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Bessel Sequences and Bases in Hilbert Spaces

In this chapter and the next we focus on bases and basis-like systems in Hilbert
spaces. Our goal in this chapter is to understand bounded unconditional bases
in Hilbert spaces, but in order to do this, we first need to study sequences
that need not be bases but which do have a property that is reminiscent of
Bessel’s Inequality for orthonormal bases. These Bessel sequences will also be
very useful to us in Chapter 8 when we consider frames in Hilbert spaces.

7.1 Bessel Sequences in Hilbert Spaces

Bessel sequences are defined as follows.

Definition 7.1 (Bessel Sequence). A sequence {xn} in a Hilbert space H
is a Bessel sequence if

∀x ∈ H,
∑

n

|〈x, xn〉|2 < ∞. ♦

Thus, if {xn} is a Bessel sequence, then the analysis operator C that takes
an element x to the sequence of coefficients Cx =

(
〈x, xn〉

)
maps H into ℓ2.

By applying either the Uniform Boundedness Principle or the Closed Graph
Theorem, this mapping must be bounded. The next theorem, whose proof is
Exercise 7.2, states several additional properties possessed by Bessel sequences
(parts (a)–(c) of this exercise can also be derived by applying Exercise 3.8 with
X = H and p = 2).

Theorem 7.2. Let {xn} be a Bessel sequence in a Hilbert space H. If we
define Cx =

(
〈x, xn〉

)
for x ∈ H, then the following statements hold.

(a) C is a bounded mapping of H into ℓ2, and therefore there exists a constant
B > 0 such that

∀x ∈ H,
∑

n

|〈x, xn〉|2 ≤ B ‖x‖2. (7.1)
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190 7 Bessel Sequences and Bases in Hilbert Spaces

(b) If (cn) ∈ ℓ2, then the series
∑
cnxn converges unconditionally in H, and

Rc =
∑
cnxn defines a bounded map of ℓ2 into H.

(c) R = C∗ and ‖R‖ = ‖C‖ ≤ B1/2. Consequently,

∀ (cn) ∈ ℓ2,
∥∥∥∥
∑

n

cnxn

∥∥∥∥
2

≤ B
∑

n

|cn|2.

(d) If {xn} is complete, then C is injective and range(R) is dense in H. ♦
Comparing equation (7.1) to Bessel’s Inequality for orthonormal bases

(Theorem 1.49), we see the motivation for the name “Bessel sequence.” How-
ever, a Bessel sequence need not be orthonormal and need not be a basis
(Exercise 7.1).

Definition 7.3. Let {xn} be a Bessel sequence in a Hilbert space H.

(a) A constant B such that equation (7.1) holds is called a Bessel bound or an
upper frame bound for {xn} (compare Definition 8.2). The smallest such
constant B is called the optimal Bessel bound.

(b) The operator C : H → ℓ2 defined in Theorem 7.2 is called the analysis
operator or the coefficient mapping for {xn}, and its adjoint R : ℓ2 → H
is the synthesis operator or the reconstruction operator for {xn}.

(c) The frame operator for {xn} is S = RC : H → H.

(d) The Gram operator or Gram matrix for {xn} is G = CR : ℓ2 → ℓ2. ♦
Note that the optimal Bessel bound is precisely ‖C‖2.
We will study frames in detail in Chapter 8. These are Bessel sequences

which also possess a “lower frame bound” in the sense that there is a constant
A > 0 such that A ‖x‖2 ≤∑ |〈x, xn〉|2 for x ∈ H. The synthesis operator for
a frame is sometimes called the pre-frame operator (and this terminology is
sometimes applied to generic Bessel sequences as well).

Since the analysis and synthesis operators associated to a Bessel sequence
{xn} are bounded, the frame and Gram operators are bounded as well. More-
over, S = C∗C = RR∗ and G = CC∗ = R∗R are self-adjoint and positive in
the sense of Definition 2.14. By definition,

Sx = RCx =
∑

n

〈x, xn〉xn, x ∈ H,

and therefore
〈Sx, x〉 =

∑

n

|〈x, xn〉|2. (7.2)

In particular, an orthonormal basis is a Bessel sequence, and the frame oper-
ator for an orthonormal basis is S = I. However, there exist Bessel sequences
whose frame operator is S = I but which are neither orthonormal nor bases
(see Exercise 7.1).

