
ZZ =

!! !!!
!!!!!

����� ∪
!! ��!!!!!

�����

and
ZZ����

ZZZZ + ��
ZZ =

��!!!
!!!!!

����� ∪
!!��� !!!!!

����� ∪
����� !!!!!

����� .

The deformation of the associahedron consisting in inflating the main sim-
plex to the top cell can be performed into two steps by considering a cube in-
side the associahedron. This cube is determined by the previous construction.
First, we inflate the main simplex to the full cube as described in Section 3.1,
then we deform the cube into the associahedron as indicated above.

Finally we remark that the deformation described in Section 3.3 permits
us to draw the associahedron on the simplex.

6 Appendix 2: Δ(μ5)

In this appendix we give the computation of Δ(μ5) and we show that we
get the same result as Saneblidze and Umble. In order to compare with their
result we adopt their way of indexing the planar trees, which is as follows. Let
t be a tree whose root vertex has k + 1 inputs, which we label (from left to
right) by 0, . . . , k. Then, by definition, dij(t) is the tree obtained by replacing,
locally, the root vertex by the following tree with one internal edge:

0 i i + j k

ffff
ffff

fff · · · ___
_ · · ·

����
�� · · ·

gggggg
gggggg

gg

The operator dij is well-defined for 0 ≤ i ≤ k, 1 ≤ j ≤ k − i and (i, j) �=
(0, k). So we get:

ij = 01 02 11 12 21

dij

( !!!!!

�����

OOOO
****

)
=

!! !!!!!

�����
!!!

!!!!!

�����

��!! !!!!!

�����

��� !!!!!

�����

��!!!!!

�����

and d01d01

( !!!!!

�����

OOOO
****

)
=

!! !!!
!!!!!

����� , etc.
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Let us index the sixteen 3-simplices forming K3
simp by the tree indexing

the face in fatK2
simp and either a, b, c if this face is a pentagon (cf. Section 1.5)

or the shuffle α = (1, 2), β = (2, 1) if this face is a square (cf. Section 2.5).
In the following tableau we indicate the image of the 3-simplices under the
map p′ ⊗ p′ ◦ ΔAA∞ . In the left column we indicate the information which
determines the 3-simplex (dij(μ5), x). In the right column we give its image
(up to signs) as a sum of four terms, since in the AW morphism there are four
terms.

03 a (01)(01)(01)⊗ μ5 + (02)(01)⊗
(
− (21) + (22)

)

+(03)⊗
(
(11)(21) + (12)(21) + (11)(22)

)
+ μ5 ⊗ (11)(21)(31)

03 b 0 + 0 + 0 + 0
03 c 0 + 0 + 0 + 0
02 α 0 + 0 + (02)⊗

(
− (11)(31)− (12)(31)

)
+ 0

02 β 0 + (01)(02)⊗
(
(11) + (12) + (13)

)
+ 0 + 0

01 a 0 + (01)(01)⊗ (31) + (01)⊗ (21)(31)
01 b 0 + 0 + 0 + 0
01 c 0 + 0 + 0 + 0
12 α 0 + 0 + (12)⊗

(
(12)(21) + (11)(22)

)
+ 0

12 β 0 + 0 + 0 + 0
11 a 0 + 0− (11)⊗ (12)(31) + 0
11 b 0 + (02)(11)⊗

(
(13) + (12)

)
+ 0 + 0

11 c 0 + (11)(11)⊗ (13) + 0 + 0
21 a 0 + (11)(01)⊗ (22) + (21)⊗ (11)(22) + 0
21 b 0 + 0 + 0 + 0
21 c 0 + 0 + 0 + 0

As a result Δ(μ5) is the algebraic sum of 22 elements, which are exactly
the same as in [13] Example 1. Topologically, it means that K3 can be realized
as the union of 2 copies of K3 (having only one vertex in common), 6 copies
of K1 × K2, 6 copies of K2 × K1, 4 copies of (K1 × K1) ×K1 and 4 copies of
K1 × (K1 ×K1).

From this computation it is reasonable to conjecture that the diagonal
constructed from the simplicial decomposition of the associahedron is the
same as the Saneblidze–Umble diagonal.
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1 Introduction

This paper aims to give a short but self-contained introduction into the theory
of (wheeled) props, properads, dioperads and operads, and illustrate some
of its key ideas in terms of a prop(erad)ic interpretation of simplicial and
permutahedra cell complexes with subsequent applications to the Hochschild–
Kostant–Rosenberg type isomorphisms.

Let V be a graded vector space over a field K and OV := )•V ∗ the
free graded commutative algebra generated by the dual vector space V ∗ :=
HomK(V, K). One can interpret OV as the algebra of polynomial functions
on the space V . The classical Hochschild–Kostant–Rosenberg theorem asserts
that the Hochschild cohomology of OV (with coefficients in OV ) is isomorphic
to the space, ∧•TV , of polynomial polyvector fields on V which in turn is
isomorphic as a vector space to ∧•V ⊗)•V ∗,

HC•(OV ) � ∧•TV � ∧•V ⊗)•V ∗. (1)

The Hochschild complex, C•(OV ) = ⊕k≥0Hom(O⊗k
V ,OV )[1− k], of OV has a

natural subcomplex, C•
diff (OV ) ⊂ C•(OV ), spanned by polydifferential oper-

ators. It was proven in [Ko] (see also [CFL]) that again

A.S. Cattaneo et al. (eds.), Higher Structures in Geometry and Physics, 293
Progress in Mathematics 287, DOI 10.1007/978-0-8176-4735-3 14,
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HC•
diff (OV ) � ∧•TV � ∧•V ⊗)•V ∗. (2)

The first result (1) actually fails for a ring of smooth functions, OM , on a
generic graded manifold M while the second one (2) stays always true [CFL].
Thus one must, in general, be careful in distinguishing ordinary and polydif-
ferential Hochschild cohomology for smooth functions.

The vector space OV has a natural (co)commutative bialgebra structure
so that one can also associate to OV a Gerstenhaber–Schack complex [GS1],
C•,•(OV ) :=

⊕
m,n≥1 Hom(O⊗m

V ,O⊗n
V )[2 −m− n]. Its cohomology was com-

puted in [GS2,LM],

HC•,•(OV ) � ∧•≥1V ⊗ ∧•≥1V ∗. (3)

In this paper we introduce (more precisely, deduce from the permutahedra cell
complex) a relatively nonobvious polydifferential subcomplex, C•,•diff (OV ) ⊂
C•,•(OV ), such that C•,•diff (OV ) ∩ C•(OV ) = C•

diff (OV ), and prove that this
inclusion is a quasi-isomorphism,

HC•,•diff (OV ) � ∧•≥1V ⊗ ∧•≥1V ∗. (4)

In fact, we show in this paper very simple pictorial proofs of all four results,
(1)–(4), mentioned above: first we interpret Saneblidze-Umble’s [SU] permu-
tahedra cell complex as a differential graded (dg, for short) properad P , then
we use tensor powers of P to create a couple of other dg props, D and Q,
whose cohomology we know immediately by their very constructions, and
then, studying representations of D and Q in an arbitrary vector space V we
obtain (rather than define) the well-known polydifferential subcomplex of the
Hochschild complex for OV and, respectively, a new polydifferential subcom-
plex of the Gerstenhaber–Schack complex whose cohomologies are given, in
view of contractibility of the permutahedra, by formulae (2) and (4). Finally,
using again the language of props we deduce from (2) and (4) formulae (1)
and, respectively, (3). As a corollary to (4) and (3) we show a slight sharpen-
ing of the famous Etingof–Kazhdan theorem: for any Lie bialgebra structure
on a vector space V there exists its bialgebra quantization within the class of
polydifferential operators from C•,•poly(OV ).

The paper is organized as follows. In §2 we give a short but self-contained
introduction into the theory of (wheeled) props, properads, dioperads and
operads. In §3 we prove formulae (1)–(4) using properadic interpretation of
the permutahedra cell complex. In §4 we study a dg prop, DefQ, whose rep-
resentations in a dg space V are in one-to-one correspondence with unital
A∞-structures on OV , and use it to give a new pictorial proof of another
classical result that isomorphisms (1) and (2) extend to isomorphisms of Lie
algebras, with ∧•TM assumed to be equipped with Schouten brackets.

We work over a field K of characteristic zero. If V = ⊕i∈ZV i is a graded
vector space, then V [k] is a graded vector space with V [k]i := V i+k. We denote
⊗•V :=

⊕
n≥0⊗nV , ⊗•≥1V :=

⊕
n≥1⊗nV , and similarly for symmetric and
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skew-symmetric tensor powers, )•V and ∧•V . The symbol [n] stands for an
ordered set {1, 2, . . . , n}.

2 An introduction to the theory of (wheeled) props

2.1 An associative algebra as a morphism of graphs. Recall that an
associative algebra structure on a vector space E is a linear map E ⊗E → E
satisfying the associativity condition, (a1a2)a3 = a1(a2a3), for any a1, a2, a2 ∈
E. Let us represent a typical element, a1⊗ a2⊗ · · ·⊗ an ∈ ⊗nE, of the tensor
algebra, ⊗•E, of E as a decorated directed graph,

G〈a1, . . . , an〉 := ···
•

•
• a1

a2

an

,

where the adjective decorated means that each vertex of the shown graph G
is equipped with an element of E and the adjective directed means that the
graph G is equipped with the flow running by default (unless otherwise is
explicitly shown) from the bottom to the top. Let G〈E〉 be the vector space
spanned by all such decorations, G〈a1, . . . , an〉, of the shown chain-like graph
G modulo the relations of the type,

···
•

•
•
λ1a

′
2 + λ2a

′′
2

a1

an

= λ1 ···
•

•
• a1

a′
2

an

+ λ2 ···
•

•
• a1

a′′
2

an

∀λ1, λ2 ∈ K,

which identify G〈E〉 with ⊗nE. Note that if G has only one internal vertex (we
call such graphs (1,1)-corollas ), then G〈E〉 = E. The multiplication operation
in E gets encoded in this picture as a contraction of an internal edge, e.g.,

···
•

•
• a1

a2

an

−→ ···
•

• a1a2

an

which upon repetition gives a contraction map μG : G〈E〉 → E. Moreover,
the associativity conditions for the multiplication assures us that the map μG
is canonical, i.e., it does not depend on a particular sequence of contractions
of the graph G into a corolla and is uniquely determined by the graph G itself.

Actually there is no need to be specific about contracting precisely two
vertices – any connected subset of vertices will do! Denoting the set of all pos-
sible directed connected chain-like graphs with one input leg and one output
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leg by G1
1, one can equivalently define an associative algebra structure on a

vector space E as a collection of linear maps, {μG : G〈E〉 → E}G∈G1
1
, which

satisfy the condition,
μG = μG/H ◦ μ′

H ,

for any connected subgraph H ⊂ G. Here μ′
H : G〈E〉 → (G/H)〈E〉 is the map

which equals μH on the decorated vertices lying in H and which is identity
on all other vertices, while μG/H : (G/H)〈E〉 → E is the contraction map
associated with the graph G/H obtained from G by contracting all vertices
lying in the subgraph H into a single corolla.

2.2 Families of directed labeled graphs. Thus the notion of an associative
algebra can be encoded into the family of graphs G1

1 with morphisms of graphs
given by contractions along (admissible) subgraphs. This interpretation of an
associative algebra structure has a strong potential for generalization leading
us directly to the notions of wheeled props, props, properads, dioperads and
operads depending on the way we choose to enlarge the above rather small
and primitive family of graphs G1

1. There are several natural enlargements
of G1

1:
(i) G� is, by definition, the family of arbitrary (not necessarily connected)
directed graphs built step-by-step from the so-called (m,n)-corollas,

•
fffff

____. . . ����
�����

����
�

���
�
. . . ___
_

ffff
f

︷ ︸︸ ︷

︸ ︷︷ ︸

m output legs

n input legs

, m, n ≥ 0, (5)

by taking their disjoint unions and/or gluing some output legs of one corolla
with the same number of input legs of another corolla. This is the largest
possible enlargement of G1

1 in the class of directed graphs. We have G� =∐
m,n≥0 G�(m,n), where G�(m,n) ⊂ G� is the subset of graphs having m

output legs and n input legs, e.g.,

VV
hhh
•
•

ii jj•222
∈ G�(2, 1),

��ZZ•
•

$$ 88

•
VVV

•
kkk

Z[

∈ G�(1, 1), VV
hhh
•
•

ii jj•222 ��ZZ•
•

$$ 88

•
VVV

•
kkk

Z[

∈ G�(3, 2). (6)

(ii) G�
c =

∐
m,n≥0 G�

c (m,n) is a subset of G� consisting of connected graphs.
For example, the first two graphs in (6) belong to G�

c while the third one
(which is the disjoint union of the first two graphs) does not.
(iii) G↑ =

∐
m,n≥0 G↑(m,n) is a subset of G� consisting of directed graphs

with no closed directed paths of internal edges which begin and end at the
same vertex, e.g., the first graph in (6) belongs to G↑, while the other two
do not.
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(iv) G↑
c := G↑ ∩G�

c .
(v) G�

c,0 is a subset of G↑
c consisting of trees (that is, graphs having zero genus

when viewed as 1-dimensional CW complexes).
(vi) G1 is a subset of G↑

c,0 built from corollas (5) of type (1, n) only, n ≥ 1. We
have G1 =

∐
n≥1 G1(1, n) and we further abbreviate G1(n) := G1(1, n); thus

G1(n) is the subset of G1 consisting of graphs with precisely n input legs. All
graphs in G1 have precisely one output leg.
Let G� be any of the above-mentioned families of graphs. We assume from
now on that input and output legs (if any) of graphs from G�(m,n) ⊂ G� are
bijectively labelled by elements of the sets [n] and [m], respectively. Hence the
group Sm × Sn naturally acts on the set G�(m,n) by permuting the labels1.
2.3 Decorations of directed labeled graphs. Next we have to consider
what to use for decorations of the vertices of a graph G ∈ G�(m,n). The
presence of the family of the permutation groups {Sm × Sn}m,n≥0 suggests
the following notion: an S-bimodule, E, is, by definition, a collection of graded
vector spaces, {E(m,n)}m,n≥0, equipped with a left action of the group Sm

and with a right action of Sn which commute with each other. For example,
for any graded vector space V the collection, End〈V 〉 = {End〈V 〉(m,n) :=
Hom(V ⊗n, V ⊗m)}m,n≥0, is naturally an S-bimodule.

Let E be an S-bimodule and G ∈ G�(m,n) an arbitrary graph. The graph
G is built by definition from a number of various (p, q)-corollas constituting
a set which we denote by V(G) and call the set of vertices of G; the set of
output (resp. input) legs of a vertex v ∈ V(G) is denoted by Outv (resp. by
Inv). Let 〈[p]→ Outv〉 be the p!-dimensional vector space generated over K by
the set of all bijections from [p] to Outv, i.e., by the set of all possible labeling
of Outv by integers; it is naturally a right Sp-module; we define analogously a
left Sq-module 〈Inv → [n]〉 and then define a vector space,

E(Outv, Inv) := 〈[p]→ Outv〉 ⊗Sp E(p, q)⊗Sq 〈Inv → [q]〉.

An element of E(Outv, Inv) is called a decoration of the vertex v ∈ V(G). To
define next a space of decorations of a graph G we should think of taking the
tensor product of the constructed vector spaces E(Outv, Inv) over all vertices
v ∈ V(G) but face a problem that the set V(G) is unordered so that the
ordinary definition of the tensor product of vector spaces does not immediately
apply. The solution is to consider first all possible linear orderings, γ : [k]→
V(G), k := |V (G)|, of the set V(G) and then take coinvariants,

⊗v∈V(G)E(Outv, Inv) :=
(
⊕γE(Outγ(1), Inγ(1))⊗ · · · ⊗E(Outγ(k), Inγ(k))

)
Sk

,

with respect to the natural action of the group Sk permuting the orderings.
Now we are ready to define the vector space of decorations of the graph G as
a quotient of the unordered tensor product,

1 In the case of G1 the action of the factor Sm is, of course, trivial.
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G〈E〉 := (⊗v∈V(G)E(Outv, Inv))AutG

with respect to the automorphism group of the graph G which is, by defini-
tion, the subgroup of the symmetry group of the 1-dimensional CW -complex
underlying the graph G which fixes the legs. An element of G〈E〉 is called
a graph G with internal vertices decorated by elements of E, Thus a deco-
rated graph is essentially a pair, (G, [a1 ⊗ · · · ⊗ ak]), consisting of a graph
G with k = |V(G)| and an equivalence class of tensor products of elements
a• ∈ E. Note that if E = {E(m,n)} is a dg S-bimodule (i.e., each E(m,n) is
a complex equipped with an Sm× Sn-equivariant differential δ), then G〈E〉 is
naturally a dg vector space with the differential

δG
(
G,
[
a1 ⊗ · · · ⊗ ak|

])
:= (G, [

k=|V(G)|∑

i=1

(−1)a1+...+ai−1a1⊗· · ·⊗δai⊗· · ·⊗ak]).

Note also that if G is an (m,n)-graph with one internal vertex and no edges
(i.e., an (m,n)-corolla), then G〈E〉 is canonically isomorphic to E(m,n).
2.4 Props, properads, dioperads and operads. Let G� be one of the
families of graphs introduced in § 2.2. A subgraph H ⊂ G of a graph G ∈ G�

is called admissible if both H and G/H also belong to G�, where G/H is the
graph obtained from G by shrinking all vertices and all internal edges of H
into a new single vertex.
2.4.1 Definition. A G�-algebra is an S-bimodule E = {E(m,n)} together
with a collection of linear maps, {μG : G〈E〉 → E}G∈G� , satisfying the “as-
sociativity” condition,

μG = μG/H ◦ μ′
H , (7)

for any admissible subgraph H ⊂ G, where μ′
H : G〈E〉 → (G/H)〈E〉 is

the map which equals μH on the decorated vertices lying in H and which
is identity on all other vertices of G. If the S-bimodule E underlying a G�-
algebra has a differential δ satisfying, for any G ∈ G�, the condition δ ◦μG =
μG ◦ δG, then the G�-algebra is called differential.
2.4.2 Remarks. (a) For the family of graphs G1 the condition (7) is void
for elements in E(m,n) with m �= 1. Thus we may assume without loss of
generality that a G1-algebra E satisfies an extra condition that E(m,n) = 0
unless m = 1. For the same reason we may assume that a G1

1-algebra E
satisfies E(m,n) = 0 unless m = n = 1.
(b) As we have an obvious identity μG = μG/G ◦ μ′

G, the “associativity” con-
dition (7) can be equivalently reformulated as follows: for any two admissible
subgraphs H1, H2 ⊂ G one has

μG/H1 ◦ μ′
H1

= μG/H2 ◦ μ′
H2

, (8)

i.e., the contraction of a decorated graph G into a decorated corolla along a
family of admissible subgraphs does not depend on particular choices of these
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subgraphs (if there are any). This is indeed a natural extension of the notion
of associativity from 1 dimension to 3 dimensions, and hence we can omit
double commas in the term.
2.4.3 Definitions (see, e.g., [MSS,Va,BM,Me2] and references cited there):

(i) An G�-algebra E is called a wheeled prop.
(ii) An G�

c -algebra is called a wheeled properad.
(iii) An G↑-algebra is called a prop.
(iv) An G↑

c -algebra is called a properad.
(v) An G↑

0,c-algebra is called a dioperad.
(vi) An G1-algebra is called an operad.
(vii) An G1

1-algebra is called an associative algebra.
2.4.4 Remarks. (a) There is an obvious chain of forgetful functors between
the categories of G�-algebras,

(i)
(ii)fclllll
(iii)
dmmmm (iv)
dBBBBB ��gggg (v)�� (vi)�� (vii)��

(b) Note that every subgraph of a graph in G� is admissible. In this sense
wheeled props are the most general and natural algebraic structures associated
with the class of directed graphs. The set of independent operations in a G�-
algebra is generated by one-vertex graphs with at least one loop (that is, an
internal edge beginning and ending at the vertex) and by two-vertex graphs
without closed directed paths (i.e., the ones belonging to G↑).
(c) By contrast to wheeled props, the set of operations in an ordinary prop,
i.e., in a G↑-algebra, is generated by the set of two-vertex graphs only, and,
as it is not hard to check, if the associativity condition holds for three-vertex
graphs, then it holds for arbitrary graphs in G↑. This is not true for G�-
algebras which is a first indication that the homotopy theory for wheeled
props should be substantially different from the one for ordinary props.
(d) If we forget orientations (i.e., the flow) on edges and work instead with a
family of undirected graphs, G, built, by definition, from corollas with m ≥ 1
undirected legs via their gluings, then we get a notion of G-algebra which is
closely related to the notion of modular operad [GK].
2.5. First basic example: endomorphism G�-algebras. For any finite-
dimensional vector space V the S-bimodule EndV = {Hom(V ⊗n, V ⊗m)} is
naturally a G�-algebra called the endomorphism G�-algebra of V .2 For any
two-vertex graph G ∈ G↑

c the associated composition μG : G〈EndV 〉 → EndV
is the ordinary composition of two linear maps; for a one-vertex graph G ∈ G�

with say k loops the associated map μG is the ordinary k-fold trace of a linear
map; for a two-vertex disconnected graph G ∈ G↑ the associated map μG is

2 For G1-algebras, that is, for operads, it is enough to restrict oneself to the case
m = 1 only, i.e., set, by default, EndV := {Hom(V ⊗n, V )}n≥1 (cf. §2.4.2(a)).
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the ordinary tensor product of linear maps. It is easy to see that all the axioms
are satisfied.