We have the following equivalent characterizations of Bessel sequences (see
Exercise 7.3).
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Theorem 7.4. Let {xn} be a sequence in a Hilbert space H, and let {δn} be

the standard basis for ℓ2. Then the following statements are equivalent.

(a) {xn} is a Bessel sequence in H.

(b) There exists a constant B > 0 and a dense set E ⊆ H such that

∀x ∈ E,
∑

n

|〈x, xn〉|2 ≤ B ‖x‖2.

(c) There exists a constant B > 0 such that

∀N ∈ N, ∀ c1, . . . , cN ∈ F,

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

≤ B
N∑

n=1

|cn|2. (7.3)

(d) The series
∑
cnxn converges for each sequence (cn) ∈ ℓ2.

(e) There exists a bounded operator R : ℓ2 → H such that Rδn = xn for each
n ∈ N.

(f) There exists an orthonormal sequence {en} in H and a bounded operator
T ∈ B(H) such that Ten = xn for each n ∈ N.

Further, when these hold, the operator R appearing in part (e) is the synthesis

operator for {xn}, and span{xn} = range(R). ♦

Now we consider the Gram operator G associated with a Bessel sequence.
Since G is a bounded mapping of ℓ2 into itself, it can be represented as multi-
plication by an infinite matrix. We identify the Gram operator and the matrix
that represents it. The form of this matrix is given in the next result, whose
proof is Exercise 7.4.

Theorem 7.5. Let {xn} be a Bessel sequence in a Hilbert space H. Then the
matrix for the Gram operator G is

G =
[
〈xn, xm〉

]
m,n∈N

. ♦

That is, if we think of c = (cn) ∈ ℓ2 as a column vector, then Gc is the

product of the infinite matrix
[
〈xn, xm〉

]
m,n∈N

with the vector c = (cn). The

mth entry of Gc is (Gc)m =
∑

n cn 〈xn, xm〉.
We can extend the notion of a Gram matrix to sequences that are

not Bessel. Given any sequence {xn} in a Hilbert space H, we call G =[
〈xn, xm〉

]
m,n∈N

the Gram matrix or the Gramian for {xn}. However, it is

important to note that this matrix need not define a bounded mapping on
ℓ2. In fact, the following converse to Theorem 7.5 shows that this happens
exactly for Bessel sequences.

Theorem 7.6. Let {xn} be a sequence in a Hilbert space H, and let G be its
Gram matrix. If either:
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(a) G is a bounded map of
(
c00, ‖ · ‖ℓ2

)
into ℓ2, i.e., there exists a constant

B > 0 such that ‖Gc‖ℓ2 ≤ B ‖c‖ℓ2 for all finite sequences c, or

(b) multiplication by G is a well-defined mapping of ℓ2 into itself, i.e., for
each c = (cn) ∈ ℓ2 the series (Gc)m =

∑
n cn 〈xn, xm〉 converges for each

m ∈ N and the sequence Gc =
(
(Gc)m

)
m∈N

belongs to ℓ2,

then {xn} is a Bessel sequence.

Proof. (a) Choose any finite sequence c = (c1, . . . , cN , 0, 0, . . . ) ∈ c00. Then

〈Gc, c〉 =

N∑

m=1

(Gc)m cm

=

N∑

m=1

( N∑

n=1

〈xn, xm〉 cn
)
cm

=

N∑

m=1

N∑

n=1

cn 〈xn, xm〉 cm

=

〈 N∑

n=1

cnxn,
N∑

m=1

cmxm

〉

=

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

.

On the other hand,

〈Gc, c〉 ≤ ‖Gc‖ℓ2 ‖c‖ℓ2 ≤ B ‖c‖2ℓ2 = B
N∑

n=1

|cn|2.

Combining these two estimates, we see that equation (7.3) holds, and therefore
Theorem 7.4 implies that {xn} is a Bessel sequence.

(b) The well-defined hypothesis of this part precisely fulfills the hypotheses
of Exercise 2.34. That exercise therefore implies that c 7→ Gc is a bounded
mapping on ℓ2, so we conclude from part (a) that {xn} is a Bessel sequence. ⊓⊔

If {xn} is a Bessel sequence, then it follows from the proof of Theorem 7.6,
or directly from the fact that G = R∗R, that we have the useful equality

∀ c = (cn) ∈ ℓ2, 〈Gc, c〉 = ‖Rc‖2 =

∥∥∥∥
∑

n

cnxn

∥∥∥∥
2

.

Example 7.7. Consider the sequence of monomials {xk}k≥0. By Example 1.29
or Theorem 5.6, the monomials are complete but are not a basis for C[0, 1],
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and by Exercise 5.2, the same is true in the space L2[0, 1]. The Gram matrix
for the monomials is

G =
[
〈xn, xm〉

]
m,n≥0

=
[

1
m+n+1

]
m,n≥0

= H,

which is the famous Hilbert matrix. It is not obvious, but the Hilbert matrix
determines a bounded mapping on ℓ2(N ∪ {0}). Exercise 7.12 shows that
‖H‖ ≤ 4, and in fact it is known that the operator norm of the Hilbert matrix
is precisely ‖H‖ = π [Cho83]. Theorem 7.6 therefore implies that {xk}k≥0 is
a Bessel sequence in L2[0, 1]. ♦

All Bessel sequences must be bounded above in norm (Exercise 7.5), but
not all norm-bounded sequences are Bessel sequences (see Exercise 7.1). On
the other hand, we end this section by making use of Orlicz’s Theorem to
prove that all unconditional bases that are norm-bounded above are examples
of Bessel sequences. Various examples of other systems that are or are not
Bessel sequences are considered in the Exercises.

Theorem 7.8. Let H be a Hilbert space. Every unconditional basis for H that
is norm-bounded above is a Bessel sequence in H.

Proof. Let {xn} be an unconditional basis for H such that sup ‖xn‖ <∞, and
let {yn} be its biorthogonal system in H. By Theorem 4.13 we have for each n
that 1 ≤ ‖xn‖ ‖yn‖ ≤ 2C where C is the basis constant. Hence inf ‖yn‖ > 0.

By Exercise 6.4, {yn} is an unconditional basis for H and {xn} is its
biorthogonal sequence. Therefore, given x ∈ H, the series x =

∑ 〈x, xn〉 yn
converges unconditionally. By Orlicz’s Theorem (Theorem 3.16), it follows
that ∑

n

|〈x, xn〉|2 ‖yn‖2 =
∑

n

∥∥〈x, xn〉 yn
∥∥2

< ∞.

Consequently, since {yn} is norm-bounded below,
∑ |〈x, xn〉|2 < ∞ for each

x ∈ H. Therefore {xn} is a Bessel sequence. ⊓⊔

Exercises

7.1. Let H be a separable Hilbert space. For each of the following, construct
a sequence {xn} that has the specified property.

(a) A bounded sequence that is not a Bessel sequence.

(b) A Bessel sequence that is a nonorthogonal basis for H.

(c) A Bessel sequence that is not a basis for H but has frame operator
S = I.

(d) A Bessel sequence such that {xn}n∈N\F is complete for every finite
F ⊆N.

(e) An unconditional basis that is not a Bessel sequence.
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(f) A normalized conditional basis that is a Bessel sequence.

(g) A normalized conditional basis that is not a Bessel sequence.

(h) A basis that is Bessel but whose biorthogonal sequence is not Bessel.

7.2. Give a direct proof of Theorem 7.2.

7.3. Prove Theorem 7.4.

7.4. Prove Theorem 7.5.

7.5. Let {xn} be a Bessel sequence in a Hilbert space H and let B be a Bessel
bound.

(a) Show that ‖xn‖2 ≤ B for every n ∈ N. Thus Bessel sequences are
bounded above in norm.

(b) Show that if ‖xm‖2 = B for any particular m, then xn ⊥ xm for all
n 6= m.