Note that for all G�-algebras except G� and G�
c the basic algebraic op-

erations μG do not involve traces so that the above assumption on finite-
dimensionality of V can be dropped for endomorphism props, properads,
dioperads and operads. If V is a (finite-dimensional) dg vector space, then
EndV is naturally a dg G�-algebra.
2.6 Second basic example: a free G�-algebra. For an S-bimodule, E =
{E(m,n)}, one can construct another S-bimodule, F�〈E〉 = {F�〈E〉(m,n)}
with

F�〈E〉(m,n) :=
⊕

G∈G�(m,n)

G〈E〉.

This S-bimodule F�〈E〉 has a natural G�-algebra structure with the contrac-
tion maps μG being tautological. The G�-algebra F�〈E〉 is called the free
G�-algebra (i.e., respectively, the free wheeled prop, the free prop, the free
dioperad, etc.) generated by the S-bimodule E.
2.7 Morphisms of G�-algebras. A morphism of G�-algebras, ρ : P1 → P2,
is a morphism of the underlying S-bimodules such that, for any graph
G ∈ G�, one has ρ ◦ μG = μG ◦ (ρ⊗G), where ρ⊗G means a map, G〈P1〉 →
G〈P2〉, which changes decorations of each vertex in G in accordance with ρ. It
is often assumed by default that a morphism ρ is homogeneous which (almost
always) implies that ρ has degree 0. Unless otherwise is explicitly stated we do
not assume in this paper that morphisms of G�-algebras are homogeneous so
that they can have nontrivial parts in degrees other than zero. A morphism of
G�-algebras, P → End〈V 〉, is called a representation of the G�-algebra P in a
graded vector space V . If P1 is a free G�-algebra, F�〈E〉, generated by some
S-bimodule E, then the set of morphisms of G�-algebras, {ρ : P1 → P2},
is in one-to-one correspondence with the set of morphisms of S-bimodules,
{ρ|E : E → P2}, i.e., a G�-morphism is uniquely determined by its values
on the generators. In particular, the set of morphisms, F�〈E〉 → P2, has a
graded vector space structure for any P2.

A free resolution of a dg G�-algebra P is, by definition, a dg free G�-
algebra, (F�〈E〉, δ), generated by some S-bimodule E together with a degree
zero morphism of dg G�-algebras, π : (F�〈E〉, δ) → P , which induces a
cohomology isomorphism. If the differential δ in F�〈E〉 is decomposable with
respect to compositions μG, then π : (F�〈E〉, δ) → P is called a minimal
model of P . In this case the free algebra F�〈E〉 is often denoted by P∞.
2.8 Props and properads. We shall work in this paper only with G↑- and
G↑
c -algebras, i.e., with props and properads. For later use we mention several

useful constructions with these graph-algebras.
(i) There is a functor, Ψ , which associates canonically to an arbitrary

dg properad, P , an associated dg prop Ψ(P) [Va]. As we are working over
a field of characteristic 0, this functor is, by Künneth theorem, exact, i.e.,
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Ψ(H(P)) = H(Ψ(P)). For example, if P is a dg free properad (F↑
c 〈E〉, δ),

then Ψ(P) is precisely F↑〈E〉 with the same differential (as given on the
generators).

(ii) The above-mentioned functor, F↑ : (E, δ) → (F↑〈E〉, δ), in the cate-
gory of dg S-bimodules is also exact, H(F↑〈E〉) = F↑〈H(E)〉. Moreover, if we
set in this situation RepV (F↑〈E〉) for the vector space of all possible repre-
sentations, {ρ : F↑〈E〉 → EndV } � Hom(E, EndV ), and define a differential
δ in RepV (F↑〈E〉) by the formula δρ := ρ ◦ δ, then the resulting functor,
(E, δ) → (RepV (F↑〈E〉), δ), in the category of complexes is exact, i.e.,

H(RepV (F↑〈E〉)) = RepV (H(F↑〈E〉)) = RepV (F↑〈H(E)〉). (9)

Indeed, as we are working over a field of characteristic zero, we can al-
ways choose an equivariant chain homotopy between complexes (E, δ) and
(H(E), 0). This chain homotopy induces a chain homotopy between complexes
(RepV (F↑〈E〉), δ) and (RepV (F↑〈H(E)〉), 0) proving formula (9).

(iii) There is also a natural parity change functor, Π , which associates
with a dg prop(erad) P a dg prop(erad) ΠP with the following property:
every representation of ΠP in a graded vector space V is equivalent to a
representation of P in V [1]. This functor is also exact. If, for example, P is a
dg free prop F↑〈E〉 generated by an S-bimodule E = {E(m,n)}, then, as it is
not hard to check, ΠP = F↑〈Ě〉, where Ě := {sgnm⊗E(m,n)⊗sgnn[m−n]}
and sgnm stands for the 1-dimensional sign representation of Sm.

3 Simplicial and permutahedra cell complexes as dg
properads

3.1 Simplices as a dg properad. A geometric (n−1)-simplex, Δn−1, is,
by definition, a subset in R

n = {x1, . . . , xn}, n ≥ 1, satisfying the equation∑n
i=1 xi = 1, xi ≥ 0 for all i. To define its cell complex one has to choose

an orientation on Δn−1 which is the same as to choose an orientation on
the hyperplane

∑n
i=1 xi = 1. We induce it from the standard orientation on

R
n+1 by requiring that the manifold with boundary defined by the equation∑
i=1 xi ≤ 1 is naturally oriented. Let (C•(Δn−1) = ⊕n−1

k=0C−k(Δn−1), δ) be
the standard (non-positively graded) cell complex of Δn−1. By definition,
C−k(Δn−1) is a

(
n
k

)
-dimensional vector space spanned by k-dimensional cells,

*I
n−1 :=

{
(x1, . . . , xn) ∈ Δn−1|xi = 0, i ∈ I

}
,

parametrized by all possible subsets I of [n] of cardinality n − k − 1 and
equipped with the natural orientations (which we describe explicitly below).

Note that the action , (x1, . . . , xn)→ (xσ(1), . . . , xσ(n)), of the permutation
group Sn on R

n leaves Δn−1 invariant as a subset but not as an oriented mani-
fold with boundary. As an Sn-module, one can obviously identify C1−n(Δn−1)
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with sgnn[n−1], and hence one can represent pictorially the oriented cell*∅
n−1

as a labeled (0, n)-corolla, �
***
9999
...������

1 2 n

, with the symmetry condition

�
***
9999
...������

1 2 n

= (−1)σ �
***
9999
...������

σ(1)σ(2) σ(n)

, ∀σ ∈ Sn. (10)

The boundary of *∅
n−1 is a union of n cells, *i

n−1, i = 1, . . . , n, of dimension
n−2. The permutation group Sn permutes, in general, these cells and changes
their natural orientations while keeping their linear span C2−n(Δn−1) invari-
ant. It is obvious that the subgroup Gi := {σ ∈ Sn | σ(i) = i} � Sn−1 of Sn is a
symmetry group of the cell*i

n−1 as an unoriented manifold with boundary. If
we take the orientation into account, then the vector subspace of C2−n(Δn−1)
spanned by*i

n−1 can be identified as an Sn−1-module with sgnn−1, and hence
the n-dimensional space C2−n(Δn−1) itself can be identified as an Sn-module
with K[Sn] ⊗Sn−1 sgnn−1[n − 2]. Its basis elements, *i

n−1, can be pictorially

represented as (0, n)-corollas �
��� ***

   

... ...
������

1i î n

with the legs in the right bunch being
skew-symmetric with respect to the change of labelings by an element σ ∈ Gi

(cf. (10)). The boundary operator δ : C1−n(Δn−1) → C2−n(Δn−1) is equiv-
ariant with respect to the Sn-action and is given on the generators by the
formula

δ �
***
9999
...������

1 2 n

=
n∑

i=1

(−1)i+1 �
777 ***

   

... ...
������

1i î n

, î omitted,

More generally, the symmetry group of, say, a cell *I
1−n ∈ C1−k−n(Δn−1)

with I = {i1 < i2 < . . . < in−k} is Sk × Sn−k ⊂ Sn with Sk × Id leaving the
orientation of *I

n−1 invariant and Id× Sn−k changing the orientation via the
sign representation. Thus we can identify the oriented cell*I

n−1, as an element

of the Sn-module C1−k−n(Δn−1), with a (0, n)-corolla, �
OOO

iiii
YYYYYY
...

***
;;;;

...
������

j1 jn−ki1 ik

, which
has “symmetric” output legs in the left bunch and “skew-symmetric” output
legs in the right one. Here {j1 < . . . < jn−k} := [n] \ I. The Sn-module,
C1−k−n(Δn−1), is then canonically isomorphic to Ek(n) := K[Sn]Sk×Sn−k

(11k⊗
sgnn−k), where 11k stands for the trivial 1-dimensional representation of Sk.
The boundary operator δ : C1−k−n(Δn−1) → C2−k−n(Δn−1) is equivariant
with respect to the Sn-action and is given on the generators by the formula

δ �
777

iiii
YYYYYY
...

***
2222

...
������

k+1 n1 k

=
n∑

i=k+1

(−1)i+1 �
���

nnnnn
`̀ `̀ `̀

ffffffff

...
   

������

... ...��������

k+1 î n1 k i

(11)

Thus we proved the following:
3.1.1 Proposition. (i) The standard simplicial cell complex is canonically
isomorphic to a dg free properad, S := F↑

c 〈E〉, generated by an S-bimodule,
E = {E(m,n)},
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E(m,n) =

⎧
⎨

⎩

⊕m−1
k=0 Ek(m)[m− k − 1] = span〈 �

OOO
iiii

YYYYYY
...

***
;;;;

...
������

j1 jm−ki1 ik

〉0≤k≤m−1 for n = 0,
0 for n ≥ 1,

and equipped with the differential given on the generators by (11).
(ii) The cohomology of (S, δ) is concentrated in degree zero and equals the

free properad generated by the following degree zero graphs with “symmetric”
legs,

•
ZZZZ
777 ����
...1 2 m

:=
∑

σ∈Sm

�
OOO

iiii
YYYYYY
...

������

σ(m)σ(1) σ(m−1)

, m ≥ 1. (12)

Claim 3.1.1(ii) follows from the contractibility of simplices, and, for each
m, graph (12) represents the sum of all vertices of Δm−1.
3.1.2 From simplicia to Koszul complex. The vector space, RepV (S), of
representations, ρ : S → EndV , of the simplicial properad in a vector space
V can be identified with

∑m−1
k=0 )kV ⊗∧m−kV [m− k − 1]. We can naturally

make the latter into complex by setting dρ := ρ ◦ ∂ (cf. §2.8ii). It is easy to
see that we get in this way, for each m ≥ 1,

∧mV
d−→ V ⊗ ∧m−1V

d−→ )2V ⊗ ∧m−2V
d−→ . . .

d−→ )m−1V ⊗ V,

the classical Koszul complex. Hence Proposition 3.1.1(ii) and isomorphism (9)
imply the well-known result that its cohomology is concentrated in degree zero
and equals )nV . Thus the Koszul complex is nothing but a representation of
the simplicial cell complex in a particular vector space V .
3.2 Permutahedra as a dg properad. An (n−1)-dimensional permutahe-
dron, Pn−1, is, by definition, the convex hull of n! points (σ(1), σ(2), . . . , σ(n)),
∀σ ∈ Sn, in R

n = {x1, . . . , xn}. To define its cell complex one has to choose
an orientation on Pn−1 which is the same as to choose an orientation on
the hyperplane

∑n
i=1 xi = n(n + 1)/2 to which Pn−1 belongs. We induce

it from the standard orientation on R
n by requiring that the manifold with

boundary defined by the equation
∑
i=1 xi ≤ n(n+1)/2 is naturally oriented.

Let (C•(Pn−1) = ⊕n−1
k=0C−k(Pn−1), δ) stand for the associated (non-positively

graded) complex of oriented cells of Pn−1. Its (n−k−1)-dimensional cells,
P
I1,...,Ip

n−1 , are indexed by all possible partitions, [n] = I1 � I2 � . . . � Ik, of the
ordered set [n] into k disjoint ordered nonempty subsets (see [SU]). The natu-
ral action , (x1, . . . , xn)→ (xσ(1), . . . , xσ(n)), of the permutation group Sn on
R
n leaves Pn−1 invariant, and hence makes the cell complex C•(Pn−1) into an

Sn-module. We obviously have, for example, C1−n(Pn−1) = sgnn, so that we
can identify the top cell P

[n]
n−1 as an element of the Sn-module with the (n, 0)-

corolla

1 2 n
999

QQQ
GGG

...

with skew-symmetric output legs,

1 2 n
999

QQQ
GGG

...

= (−1)σ
σ(1) σ(2) σ(n)

999
QQQ

GGG
...

,
∀σ ∈ Sn. More generally, a simple analysis (similar to the simplicial case in
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§3.1) of how the action of Sn on R
n permutes the cells and changes their

orientation implies that C1−k−n(Pn−1) is canonically isomorphic as an Sn-
module to

Wk(n) :=
⊕

[n]=I1�I2�...�Ik

K[Sn]⊗SI1×...×SIk

(
sgnI1 ⊗ · · · ⊗ sgnIk

)
[k + n− 1]

and that the cells P
I1,...,Ip

n−1 can be identified as elements of the Sn-module

with the (n, 0)-corollas,

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ik

, where legs in each Ii-bunch are skew-
symmetric and the labels from Ii are assumed to be distributed over them
in the increasing order from the left to the right. The boundary operator
δ : C1−k−n(Pn−1)→ C2−k−n(Pn−1) is given on generators by (cf. [SU])

δ

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ik

=
k∑

i=1

∑

Ii=i′
i
�I′′

i
|I′

i
|,|I′′

i
|≥1

(−1)ε+σI′
i
�I′′

i

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

... oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 I′i I′′i
Ik

(13)

where ε := i + 1 + I1 + · · · + Ii−1 + I ′i and (−1)σI′
i
�I′′

i is the sign of the
permutation [Ii] → I ′i � I ′′i . Thus we proved the following:
3.2.1 Proposition. (i) The Saneblidze-Umble permutahedra cell complex is
canonically isomorphic to a dg free properad, P• := F↑

c 〈W 〉, generated by an
S-bimodule, W = {W (m,n)},

W (m,n) :=

⎧
⎪⎪⎨

⎪⎪⎩

⊕m
k=1 Wk(m) = span〈

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ik

〉 for n = 0,
0 for n ≥ 1,

and equipped with the differential given on the generators by (13).
(ii) The cohomology of (P•, ∂) is concentrated in degree zero and equals a

free properad generated by the following degree zero graphs:

�
ZZZZ
777 ����
...1 2 m

:=
∑

σ∈Sm

SSSS ... ...
qqqq

I1=σ(1) Ii=σ(i) Im=σ(m)

, m ≥ 1.

Claim 3.2.1(ii) follows from the contractibility of permutahedra, and, for
each n, the above graph represents the sum of all vertices of Pn−1.
3.2.2 From permutahedra to a cobar construction. Baranovsky made
in [Ba] a remarkable observation that the permutahedra cell complex can be
used to compute the cohomology of the cobar construction, Ω(∧•V ), where
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∧•V � )•(V [1]) is interpreted as a graded commutative coalgebra generated
by a vector space V [1]. In our approach this result follows immediately from
the following two observations: (i) the graded space Ω(∧•V ) can be identified
with K ⊕ RepV (P•), where RepV (P•) is the space of all possible represen-
tations, ρ : P• → EndV ; the differential in Ω(∧•V ) induced from P• by the
formula dρ := ρ ◦ δ is precisely the differential of the cobar construction.
Then Proposition 3.2.1(ii) and isomorphism (9) imply that the cohomology,
H(Ω(∧•V )), of the cobar construction equals K⊕)•≥1V = )•V .
3.2.3 Permutahedra cochain complex. Exactly in the same way as in §3.2
one can construct a dg properad, (P•, δ), out of the permutahedra cochain
complex, C•(Pn−1) := HomK(C•(Pn−1), K), with the differential δ dual to the
one given in (13). Very remarkably, Chapoton has shown in [Ch] that one can
make the S-module {C•(Pn−1)} into a dg operad, and that this operad is a
quadratic one. We do not use this interesting fact in our paper and continue
interpreting instead permutahedra as a dg properad from which we shall build
below more complicated dg props with nice geometric and/or algebraic mean-
ing. Let us apply first the parity chain functor, Π , to the dg properad P• (see
§2.8iii). The result, P := ΠP•, is a dg free properad, F↑

c 〈W̌ 〉, generated by an
S-bimodule, W̌ = {W̌ (m,n)} with W̌ (m,n) = 0 for n �= 0 and with W̌ (m, 0)
equal to

Y (m) :=
m⊕

k=1

⊕

[m]=I1�I2�...�Ik
|I•|≥1

K[Sn]⊗SI1×...×SIk
(11I1 ⊗ · · · ⊗ 11Ik

) [k]. (14)

If we represent the generators of P by corollas

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ik

with symmetric
legs in each Ii-bunch, then the induced differential in P is given by

δ

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

... oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ii+1 Ik

=
k∑

i=1

(−1)i+1

oooo
SSSS ppp

UUUU

...
...

0000
===
SSSS

... qqqq
DDD
;;;;

...
...

oooo
SSSS ppp

UUUU

...I1 Ii� Ii+1 Ik

. (15)

3.2.4 Theorem. The cohomology of the dg properad P is a free properad
generated by the degree −m corollas with skew-symmetric legs,

•
ZZZZ
777 ����
...1 2 m

:=
∑

σ∈Sm

(−1)σ

SSSS ... ...
qqqq

I1=σ(1) Ii=σ(i) Im=σ(m)

, m ≥ 1.

Proof. By exactness of the functor Π , the statement follows from
Proposition 3.2.1(ii). �

3.2.5 Corollary. The cohomology of the bar construction, B()•V ), of the
graded commutative algebra generated by a vector space V , is equal to ∧•V .
Proof. By definition (see, e.g., [Ba]), B()•V ) is a free tensor coalge-
bra, ⊗•()•≥1V [−1]) with the differential d induced from the ordinary
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multiplication in )•≥1V . On the other hand, it is easy to see that as a
vector space B()•V ) can be identified with K⊕RepV (P), where RepV (P) is
the space of all possible representations, ρ : P → EndV , of the parity shifted
properad of permutahedra cochains. Moreover, the bar differential d is given
precisely by dρ := ρ ◦ δ. Thus isomorphism (9) and Theorem 3.2.4 imply the
required result. �

3.3 From permutahedra to polydifferential Hochschild complex. Let
us consider a dg S-module, D = {D(m,n)}m≥1,n≥0, with D(m,n) := Y (m)⊗
11n[−1] and with the differential, δ : D(m,n)→ D(m,n) being equal to (15) on
the tensor factor Y (m) and identity on the factor 11n[−1]. Let (D := F↑〈D〉, δ)
be the associated dg free prop. Its generators can be identified with (m,n)-
corollas

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ik

. . .
. . .33

3
pp
p

rr
r 44

4
KK
K

1 2 3 n

(16)

of degree 1 − k, one such corolla for every partition [m] = I1 � . . . � Ik. The
differential δ in D is then given by

δ

⎛

⎜
⎜
⎜
⎝

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

... oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...

DD
D

33
3

pp
p ... ==

=
KK
K

44
4

I1 Ii Ii+1 Ik

1 2 3 . . . n

⎞

⎟
⎟
⎟
⎠

=
k−1∑

i=1

(−1)i+1

oooo
SSSS ppp

UUUU

...
...

0000
===
SSSS

... qqqq
DDD
;;;;

...
...

oooo
SSSS ppp

UUUU

...