7.6. Let H, K be Hilbert spaces. Show that if {xn} is a Bessel sequence in H
and L ∈ B(H,K), then {Lxn} is a Bessel sequence in K.

7.7. Suppose that H is a Hilbert space contained in another Hilbert space K.
Given a sequence {xn} in H, show that {xn} is a Bessel sequence in H if and
only if it is a Bessel sequence in K.

7.8. Let {xn} be a sequence in a Hilbert space H.

(a) If
∑ |〈x, xn〉|2 < ∞ for all x in a dense set E ⊆ H, must {xn} be a

Bessel sequence?

(b) If there exists a constant B > 0 such that
∑ |〈x, xn〉|2 ≤ B ‖x‖2 for

all x in a complete set E ⊆ H, must {xn} be a Bessel sequence?

7.9. Show that a sequence {xn} in a Hilbert space H is a Bessel sequence if
either of the following two conditions holds:

(a)
∑

m

∑
n |〈xm, xn〉|2 <∞, or

(b) supm
∑

n |〈xm, xn〉| <∞.
Observe that hypothesis (a) is quite restrictive, e.g., it is not satisfied by any
infinite orthonormal sequence.

7.10. Suppose that {xn} is a Bessel sequence that is a basis for a Hilbert
space H. Let {yn} be the biorthogonal sequence, and let B be a Bessel bound.

(a) Show that

∀x ∈ H, 1

B
‖x‖2 ≤

∑

n

|〈x, yn〉|2.

We say that {yn} has a lower frame bound of B−1; compare Definition 8.2.
Note that {yn} need not be a Bessel sequence; see Exercise 7.1(h).
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(b) Show that for all N ∈ N and c1, . . . , cN ∈ F we have

1

B

N∑

n=1

|cn|2 ≤
∥∥∥∥
N∑

n=1

cnyn

∥∥∥∥
2

.

7.11. Let {xn}, {yn} be Bessel sequences in separable Hilbert spaces H, K,
respectively. Show that the tensor product sequence {xm ⊗ yn}m,n∈N is a
Bessel sequence in H ⊗K = B2(H,K) (see Appendix B for definitions).

7.12. The Hilbert matrix is

H =




1 1/2 1/3 1/4 · · ·
1/2 1/3 1/4 1/5

1/3 1/4 1/5 1/6

1/4 1/5 1/6 1/7
...

. . .




.

Define

C =




1 0 0 0 · · ·
1/2 1/2 0 0

1/3 1/3 1/3 0

1/4 1/4 1/4 1/4
...

. . .




and L =




1 1/2 1/3 1/4 · · ·
1/2 1/2 1/3 1/4

1/3 1/3 1/3 1/4

1/4 1/4 1/4 1/4
...

. . .




,

and prove the following statements.

(a) L = CC∗, so L ≥ 0 (i.e., L is a positive operator).

(b) I − (I − C)(I − C)∗ = diag(1, 1/2, 1/3, 1/4, . . .), the diagonal matrix
with entries 1, 1/2, . . . on the diagonal.

(c) ‖(I − C)‖2 = ‖(I − C)(I − C)∗‖ ≤ 1.

(d) ‖C‖ ≤ 2 and ‖L‖ ≤ 4.

Remark: It is a fact (though not so easy to prove) that if A, B are sym-
metric matrices and aij ≤ bij for all i, j ∈ N, then ‖A‖ ≤ ‖B‖. Consequently,
‖H‖ ≤ ‖L‖ ≤ 4.

7.2 Unconditional Bases and Riesz Bases in Hilbert
Spaces

Let H be a separable Hilbert space. We saw in Example 4.21 that all or-
thonormal bases in H are equivalent. We will show in this section that the
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class of bases that are equivalent to orthonormal bases coincides with the
class of bounded unconditional bases for H, and we will discuss some of the
properties of such bases.

Definition 7.9 (Riesz Basis). Let {xn} be a sequence in a Hilbert space H.

(a) {xn} is a Riesz basis if it is equivalent to some (and therefore every)
orthonormal basis for H.

(b) {xn} is a Riesz sequence if it is a Riesz basis for its closed span in H. ♦

Note that all Riesz bases are equivalent since all orthonormal bases are
equivalent. Also, since all orthonormal bases are Bessel sequences, any Riesz
basis {xn} must be a Bessel sequence (see Exercise 7.6). Hence we have at
hand the tools discussed in Section 7.1. In particular, if {xn} is a Riesz basis,
then we know that the analysis operator Cx =

(
〈x, xn〉

)
is a bounded mapping

of H into ℓ2, and its adjoint is the synthesis operator Rc =
∑
cnxn for c =

(cn) ∈ ℓ2, where this series converges unconditionally in H.
As with bases or unconditional bases, the image of a Riesz basis under a

topological isomorphism is a Riesz basis.

Lemma 7.10. Riesz bases are preserved by topological isomorphisms. Specif-
ically, if {xn} is a Riesz basis for a Hilbert space H and T : H → K is a
topological isomorphism, then {Txn} is a Riesz basis for K.

Proof. Since H possesses a basis, it is separable. Therefore K, being topolog-
ically isomorphic to H, is separable as well. By Exercise 1.71, all separable
Hilbert spaces are isometrically isomorphic, so there exists an isometry Z that
maps H onto K. Further, by the definition of Riesz basis, there exists an or-
thonormal basis {en} for H and a topological isomorphism U : H → H such
that Uen = xn. Since Z is an isometric isomorphism, the sequence {Zen}
is an orthonormal basis for K. Hence, TUZ−1 is a topological isomorphism
of K onto itself which has the property that TUZ−1(Zen) = TUen = Txn.
Hence {Txn} is equivalent to an orthonormal basis for K, so we conclude that
{Txn} is a Riesz basis for K. ⊓⊔

This yields one half of our characterization of Riesz bases.

Theorem 7.11. Every Riesz basis for a Hilbert space H is a bounded uncon-
ditional basis for H.

Proof. Let {xn} be a Riesz basis for a Hilbert space H. Then there exists an
orthonormal basis {en} for H and a topological isomorphism T : H → H such
that Ten = xn for every n. However, {en} is a bounded unconditional basis,
and bounded unconditional bases are preserved by topological isomorphisms
by Lemma 6.2(b), so {xn} must be a bounded unconditional basis for H. ⊓⊔

Before presenting the converse to this result, we prove that Riesz bases
are interchangeable with their dual systems in the following sense.
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Lemma 7.12. Let {xn} be a basis for a Hilbert space H, with biorthogonal
system {yn}. Then the following statements are equivalent.

(a) {xn} is a Riesz basis for H.

(b) {yn} is a Riesz basis for H.

(c) {xn} ∼ {yn}.

Proof. (a) ⇒ (b), (c). If {xn} is a Riesz basis for H, then {xn} ∼ {en} for
some orthonormal basis {en} of H. By Corollary 5.23, {xn} and {en} have
equivalent biorthogonal systems. However, {en} is biorthogonal to itself, so
this implies {yn} ∼ {en} ∼ {xn}. Hence {yn} is equivalent to {xn}, and {yn}
is a Riesz basis for H.

(b) ⇒ (a), (c). By Corollary 5.22, {yn} is a basis for H with biorthogonal
system {xn}. Therefore, this argument follows symmetrically.

(c) ⇒ (a), (b). Assume that {xn} ∼ {yn}. Then there exists a topological
isomorphism T : H → H such that Txn = yn for every n. Given x ∈ H, we
therefore have

x =
∑

n

〈x, yn〉xn =
∑

n

〈x, Txn〉xn,

so

〈Tx, x〉 =

〈∑

n

〈x, Txn〉Txn, x
〉

=
∑

n

|〈x, Txn〉|2 ≥ 0.

Thus T is a continuous and positive linear operator on H, and therefore has
a continuous and positive square root T 1/2 by Theorem 2.18. Similarly, T−1

is positive and has a positive square root. Consequently, T 1/2 is a topological
isomorphism. Further, T 1/2 is self-adjoint, so

〈T 1/2xm, T
1/2xn〉 = 〈xm, T 1/2T 1/2xn〉 = 〈xm, Txn〉 = 〈xm, yn〉 = δmn.