DD
D

33
3

pp
p ... ==

=
KK
K

44
4

I1 Ii� Ii+1 Ik

1 2 3 . . . n

. (17)

3.3.1 Proposition. The cohomology of the dg prop D is a free prop, F↑〈X〉,
generated by an S-bimodule X = {X(m,n)}m≥1,n≥0 with X(m,n) := sgnm ⊗
11n[m− 1].
Proof. By §2.8(ii), the functor F↑ is exact so that we have H(D) =
F↑〈H(D)〉. By Künneth’s theorem, H(D(m,n)) = H(Y (m)) ⊗ 11n[−1].
Finally, by Theorem 3.2.4, H(Y (m)) = H(P)(m, 0) = sgnm[m]. �

The space of all representations, ρ : D → EndV , of the prop D in a (finite-
dimensional) vector space V can be obviously identified with

RepV (D) :=
⊕

k≥1

Hom
(
)•V, ()•≥1V )⊗k

)
[1− k] =

⊕

k≥1

Hom(Ō⊗k
V ,OV )[1 − k],

where OV := )•V ∗ is the graded commutative ring of polynomial functions
on the space V , and ŌV := )•≥1V ∗ is its subring consisting of functions
vanishing at 0. Differential (17) in the prop D induces a differential, δ, in the
space Rep(D) by the formula, δρ := ρ ◦ δ, ∀ρ ∈ Rep(D).
3.3.2 Proposition. The complex (Rep(D)V , δ) is canonically isomorphic to
the polydifferential subcomplex, (C•≥1

diff (OV ), dH) of the standard Hochschild
complex, (C•(OV ), dH), of the algebra OV .
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Proof. We shall construct a degree 0 isomorphism of vector spaces, i :
RepV (D) → C•≥1

diff (OV ), such that i ◦ δ = dH ◦ i, where dH stands for the
Hochschild differential. Let {eα} be a basis of V , and {xα} the associated
dual basis of V ∗. Any ρ ∈ RepV (D) is uniquely determined by its values,

ρ

⎛

⎜
⎜
⎜
⎝

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...12 m

. . .
. . .

. . .

33
3

pp
p

rr
r 44

4
KK
K

1 2 n

⎞

⎟
⎟
⎟
⎠

=:
∑

I1,...,Ik,J

|I•|>1,|J|≥0

Γ I1,...,Ik

J xJ⊗eI1⊗· · ·⊗eIk
∈ Hom(Ō⊗k

V ,OV ),

for some Γ I1,...,Ik

J ∈ K. Here the summation runs over multi-indices, I =
α1α2 · · ·α|I|, xI := xα1 ) · · · ) xα|I| , and eI := eα1 ) · · · ) eα|I| . Then the
required map i is given explicitly by

i(ρ) :=
∑

I1,...,Ik,J

1
|J |!|I1|! · · · |Ik|!

Γ I1,...,Ik

J xJ
∂|I1|

∂xI1
⊗ · · · ⊗ ∂|Ik|

∂xIk

where ∂|I|/∂xI := ∂|I|/∂xα1 · · · ∂xα|I| . Now it is an easy calculation to check
(using the definition of the Hochschild differential) that i ◦ δ = dH ◦ i. �

3.3.3 Corollary. H(C•≥1
diff (OV )) = ∧•≥1V ⊗)•V ∗.

Proof. By Proposition 3.3.2, the cohomology H(C•≥1
diff (OV )) of the polydif-

ferential Hochschild is equal to the cohomology of the complex (RepV (D), δ).
The latter is equal, by isomorphism (9), to RepV (H(D)) which in turn is
equal, by Proposition 3.3.1, to ∧•≥1V ⊗)•V ∗. �

The complex C•
diff (OV ) is a direct sum, OV ⊕ C•≥1

diff (OV ), where OV is a
trivial subcomplex. Thus Corollary 3.3.3 implies isomorphism (2).
3.4 Hochschild complex. Is there a dg prop whose representation complex
is the general (rather than polydifferential) Hochschild complex for polyno-
mial functions? Consider a dg free prop, D̂, which is generated by the same
S-bimodule D as the prop D above, but equipped with a different differential,
δ̂, given on the generators by (17) and two extra terms,

(δ̂− δ)

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ik

. . .
. . .33

3
pp
p

rr
r 44

4
KK
K

1 2 3 n

= −
∑

[n]=J1�J2
J1=I1

...

︷︸︸︷
I1

︸︷︷︸
J1

︸ ︷︷ ︸
J2

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I2 Ii Ik

. . .*** sss tt --- OOO
−
∑

[n]=J1�J2
J2=Ik

(−1)k ...

︷︸︸︷
Ik

︸︷︷︸
J2

︸ ︷︷ ︸
J1

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ik−1

. . .*** sss tt --- OOO

3.4.1 Proposition. H(D̂) = H(D) = F↑〈X〉.
Proof. Define a weight of a generating corolla (16) of the prop D̂ to be
∑k
i=1 |Ii|, and the weight, w(G), of a decorated graph G from D̂ to be the sum

of weights of all constituent corollas of G. Then Fp := {span〈G〉|w(G) ≤ p}p≥0

is a bounded below exhaustive filtration of the complex (D̂, δ̂). By the classical
convergence theorem, the associated spectral sequence {Er, dr}r≥0 converges
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to H(D̂). Its 0th term, (E0, d0), is precisely the complex (D, δ). Thus E1, is,
by Proposition 3.3.1, the free prop F↑〈X〉 so that d1 vanishes and the spectral
sequence degenerates at the first term completing the proof. �

The complex (RepV (D̂), δ̂) associated, by §2.8(ii), to the dg prop (D̂, δ̂) is
easily seen to be precisely the standard Hochschild complex, (C•≥1(ŌV ) =
⊕k≥1Hom(Ō⊗k

V ,OV ), dH) of the nonunital algebra ŌV with coefficients in the
unital algebra OV . Hence Proposition 3.4.1 and isomorphism (9) immediately
imply that HC•≥1(ŌV ) = ∧•≥1V ⊗ )•V ∗ which in turn implies, with the
help of the theory of simplicial modules (see, e.g., Proposition 1.6.5 in [Lo]),
the Hochschild–Kostant–Rosenberg isomorphism (1). Using the language of
dg props, we deduced it, therefore, from the permutahedra cell complex.
3.5 From permutahedra to polydifferential Gerstenhaber–Schack
complex. Let us consider a dg S-module, Q = {Q(m,n)}m≥1,n≥1, with
Q(m,n) := Y (m) ⊗ Y (n)∗[−2] and the differential, d = δ ⊗ Id + Id ⊗ δ∗,
where δ is given by (15). Let (Q := F↑〈Q〉, d) be the associated dg free prop.

Its generators can be identified with corollas

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Im

UU
UU
qq
qq 44
4
oo
oo

...
...

UU
UU
qq
qq 44
4
oo
oo

...
...

UU
UU
qq
qq 44
4
oo
oo

...
J1 Jj Jn

of degree 2−m−n

with symmetric legs in each input and output bunch. The differential d is
given on the generators by

d
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SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

... oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ii+1 Im

UU
UU
qq
qq 44
4
oo
oo

...
...

UU
UU
qq
qq 44
4
oo
oo

... UU
UU
qq
qq 44
4
oo
oo

...
...

UU
UU
qq
qq 44
4
oo
oo

...
J1 Jj Jj+1 Jn

=
m−1∑

i=1

(−1)i

oooo
SSSS ppp

UUUU

...
...

hhhhh
0000
���
QQQQ

... [[[[
���
;;;;

...
...

oooo
SSSS ppp

UUUU

...I1 Ii�Ii+1 Im

UU
UU
qq
qq 44
4
oo
oo

...
...

UU
UU
qq
qq 44
4
oo
oo

... UU
UU
qq
qq 44
4
oo
oo

...
...

UU
UU
qq
qq 44
4
oo
oo

...
J1 Jj Jj+1 Jn

+
n−1∑

j=1

(−1)j

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

... oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...I1 Ii Ii+1 Im

UU
UU
qq
qq 44
4
oo
oo

...
...

jj
jj
j

;;
;;��
�
[[
[[

... QQ
QQ ��
�

00
00

...
...

UU
UU
qq
qq 44
4
oo
oo

...
J1 Jj�Jj+1 Jn

.

3.5.1 Proposition. H(Q) is a free prop generated by an S-bimodule {sgnm⊗
sgnn[m + n− 2]}m,n≥1.
Proof. Use Theorem 3.2.4 and the Künneth theorem. �

The complex of representations, (Rep(Q), d), is isomorphic as a graded
vector space to C•,•(ŌV ) :=

⊕
m,n≥1 Hom(Ō⊗m

V , Ō⊗n
V )[m+n− 2]. The latter

has a well-known Gerstenhaber–Schack differential [GS1],

dGS : Hom(Ō⊗n
V , Ō⊗m

V )
d1GS⊕d2GS−→ Hom(Ō⊗n+1

V , Ō⊗m
V )⊕Hom(Ō⊗n

V , Ō⊗m+1
V ),

with d1
GS given on an arbitrary Φ ∈ Hom(V ⊗n, V ⊗m) by

(d1
GSΦ)(f0, ..., fn) :=−Δm−1(f0)·Φ(f1, ..., fn)+

n−1∑

i=0

(−1)if(f0, ..., fifi+1, ..., fn)

+(−1)nΦ(f1, f2, ..., fn−1) ·Δm−1(fn), ∀ f0, f1, . . . , fn ∈ ŌV ,

where the multiplication in ŌV is denoted by juxtaposition, the induced
multiplication in the algebra Ō⊗m

V by ·, the comultiplication in ŌV by Δ, and
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Δm−1 : (Δ⊗ Id⊗m−2) ◦ (Δ⊗ Id⊗m−3) ◦ · · · ◦Δ : ŌV → Ō⊗m
V ,

for m ≥ 2 while Δ0 := Id. The expression for d2
GS is an obvious dual analogue

of the one for d1
GS .

It is evident, however, that (Rep(Q), d) �= (C•,•(ŌV ), dGS). What is then
the meaning of the naturally constructed complex (Rep(Q), d)?
3.5.2 Definition-proposition. Let C•,•

diff (ŌV ) be a subspace of C•,•(ŌV )
spanned by polydifferential operators of the form

Φ : Ō⊗m
V −→ Ō⊗n

V

f1 ⊗ · · · ⊗ fm −→ Γ (f1, . . . , fm),

with Φ(f1, . . . , fm) = xJ1 ⊗ · · · ⊗ xJn · Δn−1
(
∂|I1|f1
∂xI1

)
· · · · · Δn−1

(
∂|I1|fm

∂xIm

)

for some families of nonempty multi-indexes I• and J•. Then C•,•
diff (ŌV ) is a

subcomplex of the Gerstenhaber–Schack complex (C•,•(ŌV ), dGS).
Proof. Proving that C•,•

diff (ŌV ) is a subcomplex of (C•,•(ŌV ), d1
GS) is very

similar to the Hochschild complex case. So we omit these details and concen-
trate instead on showing that C•,•

diff (ŌV ) is a subcomplex of (C•,•(ŌV ), d2
GS).

If, for arbitrary f ∈ ŌV , we use Sweedler’s notation, Δf =
∑

f ′⊗ f ′′, for the
coproduct in ŌV , then, for an operator Φ as above, one has

d2
GSΦ(f1, ..., fm) = −

∑
f ′
1 · · · f ′

m ⊗ Φ(f ′′
1 , ..., f ′′

m)−
n∑

i=1

(−1)iΔiΦ(f1, ..., fm)

+(−1)n
∑

Φ(f ′
1, ..., f

′
m)⊗ f ′′

1 · · · f ′′
m

where Δi means Δ applied to the i-tensor factor in the space of values, Ō⊗n
V ,

of Φ. Taking into account the particular structure of Φ, one can see that d2
GSΦ

is a linear combination of polydifferential operators if and only if an equality
holds,

Δ2 ∂|I|f
∂xI

=
∑

f ′ ⊗Δ
∂|I|f ′′

∂xI
,

for arbitrary f ∈ ŌV and arbitrary nonempty multi-index I. As product and
coproduct in ŌV are consistent, it is enough to check this equality under the
assumption that dimV = 1 in which case it is straightforward. �

3.5.3 Proposition. (i) The complexes (Rep(Q), d) and (C•,•
diff (ŌV ), dGS) are

canonically isomorphic. (ii) HC•,•
diff (ŌV ) = ∧•≥1V ⊗)•≥1V ∗.

Proof. (i) Any representation ρ ∈ Rep(Q) is uniquely determined by its values
on the generators,

ρ

⎛

⎜
⎜
⎜
⎝

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...
...

oooo
SSSS ppp

UUUU

...1 2 m· · ·

1 n2 · · ·
UU
UU
qq
qq 44
4
oo
oo

...
...

UU
UU
qq
qq 44
4
oo
oo

...
...

UU
UU
qq
qq 44
4
oo
oo

...

⎞

⎟
⎟
⎟
⎠

=
∑

Γ I1,...,Ik

J1,...,Jl
xJ1 ⊗ · · · ⊗ xJl ⊗ eI1 ⊗ · · · ⊗ eIk

,
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for some Γ I1,...,Ik

J1,...,Jl
∈ K. It is a straightforward calculation to check that the

map i : Rep(Q) → C•,•
diff (ŌV ) given by

i(ρ) :=
∑ Γ I1,...,Ik

J1,...,Jl

|I1|! · · · |Jl|!
xJ1 ⊗ · · · ⊗ xJl ·Δl−1

(
∂|I1|

∂xI1

)

· · · · ·Δl−1

(
∂|Il|

∂xIl

)

satisfies the condition ρ ◦ d = dGS ◦ ρ. Now 3.5.3(ii) follows immediately from
isomorphism (9) and Proposition 3.5.1. �

3.6 Gerstenhaber–Schack complex. It is not hard to guess which dg
prop, (Q̂, d̂), has the property that its associated dg space of representations,
(Rep(Q̂), d̂), is exactly the Gerstenhaber–Schack complex (C•,•(ŌV ), dGS).
As a prop, Q̂ is, by definition, the same as Q above, but the differential differs
from d by the following four groups of terms:

(d̂− d)
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Using a spectral sequence argument very similar to the one used in the proof
of Proposition 3.4.1, one easily obtains the following:
3.6.1 Proposition. H(Q̂) = H(Q).
3.6.2 Corollary. H(C•,•(ŌV )) = H(C•,•

diff (ŌV )) = ∧•≥1V ⊗)•≥1V ∗.
The latter result together with the standard results from the theory of sim-
plicial modules [Lo] imply formula (3).
3.7 On the Etingof–Kazhdan quantization. Note that the Gerstenhaber–
Schack complex C•,•(ŌV ) has a structure of prop, the endomorphism prop
of ŌV . Moreover, it is easy to see that C•,•

diff (ŌV ) is also closed under prop
compositions so that the natural inclusion, j : C•,•

diff (ŌV ) → C•,•(ŌV ), is a
morphism of props [Me4]. A choice of a minimal resolution, AssB∞, of the
prop, AssB, of associative bialgebras, induces [MV] on C•,•(ŌV ) (resp. on
C•,•

diff (ŌV )) the structure of a filtered L∞-algebra whose Maurer–Cartan el-
ements describe deformations of the standard bialgebra structure on ŌV in
the class of (resp. polydifferential) strongly homotopy bialgebra structures.
Moreover [MV], the initial term of this induced L∞-structure is precisely
the Gerstenhaber–Schack differential. The inclusion map j : C•,•

diff (ŌV ) →
C•,•(ŌV ) extends to a morphism of L∞-algebras which, by isomorphisms
(4) and (3), is a quasi-isomorphism. The Etingof–Kazhdan universal quanti-
zation [EK] of (possibly, infinite-dimensional) Lie bialgebra structures on V
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associates to such a structure, say ν, a Maurer–Cartan element, γν , in the
L∞-algebra C•,•(ŌV ). As L∞ quasi-isomorphisms are invertible [Ko], there
is always an associated Maurer–Cartan element j−1(γEKν ) which, for degree
reasons, describes an associated to ν polydifferential bialgebra structure on
ŌV . Thus we proved that for any Lie bialgebra structure, ν, on a vector space
V there exists its bialgebra quantization, j−1(γEKν ), within the class of polyd-
ifferential operators from C•,•poly(OV ).

4 Dg prop of unital A∞-structures

4.1 Differential in a free prop. A differential in a free prop F↑〈E〉 can be
decomposed into a sum, δ =

∑
p≥1 δ(p), where δ(p) : E

δ−→ F↑〈E〉 prp−→ F↑
(p)〈E〉

is the composition of δ with the projection to the subspace, F↑
(p)〈E〉 ⊂ F↑〈E〉,

spanned by decorated graphs with precisely p vertices. We studied in §3 free
props equipped with differentials of the form δ = δ(1) which preserve the
number of vertices of decorated graphs, and heavily used the fact that δ makes
the associated space of representations, RepV (F↑〈E〉) � Hom(E, EndV ), into
a complex whose cohomology one can easily read from the cohomology of
(F↑〈E〉, δ). Remarkably [MV], a generic differential δ in F↑〈E〉 makes the
vector space RepV (F↑〈E〉)[1] into an L∞-algebra whose pth homotopy Lie
bracket is completely determined by p-th summand, δ(p), of the differential δ.
In particular, if δ has δ(p) = 0 for all p ≥ 3, then RepV (F↑〈E〉)[1] is canonically
a dg Lie algebra with the differential determined by δ(1) and Lie brackets
determined by δ(2). Thus, if we want to extend isomorphisms (1) and (2) into
isomorphisms of Lie algebras, we have to look for more complicated (than the
ones studied in §3) dg props canonically associated with the (polydifferential)
Hochschild complex for OV .
4.2 Dg prop of polyvector fields. Let PolyV be a dg free prop generated
by the S-module, X [−1] = {X(m,n)[−1]}m≥1,n≥0,

X(m,n)[−1] = sgnm ⊗ 11n[m− 2] = span〈 •
\\\\\\

hhhh
. . . jjjj
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jj

jj
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hh
\\\

\\\

1 2 n

〉

which is obtained from the S-module X of Proposition 3.3.1 by a degree shift.
The differential in PolyV is defined as follows (cf. [Me1]):
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where σ(I1 � I2) is the sign of the permutation [n]→ I1 � I2. This differential
is quadratic, ∂ = ∂(2), so that, according to the general theory (see Theorem
60 in [MV]), the space Rep(PolyV)V [1] = ∧•≥1V ⊗ )•V � ∧•≥1TV comes
equipped with a Lie algebra structure which, as it is not hard to check (cf.
[Me1]), is precisely the Schouten bracket.
4.3 Unital A∞-structures on OV . It is well-known that the vector space
C̄•(OV ) := ⊕k≥1Hom(O⊗k

V ,OV )[1 − k] has a natural graded Lie algebra
structure with respect to the Gerstenhaber brackets, [ , ]G. By definition,
an A∞-algebra structure on the space OV is a Maurer–Cartan element in
this Lie algebra, that is, a total degree 1 element Γ ∈ C̄•(OV ) such that
[Γ, Γ ]G = 0. Such an element, Γ , is equivalent to a sequence of homogeneous
linear maps, {Γk : O⊗k

V → OV [2−k]}, satisfying a sequence of quadratic equa-
tions (cf. [St]). An A∞-algebra structure is called unital if, for every k ≥ 3,
the map Γk factors through the composition O⊗k

V → Ō⊗k
V → OV [k − 2] and

Γ2(1, f) = Γ2(f, 1) = f . The following lemma is obvious.
4.3.1 Lemma. There is a one-to-one correspondence between unital A∞-
structures on OV and Maurer–Cartan elements,

{Γ ∈ C̄•(ŌV ) : |Γ | = 1 and dHΓ +
1
2
[Γ, Γ ]G = 0},

in the Hochschild dg Lie algebra, C̄•(ŌV ), for the ring ŌV ⊂ OV .
4.4 Dg prop of unital A∞-structures. Consider a dg free prop, (DefQ, d),
generated by corollas (16) (to which we assign now degree 2−k) and equipped
with the differential given by3 (cf. [Me2])
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It was shown in [Me2] that there is a one-to-one correspondence between
degree 0 representations of the dg prop (DefQ, d) in a dg vector space V and
Maurer–Cartan elements in the Hochschild dg Lie algebra (C̄•(ŌV ), [ , ]G, dH),
3 We have to assume that DefQ is completed with respect to the genus filtration.



Permutahedra, HKR Isomorphism and Gerstenhaber–Schack Complex 313

i.e., with unital A∞-structures on OV . Put another way, the dg Lie algebra
induced on RepV (DefQ)[1] from the above differential d is precisely the
Hochschild dg Lie algebra.

Consider now a filtration, F−p := {span〈G〉 : number of vertices in
G ≥ p}, of the complex (DefQ, d). It is clear that the 0th term, (E0, δ),
of the associated spectral sequence, {Er, dr}r≥1, isomorphic (modulo an
inessential shift of degree) to the prop (D, δ) introduced in §3.3 so that,
by Proposition 3.3.1, we conclude that E1 = H(E0) is isomorphic as a
free prop to PolyV whose shifted representation space, RepV (PolyV)[1], is
H(C̄•(ŌV )) = ∧•≥1TV . The Lie algebra structure on H(C̄•(ŌV )) induced
from the Gerstenhaber brackets on C̄•(ŌV ) is then given by the differential,
d1, induced on the next term of the spectral sequence, E1 = PolyV , from
the differential d in DefQ. A direct inspection of formula (18) implies that
d1 is precisely ∂ which in turn implies by §4.2 that the induced Lie algebra
structure on H(C̄•(ŌV ) is indeed given by Schouten brackets. It is worth
noting in conclusion that L∞-morphisms (in the sense of Kontsevich [Ko]
between dg Lie algebras C̄•(ŌV ) and ∧•≥1TV can be equivalently understood
as morphisms of dg props, DefQ → PolyV�, where PolyV� is the wheeled
completion of the prop of polyvector fields (by definition, PolyV� is the
smallest wheeled prop containing PolyV as a subspace). This point of view
on quantizations was discussed in more detail in [Me2,Me3].

Acknowledgment. The author is grateful to an anonymous referee for useful
comments.
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1 English Introduction

1.1 Invariant differential operators on line bundle

Let G be a real Lie group, connected and simply connected. Let g be the
associated Lie algebra, U(g) the universal enveloping algebra and S(g) the
symmetric algebra. In this introduction G/H is a homogeneous space with
H a connected Lie subgroup. As usual h denotes the Lie algebra of H . Fix a
character λ of H , it is a group homomorphism from H into C

×. If there is no
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danger of confusion, we will denote by the same letter the differential of the
character. So λ is a character of h, i.e., we have λ[h, h] = 0.

Let Lλ be the line bundle defined by λ. Sections of this bundle, denoted
by Γ (Lλ), are smooth functions on G such that ϕ(gh) = ϕ(g)λ(h). Obviously
G acts on the left on Γ (Lλ).

Let Dλ be the algebra of invariant differential operators on Γ (Lλ).
After Koornwinder [21] we know Dλ is isomorphic to

Dλ :=
(
U(g)C/U(g)C · h−λ

)h

(1)

where h−λ = {H − λ(H)}. Here are some explanations. For X ∈ g, RX is the
left invariant vector field on G associated to X . For u ∈ Dλ, let Du be the
associated differential operator on Γ (Lλ) defined by

(Duϕ)(g) = (Ruϕ)(g),

ϕ ∈ Γ (Lλ). Then Du is a left invariant differential operator. It is not difficult
to verify that we have described all of them1.

Suppose λ is real. The algebra
(
U(g)/U(g) · h−λ

)h

is not commutative in
general. A conjecture of M. Duflo [14] describes the center of this algebra. I
write Sλ for the algebra of H-invariant polynomial functions on h⊥−λ := {f ∈
g∗, f |h = λ}. We get

Sλ :=
(
S(g)/S(g) · h−λ

)h

. (2)

This space admits a natural Poisson structure coming from the classical
Poisson structure on g∗. Let δ(H) = 1

2 trg/h ad(H) be the character for the
half densities.
Duflo’s conjecture [14] : The center of

(
U(g)/U(g) ·h−λ−δ

)h

is isomorphic
to the Poisson center of Sλ.

This conjecture is far from being solved2. Moreover one should probably
consider the case of a generic character.

In case G is a nilpotent group, appreciable advances have been achieved in
the last few years by Corwin–Greenleaf [12], Fujiwara–Lion–Magneron–Mehdi
[15], Baklouti–Fujiwara [5] and Baklouti–Ludwig [6], and Lipsman [23,24,25].
More precisely in the nilpotent case one can prove the following.

Théorème 1 ([15]) Let G be nilpotent (connected, simply connected) and χ
the unitary character of H defined by χ(expG(H)) = exp(iλ(H)).

1 Consider the local expression around the origin.
2 Consider the following example; G is reductive H = U the unipotent radical of

a Borel. Let t be a Cartan subalgebra. Then you get (U(g)/U(g) · h)h = S(t) =
(S(g)/S(g) · h)h . These algebras are commutative. The space G/U is quasi-affine.
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Dχ commutative⇐⇒ the left representation L2(G/H,χ) has finite
multiplicities

⇔ for f ∈ h⊥−λ generic H · f is lagrangian in G · f

⇔
(
Frac(S(g)/S(g) · h−λ)

)h

Poisson commutative

⇔
(
S(g)/S(g) · h−λ

)h

Poisson commutative

Under these conditions Dχ is a subalgebra of
(
Frac(S(g)/S(g) · h−λ)

)h

, the

algebra of H-invariant fractions on h⊥−λ.

In the case where G and H are reductive groups F. Knop [19] gives a satis-
fying and remarkable answer to the conjecture. In the case H is compact and
G = H +< N is a semiproduct of H with a Heisenberg group N , L. Rybnikov
[31] makes use of Knop’s result to prove Duflo’s conjecture. The case of sym-
metric spaces has been previously studied by myself in [34,36] and the group
case is solved by Duflo [13].

This survey analyzes the Duflo conjecture and other standard problems
in Lie theory with the help of Kontsevich’s quantization. The main results
are generalizations of [10]. Some others come from discussions with my PhD
student P. Batakidis [7], and the end of the article is new.

We hope to convince the reader of the value of our methods. In some sense
they are a replacement for the orbit method.

1.2 Duflo’s conjecture : a review of difficulties

Let us try to list some technical difficulties in Duflo’s conjecture. We will
see that most of them disappear with Kontsevich’s quantization techniques
developed in [10].

1 – The algebra
(
U(g)/U(g) · h−λ

)h

is filtered by the order of differ-
ential operators. But it is not obvious to describe the associated graded

space. In general we have an injection from gr
(
U(g)/U(g) · h−λ

)h

into
(
S(g)/S(g)·h

)h

. Let us remark that the character has disappeared. Regarding
the first difficulty, the symbol of a differential operator on a line bundle is just
a function on the cotangent space of the underlying space. Except tentative
[22] there is no way to keep the character. The next example illustrates the
phenomena : consider g =< X,Y, Z > with Z = [X,Y ] and h =< Z >.

If λ(Z) = 0 the algebra (U(g)/U(g) · Z)Z = S(g)/S(g) · Z is Poisson
commutative.

If λ(Z) �= 0, then
(
U(g)/U(g) · (Z − λ(Z))

)Z
is a Weyl algebra and thus

non commutative while the associated graded algebra is Poisson commutative.
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There is no link between Dλ and the Poisson algebra gr(Dλ). The quantization
procedure developed by Cattaneo–Felder [8, 9] for co-isotropic spaces takes
care of the character.

2 – In general the homogeneous space G/H does not admit a G-invariant
measure. One has to consider half-densities, essentially to deal with Hilbert
spaces. So you have to define the following character of H , ΔG,H(h) =
(detg/h Adh)1/2 and λ is replaced by the shifted character λ + 1

2 trg/had. This
shift is problematic if you want to construct irreducible representations by
induction from a polarization b. Usually you have to ask for compatibility
conditions among ΔG,H , ΔG,B [23, 34]3.

3 – In case h admits an h-invariant complement (for the adjoint action), the
pair (g, h) is called a reductive pair (but g is not supposed to be reductive !).
If (g, h) is a reductive pair, then an easy consequence of Poincaré–Birkhoff–
Witt’s theorem indicates

(
U(g)/U(g) · h−λ

)h is isomorphic as a vector space

to
(
S(g)/S(g) · h−λ

)h. It is not known whether this holds in general, that
is, if Dλ is a deformation of Sλ. Actually there are no obvious maps from
(
S(g)/S(g) · h−λ

)h into U(g) or U(g)/U(g) · h−λ.
If (g, h) is a reductive pair, then you get the additional equality

U(g)h/U(g)h ∩ U(g) · h−λ = (U(g)/U(g) · h−λ)h. (3)

In general you get just an injection from LHS to RHS, as illustrated by the
following example. Consider g = sl(2) with standard basis H,X, Y and take
h= < X >. You get

(
U(g)/U(g) ·X

)X = R[X ] but U(g)X/U(g)X ∩U(g) ·X
is isomorphic to R[X2]. Our constructions depend on the choice for a comple-
ment to h. In [10] we gave several examples where there are different choices
for a complement, the most important being the Iwasawa decomposition and
the Cartan decomposition for symmetric pairs. Dependence of our construc-
tions with the complement leads to interesting applications : Harish–Chandra
homomorphism for example. At the end of this article, we will explain the
group case4, which leads to the Kashiwara–Vergne conjecture. Invariant com-
plements simplify the calculations but we are able to describe our model even
in the general case.

4 – The algebras
(
U(g)/U(g) · h−λ

)h and Sλ should be simultaneously
commutative. Even this fundamental question is not solved in general, ex-
cept for the nilpotent case or for symmetric pairs. If G and H are algebraic
and the generic H-orbits in h⊥−λ = {f ∈ g∗, f |h = λ} are lagrangian, then
(
Frac(S(g)/S(g) ·h−λ)

)h

is commutative, consequently Sλ is Poisson commu-
tative. Of course Sλ could be commutative, without the lagrangian hypothesis.
3 A boundary term, which was overlooked in previous publications, has to be added

to several of the expressions in Sections 3.4 and 4.1 to 4.4. The determination of
this term will be found in a paper by A. Cattaneo, C. Rossi and C. Torossian, in
preparation.

4 This is the double (g × g,diagonal).
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For example, consider g =< T,X, Y, Z > with < X,Y, Z > a Heisenberg Lie
algebra and [T,X ] = X, [T, Y ] = Y and [T, Z] = 2Z. Take h =< T >. Then
(
U(g)/U(g) · h

)h = R,
(
S(g)/S(g) · h

)h = R but H-orbits in h⊥ are not
lagrangian because Frac(S(g)/S(g) · h)h is not commutative.

5 – Fix q a complement of h in g and consider the Exponential map
Exp : q −→ G/H defined by X �→ expG(X)H . This is a local diffeomor-
phism and you can write Du for u ∈ Dλ in exponential coordinates. Be-
fore our work [10] no formulas were known. If you restrict these operators
to invariant distributions, you should get interesting simplifications. This is
exactly what happens for symmetric pairs [27, 28, 29], especially for the dou-
ble G/H = G1 × G1/Diagonal. The study of this restriction gives rise to
Kashiwara–Vergne’s conjecture [17, 1, 4, 37].

6 – Suppose χ = iλ is the differential of a unitary character of H and
Dχ commutative. How can we associate to u ∈ Dχ a rational function, or
a polynomial function on h⊥−λ ? The orbit method gives a kind of answer:
construct an irreducible representation (π,H) of G which admits H-semi-
invariant distribution vectors for χ. Most of them are related with orbits
Ω = G · f with f ∈ h⊥−λ. If we are lucky, these H-semi-invariant distribution
vectors are common eigenvectors for all Du. The eigenvalue is a character for
Dλ and should depend on f as a rational function. Usually an irreducible
representation (π,H) is constructed by induction from a polarization at f
(if such a polarization exists !). As we see, there are several analytic difficulties:
definition of the distribution vector, L2 convergence, real structure. All these
problems are in some sense far from our starting algebraic problem. We will
explain how the bi-quantization gives us a systematic procedure, under the
lagrangian hypothesis, to construct this character in a more algebraic (or
geometric) way. Of course, if you deal with the spectral decomposition of
L2(G/H,χ), all these problems are to be considered.

7 – Consider a fundamental remark now : from the point of view of the
theory of representations, one should study the algebra (U(g)/I)g where I is
a two-sided ideal included in U(g) · h−λ and maximal. This algebra should be

smaller than
(
U(g)/U(g) · h−λ

)h

and behaves in a much better way. Indeed
Schur’s lemma proves that the action of any element u ∈ (U(g)/I)g is scalar on
irreducible representations which admit H-semi-invariant distribution vectors.
It is not difficult to extend Duflo’s arguments [13] in this context. The rational
function you should have built by the orbit method (if it exists!) is then a
polynomial function.

2 La quantification de Kontsevich

Pour simplifier la compréhension de cet article on rappelle brièvement les
constructions de Kontsevich [20] et les extensions dans le cas co-isotrope des
à Cattaneo-Felder [8, 9].
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2.1 Théorème de Formalité

En 1997, M. Kontsevich a montré que tout variété de Poisson admet une quan-
tification formelle. C’est une conséquence du théorème de formalité qui affirme
qu’il existe un quasi-isomorphisme entre l’algèbre de Lie des polychamps de
vecteurs munie du crochet de Schouten et l’algèbre de Lie des opérateurs poly-
différentiels munie du crochet de Gerstenhaber [16] et de la différentielle de
Hochschild.

Théorème 2 ([20]) Il existe un L∞-quasi isomorphisme U = (Un)n≥1 en-
tre les algèbres différentielles graduées g1 = (Tpoly(Rd, [·, ·]S , d = 0) et
g2 = Dpoly(Rd, [·, ·]G, dHoch). En particulier U induit une bijection entre les
solutions formelles de Maurer-Cartan modulo les groupes de jauge.

La preuve du théorème utilise une construction explicite en terme de dia-
grammes, pour décrire les coefficients de Taylor Un de U . En particulier si π
est un bi-vecteur de Poisson vérifiant [π, π]S = 0 pour le crochet de Schouten,
alors

�
ε

= m +
∑

n≥1

εn

n!
Un(π, . . . , π

︸ ︷︷ ︸
n fois

) (4)

est une structure associative formelle sur C∞(Rd)[[ε]]. Pour f, g des fonctions
de C∞(Rd) on obtient un produit formel associatif

f �
Kont

g = fg +
∞∑

n=1

εn

n!

∑

Γ∈Gn,2

wΓBΓ (f, g). (5)

On explique rapidement la signification de chaque termes de cette formule.

Graphes

Ici Gn,2 désigne l’ensemble des graphes étiquetés5 et orientés (les arêtes sont
orientées) ayant n sommets de première espèce numérotés 1, 2, · · · , n et deux
sommets de deuxième espèce 1, 2, tels que :

(i) – Les arêtes partent des sommets de première espèce. De chaque sommet
de première espèce partent exactement deux arêtes.

(ii) – Le but d’une arête est différent de sa source (il n’y a pas de boucle).
(iii) – Il n’y a pas d’arête multiple.

Remarque importante : Dans le cas linéaire qui nous intéresse, les graphes
qui interviennent de manière non triviale (on dira essentiels), sont tels que
les sommets de première espèce ne peuvent recevoir qu’au plus une arête. Il
en résulte que tout graphe essentiel est superposition de graphes simples de
type Lie (graphe ayant une seule racine comme dans Fig. 1) ou de type roue
(cf. Fig. 2 pour un exemple). Cela implique que toutes les formules sont des
exponentielles.
5 Par graphe étiqueté on entend un graphe Γ muni d’un ordre total sur l’ensemble
EΓ de ses arêtes, compatible avec l’ordre des sommets.
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Variétés de configurations

On note Cn,m l’espace des configurations de n points distincts dans le demi-
plan de Poincaré (points de première espèce ou points aériens) et m points
distincts sur la droite réelle (ce sont les points de seconde espèce ou points
terrestres), modulo l’action du groupe az + b (pour a ∈ R

+∗, b ∈ R). Dans son
article [20] Kontsevich construit des compactifications de ces variétés notées
Cn,m. Ce sont des variétés à coins de dimension 2n − 2 + m. Ces variétés
ne sont pas connexes pour m ≥ 2. On notera par C

+

n,m la composante qui
contient les configurations o les points terrestres sont ordonnés dans l’ordre
croissant (ie. on a 1 < 2 < · · · < m).

Fonctions d’angle et coefficients

On définit la fonction d’angle hyperbolique dans le demi-plan de Poincaré par

φ(p, q) = arg(p− q) + arg(p− q). (6)

C’est une fonction d’angle de C2,0 dans S
1 qui s’étend en une fonction régulière

à la compactification C2,0. Si Γ est un graphe dans Gn,2, alors toute arête e

définit par restriction une fonction d’angle notée φe sur la variété C
+

n,2. On
note EΓ l’ensemble des arêtes du graphe Γ . Le produit ordonné

ΩΓ =
∧

e∈EΓ

dφe (7)

est donc une 2n-forme sur C
+

n,2 variété compacte de dimension 2n. Le poids
associé à un graphe Γ est par définition

wΓ =
1

(2π)2n

∫

C
+
n,2

ΩΓ . (8)

Opérateurs bi-différentiels

Enfin l’opérateur BΓ est un opérateur bidifférentiel construit à partir de Γ ,
dont on ne détaille pas la construction. Disons que chaque arête correspond à
une dérivée, chaque sommet de première espèce est attaché au bi-vecteur de
Poisson et chaque sommet de deuxième espèce est attaché à des fonctions (cf.
[20, 11]).

2.2 Formule de Baker-Campbell-Hausdorff

On applique ce théorème pour R
d = g∗ et π = 1

2

∑
i,j [ei, ej]∂e∗i ∧ ∂e∗j Prenons

maintenant X,Y ∈ g et f = eX , g = eY . L’équation ci-dessus donne alors une
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expression nouvelle pour la formule de Baker-Campbell-Hausdorff Z(X,Y );
elle utilise tous les crochets possibles6 [18]

Z(X,Y ) = X + Y +
∑

n≥1

∑

Γ simple
geometric

Lie type (n,2)

wΓΓ (X,Y ). (9)

Le terme Γ (X,Y ) est le mot de type Lie que l’on peut fabriquer avec Γ ,
c’est essentiellement le symbole de l’opérateur BΓ .

3 La quantification de Cattaneo–Felder7

Soit g une algèbre de Lie de dimension finie sur R. L’espace dual g∗ est alors
muni d’une structure de Poisson linéaire. On note π le bi-vecteur de Poisson
associé à la moitié du crochet de Lie. Supposons donnés h ⊂ g sous-algèbre
de g et λ un caractère réel de h, c’est à dire une forme linéaire telle que
λ[h, h] = 0. L’orthogonal h⊥ de même que h⊥−λ := {f ∈ g∗, f |h = λ} sont des
sous-variétés coisotropes de g∗.

exp(X) exp(Y)

Fig. 1. Graphe simple de type Lie et de symbole Γ (X,Y ) = [[X, [X, Y ]], Y ]

3.1 Construction par transformée de Fourier impaire [9]

La construction de [8, 9] concerne le cas des variétés co-isotropes en général,
mais nous ne nous intéressons ici qu’au cas des sous-algèbres d’une algèbre
de Lie. Les constructions sont locales et dépendent donc d’un choix d’un

6 La formule de Dynkin n’utilise que des crochets itérés.
7 Un terme de bord, qui aurait dû apparâıtre dans des publications précédentes,

doit être ajouté à plusieurs des expressions ci-dessous et dans les Sections 4.1
à 4.4. La valeur de ce terme sera donnée dans un article de A. Cattaneo, C. Rossi
et C. Torossian, en préparation.
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exp(X) exp(Y)

Fig. 2. Graphe de type roue et de symbole Γ (X,Y ) = trg(adXad[X,Y ]adY adY )

supplémentaire de h dans g. Notons q un tel supplémentaire. On peut alors
identifier h∗ avec q⊥. On aura une décomposition (affine)

g∗ = h⊥−λ ⊕ q⊥ = h⊥−λ ⊕ h∗.

La variété qui intervient dans cette construction est une super-variété
intrinsèque :

M := h⊥−λ ⊕Πh (10)

o Π désigne le foncteur de changement de parité. L’algèbre des fonctions poly-
nomiales8 est donc canoniquement

A := Poly(h⊥−λ)⊗
∧

(g∗/h⊥) �
(
S(g)/S(g) · h−λ

)
⊗
∧

h∗.

Considérons alors π le bi-vecteur de Poisson linéaire de g∗ et appliquons la
transformée de Fourier impaire [9] dans la direction normale h∗ = q⊥. On
obtient un polyvecteur π̂ sur M , solution de l’équation de Maurer-Cartan

[π̂, π̂]S = 0.

On applique le théorème de formalité pour la super-variété M (voir [9] pour
une description complète du théorème de Formalité dans le cas gradué), on ob-
tient alors une solution μ de Maurer-Cartan dans Dpoly(A); c’est un opérateur
polydifférentiel formel homogène de degré un si l’on tient compte des degrés
impairs.
En d’autres termes, comme la graduation tient compte du degré dans les
variables impaires, la structure obtenue est en fait une A∞-structure, définie

8 Comme on ne considère que des structures de Poisson linéaires, on peut restrein-
dre les constructions aux algèbres de fonctions polynomiales.
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par Stasheff [33], sur l’espace A = Poly(h⊥−λ)⊗
∧

h∗ avec premier terme non
nul a priori (c’est l’anomalie), c’est à dire une structure

μ = μ−1 + μ0 + μ1 + μ2 + . . . (11)

vérifiant9 1
2 [μ, μ]G = 0 et μi des opérateurs (i + 1)-polydifférentiels.