Hence {T 1/2xn} is an orthonormal sequence in H, and it is complete since
{xn} is complete and T 1/2 is a topological isomorphism. Therefore {xn} is the
image of the orthonormal basis {T 1/2xn} under the topological isomorphism
T−1/2, so {xn} is a Riesz basis. By symmetry, {yn} is a Riesz basis as well. ⊓⊔

Now we can prove that Riesz bases and bounded unconditional bases are
equivalent, and we also give several other equivalent formulations of Riesz
bases. We include the proofs of more implications than are strictly necessary.
Additional characterizations of Riesz bases will be given in Theorem 8.32.

Theorem 7.13. Let {xn} be a sequence in a Hilbert space H. Then the fol-
lowing statements are equivalent.

(a) {xn} is a Riesz basis for H.

(b) {xn} is a bounded unconditional basis for H.
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(c) {xn} is a basis for H, and

∑

n

cnxn converges ⇐⇒
∑

n

|cn|2 <∞.

(d) {xn} is complete in H and there exist constants A, B > 0 such that

∀ c1, . . . , cN , A
N∑

n=1

|cn|2 ≤
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

≤ B
N∑

n=1

|cn|2. (7.4)

(e) There is an equivalent inner product (·, ·) for H such that {xn} is an
orthonormal basis for H with respect to (·, ·).

(f) {xn} is a complete Bessel sequence and possesses a biorthogonal system
{yn} that is also a complete Bessel sequence.

(g) {xn} is complete, and multiplication of vectors in ℓ2 by the Gram matrix
G =

[
〈xn, xm〉

]
m,n∈N

defines a topological isomorphism of ℓ2 onto itself.

Proof. (a) ⇒ (b). This is Theorem 7.11.

(a) ⇒ (e). If {xn} is a Riesz basis for H, then there exists an orthonor-
mal basis {en} for H and a topological isomorphism T : H → H such that
Txn = en for every n. Define

(x, y) = 〈Tx, T y〉 and |||x|||2 = (x, x) = 〈Tx, Tx〉 = ‖Tx‖2.

It is easy to see that (·, ·) is an inner product for H, and by applying Exercise
2.37 we obtain ‖T−1‖−1 ‖x‖ ≤ |||x||| ≤ ‖T ‖ ‖x‖. Hence ||| · ||| and ‖ · ‖ are
equivalent norms for H, and so (·, ·) and 〈·, ·〉 are equivalent inner products.
Since

(xm, xn) = 〈Txm, Txn〉 = 〈em, en〉 = δmn,

the sequence {xn} is orthonormal with respect to (·, ·). Suppose x ∈ H sat-
isfies (x, xn) = 0 for every n. Then 0 = (x, xn) = 〈Tx, Txn〉 = 〈Tx, en〉 for
every n, so Tx = 0 since {en} is complete with respect to 〈·, ·〉. Since T is a
topological isomorphism, we therefore have x = 0, so {xn} is complete with
respect to (·, ·). A complete orthonormal sequence is an orthonormal basis, so
statement (e) holds.

(a) ⇒ (g). Suppose that {xn} is a Riesz basis for H. Since all Riesz bases
and orthonormal bases are equivalent, there exists a topological isomorphism
T : ℓ2 → H such that Tδn = xn, where {δn} is the standard basis for ℓ2. Note
that since {xn} is a Bessel sequence, T is precisely the synthesis operator R
for {xn}. Hence G = R∗R = T ∗T is also a topological isomorphism.

(b) ⇒ (f). Suppose that {xn} is a bounded unconditional basis for H,
and let {yn} be its biorthogonal system. Since H is reflexive, Exercise 6.4
implies that {yn} is also an unconditional basis for H. Also, by Theorem 4.13,
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1 ≤ ‖xn‖ ‖yn‖ ≤ 2C where C is the basis constant for {xn}. Hence {yn} is
a bounded unconditional basis for H. All bounded unconditional bases are
Bessel sequences by Theorem 7.8, so statement (f) follows.