Dans le cas linéaire, l’anomalie μ−1 est nulle, par conséquent μ0 est une
différentielle et μ1 un produit associatif modulo des termes contenant μ0 et μ2.
Le terme de plus bas degré de μ1 correspond au crochet de Poisson. Ainsi on
construit un vrai produit associatif sur l’espace de cohomologie défini par μ0.

Définition 1 On notera H•(μ0,A) l’algèbre de cohomologie (graduée) munie
de sa loi associative μ1. On s’intéressera à la sous-algèbre en degré 0 que l’on
appellera algèbre de réduction et que l’on notera H0(μ0). Le produit μ1 se
restreint en un star-produit noté �

CF
.

3.2 Construction en termes de diagrammes de Feynman [8]

La formule proposée est semblable à celle de Kontsevich [20] dans R
n. Chaque

μi, opérateur (i + 1)-polydifférentiel s’exprime sous la forme10

μi =
∑

n≥0

εn

n!

∑

Γ∈Gn,i+1

wΓBΓ (12)

o les arêtes des graphes portent deux couleurs11. Chaque BΓ est un opérateur
(i+1)-polydifférentiel sur A = Poly(h⊥−λ)⊗

∧
h∗. Il faut donc élargir la notion

de graphes admissibles et considérer des graphes avec arêtes colorées par h∗

issus des points terrestres. Si le bi-vecteur de Poisson π n’est pas linéaire, ces
graphes peuvent admettre des arêtes doubles si elles ne portent pas la même
couleur. On ne conservera que 2n + i − 1 arêtes (la dimension de la variété
Cn,i+1) les arêtes restantes seront colorées par h∗ (on dira que ces arêtes vont
à l’infini), elles ne contribuent pas dans le calcul du coefficient wΓ , mais les
arêtes qui partent à l’infini contribuent dans la définition de l’opérateur BΓ
(cf. Fig. 3).

Concernant le coefficient wΓ , il est obtenu de manière similaire par
intégration sur la variété Cn,i+1

+
de la forme ΩΓ modifiée par la couleur

selon les règles suivantes :
– si la couleur est dans h⊥−λ (variable tangente) la fonction d’angle associée

est la même que dans le cas classique

dφ+(p, q) := d
−→
φ (p, q) := d arg(p− q) + d arg(p− q). (13)

9 On note [•, •]G le crochet de Gerstenhaber.
10 Il n’y a pas de terme pour n = 0 sauf pour μ1 o on trouve la multiplication m.
11 Chaque couleur indiquera si la variable de dérivation est dans h∗ ou h⊥

−λ et
précisera la fonction d’angle.
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π

π

π π

F1 F2 F3

Fig. 3. Graphe type intervenant dans le calcul de U4(π, π, π, π) pour un bivecteur
π non linéaire

– si la couleur est dans g∗/h⊥ = h∗ (variable normale12) alors la fonction
d’angle sera notée ��	 (en pointillé dans les diagrammes).

dφ−(p, q) := d
���
φ (p, q) := d arg(p− q)− d arg(p− q). (14)

3.3 Description de la différentielle μ0 et exemples d’algèbres de
réduction

Dans [10] on décrit en termes de diagrammes ce que vaut la différentielle μ0

sur les fonctions polynomiales13 sur h⊥−λ.

Proposition 1 ([8, 10]) La différentielle μ0 est l’action de tous les graphes
de types suivant :

(i) les graphes de type Bernoulli avec la dernière arête partant à l’infini
(cf. Fig. 4)

(ii) les graphes de type roues avec des rayons attachés directement à l’axe
réel sauf pour l’un d’entre eux qui est attaché à un graphe de type Bernoulli
dont la dernière arête part à l’infini (cf. Fig. 5)

(iii) les graphes de type roues avec des rayons attachés directement à l’axe
réel sauf pour l’un d’entre eux qui part à l’infini (cf. Fig. 6).

En particulier on a toujours μ0 = εdCH + O(ε2) avec dCH la différentielle
de Cartan-Eilenberg.

Donnons quatre exemples d’algèbres de réduction (voir [10] §2 pour les
détails).
12 On a besoin ici de faire un choix d’un supplémentaire de h, pour identifier h∗ à

un sous-espace de g∗.
13 On renvoie à [10] pour l’action sur les éléments de Poly(h⊥

−λ)⊗
∧

h∗.
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Fig. 4. Graphe de type Bernoulli

Fig. 5. Graphe de type roue attaché à un Bernoulli

Fig. 6. Graphe de type roue pure

– Soit 0⊥ = g∗. Alors l’algèbre de réduction est S(g) muni du produit de
Kontsevich. En effet il n’y a pas d’arêtes sortantes, donc pas de condition.
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– Supposons que h admette un supplémentaire stable q alors on montre
que μ0 = εdCH . Dans ce cas, on en déduit que l’algèbre de réduction s’identifie

à
(
S(g)/S(g) · h−λ

)h

. En effet, les graphes avec plus de deux sommets ont
tous deux arêtes d’une même couleur qui se suivent (cf. Fig. 4). Le coefficient
associé est alors 0.

– Soit f ∈ g∗ et soit b une polarisation en f , c’est à dire une sous-algèbre
subordonnée f [b, b] = 0 et lagrangienne pour Bf (x, y) = f [x, y]. On prend
comme espace affine f + b⊥, alors l’algèbre de réduction vaut C.

– Soit g = k⊕ a⊕ n une décomposition d’Iwasawa d’une algèbre réductive
réelle. On note m le centralisateur de a dans k et on prend comme sous-algèbre
m⊕ n, alors l’algèbre de réduction vaut S(a).

Parité :

On montre [10] §2.2 pour λ = 0, que dans la différentielle μ0 seuls intervien-
nent les diagrammes avec un nombre impair de sommets de première espèce.
En tenant compte du degré de ε, on en déduit que l’algèbre de réduction
est graduée. Toute fonction F homogène de degré total n dans l’algèbre de
réduction s’écrit

F = Fn + ε2Fn−2 + ε4Fn−4 + . . . ,

avec Fi de degré i. On a Fn ∈
(
S(g)/S(g) · h

)h

; c’est l’analogue du symbole.
Toutefois on ne peut en déduire que l’algèbre de réduction est une quantifi-

cation de
(
S(g)/S(g) · h

)h

car l’application limite classique LC : F �→ Fn

est injective mais pas forcément surjective. Dans le cas général λ �= 0 on peut
étendre la construction ci-dessus [7]. On déduit classiquement le corollaire
suivant.

Corollaire 1 Si l’algèbre de réduction H0(μ0) est commutative, alors son
image par l’application LC est Poisson commutative.

3.4 Bi-quantification de Cattaneo-Felder

On suppose données deux sous-algèbres h1 et h2 de g. On peut évidemment
généraliser la construction en considérant des caractères. La quantification
de Cattaneo-Felder définit donc deux algèbres de cohomologie H•(μ(1)

0 ,A1)
et H•(μ(2)

0 ,A2). Dans [8, 9] Cattaneo-Felder définissent une structure de bi-
module sur une troisième algèbre de cohomologie.

La construction procède de la façon suivante.
On fixe une décomposition de g compatible avec h1 et h2, c’est à dire que

les variables porteront 4 couleurs notées ici (±,±). Le premier signe (resp. le
second) vaut + si la variable est tangente et vaut − si la variable est normale
à h⊥1 (resp. à h⊥2 ).

On définit alors la fonction d’angle à 4 couleurs dans le premier quadrant
0 ≤ arg(z) ≤ π

2 par la formule
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φε1,ε2(p, q) = arg(p− q) + ε1 arg(p− q) + ε2 arg(p + q) + ε1ε2 arg(p + q). (15)

La fonction d’angle vérifie la propriété suivante :
– lorsque p, q se concentrent sur l’axe horizontal les fonctions d’angles

dφε1,ε2(p, q) tendent vers la 1-forme d’angle

dφε1(p, q) = d arg(p− q) + ε1d arg(p− q), (16)

– lorsque p, q se concentrent sur l’axe vertical les fonctions d’angles
dφε1,ε2(p, q) tendent vers la 1-forme d’angle

dφε2(p, q) = d arg(p− q) + ε2d arg(p + q). (17)

On dessine dans le premier quadrant tous les diagrammes Γ de Kontsevich
colorés par les 4 couleurs ci-dessus en plaçant les sommets de première espèce
dans le quadrant strict et les sommets de deuxième espèce sur les axes.

En considérant les compactifications des configurations de points du pre-
mier quadrant modulo l’action du groupe des dilatations, on définit alors des
variétés à coins compactes sur lesquelles on pourra intégrer les formes ΩΓ

associées14.
Chaque graphe coloré Γ va définir un opérateur polydifférentiel, une fois

que l’on aura placé aux sommets de deuxième espèce (placés sur les axes)
des fonctions15. Le résultat est alors restreint à (h1 +h2)⊥. Les arêtes colorées
(−,±) qui arrivent sur l’axe horizontal définissent des formes d’angles triviales,
on peut donc placer sur l’axe horizontal une fonction de A1. De manière
analogue on placera des fonctions de A2 sur l’axe vertical. Enfin on place à
l’origine une fonction de

Poly
(
(h1 + h2)⊥

)
⊗
∧

(h∗1 ∩ h∗2).

Cette algèbre est munie d’une différentielle μ(2,1) correspondant aux contri-
butions de tous les graphes colorés avec une arête sortant à l’infini colorée par
h∗1 ∩ h∗2, et un seul sommet de deuxième espèce placé à l’origine.

En utilisant la formule de Stokes et en faisant l’inventaire des toutes les
contributions, on montre le théorème de compatibilité suivant

Théorème 3 ([8, 10]) L’espace H•(μ(2)
0 ,A2) agit par la gauche sur

H•(μ(2,1)
0 ,Poly

(
(h1 + h2)⊥

)
⊗
∧

(h∗1 ∩ h∗2)). L’espace H•(μ(1)
0 ,A1) agit par la

droite. On note �
1

l’action à droite (axe horizontal) et �
2

l’action à gauche (axe

vertical).

14 A chaque arêtes colorés est associée la différentielle d’une des 4 fonctions d’angle
ci-dessus.

15 J’entends des fonctions avec composantes impaires.
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4 Applications en théorie de Lie

On décrit maintenant les applications en théorie de Lie de la bi-quantification
et du théorème de compatibilité.

4.1 Description de l’algèbre de réduction

On fixe un supplémentaire q de h. On a donc une décomposition de l’algèbre
enveloppante

U(g) = β(S(q))⊕ U(g) · h−λ
où β désigne la symétrisation. On notera βq l’application déduite de S(q) dans
U(g)/U(g) · h−λ.

On considère la bi-quantification Cattaneo-Felder pour le couple de
variétés co-isotropes h⊥−λ mis en position horizontale et 0⊥ = g∗ mis en
position verticale. L’espace de réduction associé à l’origine est tout simple-
ment S(g)/S(g) · h−λ = Poly(h⊥−λ). Comme dans [20] on considère pour le
bi-vecteur de Poisson, la moitié du crochet de Lie.

1
1

g*

g*

B
A

F

F

f + k f + k

Fig. 7. Contributions des roues pures sur les axes

Pour F ∈ S(g) dans l’espace de réduction vertical, F �
2

1 ∈ S(g)/S(g) ·
h−λ et F �→ F �

2
1 est un opérateur donné par diagrammes de Kontsevich à

4-couleurs. Cet opérateur est compliqué et n’est pas à coefficients constants
car les diagrammes avec arêtes doubles colorées par + + et +− ne sont pas
nuls a priori.

Lorsque F ∈ S(q) alors l’opérateur A(F ) = F �
2

1 est plus simple et cor-
respond à l’exponentielle des contributions des roues pures sur l’axe vertical.
On notera de même B(F ) = 1 �

1
F l’exponentielle des contributions des roues

sur l’axe horizontal. On note A(X) et B(X) les symboles associés, c’est à dire
pour X ∈ q, Aq(X) = (eX �

2
1)e−X et Bq(X) = (1 �

1
eX)e−X .
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Je note pour X ∈ g, j(X) = detg

(
sinh adX

2
adX

2

)
et on définit Jq(X) par la

formule
Aq(X)J1/2

q (X) = Bq(X)j1/2(X). (18)

Théorème 4 L’application βq ◦ J
1/2
q (∂) définit un isomorphisme d’algèbres

de l’algèbre de réduction H0(μ0) muni du produit �
CF

sur l’algèbre
(
U(g)/U(g)·

h−λ
)h.

Ce théorème est démontré dans le cas des paires symétriques dans [10] et
est étendu au cas général dans la thèse de mon étudiant P. Batakidis [7]. La
formule de Stokes est encore l’argument essentiel. Lorsque q est invariant par
action adjointe de h alors Jq est une fonction ad(h)-invariante. Dans le cas des

paires symétriques on montre [10] §4.1 que Jq vaut J(X) = detq

(
sinh(adX)

adX

)
.

Dans le cas des paires symétriques on retrouve le produit !
Rou

de Rouvière

[27, 28, 29, 30].
On dispose donc d’une description complète via la symétrisation des

éléments de
(
U(g)/U(g) · h−λ

)h.

4.2 Cas des paires symétriques

Supposons dans cette section que (g, σ) est une paire symétrique, c’est à dire
que σ est une involution de Lie. On a donc une décomposition g = k⊕ p avec

[k, p] ⊂ p et [p, p] ⊂ k. On s’intéresse à l’algèbre
(
U(g)/U(g) · k

)k

. Le produit
μ1 prend alors une forme remarquable. En effet pour X,Y ∈ p on a

μ1(eX , eY ) = E(X,Y )eX+Y , (19)

o E(X,Y ) est l’exponentielle des contributions des graphes de types roues16.
Le produit de �

CF
= !

Rou
se résume sur H0(μ0) = S(p)k, les éléments k-

invariants, en un opérateur bidifférentiel à coefficient constant de symbole E.
On peut déduire de l’analyse de la fonction E des propriétés non triviales

de
(
U(g)/U(g) · k

)k

. En voici quelques unes (cf. [10] §3) :

Symétrie :

Pour X,Y ∈ p, on a E(X,Y ) = E(Y,X). On déduit la commutativité de

l’algèbre
(
U(g)/U(g) · k

)k

.

Radical résoluble :

Si X est dans le radical résoluble17 de g, alors E(X,Y ) = 1 pour tout Y ∈ p.
On en déduit que F �

CF
G = FG si F ∈ S(p ∩ J)k avec J un idéal résoluble.

16 C’est à dire des roues colorées, attachées à des graphes de type Lie.
17 Le plus grand idéal résoluble de g, il est σ-stable.
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Paires symétriques d’Alekseev-Meinrenken:

Supposons que (g, σ) soit munie d’une forme bilinéaire non dégénérée18 et
σ-anti-invariante, alors on a E(X,Y ) = 1.

Double quadratique:

Supposons que g soit une algèbre de Lie quadratique, c’est à dire munie
d’une forme bilinéaire non dégénérée. Considérons la paire symétrique double
(gdouble, σ) = (g × g, σ) avec σ(X,Y ) = (Y,X). Alors on a Edouble = 1. On
conjecture que cette propriété est vraie même si g n’est pas quadratique, ce
qui a d’intéressantes conséquences (voir la fin de l’article).

4.3 Opérateurs différentiels en coordonnées exponentielles

On reprend dans cette section les notations de l’introduction. On peut raffiner
le théorème précédent en donnant l’écriture en coordonnées exponentielles des
opérateurs différentiel invariants du fibré Lλ. On considère toujours le dia-
gramme de bi-quantification du §4.1. Notons Exp l’application exponentielle
de q sur G/H . On travaille au voisinage de 0 ∈ q. Soit ϕ ∈ Γ (Lλ), alors ϕ est
une fonction sur G telle que ϕ(gh) = ϕ(g)λ(h). Notons φ ∈ C∞(q) définie au
voisinage de 0 par

φ(X) =
J

1/2
q (X)
B(X)

× ϕ(expG(X)).

Le facteur représente une sorte de jacobien. Pour u ∈ Dλ on note DExp
u

l’opérateur en coordonnées exponentielles défini par

DExp
u (φ)(X) =

J
1/2
q (X)
B(X)

×Du(ϕ)(expG(X)).

Pour X,Y ∈ q on note Q(X,Y ) ∈ q et H(X,Y ) ∈ h les composantes
exponentielles au voisinage de 0 :

expG(X) expG(Y ) = expG(Q(X,Y )) expG(H(X,Y )). (20)

On peut étendre au cas des sous-algèbres la formule de [10] §4.3. Pour R dans
l’algèbre de réduction H0(μ0) on a :

eX�
1
R =

J
1/2
q (X)
B(X)

×R(∂Y )
(
J

1/2
q (Y )× B(Q(X,Y ))

J
1/2
q (Q(X,Y ))

eQ(X,Y )eλ(H(X,Y ))
)
|Y=0 .

(21)

18 On dit que (g, σ) est une paire symétrique quadratique.
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Théorème 5 ([10]) Pour u = β
(
J

1/2
q (∂)(R)

)
, l’opérateur différentiel DExp

u

en coordonnées exponentielles s’exprime par la formule eX �
1
R.

Remarquons que l’expression est valable au voisinage de 0 en posant ε = 1. La
convergence des coefficients se démontre comme dans [3, 4]. Cette expression
résout de manière satisfaisante un problème ancien de M. Duflo [14].
Remarque : Ce théorème devrait avoir des conséquences intéressantes dans le
cas des espaces symétriques hermitiens. En effet on peut utiliser la réalisation
d’Harish–Chandra pour écrire les opérateurs différentiels invariants19 [32,26].

4.4 Construction de caractères pour l’algèbre
(
U(g)/U(g) · h−λ

)h

On reprend dans cette section les notations de l’introduction. On cherche des

caractères pour l’algèbre
(
U(g)/U(g) · h−λ

)h

. Afin que ceci soit intéressant il
faut que cette dernière soit commutative.

L’hypothèse lagrangienne

Plaçons nous dans l’hypothèse lagrangienne que nous avons décrite dans
l’introduction. On suppose que pour f ∈ h⊥−λ générique, l’espace h · f (ac-
tion coadjointe) est lagrangien dans g · f . Rappelons que g · f est toujours
un espace symplectique muni de la forme de Kostant-Souriau. Il s’identifie
à l’espace symplectique (g/g(f), Bf) avec g(f) = {X ∈ g, X · f = 0 } et
Bf (X,Y ) = f [X,Y ].

Comme on l’a dit l’algèbre de Poisson Sλ =
(
S(g)/S(g) · h−λ

)h

est

alors Poisson commutative, mais aussi l’algèbre des fractions invariantes20
(
Frac(h⊥−λ)

)h

. En fait la commutativité de cette dernière est équivalente à
l’hypothèse lagrangienne.

On suppose de plus que les H-orbites génériques sont polarisables. C’est
à dire que pour f ∈ h⊥−λ générique, il existe une polarisation b en f (sous-
algèbre isotrope et de dimension maximale parmi les sous-espaces isotropes).
On a f [b, b] = 0 et b/g(f) lagrangien dans g/g(f). Cette hypothèse est au
cœur de la quantification géométrique.

Dans ces conditions on montre facilement que (h∩ b) · f = (h+ b)⊥. Cette
hypothèse va être cruciale.

19 Les formules proposées dans [26] ne sont pas correctes.
20 On notera qu’il faut prendre les invariants du corps des fractions et non pas le

corps des fractions des invariants.
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Construction d’un caractère

Dans [10] §6, on construit le diagramme de bi-quantification en plaçant sur
l’axe horizontal h⊥−λ et sur l’axe vertical f + b⊥. Par construction il faut
donc choisir une décomposition compatible de g. En particulier on fixe un
supplémentaire q de h en position d’intersection normale avec b c’est à dire
que l’on a

b = b ∩ h⊕ b ∩ q.

D’après §3.3 on sait que l’algèbre de réduction verticale est réduite à C et
l’hypothèse (h∩b)·f = (h+b)⊥ implique facilement que l’algèbre de réduction
associée à l’origine est aussi C. On en déduit une action à droite de H0(μ0) ∼(
U(g)/U(g) ·h−λ

)h

sur C. On a donc construit un caractère de cette algèbre.
Dans [10] §6 on développe une théorie des diagrammes à 8-couleurs dans

une bande qui nous permet d’interpoler deux situations de bi-quantification et
nous permet de calculer le caractère (cf. Fig. 8). On peut déplacer la position
de F le long du bord horizontal. Les positions limites aux coins donnent les
informations recherchées. Notre méthode utilise la formule de Stokes.

f + b

11

g*

F
f+h

Fig. 8. Calcul du caractère

Théorème 6 Sous les hypothèses lagrangiennes ci-dessus et l’existence de
polarisation, l’application

u ∈
(
U(g)/U(g) · h−λ

)h

�→ Bq(∂)J−1/2
q (∂)(β−1

q (u))(f)

est le caractère construit par le diagramme de bi-quantification.

Ce théorème est démontré dans le cas des paires symétriques dans [10] §6 et
étendu au cas général dans la thèse de mon étudiant P. Batakidis [7]. Remar-
quons que dans le cas des paires symétriques résolubles, on retrouve directe-
ment la formule de Rouvière, car Bp(X) = 1 et Jp(X) = detq

(
sinh(adX)

adX

)
.

On en déduit facilement en regardant le terme dominant le corollaire
suivant
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Corollaire 2 Sous les hypothèses lagrangiennes ci-dessus, l’algèbre
(
U(g)/U(g) · h−λ

)h est commutative.

En particulier dans le cas nilpotent, les orbites sont toujours polaris-
ables21, l’hypothèse lagrangienne est équivalente au fait que la multi-
plicité de la représentation L2(G/H,χ) est finie22. On retrouve alors un
théorème de Corwin & Greenleaf [12]. On en déduit dans le cas nilpotent,
que si l’algèbre Sλ est Poisson commutative alors

(
U(g)/U(g) · h−λ

)h est

commutative. Réciproquement d’après le lemme 1, si
(
U(g)/U(g) · h−λ

)h est
commutative alors la limite classique LC(H0(μ0)) est Poisson commutative.
Bien évidemment si cette dernière algèbre de Poisson est assez grosse23 on
pourrait en déduire alors que Sλ est aussi Poisson commutative.

Comparaison avec le vecteur de Penney

Sous les hypothèses lagrangiennes ci-dessus, la méthode des orbites fournit
dans les bons cas un vecteur distribution semi-invariant (dit vecteur de Penney
[34,36,15,23,24,25]). Dans les bons cas ce vecteur est aussi un vecteur propre
pour Dλ, ce qui fournit aussi un caractère de cette algèbre.

Décrivons le vecteur de Penney dans la situation unimodulaire et λ = 0
pour simplifier l’exposé. On note B un groupe de Lie connexe d’algèbre de Lie
b. On suppose que χf (expB(X)) = eif(X) définit bien un caractère24 de B.
On note dG,H et dB,B∩H des mesures invariantes25 sur G/H et B/B ∩H .

Le vecteur de Penney est défini par la fonction généralisée

ΦdG,H �−→ j∗(ΦdG,H) =
∫

B/B∩H
Φ(b)χf (b)−1dB,B∩K(b).

Sous l’hypothèse lagrangienne c’est une section généralisée propre [34] sous
l’action des opérateurs différentiels invariants Du pour u ∈ (U(g)/U(g) · h)h.
Ceci fournit donc un caractère de cette algèbre noté u −→ λf,b(u).

En utilisant le théorème 5 on montre que ce caractère vaut aussi la trans-
formée de Fourier du symbole transverse et concide (dans les bons cas) alors
avec celui construit par le diagramme de bi-quantification26.

21 On peut prendre une polarisation construite par M. Vergne.
22 Ici χ est le caractère de différentielle iλ.
23 Une conjecture raisonnable semble que le corps des fractions de la limite classique

contient Sλ.
24 Ces hypothèses d’intégrabilité compliquent la théorie en général.
25 En général de telle mesure n’existe pas, il faut alors travailler sur des fibrés en

droite, cf. Introduction.
26 Le cas nilpotent sera traité dans la thèse de P. Batakidis [7].
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4.5 Dépendance par rapport au supplémentaire et applications

On étudie maintenant la dépendance du produit �
CF

par rapport au choix du

supplémentaire q.

Formule de changement de base

On fixe un supplémentaire q0 de h. On choisit (ei) une base de g adaptée à la
décomposition h⊕q0, c’est à dire une base (Ki)i de h et une base (Pa)a de qo.
Faisons choix d’un autre supplémentaire q1 dont on fixe une base (Qa)a. Sans
perte de généralité on peut supposer que la matrice de passage est de la forme

M =
(

I D

0 I

)

.

Notons D = [V1, . . . , Vp] les colonnes de la matrice D et Vi ∈ h.
On écrit le bi-vecteur π dans les deux décompositions et on applique la

procédure de transformée de Fourier impaire dans les directions normales. On
trouve alors deux poly-vecteurs π̂ et π̂(1) sur la variété intrinsèque h⊥⊕Πh. La
relation entre les deux poly-vecteurs est la suivante (cf. [10] §1.5). Considérons

πM = M
−1[Mei, Mej ]∂e∗i ∧ ∂e∗j .

Alors on aura
π̂(1) = π̂M

o le membre de droite est la transformée de Fourier partielle impaire pour la
première décomposition. Par ailleurs le champ de vecteurs sur g∗ défini par
v = −Va∂P∗

a
vérifie27 [v, v]S = 0 et on a la relation

πM = eadv · π = π + [v, π]S +
1
2
[v, [v, π]]S . (22)

L’action du champ −v sur le bivecteur π correspond au changement de
supplémentaire.

Contrôle de la déformation: l’élément de jauge

Soit t un paramètre réel. Je note

πt = et adv · π = π + t[v, π] +
t2

2
[v, [v, π]]

et π̂t sa transformée de Fourier partielle pour la décomposition g = h⊕ q0.
Pour t = 0 on trouve π et pour t = 1 on trouve πM. On applique le

L∞ quasi-isomorphisme du théorème 2 à la super-variété h⊥ ⊕ Πh. Alors μt
définie par
27 On note [•, •]S le crochet de Schouten-Nijenhuis.
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μt = U(e π̂t) = m +
∑

n≥1

εn

n!
Un ( π̂t, . . . , π̂t)

est une structure A∞.
La dérivée dU π̂t

au point π̂t est un morphisme de complexes. On a donc
en dérivant, une équation différentielle linéaire :

∂μt
∂t

= ε dU π̂t
([ v̂, π̂t]SN ) = [dU π̂t

( v̂) , μt]G . (23)

On peut alors traduire cette formule en terme de diagrammes de Kontse-
vich colorés comme dans §3.2. On placera aux sommets de première espèce
le bi-vecteur πt et une fois le vecteur v. Les sommets terrestres reçoivent des
fonctions de

(
S(g)/S(g) · h

)
⊗
∧

h∗.
La différentielle (μt)0, composante de degré 0 de μt, vérifie en particulier

l’équation différentielle

∂(μt)0
∂t

= [(DUπ̂t
(v̂))0 , (μt)0]. (24)

Cette formule dit que les différentielles (μt)0 sont conjuguées par un élément
de type groupe28: c’est l’élément de jauge. Pour le décrire, il suffit d’analyser
tous les graphes qui interviennent dans (DUπ̂t

(v̂))0. C’est ce que l’on fait dans
[10] § 5.5. Ce sont les graphes des figures Fig. 4, Fig. 5 et Fig. 6 o l’arête ∞
dérive le sommet attaché au vecteur v. L’arête issue de v va soit sur la racine
du graphe, soit sur le sommet terrestre. Il y a donc 4 types de graphes donnés
par les figures suivantes (Fig. 9, Fig. 10, Fig. 11 et Fig. 12).

De même, la composante de degré un (μt)1 vérifie l’équation

∂(μt)1
∂t

= [(DUπ̂t
(v̂))0 , (μt)1] + [(DUπ̂t

(v̂))1 , (μt)0]. (25)

Cette équation exprime alors que l’élément de jauge définit en cohomologie
un isomorphisme d’algèbres. En particulier, résoudre l’équation (24) permet
de trouver explicitement l’entrelacement des star-produits pour deux choix de
supplémentaires.

V

Fig. 9. Bernoulli fermé par v

28 C’est la résolvante de l’équation différentielle.
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Exemple du double

Pour illustrer les conséquences de nos théories, examinons le cas des paires
symétriques (g×g, σ) avec σ(X,Y ) = (Y,X). On a alors k = {(X,X), X ∈ g}.
Ce sont les doubles.

Déformation du supplémentaire :

On dispose de 3 supplémentaires invariants naturels,

g− = {(0, 2X) , X ∈ g} p = {(X,−X) , X ∈ g} g+ = {(2X, 0) , X ∈ g}.

L’interpolation est donnée par la famille à paramètre de sous-espaces invari-
ants

{((1 + t)X, (t− 1)X) , X ∈ g}.
Le champ de vecteur v = −Va∂P∗

a
est donc l’application linéaire qui transforme

(X,−X) ∈ p �→ −(X,X) ∈ k. Si on note (ei) une base de g, Ki = (ei, ei) et
Pj = (ej ,−ej) alors le bi-vecteur πt prend une forme assez simple

πt = 2[Ki, Pj ]∂K∗
i
∧ ∂P∗

j
+ [Ki,Kj]∂K∗

i
∧ ∂K∗

j
+

(
[Ki,Kj](1− t2) + 2t[Ki, Pj ]

)
∂P∗

i
∧ ∂P∗

j
. (26)

Élément de jauge :

Comme (X,−X) et (X,X) commutent l’opérateur (DUπ̂t
(v̂))0 va se simpli-

fier. En effet les opérateurs différentiels correspondant aux graphes des Fig. 11
et Fig. 12 seront nuls. Il ne reste alors que les graphes Fig. 9 et Fig. 10. Le
coefficient vérifie une condition de symétrie, il est nul si le nombre de som-
mets attachés à πt est impair. Au final ces diagrammes correspondent à des
opérateurs différentiels de symboles

P2n(t)trp

(
ad(X,−X)2n

)
= P2n(t)trg(adX)2n

V

Fig. 10. Roue pure attachée à v
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V

Fig. 11. Roue attachée à un Bernoulli attaché à v

[v,π]

[v, π]

[v, π]

[v, [v, π]

[v,[v, π]

π

V

Fig. 12. Graphe de type Bernoulli non fermé

avec P2n(t) un polynme en t de degré inférieur à 2n. Ce polynme dépend de la
couleur dans la roue et des coefficients de Kontsevich associés, il s’écrit sous
la forme

P2n(t) =
∑

wΓPΓ (t)

où Γ décrit tous les graphes Fig. 9 et Fig. 10 avec 2n sommets associés πt. Ces
polynmes sont sans doute liés aux polynmes de Bernoulli, mais nous n’avons
pas pu le vérifier.

L’opérateur (DUπ̂t
(v̂))0 commute à l’action adjointe, donc l’équation de la

différentielle (24) se résout simplement, on trouve (μt)0 = εdCE, ce que l’on
savait déjà par ailleurs.

Enfin les opérateurs (DUπ̂t
(v̂))0 forment une famille commutative en t

donc l’élément de jauge est donné par la résolvante

φt := exp
(∫ t

0

(DUπ̂s
(v̂))0 ds

)
.

C’est un opérateur universel de symbole

φt(X) := exp

(
∑

n>0

Q2n+1(t)trg(adX)2n
)

.
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Interpolation du produit :

Regardons le terme de degré 1 pour la structure A∞. L’espace h⊥ s’identifie
aux couples (f,−f) avec f ∈ g∗. Les formes linéaires

(2X, 0) (X,−X) (0, 2X)

sont identiques sur h⊥. On la note X̂.
Pour t = 0, c’est la situation des paires symétriques on a donc d’après § 4.2

μt=0

(
eX̂ , eŶ

)
= Edouble((X,−X), (Y,−Y ))eX̂+Y .

Pour t = 1, c’est la situation des algèbres de Lie, on a donc [4]

μt=1

(
eX̂ , eŶ

)
= D(2X, 2Y )e

̂1
2Z(2X,2Y ),

avec Z(X,Y ) la formule de Campbell-Hausdorff et

D(X,Y ) =
j
1/2
g (X)j1/2

g (Y )

j
1/2
g (Z)

la fonction de densité de Duflo. Rappelons que jg(X) = detg

(
sinh adX

2
adX

2

)
.

Pour t = 1, il est facile de calculer la fonction Jg+ que nous avons intro-
duite en § 4.1. En effet, les roues A,B n’ont qu’une seule couleur (+,+). Par
symétrie on trouve A = B. On a donc

Jg+((2X, 0)) = jg(2X) = det
g

(sinh adX

adX

)
= Jp(X,−X).

La fonction J est donc la même pour ces deux choix de supplémentaires.

Proposition 2 L’élément de jauge φ1 vaut 1. Dans le cas du double, le star-
produit �

CF
est trivial sur S(p)k, les éléments k-invariants de S(p).

Preuve: Cet élément est un isomorphisme pour les algèbres de réduction.
Pour t = 0 on trouve S(p)k muni du produit de Rouvière qui vaut �

CF
. Pour

t = 1 c’est le produit de Duflo-Kontsevich, c’est à dire la multiplication
standard sur les invariants. Or pour le double quadratique la fonction Edouble
vaut 1 [10]. Donc φ1 est un isomorphisme d’algèbres de S(g)g pour toute
algèbre quadratique. C’est donc l’identité car trg(adX)2n n’agit pas comme
une dérivation universelle. Comme φ1 est universel, c’est toujours 1. On en
déduit que l’action de Edouble sur S(p)k est triviale, même si g n’est pas
quadratique. �
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Conjecture de Kashiwara–Vergne :

Plus généralement, comme les formules de quantification dans le cas linéaire
sont toujours des exponentielles on aura pour la composante de degré 1 de
notre structure A∞ :

μt

(
eX̂ , eŶ

)
= Et(X,Y )e

̂Zt(X,Y )

avec Zt(X,Y ) une série de Lie formelle en X,Y à coefficients polynomiaux
en t.

On dispose donc d’une déformation de la formule de Campbell-Hausdorff
en la loi additive. On peut alors traduire l’équation (25) sur la déformation.
On compense déjà le terme [(DUπ̂t

(v̂))0 , (μt)1] en conjuguant par φt(X).
Posons donc

̂Et(X,Y ) = Et(X,Y )
φt(X)−1φt(Y )−1

φt(Zt)−1
.

En examinant ce qu’est le terme (DUπ̂t
(v̂))1 on se convainc sans difficulté,

comme dans [35] que l’on est en train de calculer une différentielle en X et
en Y de la fonction Zt(X,Y ). On trouve un contrôle à la Kashiwara–Vergne
[17] de la déformation Zt(X,Y ) (voir [37] pour un résumé de les méthodes de
Kashiwara–Vergne). On a donc montré la théorème suivant.

Théorème 7 La déformation du supplémentaire produit une déformation de
Kashiwara–Vergne, c’est à dire qu’il existe des séries de Lie sans termes con-
stants (Ft(X,Y ), Gt(X,Y )) à coefficients polynomiaux en t, telles que

∂tZt(X,Y ) = [X,Ft(X,Y )] · ∂XZt(X,Y ) + [Y,Gt(X,Y )] · ∂Y Zt(X,Y ), (27)

∂t ̂Et(X,Y ) =
(
[X,Ft(X,Y )] · ∂X + [Y,Gt(X,Y )] · ∂Y

)
̂Et(X,Y ) +

̂Et(X,Y )trg

(
∂XFt ◦ adX + ∂Y Gt ◦ adY

)
. (28)

Corollaire 3 Si la conjecture Edouble = 1 est vraie, alors la déformation du
supplémentaire démontre la conjecture de Kashiwara–Vergne.

Preuve: En effet, si Edouble = 1 alors le théorème précédent fournit une
déformation à la Kashiwara–Vergne qui à les bonnes conditions limites. C’est
à dire pour t = 0 on a le produit X + Y est pour t = 1 le produit de Duflo.
Comme dans [1, 2, 37] on construit alors une solution de Kashiwara–Vergne.

�

Remarque finale : Dans [20,35] les arguments d’homotopie se fondent sur la
déformation géométrique réelle des coefficients wΓ . En regardant les algèbres
de Lie comme des paires symétriques, on construit ici une déformation poly-
nomiale des coefficients, ce qui est bien meilleur. On peut donc espérer que
notre déformation est rationnelle.
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butions on Lie groups. Ann. Sci. École Norm. Sup. (4) 35(3), 371–390 (2002)

4. Andler, M., Sahi, S., Torossian, C., Convolution of invariant distributions: proof
of the Kashiwara-Vergne conjecture. Lett. Math. Phys. 69, 177–203 (2004)

5. Baklouti, A., Fujiwara, H.: Commutativité des opérateurs différentiels sur
l’espace des représentations restreintes d’un groupe de Lie nilpotent. J. Pure
Math. Appl. (9) 83(1), 137–161 (2004)

6. Baklouti, A., Ludwig, J.: Invariant differential operators on certain nilpotent
homogeneous spaces. Monatsh. Math. 134(1), 19–37 (2001)

7. Batakidis, P.: Phd-Thesis. Univ. Paris 7 (2009)
8. Cattaneo, A.S., Felder, G.: Coisotropic submanifolds in Poisson geometry and

branes in the Poisson sigma model. Lett. Math. Phys. 69, 157–175 (2004)
9. Cattaneo, A.S., Felder, G.: Relative formality theorem and quantisation of

coisotropic submanifolds. Adv. Math. 208, 521–548 (2007)
10. Cattaneo, A.S., Torossian, C.: Quantification pour les paires symétriques et

diagrammes de Kontsevich. arXiv:math/0609693, Ann. Sci. École Norm. Sup.
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cation, théorie de Lie. Collection Panoramas et Synthèses no. 20 SMF (2005)
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École Norm. Sup. 10, 107–144 (1977)

14. Duflo, M.: Open problems in representation theory of Lie groups. In: Oshima, T.
(ed.) Conference on Analysis on homogeneous spaces. August 25–30, Kataka,
Japan (1986)

15. Fujiwara, H., Lion, G., Magneron, B., Mehdi, S.: A commutativity criterion for
certain algebras of invariant differential operators on nilpotent homogeneous
spaces. Math. Ann. 327(3), 513–544 (2003)

16. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math.
(2) 78, 267–288 (1963)

17. Kashiwara, M., Vergne, M.: The Campbell-Hausdorff formula and invariant hy-
perfunctions. Inv. Math. 47, 249–272 (1978)

18. Kathotia, V.: Kontsevich’s universal formula for deformation quantization and
the Campbell-Baker-Hausdorff formula. Int. J. Math. 11(4), 523–551 (2000)

19. Knop, F.: A Harish-Chandra homomorphism for reductive group actions. Ann.
Math. 140(2), 253–288 (1994)

20. Kontsevich, M.: Deformation quantization of Poisson manifolds, I. Preprint of
the IHÉS, October 1997, q-alg/9709040 published in Lett. Math. Phys. 66(3),
157–216 (2003)

21. Koornwinder, T.H.: Invariant differential operators on nonreductive homoge-
neous spaces. math.RT/0008116 (preprint 1981, not published)



342 C. Torossian

22. Kostant, B.: Coadjoint orbits and a new symbol calculus for line bundles. Con-
ference on differential geometric methods in theoretical physics (Trieste, 1981),
66–68. World Scientific, Singapore (1983)

23. Lipsman, R.L.: The Plancherel formula for homogeneous spaces with polynomial
spectrum. Pac. J. Math. 159(2):351–377 (1993)

24. Lipsman, R.L.: A unified approach to concrete Plancherel theory of homoge-
neous spaces. Manuscripta Math. 94(2), 133–149 (1997)

25. Lipsman, R.L.: Finite multiplicity, invariant differential operators and the orbit
method. Indiana Univ. Math. J. 46(2), 561–574 (1997)

26. Nomura, T.: Algebraically independent generators of invariant differential
operators on a bounded symmetric domain. J. Math. Kyoto Univ. 31, 265–279
(1991)

27. Rouvière, F.: Espaces symétriques et méthode de Kashiwara-Vergne. Ann. Sci.
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Abstract. At the 1996 conference honoring Jim Stasheff in the year of his 60th
birthday, I initiated the search for A∞-bialgebras in a talk entitled “In Search of
Higher Homotopy Hopf Algebras.” The idea in that talk was to think of a DG
bialgebra as some (unknown) higher homotopy structure with trivial higher order
structure and apply a graded version of Gerstenhaber and Schack’s bialgebra defor-
mation theory. Indeed, deformation cohomology, which detects some (but not all)
A∞-bialgebra structure, motivated the definition given by S. Saneblidze and myself
in 2004.
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1 Introduction

In a preprint dated June 14, 2004, Samson Saneblidze and I announced the
definition of A∞-bialgebras [SU05], marking approximately six years of collab-
oration that continues to this day. Unknown to us at the time, A∞-bialgebras
are ubiquitous and fundamentally important. Indeed, over a field F , the bial-
gebra structure on the singular chains of a loop space ΩX pulls back along a
quasi-isomorphism g : H∗ (ΩX ;F ) → C∗ (ΩX) to an A∞-bialgebra structure
on homology that is unique up to isomorphism [SU11].