(c)⇒ (a). Let {en} be an orthonormal basis forH. Then, by Theorem 4.20,
statement (c) implies that {xn} ∼ {en}, so {xn} is a Riesz basis for H.

(d) ⇒ (c). Suppose that statement (d) holds. Taking cm = 1 and cn = 0
for n 6= m, we see from equation (7.4) that ‖xm‖2 ≥ B−1. Hence each xm is
nonzero. Choose any M < N, and scalars c1, . . . , cN . Then, by equation (7.4),

∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥
2

≤ B

M∑

n=1

|cn|2 ≤ B

N∑

n=1

|cn|2 ≤
B

A

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

.

Since {xn} is complete and every xn is nonzero, Theorem 5.17 implies that
{xn} is a basis for H.

It remains to show that
∑
cnxn converges if and only if

∑ |cn|2 < ∞.
Given a sequence of scalars (cn) and M < N, we have by equation (7.4) that

A

N∑

n=M+1

|cn|2 ≤
∥∥∥∥

N∑

n=M+1

cnxn

∥∥∥∥
2

≤ B

N∑

n=M+1

|cn|2.

Therefore,
∑
cnxn is a Cauchy series in H if and only if

∑ |cn|2 is a Cauchy
series of real numbers. Hence one series converges if and only if the other series
converges.

(e) ⇒ (d). Suppose that (·, ·) is an equivalent inner product for H such
that {xn} is an orthonormal basis with respect to (·, ·). Let ||| · ||| denote the
norm induced by (·, ·). Then there exist constants A, B > 0 such that

∀x ∈ H, A |||x|||2 ≤ ‖x‖2 ≤ B |||x|||2. (7.5)

Given x ∈ H, we have the orthonormal basis expansion x =
∑

(x, xn)xn,
where the series converges with respect to ||| · |||. Since ‖ · ‖ is equivalent to
||| · |||, this series also converges with respect to ‖ · ‖. Hence span{xn} is dense
and therefore {xn} is complete, with respect to both norms.

Now choose any scalars c1, . . . , cN . Then by the Plancherel Equality (The-

orem 1.50),
∣∣∣∣∣∣∑N

n=1 cnxn
∣∣∣∣∣∣2 =

∑N
n=1 |cn|2. Combined with equation (7.5),

this implies that

A

N∑

n=1

|cn|2 ≤
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

≤ B

N∑

n=1

|cn|2,

so statement (d) holds.

(f) ⇒ (b). Suppose that {xn} and {yn} are biorthogonal Bessel systems
that are each complete in H. Given x ∈ H, we have

(
〈x, yn〉

)
∈ ℓ2 since {yn}
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is Bessel. Hence z =
∑ 〈x, yn〉xn converges unconditionally by Theorem 7.2.

By biorthogonality, 〈z, yn〉 = 〈x, yn〉 for every n, and so z = x since {yn} is
complete. Thus x =

∑ 〈x, yn〉xn with unconditional convergence. Biorthogo-
nality ensures that this representation is unique, so {xn} is an unconditional
basis for H. Both {xn} and {yn} are bounded above in norm since they are
Bessel sequences. Also, 1 ≤ ‖xn‖ ‖yn‖ ≤ 2C, where C is the basis constant
for {xn}, so {xn} and {yn} are bounded below in norm. Therefore {xn} is a
bounded unconditional basis for H.

(f) ⇒ (g). Suppose that {xn}, {yn} are biorthogonal sequences that are
each complete Bessel sequences. Let C, R be the analysis and synthesis oper-
ators for {xn}, and let D, V be the analysis and synthesis operators for {yn}.
These are all bounded since {xn} and {yn} are Bessel. By biorthogonality, if
c ∈ ℓ2, then

CV c =

(〈∑

n

cnyn, xm

〉)

m∈N

= (cm)m∈N = c.

Further, if x ∈ H, then RDx =
∑ 〈x, yn〉xn, and biorthogonality implies

that 〈RDx, yn〉 = 〈x, yn〉 for each n. Since {yn} is complete, this implies that
RDx = x. Symmetric arguments show that V C andDR are identity operators
as well. Finally, G = CR, so L = DV is a bounded operator that satisfies

GL = CRDV = CV = I and LG = DV CR = DR = I.