Many have tried unsuccessfully to define A∞-bialgebras. The illusive in-
gredient in the definition turned out to be an explicit diagonal ΔP on the
permutahedra P = �n≥1Pn, the first construction of which was given by
S. Saneblidze and myself in [SU04]. This paper is an account of the historical
events leading up to the discovery of A∞-bialgebras and the truly remarkable
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role played by ΔP in this regard. Although the ideas and examples presented
here are quite simple, they represent and motivate general theory in [SU04],
[SU05], [SU10], and [SU11].

Through their work in the theory of PROPs and the related area of in-
finity Lie bialgebras, many authors have contributed indirectly to this work,
most notably M. Chas and D. Sullivan [CS04], J.-L. Loday [Lod08], M. Markl
[Mar06], T. Pirashvili [Pir02], and B. Vallette [Val04]; for extensive bibliogra-
phies see [Sul07] and [Mar08].

Several new results spin off of this discussion and are included here:
Example 1 in Section 3 introduces the first example of a bialgebra H endowed
with an A∞-algebra structure that is compatible with the comultiplication.
Example 2 in Section 4 introduces the first example of a “nonoperadic” A∞-
bialgebra with a nontrivial operation ω2,2 : H⊗2 → H⊗2. And in Section 5
we prove Theorem 1: Given a DG bialgebra (H, d, μ,Δ) and a Gerstenhaber–
Schack 2-cocycle μn1 ∈ Hom2−n (H⊗n, H) , n ≥ 3, let H0 = (H [[t]] , d, μ,Δ) .
Then (H [[t]] , d, μ,Δ, tμn1 ) is a linear deformation of H0 as a Hopf A (n)-
algebra.

2 The historical context

Two papers with far-reaching consequences in algebra and topology appeared
in 1963. In [Ger63] Murray Gerstenhaber introduced the deformation theory
of associative algebras and in [Sta63] Jim Stasheff introduced the notion of
an A (n)-algebra. Although the notion of what we now call a “non-Σ operad”
appears in both papers, this connection went unnoticed until after Jim’s visit
to the University of Pennsylvania in 1983. Today, Gerstenhaber’s deformation
theory and Stasheff’s higher homotopy algebras are fundamental tools in alge-
bra, topology and physics. An extensive bibliography of applications appears
in [MSS02].

By 1990, techniques from deformation theory and higher homotopy struc-
tures had been applied by many authors, myself included [Umb89], [LU92],
to classify rational homotopy types with a fixed cohomology algebra. And it
seemed reasonable to expect that rational homotopy types with a fixed Pon-
tryagin algebra H∗ (ΩX ; Q) could be classified in a similar way. Presumably,
such a theory would involve deformations of DG bialgebras (DGBs) as some
higher homotopy structure with compatible A∞-algebra and A∞-coalgebra
substructures, but the notion of compatibility was not immediately clear and
an appropriate line of attack seemed illusive. But one thing was clear: If we ap-
ply a graded version of Gerstenhaber and Schack’s (G-S) deformation theory
[GS92], [LM91], [LM96], [Umb96] and deform a DGB H as some (unknown)
higher homotopy structure, new operations ωj,i : H⊗i → H⊗j appear and
their interactions with the deformed bialgebra operations are partially de-
tected by the differentials. While this is but one small piece of a very large
puzzle, it gave us a clue.
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During the conference honoring Jim Stasheff in the year of his 60th
birthday, held at Vassar College in June 1996, I discussed this particular clue
in a talk entitled “In Search of Higher Homotopy Hopf Algebras” ([McC98]
p. xii). Although G-S deformations of DGBs are less constrained than the
A∞-bialgebras known today, they motivated the definition announced eight
years later.

Following the Vassar conference, forward progress halted. Questions of
structural compatibility seemed mysterious and inaccessible. Then in 1998,
Jim Stasheff ran across some related work by S. Saneblidze [San96], of the A.
Razmadze Mathematical Institute in Tbilisi, and suggested that I get in touch
with him. Thus began our long and fruitful collaboration. Over the months
that followed, Saneblidze applied techniques of homological perturbation the-
ory to solve the aforementioned classification problem [San99], but the higher
order structure in the limit is implicit and the structure relations are inacces-
sible. In retrospect, this is not surprising as explicit structure relations require
explicit combinatorial diagonals ΔP on the permutahedra P = �n≥1Pn and
ΔK on the associahedra K = �n≥2Kn. But such diagonals are difficult to
construct and were unknown to us at the time. Indeed, one defines the tensor
product of A∞-algebras in terms of ΔK , and the search for a construction
of ΔK had remained a longstanding problem in the theory of operads. We
announced our construction of ΔK in 2000 [SU00]; our construction of ΔP

followed a year or two later (see [SU04]).

3 Two important roles for ΔP

The diagonal ΔP plays two fundamentally important roles in the theory of
A∞-bialgebras. First, one builds the structure relations from components of
(co)free extensions of initial maps as higher (co)derivations with respect to
ΔP , and second, ΔP specifies exactly which of these components to use.

To appreciate the first of these roles, recall the following definition given
by Stasheff in his seminal work on A∞-algebras in 1963 [Sta63]: Let A be
a graded module, let {μi ∈ Homi−2

(
A⊗i, A

)
}n≥1 be an arbitrary family

of maps, and let d be the cofree extension of Σμi as a coderivation of the
tensor coalgebra T cA (with a shift in dimension). Then (A, μi) is an A∞-
algebra if d2 = 0; when this occurs, the universal complex (T cA, d) is called
the tilde-bar construction and the structure relations in A are the homo-
geneous components of d2 = 0. Similarly, let H be a graded module and
let {ωj,i ∈ Hom3−i−j (H⊗i, H⊗j)}i,j≥1, be an arbitrary family of maps.
When

(
H,ωj,i

)
is an A∞-bialgebra, the map ω = Σωj,i uniquely extends

to its biderivative dω ∈ End
(
TH ⊕ T (H⊗2)⊕ · · ·

)
, which is the sum of vari-

ous (co)free extensions of various subfamilies of
{
ωj,i
}

as ΔP -(co)derivations
([SU05]). And indeed, the structure relations in H are the homogeneous com-
ponents of d2

ω = 0 with respect to an appropriate composition product.
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To demonstrate the spirit of this, consider a free graded module H of finite
type and an (arbitrary) map ω = μ + μ3 + Δ with components μ : H⊗2 → H,
μ3 : H⊗3 → H, and Δ : H → H⊗2. Extend Δ as a coalgebra map Δ : T cH →
T c
(
H⊗2

)
, extend μ + μ3 as a coderivation d : T cH → T cH , and extend μ as

an algebra map μ : T a
(
H⊗2

)
→ T aH. Finally, extend (μ⊗ 1)μ and (1⊗ μ)μ

as algebra maps f, g : T a
(
H⊗3

)
→ T aH , and extend μ3 as an (f, g)-derivation

μ3 : T a
(
H⊗3

)
→ T aH. The components of the biderivative in

d + μ + μ3 + Δ ∈
⊕

p,q,r,s≥1

Hom
(
(H⊗p)⊗q , (H⊗r)⊗s

)

determine the structure relations. Let σr,s : (H⊗r)⊗s → (H⊗s)⊗r denote the
canonical permutation of tensor factors and define a composition product 

on homogeneous components A and B of d + μ + μ3 + Δ by

A 
 B =
{

A ◦ σr,s ◦B, if defined
0, otherwise.

When A
B is defined, (H⊗r)⊗s is the target of B, and (H⊗s)⊗r is the source
of A. Then

(
H,μ, μ3, Δ

)
is an A∞-infinity bialgebra if dω 
dω = 0. Note that

Δμ and (μ⊗ μ) σ2,2 (Δ⊗Δ) are the homogeneous components of dω 
 dω in
Hom

(
H⊗2, H⊗2

)
; consequently, dω 
 dω = 0 implies the Hopf relation

Δμ = (μ⊗ μ)σ2,2 (Δ⊗Δ) .

Now if (H,μ,Δ) is a bialgebra, the operations μt, μ3
t , and Δt in a G-S defor-

mation of H satisfy

Δtμ
3
t =

[
μt (μt ⊗ 1)⊗ μ3

t + μ3
t ⊗ μt (1⊗ μt)

]
σ2,3Δ

⊗3
t (1)

and the homogeneous components of dω 
 dω = 0 in Hom
(
H⊗3, H⊗2

)
are

exactly those in (1). So this is encouraging.
Recall that the permutahedron P1 is a point 0 and P2 is an interval 01. In

these cases ΔP agrees with the Alexander–Whitney diagonal on the simplex:

ΔP (0) = 0⊗ 0 and ΔP (01) = 0⊗ 01 + 01⊗ 1.

If X is an n-dimensional cellular complex, let C∗ (X) denote the cellular chains
of X. When X has a single top dimensional cell, we denote it by en. An A∞-
algebra structure {μn}n≥2 on H is encoded operadically by a family of chain
maps

{ξ : C∗ (Pn−1) → Hom (H⊗n, H)} ,

which factor through the map θ : C∗ (Pn−1) → C∗ (Kn) induced by cellular
projection Pn−1 → Kn given by A. Tonks [Ton97] and satisfy ξ

(
en−2

)
= μn.

The fact that
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(ξ ⊗ ξ)ΔP

(
e0
)

= μ⊗ μ and

(ξ ⊗ ξ)ΔP

(
e1
)

= μ (μ⊗ 1)⊗ μ3 + μ3 ⊗ μ (1⊗ μ)

are components of μ and μ3 suggests that we extend a given μn as a higher
derivation μn : T a (H⊗n) → T aH with respect to ΔP . Indeed, an A∞-
bialgebra of the form (H,Δ, μn)n≥2 is defined in terms of the usual A∞-
algebra relations together with the relations

Δμn =
[
(ξ ⊗ ξ)ΔP

(
en−2

)]
σ2,nΔ

⊗n, (2)

which define the compatibility of μn and Δ.
Structure relations in more general A∞-bialgebras of the form

(H,Δm, μn)m,n≥2 are similar in spirit and formulated in [Umb08]. Spe-
cial cases of the form (H,Δ,Δn, μ) with a single Δn were studied by
H.J. Baues in the case n = 3 [Bau98] and by A. Berciano and myself with
n ≥ 3 [BU10]. Indeed, if p is an odd prime and n ≥ 3, these particular struc-
tures appear as tensor factors of the mod p homology of an Eilenberg–Mac
Lane space of type K(Z, n).

Dually, A∞-bialgebras (H,Δ, μ, μn) with a single μn have a coassociative
comultiplication Δ, an associative multiplication μ, and ξ⊗ ξ acts exclusively
on the primitive terms of ΔP for lacunary reasons, in which case relation (2)
reduces to

Δμn = (fn ⊗ μn + μn ⊗ fn)σ2,nΔ
⊗n, (3)

where fn = μ (μ⊗ 1) · · ·
(
μ⊗ 1⊗n−2

)
. The first example of this particular

structure now follows.

Example 1. Let H be the primitively generated bialgebra Λ (x, y) with |x| =
1, |y| = 2, and

μn
(
xi1yp1 | · · · |xinypn

)
=
{

yp1+···+pn+1, i1 · · · in = 1 and pk ≥ 1
0, otherwise.

One can easily check that H is an A∞-algebra, and a straightforward calcu-
lation together with the identity

(
p1+· · ·+ pn+ 1

i

)

=
∑

s1+···+sn=i−1

(
p1

s1

)

· · ·
(

pn
sn

)

+
∑

s1+···+sn=i

(
p1

s1

)

· · ·
(

pn
sn

)

verifies relation (3).

The second important role played by ΔP is evident in A∞-bialgebras in
which ωn,m is nontrivial for some m,n > 1. Just as an A∞-algebra structure
on H is encoded operadically, an A∞-bialgebra structure on H is encoded
matradically by a family of chain maps

{
ε : C∗ (KKn,m)→ Hom3−m−n (H⊗m, H⊗n)

}
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over contractible polytopes KK = �m,n≥1KKn,m, called biassociahedra, with
single top dimensional cells em+n−3 such that ε

(
em+n−3

)
= ωn,m. Note

that KKn,1 = KK1,n is the associahedron Kn [SU10]. Let M = {Mn,m =
Hom(H⊗m, H⊗n)} and let Θ = {θnm = ωn,m} . The A∞-bialgebra matrad H∞
is realized by C∗ (KK) and is a proper submodule of the free PROP M gen-
erated by Θ. The matrad product γ on H∞ is defined in terms of ΔP , and
a monomial α in the free PROP M is a component of a structure relation if
and only if α ∈ H∞.

More precisely, in [Mar06] M. Markl defined the submodule S of special
elements in PROP M whose additive generators are monomials α expressed
as “elementary fractions”

α =
αy1p · · ·α

yq
p

αqx1 · · ·αqxp

(4)

in which αqxi
and α

yj
p are additive generators of S and the jth output of αqxi

is linked to the ith input of α
yj
p (here juxtaposition denotes tensor product).

Representing θnm graphically as a double corolla (see Fig. 1), a general de-
composable α is represented by a connected nonplanar graph in which the
generators appear in order from left-to-right (see Fig. 2). The matrad H∞ is a
proper submodule of S and the matrad product γ agrees with the restriction
of Markl’s fraction product to H∞.

θnm =

n

m

Fig. 1.

The diagonal ΔP acts as a filter and admits certain elementary fractions
as additive generators of H∞. In dimensions 0 and 1, the diagonal ΔP is
expressed graphically in terms of up-rooted planar rooted trees (with levels) by

ΔP ( ) = ⊗ and ΔP ( ) = ⊗ + ⊗ .

Define Δ
(0)
P = 1; for each k ≥ 1, define Δ

(k)
P =

(
ΔP ⊗ 1⊗k−1

)
Δ

(k−1)
P and

view each component of Δ
(k)
P (θ1

q) as a (q − 2)-dimensional subcomplex of

(Pq−1)
×k+1

, and similarly for Δ
(k)
P (θq1).

The elements θ1
1 , θ1

2 , and θ2
1 generate two elementary fractions in M2,2

each of dimension zero, namely,

α2
2 = and α11

11 = .
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Define ∂
(
θ2
2

)
= α2

2+α11
11, and label the edge and vertices of the interval KK2,2

by θ2
2, α2

2 and α11
11, respectively. Continuing inductively, the elements θ1

1 , θ1
2,

θ2
1, θ2

2 , α2
2, and α11

11 generate 18 fractions in M2,3 – one in dimension 2, nine
in dimension 1, and eight in dimension 0. Of these, 14 label the edges and
vertices of the heptagon KK2,3. Since the generator θ2

3 must label the 2-face,
we wish to discard the 2-dimensional decomposable

e =

and the appropriate components of its boundary. Note that e is a square whose
boundary is the union of four edges

(5)

Of the five fractions pictured above, only the first two in (5) have numera-
tors and denominators that are components of Δ

(k)
P (P ) (numerators are com-

ponents of Δ
(1)
P (θ1

3) and denominators are exactly Δ
(2)
P (θ2

1)). Our selection
rule admits only these two particular fractions, leaving seven 1-dimensional
generators to label the edges of KK2,3 (see Fig. 2). Now linearly extend the
boundary map ∂ to the seven admissible 1-dimensional generators and com-
pute the seven 0-dimensional generators labeling the vertices of KK2,3. Since
the 0-dimensional generator

is not among them, we discard it.
Subtleties notwithstanding, this process continues indefinitely and pro-

ducesH∞ as an explicit free resolution of the bialgebra matradH =
〈
θ1
1, θ

1
2 , θ

2
1

〉

in the category of matrads. We note that in [Mar06], M. Markl makes arbi-
trary choices (independent of our selection rule) to construct the polytopes
Bn
m = KKn,m for m+n ≤ 6. In this range, it is enough to consider components

of the diagonal ΔK on the associahedra.
We conclude this section with a brief review of our diagonals ΔP and

ΔK (up to sign); for details see [SU04]. Alternative constructions of ΔK were
subsequently given by Markl and Shnider [MS06] and J.-L. Loday [Lod10]
(in this volume). Let n = {1, 2, . . . , n}, n ≥ 1. A matrix E with entries from
{0} ∪ n is a step matrix if:

• Each element of n appears as an entry of E exactly once.
• The elements of n in each row and column of E form an increasing con-

tiguous block.
• Each diagonal parallel to the main diagonal of E contains exactly one

element of n.
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Fig. 2. The biassociahedron KK2,3

Right-shift and down-shift matrix transformations, which include the identity
(a trivial shift), act on step matrices and produce derived matrices.

Given a q × p integer matrix M = (mij) , choose proper subsets Si ⊂
{non-zero entries in row (i)} and Tj ⊂ {non-zero entries in col (j)} , and de-
fine down-shift and right-shift operations DSi and RTj on M as follows:

• If Si �= ∅, max row(i + 1) < min Si = mij , and mi+1,k = 0 for all k ≥ j,
then DSiM is the matrix obtained from M by interchanging each mik ∈ Si
with mi+1,k; otherwise DSiM = M.

• If Tj �= ∅, max col(j + 1) < min Tj = mij , and mk,j+1 = 0 for all k ≥ i,
then RTj M is the matrix obtained from M by interchanging each mk,j ∈ Tj
with mk,j+1; otherwise RTjM = M.

Given a q × p step matrix E together with subsets S1, . . . , Sq and T1, . . . , Tp
as above, there is the derived matrix

RTp · · ·RT2RT1DSq · · ·DS2DS1E.

In particular, step matrices are derived matrices under the trivial action with
Si = Tj = ∅ for all i, j.

Let a = A1|A2| · · · |Ap and b = Bq|Bq−1| · · · |B1 be partitions of n. The
pair a× b is a (p, q)-complementary pair (CP) if Bi and Aj are the rows and
columns of a q× p derived matrix. Since faces of Pn are indexed by partitions
of n, and CPs are in one-to-one correspondence with derived matrices, each
CP is identified with some product face of Pn × Pn.

Definition 1. Define ΔP (e0) = e0 ⊗ e0. Inductively, having defined ΔP on
C∗(Pk+1) for all 0 ≤ k ≤ n− 1, define ΔP on Cn(Pn+1) by

ΔP (en) =
∑

(p,q)-CPs u×v
p+q=n+2

± u⊗ v,

and extend multiplicatively to all of C∗(Pn+1).
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The diagonal ΔP induces a diagonal ΔK on C∗ (K). Recall that faces of
Pn in codimension k are indexed by planar rooted trees with n + 1 leaves
and k + 1 levels (PLTs), and forgetting levels defines the cellular projection
θ : Pn → Kn+1 given by A. Tonks [Ton97]. Thus faces of Pn indexed by PLTs
with multiple nodes in the same level degenerate under θ, and corresponding
generators lie in the kernel of the induced map θ : C∗ (Pn)→ C∗ (Kn+1). The
diagonal ΔK is given by ΔKθ = (θ ⊗ θ)ΔP .

4 Deformations of DG bialgebras as A (n)-bialgebras

The discussion above provides the context to appreciate the extent to which
G-S deformation theory motivates the notion of an A∞-bialgebra. We de-
scribe this motivation in this section. In retrospect, the bi(co)module structure
encoded in the G-S differentials controls some (but not all) of the A∞-
bialgebra structure relations. For example, all structure relations in A∞-
bialgebras of the form (H, d, μ,Δ, μn) are controlled except

n−1∑

i=0

(−1)i(n+1)
μn
(
1⊗i ⊗ μn ⊗ 1⊗n−i−1

)
= 0, (6)

which measures the interaction of μn with itself. Nevertheless, such struc-
tures admit an A (n)-algebra substructure and their single higher order oper-
ation μn is compatible with Δ. Thus we refer to such structures here as Hopf
A (n)-algebras. General G-S deformations of DGBs, referred to here as quasi-
A (n)-bialgebras, are “partial” A (n)-bialgebras in the sense that all structure
relations involving multiple higher order operations are out of control.

4.1 A (n)-algebras and their duals

The signs in the following definition were given in [SU04] and differ from those
given by Stasheff in [Sta63]. We note that either choice of signs induces an
oriented combinatorial structure on the associahedra, and these structures are
equivalent. Let n ∈ N ∪ {∞}.

Definition 2. An A (n)-algebra is a graded module A together with structure
maps {μk ∈ Hom2−k (A⊗k, A

)
}1≤k<n+1 that satisfy the relations

k−1∑

j=0

k−j−1∑

i=0

(−1)j(i+1)
μk−j

(
1⊗i ⊗ μj+1 ⊗ 1⊗k−j−1−i) = 0
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for each k < n + 1. Dually, an A (n)-coalgebra is a graded module C to-
gether with structure maps {Δk ∈ Hom2−k(C,C⊗j)}1≤k<n+1 that satisfy the
relations

k−1∑

j=0

k−j−1∑

i=0

(−1)j(k+i+1) (1⊗i ⊗Δj+1 ⊗ 1⊗k−j−1−i)Δk−j = 0

for each k < n + 1.