Hence G has a bounded two-sided inverse, and therefore is a topological iso-
morphism.

(g) ⇒ (d). Assume that {xn} is complete and the Gram matrix G de-
fines a topological isomorphism of ℓ2 onto itself. Then G is bounded, so
we have by Theorem 7.6 that {xn} is a Bessel sequence, and therefore

〈Gc, c〉 =
∥∥∑ cnxn

∥∥2 ≥ 0 for all c = (cn) ∈ ℓ2. Hence G is a positive operator

on ℓ2, and in fact it is positive definite since it is a topological isomorphism.
Exercise 2.45 therefore implies that |||c||| = 〈Gc, c〉 is an equivalent norm on

ℓ2. Hence there exist constants A, B > 0 such that A |||c|||2 ≤ ‖c‖2ℓ2 ≤ B |||c|||2
for all c ∈ ℓ2, and this implies that statement (d) holds. ⊓⊔

Exercises

7.13. Given a Riesz basis {xn} in a Hilbert space H, prove that the following
statements are equivalent.

(a)
∑
cnxn converges.

(b)
∑
cnxn converges unconditionally.

(c)
∑ |cn|2 <∞.
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7.14. Show that every basis for a finite-dimensional vector space V is a Riesz
basis for V (with respect to any inner product on V ).

7.15. Exhibit an unconditional basis for a Hilbert space H that is not a Riesz
basis for H.

7.16. Show that if {xn} is a complete sequence in a Hilbert space H that

satisfies
∥∥∑N

n=1 cnxn
∥∥2

=
∑N
n=1 |cn|2 for any N ∈ N and c1, . . . , cN ∈ F,

then {xn} is an orthonormal basis for H.

7.17. Let {xn}, {yn} be Riesz bases for Hilbert spaces H, K, respectively.
Show that the tensor product sequence {xm ⊗ yn}m,n∈N is a Riesz basis for
H ⊗K = B2(H,K) (see Appendix B for definitions).

7.18. Let {xn} be an orthonormal basis for a Hilbert space H. Suppose {yn}
is a sequence in H and there exists 0 < λ < 1 such that

∥∥∥∥
N∑

n=1

cn (xn − yn)
∥∥∥∥

2

≤ λ

N∑

n=1

|cn|2, N ∈ N, c1, . . . , cN ∈ F.

Show that {yn} is a Riesz basis for H.

7.19. Let {xn} be an orthonormal basis for a Hilbert space H. Let Tk ∈ B(H)
and ank ∈ F be such that

λ =

∞∑

k=1

‖Tk‖
(
sup
n
|ank|

)
< 1.

Assume that the series

yn = xn +

∞∑

k=1

ank Tken

converges for each n ∈ N. Show that {yn} is a Riesz basis for H.

7.20. In this exercise we will use the abbreviation eb(x) = e2πibx, where b ∈ R.

Also, we identify the Hilbert space L2(T) with L2[− 1
2 ,

1
2 ].

Fix λn ∈ C and assume that

δ = sup
n∈Z

|n− λn| < ∞.

(a) Define bounded linear operators Tk on L2[− 1
2 ,

1
2 ] by

Tkf(x) = xkf(x).

Show that the operator norm of Tk is ‖Tk‖ = 2−k.
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(b) Define

ank = −
(
2πi(λn − n)

)k

k!
.

Show that

en − eλn =
∞∑

k=1

ank Tken, n ∈ Z,

where the series converge absolutely in L2[− 1
2 ,

1
2 ].

(c) Show that if
δ < (ln 2)/π ≈ 0.22 . . . ,

then {e2πiλnx}n∈Z is a Riesz basis for L2[− 1
2 ,

1
2 ].

Remark: This result is due to Duffin and Eachus [DE42], but it is not
quite the best possible. Kadec’s 1

4 -Theorem [Kad64] states that if δ < 1
4 then

{e2πiλnx}n∈Z is a Riesz basis for L2[− 1
2 ,

1
2 ], and it is known that 1

4 is the
optimal value. For a more detailed discussion, we refer to [You01].
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