An A (n)-algebra is strict if n < ∞ and μn = 0. A simple A (n)-algebra
is a strict A (n + 1)-algebra of the form (A, d, μ, μn); in particular, a simple
A (3)-algebra is a strict A (4)-algebra in which:

(i) d is both a differential and a derivation of μ,
(ii) μ is homotopy associative and μ3 is an associating homotopy:

dμ3+μ3 (d⊗ 1⊗ 1 + 1⊗ d⊗ 1 + 1⊗ 1⊗ d) = μ (μ⊗ 1)−μ (1⊗ μ) ,

(iii) μ and μ3 satisfy a strict pentagon condition:

μ3 (μ⊗ 1⊗ 1− 1⊗ μ⊗ 1 + 1⊗ 1⊗ μ) = μ
(
1⊗ μ3 + μ3 ⊗ 1

)
.

4.2 Deformations of DG bialgebras

In [GS92], M. Gerstenhaber and S. D. Schack defined the cohomology of an
ungraded bialgebra by joining the dual cohomology theories of G. Hochschild
[HKR62] and P. Cartier [Car55]. This construction was given independently
by A. Lazarev and M. Movshev in [LM91]. The G-S cohomology of H reviewed
here is a straightforward extension to the graded case and was constructed in
[LM96] and [Umb96].

Let (H, d, μ,Δ) be a connected DGB. We assume |d| = 1, although one
could assume |d| = −1 equally well. For detailed derivations of the formulas
that follow see [Umb96]. For each i ≥ 1, the i-fold bicomodule tensor power
of H is the H-bicomodule H⊗i = (H⊗i, λi, ρi) with left and right coactions
given by

λi =
[
μ (μ⊗ 1) · · · (μ⊗ 1⊗i−2)⊗ 1⊗i

]
σ2,iΔ

⊗i and

ρi =
[
1⊗i ⊗ μ (1⊗ μ) · · · (1⊗i−2 ⊗ μ)

]
σ2,iΔ

⊗i.

When f : H⊗i → H⊗∗, there is the composition

(1⊗ f)λi =
[
μ (μ⊗ 1) · · · (μ⊗ 1⊗i−2)⊗ f

]
σ2,iΔ

⊗i.
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Dually, for each j ≥ 1, the j-fold bimodule tensor power of H is the H-
bimodule
H⊗j = (H⊗j , λj , ρj) with left and right actions given by

λj = μ⊗jσj,2
[
(Δ⊗ 1⊗j−2) · · · (Δ⊗ 1)Δ⊗ 1⊗j

]
and

ρj = μ⊗jσj,2
[
1⊗j ⊗ (1⊗j−2 ⊗Δ) · · · (1⊗Δ)Δ

]
.

When g : H⊗∗ → H⊗j, there is the composition

λj (1⊗ g) = μ⊗jσj,2
[
(Δ⊗ 1⊗j−2) · · · (Δ⊗ 1)Δ⊗ g

]
.

Let k be a field. Extend d, μ, and Δ to k [[t]]-linear maps and obtain a
k [[t]]-DGB H0 = (H [[t]] , d, μ,Δ). We wish to deform H0 as an A (n)-structure
of the form

Ht =
(
H [[t]] , dt = ω1,1

t , μt = ω1,2
t , Δt = ω2,1

t , ωj,it

)

i+j=n+1
where

ωj,it =
∞∑

k=0

tkωj,ik ∈ Hom3−i−j
(
H⊗i, H⊗j

)
,

ω1,1
0 = d, ω1,2

0 = μ, ω2,1
0 = Δ, and ωj,i0 = 0.

Deformations of H0 are controlled by the G-S n-complex, which we now
review. For k ≥ 1, let

d(k) =
k−1∑

i=0

1⊗i ⊗ d⊗ 1⊗k−i−1

∂(k) =
k−1∑

i=0

(−1)i1⊗i ⊗ μ⊗ 1⊗k−i−1

δ(k) =
k−1∑

i=0

(−1)i1⊗i ⊗Δ⊗ 1⊗k−i−1.

These differentials induce strictly commuting differentials d, ∂, and δ on the
trigraded module {Homp(H⊗i, H⊗j)}, which act on an element f in tridegree
(p, i, j) by

d(f) = d(j)f − (−1)pfd(i)

∂(f) = λj(1⊗ f)− f∂(i) − (−1)iρj(f ⊗ 1)

δ(f) = (1 ⊗ f)λi − δ(j)f − (−1)j(f ⊗ 1)ρi.

The submodule of total G-S r-cochains on H is

Cr
GS(H,H) =

⊕

p+i+j=r+1

Homp(H⊗i, H⊗j)
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and the total differential D on a cochain f in tridegree (p, i, j) is given by

D (f) =
[
(−1)i+j d + ∂ + (−1)i δ

]
(f) ,

where the sign coefficients are chosen so that (1) D2 = 0, (2) structure re-
lations (ii) and (iii) in Definition 2 hold, and (3) the restriction of D to
the submodule of r-cochains in degree p = 0 agrees with the total (un-
graded) G-S differential. The G-S cohomology of H with coefficients in H is
given by

H∗
GS (H,H) = H∗ {Cr

GS (H,H) , D} .

Identify Homp(H⊗i, H⊗j) with the point (p, i, j) in R
3. Then the G-S n-

complex is that portion of the G-S complex in the region x ≥ 2 − n and the
submodule of total r-cochains in the n-complex is

Cr
GS(H,H ;n) =

⊕

p=r−i−j+1≥2−n
Homp(H⊗i, H⊗j)

(a 2-cocycle in the 3-complex appears in Fig. 3). The G-S n-cohomology of H
with coefficients in H is given by

H∗
GS (H,H ;n) = H∗ {Cr

GS (H,H ;n) ;D}.

Note that a general 2-cocycle α has a component of tridegree (3− i− j, i, j) for
each i and j in the range 2 ≤ i+j ≤ n+1. Thus α has n (n + 1) /2 components
and a standard result in deformation theory tells us that the homogeneous
components of α determine an infinitesimal deformation, i.e., the component
ωj,i1 in tridegree (3− i− j, i, j) defines the first-order approximation ωj,i0 +tωj,i1

of the structure map ωj,it in Ht.
For simplicity, consider the case n = 3. Each of the ten homogeneous

components of the deformation equation D (α) = 0 produces the infinitesimal

Fig. 3. The 2-cocycle d1 + μ1 +Δ1 + μ3
1 + ω1 +Δ3

1
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form of one structure relation (see below). In particular, a deformation Ht

with structure maps {ω1,i
t }1≤i≤3 is a simple A (3)-algebra and a deformation

Ht with structure maps {ωj,1t }1≤j≤3 is a simple A (3)-coalgebra.
For notational simplicity, let μ3

t = ω1,3
t , ωt = ω2,2

t , and Δ3
t = ω3,1, and

consider a deformation of (H, d, μ,Δ) as a “quasi-A (3)-structure.” Then

• dt = d + td1 + t2d2 + · · ·
• μt = μ + tμ1 + t2μ2 + · · ·
• Δt = Δ + tΔ1 + t2Δ2 + · · ·
• μ3

t = tμ3
1 + t2μ3

2 + · · ·
• ωt = tω1 + t2ω2 + · · ·
• Δ3

t = tΔ3
1 + t2Δ3

2 + · · ·

and d1 + μ1 + Δ1 + μ3
1 + ω1 + Δ3

1 is a total 2-cocycle (see Fig. 3). Equating
coefficients in D

(
d1 + μ1 + Δ1 + μ3

1 + ω1 + Δ3
1

)
= 0 gives

1. d (d1) = 0 6. ∂
(
μ3

1

)
= 0

2. d (μ1)− ∂ (d1) = 0 7. δ
(
Δ3

1

)
= 0

3. d (Δ1) + δ (d1) = 0 8. d (ω1) + ∂ (Δ1) + δ (μ1) = 0

4. d
(
μ3

1

)
+ ∂ (μ1) = 0 9. ∂

(
Δ3

1

)
+ δ (ω1) = 0

5. d
(
Δ3

1

)
− δ (Δ1) = 0 10. ∂ (ω1)− δ

(
μ3

1

)
= 0.

Requiring
(
H, dt, μt, μ

3
t

)
and

(
H, dt, Δt, Δ

3
t

)
to be simple A(3)-(co)algebras

tells us that relations (1)–(7) are linearizations of Stasheff’s strict A (4)-
(co)algebra relations, and relation (8) is the linearization of the Hopf relation
relaxed up to homotopy. Since μt, ωt, and Δt have no terms of order zero,
relations (9) and (10) are the respective linearizations of new relations (9)
and (10) below. Thus we obtain the following structure relations in Ht:

1. d2
t = 0

2. dtμt = μt (dt ⊗ 1 + 1⊗ dt)

3. Δtdt = (dt ⊗ 1 + 1⊗ dt)Δt

4. dtμ
3
t + μ3

t (dt⊗1⊗1 + 1⊗dt⊗1 + 1⊗1⊗dt) = μt (1⊗ μt)− μt (μt ⊗ 1)

5. (dt⊗1⊗1 + 1⊗dt⊗1 + 1⊗1⊗dt)Δ3
t + Δ3

tdt = (Δt ⊗ 1)Δt − (1⊗Δt)Δt

6. μ3
t (μt ⊗ 1⊗ 1− 1⊗ μt ⊗ 1 + 1⊗ 1⊗ μt) = μt

(
μ3
t ⊗ 1 + 1⊗ μ3

t

)
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7. (Δt ⊗ 1⊗ 1− 1⊗Δt ⊗ 1 + 1⊗ 1⊗Δt)Δ3
t =

(
Δ3
t ⊗ 1 + 1⊗Δ3

t

)
Δt

8. (dt⊗1 + 1⊗dt)ωt + ωt (dt⊗1 + 1⊗dt) = Δtμt − (μt ⊗ μt)σ2,2 (Δt ⊗Δt)

9. (μt ⊗ ωt)σ2,2 (Δt ⊗Δt)− (Δt ⊗ 1− 1⊗Δt)ωt − (ωt ⊗ μt)σ2,2 (Δt ⊗Δt)

= Δ3
tμt − μ⊗3

t σ3,2

[
(Δt ⊗ 1)Δt ⊗Δ3

t +
(
Δ3
t ⊗ (1⊗Δt) Δt

)]

10. (μt ⊗ μt)σ2,2 (Δt ⊗ ωt)− ωt (μt ⊗ 1− 1⊗ μt)− (μt ⊗ μt)σ2,2 (ωt ⊗Δt)

=
[
μt (μt ⊗ 1)⊗ μ3

t + μ3
t ⊗ μt (1⊗ μt)

]
σ2,3Δ

⊗3
t −Δtμ

3
t .

By dropping the formal deformation parameter t, we obtain the structure
relations in a quasi-simple A (3)-bialgebra.

The first nonoperadic example of an A∞-bialgebra appears here as a quasi-
simple A (3)-bialgebra and involves a nontrivial operation ω = ω2,2. The six
additional relations satisfied by A∞-bialgebras of this particular form will be
verified in the next section.

Example 2. Let H be the primitively generated bialgebra Λ (x, y) with |x| = 1,
|y| = 2, trivial differential, and ω : H⊗2 → H⊗2 given by

ω (a|b) =

⎧
⎨

⎩

x|y + y|x, a|b = y|y
x|x, a|b ∈ {x|y, y|x}
0, otherwise.

Then (Δ⊗ 1− 1⊗Δ) ω (y|y) = (Δ⊗ 1− 1⊗Δ) (x|y + y|x) = 1|x|y+1|y|x−
x|y|1 − y|x|1 = (μ⊗ ω − ω ⊗ μ) (1|1|y|y + y|1|1|y + 1|y|y|1 + y|y|1|1) =
(μ⊗ ω − ω ⊗ μ)σ2,2 (Δ⊗Δ) (y|y); similar calculations show agreement on
x|y and y|x and verifies relation (9). To verify relation (10), note that
ω (μ⊗ 1− 1⊗ μ) and (μ⊗ μ)σ2,2 (Δ⊗ ω − ω ⊗Δ) are supported on the
subspace spanned by

B = {1|y|y, y|y|1, 1|x|y, x|y|1, 1|y|x, y|x|1},

and it is easy to check agreement on B. Finally, note that (H,μ,Δ, ω) can be
realized as the linear deformation (H [[t]] , μ,Δ, tω)|t=1 .

5 A∞-bialgebras in perspective

Although G-S deformation cohomology motivates the notion of an A∞-
bialgebra, G-S deformations of DGBs are less constrained than A∞-bialgebras
and fall short of the mark. To indicate the extent of this shortfall, let us iden-
tify those structure relations that fail to appear via deformation cohomology
but must be verified to assert that Example 2 is an A∞-bialgebra.
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As mentioned above, structure relations in a general A∞-bialgebra arise
from the homogeneous components of the equation dω 
 dω = 0. So to be-
gin, let us construct the components of the biderivative dω that determine
the structure relations in an A∞-bialgebra of the form

(
H, d, μ,Δ, ω2,2

)
.

Given arbitrary maps d = ω1,1, μ = ω1,2, Δ = ω2,1, and ω2,2 with
ωj,i ∈ Hom3−i−j (H⊗i, H⊗j) , consider ω =

∑
ωj,i. (Co)freely extend

• d as a linear map (H⊗p)⊗q → (H⊗p)⊗q for each p, q ≥ 1,
• d + Δ as a derivation of T aH ,
• d + μ as a coderivation of T cH ,
• Δ + ω2,2 as a coalgebra map T cH → T c

(
H⊗2

)
, and

• μ + ω2,2 as an algebra map T a
(
H⊗2

)
→ T aH .

Note that in this restricted setting, relation (10) in Definition 2 reduces to

(μ⊗ μ) 

(
Δ⊗ ω2,2 − ω2,2 ⊗Δ

)
= ω2,2 
 (μ⊗ 1− 1⊗ μ).

Factors μ⊗1 and 1⊗μ are components of d + μ; factors Δ⊗ω2,2 and ω2,2⊗Δ
are components of Δ + ω2,2; and the factor μ⊗μ is a component of μ + ω2,2.

To picture this, identify the isomorphic modules (H⊗p)⊗q ≈ (H⊗q)⊗p

with the point (p, q) ∈ N
2 and picture the initial map ωj,i : H⊗i → H⊗j as a

“transgressive” arrow from (i, 1) to (1, j) (see Fig. 4).

•

•

�
�

�
���

H⊗j

H⊗i

ωj,i

Fig. 4. The initial map ωj,i

Components of the various (co)free extensions above are pictured as arrows
that initiate or terminate on the axes. For example, the vertical arrow Δ⊗Δ,
the short left-leaning arrow Δ ⊗ ω2,2 − ω2,2 ⊗ Δ, and the long left-leaning
arrow ω2,2 ⊗ ω2,2 in Fig. 5 represent components of Δ + ω2,2.

Since we are only interested in transgressive quadratic 
-compositions, it
is sufficient to consider the components of dω pictured in Fig. 5. Quadratic
compositions along the x-axis correspond to relations (1), (2), (4), and (6) in
Definition 2; those in the square with its diagonal correspond to relation (8);
those in the vertical parallelogram correspond to relation (9); and those in
the horizontal parallelogram correspond to relation (10).
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Fig. 5. Components of dω when ω = d+ μ+Δ+ ω2,2

The following six additional relations are not detected by deformation
cohomology because the differentials only detect the interactions between ω
and (deformations of) d, μ, and Δ induced by the underlying bi(co)module
structure:

11. (μ⊗ ω − ω ⊗ μ)σ2,2 (Δ⊗ ω − ω ⊗Δ) = 0;

12. (μ⊗ μ)σ2,2 (ω ⊗ ω) = 0;

13. (ω ⊗ ω)σ2,2 (Δ⊗Δ) = 0;

14. (μ⊗ ω − ω ⊗ μ)σ2,2 (ω ⊗ ω) = 0;

15. (ω ⊗ ω)σ2,2 (Δ⊗ ω − ω ⊗Δ) = 0;

16. (ω ⊗ ω)σ2,2 (ω ⊗ ω) = 0.

Definition 3. Let H be a k-module together with a family of maps {d = ω1,1,
μ = ω1,2, Δ = ω2,1, ω2,2}, where ωj,i ∈ Hom3−i−j (H⊗i, H⊗j) , and let ω =
∑

ωj,i. Then
(
H, d, μ,Δ, ω2,2

)
is an A∞-bialgebra if dω 
 dω = 0.

Example 3. Continuing Example 2, verification of relations (11)–(16) above is
straightforward and follows from the fact that σ2,2 (y|x|x|y) = −y|x|x|y. Thus
(H,μ,Δ, ω) is an A∞-bialgebra with nonoperadic structure.

Let H be a graded module and let
{
ωj,i : H⊗i → H⊗j}

i,j≥1
be an arbi-

trary family of maps. Given a diagonal ΔP on the permutahedra and the
notion of a ΔP -(co)derivation, one continues the procedure described above
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to obtain the general biderivative defined in [SU05]. And as above, the gen-
eral A∞-bialgebra structure relations are the homogeneous components of
dω 
 dω = 0.

For example, consider an A∞-bialgebra (H,μ,Δ, ωj,i) with exactly one
higher order operation ωj,i, i + j ≥ 5. When constructing dω, we extend μ as
a coderivation, identify the components of this extension in Hom

(
H⊗i, H⊗j)

with the vertices of the permutahedron Pi+j−2, and identify ωj,i with its top
dimensional cell. Since μ, Δ, and ωj,i are the only operations in H , all com-
positions involving these operations have degree 0 or 3 − i − j, and k-faces
of Pi+j−2 in the range 0 < k < i + j − 3 are identified with zero. Thus the
extension of ωj,i as a ΔP -coderivation only involves the primitive terms of
Δ (Pi+j−2), and the components of this extension are terms in the expression
δ
(
ωj,i
)
. Indeed, whenever ωj,i and its extension are compatible with the un-

derlying DGB structure, the relation δ
(
ωj,i
)

= 0 is satisfied. Dually, we have
∂
(
ωj,i
)

= 0 whenever ωj,i and its extension as a ΔP -derivation are compati-
ble with the underlying DGB structure. These structure relations can be ex-
pressed as commutative diagrams in the integer lattice N

2 (see Figs. 6 and 7).

Fig. 6. The structure relation ∂
(
ωj,i

)
= 0

Definition 4. Let n ≥ 3. A Hopf A (n)-algebra is a tuple (H, d, μ,Δ, μn)
with the following properties:

1. (H, d,Δ) is a coassociative DGC;
2. (H, d, μ, μn) is an A (n)-algebra; and
3. Δμn=[μ (μ⊗1)· · ·

(
μ⊗1⊗n−2

)
⊗μn+μn⊗μ (1⊗ μ)· · ·

(
1⊗n−2⊗ μ

)
]σ2,nΔ

⊗n.
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Fig. 7. The structure relation δ
(
ωj,i

)
= 0

A Hopf A∞-algebra (H, d, μ,Δ, μn) is a Hopf A(n)-algebra satisfying the
relation in offset (6) above. There are the completely dual notions of a Hopf
A (n)-coalgebra and a Hopf A∞-coalgebra.

Hopf A∞-(co)algebras were defined by A. Berciano and this author in
[BU10], but with a different choice of signs. A∞-bialgebras with operations
exclusively of the forms ωj,1 and ω1,i, called special A∞-bialgebras, were con-
sidered by this author in [Umb08].

Hopf A (n)-algebras are especially interesting because their structure re-
lations are controlled by G-S deformation cohomology. In fact, if n ≥ 3 and
Ht = (H [[t]] , dt, μt, Δt, μ

n
t ) is a deformation, then μnt = tμn1 + t2μn2 + · · · has

no term of order zero. Consequently, if D (μn1 ) = 0, then tμn1 automatically
satisfies the required structure relations and (H [[t]] , d, μ,Δ, tμn1 ) is a linear
deformation of H0 as a Hopf A (n)-algebra. Thus we have proved:

Theorem 1. If (H, d, μ,Δ) is a DGB and μn1 ∈ Hom2−n (H⊗n, H) , n ≥ 3,
is a 2-cocycle, then (H [[t]] , d, μ,Δ, tμn1 ) is a linear deformation of H0 as a
Hopf A (n)-algebra.

I am grateful to Samson Saneblidze and Andrey Lazarev for their helpful
suggestions on early drafts of this paper, and to the referee, the editors, and
Jim Stasheff for their assistance with the final draft. I wish to thank Murray
and Jim for their encouragement and support of this project over the years
and I wish them both much happiness and continued success.
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